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Abstract

Analysis of human genetic variation has gained significant momentum due to
the success of many large-scale sequencing projects. Within the last five years,
about 4 million single nucleotide polymorphisms (SNPs) have been genotyped
over hundreds of individuals belonging to several ethnic groups. Recently, re-
searchers have made significant progress in detecting and cataloging copy num-
ber polymorphisms (CNPs) as well. These large-scale efforts have now made
it possible to analyze genetic variation within a single species, mainly humans,
at very fine-scales. In our work, we address a fundamental question: how can
we use these genetic differences to make inferences about the recent history of
a species and its genome?

In this work, we primarily focus on two methods to analyze SNP variation
data within humans. We develop maximum parsimony phylogenetic tree recon-
struction algorithms that are specifically catered to work on SNP data. Such a
phylogeny should cluster closely related individuals (perhaps an ethnic group)
together. Therefore, these techniques are widely used to answer questions of
human migration. Recently, these methods have also been applied to find re-
gions in the human genome that are rapidly evolving. A second method to
understand genetic variation is to directly cluster the SNP data based on the
property that individuals within a cluster would share similar genotypes (and
phenotypes).

Mathematically, we work with two variants of the phylogeny reconstruction
problem, both of which are NP-complete. The first variant is equivalent to find-
ing a Steiner minimum tree on a hypercube and the second is a generalization
of this problem. We solve the two variants in polynomial time when the size of
the phylogeny (Steiner minimum tree) is ‘small’ (near-perfect). We also develop
integer linear program based algorithms that find the optimal solution fast in
practice. We provide extensive empirical analysis to demonstrate the methods’
usefulness on large-scale genomic data. For the clustering part, we work with
two related problems. We solve the first problem by finding the max-cut of a
graph, a well-known NP-complete problem. We can show that if the graph is
generated with the clusters ‘planted’, then our algorithm returns the max-cut
in polynomial time given enough data. The second problem is more general in
that individuals (vertices) can fractionally belong to either of the clusters. We
solve this problem by attempting to maximize the likelihood function using an
initial solution that we show to be analytically correct under some theoretical
assumptions.
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Chapter 1

Background

Over the last five years, human genetics has been greatly influenced by the rapid pace at
which genetic variation has been discovered, annotated and typed over hundreds of indi-
viduals belonging to many different ethnicities. The first major breakthrough came from
the human genome project [21, 37], which provided a nearly complete genome sequence
for the first time. Towards the end of the project, researchers had already started to inves-
tigate the extent of genome variation present within humans. The most frequent form of
variation, or polymorphism, was attributed to single base changes. These are called single
nucleotide polymorphisms (SNPs). The next major step towards understanding the human
genome came from the ambitious International Haplotype Map (HapMap) project [75] that
was aimed at discovering and typing all the common SNPs in the human genome over hun-
dreds of individuals. As the HapMap project was being completed, research groups shifted
focus towards finding human genome variation caused due to large segmental deletions or
duplications called copy number polymorphisms (CNPs). These massive research efforts
led by multi-national consortia have now made it possible to conduct disease-association
tests that attempt to identify genetic causes for diseases. Over the last year, several re-
search groups have found SNPs and CNPs linked to many diseases, such as type 2 diabetes,
autism, rheumatoid arthritis etc (see for example [36, 84, 99]). In parallel, we have also
been able to understand how the human genome is shaped by evolutionary forces over very
fine scales (e.g. [88]).

The analysis of these large data-sets require sophisticated algorithms that are efficient,
accurate and robust to noise. This thesis develops several such algorithms. The first part of
the thesis introduces several new algorithms that reconstruct a phylogenetic tree, a family
tree that describes how the underlying genomes are inter-related. The second part of the
thesis develops clustering algorithms that finds ethnic ancestries for the input individuals.

1.1 Single Nucleotide Polymorphisms (SNPs)

It is well known that human DNA sequences are largely identical. Indeed, more than 99%
of the DNA sequence will be the same between a pair of individuals. While the remainder
might seem a small fraction, considering that the DNA sequence is about 3 billion base-
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A C C C G A T G
A A C C G G T G
A C C C G G T T
A C C C G A T T

A A C C G G T T

Figure 1.1: An illustration of SNPs. There are five individuals (one strand of one chromo-
some) and several sites of the DNA sequence, three of which show variation (SNPs).

pairs long, it still leaves us with millions of sites at which the human DNA shows variation.
The most predominant and arguably the simplest variation is in the form of a single base
change at a single position on the genome. For instance, some individuals might have a
nucleotide A and others nucleotide G at the exact same site. Such variations are called
single nucleotide polymorphisms (SNPs) and are illustrated in Figure 1.1.

SNPs hold incredible promise along at least two avenues of research. One is to identify,
characterize and understand the evolutionary processes that produce such changes in the
DNA sequences. The other of course is to determine genetic causes of disease and therefore
speed up drug discovery as well. This promise has driven researchers to produce several
major results in the last five years.

The first major project that aimed to catalog SNP variation was led by the International
HapMap consortium [75], a collaboration between many research institutions world wide.
Over a period of about 5 years, the organization analyzed about 120 individuals belonging
to four ethnic groups at around 4 million SNP sites. Perlegen [68] also produced millions
of SNPs belonging individuals spanning 3 ethnicities. These projects enabled researchers
to understand variation in the human genome at scales never before possible.

A large number of problems arose from these projects as well and several algorithms
that attempted to solve them. The algorithms ranged from mathematically elegant, to
theoretically involved and of course, those that were found to work well in practice. This
thesis contains such a diverse collection of algorithms as well.

Our work. In this work, we develop algorithms to characterize and analyze SNP
variation present within the human genome. Such studies are important since SNPs can
directly influence physical traits. One popular example is a single SNP on chromosome
2 that determines if a person is lactose tolerant or not. SNP variation can be studied
either at the chromosome-level or at the population-level. At the chromosome-level, for
example a researcher may wish to study how an ancestral lactose intolerant chromosome
was converted to one that was lactose tolerant. To aid such analysis, computational tools
are needed to infer the mutational history around any locus of the human genome. The
first part of this thesis formalizes several problems, develops algorithms and applies them
to answer such chromosome-level analysis problems. We can also analyze variation at the
population-level. For instance most of the East Asians are lactose intolerant while most of
the Europeans are lactose tolerant. While mutations could have happened in a common
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ancestral population, segregation following the mutation can skew the distribution of the
mutant genes, creating population-specific traits. The second part of the thesis develops
efficient and accurate algorithms to tackle such problems. Since SNP variation at either
level produces distinctive features, this thesis aims to obtain a more comprehensive analysis
by tacking computational challenges encountered along both avenues.

1.2 Basic Definitions

We now provide some preliminary definitions related to single nucleotide polymorphisms
(SNPs). A glossary of some basic definitions can be found in the Appendix in Section A.

Humans contain 23 pairs of chromosomes each of which is composed of two strands of
DNA sequence. The strands are complimentary and therefore knowing one strand gives
complete information about the other. When we use SNP sequences, we will therefore use
information corresponding only to one of the two strands of a chromosome.

SNPs are bi-allelic meaning when a variation occurs there are only two forms observed.
For instance in Figure 1.1, the second site contains only A and C. Therefore in the SNP
datasets there would not be a SNP site i for which three different individuals have three
different bases at i.

The main evolutionary process relating to this thesis is that of mutations, specifically,
point mutations. These are mutations that change a DNA nucleotide from one base to
another resulting in the creation of a SNP site. Since a single mutation can at most
produce one new allele, to have three alleles at a site, we need at least 2 mutations, i.e. at
least one recurrent mutation. Recurrent mutations are unlikely to occur, and this is the
reason that current technology only looks for two (out of the four possible) bases.

An allele is called a major allele if it is more common in the population and minor
allele otherwise.

As stated above, human chromosomes occur in pairs and 22 of the 23 chromosomes are
homologous pairs. It is technologically prohibitive to assay the homologous chromosomes
individually. Therefore, experiments produce results that are simply counts of an allele
across a pair of homologous chromosomes. Without loss of generality, we can assume that
the experiments produce minor allele counts.

At a SNP site, an individual can therefore contain one of three possibilities. Two minor
alleles (homozygous minor), two major alleles (homozygous major) or one major and one
minor allele (heterozygous). Such assays of allele counts from two chromosomes combined
are called genotypes. Clearly though, in reality, the sequences come from each chromosome
separately. Sequences from a single chromosome are referred to as haplotypes. Figure 1.2
illustrates the difference between genotypes and haplotypes. The figure also shows how
an {A, C, G, T} DNA sequence can be converted to a {0, 1} sequence without changing
the pair-wise Hamming distances. Notice that to do so, we exploit the fact that SNPs are
bi-allelic.

In all the input data-sets that we will be considering for this thesis, the rows correspond
to taxa (individuals) and the columns to the variations (characters). Therefore, for SNP
variation, the input is represented as an n ×m matrix. Each entry of the matrix can be
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000000
000111

111000
000111

111000
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ACGAGT
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000111

111111

222000
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Figure 1.2: (a) DNA sequence over SNP sites on homologous chromosomes for three indi-
viduals (b) binary matrix representation of the SNP data with ‘0’ for the major allele and
‘1’ for the minor allele (c) genotypes for the three individuals

called an allele or a state interchangeably. Note that using the above definitions, the input
matrix is binary when the taxa are presented as haplotypes and is {0, 1, 2} when the taxa
are presented as genotypes.

1.3 Outline

In this work, we develop discrete algorithms for analyzing human SNP data-sets. In the first
part of the thesis we focus on the problem of reconstructing the most parsimonious phylo-
genetic tree, i.e., the smallest ‘family tree’ that inter-connects all the input SNP sequences.
In the second part we are interested in detecting population substructure, i.e. clustering
individuals based on their ancestral ethnicity. We now provide more formal definitions and
a detailed outline of the two parts.

1.3.1 Phylogenetic Tree Reconstruction

We have alluded to a phylogeny as a family tree that interconnects the input sequences. We
now develop a formal framework. We begin with two equivalent definitions of a phylogeny
and we find it convenient to use each at varying times depending on the problem that is
required to be solved.

Definition 1 A phylogeny T for a binary (haplotype) matrix I is a tree T (V, E) and
label function l with the following properties R(I) ⊆ l(V (T )) and for all (u, v) ∈ E(T ),
H(l(u), l(v)) = 1 where H is the Hamming distance.

Definition 2 A phylogeny T for a binary (haplotype) matrix I is a tree T (V, E) and label
function l with the following properties: R(I) ⊆ l(V (T )) and l({v ∈ V (T )|degree(v) ≤
2}) ⊆ R(I). That is, every input taxon appears in T and every leaf or degree-2 vertex is
an input taxon.

Note that the above definitions of a phylogeny are specific to a haplotype input matrix.
The following two definitions provide some useful terminology when discussing a phylogeny
in general.
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Definition 3 A vertex v of phylogeny T is terminal if l(v) ∈ R(I) and Steiner otherwise.

Definition 4 For a phylogeny T , length(T ) =
∑

(u,v)∈E(T ) d(l(u), l(v)), where d is the
Hamming distance.

Definition 5 A phylogeny is called most parsimonious (optimum) phylogeny if its length
is minimized.

We will assume that all the input sites are varying, i.e., if the input consists of hap-
lotypes, then all characters have both states {0, 1} and if the input consists of genotypes
then all characters either contain state 1 or contain both 0 and 2. Therefore the length of
an optimum phylogeny is at least m. This leads to the following two definitions.

Definition 6 For a phylogeny T on input I, penalty(T ) = length(T )−m; penalty(I) =
penalty(T opt), where T opt is any optimum phylogeny on I.

Definition 7 A phylogeny T is called q-near-perfect if penalty(T ) = q and perfect if
penalty(T ) = 0.

Note that in an optimum phylogeny, no two vertices share the same label. Therefore,
we can equivalently define an edge of a phylogeny as (t1, t2) where ti ∈ {0, 1}m. Since we
will always be dealing with optimum phylogenies, we will drop the label function l(v) and
use v to refer to both a vertex and the taxon it represents in a phylogeny.

We now extend the above definitions to the case when the input consists of genotypes
as opposed to haplotypes. The input is an n×m matrix G, where each row gi ∈ {0, 1, 2}m
represents a (genotype) taxon and each column represents a character. The output is a
2n × m matrix H in which each row hi ∈ {0, 1}m represents a haplotype. Furthermore
corresponding to every taxon gi ∈ R(G), there are two taxa h2i−1, h2i ∈ R(H) with the
following properties (consistency):
• if gi,c 6= 2 then h2i−1,c = h2i,c = gi,c

• if gi,c = 2 then h2i−1,c 6= h2i,c

We will refer to a pair of haplotypes as consistent with a genotype if the the above
properties hold. A phylogeny for the genotype matrix G is simply a phylogeny on the
haplotype matrix H that satisfies the consistency property. The definitions of q-near-
perfect and perfect remain identical to the haplotype case. Therefore the problem of
reconstructing the most parsimonious phylogeny for G involves finding H such that the
length of the optimal tree on H is minimized. The problem is therefore a generalization of
phylogeny reconstruction from haplotypes.

We now provide an informal introduction to the problem of haplotype inference. Note
that, in reality, each row gi ∈ G is in fact produced by a pair of haplotypes. The problem of
haplotype inference is to find the true pair of haplotype sequences for each input genotype
sequence. Since there could be many pairs of haplotypes consistent with an input genotype,
the problem can be posed as an optimization only under a model. We are now ready to
provide an outline of the five related problems that we address in the first part.

In Chapter 2, we consider the problem of reconstructing the most parsimonious phylo-
genetic tree for n×m binary (haplotype) input matrix I. The algorithms are characterized
by q, which is the penalty of the input matrix I. We initially develop a simple algorithm
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that already improves the previous best known theoretical running time. We then present a
more involved algorithm with a further improved run-time bound of O(21q +8qnm2). This
solves an important open problem in the area since it shows that the maximum parsimony
phylogeny reconstruction problem is fixed parameter tractable in parameter q.

In Chapter 3, we continue to develop algorithms for finding the most parsimonious
phylogenetic tree for haplotype matrix I. The main focus here is to obtain efficient, prac-
tical algorithms for the case when the penalty of the input matrix I could be large. We
develop several theoretical pre-processing techniques that enable us to reduce the problem
size without losing optimality. We then show an integer linear program formulation that
runs very fast in practice, typically faster than even the most popular heuristic.

In Chapter 4, we consider the same problem as Chapter 2 except that the input is pre-
sented as genotypes. This considerably increases the difficulty of the problem. Researchers
were able to make progress on this problem by developing polynomial time algorithms for
the special case when q = 0 and later for q = 1, but the general problem remained open.
We solve the general problem by developing an algorithm with run-time nmO(q) which is
a polynomial bound for any constant q. In experiments we demonstrate the sizes of the
input for which the algorithm is practically feasible. A very important application of this
problem is that of haplotype inference i.e., determining the set of haplotypes given the
genotypes using the maximum parsimony phylogeny model.

In Chapter 5, we consider the same problem as in Chapter 3 except that the input can
be genotypes. We adapt the techniques presented previously to obtain a new algorithm
for this problem. We show that the accuracy in terms of phylogeny sizes is significantly
better than what could be obtained using currently leading software packages for haplotype
inference.

In Chapter 6, we apply the techniques presented to construct phylogenies on a genome-
wide-scale. We used the data published by HapMap [75] to construct around 4 million
phylogenies around every locus of the genome. We found that the correlation of phylogeny
sizes across different ethnic groups was very high. We also discovered that phylogenies over
different structural elements of the genome possessed distinctive patterns.

1.3.2 Population Substructure

The second part of the thesis deals with clustering individuals based on their ancestral
ethnicities using SNP variation data. This part contains two related chapters.

Chapter 7 considers the problem of unsupervised clustering, where we wish to cluster
a given set of SNP sequences into two sub-populations with no prior knowledge of the
distribution of the two sub-populations. This assumes that the input individuals belong to
exactly one of two populations with no mixture. We now define the problem mathemati-
cally.

The input to the problem is an n×m genotype matrix I. We assume that there are two
ancestral populations each characterized by the minor allele frequency in each of the SNPs.
Thus, a population i is defined by an m-dimensional vector ~pi = (pi

1, . . . , p
i
m), where pi

j

represents the minor allele frequency of population i in position j. We define the distance
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between two sub-populations i, i′ as:

d(i, i′) =

√

∑

j

(pi
j − pi′

j )2

The problem asks for a classification θ : R(I)→ {0, 1}, that assigns every individual to a
particular sub-population. Let θ̂ be the correct classification. Our objective is to minimize
the number of errors made by the algorithm, that is, we would like to minimize |{r ∈
R(A) | θ(r) 6= θ̂(r)}|. We formulate the problem as a graph-cut instance and develop
an algorithm that runs in polynomial time and is guaranteed to find the optimum given
enough independent SNPs.

Chapter 8 considers a more general version of the problem. Given the genotype matrix
I, we wish to classify each position of each sequence as belonging to one of two populations.
That is, the problem asks for a classification θ : R(I) × C(I) → {0, 0.5, 1} that classifies
each position as belonging to one of the two populations or as a mixture (exactly one allele
from each population). We develop an algorithm that is based on spectral partitioning to
obtain an initial solution, which can be proved to be correct under some assumptions. We
then refine the solution by maximizing the likelihood function using an iterative heuristic.
We show that in practice the new algorithm provides significantly better accuracy than
prior methods.
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Part II

Phylogenetic Tree Reconstruction
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Chapter 2

Near-Perfect Phylogeny
Reconstruction from Haplotypes

Phylogeny construction, or the inference of evolutionary trees from some form of population
variation data, is one of the oldest and most intensively studied problems in computational
biology [58, 100]. Yet it remains far from solved. The problem has become particularly
acute for the special case of intraspecies phylogenetics, or tokogenetics, in which we wish
to build evolutionary trees among individuals in a single species. In part, the persistence
of the problem reflects its basic computational difficulty. The problem in most reasonable
variants is formally NP hard [56] and thus has no known efficient solution. The continuing
relevance of phylogeny inference algorithms also stems from the fact that the data sets
to be solved have been getting increasingly large in both population sizes and numbers
of variations examined. The genomic era has led to the identification of vast numbers of
variant sites for human populations [27, 75], as well as various other complex eukaryotic
organisms [38, 39, 101]. Large-scale re-sequencing efforts are now under way to use such
sites to study population histories with precision never previously possible [22]. Even more
vast data sets are available for microbial and viral genomes. As a result, methods that
were adequate even a few years ago may no longer be suitable today.

Phylogeny reconstruction is typically performed either under the maximum likelihood
model or the maximum parsimony model. In the maximum parsimony (MP) model of this
problem one seeks the smallest tree to explain the evolution of a set of observed organisms.
Parsimony is a particularly appropriate objective for trees representing short time scales,
which makes it a good choice for inferring evolutionary relationships among individuals
within a single species or a few closely related species. The intraspecific phylogeny prob-
lem has become especially important in studies of human genetics now that large-scale
genotyping and the availability of complete human genome sequences have made it possi-
ble to identify millions of single nucleotide polymorphisms (SNPs) [102], sites at which a
single DNA base takes on two common variants.

Minimizing the length of a phylogeny is the problem of finding the most parsimonious
tree, a well known NP-complete problem [53]. Researchers have thus focused on either
sophisticated heuristics or solving optimally for special cases (e.g. fixed parameter vari-
ants [2, 23, 77]). Previous attempts at such solutions for the general parsimony problem
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have only produced theoretical results, yielding algorithms too complicated for practical
implementation. A large number of related works have been published, but it is impossible
to mention all of them here.

Introductory formal definitions for parsimony based phylogeny reconstruction can be
found in the previous chapter. In this work, we focus on the the case when the set of
character states is binary. In this setting, the input is often represented as an n × m
binary matrix I. The n rows of the matrix (taxa) can be viewed as points on an m-cube.
Therefore, the problem is equivalent to finding the Steiner minimum tree in a hypercube.
In the binary state case, a phylogeny is called perfect if its length equals m. Gusfield
showed that such phylogenies can be reconstructed in linear time [57].

If there exists no perfect phylogeny for input I, then one option is to slightly modify
I so that a perfect phylogeny can be constructed for the resulting input. Upper bounds
and negative results have been established for such problems. For instance, Day and
Sankoff [24], showed that finding the maximum subset of characters containing a perfect
phylogeny is NP-complete while Damaschke [23] showed fixed parameter tractability for
the same problem. The problem of reconstructing the most parsimonious tree without
modifying the input I seems significantly harder.

Fernandez-Baca and Lagergren recently considered the problem of reconstructing opti-
mal near-perfect phylogenies [51], which assume that the size of the optimal phylogeny is at
most q larger than that of a perfect phylogeny for the same input size. They developed an
algorithm to find the most parsimonious tree in time nmO(q)2O(q2s2), where s is the number
of states per character, n is the number of taxa and m is the number of characters. This
bound may be impractical for sizes of m to be expected from SNP data, even for moderate
q. Given the importance of SNP data, it would therefore be valuable to develop methods
able to handle large m for the special case of s = 2, a problem we call Binary Near Perfect
Phylogenetic tree reconstruction (BNPP).

Outline of the Chapter. In this chapter, we present two algorithms to solve the
BNPP problem as described below.

Algorithm 1: We first present theoretical and practical results on the optimal solution
of the BNPP problem. We completely describe and analyze an intuitive algorithm for
the BNPP problem that has running time O((72κ)qnm + nm2), where κ is the number
of characters that violate the four gamete condition, a test of perfectness of a data set
explained formally later. But always κ ≤ m and even at equality this result significantly
improves the prior running time. Furthermore, the complexity of the previous work would
make practical implementation daunting; to our knowledge no implementation of it has
ever been attempted. Our results thus describe the first practical phylogenetic tree recon-
struction algorithm that finds guaranteed optimal solutions while being computationally
feasible for data sets of biologically relevant complexity. A preliminary paper on this algo-
rithm appeared as Sridhar et al. [106].

Algorithm 2: We then present a more involved algorithm that runs in time O(21q+8qnm2).
Fernandez-Baca and Lagergren [51] in concluding remarks state that the most important
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open problem in the area is to develop a parameterized algorithm or prove W [t] hardness
for the near-perfect phylogeny problem. We make progress on this open problem by show-
ing for the first time that BNPP is fixed parameter tractable (FPT). To achieve this, we
use a divide and conquer algorithm. Each divide step involves performing a ‘guess’ (or
enumeration) with cost exponential in q. Finding the Steiner minimum tree on a q-cube
dominates the run-time when the algorithm bottoms out. The present work substantially
improves on the time bounds derived for a preliminary version of this algorithm, which
was first presented in Blelloch et al. [9].

We further implement variants of both algorithms and demonstrate them on a selection
of real mitochondrial, Y-chromosome and bacterial data sets. The results demonstrate that
both algorithms substantially outperform their worst-case time-bounds, yielding optimal
trees with high efficiency on real data sets typical of those for which such algorithms would
be used in practice. The final version of the contents presented in this chapter is described
in Sridhar et. al. [107].

2.1 Preliminaries

In defining formal models for parsimony-based phylogeny construction, we borrow defini-
tions and notations from a couple of previous works [51, 100]. The input to a phylogeny
problem is an n×m binary matrix I where rows R(I) represent input taxa and are binary
strings. The column numbers C = {1, · · · , m} are referred to as characters. In a phyloge-
netic tree, or phylogeny, each vertex v corresponds to a taxon (not necessarily in the input)
and has an associated label l(v) ∈ {0, 1}m.

See definitions 1 and 2 for formal descriptions of a phylogeny. Also, definitions 3, 4,
6, 7 provide formal descriptions of a Steiner vertex, length of a phylogeny, penalty and a
q-near-perfect phylogeny respectively. With the above definitions, we are now prepared to
define our central computational problem.

The BNPP problem. Given an integer q and an n × m binary input matrix I, if
penalty(I) ≤ q, then return an optimum phylogeny T , else declare NIL. The problem is
equivalent to finding the minimum Steiner tree on an m-cube if the optimum tree is at
most q larger than the number of dimensions m or declaring NIL otherwise. The problem
is fundamental and therefore expected to have diverse applications besides phylogenies.

Definition 8 We define the following notations:

• r[i] ∈ {0, 1}: the state in character i of taxon r

• µ(e) : E(T )→ 2C: the set of all characters corresponding to edge e = (u, v) with the
property for any i ∈ µ(e), u[i] 6= v[i]. Note that for the first definition of a phylogeny
µ(e) : E(T )→ C.

• for a set of taxa M , we use T ∗
M to denote an optimum phylogeny on M

We say that an edge e mutates character i if i ∈ µ(e). We will use the following well
known definition and lemma on phylogenies.
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Definition 9 Given matrix I, the set of gametes Gi,j for characters i, j is defined as:
Gi,j = {(r[i], r[j])|r ∈ R(I)}. Two characters i, j share t gametes in I i.f.f. |Gi,j| = t.

In other words, the set of gametes Gi,j is a projection on the i, j dimensions.

Lemma 2.1.1 [57] An optimum phylogeny for input I is not perfect i.f.f. there exists two
characters i, j that share (all) four gametes in I.

Definition 10 (Conflict Graph [63]) A conflict graph G for matrix I with character
set C is defined as follows. Every vertex v of G corresponds to unique character c(v) ∈ C.
An edge (u, v) is added to G i.f.f. c(u), c(v) share all four gametes in I. Such a pair of
characters are defined to be in conflict.

Note that if the conflict graph G contains no edges, then a perfect phylogeny can be
constructed for I. Gusfield [57] provided an efficient algorithm to reconstruct a perfect
phylogeny in such cases.

Simplifications. We assume that the all zeros taxon is present in the input. If not, using
our freedom of labeling, we convert the data into an equivalent input containing the all
zeros taxon (see section 2.2 of Eskin et. al. [28] for details). We also remove any character
that contains only one state. Such characters do not mutate in the whole phylogeny and
are therefore useless in any phylogeny reconstruction. The BNPP problem asks for the
reconstruction of an unrooted tree. For the sake of analysis, we will however assume that
all the phylogenies are rooted at the all zeros taxon.

2.2 Simple Algorithm

This section describes a simple algorithm for the reconstruction of a binary near-perfect
phylogenetic tree. Throughout this section, we will use the first definition of a phylogeny
(Definition 1).

We begin by performing the following pre-processing step. For every pair of characters
c′, c′′ if |Gc′,c′′| = 2, we (arbitrarily) remove character c′′. After repeatedly performing the
above step, we have the following.

Claim 2.2.1 For every pair of characters c′, c′′, |Gc′,c′′| ≥ 3.

We will assume that the above claim holds on the input matrix for the rest of the
chapter. Note that such characters c′, c′′ are identical (after possibly relabeling one char-
acter) and are usually referred to as non-informative. It is not hard to show that this
preprocessing step does not change the correctness or running time of our algorithm.

The following additional definitions are required for the description and analysis of the
simple algorithm:

Definition 11 For any phylogeny T and set of characters C ′ ⊆ C:

• a super node is a maximal connected subtree T ′ of T s.t. for all edges e ∈ T ′, µ(e) /∈ C ′

• the skeleton of T , s(T, C ′), is the tree that results when all super nodes are contracted
to a vertex. The vertex set of s(T, C ′) is the set of super nodes. For all edges
e ∈ s(T, C ′), µ(e) ∈ C ′.
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Definition 12 A tag t(u) ∈ {0, 1}m of super node u in s(T, C ′) has the property that
t(u)[c′] = v[c′] for all c′ ∈ C ′, vertices v ∈ u; t[u][i] = 0 for all i /∈ C ′.

Throughout this paper, we will assume without loss of generality that we are working
with phylogenies and skeletons that are rooted at the all zeros taxon and tag respectively.
Furthermore, the skeletons used in this work themselves form a perfect phylogeny in the
sense that no character mutates more than once in the skeleton. Note that in such skeletons,
tag t(u)[i] = 1 if and only if character i mutates exactly once in the path from the root
to u. Figure 2.1(a) shows an example of a skeleton of a phylogeny. We will use the term
sub-phylogeny to refer to a subtree of a phylogeny.

(a)

(b)

Figure 2.1: (a) Phylogeny T and skeleton s(T, C ′), C ′ = {3, 4}. Edges are labeled with
characters that mutate µ and super nodes with tags t. (b) Transform to remove a degree
2 Steiner root from a super node. Note: the size of the phylogeny is unchanged.

Throughout the analysis, we fix an optimal phylogeny T ∗ and show that our algorithm
finds it. We assume that both Topt and its skeleton is rooted at the all zeros label and
tag respectively. The high level idea of our algorithm is to first guess the characters that
mutate more than once in Topt. The algorithm then finds a perfect phylogeny on the
remaining characters. Finally, it adds back the imperfect components by solving a Steiner
tree problem. The algorithm is divided into two functions, buildNPP and linkTrees,
whose pseudo-code is provided in Figures 2.2 and 2.3.

Function buildNPP starts by determining the set of characters c(Vnis) that corresponds
to the non-isolated vertices of the conflict graph in Step 2. From set c(Vnis), the algorithm
then selects by brute-force the set of characters M that mutate more than once in Topt.
Only characters corresponding to non-isolated vertices can mutate more than once in any
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function buildNPP ( binary matrix I, integer q )

1. let G(V, E) be the conflict graph of I

2. let Vnis ⊆ V be the set of non-isolated vertices

3. for all M ∈ 2c(Vnis), |M | ≤ q

(a) construct rooted perfect phylogeny PP(VPP , EPP ) on
characters C \M

(b) define λ : R 7→ VPP s.t. λ(r) = u i.f.f. for all i ∈ C\M ,
r[i] = t(u)[i]

(c) Tf := linkTrees (PP)

(d) if penalty(Tf) ≤ q then return Tf

4. return NIL

Figure 2.2: Pseudo-code to find the skeleton.

optimal phylogeny (a simple proof follows from Buneman graphs [100]). Since all characters
of C\M mutate exactly once, the algorithm constructs a perfect phylogeny on this character
set using Gusfield’s linear time algorithm [57]. The perfect phylogeny is unique because of
Claim 2.2.1. Note that PP is the skeleton s(Topt, C \M). Since the tags of the skeleton
are unique, the algorithm can now determine the super node where every taxon resides as
defined by function λ in Step 3b. This rooted skeleton PP is then passed into function
linkTrees to complete the phylogeny.

Function linkTrees takes a rooted skeleton Sk (sub-skeleton of PP ) as argument and
returns a tuple (r, c). The goal of function linkTrees is to convert skeleton Sk into a
phylogeny for the taxa that reside in Sk by adding edges that mutate M . Notice that
using function λ, we know the set of taxa that reside in skeleton Sk. The phylogeny for Sk
is built bottom-up by first solving the phylogenies on the sub-skeleton rooted at children
super nodes of Sk. Tuple (r, c) returned by function call to linkTrees(Sk) represents the
cost c of the optimal phylogeny when the label of the root vertex in the root super node
of Sk is r. Let S = root(Sk) represent the root super node of skeleton Sk. RS is the set
of input taxa that map to super node S under function λ. Let its children super nodes be
S1, S2, . . .. Assume that recursive calls to linkTrees(Si) return (ri, ci). Notice that the
parents of the set of roots ri all reside in super node S. The parents of ri are denoted by pi

and are identical to ri except in the character that mutates in the edge connecting Si to S.
Set τ is the union of pi and RS, and forms the set of vertices inferred to be in S. Set D is
the set of characters on which the labels of τ differ i.e. for all i ∈ D, ∃r1, r2 ∈ τ, r1[i] 6= r2[i].
In Step 9, we guess the root rS of super node S. This guess is ‘correct’ if it is identical to
the label of the root vertex of S in Topt. Notice that we are only guessing |D| bits of rS.
Corollary 2.2.3 of Lemma 2.2.2 along with optimality requires that the label of the root
vertex of Topt is identical to τ in all the characters C \D:

Lemma 2.2.2 There exists an optimal phylogeny Topt that does not contain any degree 2
Steiner roots in any super node.
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function linkTrees ( skeleton Sk(Vs, Es) )

1. let S := root(Sk)

2. let RS := {s ∈ R|λ(s) = S}
3. for all children Si of S

(a) let Ski be subtree of Sk rooted at Si

(b) (ri, ci) := linkTrees(Ski)

4. let cost :=
∑

i ci

5. for all i, let li := µ(S, ci)

6. for all i, define pi ∈ {0, 1}m s.t. pi[li] 6= ri[li] and for all
j 6= li, pi[j] = ri[j]

7. let τ := RS ∪ (∪i{pi})
8. let D ⊆ C be the set of characters where taxa in τ differ

9. guess root taxon of S, rS ∈ {0, 1}m s.t. ∀i ∈ C \D, ∀u ∈
τ, rS[i] = u[i]

10. let cS be the size of the optimal Steiner tree of τ ∪ {rS}
11. return (rS, cost + cS)

Figure 2.3: Pseudo-code to construct and link imperfect phylogenies

Proof: Figure 2.1(b) shows how to transform a phylogeny that violates the property
into one that doesn’t. Root 10 is degree 2 Steiner and is moved into parent supernode as
01. Since 10 was Steiner, the transformed tree contains all input.

Corollary 2.2.3 In Topt, the LCA of the set τ is the root of super node S.

In step 10, the algorithm finds the cost of the optimum Steiner tree for the terminal
set of taxa τ ∪ {rS}. We use Dreyfus-Wagner recursion [91] to compute this minimum
Steiner tree. The function now returns rS along with the cost of the phylogeny rooted in
S which is obtained by adding the cost of the optimum Steiner tree in S to the cost of the
phylogenies rooted at ci. The following Lemma bounds the running time of our algorithm
and completes the analysis:

Lemma 2.2.4 The algorithm described above runs in time O((18κ)qnm+nm2) and solves
the BNPP problem with probability at least 2−2q. The algorithm can be easily derandomized
to run in time O((72κ)qnm + nm2).

Proof: The probability of a correct guess at Step 9 in function linkTrees is ex-
actly 2−|D|. Notice that the Steiner tree in super node S has at least |D| edges. Since
penalty(Topt) ≤ q, we know that there are at most 2q edges that can be added in all
of the recursive calls to linkTrees. Therefore, the probability that all guesses at Step 9
are correct is at least 2−2q. The time to construct the optimum Steiner tree in step 10 is
O(3|τ |2|D|). Assuming that all guesses are correct, the total time spent in Step 10 over all
recursive calls is O(32q2q). Therefore, the overall running time of the randomized algorithm
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is O((18κ)qnm + nm2). To implement the randomized algorithm, since we do not know
if the guesses are correct, we can simply run the algorithm for the above time, and if we
do not have a solution, then we restart. Although presented as a randomized algorithm
for ease of exposition, it is not hard to see that the algorithm can be derandomized by ex-
ploring all possible roots at Step 9. The derandomized algorithm has total running time
O((72κ)qnm + nm2).

2.3 Fixed Parameter Tractable Algorithm

This section deals with the complete description and analysis of our fixed parameter
tractable algorithm for the BNPP problem. Throughout this section we will use the sec-
ond definition of a phylogeny (Definition 2). For ease of exposition, we first describe a
randomized algorithm for the BNPP problem that runs in time O(18q +qnm2) and returns
an optimum phylogeny with probability at least 8−q. We later show how to derandom-
ize it. In sub-section 2.3.1, we first provide the complete pseudo-code and describe it.
In sub-section 2.3.2, we prove the correctness of the algorithm. In sub-section 2.3.3, we
upper-bound the running time for the randomized and derandomized algorithms and the
probability that the randomized algorithm returns an optimum phylogeny. The above work
follows that presented in a preliminary paper on the topic [9]. Finally, in sub-section 2.3.4,
we show how to tighten the above bounds on the derandomized algorithm to achieve our
final result of O(21q + 8qnm2) run time.

2.3.1 Description

We begin with a high-level description of our randomized algorithm. The algorithm it-
eratively finds a set of edges E that decomposes an optimum phylogeny T ∗

I into at most
q components. An optimum phylogeny for each component is then constructed using a
simple method and returned along with edges E as an optimum phylogeny for I.

We can alternatively think of the algorithm as a recursive, divide and conquer proce-
dure. Each recursive call to the algorithm attempts to reconstruct an optimum phylogeny
for an input matrix M . The algorithm identifies a character c s.t. there exists an optimum
phylogeny T ∗

M in which c mutates exactly once. Therefore, there is exactly one edge e ∈ T ∗
M

for which c ∈ µ(e). The algorithm, then guesses the vertices that are adjacent to e as r, p.
The matrix M can now be partitioned into matrices M0 and M1 based on the state at
character c. Clearly all the taxa in M1 reside on one side of e and all the taxa in M0 reside
on the other side. The algorithm adds r to M1, p to M0 and recursively computes the
optimum phylogeny for M0 and M1. An optimum phylogeny for M can be reconstructed
as the union of any optimum phylogeny for M0 and M1 along with the edge (r, p). We
require at most q recursive calls. When the recursion bottoms out, we use a simple method
to solve for the optimum phylogeny.

