
Formal Modeling of

the Enterprise JavaBeansTM

Component Integration Framework

Jo~ao Pedro Sousa and David Garlan
September 2000
CMU-CS-00-162

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213 USA

To appear in the special issue on Component-Based Development of the Infor-

mation and Software Technology Journal, Elsevier Print, UK. This report is an
extended version of the paper \Formal Modeling of the Enterprise JavaBeansTM

Component Integration Framework,"which appears in the Proceedings of FM'99,

World Congress on Formal Methods in the Development of Software Systems,
Springer Verlag, LLNCS, vol. 1709, pp 1281-1300. Wing, Woodcock and Davies,
editors.

Abstract. An emerging trend in the engineering of complex systems

is the use of component integration frameworks. Such a framework pre-

scribes an architectural design that permits exible composition of third-
party components into applications. A good example is Sun Microsys-

tems' Enterprise JavaBeansTM (EJB) framework, which supports object-

oriented, distributed, enterprise-level applications, such as account man-
agement systems. One problem with frameworks like EJB is that they

are documented informally, making it di�cult to understand precisely

what is provided by the framework, and what is required to use it. We
believe formal speci�cation can help, and in this paper show how a formal

architectural description language can be used to describe and provide

insight into such frameworks.

This material is based upon research sponsored by the Defense Advanced Research

Projects Agency (DARPA) supported by the Air Force Research Laboratory under

Contract No. F30602-00-2-0616. Any opinions, �ndings and conclusions or recomenda-

tions expressed in this material are those of the authors and do not necessarilly reect

the views of DARPA or the United States Air Force.

Keywords: Software architecture, software frameworks, component integra-
tion standards, component-based software, Enterprise JavaBeans.

1 Introduction

Component integration frameworks1 are becoming increasingly important for
commercial software systems. The purpose of a component integration frame-
work is to prescribe a standard architectural design that permits exible com-
position of third-party components. Usually a framework de�nes three things:
(a) the overall structure of an application in terms of its major types of con-
stituent components; (b) a set of interface standards that describe what capa-
bilities are required of those components; and (c) reusable infrastructure that
supports the integration of those components through shared services and com-
munication channels.

A successful framework greatly simpli�es the development of complex sys-
tems. By providing rules for component integration, many of the general prob-
lems of component mismatch do not arise [8]. By providing a component inte-
gration platform for third-party software, application developers can build new
applications using a rich supply of existing parts. By providing a reusable infras-
tructure, the framework substantially reduces the amount of custom code that
must be written to support communication between those parts.

A good example of a framework is Microsoft's Visual BasicTM system, which
de�nes an architecture for component integration (Visual Basic Controls), rules
for adding application-speci�c components (such as customized widgets, forms,
graphics, etc.), and code that implementsmany shared services for graphical user
interfaces (for example, to support coordination and communication among the
parts via events.)

Another, more recent example is Sun's Enterprise JavaBeansTM (EJB) ar-
chitecture. EJB is intended to support distributed, Java-based, enterprise-level
applications, such as business information management systems. Among other
things, it prescribes an architecture that de�nes a standard, vendor-neutral in-
terface to information services including transactions, persistence, and security.
It thereby permits application writers to develop component-based implemen-
tations of business processing software that are portable across di�erent imple-
mentations of those underlying services.

One critical issue for users and implementors of a framework is the docu-
mentation that explains what the framework provides and what is required to
instantiate it correctly for some application. Typically a framework is speci�ed
using a combination of informal and semi-formal documentation. On the infor-
mal side are guidelines and high-level descriptions of usage scenarios, tips, and
examples. On the semi-formal side one usually �nds a description of an appli-
cation programmer's interface (API) that explains what kinds of services are
provided by the framework. APIs are formal to the extent that they provide
precise descriptions of those services { usually as a set of signatures, possibly
annotated with informal pre- and post-conditions.

1 Component integration frameworks are sometimes referred to as component archi-

tectures

Such documentation is clearly necessary. However, by itself it leaves many
important questions unanswered { for component developers, system integrators,
framework implementers, and proposers of new frameworks. For example, the
framework's API may specify the names and parameters of services provided by
the infrastructure. However, it may not be clear what are the restrictions (if any)
on the ordering of invocations of those services. Usage scenarios may help, but
they only provide examples of selected interactions, requiring the reader to infer
the general rule. Moreover, it may not be clear what facilities must be provided
by the parts added to the framework, and which are optional.

As with most forms of informal system documentation and speci�cation, the
situation could be greatly improved if one had a precise description as a for-
mal speci�cation of the framework. However, a number of critical issues arise
immediately. What aspects of the framework should be modeled? How should
that model be structured to best expose the architectural design? How should
one model the parts of the framework to maintain traceability to the original
documentation, and yet still improve clarity? How should one distinguish op-
tional from required behavior? For object-oriented frameworks what aspects of
the object-oriented design should be exposed in the formal model?

In this paper we show how one can use formal architectural modeling to pro-
vide one set of answers to these questions. The key idea is to provide an abstract
structural description of the framework that makes clear what are the high-level
interfaces and interactions, and to characterize their semantics in terms of proto-
cols. By making explicit the protocols inherent in the integration framework, we
make precise the requirements on both the components and on the supporting
infrastructure itself. This in turn yields a deeper understanding of the frame-
work, and ultimately supports analysis of its properties. Furthermore, we can
validate that the model is a useful abstraction of \reality" by checking that the
model exhibits the properties that are required informally in the speci�cation of
the software framework.

In the remainder of this paper we describe our experience in developing a
speci�cation of Sun's Enterprise JavaBeans integration framework. The primary
contributions of this paper are twofold. First, we show how formal architectural
models based on protocols can clarify the intent of an integration framework, as
well as expose critical properties of it. Second, we describe techniques to create
the model, and structure it to support traceability, tractability, and automated
analysis for checking of desirable properties. These techniques, while illustrated
in terms of EJB, shed light more generally on ways to provide formal architec-
tural models of object-oriented frameworks.

2 Related Research

This work is closely related to three areas of prior research. The �rst area is
the �eld of architectural description and analysis. Currently there are many
architecture description languages (ADLs) and tools to support their use (such
as [11], [17], [14], [13]). While these ADLs are far from being in widespread use,

there have been numerous examples of their application to realistic case studies.
This paper contributes to this body of case studies, but pushes on a di�erent
dimension { namely, the application of architectural modeling to component
integration frameworks.

Among existing ADLs the one used here, Wright, is most closely related
to Rapide [11], since both use event patterns to describe abstract behavior of
architectures. Wright di�ers from Rapide insofar as it supports de�nition of
connectors as explicit semantic entities and permits static analysis using model
checking tools. As we will see, this capability is at the heart of our approach for
modeling integration frameworks.

The second related area is research on the analysis of architectural standards.
An example close in spirit to our work is that of Sullivan and colleagues, who
used Z to model and analyze the Microsoft COM standard [18]. In our own pre-
vious work we looked at the High Level Architecture (HLA) for Distributed
Simulation[2]. HLA de�nes an integration standard for multi-vendor distributed
simulations. We demonstrated that Wright could be used to model this frame-
work and identify potential aws in the HLA design. EJB di�ers from HLA in
that it provides a di�erent set of challenges. In particular, unlike HLA, EJB is
an object-oriented framework; it has a diverse set of interface speci�cations; and
its has weaker (but more typical) documentation.

The third related area is protocol speci�cation and analysis. There has been
considerable research on ways to specify protocols using a variety of formalisms,
including I/O Automata [12], SMV [4, 5], SDL [10], and Petri Nets [15]. While
our research shares many of the same goals, there is one important di�erence.
Most protocol analysis assumes one is starting with a complete description of the
protocol. The problem is then to analyze that protocol for various properties. In
contrast, in architectural modeling of systems like EJB, protocols are typically
implicit in the APIs described in the framework documentation. Discovering
what the protocols are, and how they determine the behavior of the system is
itself a major challenge.

