
 
 
 

 
 
 

UNDERSTANDING AND CAPTURING 
PEOPLE’S MOBILE APP PRIVACY 

PREFERENCES 
 

Jialiu Lin 
 

CMU-CS-13-127 
October 28, 2013 

 
 
 
 
 

School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 
 

Thesis Committee: 
Norman Sadeh, Co-Chair 
Jason I. Hong, Co-Chair 
Mahadev Satyanarayanan 
Sunny Consolvo, Google 

 
 

 
 
 

Submitted in partial fulfillment of the requirements for the 
degree of Doctor of Philosophy. 

 
 
 

Copyright © 2013 Jialiu Lin 
This research was supported in part by the National Science Foundation under grants CNS-1012763, NSF 
CNS-1228813 and CNS-0905562, in part by CyLab at Carnegie Mellon under grants DAAD19-02-1-0389 
and W911NF-09-1-0273 from the Army Research Office, in part by NSA under grant W911NF0910273, in 
part by Carnegie Mellon Portugal ICTI 1030348 and in part by Google. 



 

 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: mobile app privacy, app analysis, expectation, privacy interface, user studies, 

privacy preferences, crowdsourcing, user-oriented machine learning, Android permission 



 

 

iii 

 

Abstract 
 

 

 

 

Users are increasingly expected to manage a wide range of security and privacy settings. 

An important example of this trend is the variety of users might be called upon to review 

permissions when they download mobile apps. Experiments have shown that most users 

struggle with reviewing these permissions. Earlier research efforts in this area have 

primarily focused on protecting users’ privacy and security through the development of 

analysis tools and extensions intended to further increase the level of control provided to 

users with little regard for human factor considerations.  

This thesis aims to address this gap through the study of user mobile app privacy 

preferences with the dual objective of both simplifying and enhancing mobile app privacy 

decision interfaces. Specifically, we combine static code analysis, crowdsourcing and 

machine learning techniques to elicit people’s mobile app privacy preferences. We show 

how the resulting preference models can inform the design of interfaces that offer the 

promise of alleviating user burden when it comes to reviewing the permissions requested 

by mobile apps. Our contribution is threefold. First, we provide the first large-scale, in-

depth analysis of mobile app data collection and usage practices as found in the Google 

Play app store.  This includes an analysis of over 100,000 Android apps, the permissions 

they request and the different types of third parties with which they share information. 

Second, we introduce a crowdsourcing methodology to collect people’s privacy 

preferences when it comes to granting permissions to mobile apps for different purposes 

(e.g. for internal purpose, for sharing with advertising networks) and use the results to 

develop new mobile app privacy decision interfaces. Third, by using machine learning 

techniques to analyze privacy preferences from over 700 smartphone users, we show that, 

while these preferences are diverse, a relatively small number of privacy profiles can go a 

long way in simplifying the number of decisions users have to make. This last 

contribution offers the promise of alleviating user burden and ultimately increasing their 

control over their information.  

This thesis provides an important scientific basis for starting to reconcile mobile privacy 

and usability and, in particular, helping inform the design of more usable privacy 

interfaces and settings.
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1 INTRODUCTION 

1.1 Overview 

Smartphone ownership has grown rapidly over the last few years. In 2013, global 

smartphone shipments are expected to hit 1 billion units [64]. Nearly half of cell phone 

owners carry smartphone nowadays. The explosion in smartphone ownership has been 

accompanied by the emergence of App Stores that enable users to download a growing 

number of applications onto their devices. As of June 2013, the Google Play Store
1
 

offered more than 1,000,000 apps; the Apple App store offered more than 950,000 apps, 

and both with close to 50 billion downloads since its launch [117, 118]. Mobile apps can 

make use of numerous capabilities of a smartphone, such as a user’s current location and 

call logs, providing users with pertinent services and attractive features.   

Inevitably, access to these capabilities opens the door to new types of security and 

privacy intrusions. Malware is an obvious problem [33, 52]; another serious problem is 

that mobile users, in general, are neither fully aware of nor have full control over how 

mobile apps access and transmit personal information. For example, the Pandora music 

app was under federal investigation for gathering location data, gender, year of birth, and 

unique device ID from mobile users and sharing this information with advertisers [35]. 

Social network applications, such as Facebook and Path, were found uploading entire 

contact lists onto their servers, which greatly surprised users and made them feel very 

uncomfortable [63, 111]. In fact, studies [54, 77, 82] have shown that users have a poor 

understanding of these sensitive resource usages, and existing interfaces fall short in 

terms of providing users with the information necessary to make informed decisions. 

A number of ongoing research efforts focus on protecting mobile users’ privacy and 

security using software analysis techniques or security extensions with app-specific 

privacy controls (e.g., [29, 68, 123]). In Android 4.3, Google also released a hidden “App 

Ops” function which allows users to fine-tune their permission settings after installation 

[114]. Given the average number of apps users install and the average number of 

permissions each app requests, asking users to systematically configure all these settings 

seems unrealistic. It creates too great a burden on the users and would most likely 

overwhelm users with details they may not fully understand and may ultimately not care 

about. To date, though there is a handful of work approaching the mobile app privacy 

problem from the users’ perspective [51, 54, 77], little work has been done to understand 

people’s privacy preferences in using mobile apps and see to what extent a better 

understanding of these preferences could inform the design of interfaces that empower 

users to better manage their privacy.  

The fundamental goal of this thesis is to contribute important knowledge on the end-

users’ side and bridge the gap between system or security-oriented privacy research and 

the user-oriented privacy preferences modeling. Within the context of mobile app 

privacy, we are aiming to solve two key research questions that potentially can also be 

applied to other relevant domains. The first one is how can we convey mobile apps’ 

                                                 
1 Previously called “the Android Market.” 
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Figure 1. The fundamental goal of this thesis is to bridge the gap between security-

oriented research and user research, emphasizing how to properly inform users of apps’ 

privacy-related behaviors and how to help users control their privacy settings without 

burdening them with numerous decisions. 

privacy-related behaviors to users in a more effective and understandable way. The other 

key research question is whether it is possible to simplify decisions users have to make 

without reducing their level of control over the decisions they really care about. In other 

words, this thesis focuses on two types of relationship between apps and users as shown 

in Figure 1, i.e. what and how should apps (or app markets) inform users regarding their 

data collection and usage practices (the “notify” arrow in Figure 1) as well as how to 

assist users in configuring their privacy settings to control the data usages of various apps 

(the “control” arrow in Figure 1).  

Specifically, this thesis involves the detailed analysis of over 100,000 mobile apps and a 

collection of more than 20,000 responses from over 700 hundred smartphone users. We 

leverage static analysis to identify the 3rd-party libraries that bundled with apps to infer 

the use of sensitive data
2
, crowdsourcing to collect users’ privacy preferences at large 

scale, and machine learning techniques to isolate distinguishing patterns within apps’ 

behaviors, as well as users’ preferences. In these ways, we explore whether we can 

identify the key information to inform users and whether it is possible to reduce and 

simplify the number of privacy decisions exposed to users without negatively impacting 

their sense of control. The central thesis aims at providing quantitative foundations and 

user perspectives to mobile privacy research, which can be summarized as: 

By combining static analysis, crowdsourcing and user-oriented machine 

learning techniques, we can build accurate and understandable models of 

mobile app permissions and of users’ willingness to grant these permissions. 

                                                 
2
 Since the uses of 3

rd
-party libraries to some extent indicate why sensitive resources are used and the 

parties who collect this information.   
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These models can in turn inform the design of more usable mobile app 

permission interfaces.  

Given the scale of data we are aiming to deal with and the goal of eventually applying 

our models to the real settings, i.e. to a market of more than one million of apps and 

hundreds of millions of users, scalability is an important criterion in the design and 

conduct of our studies and analyses. In this thesis, we will also show how we resolve this 

challenge by leveraging the power of cloud, crowdsourcing and unsupervised learning.  

In the next section, we give a brief introduction to each of the three major components in 

this thesis outlining the key techniques we used and the lessons we learned in each step.  

1.2 Three Major Components of this Thesis 

Based on the objectives and the techniques involved, this thesis can be naturally divided 

into three components. In the first component, we describe the techniques we used to 

dissect and analyze mobile apps at a relatively large scale in order to understand the 

typical patterns of how apps consume users’ sensitive personal data. In the second 

component, we describe our accomplishment in improving the privacy notification 

interfaces to convey richer and more pertinent information to users. In the last component 

of this thesis, we present our exploration in quantitatively modeling users’ privacy 

preferences to identify representative privacy profiles that could greatly simplify the 

privacy configuration process.  

1.2.1 Analyzing Apps’ Privacy-Related Behavior  

In Chapter 3 and 4, we describe the detailed procedures involved in downloading and 

analysis over 100K mobile apps. Specifically, we discuss how we use Androguard [2] – 

an Android reverse engineering tool to perform static code analysis on apps, focusing on 

identifying the sensitive data requested as well as the 3rd-party libraries that bundled 

within apps that consume these sensitive resources. We leverage the Amazon EC2 cloud 

to enable the batch processing to speed up the analysis of this large quantity of apps. To 

identify the purpose for which access to sensitive user data or phone functionality is 

requested, we identified the 400 3
rd

-party libraries that are most frequently used in all 

these apps and organized them into 9 categories. These categories include Targeted 

Advertising, Customized UI Components, Content Host, Game Engine, Social Network 

Sites (SNS), Mobile Analytics, Secondary Market, Payment and other Utilities. We also 

analyze how different types of resources (permissions) are used for various purposes.  

We further performed clustering analysis to identify clusters of apps that request similar 

combinations of permissions. Our analysis identifies five different categories of apps, 

each exhibiting distinct patterns of permissions and purposes associated with these 

permissions. These different app categories give rise to different privacy risks and, as 

such, can also be expected to also give rise to different privacy preferences among users.  

 

This component provides a systems-oriented foundation for us to better understand 

mobile apps in terms of their privacy-related behaviors, which enables us to study users’ 

preferences in regard to these app behaviors in the later part of the thesis.   
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1.2.2 Improving Ways of Notifying Users 

Previous studies have found that Android’s existing permission interfaces are not 

sufficient for users to make informed decisions [54, 77]. In Chapter 5, we discuss how we 

identify essential information that needs to be conveyed to users, how we obtain this 

information, as well as how to present this information in more appropriate layouts.  

More specifically, we frame mobile privacy in the form of people’s expectations about 

what an app does and does not do as a key feature to convey to users, focusing on where 

an app breaks people’s expectations. The other key feature we found crucial is the 

purpose, i.e. why the sensitive data is required, since people’s perception of whether an 

app’s permission is reasonable is strongly influenced by the purpose associated with this 

permission (e.g. internal use of one’s location versus sharing that location with an 

advertising network). We show, how using crowdsourcing it is possible to collect this 

information and develop deep user privacy preference models that capture not just a 

user’s willingness to grant a permission to an app but also the purpose associated with 

this permission.  

Furthermore, based on our crowdsourced data, we present the design and evaluation of 

several new privacy notification interfaces that highlight the two key features we 

identified, including one preliminary design that adopted a similar text-based style as the 

existing Android permission screen and three other interfaces that visualize this 

information in more compact and understandable layouts.  

1.2.3 Helping Users with Privacy Settings by Providing Privacy 
Profiles 

In Chapter 6, we provide comprehensive quantitative modeling of users’ privacy 

preferences. We extend our crowdsourcing study to a sample of over 1200 app-

permission-purpose triples identified using static analysis. We collect over 20,000 

subjective responses of these sensitive data usages from over 700 participants as our 

dataset to analyze users’ privacy preferences. By performing clustering analysis, we show 

that it is possible to accurately capture the preferences of these users by subdividing them 

into four different groups of like-minded users. Looking at the different preference 

profiles associated with these groups, as identified by their willingness to grant different 

app-purpose-permission triples, we respectively label them the conservatives, the 

unconcerned, the fence-sitters and the advanced users.  

We proceed to show that using the resulting four privacy profiles and simple decision 

trees to identify which profile best matches each user, it is possible to predict a user’s 

willingness to grant app-purpose-permission triples with a high level of accuracy. This in 

turn offers the prospect of empowering users to better control their mobile app 

permissions without requiring them to  tediously review each and every app-purpose-

permission- decision associated with the apps they download on their smartphones, 

opening the door to privacy interfaces that could one day help reconcile privacy and user 

burden.    
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1.3 Research Contributions and Future Prospects 

In short, this thesis contributes to mobile app privacy research in several ways including: 

 Through a static analysis of over 100,000 apps that identified the 3rd-party 

libraries bundled in these apps, we contributed a valuable dataset to the 

community that includes attributes describing privacy-related behaviors of mobile 

apps, highlighting the purpose why users’ sensitive resources are used. 

 By clustering analysis of apps’ privacy-related behaviors, we provided a new way 

to classify mobile apps based on how and why they use users’ sensitive resources.  

 We identified two key features --- expectation and purpose--- that greatly impact 

users’ privacy preferences and should be conveyed to users for making better 

privacy decisions. 

 We demonstrated the feasibility of using crowdsourcing as a compelling 

technique to examine people’s preferences efficiently.  

 We proposed a set of privacy interfaces that provide detailed explanations of 

apps’ privacy-related behavior and leverage the misconceptions about an app that 

identified by crowdsourcing.  

 We identified four groups of users with distinct privacy preferences of mobile 

apps’ privacy-related behaviors. 

 We generated a set of default privacy settings based on identified user clusters 

and demonstrated the potentials of these privacy profiles in terms of estimating 

users’ privacy preferences more accurately and the great reduction of user burden 

they lead to. 

Collectively, these contributions should provide a scientific basis for starting to reconcile 

mobile privacy and usability and, in particular, helping inform the design of more usable 

privacy interfaces and settings. At the end of this thesis, we also outline several directions 

that worth exploring in the future. These include leveraging NLP or other techniques to 

generate more functionality-related attributes for app analysis, a series of user studies to 

evaluate identified privacy profiles as well as the design and implementation of a privacy 

wizard that can bootstrap users’ privacy settings. 

In the next section, I will present a comprehensive summarization of literature that is 

related to smartphone privacy, as well as other relevant domains.  
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2 BACKGROUND AND RELATED WORK 
In this section, I will first summarize the existing privacy frameworks of the two major 

smartphone operating systems, Android and iOS, to illustrate the problem and challenges 

that motivate my thesis. Then, I will survey all the recent work in mobile app privacy 

both from a systems, security, and end-user point of view. Following this, I will 

summarize the user privacy preference modeling research in other application, such as 

location sharing. Finally, I will mention all the other related technologies that inspired 

this work.  

2.1 Android & iOS Privacy Frameworks 

The Android permission framework is intended to serve two purposes to protect users: 

(1) limit the access of mobile apps to sensitive resources and (2) assist users in making 

trust decisions before installing apps. The latest Android 4.3 platform defines 11 

permission groups with more than 130 permissions [62]. Android apps can only access 

sensitive resources if they declare permissions in the manifest files and obtain approval 

from users at installation. At the official Google Play store, before installing an app, users 

are shown a permission screen that lists resources an app will access. It is this 

information that users must use to decide whether to trust the app (see Figure 2).  In order 

to proceed to installation, users need to accept all the permissions. Once granted, 

permissions cannot be revoked unless the user uninstalls the app.  

Although intended to be a more open platform, Android’s privacy framework puts the 

responsibility on users to make the “right” decisions. Therefore, its design easily suffers 

from two problems. One is the usability issue: several studies have pointed out that 

Android users generally paid limited attention to permission screens and had poor 

understanding of what the permissions implied [54, 77, 122]. Although Google has been 

continuously improving the ordering of permission groups and permission description, 

    
(a) (b) (c)           (d) 

 

Figure 2: The latest two generations of permission screens in Google Play Store (a) and 

(b). When a user clicks on an entry from the permission list, more explanations are 

shown (c) and (d). Previous research showed that most users click through the 

permission screen without carefully examining this list.   
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Figure 3. Both of the two major smartphone operating systems provide (start to provide) 

users with finer privacy control over sensitive resources. The left screen shows the 

hidden “App Ops” permission Controls in Android 4.3 and the right screenshot shows 

privacy settings in iOS 6.  

the current permission screens still generally lack adequate explanation and definitions. 

The other problem is the lack of controls. Before Android 4.3, once permissions are 

granted, users have no control over the permission usage of individual app other than 

uninstalling the app. This frequently puts end-users in a dilemma of trading off their 

privacy for functionality or cost, such that accumulatively users might lose confidence in 

Android system. The good news is, according to latest reports [20, 114], in Android 4.3 

users are finally able to fine-tune their privacy preferences after installing apps by using a 

hidden “App Ops” feature (Figure 3, left). On the other hand, given the number of apps 

installed on an average users’ phone
3
 and the number of permissions requested by each 

app, configuring permissions one by one seems infeasible, such that educating users to 

make proper configurations and developing trusted tools to provide certain level of 

automation become more and more important.  

The privacy framework in iOS adopts a different strategy. Apple’s App Store does not 

present any data usage related information to users at install time. Instead, users are 

prompted to accept or deny the use of sensitive resource the first time it is used. In the 

latest iOS versions (iOS 5 and above), users also have the ability to turn on and off the 

data usage (such as location, contacts, calendars, photos, etc, see Figure 3, right) for each 

individual app, which is similar to what “App Ops” provides for Android system, and 

hence suffers from similar potential usability problems as well. For jailbroken iPhones, 

Protect My Privacy (PMP) provides users with even more controls [13, 19]. Whenever 

sensitive resources are requested, an alert is shown to the user with “protect” and “allow” 

option. Instead of merely blocking access to information that might cause unexpected 

behavior or crash, PMP supplies fake replacement data. In the privacy setting page, PMP 

                                                 
3
 Nielsen reported that US smartphones had an average of 41 apps installed in 2012 [87]. 
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also provides an automated way of making privacy decisions by crowd-sourcing 

recommendations from other users. In my thesis, I will demonstrate that the average 

recommendations are not optimal for individual users since users’ privacy preferences 

can differ from each other significantly.  

In short, this thesis is motivated by these above-mentioned problems in these most 

popular smartphone operating systems and aims to leverage app analysis, crowdsourcing 

and user preference modeling to provide practical solutions to these problems.  

2.2 Security-oriented Approaches in Mobile App Privacy 

To protect users’ privacy, a lot of work leveraged software security technologies to 

approach this problem, resulting in a number of useful tools for researchers and analysts 

to obtain deeper understanding of these mobile apps’ sensitive behaviors. 

To handle the increasing rate of malware in the Android market, in Feb 2012, Google 

announced their “Bouncer” service that scans apps for malware, spyware, Trojans, and 

other suspicious behaviors [124]. Though there is very little published information about 

how “Bouncer” actually works and how effective it is, the experiments conducted by  

Oberheide [96] unveiled that “Bouncer” performs dynamic runtime analysis of Android 

apps in an emulated Android environment and can be easily bypassed. For what we care, 

“Bouncer” was intended to detect malicious apps rather than privacy intrusive apps.  

Researchers have also developed many useful techniques and tools to detect sensitive 

information leakage in mobile apps [18, 24, 29, 36, 45-49, 53, 55, 68, 112, 115, 123]. 

Three methods are usually used in app analysis, namely permission analysis, static code 

analysis, and dynamic flow analysis. Table 1 categorizes previous research and studies 

based on methods used and highlights the pros and cons of each method. There have also 

been a good number of security and privacy extensions proposed in recent years which 

aimed to give users more controls over sensitive resources on their smartphones [19, 29, 

73, 93, 99, 123].  We will discuss these pieces of related work in more detail below. 

