
Proof Theory for Authorization Logic and Its
Application to a Practical File System

Deepak Garg
CMU-CS-09-168
December 2009

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee
Frank Pfenning, Chair

Martín Abadi
Lujo Bauer

Anupam Datta
Robert Harper

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Copyright c© 2009 Deepak Garg

This research was supported partially by the Air Force Research Laboratory under grant no.
FA87500720028, and partially by the iCAST project sponsored by the National Science Council, Taiwan
under grant no. NSC97-2745-P-001-001.

Keywords: Proof theory, access control, file system, formal logic, modal logic, com-
puter security

Abstract

In most computer systems, users’ access to resources is controlled using authorization poli-
cies. Logic is an appropriate medium for representing, understanding, and enforcing autho-
rization policies, yet despite several years of pragmatic work on the subject, the foundations
of relevant logics remain unexplored and poorly understood. It is in this realm that the
work of this thesis lies; the thesis explores the theory of logics for expressing authorization
policies as well as applications of the theory in practice. In doing so, it makes three foun-
dational and technically challenging contributions.

First, the thesis introduces proof theory and metatheory in the context of authorization
logics, illustrated through a new logic BL. In particular, structural proof-theoretic systems
of natural deduction and sequent calculus are investigated and their importance explained.
Pragmatic problems like proof verification and automatic proof search are then addressed
using the sound foundations of proof theory.

Second, the thesis considers a logical treatment of dynamism in authorization policies
and, in particular, logical constructs for representing authorizations depending on system
state, consumable credentials, and explicit time are presented. Further, a practical, effi-
cient, and provably correct mechanism for their enforcement is developed. The mechanism
is based on a combination of proofs and cryptographic capabilities.

Third, the practical usefulness of the proof theory and the enforcement mechanism is
demonstrated through an implementation of the same in a file system, PCFS. It is shown
through measurements that file access in PCFS is very efficient.

In addition, the thesis includes a detailed case study that formalizes in BL policies used
to control access to classified information in the U.S., and explains how the policies may be
enforced using PCFS.

To integrity and trust, whose lapses motivated this thesis

Acknowledgments

Numerous people have contributed directly or indirectly to the development of this thesis
and I would like to express my gratitude to each of them. Frank Pfenning, my advisor, has
been a continuous source of inspiration and support, and a very patient and helpful mentor
for the past six years. I cannot thank him enough for making my life as a Ph.D. student the
pleasure it has been. Likewise, Anupam Datta has been extremely supportive and helpful
in the past two years. Martín Abadi, Lujo Bauer, and Bob Harper have all inspired parts
of this thesis and without their encouragement this thesis would have remained incomplete.
Earlier, several faculty members at IIT-Delhi introduced me to the fascinating world of
research. I wish to thank all these individuals for their continued encouragement and
feedback.

My family, both immediate and distant, have always supported me and I extend my
heartfelt gratitude to all of them. For the same reason, I am also grateful to all my friends in
Pittsburgh and outside. Finally, I wish to extend my warmest thanks to members of Mount
Carmel School as well as my parents for laying the foundations of my present knowledge.

vii

ACKNOWLEDGMENTS

viii

Contents

1 Background and Motivation 1
1.1 Background: The Problem of Access Control 1
1.2 Technical Background . 4

1.2.1 Authorization Logics . 4
1.2.2 Proof-carrying Authorization (PCA) 5

1.3 Motivation for the Thesis . 6
1.4 Summary of Work in the Thesis . 8
1.5 Contributions of the Thesis . 11
1.6 Aspects of Authorization Not Covered in the Thesis 12
1.7 Outline of the Thesis . 13

2 An Overview of the Proof-Carrying File System (PCFS) 15
2.1 The PCFS Architecture . 15
2.2 Comparison to Proof-Carrying Authorization 18
2.3 Merits of the PCFS Architecture . 18
2.4 Related Work . 19

3 BLS: An Authorization Logic for Static Policies 23
3.1 Syntax and Axioms . 24

3.1.1 Axiomatic Proof System . 26
3.1.2 Expressible and Inexpressible Policy Idioms 29

3.2 Structural Proof Theory . 34
3.2.1 Natural Deduction . 34
3.2.2 Metatheory of Natural Deduction . 37
3.2.3 Sequent Calculus . 40
3.2.4 Metatheory of the Sequent Calculus 43

3.3 Equivalence of Proof Systems . 46
3.3.1 On the Nature of Hypothetical Judgments in BLS 48

3.4 Relation to the Modal Logic Constructive S4 48
3.5 Translations from the GP Logic and Soutei to BLS 50

3.5.1 Translation from the GP Logic . 50
3.5.2 Translation from Soutei . 56

3.6 Horn Fragment and Translation to First-Order Logic 59

ix

CONTENTS

3.7 Related Work . 63
3.7.1 Authorization Logics . 63
3.7.2 Logic-based Authorization Languages 65
3.7.3 Other Policy Formalisms . 66
3.7.4 Policy Analysis . 66

4 BL: An Authorization Logic for Dynamic Policies 69
4.1 BL: Syntax and Informal Description . 71

4.1.1 Properties of Connectives Explained Informally 71
4.1.2 Expressible Policy Idioms . 75

4.2 Structural Proof Theory . 76
4.2.1 Constraints and Interpreted Predicates 76
4.2.2 Natural Deduction . 78
4.2.3 Metatheory of Natural Deduction . 83
4.2.4 Sequent Calculus . 86
4.2.5 Metatheory of the Sequent Calculus 89
4.2.6 Equivalence of Proof Systems . 92

4.3 Use of BL in PCFS . 92
4.3.1 Policies and Authorizations . 94
4.3.2 Policy Enforcement . 94
4.3.3 Example: Course Administration . 95

4.4 Justification for the Use of Time Points in BL Views 98
4.5 Proof Normalization . 99
4.6 Relation between BLS and BL . 104
4.7 Related Work . 106

5 BL Proof Terms, Their Verification, and Procaps 111
5.1 Bidirectional Proof Terms for BL . 112

5.1.1 Connection to Natural Deduction . 113
5.1.2 Properties of Proof Terms . 117
5.1.3 Bidirectional Verification (The One Not Used in PCFS) 118

5.2 Proof Verification in PCFS . 120
5.2.1 The PCFS Proof Verifier . 121
5.2.2 Correctness of PCFS Proof Verification 125
5.2.3 Procaps . 127
5.2.4 Revocation of Policy Rules . 128

5.3 Proof Terms from the Sequent Calculus . 129
5.4 Proof Terms for Canonical Proofs . 132
5.5 Related Work . 134

6 BL: Goal-directed Proof Search 135
6.1 Background: What Is Goal-directed Proof Search? 136
6.2 Goal-directed Proof Search in BLG . 138

6.2.1 Rules of Goal-directed Proof Search 140

x

CONTENTS

6.3 Soundness and Completeness of Proof Search 146
6.4 Implementation in PCFS (and Otherwise) 149
6.5 Related Work . 151

7 The Proof-Carrying File System (PCFS) 153
7.1 The PCFS Front End . 153
7.2 The PCFS Back End . 156

7.2.1 Permissions and Access to Files . 158
7.2.2 Configuration Files and the Procap Store 160

7.3 Performance Evaluation of the Back End 162
7.4 Trusted Code Base and Trust Assumptions 164

8 Case Study: Access Control for Classified Information in the U.S. 167
8.1 Sensitive Information Life Cycle . 168

8.1.1 Representation of File State in PCFS 169
8.1.2 File State Transition . 170
8.1.3 Rules for Access to Files . 171

8.2 File Classification . 173
8.2.1 Original Classification Authorities 174
8.2.2 Compartments . 174
8.2.3 Establishing File Properties . 176
8.2.4 Summary of File Classification . 178

8.3 Individual Clearances . 179
8.3.1 Auxiliary Clearances . 179
8.3.2 Primary Clearances . 181
8.3.3 Summary of Individual Clearances 183

8.4 Clearances to Classified Files . 184
8.5 Summary . 185
8.6 List of Predicates Used in the Formalization 185

9 BLL: A Linear Extension of BL 189
9.1 Syntax, Sequent Calculus, and Metatheory 190

9.1.1 Rules of the Sequent Calculus . 193
9.1.2 Metatheory of the Sequent Calculus 200

9.2 Examples of Use . 202
9.3 Enforcement with Procaps . 204
9.4 Related Work . 205

10 Conclusion: Directions for Future Work 207

A Proofs and Other Details from §3 209
A.1 Axiomatic Proof System for BLS . 209
A.2 Proof of Theorem 3.13 . 210
A.3 Proofs from §3.5.1 . 214

xi

CONTENTS

A.4 Proofs from §3.5.2 . 216
A.5 Proofs from §3.6 . 220

B Proofs from §4 225
B.1 Proofs from §4.2.3 . 225
B.2 Proofs from §4.2.5 . 227
B.3 Proofs from §4.5 . 236
B.4 Proofs from §4.6 . 239

C Proofs from §5 243
C.1 Proofs from §5.1.2 . 243
C.2 Proofs from §5.2.2 . 245
C.3 Proofs from §5.3 . 249

D Proofs from §6 251
D.1 Soundness of Goal-directed Search . 251
D.2 Properties of Goal-directed Search . 257
D.3 Properties of the Sequent Calculus . 267
D.4 Completeness of Goal-directed Search . 271

Bibliography 279

xii

Chapter 1

Background and Motivation

1.1 Background: The Problem of Access Control

Both for the purpose of security and as good programming practice, the access that princi-
pals (users, programs, etc.) have to resources is often restricted. This practice, generically
called access control, is pervasive; its use ranges from low level memory subsystems where
programs are limited to reading and writing their own memory pages to applications like
web servers where web documents are protected from unauthorized users. Despite differ-
ences in both the resources protected and principals from whom they are protected, the
high level architecture of most access control mechanisms is similar – all calls that access a
protected resource pass through a subsystem called the reference monitor, which, based on
the identity of the principal making the call, the resource being accessed, and the nature
of the call (read, write, create, etc.), either allows the call to proceed or blocks it. The
process by which the reference monitor identifies the principal making the call is called
authentication, whereas the process of deciding whether to allow access or not is called
authorization. Authentication, although very important, is a well-studied problem with
solutions that work in almost any setting. For example, one may use passwords or secret
keys for authentication. This thesis focuses on the other problem – authorization. We use
the term “authorization policy” or policy to refer to rules on which authorization decisions
are based.

Authorization. A significant question in the design of an access control subsystem is
how the reference monitor decides which requests to authorize and which to deny. One
possibility, which is unfortunately often used, is to encode this information in the program
of the reference monitor, making no separation between the code and the authorization
policy. This approach is non-modular and requires that code be changed every time the
policy changes. The other possibility is to make the policy an input to the code, perhaps
to be read from a configuration file. Separating code from policy makes the access control
subsystem both more robust and modular. In particular, changes to the policy, including
the special case of fixing errors in it, do not require changes to code. Further, the code and
the policy can be analyzed separately for correctness.

1

Chapter 1. Background and Motivation

Access control lists and their problems. Given that policy and code should be sep-
arated, the next important question is how the policy may be represented, and how conse-
quences may be drawn from it. A common solution to this problem is to model the policy
as a table that for every principal k, resource r, and operation o tells whether principal k
may perform operation o on resource r or not [89]. This model of the access control policy
is called an access control matrix. An access control matrix is often represented by stor-
ing its entries with the respective resources to which they apply. The entries stored with
each resource are called an access control list (ACL). Although access control lists are both
simple to implement and very widely used in practice, they are low level representations of
the policy and suffer from the drawback that they do not carry information about why a
certain access is allowed or denied. As a result, in scenarios where accountability of access
is a concern (e.g., we would like to know why an individual was able to read a file, not
merely that she was able to), additional mechanisms must be provided to record and track
reasons for entries in access control lists. Among other applications, such accountability is
important in military and intelligence servers with classified information, for businesses that
have proprietary data to protect, and in matters of customer privacy. The second problem
with access control lists is that it is difficult to keep them up to date with changing access
requirements, and this often results in policy errors and inadvertent accesses. We illustrate
the limitations of access control lists in the following example.

Example 1.1. Consider a hypothetical scenario where Alice is an employee of the company
AuthCo, and within the company works for the team GovTeam, which handles contracts
from the government. As a member of the team Alice has access to a government dataset d.
Owing to the sensitive nature of the dataset, this access is contingent upon her maintaining
a government security clearance.

Suppose that the access control policy for the dataset d is represented using ACLs. While
Alice has access, her name would be on the ACL of d. Observe, however, that the access
control list does not provide any evidence as to why Alice has this access (it does not record
her affiliation with GovTeam, nor her security clearance). As a result if an internal auditor
were to try to determine whether it is legitimate to have Alice’s name on the ACL or not,
he would have to consult many other sources. Further, if Alice were to lose her government
security clearance, some administrator would have to manually observe this change and go
ahead and remove her name from the ACL. If for any reason the administrator failed to
take notice, Alice would continue to have access when she should not, resulting in a security
breach.

Rule-based representation. The problems with ACLs, as illustrated by Example 1.1,
can be eliminated using a rule-based representation of policies. Intuitively, in such a repre-
sentation the policy is represented as a set of if-then rules, and access is allowed only if it
is entailed by the rules. As an illustration, the policy in Example 1.1 may be expressed by
the following rules.

1. For any principal k, if k works for GovTeam and k has a government security clearance
then k can read dataset d.

2

Chapter 1. Background and Motivation

2. Alice works for GovTeam.

3. Alice has a government security clearance.

The main advantage of representing the policy as rules is that the reason for access becomes
explicit. Here for instance, were an audit to be performed, it would be clear that Alice
has access because she works for GovTeam and also has a government security clearance.
Further, when Alice wants to read d, the reference monitor (or, as we shall see later, Alice)
must infer that these three rules entail that Alice may do so, and this inference can be
logged as evidence that explains why Alice obtained access. This increases accountability
and improves assurance in the access control subsystem. The second advantage of using
rules is that such a representation can be implemented to propagate the policy change
automatically with conditions. (This is explained in §1.2.2.) For example, if Alice were to
lose her government security clearance, there would no longer be any inference to authorize
Alice’s read request, and hence she would no longer be able to read d.

The role of formal logic. The next relevant issue is determining a formal language that
may be used to represent policy rules and determine their consequences. While there are
many different kinds of existing formal languages for representing policy rules, this thesis
rests on the idea that logic may be used to represent policy rules and to enforce them
(see §3.7 for a description of some other formalisms). This is an observation that goes back
to Lampson and others [88]. As an example, the policy rules (1)–(3) may be represented by
the three formulas below, assuming that the predicate worksFor(k,GovTeam) means that
k works for GovTeam, hasClearance(k) means that k has government security clearance,
and may(k, d, read) means that k is allowed to read dataset d.

1’. ∀k. ((worksFor(k,GovTeam) ∧ hasClearance(k)) ⊃ may(k, d, read))

2’. worksFor(Alice,GovTeam)

3’. hasClearance(Alice)

The reader may check that in either classical or intuitionistic logic, (1’)–(3’) entail the
formula may(Alice, d, read). This idea of using logic to represent policy rules and to find
their consequences is the starting point for this thesis, and hence extremely important from
our perspective. The following are some reasons to show that the use of logic for these
purposes is not a mere convenience, but, in fact, very natural and pragmatic.

- Once represented in logic, the consequences of the policy rules are unambiguous since
they are defined by the logic’s semantics. Hence, logic provides a rigorous foundation
for defining the meanings of policies.

- A logical proof that shows why policy rules authorize access may be used to gain
access, and it may also be logged to improve the accountability of the access control
subsystem.

- Logical inference and automatic proof search based on it can be used to implement
the policy rules directly. This point is elaborated in the rest of this thesis.

3

Chapter 1. Background and Motivation

1.2 Technical Background

Having justified the importance of logic in the context of authorization, we now turn to
technical work in the area which serves as background for the thesis. First, we describe
some existing work on logics that are well suited for representing policies (called authoriza-
tion logics) and, second, we describe proof-carrying authorization, a formal mechanism for
enforcement of policies represented in logic. These two together also lead directly to the
motivation for this thesis (§1.3).

1.2.1 Authorization Logics

Although many authorization policies may be represented in propositional or first-order
logic as, for example, we did in §1.1, there are some commonly occurring policy idioms that
are best represented with specialized logical connectives (see §3.1.2 for examples). Many
logics with such specialized connectives have been proposed, e.g., [5, 8, 13, 18, 54, 65–67, 88].
We use the term authorization logic to designate any logic that has been designed with the
explicit purpose of representing authorization policies.

In addition to authorization logics, there is also a significant amount of past work on
logic-based declarative languages for writing authorization policies and determining their
consequences, e.g, [23, 26, 49, 52, 118]. Most of these languages have a syntax that re-
sembles the syntax of logical formulas, and their inference rules are often based on logic
programming.

Although we postpone a comparison of different authorization logics and logic-based
authorization languages to later chapters (§3, §4, and §9), we discuss here, in brief, one
connective that is common to many authorization logics and authorization languages. This
connective, written k says s, was first introduced in an authorization logic by Lampson et
al. [8, 88]. k says s means that principal k says, claims, or supports the formula s, but does
not imply that s is true. The connective is useful for representing authority of principals
on parts of policies, and for capturing the interactions between rules created by different
principals, as the following example illustrates.

Example 1.2. Continuing the scenario of Example 1.1, let us assume that there are three
principals involved in authorization: (a) admin who has ultimate authority on deciding
who should have access to the dataset d, (b) AuthCoHr which determines team affiliations
of employees of AuthCo, and (c) Gov which determines government security clearances.
Accordingly, the policy rules (1)–(3) from §1.1 may be refined by the rules shown below to
specify these authorities. The principal who certifies (creates) each rule is indicated at the
beginning of the rule in square brackets [·].

1a. [admin] For every principal k, if AuthCoHr certifies that k works for GovTeam and Gov
certifies that k has a security clearance, then k is allowed to read dataset d.

2a. [AuthCoHr] Alice works for GovTeam.

3a. [Gov] Alice has a government security clearance.

4

Chapter 1. Background and Motivation

Using the connective k says s, these rules may be represented as follows.

1a’. admin says ∀k. (((AuthCoHr says worksFor(k,GovTeam))∧(Gov says hasClearance(k))) ⊃
may(k, d, read))

2a’. AuthCoHr says worksFor(Alice,GovTeam)

3a’. Gov says hasClearance(Alice)

In general, principal Alice will be allowed to read dataset d only if there is a proof of the
following formula: admin says may(Alice, d, read). In most authorization logics, but not all,
(1a’)–(3a’) entail this formula.

1.2.2 Proof-carrying Authorization (PCA)

Proof-carrying authorization (PCA), earlier called proof-carrying authentication, is a rig-
orous mechanism based in cryptography and formal proofs that is used for distributed en-
forcement of authorization policies represented in logic. It was introduced by Appel and
Felten [13], and has since been used for access control both on the web [18] and in physi-
cal devices like office doors [20], as well as in language interfaces for controlling access to
sensitive resources like files [15, 41, 85]. Although PCA has traditionally relied on policies
represented in higher-order logic, its central ideas (listed below) generalize to any autho-
rization logic.

- Principal k′ should be allowed to perform operation o on resource r if and only if
k′ can produce a formal proof which shows that the policy rules in effect entail that
access should be allowed. For instance, in the example of §1.1, k′ would have to prove
the formula admin says may(k′, r, o) from the policy rules (1a’)–(3a’).

- Policy rules may be established using digital signatures: if principal k signs the formula
s with its private key, then the resulting digital certificate is evidence that k says s
holds.1 (k says s can also be inferred from other formulas via the logic’s inference
system.)

Based on these ideas, PCA allows distributed enforcement of authorization policies repre-
sented in logic in the following manner. Administrators sign policy rules in digital certificates
which are then published through any mechanism (such as a LDAP server). A principal
k′ desirous of access selects certificates it believes relevant to authorizing its access, and
taking the policy rules instated by the certificates as hypothesis, constructs a logical proof
M which establishes that it has legitimate access. Along with its request to perform the
access, k′ also provides the proof M and the certificates used in it to the reference monitor
(hence the adjective “proof-carrying”). The reference monitor verifies the digital certificates
by checking the digital signatures in them, and also verifies the logical proof M . If both
checks succeed, the access is allowed, else it is blocked.

1In a lot of work on PCA [13, 18, 20], a digital certificate establishes a formula k signed s, which implies
but is not implied by, k says s. However, in this thesis we blur the distinction, since we have no occasion to
use k signed s.

5

Chapter 1. Background and Motivation

Since the principal requesting access must provide the certificates on which the proof
relies, the reference monitor is freed from the responsibility of tracking all policy rules
in effect. This makes PCA truly distributed. The main reason that PCA requires that
the principal requesting access provide a proof authorizing its access, as opposed to the
reference monitor finding the proof itself via automatic proof search, is one of efficiency. It
is a well-known fact that for most logics proof verification is straightforward and takes time
linear in the size of the proof, whereas the time for proof search is at least exponential in
the size of the hypotheses and the formula being established; in most cases proof search is
undecidable. By distributing the work of inference to principals, PCA not only prevents
proof search from making the reference monitor a performance bottleneck, but also admits
the possibility of allowing each principal to use other information such as its knowledge of
context and state, as well as human intervention to quickly construct proofs.

Whereas the PCA architecture works well in settings like web services where commu-
nication delay overshadows verification time significantly, for low level interfaces like file
systems, even proof verification at each access becomes a performance bottleneck (this is
explained in Section 1.3). As a result in these situations, PCA is not appropriate, and one
of the significant contributions of this thesis is a rigorous architecture for policy enforcement
that overcomes this problem (§5), and a practical demonstration in a file system that it is
actually efficient (§7).

1.3 Motivation for the Thesis
There are three main motivations for the work in this thesis, which we explain in this
section.

Motivation 1 (Proof-theoretic foundations). As should be obvious from the description of
proof-carrying authorization, logical inference and proofs play a significant role in enforce-
ment of policies represented in logic. Yet, surprisingly, prior to the joint work of the author
and Pfenning [67], which in a sense forms the foundation for the theoretical ideas in this
thesis, there was hardly any systematic investigation of proof theory of authorization logics.
Authorization logics up to that point were either described axiomatically or via inference
rules that had little justification besides the fact that they suited the intended applications.
Structural proof systems such as natural deduction and the sequent calculus [70] were
missing, as was a description of metatheoretic properties of authorization logics, such as
admissibility of cut and consistency. Besides their use in proof-carrying authorization, good
proof theory and metatheoretic properties are important in the context of authorization for
the following reasons:

- Allowed inferences or proofs define the meanings of authorization policies and, as a
result, semantics other than proof-theoretic (model-theoretic, Kripke, set-theoretic)
are of secondary importance for authorization.

- Proof theory can be used to justify the foundations of the logic in the form of metathe-
oretic properties like cut elimination and symbolic consistency, as in a lot of prior work
on other logics [39, 99, 115].

6

Chapter 1. Background and Motivation

- Proof-theoretic results can be used directly in practical tools such as provers and
verifiers, both of which are essential in logic-based enforcement of authorization.

A thorough investigation of proof theory and metatheory of a specific authorization
logic constitutes a significant portion of the theoretical work in this thesis and forms the
foundation for the rest of the thesis. It should be emphasized here that owing to specialized
constructs like the modality k says s and many others that we introduce in this thesis, proof
theory of authorization logics is non-trivial and proof-theoretic results from classical and
intuitionistic logics do not directly apply.

Motivation 2 (Support for dynamic policies). As was illustrated briefly in Example 1.1,
allowed accesses in practice are not static, but change with time. Being able to express
such possibly changing (dynamic) policies in an authorization logic and enforcing them
with proof-carrying authorization is a significant challenge, and forms the next motivation
for this thesis. In general, dynamism in policies can be of different types, some of which we
summarize below.

- Start and expiration: A policy rule may come into effect at a stipulated point of time.
Similarly, it may expire at a stipulated point of time. Representing either of these
requires that there be an explicit representation of clock time in the logic.

- State dependence: An authorization may be allowed only while the system is in a cer-
tain state, which may change unpredictably. Representing state dependence requires
a syntax to mark predicates as being external to the logic, and a formal incorporation
of system state in the proof system.

- Consumption: A permission may be usable a finite number of times. Representing
such permissions requires that the logic be able to count resources.

- Revocation: A policy rule may be revoked by its creator at a time that is not pre-
dictable, e.g., because the rule was created in error. Although revocation cannot be
represented in a logic (a priori, in a logic the hypotheses are assumed to hold), it is
nonetheless important in practice.

Prior to the work of the author, often jointly with others [54, 66], there was no systematic
mechanism to represent any of these forms of policy dynamism in authorization logics.
Logic-based authorization languages included limited support for some of these but the
solutions lacked a logical foundation (see §4.7 and §9.4 for a discussion of some of this work).
In this thesis, we present systematic logical ways to express expiration, state dependence,
and consumption in authorization logic, and describe how all of these as well as revocation
may be enforced in an extension of proof-carrying authorization.

Motivation 3 (Efficiency of enforcement). Proof-carrying authorization (§1.2.2) is prac-
tical in only those scenarios where proof verification can be performed fast enough to not
make the reference monitor a bottleneck in practice. Although the exact time varies, proof
verification in practice takes several milliseconds at the least. Most of this time is spent

7

Chapter 1. Background and Motivation

in reading proofs and certificates from storage, and in parsing them. Whereas this time
frame is acceptable in many access control scenarios such as network services and in physi-
cal devices where other processes like network communication and movement of mechanical
parts take much longer, it is slow enough to make the reference monitor a bottleneck in
operation-intensive applications like file systems.2 Making proof-carrying authorization ef-
ficient enough for use in operation-intensive settings like file systems, without losing any
of its rigorous guarantees forms the motivation for the implementation work in this thesis.
We argue in this thesis that PCA can be complemented with capabilities to attain this
efficiency, without losing any of its formal rigor, and demonstrate the practicality of the
architecture through a file system implementation.

Thesis Statement. Based on the motivations described above, the statement of the
thesis is:

“Logic, grounded in strong proof theory, can be used for representing and reasoning
about dynamic authorization policies, and for efficiently enforcing them.”

1.4 Summary of Work in the Thesis
The work in this thesis can be divided roughly into three parts: (a) Theoretical work on
the proof theory of a new authorization logic called BL, (b) The design and implementation
of a practical file system, PCFS, that relies on the logic’s proof theory and metatheoretic
properties for representation of authorization policies and their enforcement, and (c) A case
study of real policies for access control on classified information in the U.S. to demonstrate
the usability of both BL and PCFS.

The logic BL. The presentation of the authorization logic BL focuses on its proof theory
and metatheoretic properties for reasons mentioned in §1.3 (Motivation 1). We present both
a natural deduction proof system, which provides an intuitive proof-theoretic explanation
of the meanings of connectives and forms the basis of proofs, and a sequent calculus, which
is useful for proof search and as a tool for proving theorems about the logic.

The choice of a new logic, as opposed to the possibility of using an existing authorization
logic, is justified because BL is better suited to representing policies than existing autho-
rization logics. In particular, BL is intuitionistic, first-order, and interprets the modality
k says s in a novel way. The use of intuitionistic logic, as opposed to prior proposals which
were classical, is explained at the end of this section. First-order quantification is impor-
tant because it arises naturally in policies that often are generic in principals, resources,
etc. Interestingly, all authorization logics prior to the work of the author [67] were either
propositional or higher-order, although some logic-based authorization languages allowed
first-order quantification, e.g., [52]. The unique interpretation of k says s in BL permits the
representation of certain forms of delegation that are important in practice; this is justi-
fied in §3.1.2. We formally establish the expressiveness of BL through sound and complete

2To confirm this hypothesis, we implemented a file system that verifies proofs at each access, and noticed
visible delays even in simple operations like listing directory contents in a shell.

8

Chapter 1. Background and Motivation

embeddings from an existing authorization logic, and an existing logic-based authorization
language into a fragment of BL (§3.5).

Another important emphasis in the design of BL is representation and enforcement of
dynamic policies, as described in §1.3 (Motivation 2). The logic BL contains explicit time,
as well support for predicates that are external to the logic and interpreted directly on
the state of the system (§4). The treatment of explicit time is based on joint work with
DeYoung and Pfenning [54], and builds on ideas from DeYoung’s undergraduate thesis [53].
Predicates interpreted on the state of the system are novel to this thesis. An extension
of BL, called BLL uses ideas from linear logic [71] and builds on prior joint work of the
author [66] to allow for representation of certificates that can be used a finite number of
times only (§9).

In addition to proof theory and metatheoretic properties of BL, the thesis also considers
their practical implications in the form of procedures for proof verification and proof search.
A detailed investigation of proof terms and their practical verification (which is complicated
due to the presence of explicit time and state) is considered in §5. A practical method for
proof search that builds on the proof theory and literature on logic programming is presented
in §6.

The file system PCFS. As observed in §1.3 (Motivation 3), the PCA idea of verifying
proofs during each call to the reference monitor is infeasible in heavily used settings like file
systems because reading and parsing of proofs and certificates makes the reference monitor
a bottleneck. Consequently, this thesis proposes and demonstrates the implementation of a
revised architecture where the work of proof verification is offlined to trusted verifier(s) out-
side the reference monitor. The trusted verifiers issue very simple cryptographic capabilities
in return, which may be presented to the reference monitor as evidence of authorized access.
These capabilities, called procaps, can be verified in a few microseconds each, which allows
the reference monitor to handle thousands of calls a second. While the idea of offlining
policy enforcement is not new, and may seem very trivial, what makes the design difficult
and technically challenging is the interaction between dynamic policy elements, proofs and
procaps. If, for example, a proof relies on a policy rule that is set to expire at a stipulated
time, this constraint on time must be reflected in any procap generated from the proof. The
procaps, therefore, are conditional on those policy elements in proofs that are dynamic.

We show in this thesis that any constraints on proofs due to explicit time and dependence
on system state can be systematically extracted in the proof verification procedure and
written to capabilities; we also show rigorously that the extracted constraints suffice to
establish that the original proof still holds at a later point of time, which immediately implies
that the enhanced architecture is equivalent (in terms of allowed accesses) to PCA (§5). It
therefore achieves high efficiency without comprising any of PCA’s rigor. As a practical
demonstration we have implemented a file system, PCFS, that uses the architecture and
through experimental measurements we show that the file system allows high throughput
of up to several thousand file system calls a second (§7). We also discuss how the other
two forms of policy dynamism listed in §1.3, namely revocation and consumption, may be
implemented through procaps.

9

Chapter 1. Background and Motivation

At a high-level of abstraction, procaps used in PCFS are similar to entries of a cache
that a reference monitor may maintain to record accesses it has authorized in the past.
However, procaps are more general than cache entries since they scale easily to decentralized
settings where the trusted verifier and reference monitor are running on different nodes of
a network. Further, as opposed to a reference monitor maintained cache, procaps are closer
in spirit to proof-carrying authorization where the principal seeking access is responsible for
maintaining and providing evidence to authorize access. Another merit of using capabilities
as opposed to caches is that both the design and implementation of the access control system
factor into two parts that interact via capabilities only: (a) The front end that deals with
policies, proofs, and verification of proofs and certificates, and (b) The back end that uses
capabilities to authorize access and perform I/O. Indeed, the PCFS back end is independent
of the logic used in the front end, and it can be used with any policy infrastructure that
produces compatible capabilities.

A salient feature of PCFS, unrelated to logic, is its backwards compatibility with existing
programs and nearly complete POSIX compliance. This compatibility is the result of two
design decisions. First, instead of requiring that procaps be passed during file system calls
(which would require a change to the system call API), procaps are stored in a central
location which PCFS looks up automatically. Second, files created by a program remain
accessible to it temporarily via default procaps that are generated by the file system itself.
This allows programs to create and use temporary files without having to generate proofs.
As a result, PCFS is able to run most existing applications including word processors
and spreadsheets without any changes to the applications themselves, which makes the file
system practical.

Case study. To verify and demonstrate the expressiveness of BL as a logic for representing
authorization policies, and of PCFS as a file system for enforcing them, a large case study
of policies that are used to control the dissemination of classified information in the U.S. is
presented in §8. The policies used in the case study are based on actual data obtained from
the U.S. intelligence community by Symantec Corporation, and given to Carnegie Mellon
University as part of a joint government contract. The case study is extensive and uses
most features of BL including its support for explicit time and system state.

On the Use of Intuitionistic Logic in the Thesis

Following prior work with Pfenning [67], the logic BL is intuitionistic. In contrast, older
authorization logics were classical [8, 18, 20, 88]. The move from classical logic to intu-
itionistic logic in the context of authorization is based on the fact that intuitionistic logic
requires constructive evidence for formulas whereas classical logic does not. For instance,
in intuitionistic logic, a closed proof of s1 ∨ s2 always either contains a closed proof of s1 or
a proof of s2 (modulo proof normalization). This is not the case in classical logic wherein
s1 ∨ s2 can be established by showing that the simultaneous falsity of s1 and s2 would en-
tail a contradiction. Constructive evidence has important consequences for accountability
in authorization. For instance, consider the following two policy rules p1 and p2, both of

10

Chapter 1. Background and Motivation

which allow access to an office door (predicate mayenter(x)). p1 allows employees access
on weekdays, and p2 allows managers access on other days, i.e. weekends.

p1 : ∀x. ((weekday ∧ employee(x)) ⊃ mayenter(x))
p2 : ∀x. (((¬weekday) ∧ manager(x)) ⊃ mayenter(x))

Suppose that Alice is a manager and an employee, and let e and m be proofs that establish
these to be the case.

e : employee(Alice)
m : manager(Alice)

Assuming that formulas are interpreted classically, let dis stand for an instantiation of the
law of the excluded middle to the formula (weekday ∨ (¬weekday)). Then, the following is
a proof of mayenter(Alice).

case (dis) of
inl v ⇒ p1 Alice 〈v, e〉
| inr w ⇒ p2 Alice 〈w,m〉

This proof simply case analyzes the disjuncts in (weekday ∨ (¬weekday)); in one case it
uses p1, in the other it uses p2. The important observation here is that although the proof
establishes access for Alice, it does not make the reason for access explicit. More specifically,
the proof does not state whether Alice has access because it is a weekday and she is an
employee, or because it is a weekend and she is a manager. Clearly, if such a proof were to
be used to audit any specific access that Alice performed, it would provide little insight.

If intuitionistic logic were to be used instead of classical logic, then this proof would be
disallowed since dis would not be valid. Instead, Alice would be forced to provide evidence
of either weekday, or of ¬weekday. In either case, the proof would contain the reason for
access explicitly. It is for such increased accountability that intuitionistic logic has been
chosen for the work in this thesis.

1.5 Contributions of the Thesis
This thesis makes three main contributions to the area of authorization logics and their
implementation, as well as several minor ones.

Main contributions. The three main contributions of the thesis are:

• Investigation of proof theory and metatheoretic properties for authorization logics,
illustrated through a new logic BL

• Logical treatment of dynamism in authorization policies; in particular, dependence
on state and consumable credentials, and a practical, efficient, and provably correct
mechanism for enforcement of policies dependent on state as well as explicit time

• An enhanced PCA-based architecture for enforcement of policies expressed in logic
that is efficient enough for use in operation-intensive systems, and its practical demon-
stration through an implementation in a file system, PCFS

11

Chapter 1. Background and Motivation

Minor contributions. In addition, the thesis makes several minor contributions, many
of which are technical in nature.

• The new, expressive authorization logic BL and a formal justification of expressiveness
via translations from existing policy frameworks

• A systematic, proof-theoretic description of a proof search procedure for an autho-
rization logic, grounded in existing work on logic programming

• Detailed investigation of properties of proofs in authorization logic and their verifica-
tion

• A detailed case study of policies for access to classified information in the U.S. and
their formalization

• An implementation of a PCA-based file system that is backwards compatible and
largely POSIX compliant

• On a more foundational level, a logic (BL) whose hypothetical judgments are indexed
by first-order terms, and where truth is always relativized to principals

1.6 Aspects of Authorization Not Covered in the Thesis
Although the broad theme of this thesis is authorization logics and their applications, certain
aspects of the use of authorization logic are not covered in the thesis. In order to correctly
qualify the scope of the thesis, we list these out-of-scope topics below.

- Policy administration: The thesis does not cover issues of how responsibilities of
administering different parts of policies are distributed to individuals, nor how they
may change. Instead, in all examples, we assume that these are provided a priori.
Other literature on policy administration deals with these aspects, e.g., [93, 126, 135].

- Policy authoring: Tools for writing policies in logical form are not covered in the
thesis. In practice, such tools are necessary because policy administrators cannot be
expected to understand formal logic.

- Policy storage and distribution: We do not describe possible ways in which policy
certificates may be stored or distributed. In particular, for proof search (§6), we
ignore the issue of finding relevant certificates that may be needed in the proof. This
problem has been studied extensively in the past, e.g., [21, 24, 46].

- Correctness of policies with respect to intent of the creator: The thesis does not
consider the problem of whether a policy represented in authorization logic has the
meaning its author intended. This is a question of policy analysis, and although logical
techniques may be used to assist in addressing the problem [5, 42, 67], there is an
element of subjectivity in it, as described in a study on differences in human intent
and actual representation of access policies [19].

12

Chapter 1. Background and Motivation

- Authentication: We implicitly assume that there is a mechanism for the reference
monitor to identify the principal making an access request. For PCFS, which runs
as a kernel service in Linux, authentication is quite trivial since the POSIX method
getuid() is used to identify the user making a file system call.

1.7 Outline of the Thesis

The rest of this thesis is organized as follows.
In §2, we provide a brief overview of the PCFS architecture, and describe how its various

components work with each other in practice. This provides a perspective for the work in
the rest of the thesis.

§3 introduces a fragment of BL called BLS that contains only k says s in addition to the
usual connectives of first-order logic. After a discussion of an axiomatic proof system and
some examples, proof theory (natural deduction and sequent calculus) and metatheoretic
properties like admissibility of cut are introduced. The nature of the says modality in BLS
is elaborated through translation to a previously known modal logic, and the expressiveness
of BLS is established by translating two known policy formalisms into it.

§4 generalizes the work in §3 to the full logic BL that includes explicit time and pred-
icates interpreted on system state, thus paving the way for representing dynamic policies.
Again, proof theory and metatheory are investigated, and in addition, proof normalization
is studied. The chapter also discusses how BL is used in PCFS.

In §5, proof terms for BL are studied and a practical, bidirectional procedure for their
verification is presented, which is implemented in PCFS. One novel contribution of this
chapter is the method for extracting dynamic policy elements from a proof, and a proof
that these elements, together with verification performed by trusted proof verifiers, suffice
to authorize access correctly. This shows that the PCFS architecture achieves the same
security guarantees as PCA. The chapter also describes the structure of procaps and how
they are verified, as well enforcement of policy revocation.

§6 describes the method of proof search used in the prover included in PCFS. Building
on ideas from existing work in logic programming, the chapter identifies a very expressive
fragment of BL on which goal-directed search is complete, and proves that this is the case.

§7 describes the implementation of PCFS in detail. In particular, it discusses how the
theory in §5 and §6 is used in practice. It also describes the back end of the file system that
includes the layout of files, directories, and the protection of configuration files. Performance
measurements establishing the high efficiency attained by PCFS are also presented in this
chapter.

§8 presents a case study on the use of BL and PCFS. The case study considers real
policies for access control on classified information in the U.S.

§9 considers an extension of BL with ideas from linear logic, which allows representation
of credentials that can be used a fixed number of times only. Proof theory and metatheory
of this extension, BLL, are presented, as are some examples of its use. In addition, the
chapter describes a method for enforcing consumable credentials in the PCFS architecture.

13

Chapter 1. Background and Motivation

§10 concludes the thesis with some directions for future work.

Work most closely related to each chapter is presented at its end. Readers interested in un-
derstanding only PCFS but not the proof theory of BL are advised to read §2, §4.1, §4.3, §5.2,
and §7.

14

Chapter 2

An Overview of the Proof-Carrying
File System (PCFS)

This chapter provides a brief overview of the architecture of PCFS, the file system that
is designed and implemented in this thesis. The purpose of presenting the architecture
upfront is to provide a perspective for both the theoretical work on BL (§3, §4) and the
description of proof verification and proof search (§5, §6), as well as to highlight the overall
merits of the architecture. Details of the design, implementation, and evaluation of PCFS
are postponed to §7.

PCFS builds on ideas from proof-carrying authorization (§1.2.2). It is currently im-
plemented as a local file system for the Linux operating system, but its architecture has
been designed to support distribution. The name PCFS is an acronym for Proof-Carrying
File System, even though access requests in PCFS do not carry proofs as they do in proof-
carrying authorization. Instead, proof verification is delegated to offline trusted verifiers
that are invoked prior to file access.

Briefly, PCFS works as follows. The access policy is represented as logical formulas in BL
and distributed to users in the form of digital certificates signed by policy administrators.
A user constructs formal proofs, which show that the policy entails certain permissions for
her. Each proof is checked by a trusted proof verifier which gives the user a signed capability
in return. This capability, called a procap (for proven capability), can be used repeatedly
to authorize access to file system operations; the file system checks the procap each time it
is required for authorization. Therefore, policy enforcement in PCFS follows the path:

Policy→ Proof→ Procap→ File access

2.1 The PCFS Architecture
Figure 2.1 shows the PCFS architecture. Numbers are used to label steps in order in which
they occur in practice. Steps 1–6 deal with the logic, and include proof generation, proof
verification, and creation of procaps. These steps are performed in advance of file access,
and happen infrequently (usually when a user accesses a file for the first time). Once procaps

15

Chapter 2. An Overview of the Proof-Carrying File System (PCFS)

F
I
L
E

A
P
IData

Proof, certificate
verifierProof search

admin says
may (...) admin says

may (...) admin says
may (...) admin says

may (...)

admin says
may (...) admin says

may (...) admin says
may (...) admin says

may (...)

User

yes

Data

no

Error

/Error

Procap
Store

PCFS
Handler

Procap
OK?

File system call

Administrators

admin says
may (...) admin says

may (...) admin says
may (...) admin says

may (...)

1

2

3

4

5

6

7

8

9

10

11a 11b

11c
12

Storage
(Ext3)

admin says
may (...) admin says

may (...) admin says
may (...) admin says

may (...)

Policies Proof Procap

Secret key

Legend

Figure 2.1: PCFS architecture

are stored, they can be used repeatedly to perform file operations (steps 7–12). The solid
black vertical line in the diagram separates parts that happen in user space, i.e. before and
after a file system call (left side of the line) from those that happen during a file system call
(right side of the line). In the following we describe the steps of Figure 2.1 in some detail.

Policy creation (Step 1). A policy is defined as a set of formulas in the logic BL (§4) that
determine access rights. An access right is a triple 〈k, f, η〉, which means that user k (Alice,
Bob, etc) has permission η (read, write, etc) on file or directory f . A policy is concretely
represented as digital certificates, signed by individuals who create it. PCFS provides a
command line tool, pcfs-cert, to help administrators check formulas for adherence to
logical syntax, to digitally sign them, and to convert them to a custom certificate format.
(We could have used a standard certificate format like X.509 [79], but found it easier to
create our own format.)

Proof generation (Steps 2–3). Once certificates have been created by administrators
and given to users, the latter use them to show that they are allowed certain permissions
in the file system. The basic tenet of PCFS, as in PCA, is that a user k is allowed per-
mission η on resource f at time u, if and only if the user can provide a formal logical proof
M , which shows that the policy in effect, Γ, entails a fixed formula auth(k, f, η, u) or, in
formal notation, Γ ` M :: auth(k, f, η, u). The formula auth(k, f, η, u) (actually a logical

16

Chapter 2. An Overview of the Proof-Carrying File System (PCFS)

judgment) is defined in §4.3.
To help users construct the proof M , PCFS provides an automatic theorem prover for

BL, through the command line tool pcfs-search. This tool is based in logic programming;
its underlying theory is the subject of §6. Figure 2.1 shows the user giving the policy
(certificates) to the proof search tool in step 2, and the proof search tool returning a proof
in step 3. A typical proof construction in PCFS takes several hundred milliseconds. A
salient point is that the proof search tool is not a trusted component of PCFS and a user
may use any method to create proofs.

Proof verification (Steps 4–5). Once the user has constructed a proof M , this proof,
together with the certificates used to construct it, is given to a proof verifier, invoked using
another command line program pcfs-verify (Step 4 in Figure 2.1). The verifier is a trusted
component of PCFS. It checks that the logical structure of the proof M is correct, and that
all certificates used in the proof are genuine, i.e. their digital signatures check correctly. If
both these hold, then the verifier gives back to the user a procap, which is a capability that
mentions the right 〈k, f, η〉 that the proof grants (Step 5). The procap also contains some
conditions on which the proof depends and is signed using a shared symmetric key that is
known only to the verifier and the file system interface (see §7 for details). The method used
for verification of BL proofs and extraction of conditions from them is discussed in §5. A
typical proof verification including creation of a procap takes several tens or a few hundred
milliseconds, depending on the size of the proof.

Procap injection (Step 6). After receiving a procap, the user invokes another command
line tool to put the procap in a central store, marked “Procap Store” in Figure 2.1. This
store is in a designated part of the PCFS file system, and is accessible to both users and
the system interface. The system interface looks up this store to find relevant procaps when
file system calls are made. The organization of the store is described in §7.

File system call (Step 7). A call to the PCFS file system is made through the usual
POSIX file system API during the execution of a user program. PCFS respects the standard
POSIX interface, so user programs and shell commands don’t need to change to work on
it. However, before a file system call is executed the user or the program must ensure that
procaps to authorize the call have been created and injected using Steps 2–6.

Procap look up and checking (Steps 8–10). Once a program has made a file system
call the file system looks up one or more procaps to authorize the operation (Steps 9 and
10). Procaps needed to authorize common operations are listed in §7. If all relevant procaps
are found, they are checked. Checking a typical procap takes only 10–100µs (cf. the time
taken to check a proof, which is of the order of tens or hundreds of milliseconds). Details
of procap checking are presented in §5.

Error reporting (Steps 11a, 12). If any procap needed for performing the requested
file operation is missing or fails to check an error code is returned to the user program.

17

Chapter 2. An Overview of the Proof-Carrying File System (PCFS)

File operation (Steps 11b, 11c, 12). If all relevant procaps needed to perform the re-
quested file operation are found, and successfully check, then the file operation is performed.
In the current implementation of PCFS, actual I/O is performed by redirecting to an ex-
isting file system (Step 11b). Hence PCFS is a virtual file system that layers logic-based
access control on another file system.

2.2 Comparison to Proof-Carrying Authorization

The architecture of PCFS extends proof-carrying authorization (PCA) [13] with procaps.
The PCFS architecture and PCA differ in at least two ways. First, in PCA, a proof autho-
rizing access is verified during each call to a resource, whereas in PCFS proofs are verified in
advance of access and exchanged for procaps that authorize system calls. This allows much
higher throughput at the resources (files) because checking procaps is faster than checking
proofs. Experimental measurements of the performance of PCFS are presented in §7.

The second difference between the PCFS architecture and PCA is more an artifact
of the manner in which the latter has been implemented in many systems, rather than
a fundamental distinction. As it turns out, many PCA implementations [18, 20] use a
challenge response protocol during access, as part of which the principal requesting access
is given a nonce. This nonce must be embedded in the proof used to authorize access
because the interface does not learn the identity of the principal. This implies that the
proof cannot be completed in advance of the access (although most parts of the proof are
independent of the nonce and can be constructed in advance). The PCFS architecture, on
the other hand, necessitates that the entire proof be constructed and verified in advance
of access and that the reference monitor learn the identity of the principal making the file
system call, because that identity is matched to the identity listed in the procap used for
authorization.

In addition to these differences, the logics used as the basis of many PCA implementa-
tions differ significantly from BL. These differences are discussed in §3.7 and §4.7.

2.3 Merits of the PCFS Architecture

Interestingly, besides the obvious merit of improving throughput in access to resources, the
PCFS architecture has two other significant merits.

Modularity. Owing to the separation of the proof verifier from the reference monitor, the
access control subsystem factors into two parts, both conceptually and in the implementa-
tion: (a) the front end, which understands the logic and digital certificates, and performs
proof search and proof verification to generate procaps, and (b) the back end, which checks
procaps to authorize access and performs resource access. The two parts only interact
through procaps and are otherwise independent. In Figure 2.1, the front end corresponds
to steps 1–6 and the back end corresponds to steps 7–12. This factorization has the following
merits:

18

Chapter 2. An Overview of the Proof-Carrying File System (PCFS)

- The front end may be changed to support a different logic, or even replicated to
support two authorization logics simultaneously, without any need to change the back
end.

- The same front end can be used with different back ends.

- The front end and back end can be implemented, tested, and debugged separately,
possibly by different teams having expertise in logic and systems programming respec-
tively. For example, in the current implementation of PCFS, the front end is written
in SML, while the back end is written in C++ and has been optimized for speed.
There are no compile time dependencies between the two parts. However, both parts
agree on a common structure for procaps.

Backwards compatibility. By storing procaps in a central location (“procap store” in
Figure 2.1) rather than requiring programs to provide them at the time of access, as PCA
does for proofs, PCFS is able to maintain backwards compatibility with the POSIX file
system interface. This allows existing programs to run without modification, provided that
enough procaps are generated in advance to authorize all access they need. A complication
arises for files that programs create while they execute, in particular, temporary files that
word processors and spreadsheets often create. To allow programs to access such files
without the need to create and check proofs, the file system automatically generates default
procaps that give the creating user read and write access to a new file or directory for a
certain period of time. As a result, even sophisticated software like word processors and
spreadsheets work seamlessly on PCFS. Access through default procaps can be turned off by
changing an extended attribute on the file or directory on which such access is conditional.

2.4 Related Work

Proof-Carrying Authorization. As noted earlier, proof-carrying authorization was first
described by Appel and Felten [13]. There are currently two large implementations of
PCA [18, 20]. The more recent of these, called Grey, is a generic architecture for access
control that is currently deployed for access to office doors in one floor at Carnegie Mellon
University. More recently, Lesniewski-Laas et al. [90] have described an extension of PCA in
which credentials define not only authorization policies but also the cryptographic primitives
and credential formats that may be used to incorporate policies from external systems.

Vaughan et al. [139] describe an architecture similar to PCA, focusing on a “proofs as log
entries” approach, where full proofs used for access are written in logs. Their architecture
is based on a strongly typed language, and it is assumed that proofs passed to the reference
monitor are correct (so there is no need for proof-checking), but proofs may be inspected
subsequently for audit. In joint work, the author and Chaudhuri describe a compiler that
supports PCA like interfaces (in particular, PCFS) by automatically inserting code to gen-
erate and verify proofs [41]. Avĳit et al. [15] and, independently, Vaughan et al. [85] present
programming languages whose resource access APIs are guarded by proof-carrying autho-

19

Chapter 2. An Overview of the Proof-Carrying File System (PCFS)

rization. In both these languages, the type system ensures that correct proofs are presented
at each access.

Logic-based authorization in Taos. Prior to the advent of proof-carrying authoriza-
tion, Wobber et al. designed, implemented and tested logic-based authentication and au-
thorization for the distributed operating system Taos [143]. In their design, a logic is used
to authenticate the caller to the callee in a remote procedure call (RPC): through logical
inference, the callee learns the identity of the remote principal p on behalf of whom the
channel c over which the call comes is acting. The relation between c and p is expressed as
the logical formula c⇒ p, read “c speaks for p” (the logic used is that of Lampson, Abadi
and others [8, 88]).

Although PCFS does not directly use this idea, the work is closely related to PCFS for
two reasons. First, the callee of an RPC in Taos may request the caller to provide evidence
which establishes c⇒ p. This evidence, which is encoded as an S-expression, is similar to a
logical proof and contains signed certificates at its leaves. The callee verifies the evidence,
and in the process learns p. In this sense, the work on Taos is a precursor to proof-carrying
authorization since the latter generalizes the idea of using proofs for authentication to using
proofs for authorization. Second, efficient performance of the authentication mechanism in
Taos relies on caching of proofs and, further, cached proofs expire automatically when the
certificates embedded in them expire. In this sense too, the work is related to PCFS: as
mentioned in §1, procaps in PCFS generalize the idea of a cache of authorizations by allow-
ing for distribution, and enforce not only time-based expiration but also state-dependent
invalidation of proofs.

Trust Management and digital certificates. The idea of using digital certificates
to represent policies, although not in logical form, dates back at least to the description
of X.509 certificates [79]. Prior to its adoption in PCA, the idea evolved in many other
policy frameworks, including PolicyMaker [33], KeyNote [31], and SPKI [58]. To the best
of our knowledge, the use of digital certificates to establish policies in logical form was first
considered in work on the Taos operating system discussed above.

Authorization in file systems. POSIX standards for access control in file systems [134]
follow the UNIX model [137] where read, write, and execute permissions for the owner and
the owning group of a file or directory are stored in file system meta-data. File systems
that use this model include early versions of NFS [125], SFS [100], Truffles [124], and most
file systems for UNIX-like environments. Access control in other file systems, including
AFS [130], NTFS [48], NFSv4 [133], CIFS [77], GSFS [87], and most file systems on newer
Linux kernels, relies on access control lists that allow or deny permissions to all users (not
only the owner). Although the exact number and kinds of permissions vary, this model is an
improvement over the UNIX model since it allows administrators to give access to arbitrary
users, without having to add them to the file’s owning group. In the file system Bayou [136],
authorization is based on certificates that are signed by a single trusted administrator.

20

Chapter 2. An Overview of the Proof-Carrying File System (PCFS)

A significant limitation of both the UNIX model and per-user ACLs is that there is no
easy way to allow an ordinary user to give permissions to other users. (As explained in §3.1.2,
this kind of delegation is straightforward in PCFS.) In some file systems like AFS, users
may be given administrative rights over the ACL of a file system object, through which they
may add other users to the object’s ACL. However, there is no way to limit this authority,
say, to specific permissions. In file systems such as Truffles, Bayou, and WebFS [138] users
may transfer their permissions on files to other users by signing certificates.

File systems with authorization mechanisms closest to those of PCFS are Echo (the file
system in Taos discussed earlier), DisCFS [104], WebDAVA [91], and Fileteller [81]. The
last three of these use the Trust Management system KeyNote [31] for authorizing access.
Like proof-carrying authorization and PCFS, trust management frameworks admit flexible
policies that are represented in digitally signed certificates. However, as opposed to proof-
carrying authorization and PCFS, inference from certificates is performed by the reference
monitor, which may cause problems at large scales. A survey article by Miltchev et al. [105]
reviews and compares authorization mechanisms in networked file systems.

Many existing file systems, including CapaFS [123] and several file systems for network-
attached storage disks [10, 73, 112, 121], use capabilities to authorize access. However,
capabilities in these file systems differ from those in PCFS significantly. In these file sys-
tems, capabilities are sufficient to authorize access. On the other hand, capabilities in PCFS
are only a tool for improving efficiency and backwards compatibility – access is still con-
tingent on proofs; capabilities only carry information about proof verification and dynamic
constraints in proofs from the proof verifier to the reference monitor (§5).

21

Chapter 2. An Overview of the Proof-Carrying File System (PCFS)

22

Chapter 3

BLS: An Authorization Logic for
Static Policies

This chapter describes an authorization logic BLS , which is suitable for expressing static
authorization policies. Static authorization policies, as opposed to dynamic authorization
policies, do not rely on time and state. §4 describes a larger logic BL that, unlike BLS ,
contains support for explicit time, constraints, and predicates interpreted on the state of
the system. These features can be used to express dynamic authorization policies.

BLS is an extension of first-order intuitionistic logic with a single modality k says s,
which means that principal k says, claims, or supports the truth of formula s but does
not imply that s is true. In practice, the modality is used to distinguish policy rules and
credentials created by different individuals. For example, if principal k signs a certificate
containing formula s, this may be reflected in the logic as the formula k says s. Whereas
the idea of using a modality of this nature to distinguish policies of different principals is
not new, and goes back to the work of Lampson et al. from 1992 [88], the proof-theoretic
interpretation of the modality k says s in BLS is original.

The purpose of considering BLS separately from the full logic BL is to make the pre-
sentation easier to follow. First, working with a simple logic like BLS makes it easier to
introduce basic concepts of structural proof theory such as the sequent calculus and natural
deduction, as well as their metatheoretic properties like admissibility of cut in the con-
text of authorization. These form the centerpiece of the rest of this thesis. Second, this
chapter considers translations from two existing formalisms for expressing authorization
policies, namely, the GP logic [67] and Soutei [118], to BLS and compares a third formal-
ism, Binder [52], to BLS . For these purposes, there is no need to consider the full logic
BL because, like many other authorization formalisms, GP logic, Soutei, and Binder do
not consider explicit time or state. Third, this chapter connects BLS to the modal logic
constructive S4 [11, 115], and a fragment of BLS to intuitionistic first-order logic via trans-
lations. These translations are intended to explain better the exact nature of the modality
k says s in BLS and BL. Finally, it is also an objective of this chapter to introduce the use
of authorization logic in modeling access control. The latter, although not a contribution
of this chapter or this thesis, will be very helpful to the uninitiated reader in understanding

23

Chapter 3. BLS : An Authorization Logic for Static Policies

the rest of this thesis and is best introduced with fewest possible constructs.
At the same time, there are several important aspects of an authorization logic like

BLS that are omitted from this chapter, including proof terms, proof verification, and proof
search. These aspects are discussed for the full logic BL in §5 and §6; corresponding aspects
for BLS may be derived as special cases.

History. Two of the fundamental ideas advocated in this chapter and thesis, viz. proof
theory in the context of authorization and the emphasis on intuitionistic logic as opposed
to classical logic which was the de facto standard in the area for a long time, were first
introduced in joint work with Pfenning [67]. The logic used in that paper, called the
GP logic here, treats k says · as an indexed lax modality [28, 60, 115]. Although that
logic and similar logics by Abadi [5] have been used in several proposals under various
names [15, 45, 61, 65, 66, 85, 90, 139], the logic BL used in this thesis contains a weaker
modality k says ·. The switch from the GP logic to BLS was motivated by three criteria.
The first and most important of these is the ability of BLS (and the inability of the GP
logic) to express a specific form of delegation of authority that we call exclusive delegation.
This form of delegation arises several times in our case study (§8) and is described in §3.1.2.
Second, there are simple translations from three existing policy formalisms – the GP logic,
Soutei, and a fragment of Binder – into BLS (§3.5). As a result, BLS is provably at least as
expressive as each of these formalisms (and, in particular, BLS is at least as expressive as
the GP logic). In contrast, we do not know of translations from BLS , Soutei, or Binder into
the GP logic. Third, BLS admits goal-directed proof search that is complete with respect
to its proof rules (§6), which the GP logic may or may not. Goal-directed proof search
forms the basis of the automatic proof search tool included in PCFS.

The nature of the says modality in BL is similar to that in the trust management
frameworks [118] and the policy language Binder [52], and the name BL is an abbreviation
for “Binder” Logic as a tribute to this inspiration. However, there is a significant difference
between Binder and BL – the former is a specialized declarative language for writing policies,
while the latter is a logic. Most of the technical content in this chapter generalizes previous
work on the propositional fragment of BLS [64, Section 5.5], and on the propositional
fragment of a closely related logic DTL0 [63, 64].

3.1 Syntax and Axioms

BLS extends first-order intuitionistic logic with a modality k says s, which, as explained
earlier, means that principal k states, claims, or supports that formula s is true. Predicates
P express relations between terms that are either ground constants a, bound variables x, or
applications of uninterpreted function symbols f to ground terms. Terms are classified into
sorts σ (sometimes called types). We stipulate at least one sort principal whose elements
are represented by the letter k. Formulas s may either be atomic (p, q) or they may be
constructed using the usual connectives of predicate logic and the special connective k says s.
As a convention, we do not write parenthesis or commas when applying arguments to a
predicate, writing an atomic formula as P t1 . . . tn instead of the more common form

24

Chapter 3. BLS : An Authorization Logic for Static Policies

P (t1, . . . , tn) because it makes examples easier to read.

Sorts σ ::= principal | . . .
Terms t, k ::= a | x | f(t1, . . . , tn) | `
Predicates P
Atoms p, q ::= P t1 . . . tn
Formulas r, s ::= p | r ∧ s | r ∨ s | r ⊃ s | > | ⊥ | ∀x:σ.s | ∃x:σ.s | k says s

Negation is not a primitive. If required, it may be defined as ¬s = (s ⊃ ⊥).
Throughout this thesis, the letter Σ denotes a finite partial map from term variables

to sorts, concretely represented as Σ = x1:σ1, . . . , xn:σn. We often call Σ a sorting. The
judgment Σ ` t : σ means that term t has sort σ given the assignment of sorts to variables
Σ. We assume the following property of this judgment.

(T-weaken) Σ ` t : σ implies Σ, x:σ′ ` t : σ

Further, a stipulated signature specifies the sorts of arguments that function symbols
take and the sort that they return, as well as sorts of arguments of predicates, but we do not
write the signature explicitly. In a similar manner we elide the details of a formal system of
rules to check the well-formedness of syntactic constructs like formulas. Although for most
logics well-formedness just means adherence to the grammar, this is not the case for logics
considered in this thesis. For instance, well-formedness of k says s requires not only that k
adhere to the syntax of terms but also that k have sort principal (in the prevalent sorting).
These checks can easily be added to the proof systems presented here, as in prior work [67].

In addition to the judgment Σ ` t : σ, proof systems of BLS are also parameterized by
a judgment Σ ` k � k′, read k is stronger than k′, or k has more authority in creating
policies and credentials than k′. Formally, Σ ` k � k′ has the consequence that (k says s) ⊃
(k′ says s) for any s that is well-formed in Σ. As a result, the relation � can be used to
capture hierarchies in policy administration. It is implicitly assumed that Σ ` k : principal
and Σ ` k′ : principal whenever Σ ` k � k′. Although we do not stipulate a definition for
the judgment Σ ` k � k′, we require that it satisfy the following properties.

(O-refl) Σ ` k � k

(O-trans) Σ ` k � k′ and Σ ` k′ � k′′ imply Σ ` k � k′′

(O-weaken) Σ ` k � k′ implies Σ, x:σ ` k � k′

(O-subst) Σ, x:σ ` k � k′ and Σ ` t : σ imply Σ ` k[t/x] � k′[t/x]

(O-refl) and (O-trans) imply that Σ ` k � k′ defines a preorder on principals. We also
assume a distinguished strongest principal ` satisfying the following property for every
principal k.

(O-loca) Σ ` ` � k

` is called the “local authority”, a term borrowed from the implementation of the language
SecPAL [3]. We often abbreviate Σ ` k � k′ to k � k′ when Σ is clear from the context or
irrelevant. The full logic BL internalizes the order k � k′ into the syntax of formulas (§4).

25

Chapter 3. BLS : An Authorization Logic for Static Policies

3.1.1 Axiomatic Proof System

Our focus in this chapter, and thesis in general, is on structural proof theory, i.e. natural
deduction and sequent calculi. However, for the convenience of readers unfamiliar with
these, we describe BLS ’s modality k says s using axioms. We write Σ `H s to mean that
formula s is valid or provable without hypothesis assuming the sorting Σ for free variables.
All variables free in s must occur in the domain of Σ. (The subscript H represents a
Hilbert-style system of proofs). The following axioms and rules for says, together with
any complete axiomatization of first-order intuitionistic logic and two additional rules for
quantifiers, constitute a deduction system for BLS . A complete axiomatization for BLS is
presented in Appendix A.

Σ `H s
Σ `H k says s

(N)

Σ `H (k says (s1 ⊃ s2)) ⊃ ((k says s1) ⊃ (k says s2)) (K)
Σ `H (k says s) ⊃ k′ says k says s (I)
Σ `H k says ((k says s) ⊃ s) (C)
Σ `H (k says s) ⊃ k′ says s if Σ ` k � k′ (S)

Rule (N) means that each principal states at least all tautologies. Axiom (K) means that the
statements of each principal are closed under implication. Together they imply that each
(k says ·) is a normal modality (see e.g., [59]). Axiom (I) was first suggested in the context
of access control by Abadi [4]. It means that if principal k says s, then every principal
k′ says that k says s. Axiom (C), an abbreviation for conceit, states that every principal
k claims that each of its statements is true. This axiom is peculiar to BLS and gives its
says modality a unique meaning. It is not needed to derive useful consequences from most
policies represented in BLS but is necessary to prove completeness of the axiomatic system
with respect to the natural deduction system and the sequent calculus (Theorem 3.13).
(S) means that statements of each principal are supported by all weaker principals. In
particular, (` says s) ⊃ k says s for each k and s.

Admissible and inadmissible properties. We list below some theorems and non-
theorems in BLS , primarily to give the reader a better intuition about the nature of the
logic. These properties can be established easily using the sequent calculus for BLS , which
we present in §3.2.3. The notation −→ s means that for every formula of the form of s and
every Σ whose domain contains the free variables of s, it is the case that Σ `H s. 6−→ s
denotes its converse. s ≡ s′ denotes (s ⊃ s′) ∧ (s′ ⊃ s).

1. 6−→ ⊥

2. 6−→ (k says s) ⊃ s

3. 6−→ (k says ⊥) ⊃ ⊥

4. 6−→ s ⊃ k says s

26

Chapter 3. BLS : An Authorization Logic for Static Policies

5. 6−→ (k says s) ⊃ (k says k′ says s)

6. −→ (k says (s1 ∧ s2)) ≡ ((k says s1) ∧ (k says s2))

7. −→ ((k says s1) ∨ (k says s2)) ⊃ (k says (s1 ∨ s2))

8. 6−→ (k says (s1 ∨ s2)) ⊃ ((k says s1) ∨ (k says s2))

9. 6−→ ((k says s1) ⊃ (k says s2)) ⊃ (k says (s1 ⊃ s2))

10. −→ (k says ∀x:σ.s) ⊃ ∀x:σ.(k says s)

11. 6−→ (∀x:σ.(k says s)) ⊃ k says ∀x:σ.s

12. −→ (∃x:σ.(k says s)) ⊃ k says ∃x:σ.s

13. 6−→ (k says ∃x:σ.s) ⊃ ∃x:σ.(k says s)

(1) is a statement of consistency of BLS – falsehood is not provable without hypothesis. (2)
means that there are statements that principals may make, which are not necessarily true;
in particular, ⊥ is such a statement (3). These two properties are extremely important in an
enforcement based on proof-carrying authorization because principals are not constrained
in what policy rules they may issue. (4) means that not every true statement is stated by
every principal. This may seem counter-intuitive but is necessary to delegate authority in
some cases (see §3.5.1 for details). (5) states that even the weaker case of (4) where s has
the form k says s′ does not hold. As (6) shows, says can be commuted with ∧ without
affecting provability. In fact, ∧ is the only connective with which says commutes in this
manner. As (7)–(13) show, for every other connective commutation with says preserves
provability in exactly one direction.

Example 3.1. We consider a hypothetical example of access control based in the intelli-
gence community. The example is based on a larger case study on the subject, presented
in entirety in §8. Suppose that in a hypothetical intelligence agency each file and each
individual has a classification level from the ordered set confidential < secret < topsecret.
Three distinguished principals participate in access control: admin who has the ultimate
authority on granting access, system who is responsible for governing files (e.g., setting
their ownership and classification levels), and hr who is responsible for governing individ-
uals (e.g., giving them classification levels). Figure 3.1 shows the policy rules that control
access (numbered (1)–(5)) as well as some additional credentials needed to get access in a
specific case (numbered (6)–(9)).

In order that principal k may read file f , the following formula must be established from
the policies in effect: admin says (may k f read). This is possible if k has a classification
level above the file (predicate hasLevelForFile k f), and k gets permission from the owner
of the file. This is captured in policy rule (1) which is created by admin. For readability,
we omit all sort annotations from quantifiers. Precisely, policy rule (1) means that (admin
says) whenever k has the appropriate clearance level to read file f , system says that k′
owns f , and k′ says that k may read f , then k may indeed read f . Observe that this rule

27

Chapter 3. BLS : An Authorization Logic for Static Policies

Common rules:

(1)
admin says ∀k, k′, f.

(((hasLevelForFile k f) ∧ (system says (owns k′ f))∧
(k′ says (may k f read))) ⊃ may k f read)

(2)
admin says ∀k, f, l, l′.

(((system says (levelFile f l)) ∧ (hr says (levelPrin k l′))∧
(below l l′)) ⊃ hasLevelForFile k f)

(3) ` says (below confidential secret)
(4) ` says (below secret topsecret)
(5) ` says (below confidential topsecret)

Additional credentials for example scenario:
(6) system says (levelFile secret.txt secret)
(7) system says (owns Alice secret.txt)
(8) hr says (levelPrin Bob topsecret)
(9) Alice says (may Bob secret.txt read)

Figure 3.1: Simplified policies for control of classified information

illustrates how two common policy motifs may be encoded in authorization logic: (a) admin
delegates control over the predicate owns to principal system, and (b) the file’s owner k′ is
given discretionary control over access to it.

Policy rule (2) defines the predicate (hasLevelForFile k f) further in terms of clas-
sification levels of k and f (formulas (levelPrin k l) and (levelFile f l), respectively).
Observe again that control over levelPrin is delegated to the principal hr whereas control
over levelFile is delegated to system. The formula (below l l′) captures the order l < l′

between classification levels (policy rules (3)–(5)). Since we assume that all principals agree
on this order, rules (3)–(5) are stated by the strongest principal, the local authority `.

As an illustration of the use of policy rules (1)–(5), let us assume that file secret.txt
owned by Alice is classified at the level secret. Suppose that Bob is an employee cleared at
level topsecret, and further that Alice wants to let Bob read file secret.txt. This information
is captured in formulas (6)–(9). Using the axioms and rules of BLS presented earlier (1)–(9)
entail admin says (may Bob secret.txt read). Some of the initial steps in this derivation are
as follows. First, by instantiating the universal quantifiers in (2), we obtain:

(3.1)

admin says
(((system says (levelFile secret.txt secret))∧

(hr says (levelPrin Bob topsecret))∧
(below secret topsecret))
⊃ hasLevelForFile Bob secret.txt)

Basic propositional axioms and (K) yield

(3.2)

((admin says system says (levelFile secret.txt secret))∧
(admin says hr says (levelPrin Bob topsecret))∧
(admin says (below secret topsecret)))

⊃ admin says (hasLevelForFile Bob secret.txt)

28

Chapter 3. BLS : An Authorization Logic for Static Policies

Using axiom (I) with (6) and (8) gives

(3.3) admin says system says (levelFile secret.txt secret)

(3.4) admin says hr says (levelPrin Bob topsecret)

Similarly, axiom (S) on (4) gives

(3.5) admin says (below secret topsecret)

Three applications of modus ponens on (3.2) and (3.3)–(3.5) now yield1

(3.6) admin says (hasLevelForFile Bob secret.txt)

The rest of the proof now proceeds similarly: axiom (K) is now applied to (1), then axiom
(I) is applied to (7) and (9), and finally admin says (may Bob secret.txt read) is obtained by
modus ponens.

It is instructive to observe the role of axiom (I) in injecting the statements (6) and (8) of
principals system and hr into the statements of admin (3.3), (3.4). Also, noteworthy is the
use of axiom (S) in converting statement (4) made by ` to a statement made by admin (3.5).
Without axioms (I) and (S) it would be impossible to derive the expected authorization.

Connection to practice. As mentioned in §1.2.2, formulas of the form k says s are
special when enforcement is based on proof-carrying authorization because such formulas
can be established in two different ways. First, like all other formulas, they may be derived
using inference rules and axioms. Second, they can be established directly – principal k
may write the formula s in a digital certificate and sign it with her private key. In proof-
carrying authorization, this digitally signed certificate is evidence that k says s holds. In
fact, for a logic like BLS , this is the only primitive way of discharging a hypothesis. From
the perspective of enforcement, there is no difference between common policy rules such
as (1)–(5) of Figure 3.1, and case specific credentials like (6)–(9). Both are concretely
established through digitally signed certificates containing logical formulas.

If proof-carrying authorization is used to enforce these policies, then in order to get
access to secret.txt in the above example Bob would give the proof which shows that (1)–
(9) establish admin says (may Bob secret.txt read) to the reference monitor that is protecting
files, together with the certificates that establish (1)–(9). The reference monitor would then
check the proof and the certificates, and allow access if both checks succeed. Of course,
it may not be very convenient for Bob to either find the proof or represent it using an
axiomatic system. For such purposes, structural proof theory may be more appropriate.

3.1.2 Expressible and Inexpressible Policy Idioms

As further illustration of possible use of BLS , and authorization logics in general, we give
examples of some idioms that appear often in access policies and discuss whether or not they

1Modus ponens is a fundamental rule in axiomatic proof systems which states that `H (s ⊃ s′) and `H s
imply `H s′.

29

Chapter 3. BLS : An Authorization Logic for Static Policies

can be expressed in BLS . The purpose of this section is explanatory, primarily to show how
BLS can be used in practice. A secondary objective is to compare existing authorization
logics and logic-based languages for writing authorization policies (e.g., [4, 8, 23, 26, 49, 52,
67, 88, 118, 143]) in terms of their ability to express these idioms.

Distributed Policies. In distributed systems parts of policies may be created by differ-
ent individuals. As Example 3.1 illustrates, rules created by different individuals can be
represented and combined in BLS using the says connective. This use of the says connec-
tive is not unique to BLS (although the specific logical behavior of says is). The operator
was first introduced by Lampson et al. [8, 88] for exactly this purpose, and has subse-
quently been adapted in many proposals for expressing distributed authorization policies
(e.g. [23, 26, 52, 67, 118]).

Access control lists (ACLs). Although abstracting policies from low level enforcement
mechanisms like access control lists is one of the primary reasons to use an authorization
logic, ACLs can be encoded in an authorization logic easily. Using notation from Exam-
ple 3.1, suppose that the principal admin has ultimate authority on deciding access. Then
admin may simulate ACLs in the system in any authorization logic including BLS by issuing
one certificate for each entry in the ACLs, e.g.,

admin says (may Alice foo.txt write)
admin says (may Bob bar.pdf read)

· · ·

Roles and groups. Roles and groups of principals are used to ease administration of
access policies, when a set of individuals have access to exactly the same set of resources.
Roles and groups can be expressed very easily in any logic including BLS . As an example,
the case where all members of a group G have read access to all files in the set f1, . . . , fn
can be expressed by the following set of n policy rules.

admin says ∀k. ((member k G) ⊃ (may k f1 read))
...

admin says ∀k. ((member k G) ⊃ (may k fn read))

where member k G is a predicate which means that k is a member of group G. Members
can be added to the group G by signing certificates of the following kind.

admin says (member Alice G)
admin says (member Bob G)

...

If there are m principals in G and n files, this encoding requires that admin issue m + n
certificates, whereas a naive encoding using access control lists would requiremn certificates
(one for each pair of a file and a principal).

30

Chapter 3. BLS : An Authorization Logic for Static Policies

Delegation. In a distributed system a principal k may delegate some or all of its authority
in making policies to another principal k′. What this means is that if k′ makes a policy
rule regarding a subject that has been delegated to it, then k will endorse the rule as well.
There are several different kinds of delegation, of which we discuss four here.

The first kind of delegation, which we call limited delegation, occurs when a principal k
delegates to principal k′ authority over a predicate, or in general, over a specific formula s.
Such a delegation can be expressed in BLS as the formula k says ((k′ says s) ⊃ s). Many
examples of this form appear in §8. For this encoding to have its intended effect, i.e. for this
formula and k′ says s to entail k says s, the logic has to be reasonably strong. In particular,
axiom (I) must be admissible in the logic. A number of early authorization logics such
as [8, 88] do not satisfy this axiom. Expressing limited delegation in these logics is difficult
and requires a rich algebraic structure on principals. The logic ICLB enhances the algebraic
structure on principals to express limited delegation in a simple manner [65]. A salient
observation is that in a limited delegation the delegating principal retains authority over
the delegated formula – in the example above, even if k′ does not say s, k may directly
assert s.

The second kind of delegation, which we call exclusive delegation, is a variant of limited
delegation, where the delegating principal itself does not have any authority over the formula
it delegates. This is illustrated by formulas (1) and (2) in Figure 3.1. In (1), for instance,
principal admin delegates authority over the predicate owns k′ f to the principal system but
it is the intent of the policy that admin itself may not make decisions regarding owns. Such
a delegation can be represented in BLS using a formula of the form k says ((k′ says s′) ⊃ s).
For this encoding to work correctly, the following two properties must hold:

k says ((k′ says s′) ⊃ s) and k′ says s′ should imply k says s

k says ((k′ says s′) ⊃ s) and k says s′ should not in general imply k says s 2

Both these properties hold in BLS . The important observation here is that in the presence
of (N) and (K), the first property is equivalent to the axiom (I), whereas the second property
imposes a limit on the strength of logic. Interestingly, exclusive delegation is very common in
real policies as the case study of access control on classified information demonstrates (§8),
but very few authorization logics and logic-based authorization languages can express it. In
particular, any logic that admits the axiom (k says s) ⊃ (k says k′ says s) cannot satisfy the
second property. (Observe the difference between this axiom and (I)). Many logics including
the logic used in the author’s prior work, namely the GP logic [67], as well as other logics
that treat k says s as a lax modality [5, 65] admit the much stronger axiom s ⊃ k′ says s
and, therefore, cannot express exclusive delegation in a reasonable manner. The logic-based
authorization languages Soutei [118] and Binder [52] have says modalities similar to that of
BLS and are capable of expressing exclusive delegation (see §3.5.2 and §3.6). The policy
language SecPAL [23] contains a special syntactic construct k says k′ cansay s to represent
exclusive delegations. As mentioned in the beginning of this chapter, being able to express

2In specific cases, this may be inevitable. For example, if s′ ⊃ s, then k says s′ implies k says s due to
axiom (K).

31

Chapter 3. BLS : An Authorization Logic for Static Policies

exclusive delegations is the main reason that this thesis uses the logic BL in place of the
GP logic.

In the third type of delegation, called full delegation here, complete authority is delegated
from one principal to another. If a full delegation is made from k to k′, then k′ says s should
entail k says s for every s. This is a second order property that cannot be expressed in a
first-order logic without a specialized construct. The preorder k � k′ in BLS , which may
be internalized as a formula in the full logic BL, can be used to express full delegation.
Other logics in the past have considered a related formula called “speaks for”, often written
k′ ⇒ k, with similar effects [8, 65, 88]. In authorization logics with a second order universal
quantifier, k′ ⇒ k can be encoded as ∀s. ((k′ says s) ⊃ (k says s)) [5, 65]. Full delegation, if
used indiscriminately, can have dangerous consequences in practice. For instance, a principal
making a full delegation may not be aware of all predicates that exist in a distributed
system and may inadvertently give away authority leading to potential misuse. Further,
the presence of full delegation makes automatic proof search much more difficult. Owing
to these considerations, in all examples in this thesis that use full delegation, the principal
delegated to is the local authority, ` (§3.1).

The last form of delegation we consider is bounded delegation. In this case, the prin-
cipal obtaining authority through the delegation has no authority to delegate further. A
generalization allows delegation chains of fixed depth. Although bounded delegation is very
useful in practice, it cannot be expressed within the logic if the enforcement mechanism
is proof-carrying authorization. In particular, bounded delegation cannot be enforced in
PCFS. This limitation is the consequence of two fundamental assumptions:

- Principals are unconstrained in policies they create by signing certificates. Conse-
quently, if principal k is delegated control over s, k may always sub-delegate the
authority to k′ by signing k says ((k′ says s) ⊃ s).

- Any correct proof of authorization is acceptable for access. In the example of the
previous point, a proof that used k’s certificate would be accepted, provided it were
correct otherwise.

Of course, in practice, it is possible to enforce bounded delegation by either restricting what
principals may sign, e.g., not allowing k to sign k says ((k′ says s) ⊃ s) in the first point
above, or by restricting the class of acceptable proofs, e.g., disallowing a proof that contains
k’s delegation certificate. However, both these methods lie outside the proof theory of the
logic itself, and are orthogonal to the concerns of this thesis. What would be more aligned
to the approach of this thesis is a logic that tracks (counts) the length of a sequence of
delegations. The authorization language SecPAL [23] does this to a limited extent.

Dynamic (changing) policies. As mentioned in §1.3, allowed accesses may change in
several different ways. Representing and enforcing policies that change over time is quite
difficult in logic-based languages, and addressing this challenge is an important goal of both
BL and PCFS. Although BLS is not suitable for representing policies that may change, the
full logic BL described in §4 allows representation of authorizations that may expire, as

32

Chapter 3. BLS : An Authorization Logic for Static Policies

well those that may depend on system state. §9 goes a step further and discusses a linear
extension to BL through which consumable credentials may be represented. Comparisons to
other logic-based authorization languages with similar features are provided in the respective
chapters.

Ordered rules. A policy idiom commonly found in traditional system configurations is
rule precedence. For example, a .htaccess file defining the access policy to web pages on
an Apache web server may have the following entries.

order deny,allow
allow from all
deny from Mallory

The first line says that rules denying access take precedence over rules that allow access.
The second line allows access to everyone, whereas the third line denies access to the user
Mallory. Since the denying rule gets precedence, the net effect of the policy is that all users
except Mallory have access. If the precedence were reversed, all users including Mallory
would have access. Rule precedence is meaningful only if the policy contains both allow
and deny rules.

Although rule precedences similar to the one above are used often in systems, they
are extremely difficult to encode in most authorization logics including BLS and BL. The
reason is that in most logics (except those that are non-monotonic), if an authorization
follows from a set of policy rules, then it will also follow from any extension of the set.
This is a consequence of a fundamental proof-theoretic property called weakening (e.g.,
Theorem 3.3). On the other hand, policies with rule precedence are incompatible with this
property. For instance, in the above policy, the first two rules by themselves would allow
access to Mallory, whereas addition of the third rule denies her access.

Consequently, representing policies with rule precedence in a logic requires at least one
of the following:

- The logic be non-monotonic, i.e. it not satisfy weakening.

- The informal rules (e.g., from the file above) not map one-to-one to logical formulas.

Both these possibilities are feasible, but are rather antithetic to the idea of distributed
authorization. Use of the first possibility requires that the reference monitor enforcing
access be aware of all policies ever created; this goes against the basic philosophy of proof-
carrying authorization where users present credentials to prove that they have access. In
limited cases this may be acceptable, as we do for consumable credentials in §9, but having
the reference monitor be aware of all policy rules in a distributed setting may be infeasible.
The second solution makes the representation of the policy non-modular – as more denying
rules are added, prior allowing rules must be modified to check for absence of conditions.
For instance, even though we may encode the rules listed above using a formula of the form
∀k. ((k 6= Mallory) ⊃ (may_access k)), if we were to now add a new rule “deny Baddick”,
we would have to modify the encoding of the existing rules to the formula ∀k. (((k 6=

33

Chapter 3. BLS : An Authorization Logic for Static Policies

Mallory) ∧ (k 6= Baddick)) ⊃ (may_access k)). In order to allow for the possibility
of making such changes, the policy must again be centralized. Consequently, we do not
attempt to encode rule precedence anywhere in this thesis. Indeed, we are unaware of any
logic-based solution that attempts to encode policies with rule precedence. However, there
are many formalisms outside logic that allow such policies, e.g., [14, 36, 83, 107].

3.2 Structural Proof Theory

We now turn to the centerpiece of this chapter – structural proof theory for BLS . By struc-
tural proof theory we mean a system of logical inference that admits the so called “structural
rules” such as weakening and contraction (Theorems 3.3 and 3.8). More specifically, we are
interested in a natural deduction system and a sequent calculus for BLS (and for the full
logic BL in §4). The natural deduction system provides a syntax for proofs that are used
directly in enforcement through proof-carrying authorization (§5), while the sequent cal-
culus is useful for many other practical aspects including proof search (§6), and proving
several metatheorems later in this chapter. More significantly, we prove several metatheo-
rems about the natural deduction system and the sequent calculus which provide assurance
that the logic itself has strong, meaningful foundations. Such an assurance is of great im-
portance in the context of authorization, where a poorly designed logic may easily result
in inadvertent consequences and accesses that were not intended by the policy authors.
In particular, for BLS we prove admissibility of cut for the sequent calculus, equivalence
of the two inference systems and consistency. Additionally, theorems showing absence of
interference among statements of principals can be established easily as in existing work on
other logics [5, 67], but this subject is not explored further in this thesis.

Historically, both the natural deduction style of inference and the sequent calculus were
first investigated by Gentzen in the context of predicate logic [70]. The specific approach
to proof theory followed here is based on Martin-Löf’s judgmental method for type theory,
where a distinction is made between formulas and judgments [99]. The presentation of the
natural deduction system is draws on Pfenning and Davies’ work on constructive S4 [115],
whereas the presentation of the sequent calculus is inspired by prior joint on multi-modal
S4, also done in the context of authorization [66].

3.2.1 Natural Deduction

In Martin-Löf’s approach to type theory and logic, formulas are distinguished from judg-
ments. The latter are the objects of knowledge that may be established through proofs.
Formulas are the subjects of judgments. For BLS , we require two basic judgments: s true,
meaning that formula s is true, and k claims s, meaning that principal k states or claims
that formula s is true. The two basic judgments do not entail each other in general. The
judgment k claims s is internalized by the formula k says s, which means that k claims s is
equivalent (at the level of judgments) to (k says s) true.

34

Chapter 3. BLS : An Authorization Logic for Static Policies

Hypothetical judgments and views. Reasoning from hypotheses or assumptions is a
basic tenet of logic. For propositional intuitionistic logic the hypothetical judgment takes
the form Γ ` s true, meaning that the assumptions in Γ entail the judgment s true. In the
first-order case, a generalization of the form Σ; Γ ` s true is needed. If Σ = x1:σ1, . . . , xn:σn,
then Σ; Γ ` s true means that reasoning under the assumptions that each xi stands for an
arbitrary term of sort σi, there is a proof which shows that hypotheses Γ entail s true.

A distinguishing characteristic of BLS is that hypothetical reasoning is always performed
relative to the claims of a principal k, which we indicate in the hypothetical judgment by
writing the latter as Σ; Γ `k s true. (s true is often abbreviated to s.) Formally, k is called
the view of the hypothetical judgment, or the view of reasoning. The hypotheses, as usual,
are a possibly empty multiset of basic judgments:

Basic judgments J ::= s true | k claims s
Sorting Σ ::= a1:σ1 . . . an:σn
Hypotheses Γ ::= J1 . . . Jn (n ≥ 0)
Hypothetical judgments Σ; Γ `k s true

Reasoning in BLS is guided by three basic principles. The first principle, called the view
principle, describes how the view k affects reasoning.

View principle. While reasoning in view k0, the assumption k claims s
entails s true if k � k0.

We incorporate this principle into the natural deduction system by the following rule of
inference.

Σ ` k � k0

Σ; Γ, k claims s `k0 s
claims

Based on the view principle, we may define the meaning of the hypothetical judgment
Σ; Γ `k s precisely as follows:

“If Σ = x1:σ1, . . . , xn:σn, then under the assumptions that each xi stands for
an arbitrary term of sort σi, and that claims of principals stronger than k are
true, there is a proof which shows that Γ logically entail that s is true.”

Although this choice of relativizing hypothetical judgments to claims of principals is non-
standard, it seems quite useful from the perspective of access control, where an authorization
may succeed or fail, depending on what policies the principal making the decision believes.
(A further explanation of the hypothetical judgment in BLS appears in §3.3.1 after a dis-
cussion of metatheory.) Another point to note is that in the above definition of hypothetical
judgments, there a single proof which is parametric in x1, . . . , xn. In particular, case anal-
ysis of possible instances of the variables x1, . . . , xn is not an admissible proof rule. This is
manifest in Theorem 3.2.

Our second guiding principle, called the substitution principle, elaborates the meaning
of hypothesis. It states that a hypothesis s true used in a proof may be substituted by
an actual proof of the hypothesis. This principle occurs in a similar form in judgmental
presentations of other logics also (e.g., [39, 115]).

35

Chapter 3. BLS : An Authorization Logic for Static Policies

Substitution principle. Σ; Γ `k s and Σ; Γ, s `k s′ imply Σ; Γ `k s′

Unlike the view principle which is incorporated directly as a rule in the natural deduction
system, the substitution principle, together with the next principle, is established as a
theorem (Theorem 3.5).

The third guiding principle, called the claim principle, defines the relation between the
judgments k claims s and s true. Informally it states that k claims s holds if we can establish
s true in the view k from only the claims of other principals. Formally, we define an operator
Γ| that restricts the hypothesis Γ to the claims of principals.

Γ| = {(k′ claims s) ∈ Γ}

The claim principle may then be written as follows.

Claim principle. Σ; Γ| `k s and Σ; Γ, k claims s `k0 s′ imply Γ `k0 s′.

The requirement to restrict the hypotheses to substitute k claims s is similar to restrictions
that arise for substituting valid hypothesis in constructive S4 [115], and unrestricted as-
sumptions in linear logic [39]. Indeed, k claims s is closely related to the validity judgment
from constructive S4. This is described further in §3.4.

Inference rules. The inference rules of the natural deduction system are summarized in
Figure 3.2. The most basic inference rule is (hyp). It means that if s true is a hypothesis,
then s must be true.

Σ; Γ, s `k s
hyp

The rule (claims) captures the view principle as described earlier. The remaining rules are
directed by the connectives of BLS , as is the norm in a natural deduction system. For
each connective, there are introduction rules (marked I) that specify how a proof of the
connective may be constructed directly, and elimination rules (marked E) that specify how
a proof of the connective may be used. In the following we describe briefly the rules for
says.

Since (k says s) true internalizes, and hence is equivalent to, the judgment k claims s the
claim principle tells us that (k says s) true may be established if we can establish s true in
view k using only claims of principals. This is exactly what the rule (saysI) captures:

Σ; Γ| `k s
Σ; Γ `k0 k says s

saysI

The equivalence of (k says s) true and k claims s also implies that we may use (k says s) true
by assuming k claims s. This results in the following elimination rule (saysE):

Σ; Γ `k0 k says s Σ; Γ, k claims s `k0 s′

Σ; Γ `k0 s′
saysE

36

Chapter 3. BLS : An Authorization Logic for Static Policies

Σ; Γ, s `k s
hyp

Σ ` k � k0

Σ; Γ, k claims s `k0 s
claims

Σ; Γ `k s Σ; Γ `k s′

Σ; Γ `k s ∧ s′
∧I

Σ; Γ `k s ∧ s′

Σ; Γ `k s
∧E1

Σ; Γ `k s ∧ s′

Σ; Γ `k s′
∧E2

Σ; Γ `k s
Σ; Γ `k s ∨ s′

∨I1
Σ; Γ `k s′

Σ; Γ `k s ∨ s′
∨I2

Σ; Γ `k s ∨ s′ Σ; Γ, s `k s′′ Σ; Γ, s′ `k s′′

Σ; Γ `k s′′
∨E

Σ; Γ, s `k s′

Σ; Γ `k s ⊃ s′
⊃I

Σ; Γ `k s ⊃ s′ Σ; Γ `k s
Σ; Γ `k s′

⊃E

Σ; Γ `k >
>I

Σ; Γ `k ⊥
Σ; Γ `k s

⊥E

Σ, x:σ; Γ `k s
Σ; Γ `k ∀x:σ.s

∀I
Σ; Γ `k ∀x:σ.s Σ ` t : σ

Σ; Γ `k s[t/x]
∀E

Σ; Γ `k s[t/x] Σ ` t : σ
Σ; Γ `k ∃x:σ.s

∃I
Σ; Γ `k ∃x:σ.s Σ, x:σ; Γ `k s′

Σ; Γ `k s′
∃E

Σ; Γ| `k s
Σ; Γ `k0 k says s

saysI
Σ; Γ `k0 k says s Σ; Γ, k claims s `k0 s′

Σ; Γ `k0 s′
saysE

Figure 3.2: BLS : Natural deduction

Rules for the connectives ∧, ∨, ⊃, >, ⊥, ∀, and ∃ are standard, with the exception that
a view associated with each hypothetical judgment. The view never changes in the rules
for any of these connectives and we elide a description of these standard rules. For any
syntactic entity Ξ, Ξ[t/x] denotes the standard capture avoiding substitution of term t for
the variable x in Ξ. In the rules (∀I) and (∃E), the variable x can occur only in the sub-
derivation above the premise in which it appears in the sorting. We assume that implicit
α-renaming may be performed in quantifiers to force this to be the case.