3 Enterprise JavaBeansTM

3.1 Background

One of the most important and prevalent classes of software systems are those
that support business information applications, such as accounting systems and
inventory tracking systems. Today these systems are usually structured as multi-
tiered client-server systems, in which business-processing software provides ser-
vices to client programs, and in turn relies on lower level information manage-
ment services, such as for transactions, persistence, and security (see Fig. 1.)

Currently one of the problems with writing such software is portability: ap-
plication software must be partially rewritten for each vendor's support facilities
because information management services provided by di�erent venders often
have radically di�erent interfaces.

Transaction
Processing

Persistency Security

Information
management

services

Business Application Software

Clients

Fig. 1. A three-tiered business application

Additionally, clients of application software are faced with a huge variety
of interfaces to those applications. While some di�erences are inevitable, given
that di�erent applications must provide di�erent capabilities, one would wish
for certain levels of standardization for generic operations such as creating or
deleting business process entities (such as accounts).

To address this problem several vendors have proposed component integra-
tion frameworks for this class of system. One of these is Sun Microsystems'
Enterprise JavaBeansTM framework, a component architecture for building dis-
tributed, object-oriented, multi-vendor, business applications in the Java pro-
gramming language. The basic idea of the framework is to standardize on three
things. First, the framework de�nes a standard interface to information man-
agement services, insulating application software from gratuitous di�erences in
vendors' native interfaces. Second, the framework de�nes certain standard oper-
ations that can be used by client software to create, delete, and access business
objects, thereby providing some uniformity across di�erent business applications
software. Third, the framework de�nes rules for composing object-oriented busi-
ness applications using reusable components called beans.

By standardizing on these aspects of an informationmanagement application,
EJB intends to promote application portability, multi-vendor interoperability,
and rapid composition of applications from independently developed parts.

The remainder of this section elaborates on the elements of EJB that are
necessary to follow the formalization in Sect. 6.

3.2 Overview of Enterprise JavaBeansTM

Sun's \Speci�cation of the Enterprise JavaBeansTM Architecture" [6], (hence-
forth, EJB spec) de�nes a standard for third parties to develop Enterprise
JavaBeansTM deployment environments (henceforth, EJB servers). An appli-
cation running in one of these environments would access information manage-

ment services by requesting them of the EJB server, via the EJB API, in the
way prescribed by the EJB spec.

Transaction
Processing

Persistency Security

EJB API

Application

Account bean

Order bean
Client

EJB server

Fig. 2. The EJB server o�ering access to information management services.

Figure 2 illustrates a system with a remote client calling an application that
implements some business logic, for which Orders and Accounts are relevant
operational entities. In the object-oriented paradigm, such entities are termed
objects. An object can be viewed as a unit that holds a cohesive piece of infor-
mation and that de�nes a collection of operations (implemented by methods) to
manipulate it.

The EJB framework de�nes particular kinds of objects, termed Enterprise
JavaBeansTM (beans, for short). Beans must conform to speci�c rules concerning
the methods to create or remove a bean, or to query a population of beans for the
satisfaction of some property. Hence, whenever client software needs to access a
bean, it can take some features for granted.

It is the job of EJB server providers to map the functionality that the EJB
spec describes into available products and technologies. In version 1.0, released
in March 1998, the EJB spec covers transaction management, persistence, and
security services.2 The EJB spec does not regulate how these services are to be
implemented, however: they may be implemented by the EJB server provider,
as part of the server; or they may rely on external products, eventually supplied
by other vendors. Such products, however, are invisible to the beans.

A typical example of the symbiosis between an EJB server and an external
product would be for an EJB server provider to o�er access to one or more in-
dustry standard databases. The customer organization could then develop new
applications that access existing corporate databases, using the persistency ser-
vices provided by the EJB server. All that the developers of the new application
would need to be aware of is the logical schema of the existing databases.

2 Actually, version 1.0 views persistency services to be optional.

Standard

Vendor specific
mapping

Transaction
Processing

Persistency Security

Container

Bean

Client

Client
Contract

Bean
Contract

Bean

Fig. 3. The EJB container.

The EJB spec refers to the collection of services that both the beans and the
client software use as a container (see Fig. 3). A container provides a deployment
environment that wraps the beans during their lifecycle. Each bean lives within
a container. The container supports (directly or indirectly) all aspects that the
bean assumes about the outside world, as de�ned in the EJB spec.3 The protocols
that regulate the dialog between a bean and its container are termed the bean

contract.

The container also supports a set of protocols, termed the client contract,
that regulate the dialog between client software and a bean. The client contract
de�nes two interfaces that a client uses to communicate with a speci�c bean:
the Home Interface and the Remote Interface (see Fig. 4). Both interfaces are
implemented at deployment-time by special-purpose tools supplied by the EJB
server provider.4 The Remote Interface reects the functionality of the bean it
represents, as it publishes the so-called business methods of the bean. Each bean
has one such interface. The Home Interface contains the methods for creation
and removal of beans, as well as optional methods for querying the population
of beans (�nder methods). There is one such interface per bean class.

To use the services of a bean a client �rst obtains a reference to the bean's
class Home Interface using the Java Naming and Directory InterfaceTM (JNDI).

3 This does not mean the container restrains beans from accessing the world outside
EJB. For instance, a bean may include Java Database Connectivity (JDBC) code to

access a database directly. However, in doing so, the bean sacri�ces implementation

independence and distribution transparency.
4 In Java, the Home and Remote Interface are termed EJBHome and EJBObject,

respectively. These two interfaces in the EJB spec are extended by user-written,

domain-speci�c, Java interfaces. (Appendix C has details on this.) Such domain-
speci�c Java interfaces are read by the deployment tools to produce the container-

speci�c classes that implement the two interfaces. The latter classes are, however,

invisible to the user. For the sake of clarity we will continue to refer to the user-
speci�ed interfaces as Home and Remote Interface.

Client
Client

Contract

JNDI

Remote
Interface

Home
Interface

Fig. 4. Detail of the client contract.

Using this reference, the client software can call a create method in the class's
Home Interface, thus obtaining a reference to the bean's Remote Interface im-
plemented by the container. The Remote Interface then delegates subsequent
method calls to the corresponding bean. The fact that the client uses JNDI to
obtain a reference to the Home Interface of the class is a necessary condition for
distribution transparency. Any piece of software, including a bean, may use the
client contract to communicate with some bean if the software does not know (or
care) where the target bean is actually being deployed. Such software calls the
interfaces in the container holding the target bean using Java's Remote Method
Invocation.

Beans are not required to include any code for managing transactions. Transac-
tion management can be fully controlled by the container, based on a collection of
deployment attributes associated to the bean (class.) Such collection of attributes
is termed the deployment descriptor and is de�ned during the deployment of a
bean class. Deployment descriptors include an attribute that declares transac-
tions as being bean managed or container managed.5 Since application managed
transactions is a well-known problem in traditional transactional systems, in the
remainder of this paper we care about container managed transactions.

Each method in a bean is characterized6 in terms of transactional behavior
by the deployment descriptor. When a client calls a bean, the container checks
the deployment descriptor for the transactional properties of the called method.
For instance, the called method may require to share the transaction context
of the client (in which case the client is required to have an open transaction
context before calling the bean), it may require a new context to be de�ned, or it

5 Beans that are deployed with the \bean managed" transaction attribute can use an
interface in the bean contract that supports the usual methods for explicit manage-

ment of transactions: begin, commit, and so on.
6 Explicitly, or implicitly by an attribute associated to the bean that applies as a
default to all of its methods.

may not support a transactional behavior at all. Table 1, transcribed from page
102 in Sun's EJB spec, summarizes the e�ects of combining the existence, or not,
of a transaction context in the client with the transactional behavior declared
for the called method. Note that if a client without a transaction context calls
a method with an associated TX MANDATORY transaction attribute, an error will
occur (txRequiredException, to be speci�c).