2.2.1 Permission analysis 

By analyzing the permission lists declared by app developers, potentially risky 

functionalities can be identified. This line of research has focused on how different 

permissions are used [24, 49, 55, 115] and highlights common usage patterns [24], 

misuses [53, 115], and potential implications to Android security and privacy [49, 53, 

55]. Enck et al. [48] were the first to conduct permission analysis on the Android system. 

Among the 311 apps they examined, 10 apps were flagged with questionable private 

resource usage. Barrera et al. [24] performed permission analysis of 1,100 free 

applications in the Android Market and identified the exponential decay distribution in 

the number of applications that requested individual permissions (i.e., most applications 

require only a small number of permissions). Felt et al. [53] studied the effectiveness of 

Android's install-time permission. Specifically, they found that developers sometimes 

made mistakes in declaring permissions requests (e.g., requesting unnecessary 

permission, non-existing permission, etc.). Hence, in follow-up work [49], Felt et al. 

proposed the Stowaway tool, which performs static analysis to detect over-privileged 
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applications. Similarly, an Android SDK extension was developed by Vidas et al. [115], 

which assisted Android developers in including the minimum set of permissions required 

by their app’s functionality.  

In more recent work, Frank et al. presented their results in mining permission request 

patterns of Android app in [56]. They identified over 30 typical patterns of permission 

request by using matrix factorization techniques. Our work differs from theirs in the 

sense that we enrich the dataset by including features describing why these permissions 

are requested. The work by Book et al. focused on how mobile behavioral advertising 

libraries use permissions over time by surveying 144K mobile apps [31]. They found that 

the ad libraries’ use of permissions has significantly increased over the last several years. 

Their excessive use of sensitive data poses particular risks to user privacy and security. In 

short, permissions are valuable for performance efficient security analysis; however, 

permission lists could not provide detailed information concerning what purpose private 

resources would be used, hence could only capture limited security and privacy risks.  

2.2.2 Static analysis 

Static program analysis can be conducted with or without source code. To date, most 

mobile app static analyses rely on decompilers to recover source codes of apps (e.g., [17, 

97] ). Egele et al. [43] proposed PiOS to perform static taint analysis on iOS application 

binaries to identify potential privacy violations. Among the 1,400 apps studied, more than 

half leaked the privacy sensitive device ID without the users' knowledge. Chin et al. [36] 

 Permission Analysis  Static Analysis  Dynamic Analysis  

Examples  Enck’09 [48] 

Barrera’10 [24] 

Felt &Greenwood’11 

[53] 

Felt&Chin’11 [49] 

Vidas’11 [115]  

Book’13 [31] 

Frank’12 [56] 

Egele’11 [43] 

Chin’11 [36] 

Felt&Wang’11 [55] 

Enck’11 [47, 54] 

App Profiles [18]  

Thurm’11 [43, 112]  

Enck’10(TaintDroid) 

[46]  

Beresford’11 [29] 

Zhou’11 [123] 

Hornyack’11 [68]  

Yang’12 [122] 

Pros  Simple and efficient  Easy to automate, cover 

all possible execution 

patterns  

Capture what actually 

happened, easy to 

interpret 

Cons  Only high-level analysis 

cannot tell the whole 

story  

Depend on decompiler, 

“Dead code” problem, 

i.e. segment of code 

never execute in the 

runtime; 

Require human 

intervention, hard to 

automate  

Table 1 : Categorization of existing work in mobile app analysis based on methodologies. 

The pros and cons of each method are highlighted. All methods assessed mobile apps’ 

behaviors from traditional security perspectives that cannot infer users’ perceptions of 

mobile privacy. Our proposed work makes use of the app analysis tool to obtain ground 

truth of mobile apps, aiming at bridging the gap between app analysis and users’ 

privacy preferences learning. 
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proposed ComDroid, which operates on used disassembled DEX bytecode. Specifically, 

ComDroid identifies vulnerabilities in intent communications between applications, such 

as broadcast theft, service hijacking, malicious service launch, etc. Among 100 apps 

analyzed, Chin et al. found 34 exploitable vulnerabilities. App Profiles [18] developed by 

the RobustNet research group at the University of Michigan analyzed mobile applications 

offline to detect privacy-related actions written into the application source code.  

While static analysis provides a complete and automated scan of mobile apps, its 

accuracy might highly depend on the performance of the decompiler used or the coding 

style of the developer. In addition, static analysis might produce false positive or false 

negative if the decompiled source codes contain what we referred as “dead code” (i.e. 

segment of program never executed in the runtime). Another challenge for privacy 

research involving static analysis is that this method cannot automatically determine 

whether privacy-related behavior is reasonable or not from users’ point of view. 

2.2.3 Dynamic analysis 

Dynamic analysis can help resolve ambiguity in permission granularity as well as provide 

an intuitive way to monitor how applications run. The Wall Street Journal reported the 

results of 101 popular smartphone apps for iPhone and Android devices that were 

examined by monitoring network analyses [112]. Results showed that 56 apps transmitted 

the phone's unique ID to third party servers without user consent, and 47 apps transmitted 

the phone's location and other personal information such as age, gender, etc. TaintDroid 

[46] performed a thorough dynamic flow analysis to capture information leakage on 

Android devices in real time. The authors modified the Android's Dalvik VM to perform 

instruction-level taint tracking that captures how private information flows from its 

source to its destination (i.e., network interface). Other work has built on TaintDroid to 

provide more pertinent privacy analyses or controls [29, 68]. The work by Yang et al. 

integrate crowdsourcing into dynamic analysis to understand why certain permissions are 

required [122]. They paid crowd workers to compare the screenshots of apps with and 

without granting permissions and summarize the differences in order to identify the 

purpose of accessing sensitive data such as for serving ads or for providing context-aware 

services.  

Dynamic analysis identifies what actually happens when an application is running. One 

drawback of dynamic analysis is that it is limited by scalability because human 

interventions (interactions with mobile apps) are needed to trigger certain behaviors of 

the apps in the process of analysis.  

Though app analysis provides us with a better understanding of apps’ behaviors, it cannot 

infer people’s perceptions of privacy or distinguish between behaviors which are 

necessary for an app’s functionality versus behaviors which are privacy-intrusive. Our 

work complements this past work by suggesting an alternative way of looking at mobile 

privacy from the users’ perspective by leveraging crowdsourcing to bridge the gap 

between app analysis and resolving users’ privacy concerns. To achieve this goal, we opt 

to use static analysis to capture the ground truth of apps with regard to type and purpose 

of information disclosed because of the scalability issue. 
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2.2.4 Security and privacy extensions 

All these approaches provide useful means to dissect mobile apps providing more and 

more detailed information on how they consume users’ sensitive information, the results 

of which also outlines the potential privacy and security risks of specific usage patterns. 

Upon these findings, many security extensions have been developed to harden privacy 

and security of smartphone operating systems.  

MockDroid [29] and TISSA [123] substituted fake information into API calls made by 

apps, such that apps could still function, but with zero disclosure of users' private 

information. Similarly, ProtectMyPrivacy [19] on jailbroken iPhone also enable users to 

substitute fake information to protect their privacy. In addition to faking information, 

AppFence [68], a subsequent project of TaintDroid, allowed users to specify which 

resources should only be used locally. It also hashed the phone identifiers in a way that it 

no longer could be linked to users, while still being useful for application developers to 

track application usage. Nauman et al. [93] proposed Apex, which provides fine-grained 

control over resource usage based on context and runtime constraints such as the location 

of the device or the number of times a resource has been used. They implemented an 

extended package installer named Poly that allows users to specify their policy at time of 

installation.  

To enable wide deployment, Jeon et al. proposed an alternative solution that rewrote the 

bytecode of mobile apps instead of modifying the Android system [73]. When accessing 

sensitive resources, the modified apps talk to a privacy proxy layer instead of directly 

talking to Android APIs. Pearce et al. [99] proposed to adopt privilege separation for 

mobile applications and advertisers in Android OS, which is motivated by the fact that 

over 56% of apps uses users’ location information only for serving ads. They suggested 

unifying all the mobile ad libraries into a system service that can be integrated into the 

Android platform. In their proposed AdDroid framework, a new permission 

ADVERTISING needs to be declared by app developers when a mobile app wants to 

deliver ads to users. Although the techniques they proposed are sound and effective, 

given the existing mobile app ecosystem, advertising companies have little incentive to 

cooperate in this initiative.  

These proposed privacy extensions aimed to provide users more control over apps and 

assumed that users are able to configure these settings perfectly. However, this 

assumption was not grounded by user studies. Dumping these settings on users and 

relying on users to specify their privacy preferences without adequate information could 

be questionable or even counterproductive. 

2.3 End-User Research in Mobile App Privacy 

In contrast to the above systems-oriented approaches, another important facet of privacy 

research approaches the challenge from the end-users’ side. In this line of work, 

researchers tried to gain deeper understanding of users, including their biggest privacy 

concerns, their perception of mobile apps, as well as their preferences of different types 

of sensitive data usages.  
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Several user studies have examined usability issues of permission interface displayed to 

users before downloading apps. Kelley et al. conducted semi-structured interviews with 

Android users and found that users paid limited attention to permission screens and had a 

poor understanding of what the permissions implied [77]. Specifically, permission 

screens generally lack adequate explanation and definitions. Felt et al. [54] found similar 

results from Internet surveys and lab studies that current Android permission warnings do 

not help most users make correct security decisions. In later work, Felt et al. [51] 

surveyed more than three thousand smartphone users about 99 risks associated with 54 

permissions without considering specific apps. Their survey focused more on security 

risks that malicious apps can exploit rather than the potential privacy concerns caused by 

normal mobile apps.  

An interview study by Chin et al. [37] probed smartphone users' concerns and fears with 

regard to privacy and security and offered several recommendations that could mitigate 

these threats. They found that users are in general more concerned about their privacy on 

their smartphones than their laptops in performing tasks such as payment and online 

banking etc. The work done by Jung et al. [22, 74] included lab studies and qualitative 

interviews to evaluate the gaps between user expectations with respect to mobile app 

privacy. They found users were surprised by the amount and frequency of data leaving 

their phones. There were three types of unanticipated data use, including discreetly 

collecting personal data in the background; application collecting seemingly unnecessary 

data with respect to their functionality; application collect excessive amount of personal 

data (frequency). Egelman et al. performed experiments to gauge how smartphone users 

value their privacy [44]. They found that 25% users are willing to pay a $1.50 USD for 

the application requesting the least permissions. Around 80% of participants stated that 

they would be willing to receive targeted advertisements regardless of the permissions 

used if it would save them $0.99. Benenson et al. surveyed over 700 German students to 

compare users’ security and privacy perceptions of Android and iOS [25]. Their data 

suggested that (1) if users are brand-aware, then they are more likely to have an iPhone; 

(2) Having an Android phone is positively correlated to being more privacy aware; (3) 

Female users are more likely to have an iPhone. 

Methodology-wise, Felt et al. discussed the strengths and weaknesses of several 

permission-granting mechanisms and provided guidelines for using each mechanism [50]. 

They suggested that for different types of sensitive data, different permission-granting 

mechanisms should be independently triggered and the permission-granting process 

should try to avoid interrupting user’s primary tasks.  

With regard to privacy interfaces, Kelly et al. proposed to improve Android’s existing 

permission screen by putting the privacy facts inline with the app’s description [78]. They 

also suggested including how the app used several types of personal information, 

including contacts, location, calendars, credit cards, diet, health, photos etc. They 

demonstrated that users who saw the new design were more likely to pick the application 

that requested fewer permissions than who saw the existing Android permission screen. 

Choe et al. contributed to the privacy interface design by investigating whether framing 

effect can be used to nudge people away from privacy invasive apps [38]. They found 

that between semantically equivalent visuals, different framing methods (positive framing 
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and negative framing) did not affect the time users spent on privacy interfaces; however, 

a positive framing icons were more effective in making a low privacy rating app look 

more unfavorable, whereas negative framing icons were more effective in making a high 

privacy rating app more unfavorable.  

The National Telecommunications and Information Administration (NTIA), the agency 

of US department of Commerce that serves as the President’s principal adviser on 

telecommunications policies, released guidelines for a short-form privacy notice as a 

voluntary Code of Conduct in July 2013, aiming to provide app users with an easy to 

understand display indicating which categories of personal data may be collected by the 

app and which types of entities those data may be shared with [67, 95]. The Code of 

Conduct identifies 8 categories of personal data categories, including for example, 

Internet browsing history, phone and text logs, contacts, financial information, location, 

and more. It also identifies 8 types of entities with whom personal data might be shared, 

including ad networks, data analytics companies, government entities, social networks, 

and more. Note that the Code of Conduct provides several general design guidelines and 

required explanatory text, but does not specify a particular standardized design at this 

point. Past work has looked at the usefulness and understandability of the category names 

used by NTIA [23]. Based on the code of conduct, several notice screen mockups have 

been proposed, such as [67]. In the collaborative work with Wong et al. [120], we 

evaluated one of the NTIA mockup by testing participants’ understanding of examples of 

this interface. We found that this interface is not as understandable as expected. It 

suggests that if NTIA’s guidelines are adopted, much more work needs to be done to 

improve the visual displays. 

All of the above-mentioned work provided valuable insights into users’ privacy concerns. 

This thesis provides a more quantitative approach, by leveraging the power of 

crowdsourcing, we built a dataset contributed by over 700 participants with their opinions 

over 1200 app- permission-purpose triples to uncover the underlying patterns of users’ 

privacy concerns. This dataset enables an in-depth probing of users’ mobile app privacy 

preferences.  

2.4 User Modeling in Location Sharing 

Our initial exploration of users’ mobile privacy preferences started with location sharing, 

focusing on understanding and resolving users’ privacy concerns when using location 

sharing applications (LSAs). These types of applications facilitate and encourage users to 

share their location information with others. They have recently attracted interest from 

both industry and academia [5, 8-12, 16, 32, 60, 69, 70, 98, 107, 116, 119]. With the 

proliferation of smartphone ownership, most location-sharing services are available on 

mobile platforms (e.g., Google Latitude [10], Foursquare [9], Facebook Places [8]). As a 

special subset of mobile apps, where the users’ location information is primarily 

consumed by people in their social networks,
4
 studying the privacy issues in LSAs could 

provide important lessons from both methodological perspective and knowledge 

perspective.   

                                                 
4
 Though some location-sharing mobile apps also transmit users' location information to ad networks for 

advertising purposes. 
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Some of my past work fall into this line of research [83, 84, 110]. Our findings indicated 

that even only considering one type of sensitive resource users’ privacy preferences could 

be very complex and were influenced by different factors [27, 107]. For example, by 

tracking 26 participants for 3 weeks and asking them to provide place names for each 

location for various sharing scenarios, we observed that people modulate the way they 

convey location information to cope with privacy concerns [84]. They generally used two 

major techniques to tailor their location information, i.e. describing it semantically or 

geographically. Multiple factors were considered when users decided on what to disclose, 

including their relationship with the recipients, their perceived levels of comfort in 

sharing specific locations, the recipients’ familiarity with the places, and place entropy.
5
  

Along a similar direction, in collaborative work with Tang [110], we compared the 

location names users selected in different scenarios and reframed the location-sharing 

applications (LSA) into two categories, based on the users’ intention of sharing, namely 

purpose-driven LSAs and social-driven LSAs. Our findings indicated that people have 

distinct sharing preferences given the purpose of sharing (1) the types of location 

information they chose to share, (2) the different privacy concerns people had and 

strategies used to cope with these concerns, and (3) how privacy-preserving these 

location disclosures were. In the problem of mobile app privacy, the purpose of 

information disclosure remains an important factor that influencing people’s decision.  

In other work, we looked at the effect of cultural differences in location sharing. In [83], 

we reported findings of a three-week comparative study collecting location traces and 

location-sharing preferences from two groups of university students in the U.S. and China 

with similar demographics. We found that, on average, Chinese participants were more 

conservative about sharing their location; however, when they were given the ability to 

control the granularity of sharing, they shared more detailed location compared to U.S. 

participants. This finding suggests that, in the absence of granularity settings, U.S. 

participants were more willing than Chinese participants to relax their preferences and 

share their finest location details even when doing so was not their optimal choice, 

whereas Chinese participants were more likely to do the opposite. A significant 

implication of this finding is that granularity settings are likely to be more important for 

the adoption of location sharing among Chinese users than among American users. 

There is also a line of work focused on a more quantitative approach to modeling users’ 

location sharing preferences. For example, in the above-mentioned work [84], we also 

demonstrated the feasibility of applying machine learning techniques to predict the way 

people manipulate the disclosure of their location information in different context (e.g. 

based on how far away they are). This work suggested that people’s privacy preferences 

though complicated can still be modeled quantitatively. The work by Ravichandran et al. 

[103] learnt a set of default policies from users’ location sharing preferences using 

decision-tree and clustering algorithms. They suggested that providing users with a small 

number of canonical default policies to choose from can help reduce user burden when it 

comes to customizing the rich privacy settings they seem to require. The work by 

Cranshaw et al. [39] used a classifier based on multivariate Gaussian mixtures to 

                                                 
5 Place entropy characterizes the diversity of users seen in a particular place. See [40] 
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incrementally learn users’ location sharing privacy preferences. Kelley et al [79]and later 

Mugan et al. introduced the notion of understandable learning into privacy research [92]. 

They used two types of user-oriented machine learning techniques, namely default 

personas and incremental suggestions, to identify users’ privacy rules, resulting in a 

significant reduction of user burden. By restricting the level of control the user has over 

the policy model, their algorithm produced accurate and understandable learning results. 

Wilson et al. [119] evaluated the impact of privacy profiles in a location sharing study. 

They observe that although participants were given the ability to refine their preferences, 

the impact of the initial privacy setting remained visible after several weeks of use. In 

addition, participants who were exposed to the privacy profiles were more inclined to 

share than those who were not.  

Previous research (including my own work) has provided important knowledge in 

understanding users’ privacy concerns and needs in mobile context-sharing. Considering 

methodology, multiple user studies [26, 84, 113] have shown that remote auditing-based 

study methods (i.e., participants provide their responses remotely through a web site) is 

an efficient way to conduct privacy related studies. However, we are fully aware of the 

limited scalability of this approach given the number of mobile apps we want to 

investigate. Therefore, to tackle this challenge, we propose that mobile privacy user 

studies can take advantage of crowdsourcing to harvest users’ privacy preferences. We 

also learned that users’ location privacy preferences are dynamic and complex, but for the 

most part predictable. We demonstrate in Chapter 6 that this point also holds in the 

context of mobile app privacy. Furthermore, as pointed out by Wilson et al. in [119], “… 

the complexity and diversity of people’s privacy preferences creates a major tension 

between privacy and usability…”, and mobile app privacy poses similar usability 

challenges. In Chapter 6, we will demonstrate how we generate appropriate privacy 

profiles (default settings) for users as one possible way to simplify the decisions users 

have to make. As in Mugan et al. in [92], we also take into account understandability 

considerations in our work and aim to build understandable quantitative models of users’ 

mobile app privacy preferences. This is done using interpretability and generalizability as 

two criteria in our work on modeling users’ preferences.   

2.5 Crowdsourcing and Human Computation 
Crowdsourcing and human computation have gained attention as both a topic of and tool 

for research. Several methodological papers have addressed how to more effectively 

utilize crowdsourcing to yield better results [41, 71, 88, 90, 106]. Amazon’s Mechanical 

Turk (AMT)[1] is currently the most popular crowdsourcing platform and the one used in 

this work. With AMT, requesters can publish Human Intelligence Tasks (HITs) for 

workers. A number of projects have successfully used AMT and have ranged from 

human assisted online tasks (such as image labeling) to surveys and user studies [30, 57, 

66, 85, 86, 121]. My thesis makes use of many of the findings and methodologies 

mentioned above and builds on past work by extending the use of crowdsourcing to a 

mobile privacy study. In doing so, we demonstrate the feasibility and potentials of 

crowdsourcing as a scalable tool for privacy studies.  