We describe and analyze the iterative method which flattens the above recursion to
simplify the analysis. For the sake of simplicity, we also define the following notations:
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buildNPP(input matrix I)

1. let L := {I}, E := ∅
2. while | ∪Mi∈L N(Mi)| > q

(a) guess vertex v from ∪Mi∈LN(Mi), let v ∈ N(Mj)

(b) let M0 := Mj(c(v), 0) and M1 := Mj(c(v), 1)

(c) guess taxa r and p

(d) add r to M1, p to M0 and (r, p) to E

(e) remove Mj from L, add M0 and M1 to L

3. for each Mi ∈ L compute an optimum phylogeny Ti

4. return E ∪ (∪iTi)

Figure 2.4: Pseudo-code to solve the BNPP problem. For all Mi ∈ L, N(Mi) is the set
of non-isolated vertices in the conflict graph of Mi. Guess at Step 2a is correct i.f.f. there
exists T ∗

Mj
where c(v) mutates exactly once. Guess at Step 2c is correct i.f.f. there exists

T ∗
Mj

where c(v) mutates exactly once and edge (r, p) ∈ T ∗
Mj

with r[c(v)] = 1, p[c(v)] = 0.
Implementation details for Steps 2a, 2c and 3 are provided in Section 2.3.3.

• For the set of taxa M , M(i, s) refers to the subset of taxa that contains state s at
character i.

• For a phylogeny T and character i that mutates exactly once in T , T (i, s) refers to
the maximal subtree of T that contains state s on character i.

The pseudo-code for the above described algorithm is provided in Figure 2.4. The
algorithm performs ‘guesses’ at Steps 2a and 2c. If all the guesses performed by the
algorithm are ‘correct’ then it returns an optimum phylogeny. The guess at Step 2a is
correct if and only if there exists T ∗

Mj
where c(v) mutates exactly once. The guess at Step

2c is correct if and only if there exists T ∗
Mj

where c(v) mutates exactly once and edge
(r, p) ∈ T ∗

Mj
with r[c(v)] = 1, p[c(v)] = 0. Implementation details for Steps 2a, 2c and 3 are

provided in Section 2.3.3. An example illustrating the reconstruction is provided in Figure
2.5.

2.3.2 Correctness

We will now prove the correctness of the pseudo-code under the assumption that all
the guesses performed by our algorithm are correct. Specifically, we will show that if
penalty(I) ≤ q then function buildNPP returns an optimum phylogeny. The following
lemma proves the correctness of our algorithm.

Lemma 2.3.1 At any point in execution of the algorithm, an optimum phylogeny for I
can be constructed as E ∪ (∪iTi), where Ti is any optimum phylogeny for Mi ∈ L.

Proof: We prove the lemma using induction. The lemma is clearly true at the
beginning of the routine when L = {I}, E = ∅. As inductive hypothesis, assume that
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Figure 2.5: Example illustrating the reconstruction. Underlying phylogeny is T ∗
I ; taxa r

and p (both could be Steiner) are guessed to create E = {(10000, 10100), (01000, 01010)};
E induces three components in T ∗

I . When all taxa in T ∗
I are considered, character 3 conflicts

with 1, 2 and 5 and character 4 conflicts with 1 and 2; two components are perfect (penalty
0) and one has penalty 2; penalty(I) =def penalty(T ∗

I ) = 7.

the above property is true right before an execution of Step 2e. Consider any optimum
phylogeny T ∗

Mj
where c(v) mutates exactly once and on the edge (r, p). Phylogeny T ∗

Mj
can

be decomposed into T ∗
Mj

(c(v), 0)∪T ∗
Mj

(c(v), 1)∪(r, p) with length l = length(T ∗
Mj

(c(v), 0))+
length(T ∗

Mj
(c(v), 1)) + d(r, p). Again, since c(v) mutates exactly once in T ∗

Mj
, all the taxa

in M0 and M1 are also in T ∗
Mj

(c(v), 0) and T ∗
Mj

(c(v), 1) respectively. Let T ′, T ′′ be arbitrary
optimum phylogenies for M0 and M1 respectively. Since p ∈M0 and r ∈M1 we know that
T ′∪T ′′∪(r, p) is a phylogeny for Mj with cost length(T ′)+length(T ′′)+d(r, p) ≤ l. By the
inductive hypothesis, we know that an optimum phylogeny for I can be constructed using
any optimum phylogeny for Mj . We have now shown that using any optimum phylogeny
for M0 and M1 and adding edge (r, p) we can construct an optimum phylogeny for Mj.
Therefore the proof follows by induction.

2.3.3 Initial Bounds

In this sub-section we bound the probability of correct guesses, analyze the running time
and show how to derandomize the algorithm. We perform two guesses at Steps 2a and
2c. Lemmas 2.3.2 and 2.3.6 bound the probability that all the guesses performed at these
steps are correct throughout the execution of the algorithm.

Lemma 2.3.2 The probability that all guesses performed at Step 2a are correct is at least
4−q.
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Proof: Implementation: The guess at Step 2a is implemented by selecting v uniformly
at random from ∪iN(Mi).

To prove the lemma, we first show that the number of iterations of the while loop (step
2) is at most q. Consider any one iteration of the while loop. Since v is a non-isolated vertex
of the conflict graph, c(v) shares all four gametes with some other character c′ in some
Mj. Therefore, in every optimum phylogeny T ∗

Mj
that mutates c(v) exactly once, there

exists a path P starting with edge e1 and ending with e3 both mutating c′, and containing
edge e2 mutating c(v). Furthermore, the path P contains no other mutations of c(v) or
c′. At the end of the current iteration, Mj is replaced with M0 and M1. Both subtrees
of T ∗

Mj
containing M0 and M1 contain (at least) one mutation of c′ each. Therefore,

penalty(M0) + penalty(M1) < penalty(Mj). Since penalty(I) ≤ q, there can be at
most q iterations of the while loop.

We now bound the probability. Intuitively, if | ∪i N(Mi)| is very large, then the prob-
ability of a correct guess is large, since at most q out of | ∪i N(Mi)| characters can mutate
multiple times in T ∗

Mj
. On the other hand if | ∪i N(Mi)| = q then we terminate the loop.

Formally, at each iteration | ∪i N(Mi)| reduces by at least 1 (guessed vertex v is no longer
in ∪iN(Mi)). Therefore, in the worst case (to minimize the probability of correct guesses),
we can have q iterations of the loop, with q + 1 non-isolated vertices in the last iteration
and 2q in the first iteration. The probability in such a case that all guesses are correct is
at least

(
q

2q
)× (

q − 1

2q − 1
)× . . .× (

1

q + 1
) =

1
(

2q
q

) ≥ 2−2q

Application of Buneman Graphs

We now show that r, p can be found efficiently. To prove this we need some tools from
the theory of Buneman graphs [100]. Let M be a set of taxa defined by character set C of
size m. A Buneman graph F for M is a vertex induced subgraph of the m-cube. Graph
F contains vertices v if and only if for every pair of characters i, j ∈ C, (v[i], v[j]) ∈ Gi,j.
Recall that Gi,j is the set of gametes (or projection of M on dimensions i, j). Each edge
of the Buneman graph is labeled with the character at which the adjacent vertices differ.

We will use the Buneman graph to show how to incrementally extend a set of taxa
M by adding characters that share exactly two gametes with some existing character. As
before, we can assume without loss of generality that the all zeros taxon is present in M .
Therefore if a pair of characters share exactly two gametes then they are identical. Assume
that we want to add character i to M and i′ ∈ M is identical to i. We extend M to M ′

by first adding the states on character i′ for all taxa. For the rest of the discussion let Gi,j

be the set of gametes shared between characters i, j in matrix M ′. We extend M ′ to M ′′

by adding a taxon t s.t. t[i] = 0, t[i′] = 1 and for all other characters j, if (0, 1) /∈ Gj,i then
t[j] = 1 else t[j] = 0. Since we introduced a new gamete on i, i′, no pair of characters share
exactly two gametes in M ′′. Therefore a Buneman graph G′′ for M ′′ can be constructed as
before. A Buneman graph is a median graph [100] and clearly a subgraph of the m + 1-
cube, where m + 1 is the number of characters in M ′′. Every taxon in M ′ is present in G′′
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by construction. Using the two properties, we have the following lemma.

Lemma 2.3.3 Every optimum phylogeny for the taxa in M ′ defined over the m + 1 char-
acters is contained in G′′(See Section 5.5, [100] for more details).

We now show the following important property on the extended matrix M ′′.

Lemma 2.3.4 If a pair of characters c, c′ conflict in M ′′ then they conflict in M ′.

Proof: For the sake of contradiction, assume not. Clearly i, i′ share exactly three
gametes in M ′′. Now consider any character j and assume that j, i shared exactly three
gametes in M ′. For the newly introduced taxon t, t[i] = 0. If t[j] = 1, then j, i cannot
share (0, 1) gamete in M ′′ and therefore they do not conflict. If t[j] = 0, then the newly
introduced taxon creates the (0, 0) gamete which should be present in all pairs of characters.
Now consider the pair of characters (j, i′). If t[j] = 1, then in any taxon t′ of M ′, if t′[j] = 1
then t′[i] = 1 and therefore t[i] = 1 (since i, i′ are identical on all taxa except t) and therefore
(1, 1) cannot be a newly introduced gamete. If t[j] = 0, then there exists some taxon t′

for which t′[j] = 0 and t′[i] = 1 and therefore t′[i′] = 1 and again (0, 1) cannot be a newly
introduced gamete. Finally consider any pair of characters j, j′. If taxon t introduces
gamete (0, 1), then there exists some taxon t′ with t′[j] = 0 and t′[i] = 1 If t′[j′] = 1, then
(0, 1) cannot be a new gamete. If t′[j′] = 0, then t[j′] = 0 and not 1. The case when (1, 0)
is introduced by t is symmetric. Finally if t introduces (1, 1) then consider any taxon t′

with t′[i] = 1. It has to be the case that t′[j] = t′[j′] = 1, and therefore (1, 1) cannot be a
newly introduced gamete.

We now have the following lemma.

Lemma 2.3.5 In every optimum phylogeny T ∗
M , the conflict graph on the set of taxa in

T ∗
M (Steiner vertices included) is the same as the conflict graph on M .

Proof: We say that a subgraph F ′ of F is the same as an edge labeled tree T if F ′ is a
tree and T can be obtained from F ′ by suppressing degree-two vertices. A phylogeny T is
contained in a graph F if there exists an edge-labeled subgraph F ′ that is the same as the
edge labeled (by function µ) phylogeny T . We know from Lemma 2.3.3 that all optimum
phylogenies T ∗

M for M is contained in the (extended) Buneman graph of M . Lemma 2.3.4
shows that the conflict graph on M ′′ (and therefore on the extended Buneman graph of
M ′′) is the same as the conflict graph of M .

Lemma 2.3.6 The probability that all guesses performed at Step 2c are correct is at least
2−q.

Proof: Implementation: We first show how to perform the guess efficiently. For every
character i, we perform the following steps in order.

1. if all taxa in M0 contain the same state s in i, then fix r[i] = s

2. if all taxa in M1 contain the same state s in i, then fix r[i] = s

3. if r[i] is unfixed then guess r[i] uniformly at random from {0, 1}
Assuming that the guess at Step 2a (Figure 2.4) is correct, we know that there ex-

ists an optimum phylogeny T ∗
Mj

on Mj where c(v) mutates exactly once. Let e ∈ T ∗
Mj

s.t. c(v) ∈ µ(e). Let r′ be an end point of e s.t. r′[c(v)] = 1 and p′ be the other end
point. If the first two conditions hold with the same state s, then character i does not
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mutate in Mj . In such a case, we know that r′[i] = s, since T ∗
Mj

is optimal and the above
method ensures that r[i] = s. Notice that if both conditions are satisfied simultaneously
with different values of s then i and c(v) share exactly two gametes in Mj and therefore
i, c(v) ∈ µ(e). Hence, r′[i] = r[i]. We now consider the remaining cases when exactly one
of the above conditions hold. We show that if r[i] is fixed to s then r′[i] = s. Note that in
such a case at least one of M0, M1 contain both the states on i and i, c(v) share at least
3 gametes in Mj . The proof can be split into two symmetric cases based on whether r is
fixed on condition 1 or 2. One case is presented below:

Taxon r[i] is fixed based on condition 1: In this case, all the taxa in M0 con-
tain the same state s on i. Therefore, the taxa in M1 should contain both states on i.
Hence i mutates in T ∗

Mj
(c(v), 1). For the sake of contradiction, assume that r′[i] 6= s. If

i /∈ µ(e) then p′[i] 6= s. However, all the taxa in M0 contain state s. This implies that i
mutates in T ∗

Mj
(c(v), 0) as well. Therefore i and c(v) share all four gametes on T ∗

Mj
. How-

ever i and c(v) share at most 3 gametes in Mj - one in M0 and at most two in M1. This
leads to a contradiction to Lemma 2.3.5. Once r is guessed correctly, p can be computed
since it is is identical to r in all characters except c(v) and those that share two gametes
with c(v) in Mj . We make a note here that we are assuming that e does not mutate any
character that does not share two gametes with c(v) in Mj . This creates a small problem
that although the length of the tree constructed is optimal, r and p could be degree-two
Steiner vertices. If after constructing the optimum phylogenies for M0 and M1, we realize
that this is the case, then we simply add the mutation adjacent to r and p to the edge
(r, p) and return the resulting phylogeny where both r and p are not degree-two Steiner
vertices.

The above implementation therefore requires only guessing states corresponding to
the remaining unfixed characters of r. If a character i violates the first two conditions,
then i mutates once in T ∗

Mj
(i, 0) and once in T ∗

Mj
(i, 1). If r[i] has not been fixed, then

we can associate a pair of mutations of the same character i with it. At the end of the
current iteration Mj is replaced with M0 and M1 and each contains exactly one of the
two associated mutations. Therefore if q′ characters are unfixed then penalty(M0) +
penalty(M1) ≤ penalty(Mj) − q′. Since penalty(I) ≤ q, throughout the execution of
the algorithm there are q unfixed states. Therefore the probability of all the guesses being
correct is 2−q.

This completes our analysis for upper bounding the probability that the algorithm
returns an optimum phylogeny. We now analyze the running time. We use the following
lemma to show that we can efficiently construct optimum phylogenies at Step 3 in the
pseudo-code:

Lemma 2.3.7 For a set of taxa M , if the number of non-isolated vertices of the associated
conflict graph is t, then an optimum phylogeny T ∗

M can be constructed in time O(3s6t+nm2),
where s = penalty(M).

Proof: We use the approach described by Gusfield and Bansal (see Section 7 of [62])
that relies on the Decomposition Optimality Theorem for recurrent mutations. We first
construct the conflict graph and identify the non-trivial connected components of it in
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time O(nm2). Let κi be the set of characters associated with component i. We compute
the Steiner minimum tree Ti for character set κi. The remaining conflict-free characters in
C \∪iκi can be added by contracting each Ti to vertices and solving the perfect phylogeny
problem using Gusfield’s linear time algorithm [57].

Since penalty(M) = s, there are at most s + t + 1 distinct bit strings defined over
character set ∪iκi. The Steiner space is bounded by 2t, since | ∪i κi| = t. Using the
Dreyfus-Wagner recursion [91] the total run-time for solving all Steiner tree instances is
O(3s+t2t).

Lemma 2.3.8 The algorithm described solves the BNPP problem in time O(18q + qnm2)
with probability at least 8−q.

Proof: For a set of taxa Mi ∈ L (Step 3, Figure 2.4), using Lemma 2.3.7 an optimum
phylogeny can be constructed in time O(3si6ti +nm2) where si = penalty(Mi) and ti is the
number of non-isolated vertices in the conflict graph of Mi. We know that

∑

i si ≤ q (since
penalty(I) ≤ q) and

∑

i ti ≤ q (stopping condition of the while loop). Therefore, the
total time to reconstruct optimum phylogenies for all Mi ∈ L is bounded by O(18q +nm2).
The running time for the while loop is bounded by O(qnm2). Therefore the total running
time of the algorithm is O(18q + qnm2). Combining Lemmas 2.3.2 and 2.3.6, the total
probability that all guesses performed by the algorithm is correct is at least 8−q.

Lemma 2.3.9 The algorithm described above can be derandomized to run in time O(72q +
8qnm2).

Proof: It is easy to see that Step 2c can be derandomized by exploring all possible
states for the unfixed characters. Since there are at most q unfixed characters throughout
the execution, there are 2q possibilities for the states.

However, Step 2a cannot be derandomized naively. We use the technique of bounded
search tree [26] to derandomize it efficiently. We select an arbitrary vertex v from ∪iN(Mi).
We explore both the possibilities on whether v mutates once or multiple times. We can
associate a search (binary) tree with the execution of the algorithm, where each node of
the tree represents a selection v from ∪iN(Mi). One child edge represents the execution of
the algorithm assuming v mutates once and the other assuming v mutates multiple times.
In the execution where v mutates multiple times, we select a different vertex from ∪iN(Mi)
and again explore both paths. The height of this search tree can be bounded by 2q because
at most q characters can mutate multiple times. The path of height 2q in the search tree
is an interleaving of q characters that mutate once and q characters that mutate multiple
times. Therefore, the size of the search tree is bounded by 4q.

Combining the two results, the algorithm can be derandomized by solving at most 8q

different instances of Step 3 while traversing the while loop 8q times for a total running time
of O(144q+8qnm2). This is, however, an over-estimate. Consider any iteration of the while
loop when Mj is replaced with M0 and M1. If a state in character c is unfixed and therefore
guessed, we know that there are two associated mutations of character c in both M0 and
M1. Therefore at iteration i, if q′i states are unfixed, then penalty(M0)+penalty(M1) ≤
penalty(Mj)−q′i. At the end of the iteration we can reduce the value of q used in Step 2 by
q′i, since the penalty has reduced by q′i. Intuitively this implies that if we perform a total of
q′ guesses (or enumerations) at Step 2c, then at Step 3 we only need to solve Steiner trees
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on q − q′ characters. The additional cost 2q′ that we incur results in reducing the running
time of Step 3 to O(18q−q′ + qnm2). Therefore the total running time is O(72q + 8qnm2).

2.3.4 Improving the Run Time Bounds

In Lemma 2.3.9, we showed that the guesses performed at Step 2c of the pseudo-code in
Figure 2.4 do not affect the overall running time. We can also establish a trade-off along
similar lines for Step 2a that can reduce the theoretical run-time bounds. We now analyze
the details of such a trade-off in the following lemma:

Lemma 2.3.10 The algorithm presented above runs in time O(21q + 8qnm2).

Proof: For the sake of this analysis, we can declare each character to be in either a
‘marked’ state or an ‘unmarked’ state. At the beginning of the algorithm, all the characters
are ‘unmarked’. As the algorithm proceeds, we will mark characters to indicate that the
algorithm has identified them as mutating more than once in T ∗

We will then examine two parameters, ρ and γ, which specify the progress made by
the derandomized algorithm in either identifying multiply mutating characters or reducing
the problem to sub-problems of lower total penalty. Consider the set of characters S such
that for all c ∈ S, character c is unmarked and there exists matrix Mi such that c mutates
more than once in T ∗

Mi
. We define parameter ρ to be |S|. Parameter ρ, intuitively, refers to

the number of characters mutating more than once (within trees T ∗
Mi

) that have not been
identified yet. Parameter γ denotes the sum of the penalties of the remaining matrices Mi,
γ =

∑

i penalty(Mi).
Consider Step 2a of Figure 2.4, when the algorithm selects character c(v). After select-

ing c(v), the algorithm proceeds to explore both cases when c(v) either mutates once or
multiple times in T ∗

Mj
. In the first case, penalty(T ∗

Mj
) decreases by at least 1. Therefore,

γ decreases by at least 1. In the second case, the algorithm has successfully identified a
multiple mutant. We now proceed to mark character c(v), which reduces ρ by 1 and leaves
γ unchanged.

If the main loop at Step 3 terminates, then the algorithm finds optimal Steiner trees
using the Dreyfus-Wagner recursion and the run-time is bounded by 18γ using Lemma 2.3.7
as before. Therefore, the running time of this portion of our algorithm can be expressed
as:

T (γ, ρ) ≤ max{18γ, T (γ − 1, ρ) + T (γ, ρ− 1) + 1}
Function T (γ, ρ) can be upper-bounded by 18γ+1(19/17)ρ+1. We can verify this by

induction. The right-side of the above equation is:

max{18γ, 18γ(19/17)ρ+1 + 18γ+1(19/17)ρ + 1}
= max{18γ, 18γ(19/17)ρ(19/17 + 18) + 1}
≤ max{18γ, 18γ(19/17)ρ(19/17 + 19)}

= 18γ+1(19/17)ρ+1
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Since we know that γ ≤ q and ρ ≤ q, we can bound T (q, q) = O(20.12q). Therefore,
we can improve the run-time bound for the complete algorithm to O(20.12q + 8qnm2).

We note that further improvements may be achievable in practice for moderate q by
pre-processing possible Steiner tree instances. If all Steiner tree problem instances on the
q-cube are solved in a pre-processing step, then our running time would depend only on
the number of iterations of the while loop, which is O(8qnm2). Such pre-processing would
be impossible to perform with previous methods. Alternate algorithms for solving Steiner
trees may be faster in practice as well.

2.4 Experiments

We tested both algorithms using a selection of non-recombining DNA sequences. These
include mitochondrial DNA samples from two human populations [113] and a chimpanzee
population [111], Y chromosome samples from human [75] and chimpanzee populations [111],
and a bacterial DNA sample [80]. Such non-recombining data sources provide a good test
of the algorithms’ ability to perform inferences in situations where recurrent mutation is
the probable source of any deviation from the perfect phylogeny assumption.

We implemented variants of both algorithms. The simple algorithm was derandomized
and used along with a standard implementation of the Dreyfus-Wagner routine. For the
FPT algorithm, we implemented the randomized variant described above using an opti-
mized Dreyfus-Wagner routine. The randomized algorithm takes two parameters, q and
p, where q is the imperfectness and p is the maximum probability that the algorithm has
failed to find an optimal solution of imperfectness q. On each random trial, the algorithm
tallies the probability of failure of each random guess, allowing it to calculate an upper
bound on the probability that that trial failed to find an optimal solution. It repeats ran-
dom trials until the accumulated failure probability across all trials is below the threshold
p. An error threshold of 1% was used for the present study.

The results are summarized in Table 2.1. Successive columns of the table list the source
of the data, the input size, the optimal penalty q, the parsimony score of the resulting tree,
the run times of both of our algorithms in seconds, and the number of trials the randomized
FPT algorithm needed to reach a 1% error bound. All run times reported are based on
execution on a 2.4 GHz Intel P4 computer with 1 Gb of RAM. One data point, the human
mtDNA sample from the Buddhist population, was omitted from the results of the simple
algorithm because it failed to terminate after 20 minutes of execution. All other instances
were solved optimally by the simple algorithm and all were solved by the randomized FPT
algorithm. The randomized variant of the FPT algorithm in all but one case significantly
outperformed the derandomized simple algorithm in run time. This result that may reflect
the superior asymptotic performance of the FPT algorithm in general, the performance
advantage of the randomized versus the deterministic variants, and the advantage of a more
highly optimized Dreyfus-Wagner subroutine. The randomized algorithm also generally
needed far fewer trials to reach a high probability of success than would be expected from
the theoretical error bounds, suggesting that those bounds are quite pessimistic for realistic
data sets. Both implementations, however, appear efficient for biologically realistic data
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sets with moderate imperfection.
We can compare the quality of our solutions to those produced on the same data sets by

other methods. Our methods produced trees of identical parsimony score to those derived
by the pars program from the PHYLIP package [50]. However while we can guarantee
optimality of the returned results, pars does not provide any guarantee on the quality of
the tree. (Note that our preliminary paper [106] incorrectly stated that pars produced
an inferior tree on the chimpanzee mtDNA data set.) Our methods also yielded identical
output for the chimpanzee Y chromosome data to a branch-and-bound method used in the
paper in which that data was published [111].

Description Rows × Cols q Pars
Score

Run time trials

Simple
(secs)

FPT
(secs)

mtDNA, genus Pan [111] 24×1041 2 63 0.59 0.14 25
chr Y, genus Pan [111] 15×98 1 99 0.33 0.02 12
Bacterial DNA sequence [80] 17×1510 7 96 0.47 4.61 262
HapMap chr Y, 4 ethnic groups [75] 150×49 1 16 0.3 0.02 16
mtDNA, Humans (Muslims) [113] 13×48 3 30 0.61 0.28 117
mtDNA, Humans (Buddhists) [113] 26×48 7 43 —- 18.44 1026

Table 2.1: Empirical Results on a collection of Real SNP Variation Data Sets

2.5 Conclusions

We have presented two new algorithms for inferring optimal near-perfect binary phyloge-
nies. The algorithms substantially improve on the running times of any previous methods
for the BNPP problem. This problem is of considerable practical interest for phylogeny
reconstruction from SNP data. Furthermore, our algorithms are easily implemented, unlike
previous theoretical algorithms for this problem. The algorithms can also provide guar-
anteed optimal solutions in their derandomized variants, unlike popular fast heuristics for
phylogeny construction. Experiments on several non-recombining variation data sets have
further shown the methods to be generally extremely fast on real-world data sets typical
of those for which one would apply the BNPP problem in practice. Our algorithms per-
form in practice substantially better than would be expected from their worst case run time
bounds, with both proving practical for at least some problems with q as high as seven. The
FPT algorithm in its randomized variant shows generally superior practical performance
to the simple algorithm. In addition, the randomized algorithm appears to find optimal
solutions for these data sets in far fewer trials than would be predicted from the worst-case
theoretical bounds. Even the deterministic variant of the simple algorithm, though, finds
optimal solutions in under one second for all but one example. The algorithms presented
here thus represent the first practical methods for provably optimal near-perfect phylogeny
inference from biallelic variation data.
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Chapter 3

Maximum Parsimony Phylogeny
Reconstruction from Haplotypes

In this chapter, we continue to focus on the inference of intraspecies phylogenies on binary
genetic variation data, which is of particular practical importance because of the large
amount of binary SNP data now available. The binary intraspecies phylogeny problem has
traditionally been modeled by the minimum Steiner tree problem on binary sequences, a
classic NP hard problem [56]. Some special cases of the problem are efficiently solvable,
most notably the case of perfect phylogenies, in which each variant site mutates only once
within the optimal tree [2, 57, 77]. However, real data will not, in general, conform
to the perfect phylogeny assumption. The standard in practice is the use of sophisticated
heuristics that will always produce a tree but cannot guarantee optimality (e.g. [5, 50, 97]).
As outlined in the previous chapter, some theoretical advances have recently been made in
the efficient solution of near-perfect phylogenies, those that deviate only by a fixed amount
from the assumption of perfection [9, 51, 105, 106]. These methods can provide provably
efficient solutions in many instances, but still struggle with some moderate-size data sets
in practice. As a result, some recent attention has turned to integer linear programming
(ILP) methods [60]. ILPs provide provably optimal solutions and while they do not provide
guaranteed run-time bounds, they may have practical run times far better than those of
the provably efficient methods.

In this chapter, we develop two ILP formulations to solve the most parsimonious phy-
logenetic tree problem on binary sequences. These methods find provably optimal trees
from real binary sequence data, much like the prior theoretical methods and unlike the
prevailing heuristic methods. Practical run time is, however, substantially lower than that
of the existing provably efficient theoretical methods, allowing us to tackle larger and more
difficult datasets. Below, we formalize the problem solved, present our methods, and es-
tablish their practical value on a selection of real variation data sets. We further document
a web server providing open access to this ILP method and serving as a front-end to a
database of local phylogenies inferred throughout the autosomal human genome. This
work provides a platform for more extensive empirical studies of variation patterns on ge-
nomic scales than were previously possible and may also help lay the groundwork for more
sophisticated optimization methods that are likely to be needed in the future.
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3.1 Preliminaries

We will assume that the input to the problem is a haplotype matrix H where each row
corresponds to a haploid sequence of a taxon and each column corresponds to a Single
Nucleotide Polymorphism (SNP) site. The input H can therefore be viewed as an n×m
binary matrix. For this chapter, we will use Definition 1 of a phylogeny. Definitions 3, 4,
5 are also useful for this chapter.

As mentioned in the previous chapter the phylogeny reconstruction problem is closely
related to the Steiner Tree Problem, a well studied problem in combinatorial optimization
(for a survey and applications, see [16, 74]). We provide a more formal description of this
relationship below, since it is very important for this chapter. Given a graph G = (V, E)
and a set of terminals in V , the problem is to find the smallest subgraph of G such that
there is a path between any pair of terminals. Let graph G be the m-cube defined on
vertices V = {0, 1}m and edges E = {(u, v) ∈ V × V :

∑

i |ui − vi| = 1}. The vertices are
binary strings of length m and an edge connects two vertices if and only if their Hamming
distance is 1. Let VT ⊆ V be the set of species corresponding to the rows of input matrix
H . The maximum parsimony problem is then equivalent to the minimum Steiner tree
problem on underlying graph G with terminal vertices VT . Even in this restricted setting,
the Steiner tree problem has been shown to be NP-complete [53]. However, the phylogeny
reconstruction problem when the optimal phylogeny is q-near-perfect can be solved in time
polynomial in n and m when q = O(log(poly(n, m))) [106]. If q is very large, though, such
algorithms do not perform well. Moreover, these algorithms use a sub-routine that solves
the Steiner tree problem on m-cubes when the dimensions are small. Therefore, improving
the existing solutions for the general problem will also improve the running time for the
restricted cases.

3.2 Preprocessing

We now describe a set of preprocessing steps that can substantially reduce the size of the
input data without affecting the final output.

3.2.1 Reducing the set of possible Steiner vertices

The complexity of solving the Steiner tree problem in general graphs is a consequence
of the exponentially many possible subsets that can be chosen as the final set of Steiner
vertices in the most parsimonious phylogeny. Therefore, an important component of any
computational solution to the Steiner tree problem is to eliminate vertices that cannot be
present in any optimal tree. We describe an approach that has been used to eliminate such
vertices when the underlying graph is the m-cube.

For input graph H and column c of H , the split c(0)|c(1) defined by c is a partition of
the taxa into two sets, where c(0) is the set of taxa with value 0 in column c and c(1) is the
set of taxa with value 1 in column c. This forms a partition of the taxa since c(0) ∪ c(1)
is the set of all taxa and c(0) ∩ c(1) is empty. Each of c(0) and c(1) is called a block of c.
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function findBuneman(VT )

1. let λ← VT ; let v ∈ λ

2. bunemanNeighbor(λ, v)

function bunemanNeighbor(λ, v)

1. for all j ∈ {1, . . . , m}
(a) let v′ ← v; v′

j ← cj(1− ij)

(b) if v′ is Buneman and v′ /∈ λ then

i. λ← λ ∪ {v′}
ii. bunemanNeighbor(λ, v′)

Figure 3.1: Finding the Buneman graph in polynomial time

Buneman used the blocks of binary taxa to introduce a graph, now called the Buneman
graph B(H), which captures structural properties of the optimal phylogeny [13]. We will
explain the generalization of this graph due to Barthélemy [6]. Each vertex of the Buneman
graph is an m-tuple of blocks [c1(i1), c2(i2), . . . cm(im)] (ij = 0 or 1 for each 1 ≤ j ≤ m),
with one block for each column and such that each pair of blocks has nonempty intersection
(cj(ij) ∩ ck(ik) 6= ∅ for all 1 ≤ j, k ≤ m). There is an edge between two vertices in B(H)
if and only if they differ in exactly one block. Buneman graphs are very useful because of
the following theorem.

Theorem 3.2.1 [5, 100] For input matrix H, let T ∗
H denote the optimal phylogeny on H

and let B(H) denote the Buneman graph on H. If matrix H has binary values, then every
optimal phylogeny T ∗

H is a subgraph of B(H).

Using the above theorem, our problem is now reduced to constructing the Buneman
graph on input H and solving our problem on underlying graph B(H). Ideally we would
like to find the Buneman graph in time O(poly(k)) where k is the number of vertices in the
Buneman graph. Note that this is output-sensitive. We first state the following theorem,
which we will use to show the Buneman graph can be generated efficiently.

Theorem 3.2.2 [100] The Buneman graph B(H) is connected for any input matrix H in
which all columns contain both states 0, 1 and all pairs of columns are distinct.

To generate the graph B(H), let i1, i2, . . . im be the first taxon in H . Then v =
[c1(i1), c2(i2), . . . cm(im)] is a vertex of B(H). Now, there are several ways to generate
the graph B(H). The pseudo-code in Figure 3.1 begins with VT the set of vertices of the
B(H) corresponding to H . The algorithm then iteratively selects a vertex v and enumer-
ates all the neighbors. For each vertex, the algorithm checks if it obeys the conditions of
the Buneman graph, if so it is added to λ and we recurse.

Lemma 3.2.3 The algorithm in Figure 3.1 finds the Buneman graph B(H) for the given
input in time O(km) where k is the number of vertices in B(H).

Proof: The algorithm begins with a vertex v ∈ B(H) and determines B(H) in the
depth-first search order. By Theorem 3.2.2, the algorithm will visit all vertices in B(H).
Step 1a iterates over all m possible neighbors of vertex v in the m-cube which takes time
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O(m). For each vertex v ∈ B(H) function bunemanNeighbor is called using v exactly once.
Therefore if there are k vertices in B(H), then the time spent to discover all of B(H) is
O(km). Note that instead of using depth-first search, we could use breadth-first search or
any other traversal order.

3.2.2 Decomposition into smaller problems

In addition to allowing us to reduce the set of possible Steiner vertices, we show how
Theorem 5.1.2 also allows us to decompose the problem into independent subproblems.

Definition 13 [4] A pair of columns i, j conflict if the matrix H restricted to i, j contains
all four gametes (0, 0), (0, 1), (1, 0) and (1, 1). Equivalently, the columns conflict if the
projection of H onto dimensions i, j contains all four points of the square.

For input I, the structure of the conflicts of I provides important information for
building optimal phylogenies for I. For example, it is well known that a perfect phylogeny
exists if and only if no pair of columns conflict [57, 100]. In order to represent the conflicts
of H , we construct the conflict graph G, where the vertices of G are columns of H and the
edges of G correspond to pairs of conflicting columns [62]. The following theorem has been
stated previously without proof [62]. For the sake of completeness, we provide an explicit
proof using Theorem 5.1.2 and ideas from Gusfield and Bansal [62]. We denote the matrix
H restricted to set of columns C as C(H).

Theorem 3.2.4 Let χ denote the set of non-trivial connected components of conflict graph
G and let Visol denote the set of isolated vertices of G. Then any optimal Steiner tree on
H is a union of optimal Steiner trees on the separate components of G and length(T ∗

H) =
|Visol|+

∑

C∈χ length(T
∗
C(H)).

Proof:
We use the fact that the optimal phylogeny is contained in the Buneman graph and

show that the connected components impose restrictions on the set of possible edges in
the Buneman graph. For two columns c and c′, the block c(i) is the dominated block of c
with respect to the pair (c, c′) if block c(i) is contained in some block of c′ (i.e., c(i) ⊂ c′(0)
or c(i) ⊂ c′(1)). Similarly, block c(i) is the dominating block of c with respect to the pair
(c, c′) if c(i) contains some block of c′.

Let C be a component in χ ∪ Visol. If C is the only component in G, the theorem
follows immediately. Otherwise, we can reorder the columns so that C consists of the first
k columns, i.e., c1, c2, . . . ck ∈ C and ck+1, . . . cm 6∈ C. Recall that for any edge in the
Buneman graph B(H), its endpoints correspond to two m-tuples of blocks which differ in
exactly one column; label this edge by the column for which its endpoints differ. For any
collection of columns α1, α2, . . . αl, let T ∗

H [α1, α2, . . . αl] denote the subgraph of T ∗
H induced

by the set of edges labeled by α1, α2, . . . αl. We will characterize all edges in the Buneman
graph labeled by columns in C using the following lemma from Gusfield and Bansal [62].

Lemma 3.2.5 [62] For a column ci with i > k, ci does not conflict with any column in
connected component C, and therefore, exactly one of ci(0) or ci(1) is the dominating block
in ci with respect to every column in C.
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Let ci(li) (i > k) denote the set of dominating blocks of ci with respect to C. (It follows
that ci(1− li) is the dominated block in ci with respect to every column in C).

Any vertex in the Buneman graph is an m-tuple of blocks which have pairwise nonempty
intersection. Therefore, an edge e labeled by a column in C, say c1, must have end-
points in which the blocks of column ck+1, ck+2, . . . cm, intersect both c1(0) and c1(1). This
implies the blocks of ck+1, ck+2, . . . cm are forced to be the dominating blocks with re-
spect to component C, i.e., the last m − k coordinates of the endpoints of e must be
ck+1(lk+1), ck+2(lk+2) . . . cm(lm). Let B(C) be the subgraph of B(H) generated by the ver-
tices whose last m − k columns have this form. Then any edge labeled by a column in C
has both endpoints in B(C).

Lemma 3.2.6 T ∗
H [C] = T ∗

H [c1, c2, . . . ck] is an optimal Steiner tree on B(C).

Proof: We say that vertex v ∈ B(C) is a C-projected terminal vertex if there exists
h ∈ H with the same states as v in columns of C. We first show that any two terminals in
B(C) that are C-projected vertices are connected by a path in T ∗

H [c1, c2, . . . ck]. Suppose
otherwise and let v1 and v2 be two distinct vertices in B(C) which are not connected by
such a path. By definition of T ∗

H , there is a path P in T ∗
H connecting v1 to v2; we can assume

that v1 and v2 are chosen so that the length of path P is minimized. Let d1, d2, . . . dl denote
the edge labels of P (by assumption, at least one of d1, d2, . . . dl is not in {c1, c2, . . . ck}).
If for some i, we have di ∈ {c1, c2, . . . ck}, then the endpoints u and w of di are in B(C),
and either v1, u or w, v2 is a pair that is not connected in T ∗

H [c1, c2, . . . ck], a contradiction
to the choice of vertices v1, v2.