3.2.2 Metatheory of Natural Deduction

Having defined the natural deduction system for BLS , we now seek to prove general prop-
erties of deductions in it. Such properties are called metatheorems. First, we prove the
following instantiation theorem, which means that instantiation of parameters (variables
in the domain of Σ) preserves provability or, more succinctly, that a proof of Σ; Γ `k s is
parametric in all variables in the domain of Σ.

Theorem 3.2 (Instantiation). Σ, x:σ; Γ `k s and Σ ` t : σ imply Σ; Γ[t/x] `k[t/x] s[t/x]

37

Chapter 3. BLS : An Authorization Logic for Static Policies

Proof. By induction on the derivation of Σ, x:σ; Γ `k s, using properties (T-weaken) and
(O-weaken) from §3.1.

Next, we prove that the structural properties of weakening and contraction are admis-
sible in natural deduction.

Theorem 3.3 (Weakening and contraction). The following hold.

1. (Weakening) Σ; Γ `k s implies Σ; Γ, J `k s.

2. (Contraction) Σ; Γ, J, J `k s implies Σ; Γ, J `k s.

Further the derivation in the consequent of each statement has a depth no more than that of
the antecedent.3 (As defined in Section 3.2.1, J denotes an arbitrary judgment of the form
s true or k claims s.)

Proof. In each case by induction on the given derivation.

Two important metatheorems already mentioned in §3.2.1 are the substitution principle
and the claim principle. Proving these properties needs another important metatheorem
called view subsumption, which states that weaker views make more formulas provable.
Intuitively, view subsumption may be justified directly from the definition of hypothetical
judgments.

Theorem 3.4 (View subsumption). Σ ` k � k′ and Σ; Γ `k s imply Σ; Γ `k′ s.

Proof. By induction on the derivation of Σ; Γ `k s, and case analysis of the last rule. The
only two interesting cases are shown below.

Case.
Σ ` k′′ � k

Σ; Γ, k′′ claims s `k s
claims

1. Σ ` k′′ � k (Premise)

2. Σ ` k � k′ (Assumption)

3. Σ ` k′′ � k′ (1,2; � is a preorder)

4. Σ; Γ, k′′ claims s `k′ s (Rule (claims) on 3)

Case.
Σ; Γ| `k′′ s′

Σ; Γ `k k′′ says s′
saysI

Here s = k′′ says s′.

1. Σ; Γ| `k′′ s′ (Premise)
3The depth of a derivation is defined as the maximum number of inference rules on a path in the derivation

that starts from its conclusion and ends at a leaf. Rules needed to establish the auxiliary judgment Σ ` t : σ
are not part of BLS ’s inference system and do not count towards the depth.

38

Chapter 3. BLS : An Authorization Logic for Static Policies

2. Σ; Γ `k′ k′′ says s′ (Rule (saysI) on 1)

The following theorem formally states that both the substitution and claim principles
hold.

Theorem 3.5 (Substitution and claim). The following hold.

1. (Substitution) Σ; Γ `k s and Σ; Γ, s `k s′ imply Σ; Γ `k s′.

2. (Claim) Σ; Γ| `k s and Σ; Γ, k claims s `k0 s′ imply Σ; Γ `k0 s′.

Proof. In each case by induction on the second given derivation and case analysis of the
last rule in it. The only interesting cases are the following, both in the proof of (2).

Case.
Σ ` k � k0

Σ; Γ, k claims s `k0 s
claims

To show: Σ; Γ `k0 s

1. Σ; Γ| `k s (Assumption)

2. Σ; Γ `k s (Weakening from Theorem 3.3 on 1)

3. Σ ` k � k0 (Premise)

4. Σ; Γ `k0 s (Theorem 3.4 on 2 and 3)

Case.
Σ; (Γ, k claims s)| `k′ s′

Σ; Γ, k claims s `k0 k′ says s′
saysI

To show: Σ; Γ `k0 k′ says s′

1. (Γ, k claims s)| = Γ|, k claims s (Defn. of ·|)

2. Σ; Γ|, k claims s `k′ s′ (Premise and 1)

3. Γ| = (Γ|)| (Defn. of ·|)

4. Σ; Γ| `k s (Assumption)

5. Σ; (Γ|)| `k s (3,4)

6. Σ; Γ| `k′ s′ (i.h. on 5,2)

7. Σ; Γ `k0 k′ says s′ (Rule (saysI) on 6)

39

Chapter 3. BLS : An Authorization Logic for Static Policies

3.2.3 Sequent Calculus

Next we develop a sequent calculus for BLS . As opposed to a natural deduction system
where rules modify the conclusion of the hypothetical judgment (the right side of `k), in a
sequent calculus rules operate both on the conclusion and the hypotheses. The merit of a
sequent calculus lies in the properties of derivations it admits; in particular, the subformula
property (Theorem 3.12) is extremely helpful for proving theorems later in this chapter.
When compared to a natural deduction system or an axiomatic system, a sequent calculus
is also more amenable to automatic proof search, a fact that we exploit for the full logic BL
in §6. Finally, the metatheorems of the sequent calculus, in particular the admissibility of
cut (Theorem 3.10) provide further evidence of good foundations of the logic.

As for the natural deduction system in §3.2.1, we follow the judgmental method. In
fact the structure of hypothetical judgments we use is the same as that for the natural
deduction system. We change the entailment symbol from `k to k−→ to distinguish the two
systems where confusion may arise. Hypothetical judgments in the sequent calculus are
called sequents.

Sequent ::= Σ; Γ k−→ s true

As before, k is called the view of the sequent and we abbreviate the judgment s true to s
when no confusion can arise.4

The rules of BLS ’s sequent calculus are summarized in Figure 3.3. Two fundamental
rules (init) and (claims) relate the different judgments. (init) means that if p true is assumed,
then it can be concluded. p must be an atomic formula. It is shown in Theorem 3.11 that a
generalization of this rule to arbitrary formulas is admissible in the sequent calculus, i.e. for
any formula s, there is a sequent calculus derivation of Σ; Γ, s k−→ s. It should be observed
that (init) is the only rule that relates the hypotheses of a sequent to its conclusion. All
other rules operate exclusively either on the hypotheses or on the conclusion. (claims) is
the sequent calculus equivalent of the rule of same name in the natural deduction system
(Figure 3.2). However, in the sequent calculus, the rule works entirely in the hypotheses –
the judgment s true derived from k claims s is introduced as an assumption in the premise,
rather than a conclusion (as was the case in the natural deduction system).

The remaining rules of the sequent calculus are directed by the connectives of BLS . For
each connective, there are right rules (marked R), which specify how the connective may be
decomposed if it appears at the top level in the conclusion of a sequent, and there are left
rules (marked L), which specify how the connective may be decomposed in the hypotheses.
The right rules are similar to introduction rules of the natural deduction system. The left
rules fulfill the purpose of the elimination rules from the natural deduction system, but are
not similar to them, since the former decompose connectives in the hypotheses instead of
conclusions. However, as Theorem 3.13 shows, the two formulations are equivalent in terms
of provability.

4Strictly speaking, in a sequent calculus the judgment s true in the hypotheses should be distinguished
from that in conclusions. However, this distinction is always evident from the position of the judgment in a
sequent, so we use the name true for both.

40

Chapter 3. BLS : An Authorization Logic for Static Policies

Σ; Γ, p k−→ p
init

Σ ` k � k0 Σ; Γ, k claims s, s k0−→ r

Σ; Γ, k claims s k0−→ r
claims

Σ; Γ k−→ s Σ; Γ k−→ s′

Σ; Γ k−→ s ∧ s′
∧R

Σ; Γ, s ∧ s′, s, s′ k−→ r

Σ; Γ, s ∧ s′ k−→ r
∧L

Σ; Γ k−→ s

Σ; Γ k−→ s ∨ s′
∨R1

Σ; Γ k−→ s′

Σ; Γ k−→ s ∨ s′
∨R2

Σ; Γ, s ∨ s′, s k−→ r Σ; Γ, s ∨ s′, s′ k−→ r

Σ; Γ, s ∨ s′ k−→ r
∨L

Σ; Γ k−→ >
>R

Σ; Γ,⊥ k−→ r
⊥L

Σ; Γ, s k−→ s′

Σ; Γ k−→ s ⊃ s′
⊃R

Σ; Γ, s ⊃ s′ k−→ s Σ; Γ, s ⊃ s′, s′ k−→ r

Σ; Γ, s ⊃ s′ k−→ r
⊃L

Σ, x:σ; Γ k−→ s

Σ; Γ k−→ ∀x:σ.s
∀R

Σ; Γ,∀x:σ.s, s[t/x] k−→ r Σ ` t : σ

Σ; Γ,∀x:σ.s k−→ r
∀L

Σ; Γ k−→ s[t/x] Σ ` t : σ

Σ; Γ k−→ ∃x:σ.s
∃R

Σ, x:σ; Γ,∃x:σ.s, s k−→ r

Σ; Γ,∃x:σ.s k−→ r
∃L

Σ; Γ| k−→ s

Σ; Γ k0−→ k says s
saysR

Σ; Γ, k says s, k claims s k0−→ r

Σ; Γ, k says s k0−→ r
saysL

Figure 3.3: BLS : Cut-free sequent calculus

The rules for the connectives ∧, ∨, ⊃, >, ⊥, ∀, and ∃ are standard, and we do not
describe them here. Rule (saysR) is identical to (saysI), except for the difference in the
entailment symbol. Rule (saysL) allows decomposition of (k says s) true in the hypotheses
by introducing the equivalent equivalent judgment k claims s as an additional assumption.
In the rules (∀R) and (∃L), the variable x can occur only in the sub-derivation above the
premise in which it appears in the sorting.

Example 3.6. We revisit Example 3.1, showing how the authorization admin says (may Bob
secret.txt read) may be derived from the policy rules and credentials (1)–(9) in Figure 3.1.
Let the set of formulas (1)–(9) be denoted by Γ. What we seek to show is that Σ; Γ k−→
admin says (may Bob secret.txt read), where Σ defines the sorts of known constants like Bob,
secret.txt, etc. and k is arbitrary. We construct a sequent calculus proof working backwards
from this required sequent.

First, using the rule (saysL) from Figure 3.3 several times, we observe that it suffices to

41

Chapter 3. BLS : An Authorization Logic for Static Policies

show instead that

(3.7) Σ; Γ′ k−→ admin says (may Bob secret.txt read)

where Γ′ is obtained from Γ by replacing all top-level says with claims. Abusing notation
slightly, we refer to the formulas in Γ′ with the same numbers as the original formulas in
Γ. Next, using the rule (saysR) it suffices to show that Σ; Γ′| admin−−−→ may Bob secret.txt read.
Since Γ′| = Γ′, it is enough to prove that

(3.8) Σ; Γ′ admin−−−→ may Bob secret.txt read

Using the rule (claims) on hypothesis (1), it suffices to prove

(3.9) Σ; Γ′, r1
admin−−−→ may Bob secret.txt read

where

r1 = ∀k, k′, f. (((hasLevelForFile k f) ∧ (system says (owns k′ f))∧
(k′ says (may k f read))) ⊃ may k f read)

Using rule (∀L) on r1 thrice to instantiate the universal quantifiers, followed by (⊃L) to
decompose the implication in r1 and (∧R) to decompose the conjunctions, we observe that
it suffices to show each of the following.

(3.10) Σ; Γ′, r1
admin−−−→ hasLevelForFile Bob secret.txt

(3.11) Σ; Γ′, r1
admin−−−→ system says (owns Alice secret.txt)

(3.12) Σ; Γ′, r1
admin−−−→ Alice says (may Bob secret.txt read)

The proof of (3.10) follows a pattern similar to the above, except that we must now operate
on policy rule (2); the details are omitted here since they provide no new insight. Proofs
of (3.11) and (3.12) are similar to each other. As an illustration, we show how (3.12) is
established. Using the rule (saysR) and observing that (Γ′, r1)| = Γ′, it suffices to show that

(3.13) Σ; Γ′ Alice−−−→ may Bob secret.txt read

Next, we apply the rule (claims) to policy rule (9), reducing the problem to that of proving

(3.14) Σ; Γ′, r2
Alice−−−→ may Bob secret.txt read

where
r2 = may Bob secret.txt read

Since r2 equals the conclusion of (3.14), the latter follows immediately from rule (init) and
hence this branch closes.

42

Chapter 3. BLS : An Authorization Logic for Static Policies

This example illustrates the general pattern of deriving authorizations from policies
written in BLS . The key observation here is that whenever the sequent to be established
has a conclusion of the form k says s, e.g., (3.7) and (3.12) above, the (saysR) rule can
be used to reduce the problem to that of showing s in the view k. The new view k is
very important since it allows application of the (claims) rule to promote claims of k to
truth, which may not have been possible in earlier views. In the example above, we use the
latter step to introduce the assumptions r1 and r2 in (3.9) and (3.14) respectively. Truth
assumptions like r1 and r2 can then be decomposed using left rules. This may result in new
goals as, for example, happens above when the implication in r1 is decomposed. Due to the
restriction operator Γ|, (saysR) also removes truth assumptions from earlier views, e.g., r1
is removed in (3.13) when the view changes from admin to Alice. This is essential because
the principal in the new view may not believe truths from an earlier view – r1, for example,
was stated by admin and Alice may not trust it.

3.2.4 Metatheory of the Sequent Calculus

Some of the metatheorems of the natural deduction system have corresponding analogues in
the sequent calculus as well. These include instantiation (Theorem 3.2), weakening and con-
traction (Theorem 3.3), view subsumption (Theorem 3.4), and instantiation (Theorem 3.2).

Theorem 3.7 (Instantiation). Σ, x:σ; Γ k−→ s and Σ ` t : σ imply Σ; Γ[t/x] k[t/x]−−−→ s[t/x]

Proof. By induction on the derivation of Σ, x:σ; Γ k−→ s, using properties (T-weaken) and
(O-weaken) from §3.1.

Theorem 3.8 (Weakening and contraction). The following hold.

1. (Weakening) Σ; Γ k−→ s implies Σ; Γ, J k−→ s.

2. (Contraction) Σ; Γ, J, J k−→ s implies Σ; Γ, J k−→ s.

Further the derivation in the consequent of each statement has a depth no more than
that of the antecedent.

Proof. In each case by induction on the given derivation.

Theorem 3.9 (View subsumption). Σ ` k � k′ and Σ; Γ k−→ s imply Σ; Γ k′−→ s.

Proof. By induction on the given derivation of Σ; Γ k−→ s.

An extremely important theorem in the sequent calculus is admissibility of cut [70],
which we state and prove below. Superficially, the statement of the theorem is similar to
the substitution and claim principles from natural deduction (Theorem 3.5). However, its
implications are different. In particular, admissibility of cut in a sequent calculus can be
construed as a proof-theoretic statement of the soundness of the inference system, because
together with the identity theorem (Theorem 3.11), it implies that the left rules and right

43

Chapter 3. BLS : An Authorization Logic for Static Policies

rules are in harmony with each other. A precise understanding of this intuition can only be
obtained by working through the details of the proof of admissibility of cut. Here, it suffices
to state that admissibility of cut provides a very strong assurance of good proof-theoretic
foundations, which are essential for an authorization logic like BLS . A second use of the
cut theorem is in proving other theorems. For instance it is used to show that axiomatic
and natural deduction proofs can be simulated in the sequent calculus (Theorem 3.13).
Theorem 3.10 (Admissibility of cut). The following hold.

1. Σ; Γ k−→ s and Σ; Γ, s k−→ r imply Σ; Γ k−→ r

2. Σ; Γ| k−→ s and Σ; Γ, k claims s k0−→ r imply Σ; Γ k0−→ r

Proof. By simultaneous lexicographic induction, first on the size of the cut formula s, then
on the order (2) > (1) on the inductive hypotheses, and then on the depths of the two given
derivations. This follows prior work for intuitionistic logic [113] and linear logic [43]. Since
the proof in [113] is modular in the connectives, we only need to consider new cases for says
and claims. For the benefit of the uninitiated reader we provide some details of the proof,
and show some representative cases.

Let the letters D and E denote the first and second given derivations in each case. To
prove (1) we analyze four exhaustive cases separately: (a) where E ends in a right rule, (b)
where E ends in a left rule but the cut is not principal (i.e. s is not the subject of the last
rule in E), (c) where D ends in a left rule, and (d) where E ends in a left rule, D ends in a
right rule and the cut is principal (i.e. s is the subject of the last rule of E . Of these (a),
(b), and (c) are straightforward. We show here one new case in (d), namely the principal
cut of the says connective.

Case. D =
Σ; Γ| k−→ s

Σ; Γ k0−→ k says s
saysR E =

Σ; Γ, k says s, k claims s k0−→ r

Σ; Γ, k says s k0−→ r
saysL

and the cut judgment is k says s. To show: Σ; Γ k0−→ r.

1. Σ; Γ, k claims s k0−→ r (i.h.(1) on D and premise of E)

2. Σ; Γ k0−→ r (i.h.(2) of premise of D and 1)

The application of i.h. in the first step is justified because E gets smaller. Even though
the derivation obtained from step 1 is potentially larger than E , the use of i.h. in the second
step is justified because the cut formula s is smaller, and the induction is lexicographic first
in the size of this formula, and second in the size of the derivations.

To prove (2) we case analyze the last rule in the derivation of E , distinguishing principal
and non-principal cuts when the last rule is a left rule. The only two interesting cases are
shown below.

Case. E =
Σ ` k � k0 Σ; Γ, k claims s, s k0−→ r

Σ; Γ, k claims s k0−→ r
claims

and the cut judgment is k claims s. To show: Σ; Γ k0−→ r.

44

Chapter 3. BLS : An Authorization Logic for Static Policies

1. Σ; Γ, s k0−→ r (i.h.(2) on D and premise of E)

2. Σ; Γ k−→ s (Weakening from Theorem 3.8 on D)

3. Σ; Γ k0−→ s (Theorem 3.9 on 2)

4. Σ; Γ k0−→ r (i.h.(1) on 3,1)

The use of the i.h. in the last step is justified because of the assumed order (2) > (1)
among the inductive hypotheses.

Case. E =
Σ; (Γ, k claims s)| k

′
−→ s′

Σ; Γ, k claims s k0−→ k′ says s′
saysR

and the cut judgment is k claims s. To show: Σ; Γ k0−→ k′ says s′.

1. (Γ, k claims s)| = Γ|, k claims s (Defn. of ·|)

2. Σ; Γ|, k claims s k′−→ s′ (Premise of E and 1)

3. (Γ|)| = Γ| (Defn. of ·|)

4. Σ; (Γ|)| k−→ s (D and 3)

5. Σ; Γ| k
′
−→ s′ (i.h.(2) on 4,2)

6. Σ; Γ k0−→ k′ says s′ (Rule (saysR) on 5)

Another meta-property of the sequent calculus is the following identity theorem, which
generalizes the (init) rule from atomic formulas p to arbitrary formulas s. Like admissibility
of cut, the identity theorem also provides confidence that the left and right rules of the
sequent calculus fit well with each other.

Theorem 3.11 (Identity). Σ; Γ, s k−→ s for each s.

Proof. By induction on s.

The last metatheorem about the sequent calculus that we prove here is the subformula
property. This property states that if we look at any sequent calculus proof of Σ; Γ k−→ s,
then the only formulas arising in this proof are subformulas of formulas already present
in Γ, s. Intuitively, this property holds because every sequent calculus rule when read
from the conclusion to premises only decomposes formulas. Hence, proceeding backwards,
the formulas always get smaller. Although we will not have occasion to use this theorem
directly, the idea of having only subformulas is used implicitly in the proofs of several other
theorems, including those involving translations between logics later in this chapter (§3.5).

45

Chapter 3. BLS : An Authorization Logic for Static Policies

Formally, we define the subformula relation s v s′ as the least relation that is reflexive,
transitive, closed under applications of all logical connectives (congruent), and includes the
following relations.

s v s ∧ s′ s′ v s ∧ s′ s v s ∨ s′ s′ v s ∨ s′ s v s ⊃ s′ s′ v s ⊃ s′

s[t/x] v ∀x:σ.s s[t/x] v ∃x:σ.s s v k says s

We further extend the relation to judgments by requiring that k claims s v k says s and
s v k claims s, and taking the reflexive, transitive, and congruence closure again.

Theorem 3.12 (Subformula property). Suppose the sequent Σ′; Γ′ k
′
−→ s′ appears in a proof

of the sequent Σ; Γ k−→ s. Then for each judgment J ′ in Γ′, s′, there is a judgment J in Γ, s
such that J ′ v J .

Proof. By induction on the derivation of Σ; Γ k−→ s.

3.3 Equivalence of Proof Systems
We have presented three different proof systems for BLS : an axiomatic system in §3.1.1, a
natural deduction system in §3.2.1, and a sequent calculus in §3.2.3. Now we show that,
despite their vast differences, they establish the same judgments. Formally, we show that
proofs in each system can be simulated in the other two. In order to represent hypothetical
judgments in the axiomatic system, we define a mapping · from judgments and hypotheses
to formulas.

s true = s
k claims s = k says s
J1, . . . , Jn = J1 ∧ . . . ∧ Jn

Theorem 3.13 (Equivalence). The following are equivalent for any Σ, Γ, k and s.

1. Σ; Γ k−→ s in the sequent calculus.

2. Σ; Γ `k s in the natural deduction system.

3. Σ `H k says (Γ ⊃ s) in the axiomatic system.

Proof. We show that 1 ⇒ 2 ⇒ 3 ⇒ 1.

Proof of 1 ⇒ 2. To show that every sequent calculus proof can be simulated in the
natural deduction system we induct on proofs of Σ; Γ k−→ s and case analyze the last rule
in the derivation. This is fairly standard, and we show here only the new cases involving
claims and says.

Case.
Σ ` k � k0 Σ; Γ, k claims s, s k0−→ r

Σ; Γ, k claims s k0−→ r
claims

To show: Σ; Γ, k claims s `k0 r

46

Chapter 3. BLS : An Authorization Logic for Static Policies

1. Σ; Γ, k claims s, s `k0 r (i.h. on premise)

2. Σ ` k � k0 (Premise)

3. Σ; Γ, k claims s `k0 s (Rule (claims) on 2)

4. Σ; Γ, k claims s `k0 r (Theorem 3.5 on 3,1)

Case.
Σ; Γ| k−→ s

Σ; Γ k0−→ k says s
saysR

To show: Σ; Γ `k0 k says s

1. Σ; Γ| `k s (i.h. on premise)

2. Σ; Γ `k0 k says s (Rule (saysI) on 1)

Case.
Σ; Γ, k says s, k claims s k0−→ r

Σ; Γ, k says s k0−→ r
saysL

To show: Σ; Γ, k says s `k0 r

1. Σ; Γ, k says s, k claims s `k0 r (i.h. on premise)

2. Σ; Γ, k says s `k0 k says s (Rule (hyp))

3. Σ; Γ, k says s `k0 r (Rule (saysE) on 2,1)

Proof of 2 ⇒ 3. Proving that the natural deduction system can be simulated in the
axiomatic system requires many lemmas about the latter. These details and the proof are
covered in Appendix A. In particular, see Lemma A.2.

Proof of 3 ⇒ 1. First we prove that if Σ `H s, then for every k, Σ; · k−→ s by showing
that every axiom and rule in the axiomatic system can be simulated in the sequent calculus.
This is straightforward but requires admissibility of cut (Theorem 3.10) as well as identity
(Theorem 3.11); details are in Appendix A (Lemma A.3).

Next we complete the proof assuming this fact. Suppose that Σ `H k says (Γ ⊃ s). It
follows that Σ; · k−→ k says (Γ ⊃ s). The only rule that can be used to derive this sequent is
(saysR). Hence, the premise of the rule, i.e Σ; · k−→ Γ ⊃ s must also hold. Again, the only
rule that can be used to derive this sequent is (⊃R). From the premise of this rule we get
Σ;Γ k−→ s. Now observe that Σ; Γ k−→ Γ. Using Theorem 3.10 on the last two sequents we
get Σ; Γ k−→ s as required.

47

Chapter 3. BLS : An Authorization Logic for Static Policies

3.3.1 On the Nature of Hypothetical Judgments in BLS

According to Theorem 3.13, the hypothetical judgment Σ; Γ `k s (and the sequent Σ; Γ k−→ s)
is equivalent to the formula k says (Γ ⊃ s) in the axiomatic system. This has two obvious
consequences. First, the natural deduction system and the sequent calculus correspond only
to a fragment of the axiomatic system, namely the one consisting of formulas that begin
with k says ·. Second, and perhaps more significantly, the view k of a hypothetical judgment
applies to the entire hypothetical judgment, not just the conclusion.

The latter means that hypothetical reasoning is always relativized to the claims of the
principal in the view. The truth of a formula is also relative to the view; whenever the view
changes in a natural deduction or sequent calculus proof (in the rules (saysI) and (saysR)),
judgments of the form s true in the hypotheses are erased by the operator Γ|. These ideas
were illustrated in Example 3.6. Whereas this relativization of truth may seem unusual for a
logic, it is quite useful in the context of authorization. Indeed, in practice, an authorization
will succeed or fail based solely on what the authorizer can be convinced of. This is precisely
the case in BLS .

There is also an extension of the structural proof theory of BLS that contains a “pure”
hypothetical judgment Σ; Γ ` s. All rules of natural deduction, except (claims), are allowed
for this hypothetical judgment. Further, the new hypothetical judgment in the extension
corresponds exactly to the axiomatic system. Since this extension is not useful from the
perspective of authorization we do not pursue it in detail here.

3.4 Relation to the Modal Logic Constructive S4

Note: This section assumes basic familiarity with modal logic, and is likely to be relevant
only to readers familiar with it. Uninterested readers may skip this section without affecting
readability of the rest of this thesis.

Since k says s is a modality, a natural question to ask is whether BLS is related to
other existing modal logics. The answer to this question is affirmative: BLS is very closely
connected to the modal logic constructive S4 (CS4) [11, 29, 115]. The latter is an intuition-
istic version of the modal logic S4 whose semantics and proof theory have been explored
extensively in the past. In this section, we establish connections between the propositional
fragment of BLS (i.e. the fragment without any quantifiers) and the fragment of CS4 without
the possibility modality. The restriction to the propositional case is motivated by the fact
that propositional CS4 has a well-studied proof theory. Precisely, we show the following.

• Propositional BLS , when restricted to only one principal (say `) reduces to CS4 with-
out the possibility modality ♦. In particular, in this case the modality ` says · behaves
exactly like � in CS4.

• The translation from propositional BLS to CS4 that maps k says s to �(gk ⊃ s)
(where, for each k, gk is a distinguished atomic formula in CS4) and all other con-
nectives to themselves is an embedding, i.e. it is sound and complete in terms of

48

Chapter 3. BLS : An Authorization Logic for Static Policies

provability. This shows that k says s in BLS is similar in nature to a necessitation
modality.

Constructive S4. CS4 is a propositional intuitionistic (constructive) modal logic with
the usual modalities of necessitation � and possibility ♦. Here, we are concerned with CS4
without ♦. A Hilbert style proof system for this logic consists of any axiomatization of
intuitionistic propositional logic, and the following rules and axioms for �s [11].

` s
` �s

(nec)

` (�(s ⊃ s′)) ⊃ ((�s) ⊃ (�s′)) (K)
` (�s) ⊃ ��s (4)
` (�s) ⊃ s (T)

A natural deduction system for CS4 was described by Pfenning and Davies [115], and a
sequent calculus for a generalization with indexed modalities and linearity appeared in
prior work [66]. Further, Alechina et al. have studied Kripke and categorical semantics of
CS4 [11].

BLS as a generalization of CS4. An obvious translation from CS4 to BLS is to map
�s to ` says s and all other connectives to themselves. Remarkably, this simple translation
is both sound and complete. Another way to look at this translation is to say that in the
degenerate case where there is only one principal (say `) in BLS , the sole modality ` says s
behaves exactly like the necessitation modality �s from CS4. In fact, in this degenerate
case the natural deduction system for BLS (Figure 3.2) reduces to the judgmental natural
deduction system for CS4 developed by Pfenning and Davies [115]. Similarly, the sequent
calculus (Figure 3.3) reduces to a corresponding calculus for CS4 (e.g., [66]).

Formally, let p · q be the translation from CS4 formulas to propositional BLS formulas
that maps �s to ` says psq and all other connectives to themselves. Then the following
theorem shows that BLS generalizes propositional CS4.

Theorem 3.14. In the special case where there is only one principal ` in BLS, the following
are equivalent for any CS4 formula s.

1. ` s in CS4.

2. ·; · `` psq in the natural deduction system of Figure 3.2.

Proof. This result follows from the observation that if there is only principal `, then the
natural deduction system of BLS in Figure 3.2 reduces to the natural deduction system of
CS4 [115]. This is because with only one principal, views are irrelevant and the (claims) rule
can be applied at all times. Hence, the judgment ` claims s corresponds to the judgment
called s valid in [115]. Due to this reduction of the natural deduction system, � in CS4
behaves exactly like ` says · in this restricted BLS .

49

Chapter 3. BLS : An Authorization Logic for Static Policies

Translation from propositional BLS to CS4. Next we consider a translation from
propositional BLS to CS4. For each principal k in propositional BLS , let gk be a distin-
guished atomic formula in CS4 that does not appear in BLS . The following translation p·q
maps k says s to �(gk ⊃ psq) and all other connectives to themselves.

ppq = p
ps ∧ s′q = psq ∧ ps′q
ps ∨ s′q = psq ∨ ps′q
ps ⊃ s′q = psq ⊃ ps′q
p>q = >
p⊥q = ⊥

pk says sq = �(gk ⊃ psq)

The important part of the translation is the mapping of k says s to �(gk ⊃ psq). The
formula gk on the left of the implication acts as a “guard” on psq, and recovers the effect of
the view associated with hypothetical judgments in BLS : psq can be obtained from gk ⊃ psq
only if gk is true. By design, our translation ensures that gk is true if and only if we are
reasoning in a view weaker than k.

Define the set of formulas O = {�(gk ⊃ gk′) | k′ � k}.5 O captures the preorder �
between principals as implications between the representations of principals as atomic for-
mulas. The following theorem states the correctness property for the translation. (We abuse
notation slightly and use O to also represent the formula obtained by taking the conjunction
of all formulas in the set O.)
Theorem 3.15 (Correctness). ·; · `k s in BLS if and only if ` O ⊃ (gk ⊃ psq) in CS4.
Proof. Soundness (“only if” direction) follows by an induction on proofs in BLS . We must
generalize the induction hypothesis to state that ·; Γ `k s implies ` O ⊃ ((pΓq ∧ gk) ⊃
psq). Completeness (“if” direction) follows by showing that CS4 sequent calculus proofs of
translated formulas can be simulated in BLS . See [64, Theorem 5.9] for details.

3.5 Translations from the GP Logic and Soutei to BLS
In this section we explore formal connections between BLS and two existing logic-based
authorization formalisms, namely the GP logic [67] and Soutei [118]. We prove that both
frameworks can be embedded in BLS in a sound and complete manner. Hence, any au-
thorization policy expressible in either the GP logic or Soutei is also expressible in BLS .
Proofs of correctness of both translations make extensive use of the sequent calculus theory
of BLS . In particular, they rely on the subformula property (Theorem 3.12).

3.5.1 Translation from the GP Logic

The GP logic was first described in joint work with Pfenning [67]; a second-order variant
was described independently by Abadi under the name CDD [5]. The syntax of formulas in

5Since we are considering only the propositional fragment of BLS , all principals are ground terms and,
hence, the sorting Σ in the judgment Σ ` k � k′ is irrelevant. So we abbreviate the latter to k � k′.

50

Chapter 3. BLS : An Authorization Logic for Static Policies

the GP logic is the same as that in BLS , but the says modality is interpreted as a family of
lax modalities [28, 60] indexed by principals. The logic is quite expressive, has a simple and
well studied proof theory, and together with CDD forms the basis of a lot of subsequent
research [61, 65, 66, 85, 90, 139]. Interestingly, it can be embedded into BLS simply by
prefixing all connectives with ` says ·. This translation is inspired by Gödel’s translation
from intuitionistic logic to modal S4, where a � is put before each connective [74]. In the
following we describe GP logic briefly and show that this translation to BLS is a logical
embedding.

GP Logic. Formulas of GP logic have the same syntax as formulas of BLS . For simplicity,
we consider here the fragment that was presented in prior work [67]. This fragment contains
only atomic formulas, ⊃, ⊥, ∀, and says. The translation presented here extends to other
connectives easily. We use the letters A,B,C to denote formulas in GP logic.

A,B,C ::= p | A ⊃ B | ⊥ | ∀x:σ.A | k says A

The modality k says A in GP logic is treated as a monad. It is defined by the following
axioms.

` A ⊃ (k says A) (unit)
` (k says (A ⊃ B)) ⊃ ((k says A) ⊃ k says B) (K)
` (k says k says A) ⊃ k says A (C4)

Unlike BLS , there is no order between principals in GP logic. A sequent calculus for the
logic from prior work [67] is reproduced in Figure 3.4. The basic judgments used are A true
(abbreviated to A) and k affirms A. The latter is internalized by the connective k says A.
Sequents have the form Σ; Γ −→ γ. There are no views. The hypotheses Γ are a multiset of
assumptions of the form A true. Conclusions γ may be of either of the two forms A true
and k affirms A. For details of the sequent calculus we refer the reader to prior work.
The important points to observe are that all left rules except (saysL) apply to all possible
conclusions, whereas in the rule (saysL) the conclusion must have the form k affirms B, and
this k must match the k in the principal formula k says A on the left.

Translation from the GP logic to BLS. Let pr be the sort of principals in GP logic.
Assume that ` is not in pr, and that the sort of principals in BLS , principal, contains all
principals in pr and ` (but no others). Thus pr is a subsort of principal. Further assume that
unequal principals in pr are not related to each other in the preorder � in BLS , and that
the sort principal does not appear in formulas of GP logic.

The translation pAq from formulas and sequents of GP logic to those of BLS is defined
in Figure 3.5. On formulas the translation adds the prefix ` says · before all connectives
of the except for the top most connective. On sequents the translation adds the prefix
` claims · to all hypotheses, and sets the view and conclusion depending on the conclusion
of the GP logic sequent.

51

Chapter 3. BLS : An Authorization Logic for Static Policies

Σ; Γ, p −→ p
init

Σ; Γ −→ A

Σ; Γ −→ k affirms A
affirms

Σ; Γ, A −→ B

Σ; Γ −→ A ⊃ B
⊃R

Σ; Γ, A ⊃ B −→ A Σ; Γ, A ⊃ B,B −→ γ

Σ; Γ, A ⊃ B −→ γ
⊃L

Σ; Γ,⊥ −→ γ
⊥L

Σ, x:σ; Γ −→ A

Σ; Γ −→ ∀x:σ.A
∀R

Σ; Γ,∀x:σ.A,A[t/x] −→ γ

Σ; Γ,∀x:σ.A −→ γ
∀L

Σ; Γ −→ k affirms A
Σ; Γ −→ k says A

saysR
Σ; Γ, k says A,A −→ k affirms B
Σ; Γ, k says A −→ k affirms B

saysL

Figure 3.4: Sequent calculus for GP logic (reproduced from [67])

Correctness of the translation. The translation p·q is sound and complete, i.e. a se-
quent is provable in GP logic if and only if its translation is provable in BLS . Soundness,
the “only if” direction is easy to establish by induction on sequent calculus proofs in GP
logic.

Theorem 3.16 (Soundness). If Σ; Γ −→ γ in GP logic, then pΣ; Γ −→ γq in BLS.

Proof. By induction on the given GP logic proof of Σ; Γ −→ γ. See Appendix A for details
(Theorem A.4).

The converse of this theorem, completeness, is harder to prove. First, we define a
translation |s| from a fragment of BLS larger than the image of p·q back to GP logic,
such that |p·q| is the identity translation. Then, we prove that whenever a sequent is
provable in BLS , its translation under | · | is provable in GP logic. This immediately implies
completeness. The subformula property of the sequent calculus (Theorem 3.12) is implicitly
used in this proof. It ensures that proofs of sequents in the domain of | · | only contain
sequents that are also in its domain, so that we can always apply the induction hypothesis.
Although this style of proving completeness of translations has been used in the past, its
details are specific to each case, so we discuss them here. The inverse translation | · | is
defined in Figure 3.6.

Lemma 3.17 (Composition). The following hold.

1. |pAq| = A

2. |pΣ; Γ −→ γq| = Σ;Γ −→ γ

52

Chapter 3. BLS : An Authorization Logic for Static Policies

Formulas A

ppq = p
pA ⊃ Bq = (` says pAq) ⊃ (` says pBq)
p⊥q = ⊥

p∀x:σ.Aq = ∀x:σ. ` says pAq
pk says Aq = k says ` says pAq

Hypotheses Γ

pA1 true, . . . , An trueq = ` claims pA1q, . . . , ` claims pAnq

Sequents

pΣ; Γ −→ B trueq = Σ; pΓq `−→ pBq true
pΣ; Γ −→ k affirms Bq = Σ; pΓq k−→ ` says pBq true

Figure 3.5: Translation from GP logic to BLS

Proof. By induction on the syntax of GP logic.

Lemma 3.18 (Simulation). Suppose Σ ` k � k′ implies k = k′ for every k and k′ in the
sort pr. Then, whenever Σ; Γ k−→ s true is in the domain of | · | and provable in BLS, it is
the case that |Σ; Γ k−→ s true | is provable in GP logic.

Proof. By induction on the given BLS derivation of Σ; Γ k−→ s true and case analysis of its
last rule. Since the translation | · | on sequents is defined based on whether the view is ` or
not, we further distinguish cases based on the view. Some representative cases are shown
here. We frequently use the structural properties of weakening and contraction for the
sequent calculus of GP logic. These can be proved easily by induction on sequent calculus
derivations.

Case.
Σ; Γ, p k−→ p

init (k 6= `)

To show: Σ; |Γ|, p −→ k affirms p

1. Σ; |Γ|, p −→ p (Rule (init))

2. Σ; |Γ|, p −→ k affirms p (Rule (affirms) on 1)

Case.
Σ; Γ, p `−→ p

init

53

Chapter 3. BLS : An Authorization Logic for Static Policies

Formulas s

|p| = p
|s1 ⊃ s2| = |s1| ⊃ |s2|
|⊥| = ⊥
|∀x:σ.s| = ∀x:σ.|s| σ 6= principal

|k says s| =
{
k says |s| k 6= `
|s| k = `

Hypotheses Γ

|s true | = |s| true

|k claims s| =
{

(k says |s|) true k 6= `
|s| true k = `

|J1, . . . , Jn| = |J1|, . . . , |Jn|

Sequents

|Σ; Γ k−→ s true | =
{

Σ; |Γ| −→ k affirms |s| k 6= `, principal 6∈ Σ
Σ; |Γ| −→ |s| true k = `, principal 6∈ Σ

Figure 3.6: Translation from a fragment of BLS to GP logic

To show: Σ; |Γ|, p −→ p

This follows directly from rule (init).

Case.
Σ ` k � k0 Σ; Γ, k claims s, s k0−→ r

Σ; Γ, k claims s k0−→ r
claims (k0 6= `)

Subcase. k = `. To show: Σ; |Γ|, |s| −→ k0 affirms |r|

1. Σ; |Γ|, |s|, |s| −→ k0 affirms |r| (i.h. on premise)

2. Σ; |Γ|, |s| −→ k0 affirms |r| (Contraction on 1)

Subcase. k 6= `. To show: Σ; |Γ|, k says |s| −→ k0 affirms |r|
By assumption, the premise Σ ` k � k0 implies k = k0.

1. Σ; |Γ|, k says |s|, |s| −→ k0 affirms |r| (i.h. on premise)

2. Σ; |Γ|, k says |s| −→ k0 affirms |r| (Rule (saysL) on 1; k = k0)

54

Chapter 3. BLS : An Authorization Logic for Static Policies

Case.
Σ ` k � ` Σ; Γ, k claims s, s `−→ r

Σ; Γ, k claims s `−→ r
claims

The premise Σ ` k � ` forces k = `. Therefore, we must show that Σ; |Γ|, |s| −→ |r|.

1. Σ; |Γ|, |s|, |s| −→ |r| (i.h. on premise)

2. Σ; |Γ|, |s| −→ |r| (Contraction on 1)

Case.
Σ; Γ| k−→ s

Σ; Γ k0−→ k says s
saysR (k0 6= `)

Subcase. k = `. To show: Σ; |Γ| −→ k0 affirms |s|

1. Σ; |(Γ|)| −→ |s| (i.h. on premise)

2. Σ; |Γ| −→ |s| (Weakening on 1)

3. Σ; |Γ| −→ k0 affirms |s| (Rule (affirms) on 2)

Subcase. k 6= `. To show: Σ; |Γ| −→ k0 affirms k says |s|

1. Σ; |(Γ|)| −→ k affirms |s| (i.h. on premise)

2. Σ; |Γ| −→ k affirms |s| (Weakening on 1)

3. Σ; |Γ| −→ k says |s| (Rule (saysR) on 2)

4. Σ; |Γ| −→ k0 affirms k says |s| (Rule (affirms) on 3)

Case.
Σ; Γ| k−→ s

Σ; Γ `−→ k says s
saysR

Subcase. k = `. To show: Σ; |Γ| −→ |s|

1. Σ; |(Γ|)| −→ |s| (i.h. on premise)

2. Σ; |Γ| −→ |s| (Weakening on 1)

Subcase. k 6= `. To show: Σ; |Γ| −→ k says |s|

1. Σ; |(Γ|)| −→ k affirms |s| (i.h. on premise)

2. Σ; |Γ| −→ k affirms |s| (Weakening on 1)

3. Σ; |Γ| −→ k says |s| (Rule (saysR) on 2)

55

Chapter 3. BLS : An Authorization Logic for Static Policies

Case.
Σ; Γ, k says s, k claims s k0−→ r

Σ; Γ, k says s k0−→ r
saysL (k0 6= `)

To show: Σ; |Γ|, |k says s| −→ k0 affirms |r|

1. Σ; |Γ|, |k says s|, |k claims s| −→ k0 affirms |r| (i.h. on premise)

2. Σ; |Γ|, |k says s| −→ k0 affirms |r| (Contraction on 1; |k says s| = |k claims s|)

Case.
Σ; Γ, k says s, k claims s `−→ r

Σ; Γ, k says s `−→ r
saysL

To show: Σ; |Γ|, |k says s| −→ |r|

1. Σ; |Γ|, |k says s|, |k claims s| −→ |r| (i.h. on premise)

2. Σ; |Γ|, |k says s| −→ |r| (Contraction on 1; |k says s| = |k claims s|)

Theorem 3.19 (Completeness). If pΣ; Γ −→ γq is provable in BLS, then Σ; Γ −→ γ is
provable in GP logic.

Proof. Suppose pΣ; Γ −→ γq is provable in BLS . By Lemma 3.18, |pΣ; Γ −→ γq| is provable
in GP logic. Using Lemma 3.17, |pΣ; Γ −→ γq| = Σ; Γ −→ γ. Hence Σ; Γ −→ γ is provable in
GP logic.

3.5.2 Translation from Soutei

Soutei is a trust management system, i.e. a framework for administering and enforcing
authorization policies [118]. It has been deployed in at least one large application, namely a
publish-subscribe service on the web. Soutei’s language for writing authorization policies is
declarative; its syntax extends the syntax of Prolog by allowing limited use of the connective
k says s. For the lack of a better name we call this language SL. The semantics of SL
are defined through inference rules that resemble backchaining rules for top down logic
programming (a la Prolog). An extremely interesting aspect from our perspective is that
the says connective in SL behaves similarly to the says modality in BLS to the extent that,
with the exception of differences in syntax, SL is a fragment of BLS . In the following
we describe SL, and prove that it can be embedded in BLS . A translation is needed to
account for the differences in syntax. Although the inference system of SL allows the same
consequences as that of BLS , the two differ significantly in details. As a result, the proof
of correctness of the embedding is quite involved.

56

Chapter 3. BLS : An Authorization Logic for Static Policies

SL. SL is based on Binder [52], another declarative language for writing authorization
policies. Policy statements (called clauses) are divided into disjoint sets called assertions.
Each assertion has a name, which is analogous to a principal in authorization logics. If
c1, . . . , cn are the clauses in an assertion named k, then the whole assertion behaves as the
hypothesis k says c1, . . . , k says cn. The syntax of SL is shown below.6

Principals or names k
Atomic Formulas p ::= P t1 . . . tn
Goals g ::= p | k says p
Clauses c ::= ∀x1 . . . xn. (p : - g1, . . . , gm)
Assertions ∆ ::= c1, . . . , cn
Named assertions N ::= k : ∆
Hypotheses Γ ::= N1, . . . , Nm

Queries q ::= ∆ `Γ g

Policy statements are represented as clauses that have the form ∀x1 . . . xn. (p : - g1, . . . , gm),
where p is an atomic formula and each gi is either an atomic formula or has the form
k says p. As usual, the entire clause implies that for any grounding substitution θ with
domain x1 . . . xn, pθ holds if each of g1θ, . . . , gmθ hold. n may be zero, in which case pθ is
a fact. An assertion ∆ is a set of clauses. A named assertion is a pair k : ∆ containing
an assertion and a principal. The principal is a name for the assertion, and may represent
a physical domain (such as a computer or a user) inside which policies contained in the
assertion hold. The set of all named assertions is called the hypotheses Γ. It is assumed
implicitly that the names of all assertions in Γ are distinct. Authorization queries are
evaluated relative to the hypotheses Γ and an assertion ∆ containing clauses which are
valid at the point of evaluation. As evaluation of a query proceeds, ∆ may change, but Γ
remains fixed. Evaluation of queries is goal directed, and uses the following two rules:

(∀x1 . . . xn. (p : - g1, . . . , gm)) ∈ ∆ dom(θ) ⊇ x1 . . . xn (∆ `Γ giθ)i∈{1,...,m}
∆ `Γ pθ

bc

(k : ∆′) ∈ Γ ∆′ `Γ p

∆ `Γ k says p
says

The rule (bc) means that pθ holds if there is a clause ∀x1 . . . xn. (p : - g1, . . . , gm) in the valid
assertion, and each giθ holds. This is the standard backchaining rule for logic programs.
The rule (says) means that k says P is true if in the assertion ∆ named k, p is true.

Translation from SL to BLS. Assume that BLS contains all principals in SL, each of
which is distinct from `. Further assume that unequal principals of SL are not related to
each other in the order �. Since SL is not multi-sorted, we need only one sort in BLS ,

6We change Soutei’s original notation to make it consistent with our own notation. We also simplify the
evaluation rules slightly, without affecting their consequences.

57

Chapter 3. BLS : An Authorization Logic for Static Policies

Goals g

ppq = p
pk says pq = k says p

Clauses c

p∀x1 . . . xn. (p : - g1, . . . , gm)q = ∀x1 . . . xn. ((pg1q ∧ . . . ∧ pgmq) ⊃ p)

Assertions ∆

pc1, . . . , cnq = pc1q, . . . , pcnq

Named assertions N

pk : c1, . . . , cnq = k claims pc1q, . . . , k claims pcnq

Hypotheses Γ

pN1, . . . , Nmq = pN1q, . . . , pNmq

Figure 3.7: Translation from SL to BLS

say principal. In this special case, Σ ` t : principal whenever all free variables of t are
in the domain of Σ. The translation p·q from SL to BLS is defined in Figure 3.7. Since
the only sort is principal, we omit sort annotations from universal quantifiers, abbreviating
∀x:principal.s to ∀x.s.

It is noteworthy that the translation only renames some connectives. It replaces : - by ⊃,
and the named assertion k : c1 . . . cn by k claims c1, . . . , k claims cn. Owing to the similarity
in the behavior of says in Soutei and BLS , this simple translation is sound and complete.
This is formalized by the following theorem.

Theorem 3.20 (Correctness). Suppose k : ∆ ∈ Γ. Then, ∆ `Γ g in SL if and only if
·; pΓq, p∆q k−→ pgq in BLS.

Proof. The “only if” direction follows by a simple induction on derivations in Soutei. The
“if” direction is much harder to establish. Our proof follows an approach similar to that of
Theorem 3.19 and relies on the subformula property. The inverse translation, however, is
more involved. Details of the proof in both direction are in Appendix A (Theorem A.11).

58

Chapter 3. BLS : An Authorization Logic for Static Policies

3.6 Horn Fragment and Translation to First-Order Logic
As the final technical result of this chapter we present a sound and complete embedding of
a reasonably expressive fragment of BLS in first-order intuitionistic logic.7 The main idea
of our translation is to eliminate the modality k says s by pushing the principal name k to
the predicates in s as an extra argument. For example, we translate k says (P t1 . . . tn) to
(P k t1 . . . tn). Besides the fact that the translation makes BLS amenable to existing tools
for first-order logic such as automatic theorem provers, the translation is also relevant for
a historic reason – its main idea has been used in the past to both define and implement
other declarative policy languages with the says modality. For example, the semantics
of Binder, one of the earliest policy languages with a says modality, are defined using a
similar translation that maps Binder policies into Datalog programs [52]. Similarly, the
policy language SecPAL is implemented via translation to Datalog, again using a related
translation to embed says in first-order logic [23]. What the results of this section show
is that there is at least some logical justification for these translations, namely that for a
says modality that behaves like the one in BLS , pushing k says · to predicates constitutes a
provability preserving embedding.

We make two important observations. First, this translation does not work for all
existing authorization logics with a says modality. The translation is not sound if the says
modality in the source logic is too strong, e.g., as in the GP logic (§3.5.1). Similarly, the
translation is not complete if the says modality is too weak, as happens, for example, with
logics in early work [8, 88]. Therefore, the interpretation of says should neither be too
weak nor too strong for the translation to be sound and complete. BLS seems to achieve
this balance well. Second, even for BLS , the use of connectives must be restricted in source
formulas in order to make the translation complete. More precisely, what we really translate
is not all of BLS but only a fragment of it. This fragment is quite large and very expressive.
Indeed, all policies encountered by the author so far that can be expressed in BLS can
also be expressed in the fragment, and the image of the translation from SL (§3.5.2) is
also contained in it. The main restriction in the fragment is that ⊃ and ∀ are not allowed
to appear as top level connectives in conclusions of sequents, whereas ∃, ∨, and ⊥ are not
allowed to appear at the top level in hypotheses. Further, it must be assumed that the order
� between principals is trivial, i.e. Σ ` k � k′ implies k = k′. The fragment resembles a
fragment of predicate logic called the Horn fragment, and hence we call it the Horn fragment
of BLS .8 An important property is that in any proof of a sequent in the Horn fragment,
the sorting Σ and the hypotheses Γ never change.

Horn fragment of BLS. The syntax of the Horn fragment of BLS is shown below. We
divide the syntax of formulas into goals g and clauses d (the terms goal and clause are
borrowed from logic programming). Hypotheses are restricted to the forms k claims d and

7We drop the adjective “intuitionistic” when referring to the target of the translation since the image of
the translation lies in a fragment of first-order logic on which intuitionistic and classical provability coincide.
We do not show here that this is the case, since this observation is orthogonal to the concerns of the
translation. Our correctness proof is based on an intuitionistic sequent calculus.

8The Horn fragment of predicate logic is the fragment that is used in Prolog.

59

Chapter 3. BLS : An Authorization Logic for Static Policies

d true (abbreviated to d). The two forms of hypotheses are distinguished using different
letters ∆ and Ξ respectively. This is necessary because the translations of the two types
of hypotheses are different. In addition we assume that distinct principals are unrelated to
each other in the order � (so � is the diagonal relationship); in particular, ` is assumed to
be absent.

Goals g ::= p | k says g | g1 ∧ g2 | g1 ∨ g2 | > | ⊥ | ∃x:σ.g
Clauses d ::= p | ∀x:σ.d | g ⊃ d | > | d1 ∧ d2
Claims Hypotheses ∆ ::= k1 claims d1, . . . , kn claims dn
True Hypotheses Ξ ::= d1, . . . , dn

Sequents Σ; ∆,Ξ k−→ g

The rules of inference for the Horn fragment are the same as those of the sequent calculus
for BLS (Figure 3.3), except that sequents are restricted to the form Σ; ∆,Ξ k−→ g. It can
be checked that this class of sequents is closed in the following sense: all sequents occurring
in the proof of a sequent in the class also lie in the class.

Translation to first-order logic. As the target of the translation we consider a multi-
sorted first-order intuitionistic logic having the same sorts as BLS . We assume that for
every predicate in BLS , there is a predicate of the same name in first-order logic that takes
an extra argument of sort principal. As a convention, we make this the first argument of the
predicate. The proof theory of intuitionistic first-order logic has been studied extensively
and although we need it for proving the translation correct, we do not reiterate it here.
Briefly, a sequent calculus for the logic may be obtained by ignoring rules containing says
and claims in Figure 3.3 and additionally dropping all views from sequents (see Figure A.1
in Appendix A for a listing of the rules of the sequent calculus).

Figure 3.8 describes the translation [[·]] from the Horn fragment to first-order logic. An
auxiliary translation [[·]]k indexed by a principal k is also needed to translate formulas (goals
and clauses) and true hypotheses Ξ. Intuitively, the index k is the principal in the nearest
says or claims outside the formula being translated. The central “trick” of the translation
is to push the modality k says · down to atomic formulas, where k is added as an extra
argument to the predicate symbols. That this simple idea works for a reasonably large
fragment of BLS may seem surprising. However, as mentioned earlier, the idea does not
extend to larger fragments.

Theorem 3.21 (Correctness of Translation). Let Σ; ∆,Ξ k−→ g be a sequent in the Horn
fragment of BLS and assume that for each d ∈ Ξ, k claims d ∈ ∆. Then Σ; ∆,Ξ k−→ g is
provable in BLS if and only if its translation Σ; [[∆]], [[Ξ]]k −→ [[g]]k is provable in first-order
logic.

Proof. Soundness, the “only if” direction, follows by a straightforward induction on the
proof of Σ; ∆,Ξ k−→ g. Completeness follows by a lexicographic induction, first on the given
derivation of Σ; [[∆]], [[Ξ]]k −→ [[g]]k and then on the structure of g. Details of the proof in
both directions are in Appendix A (Theorem A.14).

60

Chapter 3. BLS : An Authorization Logic for Static Policies

Goals g

[[P t1 . . . tn]]k = P k t1 . . . tn
[[k′ says g]]k = [[g]]k′
[[g1 ∧ g2]]k = [[g1]]k ∧ [[g2]]k
[[g1 ∨ g2]]k = [[g1]]k ∨ [[g2]]k

[[>]]k = >
[[⊥]]k = ⊥

[[∃x:σ.g]]k = ∃x:σ.[[g]]k

Clauses d

[[P t1 . . . tn]]k = P k t1 . . . tn
[[∀x:σ.d]]k = ∀x:σ.[[d]]k
[[g ⊃ d]]k = [[g]]k ⊃ [[d]]k

[[>]]k = >
[[d1 ∧ d2]]k = [[d1]]k ∧ [[d2]]k

Claims Hypotheses ∆

[[k1 claims d1, . . . , kn claims dn]] = [[d1]]k1 , . . . , [[dn]]kn

True Hypotheses Ξ

[[d1, . . . , dn]]k = [[d1]]k, . . . , [[dn]]k

Sequents

[[Σ; ∆,Ξ k−→ g]] = Σ; [[∆]], [[Ξ]]k −→ [[g]]k

Figure 3.8: Translation from the Horn fragment of BLS to first-order logic.

61

Chapter 3. BLS : An Authorization Logic for Static Policies

Example 3.22. We illustrate the translation [[·]] on the policy of Examples 3.1 and 3.6.
The policy in Figure 3.1 does not lie in the Horn fragment (because clauses cannot contain
says at the top level), but that policy can be transformed to an equivalent one by replacing
all top level says with claims. This slightly modified policy, which we denoted with the
symbol Γ′ in Example 3.6, is in the syntax of claims hypotheses (∆). We may translate the
policy using the translation [[·]]. As illustrations, rules (1) and (2) when translated result in
the following formulas.

(1’) ∀k, k′, f. (((hasLevelForFile admin k f) ∧ (owns system k′ f)∧
(may k′ k f read)) ⊃ may admin k f read)

(2’) ∀k, f, l, l′. (((levelFile system f l) ∧ (levelPrin hr k l′)∧
(below admin l l′)) ⊃ hasLevelForFile admin k f)

Since the translation does not account for the relation �, the rules (3)–(5) from Fig-
ure 3.1 that were stated by ` must be replicated for every principal in first-order logic.
For instance, instead of assuming the formula below ` secret topsecret (which would be the
translation of (4)), we need to assume below admin secret topsecret to draw meaningful
conclusions from the translated policy.

Another relevant observation is that although Theorem 3.21 shows that translated poli-
cies can be used to draw the same authorizations as the original policies in BLS , translated
policies are not very convenient for direct enforcement in distributed settings. The reason
is that it is not obvious from either (1’) or (2’) that they correspond to rules of the principal
admin, and consequently, it is also unclear how they may be established to a reference mon-
itor. On the other hand, the corresponding rules (1) and (2) from Figure 3.1 make explicit
the identity of the principal creating them (via the top level annotation admin says ·), and
make it obvious that both (1) and (2) should be established through certificates signed by
admin. Similarly, if first-order logic were to be used for enforcement, all certificates would
have to be represented via the translation. As a result, the translation described in this
section is largely of theoretical interest. It can used in practice indirectly, e.g., for reducing
the problem of proof search in BLS to that of proof search in first-order logic.

A formal relation between Binder and Soutei. The creators of Soutei empha-
size (without proof) [118, Section 2] that Soutei is a dialect of another policy language,
Binder [52]. Whereas the syntax of Soutei is a restriction of the syntax of Binder, it is far
from obvious that their seemingly different inference systems admit the same authorizations
from syntactically identical policies. As explained in §3.5.2, the inference system of Soutei
resembles a backchaining proof system from logic programming. The semantics of Binder
policies, on the other hand, are defined via a translation to first-order logic which is identical
to the translation described above. Consequently, Theorems 3.20 and 3.21 together show
that the authorizations derivable from policies expressible in Soutei are the same in Binder
and Soutei (and also in BLS). Therefore, Soutei is provably a fragment of Binder.

62

Chapter 3. BLS : An Authorization Logic for Static Policies

3.7 Related Work
We close this chapter with a discussion of some of the vast amount of work on other au-
thorization logics, logic-based authorization languages, and other formalisms for expressing
authorization policies. We also discuss work on formal analysis of policies for correctness
and problems, a topic that is not covered in this thesis. Related work on constructs in
policy formalisms that may be used to express dynamic policies is discussed in §4.7.

3.7.1 Authorization Logics

The ABLP logic. The study of authorization logics was initiated in the work of Lampson
and others [8, 88]. The logic proposed in these papers, called the ABLP logic, is classical and
its proof system is axiomatic (as opposed to BLS and the GP logic which are intuitionistic
and based in structural proof theory). The main goal of the ABLP logic was to formalize and
explain authentication and authorization in distributed systems; the logic was not intended
for a direct implementation.

The ABLP logic introduced the modality says although the behavior of the modality
is different from says in BLS because the modality satisfies the rule (N) and axiom (K)
from §3.1, but no other primitive axioms. As a result, k says ((k′ says s′) ⊃ s) and k′ says s′
do not imply k says s in the logic, which makes it impossible to express authorizations
in the manner considered in this chapter. The logic is propositional, but it contains the
speaksfor connective k1 ⇒ k2 (see the discussion of full delegation in §3.1.2). As discussed
in §3.1.2, the order � on principals in BLS can be used to fulfill the same purpose as
speaksfor, although BLS suffers from the limitation that � is not internalized into the
syntax of formulas. The latter restriction is removed in the full logic BL in §4.

Another important aspect of the ABLP logic, also not present in BLS , are principals with
a syntactic structure that has semantic consequences. For example, the principal k1∧k2 has
the property that for every s, (k1∧k2) says s is logically equivalent to (k1 says s)∧(k2 says s).
Many other “connectives” of principals besides ∧ are considered in the ABLP logic. It is
argued, mostly informally, that such structured principals can be used to represent several
policy idioms including many kinds of delegations, groups, and roles [8]. A significant
technical result of the work relates to decidability of fragments of the logic.

The logic of Appel and Felten. In their seminal work on proof-carrying authorization
(then called proof-carrying authentication), Appel and Felten introduced a higher-order
authorization logic [13]. In this logic, principals are treated as predicates and k says s is
defined as k(s) (predicate k applied to formula s). The deduction system contains some
common inference rules of higher-order logic and some specialized rules for authorization
specific concerns. Higher-order predicates make the logic very expressive; indeed the au-
thors treat the logic as a logical framework in which other authorization logics may be
encoded. However, owing to the higher-order constructs, even proving simple properties
like consistency is extremely difficult. Further, it remains unclear why a higher-order logic
is necessary when first-order quantification suffices not only to express most policy idioms,
but also as the basis of extremely expressive logical frameworks like Twelf [116]. This logic

63

Chapter 3. BLS : An Authorization Logic for Static Policies

and its derivatives form the basis of several implementations of proof-carrying authorization
prior to this work [18, 20].

GP logic and related approaches. As discussed in §3.5.1, the GP logic was developed
jointly by the author and Pfenning [67]. The says connective in the GP logic is treated
as an indexed lax modality [28, 60]. The paper introduces three basic ideas: (a) use of
intuitionistic logic as opposed to classical logic for expressing authorization policies, (b)
emphasis on structural proof theory and metatheory for authorization logic, and (c) use of
first-order quantifiers in place of higher-order quantifiers as in the work of Appel and Felten.
(a) and (b) are foundationally important contributions. They were discussed in §1. (c),
the use of first-order quantifiers, was already “in the air” at the time that the GP logic was
conceived because it was present in several policy languages (described below). Through a
translation from the GP logic to BLS , it was argued in §3.5.1 that BLS is no less expressive
than the GP logic. Further, it has been described in §3.1.2 that it is difficult to express
exclusive delegation in the GP logic. The latter motivated the switch from the GP logic to
BL as the basis of this thesis. The ideas of using intuitionistic connectives, structural proof
theory, and first-order quantifiers as foundations for authorization carry over to BL.

In independent work, Abadi describes a logic closely related to the GP logic [5], derived
as a special case of the dependency core calculus (DCC) [7]. DCC treats k says s as an
indexed lax modality (like the GP logic), but it allows more. For example, k says k′ says s
is logically equivalent to k′ says k says s. This can be undesirable in many scenarios. A
restricted version of DCC, called CDD is very similar to the GP logic (in particular it does
not admit this commutativity), except that it contains second-order quantification in place
of first-order quantification. While this makes it difficult to express many policies that
require quantification over principals and objects, it does allow the speaksfor connective
introduced in §3.1.2 to be defined using other connectives.

In joint work with Abadi, we consider many extensions of the propositional fragment of
the GP logic (and CDD) under the name ICL [65]. In particular, structured principals from
ABLP logic are revisited, and their semantics are precisely defined. Further, the nature of
the indexed lax modalities is explained by translation to the modal logic S4. It is also shown
that the interpretation of k ⇒ k′ as ∀s. ((k says s) ⊃ (k′ says s)) is sound and complete if
certain conditions are met.

The GP logic and CDD have been used subsequently in many other places, including
languages for security [15, 61, 85, 139], several extensions including those containing support
for explicit time and consumable credentials [34, 54, 66], an extensible authorization frame-
work [90], and an extended logic for both representing authorization policies and reasoning
about their consequences [55].

Other work. In a survey of the use of logic in access control, Abadi explores connections
between logics and languages for writing authorization policies, in particular, Binder [4]. In
this context, he proposes the axiom (I), which is admissible in BLS . More recently, Abadi
has studied possible axioms for authorization logics and the connections between them,
both in classical and intuitionistic settings [6].

64

Chapter 3. BLS : An Authorization Logic for Static Policies

3.7.2 Logic-based Authorization Languages

Besides authorization logics, there are several languages for writing authorization policies
and determining their consequences that use logical syntax and logic-like inference rules. In
this section we discuss some of these languages.

Historically, Binder [52] was the first policy language to support distributed policies.
Its syntax extends the Horn fragment of predicate logic with a says modality, and its se-
mantics (consequence relation) are defined by a translation to first-order logic, as discussed
in §3.6. The overall structure of policy evaluation is similar to proof-carrying authorization:
principals may sign arbitrary policy statements, which are then distributed to others. Any
principal may derive authorizations by translating all policy statements it has into first-
order logic using a transformation similar to that in §3.6 and running a Datalog engine over
the translated statements. Soutei is another policy language with a says modality [118].
What is interesting about Soutei here is the similarity between its says modality and that of
BLS – we proved in §3.5.2 that Soutei is a fragment of BLS . Soutei is also closely connected
to, and a fragment of Binder, as argued in §3.6.

SecPAL [23] is a more recent language for writing authorization policies. In addition to
the says modality, SecPAL also includes support for exclusive delegation (via a construct
written k says k′ cansay p) as well as limited support for bounded delegation (a delegation
in SecPAL can either be undelegatable or it can be delegated to any depth). SecPAL also
supports environmental constraints including the a limited form of explicit time; this as-
pect is discussed in greater detail in §4.7. SecPAL’s formal semantics are based on logic-like
inference rules, while its implementation is based on a translation to Datalog. It is shown
formally that the translation respects the inference rules. Recently, Dinesh et al. [56] have
proposed an access control logic, which generalizes the cansay construct of SecPAL from
atomic to arbitrary formulas. The proof system of the logic is classical and axiomatic. The
language DKAL [76] adds directed communication to SecPAL. With directed communica-
tion, principals may make statements that are heard only by intended recipients. DKAL
combines authorization policies and logic-based framework for reasoning about knowledge
of principals. The latter is also the subject of a recent paper on an extension of the GP
logic called ω-logic [55].

The policy language RT [95] combines role based access control (RBAC) with trust
management. We include it here because its semantics are defined through a translation to
an extension of Datalog with constraint domains called Constrained Datalog [94]. RT has
many important constructs including a construct to encode separation of duty as well as a
thresholding construct that allows authorization only whenm out of n designated principals
approve. The latter seem to be difficult to express in authorization logics without additional
constraint domains due to exponential blow-up in encoding (See §4.1.2 for a description of
how thresholding can be encoded with constraints in the full logic BL). Cassandra [26] is
another policy language based on RBAC whose semantics are also defined by translation to
Datalog with constraints. In addition to roles, Cassandra also has support for representing
physical distribution of policies on different sites. Other similar languages include DL whose
semantics are defined by translation to logic programs [92], and SD3 which is a very simple
extension of Datalog with a certified inference engine that creates and checks a proof of

65

Chapter 3. BLS : An Authorization Logic for Static Policies

inference before returning the result [86].

3.7.3 Other Policy Formalisms

There are also many other formalisms for expressing authorization policies and reasoning
from them that are not based in logic. Although they are not directly connected to the
work of this thesis, for the sake of completeness, we briefly discuss some of them here.

Trust Management. Trust management (TM) is a general term for describing manage-
ment of delegation in authorization policies. It was coined by Blaze et al. [32] who introduced
two frameworks for enforcing policies, PolicyMaker [33] and its successor KeyNote [31]. The
basic construct in these frameworks is delegation: principals delegate authority over specific
subjects (predicates) to others through digitally signed certificates. For example, Alice may
delegate Bob the authority to make decisions about access to e-mails.

Although designed as certificate schemes for binding names and keys to principals,
the Simple Public Key Infrastructure (SPKI) [58] and X.509v3 [79] also allow delegation
of authority in a manner similar to TM frameworks. SPKI also allows limited control
over delegating delegated authority (bounded delegation; §3.1.2). When giving Bob some
authority, Alice may or may not allow Bob to further delegate the authority. SPKI and
KeyNote also allow authority to be delegated jointly to groups of principals, and like RT,
also support thresholding. The latter means that an authorization holds if at least m
distinct principals out of n specified principals state that it does.

Role Based Access Control (RBAC). RBAC [127] is a generic approach to access
control in which permissions are authorized to specific roles, and principals are assigned
membership to roles based on need. A lot of work has been done in the area, includ-
ing a language for enforcing RBAC policies [83], and several proposals for administering
RBAC [93, 126, 135].

XACML. XACML [107] is an XML based language for specifying policies. XACML can
express attribute based authorization. Because XACML policy rules may explicitly allow
or deny access, decisions drawn from policies may be inconclusive in some cases.

3.7.4 Policy Analysis

There has been a limited amount of work in the past on analyzing formally represented
authorization policies for desirable and undesirable properties and checking their correctness
against intuitive criteria. Techniques in the area have been based in logic as well as other
formal methods.

Proof-theoretic approaches to analysis of authorization policies were pioneered in joint
work of the author and Pfenning [67]. That work describes a method for making a static
approximation of an authorization policy written in GP logic to prove that the addition
of certain kinds of formulas (credentials) cannot not affect the consequences drawn from
the policy. This can be used to prove that the policy satisfies some intuitive properties

66

Chapter 3. BLS : An Authorization Logic for Static Policies

regarding what control specific principals have over specific predicates. It is also proved
that a priori, the logic isolates the statements of principals. This is called non-interference.
It is a metatheorem like admissibility of cut. A similar (in fact stronger) theorem can be
proved for BLS easily. Abadi describes a related but different notion of non-interference for
DCC [5]. Chaudhuri et al. describe a Datalog-based framework for modeling and analyzing
the consequences of access control systems [42]. They apply their method to the access
control model of Windows Vista and the Asbestos operating system, and find vulnerabilities
in the former.

Outside of logic, there has been work on analysis of RBAC systems. For example,
Li and Mitchell describe algorithms for analyzing reachability properties for states of an
RBAC system, given some restrictions on how the policies may change [96]. Schaad and
Moffett [131] present a specification language for describing conflict-free role based systems.
Sasturkar et al. [129] and Stoller et al. [135] analyze the complexity of deciding reachability
of states in RBAC systems with administrators (ARBAC).

67

Chapter 3. BLS : An Authorization Logic for Static Policies

68

Chapter 4

BL: An Authorization Logic for
Dynamic Policies

This chapter introduces BL, the logic used in PCFS, discusses its proof theory, and its
metatheoretic properties. BL is an extension of BLS (§3); from the latter it inherits all
connectives of first-order intuitionistic logic and the modality k says s. In addition, BL
supports explicit time, predicates that represent the state of the system (called interpreted
predicates), and constraint domains. Using these constructs, dynamic policies that depend
on time and system state can be expressed in BL (§1.3, Motivation 2).

Support for explicit time in BL is manifest in the modality s @ [u1, u2], which means
that s is always true during the time interval [u1, u2] but possibly not outside of it. u1 and
u2 both denote time points, encoded as integers that count seconds from a fixed point of
reference. This modality is useful for representing policies that expire at stipulated points
of time, as well as those that use time relatively, e.g., allowing access for 90 days from the
happening of an event. s @ [u1, u2] was first studied in joint work by DeYoung, the author,
and Pfenning [54] in the context of a different logic called η. η logic is covered in detail in
DeYoung’s undergraduate thesis [53]. It is an extension of the GP logic (§3.5.1) in much the
same way that BL is an extension of BLS . The proof-theoretic treatment of s @ [u1, u2] in
BL is largely based on that in η, with the exceptions that the interaction between k says s
and explicit time in BL is subtler than it is in η, and that there is also a new interaction
between explicit time and interpreted predicates in BL, which is absent from η since η does
not include interpreted predicates. From the perspective of modal logics, s @ [u1, u2] is a
hybrid modality, and like other similar modalities it interacts with all connectives of the
logic and changes the very nature of logical judgments [35, 106, 122]. This is discussed in
detail in §4.2.

Explicit time is useful for determining consequences of policies in practice only in con-
junction with methods for reasoning about inequality between time points. For example, if
Alice has a certificate that allows her a certain access from January 01, 2007 to December
31, 2010, it is only reasonable that she be able to derive from it a proof that allows her
access on August 12, 2009. Constructing such a proof requires the ability to reason that
August 12, 2009 lies between January 01, 2007 and December 31, 2010. To this end, BL

69

Chapter 4. BL: An Authorization Logic for Dynamic Policies

includes special formulas called constraints, one particular form which may be inequalities
on time points, u1 ≤ u2. Constraints differ from ordinary predicates in that they are not
established by hypothesis; instead their verification relies on an external constraint solver
which is formally embedded in the logic via a satisfaction judgment |= c (c denotes a con-
straint). We do not stipulate the rules of this judgment since, by design, the logic is agnostic
to the solver used to implement constraints. However, the metatheoretic properties of BL
are contingent upon certain assumptions about the constraint domain, which we list explic-
itly in §4.2.1. In addition to representing inequalities between time points constraints can
be used to represent the relation k � k′ between principals in BLS , thus eliminating the
need to fix the relation statically through the judgment Σ ` k � k′. The proof-theoretic
treatment of constraints in BL is based on similar work for linear logic [84, 128] which was
also used previously in η logic.

Besides explicit time, many real authorization policies use the state of the system as
an input. The state may represent the progress of a workflow or a protocol. As a simple
example, the authorization policy for a homework directory in a class administration system
may allow read and write access for the teaching assistants while the homework is being
prepared, read and write access for students while the homework may be submitted, and
read access for teaching assistants after submissions are closed. A simple way to model the
different stages – preparation, submission, and post-submission – may be as a state system;
the stage may be written by the instructor as an attribute (meta-data) on the homework
directory, and the access policy rules may be contingent upon the value of the attribute. To
incorporate such elements of state in policy rules, BL allows interpreted predicates, whose
truth is not justified by the logical hypotheses, but by an external solver that refers to the
state of the system. In the case of our example here, the solver would check the value of
the attribute on the homework directory.

Constraints and interpreted predicates are similar to each other because both may be
established through decision procedures external to the logic. They are different because
the truth of interpreted predicates depends on the state of the system and may change with
it, whereas the truth of constraints is independent of system state. This difference also
manifests in separate treatments of constraints and interpreted predicates during enforce-
ment of policies in PCFS (§5) and, hence, we maintain a syntactic distinction between the
two in BL formulas. The proof theory of BL treats constraints and interpreted predicates
similarly.

The emphasis in our discussion of BL, as in the case of BLS , is on structural proof theory,
i.e. a natural deduction system (§4.2.2) and a sequent calculus (§4.2.4), which we show to be
equivalent in terms of provability (§4.2.6). We prove several metatheoretic properties for BL
including admissibility of cut. The importance of structural proof theory and metatheory
in the context of authorization have already been emphasized in §1.3 and §3, so we do not
reiterate them here. However, it is perhaps useful to observe that besides the fact that
proof theory defines the meanings of policies represented in BL, proof-theoretic techniques
are directly implemented in the proof verifier and automatic prover for PCFS (§5 and §6).
We do not consider an axiomatic system for BL; the author is uncertain if there even is a
complete axiomatization of the logic.

70

Chapter 4. BL: An Authorization Logic for Dynamic Policies

An important aspect of structural proof theory that we study for BL is proof normal-
ization (§4.5): we show that every natural deduction proof can be transformed to one in a
restricted class of proofs called canonical proofs. Canonical proofs are proofs without any
β-redexes.1 The proof of this normalization result uses admissibility of cut and generalizes
well known observations about the similarity of cut-elimination and proof normalization
in classical and intuitionistic logic [119, 120, 145]. It is more directly based on notes on
proof theory for intuitionistic logic by Pfenning [114]. Another interesting aspect of BL
covered in this chapter is its connection to BLS . Although BL’s syntax and proof systems
generalize those of BLS , BL is not a conservative extension of BLS . In particular, axiom
(C) from §3.1.1 is not admissible in BL. In §4.6 we define a simple translation from BLS
to BL and prove it sound and complete. Finally, this chapter discusses how BL in used to
represent policies and establish authorizations in PCFS (§4.3).

4.1 BL: Syntax and Informal Description

BL generalizes intuitionistic first-order logic with the connectives k says s and s @ [u1, u2],
constraints, and interpreted predicates. In addition to the sort principal already present in
BLS , BL also includes an additional sort time that includes all time points, whose members
are denoted by the letter u. A ground time point is either an integer that represents time
in seconds elapsed from a fixed point of reference (so time points can be both negative and
positive), or it is one of the distinguished constants −∞ and +∞ denoting the minimum
and maximum possible time respectively.

Atomic formulas in BL are of three types: (a) Uninterpreted atoms, p, which are ob-
tained by applying uninterpreted predicates P to terms, (b) Interpreted atoms, i, which
capture the state of the system in the logic, and (c) Constraints, c. BL does not stipulate
any specific uninterpreted or interpreted predicates, but it requires at least two types of
constraints: k1 � k2, which represent the preorder on principals introduced in §3.1, and
u1 ≤ u2 that capture the usual ordering on integers with the added proviso that u ≤ +∞
and −∞ ≤ u for every u. The syntax of BL formulas is summarized in Figure 4.1. An
interval [u1, u2] in the syntax is well-formed only if u1 ≤ u2. Well-formedness of formulas
can be defined through inference rules as in prior work [54], but for simplicity we omit these
details from the presentation here.

4.1.1 Properties of Connectives Explained Informally

Before describing proof systems for BL, we explain informally how explicit time, interpreted
predicates, and constraints interact with other connectives of the logic and with each other.
The objective of explaining these interactions is to illustrate the meanings of the new con-
structs in BL. Interaction of the modality k says s with standard connectives of first-order
logic was explained in §3 in the context of BLS and carries over to BL rather unchanged, the
only exception being that the BLS axiom (C) – k says ((k says s) ⊃ s) – is not admissible

1A β-redex is any locus in a natural deduction proof where an elimination rule is applied to a connective
that is established using an introduction rule.

71

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Sorts σ ::= principal | time | . . .
Integers n ::= . . . | − 2 | − 1 | 0 | 1 | 2 | . . .
Constants a ::= ` | n | −∞ | +∞ | . . .
Terms t, k, u ::= a | x | f(t1, . . . , tn)
Uninterpreted predicates P
Interpreted predicates I
Uninterpreted atoms p, q ::= P t1 . . . tn
Interpreted atoms i ::= I t1 . . . tn
Constraints c ::= u1 ≤ u2 | k1 � k2 | . . .
Formulas r, s ::= p | i | c | r ∧ s | r ∨ s | r ⊃ s | > | ⊥ |

∀x:σ.s | ∃x:σ.s | k says s | s @ [u1, u2]

Figure 4.1: Syntax of BL formulas

in BL. The latter is not a limitation of BL, since axiom (C) is rarely, if ever, needed to
draw meaningful consequences from policies. It was included in BLS primarily to make the
axiomatic system and natural deduction equivalent (Theorem 3.13). An analogue of axiom
(C), (k says (((k says s) @ [u1, u2]) ⊃ s)) @ [u1, u2] is admissible in BL.

Interaction of explicit time and constraints with other connectives. The BL
modality s @ [u1, u2], together with constraints, interacts with all other connectives in a
significant manner. Writing s1 ≡ s2 as an abbreviation for (s1 ⊃ s2) ∧ (s2 ⊃ s1), and ` s
for provability without hypotheses, the following properties hold. A formal definition of ` s
and proofs of all properties listed in this section are deferred to §4.2.4.

1. ` ((u1 ≤ u′1) ∧ (u′2 ≤ u2)) ⊃ ((s @ [u1, u2]) ⊃ (s @ [u′1, u′2]))

2. ` ((s1 ∧ s2) @ [u1, u2]) ≡ ((s1 @ [u1, u2]) ∧ (s2 @ [u1, u2]))

3. ` ((s1 ∨ s2) @ [u1, u2]) ≡ ((s1 @ [u1, u2]) ∨ (s2 @ [u1, u2]))

4. ` ((∀x:σ.s) @ [u1, u2]) ≡ (∀x:σ.(s @ [u1, u2])) (x 6∈ u1, u2)

5. ` ((∃x:σ.s) @ [u1, u2]) ≡ (∃x:σ.(s @ [u1, u2])) (x 6∈ u1, u2)

6. ` > @ [u1, u2]

7. ` (⊥ @ [u1, u2]) ⊃ (s @ [u′1, u′2])

8. There is no interval [u1, u2] such that ` ⊥ @ [u1, u2].

9. ` ((s1 ⊃ s2) @ [u1, u2]) ≡ (∀x1:time.∀x2:time. (((u1 ≤ x1) ∧ (x2 ≤ u2) ∧ (s1 @
[x1, x2])) ⊃ (s2 @ [x1, x2])))

Property (1) means that if s holds during an interval [u1, u2], then it also holds during
any subinterval [u′1, u′2]. The constraints u1 ≤ u′1 and u′2 ≤ u2 imply that [u′1, u′2] ⊆ [u1, u2].

72

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Properties (2)–(5) mean that the @ connective commutes with the connectives ∧, ∨, ∀, and
∃. The provability of the formula ((s1 ∨ s2) @ [u1, u2]) ⊃ ((s1 @ [u1, u2]) ∨ (s2 @ [u1, u2]))
entailed by property (3) may be surprising. For example, if s1 holds on some interval
[u1, u] and s2 holds on another interval [u, u2], then, seemingly, (s1 ∨ s2) @ [u1, u2] should
be true but neither of s1 @ [u1, u2] and s2 @ [u1, u2] may hold. However, in BL, we do
not allow an analysis of intervals; in particular, s1 @ [u1, u] and s2 @ [u, u2] do not imply
(s1 ∨ s2) @ [u1, u2], so the previous counterexample does not work. The reasons for this
choice are explained in §4.2.2.

Truth is provable a priori on all intervals as property (6) states. Property (7) states that
if falsehood is provable on any interval, then every formula is provable on every interval. This
may be surprising, particularly because a similar property does not hold for says – it is not
the case that ` (k says ⊥) ⊃ (k′ says s) for unrelated k and k′. However, there is no interval
on which ⊥ is provable a priori, so the logic is consistent (8). Property (9) means that a
proof of (s1 ⊃ s2) @ [u1, u2] is equivalent to having a proof of (s1 @ [x1, x2]) ⊃ (s2 @ [x1, x2])
for every subinterval [x1, x2] of [u1, u2]. This property is a consequence of the intuitionistic
nature of BL and the hybrid nature of @.

Unlike the connectives ∧, ∨, ∀, and ∃ which commute freely with @, the says connective
commutes with @ in only one direction, as the following properties show. (6` s means that
there is at least one instance of s that is not provable a priori.)

10. ` ((k says s) @ [u1, u2]) ⊃ (k says (s @ [u1, u2]))

11. 6` (k says (s @ [u1, u2])) ⊃ ((k says s) @ [u1, u2])

The @ connective has a trivial interaction with itself – nested @ connectives can be
reduced to the innermost only.

12. ` ((s @ [u1, u2]) @ [u′1, u′2]) ≡ (s @ [u1, u2])

Finally, axiom (S) of BLS from §3.1.1 can be generalized in BL by internalizing the side
condition Σ ` k � k′ as a constraint.

13. ` (k′ � k) ⊃ ((k′ says s) ⊃ (k says s))

Interaction of constraints with says and @. There are two interactions between con-
straints and says, and constraints and @ that deserve careful scrutiny. First, c ⊃ (k says c)
for every k and c, which means that every true constraint is supported by every principal.
This supports the idea that there is a unique definition of constraint satisfaction on which
all principals agree. This may not be case for other formulas since, in general, it is not the
case that s ⊃ (k says s). Further, (k says c) does not imply c. This prevents principals from
changing the universal meaning of constraints simply by asserting new constraints.

Second, it is the case that (c @ [u1, u2]) ≡ (c @ [u′1, u′2]). This a consequence of the fact
that the truth of a constraint is independent of time: either c holds on all intervals or it
holds on none. All these interactions are summarized below.

14. ` c ⊃ (k says c)

73

Chapter 4. BL: An Authorization Logic for Dynamic Policies

15. 6` (k says c) ⊃ c

16. ` (c @ [u1, u2]) ≡ (c @ [u′1, u′2])

Interaction of interpreted atoms with other connectives. The interaction of inter-
preted atoms with most connectives of BL is unremarkable; they behave almost like their
uninterpreted counterparts. However, interpreted atoms interact with says and @ in a man-
ner that is similar to that described previously for constraints. In particular, the following
properties hold in BL.

17. ` i ⊃ (k says i)

18. 6` (k says i) ⊃ i

19. ` (i @ [u1, u2]) ≡ (i @ [u′1, u′2])

Property (17) implies (as for constraints) that all principals agree on a single definition
of interpreted predicates, which should be intuitive since there is a single system state at the
point of policy enforcement. Property (18) prevents principals from changing this unique
interpretation through assertions.

Property (19) is counter-intuitive, and reflects an important design choice not only in BL
but also in PCFS. The apparent problem with the property is that, in practice, the truth
of interpreted atoms does change with time as the system state changes, so i @ [u1, u2]
should not imply i @ [u′1, u′2] for arbitrary intervals [u1, u2] and [u′1, u′2]. The reason that
this implication holds in BL is that interpreted atoms are evaluated in a fixed system state
that is explicitly assumed, and is supposed to represent the state prevailing at the time of
access. This state is denoted by the symbol E in §4.2. Consequently, the statement “i is
true” implicitly means that “i is true in the explicitly assumed state E”, and is, therefore,
independent of time.

The ramification of this design choice is that history of system state cannot be captured
by interpreted atoms and explicit time in an intuitive manner. While this may seem limiting,
it is necessitated by practical concerns: if i @ [u1, u2] did indeed mean that i were true during
the interval [u1, u2], then any proof verifier would need a record of the entire history (and
possibly future) of system state in order to check proofs. This is clearly impractical. On the
other hand, limiting system state to one point in time does not really reduce expressiveness:
if some access control policy were to rely on a predicate over system state having been true
in the past, this can still be represented in BL by requiring that there be explicit evidence
– either an element of system state or a certificate – still valid at the time of access that
witnesses this fact. Clearly, requiring such persistent evidence is no harder than requiring
the reference monitor to maintain a record of the entire history, and is in fact, a better
design choice since it requires the policy to make explicit what evidence from the past is
necessary to verify proofs.

74

Chapter 4. BL: An Authorization Logic for Dynamic Policies

4.1.2 Expressible Policy Idioms

Using explicit time, constraints, and interpreted predicates, several new policy idioms in
addition those already expressible in BLS (§3.1.2) become expressible in BL. This section
lists some of these idioms.

Certificate expiration. The simplest use of explicit time is to accurately represent expi-
ration of certificates in the logic. For example, if Alice signs a certificate allowing Bob read
access to file secret.txt from February 01, 2009 to February 28, 2009, this can be represented
in BL as the formula (Alice says (may Bob secret.txt read)) @ [2009:02:01, 2009:02:28].2 The
interaction of the @ connective with constraints in BL ensures that this time interval is
respected during enforcement.

Anachronistic references. Explicit time can also be used to represent policies that
depend on facts having been true at explicit time points in the past. This often happens
in policies that represent a change of scenario. Suppose, for instance, that a university UV
allows its alumni to continue to access their files for six months after they leave UV. This
policy can be expressed using a combination of explicit time and constraints in BL. Let the
predicate alumni k T mean that k became an alumni at time T , let the constraint is T T ′

mean that T and T ′ are equal, and let 180d denote a time period of six months. Then, UV
may represent this policy as follows.

UV says ∀k, f, T, T ′.
(((alumni k T) ∧ ((mayaccess k f) @ [T, T]) ∧ (is T ′ (T + 180d)))
⊃ ((mayaccess k f) @ [T, T ′]))

This policy rule states that if k became an alumni at time T and k could access file f at time
T , then k may access file f during the interval [T, T +180d] as well. The constraint is T T ′

and the arithmetic operator + used in this policy rule are supported in the implementation
of BL in PCFS (see §4.3).

State dependent policies. Access is sometimes dependent on the state of the system,
which is itself not modeled in the policy as a certificate. This can happen when access
rights change during different stages of a workflow. Such policies can be expressed in BL
using interpreted predicates. For example, in PCFS, files go through two states: default
and governed. A newly created file is in the default state, and in this state the owner of
the file has all access to the file, whereas in the governed state other applicable policy rules
determine access to the file. Let the interpreted predicates state f S and owner f k
respectively mean that file f is in state S, and that the owner of file f is principal k. Then,

2In Section 4.3 we describe the representation of digital certificates using basic judgments of BL instead
of formulas. Although logically equivalent, that representation is slightly simpler and closer to the actual
implementation of BL in PCFS.

75

Chapter 4. BL: An Authorization Logic for Dynamic Policies

the access policy for the default state may be expressed using the following formula.3

admin says ∀k, f. (((state f default) ∧ (owner f k)) ⊃ (mayaccess k f))

Other examples of policies that depend on state, and in particular on attributes of files may
be found in §4.3.3 and §8.

Thresholding. It was mentioned in §3.7 that it is difficult to express without constraints
policies that allow access only when m out of n designated principals approve. However,
with constraints, such thresholding is easy to express. For example, the following policy rule
states that Alice supports s if at least three good principals also support s. The constraint
different k1 k2 k3 means that the three principals k1, k2, and k3 are distinct. (This
example is based on a similar example in a paper on the policy language SecPAL [23].)

Alice says ∀k1, k2, k3.
(((k1 says s) ∧ (k2 says s) ∧ (k3 says s) ∧ (good k1) ∧ (good k2) ∧ (good k3)∧
(different k1 k2 k3)) ⊃ s)

4.2 Structural Proof Theory

We now turn to the centerpiece of this thesis – the proof theory of BL. We describe a
natural deduction system and a sequent calculus for the logic, and study their metatheoretic
properties. The technical content in this section generalizes structural proof theory for
BLS (§3.2). Before presenting the inference systems we discuss how constraint domains and
interpreted predicates are formally represented in the logic since they are crucial to both
natural deduction and the sequent calculus.

4.2.1 Constraints and Interpreted Predicates

Unlike uninterpreted predicates which are established by applying inference rules of the
logic to hypotheses, the rules for establishing constraints and interpreted predicates are
not stipulated in BL. Instead, both constraints and interpreted predicates are established
through external solvers, which we formally reflect in the logic via judgments without any
specific rules.

Representation of constraint domains. Let Ψ = c1, . . . , cn denote a set of constraints,
possibly containing free variables that are implicitly assumed to be universally quantified.
Let c be another constraint and let Σ be a sorting whose domain contains all the free
variables of Ψ and c. We write Σ; Ψ |= c if and only if for every grounding substitution
θ whose domain includes the domain of Σ, it is the case that c1θ, . . . , cnθ entail cθ. This

3This policy rule is merely an illustration. In the actual implementation of PCFS, the state of a file is
represented through an extended attribute which can be represented in BL through a generic interpreted
predicate has_xattr, and the owner is given access in the default state by procaps, not a policy rule. See §7
for details.

76

Chapter 4. BL: An Authorization Logic for Dynamic Policies

entailment may be classical, i.e. the constraint solver may simply check that ¬c1θ ∨ . . . ∨
¬cnθ ∨ cθ holds.

Clearly, the constraint domain must support universally quantified variables. For cer-
tain fragments of the logic, this requirement can be waived. In particular, if both universal
quantification and implication are disallowed on the right hand side of hypothetical judg-
ments and existential quantification is disallowed on the left, then the constraint domain
does not need to take into account universally quantified variables. This is because only
the rules (⊃R), (∀R), and (∃L) of the sequent calculus (§4.2.4) introduce variables in Σ.
Although this restricted fragment is quite expressive, the implementation of the solver for
constraints in PCFS takes into account universally quantified variables and does not need
this restriction.

Proof theory of BL uses the judgment Σ; Ψ |= c as a “black-box”, and is, therefore,
oblivious to the details of the constraint solver used. However, in order to obtain metathe-
oretic properties of the inference systems, we make the following assumptions about the
constraint domain.

(C-hyp) Σ; Ψ, c |= c.

(C-weaken) Σ; Ψ |= c implies both Σ; Ψ, c′ |= c and Σ, x:σ; Ψ |= c.

(C-cut) Σ; Ψ |= c and Σ; Ψ, c |= c′ imply Σ; Ψ |= c′.

