
Approximation Algorithms Going Online

Sham Kakade1 Adam Tauman Kalai2 Katrina Ligett3

January 23, 2007
CMU-CS-07-102

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

In an online linear optimization problem, on each periodt, an online algorithm choosesst ∈ S from a fixed (possibly
infinite) setS of feasible decisions. Nature (who may be adversarial) chooses a weight vectorwt ∈ R

n, and the
algorithm incurs costc(st, wt), wherec is a fixed cost function that is linear in the weight vector. Inthefull-information
setting, the vectorwt is then revealed to the algorithm, and in thebanditsetting, only the cost experienced,c(st, wt),
is revealed. The goal of the online algorithm is to perform nearly as well as the best fixeds ∈ S in hindsight. Many
repeated decision-making problems with weights fit naturally into this framework, such as online shortest-path, online
TSP, online clustering, and online weighted set cover.
Previously, it was shown how to convert any efficientexactoffline optimization algorithm for such a problem into an
efficient online bandit algorithm in both the full-information and the bandit settings, with average cost nearly as good
as that of the best fixeds ∈ S in hindsight. However, in the case where the offline algorithm is an approximation
algorithm with ratioα > 1, the previous approach only worked for special types of approximation algorithms.
We show how to convert any efficient offlineα-approximation algorithm for a linear optimization problem into an
efficient algorithm for the corresponding online problem, with average cost not much larger thanα times that of the
bests ∈ S, in both the full-information and the bandit settings. Our main innovation is in the full-information setting:
we combine Zinkevich’s algorithm for convex optimization with a geometric transformation that can be applied to any
approximation algorithm. In the bandit setting, standard techniques apply, except that a “Barycentric Spanner” for the
problem is also (provably) necessary as input.
Our algorithm can also be viewed as a method for playing a large repeated games, where one can only compute
approximatebest-responses, rather than best-responses.

1TTI-C. sham@tti-c.org
2Georgia Tech. atk@cc.gatech.edu
3Carnegie Mellon. katrina@cs.cmu.edu

Keywords: approximation algorithms, regret minimization, online linear optimization

1 Introduction

In an offline optimization problem, one must select a single decisions from a known set of decisionsS,
in order to minimize a known cost function. In an offlinelinear optimization problem, a weight vector
w ∈ R

n is given as input, and the cost functionc(s,w) is assumed to be linear inw. Many combinatorial
optimization problems fit into this framework, including traveling salesman problems (whereS consists of a
subset of paths in a graph), clustering (S is partitions of a graph), weighted set cover (S is the set of covers),
and knapsack (S is the set of feasible sets of items and weights correspond toitem valuations).

Each of these problems has anonlinesequential version, in which on every period the player mustselect
her decision without knowing that period’s cost function. That is, there is an unknown sequence of weight
vectorsw1, w2, . . . ∈ R

n and for eacht = 1, 2, . . ., the player must selectst ∈ S and payc(st, wt). In the
full-informationversion, the player is then informed ofwt, while in thebanditversion she is only informed
of the valuec(st, wt). (The namebandit refers to the similarity to the classic multi-armed bandit problem
[10]).

The player’s goal is to achieve low average cost. In particular, we compare her cost with that of the
best fixed decision: she would like her average cost to approach that of the best single point inS, where the
best is chosen with the benefit of hindsight. This difference, 1

T

∑T
t=1 c(st, wt) − mins∈S

1
T

∑T
t=1 c(s,wt),

is termedregret.
Prior work showed how to convert anexactalgorithm for the offline problem into an online algorithm

with low regret, both in the full-information setting and inthe bandit setting. In particular, Kalai and Vem-
pala showed [8] that using Hannan’s approach [7], one can guaranteeO(T−1/2) regret for any linear opti-
mization problem, in the full-information version, as the number of periodsT increases. It was later shown
[1, 9, 5] how to convert exact algorithms to achieveO(T−1/3) regret in the more difficult bandit setting.

This prior work was actually a reduction showing that one cansolve the online problemnearly as
efficientlyas one can solve the offline problem. (They used the offline optimizer as a black box.) However,
in many cases of interest, such as online combinatorial auction problems [2], even the offline problem is
NP-hard. Hannan’s “follow-the-perturbed-leader” approach can also be applied to some special types of
approximation algorithms, but fails to work directly in general. Finding a reduction that maintains good
asymptotic performance usinggeneralapproximation algorithms was posed as an open problem [8]; we
resolve this problem.