Transaction attribute Client's transaction Bean method's transaction

TX NOT SUPPORTED - -
T1 -

TX REQUIRED - T2
T1 T1

TX SUPPORTS - -
T1 T1

TX REQUIRES NEW - T2
T1 T2

TX MANDATORY - error
T1 T1

Table 1. Declarative transactional behavior in EJB

Notice that the transactional behavior of an application can be recon�gured
without touching a line of code. By changing the values of the transactional
attributes in the deployment descriptor, one may de�ne when new transaction
contexts are to be de�ned, and include or exclude the called methods from
running under that context, or to require their own transaction context.

Transaction management in EJB is inherently distributed, since the distribu-
tion transparency provided by the client contract hides whether the called bean
is deployed within the same, or another EJB server.

An EJB server manages the population of beans that reside in main memory
in a way that is transparent to the client software. As the population of beans
inside a container grows beyond a certain limit, determined by the EJB server,
the container sends some number of the least recently used beans to secondary
memory. The EJB spec refers to the beans that are subject to this operation as
passivated. Since every call to a bean ows through the interfaces in the con-
tainer, it is the container that relays the call to the bean, as appropriate. So,
whenever a method call is addressed to a passivated bean, the bean is brought
back to primary memory by the container. The EJB spec refers to beans that
are subject to this latter operation as activated.

Although passivation and activation are transparent to the client calling the
bean, it is not so to the bean itself. Before being passivated, the bean is required
to release the shared resources it acquired previously, so as not to lock them dur-
ing passivation time. Likewise, upon activation, the bean may have to reacquire

the resources to serve the client's request. Therefore, in order to allow the bean
to perform these actions, the container issues synchronization messages to the
bean just before passivation and immediately after activation, before the client's
call is relayed (ejbPassivate and ejbActivate, in Fig. 5.)

Client Home
Interface

Remote
Interface

Container Bean

create(args)
newInstance

setContext()

ejbCreate(args)

businessMethod(args)
businessMethod(args)

ejbPassivate()

businessMethod(args)

businessMethod(args)

ejbActivate()

remove()
ejbRemove()

Fig. 5. Sample event trace for the lifecycle of a bean.

3.3 The Enterprise JavaBeansTM Speci�cation

The EJB spec [6] released by Sun is a 180-page document, in which the concepts

and their interplay are described in English, much in the same way as Sect. 3.2. A
few informal state diagrams complement the explanation. There are also some
chapters dedicated to the presentation of illustrative scenarios of interactions
described using event trace diagrams. For instance, the event trace in Fig. 5 is
an adaptation of the ones in pages 32 to 36 of the EJB spec. The document has
an appendix enumerating the Java API that the elements of the architecture
should follow. The signature and purpose of each method is briey described,
in English, along with an enumeration of the exceptions that may be raised. No
pre- and post-conditions are provided.

Although voluminous, documentation such as this has two intrinsic problems.
First, related information is spread throughout the document. For example, to
determine what sequence of method calls a bean must follow to request a typ-
ical service from the container, the reader must locate the explanation in the

text (hopefully covering all relevant operations), refer to the API method de-
scriptions, examine any examples of sample executions, and consult the list of
possible raised exceptions.

Second, the lack of a precise de�nition makes it di�cult for a reader to
resolve inconsistencies and ambiguities, and to determine the intended semantics
of the framework. As an example of unresolvable inconsistencies, in one place
the documentation says the Home Interface should \de�ne zero or more create
methods" (page 14), while in another it says \one or more create methods"
(page 20). Without a single place in the document that has the precise de�nition,
it is impossible to determine which of the two (if either) is correct (even assuming
we can determine what a create method should do).

As another example, consider the issue of the interaction between bean dele-
tion and bean passivation. Suppose a client decides to remove a bean that the
client has not accessed in some time. If the container has passivated that bean, it
is not clear what happens. The normal rules of method invocation would imply
that the bean would �rst have to be activated (reacquiring all resources needed
for its normal operation), only to be immediately removed. This seems like a
strange kind of behavior, and it is not clear if it is intended by the standard.

Finally, as with any documentation that only provides examples of method
sequences, rather than formal rules, it is impossible for a reader to be sure what
generalization is intended.

It seems clear that much could be gained by a formal unambiguous spec-
i�cation of EJB as a supplementary (or even central) resource for framework
implementers, bean providers, and developers of client software. In the remain-
der of this paper we examine one such speci�cation.

4 Wright

Wright is a formal language for describing software architecture. As with most
architecture description languages, Wright describes the architecture of a sys-
tem as a graph of components and connectors. Components represent the main

centers of computation, while connectors represent the interactions between com-
ponents. While all architecture description languages permit the speci�cation of
new component types, unlike many languages, Wright also supports the explicit
speci�cation of new architectural connector types [1].7

A simple Client-Server system description is shown in Fig. 6. This example
shows three basic elements of a Wright system description: component and con-
nector type declarations, instance declarations, and attachments. The instance
declarations and attachments together de�ne a particular system con�guration.

7 Wright also supports the ability to de�ne architectural styles, check for consistency
and completeness of architectural con�gurations, and check for consistent speci�ca-

tions of components and connectors. In this paper we restrict our presentation to

just those parts of Wright that concern the speci�cation of EJB. See [3] for further
details.

In Wright, the description of a component has two important parts, the
interface and the computation. A component interface consists of a number of
ports. Each port de�nes a point of interaction through which the component
may interact with its environment.

Configuration SimpleExample

Component Server

Port Provide = <provide protocol>

Computation = <Server specification>

Component Client

Port Request = <request protocol>

Computation = <Client specification>

Connector C-S-connector

Role Client = <client protocol>

Role Server = <server protocol>

Glue = <glue protocol>

Instances

s: Server

c: Client

cs: C-S-connector

Attachments

s.Provide as cs.Server;

c.Request as cs.Client

end SimpleExample.

Fig. 6. A simple Client-Server system.

A connector represents an interaction among a collection of components. For
example, a pipe represents a sequential ow of data between two �lters. A Wright
description of a connector consists of a set of roles and the glue. Each role de�nes
the allowable behavior of one participant in the interaction. A pipe has two roles,
the source of data and the recipient. The glue de�nes how the roles will interact
with each other.

The speci�cation of both components and connectors can be parameterized,
either with a numeric range { allowing a variable number of ports or roles with
identical behaviors { or with a process description { instantiating the generic
structure of a component (or connector) to a speci�c behavior. A typical case
of parameterization is a Client-Server connector that allows the attachment of a
variable number of Clients, multiplexing their requests according to rules de�ned
in the glue protocol (Fig. 7.)

Each part of a Wright description { port, role, computation, and glue {
is de�ned using a variant of CSP [9]. Each such speci�cation de�nes a pat-
tern of events (called a process) using operators for sequencing (\ ! " and
\ ; "), choice (\ u " and \ "), parallel composition (\ k ") and interrup-

Connector C-S-connector(nClients:1..)

Role Client1::nClients = <client protocol>

Role Server = <server protocol>

Glue = <client multiplexing glue protocol>

Fig. 7. A parameterized multi-role connector.

tion (\ 4 "). Appendix A contains more details on the parts of CSP that we
use in this paper.

Wright extends CSP in three minor syntactic ways. First, it distinguishes
between initiating an event and observing an event. An event that is initiated
by a process is written with an overbar. Second, it uses the symbol x to denote
the successfully-terminating process.8 (In CSP this is usually written \SKIP".)
Third,Wright uses a quanti�cation operator: <op> x : S � P(x). This operator
constructs a new process based on the process expression P(s), and the set S,
combining its parts by the operator <op>.

For example, i:1,2,3 � Pi = P1 P2 P3 .

5 Component or Connector?

When de�ning the architectural structure of a framework, a key question is what
are the connectors. This question is important because many frameworks are es-
sentially concerned with providing mediating infrastructure between components
that are provided by the user of the framework. Making a clear distinction be-
tween the replaceable componentry, and the mechanisms that coordinate their
interaction greatly improves the comprehensibility of the framework.