(C-subst) Σ, x:σ; Ψ |= c and Σ ` t : σ imply Σ; Ψ[t/x] |= c[t/x].

(C-refl-time) Σ; Ψ |= u ≤ u.

(C-trans-time) Σ; Ψ |= u ≤ u′ and Σ; Ψ |= u′ ≤ u′′ imply Σ; Ψ |= u ≤ u′′.

(C-refl-prin) Σ; Ψ |= k � k.

(C-trans-prin) Σ; Ψ |= k � k′ and Σ; Ψ |= k′ � k′′ imply Σ; Ψ |= k � k′′.

(C-inf-time) Σ; Ψ |= u ≤ +∞ and Σ; Ψ |= −∞ ≤ u

(C-loc-prin) Σ; Ψ |= ` � k

(C-hyp), (C-weaken), and (C-cut) should hold for any reasonable constraint domain, sim-
ply by definition of entailment. (C-subst) means that the constraint domain accounts for
universally quantified variables correctly. (C-refl-time) and (C-trans-time) mean that the
constraint domain must treat the relation u ≤ u′ as a preorder. (C-refl-prin) and (C-trans-
prin) impose a similar condition on k � k′. (C-inf-time) and (C-loc-prin) ensure that +∞
and −∞ are treated as the greatest and the least time points respectively, and that ` is the
strongest principal.

How easy is it to implement a decision procedure for solving u ≤ u′ and k � k′, the
two forms of constraints mandated by BL? It turns out that this is extremely easy. In each
case, we only need to take a reflexive transitive closure of the relations assumed in Ψ and
check that the goal c lies in the result. Both the front end (proof search, proof verifier) and
the back end (reference monitor) of PCFS implement these decision procedures. A typical
check takes around 2µs on a 2.4GHz Intel Core 2 Duo processor.

77

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Representation of the solver for interpreted predicates. Interpreted predicates
are checked directly on the prevailing state of the system. In the logic, the state of the
system is abstractly represented as a set of interpreted atoms, denoted E. The judgment
Σ;E |= i means that for all grounding substitutions θ whose domain contains the domain
of Σ, iθ ∈ Eθ. In order to prove metatheoretic properties of BL’s inference systems, we
make the following assumptions about this judgment, all of which should be intuitive from
its definition.

(S-hyp) Σ;E, i |= i.

(S-weaken) Σ;E |= i implies both Σ;E,E′ |= i and Σ, x:σ; Ψ |= c.

(S-cut) Σ;E |= i and Σ;E, i |= i′ imply Σ;E |= i′.

(S-subst) Σ, x:σ;E |= i and Σ ` t : σ imply Σ;E[t/x] |= i[t/x].

In an actual implementation it may be infeasible to represent the entire system state explic-
itly in E because it may be very large or even infinite. Accordingly, in the implementation
of PCFS, only certain atoms in E are represented explicitly. These are atoms that are
added to E in a proof rule, e.g., (interE) in the natural deduction system (§4.2.2). The rest
of the state is left implicit in the system, and is checked directly by the solver.

4.2.2 Natural Deduction

Our presentation of BL’s proof theory, as also for the case of BLS , is based in Martin-Löf’s
judgmental description of type theory [99] and draws on its refinements in the work of
Pfenning and Davies [115]. More directly, the treatment of says in BL is based on that in
BLS , and the treatment of time is based on that in η logic [53, 54]. This section describes
natural deduction for BL whereas §4.2.4 covers the sequent calculus.

Basic judgments in BL are relativized to time; absolute truth of formulas independent of
time cannot be asserted in BL. We use two basic judgments (denoted J) in our presentation:
s ◦ [u1, u2] which means that s holds throughout the closed interval [u1, u2], and k claims
s ◦ [u1, u2] which means that k supports or claims throughout the interval [u1, u2] that s is
true. The symbol ◦ is read “on” or “throughout”. The two basic judgments do not entail
each other in general. s ◦ [u1, u2] is internalized in the syntax of formulas as s @ [u1, u2]
whereas k claims s ◦ [u1, u2] is internalized through a combination of two connectives as
(k says s) @ [u1, u2].

Hypothetical Judgments. Hypothetical judgments of BL, which are the subjects of its
inference rules, take the form Σ; Ψ;E; Γ `ν s ◦ [u1, u2]. Ψ and E are assumed constraints
and interpreted atoms respectively. The hypotheses Γ is a multiset of basic judgments. ν
is called the view of the hypothetical judgment. It is a triple that contains a principal and
two time points, written k0, ub, ue. The presence of time points ub, ue in views is motivated
by practical considerations of representing policies intuitively, and is justified in §4.4.

78

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Basic Judgments J ::= s ◦ [u1, u2] | k claims s ◦ [u1, u2]
Hypothetical Constraints Ψ ::= c1 . . . cn
System State E ::= i1 . . . in
Views ν ::= k0, ub, ue
Hypotheses Γ ::= J1 . . . Jn (n ≥ 0)
Hypothetical Judgments Σ; Ψ;E; Γ `ν s ◦ [u1, u2]

Analogous to inference in BLS , natural deduction for BL is guided by several principles
that relate its judgments. As for BLS , the view principle explains the role of views in
inference and is incorporated as a rule in natural deduction whereas two other principles,
the substitution principle and the claim principle, are proved to be admissible (§4.2.3).
In addition, there is a fourth principle in BL, called the time subsumption principle. We
describe these four principles below, starting with time subsumption.

Time subsumption principle. s ◦ [u′1, u′2] entails s ◦ [u1, u2] if u′1 ≤ u1 and u2 ≤ u′2.
The time subsumption principle means that if s is known to be true throughout an inter-

val [u1, u2], it must also be true on every subinterval [u′1, u′2]. This principle is incorporated
into the following hypothesis rule of natural deduction. For conclusions of hypothetical
judgments, we prove the principle as a theorem (Theorem 4.4).

Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ;E; Γ, s ◦ [u′1, u′2] `ν s ◦ [u1, u2]

hyp

The time subsumption principle is very important for the implementation of PCFS. This is
explained in §4.3.

View principle. While reasoning in view k0, ub, ue, the assumption k claims s ◦ [u1, u2]
entails s ◦ [u1, u2] if k � k0, u1 ≤ ub and ue ≤ u2.

Together with the time subsumption principle, the view principle results in the following
rule in natural deduction:

ν = k, ub, ue Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ |= u′1 ≤ ub Σ; Ψ |= ue ≤ u′2 Σ; Ψ |= k′ � k

Σ; Σ;Ψ;E; Γ, k′ claims s ◦ [u′1, u′2] `ν s ◦ [u1, u2]
claims

Substitution principle. Σ; Ψ;E; Γ `ν s ◦ [u1, u2] and Σ; Ψ;E; Γ, s ◦ [u1, u2] `ν s′ ◦
[u′1, u′2] imply Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2].

The substitution principle means that if s ◦ [u1, u2] is assumed explicitly in a proof of
s′ ◦ [u′1, u′2] and the former can be proved directly, then so can the latter. We prove later
that this principle is admissible in BL (Theorem 4.5).

79

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ;E; Γ, s ◦ [u′1, u′2] `

ν s ◦ [u1, u2]
hyp

ν = k, ub, ue Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ |= u′1 ≤ ub Σ; Ψ |= ue ≤ u′2 Σ; Ψ |= k′ � k

Σ; Ψ;E; Γ, k′ claims s ◦ [u′1, u′2] `
ν s ◦ [u1, u2]

claims

Σ; Ψ;E; Γ| `k,u1,u2 s ◦ [u1, u2]
Σ; Ψ;E; Γ `ν k says s ◦ [u1, u2]

saysI

Σ; Ψ;E; Γ `ν k says s ◦ [u1, u2] Σ; Ψ;E; Γ, k claims s ◦ [u1, u2] `ν s′ ◦ [u′1, u′2]
Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2]

saysE

Σ; Ψ;E; Γ `ν s ◦ [u1, u2]
Σ; Ψ;E; Γ `ν (s @ [u1, u2]) ◦ [u′1, u′2]

@I

Σ; Ψ;E; Γ `ν s @ [u1, u2] ◦ [u′1, u′2] Σ; Ψ;E; Γ, s ◦ [u1, u2] `ν s′ ◦ [u′′1 , u′′2]
Σ; Ψ;E; Γ `ν s′ ◦ [u′′1 , u′′2]

@E

Σ; Ψ |= c

Σ; Ψ;E; Γ `ν c ◦ [u1, u2]
consI

Σ; Ψ;E; Γ `ν c ◦ [u1, u2] Σ; Ψ, c;E; Γ `ν s′ ◦ [u′1, u′2]
Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2]

consE

Σ;E |= i

Σ; Ψ;E; Γ `ν i ◦ [u1, u2]
interI

Σ; Ψ;E; Γ `ν i ◦ [u1, u2] Σ; Ψ;E, i; Γ `ν s′ ◦ [u′1, u′2]
Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2]

interE

Figure 4.2: BL: Natural deduction, part 1

Claim principle. Σ; Ψ;E; Γ| `k,u1,u2 s ◦ [u1, u2] and Σ; Ψ;E; Γ, k claims s ◦ [u1, u2] `ν
s′ ◦ [u′1, u′2] imply Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2].

The claim principle defines the meaning of the judgment k claims s ◦ [u1, u2]. According
to the principle, the judgment k claims s ◦ [u1, u2] can be substituted by a proof of s ◦ [u1, u2]
provided that the latter was obtained in the context k, u1, u2, and only from claims of
principals. The restriction operator Γ| removes from Γ all judgments of the form r ◦ [ub, ue]:

Γ| = {(k0 claims r ◦ [ub, ue]) ∈ Γ}

We prove the admissibility of the claim principle as a theorem (Theorem 4.6).

Inference rules. Figures 4.2 and 4.3 show the rules of the natural deduction proof system.
Figure 4.2 contains rules pertaining to hypotheses and connectives other than those of first-
order logic. Figure 4.3 contains rules pertaining to connectives of first-order logic. As
usual, we have introduction and elimination rules for each connective (marked I and E
respectively). For a syntactic entity Ξ, Ξ[t/x] denotes the capture avoiding substitution of
term t for variable x in Ξ.

80

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Σ; Ψ;E; Γ `ν s1 ◦ [u1, u2] Σ; Ψ;E; Γ `ν s2 ◦ [u1, u2]
Σ; Ψ;E; Γ `ν s1 ∧ s2 ◦ [u1, u2]

∧I

Σ; Ψ;E; Γ `ν s1 ∧ s2 ◦ [u1, u2]
Σ; Ψ;E; Γ `ν s1 ◦ [u1, u2]

∧E1
Σ; Ψ;E; Γ `ν s1 ∧ s2 ◦ [u1, u2]

Σ; Ψ;E; Γ `ν s2 ◦ [u1, u2]
∧E2

Σ; Ψ;E; Γ `ν s1 ◦ [u1, u2]
Σ; Ψ;E; Γ `ν s1 ∨ s2 ◦ [u1, u2]

∨I1
Σ; Ψ;E; Γ `ν s2 ◦ [u1, u2]

Σ; Ψ;E; Γ `ν s1 ∨ s2 ◦ [u1, u2]
∨I2

Σ; Ψ;E; Γ `ν s1 ∨ s2 ◦ [u1, u2]
Σ; Ψ;E; Γ, s1 ◦ [u1, u2] `ν s′ ◦ [u′1, u′2] Σ; Ψ;E; Γ, s2 ◦ [u1, u2] `ν s′ ◦ [u′1, u′2]

Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2]
∨E

Σ; Ψ;E; Γ `ν > ◦ [u1, u2]
>I

Σ; Ψ;E; Γ `ν ⊥ ◦ [u1, u2]
Σ; Ψ;E; Γ `ν s ◦ [u′1, u′2]

⊥E

Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2] `ν s2 ◦ [x1, x2]
Σ; Ψ;E; Γ `ν s1 ⊃ s2 ◦ [u1, u2]

⊃I

Σ; Ψ;E; Γ `ν s1 ⊃ s2 ◦ [u1, u2]
Σ; Ψ;E; Γ `ν s1 ◦ [u′1, u′2] Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; Γ `ν s2 ◦ [u′1, u′2]
⊃E

Σ, x:σ; Ψ;E; Γ `ν s ◦ [u1, u2]
Σ; Ψ;E; Γ `ν ∀x:σ.s ◦ [u1, u2]

∀I
Σ; Ψ;E; Γ `ν ∀x:σ.s ◦ [u1, u2] Σ ` t : σ

Σ; Ψ;E; Γ `ν s[t/x] ◦ [u1, u2]
∀E

Σ; Ψ;E; Γ `ν s[t/x] ◦ [u1, u2] Σ ` t : σ
Σ; Ψ;E; Γ `ν ∃x:σ.s ◦ [u1, u2]

∃I

Σ; Ψ;E; Γ `ν ∃x:σ.s ◦ [u1, u2] Σ, x:σ; Ψ;E; Γ, s ◦ [u1, u2] `ν s′ ◦ [u′1, u′2]
Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2]

∃E

Figure 4.3: BL: Natural deduction, part 2

Rules (hyp) and (claims) in Figure 4.2 allow the use of hypotheses of the forms s ◦
[u1, u2] and k claims s ◦ [u1, u2] respectively. As mentioned earlier, they capture the time
subsumption and view principles in the proof system. Rule (saysI) can be justified using
the claim principle. Since k says s ◦ [u1, u2] is logically equivalent to k claims s ◦ [u1, u2],
the claim principle implies that (k says s) ◦ [u1, u2] should be provable whenever s ◦ [u1, u2]
can be proved in the view k, u1, u2 with hypotheses Γ|. The latter is exactly the premise of
(saysI). It should be observed that (saysI) is the only rule in natural deduction that changes
the view, and further that there is a strong interaction between says and explicit time in BL
– the two time points in a view are obtained from the last application of (saysI), progressing

81

Chapter 4. BL: An Authorization Logic for Dynamic Policies

backwards on a derivation. The elimination rule (saysE) is straightforward; it means that
a proof of k says s ◦ [u1, u2] can be used to substitute the equivalent judgmental form
k claims s ◦ [u1, u2] from another proof with the same hypotheses.

Rule (@I) states that in order to establish s @ [u1, u2] during any interval [u′1, u′2],
it suffices to establish s ◦ [u1, u2]. Dually, rule (@E) means that s @ [u1, u2] ◦ [u′1, u′2]
is stronger than s ◦ [u1, u2]. Together the rules imply that s @ [u1, u2] ◦ [u′1, u′2] and
s ◦ [u1, u2] are equivalent as judgments, as well as property (12) from §4.1.1.

According to rule (consI), c ◦ [u1, u2] may be established by showing c in the prevailing
constraint hypotheses Ψ. Dually, if c ◦ [u1, u2] can be established then the constraint c may
be assumed in Ψ (rule (consE)). The two rules together mean that the interpretation of
constraints is independent of time, which was also discussed earlier in §4.1.1. Rules (interI)
and (interE) for interpreted atoms are very similar to rules (consI) and (consE) respectively.
Indeed, constraints and interpreted predicates are so similar to each other from a proof-
theoretic perspective that they can be merged into one syntactic class without affecting the
proof theory and metatheory of BL significantly. However, since the truth of interpreted
predicates changes with system state, whereas that of constraints does not, the two must be
treated differently during proof verification in PCFS (§5). Hence we maintain a distinction
between their syntactic classes.

Since most connectives of first-order logic commute with @ in BL (see §4.1.1), in their
corresponding inference rules in Figure 4.3, time intervals do not change. For example, to
establish s1 ∧ s2 ◦ [u1, u2], it suffices to establish s1 ◦ [u1, u2] and s2 ◦ [u1, u2] (rule (∧I)).
Implication is the only connective of first-order logic that has an interesting interaction with
explicit time. As mentioned in §4.1.1, having a proof of (s1 ⊃ s2) @ [u1, u2] is equivalent
to having a proof of s2 @ [x1, x2] from the assumption s1 @ [x1, x2] for every subinterval
[x1, x2] of [u1, u2]. The rule (⊃I) lifts this intuition to judgments: in order to establish
s1 ⊃ s2 ◦ [u1, u2], it suffices to show that for any two time variables x1, x2 such that
u1 ≤ x1 and x2 ≤ u2, it is the case that s1 ◦ [x1, x2] entails s2 ◦ [x1, x2]. Dually, the
rule (⊃E) means that if there are proofs of s1 ⊃ s2 ◦ [u1, u2] and s1 ◦ [u′1, u′2], where
[u′1, u′2] ⊆ [u1, u2], then there is also a proof of s2 ◦ [u′1, u′2].

A note on analysis of constraints. As should be evident from the rules of Figures 4.2
and 4.3, it is impossible to analyze the structure of constraints in proofs of BL. In particular,
BL lacks two common rules that previous descriptions of constraint domains in logic have
allowed (see, e.g., [84]). The first of these rules allows a deduction of any formula from
a contradictory constraint. For example, it makes (1 ≤ 0) ⊃ s admissible. The second
rule allows a case analysis on constraints. Were the second rule to be admitted in BL,
it would suffice to show that s holds on [u1, u] and also on [u, u2], possibly through two
different proofs, in order to conclude that s holds on [u1, u2]. Thus ((s @ [u1, u]) ∧ (s @
[u, u2])) ⊃ (s @ [u1, u2]) would be provable. In BL, we refrain from allowing any such
analysis of constraints within the logic for three reasons. First, because constraints are
not justified through explicit evidence, allowing their analysis through the logic’s rules
may result in reduced accountability in proofs. Second, this design decision allows us to
prove that any proof term which witnesses s @ [u1, u2] also witnesses, without change,

82

Chapter 4. BL: An Authorization Logic for Dynamic Policies

s @ [u′1, u′2] for any [u′1, u′2] ⊆ [u1, u2] (Theorem 5.5). This result is of practical importance
in the implementation of PCFS, as explained in §4.3.2. Third, it is not clear whether an
automatic theorem prover can decide when to analyze constraints during proof search, so
describing a complete proof search strategy for the logic may be impossible if analysis of
constraints is allowed.

4.2.3 Metatheory of Natural Deduction

We prove several metatheoretic properties of the natural deduction system of BL, many
of which generalize properties of BLS (§3.2.2). Besides structural properties (weakening
and contraction), we show that instantiation as well as the substitution, claim, and time
subsumption principles are admissible.

Theorem 4.1 (Weakening and Contraction). The following hold:

1. (Weakening)

(a) Σ; Ψ;E; Γ `ν s ◦ [u1, u2] implies Σ, x:σ; Ψ;E; Γ `ν s ◦ [u1, u2].
(b) Σ; Ψ;E; Γ `ν s ◦ [u1, u2] implies Σ; Ψ, c;E; Γ `ν s ◦ [u1, u2].
(c) Σ; Ψ;E; Γ `ν s ◦ [u1, u2] implies Σ; Ψ;E, i; Γ `ν s ◦ [u1, u2].
(d) Σ; Ψ;E; Γ `ν s ◦ [u1, u2] implies Σ; Ψ;E; Γ, J `ν s ◦ [u1, u2].

2. (Contraction) Σ; Ψ;E; Γ, J, J `ν s ◦ [u1, u2] implies Σ; Ψ;E; Γ, J `ν s ◦ [u1, u2].

Further the derivation in the consequent of each statement has a depth no more than that
of the antecedent.4

Proof. By separate induction on the given derivation for each property.

Theorem 4.2 (Instantiation). Σ, x:σ; Ψ;E; Γ `ν s ◦ [u1, u2] and Σ ` t : σ imply Σ; Ψ[t/x];
E[t/x]; Γ[t/x] `ν[t/x] s[t/x] ◦ [u1[t/x], u2[t/x]]

Proof. By induction on the derivation of Σ, x:σ; Ψ;E; Γ `ν s ◦ [u1, u2].

The following subsumption property for views is analogous to Theorem 3.4 for BLS .

Theorem 4.3 (View subsumption). Suppose the following hold:

1. Σ; Ψ;E; Γ `ν s ◦ [u1, u2]

2. ν = k0, ub, ue

3. Σ; Ψ |= k0 � k′0, Σ; Ψ |= ub ≤ u′b, and Σ; Ψ |= u′e ≤ ue.
4The depth of a derivation is defined as the maximum number of BL’s inference rules on a path in the

derivation that starts from its conclusion and ends at a leaf. Rules needed to establish auxiliary judgments
like Σ ` t : σ, Σ;Ψ |= c, and Σ;E |= i are not part of BL’s inference rules and do not count towards the
depth.

83

Chapter 4. BL: An Authorization Logic for Dynamic Policies

4. ν ′ = k′0, u
′
b, u
′
e

Then Σ; Ψ;E; Γ `ν′ s ◦ [u1, u2] by a derivation of smaller or equal depth.

Proof. By induction on the given derivation of Σ; Ψ;E; Γ `ν s ◦ [u1, u2] and case analysis
of its last rule. There is only one interesting case which is shown below.

Case.

ν = k0, ub, ue Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ |= u′1 ≤ ub Σ; Ψ |= ue ≤ u′2 Σ; Ψ |= k′ � k0

Σ; Ψ;E; Γ, k′ claims s ◦ [u′1, u′2] `ν s ◦ [u1, u2]
claims

To show: Σ; Ψ;E; Γ, k′ claims s ◦ [u′1, u′2] `ν
′
s ◦ [u1, u2]

1. Σ; Ψ |= ub ≤ u′b (Assumption 3)

2. Σ; Ψ |= u′1 ≤ ub (Premise)

3. Σ; Ψ |= u′1 ≤ u′b ((C-trans-time) from §4.2.1 on 1,2)

4. Σ; Ψ |= u′e ≤ ue (Assumption 3)

5. Σ; Ψ |= ue ≤ u′2 (Premise)

6. Σ; Ψ |= u′e ≤ u′2 ((C-trans-time) from §4.2.1 on 4,5)

7. Σ; Ψ |= k0 � k′0 (Assumption 3)

8. Σ; Ψ |= k′ � k0 (Premise)

9. Σ; Ψ |= k′ � k′0 ((C-trans-prin) from §4.2.1 on 7,8)

10. Σ; Ψ;E; Γ, k′ claims s ◦ [u′1, u′2] `ν
′
s ◦ [u1, u2]

(Rule (claims) on 2nd,3rd premises and 3,6,9)

The depths of the given derivation and the derivation constructed above are each equal
to 1.

Next we show that the time subsumption principle, substitution principle, and the claim
principle are admissible in BL.

Theorem 4.4 (Time subsumption). Suppose the following hold:

1. Σ; Ψ;E; Γ `ν s ◦ [u1, u2]

2. Σ; Ψ |= u1 ≤ un

3. Σ; Ψ |= um ≤ u2

Then Σ; Ψ;E; Γ `ν s ◦ [un, um].

84

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Proof. By induction on the depth of the given derivation of Σ; Ψ;E; Γ `ν s ◦ [u1, u2] and case
analysis of its last rule. The proof appeals to Theorem 4.3 and a lemma about substitution
of constraints. See Theorem B.2 in Appendix B for details of the lemma as well as some of
the interesting cases of the proof.

Like many other theorems in this section, ensuring that the time subsumption principle
holds requires care. For example, if we were to replace the rule (@E) by the following rule
(@E’), which is also admissible in BL and perhaps a more obvious choice, then the time
subsumption principle would no longer hold.

Σ; Ψ;E; Γ `ν s @ [u1, u2] ◦ [u′1, u′2]
Σ; Ψ;E; Γ `ν s ◦ [u1, u2]

@E’

Theorem 4.5 (Substitution). Suppose the following hold:

1. Σ; Ψ;E; Γ `ν s ◦ [u1, u2]

2. Σ; Ψ;E; Γ, s ◦ [u1, u2] `ν s′ ◦ [u′1, u′2]

Then Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2].

Proof. By induction on the given derivation of Σ; Ψ;E; Γ, s ◦ [u1, u2] `ν r ◦ [u′1, u′2] and
a case analysis of its last rule. The only interesting case of the proof, which appeals to
Theorem 4.4 is shown below.

Case.
Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; Γ, s ◦ [u1, u2] `ν s ◦ [u′1, u′2]
hyp

To show: Σ; Ψ;E; Γ `ν s ◦ [u′1, u′2]

1. Σ; Ψ;E; Γ `ν s ◦ [u1, u2] (Assumption)

2. Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2 (Premises)

3. Σ; Ψ;E; Γ `ν s ◦ [u′1, u′2] (Theorem 4.4 on 1,2)

Theorem 4.6 (Claim). Suppose the following hold:

1. Σ; Ψ;E; Γ| `k,u1,u2 s ◦ [u1, u2]

2. Σ; Ψ;E; Γ, k claims s ◦ [u1, u2] `ν s′ ◦ [u′1, u′2]

Then Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2].

85

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Proof. By induction on the given derivation of Σ; Ψ;E; Γ, k claims s ◦ [u1, u2] `ν s′ ◦ [u′1, u′2],
and case analysis of the last rule in it. The interesting cases are shown below.

Case.

ν = k′, ub, ue Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2
Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2 Σ; Ψ |= k � k′

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2] `ν s ◦ [u′1, u′2]
claims

To show: Σ; Ψ;E; Γ `ν s ◦ [u′1, u′2]

1. Σ; Ψ;E; Γ| `k,u1,u2 s ◦ [u1, u2] (Assumption 1)

2. Σ; Ψ;E; Γ `k,u1,u2 s ◦ [u1, u2] (Weakening Theorem 4.1 on 1)

3. Σ; Ψ;E; Γ `ν s ◦ [u1, u2] (Theorem 4.3 on 2 and premises 4–6)

4. Σ; Ψ;E; Γ `ν s ◦ [u′1, u′2] (Theorem 4.4 on 3 and premises 2,3)

Case.
Σ; Ψ;E; Γ|, k claims s ◦ [u1, u2] `k

′,u′1,u
′
2 s′ ◦ [u′1, u′2]

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2] `ν k′ says s′ ◦ [u′1, u′2]
saysI

To show: Σ; Ψ;E; Γ `ν (k′ says s′) ◦ [u′1, u′2]

1. (Γ|)| = Γ| (Definition)

2. Σ; Ψ;E; (Γ|)| `k,u1,u2 s ◦ [u1, u2] (1 and Assumption 1)

3. Σ; Ψ;E; Γ| `k′,u′1,u′2 s′ ◦ [u′1, u′2] (i.h. on 2 and premise)

4. Σ; Ψ;E; Γ `ν (k′ says s′) ◦ [u′1, u′2] (Rule (saysI) on 3)

4.2.4 Sequent Calculus

As discussed in §3.2.3, in a sequent calculus inference rules apply to both the hypotheses
and conclusion of hypothetical judgments, and always decompose connectives when going
from the conclusion to premises. Hypothetical judgments in a sequent calculus are called
sequents. They have the same form as the hypothetical judgments in natural deduction,
but we use a different entailment symbol ν−→ in sequents to distinguish the two inference
systems.

Sequents ::= Σ; Ψ;E; Γ ν−→ r ◦ [u1, u2]

Inference rules in a sequent calculus are categorized as either left or right, marked L and
R respectively, according to the location of the formula they decompose relative to the
entailment symbol. The rules of the sequent calculus for BL are shown in Figures 4.4
and 4.5. Rules pertaining to the use of hypotheses and those pertaining to connectives not
in first-order logic are in Figure 4.4, while the remaining rules are in Figure 4.5.

86

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ;E; Γ, p ◦ [u′1, u′2]

ν−→ p ◦ [u1, u2]
init

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2], s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

ν = k′, ub, ue Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2 Σ; Ψ |= k � k′

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

claims

Σ; Ψ;E; Γ| k,u1,u2−−−−−→ s ◦ [u1, u2]
Σ; Ψ;E; Γ ν−→ k says s ◦ [u1, u2]

saysR

Σ; Ψ;E; Γ, k says s ◦ [u1, u2], k claims s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

Σ; Ψ;E; Γ, k says s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

saysL

Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2]
Σ; Ψ;E; Γ ν−→ s @ [u1, u2] ◦ [u′1, u′2]

@R

Σ; Ψ;E; Γ, s @ [u′1, u′2] ◦ [u1, u2], s ◦ [u′1, u′2]
ν−→ r ◦ [u′′1 , u′′2]

Σ; Ψ;E; Γ, s @ [u′1, u′2] ◦ [u1, u2]
ν−→ r ◦ [u′′1 , u′′2]

@L

Σ; Ψ |= c

Σ; Ψ;E; Γ ν−→ c ◦ [u1, u2]
consR

Σ; Ψ, c;E; Γ, c ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

Σ; Ψ;E; Γ, c ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

consL

Σ;E |= i

Σ; Ψ;E; Γ ν−→ i ◦ [u1, u2]
interR

Σ; Ψ;E, i; Γ, i ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

Σ; Ψ;E; Γ, i ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

interL

Figure 4.4: BL: Sequent calculus, part 1

Rule (init) in Figure 4.4 allows an atomic hypotheses p ◦ [u′1, u′2] to be used to conclude
p ◦ [u1, u2] if [u′1, u′2] is a superset of [u1, u2]. The generalization of this rule to arbitrary
formulas corresponds exactly to the rule (hyp) from natural deduction, and is proved to be
admissible (Theorem 4.13). Rule (claims) captures exactly the view principle from §4.2.2 in
the sequent calculus. It should be noted that its homonym in natural deduction is stronger
since that also incorporates the time subsumption principle. However, the two rules are
equivalent in the presence of the time subsumption principle (Theorem 4.14).

All other rules decompose connectives. The right rules for each connective are iden-
tical to corresponding introduction rules in natural deduction, with the exception of the
difference in the entailment symbol. Left rules in the sequent calculus fulfill the same pur-
pose as elimination rules in natural deduction. However, they decompose connectives in
the hypotheses, when the rule is read from conclusion to premises. Rule (saysL) in Fig-
ure 4.4 means that if k says s ◦ [u1, u2] is assumed in a proof, then so may the hypothesis
k claims s ◦ [u1, u2], since the two are logically equivalent to each other. Rule (consL)

87

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Σ; Ψ;E; Γ ν−→ s1 ◦ [u1, u2] Σ; Ψ;E; Γ ν−→ s2 ◦ [u1, u2]
Σ; Ψ;E; Γ ν−→ s1 ∧ s2 ◦ [u1, u2]

∧R

Σ; Ψ;E; Γ, s1 ∧ s2 ◦ [u1, u2], s1 ◦ [u1, u2], s2 ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

Σ; Ψ;E; Γ, s1 ∧ s2 ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

∧L

Σ; Ψ;E; Γ ν−→ s1 ◦ [u1, u2]
Σ; Ψ;E; Γ ν−→ s1 ∨ s2 ◦ [u1, u2]

∨R1
Σ; Ψ;E; Γ ν−→ s2 ◦ [u1, u2]

Σ; Ψ;E; Γ ν−→ s1 ∨ s2 ◦ [u1, u2]
∨R2

Σ; Ψ;E; Γ, s1 ∨ s2 ◦ [u1, u2], s1 ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

Σ; Ψ;E; Γ, s1 ∨ s2 ◦ [u1, u2], s2 ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

Σ; Ψ;E; Γ, s1 ∨ s2 ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

∨L

Σ; Ψ;E; Γ ν−→ > ◦ [u1, u2]
>R

Σ; Ψ;E; Γ,⊥ ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

⊥L

Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2]
ν−→ s2 ◦ [x1, x2]

Σ; Ψ;E; Γ ν−→ s1 ⊃ s2 ◦ [u1, u2]
⊃R

Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2]
ν−→ s1 ◦ [u′1, u′2]

Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2], s2 ◦ [u′1, u′2]
ν−→ r ◦ [u′′1 , u′′2] Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2]
ν−→ r ◦ [u′′1 , u′′2]

⊃L

Σ, x:σ; Ψ;E; Γ ν−→ s ◦ [u1, u2]
Σ; Ψ;E; Γ ν−→ ∀x:σ.s ◦ [u1, u2]

∀R

Σ; Ψ;E; Γ,∀x:σ.s ◦ [u1, u2], s[t/x] ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] Σ ` t : σ

Σ; Ψ;E; Γ,∀x:σ.s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

∀L

Σ; Ψ;E; Γ ν−→ s[t/x] ◦ [u1, u2] Σ ` t : σ
Σ; Ψ;E; Γ ν−→ ∃x:σ.s ◦ [u1, u2]

∃R

Σ, x:σ; Ψ;E; Γ,∃x:σ.s ◦ [u1, u2], s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

Σ; Ψ;E; Γ,∃x:σ.s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

∃L

Figure 4.5: BL: Sequent calculus, part 2

means that the assumption c ◦ [u1, u2] entails the constraint c, which we already justified
in §4.1.1. Rule (interL) is similar, except that it applies to interpreted atoms. The left
rules in Figure 4.5 correspond to the properties in §4.1.1. The only remarkable rule here
is (⊃L), which allows the assumption s2 ◦ [u′1, u′2] to be introduced (second premise) if
s1 ⊃ s2 ◦ [u1, u2] holds during some interval [u1, u2] ⊇ [u′1, u′2], and s1 ◦ [u′1, u′2] is provable

88

Chapter 4. BL: An Authorization Logic for Dynamic Policies

(first premise). This follows from our intuitive understanding of implication in BL.

Example 4.7 (Properties from §4.1.1). Although all judgments in BL are relativized to
time, we may define a priori provability of formula s, written ` s, as an abbreviation for
Σ; ·; ·; · ν−→ s ◦ [−∞,+∞] where Σ assigns sorts to all variables in s and ν is a view made of
three fresh constants. With this definition, all properties of §4.1.1, including those of the
form 6` s, can be established using the rules in Figures 4.4 and 4.5. In addition, 6` ⊥, so BL
is consistent.

4.2.5 Metatheory of the Sequent Calculus

Next we prove several important metatheorems for the sequent calculus of BL including
admissibility of cut, which encompasses both the substitution principle and the claim prin-
ciple (Theorems 4.5 and 4.6), as well as the identity principle, which generalizes the (init)
rule of Figure 4.4 from uninterpreted atoms to arbitrary formulas. These two theorems
together are often considered proof-theoretic analogues of soundness and completeness for
inference systems, particularly because they imply, and are essential in the proof of, equiv-
alence of natural deduction and the sequent calculus (Theorem 4.14). Admissibility of cut
also implies that natural deduction proofs can be reduced to a normal form, a fact that we
prove in §4.5.

Theorem 4.8 (Weakening and Contraction). The following hold:

1. (Weakening)

(a) Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] implies Σ, x:σ; Ψ;E; Γ ν−→ s ◦ [u1, u2].
(b) Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] implies Σ; Ψ, c;E; Γ ν−→ s ◦ [u1, u2].
(c) Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] implies Σ; Ψ;E, i; Γ ν−→ s ◦ [u1, u2].
(d) Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] implies Σ; Ψ;E; Γ, J ν−→ s ◦ [u1, u2].

2. (Contraction) Σ; Ψ;E; Γ, J, J ν−→ s ◦ [u1, u2] implies Σ; Ψ;E; Γ, J ν−→ s ◦ [u1, u2].

Further the derivation in the consequent of each statement has a depth no more than that
of the antecedent.

Proof. By separate induction on the given derivation for each property.

Theorem 4.9 (Instantiation). Σ, x:σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] and Σ ` t : σ imply Σ; Ψ[t/x];
E[t/x]; Γ[t/x] ν[t/x]−−−→ s[t/x] ◦ [u1[t/x], u2[t/x]]

Proof. By induction on the derivation of Σ, x:σ; Ψ;E; Γ ν−→ s ◦ [u1, u2].

Theorem 4.10 (View subsumption). Suppose the following hold:

1. Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2]

2. ν = k0, ub, ue

89

Chapter 4. BL: An Authorization Logic for Dynamic Policies

3. Σ; Ψ |= k0 � k′0, Σ; Ψ |= ub ≤ u′b, and Σ; Ψ |= u′e ≤ ue.

4. ν ′ = k′0, u
′
b, u
′
e

Then Σ; Ψ;E; Γ ν′−→ s ◦ [u1, u2] by a derivation of smaller or equal depth.

Proof. By induction on the given derivation of Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] and case analysis
of its last rule. There is only one interesting case which is shown below.

Case.

Σ; Ψ;E; Γ, k claims r ◦ [u′1, u′2], r ◦ [u′1, u′2]
ν−→ s ◦ [u1, u2]

ν = k0, ub, ue Σ; Ψ |= u′1 ≤ ub Σ; Ψ |= ue ≤ u′2 Σ; Ψ |= k � k0

Σ; Ψ;E; Γ, k claims r ◦ [u′1, u′2]
ν−→ s ◦ [u1, u2]

claims

To show: Σ; Ψ;E; Γ, k claims r ◦ [u′1, u′2]
ν′−→ s ◦ [u1, u2]

1. Σ; Ψ |= ub ≤ u′b (Assumption 3)

2. Σ; Ψ |= u′1 ≤ ub (Premise)

3. Σ; Ψ |= u′1 ≤ u′b ((C-trans-time) from §4.2.1 on 1,2)

4. Σ; Ψ |= u′e ≤ ue (Assumption 3)

5. Σ; Ψ |= ue ≤ u′2 (Premise)

6. Σ; Ψ |= u′e ≤ u′2 ((C-trans-time) from §4.2.1 on 4,5)

7. Σ; Ψ |= k0 � k′0 (Assumption 3)

8. Σ; Ψ |= k′ � k0 (Premise)

9. Σ; Ψ |= k′ � k′0 ((C-trans-prin) from §4.2.1 on 7,8)

10. Σ; Ψ;E; Γ, k claims r ◦ [u′1, u′2], r ◦ [u′1, u′2]
ν′−→ s ◦ [u1, u2] (i.h. on 1st premise)

11. Σ; Ψ;E; Γ, k′ claims s ◦ [u′1, u′2]
ν′−→ s ◦ [u1, u2] (Rule (claims) on 10,3,6,9)

Theorem 4.11 (Time subsumption). Suppose the following hold:

1. Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2]

2. Σ; Ψ |= u1 ≤ un

3. Σ; Ψ |= um ≤ u2

Then Σ; Ψ;E; Γ ν−→ s ◦ [un, um].

90

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Proof. By induction on the depth of the given derivation of Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] and
case analysis of its last rule. The proof appeals to Theorem 4.10 and a lemma about
substitution of constraints. See Theorem B.4 in Appendix B for details of the lemma as
well as some of the interesting cases of the proof.

Theorem 4.12 (Admissibility of cut). The following two properties hold:

1. Suppose that

(a) Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] and

(b) Σ; Ψ;E; Γ, s ◦ [u1, u2]
ν−→ s′ ◦ [u′1, u′2]

Then Σ; Ψ;E; Γ ν−→ s′ ◦ [u′1, u′2].

2. Suppose that

(a) Σ; Ψ;E; Γ| k,u1,u2−−−−→ s ◦ [u1, u2]

(b) Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]
ν−→ s′ ◦ [u′1, u′2]

Then Σ; Ψ;E; Γ ν−→ s′ ◦ [u′1, u′2].

Proof. By a simultaneous lexicographic induction, first on the size of the cut formula s, then
on the order (2) > (1), and finally on the depths of the two given derivations, as in prior
work [43, 54, 113]. See Theorem B.6 in Appendix B for some of the cases of the proof.

Theorem 4.13 (Identity). If Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2, then Σ; Ψ;E; Γ, s ◦
[u1, u2]

ν−→ s ◦ [u′1, u′2].

Proof. By induction on s. The base case where s is an uninterpreted atom follows immedi-
ately from rule (init) in Figure 4.4. The base case where s is an interpreted atom is shown
below. The third base case where s is a constraint is similar to it. All the remaining cases
of the proof follow prior work on η logic [54].

Case. s = i. To show: Σ; Ψ;E; Γ, i ◦ [u1, u2]
ν−→ i ◦ [u′1, u′2].

1. Σ;E, i |= i ((S-hyp) from §4.2.1)

2. Σ; Ψ;E, i; Γ, i ◦ [u1, u2]
ν−→ i ◦ [u′1, u′2] (Rule (interL) on 1)

3. Σ; Ψ;E; Γ, i ◦ [u1, u2]
ν−→ i ◦ [u′1, u′2] (Rule (interR) on 2)

91

Chapter 4. BL: An Authorization Logic for Dynamic Policies

4.2.6 Equivalence of Proof Systems

Despite differences in inference rules, the natural deduction system and the sequent cal-
culus for BL establish exactly the same hypothetical judgments. This is formalized in the
following theorem, which we prove by simulating the rules of each inference system in the
other. Showing that each rule of the sequent calculus can be simulated in natural deduction
is relatively straightforward – the right rules correspond to introduction rules directly, and
left rules are easily simulated using elimination rules, together with the substitution prin-
ciple (Theorem 4.5) in some cases.5 Conversely, for simulating elimination rules of natural
deduction in the sequent calculus, we appeal to admissibility of cut (Theorem 4.12) and
identity (Theorem 4.13).

Theorem 4.14 (Equivalence). The following are equivalent.

1. Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] in the sequent calculus.

2. Σ; Ψ;E; Γ `ν s ◦ [u1, u2] in natural deduction.

Proof. See Appendix B, Theorem B.7.

4.3 Use of BL in PCFS
As mentioned in §2, the logic BL is used to express authorization policies in the file system
PCFS and to enforce them. This section discusses briefly how files, principals, permissions,
time points, and policy rules are represented concretely in the logic, what judgments need
to proved in order to obtain access, and how PCFS enforces dynamism in policies that are
either time sensitive or rely on system state.

Representation of principals, time, files, and permissions. Although the theory of
BL discussed in this chapter is agnostic to the concrete representation of terms, from the
perspective of an implementation, making this choice is important. In PCFS, principals
are represented in one of two ways: either as symbolic constants, which may be added
to a special declarations file that is protected by the back end (see §7 for details), or by
their Linux user ids. In practice, the former representation is used for principals that do
not correspond to any real users (e.g., organizational roles), while the latter is used for
principals that do (e.g., users that run programs and access files). Access permissions are
given on a per-file or per-directory basis to real users.

In PCFS, the clock of the reference monitor (file system back end) is the authority on
time; all time points in logical formulas and procaps refer to this clock. Ground time points
are represented in absolute form as YYYY:MM:DD:hh:mm:ss that can be abbreviated to
YYYY:MM:DD when hh:mm:ss are 00:00:00. The parser for BL converts all time points
to integers that measure seconds from a fixed reference point. The exact reference point is
irrelevant for all practical purposes, but it should be noted that the precision of time used

5It is possible to simulate some rules of the sequent calculus rules in natural deduction by using the rules
(⊃I) and (⊃E) in place of substitution. See, for example, Proposition 2.4 in [16].

92

Chapter 4. BL: An Authorization Logic for Dynamic Policies

in PCFS is one second. Fractions of time beyond this precision are rounded down whenever
the system clock is read.

In addition to principal and time, the implementation of BL in PCFS supports two
additional sorts: file (for file and directory names) and perm (for permissions). Ground files
and directories are represented by their full path names relative to the path where PCFS is
mounted. Thus, if PCFS is mounted at /path/to/mountpoint, then the file /foo/bar in
any BL formula refers to the file /path/to/mountpoint/foo/bar in the file system. Making
the path names relative to the mount point has the advantage that the mount point can
be changed without having to change existing policy rules, proofs, and procaps. It has the
disadvantage that without some explicit naming convention, there may be confusion among
the policy rules of different PCFS file systems on the same server.

The sort of permissions, perm, contains five ground elements, which correspond to the
five permissions that PCFS uses: read, write, execute, identity, and govern. Permissions read
and write are needed to read and change a file or directory respectively, whereas execute is
needed to read meta-data. The remaining two permissions, identity and govern, are described
in §7.

Interpreted Predicates. PCFS natively supports two interpreted predicates in BL:
owner f k, which means that file f has owner k, and has_xattr f a v, which means
that file f has value v for the extended attribute user.#pcfs.a.6 Both file ownership as
well as extended attributes beginning with the prefix user.#pcfs. are specially protected
by PCFS; the permission govern is needed to change them (details are in §7). It is ex-
pected that only trusted users will be given this permission. As a result, file ownership
and extended attributes starting with the prefix user.#pcfs. can be used to classify files
in a secure manner, and the interpreted predicates owner and has_xattr can be used to
reference them in policy rules, as illustrated in the example in §4.3.3.

Support for other interpreted predicates can be added to BL’s implementation in PCFS
through a programming API provided for this purpose. As a convention, we write inter-
preted predicates in boldface.

Arithmetic on Time and Constraints. The implementation of BL in PCFS supports
simple arithmetic over time points through a new sort exp whose elements are denoted e.
exp includes all elements of time via a coercing function symbol and in addition includes
terms of the forms e1 + e2, e1 − e2, max(e1, e2), and min(e1, e2). The terms in exp are
interpreted via the new constraint form is u e, which means that the simplification of e
in the usual arithmetic sense equals u. This idea of making simplification of arithmetic
expressions explicit via the constraint form is u e is borrowed from logic programming in
languages like Prolog. It should be noted that is u e is different from term equality in
many other logics, because BL does not allow implicit substitution of e for u in judgments
even if is u e holds. Nonetheless is u e is very useful for representing many policies of
interest in BL, including those in §8.

6An extended attribute is a meta-data field on a file or directory whose value can be set by users. Many
file systems including XFS, JFS, ext3, and PCFS support extended attributes.

93

Chapter 4. BL: An Authorization Logic for Dynamic Policies

4.3.1 Policies and Authorizations

Following past work on proof-carrying authorization, we assume in PCFS that formulas
are established a priori by digitally signed certificates. In PCFS, it is assumed that every
digitally signed certificate is valid during an interval of time, which is written inside the
certificate before the latter is signed. This is consistent with what common certificate
schemes like X.509 and PGP allow. In general, if principal k creates a certificate that is
valid during the interval [u1, u2] and contains the formula s, then this is represented in BL
as the hypotheses k claims s ◦ [u1, u2]. (Alternatively, we could have chosen one of the
equivalent representations (k says s) ◦ [u1, u2] and (k says s) @ [u1, u2] ◦ [−∞,+∞], but
the representation we use is most convenient, since it is in some sense the simplest.)

A judgment k claims s ◦ [u1, u2] established by a signed certificate is called a policy
rule, and a collection of such judgments is called a policy. The top level hypotheses Γ in all
proof search and verification problems in BL are always a policy. PCFS also requires that
a unique name be provided for each policy rule in the certificate that establishes the rule;
this name is used to refer to the rule in proofs (§5).

What should be proved? PCFS assumes the existence of one distinguished principal,
symbolically denoted admin, who has the ultimate authority on access. The actual identity
of admin is provided to PCFS through a configuration file, which we discuss in §7. In order
to get permission η on file f at time u, user k must prove that the policy in effect entails
the defined basic judgment auth(k, f, η, u), where:

auth(k, f, η, u) , admin says (may k f η) ◦ [u, u]

may is a fixed uninterpreted predicate taking three arguments, and u is the time of access.
(In PCFS, “time of access” refers to the time at which access checks for a file system call
are initiated.) [u, u] is a singleton set containing exactly the time point u. More precisely,
it must be established that Σ; ·;E; Γ `ν auth(k, f, η, u), where:

- Σ is the sorting in effect. It is specified through a signature file that is protected by
PCFS (§7).

- E is the state of the file system at the time u.

- Γ is the policy, evidenced by digitally signed certificates as described earlier.

- ν is a view made of three fresh constants.

It can easily be seen that establishing Σ; ·;E; Γ `ν auth(k, f, η, u) is equivalent to establish-
ing Σ; ·;E; Γ `ν0 may k f η ◦ [u, u], with ν0 = admin, u, u whenever Γ is a policy.

4.3.2 Policy Enforcement

Although the use of the time interval [u, u] in the judgment to be proved for authorization
takes into account dependence of the policy on explicit time, it results in a practical problem:

94

Chapter 4. BL: An Authorization Logic for Dynamic Policies

how is the time of access u to be determined to the precision of a second at the time that
a proof is constructed or verified, both of which happen prior to access in PCFS (§2)?
Indeed, determining u to such high precision in advance of access is impossible in most
settings. Fortunately, the time subsumption principle (Theorems 4.4 and 4.11) can be
used to alleviate the problem in a reasonable way. Instead of constructing a proof of
admin says (may k f η) ◦ [u, u], a principal desirous of access may construct a proof of
admin says (may k f η) ◦ [u1, u2] where [u1, u2] is a time interval that contains u. If this
succeeds then the time subsumption principle guarantees that admin says (may k f η) ◦ [u, u]
is also provable, hence the former proof also witnesses the provability of the latter. In fact,
in §5 we extend Theorem 4.4 to show that the same proof term which proves admin says
(may k f η) ◦ [u1, u2] also proves admin says (may k f η) ◦ [u, u]. Consequently, the exact
time of access u need not be known at the time of proof construction; only a rough estimate
of its range suffices. The proof verifier extracts from the proof the interval of time over
which it is valid and writes the interval into the procap it generates. The back end of PCFS
ensures that the time of access u is in this interval. The process of extraction of the time
interval from a proof is explained in §5 and it is also shown formally that the process is
sound.

A related problem arises for the state of the system E – how can the state at the time
of access be estimated during proof construction or verification? To address this problem,
the proof search tool in PCFS requires the user to provide selective input about expected
state (§6), and the verification tool simply writes every interpreted atom it encounters in a
proof to the procap it outputs. The back end then checks all such interpreted atoms at the
time of access in the prevailing state (§5).

4.3.3 Example: Course Administration

We illustrate the use of BL through a simple example that expresses in the logic a policy
for access to class homework directories in a hypothetical university UV. Assume that
UV provides all class instructors storage space on a central server that can be used to
collect homeworks from students. A principal called registrar decides the instructor of
each class as well its teaching assistants (TAs) and students, expressed formally by the
predicates (is-instructor k class), (is-ta k class), and (is-student k class) respectively. A
separate principal diradmin assigns directories on the central server to classes; the predicate
(is-dir dir class) means that directory dir has been assigned to class. Each directory is
assumed to have an extended attribute user.#pcfs.state which determines who is allowed
to read and write the directory. Possible values of this extended attribute are:

A. prep, meaning that the contents of the directory are being prepared. In this state only
the TAs have read and write access to the directory.

B. submission, meaning that the homework in the directory is active. In this state all
registered students can read and write the directory.7

7We side-step the issue of having a separate homework submission directory for each student, so strictly
speaking, in this example, students will be able to read and write each others’ homeworks. This can be
easily avoided by modifying the formalization.

95

Chapter 4. BL: An Authorization Logic for Dynamic Policies

C. done, meaning that homework submission to the directory has been closed. In this
state only the TAs have read access to the directory.

The value of the attribute user.#pcfs.state can only be changed by the instructor of the
class to which the directory is assigned. This instructor always has both read and write
permissions to the directory. Assuming that the principal admin has final control over
determining access to directories on the central server, and that (may k d η) means that
principal k has permission η on directory d, the policy rules for access are shown in rules
(1)–(8) in Figure 4.6.

Rule (1) states that the instructor k of a class l may read any directory d associated with
the class. The annotation ◦ [−∞,+∞] on this rule as well as on others means that the rule
applies at all points of time. Rule (2) is similar, except that it authorizes write access. Rule
(3) allows a TA k of class l to read a directory d associated with the class if the extended
attribute user.#pcfs.state on the directory has been set to prep. Rule (4) is similar; it
allows write access to TAs. Rules (5) and (6) allow students to read and write directories
in the state submission. Rule (7) allows TAs to read directories in state done. The salient
point to observe in rules (3)–(7) is the use of the interpreted predicate has_xattr, which
guarantees the properties mentioned in (A)–(C) above.

Rule (8) allows the instructor of a class the authority to change the extended attributes
of any directory associated with the class (and hence influence which of the rules (3)–(7) will
apply to the directory), by giving her the govern permission. An important observation is
that this authorization policy does not restrict the instructor’s use of the govern permission
to setting the attribute user.#pcfs.state in the specific order prep → submission → done.
Instead we trust the instructor to follow this protocol correctly.

As a specific instance of the use of this policy, let us assume that Alice is instructor for
class cs101 from August 20, 2009 to December 20, 2009. This would be established by a
certificate from registrar, who would constrain its validity to exactly this interval of time. In
BL, this certificate would be reflected as the judgment (9) in Figure 4.6. Further suppose
that Terence is appointed TA for cs101 for the period September 01, 2009 to September
30, 2009. This may be represented by judgment (10). Finally assume that a directory
cs101dir has been assigned to the class for the latter’s duration (judgment (11)), and that
on September 15, 2009, the attribute user.#pcfs.state on the directory cs101dir has value
prep.

Then, it is quite easy to prove using the rules of the sequent calculus that the policy
rules (4), (10), and (11) from Figure 4.6 entail the following judgment for any time point
u in the interval September 01, 2009 – September 30, 2009, provided that the attribute
user.#pcfs.state on cs101dir is set to prep, thus allowing Terence to write cs101dir at any
such time u.

(admin claims (may Terence cs101dir write)) ◦ [u, u]
What is more interesting here is that the judgment cannot be proved if either u is not in
the interval September 01, 2009 – September 30, 2009, or the attribute user.#pcfs.state
on cs101 does not have the value prep. This illustrates how, through its combination of
interpreted predicates, constraints, and explicit time, BL is able to express dynamic policies
that rely on both system state as well as time.

96

Chapter 4. BL: An Authorization Logic for Dynamic Policies

General rules:

(1)
admin claims ∀k, d, l.

(((diradmin says (is-dir d l)) ∧ (registrar says (is-instructor k l)))
⊃ may k d read) ◦ [−∞,+∞]

(2)
admin claims ∀k, d, l.

(((diradmin says (is-dir d l)) ∧ (registrar says (is-instructor k l)))
⊃ may k d write) ◦ [−∞,+∞]

(3)
admin claims ∀k, d, l.

(((diradmin says (is-dir d l)) ∧ (registrar says (is-ta k l))∧
(has_xattr d state prep)) ⊃ may k d read) ◦ [−∞,+∞]

(4)
admin claims ∀k, d, l.

(((diradmin says (is-dir d l)) ∧ (registrar says (is-ta k l))∧
(has_xattr d state prep)) ⊃ may k d write) ◦ [−∞,+∞]

(5)
admin claims ∀k, d, l.

(((diradmin says (is-dir d l)) ∧ (registrar says (is-student k l))∧
(has_xattr d state submission)) ⊃ may k d read) ◦ [−∞,+∞]

(6)
admin claims ∀k, d, l.

(((diradmin says (is-dir d l)) ∧ (registrar says (is-student k l))∧
(has_xattr d state submission)) ⊃ may k d write) ◦ [−∞,+∞]

(7)
admin claims ∀k, d, l.

(((diradmin says (is-dir d l)) ∧ (registrar says (is-ta k l))∧
(has_xattr d state done)) ⊃ may k d read) ◦ [−∞,+∞]

(8)
admin claims ∀k, d, l.

(((diradmin says (is-dir d l)) ∧ (registrar says (is-instructor k l)))
⊃ may k d govern) ◦ [−∞,+∞]

Rules specific to an instance:

(9) registrar claims (is-instructor Alice cs101) ◦ [2009:08:20, 2009:12:20]

(10) registrar claims (is-ta Terence cs101) ◦ [2009:09:01, 2009:09:30]

(11) diradmin claims (is-dir cs101dir cs101) ◦ [2009:08:20, 2009:12:20]

Figure 4.6: Policy rules for access to class directories

A large case study on the use of BL for controlling access to classified information that
is based on ideas similar to those in this example is presented in §8. Other examples of the
use of explicit time, but not interpreted predicates, in the context of authorization may be

97

Chapter 4. BL: An Authorization Logic for Dynamic Policies

found in prior joint work of the author [54].

4.4 Justification for the Use of Time Points in BL Views

In generalizing the logic from BLS to BL we have also generalized views from being principals
k0 to triples k0, ub, ue. The question is whether this generalization is necessary. More
precisely, can we systematically erase the time points ub, ue from views in all rules of the
sequent calculus (Figures 4.4 and 4.5), and work with the resulting logic?

From the perspective of proof theory there is no problem with this new logic. Its proof
theory is simpler than that of BL and analogues of theorems of §4.2.5 are admissible in
it. The problem with the logic lies in its expressiveness – it admits the following sequent
(which BL does not in general).

Σ; ·; ·; k claims (s @ [u1, u2]) ◦ [u′1, u′2]
k0−→ k says s ◦ [u1, u2]

Put more succinctly, the formulas (k says (s @ [u1, u2])) @ [u′1, u′2] and (k says s) @ [u1, u2]
are equivalent in the logic. As an example of the consequences of this expressiveness, suppose
that principal admin signs the formula (may Alice foo.txt read) @ [2009:01:01, 2009:12:31],
i.e. a formula that allows Alice access throughout 2009, and puts it in a certificate that is
valid during the interval [2009:01:01, 2009:06:30]. Note that the certificate itself expires on
June 30, 2009. According to the description in §4.3, this certificate would be reflected in
the logic as the hypothesis:

admin claims ((may Alice foo.txt read) @ [2009:01:01, 2009:12:31]) ◦ [2009:01:01, 2009:06:30]

Now we ask the question: Given this and only this hypothesis, should Alice be allowed
to read foo.txt on September 01, 2009 at 00:00:00 hours? Or equivalently, should this
hypothesis entail the judgment

admin claims (may Alice foo.txt read) ◦ [2009:09:01, 2009:09:01]

If we use BL, the answer would be no, as can easily be proved using the sequent calculus.
However, if we were to use the modified logic, the answer would be yes – the required entail-
ment is an instance of the sequent shown earlier, followed by one use of time subsumption.

The question then is which of the two answers is correct – should Alice be allowed the
access or not? In this case it seems that BL’s answer is the correct one. Since admin’s
certificate expires on June 30, 2009 and nothing in the policy explicitly allows the use of an
expired certificate, a proof constructed from the admin’s certificate should not be acceptable
on September 01, 2009. It is for this reason – to prevent implicit use of expired certificates
and to take into account the validity of a certificate even if the content of the certificate
mentions another time interval – that we choose to keep the time points ub, ue in the views
in BL. In settings where this is not desirable, the other logic obtained by dropping time
points from views may be more appropriate.

98

Chapter 4. BL: An Authorization Logic for Dynamic Policies

4.5 Proof Normalization
The subject of this section is orthogonal to the rest of the thesis and the disinclined reader
may skip it without a break in continuity.

We show that every natural deduction proof can be reduced to a proof in canonical
form. The latter are a subclass of proofs. Reduction of a proof to a canonical form is
called proof normalization. Although not directly useful in PCFS, it is an important proof-
theoretic result. Canonical proofs also lead to bidirectional proof verification, which is used
in PCFS (§5). An interesting aspect of our proof of the existence of canonical proofs is
the use of the sequent calculus and its equivalence to natural deduction (Theorem 4.14)
instead of the usual approach of defining a proof rewrite system such as β-reduction, and
showing that it always terminates. The technical material in this section is a generalization
of similar work for other logics [114, 119, 145].

What is a canonical proof? By a canonical proof we mean a natural deduction proof
that has no β-redexes and to which commuting conversions have been applied to the maxi-
mum possible extent. Both β-redexes and commuting conversions are informally explained
below, and canonical proofs are formally defined later.

A β-redex is a locus in a proof where the principal formula of an elimination rule is
established using an introduction rule. For example, consider a proof which ends as shown
below. This proof has a β-redex since the formula k says s is introduced using the rule (saysI)
and immediately eliminated using the rule (saysE). Due to the presence of this β-redex the
proof is not canonical.

D
Σ; Ψ;E; Γ| `k,u1,u2 s ◦ [u1, u2]
Σ; Ψ;E; Γ `ν k says s ◦ [u1, u2]

saysI E
Σ; Ψ;E; Γ, k claims s ◦ [u1, u2] `ν r ◦ [u′1, u′2]

Σ; Ψ;E; Γ `ν r ◦ [u′1, u′2]
saysE

This β-redex can be eliminated by applying Theorem 4.6 to the derivations D and E .
A commuting conversion is a proof transformation that allows let-like elimination rules,

i.e. all elimination rules except (∧E1), (∧E2), (⊃E), and (∀E), to be pushed outside of other
elimination rules. For instance consider the following proof in which the rule (saysE) is used
to prove a judgment that is principal in the rule (∧E1).

D
Σ; Ψ;E; Γ `ν k says r ◦ [u′1, u′2]

E
Σ; Ψ;E; Γ, k claims r ◦ [u′1, u′2] `

ν s1 ∧ s2 ◦ [u1, u2]
Σ; Ψ;E; Γ `ν s1 ∧ s2 ◦ [u1, u2]

Σ; Ψ;E; Γ `ν s1 ◦ [u1, u2]
saysE

∧E1

A commuting conversion may be applied to rotate the two rules, resulting in the following
proof.

D
Σ; Ψ;E; Γ `ν k says r ◦ [u′1, u′2]

E
Σ; Ψ;E; Γ, k claims r ◦ [u′1, u′2] `

ν s1 ∧ s2 ◦ [u1, u2]
Σ; Ψ;E; Γ, k claims r ◦ [u′1, u′2] `

ν s1 ◦ [u1, u2]
∧E1

Σ; Ψ;E; Γ `ν s1 ◦ [u1, u2]
saysE

99

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇓ Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; Γ `ν s ◦ [u′1, u′2] ⇑
⇓⇑

Σ; Ψ;E; Γ, s ◦ [u1, u2] `ν s ◦ [u1, u2] ⇓
hyp

ν = k, ub, ue Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2 Σ; Ψ |= k′ � k
Σ; Ψ;E; Γ, k′ claims s ◦ [u1, u2] `ν s ◦ [u1, u2] ⇓

claims

Σ; Ψ;E; Γ| `k,u1,u2 s ◦ [u1, u2] ⇑
Σ; Ψ;E; Γ `ν k says s ◦ [u1, u2] ⇑

saysI

Σ; Ψ;E; Γ `ν k says s ◦ [u1, u2] ⇓ Σ; Ψ;E; Γ, k claims s ◦ [u1, u2] `ν s′ ◦ [u′1, u′2] ⇑
Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2] ⇑

saysE

Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇑
Σ; Ψ;E; Γ `ν (s @ [u1, u2]) ◦ [u′1, u′2] ⇑

@I

Σ; Ψ;E; Γ `ν s @ [u1, u2] ◦ [u′1, u′2] ⇓ Σ; Ψ;E; Γ, s ◦ [u1, u2] `ν s′ ◦ [u′′1 , u′′2] ⇑
Σ; Ψ;E; Γ `ν s′ ◦ [u′′1 , u′′2] ⇑

@E

Σ; Ψ |= c

Σ; Ψ;E; Γ `ν c ◦ [u1, u2] ⇑
consI

Σ; Ψ;E; Γ `ν c ◦ [u1, u2] ⇓ Σ; Ψ, c;E; Γ `ν s′ ◦ [u′1, u′2] ⇑
Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2] ⇑

consE

Σ;E |= i

Σ; Ψ;E; Γ `ν i ◦ [u1, u2] ⇑
interI

Σ; Ψ;E; Γ `ν i ◦ [u1, u2] ⇓ Σ; Ψ;E, i; Γ `ν s′ ◦ [u′1, u′2] ⇑
Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2] ⇑

interE

Figure 4.7: BL: Canonical and atomic proofs, part 1

Formal definition. Formally, we characterize canonical proofs using two judgments Σ; Ψ;
E; Γ `ν s ◦ [u1, u2] ⇑ and Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇓ that are defined by the mutually
inductive rules in Figures 4.7 and 4.8. The judgment Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇑ means
that Σ; Ψ;E; Γ `ν s ◦ [u1, u2] has a canonical proof whereas Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇓
means that Σ; Ψ;E; Γ `ν s ◦ [u1, u2] has what we call an atomic proof. Atomic proofs are
an auxiliary class of proofs that we need to define canonical proofs.

The rules defining these judgments are similar to those of natural deduction (Figures 4.2
and 4.3), and are also named similarly. The obvious differences are: (a) One of the symbols
⇑ and ⇓ is placed at the end of each hypothetical judgment, (b) There is a new rule (⇓⇑)

100

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Σ; Ψ;E; Γ `ν s1 ◦ [u1, u2] ⇑ Σ; Ψ;E; Γ `ν s2 ◦ [u1, u2] ⇑
Σ; Ψ;E; Γ `ν s1 ∧ s2 ◦ [u1, u2] ⇑

∧I

Σ; Ψ;E; Γ `ν s1 ∧ s2 ◦ [u1, u2] ⇓
Σ; Ψ;E; Γ `ν s1 ◦ [u1, u2] ⇓

∧E1
Σ; Ψ;E; Γ `ν s1 ∧ s2 ◦ [u1, u2] ⇓

Σ; Ψ;E; Γ `ν s2 ◦ [u1, u2] ⇓
∧E2

Σ; Ψ;E; Γ `ν s1 ◦ [u1, u2] ⇑
Σ; Ψ;E; Γ `ν s1 ∨ s2 ◦ [u1, u2] ⇑

∨I1
Σ; Ψ;E; Γ `ν s2 ◦ [u1, u2] ⇑

Σ; Ψ;E; Γ `ν s1 ∨ s2 ◦ [u1, u2] ⇑
∨I2

Σ; Ψ;E; Γ `ν s1 ∨ s2 ◦ [u1, u2] ⇓
Σ; Ψ;E; Γ, s1 ◦ [u1, u2] `ν s′ ◦ [u′1, u′2] ⇑ Σ; Ψ;E; Γ, s2 ◦ [u1, u2] `ν s′ ◦ [u′1, u′2] ⇑

Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2] ⇑
∨E

Σ; Ψ;E; Γ `ν > ◦ [u1, u2] ⇑
>I

Σ; Ψ;E; Γ `ν ⊥ ◦ [u1, u2] ⇓
Σ; Ψ;E; Γ `ν s ◦ [u′1, u′2] ⇑

⊥E

Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2] `ν s2 ◦ [x1, x2] ⇑
Σ; Ψ;E; Γ `ν s1 ⊃ s2 ◦ [u1, u2] ⇑

⊃I

Σ; Ψ;E; Γ `ν s1 ⊃ s2 ◦ [u1, u2] ⇓
Σ; Ψ;E; Γ `ν s1 ◦ [u′1, u′2] ⇑ Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; Γ `ν s2 ◦ [u′1, u′2] ⇓
⊃E

Σ, x:σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇑
Σ; Ψ;E; Γ `ν ∀x:σ.s ◦ [u1, u2] ⇑

∀I
Σ; Ψ;E; Γ `ν ∀x:σ.s ◦ [u1, u2] ⇓ Σ ` t : σ

Σ; Ψ;E; Γ `ν s[t/x] ◦ [u1, u2] ⇓
∀E

Σ; Ψ;E; Γ `ν s[t/x] ◦ [u1, u2] ⇑ Σ ` t : σ
Σ; Ψ;E; Γ `ν ∃x:σ.s ◦ [u1, u2] ⇑

∃I

Σ; Ψ;E; Γ `ν ∃x:σ.s ◦ [u1, u2] ⇓ Σ, x:σ; Ψ;E; Γ, s ◦ [u1, u2] `ν s′ ◦ [u′1, u′2] ⇑
Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2] ⇑

∃E

Figure 4.8: BL: Canonical and atomic proofs, part 2

which coerces from atomic proofs to canonical proofs, and (c) In the rules (hyp) and (claims)
the principal hypothesis and the conclusion are true on the same time interval. Change (c)
is motivated by a desire to be able to bidirectionally check canonical proofs. This should
become clear in §5. Observe the following:

1. Every introduction rule results in a canonical proof, and its principal premise requires
a canonical proof.

2. Every let-like elimination rule results in a canonical proof.

3. The rules (hyp), (claims), (∧E1), (∧E2), (⊃E), and (∀E) result in atomic proofs.

101

Chapter 4. BL: An Authorization Logic for Dynamic Policies

4. The principal premise of every elimination rule must be atomic.

5. The rule (⇓⇑) allows atomic proofs to be treated as canonical, but there is no rule to
coerce canonical proofs to atomic proofs.

(1), (4), and (5) imply that a canonical proof has no β-redexes. Further, (2) and (4) imply
that in every canonical proof commuting conversions have been fully applied.

Properties of canonical and atomic proofs. The most obvious property of canonical
and atomic proofs is that each hypothetical judgment that has an atomic or canonical proof
also has a natural deduction proof. This is fairly easy to prove by induction on atomic and
canonical proofs.

Theorem 4.15 (Injection). The following hold.

1. If Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇓ then Σ; Ψ;E; Γ `ν s ◦ [u1, u2].

2. If Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇑ then Σ; Ψ;E; Γ `ν s ◦ [u1, u2].

Proof. By simultaneous induction on given derivations, and case analysis of the last rules in
them. The cases of (hyp) and (claims) rely on property (C-refl-time) from §4.2.1, whereas
the case of (⇓⇑) uses Theorem 4.4.

The following analogue of the view subsumption (Theorem 4.3) is straightforward.

Theorem 4.16 (View subsumption). Suppose the following hold:

1. ν = k0, ub, ue and ν ′ = k′0, u
′
b, u
′
e

2. Σ; Ψ |= k0 � k′0, Σ; Ψ |= ub ≤ u′b, and Σ; Ψ |= u′e ≤ ue

Then,

A. Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇓ implies Σ; Ψ;E; Γ `ν′ s ◦ [u1, u2] ⇓ by a derivation of
shorter or equal depth.

B. Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇑ implies Σ; Ψ;E; Γ `ν′ s ◦ [u1, u2] ⇑ by a derivation of
shorter or equal depth.

Proof. By simultaneous induction on given derivations in A and B, and case analysis of
the last rule. The case where the derivation in A ends in (claims) uses the assumptions
(C-trans-time) and (C-trans-prin) from §4.2.1, as in the proof of Theorem 4.3.

Next we consider the analogue of time subsumption (Theorem 4.4) for canonical proofs.
Since in the rules (hyp) and (claims) of Figure 4.7 we require that the time interval in the
hypothesis and that in the conclusion match, time subsumption does not hold for atomic
proofs. However, the rule (⇓⇑) allows subsumption with respect to time intervals, as a
result of which canonical proofs admit time subsumption, as formalized by the following
theorem.

102

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Theorem 4.17 (Time subsumption). Suppose the following hold:

1. Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇑

2. Σ; Ψ |= u1 ≤ un and Σ; Ψ |= um ≤ u2

Then Σ; Ψ;E; Γ `ν s ◦ [un, um] ⇑

Proof. By induction on the depth of the given derivation of Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇑ and
case analysis of its last rule. The case where the derivation ends in rule (saysI) uses view
subsumption (Theorem 4.16). In the case where the derivation ends in rule (⊃I), a lemma
about substitution of constraints is needed. See Appendix B, Theorem B.9 for details.

Both atomic and canonical proofs are closed under substitution by atomic proofs (next
theorem). However, substitution of a canonical proof for a hypothesis may result in creation
of a β-redex or a new commuting conversion, and hence atomic and canonical proofs are
not closed under substitution by canonical proofs.

Theorem 4.18 (Substitution). Suppose Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇓. Then the following
hold.

1. Σ; Ψ;E; Γ, s ◦ [u1, u2] `ν r ◦ [u′1, u′2] ⇓ implies Σ; Ψ;E; Γ `ν r ◦ [u′1, u′2] ⇓.

2. Σ; Ψ;E; Γ, s ◦ [u1, u2] `ν r ◦ [u′1, u′2] ⇑ implies Σ; Ψ;E; Γ `ν r ◦ [u′1, u′2] ⇑.

Proof. By simultaneous induction on derivations given in (1) and (2), and case analysis of
their last rules.

Proof Normalization. Finally, we show that if a hypothetical judgment has a natural
deduction proof, then it also has a canonical proof. By Theorem 4.14 we know that every
natural deduction proof can be simulated in the sequent calculus. Given this fact, it suffices
to show that every provable sequent has a canonical proof.

Theorem 4.19 (Normalization). Suppose Σ; Ψ;E; Γ `ν s ◦ [u1, u2] in natural deduction.
Then Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇑.

Proof. By Theorem 4.14 it suffices to show that Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] implies Σ; Ψ;E; Γ `ν
s ◦ [u1, u2] ⇑. This can be proved by induction on the depth of the given sequent calculus
proof and a case analysis of its last rule, making considerable use of Theorem 4.18. See
Appendix B, Theorem B.10 for details of some representative cases.

Since both the simulation of natural deduction in the sequent calculus (Theorem 4.14)
and the simulation of the sequent calculus by canonical proofs (Theorem 4.19) are estab-
lished constructively, there is an algorithm that converts a natural deduction proof to a
canonical proof. This algorithm may be obtained by converting the inductive cases in the
proofs of the two theorems to clauses of declarative programs. This algorithm is easy but
tedious to describe, and since it does not provide any new insights, we omit its details.

103

Chapter 4. BL: An Authorization Logic for Dynamic Policies

4.6 Relation between BLS and BL

So far, we have not described how the two logics BLS (§3) and BL are related. Using the
sequent calculus for BL it is easy to show that axiom (C) of BLS (§3.1.1) is not admissible
in BL, so BL is not a conservative extension of BLS . What, then, is the relation between
the two logics? In this section we present two results in this regard. First we show that the
translation from BL to BLS that erases time intervals, constraints, and interpreted atoms
maps provable hypothetical judgments to provable ones. In this sense BL is a generalization
of BLS . Second we show that there is a simple embedding of BLS in BL that preserves
provability and unprovability of sequents.

Translation from BL to BLS. Figure 4.9 defines a translation | · | from BL to BLS that
maps constraints and interpreted atoms to > and erases @ connectives as well as suffixes
◦ [u1, u2]. (To avoid having to translate sorts, we assume that time is a sort in BLS but
do not assume any specific properties of it.) As the following theorem states, the image
of a sequent provable in BL is also provable in BLS , if we assume that constraints of the
form k � k′ do not appear in Ψ, Γ, and the conclusion. This restriction is needed to
incorporate the fact that the order � among principals in BLS is statically fixed, which
may not be the case in BL in general. For instance if principals k and k′ are unrelated in
BLS , then even though (k � k′) ⊃ ((k says s) ⊃ (k′ says s)) is provable in BL, its translation
> ⊃ ((k says psq) ⊃ (k′ says psq)) may not be provable in BLS . Along the same lines, the
theorem assumes that Σ′; Ψ′ |= k � k′ in BL implies Σ′ ` k � k′ in BLS , whenever Ψ′ does
not have � in it.

Theorem 4.20 (Soundness of translation). Suppose that the constraint constructor � does
not appear in either Ψ, Γ, or s and further suppose that for every k, k′, Σ′ and Ψ′ not
containing �, Σ′; Ψ′ |= k � k′ in BL implies Σ′ ` k � k′ in BLS. Then provability of
Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] in BL implies provability of |Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2]| in BLS.

Proof. By induction on the given derivation of Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] and case analysis
of its last rule.

Embedding BLS in BL. Figure 4.10 shows a translation p·q from BLS to BL that we
claim is an embedding. The translation puts the suffix @ [−∞,+∞] inside the condition
of every implication and adds the suffix ◦ [−∞,+∞] to every basic judgment of BLS . This
remarkably simple translation preserves provability, as the following theorem states. The
key observation in the proof of the theorem is that because of the suffix @ [−∞,+∞] inside
every implication, it can be ensured that all intervals on basic judgments in the hypotheses
in the proof of a translated sequent remain [−∞,+∞].

Theorem 4.21 (Correctness of embedding). Suppose that for every k, k′, Σ′, and Ψ′ not
containing �, Σ′; Ψ′ |= k � k′ in BL if and only if Σ′ ` k � k′ in BLS. Then, Σ; Γ k0−→ s is
provable in BLS if and only if pΣ; Γ k0−→ sq is provable in BL.

104

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Formulas s

|p| = p
|i| = >
|c| = >

s1 ∧ s2	=	s1	∧	s2
s1 ∨ s2	=	s1	∨	s2
s1 ⊃ s2	=	s1	⊃	s2
>	= >			
⊥	= ⊥			
∀x:σ.s	= ∀x:σ.	s		
∃x:σ.s	= ∃x:σ.	s		
k says s	= k says	s		
s @ [u1, u2]	=	s		

Basic Judgments J

|s ◦ [u1, u2]| = |s| true
|k claims s ◦ [u1, u2]| = k claims |s|

Hypotheses Γ

|J1, . . . , Jn| = |J1|, . . . , |Jn|

Views ν

|k0, ub, ue| = k0

Sequents

|Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2]| = Σ; |Γ| |ν|−→ |s|

Figure 4.9: Translation | · | from BL to BLS

Proof. The “if” direction follows from the observation that |pΣ; Γ k0−→ sq| = Σ; Γ k0−→ s. So
if pΣ; Γ k0−→ sq is provable in BL, then by Theorem 4.20, |pΣ; Γ k0−→ sq| is provable in BLS ,
or equivalently, Σ; Γ k0−→ s is provable in BLS .

Proof of the “only if” direction follows by an induction on the depth of the given BLS
derivation of Σ; Γ k0−→ s and a case analysis of its last rule. See Appendix B, Theorem B.11
for some of the interesting cases.

105

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Formulas s

ppq = p
ps1 ∧ s2q = ps1q ∧ ps2q
ps1 ∨ s2q = ps1q ∨ ps2q
ps1 ⊃ s2q = (ps1q @ [−∞,+∞]) ⊃ ps2q
p>q = >
p⊥q = ⊥
p∀x:σ.sq = ∀x:σ.psq
p∃x:σ.sq = ∃x:σ.psq
pk says sq = k says psq

Basic Judgments J

ps trueq = psq ◦ [−∞,+∞]
pk claims sq = k claims psq ◦ [−∞,+∞]

Hypotheses Γ

pJ1, . . . , Jnq = pJ1q, . . . , pJnq

Views k0

pk0q = k0,−∞,+∞

Sequents

pΣ; Γ k0−→ sq = Σ; ·; ·; pΓq pk0q−−−→ psq ◦ [−∞,+∞]

Figure 4.10: Embedding p·q from BLS to BL

Example 4.22. We mentioned earlier that BL is not a conservative extension of BLS
because axiom (C) of BLS – k says ((k says s) ⊃ s) – is not admissible in BL. However,
it is easy to prove using the sequent calculus of BL that the translation of (C), i.e. k says
(((k says psq) @ [−∞,∞]) ⊃ psq) is provable in BL for every k and s.

4.7 Related Work

There is a significant amount of work related to BL, both in the area of proof theory, and
in the area of declarative formalisms for representing authorization policies that depend on
time and system state.

106

Chapter 4. BL: An Authorization Logic for Dynamic Policies

Differences from η logic. As mentioned in the introduction, the treatment of explicit
time in BL is based on η logic, which was first published in joint work of DeYoung, the
author, and Pfenning [54], and largely developed in DeYoung’s undergraduate thesis [53].
Besides the fact that the treatment of says in η logic is derived from GP logic, whereas
that in BL is based on BLS , there are also several other minor differences between the
logics. First, the interaction between says and time in BL is richer than it is in η due to
the presence of views (see §4.4). Second, the treatment of constraints in BL is slightly
more general than it is in η – the latter confines constraints to the constructs c ∧ s and
c ⊃ s. This is necessary because η logic also considers well-formedness of intervals embedded
in formulas; for [u1, u2] to be well-formed, u1 ≤ u2 is a pre-requisite. Checking well-
formedness necessitates collection of constraints statically from formulas, which is greatly
eased if occurrences of constraints are restricted. In BL we elide this well-formedness check.
BL’s constraints can be recovered in η by defining the formula c as c ∧ >, and conversely,
well-formedness checks can be incorporated in BL without difficulty.

In terms of expressiveness, the embedding from GP logic to BLS (§3.5.1) easily extends
to an embedding from η logic to BL, so BL is at least as expressive as η logic. Further, for
reasons mentioned in §3.1.2 exclusive delegation cannot be expressed easily in η logic, but
can be expressed readily in BL.

Hybrid logics. A hybrid logic is a modal logic, the worlds of whose Kripke structures are
made explicit in formulas. Hybrid logics include modal formulas of the form s @ w, which
means that formula s is true at world w. s @ [u1, u2] is a specific kind of hybrid connective,
where the worlds have the structure of intervals on the integer line. Since the only properties
of intervals used in BL and η logic are reflexivity and transitivity of interval containment,
one may think of s @ [u1, u2] as a hybrid modality over a Kripke structure whose worlds
form a partial order. Such Kripke models have been used to interpret intuitionistic logic
in the past (see for example, [30]). Indeed the somewhat unusual (⊃I) rule in Figure 4.3
corresponds to the definition of satisfaction of implication in Kripke models. In this sense,
BL is related to a lot of existing work on hybrid logics, and in particular, intuitionistic
hybrid logics [35, 122].

Constraints. As in η logic, integration of constraints and the proof system in BL is
directly based on the work of Saranli and Pfenning [128] and that of Jia [84], both of which
were in the context of linear logic. There has also been a significant amount of work on
integrating constraint domains in logic programming languages. Since the latter line of
work is not directly related to BL, we refer the reader to a survey for its details [82].

Within the context of authorization policies, a number of logic-based frameworks for
expressing policies allow representation of constraints, e.g., [18, 23, 26, 94, 95]. The treat-
ment of constraints in all these is similar to that in constrained logic programming. The
author is unaware of any authorization logics with constraints prior to η logic.

Explicit Time. Frühwith’s work on Temporal Annotated Constraint Logic Programming
(TACLP) [62] is very closely related to BL’s treatment of explicit time. Although not

107

Chapter 4. BL: An Authorization Logic for Dynamic Policies

intended to express authorization policies, TACLP contains a modality p at u, which means
that the atomic formula p is true at time u. The notion corresponding to our connective s @
[u1, u2] (called s th I in TACLP, with I being an interval) is then defined by first requiring
that at commute with all other connectives including implication, and then defining s th I
as ∀u. ((u ∈ I) ⊃ (s at u)). The obvious differences between BL and TACLP are that the
latter lacks says and is a logic programming language, not a full logic.

In place of the @ modality, declarative frameworks for expressing authorization policies
often include an interpreted constant that represents the time at which an operation such
as proof search or proof verification is performed. This approach has been adopted, among
others, in the language SecPAL where the constant currentTime() reduces to the time
of evaluation of the authorization query [23], and in work on proof-carrying authorization
where the constant localtime evaluates to the time of access [18]. Irrespective of the
name, policy expiration can be represented using this constant in a simple manner; in
proof-carrying authorization, for instance, one may say (u1 < localtime < u2) ⊃ s instead
of s to force s to be usable only in the time interval (u1, u2). The limitation of this approach,
as opposed to explicit time in BL, is that it does not work when formulas need to be proved
on intervals of time other than [localtime, localtime]. For example, the policy rule in
the paragraph “Anachronistic references” in §4.1.2 cannot be expressed with this constant
alone, because the condition (mayaccess k f) in the implication needs to proved on the
interval [T, T], which is different from the time of access. More precisely, the approach
works only if the policy rules do not have @ connectives nested inside other connectives.

Along similar lines, it is common in implementations of proof-carrying authorization
to use extra-logical checks to enforce expiration of credentials since the logics used cannot
represent time [18, 20]. Instead, it is checked in the reference monitor that the time of
access lies in the intersection of the validities of all credentials used in the proof that
authorizes access. In contrast, in logics like BL and η, the logic represents validities of
certificates (§4.3), and proofs contain the same information, so these extra-logical checks
are internalized into proof verification. PCFS goes a step further since information about
time is extracted from proofs during proof verification and placed explicitly in procaps
that are checked at the time of access (§5). Checking expiration of certificates directly is
equivalent to the checks internalized in proof verification in BL if all @ connectives are at
the top level. This was shown formally in prior work on η logic [54].

System state. Independent of the work in this thesis and concurrently with it, Schneider
et al. have designed the Nexus Authorization Logic (NAL) [132] and implemented it in
the Nexus operating system [142]. NAL includes support for interpreted predicates in a
manner similar to that in BL – in the reference monitor certain predicates are verified using
trusted decision procedures that may refer to the system state. The implementation of
the Nexus operating system uses a mix of proof-carrying authorization and inference in
reference monitors to enforce authorization policies written in NAL.

Several other logic-based frameworks for representing authorization policies [18, 23, 26,
94, 95] do not make a distinction between constraints and predicates interpreted on the state
of the system, and consequently support system state implicitly as part of their support

108

Chapter 4. BL: An Authorization Logic for Dynamic Policies

for constraints. The distinction between constraints and predicates interpreted on system
state is necessitated in BL because of the PCFS requirement to verify proofs in advance of
access. This is not the case with any other logic-based authorization framework.

There has also been some work on declarative languages and logics in which authoriza-
tion policies and state transitions can be represented simultaneously [22, 25, 55]. In such
frameworks, the state is represented through uninterpreted predicates, whose transition
rule(s) are also defined in the framework. This line of work is largely orthogonal to BL.

109

Chapter 4. BL: An Authorization Logic for Dynamic Policies

110

Chapter 5

BL Proof Terms, Their
Verification, and Procaps

In §4 we explained BL’s inference rules and the structure of BL’s proofs. This chapter
introduces proof terms, a compact representation of natural deduction proofs that is used
in PCFS, and describes the procedure used for their verification. Whereas a description of
proof terms and their verification for a logic may seem trivial in general, and perhaps not
critical enough to merit an independent chapter in a thesis, there are at least three reasons
why a thorough investigation of the same is justified here.

First, in BL we are interested in simultaneously minimizing annotations in proof terms
to keep them small, and having a simple verification procedure whose implementation is
efficient and easily trusted. It is well known that these two problems are at odds with each
other. As extreme examples of the trade-off in intuitionistic logic, the Church-style of proof
terms results in an easy linear-time verification procedure but requires that every bound
variable be annotated with the judgment whose proof it represents; the Curry-style of proof
terms, on the other hand, mandates no annotations but results in a difficult verification
problem [44, 50]. In BL the trade-off is further complicated by a need to have the time
subsumption principle, i.e. we want a proof term that witnesses s ◦ [u1, u2] to also witness
s ◦ [u′1, u′2] whenever [u′1, u′2] ⊆ [u1, u2]. (See §4.3.2 for an explanation of the importance of
this principle.) Therefore, the Church-style of proof terms, which would allow a proof term
to establish at most one judgment does not work for BL. Our final design of proof terms for
BL is based on an adaptation of bidirectional proofs, where proof verification is combined
with selective inference of judgments established by proof terms, and use of annotations
is restricted to β-redexes [117]. Although not surprising, this choice breaks the one-to-one
correspondence between natural deduction proofs and proof terms (e.g., the Curry-Howard
isomorphism), so some effort is needed to show that proof terms cover all natural deduction
proofs (§5.1.1). Further, we formally prove that the time subsumption principle as well as
several other intuitive properties hold for proof terms (§5.1.2).

Second, the proof verification problem for BL is non-trivial because proofs depend on
system state and time of use, both of which may change between the time of proof veri-
fication and the time of access in PCFS (§4.3.2). (Recall from §2 that proof verification

111

Chapter 5. BL Proof Terms, Their Verification, and Procaps

in PCFS happens in advance of file access to keep the latter efficient.) Consequently, for
PCFS, we use a non-standard proof verification procedure that does not check parts of
a proof that depend on either system state or time of use, but instead outputs them as
conditions in the procap (capability) generated from the proof. The back end of PCFS
then completes the proof verification by checking these conditions every time the procap is
used for access. Explaining this proof verification procedure and proving that this two part
checking results in accurate verification of proofs is one of the most important goals of this
chapter (§5.2). In addition, the chapter also describes the abstract structure and checking
of procaps (§5.2.3, §5.2.1), and discusses how policy revocation may be implemented in the
PCFS architecture (§5.2.4).

Third, even though proof terms witness natural deduction proofs, the proof search tool
included in PCFS constructs sequent calculus proofs. Consequently, we need to produce
natural deduction proof terms from sequent calculus proofs, which although not difficult,
is not entirely trivial (§5.3). We also explain proof terms for canonical proofs of BL and
argue that all proof terms can be reduced to a canonical form (§5.4).

5.1 Bidirectional Proof Terms for BL

BL proof terms are divided into two mutually inductive syntactic categories – checkables
and inferables. During proof verification it is checked that a checkable correctly establishes
a given basic judgment from given hypotheses, whereas the basic judgment witnessed by
an inferable is inferred. In this sense, the proof term system and verification are both
bidirectional [117]. The syntax of proof terms is summarized below. There is one proof
term constructor for every rule in natural deduction (the names of proof term constructors
and natural deduction rules correspond to each other). In addition, each inferable is also
a checkable, and there is a special constructor check that coerces checkables to inferables.
check is the only constructor whose arguments mention BL formulas. The letters τ, π
denote proof variables which are used to name hypotheses in a proof. The notation π.Ξ
means that the proof variable π is bound in the syntactic entity Ξ and may be subject to
α-renaming; x.Ξ is similar notation for binding the term variable x.

Checkables V ::= R | conjI V1 V2 | disjI1 V | disjI2 V | disjE R (π1.V1) (π2.V2)
| topI | botE R | impI (x1.x2.π.V) | forallI (x.V) | existsI t V
| existsE R (x.π.V) | atI V | atE R (π.V) | saysI V
| saysE R (π.V) | consI | consE R V | inferI | inferE R V

Inferables R ::= π | check V s u1 u2 | conjE1 R | conjE2 R | impE R V u1 u2
| forallE t R

Judgments and Inference Rules. We describe the use of proof terms through a proof
term calculus, which contains two hypothetical judgments Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]
(checking) and Σ; Ψ;E; Π `ν R =⇒ s ◦ [u1, u2] (inference). These judgments are are defined
by the mutually inductive rules in Figures 5.1 and 5.2. The hypotheses Π in these figures

112

Chapter 5. BL Proof Terms, Their Verification, and Procaps

are a multiset π1 : J1, . . . , πn : Jn of pairs of proof variables πi and judgments Ji. Each
hypothesis Ji may be referred to in proof terms using the name πi. (We assume implicitly
that the names π1, . . . , πn are distinct.)

Π ::= π1 : J1, . . . , πn : Jn

The definition of the restriction operator ·| is revised to retain names of assumptions:

Π| = {(π : k claims r ◦ [u1, u2]) ∈ Π}

The rules defining the judgments Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2] and Σ; Ψ;E; Π `ν
R =⇒ s ◦ [u1, u2] are similar to those for canonical and atomic proofs from §4.5 – wher-
ever a canonical proof judgment ⇑ appeared in the rules of §4.5, we now have a checking
judgment ⇐=, and wherever an atomic proof judgment ⇓ appeared in the rules of §4.5
we now have an inference judgment =⇒. There is, of course, the rule (check) which has
no analogue in the rules of §4.5, and it is this rule that allows proof terms to witness all
natural deduction proofs, not just canonical and atomic ones. With the exception of the
last one, the following observations about the proof term calculus of Figures 5.1 and 5.2
parallel similar observations from §4.5.

1. The conclusion of every introduction rule has a checkable proof term, and so does its
principal premise.

2. The conclusion of every let-like elimination rule has a checkable proof term.

3. The conclusions of rules (check), (hyp), (claims), (∧E1), (∧E2), (⊃E), and (∀E) con-
tain inferable proof terms.

4. The principal premise of every elimination rule has an inferable proof term.

5. The rule (infer) shifts judgments from inference to checking, whereas the rule (check)
shifts in the other direction.

While a precise connection between the proof term calculus of Figures 5.1 and 5.2 and
canonical and atomic proofs is postponed to §5.4, in the following we explain how proof
terms may be used to witness natural deduction proofs in general.