In this paper, we show how to convertany approximation algorithm for a linear optimization problem
into an algorithm for the online sequential version of the problem, both in the full-information setting and
in the bandit setting. Our reduction maintains the asymptotic approximation guarantee of the original al-
gorithm, relative to the average performance of the best static decision in hindsight. Our new approach is
inspired by Zinkevich’s algorithm for the problem of minimizing convex functions over a convex feasible
setS ⊆ R

n [11]. However, the application is not direct and requires a geometric transformation that can be
applied to any approximation algorithm.

Example 1 (online metric TSP).A delivery company serves the samen customers every day. The
company must schedule its daily route without foreknowledge of the traffic on each street. The time on any
street may vary unpredictably from day to day due to traffic, construction, accidents, or even competing
delivery companies. Inonline metric TSP, we are given a undirected graphG, and on every periodt, we
must output a tour that starts at a specified vertex, visits all the vertices at least once, then returns to the
initial vertex. After we announce our tour, the traffic patterns are revealed (in the full-information setting,
the costs on all the edges; in the bandit setting, just the cost of the tour) and we pay the cost of the tour.

Example 2 (online weighted set cover).Every financial quarter, our company hires vendors from a
fixed pool of subcontractors to cover a fixed set of tasks. Eachsubcontractor can handle a known, fixed sub-
set of the tasks, but the price they charge varies from quarter to quarter. Inonline weighted set cover, the ven-
dors are fixed setsP1, . . . , Pn ⊆ [m]. Each period, we choose a legal coverst ⊆ [n], i.e.,

⋃

i∈st
Pi = [m].

There is an unknown sequence of cost vectorsw1, w2, . . . ∈ [0, 1]n, indicating the quarterly vendor costs.
Each quarter, our total costc(st, wt) is the sum of the costs of the vendors we chose for that quarter. In the
full-information setting, at the end of the quarter we find out the price charged by each of the subcontractors;
in the bandit setting, we receive a combined bill showing only our total cost.

1.1 Hannan’s approach

In this section, we briefly describe the previous approach for the case of exact optimization algorithms
based on Hannan’s idea of adding perturbations. We begin with the obvious “follow-the-leader” algorithm
which, each period, picks the decision that is best against the total (equivalently, average) of the previous
weight vectors. This means, on periodt, choosingst = A

(
∑t−1

τ=1 wτ

)

, whereA is an algorithm that, given
a cost vectorw, produces the bests ∈ S.1 Hannan’s perturbation idea, in our context, suggests using
st = A

(

pt +
∑t−1

τ=1 wτ

)

for uniformly random perturbationpt ∈ [0,
√

t]n. One can bound the expected
regret of following-the-perturbed-leader to beO(T−1/2), disregarding other parameters of the problem.

Kalai and Vempala [8] note that Hannan’s approach maintainsan asymptoticα-approximation guarantee
when used withα-approximation algorithms with a special property they call α-point-wise approximation,
meaning that on any input, the solution they find differs fromthe optimal solution by a factor of at mostα
in every coordinate. They observe that a number of algorithms, such as the Goemans-Williamson max-cut
algorithm [6], have this property. Balcan and Blum [2] observe that Hannan’s approach applies to another
type of approximation algorithm: one that uses an optimal decision for another linear optimization problem,
e.g., using MST for TSP. It is also not difficult to see that a FPTAS can be used to get a(1 + ǫ)-competitive
online algorithm. We further note that the Hannan-Kalai-Vempala approach extends to approximation algo-
rithms that perform a simple type of randomized rounding where the randomness does not depend on the
input.

In Appendix A, we use an explicit example based on the greedy set-cover approximation algorithm to
illustrate how Hannan’s approach fails on more general approximation algorithms.

1.2 Informal statement of results

The main result of this paper is a general conversion from anyapproximate linear optimization algorithm to
an approximate online version in the full-information setting (Section 3). The extension to the bandit setting
(Section 4) uses well-understood techniques, modulo one new issue that arises in the case of approximation
algorithms. We summarize the problem, our approach, and ourresults here.

We assume there is a known compact convex setW ⊆ R
n of legal weight vectors (in many casesW =

[0, 1]n), and a cost functionc : S ×W → [0, 1] that islinear in its second argument, i.e.,c(s, av + bw) =
ac(s, v)+bc(s, v) for all s ∈ S, a, b ∈ R, andv,w, av+bw ∈ W. The generalization to[0,M]-bounded cost
functions forM > 0 is straightforward.2 We assume that we have a black-boxα-approximation algorithm,
which we abstract as an oracleA such that, for allw ∈ W, c(A(w), w) ≤ αmins∈S c(s,w). That is, we do
not assume that our approximation oracle can optimize in every direction. In the full-information setting, we
assume our only access toS is via the approximation algorithm; in the bandit setting, we need an additional
assumption, which we describe below.