Therefore, all edge labels di are in the set {ck+1, ck+2, . . . cm}. However, since v1 and v2

are in B(C), the final m − k components of these two vertices are ck+1(lk+1), ck+2(lk+2)
. . . cm(lm) by definition. Finally, since there are no edges in P labeled by c1, c2, . . . ck, it
follows that v1 and v2 are equal in all components, a contradiction.

Therefore, T ∗
H [c1, c2, . . . ck] is a Steiner tree on B(C) where the set of terminal vertices

are the C-projected terminal vertices. Therefore if T ∗
H is not optimal, then by removing

T ∗
H [c1, c2, . . . ck] from T ∗

H and replacing it by a tree of smaller cost, we obtain a Steiner tree
for H with smaller cost than T ∗

H , a contradiction.
The terminal vertices of C(H) correspond to C-projected terminal vertices of B(H).

Therefore, the above shows that for every connected component C, T ∗
C(H) is a subgraph of

T ∗
H . Therefore,

length(T ∗
H) =

∑

C∈χ∪Visol

length(T ∗
C(H)) = |Visol|+

∑

C∈χ

length(T ∗
C(H))

This completes the proof of Theorem 3.2.4.
Our decomposition preprocessing step proceeds as follows. We first construct the con-

flict graph G for input matrix H and identify the set of connected components of G. We
ignore the columns corresponding to the isolated vertices Visol since they each contribute
exactly one edge to the final phylogeny. Then the columns corresponding to each connected
component c of χ can be used independently to solve for the most parsimonious phylogeny.
Our problem is now reduced to input matrices H consisting of a single non-trivial connected
component.

35



3.2.3 Merging Rows and Columns

We now transform the input matrix H to possibly reduce its size. We can remove rows of
H until all the rows are distinct since this does not change the phylogeny. Furthermore, we
can remove all the columns of H that do not contain both states 0 and 1 since such columns
will not affect the size or the topology of the phylogeny. Finally, we will assign weights wi

to column i; wi is initialized to 1 for all i. We iteratively perform the following operation:
identify columns i and j that are identical (up to relabeling 0, 1), set wi := wi + wj and
remove column j from the matrix. Notice that in the final matrix H , all pair-wise rows
are distinct, all pair-wise columns are distinct (even after relabeling 0, 1), every column
contains both 0, 1 and all the columns have weights wi ≥ 1. From now, the input to
the problem consists of the matrix H along with vector w containing the weights for the
columns of H . We can now redefine the length of a phylogeny using a weighted Hamming
distance as follows.

Definition 14 The length of phylogeny T (V, E) is
length(T ) =

∑

(u,v)∈E

∑

i∈D(u,v) wi, where D(u, v) is the set of indices where u, v differ.

It is straight-forward to prove the correctness of the pre-processing step.

Lemma 3.2.7 The length of the optimal phylogeny on the pre-processed input is the same
as that of the original input.

3.3 ILP Formulation

A common approach for studying the minimum Steiner tree problem is to use integer
and linear programming methods. For convenience, we will consider the more general
problem of finding a minimum Steiner tree for directed weighted graphs G (we represent
an undirected graph as a directed graph by replacing each edge by two directed edges).
The input to the minimum directed Steiner tree problem is a directed graph, a set of
terminals T and a specified root vertex r ∈ T . The minimum Steiner tree is the minimum
cost subgraph containing a directed path from r to every other terminal in T .

For a subgraph S of graph G, we associate a vector xS ∈ RE , where edge variable xS
e

takes value 1 if e appears in the subgraph S and 0 otherwise. A subset of vertices U ⊂ V is
proper if it is nonempty and does not contain all vertices. For U ⊂ V , let δ+(U) denote the
set of edges (u, v) with u ∈ U , v 6∈ U and for a subset of edges F ⊆ E, let x(F ) =

∑

e∈F xe.
Finally, edge-weights are given by we ∈ RE .

The problem of finding a minimum directed Steiner tree rooted at r has previously
been examined with an ILP based on graph cuts [7, 81, 118]:

min
∑

u,v wu,vxu,v subject to (3.1)

x(δ+(U)) ≥ 1 ∀ proper U ⊂ V with r ∈ U , T ∩ U 6= ∅ (3.2)

xu,v ∈ {0, 1} for all (u, v) ∈ E. (3.3)

Constraints (3.2) impose that r has a directed path to all terminal vertices T . Note that
in our phylogenetic tree reconstruction problem, the underlying graph for the problem is
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the Buneman graph and any input taxon can be chosen as the root vertex r. Since the
Buneman graph may have an exponential number of vertices and edges with respect to
the size of the input matrix H , the running time for solving this integer program may be
doubly-exponential in m in the worst case.

We develop an alternative formulation based on multicommodity flows [118]. In this
formulation, one unit of flow is sent from the root vertex to every terminal vertex. Every
terminal vertex except the root acts as a sink for one unit of flow and the Steiner vertices
have perfect flow conservation. We use two types of binary variables f t

u,v and su,v for each
edge (u, v) ∈ E. The variables f t

u,v are real valued and represent the amount of flow along
edge (u, v) whose destination is terminal t. Variables su,v are binary variables denoting the
presence or absence of edge (u, v). The program is then the following:

min
∑

u,v wu,vsu,v subject to (3.4)
∑

v f t
u,v =

∑

v f t
v,u for all u 6∈ T (3.5)

∑

v f t
v,t = 1,

∑

v f t
t,v = 0,

∑

v f t
r,v = 1 for all t ∈ T (3.6)

0 ≤ f t
u,v ≤ su,v for all t ∈ T (3.7)

su,v ∈ {0, 1} for all e ∈ E. (3.8)

Constraints (5.6) impose the condition of flow conservation on the Steiner vertices. Con-
straints (3.6) impose the inflow/outflow constraints on terminals in T . Finally, constraints
(3.7) impose the condition that there is positive flow on an edge only if the edge is selected.
By the max-flow min-cut theorem, the projection of the solution onto the variables s satisfy
constraints (3.2) [81]. The results will thus satisfy the following theorem:

Theorem 3.3.1 All integer variables of the above linear program are binary and the solu-
tion to the ILP gives a most parsimonious phylogenetic tree.

3.4 Alternative Polynomial-Sized LP Formulation

The preceding ILP requires in the worst case an exponentially large number of variables
and constraints. It is, however, possible to formulate this problem with only a polynomial
number (in n and m) of variables and constraints. The exponential-sized ILP ultimately
proved more efficient in practice than the polynomial-sized ILP and we therefore used that
one for our empirical validation. We nonetheless include this alternative formulation be-
cause it may prove more promising for future improvements and extensions to more general
cases of the Steiner tree problem than will our exponential-sized ILP. Note that prepro-
cessing operations B and C above for the exponential-sized ILP will also be relevant to the
polynomial-sized ILP. We will therefore assume we have performed those proprocessing
steps and in particular that we have eliminated all redundant rows and columns in the
data set.

We will use hi,j, 1 ≤ i ≤ n to denote the state of the ith taxon at site j of the input matrix
H . Note that these are not variables of the linear program. We will use hi,j, n+1 ≤ i ≤ 2n
to represent the state of the ith Steiner vertex at site j. We will therefore use nm such
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variables in the ILP. However, T ∗ might not use n Steiner vertices and therefore we associate
binary variables pi to denote the presence or absence of a Steiner vertex i. We use 2

(

2n
2

)

edge selection binary variables ei,j to denote the presence or absence of directed edge (i, j).
We want

∑

i,j ei,j to be the number of edges in T ∗.
To define the distance between a pair of vertices, we need some additional auxiliary

variables. We use
(

n
2

)

m variables ci,j,k = |hi,k−hj,k| to denote whether vertices i, j differ at
site k. The absolute value for this constraint can be expressed as a linear equation. Now
distance ri,j =

∑m
k=1 wkci,j,k.

To define the objective, however, we need
∑

i,j ei,jri,j which is quadratic. We can instead
achieve the same result by defining the following linear constraint si,j ≥ ri,j − mwmax +
mwmaxei,j , where wmax = maxi wi. Now the objective function is simply to minimize
∑

i,j si,j .
We, however, need additional constraints to ensure that the output is a tree and it

connects all the terminal vertices. First, we have O(n2) constraints: for all i, j,
∑

k ci,j,k ≥ 1.
We also have 2n integer variables di representing the depth of a vertex i from the root
(arbitrarily the first row of H). We ensure that vertex a can connect to another vertex
of the phylogeny only if it is of depth one smaller with the constraints that for all i, j,
yi,j − di + dj ≥ −1, yi,j + di − dj ≥ 1, (2n + 1)ei,j + yi,j ≤ 2n + 1. Also,

∑

j ei,j + pi = 1 for
all i to ensure that there exists only one parent for every vertex (except the root). Finally
the constraint

∑

i,j ei,j = n−1 ensures, that the set of edges selected forms a tree. We now
have the following theorem. Putting these components together results in the following
ILP:

min
∑

i,j si,j subject to (3.9)

ci,j,k ≥ hi,k − hj,k for all 1 ≤ i, j ≤ n, i 6= j, 1 ≤ k ≤ m (3.10)

ci,j,k ≥ hj,k − hi,k for all 1 ≤ i, j ≤ n, i 6= j, 1 ≤ k ≤ m (3.11)

ri,j =
∑m

k=1 wkci,j,k for all 1 ≤ i, j ≤ n, i 6= j (3.12)

si,j ≥ ri,j −mwmax + mwmaxei,j for all 1 ≤ i, j ≤ n, i 6= j (3.13)
∑

k ci,j,k ≥ 1 for all 1 ≤ i, j ≤ n, i 6= j (3.14)

yi,j − di + dj ≥ −1 for all 1 ≤ i, j ≤ n, i 6= j (3.15)

yi,j + di − dj ≥ 1 for all 1 ≤ i, j ≤ n, i 6= j (3.16)

(2n + 1)ei,j + yi,j ≤ 2n + 1 for all 1 ≤ i, j ≤ n, i 6= j (3.17)
∑

j ei,j + pi = 1 for all 1 ≤ i ≤ n (3.18)
∑

i,j ei,j = n− 1 (3.19)

We further constrain all variables to be non-negative and fix the depth of the root node to
be zero.

Theorem 3.4.1 The above linear program uses polynomial number of variables and con-
straints and the solution of the ILP is a most parsimonious phylogenetic tree.

Proof: We have nm variables coding unknown allele values for the n Steiner nodes
that might be present in the phylogeny, (2n)(2n − 1) edge selection variables identifying
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the edges in the phylogeny, 1
2
(n)(n − 1)m auxiliary variables used to measure Hamming

distances, 1
2
(n)(n − 1) variables specifying the Hamming distances of selected edges only,

2n depth variables, 2n− 1 parent variables, and (2n)(2n− 1) auxiliary yij variables used
in setting the depth constraints. The total variable set therefore has size O(n2m).

We have 2n(n− 1)m constraints for computing absolute values (lines 10-11), n(n− 1)
for determining edge costs between nodes (line 12), n(n − 1) for determining weights of
selected edges (line 13), n(n− 1) enforcing that all nodes are connected to the phylogeny
(line 14), 3n(n− 1) for enforcing node depth constraints (lines 15-17), n for ensuring each
node has a parent (line 18), and one forcing the phylogeny to have n − 1 edges and thus
to be a tree (line 19). The total number of constraints is therefore also O(n2m).

The correctness of the program is established in the text above explaining its derivation.

3.5 Enumerating All Solutions

For a lot of phylogenetic analysis one wishes to know if the most parsimonious tree is
unique or if there are multiple equally good solutions. In the latter case of course, a
compact representation of all possible solutions is very much desirable. We handle both of
these problems in this section.

We shall assume in this section that there exists a black-box algorithm A to solve the
maximum parsimony phylogeny inference from haplotypes problem with the additional
constraint that a set of edges α (of the m-cube) are present and a set of edges β (of the
m-cube) are absent. One can either use the above explained linear program to achieve this
or adapt other well known techniques to solve this problem [50, 107]. In this manner, we
can take any algorithm that returns a single optimal solution and convert it to efficiently
find all solutions.

The obvious brute-force method to solve the problem is to enumerate over all possible
disjoint sets α, β and run algorithm A. Since there are 2m−1m edges in the cube, the
number of times A is called is 2m2m−1

. Notice the crucial point here. Even if the solution
is unique, the running time of this algorithm still remains the same.

The goal of this section is to develop an output-sensitive algorithm such that the
running-time is proportional to the number of solutions.

We now start with a traditional branch-and-bound algorithm. For every edge in the
hyper-cube, we can branch by deciding to place it either in α or in β. If the resulting
problem is infeasible, then we prune the branch. The algorithm is outlined in Figure 3.2.
This is a huge improvement over the previous method. We can analyze the number of calls
made to A by the algorithm as follows.

We first obtain an upper bound. At every step the branching algorithm considers an
edge e. We count the number of times when the algorithm obtains feasibility both when e
is added to α and when it is added to β. This means that, at the current stage of branching,
there exists at least one solution that contains edge e and at least one solution that does
not contain edge e. We can call such steps of the branching algorithm ‘b-steps’ since both
branches of the resulting tree needs to be explored. Since the number of internal nodes of
any tree with degree greater than 1 is at most the number of leaves, the number of b-steps
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EnumerateSolutionsBB(α, β)

1. if (A(α, β) is infeasible) return Φ

2. if (∃e /∈ α ∪ β)

(a) return EnumerateSolutions(α∪{e}, β) ∪
EnumerateSolutions(α, β ∪ {e})

3. else return solution A(α, β)

Figure 3.2: Branch-and-bound to enumerate all solutions

EnumerateSolutionsFast(α, β, integer d)

1. S ← A(α, β)

2. R := {S}
3. for i = |E| to d

(a) si = ¬si

(b) α := {ej |sj = 1, j ≤ i} and β := {ej|sj = 0, j ≤ i}
(c) if (A(α, β) is feasible)

i. R := R∪ EnumerateSolutionsFast(α, β, i)

4. return R

Figure 3.3: An algorithm that is twice as fast as branch-and-bound.

of the branching algorithm is at most k, the number of solutions. Removal of the b-steps
from the branch-and-bound tree leaves us with a set of disjoint tree where each node has
at most one child that is ‘feasible’. The depth of each tree is bounded by the depth of the
whole branch-and-bound tree which is m2m−1. Therefore, the total number of nodes in all
the disjoint trees combined is at most 2m2m−1k. Including the b-steps, therefore the total
number of calls to A is at most 2m2m−1k+k. It is easy to obtain a lower-bound of 2m2m−1

since this is exactly the number of nodes in the tree when there is a unique solution.

Although, the branch-and-bound method does offer an output sensitive method, we
now show that it is possible to significantly improve the running time.

The faster algorithm is outlined Figure 3.3. While it seems unlikely that the branch-
and-bound can be sped up in the worst case, we show that this is possible if we use the
solution returned by the A instead of just checking feasibility. By exploiting the structure
of the solution, we show that the improved algorithm makes fewer calls to A.

For this algorithm, we assume that the set of all edges in the m-cube is denoted by E
and the elements ei ∈ E are (arbitrarily) ordered. We also assume that if there is a feasible
solution, then black-box algorithm A returns a set S such that si is set to 1 if and only if
edge ei is present in the solution.

First, we show the correctness of the algorithm by proving that every feasible solution
is obtained. First, it is easy to note that for any function call, |α∪ β| = d and α and β are
disjoint.
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Lemma 3.5.1 The algorithm provided in Figure 3.3 finds every feasible solution.

Proof: For the sake of contradiction, assume that S ′ ∈ {0, 1}|E| is a solution that
was not found by the routine. During the execution of the routine let (α′, β ′, d′) be the
parameters of the function call such that d′ is the largest and the constraints imposed
by α′, β ′ does not invalidate solution S ′. Note that such parameters always exist since
both ({e1}, Φ, 1) and (Φ, {e1}, 1) are function calls that will always be made. Clearly, by
the assumption then A(α′, β ′, d′) returns a feasible solution S ′′ 6= S ′. Let p be the lowest
index such that s′′p 6= s′p. Due to the constraints imposed, necessarily p > d′. Therefore
during the for loop, there will be an iteration when i = p and at this iteration, algorithm
A has to return feasibility (since S ′′ is feasible) and therefore during the recursive call
i + 1 = p + 1 > d′ contradicting the assumption that d′ was the largest such value.

Lemma 3.5.2 The number of calls to A made by the algorithm in Figure 3.3 is at most
km2m where k is the number of solutions.

Proof: A recursive call is made only when a new feasible solution is found. Hence, the
number of function calls is at most the number of feasible solutions which can be denoted
by k. The number of calls to A made by each function call to EnumerateSolutionsFast

not including recursive calls is at most |E| = m2m. Therefore the total number of calls
made to A is at most m2mk.

The above proof shows that the new algorithm is twice as fast as the branch-and-bound
algorithm.

3.6 Empirical Validation

Experience with both ILPs showed the exponential-sized one to be generally the more
efficient in practice and we therefore used that variant for our empirical studies. We applied
the ILP to several sets of variation data chosen to span a range of data characteristics and
computational difficulties. We used only non-recombining data (Y chromosome, mtDNA,
and bacterial DNA) because imperfection in non-recombining data is most likely to be
explained by recurrent mutations. We used two Y chromosome data sets: a set of all
human Y chromosome data from the HapMap [75] and a set of predominantly chimpanzee
primate data [111]. Several different samples of mitochondrial DNA(mtDNA) were also
included [1, 15, 96, 113]. Finally, we analyzed a single bacterial sample [80].

The pre-processing and ILP formulation was performed in C++ and solved using the
Concert callable library of CPLEX 10.0. In each case, the ILP was able to find an optimal
tree on the data after preprocessing. We also used the pars program of phylip which
attempts to heuristically find the most parsimonious phylogeny. pars was run with default
parameters. Empirical tests were conducted on a 2.4 GHz Pentium 4 computer with 1G
RAM, running Linux. We attempted to use the penny program of phylip, which finds
provably optimal solutions by branch-and-bound, but it terminated in under 20 minutes
only for the smallest mitochondrial data set and was aborted by us after 20 minutes for all
other tests.

We first used the mitochondrial data as a basic validation of the correctness of the
methods and the reasonableness of the maximum parsimony criterion on these data. The
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Figure 3.4: Imperfection of the most parsimonious phylogeny for overlapping windows
across the complete mitochondrial genome. The x-axis shows the sites in their order along
the genomic axis. The y-axis shows the imperfection for the window centered on the
corresponding site. The hyper variable D-loop region (1 . . . 577 and 16028 . . . 16569) shows
significantly larger imperfection.

HVS-I and HVS-II segments of the mitochondrial D-loop region have exceptionally high
mutation rates [113], providing a good test case of the ability of our algorithm to distinguish
regions we would expect to have perfect or near-perfect phylogenies from those expected to
have highly imperfect phylogenies. Figure 3.4 shows a scan of 201-site long windows across
the complete 16569-site mtDNA genome. Since the mtDNA is circular, the windows wrap
around over the ends in the genome order. The y-axis corresponds to imperfection, which
is the number of recurrent mutations in the most parsimonious phylogeny. The figure does
indeed show substantially larger phylogenies within the high mutation rate D-loop region
(1 . . . 577 and 16028 . . .16569) than in the low mutation rate coding regions, confirming
the relevance of a parsimony metric for such data sets.

We then ran the ILP on a collection of data sets to assess its efficiency. Figure 3.5 pro-
vides two examples of most parsimonious phylogenies for data sets at opposite extremes
of difficulty: an mtDNA sample [113] with imperfection 21 (Fig. 3.5(a)) and the human
Y chromosome sample, with imperfection 1 (Fig. 3.5(b)). Table 3.1 presents the empir-
ical run-time data for all of the datasets. The columns ‘input before’ and ‘input after’
correspond to the size of the original input and that after preprocessing. Run times vary
over several orders of magnitude and appear largely insensitive to the actual sizes of the
data sets. Rather, the major determinant of run time appears to be a dataset’s imperfec-
tion, i.e., the difference between the optimal length and the number of variant sites. It
has recently been shown that the phylogeny problem under various assumptions is fixed
parameter tractable in imperfection [9, 9, 51, 106] possibly suggesting why it is a critical
factor in run time determination. The pars program of phylip, despite providing no guar-
antees of optimality, does indeed find optimal phylogenies in all of the above instances. It
is, however, slower than the ILP in most of these cases.
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input time(secs)
Data Set before after length our ILP pars

human chrY [75] 150 × 49 14× 15 16 0.02 2.55
bacterial [80] 17× 1510 12× 89 96 0.08 0.06
chimp mtDNA [111] 24× 1041 19× 61 63 0.08 2.63
chimp chrY [111] 15× 98 15× 98 99 0.02 0.03
human mtDNA [113] 40× 52 32× 52 73 13.39 11.24
human mtDNA [1] 395× 830 34× 39 53 53.4 712.95
human mtDNA [96] 13× 390 13× 42 48 0.02 0.41
human mtDNA [15] 44× 405 27× 39 43 0.09 0.59

Table 3.1: Empirical run-time results on a selection of non-recombining datasets.

3.7 Online Tool

In order to provide more general access to our methods, we have implemented a web server
based on our worst-case exponential-sized ILP. The server provides a front end to a an
implementation of the ILP in C++ using the CPLEX 10 libraries. We call the server SCan
for IMperfect Phylogenies (SCIMP). It can be accessed at
http://www.cs.cmu.edu/~imperfect/index.html. There are two ways to use the web-
server as explained below.

Firstly, the users can input a haplotype variation data-set. These are simply a set of
n haplotype sequences typed over m SNPs. As stated in the previous sections, this has to
be phased data. Therefore essentially the input is an n×m {0, 1} matrix.

Alternatively, the users can select any region of the genome and provide the number of
contiguous SNPs to examine in that region. The user also needs to specify the population
group to use. The webserver currently has support for the Central European population
(CEPH) and Yoruba African population (YRI). The entire HapMap (phase II) phasing
data is present in the webserver’s backend database and this makes it easy for users to
quickly examine and construct phylogenies for any region of interest. Since the HapMap
data for these two populations were sequenced in trios, the number of phasing errors should
be very small.

The webserver can be used in two different modes. As has been described until now, the
user can just request it to construct the most parsimonious phylogenetic tree and return
the topology, the parsimony score (number of mutations) and the imperfection (number of
recurrent mutations).

The webserver can also perform an imperfection scan. The user specifies the location
and size and additionally for this mode provides a window length w in the number of SNPs.
The webserver then slides this window across the genome and for each overlapping set of w
consecutive SNPs constructs a maximum parsimony phylogeny. The server returns to the
user a plot of the imperfection (number of recurrent mutations) of each of these windows
across the entire region examined. It can further provide the maximum parsimony tree
found within each window.
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In addition to providing a general interface to the phylogeny inference code, the server
also houses a precomputed database of maximum parsimony phylogenies that it constructed
offline for more than 3.7 million instances using the HapMap SNPs. Therefore, when users
request to see phylogenies that are present in this precomputed data-set (or while per-
forming scans), the results are returned as soon as they are fetched with no online solution
required. This precomputed databases currently has phylogenies for every contiguous re-
gion of up to 10 SNPs in all of HapMap. Figure 3.5 provides examples of the output. More
low-level details can be obtained from the Appendix.

3.8 Conclusion

We have developed ILP formulations for optimally solving for the most parsimonious phy-
logeny using binary genome variation data. These methods fill an important practical need
for fast methods for generating provably optimal trees from large SNP variation datasets.
This need is not served well by the heuristic methods that are currently the standard for
tree-building, which generally work well in practice but cannot provide guarantees of op-
timality. More recent theoretical methods that find provably optimal trees within defined
run-time bounds are inefficient in practice without a fast sub-routine to solve the general
problem on smaller instances. The ILP approach allows extremely fast solutions of the easy
cases while still yielding run-times competitive with a widely used fast heuristic for hard
instances. Such methods are likely to be increasingly important as data sets accumulate
on larger population groups and larger numbers of variant sites.
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(a)

(b)

Figure 3.5: Examples of phylogenies of varying levels of difficulty. Nodes labeled with num-
bers correspond to the numbered input haplotypes, while those labeled A# correspond to
inferred Steiner nodes. Edges are labeled with the site variations to which they corre-
spond. (a) Human mitochondrial data from Wirth et al. [113] (b) Human Y chromosome
from HapMap [75] 45
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Chapter 4

Near-Perfect Phylogeny
Reconstruction from Genotypes

In this chapter, we continue to discuss algorithms for reconstructing phylogenies from SNP
sequences. However, we will now assume that the input is presented as genotypes. As we
will shortly see, this increases the difficulty of the problem significantly. Since the sequences
of the reconstructed phylogeny are haplotypes, this algorithm also provides a solution for
the haplotype inference (phasing) problem.

The problem of haplotype inference has benefited tremendously from contributions from
the fields of discrete algorithms and combinatorial optimization. In haplotype inference,
also called phasing, one seeks to separate the alleleic contributions of two chromosomes
observed together in a genotype assay. If we use the symbols 0 and 1 to represent ho-
mozygous and 2 to represent heterozygous alleles then ‘0221’ is a genotype typed on four
SNP sites. Two pairs of haplotypes 0001, 0111 and 0011, 0101 are both consistent with
the genotype and the goal of phasing is to correctly infer the true haplotypes, given the
genotypes1. The problem has relevance to basic research into population histories as well
as to applied problems such as statistically linking haplotypes to disease phenotypes.

The field of haplotype inference began with a fast and simple iterative method based
on the idea that a haplotype that is observed in one individual is likely to be found in other
individuals as well [18]. Thus, one can identify a few “seed” haplotypes from individuals
identical on both chromosomes, find others for which the genotype is consistent with some
known haplotype, and find the other implied haplotype for each such genotype, repeating
until all possible inferences have been made. This approach is fast and simple, but often
fails to resolve all haplotypes, particularly in the presence of large or noisy data sets.
Various statistically motivated algorithms based on heuristic optimization techniques such
as expectation maximization [87] and Markov chain Monte Carlo methods [110] have since
been developed. Such algorithms provide significantly improved robustness and accuracy,
although still poor scaling in problem size. Several combinatorial optimization methods
have also been formulated based on Clark’s original method [61], although these have all

1Note: In some prior literature, ‘1’ has been used for heterozygous. These are merely labels and they
do not affect the problem. In this chapter, we find it convenient to use ‘1’ for homozygous since it allows
us to more easily describe the conversion of a genotype matrix into a haplotype matrix in certain cases.
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been intractable in theory and practice. The advent of large-scale genotyping created a
need for new methods designed to scale to chromosome-sized data sets.

Recently, a new avenue towards haplotype reconstruction was developed based on phy-
logenetic methods. In such an approach, one seeks to identify the ancestral history that
could have produced a set of haplotype sequences from a common ancestor such that the
inferred haplotypes could give rise to the observed genotypes. Gusfield [59] showed that it
is possible to directly and efficiently infer phylogenies that could explain an observed set of
genotypes provided the phylogenies are perfect, meaning that each character mutates only
once from the common ancestor over the entire phylogeny. This problem is referred to as
Perfect Phylogeny Haplotyping (PPH). Several subsequent results simplified and improved
on this original method [3, 4, 25, 28]. The work produced a fast, practical method for
large-scale haplotyping, in which one breaks a large sequence into blocks consistent with
perfect phylogenies and uses the phylogenies to phase those sequences.

The perfect phylogeny assumption is quite restrictive, though, and several approaches
have been taken to adapt the perfect phylogeny method to more realistic models of molec-
ular evolution. Data inconsistent with perfect phylogenies can arise from multiple mu-
tations of a base over the history of a species or through the processes of recombination
or gene conversion, which can assemble hybrid chromosomes in which different segments
have different phylogenies. Heuristic methods have allowed some tolerance to recurrent
mutations (for example, the work by Halperin and Eskin [65]) resulting in the generation
of imperfect phylogenies. Imperfect phylogeny haplotyping has proven to be very fast and
competitive with the best prior methods in accuracy. Some recent work has been directed
at provably optimal methods for imperfect phylogeny haplotyping (IPPH), resulting in a
polynomial-time algorithm for the case when a single site is allowed to mutate twice (or
a single recombination is present), under a practical assumption on the input data [104].
But the general IPPH problem remained open. It appears for the moment intractable in
both theory and practice to infer recombinational histories in non-trivial cases.

Outline of the chapter. In this chapter, we solve the general IPPH problem and
show for the first time that it is possible to infer imperfect phylogenies with any constant
number q of recurrent mutations in polynomial time in the number of sequences and num-
ber of sites. Our approach builds on both the prior theory on phylogeny construction from
genotype data [28, 104] and a separate body of theory on the inference of imperfect phylo-
genies from haplotype data [9, 51, 62, 73, 106]. Our algorithm reconstructs a q-near-perfect
phylogeny in time nmO(q) where m is the number of characters (variant sites typed), n is the
number of taxa (sequences examined), and q is the imperfectness of the solution, defined
below. The prior method of Song et. al. [104] that solves the 1-near-perfect phylogeny hap-
lotyping problem relied on an empirically but not theoretically supported assumption that
an embedded perfect phylogeny problem will have a unique solution. We relax this assump-
tion to allow a polynomial number of such solutions and show that the relaxed assumption
holds with high probability if the population obeys a common assumption of population
genetics theory called Hardy-Weinberg equilibrium. We thus provide a theoretical basis
for Song et al.’s empirical observation. We demonstrate and validate our algorithm by
comparing with leading phasing methods using a collection of large-scale genotype data of
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known phase [42]. We find that our method is efficient and more accurate on blocks with
small q. We further provide strong empirical support for the value of continuing research
into accelerated algorithms for phylogeny construction from genotype data. The findings
presented in this chapter were initially reported by Sridhar et. al. [105].

4.1 Preliminaries

We begin by introducing definitions for parsimony-based phylogeny reconstruction. In such
problems, we wish to study the relationship between a set of n taxa, each of which is defined
over a set of m binary characters. Input I will be represented by a matrix, where row set
R(I) represent taxa and column set C(I) represent characters. In a haplotype matrix all
taxa ri ∈ {0, 1}m and in a genotype matrix ri ∈ {0, 1, 2}m. Section 1.3.1 of the introductory
chapter contains preliminary definitions for phylogeny reconstruction based on genotypes
which we will use here. Furthermore, we will adhere to definition 1 of a phylogeny where
the Hamming distance of adjacent vertices is always 1.

Definition 15 For edge e = (u, v) of a phylogeny µ(e) represents the mutation on the
edge, i.e. l(u)[µ(e)] 6= l(v)[µ(e)]

We say that a character i mutates on edge e if µ(e) = i. We will assume that both
states 0, 1 are present in all characters. Therefore the length of an optimum phylogeny is
at least m. This provides a natural motivation for the penalty of a phylogeny as defined
above. For simplicity, we will drop the label function l(v) and use v to refer to both a
vertex and the taxon it represents.

The IPPH problem. The input to the problem is an n × m matrix G, where each
row gi ∈ {0, 1, 2}m represents a (genotype) taxon and each column represents a character.
The output is a 2n×m matrix H in which each row hi ∈ {0, 1}m represents a haplotype.
Furthermore corresponding to every taxon gi ∈ R(G), there are two taxa h2i−1, h2i ∈ R(H)
with the following properties.
• if gi[c] 6= 2 then h2i−1[c] = h2i[c] = gi[c]

• if gi[c] = 2 then h2i−1[c] 6= h2i[c]

The objective of the IPPH problem is to find an output matrix H such that the length
of the optimum phylogeny on H is minimized. This problem is clearly NP-hard, since
if matrix G contains no 2s, then the problem is equivalent to reconstructing the most
parsimonious phylogenetic tree [53]. We therefore consider the following parameterized
version of the problem. Given matrix G and parameter q, we return matrix H such that
there exists an optimal phylogeny T ∗ on H with penalty(T ∗) ≤ q, under the assumption
that such a matrix H exists. Note that the PPH problem is a restriction of IPPH when
q = 0.

Definition 16 For a set of binary state taxa S and a set of characters C, the set of ga-
metes GAM(S, C) is the projection of S on characters C. In other words (x1, . . . , x|C|) ∈
GAM(S, C) i.f.f. there exists s ∈ S with s[ci] = xi for all ci ∈ C. A set of char-
acters C shares k gametes if |GAM(S, C)| = k. A pair of characters i, j conflict if
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|GAM(S, {i, j})| = 4.

Pre-processing. We perform a well established pre-processing step that ensures that for
any optimal output matrix H , (0, 0) ∈ GAM(H, {i, j}) for all i, j ∈ C(H) (See the work
of Eskin et al. [28]). We assume that the input matrix has no duplicate rows, since such
rows do not change the optimal solution. Note that such a matrix should have at most
q + 1 more taxa than characters, since otherwise, it does not have a solution to the IPPH
problem.

4.2 Algorithm

At a high level, our algorithm has the same spirit as the algorithm of Song et. al. [104]. The
algorithm guesses characters that mutate more than once and removes them from the input
matrix. It then solves the perfect phylogeny haplotyping problem on the remainder of the
matrix. Finally, our algorithm adds the removed characters back and performs haplotyping
on the full matrix. In this section, we will use the same assumption of Song et. al. [104]: for
any subset of characters of the input matrix, if a solution to perfect phylogeny haplotyping
(PPH) exists, then it is unique. In Section 4.3, we show that the number of PPH solutions
is polynomial with high probability.

Throughout the paper, we fix an arbitrary optimal phylogeny T ∗, which we will use
as a reference for expository purposes. Let t(T ∗) be the set of all taxa (Steiner vertices
included) in T ∗. Let Q be the set of characters that mutate more than once in T ∗. Since
|Q| ≤ q, we can find Q by brute force in time O(

∑q
i=1

(

m
i

)

) = O(qmq).
After finding Q, we can remove the characters to obtain matrix M with character set

C(G) \Q. We now use a prior method to solve the perfect phylogeny haplotyping (PPH)
problem on M in time O(nm) [25]. Let M ′ be the unique solution to the PPH problem.
The solution matrix M ′ contains 2n taxa and m − |Q| characters. We can now add the
characters Q to matrix M ′ to obtain H ′. For all j ∈ Q and h′

2i−1, h
′
2i ∈ H ′ and gi ∈ G,

taxa h′
2i−1[j] = h′

2i[j] = gi[j]. Note that matrix H ′ contains state 2 only on the characters
Q (see Fig 4.2(b) for an example).

Definition 17 A pair of taxa h′
2i−1, h

′
2i ∈ R(H ′) is defined as a couple. For any c ∈ C(H ′),

if h′
2i−1[c] = 2(= h′

2i[c]) or h′
2i−1[c] 6= h′

2i[c] then h′
2i−1, h

′
2i is a (2, c)-couple.

Note that if c contains both 0 and 1 in a couple of H ′, then the couple contained
state 2 at character c in the input (before perfect phylogeny haplotyping). Let κ = {i ∈
C(G)|∃j ∈ C(G), |GAM(t(T ∗), {i, j})| = 4} be the set of characters that conflict with
some other character in t(T ∗). Note that Q ⊆ κ. To complete the description and analysis
of the algorithm we borrow the following definition from prior work [28].

Definition 18 We say that a (unordered) couple r1, r2 induces (x, y) at characters (c, c′)
if ri[c] = x, ri[c

′] = y or r1[c] = r2[c] = 2, r1[c
′] = r2[c

′] = y or r1[c] = r2[c] = x, r1[c
′] =

r2[c
′] = 2. We define IND(H ′, {c, c′}) to denote the set of gametes induced by the couples

of H ′ at c, c′.

The goal now is to convert the {0, 1, 2} matrix H ′ to a {0, 1} matrix H such that the
following correctness conditions are satisfied:
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Figure 4.1: Algorithm to determine κ and GAM(t(T ∗), κ) efficiently. (a) optimal phylogeny
T ∗ with Q = {6, 7}, κ = {4, 5, 6, 7}(b) perfect phylogeny T on characters C(G) \Q (c) the
four edges mutating characters 6 and 7 are assigned to three vertices of T ; rooted trees Tv

are constructed on the assigned edges; states on the three roots 0000000, 0001010, 0000111
determine edges {4, 5} that lie between two mutations of 6, 7. Filled vertices form Vκ.

1. for every (2, c)-couple in H ′ one of the two taxa should contain state ‘1’ and the other
‘0’ on character c in H

2. GAM(H, κ) ⊆ GAM(t(T ∗), κ), i.e. the set of gametes on κ in H is a subset of the
set of gametes on κ in T ∗.

3. (|GAM(H, {c, c′})| = 4) =⇒ c, c′ ∈ κ, i.e. a pair of characters share four gametes in
H only if they are both in κ.

In matrix H ′, if a couple contains state 2 at character c, then replacing it with state
0 on one taxa and 1 on the other is informally referred to as a resolution. The algorithm
to solve IPPH is summarized in Figure 4.4. We now go into the details of the steps. The
following lemma shows that Steps 5 and 6 of function solveIPPH can be implemented
efficiently:

Lemma 4.2.1 Sets κ and GAM(t(T ∗), κ) can be found in time m2qqO(q) + O(nm).