5.1.1 Connection to Natural Deduction

The proof term calculus of Figures 5.1 and 5.2 corresponds to natural deduction of Fig-
ures 4.2 and 4.3 due to two properties that we formalize and prove in this section. First,
if we erase the proof term, all proof variables, and the entailment symbol =⇒ or ⇐= from
a hypothetical judgment that is provable in the proof term calculus, then we obtain a hy-
pothetical judgment that is provable in natural deduction. Thus the proof term calculus
is sound with respect to natural deduction. Second, given a natural deduction proof of
Σ; Ψ;E; Γ `ν s ◦ [u1, u2] and any Π that assigns unique names to judgments in Γ, we

113

Chapter 5. BL Proof Terms, Their Verification, and Procaps

Σ; Ψ;E; Π `ν R =⇒ s ◦ [u1, u2] Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; Π `ν R⇐= s ◦ [u′1, u′2]
infer

Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]
Σ; Ψ;E; Π `ν check V s u1 u2 =⇒ s ◦ [u1, u2]

check

Σ; Ψ;E; Π, π : s ◦ [u1, u2] `ν π =⇒ s ◦ [u1, u2]
hyp

ν = k, ub, ue Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2 Σ; Ψ |= k′ � k
Σ; Ψ;E; Π, π : k′ claims s ◦ [u1, u2] `ν π =⇒ s ◦ [u1, u2]

claims

Σ; Ψ;E; Π| `k,u1,u2 V ⇐= s ◦ [u1, u2]
Σ; Ψ;E; Π `ν saysI V ⇐= k says s ◦ [u1, u2]

saysI

Σ; Ψ;E; Π `ν R =⇒ k says s ◦ [u1, u2] Σ; Ψ;E; Π, π : k claims s ◦ [u1, u2] `ν V ⇐= s′ ◦ [u′1, u′2]
Σ; Ψ;E; Π `ν saysE R (π.V)⇐= s′ ◦ [u′1, u′2]

saysE

Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]
Σ; Ψ;E; Π `ν atI V ⇐= (s @ [u1, u2]) ◦ [u′1, u′2]

@I

Σ; Ψ;E; Π `ν R =⇒ s @ [u1, u2] ◦ [u′1, u′2] Σ; Ψ;E; Π, π : s ◦ [u1, u2] `ν V ⇐= s′ ◦ [u′′1 , u′′2]
Σ; Ψ;E; Π `ν atE R (π.V)⇐= s′ ◦ [u′′1 , u′′2]

@E

Σ; Ψ |= c

Σ; Ψ;E; Π `ν consI⇐= c ◦ [u1, u2]
consI

Σ; Ψ;E; Π `ν R =⇒ c ◦ [u1, u2] Σ; Ψ, c;E; Π `ν V ⇐= s′ ◦ [u′1, u′2]
Σ; Ψ;E; Π `ν consE R V ⇐= s′ ◦ [u′1, u′2]

consE

Σ;E |= i

Σ; Ψ;E; Π `ν interI⇐= i ◦ [u1, u2]
interI

Σ; Ψ;E; Π `ν R =⇒ i ◦ [u1, u2] Σ; Ψ;E, i; Π `ν V ⇐= s′ ◦ [u′1, u′2]
Σ; Ψ;E; Π `ν interE R V ⇐= s′ ◦ [u′1, u′2]

interE

Figure 5.1: Bidirectional proof terms, part 1

can construct a checkable V and a derivation in the proof term calculus which shows that
Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]. This implies that the proof term calculus is complete with
respect to natural deduction.

Definition 5.1. For Π = π1 : J1, . . . , πn : Jn, define |Π| to be hypotheses J1, . . . , Jn.

Theorem 5.2 (Soundness). The following hold.

114

Chapter 5. BL Proof Terms, Their Verification, and Procaps

Σ; Ψ;E; Π `ν s1 ◦ V1 ⇐= [u1, u2] Σ; Ψ;E; Π `ν V2 ⇐= s2 ◦ [u1, u2]
Σ; Ψ;E; Π `ν conjI V1 V2 ⇐= s1 ∧ s2 ◦ [u1, u2]

∧I

Σ; Ψ;E; Π `ν R =⇒ s1 ∧ s2 ◦ [u1, u2]
Σ; Ψ;E; Π `ν conjE1 R =⇒ s1 ◦ [u1, u2]

∧E1
Σ; Ψ;E; Π `ν R =⇒ s1 ∧ s2 ◦ [u1, u2]

Σ; Ψ;E; Π `ν conjE2 R =⇒ s2 ◦ [u1, u2]
∧E2

Σ; Ψ;E; Π `ν V ⇐= s1 ◦ [u1, u2]
Σ; Ψ;E; Π `ν disjI1 V ⇐= s1 ∨ s2 ◦ [u1, u2]

∨I1

Σ; Ψ;E; Π `ν V ⇐= s2 ◦ [u1, u2]
Σ; Ψ;E; Π `ν disjI2 V ⇐= s1 ∨ s2 ◦ [u1, u2]

∨I2

Σ; Ψ;E; Π `ν R =⇒ s1 ∨ s2 ◦ [u1, u2]
Σ; Ψ;E; Π, π1 : s1 ◦ [u1, u2] `ν V1 ⇐= s′ ◦ [u′1, u′2]
Σ; Ψ;E; Π, π2 : s2 ◦ [u1, u2] `ν V2 ⇐= s′ ◦ [u′1, u′2]

Σ; Ψ;E; Π `ν disjE R (π1.V1) (π2.V2)⇐= s′ ◦ [u′1, u′2]
∨E

Σ; Ψ;E; Π `ν topI⇐= > ◦ [u1, u2]
>I

Σ; Ψ;E; Π `ν R =⇒ ⊥ ◦ [u1, u2]
Σ; Ψ;E; Π `ν botE R⇐= s ◦ [u′1, u′2]

⊥E

Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Π, π : s1 ◦ [x1, x2] `ν V ⇐= s2 ◦ [x1, x2]
Σ; Ψ;E; Π `ν impI (x1.x2.π.V)⇐= s1 ⊃ s2 ◦ [u1, u2]

⊃I

Σ; Ψ;E; Π `ν R =⇒ s1 ⊃ s2 ◦ [u1, u2]
Σ; Ψ;E; Π `ν V ⇐= s1 ◦ [u′1, u′2] Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; Π `ν impE R V u′1 u
′
2 =⇒ s2 ◦ [u′1, u′2]

⊃E

Σ, x:σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]
Σ; Ψ;E; Π `ν forallI (x.V) : ∀x⇐=σ.s ◦ [u1, u2]

∀I

Σ; Ψ;E; Π `ν R : ∀x=⇒σ.s ◦ [u1, u2] Σ ` t : σ
Σ; Ψ;E; Π `ν forallE t R =⇒ s[t/x] ◦ [u1, u2]

∀E

Σ; Ψ;E; Π `ν V ⇐= s[t/x] ◦ [u1, u2] Σ ` t : σ
Σ; Ψ;E; Π `ν existsI t V : ∃x⇐=σ.s ◦ [u1, u2]

∃I

Σ; Ψ;E; Π `ν R =⇒ ∃x:σ.s ◦ [u1, u2] Σ, x:σ; Ψ;E; Π, π : s ◦ [u1, u2] `ν V ⇐= s′ ◦ [u′1, u′2]
Σ; Ψ;E; Π `ν existsI (x.π.V)⇐= s′ ◦ [u′1, u′2]

∃E

Figure 5.2: Bidirectional proof terms, part 2

1. If Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2], then Σ; Ψ;E; |Π| `ν s ◦ [u1, u2].

2. If Σ; Ψ;E; Π `ν R =⇒ s ◦ [u1, u2], then Σ; Ψ;E; |Π| `ν s ◦ [u1, u2].

115

Chapter 5. BL Proof Terms, Their Verification, and Procaps

Proof. By simultaneous induction on given derivations and case analysis of their last rules.
For the cases of rules (hyp) and (claims) of Figure 5.1 we use the property (C-refl-time)
from §4.2.1. The case of rule (infer) relies on Theorem 4.4.

An important point about this soundness result is that its proof is not based in simply
erasing all proof variables and proof terms from the given proof term calculus derivations.
Indeed, doing the latter may not result in a valid natural deduction derivation because
after erasing proof terms, the rule (infer) in the proof term calculus corresponds exactly to
time subsumption for natural deduction, which is not an explicit rule but established as a
theorem (Theorem 4.4).

Theorem 5.3 (Completeness). Suppose Σ; Ψ;E; Γ `ν s ◦ [u1, u2] and |Π| = Γ. Then there
is a checkable V such that Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2].

Proof. By induction on the given derivation of Σ; Ψ;E; Γ `ν s ◦ [u1, u2] and a case analysis
of its last rule. Some interesting cases are shown below.

Case.
Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ;E; Γ, s ◦ [u′1, u′2] `ν s ◦ [u1, u2]

hyp

Let |Π, π : s ◦ [u′1, u′2]| = Γ, s ◦ [u′1, u′2]. Choose V = π.
To show: Σ; Ψ;E; Π, π : s ◦ [u′1, u′2] `ν π ⇐= s ◦ [u1, u2].

1. Σ; Ψ;E; Π, π : s ◦ [u′1, u′2] `ν π =⇒ s ◦ [u′1, u′2] (Rule (hyp))

2. Σ; Ψ;E; Π, π : s ◦ [u′1, u′2] `ν π ⇐= s ◦ [u1, u2] (Rule (infer) on 1 and premises)

Case.
Σ; Ψ;E; Γ| `k,u1,u2 s ◦ [u1, u2]
Σ; Ψ;E; Γ `ν k says s ◦ [u1, u2]

saysI

To show: There is a V such that Σ; Ψ;E; Π `ν V ⇐= k says s ◦ [u1, u2].

1. |(Π|)| = (|Π|)| = Γ| (Definition)

2. There is a V ′ such that Σ; Ψ;E; Π| `k,u1,u2 V ′ ⇐= s ◦ [u1, u2] (i.h. on premise; 1)

3. Σ; Ψ;E; Π `ν saysI V ′ ⇐= k says s ◦ [u1, u2] (Rule (saysI) on 2)

Choose V = saysI V ′.

Case.

Σ; Ψ;E; Γ `ν s1 ⊃ s2 ◦ [u1, u2]
Σ; Ψ;E; Γ `ν s1 ◦ [u′1, u′2] Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; Γ `ν s2 ◦ [u′1, u′2]
⊃E

To show: There is a V such that Σ; Ψ;E; Π `ν V ⇐= s2 ◦ [u′1, u′2]

1. There is a V1 such that Σ; Ψ;E; Π `ν V1 ⇐= s1 ⊃ s2 ◦ [u1, u2] (i.h. on 1st premise)

2. Σ; Ψ;E; Π `ν check V1 (s1 ⊃ s2) u1 u2 =⇒ s1 ⊃ s2 ◦ [u1, u2] (Rule (check) on 1)

116

Chapter 5. BL Proof Terms, Their Verification, and Procaps

3. There is a V2 such that Σ; Ψ;E; Γ `ν V2 ⇐= s1 ◦ [u′1, u′2] (i.h. on 2nd premise)

4. Σ; Ψ;E; Π `ν impE (check V1 (s1 ⊃ s2) u1 u2) V2 u
′
1 u
′
2 =⇒ s2 ◦ [u′1, u′2]

(Rule (⊃E) on 2,3, and 3rd,4th premises)

5. Σ; Ψ |= u′1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u′2 ((C-refl-time) from §4.4)

6. Σ; Ψ;E; Π `ν impE (check V1 (s1 ⊃ s2) u1 u2) V2 u
′
1 u
′
2 ⇐= s2 ◦ [u′1, u′2]

(Rule (infer) on 4,5)

Choose V = impE (check V1 (s1 ⊃ s2) u1 u2) V2 u
′
1 u
′
2.

The proof of Theorem 5.3 is constructive – its inductive cases can be interpreted as a
function for constructing the checkable V as well as the derivation of Σ; Ψ;E; Π `ν V ⇐=
s ◦ [u1, u2] from a proof of Σ; Ψ;E; |Π| `ν s ◦ [u1, u2]. It is also instructive to observe the
role of the constructors check and infer in the proof.

5.1.2 Properties of Proof Terms

In general, analogues of all properties of natural deduction from §4.2.3 may be stated and
proved for the proof term calculus. This section presents some of the more interesting prop-
erties, including the analogue of the time subsumption principle. As for natural deduction,
the following view subsumption principle is needed to prove time subsumption.

Theorem 5.4 (View subsumption). Suppose the following hold:

1. ν = k0, ub, ue and ν ′ = k′0, u
′
b, u
′
e

2. Σ; Ψ |= k0 � k′0, Σ; Ψ |= ub ≤ u′b, and Σ; Ψ |= u′e ≤ ue.

Then,

A. Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2] implies Σ; Ψ;E; Π `ν′ V ⇐= s ◦ [u1, u2] by a
derivation of smaller or equal depth.

B. Σ; Ψ;E; Π `ν R =⇒ s ◦ [u1, u2] implies Σ; Ψ;E; Π `ν′ R =⇒ s ◦ [u1, u2] by a
derivation of smaller or equal depth.

Proof. By simultaneous induction on given derivations in A and B, and case analysis of
the last rule. The case where the derivation in A ends in (claims) uses the assumptions
(C-trans-time) and (C-trans-prin) from §4.2.1, as in the proof of Theorem 4.3.

The next theorem formally states the time subsumption principle with proof terms. The
theorem mentions checkables only since an analogous principle does not hold for inferables,
e.g., according to the rule (hyp) of Figure 5.1, the hypothesis π : s ◦ [u1, u2] can be used
to infer s ◦ [u1, u2], but not s ◦ [u′1, u′2] for any other interval [u′1, u′2]. This restriction
in the rule (hyp), and also (claims), is deliberate since it simplifies proof checking. The
proof verifier in PCFS expects checkables, not inferables, so having the time subsumption
principle only for checkables suffices for our purposes.

117

Chapter 5. BL Proof Terms, Their Verification, and Procaps

Theorem 5.5 (Time subsumption). Suppose the following hold:

1. Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]

2. Σ; Ψ |= u1 ≤ un and Σ; Ψ |= um ≤ u2

Then Σ; Ψ;E; Π `ν V ⇐= s ◦ [un, um]

Proof. By induction on the depth of the given derivation of Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]
and case analysis of its last rule. The case where the derivation ends in rule (saysI) uses
view subsumption (Theorem 5.4). The case where the derivation ends in (⊃I) requires a
lemma about substitution of constraints. See Theorem C.2 in Appendix C for details.

Let Ξ[Ξ′/π] denote the usual capture avoiding substitution of Ξ′ for variable π in Ξ. The
syntax of proof terms is not closed under substitution of proof variables by checkables. For
instance, substituting the checkable V for π1 in the inferable π1 π2 results in V π2, which
is neither a checkable nor an inferable. However, checkables and inferables are individually
closed under substitution by inferables, as the following theorem states.

Theorem 5.6 (Closure under substitution). The following hold.

1. For every checkable V and inferable R′, V [R′/π] is a checkable.

2. For every checkable R and inferable R′, R[R′/π] is an inferable.

Proof. By simultaneous induction on the structures of V and R.

With Theorem 5.6 in mind, the following theorem generalizes the substitution principle
of natural deduction (Theorem 4.5).

Theorem 5.7 (Substitution). Suppose Σ; Ψ;E; Π `ν R′ =⇒ s ◦ [u1, u2]. Then the following
hold.

1. Σ; Ψ;E; Π, π : s ◦ [u1, u2] `ν V ⇐= r ◦ [u′1, u′2] implies Σ; Ψ;E; Π `ν V [R′/π] ⇐= r ◦
[u′1, u′2].

2. Σ; Ψ;E; Π, π : s ◦ [u1, u2] `ν R =⇒ r ◦ [u′1, u′2] implies Σ; Ψ;E; Π `ν R[R′/π] =⇒ r ◦
[u′1, u′2].

Proof. By simultaneous induction on derivations given in (1) and (2), and case analysis of
their last rules.

5.1.3 Bidirectional Verification (The One Not Used in PCFS)

The rules of Figures 5.1 and 5.2 can be interpreted as a decision procedure for verification
of proof terms (next theorem). However, for reasons mentioned in the opening of this
chapter, the actual verification procedure used in PCFS is different; it is described in §5.2.
The following theorem is presented primarily to explain the bidirectional nature of proof
verification, and to point out the need for annotations present in the constructors impE and
check.

118

Chapter 5. BL Proof Terms, Their Verification, and Procaps

Theorem 5.8 (Bidirectional verification). Suppose that the judgments Σ ` t : σ, Σ; Ψ |= c,
and Σ;E |= i can all be decided in constant time. Then there are mutually inductive decision
procedures A and B, with time complexities linear in the sizes of V and R respectively, such
that:

- A takes Σ,Ψ, E,Π, ν, s, u1, u2, and V as arguments and determines whether Σ; Ψ;E; Π `ν
V ⇐= s ◦ [u1, u2] or not.

- B takes Σ,Ψ, E,Π, ν, and R as arguments and finds (the unique) s, u1, u2 such that
Σ; Ψ;E; Π `ν R =⇒ s ◦ [u1, u2] if such s, u1, u2 exist, else returns an error.

Proof. By simultaneous construction of A and B. Each procedure works by a case analysis
of the top level constructor of the proof term (V or R) provided as an argument. We show
some interesting cases of each procedure. Termination of A and B follows by a lexicographic
induction, first on the sizes of V and R, and then on the order A > B.

Procedure A

Case. V = R. In this case, the judgment Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2], if provable, can
only be established by the rule (infer). Therefore, A works as follows.

1. Call B with arguments Σ,Ψ, E,Π, ν, and R.

2. If (1) returns an error, the required judgment Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2] is not
provable.

3. If (1) returns s′, u′1, u′2, check that s′ = s, Σ; Ψ |= u′1 ≤ u1, and Σ; Ψ |= u2 ≤ u′2. If
all checks succeed then Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2] is provable, else it is not.

Procedure B

Case. R = impE R′ V u′1 u
′
2. In this case, if s, u1, u2 exist, then the judgment Σ; Ψ;E; Π `ν

R =⇒ s ◦ [u1, u2] can only be established by the rule (⊃E). Therefore, B works as follows.

1. Call B with arguments Σ,Ψ, E,Π, ν, and R′.

2. If (1) returns an error, return an error.

3. If (1) returns s′, u1, u2, check that s′ = s1 ⊃ s2 for some s1 and s2 (if not, return an
error).

4. Call A with arguments Σ,Ψ, E,Π, ν, s1, u′1, u′2 and V .

5. If (4) returns false, return an error.

6. If (4) returns true, check that Σ; Ψ |= u1 ≤ u′1 and that Σ; Ψ |= u′2 ≤ u2. If both
checks succeed, return s2, u′1, u′2 else return an error.

Case. R = check V s u1 u2. Following rule (check), B works as follows.

119

Chapter 5. BL Proof Terms, Their Verification, and Procaps

1. Call A with arguments Σ,Ψ, E,Π, ν, s, u1, u2, and V .

2. If (1) returns false, return an error.

3. If (1) returns true, return s, u1, u2.

The reader may observe in the proof the critical roles played by the annotations u′1, u′2
in the case for the inferable impE R V u′1 u

′
2 and the annotations s, u1, u2 in the case for

the inferable check V s u1 u2.

5.2 Proof Verification in PCFS
We mentioned in §4.3.1 that in PCFS an offline proof verifier, called in advance of access,
checks proofs of hypothetical judgments of the form Σ; ·;E; Γ `ν admin says (may k f η) ◦
[u, u]. Since proofs in PCFS are represented using checkable proof terms V , the problem
of proof verification in PCFS is more precisely one of checking provability of proof term
judgments of the form Σ; ·;E; Π `ν V ⇐= admin says (may k f η) ◦ [u, u]. If such a judgment
is provable, the output of proof verification is a signed capability, or procap, that contains
the terms k, f , η, else the output is an error. The procap, if obtained, may be used by k to
authorize permission η on file f in the PCFS back end (§2). The relevant question here is
how the proof verifier determines whether Σ; ·;E; Π `ν V ⇐= admin says (may k f η) ◦ [u, u]
is provable or not. Whereas a casual inspection of the problem may suggest that the
procedures constructed in Theorem 5.8 would suffice for this purpose, this is not actually
the case in PCFS because u and E are not known when the proof verifier is invoked.
Recall from §4.3.1 that u and E represent respectively the exact time at which the access
authorized by the proof is used and the system state prevalent at that time. It is clearly
impractical to expect either the verifier or the user invoking the verifier to determine either
of these in advance of access. In the absence of knowledge of u and E, the procedures of
Theorem 5.8 cannot be used directly.

As a result the proof verifier in PCFS uses a modified verification procedure that post-
pones checking of constraints depending on u as well as interpreted predicates depending
on E to the back end. This is done by writing such constraints and interpreted predicates
to the procap, whose validity becomes conditional on the satisfaction of the constraints
and the interpreted predicates. More precisely, instead of ascertaining provability of the
judgment Σ; ·;E; Π `ν V ⇐= admin says (may k f η) ◦ [u, u], the proof verifier ascertains
the provability of the following judgment, which replaces u by a symbolic constant ctime
that the back end recognizes, and replaces E by the empty system state ·.

Σ, ctime:time; ·; ·; Π `ν V ⇐= admin says (may k f η) ◦ [ctime, ctime]

In ascertaining the provability of this judgment, the proof verifier may encounter several
judgments of the form Σ′; Ψ′ |= c′ containing the symbolic constant ctime, which the decision
procedure for constraints is unable to discharge. All such judgments are written to the

120

Chapter 5. BL Proof Terms, Their Verification, and Procaps

procap as conditions. (Note that Ψ′ may not always be empty as hypothetical constraints
may be introduced in some branches of the proof by rules like (consE).) Similarly, the proof
verifier may encounter judgments of the form Σ′;E′ |= i′ which cannot be verified because
E′ does not include the intended state E. Again all such judgments are written to the
procap as conditions.

The back end of PCFS “completes” the proof verification whenever it uses a procap for
authorizing access by making the following two checks.

- For each judgment Σ′, ctime:time; Ψ′ |= c′ written as a condition in the procap, it
checks that Σ′; Ψ′[u/ctime] |= c′[u/ctime], where u is the clock reading at the time of
the access.

- For each judgment Σ′, ctime:time;E′ |= i′ written as a condition in the procap, it
checks that Σ′;E,E′[u/ctime] |= i′[u/ctime], where E is the state prevailing at the
time of the access.

It is not immediately obvious that this two-part proof verification, where some checks
are performed prior to access by an offline verifier and the remaining during a file system
call by the back end, is actually correct, i.e. it authorizes exactly those accesses that a proof
verifier with full knowledge of u and E would authorize using the procedures constructed
in Theorem 5.8. The latter would be the case if we were to follow the usual proof-carrying
authorization approach and embed the proof verifier in the PCFS back end. In the rest
of this section, we formalize the procedure that the PCFS proof verifier uses to ascertain
the provability of Σ, ctime:time; ·; ·; Π `ν V ⇐= admin says (may k f η) ◦ [ctime, ctime] and
to generate conditions from it, and show that the two-part proof verification that PCFS
employs is correct in the sense mentioned above.

5.2.1 The PCFS Proof Verifier

In this section we formally describe the PCFS proof verifier that generates conditions for
procaps; the next section shows that the checks it makes together with the checks made
by the back end ensure correct proof verification. We use the term hypothetical constraint
for judgments of the form Σ; Ψ |= c (the judgment may or may not hold). Similarly, we
call judgments of the form Σ;E |= i hypothetical states. The symbols C and I denote
multisets of hypothetical constraints and hypothetical states respectively. We define two
functions, both named unsat, that take multisets of hypothetical constraints and multisets
of hypothetical states as arguments and return the subsets that do not hold.

unsat(C) = {(Σ; Ψ |= c) ∈ C | Σ; Ψ |= c does not hold}
unsat(I) = {(Σ;E |= i) ∈ I | Σ;E |= i does not hold}

The proof verification procedure used in PCFS is described by two judgments:

(Checking) Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]↘ C; I
(Inference) Σ; Ψ;E; Π `ν R =⇒ s ◦ [u1, u2]↘ C; I

121

Chapter 5. BL Proof Terms, Their Verification, and Procaps

These judgments are respective generalizations of the checking and synthesis judgments
of §5.1, with the added proviso that there are outputs C and I associated with each judg-
ment. Intuitively,

- C contains exactly those hypothetical constraints that are needed for the given proof to
be correct, but cannot be shown to hold because they contain uninstantiated constants
like ctime.

- I contains exactly those hypothetical states that are needed for the given proof to be
correct, but cannot be shown to hold because the system state assumed in them is
incomplete.

The inference rules defining the two judgments are listed in Figures 5.3 and 5.4. These
rules are in one-to-one correspondence with those of the proof term calculus and they have
been obtained by applying the above two principles to the rules of Figures 5.1 and 5.2. The
main idea is that whenever a hypothetical constraint or hypothetical state that does not
hold is encountered, it is written to the output C or I. (Observe the use of the functions
unsat in the rules.) The rules may be interpreted as decision procedures in the following
sense.

Theorem 5.9. Assuming that the judgments Σ ` t : σ, Σ; Ψ |= c, and Σ;E |= i are all
decidable, there are mutually inductive decision procedures A and B such that:

- A takes Σ,Ψ, E,Π, ν, s, u1, u2, and V as arguments and finds (the unique) C and I
such that Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2] ↘ C; I if such C and I exist, else returns
an error.

- B takes Σ,Ψ, E,Π, ν, and R as arguments and finds (the unique) s, u1, u2, C, I such
that Σ; Ψ;E; Π `ν R =⇒ s ◦ [u1, u2]↘ C; I if such s, u1, u2, C, I exist, else returns an
error.

Further, if Σ ` t : σ, Σ; Ψ |= c, and Σ;E |= i can be decided in constant time, then the
running times of A and B can be made linear in the sizes of V and R respectively.

Proof. By construction of A and B, as in the proof of Theorem 5.8.

The PCFS proof verification tool uses exactly procedure A of Theorem 5.9 to establish a
judgment of the form Σ, ctime:time; ·; ·; Π `ν V ⇐= admin says (may k f η) ◦ [ctime, ctime]↘
C; I (see details below). If the judgment can be established, then C and I become conditions
of the procap generated by the proof verifier. These conditions are checked by the back end
of PCFS. Therefore, most of the proof checking is performed in the PCFS front end by the
tool called the “proof verifier” whereas the part of the proof that depends on the time of
access or system state is checked in the back end during file access. The entire process of
proof verification executed in the two parts is summarized below.

1. In the front end:

122

Chapter 5. BL Proof Terms, Their Verification, and Procaps

Σ; Ψ;E; Π `ν R =⇒ s ◦ [u1, u2]↘ C′; I C = (Σ;Ψ |= u1 ≤ u′1), (Σ; Ψ |= u′2 ≤ u2)
Σ; Ψ;E; Π `ν R⇐= s ◦ [u′1, u′2]↘ C′, unsat(C); I

infer

Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]↘ C; I
Σ; Ψ;E; Π `ν check V s u1 u2 =⇒ s ◦ [u1, u2]↘ C; I

check

Σ; Ψ;E; Π, π : s ◦ [u1, u2] `ν π =⇒ s ◦ [u1, u2]↘ ·; ·
hyp

ν = k, ub, ue C = (Σ;Ψ |= u1 ≤ ub), (Σ; Ψ |= ue ≤ u2), (Σ; Ψ |= k′ � k)
Σ; Ψ;E; Π, π : k′ claims s ◦ [u1, u2] `ν π =⇒ s ◦ [u1, u2]↘ unsat(C); ·

claims

Σ; Ψ;E; Π| `k,u1,u2 V ⇐= s ◦ [u1, u2]↘ C; I
Σ; Ψ;E; Π `ν saysI V ⇐= k says s ◦ [u1, u2]↘ C; I

saysI

Σ; Ψ;E; Π `ν R =⇒ k says s ◦ [u1, u2]↘ C1; I1
Σ; Ψ;E; Π, π : k claims s ◦ [u1, u2] `ν V ⇐= s′ ◦ [u′1, u′2]↘ C2; I2

Σ; Ψ;E; Π `ν saysE R (π.V)⇐= s′ ◦ [u′1, u′2]↘ C1, C2; I1, I2
saysE

Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]↘ C; I
Σ; Ψ;E; Π `ν atI V ⇐= (s @ [u1, u2]) ◦ [u′1, u′2]↘ C; I

@I

Σ; Ψ;E; Π `ν R =⇒ s @ [u1, u2] ◦ [u′1, u′2]↘ C1; I1
Σ; Ψ;E; Π, π : s ◦ [u1, u2] `ν V ⇐= s′ ◦ [u′′1 , u′′2]↘ C2; I2

Σ; Ψ;E; Π `ν atE R (π.V)⇐= s′ ◦ [u′′1 , u′′2]↘ C1, C2; I1, I2
@E

C = (Σ;Ψ |= c)
Σ; Ψ;E; Π `ν consI⇐= c ◦ [u1, u2]↘ unsat(C); ·

consI

Σ; Ψ;E; Π `ν R =⇒ c ◦ [u1, u2]↘ C1; I1 Σ; Ψ, c;E; Π `ν V ⇐= s′ ◦ [u′1, u′2]↘ C2; I2

Σ; Ψ;E; Π `ν consE R V ⇐= s′ ◦ [u′1, u′2]↘ C1, C2; I1, I2
consE

I = (Σ;E |= i)
Σ; Ψ;E; Π `ν interI⇐= i ◦ [u1, u2]↘ ·; unsat(I)

interI

Σ; Ψ;E; Π `ν R =⇒ i ◦ [u1, u2]↘ C1; I1 Σ; Ψ;E, i; Π `ν V ⇐= s′ ◦ [u′1, u′2]↘ C2; I2

Σ; Ψ;E; Π `ν interE R V ⇐= s′ ◦ [u′1, u′2]↘ C1, C2; I1, I2
interE

Figure 5.3: PCFS proof verification, part 1

(a) A user invokes the PCFS proof verifier and provides to it Π (in the form of
certificates), V (which the user has constructed), k, f , and η.

(b) The proof verifier reads Σ and admin from a protected location (see §7 for details).
(c) Using procedure A of Theorem 5.9, the verifier tries to construct C and I such

123

Chapter 5. BL Proof Terms, Their Verification, and Procaps

Σ; Ψ;E; Π `ν s1 ◦ V1 ⇐= [u1, u2]↘ C1; I1 Σ; Ψ;E; Π `ν V2 ⇐= s2 ◦ [u1, u2]↘ C2; I2

Σ; Ψ;E; Π `ν conjI V1 V2 ⇐= s1 ∧ s2 ◦ [u1, u2]↘ C1, C2; I1, I2
∧I

Σ; Ψ;E; Π `ν R =⇒ s1 ∧ s2 ◦ [u1, u2]↘ C; I
Σ; Ψ;E; Π `ν conjE1 R =⇒ s1 ◦ [u1, u2]↘ C; I

∧E1

Σ; Ψ;E; Π `ν R =⇒ s1 ∧ s2 ◦ [u1, u2]↘ C; I
Σ; Ψ;E; Π `ν conjE2 R =⇒ s2 ◦ [u1, u2]↘ C; I

∧E2

Σ; Ψ;E; Π `ν V ⇐= s1 ◦ [u1, u2]↘ C; I
Σ; Ψ;E; Π `ν disjI1 V ⇐= s1 ∨ s2 ◦ [u1, u2]↘ C; I

∨I1

Σ; Ψ;E; Π `ν V ⇐= s2 ◦ [u1, u2]↘ C; I
Σ; Ψ;E; Π `ν disjI2 V ⇐= s1 ∨ s2 ◦ [u1, u2]↘ C; I

∨I2

Σ; Ψ;E; Π `ν R =⇒ s1 ∨ s2 ◦ [u1, u2]↘ C1; I1
Σ; Ψ;E; Π, π1 : s1 ◦ [u1, u2] `ν V1 ⇐= s′ ◦ [u′1, u′2]↘ C2; I2
Σ; Ψ;E; Π, π2 : s2 ◦ [u1, u2] `ν V2 ⇐= s′ ◦ [u′1, u′2]↘ C3; I3

Σ; Ψ;E; Π `ν disjE R (π1.V1) (π2.V2)⇐= s′ ◦ [u′1, u′2]↘ C1, C2, C3; I1, I2, I3
∨E

Σ; Ψ;E; Π `ν topI⇐= > ◦ [u1, u2]↘ ·; ·
>I

Σ; Ψ;E; Π `ν R =⇒ ⊥ ◦ [u1, u2]↘ C; I
Σ; Ψ;E; Π `ν botE R⇐= s ◦ [u′1, u′2]↘ C; I

⊥E

Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Π, π : s1 ◦ [x1, x2] `ν V ⇐= s2 ◦ [x1, x2]↘ C; I
Σ; Ψ;E; Π `ν impI (x1.x2.π.V)⇐= s1 ⊃ s2 ◦ [u1, u2]↘ C; I

⊃I

Σ; Ψ;E; Π `ν R =⇒ s1 ⊃ s2 ◦ [u1, u2]↘ C1; I1
Σ; Ψ;E; Π `ν V ⇐= s1 ◦ [u′1, u′2]↘ C2; I2 C = (Σ;Ψ |= u1 ≤ u′1), (Σ; Ψ |= u′2 ≤ u2)

Σ; Ψ;E; Π `ν impE R V u′1 u
′
2 =⇒ s2 ◦ [u′1, u′2]↘ C1, C2, unsat(C); I1, I2

⊃E

Σ, x:σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]↘ C; I
Σ; Ψ;E; Π `ν forallI (x.V) : ∀x⇐=σ.s ◦ [u1, u2]↘ C; I

∀I

Σ; Ψ;E; Π `ν R =⇒ ∀x:σ.s ◦ [u1, u2]↘ C; I Σ ` t : σ
Σ; Ψ;E; Π `ν forallE t R =⇒ s[t/x] ◦ [u1, u2]↘ C; I

∀E

Σ; Ψ;E; Π `ν V ⇐= s[t/x] ◦ [u1, u2]↘ C; I Σ ` t : σ
Σ; Ψ;E; Π `ν existsI t V ⇐= ∃x:σ.s ◦ [u1, u2]↘ C; I

∃I

Σ; Ψ;E; Π `ν R =⇒ ∃x:σ.s ◦ [u1, u2]↘ C1; I1
Σ, x:σ; Ψ;E; Π, π : s ◦ [u1, u2] `ν V ⇐= s′ ◦ [u′1, u′2]↘ C2; I2

Σ; Ψ;E; Π `ν existsI (x.π.V)⇐= s′ ◦ [u′1, u′2]↘ C1, C2; I1, I2
∃E

Figure 5.4: PCFS proof verification, part 2

124

Chapter 5. BL Proof Terms, Their Verification, and Procaps

that Σ, ctime:time; ·; ·; Π `ν V ⇐= admin says (may k f η) ◦ [ctime, ctime]↘ C; I,
where ctime is a distinguished constant that the back end recognizes and ν is a
view made of three fresh constants.

(d) If (c) returns an error, then verification fails.
(e) If (c) produces C and I, then the verifier issues to the user a procap that contains

the access right 〈k, f, η〉 as well as the conditions C and I and signs it with a
secret key known only to it and the PCFS back end. The procap is placed in the
procap store by the user (see §2).

2. In the back end:

(a) During an access on file f by principal k that requires permission η, the PCFS
back end reads the procap generated in step 1(e) from the procap store, and
parses out C and I.

(b) For each hypothetical constraint Σ′, ctime:time; Ψ′ |= c′ in C, the PCFS back end
checks that Σ′; Ψ′[u/ctime] |= c′[u/ctime] holds, where u is the time of access.

(c) For each hypothetical state Σ′, ctime:time;E′ |= i′ in I, the PCFS back end checks
that Σ′;E,E′[u/ctime] |= i′[u/ctime] where E is the system state prevailing at
time u.

(d) If all checks in 2(b) and 2(c) succeed, then access is allowed, else it is denied.

5.2.2 Correctness of PCFS Proof Verification

What we seek to establish now is that the PCFS proof verification procedure summarized
at the end of §5.2.1 is both sound and complete. We state soundness and completeness of
proof verification in PCFS with respect to particular proofs that the user provides. For
soundness we wish to show that successful execution of step 1(c) with a proof term V ,
followed by successful execution of steps 2(b) and 2(c) on the procap derived from it implies
that Σ; ·;E; Π `ν V ⇐= admin says (may k f η) ◦ [u, u]. Dually, completeness means that if
Σ; ·;E; Π `ν V ⇐= admin says (may k f η) ◦ [u, u], then given Π and V as inputs, the proof
verifier will successfully execute to produce conditions C and I, which will then successfully
check in the PCFS back end at time u in system state E according to checks 2(b) and
2(c). Soundness follows immediately from the following lemma about the inference system
of Figures 5.3 and 5.4.

Lemma 5.10 (Soundness). Suppose that the following hold for some C, I, list ~x of term
variables, list ~σ of sorts, list ~t0 of terms satisfying Σ ` ~t0 : ~σ, and system state E0 not
containing any element of ~x.

1. For each (Σ′, ~x : ~σ; Ψ′ |= c′) ∈ C, it is the case that Σ′; Ψ′[~t0/~x] |= c′[~t0/~x].

2. For each (Σ′, ~x : ~σ;E′ |= i′) ∈ I, it is the case that Σ′;E0, E
′[~t0/~x] |= i′[~t0/~x].

Then,

125

Chapter 5. BL Proof Terms, Their Verification, and Procaps

A. Σ, ~x : ~σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]↘ C; I implies Σ; Ψ[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x]
`ν[~t0/~x] V [~t0/~x]⇐= s[~t0/~x] ◦ [u1[~t0/~x], u2[~t0/~x]]

B. Σ, ~x : ~σ; Ψ;E; Π `ν R =⇒ s ◦ [u1, u2]↘ C; I implies Σ; Ψ[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x]
`ν[~t0/~x] R[~t0/~x] =⇒ s[~t0/~x] ◦ [u1[~t0/~x], u2[~t0/~x]]

Proof. By simultaneous induction on the derivations given in A and B and case analysis of
their last rules. See Appendix C, Lemma C.3 for some representative cases.

Theorem 5.11 (Soundness of PCFS verification). Suppose that the following hold for some
time point u and some ground system state E.

1. Σ, ctime:time; ·; ·; Π `ν V ⇐= s ◦ [ctime, ctime] ↘ C; I for a fresh constant ctime that
does not occur in Σ, Π, V , and s.

2. For each hypothetical constraint (Σ′, ctime:time; Ψ′ |= c′) ∈ C it is the case that
Σ′; Ψ′[u/ctime] |= c′[u/ctime].

3. For each (Σ′, ctime:time;E′ |= i′) ∈ I it is the case that Σ′;E,E′[u/ctime] |= i′[u/ctime].

4. Σ ` u : time.

Then Σ; ·;E; Π `ν V ⇐= s ◦ [u, u].

Proof. This theorem is a specific instance of Lemma 5.10(A).

By choosing u to be the time of access, E to be the system state prevalent at time u,
and s to be admin says (may k f η), the assumptions (1)–(3) in the statement of the theorem
correspond exactly to the steps 1(c), 2(b), and 2(c) in the summary at the end of §5.2.1,
and therefore, this theorem is indeed a statement of the soundness of the PCFS two-part
verification procedure.

Dual to soundness, the next theorem shows that the PCFS verification method is com-
plete in the sense described at the beginning of this section.

Theorem 5.12 (Completeness of PCFS verification). Suppose that Σ; ·;E; Π `ν V ⇐= s ◦
[u, u]. Let ctime be a fresh constant. Then there exist C and I such that the following hold.

1. Σ, ctime:time; ·; ·; Π `ν V ⇐= s ◦ [ctime, ctime]↘ C; I.

2. For each (Σ′, ctime:time; Ψ′ |= c′) ∈ C, it is the case that Σ′; Ψ′[u/ctime] |= c′[u/ctime].

3. For each (Σ′, ctime:time;E′ |= i′) ∈ I, it is the case that Σ′;E,E′[u/ctime] |= i′[u/ctime].

Proof. See Theorem C.5 in Appendix C. The proof is based on a converse of Lemma 5.10,
which is also presented in Appendix C.

126

Chapter 5. BL Proof Terms, Their Verification, and Procaps

Clause (1) of this theorem states that the offline proof verifier of PCFS will always suc-
ceed in checking the structure of a proof that is valid at some time u in some system state
E. Clauses (2) and (3) imply that the conditions generated by the verifier will successfully
check in the back end at time u in system state E to allow access. A practically useful con-
sequence follows from a combination of this theorem with time subsumption (Theorem 5.5):
If Σ; ·;E; Π `ν V ⇐= s ◦ [u1, u2] for some time interval [u1, u2], then the conditions C and
I resulting from the verification of V can be successfully checked at any time point u in the
interval [u1, u2] (provided that the state E holds at u). As a result, the proof verifier needs
to be invoked only once for each proof term and the procap generated from it can be used
again and again over the entire interval of time for which the proof term authorizes access.

5.2.3 Procaps

A procap, is a cryptographic token issued by the proof verifier after it successfully checks
a proof. It allows a single user a specific permission on one file or directory. Formally, a
procap is a six-tuple 〈k, f, η, C, I, sig〉 where

- k is the principal who is authorized access by the procap.

- f is the file or directory to which access is authorized.

- η is the permission allowed (PCFS uses five permissions – read, write, execute, identity,
and govern).

- C is the multiset of hypothetical constraints on which the procap is conditional; they
may contain the symbolic constant ctime.

- I is the multiset of hypothetical states on which the procap is conditional.

- sig is a cryptographic signature over the first five elements of the tuple, created using a
symmetric key known only to the proof verifier and the PCFS back end. The signature
prevents forging of procaps.

The procap 〈k, f, η, C, I, sig〉 is issued by the proof verifier in the front end whenever it
successfully checks that the judgment Σ, ctime:time; ·; ·; Π `ν V ⇐= admin says (may k f η) ◦
[ctime, ctime]↘ C; I can be established. In order to use a procap, the back end must verify
its cryptographic signature sig, and check its conditions C and I according to steps 2(b)
and 2(c) listed at the end of §5.2.1.

Procaps are central in PCFS since they carry information about access rights 〈k, f, η〉,
as well as conditions C and I on which the rights are contingent, from the proof verifier
in the front end to the reference monitor in the back end. In fact the structure of procaps
is the only entity in PCFS that the front end and back end must agree on. Other than
that the two parts of PCFS are totally independent. The set of all valid procaps in a PCFS
system can also be considered a cache of proofs that have been verified, even though procaps
differ from traditional caches in that procaps can be individually distributed and they are
conditional on system state and time.

127

Chapter 5. BL Proof Terms, Their Verification, and Procaps

5.2.4 Revocation of Policy Rules

So far we have assumed implicitly that any policy rules (Π) in effect at the time of
proof verification in the front end are also in effect at the time of access. This assump-
tion is manifest in Theorems 5.11 and 5.12 since the hypotheses Π in the two judgments
Σ, ctime:time; ·; ·; Π `ν V ⇐= s ◦ [ctime, ctime] ↘ C; I and Σ; ·;E; Π `ν V ⇐= s ◦ [u, u] in
the statements of the theorems are identical. Practically, this translates to the assumption
that a policy rule once issued can never be revoked or canceled, except perhaps due to
expiration at the time mentioned in the rule which is handled automatically by the BL in-
ference system. In reality, a policy rule may be issued in error, and therefore, a mechanism
for untimely revocation is essential. In this section we discuss a straightforward mechanism
for enforcing revocation in the PCFS architecture. Although not supported in the current
implementation of PCFS, it can be easily added.

Let us assume that revoked policy certificates are explicitly available to the PCFS back
end as a list. This is not an unreasonable assumption since most existing certificate schemes
allow for such lists, often called Certificate Revocation Lists (CRLs). (The issue of who can
create the entries in such a list is orthogonal to our description of enforcement of revocation;
usually the creator of a certificate is allowed to revoke it.) Both formally and in practice,
a CRL can be represented as a list R = π1, . . . , πn of proof variables that name revoked
policy rules. Assuming that the CRL available to the PCFS back end is always current,
revocation may be enforced in PCFS using the following two-step procedure.

R1. At the time of proof verification, the PCFS verification tool writes the list L of all
proof variables that appear free in the proof term V it checks into the procap it
generates (L becomes an additional condition like C and I).

R2. Before accepting any procap, the back end of PCFS checks that L ∩R = φ, where L
is the list of proof variables included in the procap and R is the CRL available to the
back end.

To show that this two-step procedure implements revocation soundly, it suffices to es-
tablish that whenever a procap is accepted by the back end of PCFS, it is the case that the
proof term from whose checking the procap was derived can also be checked in a hypotheses
that is valid at the time the procap is accepted. To establish this result, we need a few
definitions and a lemma.

Definition 5.13. Define Π\R to be the hypotheses {(π : J) ∈ Π | π 6∈ R}.

Definition 5.14. fpv(V) and fpv(R) denote the sets of proof variables occurring free in
V and R respectively.

Lemma 5.15 (Strengthening). The following hold.

A. If Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]↘ C; I and fpv(V) ∩R = φ, then Σ; Ψ;E; Π\R `ν
V ⇐= s ◦ [u1, u2]↘ C; I.

B. If Σ; Ψ;E; Π `ν R =⇒ s ◦ [u1, u2]↘ C; I and fpv(V) ∩R = φ, then Σ; Ψ;E; Π\R `ν
R =⇒ s ◦ [u1, u2]↘ C; I.

128

Chapter 5. BL Proof Terms, Their Verification, and Procaps

Proof. By simultaneous induction on derivations given in A and B and case analysis of their
last rules.

Theorem 5.16 (Soundness of revocation enforcement). Suppose that a procap obtained by
verifying Σ; ·; ·; Π `ν V ⇐= s ◦ [u1, u2] ↘ C; I is accepted by the PCFS back end. Then
there is a hypotheses Π′ valid when the procap is accepted such that Σ; ·; ·; Π′ `ν V ⇐= s ◦
[u1, u2]↘ C; I.

Proof. Let R be the revocation list when the procap is accepted, and let L = fpv(V). Since
step R2 must execute successfully in order for the procap to be accepted, it follows that
L ∩ R = φ, or equivalently, fpv(V) ∩ R = φ. Hence by Lemma 5.15(A), Σ; ·; ·; Π\R `ν
V ⇐= s ◦ [u1, u2] ↘ C; I. Choose Π′ = Π\R. Due to our assumption that the CRL
available to the back end is current, every hypothesis in Π′ must also be valid when the
procap is accepted.

To show that the enforcement of revocation is complete, we must argue that the procap
generated from verification of a proof term will be accepted by the PCFS back end if no
proof variables occurring in the proof term have been revoked (and the other conditions C
and I of the procap hold). This is trivially true – if no proof variables occurring in the
proof term have been revoked, then L ∩R in step R2 is φ by definition of L and R.

5.3 Proof Terms from the Sequent Calculus
Even though we have discussed proof terms for natural deduction so far, it is reasonable to
expect that any automated proof search tool for BL will be based on the sequent calculus
of §4.2.4 (this includes the proof search tool provided with PCFS; see §6). The objective
of this section is to explain how proof terms may be derived from a sequent calculus proof.
Given that there are constructive proofs which show both that the sequent calculus can be
simulated in natural deduction (Theorem 4.14) and that proof terms can be assigned to
natural deduction proofs (Theorem 5.3), a procedure to derive proof terms from sequent
calculus proofs may be obtained simply by composing the proofs of the two theorems.
However, keeping in mind that such a procedure is central to the implementation of proof
search tools, it is useful to understand the composed procedure in the simplest terms. This
is precisely the objective of this section – it describes a direct assignment of proof terms to
sequent calculus proofs, without a detour into natural deduction.

The direct assignment of proof terms to sequent calculus proofs is described as a new
inference system, which only adds proof annotations to the sequent calculus of Figures 4.4
and 4.5. This annotated sequent calculus is shown in Figures 5.5 and 5.6. Its hypothetical
judgment, called an annotated sequent, has the form Σ; Ψ;E; Π ν−→ V : s ◦ [u1, u2]. The
rules of the annotated sequent calculus correspond one-to-one with the rules of the sequent
calculus and preserve the structure of the latter. Proof terms are constructed using the
following general rules.

- For a sequent calculus proof ending in a right rule, a proof term is obtained using the
corresponding introduction constructor of checkables (e.g., rule (saysR)).

129

Chapter 5. BL Proof Terms, Their Verification, and Procaps

Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ;E; Π, π : p ◦ [u′1, u′2]

ν−→ π : p ◦ [u1, u2]
init

Σ; Ψ;E; Π, π : k claims s ◦ [u1, u2], τ : s ◦ [u1, u2]
ν−→ V : r ◦ [u′1, u′2]

ν = k′, ub, ue Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2 Σ; Ψ |= k � k′

Σ; Ψ;E; Π, π : k claims s ◦ [u1, u2]
ν−→ V [π/τ] : r ◦ [u′1, u′2]

claims

Σ; Ψ;E; Π| k,u1,u2−−−−−→ V : s ◦ [u1, u2]
Σ; Ψ;E; Π ν−→ saysI V : k says s ◦ [u1, u2]

saysR

Σ; Ψ;E; Π, π : k says s ◦ [u1, u2], τ : k claims s ◦ [u1, u2]
ν−→ V : r ◦ [u′1, u′2]

Σ; Ψ;E; Π, π : k says s ◦ [u1, u2]
ν−→ saysE π (τ.V) : r ◦ [u′1, u′2]

saysL

Σ; Ψ;E; Π ν−→ V : s ◦ [u1, u2]
Σ; Ψ;E; Π ν−→ atI V : s @ [u1, u2] ◦ [u′1, u′2]

@R

Σ; Ψ;E; Π, π : s @ [u′1, u′2] ◦ [u1, u2], τ : s ◦ [u′1, u′2]
ν−→ V : r ◦ [u′′1 , u′′2]

Σ; Ψ;E; Π, π : s @ [u′1, u′2] ◦ [u1, u2]
ν−→ atE π (τ.V) : r ◦ [u′′1 , u′′2]

@L

Σ; Ψ |= c

Σ; Ψ;E; Π ν−→ consI : c ◦ [u1, u2]
consR

Σ; Ψ, c;E; Π, π : c ◦ [u1, u2]
ν−→ V : r ◦ [u′1, u′2]

Σ; Ψ;E; Π, π : c ◦ [u1, u2]
ν−→ consE π V : r ◦ [u′1, u′2]

consL

Σ;E |= i

Σ; Ψ;E; Π ν−→ interI : i ◦ [u1, u2]
interR

Σ; Ψ;E, i; Π, π : i ◦ [u1, u2]
ν−→ V : r ◦ [u′1, u′2]

Σ; Ψ;E; Π, π : i ◦ [u1, u2]
ν−→ interE π V : r ◦ [u′1, u′2]

interL

Figure 5.5: Annotated sequent calculus, part 1

- If a sequent calculus proof ends in a left rule then the proof term is obtained by naming
the component(s) of the principal judgment by new variable(s) in the premises and
either substituting these variables in the conclusion (e.g., the rule (∧L)) or binding
the new variables (e.g., the rule (saysL)), in each case with an elimination constructor
for proof terms.

The rules of Figures 5.5 and 5.6 do not mention the constructor check. Since check is
the only constructor that takes a formula as an argument, it follows that any proof term
constructed from a sequent calculus does not contain any formula as an annotation. We

130

Chapter 5. BL Proof Terms, Their Verification, and Procaps

Σ; Ψ;E; Π ν−→ V1 : s1 ◦ [u1, u2] Σ; Ψ;E; Π ν−→ V2 : s2 ◦ [u1, u2]
Σ; Ψ;E; Π ν−→ conjI V1 V2 : s1 ∧ s2 ◦ [u1, u2]

∧R

Σ; Ψ;E; Π, π : s1 ∧ s2 ◦ [u1, u2], τ1 : s1 ◦ [u1, u2], τ2 : s2 ◦ [u1, u2]
ν−→ V : r ◦ [u′1, u′2]

Σ; Ψ;E; Π, π : s1 ∧ s2 ◦ [u1, u2]
ν−→ V [(conjE1 π)/τ1][(conjE2 π)/τ2] : r ◦ [u′1, u′2]

∧L

Σ; Ψ;E; Π ν−→ V : s1 ◦ [u1, u2]
Σ; Ψ;E; Π ν−→ disjI1 V : s1 ∨ s2 ◦ [u1, u2]

∨R1
Σ; Ψ;E; Π ν−→ V : s2 ◦ [u1, u2]

Σ; Ψ;E; Π ν−→ disjI2 V : s1 ∨ s2 ◦ [u1, u2]
∨R2

Σ; Ψ;E; Π, π : s1 ∨ s2 ◦ [u1, u2], τ1 : s1 ◦ [u1, u2]
ν−→ V1 : r ◦ [u′1, u′2]

Σ; Ψ;E; Π, π : s1 ∨ s2 ◦ [u1, u2], τ2 : s2 ◦ [u1, u2]
ν−→ V2 : r ◦ [u′1, u′2]

Σ; Ψ;E; Π, π : s1 ∨ s2 ◦ [u1, u2]
ν−→ disjE π (τ1.V1) (τ2.V2) : r ◦ [u′1, u′2]

∨L

Σ; Ψ;E; Π ν−→ topI : > ◦ [u1, u2]
>R

Σ; Ψ;E; Π, π : ⊥ ◦ [u1, u2]
ν−→ botE π : r ◦ [u′1, u′2]

⊥L

Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Π, π : s1 ◦ [x1, x2]
ν−→ V : s2 ◦ [x1, x2]

Σ; Ψ;E; Π ν−→ impI (x1.x2.π.V) : s1 ⊃ s2 ◦ [u1, u2]
⊃R

Σ; Ψ;E; Π, π : s1 ⊃ s2 ◦ [u1, u2]
ν−→ V1 : s1 ◦ [u′1, u′2]

Σ; Ψ;E; Π, π : s1 ⊃ s2 ◦ [u1, u2], τ : s2 ◦ [u′1, u′2]
ν−→ V2 : r ◦ [u′′1 , u′′2]

Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; Π, π : s1 ⊃ s2 ◦ [u1, u2]
ν−→ V2[(impE π V1 u

′
1 u
′
2)/τ] : r ◦ [u′′1 , u′′2]

⊃L

Σ, x:σ; Ψ;E; Π ν−→ V : s ◦ [u1, u2]
Σ; Ψ;E; Π ν−→ forallI (x.V) : ∀x:σ.s ◦ [u1, u2]

∀R

Σ; Ψ;E; Π, π : ∀x:σ.s ◦ [u1, u2], τ : s[t/x] ◦ [u1, u2]
ν−→ V : r ◦ [u′1, u′2] Σ ` t : σ

Σ; Ψ;E; Π, π : ∀x:σ.s ◦ [u1, u2]
ν−→ V [(forallE t π)/τ] : r ◦ [u′1, u′2]

∀L

Σ; Ψ;E; Π ν−→ V : s[t/x] ◦ [u1, u2] Σ ` t : σ
Σ; Ψ;E; Π ν−→ existsI t V : ∃x:σ.s ◦ [u1, u2]

∃R

Σ, x:σ; Ψ;E; Π, π : ∃x:σ.s ◦ [u1, u2], τ : s ◦ [u1, u2]
ν−→ V : r ◦ [u′1, u′2]

Σ; Ψ;E; Π, π : ∃x:σ.s ◦ [u1, u2]
ν−→ existsE (x.τ.V) : r ◦ [u′1, u′2]

∃L

Figure 5.6: Annotated sequent calculus, part 2

131

Chapter 5. BL Proof Terms, Their Verification, and Procaps

make a similar observation for proof terms derived from canonical proofs in §5.4.
If all proof variables and proof terms are erased from a derivation in the annotated

calculus, then a correct sequent calculus derivation is obtained. Dually, given a sequent
calculus derivation, it is easy to annotate it with proof terms following the rules of Figures 5.5
and 5.6. These observations are formalized in the following two theorems.

Theorem 5.17 (Soundness). If Σ; Ψ;E; Π ν−→ V : s ◦ [u1, u2], then Σ; Ψ;E; |Π| ν−→ s ◦
[u1, u2].

Proof. By induction on the given derivation of Σ; Ψ;E; Π ν−→ V : s ◦ [u1, u2]. The idea is to
systematically erase all proof variables and proof terms from the given derivation.

Theorem 5.18 (Completeness). If Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] and |Π| = Γ, then there is a
checkable V such that Σ; Ψ;E; Π ν−→ V : s ◦ [u1, u2].

Proof. By induction on the given derivation of Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2].

Further, every proof term constructed by the annotated sequent calculus is “correct” in
the sense that it can be checked using the rules of Figures 5.1 and 5.2.

Theorem 5.19 (Correctness). If Σ; Ψ;E; Π ν−→ V : s ◦ [u1, u2], then Σ; Ψ;E; Π `ν V ⇐=
s ◦ [u1, u2].

Proof. By induction on the given derivation of Σ; Ψ;E; Π ν−→ V : s ◦ [u1, u2] and case
analysis of its last rule. See Appendix C, Theorem C.6 for some representative cases.

Theorems 5.18 and 5.19 together imply that the rules of Figures 5.5 and 5.6 constitute
a sound and complete proof term assignment system for the sequent calculus of BL. This
proof term assignment system is used in the proof search tool described in §6, although for
simplicity, that chapter does not mention proof terms. Also, Theorems 5.18, 5.19, and 5.2
together provide another proof that the sequent calculus of BL can be simulated in natural
deduction (Theorem 4.14).

5.4 Proof Terms for Canonical Proofs

The subject of this section is orthogonal to the rest of the thesis and the disinclined reader
may skip it without a break in continuity.

As observed in §5.1, the rules of Figures 5.1 and 5.2 are very similar to those that
define canonical and atomic proofs for BL (Figures 4.7 and 4.8). In fact the proof term
calculus excluding both the proof term constructor check and the rule (check) is a proof
term assignment for canonical and atomic proofs. Precisely, if a derivation in the proof
term system does not contain the rule (check), then erasing all proof variables and proof
terms, replacing each ⇐= · by · ⇑, and =⇒ · by · ⇓ results in a valid derivation by the rules
of Figures 4.7 and 4.8. Dually, each canonical proof is witnessed by a checkable, and each
atomic proof by an inferable. These observations are formalized in the following theorems.

132

Chapter 5. BL Proof Terms, Their Verification, and Procaps

Theorem 5.20 (Soundness). The following hold for V and R that do not contain the
constructor check.

1. If Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2] then Σ; Ψ;E; |Π| `ν s ◦ [u1, u2] ⇑.

2. If Σ; Ψ;E; Π `ν R =⇒ s ◦ [u1, u2] then Σ; Ψ;E; |Π| `ν s ◦ [u1, u2] ⇓.

Proof. By simultaneous induction on the given derivations.

Theorem 5.21 (Completeness). Suppose |Π| = Γ. Then the following hold.

1. If Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇑, then there is a checkable V such that Σ; Ψ;E; Π `ν
V ⇐= s ◦ [u1, u2].

2. If Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇓, then there is an inferable R such that Σ; Ψ;E; Π `ν
R =⇒ s ◦ [u1, u2].

Further the V in (1) and the R in (2) can be chosen such that they do not contain the
constructor check.

Proof. By simultaneous induction on the derivations given in (1) and (2).

Proof term normalization. Given that proof terms without the constructor check cor-
respond to canonical and atomic proofs, we may define canonical and atomic proof terms
as follows.

- A checkable V is called canonical if it does not contain the constructor check in it.

- An inferable R is called atomic if it does not contain the constructor check in it.

Canonical proof terms are BL analogues of the usual β-normal forms in the typed lambda
calculus since they cannot contain a β-redex. (From the syntax of proof terms, the principal
argument of every elimination constructor in a canonical proof term must have at the top
level an elimination constructor).

Further, Theorems 5.2, 4.19, and 5.21 imply that any proof term which witnesses a
judgment can be “normalized”. Suppose that V is a checkable such that Σ; Ψ;E; Π `ν
V ⇐= s ◦ [u1, u2]. By Theorem 5.2, Σ; Ψ;E; |Π| `ν s ◦ [u1, u2] and by Theorem 4.19,
Σ; Ψ;E; |Π| `ν s ◦ [u1, u2] ⇑. Therefore by Theorem 5.21 there is a canonical proof term
V ′ such that Σ; Ψ;E; Π `ν V ′ ⇐= s ◦ [u1, u2]. What is more interesting here is that the
proofs of Theorems 5.2, 4.19, and 5.21 can be composed to obtain a normalization procedure
that produces a canonical V ′ from V . However, owing to our use of admissibility of cut in
the proof of Theorem 4.19, this procedure is somewhat indirect and provides little insight
beyond what is already present in the proofs of Theorems 5.2, 4.19, and 5.21. Since we have
no occasion to use the normalization procedure in this thesis, we do not present it in any
further detail. The same normalization result can also be established through reduction
rules for proof terms.

133

Chapter 5. BL Proof Terms, Their Verification, and Procaps

5.5 Related Work
There is a significant amount of related work on proof terms for intuitionistic logics, as well
as a limited amount of related work on proof terms in the context of authorization. We
start with a description of the former and then turn to the latter.

Broadly speaking, our presentation of proof terms derives from the well known Curry-
Howard isomorphism which states that the typed lambda calculus is a proof term assignment
system for intuitionistic logic (see, e.g., [72]). Extensions of the isomorphism are known for
variants of intuitionistic logics including linear logic [141] and modal logics [115], as well
as for classical logic [75]. More specifically, the bidirectional style of proof terms as well as
the verification procedures of Theorem 5.8 are based on prior work on bidirectional type
systems [117], and are even more closely related to Pfenning’s notes on proof systems for
intuitionistic logic [114]. In particular, the assignment of proof terms to sequent calculus
proofs and canonical proofs of BL is a generalization of similar work in the latter.

In the context of authorization, DeYoung investigates bidirectional proof terms for η
logic in his undergraduate thesis [53]. The syntax of proof terms presented in §5.1 is
similar to and based on that work. In particular, the specific interactions between inference,
checking, and explicit time in the rules (infer) and (check) of Figure 5.1 go back to DeYoung’s
work. DeYoung also describes an implementation of proof verification procedures analogous
to those in Theorem 5.8. The two-part verification procedure that PCFS implements, its
formalization, and its correctness are all novel to this thesis. Since DeYoung’s work was
not designed for a realistic implementation, it does not discuss properties of proof terms
although it seems that analogues of all properties from §5.1.2 should also hold for proof
terms of η logic.

On a more practical note, the implementation of the authorization policy language
SecPAL includes a proof visualization tool which can be used to inspect graphically the
structure of an inference [23]. The tool may very useful for administrators and users, both
for debugging policies as well as for audit.

Prior work by Chaudhuri also considers mechanisms for enforcement of authorization
policies by offlining policy decisions and using capabilities to convey the results of decisions
to the reference monitor [40]. However, both policy decisions and capabilities are kept ab-
stract. While some of the ideas in that work are similar to those in §5.2.2, e.g., Chaudhuri’s
correctness theorems also compare capability based enforcement mechanisms to ideal ones
where the policy decision is made by the reference monitor, the problems addressed in that
work and ours are different. We work with a fixed logic and show that the process of ex-
tracting conditions from proofs and checking them in the back end is sound and complete.
On the other hand, Chaudhuri’s work is concerned with ensuring that the architecture with
capabilities is observationally similar to that without them. As a result, certain issues like
information leaks on denied access are relevant in Chaudhuri’s work, not ours. Similarly,
the effect of state changes on policies is relevant only in PCFS, not Chaudhuri’s work. Aside
from such differences, Chaudhuri’s work has had a significant influence on the high-level
design of PCFS.

134

Chapter 6

BL: Goal-directed Proof Search

In this chapter we discuss the theory and implementation of a practical method for au-
tomatically finding proofs of authorization given policy rules represented in our logic BL.
This method is the basis of the proof search tool pcfs-search that is included with our file
system PCFS (§7.1). Broadly construed, the proof search method is based on the sequent
calculus (§4.2.4). However, the sequent calculus by itself is too non-deterministic to be
used for proof search directly – a proof of Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] may be obtained by
applying either a right rule to s, or a left rule to any of the hypotheses in Γ. This results
in a large number of choices at each step, due to which any proof search based naively on
the sequent calculus may have to explore a formidably large space of proofs. The approach
we follow in this chapter, called goal-directed search, reduces this search space significantly
(goal-directed search is explained in §6.1). To maintain completeness with respect to the
sequent calculus, we restrict our attention to an expressive fragment of BL called BLG. All
policies presented in this thesis lie in this fragment.

Precisely, the problem we are trying to address in this chapter is that of finding a
proof term V such that Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2], if such a proof term exists. We
assume that Σ, Ψ, E, Π, ν, s, u1, and u2 are given. As discussed in §7.1, these inputs
are obtained from various sources in the PCFS proof search tool. In particular, the user
invoking the tool is responsible for providing s, u1, u2, and Π (the latter is in the form of
digital certificates). However, for simplicity, we omit a description of proof terms from this
chapter, and concentrate only on constructing the proof using inference rules. Proof terms
may be added easily to the proof search calculus described here using ideas from assignment
of proof terms to the sequent calculus (§5.3), which is also what pcfs-search does.

The rest of this chapter is organized as follows. In §6.1 we present background material
on goal-directed proof search. §6.2 presents the fragment BLG, and the rules for goal-directed
proof search. In §6.3, we prove that goal-directed proof search is sound and complete
with respect to the sequent calculus. §6.4 discusses implementation-specific issues that are
relevant to the tool pcfs-search. Related work is presented in §6.5. It is important to
clarify that the method of proof search presented in this chapter is not a decision procedure,
since BLG is not decidable. Completeness of proof search means that there is a non-
deterministic strategy within the confines of the formal rules of goal-directed proof search

135

Chapter 6. BL: Goal-directed Proof Search

that will find a proof if one exists. The strategy may be determinized using breadth-first
search, thus making proof search a semi-decision procedure, although this is often slow in
practice, so pcfs-search uses depth-first search with backtracking instead.

We advise readers to revisit the sequent calculus for BL presented in §4.2.4 before reading
the rest of this chapter.

6.1 Background: What Is Goal-directed Proof Search?

The term “goal” refers to the formula in the conclusion of a sequent that we wish to
establish through proof search. Precisely, the goal of Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] is s. By
goal-directed search we mean a backwards1 search for a proof which proceeds at each step
by decomposing the goal of the sequent, in accordance with the right rules of the sequent
calculus. Other rules are used only when the goal is atomic (in the specific case of BL,
only when the conclusion has the form p ◦ [u1, u2]). For example, to find a proof of
Σ; Ψ;E; Γ ν−→ s1 ∧ s2 ◦ [u1, u2], goal-directed search would try to find proofs of Σ; Ψ;E; Γ ν−→
s1 ◦ [u1, u2] and Σ; Ψ;E; Γ ν−→ s2 ◦ [u1, u2], and then combine them with the rule (∧R).
Similarly, to find a proof of Σ; Ψ;E; Γ ν−→ s1 ∨ s2 ◦ [u1, u2] goal-directed search would try
to find a proof of Σ; Ψ;E; Γ ν−→ s1 ◦ [u1, u2], and if it fails, it would try to find a proof of
Σ; Ψ;E; Γ ν−→ s2 ◦ [u1, u2]. (The attempts could also be made in the other order.) If either
case succeeds the proof would be completed using the corresponding rule (∨L1) or (∨L2),
else the proof search would fail.

If the goal is atomic, or more precisely the conclusion has the form p ◦ [u1, u2] in BL,
then goal-directed search proceeds by backchaining. The idea of backchaining, based on
languages like Prolog, is to pick a suitable hypothesis s′ ◦ [u′1, u′2] ∈ Γ and to use it to
find a list of judgments ~J such that provability of Σ; Ψ;E; Γ ν−→ J for each J ∈ ~J implies
provability of Σ; Ψ;E; Γ ν−→ p ◦ [u1, u2]. The elements of ~J are often called subgoals. The
proof search procedure then tries to find proofs of subgoals recursively, which, if successful,
entail provability of Σ; Ψ;E; Γ ν−→ p ◦ [u1, u2]. Formal rules for finding ~J given s′ ◦ [u′1, u′2]
and p ◦ [u1, u2] are loosely based on the left rules of the sequent calculus, but the connection
between the two is not as strong as the connection between the right rules of the sequent
calculus and the rules for decomposing goals in goal-directed search. Backchaining for BL
is covered in §6.2.

Whereas goal-directed search constrains non-determinism in the sequent calculus sig-
nificantly, and is both easy to formalize and simple to implement efficiently, there is an
important theoretical concern that must be addressed: Is goal-directed search complete in
the sense that if a sequent is provable then goal-directed search will find a proof of it? It is
quite easy to show that this is not true because for certain kinds of goals, it is not the case
that if a sequent with the goal is provable, then the sequents obtained by applying one of
the right rules backwards would also be provable. For example, provability of Σ; Ψ;E; Γ ν−→

1The adjective “backwards” means that the rules of the sequent calculus are applied from the conclusion
to the premises, thus constructing a proof from the sequent to be proved towards the leaves. The other
possibility, which we do not consider in this chapter, is to apply the rules from premises to conclusions. The
latter is called the inverse method.

136

Chapter 6. BL: Goal-directed Proof Search

s1 ∨ s2 ◦ [u1, u2] does not, in general, imply that one of Σ; Ψ;E; Γ ν−→ s1 ◦ [u1, u2] and
Σ; Ψ;E; Γ ν−→ s2 ◦ [u1, u2] is provable. Consequently, goal-directed search may not always
succeed on a provable sequent whose goal has a top level disjunction in it. Similar incom-
pleteness exists for the connectives ⊥, ∃, and says.

Given that goal-directed search is incomplete for all of BL (and similarly for all of in-
tuitionistic logic), the next question is whether there is a useful fragment of the logic for
which goal-directed search is complete. The answer to this question is affirmative. Most
logics (including BL) have large fragments on which goal-directed search is complete. The
common idea in these fragments is to restrict the occurrences of connectives in goals and
hypotheses. Interestingly, and perhaps non-intuitively, such restrictions invariably imply
that whenever a sequent is provable, then the sequents obtained by applying backwards
one of the right rules of the top level connective of its goal are all provable, thus making
goal-directed search complete. As illustrations, we list below, in increasing order of expres-
siveness, some previously investigated fragments of intuitionistic and linear logic on which
goal-directed search is complete.

- The well-known Horn fragment of first-order logic, which restricts connectives in hy-
potheses to atoms, ∧, >, ⊃, and ∀, and those in goals to atoms, ∧, >, ∨, ⊥, and ∃
(see, e.g., [103]). Prolog is based on this fragment.

- The Hereditary-Harrop fragment, which generalizes the Horn fragment by allowing all
connectives in goals [103]. The main difference between the Horn fragment and the
Hereditary-Harrop fragment is that in the former the hypotheses do not change during
proof search whereas in the latter they may change due to backwards applications of
the rule (⊃R).

- The linear logic programming language Lolli [78], which in addition to including linear
connectives, generalizes the Hereditary-Harrop fragment by allowing the linear ana-
logues of the connectives ∨, ⊥, and ∃ at the top level in hypotheses. This fragment
requires a proof search procedure that is slightly more general than goal-directed
search proper, but still fits into the general paradigm of “goal-directed”. Precisely,
whenever a new hypothesis is introduced using the rule (⊃R), its top level ∨ and ∃
connectives are immediately decomposed with left rules, after which goal decomposi-
tion is resumed.

Salient points about this chapter. The objective of this chapter is to present a frag-
ment of BL for which goal-directed search is complete, explain formally via inference rules
goal-directed proof search for it, prove that the goal-directed search is both sound and com-
plete with respect to the rules of the sequent calculus restricted to the fragment, and explain
its implementation in the proof search tool pcfs-search included in PCFS. We call this
fragment BLG. It is based on ideas from the linear logic programming languages Lolli [78]
and LolliMon [98]. Like Lolli, the proof search procedure for BLG is a slight generalization
of goal-directed search proper (this generalization was described in the third point above).
We make three salient observations before presenting the technical material.

137

Chapter 6. BL: Goal-directed Proof Search

First, despite its syntactic restrictions, BLG is very expressive. In particular, all policies
presented in this thesis, including all policies of the case study (§8), lie in BLG.

Second, goal-directed search is an instance of a general proof search technique called
focusing [12]. Although this technique is compatible with BL, and may be used to construct
a generic theorem prover for all of BL, we refrain from doing so here because such a generic
tool would be needlessly complicated and possibly slow because it would have to cater to
many cases that may never arise in actual policies.

Third, both the connective says and explicit time, and the latter in particular, increase
significantly the complexity of goal-directed search as well as the proof of its soundness
and completeness. As a result, prior work on goal-directed search for other logics does not
apply directly, although the methods described in earlier work are certainly the basis of the
technical development of this chapter [78, 103].

6.2 Goal-directed Proof Search in BLG

The syntax of the fragment BLG is described below. Goals g are formulas that may appear
in conclusions of sequents in the fragment. They are allowed to contain all connectives.
Formulas in hypotheses are divided into two categories: (1) Clauses d that contain only
uninterpreted atoms and the connectives ⊃, ∧, >, ∀, and @, and (2) Chunks h that may
contain clauses d, constraints c, interpreted connectives i, and formulas of the form k says d
at their leaves and the connectives ∧, ∨, >, ⊥, ∃, and @. Hypotheses also take two forms:
policies ∆ that contain assumptions of the form d ◦ [u1, u2] and k claims d ◦ [u1, u2],
and groups Ξ that have assumptions of the form h ◦ [u1, u2]. Unlike all other hypotheses
considered in this thesis so far, a group is an ordered list, not a multiset. We represent
groups using familiar notation for lists – [] denotes an empty group, and Ξ :: (h ◦ [u1, u2])
denotes the group obtained by adding h ◦ [u1, u2] to the end of Ξ.

Goals g ::= p | c | i | g1 ∧ g2 | g1 ∨ g2 | h ⊃ g | > | ⊥ | ∀x:σ.g | ∃x:σ.g |
k says g | g @ [u1, u2]

Clauses d ::= p | d1 ∧ d2 | > | g ⊃ d | ∀x:σ.d | d @ [u1, u2]
Chunks h ::= d | c | i | h1 ∧ h2 | h1 ∨ h2 | > | ⊥ | ∃x:σ.h | k says d | h @ [u1, u2]

Policies ∆ ::= · | ∆, d ◦ [u1, u2] | ∆, k claims d ◦ [u1, u2]
Groups Ξ ::= [] | Ξ :: (h ◦ [u1, u2])

Our objective now is to define a calculus that formalizes goal-directed search for finding
proofs of sequents of the form Σ; Ψ;E; ∆ ν−→ g ◦ [u1, u2]. We describe this calculus using
five kinds of hypothetical judgments – labeled R, Q, L, N, F – whose forms are listed below.
At the expense of overloading terminology, we use the term “sequent” to refer to these
hypothetical judgments as well. Whether the term sequent refers to sequents of the sequent
calculus, or hypothetical judgments of goal-directed search should always be clear from the

138

Chapter 6. BL: Goal-directed Proof Search

context.
Query lists Q ::= [] | (u1 ≤ u2) :: Q | (g ◦ [u1, u2]) :: Q

Boolean flags b ::= tt | ff

Sequents R ::= Σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2]
Q ::= Σ; Ψ;E; ∆ ν⇒ Q
L ::= Σ; Ψ;E; ∆; Ξ ν⇐ g ◦ [u1, u2]
N ::= Σ; Ψ;E; ∆ ν⇔ p ◦ [u1, u2]
F ::= Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b

Although the exact rules of goal-directed search that may be used to establish these five
forms of sequents are described in §6.2.1, we briefly explain the purpose and meaning of
each form of sequent here. In R-sequents Σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2], the goal g ◦ [u1, u2]
is decomposed by rules similar to the right rules of the sequent calculus. These are the
primary form of sequents in which proof search starts and they also justify the adjective
“goal-directed”. Q-sequents Σ; Ψ;E; ∆ ν⇒ Q are a generalization of R-sequents in which the
goal is replaced by a query list Q, which may contain conclusions of the forms u1 ≤ u2 and
g ◦ [u1, u2]. A query list is the BL analogue of subgoals mentioned in §6.1 in the context of
backchaining. The meaning of Σ; Ψ;E; ∆ ν⇒ Q is that a proof of every conclusion in Q can
be found from the hypotheses Σ; Ψ;E; ∆.

In L-sequents Σ; Ψ;E; ∆; Ξ ν⇐ g ◦ [u1, u2], the chunks in Ξ are decomposed using rules
similar to the left rules of the sequent calculus. These sequents arise from R-sequents
when a hypothesis is introduced by decomposition of an implication in a goal. N-sequents
Σ; Ψ;E∆ ν⇔ p ◦ [u1, u2] are the site of backchaining. To prove an N-sequent, we choose a
clause from the hypotheses that can be used to prove the atomic goal p ◦ [u1, u2], decompose
the clause in an F-sequent, and prove the resulting query list (subgoals). An F-sequent
Σ; d ◦ [u1, u2] � p ◦ [u′1, u′2] ↘ Q; b is used to decompose the clause d ◦ [u1, u2] with the
aim of proving p ◦ [u′1, u′2]; it means that the latter is entailed by the former if in addition
every conclusion in the query list Q holds. The boolean b in an F-sequent is a flag that is
needed to correctly account for time intervals, as explained in §6.2.1.

Query lists in the sequent calculus. In order to prove soundness and completeness
of goal-directed search (§6.3), it is helpful to define an auxiliary judgment Σ; Ψ;E; Γ ν−→ Q
based on the rules of the sequent calculus (not goal-directed search) as shown below. This
judgment is analogous to the judgment Σ; Ψ;E; Γ ν⇒ Q for goal-directed search.

Σ; Ψ;E; Γ ν−→ []
[]Q

Σ; Ψ |= u1 ≤ u2 Σ; Ψ;E; Γ ν−→ Q
Σ; Ψ;E; Γ ν−→ (u1 ≤ u2) :: Q

leqQ

Σ; Ψ;E; Γ ν−→ g ◦ [u1, u2] Σ; Ψ;E; Γ ν−→ Q
Σ; Ψ;E; Γ ν−→ (g ◦ [u1, u2]) :: Q

goalQ

139

Chapter 6. BL: Goal-directed Proof Search

Sequent of goal-directed search Sequent calculus analogue
R Σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2] Σ; Ψ;E; ∆ ν−→ g ◦ [u1, u2]
Q Σ; Ψ;E; ∆ ν⇒ Q Σ; Ψ;E; ∆ ν−→ Q
L Σ; Ψ;E; ∆; Ξ ν⇐ g ◦ [u1, u2] Σ; Ψ;E; ∆, |Ξ| ν−→ g ◦ [u1, u2]
N Σ; Ψ;E; ∆ ν⇔ p ◦ [u1, u2] Σ; Ψ;E; ∆ ν−→ p ◦ [u1, u2]
F Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b No direct analogue. Means that Σ; Ψ;E; Γ ν−→

Q implies Σ; Ψ;E; Γ, d ◦ [u1, u2]
ν−→ p ◦ [u′1, u′2]

Figure 6.1: Correspondence between sequents of goal-directed search and the sequent calculus

The above rules induct over the query list Q in Σ; Ψ;E; Γ ν−→ Q and check that each
conclusion in Q is provable from the hypotheses Σ; Ψ;E; Γ.

To help the reader get a better idea of the meanings of the sequents used in goal-directed
search, we list in Figure 6.1 the form of sequents from BL’s sequent calculus that correspond
to the sequent classes R, Q, L, and N. F-sequents have no direct analogues in the sequent
calculus, but their meaning can be explained in terms of entailments between sequents of
the latter. The notation |Ξ| denotes the multiset obtained by ignoring the order of elements
in Ξ.

6.2.1 Rules of Goal-directed Proof Search

The rules for goal-directed search are shown in Figures 6.2, 6.3, and 6.4. All rules are used
backwards during proof search.

R-sequents. Search starts in an R-sequent Σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2]. The rules applying
to an R-sequent (Figure 6.2) are similar to the right rules of the sequent calculus, and
always decompose the goal. Unlike the sequent calculus, where left and right rules may
be arbitrarily interleaved, R-sequents force that the goal be continuously decomposed till a
leaf – uninterpreted atom, interpreted atom, or constraint – is reached. The only exception
to this forced decomposition of the goal is the rule (R-⊃), which introduces a chunk in the
hypothesis in the premise, and therefore transitions temporarily to an L-sequent where the
chunk is decomposed by left rules (described later). After the chunk is decomposed com-
pletely, the procedure returns to an R-sequent, and decomposition of the goal continues. If a
constraint is reached, the constraint solver is invoked to attempt to solve it (rule (R-cons)).
Interpreted predicates are similarly treated by the rule (R-inter). If an uninterpreted atom
is reached, the proof search transitions to an N-sequent (rule (R-N)), where backchaining
is used to try to prove the atomic goal (described later).

The reason why such forced decomposition of goals is complete with respect to the
sequent calculus is that once hypotheses are restricted to the form ∆, the right rules of
all connectives in the sequent calculus become invertible in the following sense: whenever
Σ; Ψ;E; ∆ ν−→ g ◦ [u1, u2] is provable in the sequent calculus, then the premises of at

140

Chapter 6. BL: Goal-directed Proof Search

R-sequents

Σ; Ψ;E; ∆ ν⇔ p ◦ [u1, u2]
Σ; Ψ;E; ∆ ν⇒ p ◦ [u1, u2]

R-N
Σ; Ψ |= c

Σ; Ψ;E; ∆ ν⇒ c ◦ [u1, u2]
R-cons

Σ;E |= i

Σ; Ψ;E; ∆ ν⇒ i ◦ [u1, u2]
R-inter

Σ; Ψ;E; ∆ ν⇒ g1 ◦ [u1, u2] Σ; Ψ;E; ∆ ν⇒ g2 ◦ [u1, u2]
Σ; Ψ;E; ∆ ν⇒ g1 ∧ g2 ◦ [u1, u2]

R-∧

Σ; Ψ;E; ∆ ν⇒ g1 ◦ [u1, u2]
Σ; Ψ;E; ∆ ν⇒ g1 ∨ g2 ◦ [u1, u2]

R-∨1
Σ; Ψ;E; ∆ ν⇒ g2 ◦ [u1, u2]

Σ; Ψ;E; ∆ ν⇒ g1 ∨ g2 ◦ [u1, u2]
R-∨2

Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; ∆;h ◦ [x1, x2]
ν⇐ g ◦ [x1, x2]

Σ; Ψ;E; ∆ ν⇒ h ⊃ g ◦ [u1, u2]
R-⊃

Σ; Ψ;E; ∆ ν⇒ > ◦ [u1, u2]
R->

Σ, x:σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2]
Σ; Ψ;E; ∆ ν⇒ ∀x:σ.g ◦ [u1, u2]

R-∀

Σ ` t : σ Σ; Ψ;E; ∆ ν⇒ g[t/x] ◦ [u1, u2]
Σ; Ψ;E; ∆ ν⇒ ∃x:σ.g ◦ [u1, u2]

R-∃
Σ; Ψ;E; ∆| k,u1,u2⇒ g ◦ [u1, u2]

Σ; Ψ;E; ∆ ν⇒ k says g ◦ [u1, u2]
R-says

Σ; Ψ;E; ∆ ν⇒ g ◦ [u′1, u′2]
Σ; Ψ;E; ∆ ν⇒ g @ [u′1, u′2] ◦ [u1, u2]

R-@

Q-sequents

Σ; Ψ;E; ∆ ν⇒ []
Q-[]

Σ; Ψ |= u1 ≤ u2 Σ; Ψ;E; ∆ ν⇒ Q
Σ; Ψ;E; ∆ ν⇒ (u1 ≤ u2) :: Q

Q-leq

Σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2] Σ; Ψ;E; ∆ ν⇒ Q
Σ; Ψ;E; ∆ ν⇒ (g ◦ [u1, u2]) :: Q

Q-goal

Figure 6.2: Goal-directed search, part 1

least one of the right rules that could be used directly to prove this sequent can also be
established. Even though we do not use this fact in the proof of completeness of proof search
directly (Theorem 6.5), we have included a formal statement of the fact in Appendix D,
Lemmas D.16 and D.17 for the curious readers.

Note that proof search may have to explore multiple branches, as would happen after
application of the rule (R-∧) which has two premises. Proof search may have to make
choices, and backtrack over them if needed, as would happen, for instance, if a conclusion
of the form g1 ∨ g2 ◦ [u1, u2] is encountered, since any of the two rules (R-∨1) and (R-∨2)
may potentially prove such a conclusion. The reader may observe that despite the need

141

Chapter 6. BL: Goal-directed Proof Search

L-sequents

Σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2]
Σ; Ψ;E; ∆; [] ν⇐ g ◦ [u1, u2]

L-R
Σ; Ψ;E; ∆, d ◦ [u1, u2]; Ξ

ν⇐ g ◦ [u′1, u′2]
Σ; Ψ;E; ∆; Ξ :: (d ◦ [u1, u2])

ν⇐ g ◦ [u′1, u′2]
L-clause

Σ; Ψ, c;E; ∆; Ξ ν⇐ g ◦ [u′1, u′2]
Σ; Ψ;E; ∆; Ξ :: (c ◦ [u1, u2])

ν⇐ g ◦ [u′1, u′2]
L-cons

Σ; Ψ;E, i; ∆; Ξ ν⇐ g ◦ [u′1, u′2]
Σ; Ψ;E; ∆; Ξ :: (i ◦ [u1, u2])

ν⇐ g ◦ [u′1, u′2]
L-inter

Σ; Ψ;E; ∆; Ξ :: (h1 ◦ [u1, u2]) :: (h2 ◦ [u1, u2])
ν⇐ g ◦ [u′1, u′2]

Σ; Ψ;E; ∆; Ξ :: (h1 ∧ h2 ◦ [u1, u2])
ν⇐ g ◦ [u′1, u′2]

L-∧

Σ; Ψ;E; ∆; Ξ :: (h1 ◦ [u1, u2])
ν⇐ g ◦ [u′1, u′2] Σ; Ψ;E; ∆; Ξ :: (h2 ◦ [u1, u2])

ν⇐ g ◦ [u′1, u′2]
Σ; Ψ;E; ∆; Ξ :: (h1 ∨ h2 ◦ [u1, u2])

ν⇐ g ◦ [u′1, u′2]
L-∨

Σ; Ψ;E; ∆; Ξ ν⇐ g ◦ [u′1, u′2]
Σ; Ψ;E; ∆; Ξ :: (> ◦ [u1, u2])

ν⇐ g ◦ [u′1, u′2]
L->

Σ; Ψ;E; ∆; Ξ :: (⊥ ◦ [u1, u2])
ν⇐ g ◦ [u′1, u′2]

L-⊥

Σ, x:σ; Ψ;E; ∆; Ξ :: (h ◦ [u1, u2])
ν⇐ g ◦ [u′1, u′2]

Σ; Ψ;E; ∆; Ξ :: (∃x:σ.h ◦ [u1, u2])
ν⇐ g ◦ [u′1, u′2]

L-∃

Σ; Ψ;E; ∆, k claims d ◦ [u1, u2]; Ξ
ν⇐ g ◦ [u′1, u′2]

Σ; Ψ;E; ∆; Ξ :: (k says d ◦ [u1, u2])
ν⇐ g ◦ [u′1, u′2]

L-says

Σ; Ψ;E; ∆; Ξ :: (h ◦ [u′1, u′2])
ν⇐ g ◦ [u′′1 , u′′2]

Σ; Ψ;E; ∆; Ξ :: (h @ [u′1, u′2] ◦ [u1, u2])
ν⇐ g ◦ [u′′1 , u′′2]

L-@

Figure 6.3: Goal-directed search, part 2

for making such choices, by eliminating the possibility of applying left rules except after
the decomposition of an implication, or after an uninterpreted atom is reached, R-sequents
curtail significantly the non-determinism that would be inherent in any proof search tool
that naively used the sequent calculus backwards.

Q-sequents. The rules for Q-sequents Σ; Ψ;E; ∆ ν⇒ Q are fairly straightforward (Fig-
ure 6.2). The list Q is decomposed inductively by the rules (Q-leq) and (Q-goal) depending
on the form of query at its head, and the provability of the query is checked either through
the constraint solver if the query has the form u1 ≤ u2 (rule (Q-leq)), or through an R-
sequent if the query has the form g ◦ [u1, u2] (rule (Q-goal)). The reader may observe that
the rules applying to Q-sequents are deterministic.

142

Chapter 6. BL: Goal-directed Proof Search

F-sequents

Σ; p ◦ [u1, u2]� p ◦ [u′1, u′2]↘ (u1 ≤ u′1) :: (u′2 ≤ u2) :: []; ff
F-init

Σ; d1 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b
Σ; d1 ∧ d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b

F-∧1
Σ; d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b

Σ; d1 ∧ d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b
F-∧2

Σ; d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; tt
Σ; g1 ⊃ d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ (g1 ◦ φ) :: Q; tt

F-⊃1
∗

(∗φ denotes the fixed interval [+∞,−∞], which is contained in all other intervals)

Σ; d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; ff
Σ; g1 ⊃ d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ (g1 ◦ [u′1, u′2]) :: Q; ff

F-⊃2

Σ ` t : σ Σ; d[t/x] ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b
Σ;∀x:σ.d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b

F-∀

Σ; d ◦ [u′′1 , u′′2]� p ◦ [u′1, u′2]↘ Q; b
Σ; d @ [u′′1 , u′′2] ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; tt

F-@

N-sequents

d ◦ [u1, u2] ∈ ∆ Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b Σ; Ψ;E; ∆ ν⇒ Q
Σ; Ψ;E; ∆ ν⇔ p ◦ [u′1, u′2]

N-clause

k claims d ◦ [u1, u2] ∈ ∆ ν = k0, ub, ue
Σ; Ψ |= k � k0 Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2
Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b Σ; Ψ;E; ∆ ν⇒ Q

Σ; Ψ;E; ∆ ν⇔ p ◦ [u′1, u′2]
N-claims

Figure 6.4: Goal-directed search, part 3

L-sequents. An L-sequent Σ; Ψ;E; ∆; Ξ ν⇐ g ◦ [u1, u2] arises during proof search only in
the premise of the rule (R-⊃). It decomposes the connectives in chunks in Ξ from right
to left using the rules of Figure 6.3, which are similar to the corresponding left rules of
the sequent calculus. The intuitive justification for completeness of such decomposition
with respect to the sequent calculus is that the left rules of the connectives decomposed in
L-sequents – ∧, ∨, ∃, says, and @ – are invertible in the sequent calculus, i.e. their premises
hold without principal formulas, whenever their conclusion does (Lemma 6.4).

Due to syntactic restrictions, every chunk eventually decomposes to the forms c, i, d,
and k says d. These are pushed into Ψ, E, ∆, and ∆ respectively using the rules (L-

143

Chapter 6. BL: Goal-directed Proof Search

cons), (L-inter), (L-clause), and (L-says). Once decomposition of chunks Ξ is complete,
which must happen eventually because each backwards application of a rule in Figure 6.3
removes at least one connective from Ξ, the proof search transitions back to an R-sequent
and decomposition of the goal is resumed (rule (L-R)). The rules applying to L-sequents
are deterministic.

F-sequents. An F-sequent Σ; d ◦ [u1, u2] � p ◦ [u′1, u′2] ↘ Q; b is used to determine
whether d ◦ [u1, u2] can be helpful in proving p ◦ [u′1, u′2] or not. During proof search, bothQ
and b are outputs. If the sequent has a derivation, then Σ; Ψ;E; Γ, d ◦ [u1, u2]

ν−→ p ◦ [u′1, u′2]
whenever Σ; Ψ;E; Γ ν−→ Q (Lemma 6.1). In the following we describe the rules that apply
to F-sequents (Figure 6.4), and also explain the role of the boolean b, starting with the latter.

Informal explanation for using the boolean b. An F-sequent Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘
Q; b is derived by decomposing the connectives in d, and the boolean b is tt if and only if
an @ connective is encountered during this decomposition. Keeping track of whether or not
an @ connective is encountered in the decomposition of a clause is important in order to
maintain completeness with respect to the sequent calculus. We explain this with a simple
example where we try to prove Σ; Ψ;E; Γ, g1 ⊃ ((g2 ⊃ p) @ [u1, u2]) ◦ [u′1, u′2]

ν−→ p ◦ [u′′1, u′′2]
in the sequent calculus by decomposing the hypothesis g1 ⊃ ((g2 ⊃ p) @ [u1, u2]) ◦ [u′1, u′2]
with left rules. For simplicity, we will assume that Σ; Ψ |= u1 ≤ u′′1 and Σ; Ψ |= u′′2 ≤ u2.
The reader should note that the scope of the @ connective includes g2 but not g1. Using
the rule (⊃L) once, it suffices to prove the following two sequents for any interval [ub, ue]
that satisfies Σ; Ψ |= u′1 ≤ ub and Σ; Ψ |= ue ≤ u′2.