From our perspective, the entities that are a locus of application-speci�c
computation are best represented as components. The infrastructure that is
prescribed by the framework to assure the interconnection between application
components is a likely candidate to be represented as a (set of) connector(s).

In general, however, it may not always be obvious what should be represented
as a component and what should be represented as a connector. Consider the
system illustrated in Fig. 8a, consisting of three components: A, B, and C. In
some cases the purpose of C is to enable the communication between A and B,
using an A-C protocol over connector X, and a C-B protocol over connector Y.
If those two protocols are completely independent, it makes sense to represent
C as a distinct component, and keep X and Y as separate connectors.

On the other hand, if events on X are tightly coupled with those on Y (or
vice versa), then it may make more sense to represent the protocol between X
and Y directly using a single connector, as indicated in Fig. 8b. In this case, the
connector itself encapsulates the mediating behavior of C as glue.

8 Wright uses a non-standard interpretation of external choice in the case in which one

of the branches is x : speci�cally, the choice remains external, unlike, for example,
the treatment in [16]. See [3] for technical details.

A

C

BX Y

A B
C

(a)

(b)

Fig. 8. Component or connector?

Representing a complex piece of software as a connector is a judgement call
that is enabled by describing connectors as �rst class architectural entities. This
perspective departs from a notion of connection that is restricted to relatively
simple mechanisms like method calling, event announcing, or data pipelining.
It requires the ability to describe the protocols that go on at each end of the
connector (the roles in Wright) as well as the rules that tie those protocols to-
gether (the glue). In addition, it requires the ability describe complex topologies
of connection, beyond simple point-to-point, like having multiple clients com-
municating with a server over the same set of protocols (a parametric multi-role
connector in Wright { Fig. 7.)

6 Formalizing Enterprise JavaBeansTM

Turning now to EJB (as illustrated in Fig. 3), it seems clear that clients and beans
should be represented as components. Each performs signi�cant application-
speci�c computation, and is best viewed as a �rst class type of computational
entity in the architectural framework. However, as the actual computations of
the clients and beans cannot be de�ned at the framework level (since they will be
determined when the framework is used to develop a particular application), we
will represent those components parametrically. That is, the actual application
code will be used to instantiate them at a later time.

What about the EJB container? While it would be possible to represent it
as a component, as in Fig.8a, it seems far better to consider it a rich connector,
as in Fig. 8b. Not only is the container primarily responsible for bridging the
gap between clients and beans, but also the container-client and container-bean
sub-protocols are so tightly interwoven that it is makes sense to describe them
as a single semantic entity (i.e., the connector glue). For example, the e�ect of
a remote method call from a client to a bean is mediated by the container so
that if the target bean is passivated it can be activated using the container-bean
activation protocol. The resulting general structure is illustrated in Fig.9.

Container

Home Interface

Remote Interface

BeanClient

Component Port Role

Legend

Connector

Fig. 9. One Client connected to one Bean.

In this case the Remote and Home interfaces become roles in the Container
connector that both a Client and a Bean interact with. In Wright this same
structure is described as shown schematically in Fig.10.

As indicated earlier, we use a placeholder process BusinessLogic as a param-
eter to clients, beans, and the Container connector. (The connector is parameter-
ized by the business logic because it also needs to know about the BusinessLogic
protocol.)

The Wright speci�cation of the con�guration in Fig. 10 also de�nes the at-
tachments between the ports of each component and the corresponding roles in
the Container. The next sections examine each part in turn.

6.1 The Client

The speci�cation of a Client component is shown in Fig. 11. It has two ports
for accessing the Bean: UseHomeInterface and UseRemoteInterface. As noted
above, the latter is de�ned by a process that describes the application logic imple-
mented by the Bean and is passed to the Client as a parameter (BusinessLogic).

The process describing the client's view of the Home Interface consists of
three events: create and remove, with the obvious meaning, and getEJBMeta-

Data, which is a service provided by the container that returns meta-information
about the methods supported by the bean. Note that the port is initialized by a
create event and terminated by a remove event. The auxiliary process de�nition
GoHomeInterface, describes the Home Interface perspective of what may go on
between the creation of a bean and its removal: getting the bean's meta-data.

An event that may occur at any time after the creation, noSuchObject-
Exception, corresponds to an exception being raised by the container. In fact,
the EJB spec says that \a Client must always be prepared to recreate a new

instance (of a bean) if it looses the one it is using" (pp. 24).9 Hence, if the Client

9 In a distributed computing environment, it is possible to loose communication with
a remote server. The distribution transparency provided by EJB, however, has the

Configuration one-Client-one-Bean

Component Client (BusinessLogic: Process)

Port UseHomeInterface = <...>

Port UseRemoteInterface = BusinessLogic

Computation = <...>

Component EJBean (BusinessLogic: Process)

Port BeanHome = <...>

Port JxBean = <...>

Port RemoteInterface = BusinessLogic

Computation = <...>

Connector Container (BusinessLogic: Process)

Role HomeInterface = <...>

Role RemoteInterface = BusinessLogic

Role UseBeanHome = <...>

Role UseJxBean = <...>

Role UseRemoteInterface = BusinessLogic

Glue = <...>

Process SomeBusinessLogic = <...>

Instances

A: Client(SomeBusinessLogic)

B: EJBean(SomeBusinessLogic)

C: Container(SomeBusinessLogic)

Attachments

A.UseHomeInterface as C.HomeInterface

A.UseRemoteInterface as C.RemoteInterface

C.UseBeanHome as B.BeanHome

C.UseRemoteInterface as B.RemoteInterface

C.UseJxBean as B.JxBean

end one-Client-one-Bean.

Fig. 10. The simple one-Client-one-Bean con�guration.

Component Client (BusinessLogic: Process)

Port UseRemoteInterface = BusinessLogic

Port UseHomeInterface

= create! (GoHomeInterface

4 noSuchObjectException

! UseHomeInterface)

4 remove ! (x removeException ! x))

Where GoHomeInterface

= getEJBMetaData ! GoHomeInterface

Computation = create ! CallBean

Where CallBean

= ((UseRemoteInterface k GoHomeInterface)

4 noSuchObjectException ! create ! CallBean)

4 remove ! (x removeException ! x)

Fig. 11. The Client component.

gets a noSuchObjectException, it should go back to create another bean. The
Wright speci�cation exhibits this property in both the speci�cation of the process
GoHomeInterface and in the process CallBean in the Client's computation: the
occurrence of a noSuchObjectException event causes the Client to reinitialize
the Home Interface by issuing a create event. In Sect. 7 we see how less trivial
properties can be checked by the use of automated tools.

The main body of computation, once it is initialized by a create, is the par-
allel composition of the processes UseRemoteInterface and GoHomeInterface.
What goes on in this composition is dictated by the application logic, passed
as a parameter to the client, in parallel with the initialized Home Interface. Fi-
nally, at any time (after initialization) the client may decide to remove the bean.
This is signaled by the client-initiated remove event interrupting the process
described above (using the 4 operator). However, the Client must be prepared
to handle a removeException, thrown by the Container. After a remove, either
the computation successfully terminates, or it accepts a removeException, after
which it also terminates. The EJB spec does not de�ne how components should
handle exceptions. So we only note the fact that an exception may be received.
It should be clear now that the speci�cation of the UseHomeInterface port is
actually a view of the Client's computation, restricted to the events recognized
by the Home Interface.