Proof: We can easily identify κ by brute force in time O(m|κ|). Since we do not
know |κ|, this step can take time O(2m). We can however do better by performing such an
enumeration over phylogenies as illustrated in Figure 4.1. First we construct the unique
perfect phylogeny T for the matrix H ′ restricted to C(G) \Q which contains m− |Q|+ 1
vertices in time O(nm) [25]. Note that contracting edges e ∈ T ∗ with µ(e) ∈ Q results
in tree T (see Figure 4.1(b)). We will begin with T and add the edges e, µ(e) ∈ Q to
obtain T ∗ as follows. Since we know Q already, we can identify the set of |Q| + q edges
(labels µ) in time O(

(|Q|+q
q

)

) = O(
(

2q
q

)

) = O(4q). There are m−|Q|+1 locations to add an
edge that mutates a character in Q. All possible edge assignments can be enumerated in
time O((m− |Q|+ 1)|Q|+q) = O(m2q). Each enumeration assigns a set of edges (multi-set
on characters) Qv to each vertex v of T . We now enumerate all possible rooted trees Tv

with edge labels in Qv for all vertices v ∈ T in time O((|Q| + q)|Q|+q) = O((2q)2q). Since
the mutations in C(G) \ Q are already fixed by the perfect phylogeny, the states in all
vertices on characters C(G) \Q are known. For every root of Tv, we guess the states in all
Q characters in time O(2q2

), which can be improved to O(qq) (since this is equivalent to
enumerating all tree structures with edges mutating Q). Note that since we guessed the
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states at the root of Tv, we know the states on all characters for all vertices in Tv (for all
v). Further, for any two roots of Tv, Tv′ , the path that connects them is given by the path
connecting v, v′ in the perfect phylogeny T (see Figure 4.1(c)). Therefore, we can identify
the edges that lie between two mutations of a character in Q. We can now find κ since for
all i ∈ κ \Q, there exists j ∈ Q and e1, e2, e3 ∈ T ∗ such that µ(e1) = µ(e3) = j, µ(e2) = i
and e2 lies in the path connecting e1, e3.

Since we know states in all characters of Tv and T ′
v, we know the states in all the

characters for every vertex in the path connecting them as well. We now consider the set
of all vertices Vκ that lie in the path connecting two mutations of the same character in
T . It is easy to see that GAM(Vκ, κ) = GAM(t(T ∗), κ). We can therefore identify κ and
GAM(t(T ∗), κ) in time m2qqO(q) + O(nm).

Figure 4.2 illustrates how the algorithm performs haplotyping given κ and GAM(t(T ∗), κ).
For reference Figures 4.2(a) and 4.2(b) represent input matrix G and matrix H ′ as found in
Step 4 of solveIPPH. Function solveIPPH selects c = 2 (Step 7). Function processMatrix

determines G(2, 6) = IND(H ′, {2, 6}) = {(0, 0), (0, 1), (1, 1)} and guesses G(2, 7) = {(0, 0),
(0, 1), (1, 1)} (Step 2(b)iA). Based on these two sets of three gametes, the (2, 2)-couples,
rows 9 to 12, are resolved (Step 2(b)iB), Fig 4.2(c). Character 2 is removed (Step 2d).
Notice that a character c is removed only when all the (2, c)-couples are completely re-
solved (rows 9 to 12). Function solveIPPH then selects c = 3 (Step 7), Fig 4.2(d).
Function processMatrix guesses G(3, 6) = {(0, 0), (1, 0), (0, 1)} and determines G(3, 7) =
IND(H ′, {3, 7}) = {(0, 0), (0, 1), (1, 1)} (Step 2(b)iA), and using them (2, 3)-couple, rows
7 and 8, are resolved(Step 2(b)iB), Fig 4.2(e). Since the pair of rows (7, 8) is also a (2, 1)-
couple character 1 is added to ∆ (Step 2(b)iC). Character 3 is removed (Step 2d) and c = 1
is extracted from ∆ (Step 2a), Fig 4.2(f). Since there are no (2, 1)-couples, character 1 is
removed (Step 2d), Fig 4.2(g). This exhausts all c ∈ C(H ′) \ κ. Function solveIPPH then
resolves state 2 in the first couple resulting in 0000, 0010 which are both in GAM(t(T ∗), κ)
(Step 8a), Fig 4.2(h). Since the next couple has no state 2, we resolve the third couple
which results in 0101, 0111 (Step 8a), completing the algorithm, Fig 4.2(i). We now prove
the main lemma that bounds the running time of our algorithm.

Theorem 4.2.2 If penalty(T ∗) ≤ q, then the algorithm described in Figure 4.4 returns a
solution matrix H that obeys all correctness conditions in time nmO(q).

Proof: To prove this theorem, we first need three simple lemmas.

Lemma 4.2.3 If c1 ∈ κ and c2 ∈ C(H ′) \ κ, then c1, c2 share exactly three gametes in
t(T ∗).

Proof: Every pair of characters share at least three gametes in T ∗. Characters, c1, c2

cannot share four gametes since c2 /∈ κ.

Lemma 4.2.4 For a pair of characters c /∈ κ, ĉ ∈ Q, given a set of three gametes G(c, ĉ),
there exists a unique resolution of state 2 in character ĉ for any (2, c)-couple s.t. for resulting
matrix H ′, GAM(H ′, {c, ĉ}) ⊆ G(c, ĉ)

Proof: Let r2i−1, r2i ∈ R(H ′) be a (2, c)-couple. By definition, r2i−1[c] 6= r2i[c].
If r2i−1[ĉ] = r2i[ĉ] = 2 then the resolution will either create GAM({r2i−1, r2i}, {c, ĉ}) =
{(0, 0), (1, 1)} or {(0, 1), (1, 0)}. Only one of the two can be contained in set G(c, ĉ) estab-
lished between c and ĉ.
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Figure 4.2: Given Q = {6, 7}, κ = {4, 5, 6, 7}, GAM(t(T ∗), κ) =
{0000, 0010, 0011, 1011, 1010, 0111, 0101}, the algorithm chooses c = 2, 3, 1. Based
on a set of three gametes, it resolves states 2 in ĉ ∈ Q, in all (2, c)-couples. Shaded
regions represent deleted (or ignored) characters and couples completely resolved by the
algorithm. After exhausting all characters c ∈ C(G) \ κ, the algorithm considers the
remaining couples and iteratively resolves states 2 s.t. the couples are in GAM(t(T ∗), κ).

Lemma 4.2.5 In matrix H ′, for c /∈ κ, ĉ ∈ Q if every (2, c)-couple is in {0, 1}m then
GAM(H, {c, ĉ}) is fixed where H is any matrix obtained from H ′ by resolution of 2s.

Proof: For any couple in H ′ if h′
2i−1[ĉ] = h′

2i[ĉ] = 2 then according to the condition of
the lemma, h′

2i−1[c] = h′
2i−1[c] = s. Therefore, for any couple h2i−1, h2i in H obtained by re-

solving state 2 on ĉ will have the property that GAM({h2i−1, h2i}, {c, ĉ}) = {(s, 0), (s, 1)}.
Corollary 4.2.6 Although ĉ can contain state 2 in matrix H ′, Step 2c of function
processMatrix in Figure 4.4 can test if c, ĉ are conflicting. Furthermore, if c, ĉ do not
conflict at Step 2c, then the final matrix obtained by the algorithm will not have a conflict
between c, ĉ.

We now return to the proof of the main theorem. Step 1 requires at most q
(

m
q

)

enumer-

ations. Lemma 4.2.1 shows that given the correct Q, both κ and GAM(t(T ∗), κ) can be
found in time m2qqO(q)+O(nm). We now bound the run time for function processMatrix.

Lemma 4.2.7 Total run-time for all calls to function processMatrix is O(2qnm2).

Proof: First notice that once a character c is removed from ∆ at Step 2a of function
processMatrix, it is never added back throughout the execution of the algorithm. This
is because, function processMatrix resolves all the states 2 present in (2, c)-couples and
subsequently the character is deleted (or ignored) for the rest of the algorithm in Step 2d.
This bounds the number of times Step 2a is executed throughout the algorithm as O(m).
To prove the lemma, we now bound the time for executing Steps 2a through 2d as O(2qnm).

The number of (2, c)-couples is O(n) and therefore Step 2b loops for O(n) times. The
cardinality of Q is at most q and therefore the loop in Step 2(b)i executes O(|Q|) = O(q)
times. The time bound for guessing the set of gametes G(c, ĉ) shared between c and ĉ is
the hardest to analyze.

Consider any one call to function processMatrix. Let ci’s represent the charac-
ters added into ∆ during the execution of a call. We show that if G(cj , ĉ) is guessed
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at Step 2(b)iA then for all future ck encountered during the execution of Step 2(b)iA,
|IND(H ′, {ck, ĉ})| = 3. When the algorithm guessed G(cj , ĉ), by definition of (2, cj)-
couples, h2i−1[cj] 6= h2i[cj] and by the condition on Step 2(b)i, h2i−1[ĉ] = h2i[ĉ] = 2. Also
h2i−1[ck] = h2i[ck] = x since otherwise |IND(H ′, {ck, ĉ})| = 3 (ck and ĉ cannot be identical
characters). Let cl be the character extracted from ∆ and used in the loop of Step 2b dur-
ing which ck was added into ∆. This implies the existence of a couple h′

2i−1, h
′
2i which is

both a (2, cl)-couple and a (2, ck)-couple. However h′
2i−1[ĉ] = h′

2i[ĉ] = y. Again, otherwise
|IND(H ′, {ck, ĉ})| = 3. Therefore matrix H ′ induces gametes (x, 0), (x, 1), (0, y), (1, y) on
characters (ck, ĉ). For all values of x, y ∈ {0, 1}, this results in three induced gametes. The
above proof therefore shows that the if condition in Step 2(b)iA fails at most q times for
any function call to processMatrix. Therefore the probability of all guesses performed at
Step 2(b)iA being correct for any single call to processMatrix is at least 2−q. Equivalently,
we suffer a multiplicative factor of 2q in the run-time because of this step.

The check performed at Step 2c takes time O(nm). Assuming q < m, the total running
time for all calls to processMatrix combined is O(2qnm2).

Using Lemma 4.2.3, we know that c shares exactly three gametes with all characters
ĉ ∈ Q in t(T ∗). For character c, Step 2(b)iA (guesses) iterates over the set of all possi-
ble gametes shared between c, ĉ. Given the set of three gametes, Lemma 4.2.4 shows
that there is a unique resolution of states 2 in the (2, c)-couples and this is performed in
Step 2(b)iB. Correctness condition 1 holds by the definition of resolution. Step 2c of func-
tion processMatrix checks for conditions 2 and 3. Using Corollary 4.2.6, we know that c
and ĉ cannot conflict because of the resolution of any of the remaining 2s (ensures correct-
ness condition 3). Finally, there can be no 2s in character c (since c /∈ Q) or in any of the
(2, c)-couples since it was just resolved. Step 8 of function solveIPPH iterates n times. At
each iteration, it performs a brute-force step of computing all possible ways of resolving the
2s. Since only the characters in Q can contain state 2 at this point, Step 8a takes O(m2q)
time. This step also checks if the resulting gametes on characters in κ are in the predicted
set GAM(t(T ∗), κ)(ensures correctness condition 3). This shows that any matrix found by
the algorithm obeys the correctness conditions and the running time is nmO(q). Finally,
we know that there exists a set of three gametes G(c, Q) (as defined by t(T ∗)) s.t. resolving
based on G will ensure that c, ĉ do not conflict and GAM(H ′, κ) ⊆ GAM(t(T ∗), κ). Using
these two observations, we know that if penalty(T ∗) ≤ q, then the algorithm finds matrix
H ′ that obeys the correctness conditions in the stated time.

We now prove the correctness of our algorithm:

Theorem 4.2.8 Any solution matrix H obeying all the correctness conditions is optimal.

Proof: The proof is constructive and demonstrates the procedure to construct a q-
near-perfect phylogeny for H . The phylogeny along with correctness condition 1 guarantees
that the returned matrix H is an optimal solution.

Matrix H satisfies the following two properties: if a pair of characters c, c′ conflict in H ,
then c, c′ ∈ κ (third correctness condition); a q-near-perfect phylogeny can be constructed
on GAM(H, κ) (since GAM(H, κ) ⊆ GAM(t(T ∗), κ), second correctness condition). It can
be shown that a q-near-perfect phylogeny can be constructed for any matrix that satisfies
the above two properties (see Section 7 of Gusfield and Bansal [62]). Such a phylogeny is
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obtained by constructing the q-near-perfect phylogeny on on GAM(H, κ), contracting the
phylogeny to a vertex and constructing a perfect phylogeny on the remaining characters.

Theorem 4.2.9 The algorithm of Figure 4.4 returns an optimal solution H to the IPPH
problem in time nmO(q).

Proof: The proof follows directly from Theorems 4.2.2 and 4.2.8.

4.3 Solutions to PPH

We assumed in the preceding sections, following prior work [104], that the perfect phylogeny
stage of the algorithm will find a unique solution, but this assumption does not necessarily
hold. To guarantee optimality, the algorithm would need to enumerate over all solutions
to the PPH sub-problem, increasing run-time proportionally. Prior work showed that the
number of PPH solutions is at most 2k, where k is the number of characters of G that
do not contain the homozygous minor allele [28, 59]. In the worst case, this could be as
large as m and therefore the number of PPH solutions can be 2m. This however should
not occur in practice since the underlying population typically follows a random mating
model.

Hardy-Weinberg equilibrium states that the two haplotypes of any given individual are
selected independently of one another at random. For any fixed character, let p be the
minor allele frequency and (1 − p) be the major allele frequency. Consider G, an n ×m
input genotype matrix to the PPH problem. The probability under Hardy-Weinberg that
none of the n taxa contain the homozygous minor allele is (1−p2)n. This probability could
be large for very small values of p.

It is reasonable to assume that the value of p > c for some constant c since otherwise
SNPs cannot be detected. In this case, with high probability in n (at least 1− (1− c2)n),
a specific character contains the homozygous minor allele. Therefore in expectation the
number of characters without a homozygous minor allele is at most m(1 − c2)n. This
expectation, exponentially tends to zero with n.

We now consider a more general setting when the value of p is assumed to be uniformly
distributed in [0, 0.5]. Now, the probability that a specific character does not contain the
homozygous minor allele is:

2

∫ 0.5

0

(1− p2)ndp

= 2

∫ 1/
√

n

0

(1− p2)ndp + 2

∫ 0.5

1/
√

n

(1− p2)ndp

≤ 2√
n

+ 2

∫ 0.5

1/
√

n

(1− p2)ndp

≤ 2√
n

+ 2

∞
∑

i=1

∫ (i+1)/
√

n

i/
√

n

(1− p2)ndp
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Error rate Total Run Time(secs)
Perf #Blocks #SNPs PHASE htyper our alg PHASE htyper our alg

0 3497 20816 0.11 0.11 0.17 3521.33 337.18 17.21
1 461 4211 0.53 0.47 0.35 805.62 80.62 8.77
2 93 1266 0.83 0.68 0.55 268.02 59.28 1111.18

Table 4.1: Empirical results on Chromosome 21. Blocks with 0, 1, 2 near-perfectness (ac-
counting for 4051 out of 4135 blocks) were analyzed separately using the three algorithms.
Error rate is the number of switch errors divided by the number of blocks. Total run time
is the sum over all blocks.

≤ 2√
n

+
2√
n

∞
∑

i=1

(1− i2

n
)n

≤ 2√
n

+
2√
n

∞
∑

i=1

e−i2 ≤ 4√
n

Now, if n = Ω(m2), then using Chernoff bounds we can show that with high probability
the number of characters that lack a homozygous minor allele is bounded by 2 log m and
therefore the number of solutions to the PPH problem is bounded by m2.

This discussion answers the question raised by Gusfield on the theoretical estimate
for the number of PPH solutions to expect from a coalescent model [59]. Furthermore,
since PPH is always performed on SNP blocks with low diversity, it is not unreasonable
to assume n >> m. Since the number of solutions returned by PPH is O(m2), the IPPH
algorithm described above with high probability just suffers O(m2) overhead for finding
the optimal extension of each PPH solution.

4.4 Empirical Validation

We demonstrate and validate our algorithm by comparing with leading phasing methods
using a collection of large-scale genotype data of known phase from a high resolution scan
of human chromosome 21 [42]. The study identified common single nucleotide polymor-
phisms (SNPs) and typed them on 20 sequences through a method that directly identifies
haplotypes rather than genotypes. The SNPs were partitioned into 4135 haplotype blocks
by the authors of that study using a diversity test. We extracted haplotypes from the
‘haplotype pattern’ file provided in the supplementary material, which identifies distinct
haplotypes in each block and provides some inference of missing data when it can be done
unambiguously. We ignored haplotypes which still had significant missing data, replacing
them with haplotypes randomly selected from the multinomial distribution of fully-resolved
haplotypes in the corresponding block in order to maintain 20 chromosomes per block. The
haplotype blocks were divided into four sets based on their imperfectness(q = 0, 1, 2, 3+)
using a prior method [106]. A large majority of blocks (98%) are 0, 1, or 2 near-perfect.
We do not solve optimally for the 2% with imperfectness 3 or greater because the run-time
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for optimal solutions would be prohibitive. Such blocks can be solved non-optimally in
practice by subdividing into smaller blocks of lower imperfectness, but such data would
not be comparable to those solved optimally and is therefore omitted from our analysis. We
then randomly paired haplotypes to produce 10 genotypes per block as our final test set.
Figure 4.3 shows that the length of the blocks is related to q, the imperfectness. The tails
are heavier for larger values of q as expected. For instance, this shows that a significant
fraction of the q = 2 blocks have large number of characters when compared with q = 1, 0.

We compared our method with two popular phasing packages. We ran the haplotyper [87]
package, which uses an expectation-maximization heuristic, with 20 rounds (the recom-
mended value). We also ran the PHASE [110] package, which employs a Markov Chain
Monte Carlo method. Although PHASE can make use of additional information such as
SNP positions, we provided it only the genotypes as input.

For our own method, with any given q, we enumerated all possible phylogenies that
are at most q-near-perfect. Note that this does not guarantee finding all possible output
matrices that are consistent with a q-near perfect phylogeny. Where multiple solutions
were obtained, we selected the one that minimized the entropy of the haplotype frequen-
cies. For the PPH sub-problem we implemented a fast prior algorithm [28]. We note that
for simplicity, we do not implement the algorithm exactly as described. Rather, function
processMatrix does not add characters into ∆ to be processed iteratively. The imple-
mentation however always returns a haplotype output matrix and we report the switch
errors [104] for the output.

Table of Figure 4.1 summarizes the test results2. All methods provide comparable
accuracy when blocks are perfect. We attribute the slightly worse performance of our
method on perfect input to the fact that we do not use any procedure to select a maximum-
likelihood output matrix among all perfect matrices, as is done for prior perfect phylogeny
methods [28]. All three methods degrade in accuracy with increase in imperfectness. Our
method, however, scales much better with imperfectness than do the other two, clearly
outperforming them on 1-near-perfect and 2-near-perfect inputs. Imperfectness can result
from recurrent mutations, recombinations or incorrect SNP inferences and we attribute
our method’s superior performance on imperfect data to the fact that it explicitly handles
one of these factors while the others suffer from all three. Our method is extremely fast
for q = 0, where it reduces to the perfect phylogeny algorithm of Eskin et. al. [28] and
also substantially outperforms the competing methods for q = 1. Our method’s run time
rapidly increases with larger q, though, as expected from the theoretical bounds.

4.5 Discussion and Conclusions

We have developed a theory for reconstructing phylogenetic trees directly from genotypes
that is optimal in the number of mutations. As an immediate application, we solve the
general IPPH problem. We demonstrate practical results that show great promise in ac-
curately inferring phase from real data sets. Our results suggest that imperfect phylogeny
approaches can lead to significant improvements in accuracy over other leading phasing

2Haplotyper crashes on 18 blocks which were ignored in the calculation of its accuracy.
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methods. Run time, while very fast for perfect and almost perfect data, remains an obsta-
cle for even modest q; this observation suggests a need for further research in improving
theoretical and practical bounds for general q. Our new method has several immediate
applications in computational genetics:
• Phasing: At present, the method is competitive with the most widely used tools in

accuracy and, with optimizations, should become competitive in run-time for larger
q. Both PHASE and haplotyper return confidence scores on its results, which might
allow a slower, high-accuracy method such as ours to function as a fall-back for
regions that those methods cannot infer with confidence.

• Phylogeny Construction: Our run times are competitive with typical times to be
expected from other optimal phylogeny reconstruction algorithms, even when the
input consists of haplotypes. Our approach may thus be considered preferable to the
standard practice of inferring haplotypes then fitting them to phylogenies.

• Haplotype Blocks Inference: Our method could serve as an improved means of identi-
fying recombination-free haplotype blocks for purposes of association study design by
more accurately distinguishing recurrent mutation from recombination. The blocks
might thus be useful in improving statistical power in haplotype-based association
testing.

Future empirical studies, enabled by our method, will be needed to better establish the
nature of imperfectness in real genotype data and the degree to which better handling of
recurrent mutations will be of use in practice.
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Figure 4.3: Distribution of the fraction of blocks as a function of the number of characters
in the block. Data for more than 50 characters not shown.
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function solveIPPH(input matrix G)

1. guess Q = {i ∈ C(G)|∃e1, e2 ∈ E(T ∗), e1 6= e2, µ(e1) = µ(e2) = i}
2. let M be matrix G restricted to characters C(G) \Q

3. let M ′ be the unique solution to perfect phylogeny haplotyping of M

4. let H ′ be matrix M ′ defined on characters C(G) s.t. ∀h′
2i−1, h

′
2i ∈ R(H ′) and

corresponding taxa gi ∈ R(G).∀ĉ ∈ Q.h′
2i−1[ĉ] = h′

2i[ĉ] = gi[ĉ]

5. guess κ = {i ∈ C(G) | ∃j ∈ C(G), |GAM(t(T ∗), {i, j})| = 4}
6. guess GAM(t(T ∗), κ)

7. loop for c ∈ C(H ′) \ κ

(a) H ′ := processMatrix(H ′, c)

8. for all couples h′
2i−1, h

′
2i in H ′

(a) resolve state 2 on h′
2i−1, h

′
2i s.t.GAM({h′

2i−1, h
′
2i}, κ) ⊆ GAM(t(T ∗), κ)

function processMatrix(matrix H ′, character c)

1. initialize the set ∆ := {c}
2. while |∆| > 0 do

(a) extract a character c from ∆

(b) for all (2, c)-couples h2i−1, h2i

i. for all ĉ ∈ Q with h2i−1[ĉ] = 2(= h2i[ĉ])

A. if |IND(H ′, {c, ĉ})| = 3 then G(c, ĉ) = IND(H ′, {c, ĉ})
else guess three gametes G(c, ĉ)

B. resolve state 2 in ĉ on h2i−1, h2i based on G(c, ĉ)
C. ∆ := ∆ ∪ {c′ /∈ κ|h2i−1[c

′] 6= h2i[c
′]}

i.e. add to ∆ characters c′ /∈ κ for which the current couple is
also a (2, c′)-couple

(c) if ∃ĉ ∈ Q. s.t.(c, ĉ) conflict or
for the set H2 of all (2, c)-couples GAM(H2, κ) * GAM(t(T ∗), κ) then
return no solutions

(d) remove c from C(H ′)

3. return H ′

Figure 4.4: Algorithm to solve IPPH
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Chapter 5

Maximum Parsimony Phylogeny
Reconstruction from Genotypes

In this Chapter, we continue to develop algorithms for reconstructing maximum parsimony
(MP) phylogenetic trees from genotypes. While the previous chapter focused on theoretical
run-time issues and phasing accuracy in terms of the popular switch-error statistic, this
chapter will attempt to simply construct the MP phylogeny from genotypes and compare
the resulting trees to those produced using other methods.

As has been stated before, inferring maximum parsimony Steiner trees on binary SNP
data (haplotypes) is an NP-hard problem [53], there are excellent methods now available
for solving it in practice, including fast heuristics suitable for difficult instances [5, 10,
50, 55], fixed parameter tractable methods for provably efficient optimal solutions in some
cases [9, 107], and integer linear programming methods for provably optimal solutions of
many harder cases [108]. Several of these methods were explained in detail in the previous
Chapters.

Unfortunately, the haplotype input data these methods assume, also known as “phased”
data, are not easily available for autosomal genetic regions. Large-scale genetic studies
usually instead must gather unphased, or genotype, data, in which haplotype contributions
from two homologous chromosomes are conflated with one another.

To illustrate the problem, it will be helpful to arbitrarily denote the minor allele at each
SNP site by 1 and the major allele by 0. In a genotype data set, we only observe the number
of minor alleles present at each SNP site, which we will denote by 0 for homozygous major,
1 for heterozygous and 2 for homozygous minor. For example, see Figure 5.1. Hence,
if we examine m sites, then a genotype sequence is a string of the form {0, 1, 2}m while
a haplotype sequence is a string of the form {0, 1}m. A pair of haplotype sequences is
consistent with (explains) a genotype sequence when they have the same allele counts at
all sites. In the {0, 1, 2} notation above, a pair of haplotypes is consistent with a genotype
when the sum of the two haplotype vectors produces the genotype vector.

While mitochondrial and Y chromosome data can serve for tracking population his-
tories on broad scales [117], autosomal phylogenies are still independently valuable for
practical applications in association study design, marker selection, and the identification
of specific variant sites that are unusually mutable, repeatedly altered by gene conversion,
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Figure 5.1: Phasing: computationally inferring genotypes from haplotypes Although DNA
sequences consist of four bases, single nucleotide polymorphisms (SNPs) are biallelic.
Therefore, the sequence variation can be expressed using binary symbols. The observed
genotype sequences consist of conflated combinations of two true haplotype sequences.
Programs that computationally infer haplotypes attempt to minimize switch errors.

Figure 5.2: Although switch errors in phase inference can be small, in this case 1, the
phylogeny size could be significantly altered. Therefore estimates such as mutation rates
could be significantly affected if performed on computationally inferred haplotypes as op-
posed to genotypes. Moreover, in current methods it is impossible to say if the inferred
phylogeny size is larger or smaller than that of the phylogeny from the true haplotypes.
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or under selective pressure to recurrently mutate. Phylogeny inference cannot generally be
performed directly on genotype data and in practice one must therefore analyze autoso-
mal data by first computationally phasing the data to predict the haplotypes [18]. Many
methods are now available for this phasing problem, such as PHASE [110], fastPHASE [98],
HAP [65] and PPH [59]. This phasing step, however, can produce erroneous assignments
and the maximum parsimony phylogeny on the computationally phased genotypes need
not be the same as, or even close to, the maximally parsimonious tree consistent with
the original unphased genotypes. Phasing programs are typically designed to minimize the
“switch error,” in which the contributions from two homologous chromosomes are swapped
between two consecutive markers (see [98] for the formal definition). Yet a single switch
error in a phasing assignment can introduce a large number of errors (linear in the number
of markers) in the resulting phylogeny assignment, as shown in Figures 5.1 and 5.2. Even
high-quality phasing methods can thus produce poor-quality phylogenies.

A limited amount of prior work has examined the prospect of inferring maximum par-
simony phylogenies directly from genotype data. Notice that in such problems, we wish to
determine a pair of haplotypes for each input genotype sequence such that the maximum
parsimony phylogeny size on the set of haplotypes is minimized. Gusfield showed that the
problem can be efficiently solved when the genotype data are consistent with a perfect
phylogeny [59], an evolutionary tree in which each variant site mutates only once. Several
subsequent algorithms were developed for the same problem that were either simpler or
faster asymptotically [3, 4, 25, 28, 59]. While the perfect phylogeny assumption is re-
strictive, this variant does have practical importance as a technique for fast phasing (e.g.,
[65]). The perfect phylogeny assumption will not be true in general, however. In particu-
lar, it will not allow analysis of data containing recurrently mutating sites, the detection
of which is an important reason for studying phylogenetics of autosomal DNA. Halperin
et al. [65] generalized Gusfield’s perfect phylogeny method heuristically to allow limited
solution of phylogenies deviating slightly from the assumption of perfection. These are
called near-perfect phylogenies [51] and specifically q-near-perfect (or q-imperfect) when q
additional mutations are needed beyond those required to produce a perfect phylogeny.
Song et al. [104] and Sridhar et al. [105] developed rigorous methods for efficiently finding
maximum parsimony near-perfect phylogenies, but these methods proved practical only for
small q (at most 2). In practice, the problem of finding maximum parsimony phylogenies
from genotype data has remained intractable for all but the simplest data sets.

We note that the parsimony based approach described above is different from finding
haplotypes corresponding to the given genotypes based on ‘pure parsimony,’ an objective
that minimizes the number of distinct haplotypes needed to explain the observed geno-
types as opposed to minimizing the number of mutations. The pure parsimony problem is
NP-complete as well and there are integer program based approaches that solve problem
instances of reasonable size [60]. Pure parsimony and maximum parsimony phylogenetic
trees share some properties that we can exploit in our method. The solution to the pure
parsimony problem provides a lower bound on the size of the maximum parsimony phy-
logeny, as no phylogeny can have fewer mutations than one less than the minimum number
of haplotypes needed to explain the genotypes. Furthermore, the solution of the pure par-
simony problem also provides a good starting set of haplotypes from which we can obtain

63



an upper-bound for the size of the maximum parsimony phylogeny.
In this paper, we provide the first general, practical methods for maximum parsimony
phylogeny inference from genotypes and use these methods to assess the inaccuracies in-
troduced by phasing genotypes prior to phylogeny inference. Our algorithm relies on
solving integer linear programs and allows for efficient solution of moderate-sized problem
instances but large imperfection. As an immediate application, our method can be used
to infer the minimum number of recurrent mutations required to explain the given set of
genotypes. We apply the resulting methods to a selection of real and simulated data, where
we compare the true imperfection, imperfection from haplotypes computationally inferred
from genotypes and imperfection directly obtained from genotypes. This analysis shows
that the phasing step often increases inferred phylogeny size, overestimating the true max-
imum parsimony. Motivated by our observations, we introduce a new phylogenetic error
statistic that is better suited for assessing phase accuracy for phylogenetic applications
than the standard switch error statistic [98].

5.1 Algorithms and Data Analysis

We implemented two versions of the integer linear program both of which were competitive
in practice. The first is a direct integer linear program implementation and the second is a
branch-and-bound algorithm that wraps over a second integer linear program. We describe
the direct implementation first followed by the branch-and-bound method. Both methods
were implemented in C++ using the Concert Technology of CPLEX 10.0 for integer linear
program (ILP) solutions. We found the branch-and-bound method to give generally lower
run times in practice than the direct ILP method. We therefore used the branch-and-bound
method exclusively in generating the empirical results presented here.

5.1.1 Direct Integer Linear Programming Approach

This section introduces our ILP algorithm to solve the Genotype MP Phylogeny Problem.
In the first subsection, we introduce pre-processing techniques that typically reduce the
problem size after which we describe the ILP.

Preprocessing

Preprocessing techniques form an integral part of any solution method based on integer
programming. We now describe the major preprocessing methods used.

Let G be the n×m input genotype matrix. Without loss of generality we can assume
that all m sites are varying. We can also remove redundant rows (genotypes) of G until all
rows are distinct, since this does not change the length of the optimal phylogeny. We now
describe a method to remove redundant sites (columns) from G. Note that we are free to
exchange labels 0 and 2 (homozygous major and minor alleles) independently at each site
without change in the size of the phylogeny. Therefore two sites i and j are considered
redundant if they are identical or become identical after relabeling one site.
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For all sites k, let weight wk be initialized to 1. We then iteratively perform the following
operation: for any pair of redundant sites i, j, set wi := wi + wj, and remove site j from
the matrix. Let G′ be the final matrix after this sequence of preprocessing steps. We now
redefine the length of a phylogeny using a weighted Hamming distance as follows.

Definition 19 The length of phylogeny T (V, E) is length(T ) =
∑

(u,v)∈E

∑

i∈D(u,v) wi,

where D(u, v) is the set of sites where u, v differ.

The following lemma justifies the preprocessing step:

Lemma 5.1.1 The transformation from genotype matrix G to weighted genotype matrix
G′ does not change the length of the most parsimonious phylogeny.

Proof: For any genotype matrix I, let TI denote the optimal phylogeny on I. For
a site i of I, let j be a redundant site and consider the matrix I ∪ {j}. The topology
of phylogeny TI also gives a phylogeny for I ∪ {j}, obtained by mutating j wherever i
mutates. The length of TI∪{j} is length(TI∪{j}) = length(TI) + µ(i), where µ(i) is the
number of times site i mutates in TI .

Now, assume that the most parsimonious phylogeny TG for G resolves redundant geno-
type sites i and j differently, i.e., there is a haplotype for which sites i and j differ. Without
loss of generality, suppose µ(i) ≤ µ(j) in TG. Then removing column j from TG results in
a phylogeny TG\{j} with length(TG\{j}) = length(TG)− µ(j). Now, since j is identical to
i, the argument above implies that adding site j back to the phylogeny gives a tree with
length length(TG)− µ(j) + µ(i) ≤ length(TG). Therefore, there is an optimal phylogeny
resolving sites i and j identically.

Due to these preprocessing steps, we assume from now on that the input genotype
matrix G has distinct rows, distinct sites, and weights wi ≥ 1 associated to sites. For
each genotype g ∈ G, we create the set R(g) consisting of all possible pairs of haplotypes
explaining g. Note that if p is the number of heterozygous sites in g, then R(g) consists of
2p−1 pairs of haplotypes.

Now, consider the matrix H = ∪g∈GR(g), where the rows are all possible haplotypes
that can explain input genotypes in G. H is a binary matrix, and for such instances,
structural properties of the optimal phylogeny can be captured by a graph known as
the Buneman graph B(H) [13]. We will explain the generalization of this graph due to
Barthélemy [6].

For a binary input matrix H and a site c of H , the split c(0)|c(1) defined by c is a
partition of the haplotypes into two sets, where c(0) is the set of haplotypes with value
0 in site c and c(1) is the set of haplotypes with value 1 in site c. Each of c(0) and
c(1) is called a block of c. Each vertex of the Buneman graph is an m-tuple of blocks
[c1(i1), c2(i2), . . . cm(im)] (ij = 0 or 1 for each 1 ≤ j ≤ m), with one block for each site
and such that each pair of blocks cj(ij) ∩ ck(ik) has nonempty intersection. There is an
edge between two vertices in B(H) if and only if they differ in exactly one block. Notice
that vertices in the Buneman graph can be viewed simply as haplotypes. An m-tuple
[c1(i1), . . . , cm(im)] translates to haplotype (i1, . . . , im). Buneman graphs are very useful
due to the following theorem:

Theorem 5.1.2 [5, 100] Let B(H) be the Buneman graph for binary (haplotype) matrix
H. Every optimal phylogeny T ∗

H is a subgraph of B(H).
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Using Theorem 5.1.2, we first construct the Buneman graph on H and then solve the
phylogeny problem on underlying graph B(H). The following lemma gives a bound on the
time required to construct B(H).

Lemma 5.1.3 [107] The Buneman graph B(H) for input H on m sites can be constructed
in time O(km) where k is the number of vertices in B(H).

The Buneman graph is simply a method to reduce the size of the underlying graph
from an m-cube with 2m vertices to a (typically significantly) smaller sub-graph. Putting
together these methods, we can summarize our preprocessing steps as follows:

1. Create a weighted genotype matrix G where sites are pair-wise distinct.

2. Create a set H of all possible haplotypes explaining rows of G.

3. Construct the underlying graph F (V, E) = B(H) where H ⊆ V and (u, v) ∈ E
connects two vertices (haplotypes) if and only if they differ in exactly one site. Edge
weights wu,v = wi where i is the site at which u and v differ.

We apply some additional heuristic preprocessing steps that have proven very effective
in practice. One of these steps identifies a subset of haplotypes that must occur in any
optimal solution and then removes from the input any genotypes that can be produced from
pairs of these obligatory haplotypes. As any optimal output can produce these genotypes,
their absence will not change the final output. We can also eliminate certain possible
haplotypes because they would imply high-weight edges and therefore cannot occur in any
low-cost solution.

Once all preprocessing steps have been applied, we have a weighted Buneman graph
B(H) that contains every node and edge that might be included in any optimal phylogeny
for G. We now show an ILP formulation to simultaneously select the optimal subset
H ′ ⊆ H such that all of G can be derived from H ′ and connect H ′ using a tree.

ILP Formulation

We now develop an ILP formulation for the problem based on multicommodity flows
[118]. The formulation borrows from prior work on fast ILP solution of maximum par-
simony phylogenies on haplotypes [107]. Although this formulation can use exponential
numbers of variables and constraints in the worst case, it is fast in practice. It is possible to
solve the maximum parsimony genotype problem using an ILP with polynomial numbers
of variables and constraints, but all polynomial-size variants that we developed proved
intractable in practice.

The high-level idea of the method is to send flow from a designated root to each hap-
lotype that is used to explain an input genotype. Each of these haplotypes acts as a sink
for one unit of flow. The program must select a subset of edges that accommodate all
flow while minimizing the cost of the edges selected. This flow formulation guarantees
that every haplotype is connected to the root and the minimization prevents formation of
cycles. The formulation thus forces the output to be a tree. For the sake of simplicity, we
assume that the all-zeros haplotype is present in all the solutions. We can treat this as the
root.

66



Let hk be an indicator variable denoting the presence or absence of haplotype k ∈ H .
If hk = 1, k is called a present haplotype. We have binary variables pi,j that denote the
presence of both haplotypes hi and hj . All the present haplotypes act as a sink for one
unit of flow from the root vertex. On the other hand, all non-present haplotype vertices
and Steiner vertices satisfy perfect flow conservation. To enforce this, we use two types
of binary variables fk

i,j and si,j for each edge (i, j) ∈ E. The variables fk
i,j are real valued

and represent the amount of flow along edge (i, j) whose final destination is haplotype k.
Note that if k is a non-present haplotype, then fk

i,j should be set to 0 for all edges (i, j).
Variables si,j are binary variables that denotes if edge (i, j) of the graph has been selected.
We want to enforce that flow can be sent along edge (i, j) only if it has been selected.