Σ; Ψ;E; Γ, g1 ⊃ ((g2 ⊃ p) @ [u1, u2])) ◦ [u′1, u′2]
ν−→ g1 ◦ [ub, ue]

Σ; Ψ;E; Γ, g1 ⊃ ((g2 ⊃ p) @ [u1, u2]) ◦ [u′1, u′2], (g2 ⊃ p) @ [u1, u2] ◦ [ub, ue]
ν−→ p ◦ [u′′1, u′′2]

Next, using the rule (@L) it suffices to show the following sequent in place of the second
sequent above.

Σ; Ψ;E; Γ, g1 ⊃ ((g2 ⊃ p) @ [u1, u2]) ◦ [u′1, u′2], g2 ⊃ p ◦ [u1, u2]
ν−→ p ◦ [u′′1, u′′2]

Observe that due to the connective @, the interval [ub, ue] has disappeared from the sequent!
Proceeding further, it is easy to show using rules (⊃L) and (init) that to establish the third
sequent above, it suffices to prove the following sequent.

Σ; Ψ;E; Γ, g1 ⊃ ((g2 ⊃ p) @ [u1, u2]) ◦ [u′1, u′2], g2 ⊃ p ◦ [u1, u2]
ν−→ g2 ◦ [u′′1, u′′2]

Thus in order to prove p ◦ [u′′1, u′′2] from the hypothesis g1 ⊃ ((g2 ⊃ p) @ [u1, u2]) ◦ [u′1, u′2]
assuming that Σ; Ψ |= u1 ≤ u′′1 and Σ; Ψ |= u′′2 ≤ u2, it is enough to prove g1 ◦ [ub, ue] for
any [ub, ue] that is contained in [u′1, u′2] (first sequent above) and also g2 ◦ [u′′1, u′′2] (fourth
sequent above). The relevant observation here is that due to the @ connective inside the
head of the implication g1 ⊃ ((g2 ⊃ p) @ [u1, u2]), the interval [ub, ue] over which g1 needs
to be established has no relation to the interval in the conclusion, [u′′1, u′′2]. This observation

144

Chapter 6. BL: Goal-directed Proof Search

generalizes easily – given a hypothesis g ⊃ d ◦ [u1, u2], if during the decomposition of d by
left rules, an @ connective is encountered, then the interval over which g is proved has no
relation to the interval over which the concluding atom produced by d holds. As a result, in
this case it is okay in the sequent calculus to prove g over any interval contained in [u1, u2].
To maintain completeness, when such cases arise in goal-directed search we try to prove g
over a fixed interval φ that is contained in all other intervals (this interval is defined below).

It should also be noted that if during the decomposition of d by left rules an @ con-
nective is not encountered, then g must be proved over the same interval that is needed
in the conclusion derived from g ⊃ d. This happens, for instance, for the clause g2 ⊃ p in
the third sequent above. The boolean b in the output of F-sequents keeps track of whether
an @ connective has been encountered in the decomposition of the clause or not – b is tt
in the sequent Σ; d ◦ [u1, u2] � p ◦ [u′1, u′2] ↘ Q; b if and only if the decomposition of d
passes through an @ connective. Accordingly, only the rule (F-@) in Figure 6.4 introduces
tt in its conclusion; all other rules with premises simply propagate the boolean from the
premise to the conclusion. Although possibly non-intuitive, this strategy of keeping track
of @ connectives encountered during decomposition of clauses is both sound and complete,
as the results in §6.3 show. The explanation of the rules for F-sequents below should be
easy to follow, given this intuitive understanding of the importance of b.

Explanation of the rules for F-sequents in Figure 6.4. Rule (F-init) means that p ◦ [u1, u2]
can be used to derive p ◦ [u′1, u′2] if u1 ≤ u′1 and u′2 ≤ u2. This is analogous to the
(init) rule in the sequent calculus. Note that the boolean in the output is ff here. The
most interesting rules for deriving F-sequents are (F-⊃1) and (F-⊃2), which are applicable
when the booleans in the premise are tt and ff respectively. We explain rule (F-⊃1)
first. Suppose Σ; d2 ◦ [u1, u2] � p ◦ [u′1, u′2] ↘ Q; tt, as in premise of the rule. So
Σ; Ψ;E; Γ, d2 ◦ [u1, u2]

ν−→ p ◦ [u′1, u′2] whenever Σ; Ψ;E; Γ ν−→ Q, and further during the
decomposition of d2, an @ connective is encountered. Due to the explanation above, if
Σ; Ψ;E; Γ ν−→ Q and Σ; Ψ;E; Γ ν−→ g1 ◦ [ub, ue] for any interval [ub, ue], then Σ; Ψ;E; Γ, g1 ⊃
d2 ◦ [u1, u2]

ν−→ p ◦ [u′1, u′2]. Since we cannot represent “any interval” in the logic, we
instead choose an interval φ = [+∞,−∞] that is contained in all other intervals. Then the
conclusion of the rule Σ; g1 ⊃ d2 ◦ [u1, u2] � p ◦ [u′1, u′2] ↘ (g1 ◦ φ) :: Q; tt is immediately
justified.

The rule (F-⊃2) is similar, but it applies when the boolean in the premise is ff, i.e.
when an @ connective is not encountered during the decomposition of d2. In that case, the
goal g1 must be established on the interval [u′1, u′2], not an arbitrary interval [ub, ue] in order
for p ◦ [u′1, u′2] to be provable. Either of the rules (F-∧1) and (F-∧2) may apply when the
clause to be decomposed has a top level conjunction, so F-sequents may cause backtracking
during proof search. At a more fundamental level that we don’t explicitly explore here, a
derivation of an F-sequent corresponds to a single step of left focusing [12].

N-sequents. N-sequents are the site of backchaining for proving atomic goals of the form
p ◦ [u′1, u′2]. There are only two rules to establish an N-sequent: (N-clause) and (N-claims),
both of which are shown in Figure 6.4. For both rules, the objective is to prove p ◦ [u′1, u′2]

145

Chapter 6. BL: Goal-directed Proof Search

from the assumptions Σ; Ψ;E; ∆. In (N-clause) this proof is attempted by choosing a
hypothesis of the form d ◦ [u1, u2] in ∆, finding a Q such that Σ; d ◦ [u1, u2] � p ◦
[u′1, u′2] ↘ Q; b, and checking that Σ; Ψ;E; ∆ ν⇒ Q. The rule (N-claims) is similar, except
that a hypothesis of the form k claims d ◦ [u1, u2] is used. In that case, it must also be
checked that k � k0, u1 ≤ ub, and ue ≤ u2, where ν = k0, ub, ue. These checks are based
on the view principle from §4.2.2. Again, due to the possible choice in picking a suitable
hypothesis in ∆, N-sequents may be the site of a significant amount of backtracking during
proof search.

6.3 Soundness and Completeness of Proof Search

We now show that goal-directed proof search on the fragment BLG, as formalized by the
rules of §6.2.1, is sound and complete with respect to the sequent calculus. Owing to
the presence of explicit time, and particularly because of the need to keep track of @
connectives in clauses during decomposition in F-sequents, proofs of both soundness and
completeness are somewhat more difficult than they are for other logics. Details of these
proofs are provided in Appendix D, and we encourage the interested reader to go through
the appendix to gain an insight into the technical details of the proofs. Here we only skim
through the main lemmas.

Soundness. For soundness, we seek to establish that if Σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2], then
Σ; Ψ;E; ∆ ν−→ g ◦ [u1, u2]. The proof of this fact critically relies on the following lemma
about soundness of F-sequents.

Lemma 6.1 (Soundness of F-sequents). Suppose the following hold.

1. Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b

2. Σ; Ψ;E; Γ ν−→ Q

Then, Σ; Ψ;E; Γ, d ◦ [u1, u2]
ν−→ p ◦ [u′1, u′2].

Proof. We generalize the statement of the lemma, one for each of the two cases b = tt and
b = ff, which can then be proved using simultaneous induction on the derivation assumed
in (1). See Appendix D, Lemmas D.2 and D.3 for details.

Using this lemma, soundness follows by an easy induction on derivations of goal-directed
search.

Theorem 6.2 (Soundness). The following hold.

A. Σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2] implies Σ; Ψ;E; ∆ ν−→ g ◦ [u1, u2]

B. Σ; Ψ;E; ∆; Ξ ν⇐ g ◦ [u1, u2] implies Σ; Ψ;E; ∆, |Ξ| ν−→ g ◦ [u1, u2]

C. Σ; Ψ;E; ∆ ν⇔ p ◦ [u1, u2] implies Σ; Ψ;E; ∆ ν−→ p ◦ [u1, u2]

146

Chapter 6. BL: Goal-directed Proof Search

D. Σ; Ψ;E; ∆ ν⇒ Q implies Σ; Ψ;E; ∆ ν−→ Q

Proof. By simultaneous induction on given derivations and case analysis of the last rules
in them. For proving (C), Lemma 6.1 is needed. Representative cases may be found in
Appendix D, Theorem D.4.

Completeness. For completeness, we seek to establish that if Σ; Ψ;E; ∆ ν−→ g ◦ [u1, u2],
then Σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2]. To prove this fact, we show first that the left rules for
connectives that appear in clauses d are admissible in goal-directed search. This requires
a systematic development of the metatheory of goal-directed search which we defer to Ap-
pendix D, as well as several tedious but straightforward inductions over derivations of
goal-directed search. Second, we prove that the left rules for top level connectives in chunks
are all invertible in the sequent calculus. This is straightforward. Given these two lemmas,
completeness follows by a lexicographic induction on sequent calculus derivations.

Lemma 6.3 (Admissibility of left rules in proof search). The following hold.

1. Admissibility of (⊃L). Suppose the following hold:

(a) Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇒ g ◦ [u′1, u′2]

(b) Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2], d ◦ [u′1, u′2]
ν⇒ g′′ ◦ [u′′1, u′′2]

(c) Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2

Then Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇒ g′′ ◦ [u′′1, u′′2]

2. Admissibility of (claims). Suppose the following hold:

(a) ν = k0, ub, ue

(b) Σ; Ψ |= k′0 � k0

(c) Σ; Ψ |= u′b ≤ ub
(d) Σ; Ψ |= ue ≤ u′e
(e) Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]

ν⇒ g ◦ [u1, u2]

Then, Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e]
ν⇒ g ◦ [u1, u2]

3. Admissibility of (∧L). Suppose the following holds:

(a) Σ; Ψ;E; ∆, d0 ∧ d′0 ◦ [u′b, u′e], d0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]
ν⇒ g ◦ [u1, u2]

Then, Σ; Ψ;E; ∆, d0 ∧ d′0 ◦ [u′b, u′e]
ν⇒ g ◦ [u1, u2]

4. Admissibility of (∀L). Suppose the following hold:

(a) Σ ` t : σ
(b) Σ; Ψ;E; ∆,∀x:σ.d0 ◦ [ub, ue], d0[t/x] ◦ [ub, ue]

ν⇒ g ◦ [u1, u2]

147

Chapter 6. BL: Goal-directed Proof Search

Then, Σ; Ψ;E; ∆, ∀x:σ.d0 ◦ [ub, ue]
ν⇒ g ◦ [u1, u2]

5. Admissibility of (@L). Suppose the following holds:

(a) Σ; Ψ;E; ∆, d0 @ [u′b, u′e] ◦ [ub, ue], d0 ◦ [u′b, u′e]
ν⇒ g ◦ [u1, u2]

Then, Σ; Ψ;E; ∆, d0 @ [u′b, u′e] ◦ [ub, ue]
ν⇒ g ◦ [u1, u2]

Proof. Each of the statements (1)–(5) is proved separately by induction on the last given
R-sequent derivation. In each case, the induction hypothesis must be generalized to in-
clude L-sequents, Q-sequents, and N-sequents. Details are presented in Appendix D, Lem-
mas D.11–D.15. The proof of statement (1) is particularly involved and requires a systematic
development of metatheory of goal-directed search, including an analogue of time subsump-
tion (Theorem 4.11). We strongly encourage the interested reader to look at Appendix D
for all the details.

Lemma 6.4 (Strong left inversion for c, i,∧,∨,>, ∃, says,@). The following hold for the
sequent calculus of BL.

1. Σ; Ψ;E; Γ, c ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies Σ; Ψ, c;E; Γ ν−→ r ◦ [u′1, u′2] by a derivation

of smaller or equal depth.

2. Σ; Ψ;E; Γ, i ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies Σ; Ψ;E, i; Γ ν−→ r ◦ [u′1, u′2] by a derivation

of smaller or equal depth.

3. Σ; Ψ;E; Γ, s1 ∧ s2 ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies Σ; Ψ;E; Γ, s1 ◦ [u1, u2], s2 ◦

[u1, u2]
ν−→ r ◦ [u′1, u′2] by a derivation of smaller or equal depth.

4. Σ; Ψ;E; Γ, s1 ∨ s2 ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies both Σ; Ψ;E; Γ, s1 ◦ [u1, u2]

ν−→ r ◦
[u′1, u′2] and Σ; Ψ;E; Γ, s2 ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2] by derivations of smaller or equal
depth.

5. Σ; Ψ;E; Γ,> ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies Σ; Ψ;E; Γ ν−→ r ◦ [u′1, u′2] by a derivation

of smaller or equal depth.

6. Σ; Ψ;E; Γ, ∃x:σ.s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies Σ, x:σ; Ψ;E; Γ, s ◦ [u1, u2]

ν−→ r ◦
[u′1, u′2] by a derivation of smaller or equal depth.

7. Σ; Ψ;E; Γ, k says s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]

ν−→
r ◦ [u′1, u′2] by a derivation of smaller or equal depth.

8. Σ; Ψ;E; Γ, s @ [u′′1, u′′2] ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies Σ; Ψ;E; Γ, s ◦ [u′′1, u′′2]

ν−→ r ◦
[u′1, u′2] by a derivation of smaller or equal depth.

Proof. Each statement follows by a separate induction on the depth of the given derivation
and a case analysis of the last rule in the derivation. See Appendix D, Lemma D.18 for
some representative cases.

Theorem 6.5 (Completeness). The following hold.

148

Chapter 6. BL: Goal-directed Proof Search

A. Σ; Ψ;E; ∆ ν−→ g0 ◦ [u0, u
′
0] implies Σ; Ψ;E; ∆ ν⇒ g0 ◦ [u0, u

′
0]

B. Σ; Ψ;E; ∆, |Ξ| ν−→ g0 ◦ [u0, u
′
0] implies Σ; Ψ;E; ∆; Ξ ν⇐ g0 ◦ [u0, u

′
0]

Proof. By simultaneous lexicographic induction, first on the depths of the given derivations,
and then on the order (B) > (A). For (B), we also subinduct on the number of connectives
in Ξ. Details are in Appendix D, Theorem D.19. Briefly, to prove (A), we case analyze the
last rule in the derivation of Σ; Ψ;E; ∆ ν−→ g0 ◦ [u0, u

′
0]. If it is a right rule, we apply the i.h.

to the premises and use the corresponding rule for R-sequents (Figure 6.2). If it is a left
rule, we apply the i.h. to the premises and use the corresponding clause from Lemma 6.3.
To prove (B), we subinduct on the number of connectives in Ξ, and analyze the form of the
last chunk in it. Then we use an appropriate clause of Lemma 6.4 to reduce the problem to
one with a Ξ with fewer connectives, apply the i.h., and then apply the corresponding rule
for L-sequents from Figure 6.3.

6.4 Implementation in PCFS (and Otherwise)
Whereas it should be clear that by preventing arbitrary interleaving of left and right rules,
goal-directed search reduces non-determinism inherent in the sequent calculus, there are
two points that probably need explanation before it will be clear how the rules of §6.2.1 can
be efficiently implemented.

- How does proof search resolve the choices in choosing between the rules (R-∨1) and
(R-∨2) on one hand, and (F-∧1) and (F-∧2) on the other, as well as the choice in
picking a hypothesis in ∆ to apply one of the rules (N-clause) and (N-claims)?

- How does proof search “guess” the terms t in the premises of the rules (R-∃) and
(L-∀)?

The answer to the first question is that, in order to remain complete with respect to the
sequent calculus, the proof search tool must explore all these choices. This may be done
breadth-first to obtain a semi-decision procedure for BLG, but in practice it is much better
to use depth-first search with backtracking, which is also what the PCFS proof search
tool pcfs-search does. Like all logic programming languages, it is possible to optimize
choices in N-sequents by deriving all possible F-sequents from given clauses ∆ in advance
of their actual use in N-sequents. This form of clause-compilation is called residuation in
logic programming (see, e.g., [38]). Its application to goal-directed search in BLG requires
a slight modification to F-sequents and their rules, since the goal p ◦ [u′1, u′2] will not
be available at the time that residuation is performed. Although residuation is useful in
improving efficiency of goal-directed search, the current implementation of the PCFS tool
pcfs-search does not perform this optimization.

The second problem above, that of picking the term t in the premises of the rules
(R-∃) and (L-∀), may be resolved in an implementation using a standard approach based
on unification. Instead of guessing a term t, proof search inserts a new variable, called an
existential variable or evar, in its place. This variable is then resolved (its substitution found)

149

Chapter 6. BL: Goal-directed Proof Search

during the rule (F-init) by a process of unification. This is completely standard in logic
programming as well as theorem proving, and requires little further explanation. The only
noteworthy aspect in BLG, as also in other logic programming languages or theorem provers
with constraint domains, is that there is inherently a possibility of requiring unification in
the constraint solver. More precisely, what happens if we invoke the constraint solver with
a judgment of the form Σ; Ψ |= c which contains evars? In general, for many forms of
constraints, it is possible to unify evars (or find possible satisfying ranges for integer evars)
within the constraint domain.

In the context of authorization policies, unification within the constraint solver may be
unnecessary in practice – at least for all authorization policies in this thesis, it is the case
that most invocations of the constraint solver during goal-directed proof search are with
ground constraints. Therefore, the PCFS proof search tool pcfs-search assumes in most
cases that all terms during any invocation of the constraint solver are ground. The only
exception to this rule is the constraint is t t′, which checks equality of t and t′, modulo rules
of arithmetic. In this case, following usual logic programming conventions, pcfs-search
requires that t not contain any arithmetic operators, and that t′ be a ground arithmetic
expression over time points. It simplifies t′ using arithmetic rules, and unifies the result
with t. Generally, the requirements that constraints be ground entails at the least that all
terms in the view ν of a sequent, as well as annotations of the form · ◦ [u1, u2] and k claims ·
remain ground during proof search. Whether this will be the case for a policy or not may be
checked with a simple mode analysis over the formalized policy rules (e.g., as implemented
in Twelf [116]).

A similar groundedness assumption on interpreted predicates is unrealistic. For example,
during proof search over policy rules of §8, an interpreted predicate of the form owner f K
must often be resolved, where K is unknown. So the solver for interpreted predicates
in PCFS does perform unification, but only in certain arguments. For example, for the
predicate owner f K, it requires that f be ground, else it would not know which file’s
meta-data to look at. Again, a static mode analysis on authorization policy rules may
be used to check that such requirements will be satisfied at all times during proof search.
Since a proof may be constructed in a system state different from the one in which the
authorization derived from it will be used, pcfs-search can be run in interactive mode,
where it asks the user about the truth of every interpreted predicate that it deems useful
to the proof, instead of checking the predicate on the system state.

The actual implementation of the tool pcfs-search uses the rules of §6.2.1 with changes
described above. The implementation is written in Standard ML, and is based on an earlier
implementation of goal-directed search for intuitionistic logic by Pfenning and Elliott using
success continuations, imperative unification, and implicit backtracking through native se-
quencing of programs in the programming language [57]. Even without any optimizations,
the implementation is reasonably fast. Proofs from policies of §8, which often contain well
over 1000 inference rules and refer to over 70 policy rules, can be constructed in less than
300ms by the tool, including the time for reading and parsing certificates from disk.

150

Chapter 6. BL: Goal-directed Proof Search

6.5 Related Work
The formalization of goal-directed search in §6.2 is based on a similar formalization for
inference in the linear logic programming language Lolli [78], and indirectly on Miller et
al.’s work on uniform proofs [103]. To our best knowledge, the latter was the first piece
of work to explicitly relate goal-directed search via inference rules to logic programming
languages, an approach on which the theory and implementation of pcfs-search builds.
Goal-directed search is an instance of a more general method of restricting the search space
for proofs without losing completeness, called focusing, that was introduced by Andreoli
in the context of classical linear logic [12]. The method has been adopted in other logics,
including intuitionistic logic [80, 101], and intuitionistic linear logic [43]. Very recently,
Licata and Morgenstern have built a theorem prover for all of BLS using focusing (personal
communication). The work in this chapter, although influenced by a lot of prior work, is
unique in the sense that it considers the hybrid modality s @ [u1, u2], which as explained
earlier presents a number of unique challenges both in the design of goal-directed proof
search and in the proofs of its soundness and completeness.

Within the context of authorization, a significant amount of work on proof search has
focused on the problem of storing and finding the hypotheses needed to construct a proof.
This problem is generically called credential chain discovery, and was first studied by Clarke
et al. for SPKI [46]. Its scope was greatly expanded in the trust management framework
RT [97], and in the work of Bauer et al. [21] whose experimental set up was Grey, a proof-
carrying authorization framework. The problem of credential chain discovery is orthogonal
to the concerns of this chapter since we are interested in finding proofs assuming that
relevant hypotheses are available (we allow proof search to fail if they are not), whereas most
work on credential chain discovery focuses on finding hypotheses, and generally simplifies
the problem of constructing a logical proof to the use of heuristics. The difference in the two
approaches may be explained partly by a difference in setting – most work on credential
chain discovery is based in settings where certificates are distributed on a network, and
finding them is the difficult part, but policies themselves are simple. On the other hand we
are more interested in the problem of finding proofs from complex policies, where general
heuristics may be hard to describe. Recently, Becker et al. [24] have studied the problem
of credential chain discovery using abduction in logic programming, which is interesting
because it combines these two rather orthogonal problems in a single framework.

Most logic-based languages for authorization policies include some procedure for auto-
matic inference from policy rules. Many of these, e.g., [23, 52], translate policies and goals to
Datalog and use saturating search to perform inference. Others like Soutei use backchaining
search [118]. Saturating search works well when all consequences of a policy are needed, for
instance, to compile the policy to low-level configurations. However, goal-directed search
may be more efficient for constructing proofs of individual authorizations, which is the case
in PCFS.

151

Chapter 6. BL: Goal-directed Proof Search

152

Chapter 7

The Proof-Carrying File System
(PCFS)

This chapter presents details of the design and implementation of PCFS, as well as experi-
mental measurements that evaluate its performance during file access. A high-level picture
of the PCFS architecture was presented in §2, details of the use of our authorization logic
BL in PCFS were the subject of §4.3, the PCFS proof verification procedure was described
and formalized in §5.2, and a method for automatic proof search for PCFS was presented
in §6. This chapter explains how all these fit together, and more significantly, it explains the
layout of files and configuration information within a PCFS file system, and how PCFS uses
procaps (capabilities) generated from proofs to authorize file operations during file access.

As mentioned in §2, the PCFS architecture is divided into two parts, both conceptually
and in the implementation: (a) The front end that deals with policies, builds on BL’s proof
theory to authorize access based on proofs, and generates procaps, and (b) The back end
that handles file system calls, and uses procaps to authorize file operations. This chapter
is organized around these two parts. §7.1 describes the command line tools for managing
policies and proofs that comprise the front end, whereas §7.2 explains the layout of the file
system, how system calls are intercepted and, the use of procaps to authorize access. §7.3
presents the results of benchmarks which establish that procap-based authorization checks
are efficient in practice. §7.4 summarizes assumptions made by PCFS about its operating
environment and also describes the trusted code base of its implementation.

Since work related to PCFS was already presented at the end of §2, related work is not
included in this chapter. Some of the content of this chapter first appeared in a technical
report authored jointly with Pfenning [68].

7.1 The PCFS Front End

The content of this section relies on that of §2.1, §4.3, and §5.2. Readers may wish to
revisit those sections before continuing.

The front end of PCFS consists of command line tools that create and manage digital

153

Chapter 7. The Proof-Carrying File System (PCFS)

certificates, automatically search for proofs, verify proofs to generate procaps, and put
procaps in the procap store. Since all these tools are used prior to file access, and all of
them are invoked rarely in comparison to the frequency of file access itself, efficiency of
the tools is not a significant concern in PCFS. In contrast, the back end needs to be, and
is, very efficient. In the following we describe each of these tools. They are all written in
Standard ML, and together comprise approximately 7,000 lines of code. OpenSSL is used
for all cryptographic operations [2]. RSA keys are used for signing and verifying digital
certificates, while procaps are signed using HMACs made with a symmetric key. Details of
both RSA and HMACs can be found in any text on applied cryptography, e.g., [102].

Certificates and keys. PCFS uses its own XML-based format for digital certificates,
which are of two kinds. The first kind of certificates, called policy certificates, establish
policy rules. Abstractly, a policy certificate is a five-tuple 〈k, u1, u2, s, sig〉, where k is the
creator of the certificate, [u1, u2] is the interval of validity of the certificate, s is the policy
formula asserted, and sig is a digital signature over the other four elements generated using
k’s signing (private) key. As mentioned in §4.3.1, such a certificate is represented in BL as
the judgment k claims s ◦ [u1, u2].

The second kind of certificates, called key certificates, map principals to their verification
(public) keys. We assume that such certificates are signed by a fixed principal called the
certifying authority (CA). The exact name or user id of this principal is irrelevant. What
is important is its public key that can be used to check such certificates. This key is stored
in a specially protected file called ca-pubkey.pem within the PCFS file system (see §7.2.2).
Abstractly, a key certificate is a triple 〈k, key, sig〉, where k is the principal whose key
it certifies, key is the public key being certified, and sig is a signature on the first two
components generated with the CA’s signing key.

PCFS provides a command line tool called pcfs-cert which can be used to create
certificates of both kinds and to verify sets of certificates. For creating a policy certificate
the tool expects a private key that is used to sign the certificate, whereas for creating a key
certificate it expects the CA’s private key. A set of certificates is verified by checking the
signature on each key certificate using the CA’s public key, and checking the signature on
each policy certificate using the public key of the principal mentioned in the certificate; the
latter key is obtained from one of the key certificates.

Proof search. PCFS includes an automatic proof search tool called pcfs-search, de-
scribed in §6, that helps users find proof terms V such that Σ; ·;E; Π `ν V ⇐= s ◦ [u1, u2]
(see §5.1 for an explanation of this judgment). The user is responsible for providing Π in
the form of policy certificates, s which should usually have the form admin says (may k f η),
u1, and u2. The tool reads Σ from a file declarations stored within the PCFS file system
(see §7.2.2), and by default assumes that E is the prevailing system state. The latter behav-
ior may be changed through a command line option, which causes the tool to prompt the
user about every interpreted atom that may be useful in the proof. This may be necessary
if the proof is being generated in a system state that is different from the one in which the
procap obtained from it is expected to be used.

154

Chapter 7. The Proof-Carrying File System (PCFS)

The proof construction tool is not a trusted component of PCFS, nor are users obliged
to use it. Instead, users may construct proofs by any means they like. However, given that
proofs of authorization can be quite complex, as happens for instance with the policies of §8,
a fast, automatic tool to find proofs is quite useful in practice. pcfs-search is based on
a logic programming interpretation of a large, expressive fragment of BL and works quite
fast. Typical proofs from policies of §8 requiring as many as 1100 inference steps can be
constructed by the tool in less than 300ms.

Proof verification. Proofs establishing access must be verified using a PCFS command
line tool called pcfs-verify. Unlike the proof search tool, this tool is a trusted com-
ponent of PCFS, and users are obliged to use it. The tool implements the verification
algorithm explained in §5.2 and relies on three special files config-file, declarations,
and shared-key that are within the PCFS file system and protected by it (see §7.2.2 for
details). Specifically, given a proof term V , policy rules Π in the form of certificates, k, f ,
and η, the tool proceeds as follows.

- It checks all certificates as explained earlier.

- It reads the sorting Σ from the file declarations. This file also contains the arities
and expected sorts of arguments of all predicate and function symbols, using which
the well-formedness of all formulas in Π, and the well-formedness of s, k, f , η, and V
are checked.1

- It reads the identity of principal admin who is responsible for authorizing access from
config-file.

- It tries to find C and I such that Σ, ctime:time; ·; ·; Π `ν V ⇐= admin says (may k f η) ◦
[ctime, ctime]↘ C; I, as explained in §5.2.1.

If all checks succeed the tool reads the key for signing procaps from the file shared-key, and
issues the procap 〈k, f, η, C, I, sig〉 to the user. As explained in §5.2.3, this procap can be
used by k to authorize permission η on file f whenever the conditions C and I are satisfied.
In particular, if V satisfies Σ; ·;E; Π `ν V ⇐= admin says (may k f η) ◦ [u1, u2], then as
discussed in §5.2.2, these conditions will always be satisfied in system state E, provided
that the time of access lies between u1 and u2.

The tool pcfs-verify must run with the user id of a privileged user called pcfssystem
in order to read the secret key for signing procaps, as discussed in greater detail in §7.2.2.
This is ensured by making pcfssystem the owner of the binary file pcfs-verify, and setting
the setuid bit on it.

1We have not formalized in this thesis how well-formedness is checked, but it is straightforward. Briefly,
well-formedness ascertains that the arguments of all predicates and function symbols have the stipulated
sorts.

155

Chapter 7. The Proof-Carrying File System (PCFS)

Procap injection. Communication of procaps from the front end to the back end of
PCFS is via a store within the PCFS file system. The front end provides a command
line tool called pcfs-qprocap to inject procaps generated by the verifier into this store.2
Alternatively, the beneficiary of a procap may copy the procap into the store directly. The
organization of the procap store is described in §7.2.2.

7.2 The PCFS Back End
The PCFS back end handles file system calls, looks up relevant procaps in the procap store,
checks them to authorize access, and performs file I/O. In this sense the back end of PCFS
is the actual “file system”; the front end supports it by providing a BL-based framework for
generating procaps from proofs of authorization. The back end can be used as a file system
with any other mechanism that can generate procaps.

The current implementation of the PCFS back end is a local file system for Linux-based
operating systems that contain the Fuse kernel module [1]. Technically, PCFS is a virtual
file system that performs procap-based authorization checks and then uses an underlying file
system for disk I/O. For all experiments reported in this chapter, the underlying file system
is ext3. Using an underlying file system has the merit that it avoids the need to re-implement
disk I/O, but the two-tier architecture adversely affects performance, particularly because it
involves inter-process communication (explained below). Even with this virtual organization
the performance of the back end is very good and high enough for most practical intents
and purposes (see §7.3 for details).

PCFS is mounted using the command, where /path/to/src is an existing directory in
an ext3 (or other) file system, and /path/to/mountpoint is an empty directory.

$> sudo pcfs-main /path/to/src /path/to/mountpoint

After the execution of this command, any file system call on a path like /path/to/
mountpoint/foo/bar results in a corresponding operation on /path/to/src/foo/bar, but
is subject to procap-based authorization checks that are described in §7.2.1. To prevent
users from directly using the underlying file system to access data, it is expected that own-
ership of /path/to/src on the underlying file system will be set to the superuser, and all
access on it will be turned off.3

The directory /path/to/src must contain a special subdirectory named /path/to/src/
#config, which is visible in the mounted PCFS file system at /path/to/mountpoint/
#config. This subdirectory contains the procap store as well as other configuration pa-
rameters such as the symmetric key used to sign and verify procaps, the public key of the

2The letter ‘q’ in the name pcfs-qprocap stands for ‘quantified’, which is an allusion to the ability of the
tool to substitute free term variables in a procap with ground terms before injecting the resulting procap
into the procap store. Although such substitutions are not useful in ordinary practice, they are helpful if
procaps are generated automatically by a compiler. Details of the latter may be found in joint work of the
author and Chaudhuri [41].

3A more secure method to prevent access via the underlying file system is to keep data encrypted on
it, and to decrypt data in the PCFS back end after making access checks. We have not implemented this
design, since our objective here is to evaluate the performance of access checks.

156

Chapter 7. The Proof-Carrying File System (PCFS)

certifying authority (§7.1), arities and expected sorts of arguments of all predicates and func-
tion symbols, and the user id of the principal admin. Since /path/to/mountpoint/#config
contains sensitive information that controls access to all other files and directories, access to
/path/to/mountpoint/#config and its subpaths is not governed by procaps, but by rules
that are hardcoded in the back end. The organization of this special subdirectory and rules
for access to it are discussed in §7.2.2. Access to all files and directories outside #config is
subject to procap-based checks.

Before proceeding to explain the back end in detail, we would like to summarize its
implementation. The Fuse kernel module on which PCFS builds works by trapping any file
system calls made on subpaths of /path/to/mountpoint and redirecting them to a user-level
server process, which the developer of the file system must provide. The interaction between
the kernel and the user-level server process occurs over an inter-process communication
(IPC) channel. The Fuse development tool kit also provides a stub for developing the
server process, reducing the code development effort to writing one function for handling
each file system call like open, read, write, stat, unlink, rmdir, mkdir, etc. In PCFS, these
handling functions look up relevant procaps from the procap store, parse them, check them,
decide whether or not to allow access, and then repeat the same call that they were handling
on /path/to/src, after which the underlying file system performs I/O. (The server process
runs as superuser so it is not subject to any access checks in the underlying file system.)
It is in handling the procaps that most of the development effort in the back end lies. In
addition to looking up, parsing, and checking procaps, the back end also includes an in-
memory cache that stores frequently used procaps in parsed form. This cache is described
in §7.2.1. The entire implementation of the back end contains approximately 10,000 lines
of C++ code, and relies on the OpenSSL library for verifying the cryptographic signature
on procaps.

Backwards compatibility. PCFS is highly backwards compatible. Most programs like
word processors, spreadsheets, shell commands, compilers, and file utilities including auto-
matic file indexers work on it without problems. Part of this compatibility is implicit in the
fact that the use of Fuse ensures that PCFS exposes the standard Linux system call API
to programs. However, this alone does not suffice. Two other design decisions complement
the use of Fuse in providing backwards compatibility:

- First, the use of a procap store, accessible to both users and the back end ensures
that no extra arguments are needed to pass procaps in file system calls.

- Second, files created by programs remain accessible to them temporarily even in the
absence of policy rules due to procaps generated by the file system itself. This is
explained in §7.2.1.

However, PCFS is not completely backwards compatible because it does not strictly follow
POSIX specifications for access checks. As explained in §7.2.1, deviation from POSIX in
this regard is deliberate, and increases the range of policies that can be enforced with PCFS.

157

Chapter 7. The Proof-Carrying File System (PCFS)

Operation Permissions needed
stat /foo execute on /foo
open /foo in read mode read on /foo
open /foo in write mode write on /foo
open /foo in read/write mode read and write on /foo
opendir /bar read on /bar
create /bar/foo write on /bar
delete /bar/foo identity on /bar/foo
rename /bar to /foo1/foo2 identity on /bar, write on /foo2 if /foo1/foo2 exists

identity on /bar, write on /foo1 if /foo1/foo2 does not
exist

getxattr on /foo execute on /foo
setxattr on /foo govern on /foo if attribute starts with user.#pcfs.,

write otherwise
chown on /foo govern on /foo
chmod on /foo write on /foo

Figure 7.1: Permissions needed to perform common operations in PCFS

7.2.1 Permissions and Access to Files

The content of this section assumes knowledge of §5.2.3. Readers may wish to revisit that
section before continuing.

Access to files and directories in the PCFS back end is based on permissions that are
authorized through procaps. As explained in §5.2.3, each procap gives a single principal
a specific permission on one file or directory. There are five possible permissions – read,
write, execute, identity, and govern. When a system call is made to a PCFS file system, the
server process first determines the user id of the process making the call. This information
is provided by a Fuse interface, through a function similar to the POSIX method getuid().
Next, based on this user id, the path name(s) being accessed, and the specific operation
being performed, the server process looks up the procap store to find procaps to authorize
relevant permissions. The permissions that must be authorized for each operation are listed
in Figure 7.1. (Path names listed in the figure are relative to the PCFS mount point.)
The procap store is indexed by user ids, path names, and permissions; its organization is
described in §7.2.2. If all required procaps are found, they are parsed, their cryptographic
signatures are verified, and their conditions are checked as described in §5.2.3. Once all
these checks succeed, the operation is performed using the underlying file system. If any
steps fail, an access error (POSIX error code EACCES) is returned.

The PCFS permissions execute, read, and write roughly correspond to POSIX permis-
sions of the same names. The execute permission is needed to read meta-data of a file or
directory (operations stat and getxattr). The read and write permissions are needed to read
and write the contents of a file respectively (operation open). In the case of directories,
the read permission allows reading the list of objects in the directory (operation opendir),

158

Chapter 7. The Proof-Carrying File System (PCFS)

while the write permission allows creation of new files in the directory (operation create).
In compliance with POSIX specifications, PCFS does not make any access checks during
the file system calls read and write. Instead, relevant checks are made when the file is
opened for read or write or both. However, PCFS can be forced to check for read and write
permissions during every read and write through an option in the PCFS configuration file
config-file that is explained in §7.2.2.

In addition to the three POSIX permissions execute, read, and write, PCFS uses two more
permissions – identity and govern – to allow finer access control. The identity permission is
needed for operations delete and rename that change the identity of a file or directory. In
contrast from POSIX, we separate the permission to create objects in a directory (write) from
the permission to rename or delete an object (identity) because deletion and renaming have
effects very different from file creation – deleting or renaming shared files and directories
may adversely affect other users’ work, and renaming files and directories also affects what
policy rules apply to them (recall from §4.3 that files and directories are identified in policy
rules using pathnames). An example of the usefulness of the separation between write and
identity arises in the case study of §8, where individuals may be allowed to create files with
sensitive information but not to delete or rename them.

The govern permission is needed to change meta-data of a file on which policy rules may
depend. Recall from §4.3 that the implementation of BL in PCFS supports two interpreted
predicates – owner f k which checks that the owner of file f is k, and has_xattr f a v
which checks that extended attribute user.#pcfs.a on file f is set to v. Accordingly, to
change either the owner (operation chown) or the value of an extended attribute with prefix
user.#pcfs. (operation setxattr), the permission govern is necessary. Use of the govern
permission is illustrated in the example of §4.3.3 and in the case study of §8.

The nine POSIX permission bits, commonly written rwxrwxrwx, have no effect in PCFS,
so the write permission suffices to change them (operation chmod). Another significant
difference from POSIX specifications is that POSIX requires the execute permission on all
ancestors of the file or directory on which an operation is to be performed, but PCFS does
not mandate this check. Where necessary, the check may forced by building it in the policy
rules. To facilitate the latter, the PCFS implementation includes the constraints isroot d
and isparent d f , which mean respectively that d is the root of the PCFS file system, and
that d is the parent directory of f . Using these constraints, it is easy to encode recursive
checks on ancestor directories in BL.

Default permissions. Many programs create files during their execution, to which they
must have access in order to complete their tasks. To maintain backwards compatibility
with such programs, i.e. to not force modifications to the programs in order to generate
procaps for access to newly created files, when a new file or directory is created, the PCFS
back end automatically creates and injects default procaps that give the creator of the file
or directory read, write, execute, and identity permissions for a fixed period of time (in
the current implementation this period is 90 days, but that can be changed easily). After
this period elapses, the default procaps expire and policy rules must be created to control
access to the file. Also, every default procap is conditional on a specific extended attribute

159

Chapter 7. The Proof-Carrying File System (PCFS)

user.#pcfs.newfile being set to 1. This attribute is set automatically at the time of
creation. Anyone with govern permission on the file or directory may prematurely terminate
access through default procaps by changing or deleting this attribute. In situations where
default procaps are unnecessary, their generation may be suppressed using an option in the
configuration file config-file as explained in §7.2.2.

7.2.2 Configuration Files and the Procap Store

PCFS relies on a significant amount of configuration information as well as the procap store,
both of which must be protected from unauthorized access. As mentioned in the beginning
of §7.2, all this information is stored in a directory named #config which is present in the
root of the PCFS file system. For illustration, we assume throughout this section that PCFS
is mounted at /pcfs. Accordingly, the configuration directory is /pcfs/#config. Access to
the configuration directory is not determined through procaps, but via special rules that are
hardcoded in the implementation of the back end. In particular, PCFS assumes a special
user referred to by the name pcfssystem in this chapter, which has complete access to this
directory. This user is expected to perform maintenance tasks on the file system such as
changing its configuration files, changing the symmetric key used to sign procaps, or deleting
unnecessary procaps. Another important role of pcfssystem is that the proof verifier runs
with its user id, since it needs access to the symmetric key to sign procaps. It should be
noted that pcfssystem may be (and usually should be) distinct from admin, who controls
access via the policy. In fact, pcfssystem should not appear in policies at all.

The following is a list of files and directories within /pcfs/#config, together with a
description of their contents, and the rules for access to them.

/pcfs/#config/config-file: File containing general configuration options, includ-
ing those listed below. Anyone may read this file, but only pcfssystem may write to
it.

1. User ids of the principals admin and pcfssystem.
2. Whether or not default procaps discussed in §7.2.1 are to be generated.
3. Whether or not procaps are to be deleted when the file they authorize is deleted

or renamed (explained later in this section).
4. Size of the in-memory procap cache, which is explained later in this section.

/pcfs/#config/shared-key: Contains the shared key used to sign procaps. Only
pcfssystem may read or write this file.

/pcfs/#config/ca-pubkey.pem: Contains the public key of the certifying authority
who signs associations between other public keys and users (§7.1). Anyone may read
this file, but only pcfssystem may write to it.

/pcfs/#config/declarations: Contains the sorts of all constants (i.e. Σ), as well
as the arities and expected sorts of arguments of all predicates and function symbols
allowed in policies. Anyone may read this file, but only pcfssystem may write to it.

160

Chapter 7. The Proof-Carrying File System (PCFS)

/pcfs/#config/procaps/: This directory contains procaps and constitutes what we
have been calling the procap store. Its organization is discussed next. pcfssystem has
full access to this directory, and other users have access to specific subdirectories only.

The procap giving the right 〈k, f, η〉 is stored in the file /pcfs/#config/procaps/<k>/
<f>.perm.<η>. Here <k> is the user id of the user k, <f> is the path of the file f (relative
to the mount point), and <η> is a textual representation of the permission. Thus each
procap is stored in a separate file, and further for each right 〈k, f, η〉, there can be at
most one procap that authorizes the right. While this may be restrictive, it makes look
up extremely easy since the exact path where a procap is to be found can be determined
simply by knowing the PCFS mount point and the right 〈k, f, η〉. To prevent denial of
service attacks and to protect user privacy, the PCFS back end ensures that only user k
can access (read, write, or delete) files inside /pcfs/#config/procaps/<k>/.

Since pcfssystem has full access to all files and directories within /pcfs/#config/, its
user account is a very attractive target for attack. If an attacker gains control of this
user account, it can read the secret key used to sign and verify procaps, and inject fake
procaps to access other files. To prevent this, the PCFS server process denies pcfssystem
all permissions in other directories within the file system.

Automatic procap deletion. To prevent unnecessary procaps from accumulating in the
procap store, the PCFS back end, by default, deletes all procaps associated with a file or
directory when the latter is deleted or renamed. This is a costly operation, as is evident
from microbenchmarks (§7.3). Such automatic deletion of procaps can be prevented by
setting an option in the file /pcfs/#config/config-file. In its place, pcfssystem may
periodically run a simple script that removes all procaps which authorize files that do not
exist.

In-memory procap cache. Since procaps are stored in files, and one or more of them
must be read to authorize almost every operation on a PCFS file system, it is helpful to
cache commonly used procaps in memory to improve performance. Accordingly, PCFS
uses a least recently used (LRU) in-memory cache, whose size can be adjusted through an
option in the file /pcfs/#config/config-file. The cache stores parsed procaps, whose
signatures have already been verified. The only cost involved in using a cached procap is
checking its conditions (C and I from §5.2.1). This is extremely fast and usually takes
only 10–100µs. In contrast, seeking the procap on disk may take a few milliseconds, and
parsing it often takes up to 70µs. As a result of this cache PCFS obtains extremely high
performance when the number of files in use is small. We evaluate the effect of the cache
with different hit rates in §7.3. The PCFS back end automatically marks a cached procap
dirty if its corresponding file on disk changes or is deleted. This forces the cached procap
to be read again from the disk whenever it is needed next.

161

Chapter 7. The Proof-Carrying File System (PCFS)

7.3 Performance Evaluation of the Back End

In this section, we present results of evaluation of the performance of the PCFS back end
through benchmarks. Specifically, we evaluate the overhead of access checks during read,
write, stat, create, and delete operations, and measure the effectiveness of the in-memory
procap cache through microbenchmarks. To evaluate performance in practice, we also
present the results of two simple macrobenchmarks. Since we are primarily interested in
measuring the overhead of procap-based access checks, our baseline for comparing perfor-
mance is a Fuse-based file system that does not perform the corresponding checks, but
otherwise runs a server process and uses an underlying ext3 file system, just as PCFS does.
We call this file system Fuse/Null. For macrobenchmarks we also compare with a native
ext3 file system. All measurements reported here were made on a 2.4GHz Core Duo 2
machine with 3GB RAM and a 7200RPM 100GB hard disk drive, running the Linux kernel
2.6.24-23.

Read and write throughput. As mentioned in §7.2.1, by default, PCFS does not make
any access checks when read or write operations are performed on a previously opened file.
As a result its read and write throughput is very close to that of Fuse/Null. The following
table summarizes the read and write throughputs of PCFS and Fuse/Null based on reading
and writing a 1GB file sequentially using the Bonnie++ test suite [47].

Operation PCFS (MB/s) Fuse/Null (MB/s)
Read 538.69 567.47
Write 73.18 76.05

Even if access checks on every read and write are enabled, the read and write throughputs
do not show a significant change as long as required procaps remain cached in memory.

File stats and effectiveness of caching. Besides read and write, two other very com-
mon file operations are open and stat (reading a file’s meta-data). In terms of access checks,
both are similar, since usually one procap must be checked in each case.4 We report in the
table below the speed of the stat operation and the effect of the in-memory procap cache
with different hit rates. All measurements are reported in number of operations per second,
as well as time taken per operation. The title n% indicates a measurement with a cache hit
rate of n%. For comparison performance of Fuse/Null is also shown. The figures are based
on choosing a random file 20,000 times in a directory containing exactly 20,000 files, and
stating it. To get a hit rate of n%, the cache size is set to n/100× 20000, and the cache is
warmed a priori with random procaps. It is easy to prove that for an LRU cache this re-
sults in a hit rate of exactly n% when subsequent files (procaps) are also chosen at random.
All procaps used here are default procaps, whose conditions include two constraints of the
form u1 ≤ u2 (without hypotheses), and one interpreted predicate of each of the two forms
has_xattr and owner.

4Two procaps must be checked when a file is opened in read and write modes simultaneously.

162

Chapter 7. The Proof-Carrying File System (PCFS)

Cache hit rate → 0% 50% 90% 95% 98% 100% Fuse/Null
Stats per second 5774 7186 8871 9851 11879 23652 36042
Time per stat (µs) 173.2 139.2 112.7 101.5 84.2 42.2 27.7

As can be seen from this table, the procap cache is extremely helpful in attaining efficiency.
The difference of the time values in the last two columns is an estimate of the time it takes
to check a cached procap (i.e. the time needed to check the conditions in a procap). In this
case, this time is 42.2 − 27.7 = 14.5µs. This estimate is rough, and the actual time varies
with the complexity of the conditions in the procap. In other experiments, we have found
that this time varies from 10 to 100µs. By taking the difference of the time values in the
first and last columns, we obtain an estimate of the time required to read a procap, check
its signature, parse the procap, and check its conditions. In this experiment, this time is
173.2 − 27.7 = 145.5µs. Additional time may be needed to seek to the procap on disk,
which was most likely not counted here, since the procaps used were in a single directory
in the underlying file system, hence making the latter’s cache very effective. Nonetheless,
this suggests that, in general, procap checking is dominated by reading and parsing times.
The signatures we use for procaps are message authentication codes, which can be verified
in 1 to 2µs each.

File creation and deletion. The table below lists the number of create and delete
operations per second that are supported by PCFS and Fuse/Null. These are measured by
creating and deleting 10,000 files in a single directory.

Operation PCFS (op/s) Fuse/Null (op/s)
Create 1386 4738
Delete 1989 15429

PCFS is approximately 3.5 times slower than FUSE/Null in creating files. This is because in
this experiment PCFS also created six default procaps for every file created. As a result, the
PCFS numbers measure creation of seven times as many files in three separate directories.
Deletion in PCFS in this experiment is nearly 7.7 times slower than that in Fuse/Null.
This is because when a file is deleted in PCFS, one procap must be looked up, parsed,
and checked, and all procaps related to the file must later be deleted. In this case, each
file deletion in PCFS corresponds to seven file deletions on the ext3 file system in three
different directories. The effect of the procap cache is negligible during these experiments,
since the cache size was kept very small as compared to the number of files.

In summary, assuming a low rate of cache misses, the performance of PCFS on common
file operations like read, write, stat, and open is comparable to that of Fuse/Null. On the
other hand, less common operations like create and delete are slower because procaps must
be managed.

Macrobenchmarks. To understand the performance of PCFS in practice, we also ran
two simple macrobenchmarks. The first (called OpenSSL in the table below), untars the
OpenSSL source code, compiles it and deletes it. The other (called Fuse in the table

163

Chapter 7. The Proof-Carrying File System (PCFS)

below), performs similar operations for the source of the fuse kernel module five times in
sequence. As can be seen, the performance penalty for PCFS as compared to Fuse/Null
is approximately 10% for OpenSSL, and 2.5% for Fuse. The difference arises because the
OpenSSL benchmark depends more on file creation and deletion as compared to the Fuse
benchmark.

Benchmark PCFS (s) Fuse/Null (s) Ext3 (s)
OpenSSL 126 114 94
Fuse × 5 79 77 70

In practice, a file system like PCFS may be used for protecting sensitive files, common
operations on which (such as viewing and editing through interactive editors) may be far less
file operation-intensive than the macrobenchmarks here. In those cases, the performance of
PCFS will be closer to that of Fuse/Null and ext3, than reported in the above table.

7.4 Trusted Code Base and Trust Assumptions
We conclude this chapter with a discussion of the trusted code base (TCB) in the implemen-
tation of PCFS, and the trust assumptions on the environment in which PCFS operates.
Readers should bear in mind that the main purpose of implementing PCFS is only to show
that dynamic access policies can be enforced efficiently with procaps; minimizing the trusted
computing base and reducing trust assumptions on the environment are not important ob-
jectives of this thesis.

Trusted Code Base. For the PCFS front end, the primary trusted code base is the im-
plementation of the proof verifier, which is approximately 5300 lines of SML code including
code for parsing and checking certificates in a custom format. In addition, the front end
relies on OpenSSL for cryptographic operations. As in all PCA deployments, the automatic
prover for BL is not part of the TCB. For a practical deployment, a public-key infrastruc-
ture may be used to manage signing and verification keys, which would also become part
of the TCB.

The PCFS back end runs over Fuse, which is a module in the Linux kernel. In the
broadest sense, therefore, the TCB for the back end includes the entire Linux kernel. Dis-
counting the Linux kernel and the Fuse module, the TCB for the back end includes code
for parsing, caching, and checking procaps, and a small amount of stub code for handling
kernel upcalls. Together they constitute approximately 10,000 lines of C++ code. The back
end also relies on OpenSSL for verification of signatures on procaps.

Trust Assumptions. The PCFS front end relies on the assumption that honest users
and, in particular, policy administrators protect their signing keys. If this were not the case
then malicious users could forge certificates and gain access. Along similar lines, the user
designated admin must be completely trusted because it may create any access policy. Since
access rights in PCFS are tied to actual Linux users, it is also assumed that user accounts
are securely protected.

164

Chapter 7. The Proof-Carrying File System (PCFS)

PCFS is implemented as a virtual file system and data is protected on the underlying
file system (e.g., ext3) by giving its ownership to the superuser. Consequently, three trust
assumptions are that (a) The superuser account is securely protected, (b) The superuser
is trustworthy, and (c) The access control mechanisms on the underlying file system work
correctly for data owned by the superuser. Further, we must also rely on the environment
to ensure that file data is not leaked through interfaces besides the file system interface
(e.g., data may be leaked through memory maps of files). It is also assumed that the
communication between the kernel and the PCFS server listening to kernel upcalls is secure.

165

Chapter 7. The Proof-Carrying File System (PCFS)

166

Chapter 8

Case Study: Access Control for
Classified Information in the U.S.

This chapter is a case study for the use of our proof-carrying file system PCFS and our
authorization logic BL. The subject of the case study are policies that control dissemination
of classified information in the hands of intelligence and defense agencies in the U.S. We
show that these policies, which are quite extensive as well as dynamic due to their reliance
on both system state as well as explicit time, can be represented in BL and enforced with
PCFS. The content of this chapter also appeared previously in a technical report that was
authored jointly with Frank Pfenning, Denis Serenyi, and Brian Witten [69].

The primary source of policies formalized in this chapter is interviews of intelligence
personnel conducted by Brian Witten and Denis Serenyi, and provided to the author in the
form of five internal reports as part of a government contract. Some parts of policies are
based on Executive Orders of the White House [110, 111] or Director of Central Intelligence
Directives (DCIDs) [108, 109]. Due to this mixed source of information, we do not explicitly
cite our sources again. None of the information on which this chapter relies is classified.
Despite the realistic sources of the policies, the chapter should not be construed as an
authoritative reference on policies for controlling access to classified information, or of the
actual practices followed for their enforcement in intelligence and defense establishments.
The only intention of the chapter is to show that BL is expressive enough to encode a large,
representative part of the policies, which can then be enforced directly in PCFS.

The rest of this chapter is organized as follows. §8.1 provides an overview of classified
information, including the life cycle of a sensitive file and the high level policy rules for
access to sensitive files. §8.2 describes the process of file classification, relevant properties
of a classified file, and formal rules for establishing these properties. §8.3 presents rules for
giving security clearances to individuals; these clearances are necessary to read classified
files. §8.4 explains how properties of a classified file and security clearances of individuals
interact to allow access. §8.5 summarizes conclusions and observations from the case study.
§8.6 lists all logic predicates used in this chapter, together with their intuitive meanings
and the sections in which they are defined.

167

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

Default
Working
Paper

DeclassifiedClassified
Created

Figure 8.1: States of a sensitive file

Notational conventions. Before proceeding to read this chapter, readers may wish to
review the material in §4.1 and §4.3 to refresh their memory about the syntax of BL and
conventions for its use in PCFS. We follow a descriptive naming convention for predicates. A
predicate name has the form entity/attribute/ . . ., where entity determines the entity whose
attribute the predicate describes and attribute is a description of the property the predicate
defines. “. . .” may be any other relevant qualifiers. Common among these qualifiers is h
which denotes a helper predicate that is used in the definition of the predicate without the
h. As before, interpreted predicates are written in boldface.

Recall from §4.3 that policy rules in BL are represented through basic judgments of
the form k claims s ◦ [u1, u2]. For brevity, throughout this chapter, we drop the prefix
◦ [u1, u2] if it is [−∞,+∞]. Following this convention, most policy rules in this chapter are
written as k claims s, when we actually mean k claims s ◦ [−∞,+∞]. Following standard
convention from logic programming, variable names starting with uppercase letters are
implicitly universally quantified. In general, the universal quantification occurs inside the
annotation k claims ·. So k claims s really means k claims (∀ ~X.s) ◦ [−∞,+∞], where
~X is the set of all variables starting with uppercase letters in s. Finally, we often write
s : - s1, . . . , sn to mean (s1 ∧ . . . ∧ sn) ⊃ s.

8.1 Sensitive Information Life Cycle
This section provides an overview of classification and declassification of information in
the U.S. Unfortunately, some of the concepts and methods involved in classification are
themselves classified and inaccessible to us. What follows is an abstracted and simplified
description of some of the publicly available concepts. The first salient point about clas-
sification is that depending on the structure of information, the amount of data classified
together may vary: entire files, pages, or paragraphs may be marked for classification as a
unit. In this chapter, we assume that the unit of classification is a digital file, since it is at
that level that we are interested in controlling access in PCFS.

A typical sensitive file created by an intelligence or defense agency goes through the life
cycle depicted in Figure 8.1. There are 4 distinct states, which we discuss below. Transitions
between these states are discussed in §8.1.2.

- Default. Every newly created file starts in a temporary state, which we call the

168

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

default state. Only the individual creating the file has read and write access to a file
in this state. A default file may subsequently either be designated a working paper,
or it may be deleted.

- Working paper. A working paper is a file that will eventually be classified, but
whose content has not been finalized. When in this state, read and write access to the
file is at the discretion of the agency or group that is working on the file. A file stays
in this state for at most 90 days, after which it must either be classified, reviewed
again and placed in the same state, declassified, or deleted.

- Classified. After the content of a working paper is finalized, it is classified. Read
access to a classified file is based on several properties of the classification (e.g., secrecy
level, compartments, etc.) that are decided when the file is classified. These properties
are discussed in §8.2. In addition, the agency that owns the file must authorize every
read access to a classified file. Official guidelines do not specify who, if anyone, has
write access to a classified file. Since changing the content of a classified file may
require reclassification, it seems reasonable to assume that classified files cannot be
written, and we make this assumption throughout this chapter. Owing to concerns of
accountability, we also assume that a classified file cannot be deleted.

- Declassified. A file may be released to the public (declassified) in two ways: (a)
through an executive order, or (b) through an automatic expiration of the classification
at a stipulated point of time. In this chapter we make the simplifying assumption that
a declassified file may be read by anyone. In actual practice, a file may be declassified
to specific groups of people, e.g., U.S. citizens. As for classified files, we assume that
declassified files cannot be deleted.

8.1.1 Representation of File State in PCFS

To represent the state of a file, we use extended attributes that are natively supported in
PCFS. Recall from §4.3 that the state predicate (has_xattr f a v) holds in BL if and only
if the file f has the extended attribute named user.#pcfs.a set to the term v. v can be any
term in BL. We use a specific extended attribute user.#pcfs.status with different values
to record the state of a file. These values and their meanings are summarized below. The
name “user.#pcfs.status” is abbreviated to status throughout.

Value of extended attribute
status on file F

Meaning

default F is in default state
working T F is a working paper, put into that state at time T
classified T T ′ F is classified, effective from time T to time T ′
declassified F is declassified

169

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

When a file is created PCFS automatically sets its extended attribute status to default, and
its owner to the principal who creates the file.1 The time point T in the value working T
represents the time at which the working paper state is effective. This is important because
a working paper can be read and written only for 90 days after it enters the state. Similarly,
the time point T ′ in classified T T ′ is necessary to determine when the classification will
expire. If a classification lacks a fixed expiration, the BL constant +∞ may be used for T ′.

8.1.2 File State Transition

A central question regarding file states is who changes the states of a file. As described
in §4.3 and §7.2.1, PCFS supports administrative roles for such purposes by requiring a
special permission called govern for modifying any extended attribute of a file whose name
starts with the prefix user.#pcfs., or its owner. An individual who has this permission on
a file may use either the standard Linux system call setxattr or the command line program
setfattr to change extended attributes of the file. For our proposed enforcement we as-
sume that only a special principal sysadmin (intended to represent a system administrator)
is allowed the govern permission on all files, as formalized by the following rule:

admin claims (may sysadmin F govern).

No other rule in our formalization allows the govern permission on any file. Hence sysadmin
alone may change the status of a file, and affect its state. Of course, state changes cannot
be made ad hoc; sysadmin must perform these transitions only under certain conditions.
The conditions necessary for each transition in Figure 8.1 are listed below, together with
additional changes that must be made with the transition. Since PCFS only performs access
control on files, and policies cannot control the values that file attributes may assume, these
conditions cannot be enforced by PCFS. Instead, we must assume that sysadmin follows
these guidelines accurately.

- Default to working paper: This transition may be applied at the discretion of the
owner (creator) of the file. The status of the file must be set to working T where T is
the time at which the transition is applied, and the owner of the file must be changed
from the creator of the file to the agency or group that is working on the file (or their
representative).

- Working paper to working paper: The purpose of this transition is to extend the 90
day working period of a file. It may be applied at the discretion of the file’s owner,
which will be the group or agency working on the file. The status of the file must be
set to working T where T is the time at which the transition is applied.

- Working paper to declassified: This transition can only be applied after approval from
an authority competent to certify that the file does not have information that needs to

1As discussed in §7.2.1, in the actual implementation of PCFS, the attribute status is called newfile, and
the value default is 1. Since the difference is merely cosmetic, we use the more meaningful names status and
default here.

170

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

be classified. Such authorities are called Original Classification Authorities or OCAs
(see §8.2).

- Working paper to classified: This transition must also be approved by an OCA. In
addition, a number of credentials must be issued by different officials to approve
this authorization, and to decide the classified file’s secrecy level, compartments, etc.
(Compartments are discussed in §8.2.2.) These credentials are described in §8.2.4. The
status of the file must be set to classified T T ′, where T is the time of the transition,
and T ′ is determined by the OCA approving the transition.

- Classified to declassified: There is no need to explicitly apply this transition when the
classification on a file expires, since the access policies (§8.1.3) automatically allow
everyone read access after that time. The transition is needed only to prematurely
declassify a file. In that case, approval from an OCA is needed.

8.1.3 Rules for Access to Files

Next we formalize in BL the highest level policy rules for file access. Access to a file depends
on its state, and follows the informal guidelines described at the beginning of §8.1. We group
our rules by the state to which they apply.

Default. In default state, a file may be read, written, and deleted only by its owner. This
is captured by the following rules. The first rule states that it is the admin’s policy that
if file F is in default state (condition has_xattr F status default) and F is owned by K
(condition owner K F), then K may read F . The second and third rules similarly allow
K to write and delete F respectively. The term identity used in the third rule is the PCFS
permission needed to delete a file (§7.2.1). We remind the reader that s : - s1, . . . , sn is
notation for (s1 ∧ . . . ∧ sn) ⊃ s.

admin claims ((may K F read) : -
has_xattr F status default,
owner F K).

admin claims ((may K F write) : -
has_xattr F status default,
owner F K).

admin claims ((may K F identity) : -
has_xattr F status default,
owner F K).

Working Paper. If a file F is marked as a working paper at time T , then for 90 days
after T , F may be read, written, or deleted at the discretion of the owner of file (which, as
described in §8.1.2, may be an agency or group). This is enforced by the following rules.
90d denotes 90 days, and is X E is the special constraint that checks the equality of E
and X (see §4.3). The conditions K ′ says (may K F read), K ′ says (may K F write), and

171

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

K ′ says (may K F identity) delegate authorization to K ′, the owner of file F .

admin claims (((may K F read) : -
has_xattr F status (working T),
owner F K ′,
K ′ says (may K F read),
is T ′ (T + 90d)) @ [T, T ′]).

admin claims (((may K F write) : -
has_xattr F status (working T),
owner F K ′,
K ′ says (may K F write),
is T ′ (T + 90d)) @ [T, T ′]).

admin claims (((may K F identity) : -
has_xattr F status (working T),
owner F K ′,
K ′ says (may K F identity),
is T ′ (T + 90d)) @ [T, T ′]).

It is instructive to observe the role of the @ connective in enforcing the 90 day restriction.
For example, it is a consequence of the first rule that for any time point u ∈ [T, T + 90d] at
which has_xattr F status (working T), owner F K ′, and K ′ says (may K F read) all hold,
admin says (may K F read) also holds. This is not the case if u 6∈ [T, T + 90d]. If 90 days
elapse since a file is made a working paper, none of the above rules allow any access to it.
In that case, only the principal sysadmin has govern permission to the file (§8.1.2), and this
principal must be asked to adjust the status of the file.

Classified. Read access to a classified file is based on properties of its classification such as
its secrecy level, compartments, etc., as well as corresponding credentials of the principal to
whom access is given. We capture these with the predicate indi/has-clearances/fileK F
which means that principal K’s credentials suffice to allow it access to F . A large part of
the chapter is devoted to describing how this critical predicate is established; it is defined
formally in §8.4. In addition to these properties and credentials, read access to a classified
file is contingent on authorization from the file’s owner. The following rule specifies this
formally.

admin claims (((may K F read) : -
has_xattr F status (classified T T ′),
indi/has-clearances/file K F,
owner F K ′,
K ′ says (may K F read)) @ [T, T ′]).

The annotation @ [T, T ′] restricts the scope of this rule to the duration for which the file is
classified. After T ′, the file is readable by everyone (described next).

Declassified. A file is considered declassified if either its status is marked as such, or if
the file is marked classified, but the classification has expired. In both cases, anyone may

172

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

read the file. This is captured by the following rules.

admin claims ((may K F read) : -
has_xattr F status declassified).

admin claims (((may K F read) : -
has_xattr F status (classified T T ′)) @ [T ′,+∞]).

A consequence of the second rule is that if has_xattr F status (classified T T ′), then for
every time point u ≥ T ′, (admin says (may K F read)) @ [u, u]. This does not hold for
u < T ′.

Provisions for Counterintelligence Personnel

In addition to the above rules, there are provisions to allow counterintelligence personnel
to read all files that may contain incriminating evidence against an individual they are
investigating. Presumably, these provisions apply to files in all states. It is unclear how
counterintelligence personnel are assigned to investigate individuals, and how it may be
decided whether a file has incriminating evidence against a suspect or not. In our for-
malization we assume that a special principal oracle can determine these facts accurately.
Formally, let the predicate indi/is-ci K K ′ mean that principal K is a counterintelligence
officer investigating principal K ′, and let indi/is-associated K ′ F mean that file F may
have incriminating evidence against the suspect principal K ′. The following rule states that
if the principal oracle states both these predicates, then K may read file F .

admin claims ((may K F read) : -
oracle says (indi/is-ci K K ′),
oracle says (indi/is-associated K ′ F)).

The principal oracle appears at many places in the rest of this chapter. In each such case, it
is assumed to assert relevant facts whose source is either unclear or unspecific from official
documents.

8.2 File Classification

In §8.1.2 we stated that when a file is classified, a number of credentials must be issued
to determine properties of the file such as its secrecy level, associated compartments, etc.
This section explains these credentials in detail, as well as BL rules which combine these
credentials to establish properties of a classified file. We start with an intuitive explanation
of these properties, and subsequently present BL rules to establish them.

Briefly, there are three relevant properties of a classified file, each of which must be
established before the file can be accessed (more precisely, these properties must be known
in order to establish the predicate indi/has-clearances/file K F from §8.1.3):2

2It is possible that there are other relevant properties in practice, but these three properties appear to
be sufficiently representative.

173

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

- Secrecy level: A secrecy level is an indicator of the sensitivity of the contents of a file.
It is one of confidential, secret, or topsecret, in increasing order of sensitivity.3 Read
access to a classified file is restricted to individuals who have a secrecy clearance at a
level equal to or greater than the secrecy level of the file.

- Citizenship requirement: A set of countries is associated with every classified file.
Access is restricted only to citizens of those countries, and to those of the U.S. A com-
monly used abbreviation is “NOFORN” (no access to foreigners), which corresponds
to an empty list of countries.

- Associated compartments: A compartment is a description of the purpose of a file,
e.g., a project name or a division within the intelligence community. Every classified
file is associated with zero or more compartments. Read access to a classified file is
restricted only to those individuals who are associated with at least all compartments
that the file is associated with.

Policies for giving clearances to individuals are discussed in §8.3. In this section we discuss
rules pertaining to compartment creation and establishment of the properties listed above.

8.2.1 Original Classification Authorities

The authority to decide which file needs to be classified, and what secrecy level, citizen-
ship requirements, and associated compartments a classified file will have rests with very
high ranking officers of the executive branch of the government and their representatives.
These individuals are called Original Classification Authorities or OCAs. We do not model
formally how OCAs are determined. Instead, we assume that the principal oracle (intro-
duced in §8.1.3) names OCAs. Let the predicate indi/is-oca O mean that principal O is an
OCA. Then the following rule delegates authority over this predicate from admin to oracle.

admin claims ((indi/is-oca O) : -
oracle says (indi/is-oca O)).

8.2.2 Compartments

As mentioned earlier, a compartment describes the purpose of information it labels. For
example, a compartment may be the name of an intelligence project. Files that have at
least one compartment associated with them are called compartmentalized files. The pur-
pose of associating a file with compartments is to restrict access to only those individuals
who are affiliated with each of those compartments. In addition to restricting access, com-
partments associated with a classified file play a vital role in determining its secrecy level
and citizenship requirements, as we discuss later in this section.

3There is another secrecy level called sbu (sensitive but unclassified), or “for official use only”. Files at
this level are not classified – sbu is merely a directive to officials to be more careful than usual when handling
such files. Therefore, we do not consider sbu in our formalization.

174

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

Compartment creation. A compartment is created by an OCA. The OCA also fixes sev-
eral parameters that determine when an individual may be cleared into the compartment.
Of these parameters, we model three prominent ones in this chapter: (1) The minimum
secrecy level at the which the individual must be cleared, (2) The minimum level of back-
ground check the individual must pass, and (3) Whether or not the individual has to pass
a polygraph test. Formally we define the predicate compartment/is C L L′ B to mean
that C is a valid compartment (in practice, C is a unique string naming the compartment),
clearance into which requires:

- A secrecy clearance at level L or higher. Secrecy clearances are described in §8.3.2.

- A background check equivalent to that needed for secrecy clearance at level L′ or
higher. Background checks are described in §8.3.1.

- A polygraph test if the boolean B is yes. Alternatively, if B is no, then a polygraph
test is not necessary to be cleared into C. Polygraph tests are described in §8.3.1.

The following rule delegates the authority to create compartments from admin to every
OCA O.

admin claims ((compartment/is C L L′ B) : -
indi/is-oca O,
O says (compartment/is C L L′ B)).

SSO and SCG. When a compartment is created, an OCA appoints a special security
officer (SSO) to manage the compartment. Afterwards, a set of guidelines for managing all
information associated with the compartment is prepared. This set of guidelines is called
the compartment’s security classification guide (SCG); it must be approved by both an OCA
and the SSO of the compartment to which the SCG pertains. Among, other things, the
SCG lays down procedures for deciding the secrecy level and citizenship requirements of any
file associated with the compartment. As a result, when a file is classified, its associated
compartments must be decided first, and subsequently its secrecy level and citizenship
requirements must be determined using the SCGs of all the associated compartments.

In our formal model we abstract away the details of an SCG, and treat it only as a
symbolic constant. Let the predicate compartment/has-sso C S mean that principal S is
compartment C’s special security officer, and let compartment/has-scg C SCG mean that
SCG is the security classification guide of compartment C. Then, the first rule below allows
an OCA O to assign an SSO S to a compartment C, while the second rule states that both
an OCA and the SSO of compartment C must approve C’s SCG.

admin claims ((compartment/has-sso C S) : -
indi/is-oca O,
O says (compartment/has-sso C S)).

175

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

admin claims ((compartment/has-scg C SCG) : -
indi/is-oca O,
O says (compartment/has-scg C SCG),
compartment/has-sso C S,
S says (compartment/has-scg C SCG)).

8.2.3 Establishing File Properties

Next, we discuss and formalize rules for determining a file’s secrecy level, its citizenship
requirements, and its associated compartments. As mentioned in §8.2.2, the compartments
associated with a file must be decided first since they are necessary to authorize the file’s
secrecy level and citizenship requirements.

Determining a file’s associated compartments. Let the predicate
file/has-compartments F CL mean that file F is associated with exactly the compart-
ments in the list CL. As per official guidelines, establishing this predicate requires two kinds
of approvals: (a) an approval from an OCA stating that this should be the case, and (b)
approvals from the SSOs of all compartments in the list CL stating that the file may be asso-
ciated with all the compartments in CL. Modeling the second requirement in BL is slightly
tricky; we use a recursively defined helper predicate file/has-compartments/h F CL CL′

which means that the SSOs of all compartments in CL′ agree that F should be associated
with all compartments in CL. The following rule uses this predicate with CL′ = CL to
allow a file to be associated with a list of compartments CL.

admin claims ((file/has-compartments F CL) : -
indi/is-oca O,
O says (file/has-compartments F CL),
file/has-compartments/h F CL CL).

The following two rules define the helper predicate file/has-compartments/h F CL CL′

by induction on CL′. The symbol nil denotes the empty list and | is an infix cons constructor.

admin claims (file/has-compartments/h F CL nil).

admin claims ((file/has-compartments/h F CL (C ′ | CL′)) : -
compartment/has-sso C ′ S,
S says (file/has-compartments F CL),
file/has-compartments/h F CL CL′).

The second rule above means that admin will believe that the SSOs of all compartments in
C ′ | CL′ agree that F should be associated with the compartments in CL if (a) The SSO S
of compartment C ′ agrees to this fact (first two conditions of the rule) and (b) Recursively,
the SSOs of all compartments in CL′ agree to this fact (third condition).

Determining a file’s secrecy level. As per official guidelines, a file’s secrecy level may
be set to L if: (a) an OCA says that this should be case, and (b) the SSOs of all compart-
ments associated with the file agree that the SCGs of their respective compartments allow

176

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

the file to be given secrecy level L. Formally, let the predicate file/has-level F L mean
that file F has secrecy level L, and file/has-level/h F L CL mean that the SSOs of all
compartments in CL agree that F may be given secrecy level L in accordance with their
respective SCGs. Then the following rule formally captures the above conditions for giving
the secrecy level L to file F .

admin claims ((file/has-level F L) : - indi/is-oca O,
O says (file/has-level F L),
file/has-compartments F CL,
file/has-level/h F L CL).

The following two rules define the predicate file/has-level/h F L CL by induction on
CL. The predicate file/has-level/scg F L SCG is intended to mean that the security
classification guide SCG mandates that file F be given secrecy level L.

admin claims (file/has-level/h F L nil).

admin claims ((file/has-level/h F L (C ′ | CL′)) : -
compartment/has-sso C ′ S,
compartment/has-scg C ′ SCG,
S says (file/has-level/scg F L SCG),
file/has-level/h F L CL′).

According to the second rule above, admin believes that the SSOs of all compartments in
C ′ | CL′ agree that F should have secrecy level L if (a) the SSO S of C ′ states that this
assignment of level would be in accordance with the SCG of C ′ (third condition of the rule),
and (b) Recursively, the SSOs of all compartments in CL′ agree with this assignment (fourth
condition). It follows from these rules that if there are no compartments associated with
a file F , i.e., if admin says (file/has-compartments F nil), then an OCA O’s statement
O says (file/has-level F L) suffices to give a security level L to a file.

The second rule above is an example of exclusive delegation that was introduced in §3.1.2
because the rule gives principal S authority over the predicate file/has-level/scg, but
the principal admin who gives this authority has no jurisdiction over the predicate.

Determining a file’s citizenship requirements. Determining the citizenship require-
ments for reading a file is similar to determining the file’s secrecy level – an OCA must
approve the list of countries to whose citizens access should be restricted, and the SSOs
of all compartments associated with the file must certify that this list would be allowed
by their respective SCGs. Formally, let the predicate file/has-citizenship F UL mean
that reading file F requires a citizenship of one of the countries in UL (or of the U.S.),
file/has-citizenship/h F UL CL mean that the SSOs of all compartments in CL agree
with this requirement, and file/has-citizenship/scg F UL SCG mean that SCG ap-
proves this requirement. Then the following three rules may be used to determine a file’s
citizenship requirements.

177

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

admin claims ((file/has-citizenship F UL) : -
indi/is-oca O,
O says (file/has-citizenship F UL),
file/has-compartments F CL,
file/has-citizenship/h F UL CL).

admin claims (file/has-citizenship/h F UL nil).

admin claims ((file/has-citizenship/h F UL (C ′ | CL′)) : -
compartment/has-sso C ′ S,
compartment/has-scg C ′ SCG,
S says (file/has-citizenship/scg F UL SCG),
file/has-citizenship/h F UL CL′).

As in the case of rules for determining secrecy levels, if there are no compartments associated
with a file F , i.e., if admin says (file/has-compartments F nil), then an OCA O’s statement
O says (file/has-citizenship F UL) suffices to give a citizenship requirement UL to a
file.

8.2.4 Summary of File Classification

As mentioned in §8.1.2, before setting a file F ’s status attribute to classified T T ′, the princi-
pal sysadmin must ensure that enough credentials are in place to determine the file’s secrecy
level, citizenship requirements, and associated compartments. The credentials required fol-
low from the rules discussed in §8.2.3, and are summarized below. Although not formalized
here, T and T ′ must also be obtained from an OCA.

• Credentials to determine associated compartments CL

– An OCA O must issue the credential O claims (file/has-compartments F CL).
– For every compartment C ∈ CL, the SSO S of C must issue the credential
S claims (file/has-compartments F CL).

• Credentials to determine secrecy level L

– An OCA O must issue the credential O claims (file/has-level F L).
– For every compartment C ∈ CL, where CL is the list from the previous point,

the SSO S of C must issue the credential S claims (file/has-level/scg F L
SCG), where SCG is the security classification guide of C.

• Credentials to determine citizenship requirements UL

– An OCA O must issue the credential O claims (file/has-citizenship F UL).
– For every compartment C ∈ CL, where CL is the list from the first point, the SSO
S of C must issue the credential S claims (file/has-citizenship/scg F UL
SCG), where SCG is the security classification guide of C.

178

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

In practice, any issued credential will be valid for only a stipulated duration of time. This
gets represented in BL through the @ connective. For example, if an OCA O says that
file F should have secrecy level L from 2009 to 2011, this would be represented in BL as
(O claims (file/has-level F L)) ◦ [2009:01:01:00:00:00, 2011:12:31:23:59:59]. In general,
the validities of all credentials in the list above may be restricted using explicit time. BL’s
inference rules propagate these time restrictions to other facts derived from the credentials
and policy rules.

8.3 Individual Clearances

Individuals require clearance both at secrecy levels and into compartments, as well as citi-
zenship of specific countries to read classified files. We call these three primary clearances
of individuals. In order to obtain primary clearances, other auxiliary clearances are needed.
These include polygraph tests and background checks. In this section we formalize the
methods for obtaining auxiliary clearances, as well as rules for combining them to determine
clearance at secrecy levels and into compartments. We start with the auxiliary clearances.

8.3.1 Auxiliary Clearances

Polygraph clearance. Individuals may need to pass a polygraph test to get clearance
into certain compartments (§8.2.2 and §8.3.2). Polygraph tests are administered and cer-
tified by trained individuals, whom we call polygraph administrators. The procedures for
identifying polygraph administrators are beyond the scope of our formalization; we simply
assume that oracle names polygraph administrators. Let indi/is-polygraph-admin PA
mean that principal PA is a trusted polygraph administrator, and let indi/has-polygraph K
mean that principal K has passed a polygraph test. The following rule states that if oracle
says that PA is a polygraph administrator, and PA says that K has passed a polygraph
test, then admin will believe the latter.

admin claims ((indi/has-polygraph K) : -
oracle says (indi/is-polygraph-admin PA),
PA says (indi/has-polygraph K)).

Background checks. A background check certifies an individual’s past. It is necessary
to get clearance both at secrecy levels and into compartments. There are two commonly
used background checks: (1) National Agency Check with Local Agency Check and Credit
Check or NACLC, and (2) Single Scope Background Investigation or SSBI. NACLC is
an investigation of an individual’s criminal records and credit history. SSBI includes the
NACLC and in addition requires interviews of colleagues and investigation of family history.
We assume that certain principals called background administrators are certified to check
others’ backgrounds. Background administrators are assumed to be determined by the
principal oracle.

From the perspective of formalization, it is very convenient to abstract background
checks by the secrecy level for which they are mandatory. Informally speaking, for example,

179

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

a background check at level confidential would correspond to a background check that is
needed to get clearance at secrecy level confidential. This kind of an abstraction is useful
because, as per official guidelines, background checks conducted for clearance at secrecy lev-
els expire at fixed intervals of time, and a similar expiration applies to other applications of
background checks (e.g., for clearance into compartments). The actual check corresponding
to each secrecy level and its expiration time is shown in the table below.

Abstract level of background check Actual background check needed and ex-
piration

confidential NACLC, expires in 15 years
secret NACLC, expires in 10 years
topsecret SSBI, expires in 5 years

Let indi/is-background-admin BA mean that principal BA is a background administra-
tor. Further let indi/has-naclc K T mean that principal K passed an NACLC at time T ,4
and indi/has-ssbi K T mean that principal K passed an SSBI at time T . The following
rules define the predicate indi/has-background K L, which means that principal K has a
background check that is needed for clearance at secrecy level L. There are three rules, one
for each possible value of L. A salient point to observe is the use of the @ connective for
automatically expiring background checks in accordance with the table above. The symbol
y following a number means “years”. Hence 15y means 15 years. As an example, the first
rule below means that if oracle states that BA is a background administrator and BA states
that K passed an NACLC at time T , then admin believes that K has a background check
at level confidential in the interval [T, T + 15y].

admin claims (((indi/has-background K confidential) : -
oracle says (indi/is-background-admin BA),
BA says (indi/has-naclc K T),
is T ′ (T + 15y)) @ [T, T ′]).

admin claims (((indi/has-background K secret) : -
oracle says (indi/is-background-admin BA),
BA says (indi/has-naclc K T),
is T ′ (T + 10y)) @ [T, T ′]).

admin claims (((indi/has-background K topsecret) : -
oracle says (indi/is-background-admin BA),
BA says (indi/has-ssbi K T),
is T ′ (T + 5y)) @ [T, T ′]).

The remaining policy rules refer only to the predicate indi/has-background K L, not to
the predicates indi/has-naclc K T and indi/has-ssbi K T . It is instructive to observe
that the @ connective in the above policy rules is placed outside the implication : -. This
is important. For example, although perhaps reasonable at a first glance, the following
alternate encoding of the third rule is in fact incorrect, as explained below.

4In practice, the NACLC for secret clearance may be more extensive than the NACLC for confidential
clearance. Even if there is such a distinction, we blur it in our formalization.

180

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

admin claims ((indi/has-background K topsecret) @ [T, T ′] : -
oracle says (indi/is-background-admin BA),
BA says (indi/has-ssbi K T),
is T ′ (T + 5y)).

The problem with this alternate rule is that it does not force a relation between the intervals
over which oracle says (indi/is-background-admin BA) and BA says (indi/has-ssbiK T)
are established and the interval over which admin says (indi/has-background K topsecret)
is deduced. In particular, for any intervals [u1, u2], [u′1, u′2], and [u′′1, u′′2] ⊆ [T, T + 5y],
this policy rule together with oracle says (indi/is-background-admin BA) ◦ [u1, u2] and
BA says (indi/has-ssbi K T) ◦ [u′1, u′2] implies admin says (indi/has-background K
topsecret) ◦ [u′′1, u′′2], which is incorrect since, from an informal understanding of the rule,
we would expect that [u1, u2] ⊇ [u′1, u′2] ⊇ [u′′1, u′′2] be required.

8.3.2 Primary Clearances

An individual’s clearance at a secrecy level, clearance into compartments, as well as citizen-
ship directly determine what classified files she has access to. We now describe rules that
define how these are determined.

Citizenship. We assume that oracle decides the citizenship of each individual. Let
indi/has-citizenship K U mean that principal K is a citizen of country U . The fol-
lowing rule delegates authority over this predicate from admin to oracle.

admin claims ((indi/has-citizenship K U) : -
oracle says (indi/has-citizenship K U)).

A useful, related predicate is indi/has-citizenship/list K UL, which means that K is
a citizen of at least one of the countries in the list UL. The following two rules define this
predicate by induction on the list UL.

admin claims ((indi/has-citizenship/list K (U | UL)) : -
indi/has-citizenship K U).

admin claims
((indi/has-citizenship/list K (U | UL)) : -

oracle claims (indi/has-citizenship/list K UL)).

Clearance at secrecy levels. As mentioned in §8.3.1, an individual must pass a back-
ground check at level L in order to get clearance at secrecy level L. In addition, the
individual must have a need to get the clearance. Since the factors determining this need
are varied and are not completely specified, we simply assume here that oracle may assert
this need. Let indi/has-level K L mean that individual K has clearance at secrecy level
L, and indi/needs-level K L mean that principal K has a need to get clearance at se-
crecy level L. level/below L L′ means that level L is below the level L′ in the order
confidential < secret < topsecret. It is defined later. The following rule states that admin
will believe that K has clearance at secrecy level L if oracle says that K needs this clearance,

181

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

and K has passed a background check at some level L′ which is higher than L.

admin claims ((indi/has-level K L) : -
oracle says (indi/needs-level K L),
indi/has-background K L′,
level/below L L′).

As formalized in §8.3.1, the validity of indi/has-background K L′ is limited to 15, 10, or
5 years depending on L′. The above rule and the inference rules of BL transfer the same
restrictions to indi/has-level K L. The predicate level/below is defined by the rules
below. Since it is reasonable to assume that all principals agree on the definition of the
predicate, these rules are stated by the strongest principal ` (Recall that according to BL’s
inference rules, (` says s) ⊃ (k says s) for every k and s).

` claims (level/below L L).

` claims (level/below confidential secret).

` claims (level/below secret topsecret).

` claims (level/below confidential topsecret).

Clearance into compartments. As mentioned in §8.2.2, to be cleared into a compart-
ment, an individual must satisfy all its requirements – secrecy level, background check,
and a polygraph test if needed. These requirements are uniquely determined from the
predicate compartment/is C L L′ B, which is established when the compartment C is
created. Let the predicates indi/has-comp-level K C, indi/has-comp-background K C,
and indi/has-comp-polygraph K C mean that an individual has clearance at an appropri-
ate secrecy level, background check, and polygraph check (if needed) for being cleared into
compartment C. The following rules define these predicates by considering respectively the
2nd, 3rd, and 4th arguments of the predicate compartment/is C L L′ B. An underscore
_ represents an implicitly named variable, whose instantiated value is irrelevant to the rule.

admin claims ((indi/has-comp-level K C) : -
compartment/is C L _ _,
indi/has-level K L′′,
level/below L L′′).

admin claims ((indi/has-comp-background K C) : -
compartment/is C _ L′ _,
indi/has-background K L′′,
level/below L′ L′′).

admin claims ((indi/has-comp-polygraph K C) : -
compartment/is C _ _ yes,
indi/has-polygraph K).

admin claims ((indi/has-comp-polygraph K C) : -
compartment/is C _ _ no).

182

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

Using the above predicates, we define the predicate indi/has-compartment K C which
means that an individual K is cleared into the compartment C. An important fact to ob-
serve here is that in addition to satisfying the three requirements of the compartment, the
SSO S of the compartment must certify the clearance, and, as in the case of clearance at
secrecy levels, the principal oracle must certify that the principal actually needs the clear-
ance (predicate indi/needs-compartment K C).

admin claims ((indi/has-compartment K C) : -
oracle says (indi/needs-compartment K C)
compartment/has-sso C S,
S says (indi/has-compartment K C),
indi/has-comp-level K C,
indi/has-comp-background K C,
indi/has-comp-polygraph K C).

Finally, the following two rules define a related, useful predicate
indi/has-compartment/list K CL which means that K is cleared into all compartments
in the list CL.

admin claims (indi/has-compartment/list K nil).

admin claims ((indi/has-compartment/list K (C | CL)) : -
indi/has-compartment K C,
indi/has-compartment/list K CL).

8.3.3 Summary of Individual Clearances

We close this section with a summary of credentials needed to give various clearances to an
individual K.

• Credentials to establish polygraph clearance

– A polygraph administrator PA must issue the credential
PA claims (indi/has-polygraph K)

• Credentials to certify background check at level L

– If L is confidential or secret, then a background administrator BA must issue the
credential BA claims (indi/has-naclc K T). The check is valid for 15 years
after T if L = confidential and for 10 years after T if L = secret.

– If L is topsecret, then a background administrator BA must issue the credential
BA claims (indi/has-ssbi K T). The check is valid for 5 years after T .

• Credentials to determine citizenship of country U

– oracle must issue the credential oracle claims (indi/has-citizenship K U).

• Credentials for secrecy clearance at level L

183

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

– oracle must issue the credential oracle claims (indi/needs-level K L)
– Credentials to certify background check at level L or higher as determined by

the second point above.

• Credentials for clearance into compartment C established with the predicate
compartment/is C L L′ B

– oracle must issue the credential oracle claims (indi/needs-compartment K C).
– The SSO S of C must issue the credential S claims (indi/has-compartmentK C).
– Credentials for secrecy clearance at level L or higher as determined by the fourth

point above.
– Credentials to certify background check at level L′ or higher as determined by

the second point above.
– Credentials to establish polygraph clearance if B = yes as determined by the first

point above.

8.4 Clearances to Classified Files

In §8.1.3 we introduced the predicate indi/has-clearances/file K F , which means that
principal K has enough clearance to read classified file F . Building on other predicates
defined in §8.2 and §8.3, we now provide rules that define this critical predicate.

First, we define three auxiliary predicates using the fairly straightforward rules be-
low: (a) indi/has-level/file K F , which means that principal K has clearance at a
secrecy level higher than that of file F , (b) indi/has-comps/file K F , which means
that principal K is cleared into all compartments that F is associated with, and (c)
indi/has-cit/file K F , which means that principal K is a citizen of at least one country
in the citizenship requirements of F .

admin claims ((indi/has-level/file K F) : -
file/has-level F L,
indi/has-level K L′,
level/below L L′).

admin claims ((indi/has-comps/file K F) : -
file/has-compartments F CL,
indi/has-compartment/list K CL).

admin claims ((indi/has-cit/file K F) : -
file/has-citizenship F UL,
indi/has-citizenship/list K UL).

admin claims ((indi/has-cit/file K F) : -
indi/has-citizenship K usa).

The last rule means that any U.S. citizen satisfies the citizenship requirement for reading
a file, irrespective of the latter’s actual citizenship requirements. The following rule defines

184

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

the predicate indi/has-clearances/file K F using these three predicates.

admin claims ((indi/has-clearances/file K F) : -
indi/has-level/file K F,
indi/has-comps/file K F,
indi/has-cit/file K F).

8.5 Summary

The case study presented in this chapter validates the expressiveness of the logic BL as
a framework for expressing authorization policies, and highlights many of its important
aspects. The policies presented in this chapter can be enforced directly in the file system
PCFS. We conclude this chapter with some salient observations about the case study.

First, the case study exercises a novel feature of BL – interpreted predicates for rep-
resenting system state. The state of a sensitive file (default, working paper, classified, or
declassified) is represented as an extended attribute on the file, which is tested in the logic
through the interpreted predicate has_xattr F A V in various policy rules that allow
access to files (§8.1.3). As discussed in §8.1.2, the PCFS requirement that a special permis-
sion govern, distinct from write, be obtained in order to modify extended attributes helps
preserve the integrity of file states (see §7.2.1 for a description of PCFS permissions).

Second, the case study relies on BL’s support for explicit time not only to model time-
bounded certificates, but also to limit the temporal validities of conclusions based on time
points present in extended attributes and credentials. Examples of the latter use of explicit
time are the 90-day rule for working papers from §8.1.3 and the 5, 10, and 15 year rules
for expiration of background checks from §8.3.1. The illustration at the end of §8.3.1 also
shows that care must be taken when scoping the @ connective in policies. Seemingly obvious
representations of policies with the @ connective may not always be correct.

Besides the dynamic features of BL, namely, interpreted predicates and explicit time,
several policy rules presented in this chapter illustrate exclusive delegation (§3.1.2). One
example of exclusive delegation was pointed out in §8.2.3; the motif recurs in several other
rules as well. As mentioned at the beginning of §3, being able to represent exclusive dele-
gation is the main reason for the use of a new authorization logic BL in this thesis.

Finally, based on the fact that BL is able to express the reasonably complex policies
for access to sensitive information, we may expect that policies for information sharing in
other organizations (and among them) can also be expressed in BL and enforced in PCFS
in a similar manner.

8.6 List of Predicates Used in the Formalization

The following table lists all predicates used in this chapter, the sections of the chapter in
which they are described, and their intuitive meanings.