For simplicity, in this paper, we focus on thenon-adaptive setting, in which the adversary’s choices of
wt can be arbitrary but must be chosen in advance. In theadaptive setting, on periodt, the adversary may
choosewt based ons1, w1, . . . , st−1, wt−1. There is no clear reason why the results presented here cannot
be extended to the adaptive setting.

1This approach fails even on a two-decision problem, where the costs of the two decisions are (0.5,0) during the first period and
then alternate(1, 0), (0, 1), (1, 0), . . . , thereafter.

2In [8], the setW = {w ∈ R
n | |w|1 ≤ 1} was assumed.

2

For α-approximation algorithms, it is natural to consider the following notion ofα-regret, in both the
full-information and the bandit-settings. It is the difference between the algorithm’s average cost andα
times the cost of the bests ∈ S, i.e., 1

T

∑T
1 c(st, wt) − α mins∈S 1

T

∑T
1 c(s,wt).

1.2.1 Full-information results

Our approach to the full-information problem is inspired byZinkevich’s algorithm (for a somewhat different
problem)[11], which uses an exact projection oracle to create an online algorithm with low regret. An exact
projection oracleΠJ is an algorithm which can produceargminx∈J ||x − y|| for all y ∈ R

n, whereJ is the
“feasible region” (in Zinkevich’s setting, a compact convex subset ofRn). The main algorithm presented in
Zinkevich’s paper, GREEDY PROJECTION, determines its decisionxt at timet asxt = ΠJ(xt−1 − ηwt−1),
whereη is a parameter called the learning rate andwt−1 is the cost vector at time(t− 1). One can view the
approach in this paper as providing a method to simulate a type of “approximate” projection oracle using an
approximation algorithm. In Section 3 we show the following:

Result 1.1. Given anyα-approximation oracle to an offline linear-optimization problem and anyT, T0 ≥ 1,
w1, w2, . . . ∈ W, our (full-information) algorithm outputss1, s2, . . . ∈ S achieving

E





1

T

T0+T
∑

t=T0+1

c(st, wt)



− α min
s∈S

1

T

T0+T
∑

t=T0+1

c(s,wt) =
O(αn)√

T
.

The algorithm makes poly(n, T) calls to the approximation oracle.

Note that the above bound on expectedα-regret holds simultaneously for every window ofT consecutive
periods (T must be known by the algorithm). We easily inherit this useful adaptation property of Zinkevich’s
algorithm. It is not clear to us whether one could elegantly achieve this property using the previous approach.

1.2.2 Bandit results

Previous work in the bandit setting constructs an “exploration basis” to allow the algorithm to discover better
decisions [1, 9, 5]. In particular, Awerbuch and Kleinberg [1] introduce a so-called Barycentric Spanner (BS)
as their exploration basis and show how to construct one froman optimization oracleA : R

n → S. However,
in the case where the oracle (exact or approximate) only accepts inputs in, say, the positive orthant, it may
be impossible to extract an exploration basis. Hence, we assume that we are given aβ-BS for the problem
at hand as part of the input. Note that the BS only needs to be computed once for a particular problem and
then can be reused for all future instances of that problem. Given aβ-BS, the standard reduction from the
bandit setting to the full-information setting gives:

Result 1.2. For any β-BS and anyα-approximation oracle to an offline linear-optimization problem and
anyT, T0 ≥ 1, w1, w2, . . . ∈ W, (bandit) Algorithm B.2 outputss1, s2, . . . ∈ S achieving

E





1

T

T0+T
∑

t=T0+1

c(st, wt)



− αmin
s∈S

1

T

T0+T
∑

t=T0+1

c(s,wt) =
O(n(αβ)2/3)

3
√

T
.

The algorithm makes poly(n, T) calls to the approximation oracle.

We also show, in Section 4.1, that the assumption of a BS is necessary.

Result 1.3. There is no polynomial-time black-box reduction from anα-approximation algorithm for a
general linear optimization problem (without additional input) to a bandit algorithm guaranteeing lowα-
regret.

3

2 Formal definitions

We formalize the natural notion of ann-dimensionallinear optimization problem.