We now have the following integer linear program:

min
∑

i,j wi,jsi,j (5.1)

s.t. pij ≤ hi ∀i, j ∈ H (5.2)

pij ≤ hj ∀i, j ∈ H (5.3)
∑

(i,j)∈R(g) pij ≥ 1 ∀input g ∈ G (5.4)
∑

j fk
0,j =

∑

j fk
j,k = hk ∀k ∈ H (5.5)

∑

j fk
i,j =

∑

j fk
j,i ∀i 6= 0, k, k ∈ H (5.6)

fk
i,j ≤ si,j ∀i, j, k (5.7)

In constraints (5.2) and (5.3), variable pij indicates the presence of the haplotype pair
(hi, hj). Constraint (5.4) guarantees that each genotype is explained by at least one pair of
haplotypes. Constraint (5.5) imposes inflow/outflow constraints on haplotypes as well as
enforcing the condition that there is positive flow to a haplotype hk only if hk is selected.
Constraint (5.6) imposes flow conservation at all non-present haplotype vertices as well
as Steiner vertices and constraint (5.7) imposes the condition that flow can only be sent
along edges present in the solution. Note that all integer variables of the above linear
program are binary. Finally, we observe that the solution of the ILP is the size of the most
parsimonious phylogeny on G.

5.1.2 Branch and Bound Algorithm

We developed an alternative method for the problem that uses a simpler integer linear
program embedded in a branch-and-bound routine. The high-level idea behind the method
is to first guess the set of haplotypes that would phase the given input genotypes and
then construct a most parsimonious phylogeny on the haplotypes. Note that all the pre-
processing techniques outlined in the previous sub-section still apply for this method.

We use G to refer to the input set of genotypes. For a given set of haplotypes H, we can
construct the most parsimonious phylogeny TH using the algorithm described by Sridhar
et al. [106]. We will use hapMP to denote this algorithm, which will take a set of haplotypes
and return the size of the most parsimonious phylogeny. The pseudo-code for the branch
and bound method is shown in Figure 5.3.
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function genBB(genotypes G, haplotypes H, integer u)

1. for all row vectors ~g ∈ G

(a) if ∃h1, h2 ∈ H s.t. ~h1 + ~h2 = ~g then G← G \ {g}
2. if(|G| = ∅) then return hapMP(H)

3. if (hapMP(H) ≥ u− 1) then return ∞
4. let ~g be a row vector of G

5. for all ~h1, ~h2 s.t. ~h1 + ~h2 = ~g

(a) G′ ← G \ {~g}
(b) H ′ ← H∪ {h1, h2}
(c) b← genBB(G′, H ′, u)

(d) if b < u then u← b

6. return u

Figure 5.3: Pseudo-code for the branch-and-bound algorithm for phylogeny reconstruction
from genotypes

The branch step is performed by Step 5, where the algorithm attempts to phase genotype
g using all possible pairs of haplotypes h1, h2. Integer u of the above pseudo-code refers
to the current best upper-bound. The bound step is performed by Step 3 which just
reconstructs a phylogeny over the current set H of haplotypes. Step 1a ensures that at
least one more haplotype h /∈ H is required to obtain the final set of haplotypes. Therefore,
even if hapMP(H) = u− 1, this branch cannot yield a solution of smaller cost than current
upper-bound u.

In the above method, the height of the branch-and-bound tree is at most n, the number
of input genotypes. The branching factor at each internal node is at most 2k where k is the
number of heterozygous sites on the genotype g. This is always bounded by 2m. Although
the running-time of the final branch-and-bound method is super-exponential, we find that
its run time is competitive with and often superior to the ILP described in the previous
section.

5.1.3 Data Generation and Analysis

In order to generate simulated data, coalescent trees were created using Hudson’s ms pro-
gram [72]. The only parameter required to generate tree topologies is the number of haploid
chromosomes nh. The ms program can also use this tree to produce haplotype sequences,
but does so under the infinite-sites model (without any recurrent mutations). We therefore
instead used the seq-gen program of Rambaut and Grassly [93] to generate nh haplotypes
using the ms coalescent tree. We varied the number of SNPs m and the mutation rate pa-
rameter θ = 4N0µ, where µ is the probability of mutation of any of the simulated SNPs in
one generation and N0 is the effective population size. We relate the simulation parameter
µ to the per-site mutation rate by assuming an effective population size N0 = 10, 000 (a
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reasonable estimate for humans [94]). For instance, for 5 sites, we obtain a per-site mu-
tation probability of 10−6 for θ = 0.2. seq-gen was used under the GTR model, a generic
time reversible Markov model. Mutation rates between A and C and between G and T
were defined using the same parameter θ. For all the other four pairs we set the mutation
rate to be 0 in order to produce biallelic data. The exact command line used to execute
seq-gen for a given mutation rate parameter θ and SNP number m was the following:

seq-gen -mGTR -r θ,0,0,0,0,θ -l m
Each data point was generated from 200 independently generated simulated data sets,

with the reported error rates summed over the 200 replicates. In our first set of simulations,
designed to test the effect of mutation rate on accuracy, we varied θ over the range 0.2-0.6
in increments of 0.05 for windows of 5 and 10 SNPs and for sample sizes of 30 and 60 input
haplotypes. Our second set of experiments, designed to test the effect of sample size on
accuracy, fixed θ at 0.5 and varied the number of haplotypes from 30 to 120 in increments
of 10 for windows of 5 and 10 SNPs. Data points plotted represent summed errors over
the 200 replicates per parameter value.

Mitochondrial data was extracted from of a set 63 complete mitochondrial DNA se-
quences of 16,569 bases each produced by from Fraumene et al. [54]. We produced artificial
diploids from the data by randomly selecting 60 of the sequences and randomly grouping
them into 30 pairs. We computationally inferred haplotypes from all of the genotypes using
fastPHASE and we constructed phylogenies for all sliding windows of 50 bases across the
data set by each of three methods: maximum parsimony using true haplotypes, inferred
haplotypes and from the genotypes.

Autosomal DNA was extracted from a lipoprotein lipase (LPL) data set due to Nick-
erson et al. [19]. Because the pairs of haplotypes into genotypes were not published, we
duplicated the first haplotype to obtain 78 distinct sequences and then randomly paired
them to produce 39 artificial genotypes from the true haplotypes. As in the previous case,
we ran fastPHASE and haplotyper on all of the SNPs put together to obtain inferred
haplotypes. In order to reduce the possibility of recombination events confounding our
results, we used the HAP webserver [65] to break the 86 SNPs into blocks. HAP was also
used to infer missing data. We then evaluated phylogeny sizes by our direct method, from
the true haplotypes, and from the inferred haplotypes for each block.

For details on web interface for the online tool, please see the Appendix.

5.2 Results and Discussion

The algorithms to solve the MP phylogeny problem are discussed in Section 5.1. In this Sec-
tion, we present the results of a series of empirical tests to assess the utility of the method
on real and simulated genetic data. With both kinds of data, we begin with known haplo-
types and then artificially pair them to produce genotypes. For each problem instance, we
reconstruct maximum parsimony (MP) phylogenies in three ways: directly from the geno-
types using the algorithm presented in this paper, from the original (true) haplotypes and
from haplotypes computationally inferred from the genotypes using fastPHASE [98] and
haplotyper [87], two leading methods for haplotype inference. We use the notation Tmin,
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Ttrue, and Tphase to denote the MP phylogeny from the genotypes, true haplotypes and in-
ferred haplotypes (either using fastPHASE or haplotyper) respectively. We further denote
the parsimony score (number of mutations) of a phylogeny T by length(T ). For phylogeny
T that is either Tphase or Tmin, we define a phylogenetic error based on length(Ttrue) as
follows.

Definition 20 The phylogenetic error of Phylogeny T (Tmin or Tphase) is |length(Ttrue)−
length(T )|. Phylogeny T is said to have a positive error if length(T ) > length(Ttrue)
and negative error if length(T ) < length(Ttrue).

Note that it is impossible for Tmin to have positive phylogenetic error. This is because
our algorithm optimizes over all possible haplotypes consistent with the given set of geno-
types and selects the one that minimizes the size of the phylogenetic tree. In contrast,
Tphase can suffer from both types of errors and it is impossible to know if the size of the
true phylogeny is larger or smaller than Tphase. The following definition of an imperfection
of a phylogeny has been widely used.

Definition 21 The imperfection of a phylogeny T constructed for an input set of sequences
(genotypes or haplotypes) with m varying sites is length(T )−m.

Simply stated, the imperfection is the minimum number of recurrent mutations required
to explain the sequences using the phylogeny. Notice that if there are m varying sites in
an input set of genotypes then every possible set of haplotypes that explain it must have
m varying sites as well. The experiments presented in the following section allow us to
understand the gap between the size of the phylogeny from genotypes, the true size and
the artificially inflated sizes due to incorrect phase inference.

5.2.1 Simulated Data

Due to difficulty of obtaining phase-known autosomal data, we begin by examining sim-
ulated data. We used coalescent simulations to generate recombination-free haplotypes
and genotypes for varying mutation rates and used these for a series of tests on how the
accuracy of our method and the two comparative haplotype-based approaches varied with
different parameter values. Each test measured the total number of errors of each method
in 200 independently generated data sets. We first varied the mutation rate parameter
θ to test its influence on the accuracy of all the methods. The results are provided in
Figure 5.4. We find that the relative performance of the three methods is fairly consistent.
The greatest number of errors is generally made by fastPHASE and the least by direct
phylogeny inference from the genotypes, with haplotyper in between. As one would ex-
pect, the number of errors of all three methods increases with increasing mutation rate.
The curves are not monotonic, but additional simulation runs identical to those described
here (data not shown) show no conservation of specific peaks and troughs of the graphs,
indicating that they reflect only random noise due to a high variance in phylogenetic errors
across trials. Table 5.1 separates the results of the two indirect methods, fastPHASE and
haplotyper, into positive and negative errors. Both methods show mixtures of generally
similar numbers of positive and negative phylogenetic errors with no apparent consistent
trends towards favoring one or the other error type as one particular parameter varies.
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Figure 5.4: Each plot shows the phylogenetic errors for inferences from our direct inference
method (black circles), indirect inference using fastPHASE (light grey triangles), and in-
direct inference using haplotyper (dark grey squares) as a function of the mutation rate θ.
Plots are provided for two window sizes (5 and 10 SNPs) and for two population sizes (30
and 60 haplotypes). Each data point in the plot was computed by running each algorithm
over 200 randomly generated data-sets. (a) window size 5, 30 haplotypes. (b) window size
5, 60 haplotypes. (c) window size 10, 30 haplotypes. (d) window size 10, 60 haplotypes.
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m nH method θ=0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
5 30 fastPHASE + err 2 8 8 13 7 15 14 8 14
5 30 fastPHASE - err 1 8 1 5 11 16 19 19 26
5 30 haplotyper + err 1 10 2 10 3 6 12 5 12
5 30 haplotyper - err 1 8 2 5 11 17 22 21 26
10 30 fastPHASE + err 7 12 27 38 28 38 38 27 42
10 30 fastPHASE - err 10 12 9 11 24 29 24 23 26
10 30 haplotyper + err 7 14 15 23 28 24 37 41 40
10 30 haplotyper - err 11 11 12 11 21 31 20 18 25
5 60 fastPHASE + err 6 7 7 15 16 13 16 11 14
5 60 fastPHASE - err 2 3 3 7 7 7 12 12 21
5 60 haplotyper + err 5 3 3 9 7 8 7 7 6
5 60 haplotyper - err 2 2 3 9 10 9 14 15 24
10 60 fastPHASE + err 24 25 25 29 28 32 43 54 41
10 60 fastPHASE - err 4 11 20 14 12 17 27 23 36
10 60 haplotyper + err 11 13 14 13 22 25 27 42 34
10 60 haplotyper - err 7 12 24 18 11 21 28 22 29

Table 5.1: The table separates the phylogenetic errors from the experiments of Figure 2
into positive and negative errors for indirect phylogeny inference using fastPHASE and
haplotyper.

Note that by definition, our new method cannot produce positive errors and all errors it
produces therefore reflect underestimates of phylogeny size.

We next tested variation in accuracy with the number of haplotype sequences sampled
for fixed mutation rate with θ = 0.5. The results are shown in Figure 5.5. Our direct meth-
ods show a slightly more pronounced advantage for 10-SNP windows than 5-SNP windows.
This could simply be due to higher variance in the results of the 5-SNP windows. Table 5.2
shows the breakdown of the indirect methods into positive and negative errors, with both
indirect methods again showing a mixture of comparable numbers of positive and nega-
tive errors across the parameter range. haplotyper again shows generally better accuracy
than fastPHASE by this measure. One might expect that with increase in the number of
haplotypes, the number of mutations required to explain the data would increase as well.
Therefore, the number of errors should increase with the number of haplotypes. This,
however, does not seem to be the case in practice, an observation that can be explained by
the fact that greater numbers of haplotypes provides more information and thus yield im-
proved accuracy in phase inference. Therefore, the number of phylogenetic errors roughly
stay the same with the increase in the number of haplotypes for all the methods.

5.2.2 Mitochondrial DNA

The next step in our analysis used mitochondrial DNA (mtDNA), which is naturally hap-
loid. Although one would not normally need to phase mitochondrial DNA, we use it in our
validation because it provides a source of large numbers of known haplotypes and because
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Figure 5.5: Each plot shows the phylogenetic errors for inferences from our direct infer-
ence method (black circles), indirect inference using fastPHASE (light grey triangles), and
indirect inference using haplotyper (dark grey squares) as a function of number of input
haplotypes. Plots are provided for two window sizes (5 and 10 SNPs). Each data point in
the plot was computed by running each algorithm over 200 randomly generated data-sets.
(a) window size 5. (b) window size 10.

m method nH=30 40 50 60 70 80 90 100 110 120
5 fastPHASE + err 10 12 15 14 11 15 25 15 10 10
5 fastPHASE - err 16 12 14 14 10 12 10 13 13 8
5 haplotyper + err 5 6 7 10 3 11 12 7 5 4
5 haplotyper - err 18 12 15 17 9 15 14 14 14 11
10 fastPHASE + err 38 32 43 34 31 41 46 53 41 38
10 fastPHASE - err 26 25 19 18 14 17 23 22 24 22
10 haplotyper + err 32 26 31 28 35 23 36 30 23 14
10 haplotyper - err 27 27 22 22 17 25 28 28 34 26

Table 5.2: The table separates the phylogenetic errors from the experiments of Figure 3
into positive and negative errors for indirect phylogeny inference using fastPHASE and
haplotyper.
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it provides a good model of recombination-free DNA. The lack of recombination in the
mitochondrial DNA means that if the most parsimonious phylogeny on the genotypes is
q-imperfect, then that region must have undergone a minimum of q recurrent mutations.
The mitochondrial genome contains known regions of high mutation rate that allow us to
validate the ability of phylogenetic imperfection to identify true sites of recurrent mutation,
a key application of our method. For the purpose of these tests, we generated artificial
diploids by randomly combining 60 mitochondrial complete sequences (16,569 bases) from
a data set of Fraumene et al. [54] to produce thirty diploids. We then computationally in-
ferred haplotypes from the all of the genotypes using fastPHASE. Haplotyper was omitted
from these tests because the data set was larger than it could process. We then constructed
phylogenies for all sliding windows of 50 bases across the data set by each of three meth-
ods: maximum parsimony using true haplotypes, inferred haplotypes and directly from the
genotypes. Our method required 116 seconds on a desktop Linux PC to reconstruct the
phylogenies for all the sliding windows, clearly demonstrating its practical efficiency.

Figure 5.6 shows the results for two regions of the mitochondrial D-loop that are known
to have unusually high mutation rates [113]. The intervening sequence between these two
regions, where mutation rate is low, is not shown since all windows have true imperfec-
tion zero. The genotype imperfection is identical to the true imperfection for the large
majority of windows (zero positive and negative phylogenetic errors). While inferences
from genotypes could err in the direction of underestimating the true haplotype imper-
fection, they nonetheless appear in practice to provide very good estimates of the true
imperfection on these data. Genotype imperfection is never less than one below the true
imperfection, i.e., at most 1 negative phylogenetic error for any window. Imperfection from
inferred haplotypes is usually higher than the true imperfection in the imperfect regions,
often substantially so, demonstrating that incorrect phasing can lead to large phylogenetic
errors.

5.2.3 Phase-known Autosomal DNA

Only a very limited amount of true phase-known autosomal data is available. We chose
to examine a set taken from the lipoprotein lipase (LPL) gene [19], which is the only
true phase-known data publicly available that has a sufficiently large population sample
and number of SNPs to provide a challenging test for the methods considered here. The
dataset consists of 144 haplotypes (77 distinct) belonging to three different ethnicities and
86 SNPs. The true genotypes corresponding to the haplotypes were not published for this
data sets and so we duplicated the first haplotype to obtain 78 distinct sequences and then
randomly paired them to produce 39 artificial genotypes from the true haplotypes. As in
the previous case, we ran fastPHASE and haplotyper on all of the SNPs put together to
obtain inferred haplotypes.

Unlike mtDNA, the autosomal chromosomes undergo recombinations and so we used
the HAP webserver [65] to break the 86 SNPs into blocks. We obtained 22 blocks which
we assume to be recombination-free. We then estimated the size of the phylogenies within
each of the blocks separately from the true haplotypes, inferred haplotypes and genotypes
directly. Note that we would expect this to be a particularly difficult dataset for our
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Figure 5.6: Imperfection around two high-variation segments (bp 1:800 and 16100:16350)
of the D-loop of the mtDNA. Each position on the x-axis denotes the central nucleotide of
the window examined. The y-axis shows the inferred imperfection by our direct method
(solid grey line), imperfections inferred by the indirect method using fastPHASE (dotted
black line), and the true imperfection (dashed black line). (a) bp 1 to 800. (b) bp 16100
to 16350.
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Figure 5.7: Imperfections for 22 blocks from LPL. Each data point has an x-coordinate
corresponding to the central SNP of a given block and a y-coordinate corresponding to the
imperfection of the inferred phylogeny on that block. Data is shown for our direct method
(solid grey line with squares), indirect inference with fastPHASE (dotted grey line with
X’s), indirect inference with haplotyper (dash-dot grey line with triangles), and the true
imperfection (dashed black line with diamonds).

algorithm because haplotyper and fastPHASE made inferences from all the SNPs at once,
whereas our method was run on each block independently.

The results are shown in Figure 5.7, where the x-coordinate of each point is the central
SNP of the block and the y-coordinate is the imperfection in that block. Most of the
blocks are imperfect. On this dataset, in contrast to the prior ones, the direct and indirect
approaches showed almost equal total accuracy, with haplotyper being slightly worse.
This difference may reflect a failure to eliminate all recombination from the data set or
might be because any advantage of direct inference is too modest to stand out on such
a small data set. Even on a dataset that would be expected to be unusually easy for a
phasing program, though, our method does no worse than the indirect approach. This
dataset also suggests that the two approaches could be used in a complementary fashion,
as the methods often bracket the true answer from opposite directions.

5.2.4 Resource Usage

We have, finally, examined the performance of our method in run time and space usage
using additional simulation tests. We examined a range of data set sizes from 30 to 120
genotypes for fixed mutation rate θ = 0.5 for 5-SNP and 10-SNP windows using averages
for 200 repetitions per parameter value. Run times were measured for our method and for
fastPHASE and haplotyper. Figures 5.8(a) and 5.8(b) shows run times for the method for
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Figure 5.8: Each plot measures performance for fixed mutation rate θ − 0.5. Run time
is measured in seconds processor time required per parameter value, averaged over 200
independent runs. Run time data is provided for our direct method (solid block line
with circles), fastPHASE (dotted line with triangles), and haplotyper (dash-dot line with
squares). Space usage is measured in maximum linear program size in variables × con-
straints over the full branch-and-bound execution, averaged over 200 independent runs. (a)
Run time performance on 5-SNP windows. (b) Run time performance on 10-SNP windows.
(c) Space usage on 5-SNP windows. (d) Space usage on 10-SNP windows.
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5- and 10-SNP windows, respectively. Our method is consistently faster than fastPHASE

and slower than haplotyper for 5-SNP windows. Like haplotyper and unlike fastPHASE,
our method appears insensitive to the number of input sequences. Our method shows a
substantial slowdown in moving from 5-SNP to 10-SNP windows. While the method is
faster than fastPHASE for 5-SNP windows it is on average a few times slower with 10-SNP
windows. This slowdown is to be expected since our method constructs a program of
potentially exponential size in window size. haplotyper is consistently the fastest of the
methods for both window sizes.

We further assessed space usage of our method based on the maximum linear program
relaxation size examined over the course of a given problem instance, averaging this value
over the 200 trials. Here size is expressed as the product of the number variables and
constraints. Figures 5.8(c) and 5.8(d) show the results for 5- and 10-SNP windows. The
results show a high degree of noise, with a single outlier point requiring roughly 100-fold
more space than the others. Nonetheless, program size appears generally to increase with
number of input sequences. Space usage also increases substantially with window size,
which we would again expect given that worst-case program size is exponential in window
size.

5.3 Conclusions

We have developed the first practical, general methods for finding maximum parsimony
haplotypes from unphased genotype data and have used them to assess the costs introduced
by computational phasing prior to phylogenetic inference. Our methods used a collection of
heuristics based on the theory of Steiner trees, a variant of a flow-based ILP, and a branch-
and-bound approach to solve problem instances with high imperfection that were not
solvable by any prior method. While the method presented here is specific to the problem
of inferring purely mutational phylogenies, similar approaches may prove productive for
inference of ancestry by more general models of molecular evolution, such as ancestral
recombination graphs (ARGs). Empirical tests on simulated and semi-simulated data show
that direct phylogeny inference from genotypes leads to fewer errors than does the standard
practice of building phylogenies from phased data. Methods for this problem have several
practical applications. Most important is to estimate the minimum number of recurrent
mutations required to explain a set of observed genotypes. A large such value may indicate
frequent recurrent mutation or gene conversion or a selective pressure to recurrently alter
a given allele. Researchers trying to establish such effects need to ensure that the size of
the phylogeny is not an artifact of phase inference. The method should similarly be useful
for improving estimates of local mutation rates. Other applications include improving
the power of association tests by eliminating spurious effects from recurrent mutation,
and providing alternative methods for detecting recombination-free autosomal regions and
performing phase inference from genotype data.
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Chapter 6

Whole Genome Phylogenies

In this chapter, we apply apply some of the algorithms developed to construct piece-wise
phylogenies on a genome-wide scale. In general, computational and statistical genetics
depend on a foundation of mathematical models of population and sequence evolution.
While such models are always simplifications, they are essential for framing computational
inferences and posing statistical hypotheses. Furthermore, finding where these models
break down can be an excellent way to deepen our understanding of the basic biological
processes shaping genome sequence variation. As we have seen in prior chapters, the infinite
sites model of genome evolution is one important example of such a highly simplified but
widely used model. The model proposes that over relatively short time scales, mutations
appearing in a population will occur at distinct genetic loci. Phylogenetic trees produced
by mutational evolution in this model are called perfect. The perfect phylogeny assumption
has given rise to several key advances in computational genetics, many such algorithms have
been explored in previous chapters and includes highly efficient algorithms for phylogeny
inference from haploid sequence data [57], as well as from unphased genotype data [59]
when the data is in fact consistent with a perfect phylogeny.

Unfortunately, the infinite sites model and perfect phylogeny assumption will not gen-
erally be true in practice, even over relatively short time scales. Deviation from a per-
fect phylogeny, called phylogenetic imperfection, might derive from recurrent mutation
(homoplasy), recombination, gene conversion, or possibly other unknown factors. When
the sequence data cannot be reconciled with a perfect phylogeny, more sophisticated and
computationally demanding algorithms are needed for phylogeny reconstruction. In prior
chapters, we described efficient algorithms for inferring imperfect phylogenies [9, 105, 106],
showing that such problems can be efficiently solved when the deviation from a perfect
phylogeny is small (a situation called a near-perfect phylogeny [51]).

We also developed algorithms to reconstruct general maximum parsimony phylogenies
irrespective of whether they are near-perfect or not [107]. In practice, these algorithms were
faster when the phylogenies are closer to perfect. In this chapter, we apply this algorithm
on sliding windows of small numbers of varying sites to allow for high-throughput analysis
of phylogenetic imperfection on genomic scales. We annotate the phased HapMap [75]
with the imperfection of a small neighborhood around each SNP site in the dataset. This
annotation essentially provides the number of recurrent mutations required to explain
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each region as a purely mutational phylogeny. Sites that have been subject to recurrent
mutation should therefore produce windows with small amounts of imperfection. We show
that imperfection scores are indeed highly correlated with recombination rate but the
correlation drops significantly after removing hot-spots of recombination. We further show,
that these imperfection scores exhibit local regularities and population conservation beyond
what can be explained by recombination rate variation. We conclude with an analysis of
outlier windows of exceptionally high imperfection that fall outside known recombination
hotspots.

6.1 Algorithm and Data Analysis

For this chapter, we work with phased haplotypes as input and therefore we can assume
that the major allele at each site is represented by ‘0’ and the minor allele by ‘1’. The
input data is denoted by I and is an n×m binary matrix. The n rows R(I) correspond to
taxa typed at m binary markers. Readers can refer to See Definitions 2, 4, 6, 5 for formal
descriptions of a phylogeny, its length, the penalty and maximum parsimony (optimality).
From the definitions, it should be clear that the parameter q of a q-near-perfect phylogeny
is precisely the minimum number of recurrent mutations required to explain the genetic
diversity in the observed set of sequences. Given a binary matrix as described, we use
the algorithm described in Chapter 3 to find the most parsimonious phylogeny. Using
this phylogeny, we can trivially obtain penalty (imperfectness) q of the underlying input
sequences.

6.1.1 Data Sets

This study primarily uses data from the International Haplotype Map (HapMap Phase
II) [75] for the purpose of conducting a fine-scale genome-wide scan of human genetic
variations. Because it is currently computationally infeasible to identify maximum parsi-
mony trees on moderately imperfect unphased data sets [105], we use only phased data.
We restricted ourselves to the HapMap CEU population of Utah residents of European
ancestry and the YRI population of residents of Yoruba in Ibadan, Nigeria because these
subpopulations were genotyped for parent-child trios and thus have minimal phasing error.
The other two HapMap data sets (Han Chinese in Beijing, China and Japanese in Tokyo,
Japan) were genotyped only for unrelated individuals and were therefore omitted here. All
HapMap data sets were downloaded in phased form from the HapMap web site, where the
PHASE program [110] had been used to identify most likely phases from the trio data.
This HapMap build was based on the NCBI human genome assembly build 35 [48]. SNP
location assignments and genomic coordinates are therefore based on NCBI build 35. The
resulting data contained 120 haplotypes from 60 unrelated individuals for each of the two
populations typed at about 3.7 million SNPs.

Several additional datasets were used to study correlation of imperfection with other
sequence features. We retrieved the set of non-synonymous coding SNPs (ncSNPs) mapped
to the build 35 genome using the Ensemble BioMart tool [29, 45], selecting all ncSNPs with
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validated assays. Fine-scale recombination rates and recombination hotspots were retrieved
from the HapMap web site [75]. Locations of all short tandem repeats in the human genome
were retrieved from the UCSC Genome web site [33]. The set of all human repeats was
based on RepeatMasker [103] inferences and was also retrieved from the UCSC Genome
resources Table View tool. The locations of high-scoring hits were also manually examined
using the UCSC Genome Browser [78] and the dbSNP resource at the NCBI web site [102]
to identify the genes and repetitive regions containing the particular SNPs of interest and,
for coding SNPs, to identify their corresponding amino acid changes.

6.1.2 Statistical Calculations

Mutual information. In order to test for regional variations in phylogenetic imper-
fection, we calculated mutual information between windows at varying genomic distances.
All pairs of disjoint 5-SNP windows were compared and grouped into buckets based on the
genomic distance between the central SNPs of the windows. Bucket widths of 1 kb and
100 kb were used in separate tests. For each bucket, the imperfection of the first window
and the imperfection of the second window were treated as random variables and their
individual and joint entropies and mutual information were calculated. Given a sequence
of points x1, . . . , xm drawn from a countable set of values {c1, . . . , cn}, where fi represents
the fraction of points with value ci, the entropy of the sequence is defined as

H(x) = −
n
∑

i=1

fi log(fi)

The joint entropy of a set of paired data points (x1, y1), (x2, y2), . . . , (xm, ym), where fij is
the fraction of points with the value (ci, cj), is calculated by the formula

H(x, y) = −
n
∑

i=1

n
∑

j=1

fij log(fik)

The mutual information of the set is then defined as H(x) + H(y) − H(x, y). Mutual
information determines the dependence between the two imperfection values, with larger
values denoting higher predictability of one window’s imperfection given the other.

Imperfection versus recombinations. In order to compare imperfection and fine-scale
recombination rates, we first identified for each window in our data set the location of the
central SNP in the window. We then retrieved the fine-scale recombination rate at each
such SNP from the HapMap-supplied data. The result was two paired lists of data points.
We calculated correlation coefficients for the two lists for each chromosome individually
and for all chromosomes collectively. A curve was fit to the data points by proposing that
imperfection i is related to recombination rate r by a function of the form i = a(1− e−br)
and using Newton-Raphson iteration to find the least-squares best fit parameters a and b.
We calculated the correlation coefficients with the original data-set as well as with windows
spanning recombination hotspots removed.
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6.1.3 Computer Resources

Code for phylogenetic imperfection calculations was written in the C++ programming
language using Cplex 10.0 library. C++ code was also used to identify a best-fit exponential
curve for the relationship between imperfection and fine-scale recombination rate. All other
data processing and statistical computations were performed with code written in Perl.

6.2 Results

The section presents the results of constructing maximum parsimony phylogenies over
the whole genome. We first show the results of genome-wide scans of the imperfection
values. Following that we compare the imperfection values and recombination rates. While
imperfection values are correlated to recombinations we show that recombinations far from
explain the observed imperfections. We then look at structural elements of the genome
and its relationship to imperfection values. Finally, we examine the parts of the genome
that show very high imperfection.

6.2.1 Genome-wide Imperfection Scan

Figure 6.1 plots imperfection of overlapping 5-SNP windows across all human autosomal
chromosomes, mapping each window score onto the position of the central SNP in that
window. Windows spanning recombination hotspots were removed. Imperfection scores
around telomeres and centromeres are generally sparse because few SNPs were typed in
those regions. The results show substantial variability in imperfection on multiple length
scales. Peaks of high imperfection can occur in isolation or as part of regional variations.
In addition, imperfection appears in general to be higher towards the telomeres and lower
towards the centromeres across chromosomes, although with considerable variability within
the regions. Although the amount of data makes it impossible to fully appreciate visually,
the full set of SNP-by-SNP imperfection scores are included as supplementary table S1.

The CEU and YRI populations generally appear to share common locations for regions
of high or low imperfection, but have different absolute amounts of imperfection. Over
all chromosomes, the CEU data shows a mean imperfection of 0.3 and the YRI a mean
imperfection of 0.55. These results may reflect the higher genetic diversity of African versus
European populations. The two populations do, however, show a strong overlap in regions
of high or low imperfection of one versus the other. Overall, comparison of window scores
with shared central SNPs across the two populations yields a correlation coefficient of 0.36.

To further test the observation of regional substructure, we examined the mutual infor-
mation between imperfection scores at pairs of non-overlapping windows. Mutual informa-
tion is an information theoretic measure that informally describes how much the variability
in the two sites individually exceeds their variability when considered collectively. High
mutual information indicates that two sites are highly predictive of each other, while low
mutual information suggests that they are nearly independent. Figure 6.2A shows the
fine-scale dependence, plotting mutual information for distances 0-100 kb in 1 kb buckets.
The plot shows for both populations a sharp spike for the closest windows (0-1 kb apart)
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Figure 6.1: Genome-wide scans of phylogenetic imperfection. Each plot shows imperfection
for overlapping 5 SNP windows across a single autosomal chromosome. Plots are based on
haplotypes determined from trios from the CEU and YRI populations from the HapMap.
CEU imperfections are plotted above the x-axis and YRI imperfections below the x-axis.
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Figure 6.2: Dependence of phylogenetic imperfection between windows grouped by dis-
tance between the central SNPs of the corresponding windows. Graphs show mutual
information between imperfection levels of non-overlapping windows whose central SNPs
fall within a given distance range. A: Plot of fine-scale correlation, showing mutual infor-
mation for 1 kb bins up to 100 kb. B: Plot of coarse-scale correlation, showing mutual
information for 100 kb bins up to 10 Mb.
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followed by a rapid drop and then a slow decline for the majority of the window. Fig-
ure 6.2B plots dependence at a coarser scale of 0-10 Mb measured in 100 kb buckets. The
pictures at the two scales are qualitatively similar, showing a rapid drop for both popu-
lations near the origin, followed by a more gradual decline for the remainder of the range
covered. The results suggest distance dependence occurs on multiple scales, with strong
correlations for sites within a few kilobases of one another, but still a noticeable excess
of information above background levels even at megabase scales. While both populations
yield qualitatively similar results, the YRI population shows in general a somewhat greater
mutual information between windows than does the CEU population.

6.2.2 Imperfection as a Statistic of Fine-scale Recombination

We next sought to test the hypothesis that imperfectness is a useful statistic for studying
fine-scale recombination rate. We can gain an intuitive understanding of the value of im-
perfection as a measure of recombination rate by comparing it to an established measure.
Figure 6.3A illustrates the correlation between local imperfection and fine-scale recombi-
nation rate as assessed by the method of MacVean et al. [83, 85] for chromosome 21. We
chose chromosome 21 for illustrative purposes as it is small enough that fine-scale features
can still be discerned in a whole-chromosome plot. The image reveals that spikes in local
recombination rate almost invariably correspond with spikes in local phylogenetic imper-
fection. The converse does not follow, however; many peaks in phylogenetic imperfection
coincide with low inferred recombination rates. Figure 6.3B just examines the windows
that fall outside recombination hotspots and clearly shows the high imperfection values at
regions of low recombination rates. This observation suggests that the phylogenetic imper-
fection measure detects both recombination and frequently recurring mutation. Regions
of sustained low recombination rate, such as that observed around 28 Mb do appear to
correspond to sustained low imperfection.

Tables 6.1 and 6.2 assesses the significance of the coincidence between fine-scale re-
combination rate and phylogenetic imperfection excluding and including recombination
hotspots respectively. The graphs show significant correlations (p < 0.001) for all chromo-
somes and for both populations. Correlations are nearly identical for the two populations
when all SNPs are examined and are slightly higher for YRI when recombination hotspots
are excluded. Overall the correlation is typically higher than 0.4 when recombination
hotspots are included and drops down to as low as 0.23 when the hotspots are excluded.
This is a fairly large reduction in the correlation. These correlations are consistent with the
notion that sources of imperfection is a conflation of recombination rate and recurrent mu-
tation. While the correlation values are small for recombination rate against imperfection
outside the hotspots, its significantly larger when we obtain the correlation of imperfection
values between the two populations. Outside of the recombination hot-spots, the corre-
lation is 0.36. This is a crucial observation that shows that the imperfection scores are
significantly influenced by other local genomic properties than just recombination rates.

In order to better understand this correlation, we plotted a histogram of mean imper-
fection versus local recombination rate. Given the uneven distribution of data points, we
used exponentially increasing bin sizes for recombination rates. After removing bins with
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Figure 6.3: Coincidence of imperfection and fine-scale recombination rate for chromosome
21. Imperfection scores are shown as solid gray bars mapped to the position of the cen-
tral SNP of the corresponding window. Fine-scale recombination rates, supplied by the
HapMap web site [75] are marked by dashed black lines. CEU data appear above the x-axis
and YRI data below the x-axis.
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Figure 6.4: Dependence of mean imperfection on local recombination rate. The plot shows
mean imperfection scores grouped into binned recombination rates using bins of exponen-
tially increasing size. Each point plots the mean imperfection of a single bin on the y-axis
with the lower endpoint of that bin’s range on the x-axis.
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Chromosome rCEU
a rY RI

b

(CEU) (YRI)
1 0.23 0.30
2 0.24 0.29
3 0.26 0.30
4 0.24 0.28
5 0.25 0.30
6 0.25 0.29
7 0.26 0.30
8 0.27 0.31
9 0.24 0.30
10 0.24 0.27
11 0.26 0.30
12 0.23 0.28
13 0.26 0.31
14 0.27 0.31
15 0.28 0.32
16 0.28 0.31
17 0.32 0.34
18 0.27 0.34
19 0.32 0.33
20 0.28 0.28
21 0.24 0.27
22 0.29 0.34

(a)Correlation coefficient in the CEU population.
(b)Correlation coefficient in the YRI population.

Table 6.1: Chromosome-by-chromosome correlations of local phylogenetic imperfection and
fine-scale recombination rate outside of recombination hotspots.
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Chromosome rCEU
a rY RI

b

(CEU) (YRI)
1 0.37 0.39
2 0.39 0.41
3 0.41 0.41
4 0.39 0.40
5 0.42 0.42
6 0.42 0.41
7 0.41 0.39
8 0.41 0.41
9 0.37 0.38
10 0.38 0.39
11 0.39 0.39
12 0.40 0.38
13 0.42 0.43
14 0.44 0.44
15 0.43 0.41
16 0.38 0.37
17 0.42 0.41
18 0.42 0.45
19 0.38 0.39
20 0.37 0.36
21 0.43 0.41
22 0.39 0.40

(a)Correlation coefficient in the CEU population.
(b)Correlation coefficient in the YRI population.