185

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

Predicate Section Meaning
compartment/has-scg C SCG §8.2.2 SCG is compartment C’s security classifi-

cation guide
compartment/has-sso C S §8.2.2 S is compartment C’s special security of-

ficer (SSO)
compartment/is C L L′ B §8.2.2 C is a compartment, clearance into which

requires secrecy clearance at level L, back-
ground check at level L′, and a polygraph
test if B = yes.

file/has-citizenship F UL §8.2.3 Read access to file F is restricted to citi-
zens of countries in the list UL (and of the
U.S.)

file/has-citizenship/h F UL CL §8.2.3 The SSOs of all compartments in the list
CL certify that read access to F should
be restricted to citizens of countries in the
list UL (and of the U.S.)

file/has-citizenship/scg F UL SCG §8.2.3 It is conformant with SCG that read ac-
cess to file F be restricted to citizens of
countries in the list UL (and of the U.S.)

file/has-compartments F CL §8.2.3 File F is associated with all compartments
in the list CL

file/has-compartments/h F CL CL′ §8.2.3 The SSOs of all compartments in the list
CL′ certify that is okay to associate file F
with all compartments in the list CL

file/has-level F L §8.2.3 File F has secrecy level L
file/has-level/h F L CL §8.2.3 The SSOs of all compartments in the list

CL certify that is okay to give file F se-
crecy level L

file/has-level/scg F L SCG §8.2.3 It is conformant with SCG that file F have
secrecy level L

has_xattr F A V §8.1.1 The extended attribute named A on file F
is set to value V

indi/has-background K L §8.3.1 PrincipalK has a background check which
is mandatory for clearance at secrecy level
L

indi/has-citizenship K U §8.3.2 Principal K is a citizen of country U
indi/has-citizenship/list K UL §8.3.2 Principal K is a citizen of at least one of

the countries in the list UL
indi/has-cit/file K F §8.4 Principal K has the citizenship of one of

the countries associated with file F (or of
the U.S.)

indi/has-clearances/file K F §8.4 Principal K has enough security clear-
ances to read classified file F

indi/has-compartment K C §8.3.2 Principal K is cleared into compart-
ment C

indi/has-compartment/list K CL §8.3.2 Principal K is cleared into all compart-
ments in the list CL

186

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

indi/has-comp-background K C §8.3.2 Principal K has passed a background
check sufficient for clearance into compart-
ment C

indi/has-comp-level K C §8.3.2 Principal K has secrecy clearance at a
level higher than that needed for clearance
into compartment C

indi/has-comp-polygraph K C §8.3.2 If clearance into compartment C requires
a polygraph test, then principal K has
passed one

indi/has-comps/file K F §8.4 Principal K is cleared into all compart-
ments associated with file F

indi/has-level K L §8.3.2 Principal K is cleared at secrecy level L
indi/has-level/file K F §8.4 Principal K has secrecy clearance at a

level equal to or above that of file F
indi/has-naclc K T §8.3.1 Principal K passed an NACLC at time T
indi/has-polygraph K §8.3.1 Principal K passed a polygraph test
indi/has-ssbi K T §8.3.1 Principal K passed an SSBI at time T
indi/is-associated K F §8.1.3 File F may potentially have incriminating

evidence against principal K
indi/is-background-admin BA §8.3.1 Principal BA is certified to check others’

backgrounds
indi/is-ci K K ′ §8.1.3 Principal K is a counterintelligence officer

who is investigating principal K ′
indi/is-oca O §8.2.1 Principal O is an Original Classification

Authority (OCA)
indi/is-polygraph-admin PA §8.3.1 Principal PA is certified to administer

polygraph tests on others
indi/needs-compartment K C §8.3.2 Principal K needs clearance into compart-

ment C
indi/needs-level K L §8.3.2 Principal K needs clearance at secrecy

level L
level/below L L′ §8.3.2 Secrecy level L is below L′ (confidential <

secret < topsecret)
may K F P §8.1.3 Principal K has permission P on file F
owner F K §8.1.3 File F is owned by principal K

187

Chapter 8. Case Study: Access Control for Classified Information in the U.S.

188

Chapter 9

BLL: A Linear Extension of BL

This chapter presents BLL, an extension of BL based on ideas from linear logic [71]. As in
linear logic, there are special kinds of hypotheses called resources or linear hypotheses in
hypothetical judgments of BLL that, unlike ordinary hypotheses, do not admit contraction
and weakening (Theorem 4.8). Consequently, every resource assumed in a proof must be
used in the proof exactly once.1 Resources are an appropriate way to model consumable
credentials, i.e. assumptions in an authorization policy that can be used a stipulated number
of times only. Such assumptions are useful in practice, e.g., a pay-per-view website may
want to give a user a credential that allows her access to a movie only once in return for
a fixed amount of money. Using linear hypotheses, which we denote with the letter Λ,
consumable credentials can be modeled and enforced through proof-carrying authorization
(without procaps) as follows.2

1. Certificates establishing consumable hypotheses are distinguishably marked by their
creators. In a logical proof consumable credentials are reflected in the linear hypothe-
ses Λ, not the ordinary hypotheses Γ. Each consumable hypothesis is replicated in Λ
as many times as it is needed in the proof.

2. By counting the number of occurrences of each consumable credential in the linear
hypotheses of each proof it verifies, the proof verifier embedded in the reference mon-
itor tracks the number of times each consumable credential has been used over time.
Assuming that the maximum number of times each consumable credential may be
used is known to the proof verifier, a proof that relies on more uses of any consumable
credential than are still left is immediately rejected.

Linearity plays a crucial role in this enforcement mechanism in two related ways. First,
it ensures that consumable credentials are not used in a proof more than the number of

1It is important to explain how we count “uses” of a hypothesis. In the so called multiplicative-exponential
fragment of linear logic, it is appropriate to say that a hypothesis is used n times in a sequent calculus proof
if it appears n times as the principal judgment in either left rules or the rule (init). However, we have to be
careful when additive connectives are included, as explained at the end of §9.1.1.

2 These observations were first made in joint work of the author and others [66] and independently by
Cederquist et al. in the setting of auditing traces for access violations [37].

189

Chapter 9. BLL: A Linear Extension of BL

times made explicit in the hypotheses; this is a consequence of a lack of contraction in
linear hypotheses. Dually, it ensures that each consumable credential mentioned in the
linear hypotheses is actually used in the proof the number of times it is mentioned; this
is a consequence of the absence of weakening in linear hypotheses.3 Together, these two
observations imply that the proof verifier is able to accurately track the number of uses of
each consumable credential in step (2) above. In the PCFS architecture, this enforcement
mechanism has to be modified since the use of consumable credentials in it should be tracked
by the back end, not by the proof verifier. Procaps can be used to carry information about
consumable credentials used in a proof from the proof verifier to the back end, as described
in §9.3.

In addition, linearity can be used to model state, as well as transitions between state, or
real expendable resources like money, all of which may be relevant for expressing authoriza-
tion policies in some cases [54, 66]. The merit of modeling state using linearity (as opposed
to interpreted predicates) is that rules for modifying the state can also be expressed and
reasoned about within the logic. The disadvantage is that any rule that tries to only read
the state must consume the linear hypothesis that represents the state, and then regenerate
it. This is awkward in some cases, so in BLL we allow both linearity as well as interpreted
predicates, leaving it up to system designers to use whichever one of the two suits the
situation better.

Keeping in mind these uses of linearity, the primary objective of this chapter is to present
BL’s linear extension BLL, its proof theory, and some of its metatheoretic properties (§9.1).
To prevent repetition of concepts from earlier chapters, we limit our discussion of proof
theory to a sequent calculus for BLL even though a natural deduction system for BLL can
also be constructed. The presentation of the sequent calculus derives from a judgmental
presentation of intuitionistic linear logic due to Chang et al. [39], and more directly from
prior joint work of the author in the context of authorization [54, 66]. The chapter also
presents simple examples of the use of linearity to model consumable credentials (§9.2).
These examples are only illustrations to explain the expressiveness added by linearity in the
context of authorization; larger examples may be found in prior work on the subject [54, 66].
Finally, the chapter proposes a method of enforcement of consumable credentials in the
PCFS architecture that relies on proofs in BLL as well as procaps (§9.3).

9.1 Syntax, Sequent Calculus, and Metatheory

We present the judgments of BLL and the relations between them first, and then describe
the structure of formulas. Rules of the sequent calculus and its metatheory are postponed
to §9.1.1 and §9.1.2, respectively. The proof theory of BLL (in particular its sequent calcu-
lus) relies on four distinct basic judgments, two of which – s ◦ [u1, u2] and k claims s ◦ [u1, u2]
– were already present in BL (§4.2). We list below all four judgments, together with their
intuitive meanings.

3Readers familiar with linear logic may be aware that the additive connectives > and 0 may cause
weakening to become admissible in certain cases. To avoid such problems we disallow these two connectives
in BLL, as should become clear in §9.1.

190

Chapter 9. BLL: A Linear Extension of BL

- s ◦ [u1, u2]: Formula s holds throughout the interval [u1, u2], and this fact may be
used any number of times (possibly never).

- s ? [u1, u2]: Formula s holds throughout the interval [u1, u2], and this fact must be
used once.

- k claims s ◦ [u1, u2]: Principal k claims throughout the interval [u1, u2] that formula
s holds, and this fact may be used any number of times (possibly never).

- k claims s ? [u1, u2]: Principal k claims throughout the interval [u1, u2] that formula
s holds, and this fact must be used once.

The judgments containing ?, which we read as “in”, are linear. As their descriptions suggest,
they correspond to resources, which if assumed in a proof must be used exactly once in it.
(Such judgments may be replicated in the linear hypotheses if they have to be used multiple
times.) Hypotheses in BLL are of two types, unrestricted Γ which contain assumptions of the
forms s ◦ [u1, u2] and k claims s ◦ [u1, u2], and linear Λ which are comprised of assumptions
of the forms s ? [u1, u2] and k claims s ? [u1, u2]. Sequents contain both unrestricted and
linear hypotheses, as in the grammar below. The conclusion of a sequent is always of the
form s ? [u1, u2] because hypothetical judgments with other conclusions can be defined as
explained later.

Basic Judgments J ::= s ◦ [u1, u2] | k claims s ◦ [u1, u2] |
s ? [u1, u2] | k claims s ? [u1, u2]

Unrestricted Hypotheses Γ ::= · | Γ, s ◦ [u1, u2] | Γ, k claims s ◦ [u1, u2]
Linear Hypotheses Λ ::= · | Λ, s ? [u1, u2] | Λ, k claims s ? [u1, u2]
Sequents Σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2]

Basic reasoning principles. The sequent form Σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2] expresses
that the basic judgment s ? [u1, u2] follows from the assumptions Σ; Ψ;E; Γ; Λ. But what
about conclusions of the forms s ◦ [u1, u2], k claims s ? [u1, u2], and k claims s ◦ [u1, u2]?
Hypothetical reasoning for these forms of conclusions can be defined, as manifest in the
following three principles.4 Γ| and Λ| denote the restrictions of the hypotheses Γ and Λ to
assumptions of the forms k claims s ◦ [u1, u2] and k claims s ? [u1, u2], respectively.

Γ| = {(k claims s ◦ [u1, u2]) ∈ Γ}

Λ| = {(k claims s ? [u1, u2]) ∈ Λ}

Time-unrestricted principle. s ◦ [u1, u2] follows from the assumptions Σ; Ψ;E; Γ; Λ
in view ν if Λ = · and Σ; Ψ;E; Γ; · ν−→ s ? [u1, u2].

4It should be noted that these reasoning principles are not explicit rules in the sequent calculus, but
are admissible. Allowing these rules as explicit rules complicates the proof of admissibility of cut, and
corresponding rules in the natural deduction system for BLL (which we have not presented here) make it
difficult, if not impossible, to characterize canonical proofs.

191

Chapter 9. BLL: A Linear Extension of BL

The principle requires Λ to be empty because s ◦ [u1, u2] is a conclusion that may be
used any number of times, and hence it does not follow directly from s ? [u1, u2] if
the proof of the latter depends on linear hypotheses.

Claim-linear principle. k claims s ? [u1, u2] follows from the assumptions Σ; Ψ;E;
Γ; Λ in any view ν if Λ = Λ| and Σ; Ψ;E; Γ|; Λ| k,u1,u2−−−−→ s ? [u1, u2].

The principle means that, as for BL, a direct proof of k claims s ? [u1, u2] should not
depend on any assumptions that do not have the prefix k claims ·. Further, to track
linear hypotheses correctly, we also require that Λ = Λ|.

Claim-unrestricted principle. k claims s ◦ [u1, u2] follows from the assumptions
Σ; Ψ;E; Γ; Λ in any view ν if Λ = · and Σ; Ψ;E; Γ|; · k,u1,u2−−−−→ s ? [u1, u2].

Again, a direct proof of k claims s ◦ [u1, u2] should not depend on any assumptions
that do not have the prefix k claims ·. Further, since k claims s is a conclusion that
may be used any number of times, it must not depend on linear hypotheses, so Λ
must be empty.

In addition to these principles, reasoning in BLL also relies on analogues of the time
subsumption and the view principle from §4.2.2, which we do not state explicitly.

Formulas. The syntax of BLL formulas r, s is shown below. We allow most connectives of
intuitionistic linear logic, the excluded connectives being> and 0. These two connectives are
not included because by writing these connectives in policies weakening may be admitted,
which, as explained in the opening of this chapter, is undesirable for modeling consumable
credentials. As is standard in linear logic, r ⊗ s means that available resources entail r
and s simultaneously; 1 represents absence of any resources; r & s means that available
resources suffice to prove either r or s, but not both; r ⊕ s means that available resources
prove either r or s, but it is not known which; r(s means that resource r can be converted
to resource s; and !s means that s holds without restrictions on the number of times it may
be used. The new connective, k once s, is the linear form of k says s.

Formulas r, s ::= p | i | c | r ⊗ s | 1 | r & s | r ⊕ s | r(s | ! s |
∀x:σ.s | ∃x:σ.s | k says s | k once s | s @ [u1, u2]

Judgments internalized as formulas. As in BL, all forms of basic judgments in BLL

may be internalized into the syntax of formulas. Formulas that internalize each form of basic
judgment are listed in Figure 9.1. Also listed in the figure are other judgments that are
equivalent to the basic judgments. We use these equivalences to justify some of the inference
rules later. The salient observation here is that of the four basic judgments, only s ? [u1, u2]
is internalized by a single connective; all others are internalized as the composition of two
connectives.

192

Chapter 9. BLL: A Linear Extension of BL

Basic judgment Internalized as the formula . . . Other equivalent judgment(s)
s ? [u1, u2] s @ [u1, u2] None
s ◦ [u1, u2] (!s) @ [u1, u2] (!s) ? [u1, u2]

k claims s ? [u1, u2] (k once s) @ [u1, u2] (k once s) ? [u1, u2]
k claims s ◦ [u1, u2] (k says s) @ [u1, u2] (k says s) ? [u1, u2]

Figure 9.1: Basic judgments of BLL and their internalization as formulas

9.1.1 Rules of the Sequent Calculus

Next we describe the rules of the sequent calculus for BL. We start with some basic rules
that relate the various judgments, and then proceed to explain the left and right rules for
each connective. All rules are summarized in Figures 9.2 and 9.3.

Rules relating basic judgments. The rule (init) below allows a conclusion of p ? [u1, u2]
from the linear hypothesis p ? [u′1, u′2], if u′1 ≤ u1 and u2 ≤ u′2. Observe that no other
linear hypotheses must be present, which enforces strict use of the latter. As in the rule’s
homonym from §4.2.4, the conditions u′1 ≤ u1 and u2 ≤ u′2 account for subsumption over
time intervals. Theorem 9.6 shows that the generalization of this rule to arbitrary formulas
(in place of uninterpreted atoms p) is admissible in BLL.

Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ;E; Γ; p ? [u′1, u′2]

ν−→ p ? [u1, u2]
init

The next rule, (copy), allows an unrestricted hypothesis s ◦ [u1, u2] to be copied into
the linear hypotheses as s ? [u1, u2]. Since this rule may be applied repeatedly to any
unrestricted hypothesis, unrestricted hypotheses may be used any number of times in a
proof.

Σ; Ψ;E; Γ, s ◦ [u1, u2]; Λ, s ? [u1, u2]
ν−→ r ? [u′1, u′2]

Σ; Ψ;E; Γ, s ◦ [u1, u2]; Λ
ν−→ r ? [u′1, u′2]

copy

The next two rules, (claims) and (lclaims) are BLL analogues of the BL rule (claims) for
unrestricted hypotheses and linear hypotheses respectively. In the case of rule (lclaims),
the principal judgment k claims s ? [u1, u2] is not retained in the premise, which enforces
its strict one-time use.

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]; Λ, s ? [u1, u2]
ν−→ r ? [u′1, u′2]

ν = k′, ub, ue Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2 Σ; Ψ |= k � k′

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]; Λ
ν−→ r ? [u′1, u′2]

claims

Σ; Ψ;E; Γ; Λ, s ? [u1, u2]
ν−→ r ? [u′1, u′2]

ν = k′, ub, ue Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2 Σ; Ψ |= k � k′

Σ; Ψ;E; Γ; Λ, k claims s ? [u1, u2]
ν−→ r ? [u′1, u′2]

lclaims

193

Chapter 9. BLL: A Linear Extension of BL

Connectives !, k says s, and k once s. Rules for the connectives !, k says s, and k once s
follow a similar template. The right rules for these connectives are based on the principles
(time-unrestricted), (claim-unrestricted), and (claim-linear), respectively. For instance, the
right rule for ! (shown below) states that if Σ; Ψ;E; Γ; · ν−→ s ? [u1, u2], then Σ; Ψ;E; Γ; · ν−→
(!s) ? [u1, u2]. This follows immediately from the principle (time-unrestricted) and the
equivalence of the two judgments (!s) ? [u1, u2] and s ◦ [u1, u2] (Figure 9.1). The right
rules of k says s and k once s are similarly justified. The left rules for the connectives are
straightforward: they replace the principal judgment in the conclusion by an equivalent
judgment in the premise.

Σ; Ψ;E; Γ; · ν−→ s ? [u1, u2]
Σ; Ψ;E; Γ; · ν−→ !s ? [u1, u2]

!R
Σ; Ψ;E; Γ, s ◦ [u1, u2]; Λ

ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ, !s ? [u1, u2]

ν−→ r ? [u′1, u′2]
!L

Σ; Ψ;E; Γ|; · k,u1,u2−−−−−→ s ? [u1, u2]
Σ; Ψ;E; Γ; · ν−→ k says s ? [u1, u2]

saysR
Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]; Λ

ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ, k says s ? [u1, u2]

ν−→ r ? [u′1, u′2]
saysL

Σ; Ψ;E; Γ|; Λ| k,u1,u2−−−−−→ s ? [u1, u2]
Σ; Ψ;E; Γ; Λ| ν−→ k once s ? [u1, u2]

onceR
Σ; Ψ;E; Γ; Λ, k claims s ? [u1, u2]

ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ, k once s ? [u1, u2]

ν−→ r ? [u′1, u′2]
onceL

It should again be noted that the principal judgments in the left rules are not retained in
the premises to enforce linearity correctly. The same pattern repeats in the left rules of all
connectives below. Another salient observation is that left rules for connectives apply only
to judgments of the form s ? [u1, u2]. Other judgments in hypotheses can be analyzed in
the sequent calculus only by promoting them to judgments of this form through the rules
(copy), (claims), and (lclaims).

The connective @. The rules for the @ connective are straightforward and follow the
corresponding rules in BL.

Σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2]
Σ; Ψ;E; Γ; Λ ν−→ s @ [u1, u2] ? [u′1, u′2]

@R

Σ; Ψ;E; Γ; Λ, s @ [u′1, u′2] ? [u1, u2], s ? [u′1, u′2]
ν−→ r ? [u′′1 , u′′2]

Σ; Ψ;E; Γ; Λ, s @ [u′1, u′2] ? [u1, u2]
ν−→ r ? [u′′1 , u′′2]

@L

Constraints and interpreted predicates. The rules for constraints and interpreted
predicates in BLL are similar to those in BL. The only important point is that in the right

194

Chapter 9. BLL: A Linear Extension of BL

rules, we require that the linear hypotheses be empty.

Σ; Ψ |= c

Σ; Ψ;E; Γ; · ν−→ c ? [u1, u2]
consR

Σ; Ψ, c;E; Γ; Λ ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ, c ? [u1, u2]

ν−→ r ? [u′1, u′2]
consL

Σ;E |= i

Σ; Ψ;E; Γ; · ν−→ i ? [u1, u2]
interR

Σ; Ψ;E, i; Γ; Λ ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ, i ? [u1, u2]

ν−→ r ? [u′1, u′2]
interL

Conjunctions ⊗ and &. In linear logic, there are two forms of conjunction – ⊗ and
&, often called multiplicative conjunction and additive conjunction respectively [71]. The
meaning of s1 ⊗ s2 ? [u1, u2] is that the available hypotheses simultaneously entail s1 and
s2 once each for the entire interval [u1, u2]. Accordingly, in the rule (⊗R), we split the
available linear hypotheses disjointly into Λ1 and Λ2, and use them to establish s1 ? [u1, u2]
and s2 ? [u1, u2] respectively. Dually, in the premise of the left rule, we introduce both s1
and s2 simultaneously in the linear hypotheses.

Σ; Ψ;E; Γ; Λ1
ν−→ s1 ? [u1, u2] Σ; Ψ;E; Γ; Λ2

ν−→ s2 ? [u1, u2]
Σ; Ψ;E; Γ; Λ1,Λ2

ν−→ s1 ⊗ s2 ? [u1, u2]
⊗R

Σ; Ψ;E; Γ; Λ, s1 ? [u1, u2], s2 ? [u1, u2]
ν−→ r ? [u′1, u′2]

Σ; Ψ;E; Γ; Λ, s1 ⊗ s2 ? [u1, u2]
ν−→ r ? [u′1, u′2]

⊗L

On the other hand, s1 & s2 ? [u1, u2] means that the entire hypotheses may be used to
establish s1 once throughout the interval [u1, u2], and also s2 once throughout the interval
[u1, u2]. Consequently, in the rule (&R), we use the same linear hypotheses to establish
both s1 ? [u1, u2] and s2 ? [u1, u2]. Dually, there are two left rules; one allows s1 ? [u1, u2]
to be assumed given the hypothesis s1 & s2 ? [u1, u2], whereas the other allows s2 ? [u1, u2]
to be assumed under the same condition.

Σ; Ψ;E; Γ; Λ ν−→ s1 ? [u1, u2] Σ; Ψ;E; Γ; Λ ν−→ s2 ? [u1, u2]
Σ; Ψ;E; Γ; Λ ν−→ s1 & s2 ? [u1, u2]

&R

Σ; Ψ;E; Γ; Λ, s1 ? [u1, u2]
ν−→ r ? [u′1, u′2]

Σ; Ψ;E; Γ; Λ, s1 & s2 ? [u1, u2]
ν−→ r ? [u′1, u′2]

& L1

Σ; Ψ;E; Γ; Λ, s2 ? [u1, u2]
ν−→ r ? [u′1, u′2]

Σ; Ψ;E; Γ; Λ, s1 & s2 ? [u1, u2]
ν−→ r ? [u′1, u′2]

& L2

The unit of the multiplicative conjunction, 1, denotes absence of resources. Accordingly,
it can be established as a conclusion if the linear hypotheses are empty (rule (1R)), and as
an assumption it may be removed (rule (1L)).

Σ; Ψ;E; Γ; · ν−→ 1 ? [u1, u2]
1R

Σ; Ψ;E; Γ; Λ ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ,1 ? [u1, u2]

ν−→ r ? [u′1, u′2]
1L

195

Chapter 9. BLL: A Linear Extension of BL

The unit of additive conjunction, called > in linear logic, is deliberately excluded from
BLL. To understand why we exclude >, let us look at the right rule it would have had,
were it to be included.

Σ; Ψ;E; Γ; Λ ν−→ > ? [u1, u2]
>R

The problem with this rule is that it consumes arbitrary linear hypotheses Λ. Consequently,
using >, it is possible to have sequents that admit weakening. As a simple example, if
Σ; Ψ;E; Γ; Λ ν−→ s ⊗ >, then for any Λ′, it is also the case that Σ; Ψ;E; Γ; Λ,Λ′ ν−→ s ⊗ >.
Clearly, in this case usage of linear hypotheses is not precisely accounted for by the logic.
To avoid this problem we do not include > in BLL.

Disjunction ⊕. The judgment s1 ⊕ s2 ? [u1, u2] means that one of s1 ? [u1, u2] and
s2 ? [u1, u2] holds from the available hypotheses, but it may not be known precisely which.
⊕ is the analogue of disjunction in intuitionistic linear logic.5 It has two right rules, which
allow s1 ⊕ s2 ? [u1, u2] to be established from s1 ? [u1, u2] and s2 ? [u1, u2] respectively. In
the left rule, the same conclusion must be established from either disjunct, since it is not
known in general which of the two disjuncts holds.

Σ; Ψ;E; Γ; Λ ν−→ s1 ? [u1, u2]
Σ; Ψ;E; Γ; Λ ν−→ s1 ⊕ s2 ? [u1, u2]

⊕ R1
Σ; Ψ;E; Γ; Λ ν−→ s2 ? [u1, u2]

Σ; Ψ;E; Γ; Λ ν−→ s1 ⊕ s2 ? [u1, u2]
⊕ R2

Σ; Ψ;E; Γ; Λ, s1 ? [u1, u2]
ν−→ r ? [u′1, u′2] Σ; Ψ;E; Γ; Λ, s2 ? [u1, u2]

ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ, s1 ⊕ s2 ? [u1, u2]

ν−→ r ? [u′1, u′2]
⊕L

The unit of disjunction, called 0 in linear logic, is not included in BLL because like > it
makes accounting of resources imprecise.

Implication (. In intuitionistic linear logic (without explicit time), the formula r (s
means that the linear hypothesis r entails s. In BLL, the meaning of (must also take
into account time intervals, in the same way that implication does in BL, resulting in the
following rules.

Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ; Λ, s1 ? [x1, x2]
ν−→ s2 ? [x1, x2]

Σ; Ψ;E; Γ; Λ ν−→ s1 (s2 ? [u1, u2]
(R

Σ; Ψ;E; Γ; Λ1
ν−→ s1 ? [u′1, u′2]

Σ; Ψ;E; Γ; Λ2, s2 ? [u′1, u′2]
ν−→ r ? [u′′1 , u′′2] Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; Γ; Λ1,Λ2, s1 (s2 ? [u1, u2]
ν−→ r ? [u′′1 , u′′2]

(L

5 ⊕ is often called additive disjunction, because there is also another kind of disjunction called multi-
plicative disjunction in classical linear logic. The latter is hard to explain intuitionistically, and is therefore
not included here [39].

196

Chapter 9. BLL: A Linear Extension of BL

Quantifiers ∀ and ∃. The rules for quantifiers in BLL also follow their counterparts from
BL.

Σ, x:σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2]
Σ; Ψ;E; Γ; Λ ν−→ ∀x:σ.s ? [u1, u2]

∀R
Σ; Ψ;E; Γ; Λ, s[t/x] ? [u1, u2]

ν−→ r ? [u′1, u′2] Σ ` t : σ
Σ; Ψ;E; Γ; Λ,∀x:σ.s ? [u1, u2]

ν−→ r ? [u′1, u′2]
∀L

Σ; Ψ;E; Γ; Λ ν−→ s[t/x] ? [u1, u2] Σ ` t : σ
Σ; Ψ;E; Γ; Λ ν−→ ∃x:σ.s ? [u1, u2]

∃R
Σ, x:σ; Ψ;E; Γ; Λ, s ? [u1, u2]

ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ,∃x:σ.s ? [u1, u2]

ν−→ r ? [u′1, u′2]
∃L

Derivable and admissible properties. The rules of the sequent calculus of BLL are
summarized in Figures 9.2 and 9.3. In the following we list some properties that explain the
interaction of @ with the other connectives. ` s means that Σ; Ψ;E; Γ; · ν−→ s ? [u1, u2] for
every Σ, Ψ, Γ, ν, u1 and u2, whereas 6` s means that this is not the case. s1 ≡ s2 denotes
(s1 (s2) & (s2 (s1), which is the linear analogue of logical equivalence.

1. ` ((u1 ≤ u′1) ⊗ (u′2 ≤ u2))(((s @ [u1, u2])((s @ [u′1, u′2]))

2. ` ((s1 ⊗ s2) @ [u1, u2]) ≡ ((s1 @ [u1, u2]) ⊗ (s2 @ [u1, u2]))

3. ` ((s1 & s2) @ [u1, u2]) ≡ ((s1 @ [u1, u2]) & (s2 @ [u1, u2]))

4. ` ((s1 ⊕ s2) @ [u1, u2]) ≡ ((s1 @ [u1, u2]) ⊕ (s2 @ [u1, u2]))

5. ` ((∀x:σ.s) @ [u1, u2]) ≡ (∀x:σ.(s @ [u1, u2])) (x 6∈ u1, u2)

6. ` ((∃x:σ.s) @ [u1, u2]) ≡ (∃x:σ.(s @ [u1, u2])) (x 6∈ u1, u2)

7. ` 1 @ [u1, u2]

8. ` ((s1 (s2) @ [u1, u2]) ≡ (∀x1:time.∀x2:time. (((u1 ≤ x1) ⊗ (x2 ≤ u2) ⊗ (s1 @
[x1, x2]))((s2 @ [x1, x2])))

9. ` ((k says s) @ [u1, u2])((k says (s @ [u1, u2]))

10. 6` (k says (s @ [u1, u2]))(((k says s) @ [u1, u2])

11. ` ((s @ [u1, u2]) @ [u′1, u′2]) ≡ (s @ [u1, u2])

The following are some properties of the connectives !, k says s, and k once s.

1. ` (k says s)((k once s)

2. 6` (k once s)((k says s)

3. ` (k says s)(((k once (!s)) & (!(k once s)))

4. 6` ((k once (!s)) & (!(k once s)))((k says s)

197

Chapter 9. BLL: A Linear Extension of BL

Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ;E; Γ; p ? [u′1, u′2]

ν−→ p ? [u1, u2]
init

Σ; Ψ;E; Γ, s ◦ [u1, u2]; Λ, s ? [u1, u2]
ν−→ r ? [u′1, u′2]

Σ; Ψ;E; Γ, s ◦ [u1, u2]; Λ
ν−→ r ? [u′1, u′2]

copy

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]; Λ, s ? [u1, u2]
ν−→ r ? [u′1, u′2]

ν = k′, ub, ue Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2 Σ; Ψ |= k � k′

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]; Λ
ν−→ r ? [u′1, u′2]

claims

Σ; Ψ;E; Γ; Λ, s ? [u1, u2]
ν−→ r ? [u′1, u′2]

ν = k′, ub, ue Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2 Σ; Ψ |= k � k′

Σ; Ψ;E; Γ; Λ, k claims s ? [u1, u2]
ν−→ r ? [u′1, u′2]

lclaims

Σ; Ψ;E; Γ; · ν−→ s ? [u1, u2]
Σ; Ψ;E; Γ; · ν−→ !s ? [u1, u2]

!R
Σ; Ψ;E; Γ, s ◦ [u1, u2]; Λ

ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ, !s ? [u1, u2]

ν−→ r ? [u′1, u′2]
!L

Σ; Ψ;E; Γ|; · k,u1,u2−−−−−→ s ? [u1, u2]
Σ; Ψ;E; Γ; · ν−→ k says s ? [u1, u2]

saysR
Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]; Λ

ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ, k says s ? [u1, u2]

ν−→ r ? [u′1, u′2]
saysL

Σ; Ψ;E; Γ|; Λ| k,u1,u2−−−−−→ s ? [u1, u2]
Σ; Ψ;E; Γ; Λ| ν−→ k once s ? [u1, u2]

onceR
Σ; Ψ;E; Γ; Λ, k claims s ? [u1, u2]

ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ, k once s ? [u1, u2]

ν−→ r ? [u′1, u′2]
onceL

Σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2]
Σ; Ψ;E; Γ; Λ ν−→ s @ [u1, u2] ? [u′1, u′2]

@R

Σ; Ψ;E; Γ; Λ, s @ [u′1, u′2] ? [u1, u2], s ? [u′1, u′2]
ν−→ r ? [u′′1 , u′′2]

Σ; Ψ;E; Γ; Λ, s @ [u′1, u′2] ? [u1, u2]
ν−→ r ? [u′′1 , u′′2]

@L

Σ; Ψ |= c

Σ; Ψ;E; Γ; · ν−→ c ? [u1, u2]
consR

Σ; Ψ, c;E; Γ; Λ ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ, c ? [u1, u2]

ν−→ r ? [u′1, u′2]
consL

Σ;E |= i

Σ; Ψ;E; Γ; · ν−→ i ? [u1, u2]
interR

Σ; Ψ;E, i; Γ; Λ ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ, i ? [u1, u2]

ν−→ r ? [u′1, u′2]
interL

Figure 9.2: BLL: Sequent calculus, part 1

Counting “uses” of a linear hypothesis. Throughout this chapter, we have used the
phrase “use of a linear hypothesis” without an explanation of its precise meaning. Now we
explain this phrase. In the absence of rules for & and ⊕, it is easy to check by structural
induction on proofs that if a resource is repeated n times in the linear hypotheses, then it
will appear occur exactly n times as the principal judgment of a left rule or the rule (init)
in the proof. Consequently, in the absence of the connectives & and ⊕, we may say that a
linear hypothesis is used n times in a proof if it appears n times as the principal judgment

198

Chapter 9. BLL: A Linear Extension of BL

Σ; Ψ;E; Γ; Λ1
ν−→ s1 ? [u1, u2] Σ; Ψ;E; Γ; Λ2

ν−→ s2 ? [u1, u2]
Σ; Ψ;E; Γ; Λ1,Λ2

ν−→ s1 ⊗ s2 ? [u1, u2]
⊗R

Σ; Ψ;E; Γ; Λ, s1 ? [u1, u2], s2 ? [u1, u2]
ν−→ r ? [u′1, u′2]

Σ; Ψ;E; Γ; Λ, s1 ⊗ s2 ? [u1, u2]
ν−→ r ? [u′1, u′2]

⊗L

Σ; Ψ;E; Γ; · ν−→ 1 ? [u1, u2]
1R

Σ; Ψ;E; Γ; Λ ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ,1 ? [u1, u2]

ν−→ r ? [u′1, u′2]
1L

Σ; Ψ;E; Γ; Λ ν−→ s1 ? [u1, u2] Σ; Ψ;E; Γ; Λ ν−→ s2 ? [u1, u2]
Σ; Ψ;E; Γ; Λ ν−→ s1 & s2 ? [u1, u2]

&R

Σ; Ψ;E; Γ; Λ, s1 ? [u1, u2]
ν−→ r ? [u′1, u′2]

Σ; Ψ;E; Γ; Λ, s1 & s2 ? [u1, u2]
ν−→ r ? [u′1, u′2]

& L1

Σ; Ψ;E; Γ; Λ, s2 ? [u1, u2]
ν−→ r ? [u′1, u′2]

Σ; Ψ;E; Γ; Λ, s1 & s2 ? [u1, u2]
ν−→ r ? [u′1, u′2]

& L2

Σ; Ψ;E; Γ; Λ ν−→ s1 ? [u1, u2]
Σ; Ψ;E; Γ; Λ ν−→ s1 ⊕ s2 ? [u1, u2]

⊕ R1
Σ; Ψ;E; Γ; Λ ν−→ s2 ? [u1, u2]

Σ; Ψ;E; Γ; Λ ν−→ s1 ⊕ s2 ? [u1, u2]
⊕ R2

Σ; Ψ;E; Γ; Λ, s1 ? [u1, u2]
ν−→ r ? [u′1, u′2] Σ; Ψ;E; Γ; Λ, s2 ? [u1, u2]

ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ, s1 ⊕ s2 ? [u1, u2]

ν−→ r ? [u′1, u′2]
⊕L

Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ; Λ, s1 ? [x1, x2]
ν−→ s2 ? [x1, x2]

Σ; Ψ;E; Γ; Λ ν−→ s1 (s2 ? [u1, u2]
(R

Σ; Ψ;E; Γ; Λ1
ν−→ s1 ? [u′1, u′2]

Σ; Ψ;E; Γ; Λ2, s2 ? [u′1, u′2]
ν−→ r ? [u′′1 , u′′2] Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; Γ; Λ1,Λ2, s1 (s2 ? [u1, u2]
ν−→ r ? [u′′1 , u′′2]

(L

Σ, x:σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2]
Σ; Ψ;E; Γ; Λ ν−→ ∀x:σ.s ? [u1, u2]

∀R
Σ; Ψ;E; Γ; Λ, s[t/x] ? [u1, u2]

ν−→ r ? [u′1, u′2] Σ ` t : σ
Σ; Ψ;E; Γ; Λ,∀x:σ.s ? [u1, u2]

ν−→ r ? [u′1, u′2]
∀L

Σ; Ψ;E; Γ; Λ ν−→ s[t/x] ? [u1, u2] Σ ` t : σ
Σ; Ψ;E; Γ; Λ ν−→ ∃x:σ.s ? [u1, u2]

∃R
Σ, x:σ; Ψ;E; Γ; Λ, s ? [u1, u2]

ν−→ r ? [u′1, u′2]
Σ; Ψ;E; Γ; Λ,∃x:σ.s ? [u1, u2]

ν−→ r ? [u′1, u′2]
∃L

Figure 9.3: BLL: Sequent calculus, part 2

of a left rule or the rule (init) in the proof. This should also be intuitive because left rules
analyze (and therefore consume) hypothesis.

199

Chapter 9. BLL: A Linear Extension of BL

We have to be more careful when the connectives & and ⊕ are included. For instance, in
the rule (&R), the linear hypotheses are replicated in the two premises, and a naive counting
of uses of resources as explained above would suggest that each resource appearing n times
in the linear hypotheses in the conclusion has been used 2n times in the proof (n times
in each premise). A similar problem arises for the rule (⊕L). Therefore, when counting
the number of uses of a linear hypothesis above either the rule (&R) or the rule (⊕L) in a
derivation, the uses in any one premise should be counted. This can be intuitively justified
as follows. From the assumption s1 & s2 ? [u1, u2], we are only allowed to obtain one of
the conjuncts (rules (& L1) and (& L2)), so only one of the premises of a proof ending in
(&R) can be used if the proof were to substitute a hypothesis in another proof. The latter
becomes clear upon a careful scrutiny of the proof of admissibility of cut (Theorem 9.5).
Similarly, the rule (⊕L) corresponds to a proof by cases, and again, only one of its branches
will be used when the principal assumption of the rule is substituted by another proof.

9.1.2 Metatheory of the Sequent Calculus

In this section we prove several interesting metatheoretic properties of the sequent calcu-
lus of BLL. These properties are generalizations of properties presented in §4.2.5 for the
sequent calculus of BL. We start with weakening and contraction, which are stated in the
following theorem. Conspicuously, neither weakening nor contraction holds for the linear
hypotheses Λ.

Theorem 9.1 (Weakening and Contraction). The following hold:

1. (Weakening)

(a) Σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2] implies Σ, x:σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2].
(b) Σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2] implies Σ; Ψ, c;E; Γ; Λ ν−→ s ? [u1, u2].
(c) Σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2] implies Σ; Ψ;E, i; Γ; Λ ν−→ s ? [u1, u2].
(d) Σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2] implies Σ; Ψ;E; Γ, J ; Λ ν−→ s ? [u1, u2].

2. (Contraction) Σ; Ψ;E; Γ, J, J ; Λ ν−→ s ? [u1, u2] implies Σ; Ψ;E; Γ, J ; Λ ν−→ s ? [u1, u2].

Further the derivation in the consequent of each statement has a depth no more than that
of the antecedent.

Proof. By separate induction on the given derivation for each property.

Theorem 9.2 (Instantiation). Σ, x:σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2] and Σ ` t : σ imply
Σ; Ψ[t/x];E[t/x]; Γ[t/x]; Λ[t/x] ν[t/x]−−−→ s[t/x] ? [u1[t/x], u2[t/x]]

Proof. By induction on the derivation of Σ, x:σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2].

Theorem 9.3 (View subsumption). Suppose the following hold:

1. Σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2]

200

Chapter 9. BLL: A Linear Extension of BL

2. ν = k0, ub, ue

3. Σ; Ψ |= k0 � k′0, Σ; Ψ |= ub ≤ u′b, and Σ; Ψ |= u′e ≤ ue.

4. ν ′ = k′0, u
′
b, u
′
e

Then Σ; Ψ;E; Γ; Λ ν′−→ s ? [u1, u2] by a derivation of smaller or equal depth.

Proof. By induction on the given derivation of Σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2] and case analysis
of its last rule.

Theorem 9.4 (Time subsumption). Suppose the following hold:

1. Σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2]

2. Σ; Ψ |= u1 ≤ un

3. Σ; Ψ |= um ≤ u2

Then Σ; Ψ;E; Γ; Λ ν−→ s ? [un, um].

Proof. By induction on the depth of the given derivation of Σ; Ψ;E; Γ; Λ ν−→ s ? [u1, u2]
and case analysis of its last rule, as in the proof of Theorem 4.11. The proof appeals to
Theorem 9.3 for the cases (saysR) and (onceR), and for the case ((R), we appeal to a lemma
which states that Σ; Ψ |= c and Σ; Ψ, c;E; Γ; Λ ν−→ s ? [u1, u2] imply Σ; Ψ;E; Γ; Λ ν−→ s ?
[u1, u2]. The latter follows by a straightforward induction on the derivation of Σ; Ψ, c;E; Γ; Λ
ν−→ s ? [u1, u2].

Theorem 9.5 (Admissibility of cut). The following four properties hold:

1. Suppose that

(a) Σ; Ψ;E; Γ; Λ1
ν−→ s ? [u1, u2] and

(b) Σ; Ψ;E; Γ; Λ2, s ? [u1, u2]
ν−→ s′ ? [u′1, u′2]

Then Σ; Ψ;E; Γ; Λ1,Λ2
ν−→ s′ ? [u′1, u′2].

2. Suppose that

(a) Σ; Ψ;E; Γ; · ν−→ s ? [u1, u2] and
(b) Σ; Ψ;E; Γ, s ◦ [u1, u2]; Λ

ν−→ s′ ? [u′1, u′2]

Then Σ; Ψ;E; Γ; Λ ν−→ s′ ? [u′1, u′2].

3. Suppose that

(a) Σ; Ψ;E; Γ|; Λ1|
k,u1,u2−−−−→ s ? [u1, u2]

(b) Σ; Ψ;E; Γ; Λ2, k claims s ? [u1, u2]
ν−→ s′ ? [u′1, u′2]

201

Chapter 9. BLL: A Linear Extension of BL

Then Σ; Ψ;E; Γ; Λ1|,Λ2
ν−→ s′ ? [u′1, u′2].

4. Suppose that

(a) Σ; Ψ;E; Γ|; · k,u1,u2−−−−→ s ? [u1, u2]
(b) Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]; Λ

ν−→ s′ ? [u′1, u′2]

Then Σ; Ψ;E; Γ; Λ ν−→ s′ ? [u′1, u′2].

Proof. By a simultaneous lexicographic induction, first on the size of the cut formula s,
then on the orders (2) > (1), (3) > (1), and (4) > (1), and finally on the depths of the two
given derivations, as in prior work [43, 54, 66].

Theorem 9.6 (Identity). If Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2, then Σ; Ψ;E; Γ; s ?
[u1, u2]

ν−→ s ? [u′1, u′2].

Proof. By induction on s.

9.2 Examples of Use
In this section we present two examples of policies that use linearity to encode motifs like
consumable credentials, and real expendable resources like money. These examples are
illustrative, primarily intended to enumerate the expressiveness of BLL. Other examples on
the use of linearity in the context of authorization may be found in prior work [54, 66].

Consumable credentials. The simplest use of linearity is in modeling consumable cre-
dentials, which we illustrate through a hypothetical example inspired by the Grey sys-
tem [20]. Assume that access to doors in certain offices is controlled through proof-carrying
authorization, and that the owner of an office is allowed to decide who may enter an office.
Assuming that the predicate mayenter K ′ K means that K ′ may enter the office of K, and
that admin has ultimate authority on access, the following policy rule gives each principal
K authority to decide who may enter her office. (As in §8, variables in uppercase letters
are universally quantified immediately after the annotation claims.)

admin claims ((K once (mayenter K ′ K))((mayenter K ′ K)) ◦ [−∞,+∞]

The policy rule is unrestricted (it can be used any number of times) since it contains the
symbol ◦, not ?. Use of the connective once in the policy rule, as opposed to says, is
important because it gives every principal the ability to allow another principal access to
her office only once. For example, in conjunction with the previous policy rule, the following
consumable credential issued by Alice would allow Bob to enter Alice’s office at most once in
the interval in the week January 01, 2009 – January 07, 2009. After Bob uses this credential
once, it will be marked consumed by the reference monitor, so Bob will not be able to enter
Alice’s office again using this credential.

Alice claims (mayenter Bob Alice) ? [2009:01:01, 2009:01:07]

202

Chapter 9. BLL: A Linear Extension of BL

It is easy to check that the above two assumptions entail that admin once (mayenter Bob
Alice) ? [2009:01:01, 2009:01:07] and that this would not be the case if we replace once by
says in the first rule. Also observe that both linearity and time restrict the use of the second
credential, but in different ways.

Had Alice wanted to allow Bob unlimited access to her office during the week January
01, 2009 – January 07, 2009, she could have issued the following unrestricted credential in
place of the second credential above.

Alice claims (mayenter Bob Alice) ◦ [2009:01:01, 2009:01:07]

Using the first and the third assumptions above, it is possible to derive in BLL the judgment
admin says (mayenter Bob Alice) ? [2009:01:01, 2009:01:07], which would allow Bob to
access Alice’s office any number of times during the week.

Modeling actual state. Using constraints and linearity, it is possible to model actual
system state and to even keep track of expendable resources like money in the logic. For
instance, the following rule formalizes the fact that an individual K possessing $N initially
(predicate hasmoney K N) may spend $10 to buy a movie ticket from the theater (formula
theater once (ticket K)), leaving the individual with $(N − 10).

((hasmoney K N) ⊗ (N ≥ 10) ⊗ (is N ′ (N − 10)))
(((hasmoney K N ′) ⊗ (theater once (ticket K))) ◦ [−∞,+∞]

The above rules expresses a state transition that reduces the amount of money K has and
generates an authorization (ticket) in return. The ticket may be used by the individual to
enter the theater, which we express as follows.

theater claims ((ticket K)((mayenter K theater)) ◦ [−∞,+∞]

As an example, the above two policy rules and the linear hypothesis (hasmoney Alice 30) ?
[−∞,+∞] together entail the following judgment in BLL which means that Alice could
access the theater thrice and be left with no money.

((theater once (mayenter K theater)) ⊗
(theater once (mayenter K theater)) ⊗
(theater once (mayenter K theater)) ⊗
(hasmoney Alice 0)) ◦ [−∞,+∞]

In this example, linearity has been used to model an expendable resource (money), but
consumption of the resource is not tracked via a reference monitor. Instead a linear predicate
hasmoney K N that models actual possession of money is consumed and updated by the
first rule. More examples of such use of linearity may be found in prior work [66]. It should
also be noted that the predicate ticket K produced by the first rule and consumed by the
second is a consumable credential in the sense mentioned in the opening of this chapter.

203

Chapter 9. BLL: A Linear Extension of BL

9.3 Enforcement with Procaps
In the opening of this chapter we proposed a simple strategy that may be employed to
enforce correct use of consumable credentials using BLL and proof-carrying authorization
(without procaps). In that strategy we suggested that consumable credentials used in a
proof be assumed in the linear hypotheses, and that the proof verifier keep track of the
number of times each consumable credential has been used by counting the number of
its occurrences in the linear hypotheses of each proof it successfully verifies. Now we ask
whether this strategy can be adapted to PCFS where proofs are verified ahead of access.
There are two possibilities for tracking consumable credentials in PCFS:

- The proof verifier may track consumable credentials, and refuse to issue procaps for
proofs that rely on exhausted credentials.

- The file system back end may track consumable credentials, relying on the proof
verifier to correctly transfer the list of consumable credentials from proofs it verifies
to procaps it generates.

The first method, although clearly advantageous in that it does not increase the procap-
checking burden of the back end, is not appropriate because it suffers from two related
problems. First, it allows a principal to generate a procap using a proof that relies on
consumable credentials and to use the procap for access again and again, possibly circum-
venting the bound on the number of uses of the consumable credentials used in the proof.
Second, it is possible to verify a proof, but never use the procap generated from it, thus
wasting consumable credentials used in the proof which may have been helpful for prov-
ing other authorizations. Owing to these problems, for PCFS, the second method may be
more suitable. Accordingly, consumable credentials can be enforced using BLL in the PCFS
architecture as follows.

- Each certificate establishing a consumable credential is distinctly marked by the cre-
ator as being consumable. The number of times such a credential can be used is
made available to the reference monitor in the PCFS back end. (Details on this follow
below.)

- During proof verification, the proof verifier requires that any hypothesis established
by a certificate marked as consumable (previous point) be assumed as a resource,
possibly repeated many times. The inference rules of BLL now ensure that each
consumable credential is used in the proof exactly the number of times it is repeated
in the linear hypotheses. The proof verifier puts the identity of each consumable
credential occurring in the linear hypotheses of a proof as well as the number of times
it appears in the linear hypotheses into the procap it generates from the proof.

- Whenever the PCFS back end retrieves and checks a procap, it increases (in an internal
database) the number of uses of each consumable credential as mentioned in the
procap. If the count of any consumable credential exceeds its maximum stipulated
use, then the procap is rejected, else its other conditions are checked as discussed
in §5.2.

204

Chapter 9. BLL: A Linear Extension of BL

An important question we have not yet addressed is how the PCFS back end learns the
identities and maximum stipulated use of each consumable credential. (A similar question
arises if the proof verifier tracks use of consumable credentials in proof-carrying authoriza-
tion without procaps.) One possibility in this regard, which may be easy to implement in
a centralized system like the current implementation of PCFS, is to require that creators
of consumable credentials report them to the back end, which could maintain a central
database of such reports. A procap relying on any consumable credential not reported to
the back end could be immediately rejected. In a fully distributed setting, it may be im-
plausible to assume that all consumable credentials ever issued would be reported to the
back end. In that case, the back end may contact issuers of credentials on a need-only basis.
More so, the issuers may themselves keep track of use of credentials they issue, and update
their records when the back end contacts them. However, the latter approach results in
an atomicity problem – either all issuers of consumable credentials mentioned in a procap
should update their records and the back end must know this so that it can proceed, or
none should and the back end must know this so that it can reject the procap. Bowers et al.
discuss, implement, and evaluate the performance of contract signing protocols for solving
this atomicity problem in the context of proof-carrying authorization without procaps [34].

9.4 Related Work

Linearity was first introduced in a classical logic by Girard [71]. Intuitionistic versions were
later considered by several authors, e.g., [9, 27, 140]. In a judgmental form that we build
upon, the logic was first presented by Chang et al. [39]. Going beyond linear logic, Wright
[144] described a meta-logic in which the uses of each hypothesis are explicitly counted by
annotations. Wright’s annotations are more general than replication of hypotheses suggested
in this chapter because annotations can be used to encode many different logics of resources
including linear logic.

In the context of authorization, there has been limited work on the use of linearity.
The area was pioneered in the work of the author and others [66], where linearity was
considered for expressing not only consumable credentials but also for expressing elements
of state, knowledge of individuals, and authorization-guarded transitions on both. The
paper also showed that invariant properties of state may be formally expressed and verified
in logical proofs. The latter idea has been developed and refined significantly in recent work
by DeYoung and Pfenning [55].

Bowers et al. [34] implemented and tested enforcement of consumable credentials using
linear logic to track use of consumable credentials in proofs, and contract signing protocols
to track their use in the reference monitor. Independent of other work mentioned above,
Cederquist et al. [37] developed a logic for auditing authorization violations on traces that
contained a limited form of linearity for recording authorizations that may be used once
only. Barth and Mitchell [17] proved, in the context of digital rights management, that
all strategies for selecting consumable credentials to authorize a request without knowing
future requests suffer from a common problem of non-monotonicity: replacing a credential
by a more general credential may cause the algorithm to behave worse in the future. Using a

205

Chapter 9. BLL: A Linear Extension of BL

fragment of linear logic for expressing digital rights they further showed that, under certain
conditions on formulas representing the rights, monotonicity can be recovered.

A combination of linearity and explicit time was explored earlier in the author’s joint
work on η logic [54], later developed in great depth in DeYoung’s undergraduate thesis [53].
Although the fundamental nature of the says modality in η logic is different from that in
BL, and in particular, the linear version of η logic contains only one says connective not
two like BLL, many of the ideas that this chapter builds on owe at least a vague allegiance
to that work. The direct inspiration for the methods and work in this chapter, however, is
the author’s earlier joint work [66].

206

Chapter 10

Conclusion: Directions for Future
Work

In this thesis we have introduced proof theory and metatheory in the context of autho-
rization logic, explained their foundational and practical importance through a new logic
BL, developed a logic-based, provably correct mechanism for enforcing dynamic policies in
operation-intensive systems, and demonstrated feasibility of the latter by implementing and
testing it in a new file system, PCFS. We expect that the architecture for authorization
proposed in this thesis will be useful in applications besides PCFS, and hope that it leads
to formally grounded, efficient enforcement of access access control policies in operation-
intensive interfaces. In this final chapter we list some broad themes for future work that
either complement or build upon the work of the thesis.

The overall purpose of access control, of which the work in this thesis is a part, is to
provide security for sensitive components of computer systems. Successfully attainment of
this goal requires careful consideration of not only authentication and authorization mech-
anisms, but also usability of the access control framework. Accordingly, complementary to
the work in this thesis, it may be useful to develop a front end for authoring authorization
policies, converting them to logical form, and checking them for well-formedness. Such a
front end may be necessary in some cases for at least two reasons. First, it may be unrea-
sonable to expect that system administrators responsible for creating authorization policies
would always understand logical syntax, so policy authoring tools that incorporate common
policy creation workflows and automatically translate them to logic may be essential. Prior
work on the Grey system has considered these issues [19, 20]. Second, it may be necessary
to check policies for well-formedness before using them for enforcement. Such checks may
not only ensure that principals have not exceeded their jurisdiction in creating policies, but
may also ascertain that policies are well-moded to aid automatic proof search. We alluded
to the possibility of mode checks and their importance in §6.4. A policy front end may also
compile or residuate policy clauses to aid automatic proof search.

Another possible line of work is to use saturating search à la Datalog to find all con-
sequences of policies and to generate all possible procaps through a centralized inference
engine, and hence enforce the policies without the use of explicit proofs. Abduction tech-

207

Chapter 10. Conclusion: Directions for Future Work

niques from logic programming [24, 51] may help find relevant conditions (constraints and
interpreted predicates) that would allow access from policies that are dynamic. On the
subject of enforcement of policies, an important, open question is that of lower bounds on
the complexity of distributed tracking of consumable credentials, as discussed in §9.3.

It also seems plausible to analyze policies against meta-level correctness criteria using
proof theoretic methods. Beginnings of such analysis were made in prior joint work of the
author and Pfenning [67] under the name of non-interference properties, and also in the work
of Abadi [5]. It may be of significant practical use to expand the analysis in these papers, to
propose a language for expressing meta-level correctness criteria for authorization policies
expressed in logic, and to develop analysis for checking against these criteria automatically.

Finally, even though authorization policies establish legitimacy of single accesses, many
relevant security properties of systems are the consequence of interaction between several
accesses and ensuing state changes. Developing foundational methods that combine au-
thorization policies expressed in logic with information about workflows or programs that
govern system behavior in order to establish relevant invariant properties of state, or even
arbitrary safety properties is an interesting topic of further research, at least to the author.
Some work on the subject already exists, e.g., [25, 55, 66], but a lot still needs to be done
to make the methods useful for analysis of practical systems.

208

Appendix A

Proofs and Other Details from §3

A.1 Axiomatic Proof System for BLS
In §3.1, we presented some rules and axioms for the axiomatic system. Here, we list all the
rules and axioms, including those listed earlier.

Σ `H s
Σ `H k says s

N
Σ `H s ⊃ s′ Σ `H s

Σ `H s′
mp

Σ, x:σ `H s ⊃ s′ x 6∈ s
Σ `H s ⊃ ∀x:σ.s′

U

Σ, x:σ `H k says (s ⊃ s′) x 6∈ s, k
Σ `H k says (s ⊃ ∀x:σ.s′)

F
Σ, x:σ `H s ⊃ s′ x 6∈ s′

Σ `H (∃x:σ.s) ⊃ s′
E

Σ, x:σ `H k says (s ⊃ s′) x 6∈ s′, k
Σ `H k says ((∃x:σ.s) ⊃ s′)

G

Axioms:
Σ `H (k says (s1 ⊃ s2)) ⊃ ((k says s1) ⊃ (k says s2)) (K)
Σ `H (k says s) ⊃ k′ says k says s (I)
Σ `H k says ((k says s) ⊃ s) (C)
Σ `H (k says s) ⊃ k′ says s if Σ ` k � k′ (S)
Σ `H s ⊃ (r ⊃ s) (imp1)
Σ `H (s ⊃ s′) ⊃ ((s ⊃ (s′ ⊃ s′′)) ⊃ (s ⊃ s′′)) (imp2)
Σ `H s ⊃ (s′ ⊃ (s ∧ s′)) (conj1)
Σ `H (s ∧ s′) ⊃ s (conj2)
Σ `H (s ∧ s′) ⊃ s′ (conj3)
Σ `H s ⊃ (s ∨ s′) (disj1)
Σ `H s′ ⊃ (s ∨ s′) (disj2)
Σ `H (s ⊃ s′′) ⊃ ((s′ ⊃ s′′) ⊃ ((s ∨ s′) ⊃ s′′)) (disj3)
Σ `H > (true)
Σ `H ⊥ ⊃ s (false)
Σ `H (∀x:σ.s) ⊃ s[t/x] if Σ ` t : σ (instU)
Σ `H s[t/x] ⊃ ∃x:σ.s if Σ ` t : σ (instE)

209

Appendix A. Proofs and Other Details from §3

Next we introduce a proof tool: a generalized axiomatic system, which allows hypotheses.
We write Σ; Γ `G s to mean that if Σ `H s′ for each s′ in Γ, then Σ `H s. The rules of the
generalized axiomatic system are shown below (axioms from above are unchanged).

Σ; Γ, s `G s
use

Σ `H s is an axiom
Σ; Γ `G s

ax

Σ; · `G s
Σ; Γ `G k says s

N
Σ; Γ `G s ⊃ s′ Σ; Γ `G s

Σ; Γ `G s′
mp

Σ, x:σ; Γ `G s ⊃ s′ x 6∈ Γ, s
Σ; Γ `G s ⊃ ∀x:σ.s′

U
Σ, x:σ; · `G k says (s ⊃ s′) x 6∈ Γ, s, k

Σ; Γ `G k says (s ⊃ ∀x:σ.s′)
F

Σ, x:σ; Γ `G s ⊃ s′ x 6∈ Γ, s′

Σ; Γ `G (∃x:σ.s) ⊃ s′
E

Σ, x:σ; · `G k says (s ⊃ s′) x 6∈ Γ, s′, k
Σ; Γ `G k says ((∃x:σ.s) ⊃ s′)

G

Now we prove some basic properties of the generalized axiomatic system.

Lemma A.1 (Basic properties). The following hold.

1. (Weakening) Σ; Γ `G s implies Σ; Γ,Γ′ `G s.

2. (Substitution) Σ; Γ `G s and Σ; Γ, s `G s′ imply Σ; Γ `G s′.

3. (Deduction) Σ; Γ `G s ⊃ s′ if and only if Σ; Γ, s `G s′.

4. (Equivalence) Σ; · `G s if and only if Σ `H s.

Proof. (1) follows by induction on the given derivation. (2) follows by induction on the
second given derivation.

The “only if” direction of (3) follows directly from the rules (use) and (mp): given that
Σ; Γ `G s ⊃ s′, we get Σ; Γ, s `G s ⊃ s′ by (1), and Σ; Γ, s `G s from rule (use). Using (mp)
on the last two derivations, we get Σ; Γ, s `G s′ as required.

The “if” direction of (3) follows by an induction on the derivation of Σ; Γ, s `G s′. This
is somewhat tedious, but standard.

Each direction of (4) follows by a simple induction on the given derivation.

A.2 Proof of Theorem 3.13
In this section we present those details of the proof Theorem 3.13 that were not presented
in §3.3. In particular we show here that the natural deduction system for BLS can be
simulated in the axiomatic system and that the axiomatic system can be simulated in the
sequent calculus.

Lemma A.2 (2 ⇒ 3 from Theorem 3.13). Σ; Γ `k s implies Σ `H k says (Γ ⊃ s).

210

Appendix A. Proofs and Other Details from §3

Proof. By Lemma A.1.4, it suffices to show that Σ; Γ `k s implies Σ; · `G k says (Γ ⊃ s).
We prove this by induction on the derivation of Σ; Γ `k s, and show some of the interest-
ing cases below. Basic transformation steps in the axiomatic system such as Currying and
un-Currying are often performed implicitly.

Case.
Σ; Γ, s `k s

hyp

To show: Σ; · `G k says ((Γ ∧ s) ⊃ s)

1. Σ; · `G (Γ ∧ s) ⊃ s (Axiom (conj3))

2. Σ; · `G k says ((Γ ∧ s) ⊃ s) (Rule (N) on 1)

Case.
Σ ` k � k0

Σ; Γ, k claims s `k0 s
claims

To show: Σ; · `G k0 says ((Γ ∧ (k says s)) ⊃ s)

1. Σ; · `G k says ((k says s) ⊃ s) (Axiom (C))

2. Σ; · `G ((k says s) ⊃ s) ⊃ ((Γ ∧ (k says s)) ⊃ s) (Simple theorem in G)

3. Σ; · `G k says (((k says s) ⊃ s) ⊃ ((Γ ∧ (k says s)) ⊃ s)) (Rule (N) on 2)

4. Σ; · `G (k says ((k says s) ⊃ s)) ⊃ k says ((Γ ∧ (k says s)) ⊃ s)

(Axiom (K) and rule (mp) on 3)

5. Σ; · `G k says ((Γ ∧ (k says s)) ⊃ s) (Rule (mp) on 4,1)

6. Σ; · `G k0 says ((Γ ∧ (k says s)) ⊃ s) (Axiom (S) and rule (mp) on 5)

Case.
Σ, x:σ; Γ `k s
Σ; Γ `k ∀x:σ.s

∀I

To show: Σ; · `G k says (Γ ⊃ ∀x:σ.s)

1. Σ, x:σ; · `G k says (Γ ⊃ s) (i.h. on premise)

2. Σ; · `G k says (Γ ⊃ ∀x:σ.s) (Rule (F) on 1)

Case.
Σ; Γ| `k s

Σ; Γ `k0 k says s
saysI

To show: Σ; · `G k0 says (Γ ⊃ k says s)
Let Γ| = k1 claims s1, . . . , kn claims sn.

1. Σ; · `G k says (((k1 says s1) ∧ . . . ∧ (kn says sn)) ⊃ s) (i.h. on premise)

211

Appendix A. Proofs and Other Details from §3

2. Σ; · `G ((k says k1 says s1) ∧ . . . ∧ (k says kn says sn)) ⊃ k says s

(Axiom (K) and rule (mp) on 1)

3. Σ; k says k1 says s1, . . . , k says kn says sn `G k says s (Lemma A.1.3 on 2)

4. Σ; · `G (ki says si) ⊃ k says ki says si (Axiom (I))

5. Σ; ki says si `G k says ki says si (Lemma A.1.3 on 4)

6. Σ; k1 says s1, . . . , kn says sn `G k says s (Lemma A.1.2 on 5,3)

7. Σ;Γ `G k says s (Lemma A.1.1 on 6)

8. Σ; · `G Γ ⊃ k says s (Lemma A.1.3 on 7)

9. Σ; · `G k0 says (Γ ⊃ k says s) (Rule (N) on 8)

Case.
Σ; Γ `k0 k says s Σ; Γ, k claims s `k0 s′

Σ; Γ `k0 s′
saysE

To show: Σ; · `G k0 says (Γ ⊃ s′)

1. Σ; · `G k0 says (Γ ⊃ k says s) (i.h. on 1st premise)

2. Σ; · `G k0 says ((Γ ∧ k says s) ⊃ s′) (i.h. on 2nd premise)

3. Σ; · `G k0 says (Γ ⊃ (k says s) ⊃ s′) (Currying on 2)

4. Σ; · `G (Γ ⊃ k says s) ⊃ ((Γ ⊃ (k says s) ⊃ s′) ⊃ (Γ ⊃ s′)) (Axiom (imp2))

5. Σ; · `G (k0 says (Γ ⊃ k says s)) ⊃ ((k0 says (Γ ⊃ (k says s) ⊃ s′)) ⊃ k0 says (Γ ⊃ s′))
(Axiom (K), rule (mp) on 4)

6. Σ; · `G (k0 says (Γ ⊃ (k says s) ⊃ s′)) ⊃ k0 says (Γ ⊃ s′) (Rule (mp) on 5,1)

7. Σ; · `G k0 says (Γ ⊃ s′) (Rule (mp) on 6,3)

Lemma A.3 (3 ⇒ 1 from Theorem 3.13). Σ `H s implies Σ; · k0−→ s for every k0.

Proof. We induct on derivation of Σ `H s, case analyzing the last rule in it. Some of the
interesting cases are shown here.

Case.
Σ `H s

Σ `H k says s
N

To show: Σ; · k0−→ k says s

1. Σ; · k−→ s (i.h. on premise)

212

Appendix A. Proofs and Other Details from §3

2. Σ; · k0−→ k says s (Rule (saysR) on 1)

Case.
Σ `H s ⊃ s′ Σ `H s

Σ `H s′
mp

To show: Σ; · k0−→ s′

1. Σ; · k0−→ s ⊃ s′ (i.h. on 1st premise)

2. Σ; · k0−→ s (i.h. on 2nd premise)

3. Σ; s ⊃ s′, s k0−→ s (Theorem 3.11)

4. Σ; s ⊃ s′, s, s′ k0−→ s′ (Theorem 3.11)

5. Σ; s ⊃ s′, s k0−→ s′ (Rule (⊃L) on 3,4)

6. Σ; s k0−→ s′ (Theorem 3.10 on 5,1)

7. Σ; · k0−→ s′ (Theorem 3.10 on 6,2)

Case.
Σ, x:σ `H k says (s ⊃ s′) x 6∈ s, k

Σ `H k says (s ⊃ ∀x:σ.s′)
F

To show: Σ; · k0−→ k says (s ⊃ ∀x:σ.s′)

1. Σ, x:σ; · k0−→ k says s ⊃ s′ (i.h. on premise)

2. Σ, x:σ; · k0−→ s ⊃ s′ (Inversion on 1)

3. Σ, x:σ; s k0−→ s′ (Inversion on 2)

4. Σ; s k0−→ ∀x:σ.s′ (Rule (∀R) on 3)

5. Σ; · k0−→ s ⊃ ∀x:σ.s′ (Rule (⊃R) on 4)

6. Σ; · k0−→ k0 says (s ⊃ ∀x:σ.s′) (Rule (saysR) on 5)

Case. Σ `H (k says (s1 ⊃ s2)) ⊃ ((k says s1) ⊃ (k says s2)) Axiom (K)

To show: Σ; · k0−→ (k says (s1 ⊃ s2)) ⊃ ((k says s1) ⊃ (k says s2))

1. Σ; k claims (s1 ⊃ s2), k claims s1, s1 ⊃ s2, s1
k−→ s1 (Theorem 3.11)

2. Σ; k claims (s1 ⊃ s2), k claims s1, s1 ⊃ s2, s1, s2
k−→ s2 (Theorem 3.11)

213

Appendix A. Proofs and Other Details from §3

3. Σ; k claims (s1 ⊃ s2), k claims s1, s1 ⊃ s2, s1
k−→ s2 (Rule (⊃L) on 1,2)

4. Σ; k claims (s1 ⊃ s2), k claims s1
k−→ s2 (Rule (claims) on 3)

5. Σ; k claims (s1 ⊃ s2), k claims s1, k says (s1 ⊃ s2), k says s1
k0−→ k says s2

(Rule (saysR) on 4)

6. Σ; k says (s1 ⊃ s2), k says s1
k0−→ k says s2 (Rule (saysL) on 5)

7. Σ; · k0−→ (k says (s1 ⊃ s2)) ⊃ ((k says s1) ⊃ (k says s2)) (Rule (⊃R) on 6)

A.3 Proofs from §3.5.1
Theorem A.4 (Soundness; Theorem 3.16). If Σ; Γ −→ γ in GP logic, then pΣ; Γ −→ γq in
BLS.

Proof. By induction on the given sequent calculus proof of Σ; Γ −→ γ, and case analysis of
the last rule. We show some representative cases here.

Case.
Σ; Γ, p −→ p

init

To show: Σ; pΓq, ` claims p `−→ p. This follows immediately from rule (claims) in Fig-
ure 3.3.

Case.
Σ; Γ −→ A

Σ; Γ −→ k affirms A
affirms

To show: Σ; pΓq k−→ ` says pAq

1. Σ; pΓq `−→ pAq (i.h. on premise)

2. Σ; pΓq k−→ ` says pAq (Rule (saysR) on 1; pΓq = pΓq|)

Case.
Σ; Γ, A ⊃ B −→ A Σ; Γ, A ⊃ B,B −→ C

Σ; Γ, A ⊃ B −→ C
⊃L

To show: Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)) `−→ pCq

1. Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)) `−→ pAq (i.h. on 1st premise)

2. Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)) `−→ ` says pAq (Rule (saysR) on 1)

3. Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)), ` claims pBq `−→ pCq

214

Appendix A. Proofs and Other Details from §3

(i.h. on 2nd premise)

4. Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)), ` says pBq `−→ pCq

(Rule (saysL) on 3)

5. Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)), (` says pAq) ⊃ (` says pBq), ` says
pBq `−→ pCq (Theorem 3.8 on 4)

6. Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)), (` says pAq) ⊃ (` says pBq) `−→ pCq

(Rule (⊃L) on 2,5)

7. Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)) `−→ pCq (Rule (claims) on 6)

Case.
Σ; Γ, A ⊃ B −→ A Σ; Γ, A ⊃ B,B −→ k affirms C

Σ; Γ, A ⊃ B −→ k affirms C
⊃L

To show: Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)) k−→ ` says pCq

1. Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)) `−→ pAq (i.h. on 1st premise)

2. Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)) k−→ ` says pAq (Rule (saysR) on 1)

3. Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)), ` claims pBq k−→ ` says pCq

(i.h. on 2nd premise)

4. Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)), ` says pBq k−→ ` says pCq

(Rule (saysL) on 3)

5. Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)), (` says pAq) ⊃ (` says pBq), ` says
pBq k−→ ` says pCq (Theorem 3.8 on 4)

6. Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)), (` says pAq) ⊃ (` says pBq) k−→ ` says
pCq (Rule (⊃L) on 2,5)

7. Σ; pΓq, ` claims ((` says pAq) ⊃ (` says pBq)) k−→ ` says pCq (Rule (claims) on 6)

Case.
Σ; Γ −→ k affirms A
Σ; Γ −→ k says A

saysR

To show: Σ; pΓq `−→ k says ` says pAq

1. Σ; pΓq k−→ ` says pAq (i.h. on premise)

2. Σ; pΓq `−→ k says ` says pAq (Rule (saysR) on 1; pΓq = pΓq|)

215

Appendix A. Proofs and Other Details from §3

A.4 Proofs from §3.5.2

The objective of this section is to prove Theorem 3.20 which states that the translation
from SL to BLS described in Figure 3.7 is sound and complete. We start with the proof of
soundness.

Lemma A.5 (Soundness). If ∆ `Γ g, then for any fresh constant x, x:principal; pΓq, p∆q x−→
pgq.

Proof. By induction on the derivation of ∆ `Γ g and case analysis of the last rule.

Case.
(∀x1 . . . xn. (p : - g1, . . . , gm)) ∈ ∆ dom(θ) ⊇ x1 . . . xn (∆ `Γ giθ)i∈{1,...,m}

∆ `Γ pθ
bc

To show: x:principal; pΓq, p∆q x−→ pθ

1. x:principal; pΓq, p∆q x−→ xgiθ (i.h. on 2nd premise)

2. x:principal; pΓq, p∆q x−→ (g1 ∧ . . . ∧ gm)θ (Rule (∧R) on 1)

3. x:principal; pΓq, p∆q, pθ x−→ pθ (Rule (init))

4. x:principal; pΓq, p∆q, ((g1 ∧ . . . ∧ gm) ⊃ p)θ x−→ pθ (Rule (⊃L) on 2,3)

5. x:principal; pΓq, p∆q,∀x1 . . . xn. ((g1 ∧ . . . ∧ gm) ⊃ p) x−→ pθ (Rule (∀L) on 4)

6. x:principal; pΓq, p∆q x−→ pθ (Contraction Theorem 3.8 on 5 using 1st premise)

Case.
(k : ∆′) ∈ Γ ∆′ `Γ p

∆ `Γ k says p
says

To show: x:principal; pΓq, p∆q x−→ k says p
Let ∆′ = c1, . . . , cn.

1. y:principal; pΓq, pc1q, . . . , pcnq
y−→ p (i.h. on premise for fresh y)

2. ·; pΓq, pc1q, . . . , pcnq
k−→ p (Theorem 3.7 on 1)

3. ·; pΓq k−→ p (Rule (claims) on 2; (k : ∆′) ∈ Γ implies (k claims pciq) ∈ pΓq)

4. x:principal; pΓq k−→ p (Weakening on 3)

5. x:principal; pΓq x−→ k says p (Rule (saysR) on 4; pΓq = (pΓq)|)

216

Appendix A. Proofs and Other Details from §3

To prove completeness of the translation, we identify a class of sequents in BLS , called
regular sequents, which satisfies two properties: (a) All sequents in the image of the trans-
lation p·q are regular, and (b) If the conclusion of any rule from Figure 3.3 is regular, the
premises must also be. Then we define an inverse translation | · | from regular sequents
to sequents of SL, such that |p·q| is the identity and show that any if a regular sequent is
provable in BLS , then its image under | · | is provable in SL. Completeness of p·q follows
immediately.

Before defining regular sequents, we prove basic properties about derivations in SL.

Lemma A.6 (Basic properties of SL). The following hold in SL

1. (Weakening) If ∆ `Γ g then ∆, c `Γ g.

2. (Contraction) If ∆, c, c `Γ g then ∆, c `Γ g.

3. (Substitution) Let p be a ground atomic formula. Suppose ∆ `Γ p and ∆, p `Γ g.
Then ∆ `Γ g.

Proof. (1) and (2) follow by straightforward inductions on given derivations. We prove (3)
by induction on the derivation of ∆, p `Γ g, and case analysis of the last rule.

Case.

(∀x1 . . . xn. (p′ : - g1, . . . , gm)) ∈ ∆, p dom(θ) ⊇ x1 . . . xn (∆, p `Γ giθ)i∈{1,...,m}
∆, p `Γ p

′θ
bc

Subcase. p = ∀x1 . . . xn. (p′ : - g1, . . . , gm). Then n = m = 0, and p′θ = p′ = p. To show:
∆ `Γ p. This is already given as an assumption in the statement of the theorem.

Subcase. p 6= ∀x1 . . . xn. (p′ : - g1, . . . , gm). Hence (∀x1 . . . xn. (p′ : - g1, . . . , gm)) ∈ ∆. To
show: ∆ `Γ p

′θ.

1. (∆, p `Γ giθ)i∈{1,...,m} (i.h. on 3rd premise, m times)

2. ∆ `Γ p
′θ (Rule (bc) on 1 and (∀x1 . . . xn. (p′ : - g1, . . . , gm)) ∈ ∆)

We also need an inversion lemma about derivations in BLS .

Lemma A.7 (Strong inversion for (∧R)). If Σ; Γ k−→ s1 ∧ s2 in BLS, then for i = 1, 2,
Σ; Γ k−→ si by a shorter or equal derivation.

Proof. By induction on the given derivation of Σ; Γ k−→ s1 ∧ s2.

Definition A.8 (Regular sequents). We call a BLS sequent regular if it has the form
·; Ξ,Θ k−→ γ, where

217

Appendix A. Proofs and Other Details from §3

1. γ = p or γ = k′ says p

2. Ξ contains only hypotheses of the form ki claims pciq

3. Θ contains only hypotheses of one of the following two forms:

(a) Atomic formulas p
(b) ∀~x. ((pg1q ∧ . . . ∧ pgmq) ⊃ p), such that for some ~y and substitution θ, (k claims
∀~y, ~x. ((pg′1q ∧ . . . ∧ pg′mq) ⊃ p′)) ∈ Ξ, g′iθ = gi for each i, and p′θ = p.

Definition A.9 (Inverse translation). The inverse translation | · | from regular sequents
and their components to SL, and a subsidiary translation | · |k on hypotheses are defined as
follows.

|p| = p
|k says p| = k says p
|Ξ| =

⋃
k k : {c | k claims pcq ∈ Ξ}

|Ξ|k =
⋃
{c | k claims pcq ∈ Ξ}

|Θ| = {p | p ∈ Θ}
|·; Ξ,Θ k−→ γ| = |Ξ|k, |Θ| `|Ξ| |γ|

Lemma A.10 (Simulation). Let ·; Ξ,Θ k−→ γ be regular and provable in BLS. Then
|Ξ|k, |Θ| `|Ξ| |γ| is provable in SL.

Proof. By induction on the depth of the given sequent calculus proof of ·; Ξ,Θ k−→ γ and case
analysis of its last rule. Some representative cases are shown here. We often use parantheses
in the hypotheses to separate assumptions in Ξ from those in Θ.

Case.
·; Ξ, (Θ, p) k−→ p

init

To show: |Ξ|k, |Θ|, p `|Ξ| p.
This follows immediately by rule (bc) on principal formula p.

Case.
· ` k � k0 ·; (Ξ, k claims pcq), (Θ, pcq) k0−→ γ

·; (Ξ, k claims pcq),Θ k0−→ γ
claims

By our assumption on principals, k = k0. To show: |Ξ|k, c, |Θ| `|Ξ| |γ|

Subcase. c = p.

1. |Ξ|k, c, |Θ|, c `|Ξ| |γ| (i.h. on premise)

2. |Ξ|k, c, |Θ| `|Ξ| |γ| (Contraction Lemma A.6 on 1)

Subcase. c 6= p

1. |Ξ|k, c, |Θ| `|Ξ| |γ| (i.h. on premise)

218

Appendix A. Proofs and Other Details from §3

Case.
·; Ξ|,Θ| k−→ p

·; Ξ,Θ k0−→ k says p
saysR

To show: |Ξ|k0 , |Θ| `|Ξ| k says p

1. Ξ| = Ξ and Θ| = · (Defn.)

2. ·; Ξ k−→ p (premise and 1)

3. |Ξ|k `|Ξ| p (i.h. on 2)

4. k : |Ξ|k ∈ |Ξ| (Defn.)

5. |Ξ|k0 , |Θ| `|Ξ| k says p (Rule (says) on 4,3)

Case.

·; Ξ,Θ, (pg1q ∧ . . . ∧ pgmq) ⊃ p
k−→ (pg1q ∧ . . . ∧ pgmq)

·; Ξ,Θ, (pg1q ∧ . . . ∧ pgmq) ⊃ p, p
k−→ γ

·; Ξ,Θ, (pg1q ∧ . . . ∧ pgmq) ⊃ p
k−→ γ

⊃L

Subcase. m = 0. To show: |Ξ|k, |Θ|, p `|Ξ| |γ|

1. |Ξ|k, |Θ|, p, p `|Ξ| |γ| (i.h. on 2nd premise)

2. |Ξ|k, |Θ|, p `|Ξ| |γ| (Contraction Lemma A.6 on 1)

Subcase. m 6= 0. To show: |Ξ|k, |Θ| `|Ξ| |γ|.
By regularity, there must be some ~y and θ such that k claims (∀~y. ((pg′1q ∧ . . . ∧ pg′mq) ⊃
p′)) ∈ Ξ and g′iθ = gi and p′θ = p. This also implies that (∀~y. (p′ : - g′1, . . . , g′m)) ∈ |Ξ|k.

1. ·; Ξ,Θ, (pg1q ∧ . . . ∧ pgmq) ⊃ p
k−→ pgiq (Lemma A.7 on 1st premise)

2. ·; |Ξ|k, |Θ| `|Ξ| gi (i.h. on 1)

3. ·; |Ξ|k, |Θ| `|Ξ| g′iθ (g′iθ = gi)

4. ·; |Ξ|k, |Θ| `|Ξ| p′θ (Rule (bc) on 3; (∀~y. (p′ : - g′1, . . . , g′m)) ∈ |Ξ|k)

5. ·; |Ξ|k, |Θ| `|Ξ| p (p′θ = p)

6. ·; |Ξ|k, |Θ|, p `|Ξ| |γ| (i.h. on 2nd premise)

7. |Ξ|k, |Θ| `|Ξ| |γ| (Substitution Lemma A.6 on 5,6)

Case.
·; Ξ,Θ, ∀x, ~x′.((pg1q ∧ . . . ∧ pgmq) ⊃ p), (∀~x′.((pg1q ∧ . . . ∧ pgmq) ⊃ p))[t/x],

k−→ γ

·; Ξ,Θ,∀x, ~x′.((pg1q ∧ . . . ∧ pgmq) ⊃ p)
k−→ γ

∀L

To show: |Ξ|k, |Θ| `|Ξ| |γ|

First observe that the premise is regular. Then, the required statement follows by i.h.
on the premise.

219

Appendix A. Proofs and Other Details from §3

Σ; Γ, p −→ p
init

Σ; Γ −→ s Σ; Γ −→ s′

Σ; Γ −→ s ∧ s′
∧R

Σ; Γ, s ∧ s′, s, s′ −→ r

Σ; Γ, s ∧ s′ −→ r
∧L

Σ; Γ −→ s

Σ; Γ −→ s ∨ s′
∨R1

Σ; Γ −→ s′

Σ; Γ −→ s ∨ s′
∨R2

Σ; Γ, s ∨ s′, s −→ r Σ; Γ, s ∨ s′, s′ −→ r

Σ; Γ, s ∨ s′ −→ r
∨L

Σ; Γ −→ >
>R

Σ; Γ,⊥ −→ r
⊥L

Σ; Γ, s −→ s′

Σ; Γ −→ s ⊃ s′
⊃R

Σ; Γ, s ⊃ s′ −→ s Σ; Γ, s ⊃ s′, s′ −→ r

Σ; Γ, s ⊃ s′ −→ r
⊃L

Σ, x:σ; Γ −→ s

Σ; Γ −→ ∀x:σ.s
∀R

Σ; Γ,∀x:σ.s, s[t/x] −→ r Σ ` t : σ
Σ; Γ,∀x:σ.s −→ r

∀L

Σ; Γ −→ s[t/x] Σ ` t : σ
Σ; Γ −→ ∃x:σ.s

∃R
Σ, x:σ; Γ,∃x:σ.s, s −→ r

Σ; Γ,∃x:σ.s −→ r
∃L

Figure A.1: Cut-free sequent calculus for intuitionistic first-order logic

Theorem A.11 (Correctness; Theorem 3.20). Suppose k : ∆ ∈ Γ. Then, ∆ `Γ g in SL if
and only if ·; pΓq, p∆q k−→ pgq in BLS.

Proof. Suppose ∆ `Γ g. By Lemma A.5, we get for any fresh variable x that
x:principal; pΓq, p∆q x−→ pgq. By Theorem 3.7, ·; pΓq, p∆q k−→ pgq.

Conversely, suppose ·; pΓq, p∆q k−→ pgq. Since k : ∆ ∈ Γ, this is a regular sequent.
Hence by Lemma A.10, we must have |pΓq|k, |p∆q| `|pΓq| |pgq|. Next observe that because
k : ∆ ∈ Γ, |pΓq|k = ∆. Further by definition, ∆ ⊇ |p∆q|. Therefore, using contraction
(Theorem 3.8), we get ∆ `|pΓq| |pgq|. Finally, |pΓq| = Γ and |pgq| = g. Therefore, ∆ `Γ g.

A.5 Proofs from §3.6
In this section we prove Theorem 3.21, which states that the translation [[·]] from the Horn
fragment of BLS (Figure 3.8) to first-order logic is sound and complete. We use the fairly
standard sequent calculus for first-order logic shown in Figure A.1. This sequent calculus
admits the usual structural properties of weakening and contraction as well as the cut
principle.

If p = P t1 . . . tn is an atomic formula, we write p k as an abbreviation for P k t1 . . . tn.
We start by proving an important lemma about the translation, which is needed in the
proof of soundness.

220

Appendix A. Proofs and Other Details from §3

Lemma A.12 (Soundness). If a sequent Σ; ∆,Ξ k−→ g in the Horn fragment is provable in
BLS then its translation Σ; [[∆]], [[Ξ]]k −→ [[g]]k in first-order logic.

Proof. By induction on the given derivation of Σ; ∆ k−→ g and case analysis of the last rule
in it. Some representative cases are shown here. Note that many of the cases do not apply
at all due to syntactic restrictions on g and Ξ.

Case.
Σ; ∆,Ξ, p k−→ p

init

To show: Σ; [[∆]], [[Ξ]]k, p k −→ p k
This follows immediately from rule (init) in first-order logic.

Case.
Σ ` k � k0 Σ; ∆, k claims d,Ξ, d k0−→ g

Σ; Γ, k claims d,Ξ k0−→ g
claims

By assumption on �, we must have k = k0. To show: Σ; [[∆]], [[d]]k, [[Ξ]]k −→ [[g]]k

1. Σ; [[∆]], [[d]]k, [[Ξ]]k, [[d]]k −→ [[g]]k (i.h. on premise)

2. Σ; [[∆]], [[d]]k, [[Ξ]]k −→ [[g]]k (Contraction on 1)

Case.
Σ; ∆,Ξ k−→ g Σ; ∆,Ξ k−→ g′

Σ; ∆,Ξ k−→ g ∧ g′
∧R

To show: Σ; [[∆]], [[Ξ]]k −→ [[g]]k ∧ [[g′]]k

1. Σ; [[∆]], [[Ξ]]k −→ [[g]]k (i.h. on 1st premise)

2. Σ; [[∆]], [[Ξ]]k −→ [[g′]]k (i.h. on 2nd premise)

3. Σ; [[∆]], [[Ξ]]k −→ [[g]]k ∧ [[g′]]k (Rule (∧R) on 1,2)

Case.
Σ; ∆,Ξ, g ⊃ d k−→ g Σ; ∆,Ξ, g ⊃ d, d k−→ g′

Σ; ∆,Ξ, g ⊃ d k−→ g′
⊃L

To show: Σ; [[∆]], [[Ξ]]k, [[g]]k ⊃ [[d]]k −→ [[g′]]k

1. Σ; [[∆]], [[Ξ]]k, [[g]]k ⊃ [[d]]k −→ [[g]]k (i.h. on 1st premise)

2. Σ; [[∆]], [[Ξ]]k, [[g]]k ⊃ [[d]]k, [[d]]k −→ [[g′]]k (i.h. on 2nd premise)

3. Σ; [[∆]], [[Ξ]]k, [[g]]k ⊃ [[d]]k −→ [[g′]]k (Rule (⊃L) on 1,2)

Case.
Σ; ∆|,Ξ| k−→ g

Σ; ∆,Ξ k0−→ k says g
saysR

To show: Σ; [[∆]], [[Ξ]]k0 −→ [[g]]k

221

Appendix A. Proofs and Other Details from §3

1. Σ; ∆ k−→ g (premise, ∆| = ∆, Ξ| = ·)

2. Σ; [[∆]] −→ [[g]]k (i.h. on 1)

3. Σ; [[∆]], [[Ξ]]k0 −→ [[g]]k (Weakening on 2)

Lemma A.13 (Completeness). If Σ; [[d1]]k1 , . . . , [[dn]]kn −→ [[g]]k is provable in first-order
logic, then Σ; k1 claims d1, . . . , kn claims dn

k−→ g is provable in BLS.

Proof. We perform a lexicographic induction, first on the given derivation of
Σ; [[d1]]k1 , . . . , [[dn]]kn −→ [[g]]k, and then on the structure of g. We perform a case analy-
sis on the principal formula of the last rule in the derivation. Let Θ denote a hypotheses of
the form [[d1]]k1 , . . . , [[dn]]kn , and |Θ| denote k1 claims d1, . . . , kn claims dn.

Case. Principal formula of the last rule is atomic. Then the derivation must have the form:

Σ; Θ, [[p]]k −→ [[p′]]k′
init (because [[p]]k = [[p′]]k′)

Since, (p k) = [[p]]k = [[p′]]k′ = (p′ k′), we must have p = p′ and k = k′. Therefore we
must show that Σ; |Θ|, k claims p k−→ p. This follows from rule (claims).

Case. Principal formula of the last rule appears on the left. Hence the last rule must be a
left rule, and the principal formula must have the form [[d]]k′ . Now we case analyze d.

Subcase. d = p. This is already covered in the first case.

Subcase. d = ∀x:σ.d′. Then the derivation must have the form:

Σ; Θ,∀x:σ.[[d′]]k′ , [[d′]]k′ [t/x] −→ [[g]]k Σ ` t : σ
Σ; Θ, ∀x:σ.[[d′]]k′ −→ [[g]]k

∀L

To show: Σ; |Θ|, k′ claims ∀x:σ.d′ k−→ g

1. Σ; |Θ|, k′ claims ∀x:σ.d′, k′ claims d′[t/x] k−→ g (i.h. on premise)

2. Σ; |Θ|, k′ claims ∀x:σ.d′, ∀x:σ.d′, d′[t/x] k′−→ d′[t/x] (Theorem 3.11)

3. Σ; |Θ|, k′ claims ∀x:σ.d′, ∀x:σ.d′ k
′
−→ d′[t/x] (Rule (∀L) on 2)

4. Σ; |Θ|, k′ claims ∀x:σ.d′ k
′
−→ d′[t/x] (Rule (claims) on 3)

5. Σ; (|Θ|, k′ claims ∀x:σ.d′)| k
′
−→ d′[t/x]

(4; (|Θ|, k′ claims ∀x:σ.d′)| = |Θ|, k′ claims ∀x:σ.d′)

222

Appendix A. Proofs and Other Details from §3

6. Σ; |Θ|, k′ claims ∀x:σ.d′ k−→ g (Theorem 3.10 on 5,1)

Subcase. d = g′ ⊃ d′. Then the derivation must have the form:

Σ; Θ, [[g′]]k′ ⊃ [[d′]]k′ −→ [[g′]]k′ Σ; Θ, [[g′]]k′ ⊃ [[d′]]k′ , [[d′]]k′ −→ [[g]]k
Σ; Θ, [[g′]]k′ ⊃ [[d′]]k′ −→ [[g]]k

⊃L

To show: Σ; |Θ|, k′ claims (g′ ⊃ d′) k−→ g

1. Σ; |Θ|, k′ claims (g′ ⊃ d′) k′−→ g′ (i.h. on 1st premise)

2. Σ; |Θ|, k′ claims (g′ ⊃ d′), k′ claims d′ k−→ g (i.h. on 2nd premise)

3. Σ; |Θ|, k′ claims (g′ ⊃ d′), g′ ⊃ d′, d′ k
′
−→ d′ (Theorem 3.11)

4. Σ; |Θ|, k′ claims (g′ ⊃ d′), g′ ⊃ d′ k
′
−→ d′ (Rule (⊃L) on 1,3)

5. Σ; |Θ|, k′ claims (g′ ⊃ d′) k′−→ d′ (Rule (claims) on 4)

6. Σ; (|Θ|, k′ claims (g′ ⊃ d′))| k
′
−→ d′

(5; (|Θ|, k′ claims (g′ ⊃ d′))| = |Θ|, k′ claims (g′ ⊃ d′))

7. Σ; |Θ|, k′ claims (g′ ⊃ d′) k−→ g (Theorem 3.10 on 6,2)

Subcase. d = > does not arise since there is no left rule for >.