The HomeInterface role in the container expresses the possible behaviors of
the client that attaches to this role. The process speci�cation for this role is equiv-
alent to the process in the UseHomeInterface of the Client component, in the
sense that it will generate the same set of traces. As shown in Fig.12, after being
initialized by create, the attached component will choose (internally) whether
or not to remove the bean. If the component chooses not to remove the bean, it
may initiate a request for meta-data. It also admits a noSuchObjectException,
which resets the role. If the component chooses to remove the bean, it admits a
removeException, but terminates afterwards, in either case.10

Connector Container (BusinessLogic: Process)

Role HomeInterface = create ! GoHomeInterface

Where GoHomeInterface

= (getEJBMetaData ! GoHomeInterface

noSuchObjectException ! HomeInterface)

u remove ! (x removeException ! x)

Fig. 12. The HomeInterface role in the container.

potential to hide from the client whether the reinitialized home interface is directed

to the same, recovered, server or to another that supports the same bean class.
10 Again, for simplicity, we focus on a single run of the protocols between the client

and the container, in order to distinguish between a situation where the protocol

demands a reset, from a situation where it runs through successfully and could go
back to create another bean.

6.2 The Container and the Bean

In the container, there are three Wright roles that are involved in the creation
of a bean. The �rst is the HomeInterface role, in Fig. 12, to which the client
attaches. The other two are the UseBeanHome and UseJxBean roles, in Fig.13,
to which the bean attaches.

Connector Container (BusinessLogic: Process)

alpha Created = �UseJxBean n fsetContext, ejbRemoveg
...

Role UseBeanHome = newInstance ! ejbCreate ! x

Role UseJxBean = setContext ! GoJxBean

Where GoJxBean

= ejbPassivate ! ejbActivate ! GoJxBean

ejbRemove ! UseJxBean

Glue = ...

Where BeanLive

= create ! newInstance ! setContext ! ejbCreate

! (RUNCreated

4 remove ! ejbRemove ! x)

...

Component EJBean (EJBObject: Process)

Port BeanHome = newInstance ! ejbCreate ! x

Port JxBean = setContext ! GoJxBean

Where GoJxBean

= ejbPassivate ! ejbActivate ! GoJxBean

ejbRemove ! x

Fig. 13. The lifecycle of a bean.

Since it is often the case that a protocol refers to events in more than one role,
the perspective that a speci�c role has of a protocol is limited by the alphabet
of the role. It is the glue that links what goes on in each role, thus completing
the protocol followed by the connector.

In order to single out each piece of the glue that corresponds to a particular
protocol in the software framework, we introduce auxiliary process de�nitions.
BeanLive in Fig.13 is one of them. Since this is a glue process, it takes the view-
point of the container: hence, the create event is initiated by the environment
(in the HomeInterface role). After receiving a create, the container initiates
the newInstance event in the UseBeanHome role, sets the newly created bean's
run-time context (setContext in the UseJxBean role,) and signals the new bean
to run the appropriate initialization method (ejbCreate in UseBeanHome).

The BeanLive process then accepts any event in the alphabet of the UseJx-
Bean role, except for setContext (part of the initialization) and ejbRemove (part
of the termination). When interrupted by a remove event in the HomeInterface
role, the BeanLive process signals the bean to run the appropriate termination

method (ejbRemove in the UseJxBean role) and then terminates.11

The Container relays the business logic events in the role RemoteInterface

(to which the Client attaches) to the role UseRemoteInterface (to which the
Bean attaches). The glue process Delegate assures this by simply stating that
any event e in the RemoteInterface role is followed by the (container-initiated)
same event e in the UseRemoteInterface role.

Recall now that the container may decide to passivate a bean according to
a least recently used policy. The glue process SwapBean in Fig. 14 accepts any
event in the alphabet of the Container,12 except for the events ejbPassivate

and ejbActivate. Whenever the container decides to initiate an ejbPassivate

event, the SwapBean process waits for the next event in the RemoteInterface

role. After that, and before the event is relayed to the UseRemoteInterface role,
an ejbActivate event is interleaved. The parallel combination of the processes
SwapBean and Delegate in the glue produces the desired e�ect: the business logic
events are normally relayed, but whenever the bean was passivated, it receives
an activation event just before the business logic event is sent.

Connector Container (BusinessLogic: Process)

alpha Activated = �Container n fejbPassivate, ejbActivateg

Role UseJxBean = setContext ! GoJxBean

Where GoJxBean

= ejbPassivate ! ejbActivate ! GoJxBean

ejbRemove ! UseJxBean

...

Role RemoteInterface = BusinessLogic

Role UseRemoteInterface = BusinessLogic

Glue = BeanLive

k Delegate

k SwapBean

Where Delegate = e: �RemoteInterface �

RemoteInterface.e ! UseRemoteInterface.e ! Delegate

Where SwapBean

= RUNActivated 4 ejbPassivate

! (e: �RemoteInterface � RemoteInterface.e

! ejbActivate ! UseRemoteInterface.e ! SwapBean)

Fig. 14. The interplay between delegation and passivation.

11 Note that the roles take the viewpoint of the environment (of the components that

attach to the roles,) as opposed to the viewpoint of the container. So, the parity of
initiation is reversed in the glue and in the roles. Note also that the processes in the

roles UseBeanHome and UseJxBeanmatch the processes in the corresponding ports

in the Bean component, BeanHome and JxBean.
12 Taken here as the union of the alphabets in all roles.

6.3 Transaction Management in EJB

We now extend the Wright speci�cation to cover transaction management (re-
fer to Appendix B for the full speci�cation.) The �rst, obvious, extension is to
make the client transaction-aware. Now the port UseRemoteInterface in Fig. 15
chooses internally whether or not to associate a transaction context to each event
in the BusinessLogic process. By the argument made in Sect. 3.2 we will abstract
how the client starts a transaction: we will be focusing on the impact that trans-
action management has on EJB, speci�cally on the container. Therefore, we
treat obtaining a transaction context, txContext, as an internal choice of the
value of the output parameter associated to an event in the business logic.

As seen in Tab. 1, the client must be prepared for exceptions that follow
from a mismatch between the transactional attribute associated to the called
method and the fact that a client has chosen to call the method with, or with-
out a transaction context. This is reected in the port UseRemoteInterface

by the existence of the interrupting event txRequiredException issued by the
container.13 Naturally, the port UseRemoteInterface in the container, to which
the client attaches, reects issuing this exception as appropriate: the container's
computation will clarify exactly in which circumstances that happens, as we will
see below.

Component Client (BusinessLogic: Process)

Port UseRemoteInterface

= ((e:�BusinessLogic � e ! UseRemoteInterface)

u (e:�BusinessLogic � (u txContext � e!txContext

! UseRemoteInterface)))

4 txRequiredException ! UseRemoteInterface

...

Connector Container (BusinessLogic: Process)

...

Role RemoteInterface = BusinessLogic k TransactionException

Where TransactionException

= txRequiredException ! TransactionException

Role UseRemoteInterface = BusinessLogic

...

Fig. 15. The transaction-aware client.

The second, also obvious extension, is to provide beans with a deployment
descriptor. Figure 16 shows a new port in the bean component, Deployment-
Descriptor, supporting a query for the transactional attribute associated to
an event e, queryDeploymentDescriptor?e. After receiving one such request,

13 How the client should actually handle the exception is omitted in Sun's speci�cation,
and is abstracted away here too.

the deployment descriptor will internally choose which value of the transactional
attribute to output in the self initiated getTxAttribute!txAttribute. The de-
ployment descriptor for a bean is available for query throughout the life of the
bean, after initialization, as reected in the de�nition of the bean's computation.
The container now includes a role, UseDeploymentDescriptor, that will attach
to the port DeploymentDescriptor on the bean, and that reects the behavior
for the latter.

Component EJBean (BusinessLogic: Process)

...

Port DeploymentDescriptor = queryDeploymentDescriptor?e

! (u txAttribute:fTxNotSupported, TxRequired, TxSupports,

TxRequiresNew, TxMandatoryg �

getTxAttribute!txAttribute ! DeploymentDescriptor)

Computation = Init;((BeanRemote k SwapBean k DeploymentDescriptor)

...

Connector Container (BusinessLogic: Process)

...

Role UseDeploymentDescriptor = queryDeploymentDescriptor?e

! (u txAttribute:fTxNotSupported, TxRequired, TxSupports,

TxRequiresNew, TxMandatoryg �

getTxAttribute!txAttribute ! UseDeploymentDescriptor)

...