Table 6.2: Chromosome-by-chromosome correlations of local phylogenetic imperfection and
fine-scale recombination rate including recombination hotspots.
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less than 100 data points, the bin with the smallest rate was (1.5−26, 1.5−25) and the largest
was (1.52, 1.53). Figure 6.4 presents the results. Both populations show imperfection near
zero for the smallest recombination rates, rising smoothly before leveling off for high re-
combination rates. The rate of increase and the height of the apparent asymptote varies
between the populations, though, with a more rapid rise and a higher asymptote for YRI
(roughly 2.5) compared to CEU (roughly 1.5). We conjectured that the data could be fit
by exponentially decaying curves of the form i = a(1 − e−br). A least-squares fit to this
form resulted in the parameters a = 0.82 and b = 1.02 for the CEU data and a = 1.36 and
b = 1.27 for the YRI data. Note that best-fit curves level off below the asymptote in both
cases (a is the asymptote), suggesting that a single exponential cannot provide a good fit
simultaneously to the low and high-recombination rate windows.

6.2.3 Imperfection by SNP Class

We next asked whether imperfection showed any significant variation based on the func-
tional context of the region examined. We examined this question by comparing the overall
distribution of phylogenetic imperfection scores across the genome for various functional
classes of windows, with class defined by the sequence context of the central SNP in the
window.

We first asked whether SNPs likely to be under selection showed any significant bias in
imperfection scores. Frequencies of scores were computed for the complete set of windows
and for the set of windows centered on validated, non-synonymous coding SNPs, a set cho-
sen because they are likely to be under stronger selection than SNPs in general. Figure 6.5
show the results for the CEU and YRI populations respectively. A logarithmic scale is used
to allow us to view the full range of frequencies, although this does understate the differ-
ences between the four data sets. At a gross level, all four data sets appear quite similar.
Each follows an approximately geometric decay in frequency with increasing imperfection.
It is clear, at all imperfections except 0, the fraction of windows for YRI is substantially
and consistently larger than that of CEU. This is clearly not surprising since Africans are a
more diverse and older population group than Europeans. Low imperfection scores account
for a substantial majority of windows for all four sets and the absolute differences between
the frequencies at the first few imperfection scores are small. ncSNP windows very slightly
higher fraction of perfect phylogenies compared to other windows (77.92% versus 77.86%
for CEU and 68.02% versus 65.13% for YRI). While there are greater differences between
ncSNPs and general windows for larger imperfection scores, these can be explained by the
small numbers of examples for the largest imperfection values. There therefore appears to
be only a modest bias from selection on window imperfection scores.

A bias in imperfection scores might also be expected for SNPs found in repetitive
regions of the genome. We might anticipate some excess of imperfection in this set from a
greater frequency of genotyping errors or genome mis-assembly around repetitive elements.
Likewise, we might expect some errors to be introduced from a greater probability of mis-
assembly of the genome around repetitive elements. We might also anticipate a higher
fraction of large imperfection scores due to genuine hypermutable sites, which are known
to be associated with some short tandem repeat (STR) regions [52, 115]. We therefore
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Figure 6.5: Histograms of imperfection separated by sequence context. Frequencies are
plotted for each imperfection score on a logarithmic scale. A: Comparison of all windows
to windows centered on non-synonymous coding SNPs (ncSNPs) for CEU. B: Comparison
of all windows to windows centered on ncSNPs for YRI. C: Comparison of all windows to
all repeats and to simple tandem repeats (STRs) for CEU. D: Comparison of all windows
to all repeats and to STRs for YRI.
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central SNPa chr.b pos.c iCEU
d iY RI

e sequence context
rs2486545 1 240569616 15 17 intergenic region
rs10174559 2 241396766 11 16 intron of KIF1A kinesin

family member 1A
rs11683248 2 29360497 11 14 intron of ALK anaplastic

lymphoma kinase (Ki-1)
rs7405052 16 84225446 7 17 intron of KIAA0182
rs12918736 16 84226491 7 17 intron of KIAA0182
rs10926263 1 236937389 8 16 intron of FMN2 formin 2
rs6037439 20 296188 17 7 intergenic region
rs7173687 15 24667811 9 15 intron of GABRA5 gamma

-aminobutyric acid (GABA)
A receptor, alpha 5

rs2493310 1 3317579 9 15 intron of PRDM16 PR
domain containing 16

rs8045380 16 84226877 10 14 intron of KIAA0182

(a)refSNP ID of the central SNP of the window
(b)chromosome on which the window is found
(c)genomic map position of the central SNP
(d)imperfection in the CEU population
(e)imperfection in the YRI population

Table 6.3: Windows exhibiting the highest imperfection in the genome. This table identifies
those windows with combined imperfection scores above 23.

compared the set of all windows with those whose central SNP falls in any repetitive
region and those whose central SNP falls in an STR region. We also separately examined
windows whose central SNP overlaps STR regions. Figures 6.5B and 6.5C show the results
for CEU and YRI populations. The graphs again show nearly no differences between
the data sets for the well-populated imperfection values. Comparing all repeat windows
versus all windows, we find that the frequency of perfect windows is nearly identical (77.6%
versus 77.9% for CEU and 65.1% in both data-sets for YRI) STR SNPs again do not show
pronounced differences. They are slightly less likely to be perfect (76.1% versus 77.9% for
CEU and 62.3% versus 65.1% for YRI). It therefore appears that repetitive elements do
not lead to any dramatic systemic bias in local phylogenetic imperfection.

6.2.4 Imperfection Outliers

Although the primary purpose of this study was characterizing imperfection on the genomic
scale, exceptional individual examples of imperfection can also be informative. There are
too many perfect windows to allow for an examination of individual cases of small imper-
fection, but we can however, examine those windows of highest imperfection. Table 6.3 lists

91



central SNPa chr.b pos.c idCEU ieY RI gene f variationg

rs1810247 15 19915318 5 11 LOC650137 seven
transmembrane
helix receptor C85R

rs17690844 8 17656239 4 10 MTUS1 mitochondrial
tumor suppressor 1 T453K

rs2368406 10 29824078 6 8 SVIL supervillin A809P
rs2802808 1 201698085 4 8 NFASC neurofascin homolog
rs4973588 2 233660480 4 9 NGEF neuronal

guanine nucleotide
exchange factor T111M

rs7208422 17 73642170 8 5 TMC8 transmembrane
channel-like 8 I306N

rs3751928 17 68792947 7 6 CDC42EP4 CDC42
effector protein
(Rho GTPase binding) 4

rs7627615 3 185301118 4 9 HTR3E 5-hydroxytryptamine
(serotonin)receptor 3, family
member E T86A

rs10790715 11 124298892 5 7 HEPACAM hepatocyte cell
adhesion molecule V218M

rs557806 19 54069054 5 7 PPP1R15A protein
phosphatase 1 regulatory
(inhibitor) subunit 15A P251R

rs1356410 15 40222129 5 7 PLA2G4F phospholipase A2
group IVF V740M

rs351111 19 795020 6 6 PRTN3 proteinase 3
(serine proteinase
neutrophil, Wegener
granulomatosis autoantigen) I119V

(a)refSNP ID of the central SNP of the window (b)chromosome on which the win-
dow is found (c)genomic map position of the central SNP (d)imperfection in the CEU
population (e)imperfection in the YRI population (f)gene containing the central SNP of
the window (e)amino acid change produced by the SNP. Annexin A13 has two splice
isoforms resulting in two possible sites of variation.

Table 6.4: Windows centered on non-synonymous coding SNPs exhibiting the greatest
imperfection.

92



the most extreme examples of imperfection observed in the data set. Of the 10 windows, 9
are centered in introns of genes and 1 in intergenic region. None of the top outliers occurs
in the coding region of a gene.

The results from the previous section suggest the absence of coding SNPs is more
likely due to their scarcity in the full SNP set rather than any bias against them and we
therefore chose to examine ncSNP outliers separately. Table 6.4 describes those ncSNP
windows yielding the highest imperfection. The set of high-scoring ncSNPs is not obviously
particularly informative. The top-scoring hit is to a gene prediction that may in fact not be
a functional gene. The others are each found in known proteins, but for most we know of
no reason why they would be particularly disposed to high imperfection. The list contains
several genes known to have relationship to human diseases and therefore might have high
imperfection due to selective pressure. Mitochondrial tumor suppressor (MTUS1) has been
shown to have significantly lower expression in pancreatic tumor cells. The absence of the
gene causes excessive microtubule growth and inhibited spindle formation and therefore
their mutation could be related to cancer. NFASC gene belongs to the immunoglobulin
gene family and again genes involved in the immune system might have unusually high
mutation rates. PPP1R15A mediates apoptosis and hence has been suspected to play a
role in cancer. PRTN3 is an autoantigen gene involved with Wegener granulomatosis, a
severe disease whose pathophysiology is still not completely understood.

6.3 Discussion

Our recent algorithmic advances in optimal parsimony-based phylogeny inference have
provided a new practical tool for examining the history of genomic variation data sets. We
have applied this tool to a global examination of genetic variation in the human populations.
The results provide several useful insights into the nature of phylogenetic imperfection in
the human genome and its value as a statistic for detecting historical recombination and
recurrent mutation.

Phylogenetic imperfection shows strong correlation with fine-scale recombination, a
property that may make it useful as an alternative means of estimating recombination rates.
The correlation drops significantly when recombination hotspots are removed. Moreover in
either case, the correlation with recombination is far from perfect, which we believe results
from the fact that imperfection reflects the influence of other sequence properties beyond
local recombination rate, particularly local mutation rate. Phylogenetic imperfection in
conjunction with other measures of recombination rate may be a useful way to separate
these possibilities, allowing us to better identify both recombination hotspots and highly
mutable sites or regions of the genome. This result may also in part reflect the fact that
recombination rate and mutation rate are themselves correlated [44, 67]. It is possible
that other mechanisms, such as gene conversion, significantly affect observed imperfection
scores. Wiehe et al. [112] showed that one can distinguish recombination and gene conver-
sion by local patterns of LD; a characteristic pattern of high LD between non-consecutive
SNPs with mutual low LD to intervening SNPs might similarly allow one to distinguish
genuine recurrent mutation from other possible sources of high phylogenetic imperfection.
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Phylogenetic imperfection also exhibits several interesting properties when viewed at a
genomic scale. First, imperfection shows a pattern of local correlation on multiple scales,
from a strong peak for nearby but non-overlapping windows on the kilobase scale to a
gradual decline in correlation on even megabase scales. It is likely that these correlations
in part reflect the contribution of regional variation in recombination rate. It is also
reasonable to assume that regional variability in mutation rates also plays a role. We
cannot, however, yet determine the degree to which these two factors, or others unknown to
us, might contribute to the overall regional variability. Because the information calculations
excluded windows sharing SNPs, the very strong local peak on the kilobase scale could only
derive from regions extremely dense in SNPs. It is therefore plausible that the fine-scale
peak corresponds to local correlations in imperfection due to hypermutable regions of the
genome. Further study of regional patterns for known sources of phylogenetic imperfection
may help to separate these effects and detect any unanticipated contributing factors.

We do note that it might be beneficial to remove SNPs whose minor allele frequency
is very low or to more uniformly select SNPs based on physical chromosome position.
For instance, when we used HapMap Phase I data, SNPs on the HLA-B gene produced
imperfections in excess of 18. However, several of these SNPs were missing in HapMap
Phase II. Therefore, care should be taken while studying the ancestry for a specific gene
or locus either by sampling SNPs or by extending the size of the window to encompass the
whole region under study to more accurately understand its ancestry.
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Part III

Detecting Population Substructure
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Chapter 7

Pure Populations

In this chapter, we study SNP variation at the population-level typically referred to as
population substructure or population stratification. Although the study is interesting in
itself as it attempts to discover population specific SNP alleles, substructure plays an even
greater role in the problem of discovering genetic basis of diseases. Studying the etiology
of common complex disease, such as cancer or Parkinson’s disease, is an important task in
the search for better treatments and diagnosis tools for these diseases. A common practice
towards this task is to perform an association study, in which the genetic variation of a set
of cases (individuals carrying the disease) and a set of controls (background population) is
compared, and large discrepancies between the two populations indicate an association of
a specific locus with the studied phenotype.

There are different forms of genetic variations that can be studied in the context of
association tests, the most common one is single nucleotide polymorphisms (SNPs). Due
to decreasing cost of assaying SNPs, whole genome association studies, in which hundreds
of thousands of SNPs are genotyped for thousands of individuals is becoming a common
practice [11].

A significant discrepancy between the allele frequencies in the cases and the controls
gives evidence for an association between the SNP and the phenotype, and therefore links
the SNP to the disease. However, the validity of the results of an association study heav-
ily depends on the statistical analysis performed. One of the main growing concerns is
that population substructure may raise spurious discoveries. In association studies, the
discrepancies in the SNP-allele frequencies between the cases and the controls are believed
to imply an association of the SNP with the disease, but if the cases and controls were
collected from two very different populations, this discrepancy may be explained by the
difference between the two populations, and hence the SNP is not necessarily associated
with the disease. Even subtle differences in the population structures of the cases and the
controls may result in spurious associations. In particular, this problem is becoming more
acute when large scale association studies are performed(see for e.g., [32, 69]).

There are many computer programs that try to cope with this problem, most notably
the widely used software STRUCTURE [90] and a recently developed method EIGENSTRAT [89].
STRUCTURE uses a Markov Chain Monte Carlo (MCMC) approach to find population sub-
structure of a given population using DNA variation data. EIGENSTRAT is based on princi-
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pal component analysis (PCA). Mathematically, this problem can be seen as a clustering
problem, in which the different clusters correspond to different populations. Such cluster-
ing problems have been studied under a variety of different theoretical frameworks that
share close similarities. For instance the max-cut of a graph shares properties with the
eigenvectors of the corresponding (adjacency or Laplacian) matrix and therefore Spectral
methods or PCA, STRUCTURE and finding max-cuts of graphs share close mathematical
relationships [12, 14, 76, 82].

STRUCTURE has been used extensively in genetic studies (cited more than 700 times),
and it has been shown to find population substructure quite accurately in many examples.
Even though STRUCTURE performs very well in terms of accuracy, it is quite inefficient,
and it may take weeks to run over one whole genome data-set. Furthermore, even though
STRUCTURE outputs a likelihood score which assists in interpreting the results, it is not
clear whether this likelihood score can be used to determine whether there is actually
a significant presence of population substructure. Finally, as the MCMC is inherently
a heuristic approach, it is hard to know which parameters to set for the algorithm; in
particular, as we show in this paper, there is no uniform set of parameters that performs
well for all the data-sets.

In order to cope with these problems, we introduce a new graph based method for
clustering populations. We concentrate in this paper on the clustering of two populations,
although the method can be easily extended to multiple populations. Our technique is
based on a simple paradigm. We define a distance between every pair of individuals, and
we then search for a maximum cut in the graph induced by these distances. From that
cut, we perform a local search that maximizes the likelihood of the data, similar to the
criterion used in STRUCTURE. The main advantage of our method is that it is extremely
efficient, and at the same time very accurate. Furthermore, since eventually the algorithm
optimizes the same score function as that of STRUCTURE, it can be viewed as a fast method
that finds a local optimum for this criterion.

It is important to note that the efficiency of our method allows us to measure the
significance of the population substructure by running our algorithm on thousands of per-
mutations of the data. For instance, we find that both our method and STRUCTURE find
a population substructure in the YRI population, genotyped by the HapMap project [75].
On the other hand, after the permutation test, we observe that the p-value is 0.75, in-
dicating that this partition is probably just an artifact. Since STRUCTURE is too slow to
perform such a test, our method gives a rigorous alternative to the significance estimators
of STRUCTURE.

We measured the performance of our method and compared it to STRUCTURE on the
HapMap populations, as well as on simulated data. We find that our method is at least
as accurate as STRUCTURE, and an order of magnitude more efficient. Furthermore, we find
that the accuracy of STRUCTURE degrades when many SNPs are used (thousands), while the
accuracy of our method consistently improves when the number of SNPs increases. We have
also compared our method to EIGENSTRAT, a recent program that corrects for population
stratification using the eigenvalues of the genotype covariance matrix [89]. In [89] they
suggest a method based on principle component analysis, that assigns each individual a
vector representing its ancestral composition. Although their method is not specifically
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designed for clustering populations, we have adapted their method in a natural way and
compared it to the method developed in this paper. We found that EIGENSTRAT is quite
efficient, but it appears not to perform very well on many of our datasets. We believe that
this is due to the fact that the principal component analysis fails when the sub-populations
structures are not independent.

Technically, our method is based on a distance defined between pairs of individuals.
There are many possible distance measures, and the resulting algorithm is very sensitive
to the choice of the distance measure. Surprisingly, one of the most natural measures, i.e.,
the Hamming distance, performs quite poorly. We therefore use as a starting point the
mother-father distance defined in [76]. This measure satisfies the property that the ex-
pected distance between two individuals drawn from the same sub-population is zero while
the distance between individuals from two different sub-populations is positive. Further-
more, in [76] it is shown that the max-cut induces the correct partitioning asymptotically,
at least when the sub-population sizes are equal. Our final distance uses a more compli-
cated procedure which takes into account the genotypes of the whole population in order
to determine the distance between a pair of individuals. We show empirically that this
procedure is advantageous and that the resulting distance better represents the population
structure. This distance measure may be of independent interest, as it may be used in
other population based applications.

7.1 Problem and Algorithm

We consider the setting in which a set of n individuals are genotyped over m SNPs. The
problem of population stratification focuses on the assignment of each of the individuals to
a population cluster. In practice, an individual could belong to more than one cluster, (for
instance when the individual’s ancestors come from two or more different populations).
In this paper, however we concentrate on the simpler case, in which each individual is
assumed to belong to exactly one population. Furthermore, we assume that the number of
populations K is known. We will observe later that this assumption is not too restrictive,
as one can test for the validity of the solution. Our goal is to cluster the set of individuals
into K clusters, based on their genotype information.

In order to define the problem mathematically, we first introduce a random gener-
ative model for the individuals’ genotypes. Each genotype is represented by a vector
g ∈ {0, 1, 2}m, where gj represents the minor allele in SNP j, that is, gj = 1 for het-
erozygous, and it is 0 and 2 for the homozygous major or minor alleles respectively. A
population is characterized by the minor allele frequency in each of the SNPs. Thus, a
population i is defined by an m-dimensional vector ~pi = (pi

1, . . . , p
i
m), where pi

j represents
the minor allele frequency of population i in position j. The random generative model
assumes that all individuals are sampled independently, and that for each individual g, the
different SNP values are sampled independently, where gj is sampled from the distribution
{(pi

j)
2, 2pi

j(1− pi
j), (1− pi

j)
2} (e.g., the probability that gj = 1 is 2pi

j(1− pi
j)). This model

has been used by previous approaches, and in particular by STRUCTURE. The assumption
that the different SNPs are independent can be justified if the SNPs are physically distant
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from each other (and thus, they are in linkage equilibrium). We define the distance between
two sub-populations i, i′ as:

d(i, i′) =

√

∑

j

(pi
j − pi′

j )2

Formally, we assume that we get as an input an n×m genotype matrix A, where the
rows R(A) denote diploid individuals and the columns C(A) represent SNP sites. Each
entry in A is in {0, 1, 2}. We search for a classification θ : R(A)→ {1, . . . , K}, that assigns
every individual to a particular sub-population. Let θ̂ be the correct classification. Our
objective is to minimize the number of errors made by the algorithm, that is, we would
like to minimize |{r ∈ R(A) | θ(r) 6= θ̂(r)}|.

7.1.1 The Graph Based Approach

It is convenient to think of the above problem as a clustering problem in a graph. In this
case, we construct a complete graph G = (V, E), where vertex set V corresponds to the
set of individuals, and edge set E is the set of all pairs of individuals. We assign a dis-
tance for each edge, which will intuitively represent the genomic distance between the two
individuals. Then, the main idea of the algorithm is to find a max-K-cut in the resulting
graph. This makes sense since G captures the fact that the genomic distance between
two individuals from the same sub-population is small, while the distance between two
individuals from different sub-populations may be large. Clearly, the resulting algorithm
is sensitive to the choice of the distance measure.

The most natural distance measure is the Hamming distance, which counts the number
of differences between the two vectors. However, we observe that in practice the Hamming
distance does not provide very good results1. We therefore follow [76], and start from the
so called Mother-Father distance (MF). The MF-distance satisfies the property that the
expected distance between two individuals from the same population group is 0 and the
expected distance between two individuals of different populations is positive. Actually, it
is not hard to see that the MF-distance is the only pair-wise distance measure that satisfies
this property (up to a constant factor).

Formally, for any two individuals r1, r2, we define δj(r1, r2), the MF-distance at SNP
j as follows. We set δj(r1, r2) = −1 if r1j = r2j = 1, δj(r1, r2) = 2 if r1j = 0, r2j = 2 or
r1j = 2, r2j = 0, and 0 otherwise. We then define the MF-distance δ(r1, r2) to be the sum
of the MF-distances over all SNPs. That is, δ(r1, r2) =

∑

j δj(r1, r2).

We can now compute the expected distance between two individuals r1, r2 from popu-

1For example, when p1

j = 2/3, p2

j = 1, the expected distance within population 1 is larger than the
expected distance across
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lations i and i′ E[δ(r1, r2)]:

=
∑

j

E[δj(r1, r2)]

=
∑

j

2(pi
j)

2(1− pi′

j )2 + 2(pi′

j )2(1− pi
j)

2 − 2pi
j(1− pi

j)(2p
i′

j (1− pi′

j ))

= 2
∑

j

(pi
j(1− pi′

j )− pi′

j (1− pi
j))

2 = 2
∑

j

(pi
j − pi′

j )2 = 2d(i, i′)2

Consequently, if i 6= i′, then the expected MF-distance between two individuals of dif-
ferent populations is positive. On the other hand, if i = i′, then d(i, i′) = 0, and the
expected MF-distance between two individuals of the same population is zero. It is fur-
ther shown in [76], that if the distance between two different sub-populations d(i, i′) >>√

1.5(m log n)0.25, then with high probability, all the pair-wise distances within a sub-
population are at most d(i, i′)2, while pair-wise distances across the two sub-populations
are at least d(i, i′)2. In that case, the max-K-cut algorithm may be reduced to a connected
component algorithm. Furthermore, it can be shown that even with much smaller sepa-
ration of the two populations, the max-cut on the graph with MF-distances produces the
correct cut [76].

7.1.2 Triplets-based distance

Even though the MF-distance has some very nice properties, our empirical studies (see
Appendix 7.4) show that the max-cut solution obtained from this distance is sometimes
biased towards an unbalanced partition. Intuitively, although the expected value of the
MF-distance is monotone with the distance between the populations, unbalanced cuts may
be chosen by the algorithm by pure chance. It is therefore essential to find a distance
measure that has smaller variance than the MF-distance.

We build on top of MF-distances to obtain a more sensitive distance measure, which
we call the triplet distance. The main idea of the triplet measure is to utilize information
from all genotypes to determine the distance between a pair of individuals.

We will now formally define the triplet distance for a pair of individuals r1 and r2. The
triplet distance depends on two parameters a, b that will be fixed later. For every third
individual in the population, r, we consider the unordered set {r1, r2, r}, which we refer
to as a triplet. For each such triplet, we define two indicator variables Xr and Yr such
that Xr = 1 if δ(r1, r2) ≥ max(δ(r1, r), δ(r2, r)), and Xr = 0 otherwise. Similarly, Yr = 1
if δ(r1, r2) ≤ min(δ(r1, r), δ(r2, r)), and it is zero otherwise. We define the triplet-based
distance as da,b(r1, r2) =

∑

r(aXr + bYr). In other words, to compute the triplet distance
of r1 and r2, we consider every third individual r and if δ(r1, r2) is the largest among the
three MF-distances, then we add a and if it is the smallest, then we add b.

We now find the expected triplet distance da,b(r1, r2) for a pair of individuals r1, r2.
We will implicitly assume that all MF-distances are different (this is true if the number
of SNPs is sufficiently large). For a triplet (r1, r2, r), we consider the following two cases.
First, assume that all three individuals are from the same population. Then by symmetry,
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Pr(Xr = 1) = Pr(Yr = 1) = 1
3
. Otherwise, if r1, r2 are from population i, and r is from

another sub-population i′, we will bound the probability Pr[δ(r1, r2) ≥ δ(r1, r)]. Intuitively,
this probability should be small if the distance d(i, i′) is large enough. Formally, we know
that

E[δ(r1, r2)− δ(r1, r)] = −2d(i, i′)2.

Furthermore, δ(r1, r2) − δ(r1, r) is the sum of m random variables that lie in the interval
[−2, 2]. This is because, if δ(r1, r2) = −1 then δ(r1, r) 6= 2 and vice-versa. Therefore, we
could use the following tail bound, known as Hoeffding bound[70]:

Theorem 7.1.1 Let X1, . . . , Xn be n independent random variables, and let a, b be such
that for every i, a ≤ Xi ≤ b. Denote X = X1 + . . . + Xn. Then,

Pr(X − E[X] > α) ≤ exp

( −2α2

n(b− a)2

)

.

Thus, using the Hoeffding bound, we get Pr[δ(r1, r2)− δ(r1, r) > 0]

= Pr[δ(r1, r2)− δ(r1, r) + 2d(i, i′)2 > 2d(i, i′)2] ≤ exp

(

−d(i, i′)4

2m

)

If d(i, i′) = (6tm log n)0.25 for t > 1, we get by the union bound that with very high
probability all triplets satisfy the property that edge distance within a sub-population is
lesser than any edge distance across two populations. The probability that this event does
not happen is smaller than 1

n3t−2 . We now use these observations to compute the expected
triplet distances. Assume that r1, r2 are from sub-population i, and that Pi is the frequency
(prior) of this sub-population in the entire population. Then,

E[da,b(r1, r2)] = E[a
∑

r

Xr + b
∑

r

Yr]

≤ n

(

a
Pi

3
+ b(1− 2Pi

3
)

)

+
|a|+ |b|
n3t−2

≈ n

(

a
Pi

3
+ b(1− 2Pi

3
)

)

Similarly, for r1, r2 from different sub-populations i, i′, it is easy to see that

E[da,b(r1, r2)] ≥ an
2
− |a|+|b|

n3t−2 ≈ an
2

If we know the frequency of the sub-populations in the entire population, then we can
take P = maxi Pi. For instance, if we set a = (2/P )− 2, b = −1 we get that the expected
distance between individuals from two different populations is positive, while the expected
distance between individuals of the same population is non-positive. For a balanced cut,
selecting a = 4, b = −1, gives positive expected distance between individuals of different
populations and zero otherwise. In practice, even though we do not know the correct
value of P , we try different values of P to determine a, b, each giving different partitions.
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We then pick the partition with the largest likelihood score, where the likelihood score is
similar to the one used for STRUCTURE, as we now describe.

Recall that A is the input genotype matrix with R(A) being the genotypes of the n input
individuals, θ : R(A) 7→ {1, . . . , K} is the classification of individuals to sub-populations

and ~pi is an m-dimensional vector of the MAF of sub-population i. Given θ, the maximum
likelihood estimate of ~pi is obtained by simply counting the allele frequencies in each of
the sub-populations defined by the partition. The posterior probability is given by

Pr[θ, ~pi|A] ∝ Pr[θ] Pr[~pi] Pr[A|θ, ~pi]

We set the priors for θ and ~pi to be fixed and uniform, and thus maximizing the posterior
is equivalent to maximizing the likelihood L(A|θ, ~pi) = Pr[A|θ, ~pi].

Algorithm (GRAPH-TRIPLETS). We can now describe the whole algorithm. The al-
gorithm begins by computing the MF-distance for each pair of individuals. Then, for
every pair of individuals r1, r2, we compute X(r1, r2) =

∑

r Xr, and Y (r1, r2) =
∑

r Yr.
The algorithm then proceeds in iterations. In each iteration we pick a value for P ,
and we search for a partition that maximizes the likelihood score, based on the prior
information that one of the sub-populations is of size P . We take values of P rang-
ing from 0.5 through 0.9 in 0.1 increments. Each such value determines the values of a
and b. The triplet distances are then computed for each pair of individuals, by setting
da,b(r1, r2) = ((2/P ) − 2)X(r1, r2) − Y (r1, r2). These distances induce a complete graph
G = (V, E), where the vertices represent individuals and the edges are weighted by the
triplet distances. We are then interested in finding the maximum K-cut.

Unfortunately, finding the max-K-cut of the graph is an NP-hard problem even when
K = 2 [56]. We therefore use the Kernighan-Lin heuristic [70], which is a hill-climbing
method to find the optimal cut. The algorithm for the case when K = 2 is presented in
Figure 7.1. The algorithm randomly partitions the vertices V (G) into two disjoint sets V1

and V2. The algorithm then proceeds in rounds each of which involves performing |V (G)|
iterations. At each iteration we move a vertex u from one side of the cut to the other. The
vertex u is chosen so that the resulting cut is maximized. Unlike standard local search
techniques, the algorithm swaps u even if this results in the reduction of the cut-size. Once
a vertex u is swapped, it cannot be swapped again until the next round. At the end of a
round all vertices have been swapped, and the best partition in that round is chosen for
the next round. We repeat until the cuts in the beginning and the end of a round are
identical, and thus no improvement can be achieved. In Figure 7.1, set Vx(Vx′) denotes the
vertex set of V1, V2 that currently contains x (does not contain x) and cut(V1, V2) denotes
the cost of the cut.

Using Kernighan-Lin, for each setting of a, b we find a max-K-cut and we select the one
that maximizes L(A|θ, ~pi). Finally, we perform a greedy local search by moving a vertex
from one side to another, if it improves the likelihood. This final step, typically improves
the accuracy by a little in practice.
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kernighanLin(graph G)

1. randomly partition V (G) into V1, V2

2. α← 1

3. while α = 1 do (* rounds *)

(a) α← 0, χ← V1 ∪ V2

(b) while |χ| > 0 do (* iterations *)

i. u← argmaxx∈χcut(Vx \ {x}, Vx′ ∪ {x})
ii. χ← χ \ {u}
iii. if u ∈ V1 then V1 ← V1 \ {u}, V2 ←

V2 ∪ {u}
iv. else V1 ← V1 ∪ {u}, V2← V2 \ {u}
v. if cut(V1, V2) > cut(V ∗

1 , V ∗
2 ) then V ∗

1 ←
V1, V

∗
2 ← V2, α← 1

(c) V1 ← V ∗
1 , V2 ← V ∗

2

Figure 7.1: Kernighan-Lin heuristic to find max-cut of graph G.

7.2 Results

To evaluate the performance of our method, we compared GRAPH-TRIPLETS to two state of
the art methods that deal with population stratification, namely STRUCTURE and EIGENSTRAT,
which are described below.

STRUCTURE [90] is a well established package that uses Markov Chain Monte Carlo
method (MCMC) to heuristically maximize the posterior probability. Structure can be
seeded with a number of different parameters. We used K = 2, to denote that the pro-
gram should look for two sub-populations. By default, the program assumes that the allele
frequencies of the two populations are independent. For closely related sub-populations,
however, the software allows for a mode in which the frequencies are assumed to be cor-
related. We ran the program on both modes, with the parameter turned off and on. The
default number of MCMC and Burnin iterations is 2000 each. We varied this number to
analyze the trade-off between run-time and accuracy. We used the default values for the
rest of the parameters.

We note that STRUCTURE is a software that does much more than just clustering indi-
viduals. Among other things, it can cope with admixed populations, and it can incorporate
linkage disequilibrium into its model. We have not compared our method to these modes
of STRUCTURE, as it is beyond the scope of this paper, and our algorithm is not optimized
for such tasks at this point.

EIGENSTRAT [89] is a relatively new software tool, which corrects population sub-
structure by the spectral properties of the covariance genotype matrix. In a nutshell,
EIGENSTRAT takes A an m× n input genotype matrix, where rows are SNPs and columns
are individuals and normalizes each entry of A by subtracting the row mean (minor allele
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frequency of the SNP) and dividing by the row’s standard deviation. It then takes the
largest eigenvectors of the covariance n × n matrix Ψ, and uses those to correct for pop-
ulation sub-structure. Even though EIGENSTRAT is not explicitly described as a genetic
clustering method, we adapt their algorithm in a natural way, resulting in a clustering al-
gorithm in which the clusters are determined by using the sign of the entries of the highest
eigenvector of Ψ. We implemented this clustering algorithm in MatLab and compared it
to our method. We refer to our implementation as Spectral in the results presented.

Datasets. For the evaluation, we used datasets from two different sources. First,
we used simulated data generated using the following model. Each sub-population i is
represented by an m-dimensional vector of allele frequencies ~pi, and an individual of the
population is sampled by randomly and independently picking allele counts according to
the allele frequency distributions of the sub-population. For simulations, we assumed that
all SNPs within a sub-population had the same allele frequency, i.e., for any i, pi

j = pi
j′.

We have also used the publicly available data from the International HapMap consor-
tium [75]. This data-set consists of four population groups: Utah residents with ancestry
from northern and western Europe(CEU), Yoruba in Ibadan, Nigeria (YRI), Han Chinese
in Beijing, China (CHB) and Japanese in Tokyo, Japan (JPT) with 90, 90, 45 and 44
individuals respectively. The Central Europeans and Yoruba Africans consisted of thirty
trios each, and therefore in order to avoid these dependencies, we used the 60 parents from
each of the two populations, ignoring the 30 children. To obtain a test set where the SNPs
are independent, we sampled m SNPs uniformly at random from chromosome 10. We
evaluated the programs on each of the six pairs of populations, with different numbers of
SNPs, ranging from 1000 to 8000.

Evaluation Measures. There are many possible ways to evaluate the performance of the
algorithms. We chose to let each of the program separate the genotypes of two populations
(say Africans and Chinese in the HapMap data) into two clusters, and the error rate of
such an experiment would be the number of individuals misclassified (for instance, the
number of Africans classified as Chinese). We have also compared the running-time of the
methods. In summary, our experiments show that the graph-based method is significantly
faster while being at least as accurate as existing methods.

Simulated Data. On simulated data, we studied closely related populations. We fixed
the minor allele frequency of one population to be 0.1 for each of its SNPs, while for the
other population the minor allele frequency varied from 0.12 to 0.19. On all the data
presented, STRUCTURE running on default parameters fails to find two sub-populations, i.e.,
it returns solution with all individuals in one cluster. We therefore only report STRUCTURE
running for 2000 iterations with the correlation mode turned on. Figure 7.3(a) shows that
GRAPH-TRIPLETS is an order of magnitude faster than STRUCTURE. Figure 7.2 shows that it
makes substantially less errors overall than STRUCTURE and the spectral clustering which
is based on EIGENSTRAT. It is conceivable that STRUCTURE would find better solutions if it
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uses even more time, although this seems rather prohibitive. We note that the performance
of STRUCTURE seems not to be monotonic with the number of SNPs used.

HapMap. For the HapMap datasets, we considered all six pairs of populations. For
most pairs, all methods worked perfectly (no errors were made) with as few as 200 SNPs.
The only hard instance was the Chinese-Japanese pair. For this pair, none of the methods
could give a perfect clustering prediction even when 8000 SNPs were used. As can be seen
from Figure 7.4, the spectral method and GRAPH-TRIPLETS seem to produce lesser errors
than the classification returned by STRUCTURE. Furthermore, we used the two different
modes of STRUCTURE (with or without correlations), and the results were inconclusive
regarding which one works better on this dataset, as when small number of SNPs were used
(1000, 2000 or 4000), the correlation mode seemed to perform better. When more SNPs
were used (8000 SNPs, 2000 or 4000 iters), the ‘no correlation’ mode of STRUCTURE was
better.

As before, Figure 7.3(b) demonstrates that GRAPH-TRIPLETS is much more efficient
than STRUCTURE. Specifically, the run time for GRAPH-TRIPLETS ≈ 300 times faster for
1000 SNPs and ≈ 1000 times faster for 8000 SNPs.

7.3 Significance of Clusters

An obvious and important question to consider is whether the clusters obtained from the
methods are significant. In practice, we could run STRUCTURE or GRAPH-TRIPLETS with
K, the number of sub-populations set to 2. When the software returns a solution, with
individuals divided into two populations, there is no guarantee on whether the input set of
taxa actually even contains two sub-populations. To test the significance of the clusters,
one could perform the statistical tests described by Pritchard et al. [90], which as the
authors themselves point out either uses dubious assumptions or does not work for large
number of SNPs in practice. Alternatively, we could examine the change in the likelihood
function or use information based evaluation such as minimum description length to decide
on whether there is truly two sub-populations or not.

A simple and direct approach is to permute the alleles in each site independently such
that the input no longer has sub-structure. We can then re-run the algorithm on the new
input. The p-value is simply the fraction of times, the permuted input had solution larger
(or more likely) than that of the original input.

However, such tests can only be performed if the algorithm to find clusters is very
efficient. Here, we simply considered a randomly drawn data set with 8000 SNPs from
each of the HapMap populations. We ran structure (default parameters) and triplets with
K = 2. We report the number of errors made (size of the smaller set) along with the
p-value which can be efficiently computed using the triplets method. We believe that the
computation of this p-value is a great benefit in practice that our new technique can offer.
The results for 1000 permutations is presented in Table 7.1.
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Errors
structure Triplets Triplets p-value

Central Europeans, CEU 21 2 0.01
Yoruba Africans, YRI 26 20 0.75
Chinese, CHB 17 16 0.267
Japanese, JPT 18 12 0.929

Table 7.1: Triplets can be used to compute p-values directly.