Subcase. d = d1 ∧ d2 is similar to the subcase d = g′ ⊃ d′.

Case. Principal formula of the last rule appears on the right. Hence the last rule must a
right rule, and the principal formula is [[g]]k. We now case analyze the form of g.

Subcase. g = p. This is already covered in the first case.

Subcase. g = k′ says g′. Let the given derivation prove Σ; Θ −→ [[k′ says g′]]k. Then we have
to show that Σ; |Θ| k−→ k′ says g′.

1. Σ; Θ −→ [[g′]]k′ (Assumption; [[k′ says g′]]k = [[g′]]k′)

2. Σ; |Θ| k
′
−→ g′ (i.h. on 1, smaller g′)

3. Σ; (|Θ|)| k
′
−→ g′ (2; (|Θ|)| = |Θ|)

4. Σ; (|Θ|)| k−→ k′ says g′ (Rule (saysR) on 3)

223

Appendix A. Proofs and Other Details from §3

Subcase. g = g1 ∧ g2. The derivation must have the form:

Σ; Θ −→ [[g1]]k Σ; Θ −→ [[g2]]k
Σ; Θ −→ [[g1 ∧ g2]]k

∧R

To show: Σ; |Θ| k−→ g1 ∧ g2

1. Σ; |Θ| k−→ g1 (i.h. on 1st premise)

2. Σ; |Θ| k−→ g2 (i.h. on 2nd premise)

3. Σ; |Θ| k−→ g1 ∧ g2 (Rule (∧R) on 1,2)

Subcases for the remaining forms of g are similar to the subcase g = g1 ∧ g2.

Theorem A.14 (Correctness of Translation; Theorem 3.21). Let Σ; ∆,Ξ k−→ g be a sequent
in the Horn fragment of BLS and assume that for each d ∈ Ξ, k claims d ∈ ∆. Then
Σ; ∆,Ξ k−→ g is provable in BLS if and only if its translation Σ; [[∆]], [[Ξ]]k −→ [[g]]k is provable
in first-order logic.

Proof. Suppose Σ; ∆,Ξ k−→ g is provable in BLS . Then by Lemma A.12, Σ; [[∆]], [[Ξ]]k −→ [[g]]k.
Conversely, suppose that Σ; [[∆]], [[Ξ]]k −→ [[g]]k, and assume that

1. Ξ = d1, . . . , dn

2. ∆ = {k claims d1, . . . , k claims dn} ∪ {k′1 claims d′1, . . . , k′m claims d′m}

Then [[Ξ]]k = [[d1]]k, . . . , [[dn]]k and [[∆]] = [[d1]]k, . . . , [[dn]]k, [[d′1]]k′1 , . . . , [[d
′
m]]k′m . Hence the

given derivation proves:

Σ; [[d1]]k, . . . , [[dn]]k, [[d′1]]k′1 , . . . , [[d
′
m]]k′m , [[d1]]k, . . . , [[dn]]k −→ [[g]]k

By contraction in first-order logic, there must also be a derivation of

Σ; [[d1]]k, . . . , [[dn]]k, [[d′1]]k′1 , . . . , [[d
′
m]]k′m −→ [[g]]k

Hence by Lemma A.13, there is a BLS derivation of

Σ; k claims d1, . . . , k claims dn, k′1 claims d′1, . . . , k′m claims d′m
k−→ g

or equivalently, there is a derivation of

Σ; ∆ k−→ g

By weakening (Theorem 3.8), there must also be a derivation of

Σ; ∆,Ξ k−→ g

224

Appendix B

Proofs from §4

B.1 Proofs from §4.2.3
Lemma B.1 (Constraint substitution). Suppose the following hold:

1. Σ; Ψ, c0;E; Γ `ν s ◦ [u1, u2]

2. Σ; Ψ |= c0

Then, Σ; Ψ;E; Γ `ν s ◦ [u1, u2] by a derivation of shorter or equal depth.

Proof. By induction on the given derivation of Σ; Ψ, c0;E; Γ `ν s ◦ [u1, u2], and case anal-
ysis of its last rule. The interesting cases are rules where Σ; Ψ |= · is used in one of the
premises. In such cases, we appeal to the assumption (C-cut) from §4.2.1. For the remain-
ing rules, we just apply the induction hypothesis to the premises, and reapply the rule to
the modified premises. We show one of the interesting cases here.

Case.
Σ; Ψ, c0 |= u′1 ≤ u1 Σ; Ψ, c0 |= u2 ≤ u′2

Σ; Ψ, c0;E; Γ, s ◦ [u′1, u′2] `ν s ◦ [u1, u2]
hyp

1. Σ; Ψ |= c0 (Assumption)

2. Σ; Ψ |= u′1 ≤ u1 ((C-cut) on 1 and 1st premise)

3. Σ; Ψ |= u2 ≤ u′2 ((C-cut) on 1 and 2nd premise)

4. Σ; Ψ;E; Γ, s ◦ [u′1, u′2] `ν s ◦ [u1, u2] (Rule (hyp) on 2,3)

Theorem B.2 (Time subsumption; Theorem 4.4). Suppose the following hold:

1. Σ; Ψ;E; Γ `ν s ◦ [u1, u2]

2. Σ; Ψ |= u1 ≤ un

225

Appendix B. Proofs from §4

3. Σ; Ψ |= um ≤ u2

Then Σ; Ψ;E; Γ `ν s ◦ [un, um]

Proof. By induction on the depth of the given derivation of Σ; Ψ;E; Γ `ν s ◦ [u1, u2] and
case analysis of its last rule. Some representative and interesting cases are shown below.

Case.
Σ; Ψ;E; Γ `ν s1 ◦ [u1, u2] Σ; Ψ;E; Γ `ν s2 ◦ [u1, u2]

Σ; Ψ;E; Γ `ν s1 ∧ s2 ◦ [u1, u2]
∧I

To show: Σ; Ψ;E; Γ `ν s1 ∧ s2 ◦ [un, um]

1. Σ; Ψ;E; Γ `ν s1 ◦ [un, um] (i.h. on 1st premise)

2. Σ; Ψ;E; Γ `ν s2 ◦ [un, um] (i.h. on 2nd premise)

3. Σ; Ψ;E; Γ `ν s1 ∧ s2 ◦ [un, um] (Rule (∧I) on 1 and 2)

Case.
Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2] `ν s2 ◦ [x1, x2]

Σ; Ψ;E; Γ `ν s1 ⊃ s2 ◦ [u1, u2]
⊃I

To show: Σ; Ψ;E; Γ `ν s1 ⊃ s2 ◦ [un, um]

1. Σ; Ψ |= u1 ≤ un (Assumption 2)

2. Σ; Ψ, un ≤ x1 |= u1 ≤ un ((C-weaken) from §4.2.1 on 1)

3. Σ; Ψ, un ≤ x1 |= un ≤ x1 ((C-hyp) from §4.2.1)

4. Σ; Ψ, un ≤ x1 |= u1 ≤ x1 ((C-trans-time) from §4.2.1 on 2,3)

5. Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2] `ν s2 ◦ [x1, x2]

(premise)

6. Σ, x1:time, x2:time; Ψ, un ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2] `ν s2 ◦ [x1, x2]

(Lemma B.1 on 4,5)

7. Σ; Ψ, x2 ≤ um |= x2 ≤ u2 (Similar to 4)

8. Σ, x1:time, x2:time; Ψ, un ≤ x1, x2 ≤ um;E; Γ, s1 ◦ [x1, x2] `ν s2 ◦ [x1, x2]

(Lemma B.1 on 7,6)

9. Σ; Ψ;E; Γ `ν s1 ⊃ s2 ◦ [un, um] (Rule (⊃I) on 8)

Case.

Σ; Ψ;E; Γ `ν s1 ⊃ s2 ◦ [u′1, u′2]
Σ; Ψ;E; Γ `ν s1 ◦ [u1, u2] Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2

Σ; Ψ;E; Γ `ν s2 ◦ [u1, u2]
⊃E

To show: Σ; Ψ;E; Γ `ν s2 ◦ [un, um]

226

Appendix B. Proofs from §4

1. Σ; Ψ |= u1 ≤ un (Assumption 2)

2. Σ; Ψ |= u′1 ≤ un ((C-trans-time) from §4.2.1 on 1 and 3rd premise)

3. Σ; Ψ |= um ≤ u2 (Assumption 3)

4. Σ; Ψ |= um ≤ u′2 ((C-trans-time) from §4.2.1 on 3 and 4th premise)

5. Σ; Ψ;E; Γ `ν s1 ◦ [un, um] (i.h. on premise)

6. Σ; Ψ;E; Γ `ν s2 ◦ [un, um] (Rule (⊃E) on 1st premise and 2,4,5)

Case.
Σ; Ψ;E; Γ| `k,u1,u2 s ◦ [u1, u2]
Σ; Ψ;E; Γ `ν k says s ◦ [u1, u2]

saysI

To show: Σ; Ψ;E; Γ `ν k says s ◦ [un, um]

1. Σ; Ψ |= k � k ((C-refl-prin) from §4.2.1)

2. Σ; Ψ |= u1 ≤ un (Assumption 2)

3. Σ; Ψ |= um ≤ u2 (Assumption 3)

4. Σ; Ψ;E; Γ| `k,un,um s ◦ [u1, u2] (Theorem 4.3 on 1,2,3 and premise)

5. Σ; Ψ;E; Γ| `k,un,um s ◦ [un, um] (i.h. on 4)

6. Σ; Ψ;E; Γ `ν k says s ◦ [un, um] (Rule (saysI) on 5)

B.2 Proofs from §4.2.5
Lemma B.3 (Constraint substitution). Suppose the following hold:

1. Σ; Ψ, c0;E; Γ ν−→ s ◦ [u1, u2]

2. Σ; Ψ |= c0

Then, Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] by a derivation of shorter or equal depth.

Proof. By induction on the given derivation of Σ; Ψ, c0;E; Γ ν−→ s ◦ [u1, u2], and case anal-
ysis of its last rule. The interesting cases are rules where Σ; Ψ |= · is used in one of the
premises. In such cases, we appeal to the assumption (C-cut) from §4.2.1. We show one of
the interesting cases here.

Case.
Σ; Ψ, c0 |= u′1 ≤ u1 Σ; Ψ, c0 |= u2 ≤ u′2

Σ; Ψ, c0;E; Γ, p ◦ [u′1, u′2]
ν−→ p ◦ [u1, u2]

init

1. Σ; Ψ |= c0 (Assumption)

227

Appendix B. Proofs from §4

2. Σ; Ψ |= u′1 ≤ u1 ((C-cut) on 1 and 1st premise)

3. Σ; Ψ |= u2 ≤ u′2 ((C-cut) on 1 and 2nd premise)

4. Σ; Ψ;E; Γ, p ◦ [u′1, u′2]
ν−→ p ◦ [u1, u2] (Rule (hyp) on 2,3)

Theorem B.4 (Time subsumption; Theorem 4.11). Suppose the following hold:

1. Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2]

2. Σ; Ψ |= u1 ≤ un

3. Σ; Ψ |= um ≤ u2

Then Σ; Ψ;E; Γ ν−→ s ◦ [un, um].

Proof. By induction on the depth of the given derivation of Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] and
case analysis of its last rule. Some representative and interesting cases are shown below.

Case.
Σ; Ψ;E; Γ ν−→ s1 ◦ [u1, u2] Σ; Ψ;E; Γ ν−→ s2 ◦ [u1, u2]

Σ; Ψ;E; Γ ν−→ s1 ∧ s2 ◦ [u1, u2]
∧R

To show: Σ; Ψ;E; Γ ν−→ s1 ∧ s2 ◦ [un, um]

1. Σ; Ψ;E; Γ ν−→ s1 ◦ [un, um] (i.h. on 1st premise)

2. Σ; Ψ;E; Γ ν−→ s2 ◦ [un, um] (i.h. on 2nd premise)

3. Σ; Ψ;E; Γ ν−→ s1 ∧ s2 ◦ [un, um] (Rule (∧R) on 1 and 2)

Case.
Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2]

ν−→ s2 ◦ [x1, x2]
Σ; Ψ;E; Γ ν−→ s1 ⊃ s2 ◦ [u1, u2]

⊃R

To show: Σ; Ψ;E; Γ ν−→ s1 ⊃ s2 ◦ [un, um]

1. Σ; Ψ |= u1 ≤ un (Assumption 2)

2. Σ; Ψ, un ≤ x1 |= u1 ≤ un ((C-weaken) from §4.2.1 on 1)

3. Σ; Ψ, un ≤ x1 |= un ≤ x1 ((C-hyp) from §4.2.1)

4. Σ; Ψ, un ≤ x1 |= u1 ≤ x1 ((C-trans-time) from §4.2.1 on 2,3)

5. Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2]
ν−→ s2 ◦ [x1, x2]

(premise)

6. Σ, x1:time, x2:time; Ψ, un ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2]
ν−→ s2 ◦ [x1, x2]

228

Appendix B. Proofs from §4

(Lemma B.3 on 4,5)

7. Σ; Ψ, x2 ≤ um |= x2 ≤ u2 (Similar to 4)

8. Σ, x1:time, x2:time; Ψ, un ≤ x1, x2 ≤ um;E; Γ, s1 ◦ [x1, x2]
ν−→ s2 ◦ [x1, x2]

(Lemma B.3 on 7,6)

9. Σ; Ψ;E; Γ ν−→ s1 ⊃ s2 ◦ [un, um] (Rule (⊃R) on 8)

Case.

Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u′1, u′2]
ν−→ s1 ◦ [u′′1, u′′2]

Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u′1, u′2], s2 ◦ [u′′1, u′′2]
ν−→ s ◦ [u1, u2]

Σ; Ψ |= u′1 ≤ u′′1 Σ; Ψ |= u′′2 ≤ u′2
Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u′1, u′2]

ν−→ s ◦ [u1, u2]
⊃L

To show: Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u′1, u′2]
ν−→ s ◦ [un, um]

1. Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u′1, u′2], s2 ◦ [u′′1, u′′2]
ν−→ s ◦ [un, um] (i.h. on 2nd premise)

2. Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u′1, u′2]
ν−→ s ◦ [un, um]

(Rule (⊃L) on 1st premise, 1, 3rd premise, 4th premise)

Case.
Σ; Ψ;E; Γ| k,u1,u2−−−−→ s ◦ [u1, u2]
Σ; Ψ;E; Γ ν−→ k says s ◦ [u1, u2]

saysR

To show: Σ; Ψ;E; Γ ν−→ k says s ◦ [un, um]

1. Σ; Ψ |= k � k ((C-refl-prin) from §4.2.1)

2. Σ; Ψ |= u1 ≤ un (Assumption 2)

3. Σ; Ψ |= um ≤ u2 (Assumption 3)

4. Σ; Ψ;E; Γ| k,un,um−−−−−→ s ◦ [u1, u2] (Theorem 4.10 on 1,2,3 and premise)

5. Σ; Ψ;E; Γ| k,un,um−−−−−→ s ◦ [un, um] (i.h. on 5)

6. Σ; Ψ;E; Γ ν−→ k says s ◦ [un, um] (Rule (saysR) on 6)

Lemma B.5 (Interpreted atom substitution). Suppose the following hold:

1. Σ; Ψ;E, i; Γ ν−→ s ◦ [u1, u2]

2. Σ;E |= i

Then, Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] by a derivation of shorter or equal depth.

229

Appendix B. Proofs from §4

Proof. By induction on the given derivation of Σ; Ψ;E, i; Γ ν−→ s ◦ [u1, u2], and case analysis
of its last rule. The only interesting case is rule (interR) where we appeal to the assumption
(S-cut) from §4.2.1. This case is shown below.

Case.
Σ;E, i |= i′

Σ; Ψ;E, i; Γ ν−→ i′ ◦ [u1, u2]
interR

To show: Σ; Ψ;E; Γ ν−→ i′ ◦ [u1, u2]

1. Σ;E |= i′ ((S-cut) from §4.2.1 on premise and assumption 2)

2. Σ; Ψ;E; Γ ν−→ i′ ◦ [u1, u2] (Rule (interR) on 1)

Theorem B.6 (Admissibility of cut; Theorem 4.12). The following two properties hold:

1. Suppose that

(a) Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] and
(b) Σ; Ψ;E; Γ, s ◦ [u1, u2]

ν−→ s′ ◦ [u′1, u′2]

Then Σ; Ψ;E; Γ ν−→ s′ ◦ [u′1, u′2].

2. Suppose that

(a) Σ; Ψ;E; Γ| k,u1,u2−−−−→ s ◦ [u1, u2]
(b) Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]

ν−→ s′ ◦ [u′1, u′2]

Then Σ; Ψ;E; Γ ν−→ s′ ◦ [u′1, u′2].

Proof. Both (1) and (2) are proved by a simultaneous lexicographic induction, first on the
size of the cut formula s, then on the order (2) > (1) on the hypotheses, and then on the
depths of the two given derivations. Let D denote the derivation in (a) and let E denote
the derivation in (b).

Proof of (1). For proving (1) we case analyze the last rules in D and E and distinguish
four sets of cases, in addition to the special case where E ends in (init): (A) D ends in a
left rule, (B) E ends in a right rule, (C) E ends in a left rule but the judgment being cut is
not principal in the rule, and (D) E ends in a left rule, D ends in a right rule and the cut
judgment is principal. The reader may easily check that these sets of cases are exhaustive.1
The cases in (A), (B), and (C) are straightforward. We show here the cases where E ends
in (init), and some of the cases in (D).

1Note that we do not need to explicitly consider the case where D ends in rule (init). This is a consequence
of restricting the (init) rule to uninterpreted atoms. If we were to generalize the (init) rule to arbitrary
formulas, then an explicit consideration of this case would be necessary.

230

Appendix B. Proofs from §4

Case. E =
Σ; Ψ |= u′1 ≤ u′′1 Σ; Ψ |= u′′2 ≤ u′2
Σ; Ψ;E; Γ, p ◦ [u′1, u′2]

ν−→ p ◦ [u′′1, u′′2]
init

Subcase. The cut judgment is not p ◦ [u′1, u′2]. So let Γ = Γ′, s ◦ [u1, u2] and let the
judgment being cut be s ◦ [u1, u2]. To show: Σ; Ψ;E; Γ′, p ◦ [u′1, u′2]

ν−→ p ◦ [u′′1, u′′2]. This
follows by rule (init) on the premises of the given derivation.

Subcase. The cut judgment is p ◦ [u′1, u′2]. So D proves Σ; Ψ;E; Γ ν−→ p ◦ [u′1, u′2]. To
show: Σ; Ψ;E; Γ ν−→ p ◦ [u′′1, u′′2]. This follows by Theorem 4.11 on the derivation D.

Case. D =
Σ; Ψ;E; Γ| k,u1,u2−−−−→ s ◦ [u1, u2]
Σ; Ψ;E; Γ ν−→ k says s ◦ [u1, u2]

saysR

E =
Σ; Ψ;E; Γ, k says s ◦ [u1, u2], k claims s ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
Σ; Ψ;E; Γ, k says s ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
saysL

And the cut judgment is k says s ◦ [u1, u2]. To show: Σ; Ψ;E; Γ ν−→ r ◦ [u′1, u′2].

1. Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] (i.h.(1) on D and premise of E)

2. Σ; Ψ;E; Γ ν−→ r ◦ [u′1, u′2] (i.h.(2) on premise of D and 1)

The use of the i.h. in the second step is justified because the cut formula s is strictly
smaller than the cut formula k says s that we started with.

Case. D =
Σ; Ψ;E; Γ ν−→ s ◦ [u′1, u′2]

Σ; Ψ;E; Γ ν−→ s @ [u′1, u′2] ◦ [u1, u2]
@R

E =
Σ; Ψ;E; Γ, s @ [u′1, u′2] ◦ [u1, u2], s ◦ [u′1, u′2]

ν−→ r ◦ [u′′1, u′′2]
Σ; Ψ;E; Γ, s @ [u′1, u′2] ◦ [u1, u2]

ν−→ r ◦ [u′′1, u′′2]
@L

And the cut judgment is s @ [u′1, u′2] ◦ [u1, u2]. To show: Σ; Ψ;E; Γ ν−→ r ◦ [u′′1, u′′2].

1. Σ; Ψ;E; Γ, s ◦ [u′1, u′2]
ν−→ r ◦ [u′′1, u′′2] (i.h.(1) on D and premise of E)

2. Σ; Ψ;E; Γ ν−→ r ◦ [u′′1, u′′2] (i.h.(1) on premise of D and 1)

Case. D =
Σ; Ψ |= c

Σ; Ψ;E; Γ ν−→ c ◦ [u1, u2]
consR

E =
Σ; Ψ, c;E; Γ, c ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
Σ; Ψ;E; Γ, c ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
consL

And the cut judgment is c ◦ [u1, u2]. To show: Σ; Ψ;E; Γ ν−→ r ◦ [u′1, u′2].

1. Σ; Ψ, c;E; Γ ν−→ r ◦ [u′1, u′2] (i.h.(1) on D and premise of E)

2. Σ; Ψ;E; Γ ν−→ r ◦ [u′1, u′2] (Lemma B.3 on premise of D and 1)

231

Appendix B. Proofs from §4

Case. D =
Σ;E |= i

Σ; Ψ;E; Γ ν−→ i ◦ [u1, u2]
interR

E =
Σ; Ψ;E, i; Γ, i ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
Σ; Ψ;E; Γ, i ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
interL

And the cut judgment is i ◦ [u1, u2]. To show: Σ; Ψ;E; Γ ν−→ r ◦ [u′1, u′2].

1. Σ; Ψ;E, i; Γ ν−→ r ◦ [u′1, u′2] (i.h.(1) on D and premise of E)

2. Σ; Ψ;E; Γ ν−→ r ◦ [u′1, u′2] (Lemma B.5 on premise of D and 1)

Proof of (2). To prove (2) we case analyze the last rule in E . There is only one interesting
case, which we show here.

Case.

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2], s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

ν = k′, ub, ue Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2 Σ; Ψ |= k � k′

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

claims

D proves Σ; Ψ;E; Γ| k,u1,u2−−−−→ s ◦ [u1, u2]. To show: Σ; Ψ;E; Γ ν−→ r ◦ [u′1, u′2].

1. Σ; Ψ;E; Γ, s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] (i.h.(2) on D and 1st premise of E)

2. Σ; Ψ;E; Γ k,u1,u2−−−−→ s ◦ [u1, u2] (Weakening Theorem 4.8 on D)

3. Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] (Theorem 4.10 on 2)

4. Σ; Ψ;E; Γ ν−→ r ◦ [u′1, u′2] (i.h.(1) on 3,1)

Use of the i.h. in the last step is justified because we assume the ordering (2) > (1)
among the inductive hypotheses.

Theorem B.7 (Equivalence; Theorem 4.14). The following are equivalent.

1. Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] in the sequent calculus.

2. Σ; Ψ;E; Γ `ν s ◦ [u1, u2] in natural deduction.

Proof. We prove separately that (1) ⇒ (2) and (2) ⇒ (1).

Proof that (1) ⇒ (2). By induction on the depth of the given derivation of Σ; Ψ;E; Γ ν−→
s ◦ [u1, u2], and case analysis of its last rule. The cases where the derivation ends in a right
rule (or the rule (init)) are uninteresting – we apply the i.h. to sequents in the premises
and use the corresponding introduction rule (or the rule (hyp)) in natural deduction. We
show here the case of the rule (claims) and some of the interesting left rules.

232

Appendix B. Proofs from §4

Case.

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2], s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

ν = k′, ub, ue Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2 Σ; Ψ |= k � k′

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

claims

To show: Σ; Ψ;E; Γ, k claims s ◦ [u1, u2] `ν r ◦ [u′1, u′2]

1. Σ; Ψ;E; Γ, k claims s ◦ [u1, u2], s ◦ [u1, u2] `ν r ◦ [u′1, u′2] (i.h. on 1st premise)

2. Σ; Ψ;E; Γ, k claims s ◦ [u1, u2] `ν s ◦ [u1, u2] (Rule (claims) in natural deduction)

3. Σ; Ψ;E; Γ, k claims s ◦ [u1, u2] `ν r ◦ [u′1, u′2] (Theorem 4.5 on 2,1)

Case.
Σ; Ψ;E; Γ, k says s ◦ [u1, u2], k claims s ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
Σ; Ψ;E; Γ, k says s ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
saysL

To show: Σ; Ψ;E; Γ, k says s ◦ [u1, u2] `ν r ◦ [u′1, u′2]

1. Σ; Ψ;E; Γ, k says s ◦ [u1, u2] `ν k says s ◦ [u1, u2] (Rule (hyp))

2. Σ; Ψ;E; Γ, k says s ◦ [u1, u2], k claims s ◦ [u1, u2] `ν r ◦ [u′1, u′2] (i.h. on premise)

3. Σ; Ψ;E; Γ, k says s ◦ [u1, u2] `ν r ◦ [u′1, u′2] (Rule (saysE) on 1,2)

Case.
Σ; Ψ;E; Γ, s @ [u′1, u′2] ◦ [u1, u2], s ◦ [u′1, u′2]

ν−→ r ◦ [u′′1, u′′2]
Σ; Ψ;E; Γ, s @ [u′1, u′2] ◦ [u1, u2]

ν−→ r ◦ [u′′1, u′′2]
@L

To show: Σ; Ψ;E; Γ, s @ [u′1, u′2] ◦ [u1, u2] `ν r ◦ [u′′1, u′′2]

1. Σ; Ψ;E; Γ, s @ [u′1, u′2] ◦ [u1, u2] `ν s @ [u′1, u′2] ◦ [u1, u2] (Rule (hyp))

2. Σ; Ψ;E; Γ, s @ [u′1, u′2] ◦ [u1, u2], s ◦ [u′1, u′2] `ν r ◦ [u′′1, u′′2] (i.h. on premise)

3. Σ; Ψ;E; Γ, s @ [u′1, u′2] ◦ [u1, u2] `ν r ◦ [u′′1, u′′2] (Rule (@E) on 1,2)

Case.
Σ; Ψ, c;E; Γ, c ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
Σ; Ψ;E; Γ, c ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
consL

To show: Σ; Ψ;E; Γ, c ◦ [u1, u2] `ν r ◦ [u′1, u′2]

1. Σ; Ψ;E; Γ, c ◦ [u1, u2] `ν c ◦ [u1, u2] (Rule (hyp))

2. Σ; Ψ, c;E; Γ, c ◦ [u1, u2] `ν r ◦ [u′1, u′2] (i.h. on premise)

3. Σ; Ψ;E; Γ, c ◦ [u1, u2] `ν r ◦ [u′1, u′2] (Rule (consE) on 1,2)

Case.

Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2]
ν−→ s1 ◦ [u′1, u′2]

Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2], s2 ◦ [u′1, u′2]
ν−→ r ◦ [u′′1, u′′2]

Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2]
ν−→ r ◦ [u′′1, u′′2]

⊃L

To show: Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2] `ν r ◦ [u′′1, u′′2]

233

Appendix B. Proofs from §4

1. Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2] `ν s1 ⊃ s2 ◦ [u1, u2] (Rule (hyp))

2. Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2] `ν s1 ◦ [u′1, u′2] (i.h. on 1st premise)

3. Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2] `ν s2 ◦ [u′1, u′2]

(Rule (⊃E) on 1,2 and 3rd,4th premise)

4. Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2], s2 ◦ [u′1, u′2] `ν r ◦ [u′′1, u′′2] (i.h. on 2nd premise)

5. Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2] `ν r ◦ [u′′1, u′′2] (Theorem 4.5 on 3,4)

Proof that (2) ⇒ (1). By induction on the depth of the given derivation of Σ; Ψ;E; Γ `ν
s ◦ [u1, u2], and case analysis of its last rule. The cases where the derivation ends in an
introduction rule are uninteresting – we apply the i.h. to hypothetical judgments in the
premises and use the corresponding right rule in the sequent calculus. We show here the
case of the rules (hyp), (claims), and some of the interesting elimination rules.

Case.
Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ;E; Γ, s ◦ [u′1, u′2] `ν s ◦ [u1, u2]

hyp

To show: Σ; Ψ;E; Γ, s ◦ [u′1, u′2]
ν−→ s ◦ [u1, u2]. This follows from Theorem 4.13 applied

to the premises of the rule.

Case.

ν = k, ub, ue Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ |= u′1 ≤ ub Σ; Ψ |= ue ≤ u′2 Σ; Ψ |= k′ � k

Σ; Ψ;E; Γ, k′ claims s ◦ [u′1, u′2] `ν s ◦ [u1, u2]
claims

To show: Σ; Ψ;E; Γ, k′ claims s ◦ [u′1, u′2]
ν−→ s ◦ [u1, u2]

1. Σ; Ψ;E; Γ, k′ claims s ◦ [u′1, u′2], s ◦ [u′1, u′2]
ν−→ s ◦ [u1, u2]

(Theorem 4.13 on 2nd, 3rd premises)

2. Σ; Ψ;E; Γ, k′ claims s ◦ [u′1, u′2]
ν−→ s ◦ [u1, u2]

(Rule (claims) on 1 and 4th,5th,6th premises)

Case.

Σ; Ψ;E; Γ `ν k says s ◦ [u1, u2]
Σ; Ψ;E; Γ, k claims s ◦ [u1, u2] `ν s′ ◦ [u′1, u′2]

Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2]
saysE

To show: Σ; Ψ;E; Γ ν−→ s′ ◦ [u′1, u′2]

1. Σ; Ψ;E; Γ ν−→ k says s ◦ [u1, u2] (i.h. on 1st premise)

2. Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]
ν−→ s′ ◦ [u′1, u′2] (i.h. on 2nd premise)

3. Σ; Ψ;E; Γ, k says s ◦ [u1, u2], k claims s ◦ [u1, u2]
ν−→ s′ ◦ [u′1, u′2]

234

Appendix B. Proofs from §4

(Weakening Theorem 4.8 on 2)

4. Σ; Ψ;E; Γ, k says s ◦ [u1, u2]
ν−→ s′ ◦ [u′1, u′2] (Rule (saysL) on 3)

5. Σ; Ψ;E; Γ ν−→ s′ ◦ [u′1, u′2] (Theorem 4.12 on 1,4)

Case.
Σ; Ψ;E; Γ `ν s @ [u1, u2] ◦ [u′1, u′2] Σ; Ψ;E; Γ, s ◦ [u1, u2] `ν s′ ◦ [u′′1, u′′2]

Σ; Ψ;E; Γ `ν s′ ◦ [u′′1, u′′2]
@E

To show: Σ; Ψ;E; Γ ν−→ s′ ◦ [u′′1, u′′2]

1. Σ; Ψ;E; Γ ν−→ s @ [u1, u2] ◦ [u′1, u′2] (i.h. on 1st premise)

2. Σ; Ψ;E; Γ, s ◦ [u1, u2]
ν−→ s′ ◦ [u′′1, u′′2] (i.h. on 2nd premise)

3. Σ; Ψ;E; Γ, s @ [u1, u2] ◦ [u′1, u′2], s ◦ [u1, u2]
ν−→ s′ ◦ [u′′1, u′′2]

(Weakening Theorem 4.8 on 2)

4. Σ; Ψ;E; Γ, s @ [u1, u2] ◦ [u′1, u′2]
ν−→ s′ ◦ [u′′1, u′′2] (Rule (@L) on 3)

5. Σ; Ψ;E; Γ ν−→ s′ ◦ [u′′1, u′′2] (Theorem 4.12 on 1,4)

Case.
Σ; Ψ;E; Γ `ν c ◦ [u1, u2] Σ; Ψ, c;E; Γ `ν s′ ◦ [u′1, u′2]

Σ; Ψ;E; Γ `ν s′ ◦ [u′1, u′2]
consE

To show: Σ; Ψ;E; Γ ν−→ s′ ◦ [u′1, u′2]

1. Σ; Ψ;E; Γ ν−→ c ◦ [u1, u2] (i.h. on 1st premise)

2. Σ; Ψ, c;E; Γ ν−→ s′ ◦ [u′1, u′2] (i.h. on 2nd premise)

3. Σ; Ψ, c;E; Γ, c ◦ [u1, u2]
ν−→ s′ ◦ [u′1, u′2] (Weakening Theorem 4.8 on 2)

4. Σ; Ψ;E; Γ, c ◦ [u1, u2]
ν−→ s′ ◦ [u′1, u′2] (Rule (consL) on 3)

5. Σ; Ψ;E; Γ ν−→ s′ ◦ [u′1, u′2] (Theorem 4.12 on 1,4)

Case.

Σ; Ψ;E; Γ `ν s1 ⊃ s2 ◦ [u1, u2]
Σ; Ψ;E; Γ `ν s1 ◦ [u′1, u′2] Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; Γ `ν s2 ◦ [u′1, u′2]
⊃E

To show: Σ; Ψ;E; Γ ν−→ s2 ◦ [u′1, u′2]

1. Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2], s2 ◦ [u′1, u′2]
ν−→ s2 ◦ [u′1, u′2] (Theorem 4.13)

2. Σ; Ψ;E; Γ ν−→ s1 ◦ [u′1, u′2] (i.h. on 2nd premise)

3. Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2]
ν−→ s1 ◦ [u′1, u′2] (Weakening Theorem 4.8 on 2)

4. Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2]
ν−→ s2 ◦ [u′1, u′2]

235

Appendix B. Proofs from §4

(Rule (⊃L) on 1,3 and 3rd,4th premises)

5. Σ; Ψ;E; Γ `ν s1 ⊃ s2 ◦ [u1, u2] (i.h. on 1st premise)

6. Σ; Ψ;E; Γ ν−→ s2 ◦ [u′1, u′2] (Theorem 4.12 on 5,4)

B.3 Proofs from §4.5
Lemma B.8 (Constraint substitution). Suppose Σ; Ψ |= c0. Then the following hold.

1. Σ; Ψ, c0;E; Γ `ν s ◦ [u1, u2] ⇑ implies Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇑ by a derivation of
shorter or equal depth.

2. Σ; Ψ, c0;E; Γ `ν s ◦ [u1, u2] ⇓ implies Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇓ by a derivation of
shorter or equal depth.

Proof. By simultaneous induction on derivations given in (1) and (2) and case analysis of
their last rules. The interesting cases are rules where Σ; Ψ |= · is used in one of the premises.
In such cases, we appeal to the assumption (C-cut) from §4.2.1. For the remaining rules, we
just apply the induction hypothesis to the premises, and reapply the rule to the modified
premises. We show one of the interesting cases here.

Case.

ν = k, ub, ue Σ; Ψ, c0 |= u1 ≤ ub
Σ; Ψ, c0 |= ue ≤ u2 Σ; Ψ, c0 |= k′ � k

Σ; Ψ, c0;E; Γ, k′ claims s ◦ [u1, u2] `ν s ◦ [u1, u2] ⇓
claims

To show: Σ; Ψ;E; Γ, k′ claims s ◦ [u1, u2] `ν s ◦ [u1, u2] ⇓

1. Σ; Ψ |= c0 (Assumption)

2. Σ; Ψ |= u1 ≤ ub ((C-cut) on 1 and 2nd premise)

3. Σ; Ψ |= ue ≤ u2 ((C-cut) on 1 and 3rd premise)

4. Σ; Ψ |= k′ � k ((C-cut) on 1 and 4th premise)

5. Σ; Ψ;E; Γ, k′ claims s ◦ [u1, u2] `ν s ◦ [u1, u2] ⇓ (Rule (claims) on 2,3,4)

Theorem B.9 (Time subsumption; Theorem 4.17). Suppose the following hold:

1. Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇑

2. Σ; Ψ |= u1 ≤ un and Σ; Ψ |= um ≤ u2

Then Σ; Ψ;E; Γ `ν s ◦ [un, um] ⇑

236

Appendix B. Proofs from §4

Proof. By induction on the depth of the given derivation of Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇑ and
case analysis of its last rule. Some interesting cases are shown below.

Case.
Σ; Ψ;E; Γ `ν s ◦ [u′1, u′2] ⇓ Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2

Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇑
⇓⇑

To show: Σ; Ψ;E; Γ `ν s ◦ [un, um] ⇑

1. Σ; Ψ |= u′1 ≤ u1 (premise)

2. Σ; Ψ |= u1 ≤ un (assumption)

3. Σ; Ψ |= u′1 ≤ un ((C-trans-time) from §4.2.1 on 1,2)

4. Σ; Ψ |= um ≤ u′2 (Similar to 3)

5. Σ; Ψ;E; Γ `ν s ◦ [un, um] ⇑ (Rule (⇓⇑) on 1st premise,3,4)

Case.
Σ; Ψ;E; Γ| `k,u1,u2 s ◦ [u1, u2] ⇑
Σ; Ψ;E; Γ `ν k says s ◦ [u1, u2] ⇑

saysI

To show: Σ; Ψ;E; Γ `ν k says s ◦ [un, um] ⇑

1. Σ; Ψ;E; Γ| `k,u1,u2 s ◦ [un, um] ⇑ (i.h. on premise)

2. Σ; Ψ;E; Γ| `k,un,um s ◦ [un, um] ⇑ (Theorem 4.16 on 1)

3. Σ; Ψ;E; Γ `ν k says s ◦ [un, um] ⇑ (Rule (saysI) on 2)

Case.
Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2] `ν s2 ◦ [x1, x2] ⇑

Σ; Ψ;E; Γ `ν s1 ⊃ s2 ◦ [u1, u2] ⇑
⊃I

To show: Σ; Ψ;E; Γ `ν s1 ⊃ s2 ◦ [un, um] ⇑

1. Σ; Ψ |= u1 ≤ un (Assumption 2)

2. Σ; Ψ, un ≤ x1 |= u1 ≤ un ((C-weaken) from §4.2.1 on 1)

3. Σ; Ψ, un ≤ x1 |= un ≤ x1 ((C-hyp) from §4.2.1)

4. Σ; Ψ, un ≤ x1 |= u1 ≤ x1 ((C-trans-time) from §4.2.1 on 2,3)

5. Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2] `ν s2 ◦ [x1, x2] ⇑

(premise)

6. Σ, x1:time, x2:time; Ψ, un ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2] `ν s2 ◦ [x1, x2] ⇑

(Lemma B.8 on 4,5)

7. Σ; Ψ, x2 ≤ um |= x2 ≤ u2 (Similar to 4)

237

Appendix B. Proofs from §4

8. Σ, x1:time, x2:time; Ψ, un ≤ x1, x2 ≤ um;E; Γ, s1 ◦ [x1, x2] `ν s2 ◦ [x1, x2] ⇑

(Lemma B.8 on 7,6)

9. Σ; Ψ;E; Γ `ν s1 ⊃ s2 ◦ [un, um] ⇑ (Rule (⊃I) on 8)

Theorem B.10 (Normalization; Theorem 4.19). Suppose Σ; Ψ;E; Γ `ν s ◦ [u1, u2] in
natural deduction. Then Σ; Ψ;E; Γ `ν s ◦ [u1, u2] ⇑.

Proof. By Theorem 4.14 it suffices to show that Σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] implies Σ; Ψ;E; Γ `ν
s ◦ [u1, u2] ⇑. We prove the latter by induction on the depth of the given sequent calculus
proof and a case analysis of its last rule. Some representative cases are shown below.

Case.
Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ;E; Γ, p ◦ [u′1, u′2]

ν−→ p ◦ [u1, u2]
init

To show: Σ; Ψ;E; Γ, p ◦ [u′1, u′2] `ν p ◦ [u1, u2] ⇑

1. Σ; Ψ;E; Γ, p ◦ [u′1, u′2] `ν p ◦ [u′1, u′2] ⇓ (Rule (hyp))

2. Σ; Ψ;E; Γ, p ◦ [u′1, u′2] `ν p ◦ [u1, u2] ⇑ (Rule (⇓⇑) on 1 and the premises)

Case.

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2], s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

ν = k′, ub, ue Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2 Σ; Ψ |= k � k′

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2]

claims

To show: Σ; Ψ;E; Γ, k claims s ◦ [u1, u2] `ν r ◦ [u′1, u′2] ⇑

1. Σ; Ψ;E; Γ, k claims s ◦ [u1, u2] `ν s ◦ [u1, u2] ⇓

(Rule (claims) on 3rd,4th,5th premises)

2. Σ; Ψ;E; Γ, k claims s ◦ [u1, u2], s ◦ [u1, u2] `ν r ◦ [u′1, u′2] ⇑ (i.h. on 1st premise)

3. Σ; Ψ;E; Γ, k claims s ◦ [u1, u2] `ν r ◦ [u′1, u′2] ⇑ (Theorem 4.18 on 1,2)

Case.
Σ; Ψ;E; Γ| k,u1,u2−−−−→ s ◦ [u1, u2]
Σ; Ψ;E; Γ ν−→ k says s ◦ [u1, u2]

saysR

To show: Σ; Ψ;E; Γ `ν k says s ◦ [u1, u2] ⇑

1. Σ; Ψ;E; Γ| `k,u1,u2 s ◦ [u1, u2] ⇑ (i.h. on premise)

2. Σ; Ψ;E; Γ `ν k says s ◦ [u1, u2] ⇑ (Rule (saysI) on 1)

Case.
Σ; Ψ;E; Γ, k says s ◦ [u1, u2], k claims s ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
Σ; Ψ;E; Γ, k says s ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
saysL

To show: Σ; Ψ;E; Γ, k says s ◦ [u1, u2] `ν r ◦ [u′1, u′2] ⇑

238

Appendix B. Proofs from §4

1. Σ; Ψ;E; Γ, k says s ◦ [u1, u2] `ν k says s ◦ [u1, u2] ⇓ (Rule (hyp))

2. Σ; Ψ;E; Γ, k says s ◦ [u1, u2], k claims s ◦ [u1, u2] `ν r ◦ [u′1, u′2] ⇑ (i.h. on premise)

3. Σ; Ψ;E; Γ, k says s ◦ [u1, u2] `ν r ◦ [u′1, u′2] ⇑ (Rule (saysE) on 1,2)

Case.

Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2]
ν−→ s1 ◦ [u′1, u′2]

Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2], s2 ◦ [u′1, u′2]
ν−→ r ◦ [u′′1, u′′2]

Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2]
ν−→ r ◦ [u′′1, u′′2]

⊃L

To show: Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2] `ν r ◦ [u′′1, u′′2] ⇑

1. Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2] `ν s1 ⊃ s2 ◦ [u1, u2] ⇓ (Rule (hyp))

2. Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2] `ν s1 ◦ [u′1, u′2] ⇑ (i.h. on 1st premise)

3. Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2] `ν s2 ◦ [u′1, u′2] ⇑

(Rule (⊃E) on 1,2 and 3rd,4th premises)

4. Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2], s2 ◦ [u′1, u′2] `ν r ◦ [u′′1, u′′2] ⇑ (i.h. on 2nd premise)

5. Σ; Ψ;E; Γ, s1 ⊃ s2 ◦ [u1, u2] `ν r ◦ [u′′1, u′′2] ⇑ (Theorem 4.18 on 3,4)

B.4 Proofs from §4.6
Theorem B.11 (Correctness of embedding; Theorem 4.21). Suppose that for every k, k′,
Σ′, and Ψ′ not containing �, Σ′; Ψ′ |= k � k′ in BL if and only if Σ′ ` k � k′ in BLS.
Then, Σ; Γ k0−→ s is provable in BLS if and only if pΣ; Γ k0−→ sq is provable in BL.

Proof. The “if” direction was proved in the main body of the paper. The “only if” direction
follows by an induction on the depth of the given BLS derivation of Σ; Γ k0−→ s and a case
analysis of its last rule. We show some of the interesting cases here.

Case.
Σ ` k � k0 Σ; Γ, k claims s, s k0−→ r

Σ; Γ, k claims s k0−→ r
claims

To show: Σ; ·; ·; pΓq, k claims psq ◦ [−∞,+∞] k0,−∞,+∞−−−−−−−→ prq ◦ [−∞,+∞]

1. Σ; ·; ·; pΓq, k claims psq ◦ [−∞,+∞], psq ◦ [−∞,+∞] k0,−∞,+∞−−−−−−−→ prq ◦ [−∞,+∞]

(i.h. on premise)

2. Σ; ·; ·; pΓq, k claims psq ◦ [−∞,+∞] k0,−∞,+∞−−−−−−−→ prq ◦ [−∞,+∞]

239

Appendix B. Proofs from §4

(Rule (claims) on 1)

Case.
Σ; Γ, s k−→ s′

Σ; Γ k−→ s ⊃ s′
⊃R

To show: Σ; ·; ·; pΓq pkq−−→ (psq @ [−∞,+∞]) ⊃ ps′q ◦ [−∞,+∞]

1. Σ; ·; ·; pΓq, psq ◦ [−∞,+∞] pkq−−→ ps′q ◦ [−∞,+∞] (i.h. on premise)

2. Σ, x1:time, x2:time;−∞ ≤ x1, x2 ≤ +∞; ·; pΓq, psq ◦ [−∞,+∞] pkq−−→ ps′q ◦ [−∞,+∞]

(Weakening Theorem 4.8 on 1)

3. Σ, x1:time, x2:time;−∞ ≤ x1, x2 ≤ +∞; ·; pΓq, psq @ [−∞,+∞] ◦ [x1, x2]
pkq−−→ ps′q ◦

[−∞,+∞] (Rule (@L) on 2)

4. Σ, x1:time, x2:time;−∞ ≤ x1, x2 ≤ +∞; ·; pΓq, psq @ [−∞,+∞] ◦ [x1, x2]
pkq−−→ ps′q ◦

[x1, x2] (Theorem 4.11 on 3)

5. Σ; ·; ·; pΓq pkq−−→ (psq @ [−∞,+∞]) ⊃ ps′q ◦ [−∞,+∞] (Rule (⊃R) on 4)

Case.
Σ; Γ, s ⊃ s′ k−→ s Σ; Γ, s ⊃ s′, s′ k−→ r

Σ; Γ, s ⊃ s′ k−→ r
⊃L

To show: Σ; pΓq, (psq @ [−∞,+∞]) ⊃ ps′q ◦ [−∞,+∞] pkq−−→ prq ◦ [−∞,+∞]

1. Σ; pΓq, (psq @ [−∞,+∞]) ⊃ ps′q ◦ [−∞,+∞] pkq−−→ psq ◦ [−∞,+∞]

(i.h. on 1st premise)

2. Σ; pΓq, (psq @ [−∞,+∞]) ⊃ ps′q ◦ [−∞,+∞] pkq−−→ psq @ [−∞,+∞] ◦ [−∞,+∞]

(Rule (@R) on 1)

3. Σ; pΓq, (psq @ [−∞,+∞]) ⊃ ps′q ◦ [−∞,+∞], s′ ◦ [−∞,+∞] pkq−−→ prq ◦ [−∞,+∞]

(i.h. on 2nd premise)

4. Σ; pΓq, (psq @ [−∞,+∞]) ⊃ ps′q ◦ [−∞,+∞] pkq−−→ prq ◦ [−∞,+∞]

(Rule (⊃L) 2,3)

Case.
Σ; Γ| k−→ s

Σ; Γ k0−→ k says s
saysR

To show: Σ; pΓq pk0q−−−→ k says psq ◦ [−∞,+∞]

240

Appendix B. Proofs from §4

1. Σ; pΓ|q k,−∞,+∞−−−−−−→ psq ◦ [−∞,+∞] (i.h. on premise)

2. pΓ|q = pΓq| (Definition)

3. Σ; pΓq| k,−∞,+∞−−−−−−→ psq ◦ [−∞,+∞] (1,2)

4. Σ; pΓq pk0q−−−→ k says psq ◦ [−∞,+∞] (Rule (saysR) on 3)

241

Appendix B. Proofs from §4

242

Appendix C

Proofs from §5

C.1 Proofs from §5.1.2

Lemma C.1 (Constraint substitution). Suppose Σ; Ψ |= c0. Then the following hold.

1. Σ; Ψ, c0;E; Γ `ν V ⇐= s ◦ [u1, u2] implies Σ; Ψ;E; Γ `ν V ⇐= s ◦ [u1, u2] by a
derivation of shorter or equal depth.

2. Σ; Ψ, c0;E; Γ `ν R =⇒ s ◦ [u1, u2] implies Σ; Ψ;E; Γ `ν R =⇒ s ◦ [u1, u2] by a
derivation of shorter or equal depth.

Proof. By simultaneous induction on derivations given in (1) and (2) and case analysis of
their last rules, as in the proof of Lemma B.8.

Theorem C.2 (Time subsumption; Theorem 5.5). Suppose the following hold:

1. Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]

2. Σ; Ψ |= u1 ≤ un and Σ; Ψ |= um ≤ u2

Then Σ; Ψ;E; Π `ν V ⇐= s ◦ [un, um]

Proof. By induction on the depth of the given derivation of Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]
and case analysis of its last rule. Some interesting cases are shown below.

Case.
Σ; Ψ;E; Γ `ν R =⇒ s ◦ [u′1, u′2] Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2

Σ; Ψ;E; Γ `ν R⇐= s ◦ [u1, u2]
infer

To show: Σ; Ψ;E; Γ `ν R⇐= s ◦ [un, um]

1. Σ; Ψ |= u′1 ≤ u1 (premise)

2. Σ; Ψ |= u1 ≤ un (assumption)

3. Σ; Ψ |= u′1 ≤ un ((C-trans-time) from §4.2.1 on 1,2)

243

Appendix C. Proofs from §5

4. Σ; Ψ |= um ≤ u′2 (Similar to 3)

5. Σ; Ψ;E; Γ `ν R⇐= s ◦ [un, um] (Rule (infer) on 1st premise,3,4)

Case.
Σ; Ψ;E; Γ| `k,u1,u2 V ⇐= s ◦ [u1, u2]

Σ; Ψ;E; Γ `ν saysI V ⇐= k says s ◦ [u1, u2]
saysI

To show: Σ; Ψ;E; Γ `ν saysI V ⇐= k says s ◦ [un, um]

1. Σ; Ψ;E; Γ| `k,u1,u2 V ⇐= s ◦ [un, um] (i.h. on premise)

2. Σ; Ψ;E; Γ| `k,un,um V ⇐= s ◦ [un, um] (Theorem 5.4 on 1)

3. Σ; Ψ;E; Γ `ν saysI V ⇐= k says s ◦ [un, um] (Rule (saysI) on 2)

Case.
Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, π : s1 ◦ [x1, x2] `ν V ⇐= s2 ◦ [x1, x2]

Σ; Ψ;E; Γ `ν impI (x1.x2.π.V)⇐= s1 ⊃ s2 ◦ [u1, u2]
⊃I

To show: Σ; Ψ;E; Γ `ν impI (x1.x2.π.V)⇐= s1 ⊃ s2 ◦ [un, um]

1. Σ; Ψ |= u1 ≤ un (Assumption 2)

2. Σ; Ψ, un ≤ x1 |= u1 ≤ un ((C-weaken) from §4.2.1 on 1)

3. Σ; Ψ, un ≤ x1 |= un ≤ x1 ((C-hyp) from §4.2.1)

4. Σ; Ψ, un ≤ x1 |= u1 ≤ x1 ((C-trans-time) from §4.2.1 on 2,3)

5. Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, π : s1 ◦ [x1, x2] `ν V ⇐= s2 ◦ [x1, x2]

(premise)

6. Σ, x1:time, x2:time; Ψ, un ≤ x1, x2 ≤ u2;E; Γ, π : s1 ◦ [x1, x2] `ν V ⇐= s2 ◦ [x1, x2]

(Lemma C.1 on 4,5)

7. Σ; Ψ, x2 ≤ um |= x2 ≤ u2 (Similar to 4)

8. Σ, x1:time, x2:time; Ψ, un ≤ x1, x2 ≤ um;E; Γ, π : s1 ◦ [x1, x2] `ν V ⇐= s2 ◦ [x1, x2]

(Lemma C.1 on 7,6)

9. Σ; Ψ;E; Γ `ν impI (x1.x2.π.V)⇐= s1 ⊃ s2 ◦ [un, um] (Rule (⊃I) on 8)

244

Appendix C. Proofs from §5

C.2 Proofs from §5.2.2

Lemma C.3 (Soundness; Lemma 5.10). Suppose that the following hold for some C, I, list
~x of term variables, list ~σ of sorts, list ~t0 of terms satisfying Σ ` ~t0 : ~σ, and system state
E0 not containing any element of ~x.

1. For each (Σ′, ~x : ~σ; Ψ′ |= c′) ∈ C, it is the case that Σ′; Ψ′[~t0/~x] |= c′[~t0/~x].

2. For each (Σ′, ~x : ~σ;E′ |= i′) ∈ I, it is the case that Σ′;E0, E
′[~t0/~x] |= i′[~t0/~x].

Then,

A. Σ, ~x : ~σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2] ↘ C; I implies Σ; Ψ[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x]
`ν[~t0/~x] V [~t0/~x]⇐= s[~t0/~x] ◦ [u1[~t0/~x], u2[~t0/~x]]

B. Σ, ~x : ~σ; Ψ;E; Π `ν R =⇒ s ◦ [u1, u2] ↘ C; I implies Σ; Ψ[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x]
`ν[~t0/~x] R[~t0/~x] =⇒ s[~t0/~x] ◦ [u1[~t0/~x], u2[~t0/~x]]

Proof. By simultaneous induction on the derivations given in A and B and case analysis of
their last rules. We show some representative cases.

Case.

Σ, ~x:~σ; Ψ;E; Π `ν R =⇒ s ◦ [u1, u2]↘ C′; I
C = (Σ, ~x:~σ; Ψ |= u1 ≤ u′1), (Σ, ~x:~σ; Ψ |= u′2 ≤ u2)

Σ, ~x:~σ; Ψ;E; Π `ν R⇐= s ◦ [u′1, u′2]↘ C′, unsat(C); I
infer

To show: Σ; Ψ[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x] `ν[
~t0/~x] R[~t0/~x]⇐= s[~t0/~x] ◦ [u′1[~t0/~x], u′2[~t0/~x]]

1. Σ; Ψ[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x] `ν[
~t0/~x] R[~t0/~x] =⇒ s[~t0/~x] ◦ [u1[~t0/~x], u2[~t0/~x]]

(i.h. on premise)

2. Case analysis on whether (Σ, ~x:~σ; Ψ |= u1 ≤ u′1) ∈ unsat(C) or not.

• Case: (Σ, ~x:~σ; Ψ |= u1 ≤ u′1) ∈ unsat(C)
(a) Σ; Ψ[~t0/~x] |= u1[~t0/~x] ≤ u′1[~t0/~x] (Assumption 1)

• Case: (Σ, ~x:~σ; Ψ |= u1 ≤ u′1) 6∈ unsat(C)
(a) Σ, ~x:~σ; Ψ |= u1 ≤ u′1 (Defn. of unsat)
(b) Σ; Ψ[~t0/~x] |= u1[~t0/~x] ≤ u′1[~t0/~x] ((C-subst) from §4.2.1)

Σ; Ψ[~t0/~x] |= u1[~t0/~x] ≤ u′1[~t0/~x] (From case analysis)

3. Σ; Ψ[~t0/~x] |= u′2[~t0/~x] ≤ u2[~t0/~x] (Similar to 2)

4. Σ; Ψ[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x] `ν[
~t0/~x] R[~t0/~x]⇐= s[~t0/~x] ◦ [u′1[~t0/~x], u′2[~t0/~x]]

(Rule (infer) on 1,2,3)

245

Appendix C. Proofs from §5

Case.

Σ, ~x:~σ; Ψ;E; Π `ν R =⇒ c ◦ [u1, u2]↘ C1; I1
Σ, ~x:~σ; Ψ, c;E; Π `ν V ⇐= s′ ◦ [u′1, u′2]↘ C2; I2

Σ, ~x:~σ; Ψ;E; Π `ν consE R V ⇐= s′ ◦ [u′1, u′2]↘ C1, C2; I1, I2
consE

To show: Σ; Ψ[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x] `ν[
~t0/~x] consE (R[~t0/~x]) (V [~t0/~x])⇐= s′[~t0/~x] ◦

[u′1[~t0/~x], u′2[~t0/~x]]

1. Σ; Ψ[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x] `ν[
~t0/~x] R[~t0/~x] =⇒ c[~t0/~x] ◦ [u1[~t0/~x], u2[~t0/~x]]

(i.h. on 1st premise)

2. Σ; Ψ[~t0/~x], c[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x] `ν[
~t0/~x] V [~t0/~x]⇐= s′[~t0/~x] ◦ [u′1[~t0/~x], u′2[~t0/~x]]

(i.h. on 2nd premise)

3. Σ; Ψ[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x] `ν[
~t0/~x] consE (R[~t0/~x]) (V [~t0/~x]) ⇐= s′[~t0/~x] ◦

[u′1[~t0/~x], u′2[~t0/~x]] (Rule (consE) on 1,2)

Case.
I = (Σ, ~x:~σ;E |= i)

Σ, ~x:~σ; Ψ;E; Π `ν interI⇐= i ◦ [u1, u2]↘ ·; unsat(I)
interI

To show: Σ; Ψ[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x] `ν[
~t0/~x] interI⇐= i[~t0/~x] ◦ [u1[~t0/~x], u2[~t0/~x]]

1. Case analysis on whether (Σ, ~x:~σ;E |= i) ∈ unsat(I) or not.

• Case: (Σ, ~x:~σ;E |= i) ∈ unsat(I)
(a) Σ;E0, E[~t0/~x] |= i[~t0/~x] (Assumption 2)

• Case: (Σ, ~x:~σ;E |= i) 6∈ unsat(I)
(a) Σ, ~x:~σ;E |= i (Defn. of unsat)
(b) Σ, ~x:~σ;E0, E |= i ((S-weaken) from §4.2.1 on a)
(c) Σ;E0[~t0/~x], E[~t0/~x] |= i[~t0/~x] ((S-subst) from §4.2.1 on b)
(d) E0 = E0[~t0/~x] (Assumption)
(e) Σ;E0, E[~t0/~x] |= i[~t0/~x] (c,d)

Σ;E0, E[~t0/~x] |= i[~t0/~x] (From case analysis)

2. Σ; Ψ[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x] `ν[
~t0/~x] interI⇐= i[~t0/~x] ◦ [u1[~t0/~x], u2[~t0/~x]]

(Rule (interI) on 1)

Case.

Σ, ~x:~σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Π, π : s1 ◦ [x1, x2]
`ν V ⇐= s2 ◦ [x1, x2]↘ C; I

Σ, ~x:~σ; Ψ;E; Π `ν impI (x1.x2.π.V)⇐= s1 ⊃ s2 ◦ [u1, u2]↘ C; I
⊃I

To show: Σ; Ψ[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x] `ν[
~t0/~x] impI (x1.x2.π.(V [~t0/~x]))⇐= s1[~t0/~x] ⊃

s2[~t0/~x] ◦ [u1[~t0/~x], u2[~t0/~x]]

246

Appendix C. Proofs from §5

1. Σ, x1:time, x2:time; Ψ[~t0/~x], u1[~t0/~x] ≤ x1, x2 ≤ u2[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x], π :
s1[~t0/~x] ◦ [x1, x2] `ν[

~t0/~x] V [~t0/~x]⇐= s2[~t0/~x] ◦ [x1, x2] (i.h. on premise)

2. Σ; Ψ[~t0/~x];E0, E[~t0/~x]; Π[~t0/~x] `ν[
~t0/~x] impI (x1.x2.π.(V [~t0/~x])) ⇐= s1[~t0/~x] ⊃

s2[~t0/~x] ◦ [u1[~t0/~x], u2[~t0/~x]] (Rule (⊃I) on 1)

Lemma C.4 (Completeness). Let ~x be a list of term variables, ~σ a list of sorts, and ~t0 a
list of terms such that:

1. Σ ` ~t0 : ~σ

2. Variables in ~x do not appear in the formulas of Π (they may appear in top level
judgment annotations like k claims · and · ◦ [u1, u2]).

3. Variables in ~x do not appear in E0.

Then,

A. If variables from ~x do not appear in s and V and Σ; Ψ[~t0/~x];E0; Π[~t0/~x] `ν[
~t0/~x] V ⇐=

s ◦ [u1[~t0/~x], u2[~t0/~x]], then for any E, there are C and I such that:

(a) Σ, ~x:~σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]↘ C; I.
(b) For every (Σ′, ~x:~σ; Ψ′ |= c′) ∈ C, it is the case that Σ′; Ψ′[~t0/~x] |= c′[~t0/~x].
(c) For every (Σ′, ~x:~σ;E′ |= i′) ∈ I, it is the case that Σ′;E0, E

′ |= i′.

B. If variables from ~x do not appear in R and Σ; Ψ[~t0/~x];E0; Π[~t0/~x] `ν[
~t0/~x] R =⇒

s[~t0/~x] ◦ [u1[~t0/~x], u2[~t0/~x]], then variables from ~x do not appear in s and for any E,
there are C and I such that:

(a) Σ, ~x:~σ; Ψ;E; Π `ν R =⇒ s ◦ [u1, u2]↘ C; I.
(b) For every (Σ′, ~x:~σ; Ψ′ |= c′) ∈ C, it is the case that Σ′; Ψ′[~t0/~x] |= c′[~t0/~x].
(c) For every (Σ′, ~x:~σ;E′ |= i′) ∈ I, it is the case that Σ′;E0, E

′ |= i′.

Proof. By simultaneous induction on given derivations of Σ; Ψ[~t0/~x];E0; Π[~t0/~x] `ν[
~t0/~x]

V ⇐= s ◦ [u1[~t0/~x], u2[~t0/~x]] and Σ; Ψ[~t0/~x];E0; Π[~t0/~x] `ν[
~t0/~x] R =⇒ s ◦ [u1[~t0/~x], u2[~t0/~x]],

and case analysis of their last rules. The proof is tedious but straightforward. Some rep-
resentative cases are shown below. (Note that the required conditions (a), (b), and (c) are
identical for A and B.)

Case.

Σ; Ψ[~t0/~x];E0; Π[~t0/~x] `ν[
~t0/~x] R =⇒ s ◦ [u1[~t0/~x], u2[~t0/~x]]

Σ; Ψ[~t0/~x] |= u1[~t0/~x] ≤ u′1[~t0/~x] Σ; Ψ[~t0/~x] |= u′2[~t0/~x] ≤ u2[~t0/~x]
Σ; Ψ[~t0/~x];E0; Π[~t0/~x] `ν[

~t0/~x] R⇐= s ◦ [u′1[~t0/~x], u′2[~t0/~x]]
infer

1. There exist C′ and I ′ such that Σ, ~x:~σ; Ψ;E; Π `ν R =⇒ s ◦ [u1, u2]↘ C′; I ′

247

Appendix C. Proofs from §5

(i.h. on premise; by condition in A, s = s[~t0/~x])

2. (b) holds for C′ (i.h.)

3. (c) holds for I ′ (i.h.)

4. Let C1 = (Σ;Ψ |= u1 ≤ u′1), (Σ; Ψ |= u′2 ≤ u2). Choose C = C′, unsat(C1) and I = I ′.

5. Σ, ~x:~σ; Ψ;E; Π `ν R⇐= s ◦ [u′1, u′2]↘ C; I (Rule (infer) on 1)

(a) is the same as 5 above. (b) holds for C because of 2, and because of the 2nd and 3rd
premises. (c) holds for I because of 3.

Case.
Σ; Ψ[~t0/~x];E0; Π[~t0/~x] `ν[

~t0/~x] V ⇐= s ◦ [u1, u2]
Σ; Ψ[~t0/~x];E0; Π[~t0/~x] `ν[

~t0/~x] check V s u1 u2 =⇒ s[~t0/~x] ◦ [u1, u2]
check

1. Variables in ~x do not appear in check V s u1 u2 (Condition in B)

2. Variables in ~x do not appear in V and s (From 1)

3. There are C′ and I ′ such that Σ, ~x:~σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2]↘ C′; I ′

(i.h. on premise; can be used due to 2)

4. C′ satisfies (b) (i.h.)

5. I ′ satisfies (c) (i.h.)

6. Choose C = C′ and I = I ′

7. Σ, ~x:~σ; Ψ;E; Π `ν check V s u1 u2 =⇒ s ◦ [u1, u2]↘ C′; I ′

(a) is the same as 7. (b) and (c) hold because of 4 and 5 repsectively.

Case.
Σ;E0 |= i

Σ; Ψ[~t0/~x];E0; Π[~t0/~x] `ν[
~t0/~x] interI⇐= i ◦ [u1[~t0/~x], u2[~t0/~x]]

interI

1. Choose C = · and I = unsat(Σ, ~x:~σ;E |= i)

2. Σ, ~x:~σ; Ψ;E; Π `ν interI⇐= i ◦ [u1, u2]↘ C; I (Rule (interI))

(a) is the same as 2. (b) holds vacuously since C = ·. To prove (c) we consider two cases.

• (Σ, ~x:~σ;E |= i) 6∈ I: (c) is vacuously true since I must be empty.

• (Σ, ~x:~σ;E |= i) ∈ I: We must show that Σ;E,E0 |= i. This follows by applying
(S-weaken) from §4.2.1 to the premise.

248

Appendix C. Proofs from §5

Theorem C.5 (Completeness of PCFS verification; Theorem 5.12). Suppose that Σ; ·;E; Π
`ν V ⇐= s ◦ [u, u]. Let ctime be a fresh constant. Then there exist C and I such that the
following hold.

1. Σ, ctime:time; ·; ·; Π `ν V ⇐= s ◦ [ctime, ctime]↘ C; I.

2. For each (Σ′, ctime:time; Ψ′ |= c′) ∈ C, it is the case that Σ′; Ψ′[u/ctime] |= c′[u/ctime].

3. For each (Σ′, ctime:time;E′ |= i′) ∈ I, it is the case that Σ′;E,E′[u/ctime] |= i′[u/ctime].

Proof. We proceed as follows.

1. Σ; ·;E; Π `ν V ⇐= s ◦ [u, u] (Assumption)

2. Σ; ·;E; Π[u/ctime] `ν[u/ctime] V ⇐= s ◦ [ctime[u/ctime], ctime[u/ctime]] (ctime is fresh)

3. There are C and I such that Σ, ctime:time; ·; ·; Π `ν V ⇐= s ◦ [ctime, ctime]↘ C; I

(Lemma C.4 on 2)

4. (2) holds (Also by Lemma C.4)

5. For each (Σ′, ctime:time;E′ |= i′) ∈ I, it is the case that Σ′;E,E′ |= i′

(Also by Lemma C.4)

6. For each (Σ′, ctime:time;E′ |= i′) ∈ I, it is the case that Σ′;E,E′[u/ctime] |= i′[u/ctime]
(5; E′, i′ cannot contain ctime)

C.3 Proofs from §5.3
Theorem C.6 (Correctness; Theorem 5.19). If Σ; Ψ;E; Π ν−→ V : s ◦ [u1, u2], then
Σ; Ψ;E; Π `ν V ⇐= s ◦ [u1, u2].

Proof. By induction on the given derivation of Σ; Ψ;E; Π ν−→ V : s ◦ [u1, u2] and case anal-
ysis of its last rule. Some representative cases are shown below.

Case.

Σ; Ψ;E; Π, π : k claims s ◦ [u1, u2], τ : s ◦ [u1, u2]
ν−→ V : r ◦ [u′1, u′2]

ν = k′, ub, ue Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2 Σ; Ψ |= k � k′

Σ; Ψ;E; Π, π : k claims s ◦ [u1, u2]
ν−→ V [π/τ] : r ◦ [u′1, u′2]

claims

To show: Σ; Ψ;E; Π, π : k claims s ◦ [u1, u2] `ν V [π/τ]⇐= r ◦ [u′1, u′2]

1. Σ; Ψ;E; Π, π : k claims s ◦ [u1, u2], τ : s ◦ [u1, u2] `ν V ⇐= r ◦ [u′1, u′2]

(i.h. on 1st premise)

2. Σ; Ψ;E; Π, π : k claims s ◦ [u1, u2] `ν π =⇒ s ◦ [u1, u2]

249

Appendix C. Proofs from §5

(Rule (claims) on premises 3–5)

3. Σ; Ψ;E; Π, π : k claims s ◦ [u1, u2] `ν V [π/τ]⇐= r ◦ [u′1, u′2] (Theorem 5.7 on 2,3)

Case.
Σ; Ψ;E; Π, π : k says s ◦ [u1, u2], τ : k claims s ◦ [u1, u2]

ν−→ V : r ◦ [u′1, u′2]
Σ; Ψ;E; Π, π : k says s ◦ [u1, u2]

ν−→ saysE π (τ.V) : r ◦ [u′1, u′2]
saysL

To show: Σ; Ψ;E; Π, π : k says s ◦ [u1, u2] `ν saysE π (τ.V)⇐= r ◦ [u′1, u′2]

1. Σ; Ψ;E; Π, π : k says s ◦ [u1, u2], τ : k claims s ◦ [u1, u2] `ν V ⇐= r ◦ [u′1, u′2]

(i.h. on premise)

2. Σ; Ψ;E; Π, π : k says s ◦ [u1, u2] `ν π =⇒ k says s ◦ [u1, u2] (Rule (hyp))

3. Σ; Ψ;E; Π, π : k says s ◦ [u1, u2] `ν saysE π (τ.V)⇐= r ◦ [u′1, u′2]

(Rule (saysE) on 1,2)

Case.

Σ; Ψ;E; Π, π : s1 ⊃ s2 ◦ [u1, u2]
ν−→ V1 : s1 ◦ [u′1, u′2]

Σ; Ψ;E; Π, π : s1 ⊃ s2 ◦ [u1, u2], τ : s2 ◦ [u′1, u′2]
ν−→ V2 : r ◦ [u′′1, u′′2]

Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; Π, π : s1 ⊃ s2 ◦ [u1, u2]
ν−→ V2[(impE π V1 u

′
1 u
′
2)/τ] : r ◦ [u′′1, u′′2]

⊃L

To show: Σ; Ψ;E; Π, π : s1 ⊃ s2 ◦ [u1, u2]
ν−→ V2[(impE π V1 u

′
1 u
′
2)/τ] : r ◦ [u′′1, u′′2]

1. Σ; Ψ;E; Π, π : s1 ⊃ s2 ◦ [u1, u2] `ν V1 ⇐= s1 ◦ [u′1, u′2] (i.h. on 1st premise)

2. Σ; Ψ;E; Π, π : s1 ⊃ s2 ◦ [u1, u2] `ν π =⇒ s1 ⊃ s2 ◦ [u1, u2] (Rule (hyp))

3. Σ; Ψ;E; Π, π : s1 ⊃ s2 ◦ [u1, u2] `ν impE π V1 u
′
1 u
′
2 =⇒ s2 ◦ [u′1, u′2]

(Rule (⊃E) on 2,1 and 3rd,4th premises)

4. Σ; Ψ;E; Π, π : s1 ⊃ s2 ◦ [u1, u2], τ : s2 ◦ [u′1, u′2] `ν V2 ⇐= r ◦ [u′′1, u′′2]

(i.h. on 2nd premise)

5. Σ; Ψ;E; Π, π : s1 ⊃ s2 ◦ [u1, u2]
ν−→ V2[(impE π V1 u

′
1 u
′
2)/τ] : r ◦ [u′′1, u′′2]

(Theorem 5.7 on 3,4)

250

Appendix D

Proofs from §6

D.1 Soundness of Goal-directed Search
Lemma D.1. If Σ; d ◦ [u1, u2] � p ◦ [u′1, u′2] ↘ Q; ff and Σ; Ψ;E; ∆ ν−→ Q, then Σ; Ψ |=
u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2.

Proof. By induction on the derivation of Σ; d ◦ [u1, u2] � p ◦ [u′1, u′2] ↘ Q; ff and case
analysis of its last rule. The interesting cases are shown below. Note that the cases (F-⊃1)
and (F-@) do not apply since the boolean in their conclusions is always tt.

Case.
Σ; p ◦ [u1, u2]� p ◦ [u′1, u′2]↘ (u1 ≤ u′1) :: (u′2 ≤ u2) :: []; ff

F-init

To show: Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2.

1. Σ; Ψ;E; ∆ ν−→ (u1 ≤ u′1) :: (u′2 ≤ u2) :: [] (Assumption)

2. Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ;E; ∆ ν−→ (u′2 ≤ u2) :: [] (Inversion on 1)

3. Σ; Ψ |= u′2 ≤ u2 (Inversion on 2)

The required conclusions are contained in 2 and 3.

Case.
Σ; d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; ff

Σ; g1 ⊃ d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ (g1 ◦ [u′1, u′2]) :: Q; ff
F-⊃2

To show: Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2.

1. Σ; Ψ;E; ∆ ν−→ (g1 ◦ [u′1, u′2]) :: Q (Assumption)

2. Σ; Ψ;E; ∆ ν−→ Q (Inversion on 1)

3. Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2 (i.h. on premise and 2)

251

Appendix D. Proofs from §6

Lemma D.2. Suppose the following hold.

1. Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b

2. Σ; Ψ;E; Γ ν−→ Q

Then,

A. b = ff implies Σ; Ψ;E; Γ, d ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2]

B. b = tt implies Σ; Ψ;E; Γ, d ◦ [ub, ue]
ν−→ p ◦ [u′1, u′2] for every ub and ue.

Proof. We prove (A) and (B) by a simultaneous induction on the derivation given in (1).

Proof of (A)

We case analyze the last rule in the derivation given in (1).

Case.
Σ; p ◦ [u1, u2]� p ◦ [u′1, u′2]↘ (u1 ≤ u′1) :: (u′2 ≤ u2) :: []; ff

F-init

To show: Σ; Ψ;E; Γ, p ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2]

1. Σ; Ψ |= u′1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u′2 ((C-refl-time) from §4.2.1)

2. Σ; Ψ;E; Γ, p ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2] (Rule (init) on 1)

Case.
Σ; d1 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; ff

Σ; d1 ∧ d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; ff
F-∧1

To show: Σ; Ψ;E; Γ, d1 ∧ d2 ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2]

1. Σ; Ψ;E; Γ, d1 ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2] (i.h. (A) on premise and assumption 2)

2. Σ; Ψ;E; Γ, d1 ∧ d2 ◦ [u′1, u′2], d1 ◦ [u′1, u′2], d2 ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2]

(Weakening Theorem 4.8(1d) on 1)

3. Σ; Ψ;E; Γ, d1 ∧ d2 ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2] (Rule (∧L) on 2)

Case.
Σ; d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; ff

Σ; d1 ∧ d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; ff
F-∧2

Similar to the previous case.

Case.
Σ; d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; ff

Σ; g1 ⊃ d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ (g1 ◦ [u′1, u′2]) :: Q; ff
F-⊃2

To show: Σ; Ψ;E; Γ, g1 ⊃ d2 ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2]

1. Σ; Ψ;E; Γ ν−→ (g1 ◦ [u′1, u′2]) :: Q (Assumption 2)

252

Appendix D. Proofs from §6

2. The following hold (Inversion on 1)

(a) Σ; Ψ;E; Γ ν−→ g1 ◦ [u′1, u′2]

(b) Σ; Ψ;E; Γ ν−→ Q

3. Σ; Ψ;E; Γ, d2 ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2] (i.h. (A) on premise and 2b)

4. Σ; Ψ;E; Γ, g1 ⊃ d2 ◦ [u′1, u′2]
ν−→ g1 ◦ [u′1, u′2] (Weakening Theorem 4.8(1d) on 2a)

5. Σ; Ψ;E; Γ, g1 ⊃ d2 ◦ [u′1, u′2], d2 ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2]

(Weakening Theorem 4.8(1d) on 3)

6. Σ; Ψ |= u′1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u′2 ((C-refl-time) from §4.2.1)

7. Σ; Ψ;E; Γ, g1 ⊃ d2 ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2] (Rule (⊃L) on 4–6)

Case.
Σ ` t : σ Σ; d[t/x] ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; ff

Σ;∀x:σ.d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; ff
F-∀

To show: Σ; Ψ;E; Γ,∀x:σ.d ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2]

1. Σ; Ψ;E; Γ, d[t/x] ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2] (i.h. (A) on premise and assumption 2)

2. Σ; Ψ;E; Γ,∀x:σ.d ◦ [u′1, u′2], d[t/x] ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2]

(Weakening Theorem 4.8(1d) on 1)

3. Σ; Ψ;E; Γ,∀x:σ.d ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2] (Rule (∀L) on 2 and 1st premise)

Proof of (B)

We case analyze the last rule in the derivation given in (1).

Case.
Σ; d1 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; tt

Σ; d1 ∧ d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; tt
F-∧1

To show: Σ; Ψ;E; Γ, d1 ∧ d2 ◦ [ub, ue]
ν−→ p ◦ [u′1, u′2]

1. Σ; Ψ;E; Γ, d1 ◦ [ub, ue]
ν−→ p ◦ [u′1, u′2] (i.h. (B) on premise and assumption 2)

2. Σ; Ψ;E; Γ, d1 ∧ d2 ◦ [ub, ue], d1 ◦ [ub, ue], d2 ◦ [ub, ue]
ν−→ p ◦ [u′1, u′2]

(Weakening Theorem 4.8(1d) on 1)

3. Σ; Ψ;E; Γ, d1 ∧ d2 ◦ [ub, ue]
ν−→ p ◦ [u′1, u′2] (Rule (∧L) on 2)

253

Appendix D. Proofs from §6

Case.
Σ; d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; tt

Σ; d1 ∧ d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; tt
F-∧2

Similar to the previous case.

Case.
Σ; d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; tt

Σ; g1 ⊃ d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ (g1 ◦ φ) :: Q; tt
F-⊃1

To show: Σ; Ψ;E; Γ; g1 ⊃ d2 ◦ [ub, ue]
ν−→ p ◦ [u′1, u′2]

1. Σ; Ψ;E; Γ ν−→ (g1 ◦ φ) :: Q (Assumption 2)

2. The following hold (Inversion on 1)

(a) Σ; Ψ;E; Γ ν−→ g1 ◦ φ
(b) Σ; Ψ;E; Γ ν−→ Q

3. Σ; Ψ;E; Γ, d2 ◦ φ
ν−→ p ◦ [u′1, u′2] (i.h. (B) on premise and 2b, choosing [ub, ue] = φ)

4. Σ; Ψ;E; Γ, g1 ⊃ d2 ◦ [ub, ue]
ν−→ g1 ◦ φ (Weakening Theorem 4.8(1d) on 2a)

5. Σ; Ψ;E; Γ, g1 ⊃ d2 ◦ [ub, ue], d2 ◦ φ
ν−→ p ◦ [u′1, u′2] (Weakening Theorem 4.8(1d) on 3)

6. Σ; Ψ |= ub ≤ ∞ and Σ; Ψ |= −∞ ≤ ue ((C-refl-time) from §4.2.1)

7. Σ; Ψ;E; Γ, g1 ⊃ d2 ◦ [ub, ue]
ν−→ p ◦ [u′1, u′2] (Rule (⊃L) on 4–6; φ = [+∞,−∞])

Case.
Σ ` t : σ Σ; d[t/x] ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; tt

Σ;∀x:σ.d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; tt
F-∀

To show: Σ; Ψ;E; Γ,∀x:σ.d ◦ [ub, ue]
ν−→ p ◦ [u′1, u′2]

1. Σ; Ψ;E; Γ, d[t/x] ◦ [ub, ue]
ν−→ p ◦ [u′1, u′2] (i.h. (B) on premise and assumption 2)

2. Σ; Ψ;E; Γ,∀x:σ.d ◦ [ub, ue], d[t/x] ◦ [ub, ue]
ν−→ p ◦ [u′1, u′2]

(Weakening Theorem 4.8(1d) on 1)

3. Σ; Ψ;E; Γ,∀x:σ.d ◦ [ub, ue]
ν−→ p ◦ [u′1, u′2] (Rule (∀L) on 2 and 1st premise)

Case.
Σ; d ◦ [u′′1, u′′2]� p ◦ [u′1, u′2]↘ Q; b

Σ; d @ [u′′1, u′′2] ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; tt
F-@

To show: Σ; Ψ;E; Γ, d @ [u′′1, u′′2] ◦ [ub, ue]
ν−→ p ◦ [u′1, u′2]

1. Case analysis of b.

• Case: b = tt

(a) Σ; Ψ;E; Γ, d ◦ [u′′1, u′′2]
ν−→ p ◦ [u′1, u′2]

254

Appendix D. Proofs from §6

(i.h. (B) on premise and assumption 2 choosing [ub, ue] = [u′′1, u′′2])
• Case: b = ff

(a) Σ; Ψ;E; Γ, d ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2]

(i.h. (A) on premise and assumption 2)
(b) Σ; Ψ |= u′′1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u′′2

(Lemma D.1 on premise and assumption 2)
(c) Σ; Ψ;E; Γ, d ◦ [u′′1, u′′2]

ν−→ d ◦ [u′1, u′2] (Identity Theorem 4.13 using b)
(d) Σ; Ψ;E; Γ, d ◦ [u′′1, u′′2]

ν−→ p ◦ [u′1, u′2] (Cut Theorem 4.12 on c,a)

Σ; Ψ;E; Γ, d ◦ [u′′1, u′′2]
ν−→ p ◦ [u′1, u′2] (Result of case analysis)

2. Σ; Ψ;E; Γ, d @ [u′′1, u′′2] ◦ [ub, ue], d ◦ [u′′1, u′′2]
ν−→ p ◦ [u′1, u′2]

(Weakening Theorem 4.8(1d) on 1)

3. Σ; Ψ;E; Γ, d @ [u′′1, u′′2] ◦ [ub, ue]
ν−→ p ◦ [u′1, u′2] (Rule (@L) on 2)

Lemma D.3 (Soundness of F-sequents; Lemma 6.1). Suppose the following hold.

1. Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b

2. Σ; Ψ;E; Γ ν−→ Q

Then, Σ; Ψ;E; Γ, d ◦ [u1, u2]
ν−→ p ◦ [u′1, u′2].

Proof. We case analyze b.

Case. b = tt.

1. Σ; Ψ;E; Γ, d ◦ [u1, u2]
ν−→ p ◦ [u′1, u′2]

(Lemma D.2(B) on assumptions 1,2 choosing [ub, ue] = [u1, u2])

Case. b = ff.

1. Σ; Ψ;E; Γ, d ◦ [u′1, u′2]
ν−→ p ◦ [u′1, u′2] (Lemma D.2(A) on assumptions 1,2)

2. Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2 (Lemma D.1 on assumptions 1,2)

3. Σ; Ψ;E; Γ, d ◦ [u1, u2]
ν−→ d ◦ [u′1, u′2] (Identity Theorem 4.13 on 2)

4. Σ; Ψ;E; Γ, d ◦ [u1, u2]
ν−→ p ◦ [u′1, u′2] (Cut Theorem 4.12 on 1,3)

Theorem D.4 (Soundness; Theorem 6.2). The following hold.

255

Appendix D. Proofs from §6

A. Σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2] implies Σ; Ψ;E; ∆ ν−→ g ◦ [u1, u2]

B. Σ; Ψ;E; ∆; Ξ ν⇐ g ◦ [u1, u2] implies Σ; Ψ;E; ∆, |Ξ| ν−→ g ◦ [u1, u2]

C. Σ; Ψ;E; ∆ ν⇔ p ◦ [u1, u2] implies Σ; Ψ;E; ∆ ν−→ p ◦ [u1, u2]

D. Σ; Ψ;E; ∆ ν⇒ Q implies Σ; Ψ;E; ∆ ν−→ Q

Proof. By simultaneous induction on given derivations and case analysis of the last rules in
them. We show some representative cases below.

Case.
Σ; Ψ;E; ∆| k,u1,u2⇒ g ◦ [u1, u2]

Σ; Ψ;E; ∆ ν⇒ k says g ◦ [u1, u2]
R-says

To show: Σ; Ψ;E; ∆ ν−→ k says g ◦ [u1, u2]

1. Σ; Ψ;E; ∆| k,u1,u2−−−−→ g ◦ [u1, u2] (i.h. on premise)

2. Σ; Ψ;E; ∆ ν−→ k says g ◦ [u1, u2] (Rule (saysR) on 1)

Case.
Σ; Ψ;E; ∆, k claims d ◦ [u1, u2]; Ξ

ν⇐ g ◦ [u′1, u′2]
Σ; Ψ;E; ∆; Ξ :: (k says d ◦ [u1, u2])

ν⇐ g ◦ [u′1, u′2]
L-says

To show: Σ; Ψ;E; ∆, |Ξ|, k says d ◦ [u1, u2]
ν−→ g ◦ [u′1, u′2]

1. Σ; Ψ;E; ∆, k claims d ◦ [u1, u2], |Ξ|
ν−→ g ◦ [u′1, u′2] (i.h. on premise)

2. Σ; Ψ;E; ∆, k claims d ◦ [u1, u2], |Ξ|, k says d ◦ [u1, u2]
ν−→ g ◦ [u′1, u′2]

(Weakening Theorem 4.8(1d) on 1)

3. Σ; Ψ;E; ∆, |Ξ|, k says d ◦ [u1, u2]
ν−→ g ◦ [u′1, u′2] (Rule (saysL) on 2)

Case.
d ◦ [u1, u2] ∈ ∆ Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b Σ; Ψ;E; ∆ ν⇒ Q

Σ; Ψ;E; ∆ ν⇔ p ◦ [u′1, u′2]
N-clause

To show: Σ; Ψ;E; ∆ ν−→ p ◦ [u′1, u′2]

1. Σ; Ψ;E; ∆ ν−→ Q (i.h. on 3rd premise)

2. Σ; Ψ;E; ∆, d ◦ [u1, u2]
ν−→ p ◦ [u′1, u′2] (Lemma D.3 on 2nd premise and 1)

3. Σ; Ψ;E; ∆ ν−→ p ◦ [u′1, u′2] (Contraction Theorem 4.8(2) on 2 using 1st premise)

Case.

k claims d ◦ [u1, u2] ∈ ∆ ν = k0, ub, ue
Σ; Ψ |= k � k0 Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2
Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b Σ; Ψ;E; ∆ ν⇒ Q

Σ; Ψ;E; ∆ ν⇔ p ◦ [u′1, u′2]
N-claims

To show: Σ; Ψ;E; ∆ ν−→ p ◦ [u′1, u′2]

256

Appendix D. Proofs from §6

1. Σ; Ψ;E; ∆ ν−→ Q (i.h. on 7th premise)

2. Σ; Ψ;E; ∆, d ◦ [u1, u2]
ν−→ p ◦ [u′1, u′2] (Lemma D.3 on 6th premise and 1)

3. Σ; Ψ;E; ∆ ν−→ p ◦ [u′1, u′2] (Rule (claims) on 2 and 1st–5th premises)

D.2 Properties of Goal-directed Search
Lemma D.5 (Weakening). The following hold.

1. If Σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2] then

(a) Σ, x:σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2]
(b) Σ; Ψ, c;E; ∆ ν⇒ g ◦ [u1, u2]
(c) Σ; Ψ;E, i; ∆ ν⇒ g ◦ [u1, u2]
(d) Σ; Ψ;E; ∆, J ν⇒ g ◦ [u1, u2]

2. If Σ; Ψ;E; ∆ ν⇒ Q then

(a) Σ, x:σ; Ψ;E; ∆ ν⇒ Q
(b) Σ; Ψ, c;E; ∆ ν⇒ Q
(c) Σ; Ψ;E, i; ∆ ν⇒ Q
(d) Σ; Ψ;E; ∆, J ν⇒ Q

3. If Σ; Ψ;E; ∆; Ξ ν⇐ g ◦ [u1, u2] then,

(a) Σ, x:σ; Ψ;E; ∆; Ξ ν⇐ g ◦ [u1, u2]
(b) Σ; Ψ, c;E; ∆; Ξ ν⇐ g ◦ [u1, u2]
(c) Σ; Ψ;E, i; ∆; Ξ ν⇐ g ◦ [u1, u2]
(d) Σ; Ψ;E; ∆, J ; Ξ ν⇐ g ◦ [u1, u2]

4. If Σ; Ψ;E; ∆ ν⇔ p ◦ [u1, u2] then

(a) Σ, x:σ; Ψ;E; ∆ ν⇔ p ◦ [u1, u2]
(b) Σ; Ψ, c;E; ∆ ν⇔ p ◦ [u1, u2]
(c) Σ; Ψ;E, i; ∆ ν⇔ p ◦ [u1, u2]
(d) Σ; Ψ;E; ∆, J ν⇔ p ◦ [u1, u2]

5. If Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b then Σ, x:σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b

Further, all constructed derivations have depths less than or equal to those of given deriva-
tions.

257

Appendix D. Proofs from §6

Proof. (5) follows by induction on the given derivation. (1a), (2a), (3a), and (4a), then
follow by a simultaneous induction on given derivations. Similarly, (1b)–(4b), (1c)–(4c),
and (1d)–(4d) follow by separate simultaneous inductions.

Lemma D.6 (Constraint substitution). Suppose Σ; Ψ |= c. Then the following hold.

1. Σ; Ψ, c;E; ∆ ν⇒ g ◦ [u1, u2] implies Σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2]

2. Σ; Ψ, c;E; ∆ ν⇒ Q implies Σ; Ψ;E; ∆ ν⇒ Q

3. Σ; Ψ, c;E; ∆; Ξ ν⇐ g ◦ [u1, u2] implies Σ; Ψ;E; ∆; Ξ ν⇐ g ◦ [u1, u2]

4. Σ; Ψ, c;E; ∆ ν⇔ p ◦ [u1, u2] implies Σ; Ψ;E; ∆ ν⇔ p ◦ [u1, u2]

Proof. By simultaneous induction on given derivations and case analysis of their last rules.
For the cases of rules (R-cons), (Q-leq), and (N-claims) we appeal to assumption (C-cut)
from §4.2.1, as in the proof of Lemma B.3.

Lemma D.7 (View subsumption). Suppose the following hold:

1. ν = k0, ub, ue

2. Σ; Ψ |= k0 � k′0, Σ; Ψ |= ub ≤ u′b, and Σ; Ψ |= u′e ≤ ue.

3. ν ′ = k′0, u
′
b, u
′
e

Then,

A. Σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2] implies Σ; Ψ;E; ∆ ν′⇒ g ◦ [u1, u2] by a derivation of less or
equal depth.

B. Σ; Ψ;E; ∆ ν⇒ Q implies Σ; Ψ;E; ∆ ν′⇒ Q by a derivation of less or equal depth.

C. Σ; Ψ;E; ∆; Ξ ν⇐ g ◦ [u1, u2] implies Σ; Ψ;E; ∆; Ξ ν′⇐ g ◦ [u1, u2] by a derivation of less
or equal depth.

D. Σ; Ψ;E; ∆ ν⇔ p ◦ [u1, u2] implies Σ; Ψ;E; ∆ ν′⇔ p ◦ [u1, u2] by a derivation of less or
equal depth.

Proof. By simultaneous induction on derivations given in (A)–(D) and case analysis of
their last rules. The only interesting case is (N-claims), where we appeal to assumptions
(C-trans-time) and (C-trans-prin) from §4.2.1.

Lemma D.8 (Time subsumption). Suppose Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2. Then
the following hold.

1. If Σ; d ◦ [u′′1, u′′2] � p ◦ [u1, u2] ↘ Q; b and Σ; Ψ;E; ∆ ν⇒ Q then there is a Q′ such
that Σ; d ◦ [u′′1, u′′2]� p ◦ [u′1, u′2]↘ Q′; b and Σ; Ψ;E; ∆ ν⇒ Q′.

258

Appendix D. Proofs from §6

2. Σ; Ψ;E; ∆ ν⇔ p ◦ [u1, u2] implies Σ; Ψ;E; ∆ ν⇔ p ◦ [u′1, u′2]

3. Σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2] implies Σ; Ψ;E; ∆ ν⇒ g ◦ [u′1, u′2]

4. Σ; Ψ;E; ∆; Ξ ν⇐ g ◦ [u1, u2] implies Σ; Ψ;E; ∆; Ξ ν⇐ g ◦ [u′1, u′2]

Proof. (1) follows by an induction on the given derivation of Σ; d ◦ [u′′1, u′′2]� p ◦ [u1, u2]↘
Q; b. Proof of (2) is shown below. (3) and (4) then follow by a simultaneous induction on
the depths of the given derivations and case analysis of last rules, using (2) for the case
of rule (R-N). Further Lemma D.6 is needed for the case of rule (R-⊃) and Lemma D.7 is
needed for the case of (R-says), as in the proof of Theorem 4.11. (Note that the induction
must be on the depth of derivations, not on the structure of derivations, because in the case
of rule (R-says), we appeal to the i.h. after using Lemma D.7.)