2.6 Relationship to Prior Work 



 

 

16 

 

Before moving on to the details of this thesis, I want to point out a few distinctions 

between my thesis and past related work.  

From a technology standpoint, this thesis does not aim to produce new tools. Instead, it 

demonstrates that by identifying third party libraries that most commonly found in mobile 

apps, it is possible to extend static analysis to identify the purpose associated with many 

mobile app permissions in a scalable manner. In addition, this thesis also links users’ 

subjective feedback to various private resource usage patterns as identified through app 

analyses.  

Meanwhile, the security extensions mentioned above do provide users with more control 

over private data; however, these designs are not grounded in adequate user studies. 

Specifically, we foresee that these granular controls might overwhelm users with too 

many privacy decisions to make and might ultimately be unusable in practice. This 

potential usability issue also motivates my work in assisting users with privacy 

configurations by providing meaningful default settings.  

From an HCI standpoint, this thesis probes much deeper in the users’ privacy decision 

processes compared to previous permission usability studies [54, 77] or privacy surveys 

and interviews [37, 51]. By performing clustering, we isolate five classes of mobile apps 

and four different groups of users with distinct characteristics. Each cluster of users can 

be interpreted in the form of a privacy profile describing users’ different level of concerns 

over different data usages. These findings provide important practical suggestions to 

inform the design of simpler, easier-to-use interfaces and privacy control mechanisms 

that matter to users. 
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3 DISSECTING AND UNDERSTANDING THE BEHAVIOR 
OF SMARTPHONE APPS 

Before analyzing people’s privacy preferences of mobile apps, it is necessary to gain a 

deeper understanding of mobile apps with regard to their privacy-related behaviors as 

well as the implication of these behaviors. In this chapter, I will provide technical details 

of how we obtained metadata and binary files of apps from Google Play, and how we 

decompile and analyze these apps on a large scale.  

3.1 Data Gathering 

We collected meta-information for 171,493 Android apps and binary installation files 

(also known as apk files) for 108,246 free apps available on Google Play in July 2012.  

Each Android app in Google Play has its own description page. However, there is no 

index of apps that is publicly available. To build our dataset, we used a Python-based 

webpage crawler to run a Breadth-First-Search starting from Google Play's home page, 

and downloaded all of the web pages containing app description information when we 

traversed Google Play. Once we got a description page, we parsed the HTML page to 

extract the app's metadata, including its name, category, number of downloads
6
, average 

user rating score, rating distribution, price, and content rating.  

Next, for each app we crawled, we downloaded its binary installation file through an 

open-source Google Play API [3]. Google imposes limits on the number and the 

frequency of app downloads. To work around this limit, we dynamically switched among 

20 different Android accounts to prevent being permanently banned from Google Play. 

Using the same API, we also downloaded a total of 13,286,706 user reviews which was 

used in a side project [59]. Note that Google has strict restrictions on app purchase 

frequency and limits the number of apps that can be purchased with a single credit card. 

Because of these restrictions, the binary files downloaded in this thesis work are all free 

apps. However, we believe that our approach and the majority of our findings applies to 

paid apps as well. The entire apps’ metadata takes up about 500MB of storage space 

when stored in a MySQL database and all the binary files take approximately 300GB of 

storage space on a disk.  

At the time of writing, the aforementioned API [3] no longer supports the current version 

of Google Play. Readers interested in conducting similar studies in the future should 

explore alternative APIs such as [81].  

3.2 Dissecting Android Apps 

While dynamic analysis can provide information on apps’ runtime behaviors, the 

requirements of this type of analysis exceeded resources at our disposal, given the large 

number of apps we wanted to study. Instead, we opted to use static analysis tools given 

that they are more efficient and easier to automate. After examining several Android 

reverse engineering tools [2, 17, 3, 6, 7], we chose Androguard [2] as our major static 

                                                 
6
 Google does not provide the absolute number of downloads. Instead, it discretizes this number into several ranges. 
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analysis instrument. Androguard is a tool written in Python to decompile Android apk 

files and to facilitate code analysis with well-documented APIs. More specifically, 

Androguard suited out needs for the following reasons: 

 Androguard is available for Linux/OSX/Windows as it is Python-powered. This 

gives us the flexibility to deploy our analyzer on a number of different types of 

servers. 

 Androguard provides an efficient de-compilation functionality that can de-

compile Dalvik bytecodes to Java source code faster than other de-compilers. 

Given the scale of the app analysis we planned on conducting, efficiency is 

crucial for us.  

 Androguard allows analysts to create customized static analysis scripts to examine 

app’s specific behaviors. In our case, since we are particularly interested in apps’ 

privacy-related behaviors, this was a significant advantage.  

 Androguard allows batch processing of analysis tasks, which facilitates the 

automation of analysis tasks.  

We created our own analysis script with the Androguard library and identified the 

following information related to apps’ privacy-related behaviors. 

 Permission used by each app.  

 The destination and source classes involved in the use of permissions. 

 All the third party libraries included in the app. 

 Permissions required by each third party library. 

 All the URLs and/or IP address the app is connecting to.   

The permission usages tell us what type of sensitive user data apps are requesting. By 

analyzing the 3rd-party libraries in an app and what permissions these libraries use, we 

can infer if users’ sensitive data is required for apps’ functionality or for other purposes, 

such as for delivering targeted ads, for market analysis and for promoting sharing on 

Social Network Sites. The URLs help us to confirm the destinations where different user 

data sent to. 

Permission information is directly obtained by parsing the manifest file of each apk. We 

further scan the entire de-compiled source code and look for specific Android API calls 

that request permissions to determine the destination and source classes involved in the 

use of these permissions. 

Third party libraries are identified by looking up package structures in the de-compiled 

source code. From example, if we found a “com.flurry”
7
 sub-folder inside the de-

compiled source code, we say that the “flurry” library--- a mobile analytics library --- is 

included in this app. It is possible that we failed to identify some libraries, although we 

assume that we were able to correctly identify the most popular ones. We did not 

distinguish different versions of the same third party library to reduce the complexity of 

                                                 
7
 http://www.flurry.com/ Flurry analytics is a cross-platform analytics service for developers to understand 

how consumers interact with their mobile applications.  

http://www.flurry.com/
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our analysis. Similar to the permission analysis step described above, we determined the 

permission usages of each 3
rd

-party library by scanning through all the Android standard 

API calls that relate to the target permission in the de-compiled versions of the libraries’ 

source code.   

To scale up the analysis, we employed five Amazon EC2 M1 Standard Large Linux 

instances to perform batch processing of the static analysis. Each instance has the 

capacity of 4 ECUs
8
 and 8 GB memory. The total analysis required 2035 instance hours, 

i.e. approximately 1.23 minutes per app. Among all the 108,246 free apps, 89,903 of 

them were successfully decompiled (83.05%). Upon manual inspection of a few failure 

examples, we were led to believe that failure to de-compile was primarily attributed to 

two reasons, (1) the binary files were corrupted during the download or transmission to 

cloud, (2) the binary files were intentionally obfuscated to prevent reverse engineering by 

using techniques such as APKProtect [4].     

3.3 Analysis Results 

Among the 89,903 free Android apps we decompiled, the percentages of each category 

are very similar to the stats reported in AppBrain [21]. Figure 4 shows the distribution of 

the apps according to the lower bounds on the total number of installs for each app. 

Google does not provide the absolute number of downloads; instead, it discretizes this 

number into several ranges. The x-axis of Figure 4 is labeled by the lower bounds of 

these ranges. Approximately 54.7% of apps had been downloaded more than 1000 times 

and less than 50,000 times. Since the data was collected in July 2012, the current number 

of downloads for each app might be much higher than the number plotted here.  

Among the 89,903 free apps that were successfully analyzed, we identified over 500 

different 3
rd

-party libraries used by various apps. We analyzed the top 400 most used 3
rd

-

party libraries online to understand the purpose or functionality associated with each. We 

                                                 
8
 1 ECU is the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. 

 
Figure 4: Distribution of apps in our dataset by number of installs. 
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Type Count  Examples  Description  

Utility  140  Xmlparser, hamcrest…  Utility java libraries, such as parser, 

sql connectors, etc  

Targeted Ads  137 admob, adwhirl, 

greystripe…  

Provided by mobile behavioral ads 

company to display in-app 

advertisements 

Customized UI 

Components  

29 Easymock, kankan, 

viewpagerindicator…  

Customized Android UI components 

that can be inserted into apps. 

Content Host  25  Youtube, Flickr…  Provided by content providers to 

deliver relevant image, video or 

audio content to mobile devices. 

Game Engine  20  Badlogic, cocos2dx…  Game engines which provide 

software framework for developing 

mobile games. 

SNS  15  Facebook,twitter, 

socialize…  

SDKs/ APIs to enable sharing app 

related content on SNSs.  

Mobile Analytics  14  Flurry, localytics..  Provided by analytics company to 

collect market analysis data for 

developers. (in recent years, mobile 

analytics libraries have also been 

used to deliver in-app ads) 

Secondary 

Market 

11 Gfan, ximad, getjar… Libraries provided by other 

unofficial Android market to attract 

users. 

Payment  9 Fortumo, paypal, 

zong… 

e-payment libraries 

Table 2: The types of 3
rd

-party libraries identified. Based on the types of services they 

provide, we categorize them into 9 basic categories.  

eventually identified nine major categories of libraries as detailed in Table 2. Again, note 

that, we do not distinguish between different versions of the same library.  

Among all the identified libraries, 34.5% of them are Java utility libraries, such as 

XMLparsers, SQL connectors, etc. Most of these utility libraries do not involve Android 

API calls. Accordingly these libraries do not require any Android permissions, though 

INTERNET permission is sometimes required to allow these libraries to communicate 

with external servers.  
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The second largest category of 3
rd

-party libraries is targeted behavioral ads libraries, 

which are approximately one third of all the libraries identified
9
. Mobile targeted 

advertising is one of the major monetization channels for app developers, especially those 

who develop free apps. Java-based advertising libraries supplied by advertising agencies 

are bundled into application packages to deliver behavioral targeted ads based on users’ 

interests.  

These libraries communicate with servers controlled by advertising agencies, transmitting 

ad requests, displaying selected advertisements, and handling user interactions with these 

ads. In order to display ads that are more relevant to users, these targeted ads libraries 

usually have the ability to collect contextual information such as users’ location, phone 

number, and other information that can imply users’ preferences, which poses significant 

privacy concerns to mobile users [31].  

The other seven categories include Customized UI Component libraries which are usually 

developed and published by 3
rd

-party companies or developers to promote the reuse of UI 

modules; Content Host libraries are usually supplied by companies who supply 

multimedia content online such as YouTube, Flickr, etc; Game Engine libraries are 

usually used by mobile game developers in their game design; SNS libraries are supplied 

by major Social Networking Sites to provide in-app sharing functionality. For example a 

music player app might allow the user to post information about the sound track the user 

likes to her Facebook wall through these type of libraries; Mobile Analytics libraries are 

provided by mobile analytics companies such as Flurry and Localytics, which gather and 

analyze the users’ in-app interactions with the app on behalf of the app developers to 

identify who the customers are, where they come from and what they are doing; the 

remaining Secondary Market and Payment libraries are self-explanatory. Note that, after 

we crawled the dataset, a large number of new mobile analytic companies has emerged. 

In addition, many mobile analytics companies have started to integrate their services with 

                                                 
9
 The most used ad libraries we identified are similar to the ones reported by Book et al in [30]. Therefore, 

we do not repeat the stats here. For interested reader, please refer to their paper. 

 
Figure 5: Distribution of total number of 3

rd
-party libraries an app bundled with. The x-

axis shows the number of 3
rd

-party libraries, the y-axis the number of apps bundled with 

corresponding number of libraries. Majority of apps only have a small number of 3
rd

-

party libraries bundled in.  
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mobile behavioral advertising. Therefore, though in this thesis we still distinguish Mobile 

Analytics and Targeted Ads libraries, we strongly recommend later work should combine 

these two categories together. As far as we can tell, no new categories has emerged at the 

time of writing this thesis. 

For all the apps we analyzed, we observed an average usage of 1.59 (SD=2.82, 

median=1) 3
rd

-party libraries (See Figure 5) in each app. There are some extreme cases 

where an app uses more than 30 3
rd

-party APIs. For example, the app with the package 

name (com.wikilibs.fan_tatoo_design_for_women_2.apk) used 31 3
rd

-party libraries, 22 

of them are targeted advertising libraries, such as adwhirl, mdotm, millenialmedia, tapjoy, 

etc. In the majority of the cases (91.7%), apps are bundled with less or equal to 5 

different 3
rd

-party libraries.   

We further breakdown the 3
rd

-party libraries across all the 30 app categories, 

emphasizing the penetration of three types of usage, namely the targeted ads, mobile 

analytics and SNSs. Figure 6 shows that for most popular categories such as mobile 

games, and personalization apps, the targeted advertising libraries are found in more than 

40% of these apps, even the lowest ads-penetrated category--- Business apps--- there are 

more than 8% of them bundled with targeted advertisement libraries. SNS libraries 

closely follow up targeted ads libraries, achieved an average penetration of 11.2% of the 

app market. The Social category of apps has the maximum usage of this type of 3
rd

-party 

libraries, which makes sense. Mobile analytics libraries have an average penetration of 

9.8% of the app market, and usually bundled with categories of apps that users use daily, 

such as weather, news & magazines, sports, etc. 

Lastly, we report on the usage of several of the most sensitive permissions in terms of 

why they are required in apps (see Table 3). We focus our analysis on the top four major 

uses, which are: 

 For internal use, where the permission triggering Android API calls are found 

within the application-specific code (rather than the bundled libraries). Given the 

 
Figure 6: Penetrations of three types of 3

rd
-party libraries across 30 Android app 

categories. We see significant penetration of targeted advertising libraries (blue bars) in 

almost all categories. Mobile analytics and SNS libraries also have relatively high 

penetration.  
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limitations of our analysis, we cannot provide detailed explanations of why 

certain resources are used (such as “for navigation”, “for setting up ringtone”, 

etc.), since this level of detail currently requires a great deal of manual code 

inspection. In other words, with current technologies, we have no easy way to tell 

how developers actually use the data.  

 For targeted ads, where the permission triggering Android API calls are found 

within targeted ads libraries. Relevant permissions might include INTERNET, 

ACCESS_FINE/COARSE_LOCATION, VIBRATION, and even CAMERA
10

.  

 For mobile analytics, where the permission triggering Android API calls are 

found within mobile analytics libraries. Usually, this type of libraries requires the 

access of INTERNET, ACCESS_FINE/COARSE_LOCATION and 

READ_PHONE_STATE. The last permission is used to obtain unique phone ID, 

as well as detecting if the user is on a phone call. 

 For SNS, where the permission triggering Android API calls are initiated by the 

SNS libraries, such that users can share app relevant information together with 

other context information to social network sites.   

Table 3 shows the distribution of permissions used for various purposes, such as for apps’ 

functionality, for delivering targeted advertisements, for mobile analytics, or for sharing 

on SNSs. For example, we found that 41.33% of apps that required INTERNET 

permission used this permission for internal use, and 47.48% of them used for targeted 

ads. The numbers in each row do not necessarily add up to 100% since one permission 

can be used for multiple purposes in an app. We also notice that for permissions like 

ACCESS_FINE/COARSE_LOCATION and READ_PHONE_STATE, a significant 

portion of apps used these permissions purely for delivering targeted advertisements. In 

other words, a large portion of apps requested excessive permissions just for 

monetization purposes.  

                                                 
10

 We found this permission is required by one version of mobclix http://www.mobclix.com/ , a very 

popular mobile advertising library. 

 Internal Use Targeted Ads Mobile Analytics SNS 

INTERNET 41.33% 47.48% 20.71% 16.30% 

LOCATION 17.48% 72.94% 26.08% 6.07% 

PHONE_STATE 24.55% 74.40% 16.04% 6.35% 

READ_CONTACTS 52.07% 45.76% - 2.81% 

BLUETOOTH 86.54% - - - 

SMS 63.33% 38.81% - 1.19% 

GET_ACCOUNTS 32.51% 4.95% - 8.04% 

CAMERA 30.06% 17.45% - - 

RECORD_AUDIO 91.91% 9.51% - - 

Table 3: Distribution of permissions used for various purposes, including used for apps’ 

functionality (internal use), for targeted advertising, for mobile analytics, and for social 

network sharing. E.g. 41.33% of apps that required INTERNET permission used this 

permission for internal use, 47.48% of them used for targeted ads. Note that, an app can 

use one permission for multiple purposes, and so rows do not sum to 100%. 

http://www.mobclix.com/
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Cause 
Attracti-

veness 

 Stabili-

ty 

Accuracy Compati-

bility  

Connec-

tivity  

Cost Telephony Picture Media  Spam 

Words 

boring closes find galaxy log free unistall pictures video ads 

bad close location battery error money want picture sound notification 

stupid load search support account buy need pics watch spam 

waste every info off connect pay send camera videos bar 

dont crashes useless droid login paid messages save songs notifications 

hard keeps data nexus connection refund delete wallpaper audio adds 

make won way compatible sign want let see sounds annoying 

way start list install let back contacts photos hear many 

graphics please sync samsung slow bounght calls upload record pop 

controls closing wrong worked website waste off pic anything push 

% 18% 13% 13% 11% 10% 9% 8% 8% 5% 5% 

Example 

app 

Stardunk Opera Kindle App 2 SD Zedge Sygic LINE Pho.to IMDB 
Brightest 

Flashlight 

Blast 

Monkeys 
Bible Kobo 

Solar 

Charger 
Dropbox 

Cut the 

Rope 
WhatsAPP Retro Tuner 

Shoot the 

Apple  

Table 4: Most frequent words from the top 10 causes found by LDA topic modeling. The 

percentages in the middle row indicated the portions of apps that had comments 

expressed corresponding themes.  

In short, static analysis with batch processing in the cloud enables us to dig deeper into 

apps’ privacy-related behaviors and help us at some level understand better sensitive 

resource usages in terms of what are used and hints as to how and why they are used.  

3.4 Other Potential Ways to Analyze Apps11 

Other than static / dynamic analysis that extracts apps’ behaviors from the source code or 

in runtime, there are other approaches from which apps’ behavior can be determined. In a 

side project collaborated with Fu et al. [59], Natural Language Processing (NLP) 

technologies were applied to user reviews to diagnose problems associated with different 

apps. This was done in part using the Stanford Topic Modeling Toolbox [14] to train 

Latent Dirichlet Allocation models, resulting in a 10-topic model, as summarized in 

Table 4.  

The topics are sorted by their average proportions across the distribution of all 

documents. We added a descriptive word to each topic at the top of Table 4 to represent 

the major concept each topic is talking about. Most topics exhibit clear reasons why users 

dislike an app. These reasons related to functional features such as picture and telephony, 

performance issues such as stability and accuracy, and other important factors such as 

cost and compatibility.  

Looking at the 10 topics that had registered the most complaints, we can see that privacy 

is not included as such. It can be seen however that users complain about excessive 

behaviors such as spamming ads. This type of spamming very often comes with 

behavioral ad services collecting users’ private information such as location and phone 

ID to deliver context-based advertisements. While this may not be apparent to many end-

users, this is clearly an example of a privacy-invasive behavior directly related to the 

practices studied in this dissertation. 