7.4 Empirical Comparison of MF with Triplets.

To motivate our choice of triplet based distance instead of MF-distance, we show empir-
ically that the triplet distance gives a better separation of the two populations into two
clusters. In order to do so, we randomly generate two sub-populations according to the
following model. We generate the two populations, such that one population has minor
allele p1 for all the SNPs, and the other population has minor allele p2 for all the SNPs.
Furthermore, each of these sub-populations has the same number of individuals. We mea-
sure the cut distance of the correct cut using the MF-distance and the triplet distance.
Let dmf and dt be the correct cut weight for mother-father and triplets. We then find
10, 000 random balanced cuts of the graph and measure the cut weights. We then measure
the fraction of times the random cut cost was larger than dmf or dt respectively. We call
this measure the balanced p-value. We also measured the max-cut for 10, 000 randomly
generated unbalanced cuts, where 0.25-fraction of the vertices were on one side. We call
this measure the unbalanced p-value. .

The results of the various simulation tests are shown in Figure 7.5. Figure 7.5(a), shows
that the balanced p-values are similar for triplets based distance and for the MF-distance,
and that the balanced p-value of both methods quickly go down to zero. More importantly,
Figure 7.5(b) shows that triplets clearly has a lower p-value in the case of unbalanced cuts.
While MF-distance contains several unbalanced cuts of high weight, on the triplets, the
correct cut has cost typically higher than all other cuts. This provides an evidence that
the triplet distance is advantageous.

7.5 Conclusions

The problem of population stratification is an increasing concern in the context of disease
association studies. In particular, its influence on whole genome association studies (for
e.g. [32, 69]) are severe. Even though existing methods for clustering individuals based on
their SNPs provide relatively accurate predictions, there is no rigorous theory that ensures
the convergence of these methods to the correct solution. Furthermore, there is no study
that compares these methods on a variety of datasets, both real and simulated. Our paper
has been motivated by these two concerns.

In this paper, we suggest a graph based method for detecting population stratification.
The distance measure used in our method builds on the Mother-Father distance that was
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suggested in [76], where it has been rigorously and analytically shown that if the sample
size is large enough, the measure will represent the correct distance between individuals,
and therefore our algorithms will converge to the true population clusters. We believe that
this theoretical foundation for our algorithm is an important advantage that proves itself
in practice. In particular, we show that our algorithm is consistently at least as accurate
as STRUCTURE and EIGENSTRAT.

One of the questions we raised in this paper is the validity of the population substructure
found by the clustering algorithm. We have demonstrated that the different methods will
tend to cluster the individuals in two clusters, even if in reality there is only one population.
In order to assess the significance of these partitions, we suggest a permutation test, which
seems to give the correct significance scores on the HapMap populations. This permutation
test can only be carried out if the clustering methods are highly efficient. As our method
runs in seconds over thousands of SNPs and hundreds of individuals, this was feasible.

We note that our paper focuses on the clustering of two populations while STRUCTURE

and EIGENSTRAT can do much more than that. In particular, they can deal with admixed
populations, correlated populations, and linkage disequilibrium. We hope that a combina-
tion of the existing methods such as STRUCTURE and EIGENSTRAT, together with our graph
based approach may lead to improved tools for these cases as well.
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Figure 7.2: Comparison of accuracy on simulated data. GRAPH-TRIPLETS is consistent in its
accuracy and converges to the correct partition with increase in SNPs or increase in distance.
On (a) MAF of sub-populations 1 and 2 were 0.1 and 0.13 respectively. On (b) the number of
SNPs was fixed to 1000 and MAF of sub-population 1 was fixed at 0.1. We used an average of
three randomly generated data sets to obtain every point. Error bars indicate highest and lowest
values obtained.
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Figure 7.3: Comparison of run-times on simulated and real data. GRAPH-TRIPLETS is hundreds
of times faster than STRUCTURE.
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Figure 7.4: Comparison of accuracy on HapMap Chinese/Japanese. GRAPH-TRIPLETS is accurate
and converges to the correct partition with increase in SNPs. It is unclear what parameters of
STRUCTURE to use. We used the average of four randomly drawn data sets to obtain every point.
Error bars indicate the highest and lowest values obtained.
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Figure 7.5: Comparison of MF and Triplet distance measures. Figure (a) shows that when
only balanced cuts are considered, the distance measures provide comparable p-values.
Figure (b) shows that more often unbalanced cuts in the MF distance contains cost larger
than that of the correct cut. In both figures MAF of sub-population 1 was fixed to 0.1.
For Figure (a) we used 100 individuals in each population and for Figure (b) we used 10
individuals in each population. We used parameters a = 2, b = −1 for the triplets.
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Chapter 8

Admixed Populations

In this chapter we continue to develop algorithms to detect population substructure. Unlike
the previous chapter, here we focus on the case where the underlying individuals may be
admixed. The application, however, remains the same – we wish to detect substructure if
it exists, so that disease association testing can be accurate.

The problem of inferring the population sub-structure is especially challenging when
recently admixed populations are involved. In these populations (e.g., African Americans
and Latinos), two or more ancestral populations have been mixing for a relatively small
number of generations, resulting in a new population in which the ancestry of every in-
dividual can be explained by different proportions of the original populations. Due to
recombination events, even within the DNA of a single individual, different regions of the
genome may originate from different ancestral populations. This adds to the complexity
of the problem of finding the ancestral information of an individual, since in non-admixed
populations the whole genome can be used as an evidence for the population membership
of an individual, while in the admixed case the genome of each individual is fragmented
into shorter regions of different ancestry. It is therefore challenging to find the ancestral
information of these individuals, and in particular, to find the locus-specific ancestries.

An accurate inference of locus-specific ancestry in admixed populations may lead to
improved analysis of studies based on admixture mapping. In these studies, a set of cases
from a recently admixed population is genotyped, and the genome is scanned for regions in
which the proportions of ancestral populations are significantly different than the rest of the
genome [34, 47]. Unfortunately, most of the current methods for inference of locus-specific
ancestral information [43, 49, 71, 90] do not scale to large data sets. The only existing
method that copes with large data sets is SABER [114], which is based on an extension of
a Hidden Markov Model [92] to deal with local haplotype blocks.

Here, we propose a new method, LAMP (Local Ancestry in adMixed Populations), for
de-novo estimation of the locus-specific ancestry in recently admixed populations (see Fig-
ure 8.1). Our method is based on the observation that previous methods that use a Hidden
Markov Model or extensions of it, are set to infer a very large set of parameters, including
the exact position of the recombination events, which makes the search over the parameter
space infeasible. Instead, our method operates on sliding windows of contiguous SNPs.
We first calculate an optimal window length. Next, we use a clustering algorithm that
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Figure 8.1: Two individuals in an admixed population. Ancestries predicted by LAMP(top
panel) and true ancestries (bottom panel) are shown for each individual. As shown in the
Figure, the ancestries (represented by red and blue) vary across the genome, and LAMP

performs well in inferring the ancestry at each location.
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operates on these windows and estimates each individual’s ancestry. We then use a major-
ity vote for each SNP, over all windows that overlap with the SNP, in order to decide the
most likely ancestral populations at the SNP. This simple approach has two advantages
over previous ones. First, we show analytically that the estimates of the algorithm are
asymptotically correct across the entire genome. Second, it optimizes fewer parameters
than previous methods and hence, the optimization is much faster and more robust than
previous methods.

We tested LAMP extensively on various data sets of admixed populations generated from
the HapMap resource. Our simulations show that LAMP is significantly more accurate than
the state of the art methods such as SABER and STRUCTURE. In addition, LAMP is highly
efficient with a running time that is about 200 times faster than SABER and about 104 times
faster than STRUCTURE. The efficiency of LAMP allows us to estimate ancestries across the
genome in several hours on a single computer.

An additional advantage of LAMP is that unlike previous methods such as SABER, it does
not require the ancestral genotypes to infer the locus-specific ancestries (though it can take
advantage of these if available). This may be crucial when the ancestral genotypes cannot
be typed or are unknown. For instance, if one studies the population genetics of populations
in remote geographic locations where historical admixing has not been recorded, a method
such as LAMP could be used to reveal such recent admixing. Furthermore, even in cases
where the history of admixing is known, it is not always possible to genotype all the
ancestral populations, since some of the subpopulations have become extinct and some
have entirely mixed with other populations. On the other hand, as genotypes of major
population groups become available, it would be beneficial to use LAMP-ANC which can
take advantage of the pure genotypes.

Surprisingly, we find that in many cases where LAMP does not receive the genotypes of the
ancestral populations as input, it performs considerably better than SABER. In particular,
on a simulated dataset of African-Americans, when measuring the percentage of individuals
that are predicted with an accuracy of at least 90%, LAMP achieves high accuracies on
90% of the individuals while SABER and STRUCTURE achieve less than 10%.

Finally, we used LAMP to estimate the individual admixture, and showed empirically
that this results in much more accurate estimates than methods such as STRUCTURE[90] or
EIGENSTRAT[89]. This reduction in errors may be used to considerably reduce the rate of
spurious association results in disease association studies.

8.1 Problem and Algorithm

The inference of locus specific ancestry depends on the mathematical model representing
the mixing process of the populations. We will first describe the model assumptions, and
then describe the inference algorithm under the model.
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8.1.1 Model assumptions

We assume that there are K ancestral populations A1, . . . , AK that have been mixing for
g generations. If the populations have mixed at different times, then g is taken to be an
upper bound on the number of generations since the beginning of admixture. The fraction
of population Ai in the ancestral population which we call the admixture fraction is αi,
where

∑

i αi = 1. We assume for convenience that α1 ≥ α2 . . . ≥ αK . In each generation,
we assume random mating within the combined pool of the k populations. We denote the
recombination rate at position j by rj. Note that rj is the recombination rate at position j
at a specific meiosis (one generation), and not through history. We model the transmission
of a chromosome from a parent to a child by walking along the chromosome from the 5’ end
to the 3’ end with crossovers between chromosomes occurring as a Poisson process with
rate rj [64]. For simplicity of the presentation, we will assume a uniform recombination
rate, i.e., that r = rj for every position j. The algorithm and analysis remain qualitatively
the same when applied to non-uniform recombination rates.

We denote the genotype data of individual i at position j as gij, where gij ∈ {0, 1, 2} is
the minor allele count at that position. At position j, the two alleles of individual i have
descended from one or two of the K ancestral populations. We denote by ap

ij ∈ {0, 0.5, 1}
the fraction of alleles descended from population p at position j in individual i. The
quantities ap

ij are unknown; the objective of this paper is to present a method LAMP that
accurately estimates these quantities.

8.1.2 The LAMP framework

In this work we consider a recently admixed population in which the number of generations
g since the beginning of the mixing is small. Therefore, we expect the total number of
recombinations in these g generations to be small as well. The resulting chromosomes are
mosaics of the k populations, where the ancestral breakpoints in which the chromosome
ancestry changes from one population to the other are determined by the recombination
events.

We assume that the quantities g, αi, and r are known for the admixed population.
The basic idea in LAMP is to estimate the ancestries of the individuals in a sliding window
that spans l sites. We term l the length of the window. The choice of the length l will
be discussed later. Intuitively, if l is small enough, and the number of generations g
is not too large, a typical window of length l will have almost no recombination events
throughout history, and therefore almost no breakpoints. Therefore, within each window,
it is reasonable to use an inference algorithm that assigns the sequence of genotypes in the
window to one or two of the populations under the assumption that there are no breakpoints
in any of the chromosomes. The latter is a simple clustering problem, although the accuracy
of the inference in a given window improves when the number of SNPs l in the window
increases. We therefore search for a window length l, which is short enough so that most
individuals have no breakpoints and large enough so that there is enough information to
correctly cluster the individuals within the window. This procedure is repeated by sliding
the window to cover all the SNPs on the genome. The windows that overlap a SNP are
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then combined into a single solution using a majority vote for the ancestry assignment.
We note that unlike previous methods (e.g. SABER [114], or STRUCTURE [90]), we are not
attempting to estimate the exact positions of the breakpoints, but instead we are trying
to minimize the errors in the locus-specific ancestry prediction across the genome.

The LAMP algorithm works as follows. We first find the optimal window length based
on the parameters g, αi, and r. Then, we use a clustering algorithm that operates on a
window and estimates for each individual i, and for each ancestral populations Aj , Ak,
the probability pi

jk for individual i to have one chromosome descended from population
Aj at this window and another descended from population Ak. We then use a majority
vote for each SNP, over all windows that overlap with the SNP, in order to decide the
most likely ancestral populations at the SNP. As we argue below, even though this scheme
optimizes less parameters than previous methods, such as SABER, or a regular HMM, we
show analytically and empirically that the estimates of the algorithm are asymptotically
correct across the entire genome.

8.1.3 Estimating the ancestry in a single window

We assume that none of the individuals have a breakpoint within a window and estimate a
single ancestral origin for each individual across the length of the window. This assumption
is largely true if the length of the window is determined correctly (see Section 8.1.4 and
Section 8.4 in the supplementary materials). We further assume that the values α1, . . . , αK

are known. These values are the admixture fractions of each of the populations across the
whole genome, and they can be estimated using existing tools such as STRUCTURE[90]. In
the results section we show that our method is robust to reasonable inaccuracies in the
estimates of α1, . . . , αK .

Clustering Algorithm

We assume that sub-population Ai has minor allele frequencies ~fi = fi1, . . . , fin for n SNPs
in a given window of length l, and that the different SNPs in the window are independent.
The latter assumption can be achieved in practice by greedily removing SNPs having
a high correlation coefficient (r2 > 0.1) from the window. We look for a classification
function θ : I → {1, . . . , K}2, where I is the set of individuals, and the range corresponds
to the possible pairs of sub-populations. In particular, we write θ(i) = (θ1(i), θ2(i)) to
denote the ancestries of the two chromosomes of individual i in the current window. We
use a clustering algorithm known as Iterated Conditional Modes (ICM) [8] to find an
optimal classification of each individual in terms of the likelihood. For increased efficiency
in the running time, we seed the algorithm with an initial classification as described in
Section 8.1.3.

The updates in the ICM algorithm differ from those in a traditional EM method only
in the E-step. In the latter, the E-step consists of obtaining the expected classification θ,
given the values ~fi. This would provide fractional class membership for each individual i.
However, since we assume that the initial classification provides a reasonable solution, we
find the maximum aposteriori estimate of θ as shown below. For brevity we use Gi to refer
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to the genotype (gi1, . . . , gin) of the individual i.

θ̂(i) = argmaxAsAt∈{1,...,K}2 Pr[θ(i) = AsAt | ~f1, . . . , ~fK ,Gi] (8.1)

= argmaxAsAt∈{1,...,K}2 Pr[Gi | ~f1, . . . , ~fK , θ(i) = AsAt] · Pr[θ(i) = AsAt | ~f1, . . . , ~fK ]

Since α1, . . . , αK are known, under the assumption of random mating, we can estimate
the first term Pr[θ(i) = AsAt | ~f1, . . . , ~fK ] as Pr[θ(i) = AsAt] = 21−δ(s,t)αsαt where δ(x, y)
is 1 iff x = y and 0 otherwise.

The other term can be estimated as:

Pr[Gi|~f1, . . . , ~fK , θ(i) = AsAt]

=
∏

gij∈Gi|gij=2 fsjftj ·
∏

gij∈Gi|gij=0 [(1− fsj)(1− ftj)] ·
∏

gij∈Gi|gij=1 [fsj(1− ftj) + ftj(1− fsj)]

In the M-step, we obtain the maximum likelihood estimate of ~f1, . . . , ~fK by finding

argmax ~f1,..., ~fK
Pr[(Gi)

m
i=1 | ~f1, . . . , ~fK , θ] =

m
∏

i=1

Pr[Gi | ~f1, . . . , ~fK , θ(i)] (8.2)

If the phase of the individuals is known, the maximum likelihood estimate of ~f1, . . . , ~fK

could have been computed by simply counting the number of alleles in each of the sub-
populations at every position. However, when the phase is not known, the problem becomes
more complicated. Consider for instance a heterozygous site j in an individual i, with
θ1(i) 6= θ2(i). In this case, it is not clear whether the minor allele count should be added to
fθ1(i)j or to fθ2(i)j . To solve this problem, we introduce another classification function per

site, ~λj : I → {0, 1}K. This function is defined on the set of SNPs for which the assignment
of counts is ambiguous i.e., heterozygous SNPs in individuals i with classification θ1(i) 6=
θ2(i). We denote this set of heterozygous SNPs Hi. The function ~λj is defined as

~λj(i) =

{

~es, if j ∈ Hi, one of (θ1(i), θ2(i)) = s, and the minor allele is counted to fsj

not defined for j /∈ Hi

Here ~es is the vector with 1 in coordinate s and 0 elsewhere.
For a heterozygous site j in individual i such that j ∈ Hi, we can now define

Pr[~λj(i) = ~eθ1(i) | f1j , . . . , fKj, θ(i)] = fθ1(i)j(1− fθ2(i)j)

Pr[~λj(i) = ~eθ2(i) | f1j , . . . , fKj, θ(i)] = fθ2(i)j(1− fθ1(i)j)

Pr[~λj(i) = ~es/∈{θ1(i),θ2(i)} | f1j , . . . , fKj, θ(i)] = 0

Using the assumption of independence of the SNPs and the ~λj just defined, we can rewrite
Equation 8.2 as follows. The usefulness of this will be apparent later.

(f̂1j , . . . , f̂Kj) = argmaxf1j ,...,fKj

m
∏

i=1

(

∏

j∈Hi

K
∑

u=1

Pr[~λj(i) = ~eu | f1j , . . . , fKj, θ(i)]

)

×





∏

j∈{1,...,n} Hi

Pr[gij | f1j , . . . , fKj, θ(i)]



 (8.3)
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The MLE for f̂ij, . . . , ˆfKj can be found using an EM algorithm where

E-step : λj,s(i) = E[λj,s(i) | fθ1(i)j , fθ2(i)j , θ(i), gij = 1]

=















fθ1(i)j(1−fθ2(i)j)

fθ1(i)j(1−fθ2(i)j)+(1−fθ1(i)j)fθ2(i)j
, for s = θ1(i)

fθ2(i)j(1−fθ1(i)j)

fθ1(i)j(1−fθ2(i)j)+(1−fθ1(i)j)fθ2(i)j
, for s = θ2(i)

0, for s /∈ {θ1(i), θ2(i)}
(8.4)

M-step : f̂sj =
2nsj

2,2 + nsj
2,1 + nsj

1,2 +
∑

j∈Hi
λj,s(i)

2nsj
2,2 + 2nsj

2,1 + 2nsj
2,0 + nsj

1,2 + nsj
1,1 + nsj

1,0

(8.5)

Here λj,s(i) refers to coordinate s of the vector λj(i). nsj
k,u refers to the number of individuals

who have u ∈ {0, 1, 2} minor alleles and k ∈ {1, 2} copies of alleles from population As

at site j. The counts of these individuals can be obtained based on the classification θ(i).
Notice that the term corresponding to the heterozygous sites which have a single allele from
population As has its contribution modified by λj,s(i). We can now perform expectation-
maximization iterations using equations 8.5 and 8.4. The convergence of these iterations
provides us a maximum likelihood estimate of ~f1, . . . , ~fK . These estimates can then be
used in the next iteration to estimate θ using Equation 8.1.

Initializing the clusters

We now describe how we obtain an initial setting of the parameters i.e., the classification
function θ or the allele frequencies ~f1, . . . , ~fK , which are used as starting points by the EM
algorithm. We focus here on two specific scenarios. The first scenario is the case where
there are two ancestral populations i.e., K = 2 and unknown allele frequencies ~f1, . . . , ~fK .
In this instance, we use an algorithm called MAXVAR to provide an initial solution to the
EM algorithm. The main motivation behind MAXVAR is to quickly produce a reasonable
classification. The algorithm runs in time linear in the number of SNPs and can take
advantage of results computed from adjacent windows. We have also considered using
spectral clustering but in practice we found that the final classification accuracy is nearly
the same as MAXVAR though the running time is increased. The result from MAXVAR is a
classification of the individuals which is then used in Equation 8.2 of the EM.

The second scenario is the case where K ≥ 2 and estimates of the allele frequencies
f̂1, . . . , f̂K in the ancestral populations are known. In this case, these allele frequencies are
used as a starting solution in Equation 8.1 of the EM algorithm.

The (MAXVAR) algorithm. When we have two populations, we estimate a window length
l such that most of the individuals have no breakpoints within a window. Thus the an-
cestries of these individuals are A1A1, A1A2 or A2A2. We define α = α2 as the admixture
fraction of the smaller of the two populations. We now describe a method to find the
ancestry of each individual in this window. We call this the MAXVAR algorithm.

We first define a similarity score S between a pair of individuals. For each SNP j, let

µj =

∑

i gij

n
, where n is the number of individuals, and let σj =

√

∑

i(gij − µj)2

n
. For two
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individuals i1, i2, we define

S(i1, i2) =
l
∑

j=1

(gi1j − µj)(gi2j − µj)

σ2
j

.

For each i ≤ n, let V ar(i) =
∑

i′:i′ 6=i

S(i, i′)2 denote the similarity of all other individuals

to individual i, and let i∗ = argmaxi{V ar(i)}. The MAXVAR algorithm simply finds i∗,
and clusters the individuals according to the values S(i∗, i). In particular, we order the
individuals according to these values, and the smallest (1−α)2n individuals are assigned as
the ancestry of A1A1, the largest α2n individuals are assigned as the ancestry of A2A2, and
the rest are assigned A1A2. We provide a formal proof of correctness of the MAXVAR method
in the supplementary materials (Section 8.2).

Known ancestries. The problem of estimating the ancestry is considerably simpler if
we are provided estimates of the ancestral allele frequencies. In this case, as before, we
first estimate the window length l. Within each window, we then estimate the ancestries
using the likelihood function given by Equation 8.1 with the given ancestries f̂1, . . . , f̂K

used as the starting solution. The ancestries predicted at each SNP are combined using a
majority vote.

8.1.4 Choosing the window length

In order for the local predictions to achieve reasonable accuracy, the length of the window l
should be short enough so that most individuals do not have a breakpoint in the window and
long enough so that the SNPs provide sufficient information to observe a difference between
the populations. Note that we use the term breakpoint to refer to a recombination event
that results in a change in ancestry of the adjacent SNPs. The power of our method stems
from the fact that long windows provide much more information than any local behavior,
provided that there are not too many individuals with breakpoints in the window. We are
looking for the maximum window length l so that the errors in the classification due to
breakpoints in the window are bounded. We present empirical results that validate the
window length estimates in Section 8.4 of the Supplementary Material.

In each window, the errors in the classification depend on the length of the window,
the number of individuals, and the distance between the populations. Evidently, it is
hard to predict these errors as the distance between the populations is unknown, and the
performance of the EM algorithm is unpredictable for a finite sample. To obtain a bound
on the errors, we consider the most accurate classification of the individuals in a window.
Such a classification is allowed to assign ancestries to the individuals in a window with
knowledge of their true ancestral states ap

ij for p = 1, . . . , K. Thus an individual whose
ancestry is AsAt over the length of the window is always classified correctly. The only
errors made by such a classification are due to the locations of the breakpoints. In the
presence of a breakpoint, an individual would be assigned an ancestry so that the number
of errors is minimized. For instance, an individual with a breakpoint at position j and
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ancestries As1 and As2 on either side of the breakpoint gets assigned the majority ancestry
over the length of the window i.e., the individual gets classified as As1 if j > d l

2
e and As2

otherwise. It is easy to see that the larger the window size l, the more likely it is for an
individual to have a breakpoint and hence, the more the errors in the optimal classification.

The number of recombination events throughout time along a specific window is as-
sumed to be Poisson distributed with parameter (g−1)lr. Therefore, as long as (g−1)lr <<
1, it can be verified that the probability to have a breakpoint in the window is upper-
bounded by 2(g − 1)lr

∑

i<j αiαj under the assumption of random-mating and that the
admixture fractions of the population right before recombination are αi. Therefore, the
probability for a breakpoint on either chromosome is bounded by γ = 4(g−1)rl

∑

i<j αiαj.
For a given window, the above analysis shows that the expected fraction of individuals

with no breakpoints is 1 − γ. We can now use this to obtain a bound on the fraction of
errors in a window. Let X be the fraction of errors in a window of an algorithm that makes
the optimal classification. Let I be the number of breakpoints in the window. We compute

E[X] = E[E[X|I]] =
∑

i

Pr[I = i]E[X|I = i]

Note that E[E[X|I = 0]] = 0 since the optimal classification in this case makes no
errors. When there is a single breakpoint I = 1, the breakpoint is distributed uniformly
over the length of the window. We denote the position of the breakpoint J ∼ Unif(1, l).
The fraction of errors in the presence of a single breakpoint at position J is

(X|I = 1, J = j) =

{

1− j
l

j > d l
2
e

j
l

otherwise
(8.6)

We now have

E[X|I = 1] = 2

d l
2
e−1
∑

j=1

j

l

1

l
≤ 1

4

If glr << 1 ,we can ignore Pr[I > 1] so that

E[X] ≤ 0 · Pr[I = 0] +
1

4
· Pr[I = 1] + 1 · Pr[I > 1]

≈ γ
1

4
(8.7)

For a bound ε on the expected fraction of errors, we get γ < 4ε. Rewriting the window
length l in terms of ε, we get

l ≤ ε

(g − 1)r
∑

i<j αiαj

(8.8)

While these arguments bound the errors in a single window, it is also possible to bound
the errors due to overlapping windows at a SNP. In this case, the use of a majority vote can
be shown to further improve the accuracy of the predictions. The details of this analysis
can be found in the supplementary materials (Section 8.3).
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The analysis presented here is specific to the model of admixture described at the start
of Section 8.1.1. However, it is easy to see that the analysis can be extended to the case
of non-uniform recombination rate, where the probability for a recombination in position
i is ri. In that case, the term (g − 1)lr should be replaced by (g − 1)

∑l
i=0 ri.

The model considered so far does not take into account the distance between the an-
cestral populations while choosing the window length. When the ancestral genotypes are
known, the window length can be chosen to trade-off the accuracy in separating the ances-
tral genotypes with an increase in the errors due to breakpoints. A binary search over the
window lengths can then pick the optimal window length as discussed in the supplementary
materials (Section 8.7).

8.2 Correctness of MAXVAR

In this section, we analyze the correctness of the MAXVAR algorithm. We have two popu-
lations A1 and A2. We denote α = α2 as the admixture fraction of A2 - the smaller of
the two populations. The MAXVAR algorithm classifies the individuals into three types of
ancestries, i.e., A1A1, A1A2, and A2A2. The algorithm works by first picking a specific
individual termed a pivot, and then clustering individuals based on their similarity to the
pivot. We show that when the the populations are significantly different from each other,
the pivot will have an ancestry A2A2 with high probability. In this case, we show that one
can define a similarity score S (as defined in the Methods Section), such that the individ-
uals who are also of ancestry A2A2 have positive similarity score to the pivot while those
with ancestry A1A1 have negative similarity scores in expectation. Thus, the individuals
with the smallest (1−α)2n values of the similarity score are assigned an ancestry of A1A1,
the largest α2n values are assigned an ancestry of A2A2 and the rest are assigned A1A2.

Let pA1A1 , pA1A2 , pA2A2 be the frequencies of individuals of the three types in the pop-
ulation. We assume that pA1A1 = (1 − α)2, pA2A2 = α2, and that pA1A2 = 2α(1− α). Let
pk, qk be the minor allele frequencies of population A1 and A2 respectively in position k.
Furthermore, we assume that the values of µk and σk (as defined in the Methods Section)
are constants, and that µk = αpk + (1−α)qk, σ2

k = 2α2pk(1− pk) + 2α(1−α)[pk(1− pk) +
qk(1−qk)]+2(1−α)2qk(1−qk). If the number of individuals is large enough, the variance is
quite low, and therefore this is not a restrictive assumption. We define the distance between
the two populations as W =

∑

k (pk − qk)
2σ2

k. Under these assumptions, it is easy to see
that if aa, ab, bb are three given individuals with ancestry A1A1, A1A2, A2A2 respectively
in the window, then the expected similarity score S between pairs of individuals is:

E[S(aa, aa′)] = 4α2W, E[S(aa, ab)] = −2(1− 2α)αW,

E[S(aa, bb)] = −4(1− α)αW, E[S(ab, ab′)] = (1− 2α)2W, (8.9)

E[S(ab, bb)] = 2(1− 2α)(1− α)W, E[S(bb, bb′)] = 4(1− α)2W,

where aa′, ab′, bb′ are individuals with ancestries A1A1, A1A2, A2A2, but they are different
individuals than aa, ab, and bb. From this, it is easy to verify that the expected sum of
squares over all individuals that are different from aa, ab, and bb can be approximated as:
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∑

i:i6=bb

E[S(i, bb)]2 ≈ 8(1− α)3αW 2n

∑

i:i6=ab

E[S(i, ab)]2 ≈ 2α(1− α)(1− 2α)2W 2n

∑

i:i6=aa

E[S(i, aa)]2 ≈ 8α3(1− α)W 2n

The only reason for the approximation is that the number of individuals with ancestry
A2A2 that are different from bb is (1 − α)2n − 1, while we consider it as (1 − α)2n. This
approximation is not restrictive when the number of individuals is reasonably large.

Defining Pk = pk(1− pk), Qk = qk(1− qk), we can write the variance of these scores as

V [S(aa, aa)] = 4
∑

k
Q2

k

σ4
k

, V [S(aa, ab)] = 2
∑

k

Q2
k + PkQk

σ4
k

V [S(aa, bb)] = 4
∑

k
PkQk

σ4
k

, V [S(ab, ab)] =
∑

k

P 2
k + Q2

k + 2PkQk

σ4
k

V [S(ab, bb)] = 2
∑

k

P 2
k
+PkQk

σ4
k

, V [S(bb, bb)] = 4
∑

k

P 2
k

σ4
k

We can conclude that the variance of the similarity scores from the rest of the individuals
to an individual with one of the 3 ancestries is

V [
∑

i:i6=bb

S(i, bb)] ≈ 4α2n
∑

k

P 2
k

σ4
k

+ 4α(1− α)n
∑

k

P 2
k + PkQk

σ4
k

+ 4(1− α)2n
∑

k

PkQk

σ4
k

= 4n
∑

k

Pk
α2Pk + α(1− α)(Pk + Qk) + (1− α)2Qk

σ4
k

= 2n
∑

k

Pk

σ2
k

V [
∑

i:i6=aa

S(i, aa)] ≈ 4α2n
∑

k

PkQk

σ4
k

+ 4α(1− α)n
∑

k

Q2
k + PkQk

σ4
k

+ 4(1− α)2n
∑

k

Q2
k

σ4
k

= 4n
∑

k

Qk
α2Pk + α(1− α)(Pk + Qk) + (1− α)2Qk

σ4
k

= 2n
∑

k

Pk

σ2
k

V [
∑

i:i6=ab

S(i, ab)]

≈ n
∑

k

2α2(P 2
k + PkQk) + 2α(1− α)(Q2

k + P 2
k + 2PkQk) + 2(1− α)2(Q2

k + PkQk)

σ4
k

= n
∑

k

Qk + Pk

σ2
k
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Hence, the squared distances are given by

E[
∑

i:i6=bb

S(i, bb)2] = V [
∑

i:i6=bb

S(i, bb)] +
∑

i:i6=bb

E[S(i, bb)]2

≈ n

(

2
∑

k

Pk

σ2
k

+ 8α(1− α)3W 2

)

E[
∑

i:i6=ab

S(i, ab)2] = V [
∑

i:i6=ab

S(i, ab)] +
∑

i:i6=ab

E[S(i, ab)]2

≈ n

(

∑

k

Pk + Qk

σ2
k

+ 2α(1− α)(1− 2α)2W 2

)

E[
∑

i:i6=aa

S(i, aa)2] = V [
∑

i:i6=aa

S(i, aa)] +
∑

i:i6=aa

E[S(i, aa)]2

≈ n

(

2
∑

k

Qk

σ2
k

+ 8α3(1− α)W 2

)

Asymptotically, when n is large enough, the pivot i∗ will be from
A2A2 if E[

∑

i:i6=bb S(i, bb)2] > max(E[
∑

i:i6=ab S(i, ab)2], E[
∑

i:i6=aa S(i, aa)2]). After simpli-
fying the above expressions, we get that the requirement is that

∑

k

Pk −Qk

σ2
k

+ 4α(1− α)(1− 2α)W 2 > 0

The last inequality holds if the distance between the populations (W ) is large enough. In
that case, by Equation 8.9, the ordering of the individuals according to their similarity to
the pivot should give the correct clustering asymptotically.

8.3 Accuracy of the window length and the majority

vote

For a given window, the analysis in Section 8.1.4 shows that the expected fraction of
individuals with no breakpoints is 1 − γ. Here, we strengthen this analysis under the
assumption that the errors in the predictions of the different windows are independent.

It is easy to see that the expected fraction of individuals with two or more breakpoints
in a window is smaller than γ2. For a given individual with a breakpoint in position i, we
denote the ancestry by (As1, As2 , i, As3), where As1 is the ancestry of the non-recombinant
chromosome and As2 and As3 are the ancestries of the recombinant chromosome. We
assume that the probability to classify such an individual as As1As2 is i

l
, and the probability

to classify it as As1As3 is 1− i
l
. There are l windows that overlap with any SNP. Consider

a SNP which is a distance d away from a breakpoint. Let X be the number of times that
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the SNP is incorrectly classified as As1As3. Clearly,

E[X] =

l−d
∑

i=1

i

l
≈ (l − d)2

2l
.

Using a Chernoff bound [17], the probability to incorrectly classify this SNP after the
majority vote is

Pr(X >
l

2
) = Pr(X > (1 +

d

l − d
)2E[X]) < e−

( d
l−d

(2+ d
l−d

))2E[X]

2 = e−
(d(2+ d

l−d
))2

4l < e−
d2

l .

In the case that there are no other breakpoints within distance l from the breakpoint
considered, the expected number of errors around the breakpoint for the individual is

∫ l

0

e
−x2

l dx =

∫

√
2l

0

e
−x2

2

√

l/2dx ≈
√

l/2
√

2π =
√

l/π

If there are breakpoints within distance l of each other, we take the worst-case assump-
tion that all windows containing the two breakpoints make erroneous predictions over their
entire length l. Since the expected fraction of breakpoints in an individual is γ

l
, and the

expected fraction of pairs of breakpoints that are of distance smaller than l is at most γ2,
we can bound the expected number of errors as γ√

πl
+ γ2 = 4

∑

i<j αiαj(g − 1)r(
√

l/π +

4(
∑

i<j αiαj)(g − 1)rl3). Based on this analysis, a sufficient condition to achieve a desired

error rate of ε is to have 1
π
(

8(g−1)r(
P

i<j αiαj)

ε
)
2

< l <
1

4(g − 1)r
∑

i<j αiαj

√

ε

2
. For typical

values of g and r, the lower bound on l is small enough to be negligible.

8.4 Estimate of window length

The window length derived in Equation 8.8 bounds the classification errors within each
window to a desired error rate ε. Since all SNPs within a window are assigned the same
ancestry, any algorithm that is used within this window will incur some errors in the
presence of breakpoints. Hence the window length was calculated under the assumption
that the classification algorithm within the window was the most accurate possible i.e.,
any errors in the classification were only a result of breakpoints within a window. Here we
empirically show that, for the window lengths computed using Equation 8.8, the average
classification error for a most accurate classification is bounded by the error rate ε which
is set to 0.10.

Within each window, the most accurate ancestry assignment is inferred assuming that
the true ancestries are known. The most accurate assignment consists of assigning to
an individual the ancestry found in a majority of the SNPs in that window. Thus, an
individual who has no breakpoints is always correctly classified while an individual with
a breakpoint at position i < b l

2
c in a window of length l and ancestries As1 and As2 on

either side of the breakpoint will have errors in positions {1, . . . , i}. The error rate for a
window is the fraction of positions that are incorrectly classified in the window.
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Figure 8.2: Empirical validation of the window length estimates. The window length is
estimated in the Methods Section (Section 8.1.4). These estimates are based on a parameter
ε, which represents the average desired fraction of errors incurred by the most accurate
classification algorithm that can only return one of A1A1, A1A2, A2A2 for the entire window.
The figure presents the actual average error rates for different values of g and α, run on
the CEU-YRI dataset, with ε = 0.1. Evidently, the actual average error rate falls within
the desired error bound. The maximum and the minimum fraction of errors in a window
are also shown.

We computed the average of these errors in overlapping windows that span chromosome
1 of the YRI-CEU dataset for different values of g and α. We see in Figure 8.2 that the
average error is below ε. However, the variance of the estimates (indicated by the minimum
and the maximum fraction of errors) increases with larger g or with α→ 0.5. The window
size estimates seem to provide a good bound on the average fraction of errors due to
breakpoints.