Proof of (2). We case analyze the rule used to derive Σ; Ψ;E; ∆ ν⇔ p ◦ [u1, u2].

Case.
d ◦ [u′′1, u′′2] ∈ ∆ Σ; d ◦ [u′′1, u′′2]� p ◦ [u1, u2]↘ Q; b Σ; Ψ;E; ∆ ν⇒ Q

Σ; Ψ;E; ∆ ν⇔ p ◦ [u1, u2]
N-clause

To show: Σ; Ψ;E; ∆ ν⇔ p ◦ [u′1, u′2]

1. There exists Q′ such that

(a) Σ; d ◦ [u′′1, u′′2]� p ◦ [u′1, u′2]↘ Q′; b
(b) Σ; Ψ;E; ∆ ν⇒ Q′ (Clause (1) of theorem on 2nd and 3rd premises)

2. Σ; Ψ;E; ∆ ν⇔ p ◦ [u′1, u′2] (Rule (N-clause) on 1st premise, 1a, 1b)

Case.

k claims d ◦ [u′′1, u′′2] ∈ ∆ ν = k0, ub, ue
Σ; Ψ |= k � k0 Σ; Ψ |= u′′1 ≤ ub Σ; Ψ |= ue ≤ u′′2
Σ; d ◦ [u′′1, u′′2]� p ◦ [u1, u2]↘ Q; b Σ; Ψ;E; ∆ ν⇒ Q

Σ; Ψ;E; ∆ ν⇔ p ◦ [u1, u2]
N-claims

To show: Σ; Ψ;E; ∆ ν⇔ p ◦ [u′1, u′2]

1. There exists Q′ such that

(a) Σ; d ◦ [u′′1, u′′2]� p ◦ [u′1, u′2]↘ Q′; b
(b) Σ; Ψ;E; ∆ ν⇒ Q′ (Clause (1) of theorem on 6th and 7th premises)

2. Σ; Ψ;E; ∆ ν⇔ p ◦ [u′1, u′2] (Rule (N-claims) on 1st–5th premises, 1a, 1b)

Lemma D.9 (Left subsumption for F-sequents). Suppose the following hold:

1. Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b

2. Σ; Ψ;E; ∆ ν⇒ Q

259

Appendix D. Proofs from §6

3. Σ; Ψ |= u′′1 ≤ u1 and Σ; Ψ |= u2 ≤ u′′2

Then, there is a Q′ such that

A. Σ; d ◦ [u′′1, u′′2]� p ◦ [u′1, u′2]↘ Q′; b

B. Σ; Ψ;E; ∆ ν⇒ Q′

Proof. By induction on the given derivation of Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b and case
analysis of its last rule. The only interesting case is shown below.

Case.
Σ; p ◦ [u1, u2]� p ◦ [u′1, u′2]↘ (u1 ≤ u′1) :: (u′2 ≤ u2) :: []; ff

F-init

To show: There is Q′ such that (A) and (B) hold (with d = p). We claim that Q′ =
(u′′1 ≤ u′1) :: (u′2 ≤ u′′2) :: [] satisfies these properties. (A) follows immediately from rule
(F-init). (B) is proved as follows.

1. Σ; Ψ;E; ∆ ν⇒ (u1 ≤ u′1) :: (u′2 ≤ u2) :: [] (Assumption 2)

2. Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2 (Inversion on 1)

3. Σ; Ψ |= u′′1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u′′2

((C-trans-time) from §4.2.1 on 2 and assumption 3)

4. Σ; Ψ;E; ∆ ν⇒ (u′′1 ≤ u′1) :: (u′2 ≤ u′′2) :: [] (Rules (Q-[]) and (Q-leq) on 3)

Lemma D.10. If Σ; d ◦ [u1, u2] � p ◦ [u′1, u′2] ↘ Q; ff and Σ; Ψ;E; ∆ ν⇒ Q, then Σ; Ψ |=
u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2.

Proof. By induction on the derivation of Σ; d ◦ [u1, u2] � p ◦ [u′1, u′2] ↘ Q; ff and case
analysis of its last rule. The interesting cases are shown below. Note that the cases (F-⊃1)
and (F-@) do not apply since the boolean in their conclusions is always tt.

Case.
Σ; p ◦ [u1, u2]� p ◦ [u′1, u′2]↘ (u1 ≤ u′1) :: (u′2 ≤ u2) :: []; ff

F-init

To show: Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2.

1. Σ; Ψ;E; ∆ ν⇒ (u1 ≤ u′1) :: (u′2 ≤ u2) :: [] (Assumption)

2. Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ;E; ∆ ν⇒ (u′2 ≤ u2) :: [] (Inversion on 1)

3. Σ; Ψ |= u′2 ≤ u2 (Inversion on 2)

260

Appendix D. Proofs from §6

The required conclusions are contained in 2 and 3.

Case.
Σ; d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; ff

Σ; g1 ⊃ d2 ◦ [u1, u2]� p ◦ [u′1, u′2]↘ (g1 ◦ [u′1, u′2]) :: Q; ff
F-⊃2

To show: Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2.

1. Σ; Ψ;E; ∆ ν⇒ (g1 ◦ [u′1, u′2]) :: Q (Assumption)

2. Σ; Ψ;E; ∆ ν⇒ Q (Inversion on 1)

3. Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2 (i.h. on premise and 2)

Lemma D.11 (Admissibility of (⊃L)). Suppose the following hold:

1. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇒ g ◦ [u′1, u′2]

2. Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2

Then,

A. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2], d ◦ [u′1, u′2]
ν⇒ g′′ ◦ [u′′1, u′′2] implies Σ; Ψ;E; ∆, g ⊃ d ◦

[u1, u2]
ν⇒ g′′ ◦ [u′′1, u′′2]

B. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2], d ◦ [u′1, u′2]
ν⇒ Q implies Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]

ν⇒ Q

C. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2], d ◦ [u′1, u′2]; Ξ
ν⇐ g′′ ◦ [u′′1, u′′2] implies Σ; Ψ;E; ∆, g ⊃ d ◦

[u1, u2]; Ξ
ν⇐ g′′ ◦ [u′′1, u′′2]

D. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2], d ◦ [u′1, u′2]
ν⇔ p′′ ◦ [u′′1, u′′2] implies Σ; Ψ;E; ∆, g ⊃ d ◦

[u1, u2]
ν⇔ p′′ ◦ [u′′1, u′′2]

Proof. By simultaneous induction on the depths of the derivations given in (A)–(D) and
case analysis of the last rules in them. The cases in (A), (B), and (C) are straightforward
– we apply the induction hypothesis to the premises of the last rule and reapply the rule.
In order to apply the induction hypothesis to the premises of the rules (L-clause), (L-cons),
(L-inter), and (L-∃) in the proof of (C), we appeal to Lemma D.5 to weaken the given
derivation of Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]

ν⇒ g ◦ [u′1, u′2] appropriately. The cases in the proof
of (D) are shown below.

Case.

d′ ◦ [u3, u4] ∈ (∆, g ⊃ d ◦ [u1, u2], d ◦ [u′1, u′2])
Σ; d′ ◦ [u3, u4]� p ◦ [u′3, u′4]↘ Q; b

Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2], d ◦ [u′1, u′2]
ν⇒ Q

Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2], d ◦ [u′1, u′2]
ν⇔ p ◦ [u′3, u′4]

N-clause

To show: Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇔ p ◦ [u′3, u′4]. We consider three subcases on the

1st premise and b:

Subcase. d′ ◦ [u3, u4] ∈ (∆, g ⊃ d ◦ [u1, u2])

261

Appendix D. Proofs from §6

1. d′ ◦ [u3, u4] ∈ (∆, g ⊃ d ◦ [u1, u2]) (Subcase assumption)

2. Σ; d′ ◦ [u3, u4]� p ◦ [u′3, u′4] (2nd premise)

3. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇒ Q (i.h. on 3rd premise)

4. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇔ p ◦ [u′3, u′4] (Rule (N-clause) on 1–3)

Subcase. d′ ◦ [u3, u4] = d ◦ [u′1, u′2] and b = tt. So, d′ = d, u3 = u′1, and u4 = u′2.

1. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇒ Q (i.h. on 3rd premise)

2. Σ; d ◦ [u′1, u′2]� p ◦ [u′3, u′4]↘ Q; tt (2nd premise and subcase assumption)

3. Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2 (Assumption 2)

4. There is a Q′ such that

(a) Σ; d ◦ [u1, u2]� p ◦ [u′3, u′4]↘ Q′; tt

(b) Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇒ Q′ (Lemma D.9 on 1–3)

5. Σ; g ⊃ d ◦ [u1, u2]� p ◦ [u′3, u′4]↘ (g ◦ φ) :: Q′; tt (Rule (F-⊃1) on 4a)

6. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇒ g ◦ φ (Lemma D.8 on assumption 1)

7. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇒ (g ◦ φ) :: Q′ (Rule (Q-goal) on 4b and 6)

8. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇔ p ◦ [u′3, u′4] (Rule (N-clause) on 5,7)

Subcase. d′ ◦ [u3, u4] = d ◦ [u′1, u′2] and b = ff. So, d′ = d, u3 = u′1, and u4 = u′2.

1. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇒ Q (i.h. on 3rd premise)

2. Σ; d ◦ [u′1, u′2]� p ◦ [u′3, u′4]↘ Q; ff (2nd premise and subcase assumption)

3. Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2 (Assumption 2)

4. There is a Q′ such that

(a) Σ; d ◦ [u1, u2]� p ◦ [u′3, u′4]↘ Q′; ff

(b) Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇒ Q′ (Lemma D.9 on 1–3)

5. Σ; g ⊃ d ◦ [u1, u2]� p ◦ [u′3, u′4]↘ (g ◦ [u′3, u′4]) :: Q′; ff (Rule (F-⊃2) on 4a)

6. Σ; Ψ |= u′1 ≤ u′3 and Σ; Ψ |= u′4 ≤ u′2 (Lemma D.10 on 1,2)

7. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇒ g ◦ [u′3, u′4] (Lemma D.8 on 6 and assumption 1)

8. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇒ (g ◦ [u′3, u′4]) :: Q′ (Rule (Q-goal) on 4b and 7)

9. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇔ p ◦ [u′3, u′4] (Rule (N-clause) on 5,8)

262

Appendix D. Proofs from §6

Case.

k claims d′ ◦ [u3, u4] ∈ (∆, g ⊃ d ◦ [u1, u2], d ◦ [u′1, u′2]) ν = k0, ub, ue
Σ; Ψ |= k � k0 Σ; Ψ |= u3 ≤ ub Σ; Ψ |= ue ≤ u4

Σ; d′ ◦ [u3, u4]� p ◦ [u′3, u′4]↘ Q; b
Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2], d ◦ [u′1, u′2]

ν⇒ Q
Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2], d ◦ [u′1, u′2]

ν⇔ p ◦ [u′3, u′4]
N-claims

To show: Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇔ p ◦ [u′3, u′4]

1. k claims d′ ◦ [u3, u4] ∈ ∆ (Follows from 1st premise)

2. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇒ Q (i.h. on 7th premise)

3. Σ; Ψ;E; ∆, g ⊃ d ◦ [u1, u2]
ν⇔ p ◦ [u′3, u′4]

(Rule (N-claims) on 1, 2nd–6th premises, and 2)

Lemma D.12 (Admissibility of (claims)). Suppose the following hold:

1. ν = k0, ub, ue

2. Σ; Ψ |= k′0 � k0

3. Σ; Ψ |= u′b ≤ ub

4. Σ; Ψ |= ue ≤ u′e

Then,

A. Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]
ν⇒ g ◦ [u1, u2] implies Σ; Ψ;E; ∆, k′0 claims

d′0 ◦ [u′b, u′e]
ν⇒ g ◦ [u1, u2]

B. Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]
ν⇒ Q implies Σ; Ψ;E; ∆, k′0 claims d′0 ◦

[u′b, u′e]
ν⇒ Q

C. Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]; Ξ
ν⇐ g ◦ [u1, u2] implies Σ; Ψ;E; ∆, k′0 claims

d′0 ◦ [u′b, u′e]; Ξ
ν⇐ g ◦ [u1, u2]

D. Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]
ν⇔ p ◦ [u1, u2] implies Σ; Ψ;E; ∆, k′0 claims

d′0 ◦ [u′b, u′e]
ν⇔ p ◦ [u1, u2]

Proof. By simultaneous induction on the depths of derivations given in (A)–(D) and case
analysis of their last rules. The interesting cases are shown below.

Case.
Σ; Ψ;E; (∆, k′0 claims d′0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e])|

k,u1,u2⇒ g ◦ [u1, u2]
Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]

ν⇒ k says g ◦ [u1, u2]
R-says

To show: Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e]
ν⇒ k says g ◦ [u1, u2]

263

Appendix D. Proofs from §6

1. (∆, k′0 claims d′0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e])| = (∆, k′0 claims d′0 ◦ [u′b, u′e])| (Definition)

2. Σ; Ψ;E; (∆, k′0 claims d′0 ◦ [u′b, u′e])|
k,u1,u2⇒ g ◦ [u1, u2] (Premise and 1)

3. Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e]
ν⇒ k says g ◦ [u1, u2] (Rule (R-says) on 2)

Case.

d ◦ [u1, u2] ∈ (∆, k′0 claims d′0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e])
Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b

Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]
ν⇒ Q

Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]
ν⇔ p ◦ [u′1, u′2]

N-clause

To show: Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e]
ν⇔ p ◦ [u′1, u′2]. We consider two subcases on

the 1st premise.

Subcase. d ◦ [u1, u2] ∈ (∆, k′0 claims d′0 ◦ [u′b, u′e])

1. d ◦ [u1, u2] ∈ (∆, k′0 claims d′0 ◦ [u′b, u′e]) (Subcase assumption)

2. Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b (2nd premise)

3. Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e]
ν⇒ Q (i.h. on 3rd premise)

4. Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e]
ν⇔ p ◦ [u′1, u′2] (Rule (N-clause) on 1–3)

Subcase. d ◦ [u1, u2] = d′0 ◦ [u′b, u′e]. Therefore, d = d′0, u1 = u′b, and u2 = u′e.

1. k′0 claims d′0 ◦ [u′b, u′e] ∈ (∆, k′0 claims d′0 ◦ [u′b, u′e])

2. ν = k0, ub, ue (Assumption 1)

3. Σ; Ψ |= k′0 � k0 (Assumption 2)

4. Σ; Ψ |= u′b ≤ ub (Assumption 3)

5. Σ; Ψ |= ue ≤ u′e (Assumption 4)

6. Σ; d′0 ◦ [u′b, u′e]� p ◦ [u′1, u′2]↘ Q; b (2nd premise and subcase assumption)

7. Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e]
ν⇒ Q (i.h. on 3rd premise)

8. Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e]
ν⇔ p ◦ [u′1, u′2] (Rule (N-claims) on 1–7)

Case.

k claims d ◦ [u1, u2] ∈ (∆, k′0 claims d′0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]) ν = k0, ub, ue
Σ; Ψ |= k � k0 Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2

Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b
Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]

ν⇒ Q
Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]

ν⇔ p ◦ [u′1, u′2]
N-claims

To show: Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e]
ν⇔ p ◦ [u′1, u′2]

264

Appendix D. Proofs from §6

1. k claims d ◦ [u1, u2] ∈ (∆, k′0 claims d′0 ◦ [u′b, u′e]) (Follows from 1st premise)

2. Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e]
ν⇒ Q (i.h. on 7th premise)

3. Σ; Ψ;E; ∆, k′0 claims d′0 ◦ [u′b, u′e]
ν⇔ p ◦ [u′1, u′2]

(Rule (N-claims) on 1, 2nd–6th premises, and 2)

Lemma D.13 (Admissibility of (∧L)). The following hold.

A. Σ; Ψ;E; ∆, d0∧d′0 ◦ [u′b, u′e], d0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]
ν⇒ g ◦ [u1, u2] implies Σ; Ψ;E; ∆, d0∧

d′0 ◦ [u′b, u′e]
ν⇒ g ◦ [u1, u2]

B. Σ; Ψ;E; ∆, d0∧d′0 ◦ [u′b, u′e], d0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]
ν⇒ Q implies Σ; Ψ;E; ∆, d0∧d′0 ◦

[u′b, u′e]
ν⇒ Q

C. Σ; Ψ;E; ∆, d0 ∧ d′0 ◦ [u′b, u′e], d0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]; Ξ
ν⇐ g ◦ [u1, u2] implies

Σ; Ψ;E; ∆, d0 ∧ d′0 ◦ [u′b, u′e]; Ξ
ν⇐ g ◦ [u1, u2]

D. Σ; Ψ;E; ∆, d0∧d′0 ◦ [u′b, u′e], d0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]
ν⇔ p ◦ [u1, u2] implies Σ; Ψ;E; ∆, d0∧

d′0 ◦ [u′b, u′e]
ν⇔ p ◦ [u1, u2]

Proof. By simultaneous induction on depths of derivations given in (A)–(D) and case anal-
ysis of their last rules. One interesting case is shown below.

Case.

d ◦ [u1, u2] ∈ (∆, d0 ∧ d′0 ◦ [u′b, u′e], d0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e])
Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b

Σ; Ψ;E; ∆, d0 ∧ d′0 ◦ [u′b, u′e], d0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]
ν⇒ Q

Σ; Ψ;E; ∆, d0 ∧ d′0 ◦ [u′b, u′e], d0 ◦ [u′b, u′e], d′0 ◦ [u′b, u′e]
ν⇔ p ◦ [u′1, u′2]

N-clause

To show: Σ; Ψ;E; ∆, d0 ∧ d′0 ◦ [u′b, u′e]
ν⇔ p ◦ [u′1, u′2]. We analyze three subcases on the

1st premise.

Subcase. d ◦ [u1, u2] ∈ (∆, d0 ∧ d′0 ◦ [u′b, u′e])

1. d ◦ [u1, u2] ∈ (∆, d0 ∧ d′0 ◦ [u′b, u′e]) (Subcase assumption)

2. Σ; d ◦ [u1, u2]� p ◦ [u′1, u′2]↘ Q; b (2nd premise)

3. Σ; Ψ;E; ∆, d0 ∧ d′0 ◦ [u′b, u′e]
ν⇒ Q (i.h. on 3rd premise)

4. Σ; Ψ;E; ∆, d0 ∧ d′0 ◦ [u′b, u′e]
ν⇔ p ◦ [u′1, u′2] (Rule (N-clause) on 1–3)

Subcase. d ◦ [u1, u2] = d0 ◦ [u′b, u′e]. Then, d = d0, u1 = u′b, and u2 = u′e.

1. d0 ∧ d′0 ◦ [u′b, u′e] ∈ (∆, d0 ∧ d′0 ◦ [u′b, u′e])

265

Appendix D. Proofs from §6

2. Σ; d0 ◦ [u′b, u′e]� p ◦ [u′1, u′2]↘ Q; b (2nd premise and subcase assumption)

3. Σ; d0 ∧ d′0 ◦ [u′b, u′e]� p ◦ [u′1, u′2]↘ Q; b (Rule (F-∧1) on 2)

4. Σ; Ψ;E; ∆, d0 ∧ d′0 ◦ [u′b, u′e]
ν⇒ Q (i.h. on 3rd premise)

5. Σ; Ψ;E; ∆, d0 ∧ d′0 ◦ [u′b, u′e]
ν⇔ p ◦ [u′1, u′2] (Rule (N-clause) on 1,3,4)

Subcase. d ◦ [u1, u2] = d′0 ◦ [u′b, u′e]. This subcase is similar to the previous subcase, except
that we use rule (F-∧2) in the third step.

Lemma D.14 (Admissibility of (∀L)). Suppose Σ ` t : σ. Then the following hold.

A. Σ; Ψ;E; ∆,∀x:σ.d0 ◦ [ub, ue], d0[t/x] ◦ [ub, ue]
ν⇒ g ◦ [u1, u2] implies Σ; Ψ;E; ∆,

∀x:σ.d0 ◦ [ub, ue]
ν⇒ g ◦ [u1, u2]

B. Σ; Ψ;E; ∆,∀x:σ.d0 ◦ [ub, ue], d0[t/x] ◦ [ub, ue]
ν⇒ Q implies Σ; Ψ;E; ∆, ∀x:σ.d0 ◦

[ub, ue]
ν⇒ Q

C. Σ; Ψ;E; ∆,∀x:σ.d0 ◦ [ub, ue], d0[t/x] ◦ [ub, ue]; Ξ
ν⇐ g ◦ [u1, u2] implies Σ; Ψ;E; ∆,

∀x:σ.d0 ◦ [ub, ue]; Ξ
ν⇐ g ◦ [u1, u2]

D. Σ; Ψ;E; ∆,∀x:σ.d0 ◦ [ub, ue], d0[t/x] ◦ [ub, ue]
ν⇔ p ◦ [u1, u2] implies Σ; Ψ;E; ∆,

∀x:σ.d0 ◦ [ub, ue]
ν⇔ p ◦ [u1, u2]

Proof. By simultaneous induction on depths of derivations given in (A)–(D) and case anal-
ysis of their last rules, as in the proof of Lemma D.13. In the case of rule (N-clause), we
use rule (F-∀).

Lemma D.15 (Admissibility of (@L)). The following hold.

A. Σ; Ψ;E; ∆, d0 @ [u′b, u′e] ◦ [ub, ue], d0 ◦ [u′b, u′e]
ν⇒ g ◦ [u1, u2] implies Σ; Ψ;E; ∆, d0 @

[u′b, u′e] ◦ [ub, ue]
ν⇒ g ◦ [u1, u2]

B. Σ; Ψ;E; ∆, d0 @ [u′b, u′e] ◦ [ub, ue], d0 ◦ [u′b, u′e]
ν⇒ Q implies Σ; Ψ;E; ∆, d0 @ [u′b, u′e] ◦

[ub, ue]
ν⇒ Q

C. Σ; Ψ;E; ∆, d0 @ [u′b, u′e] ◦ [ub, ue], d0 ◦ [u′b, u′e]; Ξ
ν⇐ g ◦ [u1, u2] implies Σ; Ψ;E; ∆, d0 @

[u′b, u′e] ◦ [ub, ue]; Ξ
ν⇐ g ◦ [u1, u2]

D. Σ; Ψ;E; ∆, d0 @ [u′b, u′e] ◦ [ub, ue], d0 ◦ [u′b, u′e]
ν⇔ p ◦ [u1, u2] implies Σ; Ψ;E; ∆, d0 @

[u′b, u′e] ◦ [ub, ue]
ν⇔ p ◦ [u1, u2]

Proof. By simultaneous induction on depths of derivations given in (A)–(D) and case anal-
ysis of their last rules, as in the proof of Lemma D.13. In the case of rule (N-clause), we
use rule (F-@).

266

Appendix D. Proofs from §6

D.3 Properties of the Sequent Calculus
Lemma D.16 (Strong right inversion for ∧,⊃, ∀,@). The following hold in the sequent
calculus for BL.

1. Σ; Ψ;E; Γ ν−→ s1∧ s2 ◦ [u1, u2] implies both Σ; Ψ;E; Γ ν−→ s1 ◦ [u1, u2] and Σ; Ψ;E; Γ ν−→
s2 ◦ [u1, u2] by derivations of smaller or equal depth.

2. Σ; Ψ;E; Γ ν−→ s1 ⊃ s2 ◦ [u1, u2] implies Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ,
s1 ◦ [x1, x2]

ν−→ s2 ◦ [x1, x2] by a derivation of smaller or equal depth.

3. Σ; Ψ;E; Γ ν−→ ∀x:σ.s ◦ [u1, u2] implies Σ, x:σ; Ψ;E; Γ ν−→ s ◦ [u1, u2] by a derivation of
smaller or equal depth.

4. Σ; Ψ;E; Γ ν−→ s @ [u′1, u′2] ◦ [u1, u2] implies Σ; Ψ;E; Γ ν−→ s ◦ [u′1, u′2] by a derivation of
smaller or equal depth.

Proof. Each statement follows by a separate induction on the depth of the given deriva-
tion and a case analysis of the last rule in the derivation. For every statement, only one
right rule may end the derivation, in which case the result follows from the premise(s) of
the rule. For left rules, we apply the induction hypothesis to relevant premises and reapply
the rule. As an illustration, we show some representative cases in the proof of statement (2).

Case.
Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2]

ν−→ s2 ◦ [x1, x2]
Σ; Ψ;E; Γ ν−→ s1 ⊃ s2 ◦ [u1, u2]

⊃R

To show: Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2]
ν−→ s2 ◦ [x1, x2] by a

derivation of smaller or equal depth. This follows immediately, since it is the premise of the
rule. Further, the derivation ending at the premise has a depth one less than that of the
whole derivation. Note also that the given derivation in statement (2) cannot end in any
other right rule.

Case.

Σ; Ψ;E; Γ, r1 ∨ r2 ◦ [u′1, u′2], r1 ◦ [u′1, u′2]
ν−→ s1 ⊃ s2 ◦ [u1, u2]

Σ; Ψ;E; Γ, r1 ∨ r2 ◦ [u′1, u′2], r2 ◦ [u′1, u′2]
ν−→ s1 ⊃ s2 ◦ [u1, u2]

Σ; Ψ;E; Γ, r1 ∨ r2 ◦ [u′1, u′2]
ν−→ s1 ⊃ s2 ◦ [u1, u2]

∨L

To show: Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, r1 ∨ r2 ◦ [u′1, u′2], s1 ◦ [x1, x2]
ν−→

s2 ◦ [x1, x2] by a derivation of smaller or equal depth. Let the depth of the entire given
derivation be n. So each premise has depth at most n− 1.

1. Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, r1 ∨ r2 ◦ [u′1, u′2], r1 ◦ [u′1, u′2], s1 ◦
[x1, x2]

ν−→ s2 ◦ [x1, x2] by a derivation of depth at most n− 1 (i.h. on 1st premise)

2. Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, r1 ∨ r2 ◦ [u′1, u′2], r2 ◦ [u′1, u′2], s1 ◦
[x1, x2]

ν−→ s2 ◦ [x1, x2] by a derivation of depth at most n− 1 (i.h. on 2nd premise)

3. Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, r1 ∨ r2 ◦ [u′1, u′2], s1 ◦ [x1, x2]
ν−→ s2 ◦

[x1, x2] by a derivation of depth at most n (Rule (∨L) on 1,2)

267

Appendix D. Proofs from §6

Lemma D.17 (Limited strong right inversion for c, i,∨, ∃, says). The following hold in
the sequent calculus for BL. (Observe that the hypotheses in the following statements are
restricted to the form ∆.)

1. Σ; Ψ;E; ∆ ν−→ c ◦ [u1, u2] implies Σ; Ψ |= c

2. Σ; Ψ;E; ∆ ν−→ i ◦ [u1, u2] implies Σ;E |= i

3. Σ; Ψ;E; ∆ ν−→ s1∨s2 ◦ [u1, u2] implies either Σ; Ψ;E; ∆ ν−→ s1 ◦ [u1, u2] or Σ; Ψ;E; ∆ ν−→
s2 ◦ [u1, u2], in each case by a derivation of strictly smaller depth.

4. Σ; Ψ;E; ∆ ν−→ ∃x:σ.s ◦ [u1, u2] implies that there is a t such that Σ ` t : σ and
Σ; Ψ;E; ∆ ν−→ s[t/x] ◦ [u1, u2] by a derivation of strictly smaller depth.

5. Σ; Ψ;E; ∆ ν−→ k says s ◦ [u1, u2] implies Σ; Ψ;E; ∆| k,u1,u2−−−−→ s ◦ [u1, u2] by a derivation
of strictly smaller depth.

Proof. Each statement follows by a separate induction on the depth of the given derivation
and a case analysis of the last rule in the derivation, as in the proof of Lemma D.16. As an
illustration, we show some representative cases in the proof of (5).

Case.
Σ; Ψ;E; ∆| k,u1,u2−−−−→ s ◦ [u1, u2]
Σ; Ψ;E; ∆ ν−→ k says s ◦ [u1, u2]

saysR

To show: Σ; Ψ;E; ∆| k,u1,u2−−−−→ s ◦ [u1, u2] by a derivation of strictly smaller depth. This
follows immediately from the premise. Note also that no other right rules apply.

Case.

Σ; Ψ;E; ∆, s1 ⊃ s2 ◦ [u′′1, u′′2]
ν−→ s1 ◦ [u′1, u′2]

Σ; Ψ;E; ∆, s1 ⊃ s2 ◦ [u′′1, u′′2], s2 ◦ [u′1, u′2]
ν−→ k says s ◦ [u1, u2]

Σ; Ψ |= u′′1 ≤ u′1 Σ; Ψ |= u′2 ≤ u′′2
Σ; Ψ;E; ∆, s1 ⊃ s2 ◦ [u′′1, u′′2]

ν−→ k says s ◦ [u1, u2]
⊃L

To show: Σ; Ψ;E; (∆, s1 ⊃ s2 ◦ [u′′1, u′′2])|
ν−→ k says s ◦ [u1, u2] by a derivation of strictly

smaller depth. Let the depth of the entire derivation be n. Then the depth of each premise
is at most n− 1.

1. Σ; Ψ;E; (∆, s1 ⊃ s2 ◦ [u′′1, u′′2], s1 ◦ [u′1, u′2])|
ν−→ k says s ◦ [u1, u2] by a derivation of

depth at most n− 2 (i.h. on 2nd premise)

2. (∆, s1 ⊃ s2 ◦ [u′′1, u′′2], s1 ◦ [u′1, u′2])| = ∆| = (∆, s1 ⊃ s2 ◦ [u′′1, u′′2])| (Definition)

3. Σ; Ψ;E; (∆, s1 ⊃ s2 ◦ [u′′1, u′′2])|
ν−→ k says s ◦ [u1, u2] by a derivation of depth at most

n− 2 (1,2)

Due to the syntax of ∆, the left rules (∨L), (saysL), (consL), (interL), (⊥L), and (∃L)
do not apply in the proof of any of the statements of the theorem. As the reader may easily

268

Appendix D. Proofs from §6

check, the induction step for statement (5) would not have succeeded for the cases (saysL),
(consL), (interL), and (⊥L) had they been relevant. Similarly, the induction step for cases
(∨L) and (∃L) would not succeed for statements (3) and (4) respectively.

Lemma D.18 (Strong left inversion for c, i,∧,∨,>,∃, says,@; Lemma 6.4). The following
hold for the sequent calculus of BL.

1. Σ; Ψ;E; Γ, c ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies Σ; Ψ, c;E; Γ ν−→ r ◦ [u′1, u′2] by a derivation

of smaller or equal depth.

2. Σ; Ψ;E; Γ, i ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies Σ; Ψ;E, i; Γ ν−→ r ◦ [u′1, u′2] by a derivation

of smaller or equal depth.

3. Σ; Ψ;E; Γ, s1 ∧ s2 ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies Σ; Ψ;E; Γ, s1 ◦ [u1, u2], s2 ◦

[u1, u2]
ν−→ r ◦ [u′1, u′2] by a derivation of smaller or equal depth.

4. Σ; Ψ;E; Γ, s1 ∨ s2 ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies both Σ; Ψ;E; Γ, s1 ◦ [u1, u2]

ν−→ r ◦
[u′1, u′2] and Σ; Ψ;E; Γ, s2 ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2] by derivations of smaller or equal
depth.

5. Σ; Ψ;E; Γ,> ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies Σ; Ψ;E; Γ ν−→ r ◦ [u′1, u′2] by a derivation

of smaller or equal depth.

6. Σ; Ψ;E; Γ, ∃x:σ.s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies Σ, x:σ; Ψ;E; Γ, s ◦ [u1, u2]

ν−→ r ◦
[u′1, u′2] by a derivation of smaller or equal depth.

7. Σ; Ψ;E; Γ, k says s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]

ν−→
r ◦ [u′1, u′2] by a derivation of smaller or equal depth.

8. Σ; Ψ;E; Γ, s @ [u′′1, u′′2] ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] implies Σ; Ψ;E; Γ, s ◦ [u′′1, u′′2]

ν−→ r ◦
[u′1, u′2] by a derivation of smaller or equal depth.

Proof. Each statement follows by a separate induction on the depth of the given derivation
and a case analysis of the last rule in the derivation. As an illustration, we show some
representative cases in the proof of statement (7).

Case.
Σ; Ψ;E; Γ, k says s ◦ [u1, u2], k claims s ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
Σ; Ψ;E; Γ, k says s ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
saysL (principal case)

To show: Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] by a derivation of smaller or

equal depth. Let the depth of the entire derivation be n. Then the premise has a derivation
of depth n− 1.

1. Σ; Ψ;E; Γ, k claims s ◦ [u1, u2], k claims s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] by a derivation of

depth less than or equal to n− 1 (i.h. on the premise)

2. Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] by a derivation of depth less than or

equal to n− 1 (Contraction Theorem 4.8(2) on 1)

269

Appendix D. Proofs from §6

Case.

Σ; Ψ;E; Γ, k′′ says s′′ ◦ [u′′1, u′′2], k′′ claims s′′ ◦ [u′′1, u′′2],
k says s ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
Σ; Ψ;E; Γ, k′′ says s′′ ◦ [u′′1, u′′2], k says s ◦ [u1, u2]

ν−→ r ◦ [u′1, u′2]
saysL (other case)

To show: Σ; Ψ;E; Γ, k′′ says s′′ ◦ [u′′1, u′′2], k claims s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] by a

derivation of shorter or equal depth. Let the depth of the entire derivation be n. Then the
premise has a derivation of depth n− 1.

1. Σ; Ψ;E; Γ, k′′ says s′′ ◦ [u′′1, u′′2], k′′ claims s′′ ◦ [u′′1, u′′2], k claims s ◦ [u1, u2]
ν−→ r ◦

[u′1, u′2] by a derivation of depth at most n− 1 (i.h. on premise)

2. Σ; Ψ;E; Γ, k′′ says s′′ ◦ [u′′1, u′′2], k claims s ◦ [u1, u2]
ν−→ r ◦ [u′1, u′2] by a derivation of

depth at most n (Rule (saysL) on 1)

Case.
Σ; Ψ;E; (Γ, k says s ◦ [u1, u2])|

k′,u′1,u
′
2−−−−−→ s′ ◦ [u′1, u′2]

Σ; Ψ;E; Γ, k says s ◦ [u1, u2]
ν−→ k′ says s′ ◦ [u′1, u′2]

saysR

To show: Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]
ν−→ k′ says s′ ◦ [u′1, u′2] by a derivation of

smaller or equal depth. Let the depth of the entire derivation be n. Then the premise has
a derivation of depth n− 1.

1. (Γ, k says s ◦ [u1, u2])| = Γ| (Definition)

2. Σ; Ψ;E; Γ|
k′,u′1,u

′
2−−−−−→ s′ ◦ [u′1, u′2] by a derivation of depth n− 1 (Premise and 1)

3. Σ; Ψ;E; Γ|, k claims s ◦ [u1, u2]
k′,u′1,u

′
2−−−−−→ s′ ◦ [u′1, u′2] by a derivation of depth at

most n− 1 (Weakening Theorem 4.8(1d) on 2)

4. Γ|, k claims s ◦ [u1, u2] = (Γ, k claims s ◦ [u1, u2])| (Definition)

5. Σ; Ψ;E; (Γ, k claims s ◦ [u1, u2])|
k′,u′1,u

′
2−−−−−→ s′ ◦ [u′1, u′2] by a derivation of depth at

most n− 1 (3,4)

6. Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]
ν−→ k′ says s′ ◦ [u′1, u′2] by a derivation of depth at

most n (Rule (saysR) on 5)

270

Appendix D. Proofs from §6

D.4 Completeness of Goal-directed Search
We define the size of chunks h and groups Ξ as follows.

size(d) = 1
size(c) = 1
size(i) = 1

size(h1 ∧ h2) = 1 + size(h1) + size(h2)
size(h1 ∨ h2) = 1 + size(h1) + size(h2)

size(>) = 1
size(⊥) = 1

size(∃x:σ.h) = 1 + size(h)
size(k says d) = 1

size(h @ [u1, u2]) = 1 + size(h)

size([]) = 0
size(Ξ :: (h ◦ [u1, u2])) = size(Ξ) + size(h)

Theorem D.19 (Completeness; Theorem 6.5). The following hold.

A. Σ; Ψ;E; ∆ ν−→ g0 ◦ [u0, u
′
0] implies Σ; Ψ;E; ∆ ν⇒ g0 ◦ [u0, u

′
0]

B. Σ; Ψ;E; ∆, |Ξ| ν−→ g0 ◦ [u0, u
′
0] implies Σ; Ψ;E; ∆; Ξ ν⇐ g0 ◦ [u0, u

′
0]

Proof. By simultaneous lexicographic induction, first on the depths of the given derivations,
and then on the order (B) > (A). For (B), we also subinduct on size(Ξ). More precisely,
the following uses of the i.h. are legitimate:

- We are proving (A) and the i.h. is invoked for (A) or (B) with a derivation of smaller
depth.

- We are proving (B) and the i.h. is invoked for (A) or (B) with a derivation of smaller
depth.

- We are proving (B) and the i.h. is invoked for (A) with a derivation of equal depth.

- We are proving (B) and the i.h. is invoked for (B) with a derivation of equal depth
and Ξ of smaller size.

Proof of (A)

To prove (A), we case analyze the last rule in the given derivation of Σ; Ψ;E; ∆ ν−→ g0 ◦
[u0, u

′
0]. For right rules we apply the i.h. to premises and then apply the corresponding

rule from R-sequents. For left rules as well as the rule (claims) we apply the i.h. to the
premises, and use one of Lemmas D.11, D.12, D.13, D.14, and D.15, depending on the
principal connective.

271

Appendix D. Proofs from §6

Case.
Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ;E; ∆, p ◦ [u′1, u′2]

ν−→ p ◦ [u1, u2]
init

To show: Σ; Ψ;E; ∆, p ◦ [u′1, u′2]
ν⇒ p ◦ [u1, u2]

1. Σ; p ◦ [u′1, u′2]� p ◦ [u1, u2]↘ (u′1 ≤ u1) :: (u2 ≤ u′2) :: []; ff (Rule (F-init))

2. Σ; Ψ |= u′1 ≤ u1 (1st premise)

3. Σ; Ψ |= u2 ≤ u′2 (2nd premise)

4. Σ; Ψ;E; ∆, p ◦ [u′1, u′2]
ν⇒ [] (Rule (Q-[]))

5. Σ; Ψ;E; ∆, p ◦ [u′1, u′2]
ν⇒ (u2 ≤ u′2) :: [] (Rule (Q-leq) on 3,4)

6. Σ; Ψ;E; ∆, p ◦ [u′1, u′2]
ν⇒ (u′1 ≤ u1) :: (u2 ≤ u′2) :: [] (Rule (Q-leq) on 2,5)

7. Σ; Ψ;E; ∆, p ◦ [u′1, u′2]
ν⇔ p ◦ [u1, u2] (Rule (N-clause) on 1,6)

8. Σ; Ψ;E; ∆, p ◦ [u′1, u′2]
ν⇒ p ◦ [u1, u2] (Rule (R-N) on 7)

Case.

Σ; Ψ;E; ∆, k claims d ◦ [u1, u2], d ◦ [u1, u2]
ν−→ g ◦ [u′1, u′2]

ν = k′, ub, ue Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2 Σ; Ψ |= k � k′

Σ; Ψ;E; ∆, k claims d ◦ [u1, u2]
ν−→ g ◦ [u′1, u′2]

claims

To show: Σ; Ψ;E; ∆, k claims d ◦ [u1, u2]
ν⇒ g ◦ [u′1, u′2]

1. Σ; Ψ;E; ∆, k claims d ◦ [u1, u2], d ◦ [u1, u2]
ν⇒ g ◦ [u′1, u′2] (i.h. (A) on premise)

2. Σ; Ψ;E; ∆, k claims d ◦ [u1, u2]
ν⇒ g ◦ [u′1, u′2]

(Lemma D.12(A) on 1 and 2nd–5th premises)

Case.
Σ; Ψ;E; ∆| k,u1,u2−−−−→ g ◦ [u1, u2]
Σ; Ψ;E; ∆ ν−→ k says g ◦ [u1, u2]

saysR

To show: Σ; Ψ;E; ∆ ν⇒ k says g ◦ [u1, u2]

1. Σ; Ψ;E; ∆| k,u1,u2⇒ g ◦ [u1, u2] (i.h. (A) on premise)

2. Σ; Ψ;E; ∆ ν⇒ k says g ◦ [u1, u2] (Rule (R-says) on 1)

Case.
Σ; Ψ;E; ∆ ν−→ g ◦ [u1, u2]

Σ; Ψ;E; ∆ ν−→ g @ [u1, u2] ◦ [u′1, u′2]
@R

To show: Σ; Ψ;E; ∆ ν⇒ g @ [u1, u2] ◦ [u′1, u′2]

1. Σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2] (i.h. (A) on premise)

2. Σ; Ψ;E; ∆ ν⇒ g @ [u1, u2] ◦ [u′1, u′2] (Rule (R-@) on 1)

272

Appendix D. Proofs from §6

Case.
Σ; Ψ;E; ∆, d @ [u′1, u′2] ◦ [u1, u2], d ◦ [u′1, u′2]

ν−→ g ◦ [u′′1, u′′2]
Σ; Ψ;E; ∆, d @ [u′1, u′2] ◦ [u1, u2]

ν−→ g ◦ [u′′1, u′′2]
@L

To show: Σ; Ψ;E; ∆, d @ [u′1, u′2] ◦ [u1, u2]
ν⇒ g ◦ [u′′1, u′′2]

1. Σ; Ψ;E; ∆, d @ [u′1, u′2] ◦ [u1, u2], d ◦ [u′1, u′2]
ν⇒ g ◦ [u′′1, u′′2] (i.h. (A) on premise)

2. Σ; Ψ;E; ∆, d @ [u′1, u′2] ◦ [u1, u2]
ν⇒ g ◦ [u′′1, u′′2] (Lemma D.15(A) on 1)

Case.
Σ; Ψ |= c

Σ; Ψ;E; ∆ ν−→ c ◦ [u1, u2]
consR

To show: Σ; Ψ;E; ∆ ν⇒ c ◦ [u1, u2]

1. Σ; Ψ;E; ∆ ν⇒ c ◦ [u1, u2] (Rule (R-cons) on premise)

Case.
Σ;E |= i

Σ; Ψ;E; Γ ν−→ i ◦ [u1, u2]
interR

To show: Σ; Ψ;E; Γ ν⇒ i ◦ [u1, u2]

1. Σ; Ψ;E; Γ ν⇒ i ◦ [u1, u2] (Rule (R-inter) on premise)

Case.
Σ; Ψ;E; ∆ ν−→ g1 ◦ [u1, u2] Σ; Ψ;E; ∆ ν−→ g2 ◦ [u1, u2]

Σ; Ψ;E; ∆ ν−→ g1 ∧ g2 ◦ [u1, u2]
∧R

To show: Σ; Ψ;E; ∆ ν⇒ g1 ∧ g2 ◦ [u1, u2]

1. Σ; Ψ;E; ∆ ν⇒ g1 ◦ [u1, u2] (i.h. (A) on 1st premise)

2. Σ; Ψ;E; ∆ ν⇒ g2 ◦ [u1, u2] (i.h. (A) on 2nd premise)

3. Σ; Ψ;E; ∆ ν⇒ g1 ∧ g2 ◦ [u1, u2] (Rule (R-∧) on 1,2)

Case.
Σ; Ψ;E; ∆, d1 ∧ d2 ◦ [u1, u2], d1 ◦ [u1, u2], d2 ◦ [u1, u2]

ν−→ g ◦ [u′1, u′2]
Σ; Ψ;E; ∆, d1 ∧ d2 ◦ [u1, u2]

ν−→ g ◦ [u′1, u′2]
∧L

To show: Σ; Ψ;E; ∆, d1 ∧ d2 ◦ [u1, u2]
ν⇒ g ◦ [u′1, u′2]

1. Σ; Ψ;E; ∆, d1 ∧ d2 ◦ [u1, u2], d1 ◦ [u1, u2], d2 ◦ [u1, u2]
ν⇒ g ◦ [u′1, u′2]

(i.h. (A) on premise)

2. Σ; Ψ;E; ∆, d1 ∧ d2 ◦ [u1, u2]
ν⇒ g ◦ [u′1, u′2] (Lemma D.13(A) on 1)

Case.
Σ; Ψ;E; ∆ ν−→ g1 ◦ [u1, u2]

Σ; Ψ;E; ∆ ν−→ g1 ∨ g2 ◦ [u1, u2]
∨R1

To show: Σ; Ψ;E; ∆ ν⇒ g1 ∨ g2 ◦ [u1, u2]

273

Appendix D. Proofs from §6

1. Σ; Ψ;E; ∆ ν⇒ g1 ◦ [u1, u2] (i.h. (A) on premise)

2. Σ; Ψ;E; ∆ ν⇒ g1 ∨ g2 ◦ [u1, u2] (Rule (R-∨1) on 1)

Case.
Σ; Ψ;E; ∆ ν−→ g2 ◦ [u1, u2]

Σ; Ψ;E; ∆ ν−→ g1 ∨ g2 ◦ [u1, u2]
∨R2

To show: Σ; Ψ;E; ∆ ν⇒ g1 ∨ g2 ◦ [u1, u2]

1. Σ; Ψ;E; ∆ ν⇒ g2 ◦ [u1, u2] (i.h. (A) on premise)

2. Σ; Ψ;E; ∆ ν⇒ g1 ∨ g2 ◦ [u1, u2] (Rule (R-∨2) on 1)

Case.
Σ; Ψ;E; ∆ ν−→ > ◦ [u1, u2]

>R

To show: Σ; Ψ;E; ∆ ν⇒ > ◦ [u1, u2]

1. Σ; Ψ;E; ∆ ν⇒ > ◦ [u1, u2] (Rule (R->))

Case.
Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; ∆, h ◦ [x1, x2]

ν−→ g ◦ [x1, x2]
Σ; Ψ;E; ∆ ν−→ h ⊃ g ◦ [u1, u2]

⊃R

To show: Σ; Ψ;E; ∆ ν⇒ h ⊃ g ◦ [u1, u2]

1. Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; ∆;h ◦ [x1, x2]
ν⇐ g ◦ [x1, x2]

(i.h. (B) on premise)

2. Σ; Ψ;E; ∆ ν⇒ h ⊃ g ◦ [u1, u2] (Rule (R-⊃) on 1)

Case.

Σ; Ψ;E; ∆, g1 ⊃ d2 ◦ [u1, u2]
ν−→ g1 ◦ [u′1, u′2]

Σ; Ψ;E; ∆, g1 ⊃ d2 ◦ [u1, u2], d2 ◦ [u′1, u′2]
ν−→ g ◦ [u′′1, u′′2]

Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2

Σ; Ψ;E; ∆, g1 ⊃ d2 ◦ [u1, u2]
ν−→ g ◦ [u′′1, u′′2]

⊃L

To show: Σ; Ψ;E; ∆, g1 ⊃ d2 ◦ [u1, u2]
ν⇒ g ◦ [u′′1, u′′2]

1. Σ; Ψ;E; ∆, g1 ⊃ d2 ◦ [u1, u2]
ν⇒ g1 ◦ [u′1, u′2] (i.h. (A) on 1st premise)

2. Σ; Ψ;E; ∆, g1 ⊃ d2 ◦ [u1, u2], d2 ◦ [u′1, u′2]
ν⇒ g ◦ [u′′1, u′′2] (i.h. (A) on 2nd premise)

3. Σ; Ψ;E; ∆, g1 ⊃ d2 ◦ [u1, u2]
ν⇒ g ◦ [u′′1, u′′2]

(Lemma D.11(A) on 1,2 and 3rd,4th premises)

Case.
Σ, x:σ; Ψ;E; ∆ ν−→ g ◦ [u1, u2]
Σ; Ψ;E; ∆ ν−→ ∀x:σ.g ◦ [u1, u2]

∀R

To show: Σ; Ψ;E; ∆ ν⇒ ∀x:σ.g ◦ [u1, u2]

274

Appendix D. Proofs from §6

1. Σ, x:σ; Ψ;E; ∆ ν⇒ g ◦ [u1, u2] (i.h. (A) on premise)

2. Σ; Ψ;E; ∆ ν⇒ ∀x:σ.g ◦ [u1, u2] (Rule (R-∀) on 1)

Case.
Σ; Ψ;E; ∆,∀x:σ.d ◦ [u1, u2], d[t/x] ◦ [u1, u2]

ν−→ g ◦ [u′1, u′2] Σ ` t : σ
Σ; Ψ;E; ∆,∀x:σ.d ◦ [u1, u2]

ν−→ g ◦ [u′1, u′2]
∀L

To show: Σ; Ψ;E; ∆, ∀x:σ.d ◦ [u1, u2]
ν⇒ g ◦ [u′1, u′2]

1. Σ; Ψ;E; ∆,∀x:σ.d ◦ [u1, u2], d[t/x] ◦ [u1, u2]
ν⇒ g ◦ [u′1, u′2] (i.h. (A) on premise)

2. Σ; Ψ;E; ∆,∀x:σ.d ◦ [u1, u2]
ν⇒ g ◦ [u′1, u′2] (Lemma D.14(A) on 1 and 2nd premise)

Case.
Σ; Ψ;E; ∆ ν−→ g[t/x] ◦ [u1, u2] Σ ` t : σ

Σ; Ψ;E; ∆ ν−→ ∃x:σ.g ◦ [u1, u2]
∃R

To show: Σ; Ψ;E; ∆ ν⇒ ∃x:σ.g ◦ [u1, u2]

1. Σ; Ψ;E; ∆ ν⇒ g[t/x] ◦ [u1, u2] (i.h. (A) on premise)

2. Σ; Ψ;E; ∆ ν⇒ ∃x:σ.g ◦ [u1, u2] (Rule (R-∃) on 1 and 2nd premise)

Due to syntactic restrictions on ∆, no other rules apply.

Proof of (B)

To prove (B), we subinduct on size(Ξ). If size(Ξ) = 0, then Ξ = []. In this case we
proceed as follows.

1. Σ; Ψ;E; ∆ ν−→ g0 ◦ [u0, u
′
0] (Given derivation)

2. Σ; Ψ;E; ∆ ν⇒ g0 ◦ [u0, u
′
0] (i.h. (A) on 1; valid because (B) > (A))

3. Σ; Ψ;E; ∆; [] ν⇐ g0 ◦ [u0, u
′
0] (Rule (L-R) on 2)

If, on the other hand, size(Ξ) > 0, then there is at least one chunk in Ξ. We case analyze
the form of the last chunk in Ξ.

Case. Ξ = Ξ′ :: (d ◦ [u1, u2])

1. Σ; Ψ;E; ∆, |Ξ′|, d ◦ [u1, u2]
ν−→ g0 ◦ [u0, u

′
0] (Given derivation)

2. Σ; Ψ;E; ∆, d ◦ [u1, u2]; Ξ′
ν⇐ g0 ◦ [u0, u

′
0] (i.h. (B) on 1; size(Ξ′) < size(Ξ))

3. Σ; Ψ;E; ∆; Ξ′ :: (d ◦ [u1, u2])
ν⇐ g0 ◦ [u0, u

′
0] (Rule (L-clause) on 2)

Case. Ξ = Ξ′ :: (c ◦ [u1, u2])

275

Appendix D. Proofs from §6

1. Σ; Ψ;E; ∆, |Ξ′|, c ◦ [u1, u2]
ν−→ g0 ◦ [u0, u

′
0] (Given derivation)

2. Σ; Ψ, c;E; ∆, |Ξ′| ν−→ g0 ◦ [u0, u
′
0] (Lemma D.18(1) on 1)

3. Σ; Ψ, c;E; ∆; Ξ′ ν⇐ g0 ◦ [u0, u
′
0] (i.h. (B) on 2; size(Ξ′) < size(Ξ))

4. Σ; Ψ;E; ∆; Ξ′ :: (c ◦ [u1, u2])
ν⇐ g0 ◦ [u0, u

′
0] (Rule (L-cons) on 3)

Case. Ξ = Ξ′ :: (i ◦ [u1, u2])

1. Σ; Ψ;E; ∆, |Ξ′|, i ◦ [u1, u2]
ν−→ g0 ◦ [u0, u

′
0] (Given derivation)

2. Σ; Ψ;E, i; ∆, |Ξ′| ν−→ g0 ◦ [u0, u
′
0] (Lemma D.18(2) on 1)

3. Σ; Ψ;E, i; ∆; Ξ′ ν⇐ g0 ◦ [u0, u
′
0] (i.h. (B) on 2; size(Ξ′) < size(Ξ))

4. Σ; Ψ;E; ∆; Ξ′ :: (i ◦ [u1, u2])
ν⇐ g0 ◦ [u0, u

′
0] (Rule (L-inter) on 3)

Case. Ξ = Ξ′ :: (h1 ∧ h2 ◦ [u1, u2]). Define Ξ′′ = Ξ′ :: (h1 ◦ [u1, u2]) :: (h2 ◦ [u1, u2]). Note
that size(Ξ′′) = size(Ξ)− 1.

1. Σ; Ψ;E; ∆, |Ξ′|, h1 ∧ h2 ◦ [u1, u2]
ν−→ g0 ◦ [u0, u

′
0] (Given derivation)

2. Σ; Ψ;E; ∆, |Ξ′|, h1 ◦ [u1, u2], h2 ◦ [u1, u2]
ν−→ g0 ◦ [u0, u

′
0] (Lemma D.18(3) on 1)

3. Σ; Ψ;E; ∆; Ξ′ :: (h1 ◦ [u1, u2]) :: (h2 ◦ [u1, u2])
ν⇐ g0 ◦ [u0, u

′
0]

(i.h. (B) on 2; size(Ξ′′) < size(Ξ))

4. Σ; Ψ;E; ∆; Ξ′ :: (h1 ∧ h2 ◦ [u1, u2])
ν⇐ g0 ◦ [u0, u

′
0] (Rule (L-∧) on 3)

Case. Ξ = Ξ′ :: (h1 ∨ h2 ◦ [u1, u2]). Define Ξ1 = Ξ′ :: (h1 ◦ [u1, u2]) and Ξ2 = Ξ′ :: (h2 ◦
[u1, u2]). Note that size(Ξ1) < size(Ξ) and size(Ξ2) < size(Ξ).

1. Σ; Ψ;E; ∆, |Ξ′|, h1 ∨ h2 ◦ [u1, u2]
ν−→ g0 ◦ [u0, u

′
0] (Given derivation)

2. Σ; Ψ;E; ∆, |Ξ′|, h1 ◦ [u1, u2]
ν−→ g0 ◦ [u0, u

′
0] and Σ; Ψ;E; ∆, |Ξ′|, h2 ◦ [u1, u2]

ν−→ g0 ◦
[u0, u

′
0] (Lemma D.18(4) on 1)

3. Σ; Ψ;E; ∆; Ξ′ :: (h1 ◦ [u1, u2])
ν⇐ g0 ◦ [u0, u

′
0] and Σ; Ψ;E; ∆; Ξ′ :: (h2 ◦ [u1, u2])

ν⇐
g0 ◦ [u0, u

′
0] (i.h. (B) on 2; size(Ξ1) < size(Ξ) and size(Ξ2) < size(Ξ))

4. Σ; Ψ;E; ∆; Ξ′ :: (h1 ∨ h2 ◦ [u1, u2])
ν⇐ g0 ◦ [u0, u

′
0] (Rule (L-∨) on derivations in 3)

Case. Ξ = Ξ′ :: (> ◦ [u1, u2]). Note that size(Ξ′) < size(Ξ).

1. Σ; Ψ;E; ∆, |Ξ′|,> ◦ [u1, u2]
ν−→ g0 ◦ [u0, u

′
0] (Given derivation)

2. Σ; Ψ;E; ∆, |Ξ′| ν−→ g0 ◦ [u0, u
′
0] (Lemma D.18(5) on 1)

276

Appendix D. Proofs from §6

3. Σ; Ψ;E; ∆; Ξ′ ν⇐ g0 ◦ [u0, u
′
0] (i.h. (B) on 2; size(Ξ′) < size(Ξ))

4. Σ; Ψ;E; ∆; Ξ′ :: (> ◦ [u1, u2])
ν⇐ g0 ◦ [u0, u

′
0] (Rule (L->) on 3)

Case. Ξ = Ξ′ :: (⊥ ◦ [u1, u2])

1. Σ; Ψ;E; ∆; Ξ′ :: (⊥ ◦ [u1, u2])
ν⇐ g0 ◦ [u0, u

′
0] (Rule (L-⊥))

Case. Ξ = Ξ′ :: (∃x:σ.h ◦ [u1, u2]). Define Ξ′′ = Ξ′, h ◦ [u1, u2] and note that size(Ξ′′) <
size(Ξ).

1. Σ; Ψ;E; ∆, |Ξ′|, ∃x:σ.h ◦ [u1, u2]
ν−→ g0 ◦ [u0, u

′
0] (Given derivation)

2. Σ, x:σ; Ψ;E; ∆, |Ξ′|, h ◦ [u1, u2]
ν−→ g0 ◦ [u0, u

′
0] (Lemma D.18(6) on 1)

3. Σ, x:σ; Ψ;E; ∆; Ξ′ :: (h ◦ [u1, u2])
ν⇐ g0 ◦ [u0, u

′
0] (i.h. (B) on 2; size(Ξ′′) < size(Ξ))

4. Σ; Ψ;E; ∆; Ξ′ :: (∃x:σ.h ◦ [u1, u2])
ν⇐ g0 ◦ [u0, u

′
0] (Rule (L-∃) on 3)

Case. Ξ = Ξ′ :: (k says d ◦ [u1, u2]).

1. Σ; Ψ;E; ∆,Ξ′, k says d ◦ [u1, u2]
ν−→ g0 ◦ [u0, u

′
0] (Given derivation)

2. Σ; Ψ;E; ∆,Ξ′, k claims d ◦ [u1, u2]
ν−→ g0 ◦ [u0, u

′
0] (Lemma D.18(7) on 1)

3. Σ; Ψ;E; ∆, k claims d ◦ [u1, u2]; Ξ′
ν⇐ g0 ◦ [u0, u

′
0] (i.h. (B) on 2; size(Ξ′) < size(Ξ))

4. Σ; Ψ;E; ∆; Ξ′ :: (k says d ◦ [u1, u2])
ν⇐ g0 ◦ [u0, u

′
0] (Rule (L-says) on 3)

Case. Ξ = Ξ′ :: (h @ [u′1, u′2] ◦ [u1, u2]). Define Ξ′′ = Ξ′ :: (h ◦ [u′1, u′2]) and note that
size(Ξ′′) < size(Ξ).

1. Σ; Ψ;E; ∆,Ξ′, h @ [u′1, u′2] ◦ [u1, u2]
ν−→ g0 ◦ [u0, u

′
0] (Given derivation)

2. Σ; Ψ;E; ∆,Ξ′, h ◦ [u′1, u′2]
ν−→ g0 ◦ [u0, u

′
0] (Lemma D.18(8) on 1)

3. Σ; Ψ;E; ∆; Ξ′ :: (h ◦ [u′1, u′2])
ν⇐ g0 ◦ [u0, u

′
0] (i.h. (B) on 2; size(Ξ′′) < size(Ξ))

4. Σ; Ψ;E; ∆; Ξ′ :: (h @ [u′1, u′2] ◦ [u1, u2])
ν⇐ g0 ◦ [u0, u

′
0] (Rule (L-@) on 3)

277

Appendix D. Proofs from §6

278

Bibliography

[1] FUSE: Filesystem in Userspace. Available from http://fuse.sourceforge.net/.

[2] OpenSSL: The open source toolkit for SSL/TLS. Online at http://www.openssl.
org.

[3] SecPAL research release for .NET, 2007. Available from http://research.
microsoft.com/en-us/projects/secpal/.

[4] Martín Abadi. Logic in access control. In Proceedings of the 18th Annual Symposium
on Logic in Computer Science (LICS’03), pages 228–233, June 2003.

[5] Martín Abadi. Access control in a core calculus of dependency. Electronic Notes in
Theoretical Computer Science, 172:5–31, 2007. Computation, Meaning, and Logic:
Articles dedicated to Gordon Plotkin.

[6] Martín Abadi. Variations in access control logic. In Ninth International Conference
on Deontic Logic in Computer Science (DEON 2008), pages 96–109, 2008.

[7] Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calcu-
lus of dependency. In Conference Record of the 26th Sympoisum on Principles Of
Programming Languages (POPL’99), pages 147–160. ACM Press, January 1999.

[8] Martín Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus for
access control in distributed systems. ACM Transactions on Programming Languages
and Systems, 15(4):706–734, 1993.

[9] V. Michele Abrusci. Additional results on intuitionistic linear propositional logic.
Technical Report 6, Department of Philosophy, University of Bari, Italy, October
1988.

[10] Marcos K. Aguilera, Minwen Ji, Mark Lillibridge, John MacCormick, Erwin Oertli,
Dave Andersen, Mike Burrows, Timothy Mann, and Chandramohan A. Thekkath.
Block-level security for network-attached disks. In Proceedings of the 2nd Conference
on File and Storage Technologies (FAST), pages 159–174, 2003.

[11] Natasha Alechina, Michael Mendler, Valeria de Paiva, and Eike Ritter. Categorical
and Kripke semantics for constructive S4 modal logic. In CSL ’01: Proceedings of the
15th International Workshop on Computer Science Logic, pages 292–307, 2001.

279

http://fuse.sourceforge.net/
http://www.openssl.org
http://www.openssl.org
http://research.microsoft.com/en-us/projects/secpal/
http://research.microsoft.com/en-us/projects/secpal/

BIBLIOGRAPHY

[12] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation, 2(3):297–347, 1992.

[13] Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In Proceed-
ings of the 6th ACM Conference on Computer and Communications Security (CCS),
pages 52–62, 1999.

[14] Paul Ashley, Satoshi Hada, Günter Karjoth, Calvin Powers, and Matthias
Schunter. Enterprise Privacy Authorization Language (EPAL 1.2), 2003. On-
line at http://www.zurich.ibm.com/security/enterprise-privacy/epal/
Specification/index.html.

[15] Kumar Avĳit, Anupam Datta, and Robert Harper. Distributed programming with
distributed authorization. In Proceedings of the Fifth ACM Workshop on Types in
Language Design and Implementation (TLDI), 2009. To appear.

[16] Henk Barendregt and Silvia Ghilezan. Lambda terms for natural deduction, sequent
calculus and cut elimination. Journal of Functional Programming, 10(1):121–134,
2000.

[17] Adam Barth and John C. Mitchell. Managing digital rights using linear logic. In Pro-
ceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS),
pages 127–136, 2006.

[18] Lujo Bauer. Access Control for the Web via Proof-Carrying Authorization. PhD thesis,
Princeton University, 2003.

[19] Lujo Bauer, Lorrie Cranor, Robert W. Reeder, Michael K. Reiter, and Kami Vaniea.
A user study of policy creation in a flexible access-control system. In CHI 2008:
Conference on Human Factors in Computing Systems, pages 543–552, April 2008.

[20] Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter, Jason Rouse,
and Peter Rutenbar. Device-enabled authorization in the Grey system. In Information
Security: 8th International Conference (ISC ’05), pages 431–445, September 2005.

[21] Lujo Bauer, Scott Garriss, and Michael K. Reiter. Distributed proving in access-
control systems. In Proceedings of the 2005 Symposium on Security and Privacy,
pages 81–95, May 2005.

[22] Moritz Y. Becker. Specification and analysis of dynamic authorisation policies. In
Proceedings of the 22nd IEEE Computer Security Foundations Symposium (CSF),
pages 203–217, 2009.

[23] Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. Design and semantics of a
decentralized authorization language. In 20th IEEE Computer Security Foundations
Symposium, pages 3–15, 2007.

280

http://www.zurich.ibm.com/security/enterprise-privacy/epal/Specification/index.html
http://www.zurich.ibm.com/security/enterprise-privacy/epal/Specification/index.html

BIBLIOGRAPHY

[24] Moritz Y. Becker, Jason F. Mackay, and Blair Dillaway. Abductive authorization
credential gathering. In IEEE International Symposium on Policies for Distributed
Systems and Networks (POLICY), pages 1–8, 2009.

[25] Moritz Y. Becker and Sebastian Nanz. A logic for state-modifying authorization
policies. In Proceedings of the 12th European Symposium on Research in Computer
Security (ESORICS), pages 203–218, 2008.

[26] Moritz Y. Becker and Peter Sewell. Cassandra: Flexible trust management applied to
health records. In Proceedings of the IEEE Computer Security Foundations Workshop
(CSFW), pages 139–154, 2004.

[27] P. N. Benton, Gavin M. Bierman, Valeria de Paiva, and Martin Hyland. A term
calculus for intuitionistic linear logic. In Proceedings of the International Conference
on Typed Lambda Calculi and Applications (TLCA ’93), pages 75–90, 1993.

[28] P.N. Benton, G.M. Bierman, and V.C.V. de Paiva. Computational types from a logical
perspective. Journal of Functional Programming, 8(2):177–193, 1998.

[29] Gavin Bierman and Valeria de Paiva. On an intuitionistic modal logic. Studia Logica,
65:383–416, 2000.

[30] P. Blackburn, J. van Benthem, and F. Wolter. Handbook of Modal Logic. Elsevier B.
V., 2007.

[31] M. Blaze, J. Fiegenbaum, and J. Ioannidis. The Keynote trust-management system
version 2. See http://www.ietf.org/rfc/rfc2704.txt, 1999.

[32] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. The role of trust manage-
ment in distributed systems security. In Secure Internet Programming, pages 185–210,
1999.

[33] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In
SP ’96: Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages
164–173, Washington, DC, USA, 1996. IEEE Computer Society.

[34] Kevin D. Bowers, Lujo Bauer, Deepak Garg, Frank Pfenning, and Michael K. Re-
iter. Consumable credentials in logic-based access-control systems. In Electronic
Proceedings of the 14th Annual Network and Distributed System Security Symposium
(NDSS’07), 2007. Online at http://www.isoc.org/isoc/conferences/ndss/07/
papers/consumable_credentials.pdf.

[35] Torben Braüner and Valeria de Paiva. Towards constructive hybrid logic. In Electronic
Proceedings of Methods for Modalities 3 (M4M3), 2003. Online at http://m4m.loria.
fr/M4M3/Papers/brauner.ps.gz.

[36] Glenn Bruns and Michael Huth. Access-control policies via Belnap logic: Effective
and efficient composition and analysis. In Proceedings of the 21st IEEE Computer
Security Foundations Symposium (CSF-21), pages 163–176, 2008.

281

http://www.ietf.org/rfc/rfc2704.txt
http://www.isoc.org/isoc/conferences/ndss/07/papers/consumable_credentials.pdf
http://www.isoc.org/isoc/conferences/ndss/07/papers/consumable_credentials.pdf
http://m4m.loria.fr/M4M3/Papers/brauner.ps.gz
http://m4m.loria.fr/M4M3/Papers/brauner.ps.gz

BIBLIOGRAPHY

[37] J. G. Cederquist, R. Corin, M. A. C. Dekker, S. Etalle, J. I. den Hartog, and
G. Lenzini. Audit-based compliance control. International Journal of Information
Security, 6(2):133–151, 2007.

[38] Iliano Cervesato. Proof-theoretic foundation of compilation in logic programming
languages. In Proceedings of the 1998 Joint International Conference and Symposium
on Logic Programming (JICSLP’98), pages 115–129, 1998.

[39] Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A judgmental anal-
ysis of linear logic. Technical Report CMU-CS-03-131R, Carnegie Mellon University,
2003.

[40] Avik Chaudhuri. On secure distributed implementations of dynamic access control. In
Proceedings of the Joint Workshop on Foundations of Computer Security, Automated
Reasoning for Security Protocol Analysis, and Issues in the Theory of Security (FCS-
ARSPA-WITS), pages 93–107, 2008.

[41] Avik Chaudhuri and Deepak Garg. PCAL: Language support for proof-carrying autho-
rization systems. In Proceedings of the European Symposium on Research in Computer
Security (ESORICS), pages 184–199, 2009.

[42] Avik Chaudhuri, Prasad Naldurg, Sriram K. Rajamani, G. Ramalingam, and Lak-
shmisubrahmanyam Velaga. Eon: modeling and analyzing dynamic access control
systems with logic programs. In Proceedings of the 15th ACM conference on Com-
puter and Communications Security (CCS’08), pages 381–390, 2008.

[43] Kaustuv Chaudhuri. The Focused Inverse Method for Linear Logic. PhD thesis,
Carnegie Mellon University, December 2006.

[44] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

[45] Andrew Cirillo, Radha Jagadeesan, Corin Pitcher, and James Riely. Do As I SaY!
Programmatic access control with explicit identities. In Proceedings of the 20th IEEE
Computer Security Foundations Symposium (CSF-20), pages 16–30, 2007.

[46] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Morcos, and
Ronald L. Rivest. Certificate chain discovery in SPKI/SDSI. Journal of Computer
Security, 9(4):285–322, 2001.

[47] Russell Coker. Bonnie++. Available from http://www.coker.com.au/bonnie++/.

[48] Microsoft Corporation. Microsoft Windows access control model. Online at http:
//msdn.microsoft.com/en-us/library/aa374860%28VS.85%29.aspx.

[49] Jason Crampton, George Loizou, and Greg O’ Shea. A logic of access control. The
Computer Journal, 44(1):137–149, 2001.

282

http://www.coker.com.au/bonnie++/
http://msdn.microsoft.com/en-us/library/aa374860%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa374860%28VS.85%29.aspx

BIBLIOGRAPHY

[50] Haskell B. Curry. Functionality in combinatory logic. Proceedings of the National
Academy of Sciences, 20:584–590, 1934.

[51] Marc Denecker and Antonis C. Kakas. Abduction in logic programming. In Com-
putational Logic: Logic Programming and Beyond, Essays in Honour of Robert A.
Kowalski, Part I, pages 402–436. Springer-Verlag, 2002.

[52] John DeTreville. Binder, a logic-based security language. In Proceedings of the IEEE
2002 Symposium on Security and Privacy (S&P’02), pages 105–113, May 2002.

[53] Henry DeYoung. A logic for reasoning about time-dependent access control policies.
Technical Report CMU-CS-08-131, Computer Science Department, Carnegie Mellon
University, December 2008.

[54] Henry DeYoung, Deepak Garg, and Frank Pfenning. An authorization logic with
explicit time. In Proceedings of the 21st IEEE Computer Security Foundations Sym-
posium (CSF-21), pages 133–145, June 2008. Extended version available as Carnegie
Mellon University Technical Report CMU-CS-07-166.

[55] Henry DeYoung and Frank Pfenning. Reasoning about the consequences of authoriza-
tion policies in a linear epistemic logic, 2009. Workshop on Foundations of Computer
Security (FCS’09). Online at http://www.cs.cmu.edu/~hdeyoung/papers/fcs09.
pdf.

[56] Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky. Permission to speak: A
logic for access control and conformance, 2008. Workshop on Formal Languages for
Contract-Oriented Software (FLACOS’08). Online at http://www.cis.upenn.edu/
~nikhild/permtospeak.pdf.

[57] Conal Elliott and Frank Pfenning. A semi-functional implementation of a higher-
order logic programming language. In Peter Lee, editor, Topics in Advanced Language
Implementation, pages 289–325. MIT Press, 1991.

[58] C.M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI
certificate theory. See http://www.ietf.org/rfc/rfc2693.txt, 1999.

[59] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science. The MIT Press, 1990.

[60] M. Fairtlough and M.V. Mendler. Propositional lax logic. Information and Compu-
tation, 137(1):1–33, August 1997.

[61] Cédric Fournet, Andrew Gordon, and Sergio Maffeis. A type discipline for autho-
rization in distributed systems. In CSF ’07: Proceedings of the 20th IEEE Computer
Security Foundations Symposium, pages 31–48, 2007.

[62] Thom Frühwirth. Temporal annotated constraint logic programming. Journal of
Symbolic Computation, 22(5-6):555–583, 1996.

283

http://www.cs.cmu.edu/~hdeyoung/papers/fcs09.pdf
http://www.cs.cmu.edu/~hdeyoung/papers/fcs09.pdf
http://www.cis.upenn.edu/~nikhild/permtospeak.pdf
http://www.cis.upenn.edu/~nikhild/permtospeak.pdf
http://www.ietf.org/rfc/rfc2693.txt

BIBLIOGRAPHY

[63] Deepak Garg. Principal-centric reasoning in constructive authorization logic, 2008.
Workshop on Intuitionistic Modal Logic and Applications (IMLA’08). Full version
available as Carnegie Mellon University Technical Report CMU-CS-09-120.

[64] Deepak Garg. Principal-centric reasoning in constructive authorization logic. Tech-
nical Report CMU-CS-09-120, Carnegie Mellon University, 2009.

[65] Deepak Garg and Martín Abadi. A modal deconstruction of access control logics. In
Proceedings of the 11th International Conference on Foundations of Software Science
and Computation Structures (FoSSaCS 2008), pages 216–230, 2008.

[66] Deepak Garg, Lujo Bauer, Kevin Bowers, Frank Pfenning, and Michael Reiter. A
linear logic of affirmation and knowledge. In Proceedings of the 11th European Sym-
posium on Research in Computer Security (ESORICS ’06), pages 297–312, 2006.

[67] Deepak Garg and Frank Pfenning. Non-interference in constructive authoriza-
tion logic. In Proceedings of the 19th Computer Security Foundations Workshop
(CSFW ’06), pages 283–293, 2006.

[68] Deepak Garg and Frank Pfenning. A proof-carrying file system. Technical Report
CMU-CS-09-123, Carnegie Mellon University, 2009.

[69] Deepak Garg, Frank Pfenning, Denis Serenyi, and Brian Witten. A logical repre-
sentation of common rules for controlling access to classified information. Technical
Report CMU-CS-09-139, Carnegie Mellon University, 2009.

[70] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

[71] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[72] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge
University Press, 1989.

[73] H. Gobioff, G. Gibson, and D. Tygar. Security for network attached storage devices.
Technical Report CMU-CS-97-185, Carnegie Mellon University, 1997.

[74] Kurt Gödel. Eine Interpretation des intuitionistischen Aussagenkalkuls. Ergebnisse
eines mathematischen Kolloquiums, 8:39–40, 1933.

[75] Timothy G. Griffin. A formulae-as-type notion of control. In Proceedings of the
17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 47–58, 1990.

[76] Yuri Gurevich and Itay Neeman. DKAL: Distributed-knowledge authorization lan-
guage. In Proceedings of the 21st IEEE Symposium on Computer Security Foundations
(CSF-21), pages 149–162, 2008.

284

BIBLIOGRAPHY

[77] Christopher R. Hertel. Implementing CIFS: The Common Internet File System. Pren-
tice Hall PTR, 2003.

[78] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of intuitionistic
linear logic. Information and Computation, 110(2):327–365, 1994.

[79] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 public key infrastructure.
See http://www.ietf.org/rfc/rfc2459.txt, 1999.

[80] Jacob M. Howe. Proof Search Issues in Some Non-Classical Logics. PhD thesis,
University of St Andrews, September 1998.

[81] John Ioannidis, Sotiris Ioannidis, Angelos Keromytis, and Vassilis Prevelakis.
Fileteller: Paying and getting paid for file storage. In Proceedings of the Sixth In-
ternational Conference on Financial Cryptography, pages 282–299, 2002.

[82] Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey. Journal
of Logic Programming, 19/20:503–581, 1994.

[83] Sushil Jajodia, Pierangela Samarati, and V. S. Subrahmanian. A logical language for
expressing authorizations. In SP ’97: Proceedings of the 1997 IEEE Symposium on
Security and Privacy, pages 31–42, 1997.

[84] Limin Jia. Linear Logic and Imperative Programming. PhD thesis, Department of
Computer Science, Princeton University, 2008.

[85] Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko, Joseph
Schorr, and Steve Zdancewic. Aura: A programming language for authorization and
audit. In Proceedings of the International Conference on Functional Programming
(ICFP), pages 27–38, 2008.

[86] Trevor Jim. SD3: A trust management system with certified evaluation. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 106–115, 2001.

[87] Michael Kaminsky, George Savvides, David Mazieres, and M. Frans Kaashoek. De-
centralized user authentication in a global file system. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP), pages 60–73, 2003.

[88] Butler Lampson, Martín Abadi, Michael Burrows, and Edward Wobber. Authentica-
tion in distributed systems: Theory and practice. ACM Transactions on Computer
Systems, 10(4):265–310, 1992.

[89] Butler W. Lampson. Protection. In Proceedings of the 5th Princeton Conference on
Information Sciences and Systems, pages 437–443, 1971.

[90] Chris Lesniewski-Laas, Bryan Ford, Jacob Strauss, Robert Morris, and M. Frans
Kaashoek. Alpaca: Extensible authorization for distributed services. In Proceedings
of the 14th ACM Conference on Computer and Communications Security (CCS-2007),
pages 432–444, 2007.

285

http://www.ietf.org/rfc/rfc2459.txt

BIBLIOGRAPHY

[91] Alexander Levine, Vassilis Prevelakis, John Ioannidis, Sotiris Ioannidis, and Ange-
los D. Keromytis. Webdava: An administrator-free approach to web file-sharing. In
WETICE ’03: Proceedings of the Twelfth International Workshop on Enabling Tech-
nologies, pages 59–64, 2003.

[92] Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation logic: A logic-
based approach to distributed authorization. ACM Transactions on Information and
Systems Security, 6(1):128–171, 2003.

[93] Ninghui Li and Ziqing Mao. Administration in role-based access control. In ASI-
ACCS ’07: Proceedings of the 2nd ACM symposium on Information, computer and
communications security, pages 127–138, 2007.

[94] Ninghui Li and John C. Mitchell. Datalog with constraints: A foundation for trust
management languages. In PADL ’03: Proceedings of the 5th International Symposium
on Practical Aspects of Declarative Languages, pages 58–73, 2003.

[95] Ninghui Li, John C. Mitchell, and W.H. Winsborough. Design of a role-based trust-
management framework. In Proceedings of the 2002 IEEE Symposium on Security
and Privacy, pages 114–130, 2002.

[96] Ninghui Li, John C. Mitchell, and William H. Winsborough. Beyond proof-of-
compliance: security analysis in trust management. Journal of ACM, 52(3):474–514,
2005.

[97] Ninghui Li, William H. Winsborough, and John C. Mitchell. Distributed credential
chain discovery in trust management. Journal of Computer Security, 11(1):35–86,
2003.

[98] Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic concurrent
linear logic programming. In Proceedings of the 7th International Symposium on
Principles and Practice of Declarative Programming (PPDP’05), pages 35–46, 2005.

[99] Per Martin-Löf. On the meanings of the logical constants and the justifications of the
logical laws. Nordic Journal of Philosophical Logic, 1(1):11–60, 1996.

[100] David Mazières, Michael Kaminsky, M. Frans Kaashoek, and Emmett Witchel. Sepa-
rating key management from file system security. SIGOPS Operating Systems Review,
34(2):19–20, 2000.

[101] Sean McLaughlin and Frank Pfenning. Efficient intuitionistic theorem proving with
the polarized inverse method. In Proceedings of the 22nd International Conference on
Automated Deduction (CADE-22), pages 230–244, 2009.

[102] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

286

BIBLIOGRAPHY

[103] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs
as a foundation for logic programming. Annals of Pure and Applied Logic, 51:125–157,
1991.

[104] Stefan Miltchev, Vassilis Prevelakis, Sotiris Ioannidis, John Ioannidis, Angelos D.
Keromytis, and Jonathan M. Smith. Secure and flexible global file sharing. In Pro-
ceedings of the Annual USENIX Technical Conference, Freenix Track, pages 165–178,
2003.

[105] Stefan Miltchev, Jonathan M. Smith, Vassilis Prevelakis, Angelos Keromytis, and
Sotiris Ioannidis. Decentralized access control in distributed file systems. ACM Com-
puting Surveys, 40(3):1–30, 2008.

[106] Tom Murphy, VII. Modal Types for Mobile Code. PhD thesis, Carnegie Mellon
University, 2008. Available as technical report CMU-CS-08-126.

[107] OASIS. eXtensible Access Control Markup Language (XACML). Online at http:
//www.oasis-open.org/committees/xacml.

[108] Office of the Director of Central Intelligence. DCID 1/19: Security policy for sensitive
compartmented information and security policy manual, 1995. Online at http://www.
fas.org/irp/offdocs/dcid1-7.html.

[109] Office of the Director of Central Intelligence. DCID 1/7: Security controls on the
dissemination of intelligence information, 1998. Online at http://www.fas.org/irp/
offdocs/dcid1-19.html.

[110] Office of the Press Secretary of the White House. Executive order 12958: Classi-
fied national security information, 1995. Online at http://nsi.org/Library/Govt/
ExecOrder12958.html.

[111] Office of the Press Secretary of the White House. Executive order 13292: Further
amendment to executive order 12958, as amended, classified national security in-
formation, 2003. Online at http://nodis3.gsfc.nasa.gov/displayEO.cfm?id=EO_
13292_.

[112] Christopher Olson and Ethan L. Miller. Secure capabilities for a petabyte-scale object-
based distributed file system. In StorageSS ’05: Proceedings of the 2005 ACM work-
shop on Storage security and survivability, pages 64–73, 2005.

[113] Frank Pfenning. Structural cut elimination I. Intuitionistic and classical logic. Infor-
mation and Computation, 157(1/2):84–141, March 2000.

[114] Frank Pfenning. Automated theorem proving, 2004. Lecture notes for a class at
Carnegie Mellon University. Available electronically from http://www.cs.cmu.edu/
~fp/courses/atp.

287

http://www.oasis-open.org/committees/xacml
http://www.oasis-open.org/committees/xacml
http://www.fas.org/irp/offdocs/dcid1-7.html
http://www.fas.org/irp/offdocs/dcid1-7.html
http://www.fas.org/irp/offdocs/dcid1-19.html
http://www.fas.org/irp/offdocs/dcid1-19.html
http://nsi.org/Library/Govt/ExecOrder12958.html
http://nsi.org/Library/Govt/ExecOrder12958.html
http://nodis3.gsfc.nasa.gov/displayEO.cfm?id=EO_13292_
http://nodis3.gsfc.nasa.gov/displayEO.cfm?id=EO_13292_
http://www.cs.cmu.edu/~fp/courses/atp
http://www.cs.cmu.edu/~fp/courses/atp

BIBLIOGRAPHY

[115] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11:511–540, 2001.

[116] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical
framework for deductive systems. In Proceedings of the 16th International Conference
on Automated Deduction (CADE-16), pages 202–206, 1999.

[117] Benjamin C. Pierce and David N. Turner. Local type inference. ACM Transactions
on Programming Languages and Systems, 22(1):1–44, 2000.

[118] Andrew Pimlott and Oleg Kiselyov. Soutei, a logic-based trust-management system.
In Proceedings of the Eighth International Symposium on Functional and Logic Pro-
gramming (FLOPS 2006), pages 130–145, 2006.

[119] G. Pottinger. Normalization as a homomorphic image of cut-elimination. Annals of
Mathematical Logic, 12:323–357, 1977.

[120] Dag Prawitz. Natural Deduction: A Proof-Theoretical Study. Almquist and Wiksell,
Stockholm, 1965.

[121] Benjamin C. Reed, Edward G. Chron, Randal C. Burns, and Darrell D. E. Long.
Authenticating network-attached storage. IEEE Micro, 20(1):49–57, 2000.

[122] Jason Reed. Hybridizing a logical framework. In International Workshop on Hybrid
Logic 2006 (HyLo 2006), volume 174(6) of Electronic Notes in Computer Science,
pages 135–148, June 2006.

[123] Jude T. Regan and Christian D. Jensen. Capability file names: Separating authori-
sation from user management in an internet file system. In Proceedings of the 10th
conference on USENIX Security Symposium, pages 17–17, 2001.

[124] Peter Reiher, Thomas Page, Jr., Gerald Popek, Jeff Cook, and Stephen Crocker.
Truffles - a secure service for widespread file sharing. In Proceedings of the Privacy
and Security Research Group Workshop on Network and Distributed System Security,
1993.

[125] R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implemen-
tation of the Sun network filesystem, pages 379–390. Innovations in Internetworking.
Artech House, Inc., 1988.

[126] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The ARBAC97 model for
role-based administration of roles. ACM Transactions on Information and Systems
Security, 2(1):105–135, 1999.

[127] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-
based access control models. Computer, 29(2):38–47, 1996.

288

BIBLIOGRAPHY

[128] Uluç Saranli and Frank Pfenning. Using constrained intuitionistic linear logic for
hybrid robotic planning problems. In Proceedings of the International Conference on
Robotics and Automation (ICRA ’07), pages 3705–3710, 2007.

[129] Amit Sasturkar, Ping Yang, Scott D. Stoller, and C.R. Ramakrishnan. Policy analysis
for administrative role based access control. In Proceedings of the 19th Computer
Security Foundations Workshop, pages 124–138. IEEE Computer Society Press, 2006.

[130] Mahadev Satyanarayanan. Scalable, secure, and highly available distributed file ac-
cess. Computer, 23(5):9–18, 20–21, 1990.

[131] Andreas Schaad and Jonathan D. Moffett. A lightweight approach to specification
and analysis of role-based access control extensions. In Proceedings of the 7th ACM
Symposium on Access Control Models and Technologies (SACMAT), pages 13–22,
2002.

[132] Fred B. Schneider, Kevin Walsh, and Emin Gün Sirer. Nexus Authorization
Logic (NAL): Design rationale and applications. Technical report, Cornell University,
2009. Online at http://ecommons.library.cornell.edu/handle/1813/13679.

[133] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and
D. Noveck. Network File System (NFS) version 4 protocol, 2003. RFC 3050. On-
line at http://www.ietf.org/rfc/rfc3050.txt.

[134] IEEE Computer Society. 1003.1-2001 IEEE Information Technology - Portable Op-
erating System Interface (POSIX.). IEEE Computer Society Press, 2001.

[135] Scott D. Stoller, Ping Yang, C R. Ramakrishnan, and Mikhail I. Gofman. Efficient
policy analysis for administrative role based access control. In CCS ’07: Proceedings of
the 14th ACM conference on Computer and communications security, pages 445–455,
2007.

[136] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, and C. H.
Hauser. Managing update conflicts in bayou, a weakly connected replicated storage
system. In Proceedings of the 15th ACM Symposium on Operating Systems Principles
(SOSP), pages 172–182, 1995.

[137] K. L. Thompson. UNIX implementation. The Bell System Technical Journal,
57(6):1931–1946, 1978.

[138] Amin Vahdat. WebOS: Operating System Services for Wide Area Applications. PhD
thesis, University of California, Berkeley, 1997.

[139] Jeffrey A. Vaughan, Limin Jia, Karl Mazurak, and Steve Zdancewic. Evidence-based
audit. In Proceedings of the 21st IEEE Symposium on Computer Security Foundations
(CSF-21), pages 177–191, 2008.

289

http://ecommons.library.cornell.edu/handle/1813/13679
http://www.ietf.org/rfc/rfc3050.txt

BIBLIOGRAPHY

[140] Philip Wadler. A taste of linear logic. In Proceedings of the 18th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS ’93), pages 185–210,
1993.

[141] Philip Wadler. A syntax for linear logic. In Proceedings of the 9th International
Conference on Mathematical Foundations of Programming Semantics, pages 513–529,
1994.

[142] Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Gün Sirer, and Fred B. Schnei-
der. Device driver safety through a reference validation mechanism. In Proceedings
of the 8th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’08), pages 241–254, 2008.

[143] Edward Wobber, Martín Abadi, Michael Burrows, and Butler Lampson. Authen-
tication in the Taos operating system. ACM Transactions on Computer Systems,
12(1):3–32, 1994.

[144] D. A. Wright. Linear, strictness and usage logics. In Proceedings of Conference on
Computing: The Australian Theory Symposium, pages 73–80, 1996.

[145] Jeffrey Zucker. The correspondence between cut-elimination and normalization. An-
nals of Mathematical Logic, 7:1–155, 1974.

290

	Background and Motivation
	Background: The Problem of Access Control
	Technical Background
	Authorization Logics
	Proof-carrying Authorization (PCA)

	Motivation for the Thesis
	Summary of Work in the Thesis
	Contributions of the Thesis
	Aspects of Authorization Not Covered in the Thesis
	Outline of the Thesis

	An Overview of the Proof-Carrying File System (PCFS)
	The PCFS Architecture
	Comparison to Proof-Carrying Authorization
	Merits of the PCFS Architecture
	Related Work

	BLS: An Authorization Logic for Static Policies
	Syntax and Axioms
	Axiomatic Proof System
	Expressible and Inexpressible Policy Idioms

	Structural Proof Theory
	Natural Deduction
	Metatheory of Natural Deduction
	Sequent Calculus
	Metatheory of the Sequent Calculus

	Equivalence of Proof Systems
	On the Nature of Hypothetical Judgments in BLS

	Relation to the Modal Logic Constructive S4
	Translations from the GP Logic and Soutei to BLS
	Translation from the GP Logic
	Translation from Soutei

	Horn Fragment and Translation to First-Order Logic
	Related Work
	Authorization Logics
	Logic-based Authorization Languages
	Other Policy Formalisms
	Policy Analysis

	BL: An Authorization Logic for Dynamic Policies
	BL: Syntax and Informal Description
	Properties of Connectives Explained Informally
	Expressible Policy Idioms

	Structural Proof Theory
	Constraints and Interpreted Predicates
	Natural Deduction
	Metatheory of Natural Deduction
	Sequent Calculus
	Metatheory of the Sequent Calculus
	Equivalence of Proof Systems

	Use of BL in PCFS
	Policies and Authorizations
	Policy Enforcement
	Example: Course Administration

	Justification for the Use of Time Points in BL Views
	Proof Normalization
	Relation between BLS and BL
	Related Work

	BL Proof Terms, Their Verification, and Procaps
	Bidirectional Proof Terms for BL
	Connection to Natural Deduction
	Properties of Proof Terms
	Bidirectional Verification (The One Not Used in PCFS)

	Proof Verification in PCFS
	The PCFS Proof Verifier
	Correctness of PCFS Proof Verification
	Procaps
	Revocation of Policy Rules

	Proof Terms from the Sequent Calculus
	Proof Terms for Canonical Proofs
	Related Work

	BL: Goal-directed Proof Search
	Background: What Is Goal-directed Proof Search?
	Goal-directed Proof Search in BLG
	Rules of Goal-directed Proof Search

	Soundness and Completeness of Proof Search
	Implementation in PCFS (and Otherwise)
	Related Work

	The Proof-Carrying File System (PCFS)
	The PCFS Front End
	The PCFS Back End
	Permissions and Access to Files
	Configuration Files and the Procap Store

	Performance Evaluation of the Back End
	Trusted Code Base and Trust Assumptions

	Case Study: Access Control for Classified Information in the U.S.
	Sensitive Information Life Cycle
	Representation of File State in PCFS
	File State Transition
	Rules for Access to Files

	File Classification
	Original Classification Authorities
	Compartments
	Establishing File Properties
	Summary of File Classification

	Individual Clearances
	Auxiliary Clearances
	Primary Clearances
	Summary of Individual Clearances

	Clearances to Classified Files
	Summary
	List of Predicates Used in the Formalization

	BLL: A Linear Extension of BL
	Syntax, Sequent Calculus, and Metatheory
	Rules of the Sequent Calculus
	Metatheory of the Sequent Calculus

	Examples of Use
	Enforcement with Procaps
	Related Work

	Conclusion: Directions for Future Work
	Proofs and Other Details from §3
	Axiomatic Proof System for BLS
	Proof of Theorem 3.13
	Proofs from §3.5.1
	Proofs from §3.5.2
	Proofs from §3.6

	Proofs from §4
	Proofs from §4.2.3
	Proofs from §4.2.5
	Proofs from §4.5
	Proofs from §4.6

	Proofs from §5
	Proofs from §5.1.2
	Proofs from §5.2.2
	Proofs from §5.3

	Proofs from §6
	Soundness of Goal-directed Search
	Properties of Goal-directed Search
	Properties of the Sequent Calculus
	Completeness of Goal-directed Search

	Bibliography