By performing topic modeling in different time windows, a dynamic historical view can 

be created to illustrate the time span of an app, highlighting the different distribution of 

user complaints about different problems. For example, two new version releases 

                                                 
11

 The content of this sub-chapter is published in KDD’13 [120]. 
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naturally separated the user review time series of Plants vs. Zombies into four segments 

(See Figure 7). This game was first introduced to Google Play on December 21, 2011 

(Day 1). There was a significant burst of negative reviews due to the instability of the 

initial release. Following this spike, stability remained the main source of complaints 

until a follow-on release in May 2012, which fixed the stability problem but resulted in 

connectivity issues. Approximately a week after this incident there was a spike of 

positive review on the time series plot, containing reviews such as “Finally fixed. 

Horray, no more crashing… ”, indicating that the connectivity problem had been solved. 

This dynamic view provides a historical view of apps, which is extremely useful for 

users, developers and analyst to gain a deeper understanding of apps. By combining all 

reviews across the market, high-level market trends can also be identified to improve the 

market efficiency. 

Similar NLP technologies can also help improve app analysis in terms of providing more 

context information. For example, Chen et al. studied the maturity rating [34] by 

performing text-mining on app descriptions and users’ reviews. They developed 

mechanisms to verify the self-reported maturity rating of mobile apps and investigated 

possible reasons behind the incorrect ratings. Although slightly outside the scope of 

mobile privacy, their work demonstrated the ability and flexibility of NLP techniques to 

study the content of an app. 

Along the same direction, through mining app description and user reviews, we can 

identify the services and functionality this application provides. Currently Google 

classified all the apps into 30 categories based on their functionalities; however, this 

taxonomy is still too coarse to infer whether certain private resources are necessary for 

certain apps. Text mining techniques can used to generate more comprehensive attributes 

to describe apps’ functionalities.  

3.5 Summary 

In this chapter, we described the detailed procedures involved in downloading and 

analysis over 100K mobile apps. Specifically, we discussed how we use Androguard, an 

Android reverse engineering tool to perform static code analysis on apps, focusing on 

 
Figure 7 . We use time series to visualize the life story of Plants vs. Zombies, and topic 

analysis is performed for different segments of the time series. 
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identifying what sensitive user data/resources are used and why. We leveraged the 

Amazon EC2 cloud to enable the batch processing to speed up the analysis of this large 

quantity of apps. To identify the purpose why sensitive user data are used, we looked up 

the top 400 3
rd

-party libraries that are most frequently used in all these apps and 

categorized them into 9 categories based on what type of services they provide. We also 

analyze how different types of resources (permissions) are used for various purposes. We 

further pointed out the potential of leveraging NLP techniques in app analysis.    
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4 IDENTIFYING PATTERNS IN APPS’ PRIVACY 
BEHAVIORS 

In the previous chapter, we discussed the techniques that we used to crawl Google Play 

and to perform code level static analysis of individual apps. To gain a deeper 

understanding of the Android mobile app market, and to identify typical patterns that 

apps consume users’ private information, we applied machine learning techniques to 

identify common patterns in apps’ privacy-related behaviors. More specifically, we want 

to see if there exist several groups of apps that exhibit particular characteristics in 

collecting and consuming users’ sensitive data; thus we can discuss their privacy risks 

and coping mechanisms separately.  

4.1 Preprocessing 

We performed several preprocessing steps to code our dataset properly for the clustering 

task.  

First, we organized the raw static analysis results by aggregating the 3rd-party library 

usage based on their categories (as mentioned in Table 2) and what Android permissions 

they use. For each permission p requested by an app a, we use one attribute to encode if p 

is triggered by internal use, and count how many 3rd-party libraries l in the category c is 

bundled in a. We only focused our analysis on the top 11 most sensitive and frequently 

used permissions, as identified earlier [49]. They are: INTERNET, 

READ_PHONE_STATUS, READ_CONTACT, GET_ACCOUNTS, BLUE_TOOTH, 

ACCESS_FINE/COARSE_LOCATION, SEND_SMS, READ_SMS, CAMERA, and 

RECORD_AUDIO (see Appendix A for the description of these permissions). By doing 

this, we can greatly reduce the number of features used to describe each app, and hence 

reduce the sparsity in our data. We also counted the number of URLs that app a is 

connecting to. In total, we used 131 attributes to represent the static analysis results for 

each of the 89,903 apps.  

Secondly, we append the apps’ meta-data to our dataset. These meta-data include the 

name of the app, developer, the range of the download number, the average rating of the 

app, star rating distribution, the number of user reviews, etc. Together with the app 

behavioral attributes, each app has a feature set of 144 features. 

Thirdly, we perform a simple dimension reduction by eliminating the features that are 

constant or nearly constant. This dimension reduction results in a remaining matrix of 

120 features.  

Finally, we normalize the dataset such that all the features except the text fields have the 

same value range of [0.0, 1.0].  

4.2 Clustering Algorithms and Distance Functions 

We used hierarchical clustering with an agglomerative approach to cluster apps’ privacy 

related behaviors, where each observation starts in its own cluster, and pairs of clusters 

are merged as one step moves up the hierarchy according to the distance measures and 

agglomerative algorithms. In the general case, the complexity of agglomerative clustering 
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is O(n
3
) [89]. Though its time complexity is not as fast as k-means or other flat clustering 

algorithms, we chose hierarchical clustering mainly due to three reasons: (1) it is flexible 

in its selection of distance functions, which gives us ample room to try out different 

distance functions since we did not know which one would work best; (2) the hierarchical 

structure produced by hierarchical clustering is much more informative than the 

unstructured clusters, hence the clustering results are more likely to be interpretable and 

less likely to result in artificial boundaries (such as those sometimes produced by 

centroid-based clustering techniques like k-means); (3) it does not require us to pre-

specify the number of clusters (in contrast to k-means) and the results are deterministic 

(stable).  In short, we intentionally sacrifice efficiency for the sake of obtaining clusters 

that are more likely to capture genuine differences between apps and more likely to be 

interpretable. 

In our work, given the new dataset and new problem, we first explored possible distance 

measures and agglomerative methods. More specially we ran our hierarchical clustering 

algorithms with the following distance measures [89]:  

A. Euclidean distance (ECL):  

Euclidean distance between two points in a 2D space is given by the Pythagorean 

formula. When extended to n-dimensional space, inner products are used. In 

Cartesian coordinates, if p=(p1,p2,...pn) and q=(q1,q2,...qn) are two points in Euclidean 

n-space, then the distance from p to q, or from q to p is given by: 

 

B. Manhattan distance (MHT): 

Manhattan distance measures the distance between two points as the sum of the 

absolute differences of their Cartesian coordinates, also known as rectilinear distance, 

L1 distance or taxicab metric. More formally,  

 

C. Canberra distance (CBR):  

Canberra distance is a weighted version of Manhattan distance, which has been used 

as a metric for comparing ranked lists and for intrusion detection in computer 

security. The Canberra distance between vector p and q in an n-dimensional real 

vector space is given as follows: 

 

D. Binary distance (BNR): 

Binary distance (so called Hamming distance) measures the minimum number of 

substitutions required to change one binary vector to another. In our case, we coded 

non-zero entries as '1's to form a binary matrix. So for binary vectors p and q the 

hamming instance is equal to the number of ones (population count) in p XOR q.  

 

In addition, we explore the following agglomerative methods in our experiments: 
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A. Ward’s Method (WAR):  

Ward's method offers a general agglomerative hierarchical clustering procedure, 

where the criterion for choosing the pair of clusters to merge at each step is based on 

the objective function that finds the minimum between-cluster distance. In other 

words, the pair of clusters with the closest boundaries are merged. 

B. Centroid Method (CTD):  

Centroid method suggests merging the two clusters with minimum distance between 

their centroids. The centroid of each cluster is usually defined by averaging all the 

points within the cluster.  

C. Average Linkage (AVG):  

The average linkage method merges clusters based on their average distances. It 

computes the distances between the pairs of points in two clusters and takes the mean 

of all these pairs as the average distance between two clusters. The two clusters with 

the minimum average distance are merged. 

D. McQuitty’s Similarity (MCQ):  

McQuitty’s method merges together the pair of clusters that have the highest average 

McQuitty’s similarity value, as defined in [100]. This agglomerative method has been 

proven to be effective in text clustering.  

We limited our exploration to the above-mentioned distance functions and agglomerative 

methods, since other distance functions or agglomerative methods either produce similar 

results as the above-mentioned ones or are not appropriate for our tasks based on the 

characteristics of our data. As research on clustering techniques continues, it is possible 

that new techniques could provide even better results than the ones we present. We found 

however that by themselves these techniques were already sufficient to isolate very 

different categories of mobile apps, when it comes to their permissions and the purposes 

associated with these permissions. 

4.3 Evaluating Clustering Algorithms 

To select the best agglomerative method and the best distance function for our problem, 

we experimented with various ways of combining the four agglomerative methods and 

four distance measures by using the R package “hclust” [102]. We conducted all the 

experiments on a Linux machine which has XeonE5-2643 3.3GHz CPU (16 cores) and 

32G memory. We selected the most popular 20,000 apps with all encoded features as the 

data input to perform the clustering analysis. 

We have two selection criteria in determining which combination of distance function 

and agglomerative method to use. First, the combination should not produce clusters with 

extremely skewed structures in dendrograms. A dendrogram is a tree diagram frequently 

used to illustrate the arrangement of the clusters produced by hierarchical clustering, 

where x axis represents all the instances in the vector space, and the y axis represents the 

range of distances in this vector space.  The tree structure in the dendrogram illustrate 

how clusters merged at each iteration. We check this by manually inspecting the 

dendrograms produced by the clustering.  The other criteria are three internal measures, 

http://en.wikipedia.org/wiki/Tree_(graph_theory)
http://en.wikipedia.org/wiki/Hierarchical_clustering
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namely connectivity, Silhouette Width and Dunn Index, which validate the clustering 

results based on their connectivity, compactness and degree of separation.   

Figure 8 shows two examples of dendrograms produced by different agglomerative 

methods and distance functions. The left one presents a fair structure in the sense that the 

clusters in the higher hierarchy include a good number of instances, whereas the right 

dendrogram presents a skewed structure --- even in the top several levels of the 

hierarchical structure, the clusters only contain a couple of instances. After inspecting all 

the resulting dendrograms, we eliminated the following combinations: Average Linkage 

methods with all distance measures, binary distance with Ward’s method and centroid 

method, Manhattan distance with McQuitty’s method, and Euclidean distance with 

McQuitty’s method, resulting in 8 remaining potential distance and agglomerative 

method combinations.  

In the second step, we use three internal measures (provided by R package 

“clValid”[101]) to quantitatively evaluate the remaining combinations. These measures 

reflect the compactness, connectivity and the separation of the cluster partitions.  

Connectivity measures to what extent observations are placed in the same cluster as their 

nearest neighbors in the data space, and is measured as [65]: 

 

Where nn i(j) denotes the j th nearest neighbor of observation i, and let be zero if i 

and j are in the same cluster and 1/j otherwise, and L is a parameter giving the number of 

nearest neighbors to use (L is set to 10 in our case). The connectivity has a value between 

zero and ∞ and should be minimized.  
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(a) Euclidean distance with Ward method 

 
(b) Manhattan distance with Average Linkage 

method 

Figure 8: Two examples of dendrograms produced by different agglomerative methods 

and distance functions. The left one is produced by applying Ward’s method with 

Euclidean distance. The right one is produced by applying Average Linkage method with 

Manhattan distance. The hierarchical structure is very skewed even at the top level.  
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Compactness assesses cluster homogeneity, usually by looking at the intra-cluster 

variances, while separation quantifies the degree of separation between clusters (usually 

by measuring the distance between cluster centroids). Popular methods combine the two 

measures into a single score, such as the Dunn Index [42] and Silhouette Width [105].  

The Dunn Index is the ratio of the smallest distance between observations not in the same 

cluster to the largest intracluster distance, computed as 

 

where diam(Cm) is the maximum distance between observations in cluster Cm. The Dunn 

Index has a value between zero and ∞ and should be maximized.  

The Silhouette Width is the average of each observation’s Silhouette value which 

measures the degree of confidence in the clustering assignment of a particular 

observation. For observation i, it is defined as  

 

where ai is the average distance between i and all other observations in the same cluster, 

and bi is the average distance between i and the observations in the “nearest neighboring 

cluster”. The Silhouette width thus lies in the interval [-1,1] and should be maximized. 

We varied the number of clusters k from 2 to 20 to create the cluster labels for each of the 

8 remaining distance and agglomerative method combinations, and then rank them based 

on the three internal measures respectively. Table 5 summarizes the rankings based on 

internal measures.  

It shows that Canberra distance with Ward’s method when k=5 has the highest Silhouette 

width (should be maximized) and Dunn Index (should be maximized), and it ranks the 

second for the connectivity (should be minimized). Collectively, we choose the clusters 

produced by this setting and present the visualization and interpretation in the following 

sections.  
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Rank 

Connectivity Dunn Index Silhouette Width 

Dist- aggl-k Value Dist- aggl-k Value Dist- aggl-k Value 

Top 1 ECL-WAR-5 4.38 CBR-WAR-5 0.40 CBR-WAR-5 0.98 

Top 2 CBR-WAR-5 4.96 ECL-WAR-9 0.26 BNR-MCQ-4 0.86 

Top 3 MHT-WAR-6 5.34 CBR-WAR-6 0.23 MHT-WAR-5 0.81 
 

Table 5: Top 3 clustering configurations for each internal measure. Clusters obtained by 

using Canberra distance and Ward’s method with k=5 (CBR-WAR-5) ranks first in 

Dunn Index (should be maximized) and Silhouette Width (should be maximized) and 

ranks second in the connectivity (should be minimized). We select this configuration as 

its best performance overall.  
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4.4 Resulting Clusters 

 We plot the dendrogram of the iterations of hierarchical clustering with Canberra 

distance and Ward’s method in Figure 9. At each iteration, cluster merging is represented 

 
Figure 9: The dendrogram of hierarchical clustering with Canberra distance and 

Ward’s method. It visualizes how clusters merge in each iteration. The five different 

colors at the bottom represents five different cluster labels assigned to all the instances 

when k=5.  

 

 
Figure 10: A heat map plots the centroid of each cluster. The brighter the color 

represents the higher values in corresponding attributes. We can see distinguishing 

patterns in all the five clusters.  
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by a merge in the hierarchical structure. Five different colors at the bottom represent five 

different clusters resulted in this process. The smallest cluster (in black) contains 10.8% 

of apps and the largest cluster (in blue) contains 35.5% of apps.  

To get a first impression of the resulting clusters, we compute the centroid of each cluster 

by averaging the attributes of all the instances in the same cluster. We use a heat map to 

visualize the centroids of all the five clusters in Figure 10, where the brighter the color is 

the larger the value in the corresponding attributes
12

. Although human perception can 

easily tell there are significant differences among the five clusters in the visualization, it 

is not straightforward to spot the distinct characteristics of each cluster.  

To better understand each cluster and its privacy implications, in the following sub-

sections, we separately plot the five clusters in 2 dimensional grid representations, where 

the vertical dimensions represent the different usages of permissions and the horizontal  

dimensions represent why (purpose) of using certain permission. The number in each grid 

roughly translates to the portion of apps used specific permission for a specific purpose.  

We will also discuss the potential privacy risks of each cluster of apps. 

4.4.1  Cluster_1: Few Requested Permissions  

Cluster 1 is the smallest cluster among the five. It contains just 10.8% of apps. Figure 11 

depicts the centroid of cluster 1. We can see that only a few entries are filled with very 

                                                 
12

 Since the dataset is normalized before clustering, all the entries have values within the range of [0.0, 1.0]. 

It is hard to assign a physical meaning to the normalized value, though roughly the larger the value means 

more frequent usage of certain sensitive resources for certain purposes.  

 

Examples:  

 
Robo Defense FREE, 

 
Battery Widget, 

 
Calculator++ 

 

Figure 11: Heap map visualization of the centroid of cluster_1. Permissions are 

displayed along the vertical axis, while the possible purposes associated with these 

permissions are displayed along the horizontal axis Apps in this cluster seldom use any 

sensitive permissions. More red color indicates a higher proportion of apps requesting a 

given permission for a particular purpose. 
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light red. This suggests that this cluster of apps seldom use permissions that involving 

sensitive user data. A lot of them are utility apps such as calculator, battery widget, or 

simple games such as Robo Defense FREE. Because of the absence of permission usage, 

this type of cluster poses almost no privacy risks to users.  

4.4.2 Cluster_2: Permissions Primarily Requested for Internal Use 

The second cluster of apps is the largest (35.5% of all apps we crawled). The apps in this 

cluster consume permissions for their functionality (internal use) most of the time, as 

shown in Figure 12. Note that, the “internal use” here does not necessarily imply that user 

data never leaves the mobile devices, but rather it refers to the situation where the 

sensitive user data are not requested by any 3rd-party libraries bundled with the 

application.  

An example of an app in this cluster is Google Maps, which uses the user’s location 

information primarily to support location-based search and navigation functionality. 

Another example is WhatsApp Messenger, which accesses the phone book 

(READ_CONTACT) to facilitate messenger service. Yet another app in this category is 

YouTube, which accesses a user’s account information but solely as part of its 

authentication process. This category of apps seldom uses 3rd-party libraries and uses 

users’ sensitive data primarily within the app’s native code. The privacy risk associated 

with these apps appears to be low, which is similar to the first cluster. While developers 

or companies who produce apps in this cluster access and transmit sensitive user data to 

their servers, they seem to do so primarily to support their app’s core functionality. 

Obviously, once the data leave the mobile device, we have no way of knowing exactly 

how it will be used. In light of the many third party libraries found in the code of other 

apps, it is reasonable to assume that most of these apps probably do not share this data: if 

they were, they would likely do so using 3
rd

 party APIs embedded in their app’s code, but 

there are probably some exceptions. A privacy policy could possibly help further clarify 

whether any such sharing takes place at the server level. In short, while this category of 

apps seems benign, they might still pose privacy risks, especially if the data being 

collected does not seem to be required by the app’s core functionality.  

4.4.3 Cluster_3: Ad-powered apps 

In the mobile ecosystem, a large portion of app developers monetize their products by 

bundling behavioral ad libraries [31]. This cluster of apps (Figure 13) demonstrates this 

intention clearly, since in most cases permissions are used for delivering targeted ads. 

Multiple types of personal information, including users’ location, phone number, and 

contact list could be used to profile users’ life style, habits and interests. Since an ad 

library might be bundled in multiple apps, the ad agency could potentially aggregate the 

data collected through multiple apps to build a more comprehensive profile of users.  In 

short, the privacy risks of this type of apps is not from developers, since they do not 

receive sensitive information, but rather from the companies and agencies involved in 

collecting this data, building profiles and delivering targeted ads.  
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 Some work has sought to block behavioral ad libraries to prevent excessive data 

collection [29, 68]. It is unclear to what extent such an approach will remain viable in the 

long run. This is because a large portion of app developers rely on behavioral advertising 

to monetize their products, especially those who develop free apps. Blocking ad libraries 

would greatly discourage these developers and blunt the innovation we have seen in 

smartphone apps. A more practical approach would involve the development of an 
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Figure 12: Heap map visualization of the centroid of cluster 2. This cluster of apps uses 

sensitive permissions mostly for functionality purposes.  
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Figure 13: Heap map visualization of the centroid of cluster 3. This type of app uses 

sensitive permissions because of the targeted ads libraries that bundled inside them. 
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Example: 

 

 
Facebook 

  

 
SoundHound 
 

 
Scope 
 

Figure 14: Heat map visualization of the centroid of cluster 4. This cluster of apps 

consume permissions most for internal functionality and for promoting sharing through 

bundled social network libraries. 

 

infrastructure or  functionality that exposes these practices to users and enable them to 

make better informed decisions. Over the past year, we have seen many big players in 

mobile advertising (such as Admob, Tapjoy, InMobi, etc.) refining their privacy policies. 