Fig. 16. The deployment descriptor associated to a bean.

The third extension is to provide the container with an interface to some
Transaction Processing Monitor. Such interface, represented in Fig.17 as the
port UseTPMonitor, supports services to suspend and resume a given transaction
context, in addition to the usual services for starting and committing transac-
tions. In fact, the EJB spec requires non-nested transaction management: when
a client holding a transaction context T1 calls a method in a bean that requires
a new context, T2, context T1 is suspended while the method executes within
context T2. Context T1 is resumed as soon as context T2 is terminated (either
by a commit or a rollback.14)

The role UseTPMonitor in the container describes either a simple non-nested
transaction (as described in the process NonNestedTransaction or a suspension
of a given transaction context, followed by the full execution of a non-nested
transaction, followed by the resumption of the previously suspended context. In
the process NonNestedTransaction, we see that the TP monitor responds to a
benginTX event with a self initiated getTx!txContext event, where the value of

14 When the deployment attribute associated to the method requires a new (inde-

pendent) transaction context, there is no dependence between the success of the
transaction in the client and the one in the bean.

Connector Container (BusinessLogic: Process)

...

Role UseTPMonitor

= NonNestedTransaction; UseTPMonitor

suspendTx?txContext ! (x NonNestedTransaction);

resumeTx?txContext ! UseTPMonitor

Where NonNestedTransaction

= beginTx ! (u txContext � getTx!txContext
! endTx?txContext ! x)

...

Fig. 17. The container using the services of an external TP monitor.

the txContext parameter is internally chosen by the TP monitor. This very same
value is later used by the container to terminate the corresponding transaction
context with the event endTx?txContext.

The most interesting extensions occur in the glue process of the container. The
description of the glue itself remains the parallel composition of the processes
BeanLive, SwapBean and Delegate. Whereas BeanLive remains unchanged, the
SwapBean process now accommodates a transaction context for events in the
business logic. Since the variants of transactional behavior are irrelevant for
bean swapping, in essence, the process SwapBean remains the same (see Fig. 18.)

Connector Container (BusinessLogic: Process)

...

Glue = <...>

Where SwapBean

= RUNActivated 4 ejbPassivate

! (e: �RemoteInterface � RemoteInterface.e?txContext

! ejbActivate ! UseRemoteInterface:e ! SwapBean)

Where Delegate

= e: �RemoteInterface �

(RemoteInterface.e?txContext

! EnforceTxContext(e,txContext)

RemoteInterface.e ! CheckTxRequired(e)

); Delegate

...

Fig. 18. Swapping and delegation in the presence of transactions.

The Delegate process now distinguishes the situation where the event in the
remote interface carries a transactional context, in which case the container tries
to enforce that context, from the situation where the called event does not carry

a context. In the latter case the container checks if one is required. The processes
EnforceTxContext and CheckTxRequired account for these two situations, and
describe the rules represented in the even and odd rows of Tab. 1, respectively.

The process EnforceTxContext takes as parameters the called event in the
remote interface, along with the transaction context passed by the client. First,
it queries the deployment descriptor associated to the bean in order to obtain
the value of the transactional attribute for the called event (as a parameter of
the deployment descriptor-initiated event getTxAttribute.) Then, according to
the value of the transactional attribute, it manages the transactional contexts
according to the rules in Tab. 1, delegating the called event to the bean, in the
appropriate context. For instance, if the transactional attribute for the event has
the value TxRequiresNew, the container �rst suspends the transaction context
of the client, then starts a new transaction (obtaining the new context from the
TP monitor,) and �nally delegates the event to the bean in this new context.
Once the corresponding method is executed by the bean, the container stops the
new transaction context and resumes the one originally passed by the client.

The process CheckTxRequired takes only the called event as parameter, since
there is no transaction context passed by the client. It then follows the same
procedure as EnforceTxContext to obtain the value of the relevant transactional
attribute and manage the transaction contexts according to the rules in Tab. 1.

Once again, note the variety of transactional behavior combinations that can
be achieved by declaring a transactional attribute for each method, within the
deployment descriptor associated to a bean, and letting the container manage
transaction contexts according to the rules in the EJB spec. Note also that by
changing the values declared for each transactional attribute, the transactional
behavior of a business application can be recon�gured without changing one line
of code.

7 Using the Model

By precisely specifying the implied protocols of interaction for EJB, one achieves
a number of immediate bene�ts. First, the formal speci�cation is explicit about
permitted orderings of method calls, and about where the locus of choice lies.
Second, the speci�cation makes explicit where di�erent parts of the framework
share assumptions. In particular, the role of BusinessLogic as a parameter helps
clarify the way in which assumptions about the application-speci�c behavior are
shared among the parts of the framework. Third, the model helps clarify some
of the more complex aspects of the model by localizing behavior. For example,
the murky role of passivation becomes clear in the Container glue.

Furthermore, it is also possible to submit the model to formal analysis via
model checking tools. To do this we used the FDRTM model checker for CSP [7]
to check for deadlocks in the container.15 In addition to checking for deadlocks,

15 Translation from Wright to FDR is accomplished semi-automatically using the
Wright tool set. See [1].

Connector Container (BusinessLogic: Process)

...

Glue = <...>

Where EnforceTxContext(e: �RemoteInterface, txContext)

= queryDeploymentDescriptor!e

! ((getTxAttribute?TxNotSupported

! suspendTx!txContext
! UseRemoteInterface:e

! resumeTx!txContext ! x)

(getTxAttribute?TxSupports

! UseRemoteInterface:e ! x)

(getTxAttribute?TxRequired

! UseRemoteInterface:e ! x)

(getTxAttribute?TxMandatory

! UseRemoteInterface:e ! x)

(getTxAttribute?TxRequiresNew

! suspendTx!txContext ! beginTx ! getTx?newTxContext

! UseRemoteInterface:e

! endTx!newTxContext ! resumeTx!txContext ! x))

Where CheckTxRequired(e: �RemoteInterface)

= queryDeploymentDescriptor!e

! ((getTxAttribute?TxNotSupported

! UseRemoteInterface:e ! x)

(getTxAttribute?TxSupports

! UseRemoteInterface:e ! x)

(getTxAttribute?TxRequired

! beginTx ! getTx?newTxContext

! UseRemoteInterface:e

! endTx!newTxContext ! x)

(getTxAttribute?TxMandatory

! txRequiredException ! x)

(getTxAttribute?TxRequiresNew

! beginTx ! getTx?newTxContext

! UseRemoteInterface:e

! endTx!newTxContext ! x))

Fig. 19. Container enforcing the transactional behavior variants.

FDR can also be used to make sure that speci�c required behaviors16 still hold
in the overall result of the composition of all local speci�cations. For that we
use the CSP notion of process re�nement (see Appendix A). Speci�cally, we
can check if a process describing the desired behavior is re�ned by the overall
speci�cation; for instance, if a process describing the client's recovery after a
container failure is re�ned by the one-Client-one-Server speci�cation. If that is
the case, that means that the intended behavior was not lost due to a mistake
during the process of specifying all the interacting behaviors.

For the current model, analysis revealed one signi�cant problem. The prob-
lem concerns a possible race condition between the delegation and passivation
processes inside the Container. Suppose that the Client initiates an event in the
RemoteInterface role. Then, before the Delegate process relays the event to
the bean through the UseRemoteInterface role, the SwapBean process, oper-
ating concurrently, decides to passivate the bean. Now, the Delegate process
must relay the received business logic event to the UseRemoteInterface role,
before it can accept the next event in the RemoteInterface role. However, the
SwapBean process just issued an ejbPassivate noti�cation to the bean, and
hence it waits for the next event in the RemoteInterface role to reactivate the
bean. Therefore, the processes that go on inside the Container cannot agree on
what to do next, and the connector deadlocks.

Figure 20 presents a simple correction for the deadlock. The Delegate process
must prevent passivation between receiving an event in the RemoteInterface

role and relaying it to the UseRemoteInterface role. One way to model it in CSP
is to explicitly allow the ejbPassivate event outside the mentioned \critical
section".