Definition 2.1 (n-dimensional linear optimization problem). An n-dimensional linear optimization problem
consists of a convex compact set offeasible weight vectorsW ⊂ R

n, a set offeasible decisionsS, and a
cost functionc : S ×W → [0, 1] that is linear in its second argument.

Due to the linearity ofc, there must exist a mappingΦ : S → R
n such thatc(s,w) = Φ(s) · w for all

s ∈ S, w ∈ W. In the case where the standard basis is contained inW, we have

Φ(s) =
(

c(s, (1, 0, . . . , 0)), c(s, (0, 1, 0, . . . , 0), . . . , c(s, (0, . . . , 0, 1))
)

.

More generally, the mappingΦ can be computed directly fromc by evaluatingc at any set of vectors whose
span includesW. We will assume that we have access toΦ andc interchangeably. Note that previous work
represented the problem directly as a geometric problem inR

n, but in our case we hope that making the
mappingΦ explicit clarifies the algorithm.

An α-approximation algorithmA (α ≥ 1) for such a problem takes as input any vectorw ∈ W and
outputsA(w) ∈ S such thatc(A(w), w) ≤ αmins∈S c(s,w). To ensure that themin is well-defined, we
also assumeΦ(S) = {Φ(s) | s ∈ S} is compact.

Define aprojection oracleΠJ : R
n → J , whereΠJ(x) = argminz∈J ‖x − z‖ is the unique projection

of x to the closest pointz in the setJ .
DefineW+ = {aw|a ≥ 0, w ∈ W} ⊆ R

n. Note thatW+ is convex, which follows from the convexity
of W. We assume that we have an exact projection oracleΠW+

. This is generally straightforward to
compute. In many cases,W = [0, 1]n, in which caseW+ is the positive orthant andΠW+

(w)[i] is simply
max(w[i], 0), wherew[i] denotes theith component of vectorw. More generally, given a membership
oracle toW (and a pointw0 ∈ W and appropriate bounds on the radii of contained and containing balls),
one can approximate the projection to within any desired accuracyǫ > 0 in time poly(n, log(1/ǫ)).

We also assume, for convenience, thatA : W+ → S because we know thatA(w) can be chosen to be
equal toA(aw) for anya > 0, and findinga such thataw ∈ W is a one-dimensional problem. (Again, given
a membership oracle toW one can findv ∈ W which is withinǫ of being a scaled version ofw using time
poly(n, 1/ǫ)). However, the restriction on the approximation algorithm’s domain is important because many
natural approximation algorithms only apply to restricteddomains such as non-negative weight vectors.

In an online linear optimizationproblem, there is a sequencew1, w2, . . . ,∈ W of weight vectors.
Due to the linearity of the problem, anoffline optimumcan be computed using an exact optimizer, i.e.

mins∈S
1
T

∑T
t=1 Φ(s) ·wt = mins∈S Φ(s) ·

(

1
T

∑T
t=1 wt

)

gives the average cost of the best single decision

if one had to use a single decision during all time periodst = 1, 2, . . . , T . Similarly, anα-approximation
algorithm, when applied to1T

∑T
t=1 wt, gives a decision whose average cost is not more than a factorα

larger than that of the offline optimum.

Definition 2.2 (full-information online linear optimization problem). There is an unknown sequence of
weight vectorsw1, w2, . . . ∈ W (possibly chosen by an adversary). On each period, the decision-maker
chooses a decisionst ∈ S based ons1, w1, s2, w2, . . . , st−1, wt−1. Thenwt is revealed and the decision-
maker incurs costc(st, wt).

Finally, we define the bandit version of the problem, in whichthe algorithm finds out only the cost of its
decision,c(st, wt), butnotwt itself.

Definition 2.3 (bandit online linear optimization problem). There is an unknown sequence of weight vectors
w1, w2, . . . ∈ W (possibly chosen by an adversary). On each period, the decision-maker chooses a decision
st ∈ S based only upons1, c(w1, s1), . . . , st−1, c(wt−1, st−1). Then only the costc(st, wt) is revealed.

4

The performance of an online algorithm is measured by comparing its cost on a sequence of weight
vectors with the cost of the best static decision for that sequence.

Definition 2.4. Theα-regretof an algorithm that selects decisionss1, . . . sT ∈ S is defined to be

α-regret(s1, w1 . . . , sT , wT) =
1

T

T
∑

t=1

c(st, wt) − α min
s∈S

1

T

T
∑

t=1

c(s,wt).