Some initiatives have also been launched that aim to better control the collection and use 

of user data.  These efforts include an agreement between the California Attorney 

General and six major mobile app marketplaces (including GooglePlay, iTunes and the 

Amazon App store) to require app developers to include privacy policies. They also 

include initial self-regulatory efforts by industry. Whether these efforts will be sufficient 

to empower end-users to make informed decisions remains to be seen.  

4.4.4 Cluster_4: Apps that Promote Sharing 

Compared to other clusters, this group of apps (see Figure 14) is often bundled with SNS 

libraries. These libraries are usually used to let users share app-related content on social 

network sites, like Twitter and Facebook, together with other contextual information such 

as location. By promoting the interaction with SNSs, these apps can achieve two goals. 

One is that the app itself can act as a portal for users to manage their social networks. The 

other is to leverage the SNSs as dissemination channels to propagate and advertise this 

app. Together with other facets like targeted advertising as well as in-app purchasing, 

either way could make the app more popular.  

The privacy risks associated with this type of app are similar to those posed by social 

network sites. Users are responsible for the consequences of sharing app-related 

information and potentially their own information through SNS libraries. This type of 

sharing might require users to balance factors like social capital, maintaining social 

images of themselves, and protecting their privacy. At the same time, when combined 
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Example: 

 

 
IMDb 
 

 
Pandora internet radio 
 

 
Skype - free IM & video calls 
 

Figure 15: Heat map of cluster 5. This cluster of apps consumes permissions both 

internally and for delivering targeted ads and facilitating mobile analytics.  

 

with internal functionalities or for targeted advertising, this type of app also suffers the 

same privacy risks as the previous two clusters.  

4.4.5 Cluster_5: Multi-purpose Apps 

The last cluster of apps (Figure 15) is the most sophisticated cluster, which contains 

approximately 16.13% of the free apps we crawled from Google Play. This type of apps 

uses permissions for multiple purposes and is more likely to be produced by developers 

who are interested to know how users use their apps, since we also observe a strong 

penetration of mobile analytics libraries such as Flurry and Localytics. Mobile analytics 

libraries usually provide paid services to app developers to help them understand how 

consumers interact with their apps. The information they collect might also include 

personal information such as users’ location, phone number, etc.  

Similar to targeted advertising libraries, mobile analytics companies can harvest user data 

from multiple apps, and are hence able to build more comprehensive user profiles. We 

also see the trend that some mobile analytic companies have started to offer targeted 

advertising in the last two years. It is a reasonable assumption that the user profiles built 

from mobile analytics are also being used to assist their ad services. Combined with other 

sensitive data usage by apps themselves and targeted advertising, this cluster of apps 

poses more convoluted privacy risks to users.  

4.5 Discussion 

We identified patterns in privacy-related behaviors of apps by clustering mobile apps in 

terms of how and why they use different private data. In this sub-section, we discuss how 

these findings help us move forward in our mobile app privacy research.  
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First of all, the five clusters of apps we identified provide a new way to organize mobile 

apps, and help us understand how these typical patterns are distributed in the app market. 

In contrast to previous work by Frank et al. [56] which focused on identifying app-

permission patterns, namely groups of apps with similar permission patterns. Our 

analysis provided a more in-depth look at these patterns by attempting to also capture the 

purpose associated with different app-permissions. By distinguishing between ten 

different purposes associated with different app permissions, we are able to develop a 

deeper understanding of the information flows associated with different app-permissions. 

As we show in the next chapter, the purpose associated with an app-permission pair has a 

significant impact on people’s privacy preferences when it comes to deciding whether 

they feel comfortable granting a given permission to an app.  Specifically, in the next 

chapter, we describe a crowdsourcing study where we asked participants why they 

believe an app is requesting a given permission and to what extent they feel comfortable 

granting that permission. 

As shown in the next chapter, different clusters of apps give rise to different privacy 

concerns. Given the different ways in which they use sensitive data, these clusters of apps 

induce different types of privacy risks. In other words, permissions by themselves are not 

sufficient for users to make decisions. Instead, additional details about the purpose 

associated with the collection of sensitive data are critical. Such information should 

minimally be provided in the form of privacy policies, though, as has been shown by 

others [91], users are unlikely to read these policies. In the following chapter, we show 

how models of people’s privacy preferences can also be used to inform the design of 

privacy displays that highlight those issues that are most likely to impact people’s privacy 

decisions.   

Finally, though this clustering information might not be intuitive for end users, it can be 

treated as another attribute to describe apps that could potentially provide extra value to 

other stakeholders. For example, these attributes could be used for services such as 

mobile app recommender systems, or can be used as a clue to assign privacy scores to 

individual apps.      

This chapter demonstrates the exploration and the knowledge we discovered with regard 

to apps’ privacy-related behaviors. We also produce a valuable dataset that describes 

apps in terms of what sensitive user data they consume and why. We believe that by 

applying more advanced machine learning techniques or mining this dataset from other 

angles, we can uncover more facts, patterns, and knowledge about either individual 

mobile apps or the mobile market as a whole. 
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5 NOTICE & AWARENESS: HOW TO INFORM USERS?
13

 
The FTC has identified five core principles (Fair Information Practice Principles) to 

protect consumers’ privacy, among which “Notice/Awareness” is the most fundamental 

one [58]. This principle states “Consumers should be given notice of an entity’s 

information practices before any personal information is collected from them.” However, 

multiple user studies have found that mobile app users seldom pay attention to 

permission screens and have a hard time understanding their privacy implications [54, 

77]. One major contribution of this thesis is to develop better ways informing users of 

pertinent information in a more effective and understandable way.  

5.1 What to Show?  

The existing permission screens of Android generally lack adequate explanation and 

definitions, which motivated us to explore what information should be conveyed to users 

that can help them better understand the privacy implications of apps’ sensitive data 

usages.  

One thing we learned from previous location sharing privacy studies is that users have 

distinct privacy preferences for different kinds of sharing [110]. This makes sense in the 

context of mobile app privacy as well. People’s perceptions of whether an action is 

reasonable, or how that action makes users feel with respect to their privacy are greatly 

influenced by why an action is taken. For example, is a given app’s use of one’s location 

appropriate or not? It all depends on the purpose: for a blackjack game with no clear 

reason for collecting location information, probably not, but for a map application to 

provide point-to-point navigation, very likely so. Therefore, a clear explanation as to why 

the sensitive data is required is necessary to properly inform users. Thanks to a number of 

research projects, there are many existing application analysis tools [36, 45-47, 55] that 

we can leverage to identify the purposes of the data disclosure.  

In addition, we frame mobile privacy in the form of people’s expectations about what an 

app does and does not do, focusing on where an app breaks people’s expectations. There 

has been a lot of discussions about expectations being an important aspect of privacy 

[109]. We framed our inquiry on Norman’s notion of mental models [94]. All people 

have a simplified model that describes what they think an object does and how it works 

(in our case, the object is an app). Ideally, if a person’s mental model aligns with what the 

app actually does, then there would be fewer privacy problems since that person is fully 

informed as to the app’s behavior. However, in practice, a person’s mental model is never 

perfect. We argue that by allowing people to see the most common misconceptions about 

an app, we can rectify people’s mental models and help them make better trust decisions 

regarding that app.  

The notion of expectations is fairly common in discussions of privacy [109]. For 

example, the famous 1967 US Supreme Court case Katz v United States ruled that people 
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 Part of this chapter has been previously published in Ubicomp’12 [82], and other parts 

included in a paper submitted to CHI’14 [120]. 
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Figure 16: Sample questions to capture users’ mental models. Participants were randomly 

assigned to one of the conditions. In the expectation condition, participants’ were asked to 

specify their expectations and speculate about the purpose for this resource access. In the 

purpose condition, the purpose of resource access was given. In both conditions, participants 

were asked to rate how comfortable they felt having the targeted app access their resources.  

Please read the application description carefully and answer the questions below.

App Name: Toss it

Toss a ball of crumpled paper into a waste bin. Surprisingly addictive! Join the 

MILLIONS of Android gamers already playing Toss It, the most addictive casual game 

on the market -- FREE!

- Simple yet challenging game play: toss paper balls into a trash can, but don't forget to 

account for the wind! 

- Challenge your friends to a multiplayer game with Scoreloop

- Toss that paper through 9 unique levels -- you can even throw an iPhone! – Glob

And if you like Toss It, check out these other free games from myYearbook: - Tic Tac 

Toe LIVE! - aiMinesweeper (Minesweeper) - Line of 4 (multiplayer game like Connect 

Four)

 1. Have you used this app before? (required)

Yes No

2. What category do you think this mobile app should belong to? 

(required)

Game Application Book, music or video

3. Suppose you have installed Toss it on your Android device, 

would you expect it to access your precise location? (required)

Yes No

4. Could you think of any reason(s) why this app would need 

to access this information? (required)

Toss it does access users’ precise location information.

precise location is necessary for this app to serve its 

major functionality.

precise location is used for target advertisement or 

market analysis.

precise location is used to tag photos or other data 

generated by this app.

precise location is used to share among your friends or 

people in your social network.

other reason(s), please specify 

I cannot think of any reason.

5. Do you feel comfortable letting this app access your precise 

location? (required)

Very comfortable

Somewhat comfortable

Somewhat uncomfortable

Very uncomfortable

Please provide any comments of this app you may have below.

Based on our analysis, Toss it  accesses user's precise 

location information for targeted advertising .
3. Suppose you have installed Toss it on your Android device, 

do you feel comfortable letting it access your precise location? 

(required)
The Expectation Condition The Purpose Condition

Very comfortable

Somewhat comfortable

Somewhat uncomfortable

Very uncomfortable

OR

could not have their telephone calls monitored without a warrant because there was a 

“reasonable expectation of privacy” [15], with this famous phrase being the basis of a test 

used by US courts to evaluate the reasonableness of legal privacy protections. Our notion 

of privacy as expectations is a different construct, focusing primarily on people’s mental 

models of what they think an app does and does not do. Our core contribution is in 

operationalizing privacy in this manner of capturing people’s expectations as well as 

reflecting other people’s expectations directly in a privacy summary to emphasize places 

where an app’s behavior did not match people’s expectations. 

5.2 How to Gather Data? 

As mentioned in the previous section, the purpose of disclosing private data can be 

identified by using various analysis tools [36, 45-47, 55]. By leveraging the power of 

cloud, app analysis can be easily scaled up to handle dissecting thousands or even tens of 

thousands of apps. On the other hand, traditional ways of collecting user feedback, such 

as interview or lab studies seems inadequate to catch up with the scale of data that we 

intend to collect. How to collect user feedback in an efficient and affordable way 

becomes a major challenge.  

Inspired by work like [57, 90], we turn to crowdsourcing for help. There are four reasons 

why crowdsourcing is a compelling technique for examining privacy. Past work has 
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shown that few people read End-User License Agreements (EULAs) [61] or web privacy 

policies [72], because (a) there is an overriding desire to install the app or use the web 

site, and reading these policies is not part of the user’s main task (which is to use the app 

or web site), (b) the complexity of reading these policies, and (c) a clear cost (i.e. time) 

with unclear benefit. The current Android permission screen suffers from the same 

problems: (a) user’s main task is to install the apps and this task is interrupted by going 

through permission screen. (b) the permission description text is lengthy and hard to 

understand. (c) Without fully understand its privacy implication, there is no clear benefit 

for users to go through these permission lists.  

Crowdsourcing nicely addresses these problems. It dissociates the act of examining 

permissions from the act of installing apps. By paying participants, we make reading 

these permissions part of the main task and also offer clear monetary benefit. Lastly, we 

can reduce the complexity of reading Android permissions by having participants 

examine just one permission at a time rather than all of the permissions, and by offering 

clearer explanations of what the permission means. 

5.3 Study Description 

We recruited participants using Amazon’s Mechanical Turk (AMT). We designed each 

Human Intelligence Task (HIT) as a short set of questions about a specific Android app 

and resource pair (see Figure 16). Participants were shown one of two sets of follow-up 

questions. One condition (referred to as the expectation condition) was designed to 

capture users’ perceptions of whether they expected a given app to access a sensitive 

resource and why they thought the app used this resource. Participants were also asked to 

specify how comfortable they felt allowing this app to access the resource using a Likert 

scale that ranged from very comfortable (+2) to very uncomfortable (-2).  

In the other condition (referred to as the purpose condition), we wanted to see how 

people felt when offered more fine-grained information. Participants were told that a 

certain resource would be accessed by this app and were given specific reasons for the 

access. We identified these reasons by app analysis and knowledge about ad networks. 

Participants were then asked to provide their comfort ratings as in the expectation 

condition. Finally, participants from both conditions were encouraged to provide optional 

comments on the apps in general. The separation of the two conditions allowed us to 

compare users’ perceptions and subjective feelings when different information was 

provided. 

We focused our data collection on four types of sensitive resources (as suggested by 

AppFence [68]): unique device ID (READ_PHONE_STATE), contact list 

(READ_CONTACT), network location (ACCESS_COARSE_LOCATION), and GPS 

location (ACCESS_FINE_LOCATION). We also restricted the pool of apps to the Top 

100 most downloaded mobile apps on the Android market. The list of apps and their 

relevant permissions can be found in the Appendix B. Overall, 56 of these apps requested 

access to unique phone ID, 25 to the contact list, 24 to GPS location, and 29 to Network 

Location. This resulted in 134 app and resource pairs, i.e. 134 distinct HITs. For each 

HIT, we recruited 40 unique participants to answer our questions (20 per condition).  We 
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MSE  Network 

Loc  

GPS loc  Contact List  Unique 

ID 

expectation [0,1]  0.0354 0.0303  0.0353 0.0363 

comfort level [-2,+2]  0.7081  0.8136  0.6749 0.3067 

Table 6: Crowd workers and experts have similar expectations toward targeted 

mobiles. In general, experts were slightly more skeptical about these privacy-related 

behaviors. Numbers in this table indicate the differences between the rating we 

obtained from the crowd workers and the experts, measured by the Mean Square 

Error. 

limited our participants to Android users in U.S. and ensured a between-subjects design 

through a qualification test. 

All the HITs of this study were completed over the course of six days. We collected a 

total of 5684 responses. 211 were discarded due to incomplete answers, and 113 were 

discarded due to failing the quality control question, yielding 5360 valid responses. There 

were 179 verified Android users in our study, with an average lifetime approval rate of 

97% (SD=8.79%). On average, participants spent about one minute per HIT (M=61.27, 

SD=29.03), and were paid at the rate of $0.12 per HIT. 

5.3.1 Feasibility of Using Crowdsourcing to Study Privacy 

Though we already adopted quality control questions and qualification tests to ensure the 

validity of the data collected, we want to prove quantitatively that the crowdsourcing 

approach would not bias the results in gathering users’ subjective feedback. To this end, 

we recruited five Android experts
14

 to come to our lab; then we presented them with the 

same questions in the expectation condition and asked them to complete the questions for 

every resource and app pair (i.e., 134 sets of questions in total). We used the Mean 

Square Errors (MSE) to measure the differences between the subjective feedback 
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 Someone with security background and has development experience in Android OS.  

 
Figure 17. The percentage of users surprised about popular mobile apps using users’ 

location, phone ID and contact list. This figure shows the top 10 apps with the least 

expected permission (among the top 100 most downloaded free Android Apps.)  
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collected from crowd workers and experts (see Table 6). In general, crowd workers had a 

similar level of expectations as experts (i.e., MSE < 0.05). Experts on average appeared 

to be more skeptical about privacy-related behaviors of apps, which attributed to the 

slightly higher MSEs seen in the second row. Given the comfort level scaling from -2 to 

+2, these MSEs were still considered acceptable. In other words, these results 

demonstrate the validity and feasibility of crowdsourcing as a method to collect users’ 

subjective feedback to study privacy.  

We also wanted to see how previous experiences with an app impacted participants’ 

expectations and level of comfort. To answer this question, we compared the responses 

between participants who had and hadn’t used the app before. Our results show that the 

differences were not statistically significant with respect to their reported expectation and 

comfort rating of sensitive resource access. This finding suggests that people who use an 

app do not necessarily have a better understanding of what the app is actually doing, in 

terms of accessing their sensitive resources. It also suggests that, if we use crowdsourcing 

to capture users’ mental models of certain apps, we do not have to restrict our participants 

to people who are already familiar with these apps, allowing us access to a potentially 

larger crowd.   

5.3.2 How Users Feel about Popular Apps 

To give a more intuitive impression of users’ subjective feelings towards mobile apps, we 

first present the responses we collected with regard to the some popular apps that readers 

might familiar with. In Figure 17, we show the percentage of participants who were 

surprised by these popular mobile apps access users’ location, unique phone ID and 

contact list. Figure 17 shows the data related to the top 10 apps with the least expected 

permission (among the top 100 most downloaded free Android Apps). From this figure 

we can see that even some very popular apps developed by well-known companies are 

harvesting more than necessary personal data from users, which greatly surprised their 

users. For example, participants were consistently surprised by the fact that a flashlight 

app needed to know their unique phone ID as well as their precise location.  

5.3.3 Expectation, Purpose, and Comfort Level 

When participants were surprised by access to a sensitive resource, they also found it 

difficult to explain why the resource was needed. Note, in the expectation condition, 

participants were only informed about which resources were accessed without 

information on the purpose of access. This is similar to what the existing Android 

permission list conveys to users. In this condition, we observed a very strong correlation 

(r = 0.91) between the percentage of expectations and average comfort ratings. In other 

words, the perceived necessity of resource access was directly linked to users’ 

subjective feelings, which guided the way users made trust decisions on mobile apps. 

We also found that, even if users were fully aware of which resources were used, they 

still had a difficult time understanding why the resources were needed. We compared 

the reasons our participants provided in the expectation condition against the ground truth 

from our app analysis. In most cases, the majority of participants could not correctly state 

why a given app requested access to a given resource. When resources were accessed for 
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Resource Type 
comfort rating w/ 

purpose(std) 
comfort rating w/o 

purpose (std) df T p 

Device ID 0.47     (0.30) -0.10     (0.41) 55 7.42 0.0001 

Contact List 0.66     (0.22) 0.16      (0.54) 24 4.47 
 

0.0002 
Network 

Location 0.90     (0.53) 0.65      (0.55) 28 3.14  0.004 

GPS Location 0.72     (0.62) 0.35      (0.73) 23 3.60  0.001 
Table 7 Comparison of comfort ratings between the expectation condition (2nd 

column) and the purpose condition (3rd column). Standard deviations are shown 

between parentheses. When participants were informed of the purpose of resource 

access, they generally felt more comfortable. The differences were statistically 

significant for all four types of resources. The comfort ratings were ranging from -2.0 

(very uncomfortable to +2.0 (very comfortable). 

functionality purposes, participants generally had better answers; however, accuracy 

never exceeded 80%. When sensitive resources were used for multiple purposes, the 

accuracy of answers tended to be much lower. Note that these results are for a situation in 

which participants were paid to read the description carefully. Many of them had even 

used some of these apps in the past. We believe for general Android users, their ability to 

guess answers would have been even worse.  

Given the lack of clarity as to why resources are accessed, users must deal with 

significant uncertainties when making trust decisions regarding installing and using a 

given mobile app. We observed that, for the four types of sensitive resources (i.e., device 

ID, contact list, network location, and GPS location), participants, in general, felt more 

comfortable when they were informed of the purposes of a resource access (see 

Table 3). The differences between the comfort ratings were statistically significant in 

paired t-tests. For example, concerning accessing the device ID, the average comfort 

rating in the purpose condition was 0.3 higher than in the expectation condition (t(55) = 

7.42, p < 0.0001). This finding suggests that providing users with reasons why their 

resources are used not only gives them more information to make better trust decisions, 

but can also ease concerns caused by uncertainties. Note that informing users about the 

“purpose” for collecting their information is a common expectation in many legal and 

regulatory privacy frameworks. Our results confirm the importance of this information. 