Connector Container (EJBObject: Process)

...

Where Delegate

= (e: �RemoteInterface �
(RemoteInterface.e?txContext

! EnforceTxContext(e,txContext)

RemoteInterface.e ! CheckTxRequired(e)

); Delegate

) ejbPassivate ! Delegate

...

Fig. 20. Deadlock-free delegation.

While arguably one might attribute the detected problem to our speci�cation,
and not to Sun's EJB spec, it does point out a place where the complexity of the

16 For instance, Sun's document (pp. 24) states that any implementation of the EJB

protocol between a client and an EJB server must allow the client to recover from
EJB server crashes.

speci�cation can lead to errors that might be hard to detect otherwise. Without
a precise model and e�ective automated analysis tools to identify problem areas,
such errors could easily be introduced, undetected, into an implementation.

8 Conclusions and Future Work

In this paper we have outlined a formal architectural model of part of Sun's EJB
component integration framework. In doing this we have attempted to shed light
both on EJB itself, and on the way in which one can go about modeling object-
oriented architectural frameworks. The key idea in our approach is to take an
architectural view of the problem that makes explicit the protocols of interaction
between the principle parts of the framework. In particular, we have shown how
representing the framework's mediating infrastructure as a connector with a
well-de�ned protocol helps to clarify the overall structure of the framework and
to localize the relationships between the various method calls that connect the
parts.

The use of formal architectural modeling languages to represent frameworks
such as EJB opens up a number of important questions to investigate. First,
while our speci�cation focused on certain properties of the framework, there are
many others that one might want to model. For example, although potential
deadlocks are highlighted by our model, we do not handle important issues such
as performance, reliability, and security. For many frameworks �nding notations
that expose such properties will be crucial.

Second, given a formal speci�cation, such as the one we have presented, it
should be possible to inuence conformance testing. Currently, conformance to
a framework can only be loosely checked { for example, by making sure that an
implementation provides the full API. However, given a richer semantic model,
it should be possible to do much better.

Third, the EJB spec uses inheritance to organize the presentation of many
of its concepts. For example, the SessionBean class inherits behavior from the
EnterpriseBean class, which in turn inherits from the java.io.Serializable
class. In contrast, the formal model that we have presented is essentially at. To
come up with our model we had to fold together the implicit semantic behavior
de�ned in several classes. It would have been much nicer to have been able to
mirror the inheritance structure in the architectural speci�cation. While such
extension is relatively well-understood with respect to signatures, it is not so
clear what is needed to handle interactive behaviors { such as protocols of inter-
action. Finding a suitable calculus of protocol extension is an open and relevant
topic for future research.

References

1. Robert Allen and David Garlan. A formal basis for architectural connection. In
ACM Trans. on Software Engineering and Methodology, July 1997.

2. Robert Allen, David Garlan, and James Ivers. Formal modeling and analysis of the

HLA component integration standard. In Sixth Intl. Symposium on the Foundations

of Software Engineering (FSE-6), Nov. 1998.
3. Robert Allen. A Formal Approach to Software Architecture. PhD thesis, CMU,

School of Computer Science, January 1997. CMU/SCS Report CMU-CS-97-144.
4. Edmund Clarke et al. Automatic veri�cation of �nite state concurrent systems

using temporal logic speci�cations. In ACM Trans. on Programming Languages

and Systems, April 1986.
5. Edmund Clarke et al. Veri�cation Tools for Finite-State Concurrent Systems. A

Decade of concurrency - Reections and Perspectives. Springer Verlag LNCS 803,

1994.
6. Vlada Matena, Mark Hapner, Enterprise JavaBeansTM, Sun Microsystems Inc.,

Palo Alto, California, 1998.
7. Failures Divergence Re�nement: User Manual and Tutorial, 1.2�. Formal Systems

(Europe) Ltd., Oxford, England, 1992.
8. David Garlan, Robert Allen, and John Ockerbloom. Architectural mismatch: Why

reuse is so hard. IEEE Software, November 1995.
9. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
10. Gerald J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,

1991.
11. David C Luckham, et al. Speci�cation and analysis of system architecture using

Rapide. In IEEE Trans. on Software Engineering, April 1995.
12. Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.

Technical Report MIT/LCS/TM-373, MIT LCS, 1988.
13. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software

architectures. In Proceedings ESEC'95, Sept. 1995.
14. M. Moriconi, X. Qian, and R. Riemenschneider. Correct architecture re�nement.

In IEEE Trans. on Software Engineering, April 1995.
15. J.L. Peterson. Petri nets. ACM Computing Surveys, September 1977.
16. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
17. Mary Shaw, et al. Abstractions for software architecture and tools to support them.

In IEEE Trans. on Software Engineering, April 1995.
18. K.J. Sullivan, J. Socha, and M. Marchukov. Using formal methods to reason about

architectural standards. In 1997 Intl. Conf. on Software Engineering, May 1997.

A Summary of CSP Used in This Paper

We use the following subset of CSP:

� Processes and Events: A process describes an entity that can engage in
communication events. Events may be primitive or they can have associated
data (as in e?x and e!x, representing input and output of data, respectively).

� Pre�xing: A process that engages in event e and then becomes process P

is denoted e ! P.
� Sequencing: (\sequential composition") A process that behaves like P until
P terminates (x) and then behaves like Q, is denoted P;Q.

� Interrupting:A process that behaves like P until the occurrence of the �rst
event in Q, is denoted P 4 Q. If P recognizes the interrupting event, P must
allow it in order to be interrupted.

� Alternative: (\external choice") A process that can behave like P or Q,
where the choice is made by the environment, is denoted P Q. (\Environ-
ment" refers to the other processes that interact with the process.)

� Decision: (\internal choice") A process that can behave like P or Q, where
the choice is made (non-deterministically) by the process itself, is denoted
P u Q.

� Named Processes: Process names can be associated with a (possibly re-
cursive) process expression. Processes may also be subscripted to represent
internal state.

� Parallel Composition: Processes can be composed using the k operator.
Parallel processes may interact by jointly (synchronously) engaging in events
that lie within the intersection of their alphabets. Conversely, if an event e is
in the alphabet of processes P and Q, then P can only engage in the event if Q
can also do so. That is, the process P k Q is one whose behavior is permitted
by both P and Q.

� Re�nement: Process Q re�nes process P if we can replace P by Q in any
context and not know the di�erence in terms of observable behavior. First,
the two processes have the same alphabet of events. Second, all the traces
(sequences of events) generated by Q are also traces that P can generate, that
is, the behavior of Q is the same, or more restricted than, the behavior of
P. Third, after any given trace, Q will accept every event that P itself would
accept and may (deterministically or not) refuse to engage in an event that
P might (non-deterministically) refuse.

In process expressions ! associates to the right and binds tighter than
both and u . So e ! f ! P g ! Q is equivalent to

(e ! (f ! P)) (g ! Q).

B Wright Speci�cation of EJB

We include the Wright speci�cation that was used along the paper main body,
for reference.