The termregretby itself refers to1-regret.

Forx, y ∈ R
n andW ⊆ R

n, we sayx dominatesy if x · w ≤ y · w for all w ∈ W (equivalently, for all
w ∈ W+).3

DefineK ⊆ R
n to be the convex hull ofΦ(S), K =

{

∑n+1
i=1 λiΦ(si)

∣

∣

∣
si ∈ S, λi ≥ 0,

∑

iλi = 1} .

Note thatminx∈K x · w = mins∈S c(s,w) for all w ∈ W. The cost of any point inK can be achieved
by choosing a randomized combination of decisionss ∈ S. However, we must find such a combination of
decisions and compute projections in our setting, where ouronly access toS is via an approximation oracle.

3 Full-information algorithm

We now present our algorithm for the full-information setting. Definezt = xt − ηwt. Intuitively, one
might like to playzt on periodt + 1 becausezt has less cost thanxt againstwt. Unfortunately,zt may
not be feasible. In the GREEDY PROJECTIONalgorithm of Zinkevich, the decision played on periodt + 1
is the projection ofzt into the feasible set. Our basic approach is to implement an approximate projection
algorithm and play the approximate projection ofzt on step(t + 1).

There are a number of technical challenges to this approach.First, we only have access to anα-
approximation oracle with which to implement this. Due to the multiplicative nature of this approximation,
we proceed by attempting to project into the setαK, whereαK = {αx|x ∈ K}. Second, even if we could
do this perfectly (which is not possible), this would still not result in a feasible decision. We then must find
a way to play a feasible decision.

We can intuitively view our algorithm as follows. The algorithm keeps track of a parameterxt, which
we can think of as the attempt to projectzt−1 into αK (though this is not done exactly, asxt is not even
in αK). We show that if the algorithm actually were allowed to playxt then it would have lowα-regret.
Our algorithm uses thisxt to find a randomized feasible decisionst. We show that the expected cost of this
random feasible decisionst is no larger than that of the infeasiblext.

Our algorithm for the full-information setting is based on the approximate projection routine defined in
Figure 3.

Algorithm 3.1. On period 1, we choose an arbitrarys1 (which could be selected by running the approxima-
tion oracle on any input) and letx1 = Φ(s1). On periodt, we playst and let

(xt+1, st+1) = APPROX-PROJECTION(xt − ηwt, st, xt).

It may be helpful to the reader to note that the sequencext is deterministically determined (if the approxi-
mation oracle is deterministic) by the sequence of weightsw1, . . . , wt−1, whilest is necessarily randomized.

In Section 3.1, we show that if we had a particular kind of approximate projection algorithm, then the
xt values produced by that algorithm would have (hypothetical) low α-regret. In Section 3.2, we show how

3Note that this definition differs from the standard definition in R
n wherex dominatesy if x[i] ≥ y[i] for all i but resembles

the game-theoretic notion of dominant strategies.

5

to extend the domain of any approximation algorithm, which allows us to construct such an approximate
projection algorithm: the APPROX-PROJECTION algorithm used in Algorithm 3.1. We also show that the
cost of the (infeasible) decisionxt it produces can only be larger than the expected cost incurred by the
feasible decisionst it also generates. This will allow us to prove our main theorem in the full-information
setting:

Theorem 3.2. Consider ann-dimensional online linear optimization problem with feasible setS and map-
ping Φ : S → R

n. LetA be anα-approximation algorithm and takeR,W ≥ 0 such that‖Φ(A(w))‖ ≤ R
and‖w‖ ≤ W for all w ∈ W.

For any fixedw1, w2, . . . wT ∈ W and anyT ≥ 1, with η = (α+1)R

W
√

T
, δ = (α+1)R2

T , andλ = (α+1)
4(α+2)2T

,
Algorithm 3.1 achieves expectedα-regret at most

E

[

1

T

T
∑

t=1

c(st, wt)

]

− αmin
s∈S

1

T

T
∑

t=1

c(s,wt) ≤
(α + 2)RW√

T
.

Each period, the algorithm makes at most4(α + 2)2T calls toA andΦ.