This finding also provides us with a strong rationale to include the purpose(s) of resource 

access in our new design of privacy summary interface.  

5.4 How to Apply the Results? Preliminary Design of a New 
Privacy Summary Interface 

In the above section, we have discussed how we identify the purpose of sensitive data 

disclosure in mobile apps and how to capture users’ expectation of mobile apps, in the 

remaining of this chapter we apply these finding in designing better privacy interfaces. 

The objective is to display richer and more pertinent information to users in a compact 

and understandable way.  

The first design we come up is a text-based design directly inherit the layout and color 
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Figure 18: A mockup interface of our newly proposed privacy summary screen, taking the 

Brightest FlashLight and the Dictionary app as examples. The new interface provides extra 

information of why certain sensitive resources are needed and how other users feel about 

the resource usages. Warning sign will appear if more than half of the previous users were 

surprised about this resource access. 

10% users were surprised this app 
wrote contents to their SD card.

25% users were surprised this app 
sent their approximate location to 
dictionary.com for searching nearby 
words.

85% users were surprised this app 
sent their phone’s unique ID to 
mobile ads providers.

0% users were surprised this app 
could control their audio settings.

See all

90% users were surprised this app 
sent their precise location to 
mobile ads providers.

95% users were surprised this app 
sent their approximate location 
to mobile ads providers.

95% users were surprised this app 
sent their phone’s unique ID to 
mobile ads providers.

See all

0% users were surprised this app 
can control camera flashlight.

schedule from existing permission screen. This new privacy summary interface features 

two crucial attributes identified in our previous study, namely expectation and purpose. 

In this preliminary design, we directly leverage other users’ mental models and highlight 

their surprises. By presenting the most common misconceptions about an app, we can 

rectify people’s mental models and help them make better trust decisions. We also 

provide the purposes of resource access to give users more explanations in our new 

summary interface.  

Previous research has discussed several problems with the existing Android permission 

screens [54, 77], including:  

 The wording of the permission list contains too much technical jargon for lay users. 

 They offer little explanations and insight into the potential privacy risk. 

 A long list of permissions makes users experience warning fatigue.  

With these problems in mind, in addition to the two identified key features, we proposed 

several principles for our own design: 

 Using simple terms to describe the relevant resources. For example, instead of using 

“coarse (Network) location”, we use the term “approximate location”.  

 Only displaying the resources that have greater impact on users’ privacy, such as 

location, device ID, storage, contact list etc. Users could choose to check out other 

low-risk resources by clicking “See all”. 

 Sorting the list based on users' expectation as captured through crowdsourcing. We 

order the list so that the more surprising resource usages are shown first.  
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*  p <0.05 ** p<0.005 

 

App Name 

# of Mentioning Privacy 

Concern (out of 20) Accuracy (max=1.0) Time spent (sec) 

Existing Proposed Existing Proposed p Existing Proposed p 

Brightest Flashlight 4 6 0.58 0.86 ** 74.59 65.11 

 Dictionary 1 3 0.73 0.91 ** 68.21 43.92 ** 

Horoscope 3 7 0.75 0.95 * 68.41 48.72 * 

Pandora 3 3 0.68 0.94 ** 76.86 76.82 

 Toss it 4 13 0.61 0.88 ** 67.43 57.10 

 Table 8. Comparisons between the existing Android permission screen (permission 

condition) and our newly proposed privacy summary (new interface condition). Our new 

interface makes users more aware of the privacy implications and is easier to understand. 

Users in general spent less time on these newly proposed interfaces but got more fine-

grained information. 

 Highlighting important information. We bold the sensitive resources mentioned in 

text, and use a warning sign and striking color to highlight the suspicious resource 

usages, i.e. when the surprise value exceeds a certain threshold. 

Figure 18 shows two examples of our new privacy summary interface. To make the 

comparison more symmetric, our design uses the same background colors and patterns 

that were used in the Android permission screen at the time of the study. In this study, we 

used the data collected in our previously described crowdsourcing study to mock up the 

privacy summary interfaces for five mobile apps, namely Brightest Flashlight Free, 

Dictionary, Horoscope, Pandora, and Toss it.  

We used AMT to conduct a between-subjects user study to evaluate our new privacy 

summary interface. Participants were randomly assigned to one of two conditions. In one 

condition, participants were shown the original permission screen that the current Google 

Play Store uses. In the other condition, participants were shown our new interfaces. We 

evaluated the new privacy summary interface from three perspectives. The first was 

privacy awareness (i.e., whether users were more aware of the privacy implications). 

This was measured by counting the number of participants who mentioned privacy 

concerns when justifying their recommendation decisions. The second was 

comprehensibility (i.e., how well users understood the privacy summary). This was 

measured by the accuracy in answering questions about app behavior. The third was 

efficiency (i.e., how long it took participants to understand the privacy summary), which 

was measured by the number of seconds participants spent reading the privacy summary 

screens. 

The comparisons between the two conditions are summarized in Table 8. Generally 

speaking, participants in the new interface condition weighted their privacy more when 

they made decisions about whether the app was worth recommending. More people in 

this condition mentioned privacy-related concerns when they justified their choices. 

When we asked participants in both conditions to specify the resources used by the target 

apps, those in the new interface condition demonstrated a significantly higher accuracy 

compared to their counterparts. Furthermore, except for the Pandora app, participants in 

the new interface condition, on average, spent less time reading the privacy summaries; 

however, the time difference was not always statistically significant. This finding 
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suggests that we can provide more useful information without requiring users to spend 

more time to understand it. 

5.5 Privacy Interfaces With Different Layouts 

Though improved from the existing Android permission screen, the above mentioned 

privacy interface is still text-based, hence might not be optimal for users to view at a 

glance. In this sub-section, we present three new designs that build on the expectation and 

purpose work, using the same crowdsourcing approach, but opting to present the key 

information in more understandable layouts.  

5.5.1 Proposed Privacy Interfaces 

Our three designs included a matrix view that shows what permissions an app uses and 

how those permissions are used (e.g. advertising, analytics, etc), a list view that shows 

the same information grouped by permissions, and another list view grouped by how 

permissions are used. As baselines, we compared our designs against Android’s interface 

available since April 2013 (see Figure 2b and 2d), and against a design based on the 

voluntary Code of Conduct proposed by the National Telecommunications & Information 

Administration (NTIA) [67, 95, 108], who is an agency of the United States Department 

of Commerce that serves as the President’s principal adviser on telecommunications and 

information policy.   

NTIA’s Code of Conduct provides general design guidelines but does not specify a 

particular standardized design at this point. In our study, we created a baseline privacy 

notice, based on the Code of Conduct and on published mockups developed by a number 

of the stakeholders [67]. We also chose to use this version based on its similarities to the 

(a)  

 

(b) 

 

(c) 

 

Figure 19. Implementation of a privacy interface following the NTIA Code of Conduct Guidelines, (a) 

identifying the types data collected by the app, (b) ways the data may be shared, (c) and a complete listing 

of the permissions used. We changed the color theme from the proposed mock ups so that they all have the 

same general texture.  
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existing Android permission interface. This version of the interface has one tab indicating 

which data categories are used by the app, a second tab indicating what types of entities 

may use the data, and a third tab with the full text of which permissions are used (Figure 

19). It is primarily text based, and displays the data types that are used first (and grays out 

the data types that are not).  

As we mentioned before, we identified 9 categories of 3
rd

-party libraries based on the 

type of services they provide. To simplify our designs, we opted to group the use of 

permissions into four categories: Basic App Functionality, Advertising, Market Analysis, 

and Other Utilities. Basic app functionality means that a permission is used by the app 

and not a third-party. Other utilities include all of the other libraries above other than 

advertising and market analysis. We grouped these uses together for two reasons. First, 

advertising and market analysis libraries were found in over 40% of apps that we 

analyzed, and represented a common piece of functionality across all apps. Second, we 

wanted to avoid overloading users with too many details, allowing them to focus on 

information that past work has identified as the most privacy concerning [31, 82, 99]. 

For our first design, we turned to a matrix visualization to display information about what 

permissions are used by an app, how the data and information gathered from those 

permissions are used, and which behaviors users are concerned with (see Figure 20). This 

design was inspired by past work on privacy nutrition labels [75, 76], which were 

originally designed for web site privacy policies. 

The matrix shows permissions that an app uses along the vertical axis. Categories of how 

the permissions are used are placed along the horizontal axis (i.e. Basic App 

Functionality, Targeted Ads, Market Analysis, and Other Utilities). Each box in the grid 

represents a behavior of the app, corresponding with the permission and type of usage. If 

the behavior is not exhibited by the app, a gray minus sign is displayed. If the behavior is 

exhibited by the app, the box is colored red, with darker red colors signifying that other 

 
Figure 20. Our matrix interface. Permissions used by the app are on the vertical axis; 

categories of use are on the horizontal axis. Darker boxes indicate that the behavior was 

more concerning to other users, based on our estimated crowdsourced data probing 

people’s level of comfort with the app using a given permission for a given behavior. The 

grades (C+, A-) are based on an average of comfort level across the entire row. Dashes 

mean that the app does not have a given behavior. 
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users generally found the behavior concerning, and lighter red colors less concerning. 

There were a total of five possible gradations. As noted by the privacy nutrition labels 

work, a matrix approach lets users quickly glance at the visualization and get an idea of 

the app’s behaviors by looking at the total number of shaded cells. Additionally, the 

concern levels are summarized with a letter grade, from A to F, to provide another way 

for users to easily skim the visualization. The grades represent a weighted average of 

concern levels, where A means approximately 80% or more of people do not feel 

concerned, B approximately 60-80%, and so forth. Grades are also weighted by the 

sensitivity of the data gathered. Users can hover over the text labels to show short text 

explanations of the permission as well as the categories of uses.  

A readily apparent problem with the matrix is that it does not translate well to a small 

smartphone screen, in that it requires a great deal of horizontal scrolling. To solve this 

problem, we created two different list visualizations. For the first list visualization, we 

created a list grouped by permission types (referred to as List-Permission, see Figure 

21a). Essentially, each row of the matrix has its own section, describing how each 

permission is used. We followed the same conventions used in the matrix, providing a 

(a) 

 

(b) 

 

(c) 

 

Figure 21. Two versions of the list view, optimized for a smartphone screen layout. (a) 

One list is grouped by permissions, called “List – Permission”. For each permission the 

app uses, the interface displays how that permission is used and a rating of how 

concerned other users were with that behavior. (b) The second list is grouped by 

categories of use, called “List – Use”. For each use, the interface displays the permissions 

the app uses as well as a concern rating.  (c) Users can click the “show details” button to 

view longer textual explanations of the permission types and usage categories. 
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box with a darker shade of red for more concerning actions, though we wrote the level of 

concern directly over the color (Very Low, Low, Medium, High, Very High), as there is 

limited screen space to add a legend. A button, labeled Show Details, expands the list, 

allowing users to read more detailed explanations about the types of permissions and 

categories of data use. The second list visualization groups shows data usage categories 

(referred to as List-Use, see Figure 21b), by grouping each column of the matrix into its 

own section, again following the same design conventions as the first list. 

5.5.2 Evaluation Methodology 

To evaluate our proposed privacy interfaces, we created information for 3 fake apps. We 

opted for fake apps so that participants would not have any prior experience with the 

apps. Our apps included Word Bind (a word game app), Friend Pix (a photo and video 

social networking app), and Alpha Flashlight (a flashlight app). The permissions and 

behaviors of the fake apps were based on a synthesis of real apps in the Google Play 

store. We also created concern ratings for each behavior, based on crowd ratings on the 

behaviors of the synthesized apps. Similar to the previous section, we evaluated these 

five interfaces with 210 participants from MTurk based on the understandability of these 

interfaces, the time users spent on reading these interfaces, as well as their impressions of 

the interfaces. After removing HITs that did not correctly answer a quality control 

question, a total of 230 HITs were completed. Each of the five interfaces had between 38 

and 52 HITs (M= 46). Each participant was presented with the name of the app, user 

rating, overall privacy grade, app description, and a permission interface. The interface 

was shown in a narrow frame to mimic a smartphone display, except for the matrix, 

which was displayed in a wider frame.  

Participants were asked questions in three sections. The first section had 6 multiple 

choice questions, and was designed to see how well the interfaces conveyed information 

to users. The first question asked what the purpose of the app is, to make sure participants 

had read all the information. This was also used to help filter participants who did not 

fully complete the task. The second question asked about a type of permission used by 

the app. The third and fourth questions asked about why or how permissions are used. 

The fifth and sixth questions asked about the concern levels regarding certain behaviors. 

Timing data was collected to see how long it took participants to answer questions in the 

first section.  

The second section was designed to gauge participants’ reactions to the user interfaces. 

Participants were asked to rate on a 5-point Likert scale how concerned they felt about 

each permission presented in the interface. They were also asked to use 5-point Likert 

scales to rate how comfortable they would feel downloading the app, how useful they 

thought the interface was, how difficult they thought it was to understand the information 

in the interface. Optional open-ended comments were also collected in this section. 

The third section consisted of demographics information, including the participant’s age, 

occupation, sex, type of smartphone owned (if any), length of time they owned a 

smartphone, and approximately how many apps they have installed. Additionally, 

participants were asked a series of six questions that referred as the simplified Westin’s 

privacy scale in order to determine what Westin’s privacy categories they belongs to [80]. 
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Interface n Total Score 
Permissio

ns 

How Info is 

Used 
Concern 

Google Play 47 3.85 0.89 N/A N/A 

NTIA 38 2.95 0.63 1.21 N/A 

Matrix 45 3.60 0.87 1.44 1.28 

List-

Permission 
48 3.54 0.85 1.52 1.17 

List-Use 52 3.47 0.85 1.44 1.06 

Maximum Possible Score 

or SubScore: 
5 1 2 2 

Table 9. Summary of the mean number of questions answered correctly. The total number of questions is 

listed in the bottom row. Higher scores mean more questions answered correctly. 
 

5.5.3 High Level Results 

At a high level, people answered fewer questions correctly with the NTIA interface than 

the other conditions. However, while participants were asked five multiple choice 

questions in addition to the quality control questions, the questions were not the same 

across all conditions, because the interfaces convey different dimensions of information. 

This information is summarized in Table 9. All five interfaces conveyed information 

about the permissions an app uses, and all were asked one question about this type of 

information. This data is treated as binary (the user either answered correctly or 

incorrectly), and a Pearson Chi-Square test with Χ
2
 (1, N = 230) = 12.42, p = .014, 

suggests that the NTIA interface that we created performed significantly worse at 

conveying information about what permissions are used. 

Participants were asked two questions about how an app might use their data and what 

information is gathered from permissions, for NTIA, Matrix, List-Permission, and List-

Use interfaces. These questions let us compare the understandability of these interfaces. 

While the participants with the NTIA interface answered fewer questions correctly, a one 

way ANOVA shows no significant difference between the four conditions, F(3, 179) = 

1.426, p = .237, r = .15.  

Participants were also asked two questions about how concerned other users felt about 

the app’s permission behaviors, for the Matrix, List-Permission, and List-Use interfaces. 

These questions let us compare the understandability of crowd comfort levels across 

these interfaces. While the participants with the Matrix interface on average answered 

more questions correctly, a one way ANOVA shows no significant difference between 

these three conditions, F(2, 142) = 1.107, p = .334., r = .12. 

In short, the understandability test results suggested that the NTIA interface that we 

created performed significantly worse at conveying information about what permissions 

are used. At the same time, our new proposed three interfaces had similar 

understandability comparing to the existing Android permission interface, though 

providing much richer information.  

We also measured how long it took participants to answer the multiple choice 

information questions (Table 10). There are some outliers creating a large difference in 
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Interface n 
Mean 

Seconds 

Std. Dev. 

Seconds 

Median 

Seconds 
Mean Rank 

Google Play 47 146.11 67.64 131 83.03 

NTIA 38 309.18 386.29 204 131.78 

Matrix 45 181.84 124.31 163 110.61 

List-

Permission 
48 207.23 169.31 199 122.83 

List-Use 52 235.25 197.05 191.5 130.41 

Table 10. Summary of the mean seconds for users to complete the multiple choice 

section of our proposed interfaces, the standard deviation of seconds, the median 

number of seconds, and the mean rank. 

standard deviations and the distribution of seconds is not normal even without outliers. 

To adjust for this, we analyzed the data using ranks by performing a Kruskal-Wallis test 

and found a significant result, H(4) = 16.90, p = .002.  

This suggests that the length of time it took for participants to complete the Google Play 

multiple choice questions was significantly less than in the other interface conditions,. 

This is further supported in pairwise comparisons, which show that the number of 

seconds it took in the Google Play condition is significantly shorter than the NTIA 

condition (p = .008), the List-Permission condition (p = .036), and the List-Use condition 

(p = .004).  

Because the questions were slightly different for the Google Play and Matrix conditions 

but the same for the Matrix and both List conditions, we perform a Kruskal-Wallis test on 

the timing data for the three proposed interfaces. We find that the difference is not 

significant, H(2) = 2.420, p=.298. In other words, given the similar amount of 

information, different layouts did not take users significantly longer or shorter time 

to digest. Meanwhile, the fact that the NTIA interfaces took the longest time for users to 

understand also demonstrate the weakness of text-based interfaces. 

In addition, we gathered qualitative responses from our participants, which helped us 

better understand the evaluation results. In our quantitative data analysis, we noticed that 

the NTIA interfaces were consistently worse than others both in terms of the 

understandability and the time it cost participants to read. Some reasons were suggested 

by our participants. For example, one participant commented that there was “too much 

text, info hidden in multiple tabs,” which made information hard to find. We emphasize 

that we only tested one permission interface based on the NTIA Code of Conduct 

guidelines, and it is possible that others may fare better. Furthermore, most of the 

mockups presented in [67] use multiple tabs to display information, which may make the 

NTIA interface harder to understand. More generally, the lack of matching the specific 

data types to a specific way the data is used is a general weakness of the NTIA’s 

Code of Conduct guidelines. One participant wrote that “I honestly had to use reasoning 
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to answer why the app would collect my location…because that figure above doesn’t 

explicitly provide that information.” A revised guideline requiring matching the specific 

data types to the ways data are used, or new interface that displays this information while 

still following the current guidelines may help users better understand the information. 

There were noticeable differences in these comments between conditions, which 

confirmed that users do need to know why their data are used. In the Google Play and 

NTIA interface conditions, people usually commented by asking why a permission is 

being used, such as “why does it need access to my call log and GPS location,” “I’m just 

curious about why it needs access to my contacts,” or “I wonder why a flashlight app 

would really need all of those permissions.” This makes sense, because the Google Play 

and NTIA interfaces do not provide specific information about how each permission is 

used. In contrast, those who cite specific permissions as major concerns in the Matrix and 

two List conditions are able to cite specific reasons why they do not feel comfortable, 

saying “I don’t want my location tracked especially when it could be used by third 

parties for ads,” “it should just need your general location for ads,” and “I don’t like 

location targeted ads or ads involving my contacts.” Interestingly, the Matrix and List 

interfaces were also used to help provide positive explanations and make some 

participants feel more comfortable about the app. There were several positive comments 

citing specific app behaviors were found in each of these conditions. Participants said “I 

can sort of see why it might want your location for ads,” and “Many apps use the phones 

location for ad presentation. This is accepted practice.” This finding is in line with past 

work [82], which found that offering explanations improved comfort levels.  

