CMU-CS-13-127 Computer Science Department School of Computer Science, Carnegie Mellon University
Understanding and Capturing People's Jialiu Lin October 2013 Ph.D. Thesis
This thesis aims to address this gap through the study of user mobile app privacy preferences with the dual objective of both simplifying and enhancing mobile app privacy decision interfaces. Specifically, we combine static code analysis, crowdsourcing and machine learning techniques to elicit people’s mobile app privacy preferences. We show how the resulting preference models can inform the design of interfaces that offer the promise of alleviating user burden when it comes to reviewing the permissions requested by mobile apps. Our contribution is threefold. First, we provide the first large-scale, indepth analysis of mobile app data collection and usage practices as found in the Google Play app store. This includes an analysis of over 100,000 Android apps, the permissions they request and the different types of third parties with which they share information. Second, we introduce a crowdsourcing methodology to collect people’s privacy preferences when it comes to granting permissions to mobile apps for different purposes (e.g. for internal purpose, for sharing with advertising networks) and use the results to develop new mobile app privacy decision interfaces. Third, by using machine learning techniques to analyze privacy preferences from over 700 smartphone users, we show that, while these preferences are diverse, a relatively small number of privacy profiles can go a long way in simplifying the number of decisions users have to make. This last contribution offers the promise of alleviating user burden and ultimately increasing their control over their information. This thesis provides an important scientific basis for starting to reconcile mobile privacy and usability and, in particular, helping inform the design of more usable privacy interfaces and settings.
91 pages | |
Return to:
SCS Technical Report Collection This page maintained by reports@cs.cmu.edu |