8.5 Results

We empirically evaluated LAMP on various data-sets and compared its performance with
other tools that infer ancestry in admixed populations. When comparing to previous
methods, it is important to note that the inputs needed for the different methods are
different. In particular, in SABER [114], the genotypes from the pure ancestral populations
are assumed to be known, while in LAMP, we do not need this extra information. On the
other hand, similar to SABER, LAMP assumes that the recombination rates across the genome
and the admixture fraction (α1, . . . , αk) are known; the latter can be found with reasonable
accuracy using existing methods such as STRUCTURE or EIGENSTRAT, while the former can
be obtained from the previous estimates of recombination rates based on the HapMap data
[85]. We also provide LAMP with an estimate of the number of generations g of admixture
which can be approximated if the history of the admixed populations is known. We show
below that our method is robust to deviations in the estimate of g. For SABER, we set the
parameter τ , which roughly corresponds to the number of generations since admixing, to
g. We found that allowing SABER to estimate the values of τ yielded much poorer estimates
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of ancestry.

Simulated Datasets. We simulated admixed populations from the HapMap data in the
following manner. We used the SNPs of chromosome 1 from the 500K Affymetrix GeneChip
assay R© from each of the four HapMap populations: Yoruba people from Ibadan, Nigeria
(YRI); Japanese from the Tokyo area (JPT); Han Chinese from Beijing (CHB); and Utah
residents with ancestry from northern and western Europe (CEU). Overall, these span
38,864 SNPs for 60 unrelated individuals from CHB and YRI and 45 unrelated individuals
from CHB and JPT.

For each pair of HapMap populations, we simulated admixed populations by random
mating of individuals from the two populations across several generations. We started by
joining a random set of αn individuals from the first population, and (1− α)n individuals
from the second population. For the next generation, we repeatedly picked a random pair
of individuals from the combined set of individuals, and generated a child for this pair by
transmitting one chromosome from each individual. We repeated this process for g gener-
ations. We set the recombination rate to be 10−8 per base pair per generation consistent
with previous studies [86]. We note that this model is a worst case scenario in the sense
that in practice the populations are expected to mix in a slower rate, since individuals tend
to mate with individuals from a similar ancestral background. We simulated admixture
for various values of g and α; in the rest of this manuscript, the values of g and α are 7
and 0.2, unless stated otherwise. These parameters roughly match the nature of admixing
in African-American populations [20, 35, 43, 49, 116].

LAMP’s performance and accuracy. We evaluated the accuracy of the ancestry esti-
mates inferred by LAMP. We consider the two versions of LAMP, i.e., the de-novo inference
of the local ancestries, as well as the inference of the local ancestries based on genotype
data of the original ancestral populations. We refer to the latter method as LAMP-ANC. For
each individual i and SNP j, LAMP finds an estimate âp

ij ∈ {0, 0.5, 1} for the true ancestry
ap

ij by a majority vote across the windows overlapping with position j. We measure the
accuracy of LAMP as the fraction of triplets (i, j, p) for which ap

ij = âp
ij .

We compared LAMP to two state of the art methods: STRUCTURE [90] and SABER [114].
SABER requires the input genotypes, admixture fraction α, physical location of the SNPs
and the ancestral sequences that were used in the simulation (i.e., the original HapMap
populations) and was also provided the number of generations g. For STRUCTURE, we only
needed to provide the genotypes. We did not compare LAMP to methods such as Ad-
mixMap [71] and AncestryMap [43], since the high density of markers made these methods
infeasible.

Table 8.1 summarizes the prediction accuracies of LAMP, LAMP-ANC, SABER, and STRUCTURE.
LAMP and LAMP-ANC were run on the set of 38864 SNPs of chromosome 1. SABER and
STRUCTURE were run on non-overlapping windows of 4000 SNPs that included 36000 of the
original 38864 SNPs. This was done because STRUCTURE got into numerical instabilities
when a large number of SNPs were used, and SABER crashed for an unknown reason when
run on all the SNPs over the set of 500 individuals. For STRUCTURE the linkage model was

127



Dataset Distance LAMP LAMP-ANC SABER STRUCTURE

YRI-CEU 0.055 0.94 0.95 0.87 0.84
CEU-JPT 0.036 0.87 0.93 0.82 0.47
JPT-CHB 0.0045 0.48 0.72 0.68 0.40
Time (sec) 394 246 7681 2.57× 105

(38864 SNPs) (38864 SNPs) (4000 SNPs) (4000 SNPs)

Table 8.1: A summary of the comparison between LAMP, LAMP-ANC, SABER, and STRUCTURE.
The accuracy across all positions on chromosome 1 is shown for the three admixed popu-
lations. The distance between the admixing population (measured by the mean squared
distance between the allele frequency vectors) is also shown indicating the difficulty in
separating alleles from the populations. The time taken to run each of the methods is
shown. LAMP and LAMP-ANC were run on the entire set of 38864 SNPs while SABER and
STRUCTURE were run on non-overlapping blocks of 4000 SNPs due to issues with scaling
them to the entire dataset. For SABER and STRUCTURE the accuracies reported here are
obtained by averaging the accuracies across the blocks while the running time is the time
to run a single block. Each of these methods was run on a single computer.

used with 10,000 burn-in and 50,000 MCMC iterations. SABER was also seen to crash on
some of the 4000 SNP blocks and these were excluded from the analysis. The accuracy of
the ancestry estimates were obtained on the SNPs for which all methods returned a result.
From Table 8.1, it is clear that LAMP achieves considerable improvement over the YRI-CEU
and the CEU-JPT datasets, when compared to SABER or STRUCTURE. For the JPT-CHB
dataset, LAMP is worse than SABER, but LAMP-ANC achieves a higher accuracy than SABER.

The accuracy of each of the methods varies across the population. We therefore mea-
sured the average accuracy in predicting the ancestries for each of the individuals. Figure
8.3 shows the cumulative distribution function of the accuracies achieved by each of the
methods across the set of 500 individuals. As can be seen from the figure, the improvement
of LAMP compared to STRUCTURE and SABER is quite significant. For the YRI-CEU dataset,
when measuring the percentage of individuals that are predicted with an accuracy of at
least 90%, LAMP achieves 90% while SABER and STRUCTURE achieve less than 10%.
In general, the accuracy in the predictions that STRUCTURE makes has a higher variance
than the predictions made by SABER and LAMP. On the CEU-JPT dataset, LAMP is more
accurate than SABER. On the JPT-CHB dataset, SABER performs considerably better than
LAMP; this is probably due to the fact that the ancestral populations, which are given to
SABER but not to LAMP, are too similar to distinguish within a window; since LAMP-ANC uses
the allele frequencies of the ancestral individuals as input while still inferring ancestries
over entire windows, it is more accurate than SABER.

Table 8.1 also shows that LAMP achieves a gain in running time of at least two orders
of magnitude. We found that, on a single computer, LAMP and LAMP-ANC take less than 30
seconds to run on a 4000 SNP block and less than 7 minutes to run on the entire set of
38864 SNPs.

These experiments suggest that LAMP is especially useful when the ancestral populations
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Figure 8.3: Comparison of the accuracies of LAMP, LAMP-ANC, SABER, and STRUCTURE on 3
admixed populations - YRI-CEU (left), CEU-JPT (middle), and JPT-CHB (right). The
cumulative distribution function (CDF) is obtained from the accuracy of ancestry predic-
tions for each individual. Note that the scales differ across the plots. CDFs that are to the
right side correspond to higher accuracy. The graph on the left, for instance, shows that
LAMP achieves an accuracy of at least 92% on 90% of the individuals. LAMP achieves an
improved accuracy over SABER and STRUCTURE in the YRI-CEU and CEU-JPT populations
while performing worse on the JPT-CHB population. LAMP-ANC performs consistently well
on all three populations. Also notice the decrease in accuracy across all methods as we
move from left to right as the ancestral populations become more similar.

are sufficiently different from each other (e.g., CEU and YRI). In those cases, it is actually
not essential to genotype the ancestral individuals, as we observe that LAMP-ANC and LAMP

achieve similar accuracy levels. When the populations are closer (e.g., CHB-JPT), even
for a modest number of generations of mixing (in our case, 7 generations), none of the
methods performs well even when the ancestral populations are given.

Inferring individual admixture. Current studies often use the individual admixture
of each individual across the genome to correct for population stratification [40, 49, 66, 119].
The individual admixture of an individual is defined by the proportion of ancestors of the
individual from each of the ancestral populations. For instance, for an individual with a
mother from CEU and a father from YRI, the individual admixture would be 50% YRI,
and 50% CEU.

Even though LAMP is designed to estimate the locus-specific ancestry, we can use it
to find the individual admixture. We compare the estimates of the individual admixture
obtained from LAMP with those from STRUCTURE. We used the YRI-CEU dataset with g = 7
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Figure 8.4: Comparison of the accuracy of methods for predicting individual admixture.
a) The errors in the individual ancestries for each of the 500 YRI-CEU individuals. b)
Errors in a) plotted as a Cumulative Distribution Function (CDF). The top-left region of
the curve corresponds to higher accuracy. LAMP predicts the individual admixture with an
error of less than 3% in 80% of the cases.

and α = 0.20. We picked 4318 equally spaced SNPs from chromosome 1. This roughly
matches the number of SNPs required to distinguish non-admixed individuals from even
very closely related subpopulations [109]. We ran STRUCTURE on this set of SNPs with 10000
burn-in iterations and 50000 iterations using the NOLINKAGE model and the NOADMIX
mode option set to 0. We ran LAMP on the entire chromosome and then calculated the locus-
specific ancestry of each individual by averaging the ancestries predicted across the same
set of 4318 SNPs given to STRUCTURE. As shown by Figure 8.4, LAMP consistently achieves
considerably better estimates for the individual admixture. In particular, the average error
rate for LAMP is 2.1%, while the average error rate for STRUCTURE is 5.4%. The difference
in the performance between the methods is statistically significant (Wilcoxon signed rank
test p-value of 9.9 × 10−51). This experiment suggests that since LAMP is more than 600
times faster than STRUCTURE (see Table 8.1), it would be better to use LAMP across the
entire genome to infer the individual admixture, than to use STRUCTURE across a smaller
set of AIMs. We also inferred the individual admixture using the LINKAGE model in
STRUCTURE but found that this gave a significantly higher average error rate of 9.0%.

Another method to infer the individual admixture is EIGENSTRAT. We ran EIGENSTRAT

on the SNPs used above and chose the largest eigenvector. The ancestries of the individuals
were obtained by scaling the entries of the eigenvector to the interval [0, 1]. We found this
procedure to result in individual admixtures with an average error rate of 13.4%. When
we included 10 ancestral individuals each from the Hapmap YRI and CEU populations
reduced the average error to 4.1% (Wilcoxon signed rank test p-value of 1.3 × 10−83).
Using all 38864 SNPs decreased the average error to 11.1% and 3.6% respectively.
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LAMP’s performance across three admixed populations. When more than two
populations are mixed, de-novo inference of the locus-specific ancestry is a more challeng-
ing task. We therefore compare LAMP-ANC, which uses the genotypes from the ancestral
populations, to SABER, on a dataset generated by the mixing of three populations (YRI,
CEU and JPT). We mixed these populations in the ratio 0.4 : 0.4 : 0.2 for seven gener-
ations. Figure 8.5 shows the ancestry estimates of LAMP-ANC for one of the individuals.
LAMP-ANC accurately infers the ancestry over most of the chromosome, and it is clear that
qualitatively the estimates are very close to the true ancestry. To give a more quantitative
measure for the accuracy of LAMP-ANC, we calculated the cumulative distribution function
of the accuracies for each individual of LAMP-ANC and of SABER (see Figure 8.6). Evidently,
LAMP-ANC achieves a significantly better accuracy than SABER across the population (aver-
age accuracies of 92% and 74% respectively).

Empirical Robustness of LAMP. The performance of LAMP clearly depends on the
nature of the data, on the number of generations g, and on α. We varied g for a simulated
YRI-CEU admixed population with the fraction of CEU α = 0.20. As shown in Figure 8.7,
even when g is as large as 20, LAMP reaches an accuracy of 88%, and LAMP-ANC reaches an
accuracy of 93%. For more realistic values of g, (i.e. g < 10) the accuracy of LAMP is above
93%.

To measure the effect of α on the performance of LAMP, we measured the performance
for simulated data with g = 7 for different values of α (see Figure 8.7). We observe that
LAMP performs well for values of α of up to 0.40 with it accuracy remaining above 90% and
its performance drops sharply to a little above 50% accuracy for α = 0.5.
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Figure 8.6: Cumulative Distribution Function (CDF) of the accuracy achieved per individ-
ual. The methods compared are LAMP-ANC and SABER for the YRI-CEU-JPT admixture.
LAMP achieves an accuracy of at least 80% on all the individuals.

Finally, we measured the effect of the distance between the ancestral populations,
by comparing the accuracy of LAMP across the YRI-CEU, CEU-JPT and the JPT-CHB
datasets. As shown in Table 8.1 (see also Figure 8.7), LAMP is quite accurate on the
CEU-JPT and the YRI-CEU datasets, but its performance is quite poor on the JPT-CHB
dataset. In such a situation, the availability of allele frequencies is essential for accurate
inference, as we observe that LAMP-ANC maintains an accuracy of around 70%.

Robustness to Parameter Settings. Since LAMP requires as an input the values of
α and g, it is important to verify that inaccurate estimates of these parameters do not
affect the results significantly. We tested LAMP by benchmarking it over the simulated
YRI-CEU dataset, with true values of g = 7 and α = 0.2. We ran LAMP on this dataset
with different erroneous input values of g and α. In Figure 8.9 we observe that if the
number of generations g is mistakenly given to LAMP as 4 or larger, than the accuracy of
LAMP is kept reasonably high, and in particular it is at least 90%. On the other hand, it
seems that if the input α is very different from the true α, LAMP can perform quite poorly.
For instance, when the input α is set to 0.4 instead of 0.2, the accuracy level is about
85%. However, since α is a single parameter across all individuals, standard methods such
as STRUCTURE [90] give reasonable accuracy for α (e.g. the estimates for the YRI-CEU
dataset are between 0.17 and 0.24 across 10 runs) , we can safely assume that the error in
the prior estimate of α is within a factor of 0.5, in which case LAMP maintains a very good
performance.

The model used in LAMP requires the SNPs to be independent. To ensure this, we
discard SNPs with r2 above a threshold. We empirically chose a threshold of 0.10 for r2 so
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LAMP and LAMP-ANC shows the advantage conferred by a knowledge of the ancestral allele
frequencies.

that we retain a majority of the SNPs. However, as shown in Figure 8.8 the accuracy of
LAMP does not change much even when this threshold is raised so that the SNPs retained
are no longer independent. The accuracy begins to decrease only at stringent thresholds
below 0.005 due to a tendency to discard informative SNPs. We also examined the impact
of the sample size on the ancestry estimates. While an increase in sample size might lead
to SNPs being significantly linked even when the mutual r2 is small, for practical purposes,
such SNPs are essentially uncorrelated. Thus, LAMP is also robust to the sample size as
shown in Figure 8.8.

Finally, we measured the effect of the method used to simulate the data on the different
algorithms. To achieve this, we amplified the Hapmap haplotypes for YRI and CEU
populations using the model of Li and Stephens [79]. Briefly, the Li and Stephens model
generates additional haplotypes based on the ones already observed. The newly generated
haplotypes are composed from previous ones, assuming mutation and recombination. The
recombination rate in this model depends on the number of observed haplotypes, such
that the rate is higher when less haplotypes are observed. This reduces the recurrent
sampling of haplotypes, and as was shown by Li and Stephens, mimics more accurately
the generation of haplotypes. This resulted in a set of 10000 ancestral individuals which
then underwent admixture with g = 7 and α = 0.20 as described earlier. On this new
dataset, the accuracies obtained by LAMP, LAMP-ANC and SABER were 94.72%, 94.70%, and
89.09% respectively. The accuracies are close to the accuracies obtained on the YRI-CEU
dataset described in Table 8.1.

Since the ancestral allele frequencies used in LAMP-ANC were estimated from the same
data that was used to generate the admixed datasets, there is a potential risk of over-
fitting. To make sure that this is not the case, we partitioned the founding YRI and CEU
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sample size. The accuracy of LAMP has been shown on the YRI-CEU dataset for different
values of g and α with true values of g = 7 and α = 0.20.

populations into two equal-sized sets. We chose one of the two sets from each population
to generate a YRI-CEU dataset with parameters g = 7 and α = 0.20. Ancestral allele
frequencies were estimated from the other set. The accuracy of LAMP-ANC in this setting
was 94.06% which is very close to the previous estimates obtained. Running the same
procedure on the amplified datasets gave an accuracy of 94.44%, and thus we conclude
that the results were not due to over-fitting.

8.6 Discussion

We have presented a new method, LAMP, for de-novo estimation of locus-specific ances-
try in recently admixed populations. Unlike previous methods for locus-specific ancestry
(e.g., SABER), LAMP does not use any information about the ancestral populations (i.e., it
estimates the ancestries de-novo). We show that LAMP is analytically justified and that
it achieves significant improvements over existing methods both in terms of accuracy of
prediction and speed. In particular, LAMP can easily be applied to whole genome datasets,
and the resulting locus-specific ancestries can be estimated within a few hours.

De-novo estimation of the locus-specific ancestries is sometimes infeasible, especially
when the ancestral populations are very close to each other (e.g., CHB and JPT). We
therefore extended LAMP to a method called LAMP-ANC, which uses additional genotypes
from the ancestral populations as priors. This approach has been shown to be useful
before by methods such as SABER.

When compared to previous methods, LAMP is shown to achieve significantly better
accuracy than other methods (SABER and STRUCTURE). The increase in accuracy may be
crucial when trying to correct for population stratification in studies that involve recently
admixed populations, as well as in studies that are based on admixed mapping. Further-
more, improved accuracy in the locus-specific ancestry estimation has potential applications
in finding better signals for selection and other events across the genome.
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While LAMP relies on a knowledge of the parameters g and α, we have shown the
robustness of the ancestry estimates to inaccuracies in these parameters. These parameters
control the window size. As the window size is decreased, each window may contain
fewer informative SNPs. On the other hand, errors in classifying individuals who have
breakpoints within a window are reduced. This trade-off is illustrated in Figure 8.9 where
we see that the ancestry estimates are robust when g is overestimated. In practice, we would
therefore recommend using an upper bound on g when g cannot be estimated accurately.
Furthermore, g may actually be a more complex parameter. For example, if some portions
of the admixed population have admixed for g1 generations and other portions have been
admixed for only g2 generations, where g2 is smaller than g1. In this case, g is set to be
g1, and more accurate results are expected than if the whole population has admixed for
exactly g1 generation.

The fact that the LAMP algorithm performs better on the unbalanced case (α << 0.5)
than on the balanced case, seems counterintuitive at first. The reason for this phenomenon
is the fact that a small α helps to break the symmetry. Even if all windows were perfectly
clustered, combining the solutions of the different windows into one integrated solution is
not a simple task when α = 0.5 due to symmetry. That is, after clustering the individuals
in every given window, we are still left with the problem of deciding which cluster is
population 1, and which one is population 2. If α < 0.5, then this decision is easier since
the smaller cluster could be labeled as population 1, and the larger cluster as population
2.

Further, it is interesting to note that even though SABER models the LD structure while
LAMP does not, it appears that LAMP performs better than SABER. This could be attributed
to several possible reasons. First, it may be that the LD structure only adds slightly to
the information captured by the independent SNPs. Second, it may be that optimizing
the model in SABER is a harder task than optimizing the model in LAMP due to the larger
number of parameters, and thus SABER may potentially not converge to the global optimum
of its parameter space.
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A simple extension to LAMP can be used to infer the individual admixture. As we show
here, the resulting estimates of the individual admixture are considerably better than the
estimates achieved by STRUCTURE or EIGENSTRAT. A number of recent studies have produced
panels of Ancestry Informative Markers (AIMs) in admixed populations [30, 31, 41, 46],
which are SNPs that have differing frequencies in the ancestral populations. It is possible
that the AIMs may be used to improve the accuracy of individual admixture prediction done
by STRUCTURE or other methods including LAMP. However, the AIMs have disadvantages
since there is a risk of over-fitting, and the studied population may be somewhat different
than the population for which the AIMs were found. As we show here, in an era where
the genotyping technology is getting cheaper, it is useful to use the entire set of genotyped
SNPs in the analysis of population stratification.

There are many possible improvements to this work, and in particular it would be
important to improve the current methods in the case of very similar ancestral populations,
or when more than two populations are involved. Furthermore, removing the dependency
of the method on the input parameters (e.g., the number of generations g, or the admixture
fraction α) may be quite useful in order to generate a rigorous statistical test for admixing.
Additional improvements in the running time can be achieved by parallelizing the LAMP

algorithm. This is straightforward in our case since each window could be run independent
of the others and the results for windows overlapping a SNP could be aggregated in a final
step.

8.7 Practical issues in implementing LAMP

In this section, we describe some of the issues that we faced while implementing LAMP.
One of the issues that we needed to address was how to determine the degree of overlap
between adjacent windows. An extreme degree of overlap would require adjacent windows
to differ in a single SNP. In practice, we found that a smaller degree of overlap, where
consecutive windows overlapped in a fraction c = 80% of their length, did not significantly
change the accuracy while resulting in faster running times. The overlap between adjacent
windows can be exploited to further improve the running time. While using the MAXVAR

algorithm to obtain an initial classification, each window requires a computation of the
similarity score between all pairs of individuals. The similarity score is computed using
an inner product of the normalized genotypes as described in Section 8.1.3. Instead of
computing these similarity scores over entire windows of length l, we can compute these
scores over chromosomes of length (1 − c)l. The similarity score in a new window can
then be computed from that of the previous window by adjusting for the non-overlapping
regions.

As we mentioned at the end of Section 8.1.4, the window length calculation should take
into account the distance between the two populations. This is feasible when the ancestral
genotypes are known. In this scenario, the accuracy of the classification for a given window
length can be obtained by running LAMP-ANC on the ancestral genotypes. With an increase
in the window length, this accuracy is expected to increase. On the other hand, the errors
due to breakpoints, as given in Equation 8.8, increases with window length. We can then
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search for the window length that maximizes the product of the fraction of individuals who
do not have breakpoints and the fraction of these individuals who are accurately classified.
For populations that are well-separated such as YRI-CEU and CEU-JPT, we find that the
number of SNPs needed to accurately classify a non-admixed individual is much smaller
than the length of the window obtained from Equation 8.8, so that it suffices to simply set
the window length to the latter estimate.

See the Appendix for obtaining the software package.
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Chapter 9

Discussion and Conclusions

In this thesis work, we primarily focused on methods to analyze SNP variation data within
humans. To reconstruct the mutational history of these sequences we use the maximum
parsimony objective, a particularly appropriate measure for short time scales. Although,
the problem of maximum parsimony phylogeny reconstruction has been studied for several
decades, typically heuristics are used to solve the problem in practice. Reconstructing
‘perfect phylogenies’ showed great promise in converging theoretical optimal solutions to
practical fast algorithms. However, the assumption was too weak, leading to methods that
heuristically tackled the case when the input was imperfect. Prior near-perfect phylogeny
reconstruction algorithms were theoretical and so extremely involved that no researcher
even attempted an implementation. We showed that near-perfect phylogenies can be con-
structed extremely efficiently with a simple and elegant algorithm. Our theoretical result
showed the problem to be fixed parameter tractable (FPT), thus solving a previously open
problem. Moreover, we showed that the algorithm can be implemented and runs very fast
in practice. As another way to bridge optimality with practical run-time constraints, we
developed extensive theoretical pre-processing techniques that do not change the problem
(in terms of optimality) while typically greatly reducing the problem sizes. We then used
an integer linear program (ILP) that solved the problem extremely efficiently in practice
– in fact typically faster than the most widely used heuristic.

Maximum parsimony phylogeny reconstruction from genotypes has been more closely
studied because of its applications to phase inference (haplotyping). Again, perfect phy-
logeny reconstruction was immensely useful in providing a theoretical (optimal) solution
under the special case, while being efficient in practice. Researchers made progress by
solving for 1-near-perfect phylogenies and those for which at most 1 site is allowed to re-
currently mutate. In our work, we solve the general problem efficiently by developing a
polynomial time algorithm for the q-near-perfect phylogeny problem, when q is any con-
stant. Like in the previous case, we also developed integer linear programming (ILP) based
solution that was faster in practice. We showed that popular phase inference packages such
as phase and haplotyper that have been previously shown to be excellent methods for
‘switch error’ statistic, introduce significant errors when phylogenies are constructed from
the inferred haplotypes. Instead, direct reconstruction of phylogenies from genotypes yields
significantly better results.
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Finally, we applied these methods to the whole genome by reconstruction maximum
parsimony phylogenies around every locus of the HapMap data-set. We developed an
online tool that can provide a phylogeny and the number of recurrent mutation around
any position of the human genome. This is the only tool available today that can provide
this information. We hope that this would be a great asset to researchers interested in
specific genes and in understanding their mutation history and the influence of selective
bias.

Mutational history focuses on exploiting differences in observed phenotypes based on
haplotype information. To use population specific segregation due to random mating, we
worked on clustering SNP sequences. Our first result was under the simple model that
each individual belongs to exactly one of several ancestral population groups. Under this
model, we developed an algorithm that runs in polynomial time when the length of the
sequences (number of SNP sites examined) is large enough. Furthermore, the algorithm
guarantees correctness of the returned clusters. The algorithm is very simple to implement
and was highly efficient and accurate in practice. In particular the algorithm was more
accurate than the leading software package while being 1000-fold faster.

Lastly, we studied a more general model where individuals could be admixed. For the
computational problem, this means that the individuals could be a mixture of 2 or more
ancestral clusters. Under this setting, we developed an algorithm that was several orders
faster than the leading package while being even more accurate.

9.1 Future work

There are several avenues to extend the work that has been discussed. Some specific pos-
sibilities are outlined below.

Evolutionary Tree Reconstruction. There are several interesting theoretical direc-
tions that are still largely unsolved. One problem is that of reconstructing near-perfect
phylogenies for input genotypes efficiently without using the assumption that the num-
ber of solutions to the perfect phylogeny problem is bounded by a polynomial. Another
problem is to reconstruct evolutionary trees when the number of states is large, i.e., each
individual’s sequence is a string over s states. While the extension is not useful for analysis
of SNP data, other kinds of polymorphisms, such as copy number variation, require the
larger number of states.

Understanding the topology of evolutionary trees observed in reality over the whole
genome is very interesting. Is a star topology more common or a path? Are there topolo-
gies that are rarely observed and, if so, what inferences can we draw about their ancestry?
We can attempt to answer such questions using the algorithms described in the thesis
by reconstructing piece-wise evolutionary trees for the whole genome. Using simulation
and well-known loci under selective pressure (such as the lactase gene), we can therefore
understand how selection influences the tree structure. It would also be interesting to
figure out how the trees look at various structural positions of the genome – around genes,
around intergenic regions, around specialized gene families such as those responsible for
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the immune system etc. Finally, it would be of incredible utility for all researchers if we
can compile the set of piece-wise phylogenies over the HapMap data into a grand unified
evolutionary tree (network) that can be treated as a gold standard for reference.

Population Substructure. In prior work we were able to distinguish closely related
populations (such as Chinese-Japanese) if there was no admixture and also compute ad-
mixture fractions when the ancestral sub-populations are not too similar (such as African-
Americans). There is much that is unsolved. The first is to compute the approximate
time (number of generations) that separates any two sub-populations. This requires new
algorithms as well as extensive testing with simulations to show that the method is ac-
curate and efficient. The second is to come up with a method that is very fine-scale and
can actually find admixture within a single population if there are enough SNPs (such as
different villages within a Chinese population). This is a very important problem since at
the rate at which SNPs are typed, within a few months, it would be easy to obtain one
million SNPs for every individual in a single experiment. This is a lot of information from
which to deduce the population ancestry.

Disease Association Testing. This is the biggest application of genotyping SNPs.
Given a set of SNP sequences for a set of diseased individuals (cases) and a set of healthy
individuals (controls), we would like to find one or more SNPs that can be used as an
explanation for the disease. The problem is significantly harder than it might seem at first
glance, since the amount of signal is very tiny and statistical significance drops quickly
with the number of hypotheses tested. However, it is interesting to see how our newly
established methods on evolutionary tree reconstruction and population substructure can
help with disease association testing.

Algorithms. As stated above, developing theoretical algorithms for the problems men-
tioned is exciting. However, there are a couple of very interesting paradigms that will likely
be important.

First is the relationship between discrete algorithms and statistical machine learning
methods. As has been observed by many, discrete algorithms use very few parameters
and find optimal solutions with efficient running times. In contrast, machine learning
algorithms model the problem far more accurately but require many additional parameters
which are typically estimated heuristically with no good run-time bounds. Recently, several
papers, including some developed as part of this thesis work [65, 95, 105, 109] have used
hybrid algorithms that have proved to be very useful. Such methods find the optimal
solution using discrete algorithms for a simplified problem formulation and then use that
as a starting solution for the machine learning based methods. An interesting question
is to find the relationship between the two objective functions for specific problems. For
example, does maximizing the cut-weight also maximize the likelihood function of the cuts
in the problem of detecting population substructure? Although some of the preliminary
theoretical results discussed in the thesis point in this direction, much remains open. Such
hybrid paradigms will be very useful in the future as well, since they combine the strengths
of discrete algorithms and machine learning algorithms.

143



Second, it is obvious that the amount of data is increasing at a very fast rate. There-
fore, there is an interesting trade-off between running time, information, and accuracy
to be made. Ten years back, the data sizes were so small that it was critical to have a
very good model even if the running time for that model was large. Such was the case
with STRUCTURE [90]. However, if one needs to use such older algorithms on the current
data-sets, the running time is prohibitive. Therefore, the trade-off will be to use a smaller
sampled set so that the run-time is faster, thereby compromising on the information. In-
stead, if we can develop new methods that are significantly faster, they can use all of the
data available. This was the main idea behind the new graph-based algorithm to detect
sub-structure [109] and the algorithm to detect admixture [95]. These results have pro-
vided some nice examples for future work to generalize and use similar techniques to solve
other applied problems.
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Appendix A

A.1 Simple definitions for some genetic terms

• Allele: One of the possibly many variations in a polymorphism.

• Bi-allelic: Polymorphism that results in only two possible variations.

• Copy number polymorphism (CNP): Variation in the genome arising due to different
copies of a sequence (string) of DNA.

• Genotype: Conflated combination of haplotypes. Combined allele counts from the
pair of homologous chromosomes.

• Haplotype: Sequence information from a single chromosome.

• Haplotype inference (haplotyping): Finding a pair of haplotypes for each input geno-
type.

• Homologous pair: All chromosomes in the human genome, except X and Y are in
pairs. This term refers to one such pair.

• Homozygous: Two alleles of the same kind present, one each in a (homologous) pair
of chromosomes.

• Heterozygous: Different alleles present at a site in a (homologous) pair of chromo-
somes.

• Linkage disequilibrium (LD): Correlation of the genotypes on a pair of SNP sites due
to close proximity of their physical location.

• Locus: See Site.

• Major allele: The allele that is more common in the population.

• Minor allele: The allele that is less common in the population.

• Phasing (phase inference): See Haplotyping.

• Phenotype: Physical (observable) traits such as hair-color.

• Phylogenetic tree (phylogeny): An evolutionary tree that explains the observed se-
quences. Vertices (points) represent current or ancestral sequences and edges (lines)
represent lineage contain possible mutation events.

• Point mutation: Mutation on a single base which results in an SNP.
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• Recombination: Shuffling of chromosome (during meiosis) resulting in a chromosome
that contains one part from the maternal chromosome and one part from the paternal.

• Recurrent mutation: Two mutation events on the same site over time. Typically an
SNP site is a result of a single ancestral mutation, rarely a recurrent mutation can
occur.

• Substructure: Underlying sequences having additional structure primarily due to the
samples being drawn from multiple population groups.

• Single nucleotide polymorphism (SNP): Variation in the DNA due to a single base
change. They are defined to be bi-allelic.

• Site: A region of the genome. In the context of this article a region that exhibits
polymorphism. In the case of a single nucleotide polymorphism, this refers to a single
position (one nucleotide) of the DNA sequence.

A.2 Web Resources

SCIMP

This tool can reconstruct maximum parsimony phylogenies from a given set of haplotypes
or given set of marker ids using built-in HapMap phase II sequences. It can also display
the union of all MP phylogenies. More importantly, the website can scan any region of the
genome that the user specifies to identify regions of high or low imperfection. The website
can be accessed at: www.cs.cmu.edu/~imperfect

We provide some instructions on how to use the tool below. Figures A.1 and A.2 pro-
vide some screenshots of the output.

Input options. Users can either enter their own SNP-haplotype data (see format
below) or use the data-set published by the International HapMap consortium.

User-specified SNP Data. The file is white-space and endline (\n) delimited. The
first two numbers (white-space and/or endline delimited) should be the number of haplo-
type sequences and the number of SNPs respectively. Each subsequent line corresponds to
one haplotype sequence, which is white-space delimited. Each site should either take the
value 0 (one allele) or 1 (other allele), with no missing data allowed. In short, the set of
haplotypes should form an n×m binary matrix, where n is the number of rows (number
of sequences) and m is the number of columns(number of sites).

HapMap Data. Currently we support analysis of two populations: CEU and YRI.
The set of contiguous SNPs that the user is interested in can be specified in three ways as
described below.

Genotyped SNP Number. This corresponds to the ith SNP as genotyped by the
HapMap project. Notice that these numbers are consecutive, starting from 1 and ending
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at the number of SNPs genotyped for that chromosome.

Chromosome Position. The physical location of the site. If the site was not geno-
typed, the first genotyped SNP larger than the starting value and the last SNP smaller
than the ending value are used. The easiest way to browse the imperfection is to first use
the genotyped SNP number option, with a pre-processed window size. Then, using the
output as a guide, to focus on the SNPs physical chromosome positions.

Analysis. The user has two options to analyze the data. The first is to scan a region of
the genome to identify regions of high imperfection (recurrent mutations/recombinations).

Scan. The user specifies a window size. A sliding window of SNPs is used to compute the
most parsimonious phylogeny and therefore the imperfection (number of recurrent muta-
tions) of the region. The output produces an imperfection scan for the region under study.
An imperfection of k indicates that the region must have undergone k recurrent mutations
(in the absence of recombinations).

Imperfection. This simply reconstructs the most parsimonious phylogeny for the spec-
ified sequences. Note that unlike heuristics that attempt to maximize parsimony, our
method is guaranteed to return the most parsimonious phylogeny. In otherwords, our
results should be similar to exhaustive search (brute-force) or branch-and-bound but sig-
nificantly faster.

Phylogeny. Each green vertex corresponds to one or more input rows, which are
indicated by the number(s) within the vertex (see below for HapMap). Each blue vertex
corresponds to a Steiner (ancestral) vertex, that is simply used to link the input rows. Each
edge denotes one or more mutations and is annotated with the site(s) that mutate. If the
HapMap is used for scan, then in the resulting phylogenies, the individuals are numbered
from 0 through 119. The individual IDs (in order) are given in these files. The IDs appear
twice since there are two haplotypes per individual.

Direct Phylogeny Inference from Genotypes

This tool can find a set of haplotypes consistent with the given input genotypes such that
the size of the maximum parsimony phylogeny is minimized. Note that the tool by itself
does not display the phylogeny, but it is easy to use the output as the input to the previous
tool to determine the phylogeny if needed. The output is a simple text interface that lists
the set of haplotypes.

Input Format. The input data is white-space and endline delimited. The first two
numbers (white-space and/or endline delimited) should be the number of genotype se-
quences and the number of SNPs, respectively. Each subsequent line corresponds to one
genotype sequence, which is white-space delimited. Each site should either take the value
0 (homozygous), 1 (heterozygous) or 2 (homozygous for the second allele) with no missing
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Figure A.1: Screenshot of an imperfect phylogeny reconstructed by the online tool using a
set of contiguous SNPs from HapMap chromosome 21

data allowed. In short, the set of genotypes should form an n×m binary matrix, where n
is the number of rows (number of sequences) and m is the number of columns (number of
sites)

The website can be accessed at: www.cs.cmu.edu/~imperfect/direct

Population substructure (pure populations)

Given a set of genotypes, the tool can cluster them into two sub-populations. It can also
provide a p-value for the strength of the clusters found.

Input Format. The webserver uses the same input format as the software package
STRUCTURE. Each row represents the genotype information from one individual. A row
begins with an individual ID and is followed with a binary representation of the genotype,
which is space de-limited. A homozygous allele is represented as 0 0 or 1 1 while a het-
erozygous site is represented as 0 1 or 1 0. Missing data are represented by the digit 9.
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Figure A.2: Screenshot of scan for detecting phylogenetic imperfection using a window size
of 5 from a part of Chromosome 21.

Therefore if there are n individuals and m SNPs, then the input should consist of n rows
and 2m+1 columns. The first column is alpha-numeric and subsequent columns are binary
(unless they contain missing data).

Output Format. The output format is fairly simple. It consists of a set of lines,
each of which contains an individual ID followed by a label: either a 0 or a 1. Therefore
two individual IDs with the same label belong to the same sub-population and individuals
with different IDs belong to different sub-populations. If the p-value option is used, then
the webserver also prints the significance.

The website can be accessed at: www.cs.cmu.edu/~triplets

Population substructure (admixed populations)

Given a set of genotypes, the tool computes ancestries for each individual as a mixture of
two or more populations. The prediction is more accurate if the allele frequencies from
the ancestral populations are provided as well. The tool will soon be available online for
download at: http://lamp.icsi.berkeley.edu/lamp
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Figure A.3: Screenshot of the output containing a phylogenetic network produced as a
union of all edges of every maximum parsimony phylogeny for a user input.
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