Furthermore, amongst our three newly proposed interfaces, several participants wrote that 

they found it difficult to understand the information at first. For example, participants 

wrote “it took me a minute to figure it out but once I got it, it was easy,”, “it was 

somewhat difficult to initially understand what it was saying”. However, while users may 

have felt that these interfaces were harder to understand at first, there was no evidence in 

our data. The participants in these conditions did not have significantly different 

accuracies in answering factual questions, and did not take significantly longer time to 

complete tasks. So, our results suggest that while the interface did not harm performance, 

the types of information presented in the interface were new and unfamiliar, and with 

repeated use of seeing these interfaces, users should feel better about using the 

interface. These findings also suggest there will be challenges in introducing users to 

new dimensions of mobile privacy information.  

5.6 Summary 

In this chapter, we introduced a new methodology for disclosing mobile apps’ behavioral 

information to end users. Key contributions include: 

 We identified two key features--- expectation and purpose--- that can provide 

richer information for users to make better privacy decisions. Our approach helps 

uncover gaps in the user’s mental models. We show that these gaps or 

misconceptions can help inform the design of more effective privacy decision 

interfaces.  
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 We demonstrated the feasibility of using crowdsourcing to capture people’s 

mental models of an app’s privacy-related behaviors in a scalable manner. 

 We proposed and evaluated 4 interfaces that make use of the identified key 

information. These interfaces and their evaluation also shed some light on how 

additional design elements such as UI layout, colors, order in which information 

is presented can effect users’ understanding of what an app does and also impact 

their level of comfort.  
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6 CHOICES & CONTROLS: HOW TO HELP USERS WITH 
THEIR PRIVACY SETTINGS? 

In the previous chapter, we presented the design and evaluation of several alternative user 

interfaces for informing users about an app’s privacy-related behaviors in better ways. In 

this chapter, we focus our discussion on modeling users’ mobile app privacy preferences 

in order to provide users assistance in the process of configuring privacy settings.  

6.1 Usability Challenges in Managing Privacy Settings 

Several early mobile app privacy solutions have involved allowing users to control 

individual app permission. For example, TISSA [123] and MockDroid [29] allow users to 

substitute fake information in response to API calls by an app. A similar approach has 

also been made available to users of jailbroken iPhones through an app known as “Protect 

My Privacy” [13, 19]. Most recently both iOS and Android have moved to such an 

approach. For instance, in iOS6, users have the ability to selectively toggle permissions 

on and off for individual apps, with these permissions including access to one’s location, 

calendar, photos, reminders and more. In June 2013, with the introduction of Android 

4.3, Android introduced similar settings in the context of a hidden app permission 

manager referred to as ‘App Ops”. These developments can be viewed as a direct 

reflection of the diverse privacy preferences revealed through our own research, as 

reported in the previous Chapter. While users express concerns about many permissions, 

they do not all feel the same way, hence the need to provide them with the ability to 

decide for themselves whether or not they want to grant a particular permission to a 

particular app.  

While in theory the fine-grained permission interfaces that have emerged over the past 

few years empower users to control their permission settings, they also make unrealistic 

assumptions about a user’s ability and willingness to control such a large number of 

settings. According to a report from Nielsen in 2012 [87], the average number of apps 

installed by a smartphone user was around 41 in the year of 2012. Given that on average 

4 permissions are required by an app, an average smartphone user would have to make 

over a hundred privacy decisions to configure the permissions settings of all these apps. 

For more active users, the number of decisions they need to make might be well over a 

thousand. Furthermore, users might not completely understand the privacy implications 

behind their decisions. In short, providing users with the ability to control their data is not 

sufficient. To make the privacy settings usable and practical, there is an urgent need for 

trusted tools that can guide users through the configuration process and reduce the 

number of privacy decisions a user actually has to make.  

Quantitatively modeling users’ mobile app privacy preferences is the first step we take to 

get closer to this goal. To address the usability issue, we leverage user-oriented machine 

learning techniques to identify a set of representative privacy profiles that users can 

choose as their default privacy settings. We present our techniques and key findings in 

the following sections.   



 

 

56 

 

6.2 Crowdsourcing Study 

To gather enough user preference data for machine learning analysis, we used Amazon 

Mechanical Turk to conduct a study similar to the one previously described in Chapter 

5.3. Participants were shown the app’s icon, screen shots, and description. Participants 

were asked if they expected this app to access certain type of private information and 

were also asked how comfortable they felt allowing this app to access their information 

for the given purposes. The permission usage and the purpose were based on the static 

analysis discussed in Chapter 3. We also collected demographic information of our 

participants including gender, age and education background to help us analyze our data. 

As in our previous crowdsourcing study, we restricted our participants to U.S. 

smartphone users with previous HIT approval rate higher than 90%.  

We scaled up our study to over 1200 HITs, probing 837 mobile apps that we randomly 

sampled from the top 5000 most popular free apps. Each HIT examined one app- 

permission- purpose triple. For example, in one HIT, participants were asked to express 

their level of comfort in letting Angry Birds (app) access their precise location 

(ACCESS_FINE_LOCATION permission) for delivering targeted ads (purpose). The 

data collection ran for 3 weeks starting on June 15
th

, 2013. After the data collection 

period, we first eliminated responses that failed the qualification questions
15

, and then we 

eliminated 39 HITs because they had less than 15 responses. This yielded a dataset of 

21,657 responses contributed by 725 MTurk workers.  

We did not specifically control the gender ratio or any other demographic composition of 

our participants. As shown in Figure 22, among these participants, 41% of them were 

female; 69% of participants were between 21 and 35, 16% of them are between 36 and 50 

(see Figure 22 (b)). We also observed that more than 60% of the participants were 

reported to have a bachelor’s degree or equivalent and 6% had a master’s degree or PhD. 

The average education level of our participants was significantly higher than the average 

                                                 
15

 In the qualification questions, we asked participants to choose the appropriate category of the apps  to 

test if they read the app description carefully. 

   

 
(a) Gender 

 
(b) Age 

 
 

(c) Education 

Figure 22: Demographic information of Amazon Mturk workers who participated in 

our data collection.  
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education level of the entire U.S. population as reported in [28]. Compared to the 

demographics of crowdworkers as reported in [104], our participant pool contains more 

people with bachelor’s degrees and fewer with graduate degrees.  

This difference in demographics may be due to self-selection, since usually 

crowdworkers would be more likely to work on HITs that interest them. However, other 

data collection methods, such as Internet surveys, often have similar sampling problems.   

While this sample bias has to be taken into account when interpreting our results, we 

suspect that our study is no worse than most others in terms of the representativeness of 

our participant pool. 

6.3 Users’ Average Preferences and Their Variances 

To visualize our results, we aggregate self-reported comfort ratings by permission and 

purpose. Figure 23 (a) shows the average preferences of all 725 participants, where white 

indicates participants were very comfortable (2.0) with the disclosure, and red indicates 

very uncomfortable (-2.0). In other words, cells that are in the darker shades of red 

indicate a higher level of concern.  

The three use cases with the highest levels of comfort were: (1) apps using location 

information for their internal functionality (fine loc: M=0.90, coarse loc: M=1.16); (2) 

SNS libraries bundled in mobile apps using users’ location information so this context 

information can be used in sharing (fine loc: M=0.28, coarse loc:M=0.30); (3) apps 

accessing smartphone states, including unique phone ID, and account information for 

internal functionality (M=0.13). 

(a)   Average user preferences 
 

(b) Variances in user preferences 

  

Figure 23: (a) The average self-reported comfort ratings of different permission usages. 

The blue indicates more comfortable, and the magenta indicates more concerning. (b) 

The variances in users ratings. For most cases, there are significant variances among 

users in their privacy preferences.  
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For the remaining cases, users expressed different levels of concerns. Users were 

generally uneasy with (1) targeted advertising libraries accessing their private 

information, especially for their the contact list (M=-0.97), and accounts information that 

store on their mobile devices (M=-0.60); (2) SNS libraries that access their unique phone 

ID (M=-0.42), contact list (M=-0.56) as well as information related to their 

communication and web activities such as SMS (M=-0.17) and accounts information 

(M=-0.23); (3) mobile analytic libraries accessing their information such as location 

(M=-0.29) as well as phone states (M=-0.09).  

This aggregation of data gave us a good starting point to spot general trends in users’ 

privacy preferences. At the same time, these are averages and, as such, they do not tell us 

much about the diversity of opinions people might have.  In our previous research of 

users’ location privacy preferences, an important lesson we learned is that users’ privacy 

preferences are very diverse. Therefore, we plot the variances of user preferences of the 

same use cases in Figure 23 (b) to see the variance of people’s preferences. In this figure, 

the darker shades of yellow indicate higher variance among users’ comfort rating for 

different purposes.  

Figure 23 (b) shows that users’ preferences are definitely not unified. Variances are larger 

than 0.6 (of a rating in a [-2,+2] scale) in all cases. In 25% of cases, variances exceed 1.8. 

Users’ disagreements were highest in the following cases, including: 

(1) SNS libraries accessing users’ SMS information as well as their accounts
16

 

(2) targeted advertising libraries accessing users’ contact list. 

(3) users’ location information being accessed by all kinds of external libraries.  

This high variance in users’ privacy preferences suggests that having a single one-size-

fits-all privacy setting for everyone would not work well – at least for those settings with 

a high variance. We cannot simply average the crowdsourced user preferences and use 

them as default settings as suggested in [19]. This begs the question of whether users 

could possibly be subdivided into a small number of groups or clusters of like-minded 

users for which such default settings (different settings in different groups) could be 

identified.   

6.4 Clustering on Users’ Preferences 

Given the variances identified above, a natural solution is to see if there are large groups 

of people with similar preferences. In order to identify these groups, we need to properly 

encode each user’s preferences into a vector and trim the dataset to prevent over-fitting. 

More specifically, we conducted three kinds of preprocessing before feeding the dataset 

into various clustering algorithms. First, we eliminated participants who contributed less 

than 5 responses to our data collection, since it would be different to categorize 

participants if we know too little about their preferences. This step yields a total number 

of 479 unique participants with 20,825 responses. On average, each participant 

                                                 
16

 In fact, SNS libraries usually use GET_ACCOUNTS permission in the process of authenticating users. 

Users had extreme responses for this use case mainly due to that they have limited knowledge of the 

authentication process. 
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contributed 43.5 responses (SD=38.2, Median=52). Second, we aggregated a 

participant’s preferences by averaging their indicated comfort levels of letting apps use 

specific permissions for specific purposes. “NA” is used if a participant did not have a 

chance to indicate his/her preferences for a give app-permission-purpose triple. Lastly, 

for each missing features (“NA”), we find the k (k=10) nearest neighbors which have that 

feature. We then impute the missing value by using the imputation function on the k 

values from the neighbors.   

After these preprocessing steps, we obtain a matrix of 77 columns and 479 rows, where 

each row of the matrix represents a participant. This preference matrix is free of missing 

values.  

Rank 

Connectivity Dunn Index Silhouette Width 

Dist- aggl-k Value Dist- aggl-k Value Dist- aggl-k Value 

Top 1 
CBR-CRT-3 8.64 CBR-AVG-4 0.60 CBR-AVG-4 0.55 

Top 2 
CBR-AVG-4 8.78 MHT-AVG-4 0.55 CBR-CTD-4 0.54 

Top 3 ECL-AVG-4 11.23 CBR-CTD-5 0.53 CBR-WAR-4 0.42 
 

Table 11: Top 3 clustering configurations for each internal measure. Clusters obtained 

by using Canberra distance and average linkage method with k=4 (CBR-AVG-4) ranks 

first in Dunn Index (should be maximized) and Silhouette Width (should be maximized) 

and ranks second in the connectivity (should be minimized). We select this configuration 

as it has the best performance overall.  

 

 
Figure 24: The resulting dendrogram produced by hierarchical clustering with 

Canberra distance and average linkage agglomerative method. Four different colors are 

used to indicate the cluster composition when k=4. We also overlay the cluster names on 

the dendrogram which will be explained in Chapter 6.4.2.  
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6.4.1 Algorithms and Clustering Results 

Just like in Section 4.2 and 4.3, because our primary objective is to identify easily 

interpretable clusters with semantically meaningful boundaries, we opt again for 

hierarchical clustering techniques. By comparing the ranking of all configurations and the 

k value (see Table 11), we obtain the best clusters by using Canberra distance and 

average linkage method with k=4.   

Figure 24 illustrates the resulting dendrogram produced by the above mentioned clustering 

configurations, where four different colors indicate the four clusters when k=4. Among 

the four identified clusters, the largest one (colored in black in Figure 24) includes 

47.81% of instances, whereas the smallest cluster (colored in red) includes 11.90% 

instances.  

We interpret the clustering results and discuss the characteristics of each of the four 

clusters in the following sub-section.  

6.4.2 Making Sense of Privacy Profiles 

To make sense of what these clusters mean, we compute the centroid of each cluster by 

averaging the features of all the instances within the same cluster. Note that the 

previously imputed missing values are excluded in computing the centroids. We call 

these centroids “privacy profiles”, since they represent the average privacy preferences of 

each group of users. We then use a heat map to visualize these privacy profiles
17

 in 

Figure 25. The vertical dimension of these heat maps represents the uses of different 

permissions, and the horizontal dimension represents why certain permission is used. We 

use two colors to indicate people’s preferences. Color white indicates that participants 

feel comfortable with a certain type of disclosure where as the red indicates the level of 

uncomfortable. The grid with a short dash means we do not have data for this grid. We 

also assign each privacy profile with a name that highlights its characteristics to help 

distinguish these clusters.  

The (Privacy) Conservatives: Although conservatives form the smallest group among the 

four clusters, they still take up 11.90% of our participants (top-left in Figure 25). Among 

all four heat maps, this privacy profile has the largest area covered in red (feeling 

uncomfortable). In general, this type of users feels very uncomfortable letting their 

sensitive personal information (such as location and unique phone ID) be used by 

external libraries. They also feel uncomfortable if mobile apps uses their unique phone 

ID, contact list or SMS internally if the necessity of using these sensitive personal data is 

not visible to them.  

The Unconcerned: This group of participants take up 23.34% of the all the participants 

and forms the second largest cluster in our dataset (top-right in Figure 25). The heat map 

of this privacy profile has the largest area covered in light color (feeling comfortable). In 

general, users who share this privacy profile feel comfortable disclosing their sensitive 

personal data (almost) in every case, no matter who is collecting their data and for what 

                                                 
17

 In these heat map visualizations, we only display the most important six permissions and four purposes 

which strongly differentiate these privacy profiles.  
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purposes. The only concerning (red) grid in the heat map is regarding to the cases where 

SNS libraries access GET_ACCOUNTS information. We suspect this outstanding grid is 

caused by lack of data, or alternatively there might be a large portion of users do not 

understand the meaning of this permission.  

The Fence-Sitters: We named this privacy profile "The Fence-Sitters" because most 

participants within this cluster do not have strong opinions for a large portion of the use 

cases (bottom-left in Figure 25). As the largest cluster we identified, this group takes up 

nearly 50% of the population. Unsurprisingly, this group of participants feels very 

comfortable letting mobile apps access their sensitive personal data for internal 

functionality purposes. With regard to the cases where their information is consumed by 

3rd-party libraries such as for delivering targeted ads or conducting mobile analytics, 

 

Figure 25: Four privacy profiles identified through clustering. We assign each cluster a 

name to describe their characteristics. 



 

 

62 

 

 
Figure 26 . Summary of the four identified user clusters. 

• Most conservative group
• Do not like any external libraries

• Do not like ad and mobile 
analytic libraries

• OK with SNS libraries
• OK with disclosing coarse 

location to 3rd-parties

• Comfortable disclosing  
personal data to 3rd party 
companies

• Feel neutral to ad and 
mobile analytics

• OK with SNS libraries

they expressed attitudes very close to neutral (i.e. neither comfortable nor 

uncomfortable). This characteristic is rather visible on the heat map that large portions of 

the grids are in pink (close to the middle color in the legend). This group of participants 

also feels OK disclosing all types of sensitive personal data to SNS libraries consistently. 

Without further investigation, it is hard to know exactly why so many users belong to this 

category. We suspect that to some level it might be caused habituation (or warning 

fatigue) that a significant portion of users have already formed the habit of clicking 

through the permission screen as warned by Felt. et al. in [50]. 

The Advanced Users: The advanced user group is 17.95% of the population (bottom-

right in Figure 25). The reason we named this group as “advanced users” is because these 

users appears to have a more nuanced understanding of sensitive data usages. In general, 

most of them feel comfortable with their sensitive data being used for internal 

functionality and by SNS libraries. We believe they feel okay with the latter scenario 

because they still have control over the disclosures, since these SNS libraries often let 

people confirm sharing before transmitting data to corresponding social network sites. In 

addition, this group of users dislikes targeted ads and mobile analytic libraries, but still 

feels generally agreeable in disclosing context information in a lower granularity (i.e. 

coarse location). This observation again suggests that this group of users has more 

insights than others in expressing their privacy preferences.   

Figure 26 summarizes the outstanding characteristics of each cluster and shows the 

portions they take up in the participant pool. By identifying these four major privacy 

profiles, we have a clearer sense of how different users view various sensitive data usage 

patterns. In the following sections, we will talk about how these privacy profiles can be 

applied to benefit multiple stakeholders. 

6.5 Implications of Privacy Profiles 
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Gender Conservatives Unconcerned Advanced  Fence-Sitter Total 

Female (0) 21 42 25 101 189 

Male (1) 36 65 61 128 290 

Total 57 107 86 229 479 

SUMMARY 
   Groups Count Sum Average Variance 

Conservatives 57 36 0.63158 0.23684 

Unconcerned 107 65 0.60748 0.2407 

Advanced 86 61 0.7093 0.20862 

Fence-Sitter 229 128 0.55895 0.24761 

ANOVA 

Source of Variation SS df MS F P-value F crit 

Between Groups 1.462004 3 0.487335 2.049186 0.106169 2.623677 

Within Groups 112.9639 475 0.237819 
   Total 114.4259 478         

Table 12. Gender distributions of each user cluster and ANOVA analysis results. We see 

no statistically significant differences among the gender distribution of these groups.  

 
Age Group Conservatives Unconcerned Advanced  Fence-Sitter Total 

< 21  (1) 11 39 12 17 79 

21-35 (2) 41 62 59 170 332 

36-50 (3) 4 6 13 30 53 

51-65 (4) 1 0 2 7 10 

> 65  (5) 0 0 0 5 5 

Total 57 107 86 229 479 

SUMMARY 
   Groups Count Sum Average Variance 

Conservatives 57 107 1.877193 0.252506 

Unconcerned 107 181 1.691589 0.328513 

Advanced 86 176 2.046512 0.374282 

Fence-Sitter 229 434 1.895197 0.585459 

ANOVA               

Source of Variation SS df MS F P-value F crit 

Between Groups 6.222892 3 2.074297 4.598546 0.003482 2.623677 

Within Groups 214.2615 475 0.451077 
   Total 220.4843 478         

Table 13. Age distribution of each user group and ANOVA analysis. The unconcerned 

group on average is significantly younger, and the advanced users are on average 

significantly older than the other groups combined. 

 
In this section, we discuss how the identified four privacy profiles can be used to assist 

users in configuring their privacy settings. Ideally, if we can identify which cluster a user 
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belongs to without having them explicitly label privacy preferences for individual apps 

and permissions, an appropriate privacy profile can be directly applied to users’ privacy 

settings as a default. The question is, how can we select which privacy profile is closest 

to the user’s true privacy preferences? We discuss this issue in the following sub-

sections. 

6.5.1 Privacy profiles and demographic information 

The first approach we tried is to see if users’ demographic information --- including 

gender, age and education level --- are possibly sufficient to predict their privacy 

preferences. To test this hypothesis, we summarize the distribution of gender, age and 

education level of each user cluster and perform analysis of variance (ANOVA) to see if 

there are significant differences in these distributions. 