Configuration one-Client-one-Bean

Process SomeBusinessLogic = <...>

Component TPMonitor = <...>

Component Client (BusinessLogic: Process)

= ((e:�BusinessLogic � e ! UseRemoteInterface)

u (e:�BusinessLogic � (u txContext � e!txContext
! UseRemoteInterface)))

4 txRequiredException ! UseRemoteInterface

Port UseHomeInterface = create

! (GoHomeInterface

4 noSuchObjectException ! UseHomeInterface)

4 remove ! (x removeException ! x)

Where GoHomeInterface = getEJBMetaData ! GoHomeInterface

Computation = create ! CallBean

Where CallBean = ((UseRemoteInterface k GoHomeInterface)

4 noSuchObjectException ! create ! CallBean)

4 remove ! (x removeException ! x)

Component EJBean (BusinessLogic: Process)

alpha Activated = �BusinessLogic + fejbRemoveg

Port BeanHome = newInstance ! ejbCreate ! x

Port JxBean = setContext ! GoJxBean

Where GoJxBean

= ejbPassivate ! ejbActivate ! GoJxBean

ejbRemove ! x

Port BeanRemote = BusinessLogic

Port DeploymentDescriptor = queryDeploymentDescriptor?e

! (u txAttribute:fTxNotSupported, TxRequired, TxSupports,

TxRequiresNew, TxMandatoryg �

getTxAttribute!txAttribute ! DeploymentDescriptor)

Computation = Init;((BeanRemote k SwapBean k DeploymentDescriptor)

4 ejbRemove ! x)

Where Init = newInstance ! setContext ! ejbCreate ! x

Where SwapBean = RUNActivated

4 ejbPassivate ! ejbActivate ! SwapBean

Connector Container (BusinessLogic: Process)

alpha Created = �UseJxBean n fsetContext, ejbRemoveg

alpha Activated = �Container n fejbPassivate, ejbActivateg

Role HomeInterface = create ! GoHomeInterface

Where GoHomeInterface

= (getEJBMetaData ! GoHomeInterface

noSuchObjectException ! HomeInterface)

u remove ! (x removeException ! x)

Role UseBeanHome = newInstance ! ejbCreate ! x

Role RemoteInterface = BusinessLogic k TransactionException

Where TransactionException

= txRequiredException ! TransactionException

Role UseRemoteInterface = BusinessLogic

Role UseJxBean = setContext ! GoJxBean

Where GoJxBean

= ejbPassivate ! ejbActivate ! GoJxBean

ejbRemove ! UseJxBean

Role UseDeploymentDescriptor = queryDeploymentDescriptor?e

! (u txAttribute:fTxNotSupported, TxRequired, TxSupports,

TxRequiresNew, TxMandatoryg �

getTxAttribute!txAttribute ! UseDeploymentDescriptor)

Role UseTPMonitor

= NonNestedTransaction; UseTPMonitor

suspendTx?txContext ! (x NonNestedTransaction);

resumeTx?txContext ! UseTPMonitor

Where NonNestedTransaction

= beginTx ! (u txContext � getTx!txContext ! endTx?txContext ! x)

Glue = BeanLive

k SwapBean

k Delegate

Where BeanLive

= create ! newInstance ! setContext ! ejbCreate

! (RUNCreated

4 remove ! ejbRemove ! x)

Where SwapBean

= RUNActivated 4 ejbPassivate

! (e: �RemoteInterface � RemoteInterface.e?txContext

! ejbActivate ! UseRemoteInterface:e ! SwapBean)

Where Delegate

= (e: �RemoteInterface �

(RemoteInterface.e?txContext ! EnforceTxContext(e,txContext)

RemoteInterface.e ! CheckTxRequired(e)

); Delegate

) ejbPassivate ! Delegate

Where EnforceTxContext(e: �RemoteInterface, txContext)

= queryDeploymentDescriptor!e

! ((getTxAttribute?TxNotSupported

! suspendTx!txContext

! UseRemoteInterface:e

! resumeTx!txContext ! x)

(getTxAttribute?TxSupports

! UseRemoteInterface:e ! x)

(getTxAttribute?TxRequired

! UseRemoteInterface:e ! x)

(getTxAttribute?TxMandatory

! UseRemoteInterface:e ! x)

(getTxAttribute?TxRequiresNew

! suspendTx!txContext ! beginTx ! getTx?newTxContext

! UseRemoteInterface:e

! endTx!newTxContext ! resumeTx!txContext ! x))

Where CheckTxRequired(e: �RemoteInterface)

= queryDeploymentDescriptor!e

! ((getTxAttribute?TxNotSupported

! UseRemoteInterface:e ! x)

(getTxAttribute?TxSupports

! UseRemoteInterface:e ! x)

(getTxAttribute?TxRequired

! beginTx ! getTx?newTxContext

! UseRemoteInterface:e

! endTx!newTxContext ! x)

(getTxAttribute?TxMandatory

! txRequiredException ! x)

(getTxAttribute?TxRequiresNew

! beginTx ! getTx?newTxContext

! UseRemoteInterface:e

! endTx!newTxContext ! x))

Instances

A: Client(SomeBusinessLogic)

B: EJBean(SomeBusinessLogic)

C: Container(SomeBusinessLogic)

T: TPMonitor

Attachments

A.UseHomeInterface as C.HomeInterface

A.UseRemoteInterface as C.RemoteInterface

C.UseBeanHome as B.BeanHome

C.UseRemoteInterface as B.RemoteInterface

C.UseJxBean as B.JxBean

C.UseDeploymentDescriptor as B.DeploymentDescriptor

C.UseTPMonitor as T.Monitor

end one-Client-one-Bean.

C EJB Coding Example

We next present the skeleton of the java �les that correspond to a Bean, 17

using a toy accounts payable system for the sake of example. Before we do so,
Fig.21 shows the de�nitions of the Home and Remote interfaces (EJBHome and
EJBObject, respectively) as they are given in Sun's EJB spec.

In order to code one bean, there are three �les that have to be written by the
user, corresponding to the Home Interface (su�xed Home), the Remote Interface
and the bean itself (su�xed Bean). Figure 22 shows the Home Interface for the
AccPayable bean, de�ning the signature of all the relevant create methods. In

this toy example, only one create method is shown with no arguments. The
bean �le must de�ne as many ejbCreate methods as create methods in the
Home �le, with corresponding signatures.

Note that the method de�nitions in the Remote Interface (Fig. 23) correspond
to the signature of the events in the BusinessLogic process in the Wright speci-
�cation. The actual business logic is de�ned by the corresponding method's body
inside the Bean �le.

Figure 24 shows the contents of the Bean �le. Note that not only all the
business methods have to be de�ned consistently with the signatures in the �le

17 A Session Bean, to be exact. Note that the characteristics that we presented are

shared among Session and Entity Beans, and in fact, the distinction between these
two categories of Beans falls out of the scope of this paper.

public interface javax.ejb.EJBHome

extends java.rmi.Remote

{

public abstract EJBMetaData getEJBMetaData();

public abstract void remove(Handle handle);

public abstract void remove(Object primaryKey);

}

public interface javax.ejb.EJBObject

extends java.rmi.Remote

{

public abstract EJBHome getEJBHome();

public abstract Handle getHandle();

public abstract Object getPrimaryKey();

public abstract boolean isIdentical(EJBObject obj);

public abstract void remove();

}

Fig. 21. Home and Remote interfaces as speci�ed by Sun.

public interface AccPayableHome extends EJBHome

{

public Tpc create() throws javax.ejb.CreateException,

java.rmi.RemoteException;

}

Fig. 22. Contents of �le AccPayableHome.java: Home Interface for the Accounts
Payable Session Bean

public interface AccPayable extends EJBObject

{

int newOrder(int customerId,

Vector lines) throws RemoteException;

void payment(int customerId,

int orderId,

float amount) throws RemoteException;

}

Fig. 23. Contents of �le AccPayable.java: Remote Interface for the Accounts

Payable Session Bean

for the Remote Interface, the user must also de�ne the speci�c synchronization
methods that the container will call according to the bean contract.

public class AccPayableBean implements SessionBean

{

// *******************************

// Methods in the remote interface

public int newOrder(int customerId,

Vector orderLines)

throws RemoteException

{

// register a new order...

}

public void payment(int customerId,

int orderId,

float amount)

throws RemoteException;

{

// perform a payment...

}

// ***

// Synchronization methods called by the Container

public void ejbCreate ()

{

// some initialization ...

}

public void ejbActivate() throws RemoteException

{

// re-acquire resources...

}

public void ejbPassivate() throws RemoteException

{

// release locked resources...

}

public void ejbRemove() throws RemoteException

{

// release locked resources + cleanup...

}

}

Fig. 24. Contents of �le AccPayableBean.java: Accounts Payable Session Bean.