Table 12- Table 14 presents the results from the ANOVA test. In general, we found that 

in regard to the gender distribution, a one-way analysis of variance yield NO significant 

differences between groups, F(3, 475)=2.049, p=0.106. The detailed mean and variance 

values can be found in Table 12.  

Education Conservatives Unconcerned Advanced  Fence-

Sitter 

Total 

High School  (1) 20 39 17 67 143 

Bachelor’s (2) 37 64 56 147 304 

Master’s or higher (3) 0 4 13 15 32 

Total 57 107 86 229 479 

 

SUMMARY 
   Groups Count Sum Average Variance 

Conservatives 57 94 1.649123 0.23183 

Unconcerned 107 179 1.672897 0.297655 

Advanced 86 173 2.011628 0.364569 

Fence-Sitter 229 406 1.772926 0.299088 

 

ANOVA           
 Source of 

Variation SS df MS F 
P-

value F crit 

Between Groups 6.828428 3 2.276143 7.523031 6.30E-05 2.623677 

Within Groups 143.7144 475 0.302557 
   Total 150.5428 478         

 

Table 14. Distribution of education level of each user group and ANOVA analysis. The 

conservatives and the unconcerned are both with lower education levels comparing to 

the remaining groups combine, whereas the advanced users are more likely with 

higher level of education. 
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For age distribution, we encoded the age groups as (1:= under 21, 2:= age 21-35, 3:=age 

36-50, 4:=age 51-65, 5:=above 65) in our calculation. A one-way analysis of variance 

reveals significant differences between groups in regard to age distribution, F(3, 

475)=4.598, p=0.003. Post hoc analyses also reveals that the unconcerned group on 

average are younger (M=1.69, SD=0.57) than other groups combined (M=1.91, 

SD=0.76), and the advanced user group on average are older (M=2.05, SD=0.61) than 

other groups combined (M=1.83, SD=0.71). The mean and variance of each group are 

shown in Table 13. 

We also performed a similar test on the education level of all four groups of participants. 

We encoded the education levels such that “1” stands for high school or lower level of 

education, “2” stands for bachelor or equivalent level of degrees, and “3” stands for 

master’s or higher level of degrees. An ANOVA test shows that the effect of education 

was strongly significant, F(3, 475)=7.52, p=6.3E-05 . Post hoc analyses show that the 

conservatives (M=1.65, SD=0.48) and the unconcerned (M=1.67, SD=0.54) have lower 

education levels compared to the remaining groups combined (M=1.85, SD=0.57), and 

the advanced users (M=2.01, SD=0.60) are more likely to have a higher level of 

education.  

Although there are statistically significant effects in demographics, a regression from 

demographic information to the cluster label yields accuracy no better than directly 

putting every user as Fence-Sitters. In other words, we should not directly use gender, 

age, or education level to infer which privacy profile should be applied to individual user. 

This does not mean however that in combination with other factors, these attributes 

would not be useful. Below, we seek more deterministic methods to assign privacy 

profiles in the following sub-section.  

6.5.2 Identifying privacy profiles: what questions to ask 

In Android 4.3, users are given the ability to fine-tune their privacy preferences by 

turning on and off permission usages of individual app through “App Ops” [114]; 

however, as we discussed before, the usability issues hinder the ability of lay users to 

make use of these controls. It would be extremely handy if, when a user boots up her 

Android device for the first time (or possibly at a later time), the operating system could 

ask her a small number of questions to determine which privacy profile is the best match 

for her.  The profile could then be used to select default privacy settings for her. As she 

downloads apps on her smartphone, “App Ops” or some equivalent functionality would 

then be able to automatically infer good default settings for her. 

Similar ideas have been suggested for helping users set up their location sharing rules 

[103] [92]. In particular Wilson et al. in [119] describe a simple wizard for the Locaccino 

system, where a small number of questions were asked to guide users through the 

selection of good default location sharing profiles. In this section, we suggest that a 

similar method could be used to identify a small number of questions and help identify 

good mobile app privacy profiles for individual users.   

Given the four privacy profiles that we identified in Chapter 6.4, we have several 

observations that to some extent can differentiate different groups of users: 
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 Observation 1: Regarding Advertisement 

With respect to the cases where mobile apps share users’ data with advertising 

agencies, users in general have three attitudes. Privacy conservatives and advanced 

users are very uncomfortable with this use of their information, whereas the 

unconcerned, while not completely comfortable with it, generally find it acceptable. 

For fence-sitters, attitudes are much less negative than for conservatives but still 

slightly on the negative side.   

 Observation 2: Regarding Mobile Analytics and Coarse Location 

We observe similar attitudes for mobile analytics, except that the conservatives and 

the advanced users can be further distinguished by their preferences when it comes 

to letting mobile analytics libraries collect their coarse location information.  

 Observation 3: Regarding SNS and Fine Location 

 With respect to the cases where libraries for social network sites access users’ fine 

location through mobile apps, the privacy conservatives stand out since they are the 

only group of users that generally express negative comfort values for this usage. 

Advanced users are similar to the unconcerned in this case. These two groups feel 

comfortable letting SNS libraries access their fine location, though they might have 

 

Figure 27 . Users are asked a set of general questions to determine which cluster they 

belong to.  

 

 
Figure 28 . Users are asked to rate a set of apps to determine which cluster they belongs 

to. 
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different reasons. The unconcerned feel comfortable are more likely because they do 

not care whether their data flow to SNSs, whereas the advanced users are more 

likely because they know that SNSs still need their explicit actions (e.g. pressing the 

“Share” button) to make the data disclosure happen.    

Similarly, usage patterns with regard to contact list, SMS and phone status can also to 

some level help differentiate between users in different clusters. We can leverage these 

observations by centering our questions around these findings. As illustrated in Figure 27, 

the ideal scenario is that based on their answers to these questions, users are accurately 

assigned to the most appropriate clusters. For example, we can ask one questions with 

regard to targeted advertising, such as “How do you feel letting mobile apps access your 

personal data for delivering targeted ads?” or questions about mobile analytics, such as 

“How do you feel letting mobile apps sending your approximate location for market 

analysis purpose?” Of course, the exact wording and expressions used in these questions 

require thorough user studies to verify.  

Alternatively, instead of asking users these abstract questions, we could present users 

with a small set of example apps together with the description of their privacy-related 

behaviors. Users could rate each app based on its sensitive data usages, and we could 

then classify users based on these ratings, as illustrated in Figure 28. This would work 

particularly well if we could identify a small number of particularly popular apps that are 

sufficient to differentiate between users - say just asking people whether they feel 

comfortable sharing with their location with Angry Bird for advertising purpose and 

whether they feel comfortable sharing their location on Facebook through the app Scope. 

Again, how to select the most effective set of apps and how many apps should be 

included in this process are open questions that will warrant further investigating.  

In spite of the uncertainty, we are able to quantitatively demonstrate the theoretical 

improvement we can achieve in estimating users’ true preferences by using privacy 

profiles. We compute how accurately we can predict users’ privacy preferences in three 

settings as follows: 

(1) Baseline setting (baseline): 

In the baseline setting, we take the average preferences over all users as the only 

privacy profile users can choose from. This is similar to recommendations 

currently made by ProtectMyPrivacy [13]. Then we compute the mean square 

error (MSE) between the average profile and users true preferences (i.e. the 

comfort rating they contributed for various conditions).   

(2) One question setting (Q1): 

In this setting, we are aware of the four privacy profiles identified previously. 

However, we assume that only one question can be asked to determine which 

privacy profile should be chosen. We further assume that this question can 

accurately distinguish the conservatives and the advanced users apart from the 

remaining users, thus separating users into two groups. MSE is calculated to 

evaluate the estimation. 

(3) Two question setting (Q1...Qn): 
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In this setting, we assume that we have a set of questions that can accurately 

separate and assign users to the most appropriate privacy profiles. We calculate 

the MSE between the chosen privacy profile and users real preferences to evaluate 

the estimation.    

Figure 29 illustrates the average and standard deviation of MSEs in these three 

conditions. In the baseline condition, the MSE is as high as 0.68, where adding one 

question to determine the privacy profiles reduces the average MSE by 33.8%. Further 

adding more questions can reduce the average MSE in the baseline setting by 52.9%. We 

also observe that the standard deviation of MSE in Q1 and Q1...Qn conditions are 

significantly lower than the one in the baseline. Note we should emphasize again that 

these average MSEs only provide a theoretical bound of the best we can achieve in 

estimating users real preferences by using privacy profiles. This is a big assumption that 

the questions can perfectly differentiate users and select the optimal privacy profiles for 

them. In reality, this assumption needs to be tested through thorough user studies. 

In addition to choosing appropriate privacy profile as a starting point, users’ later 

interactions with their privacy settings could be used as input into reinforcement learning 

algorithms to refine models of a user’s particular privacy preferences as suggested in [39, 

79, 92].  

6.5.3 Other potential applications 

In addition to serving as default privacy settings, we believe that the identified privacy 

profiles can also be applied to other domains.  

 
Figure 29: Privacy preference estimation in three settings. Vertical bars indicate the 

standard deviations. In the baseline setting, the grand average preferences are used as 

the only privacy profile; in Q1 setting, only one question is allowed to ask to determine 

the appropriate privacy profile; in Q1...Qn setting, we assume a perfect set of questions 

are asked. The MSEs of the latter two conditions give theoretical upper bound of the best 

performance potentially can be achieve if proper questions are chosen. 
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For instance, the privacy profile information could be integrated into an app 

recommender system. Existing app recommender systems, including the ones provided 

by Google Play, usually give recommendations only based on users’ interests in terms of 

what functionalities apps provide. This leaves users to filter out apps that they have 

privacy concerns with among all these recommended apps. By knowing what users’ 

privacy preferences are like, app recommender systems can take the privacy dimension 

into consideration, providing recommendation that are also based on whether apps’ 

behaviors align with users’ privacy preferences.  

The identified privacy profiles, as well as their approximate proportions of the user 

population, can also provide important information to app developers in making better 

design decisions. App developers can quantitatively estimate the proportion of users who 

might not install their app, or the proportion of users who might turn off certain 

permission if this app bundles with certain 3
rd

-party libraries. In this way, developers are 

able to make more grounded choices with regard to the trade-off between user 

experiences and profit. For example, if a developer plans to include a targeted ads library 

that aggressively collects users’ contact list, he might consider the fact that the inclusion 

of this library might turn away over 70% of users due to privacy considerations; thus he 

should further evaluate if it is worth bundling this library.  

In short, the findings that we present in this chapter provide important lessons about 

mobile app users, and also point out a way to make privacy settings potentially usable to 

end users. There is still plenty effort can be made on each step of modeling users’ privacy 

preferences. We are also aware that users’ privacy preferences might keep on evolving 

and are influenced by the introduction of new technologies and the habituation effect that 

formed through interacting with the same practices for a long time. Therefore, in addition 

to all the techniques we proposed, proper user education on mobile app privacy is still 

crucial and needs to be promoted in the long run.  
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7 CONCLUSION AND FUTURE WORK 
In this chapter, we summarize the contributions of this thesis and point out some 

directions for future work.  

7.1 Thesis Summary 

The main purpose of this thesis work is to complement existing mobile app privacy 

research by providing important knowledge on the end-use’s side and bridge the gap 

between security-oriented approach and the user research in mobile app privacy. More 

specifically, this thesis made significant contributions in the following aspects.  

Firstly, this thesis presents the results of a large scale static analysis of over 100,000 

smartphone apps across the entire Google Play store, providing detailed results regarding 

the typical usage patterns of mobile apps in consuming users’ sensitive data. We 

specifically focused on analyzing what 3rd-party libraries were bundled in apps, since the 

inclusion of 3
rd

-party libraries provides us some of the semantics of how sensitive data 

are used.  This analysis also produces a valuable dataset that other researchers can use to 

dig deeper in the apps’ behavior analysis.  

Secondly, this thesis contribute to the design of privacy interfaces by identifying two key 

features that can be help users make better privacy decisions. They are the “purpose” 

which refers to the reason why users’ sensitive data are used and “expectation” which 

refers to whether certain app’s behavior breaks users’ expectation. We operationalize 

privacy by capturing people’s expectations as well as reflecting other’s expectations 

directly in a privacy summary to emphasize places where an app’s behavior surprises its 

users. We propose a series of user interfaces that visualize these features in different 

layouts. Evaluation results show that our new proposed new interfaces can greatly arise 

privacy awareness and are well-received by users.  

Last but not the least, we utilize crowdsourcing to collect the mobile app privacy 

preferences of over 700 users with regard to over 875 apps. Based on the collected data, 

four distinct privacy profiles are identified, providing reasonable default settings for users 

to choose from, which significantly mitigate the usability problem suffered by permission 

level privacy configurations.   

Although this thesis focused mainly on the free Android apps in Google Play, we believe 

that the models we built based on users’ privacy preferences and the identified segments 

of users may also potentially be applied to other App Markets such as Amazon App Store 

or Apple App Store. We expect that the knowledge we discovered on apps and the 

lessons we learned in informing users of privacy-related information as well as managing 

users’ privacy settings can also help market owners to improve their current privacy 

frameworks.  Especially for Android 4.3 and onward, in which users are able to manage 

permission uses for individual apps, the operating system could naturally crowdsource 

users’ privacy preferences as one type of Google usage data that users can opt to 

contribute. A significant portion of the methodologies discussed in this thesis can be 

directly applied to these crowdsourced data to build models of mobile users in the wild.  

Meanwhile, we acknowledge that privacy has many facets. This thesis only points out 

some possible ways to address this problem. We believe other facets, such as educating 
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users and app developers, improving and enforcing laws and regulations, are also crucial 

for protecting mobile users’ privacy.     

7.2 Future Work 

This thesis work also leaves several directions worth improving and extending.  

7.2.1 Leverage NLP techniques to further understand the 
functionality of the app 

In this thesis, we only focus on the privacy aspects of mobile app. This because 

extracting high-level functionality features of apps through static analysis is challenging 

and the categories provided by Google are simply too vague and inaccurate to infer the 

functionality of apps. In Chapter 3.4, we demonstrated that by leveraging NLP techniques 

on user reviews, we can identify the functional defects or performance issues of mobile 

apps. Similarly, by applying NLP techniques on apps’ descriptions and user reviews, we 

believe more attributes can be generated to depict apps’ functionalities. These features 

can greatly enrich the dataset resulted from app analysis, hence providing more facets for 

understanding and categorizing mobile apps. 

7.2.2 User studies to evaluate identified privacy profiles 

A series of user studies can complement this thesis in two ways. First, we want to see if 

the privacy profiles we identified with crowd workers (in Chapter 6.4) are representative 

enough to describe users in the wild. Second, we want to identify the optimal set of 

questions (mentioned in Chapter 6.5.2) that can accurately guide users to the appropriate 

privacy profile, which might require multiple iterations on the question sets by using both 

qualitative and quantitative evaluation methods.  

7.2.3 Design, implement and deploy a privacy wizard 

From a more systems-oriented point of view, future work can also focus on building a 

privacy wizard with the identified questions as a module in the smartphone privacy 

framework to reinforce the privacy profiles we identified. This privacy wizard should 

also have the ability to gradually refine users’ privacy settings based on their interactions 

with privacy settings. Deploying this wizard to real users in field studies can also as part 

of the design process to evaluate the usability of this privacy wizard. It would also be 

interesting to see how such a privacy wizard influences users’ privacy preferences or 

their interaction pattern with mobile apps and smartphones in general.  
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APPENDIX. A 
Top 11 most sensitive and frequently used permissions mentioned in Chapter 4.1 

Permission Permission Group Description 

INTERNET Network communication full Internet access 

READ_PHONE_STATUS   

ACCESS_FINE_LOCATION Your location fine (GPS) location 

ACCESS_COARSE_LOCATION Your location 

coarse (network-based) 

location 

READ_CONTACT Your personal information read contact data 

GET_ACCOUNTS Your accounts discover known accounts 

READ_SMS Your messages read SMS or MMS 

SEND_SMS Your messages send SMS or MMS 

BLUE_TOOTH Network communication 

create Bluetooth 

connections 

CAMERA Hardware controls take pictures and videos 

RECORD_AUDIO Hardware controls record audio 
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APPENDIX. B  
The list of apps and relevant permissions that covered in Chapter 5.3 
 

App Name Permission App Name Permission 

Antivirus 

Brightest Flashlight Free 
Compass 

Coupons 

Dolphin Browser HD 
Earth 

Evernote 

Facebook 
Foursquare 

GasBuddy 

Goggles 
Google Sky Map 

Lookout - antivirus 

Maps 
Movies 

myYearbook 

Seesmic  
Shazam 

Skyfire Web Browser 

The Weather Channel 
Toss It 

Twitter 

WeatherBug 
WhatsApp 

Antivirus 

Backgrounds HD Wallpapers 
Barcode Scanner 

ChompSMS 

Evernote 
Facebook 

Foursquare 

GO Launcher EX 
GO SMS Pro 

Google Voice 
Handcent SMS 

KakaoTalk Messenger 

LauncherPro 
Lookout - antivirus 

Google Maps 

Pandora 
Ringdroid 

Skype 

Tango voice & video calls 
TiKL-touch to talk 

Twitter 

WhatsApp 
Wordfeud FREE 

Words with friends Free 

Zedge Ringtones & Wallpapers 
Zynga Poker 

Alchemy 

Angry Birds 
Ant Smasher 

Antivirus 

Backgrounds HD Wallpapers 
Bakery Story 

Bible 

Blast Monkeys 
Brightest Flashlight Free 

Bubble Blast 2 

ChompSMS 
Coupons 

Dictionary 

ACCESS_FINE_LOCATION 

ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 

ACCESS_FINE_LOCATION 

ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 

ACCESS_FINE_LOCATION 

ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 

ACCESS_FINE_LOCATION 

ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 

ACCESS_FINE_LOCATION 

ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 

ACCESS_FINE_LOCATION 

ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 

ACCESS_FINE_LOCATION 

ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 

ACCESS_FINE_LOCATION 

ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 

READ_CONTACTS 

READ_CONTACTS 
READ_CONTACTS 

READ_CONTACTS 

READ_CONTACTS 
READ_CONTACTS 

READ_CONTACTS 

READ_CONTACTS 
READ_CONTACTS 

READ_CONTACTS 
READ_CONTACTS 

READ_CONTACTS 

READ_CONTACTS 
READ_CONTACTS 

READ_CONTACTS 

READ_CONTACTS 
READ_CONTACTS 

READ_CONTACTS 

READ_CONTACTS 
READ_CONTACTS 

READ_CONTACTS 

READ_CONTACTS 
READ_CONTACTS 

READ_CONTACTS 

READ_CONTACTS 
READ_CONTACTS 

READ_PHONE_STATES 

READ_PHONE_STATES 
READ_PHONE_STATES 

READ_PHONE_STATES 

READ_PHONE_STATES 
READ_PHONE_STATES 

READ_PHONE_STATES 

READ_PHONE_STATES 
READ_PHONE_STATES 

READ_PHONE_STATES 

READ_PHONE_STATES 
READ_PHONE_STATES 

READ_PHONE_STATES 

Air Control Lite 

Angry Birds 
Antivirus 

Brightest Flashlight Free 

ChompSMS 
Compass 

Coupons 

Dictionary 
Dolphin Browser HD 

Earth 

eBuddy 
Evernote 

Foursquare 

GasBuddy 
Goggles 

Horoscope 

Lookout - antivirus 
Maps 

myYearbook 

Seesmic  
Shazam 

Skyfire Web Browser 

Skype 
google Street View 

The Weather Channel 

TiKL-touch to talk 
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