We present the proof of Theorem 3.2 in Section 3.3. To get Result 1.1 in the introduction, we note
that it is possible to get a priori bounds onW andR by a simple change of basis so thatRW = O(n). It
is possible to do this from the setW alone. In particular, one can compute a2-barycentric spanner (BS)
e1, . . . , en for W [1] and perform a change of basis so thatΦ(e1), . . . ,Φ(en) is the standard basis (as we
describe in greater detail in Section 4). By the definition ofa 2-BS, this implies thatW ⊆ [−2, 2]n and
henceW = 2

√
n is a satisfactory upper bound. Since we have assumed that allcosts are in[0, 1] and the

standard basis is inW, this implies thatΦ(S) ⊆ [0, 1]n and henceR =
√

n is also a valid upper bound. The
guarantees with respect to every window ofT consecutive periods hold because our algorithm’s guarantees
hold starting at arbitrary(st, xt) such thatE[Φ(st)] dominatesxt.

3.1 Approximate Projection

We first define the notion of approximate projection. It is approximate in two senses: first, even if we had
an exactoptimization oracle (α = 1), we could not find theabsoluteclosest pointx ∈ K to any point
z ∈ R

n.4 The second and more important sense in which it is approximate is that, because we only have an
α-approximate oracle, we cannot find the closest point inK or even inαK = {αx|x ∈ K}.

Note that for a closed convex setJ ⊆ R
n, if ΠJ(z) = x, then

(x − z) · x ≤ min
y∈J

(x − z) · y.

This is essentially the separating hyperplane theorem (where x − z is the normal vector to the separating
hyperplane). Also note thatΠJ (x) = x if x ∈ J .

Our approximate projection property, illustrated in Figure 1, relaxes the above condition. Define the set
of δ-approximate projections to be, forδ ≥ 0 and anyz ∈ R

n,

Πδ
J(z) = {x ∈ R

n | (x − z) · x ≤ min
y∈J

(x − z) · y + δ}.

It is important to note that we have not required an approximate projection to be inJ . However, note that
in the case where the projection is inJ , andδ = 0, it is exactly the projection, i.e.,Πδ

J(x) ∩ J = {ΠJ(x)}.
While we refer to it as an approximate projection, it is also clearly related to a separation oracle. From a

4We are not assuming thatK is defined by a finite number of hyper-planes—it can be quite round.

6

Figure 1: An approximate projection oracle, for set convex setJ ⊆ R
n andδ = 0, returns a pointΠ0

J (z) ∈
R

n that is closer to any pointy ∈ J thanz is, i.e.,∀y ∈ J ‖Π0
J (z) − y‖ ≤ ‖z − y‖.

hyperplane separatingx from J , one can take the closest point on that hyperplane tox as an approximate
projection. The difficulty is in finding a feasible suchx.

We now bound theα-regret of the hypothetical algorithm which projects withΠδ
αK . The proof, which

we defer to the appendix, is essentially a straightforward extension of Zinkevich’s proof [11]. This lemma
shows that indeed this hypothetical algorithm has a graceful degradation in quality.

Lemma 3.3. Let K ⊆ R
n be a convex set such that∀x ∈ K ‖x‖ ≤ R. Let w1, . . . , wT ∈ R

n be
an arbitrary sequence. Then, for any initial pointx1 ∈ K and any sequencex1, x2, . . . , xT such that
xt+1 ∈ Πδ

αK(xt − ηwt),

T
∑

t=1

xt · wt − α min
x∈K

T
∑

t=1

x · wt ≤
(α + 1)2R2

2η
+

η

2

T
∑

t=1

w2
t + T

δ

η
.

Note that if we setη = 1/
√

T , the sum of the first two terms of this bound would beO(
√

T). However,
the last term,T δ

η , would beO(T 1.5δ). Hence, we need to achieve an approximation quality ofδ = O(1/T)

in order for theα-regret of our (infeasible)xt values to beO(
√

T).

3.2 Constructing the Algorithm

One simple method to (approximately) find a the projection ofz into a convex setJ , given an exact opti-
mization oracle forJ , is as follows. Start with a point inx ∈ J . Then choose the search directionv = x−z,
and find a minimal pointx′ ∈ J in the direction ofv, i.e.,x′ ∈ J such thatx′ · v ≤ miny∈J y · v. It can be
seen that ifx is not minimal in the direction ofv, then there must be a point on the segment joiningx′ and
z that is closer toz thanx was. Then repeat this procedure starting atx′. In the case wherez ∈ J , this will
be still be useful in representingz nearly as a combination of points output by the minimizationalgorithm.5

5Note that representing a given feasible point as a convex combination of feasible points is similar torandomized metarounding
[3]. It would be interesting to extend their approach, basedon the ellipsoid algorithm, to our problem and potentially achieve a
more efficient algorithm. Related but simpler issues arise in [4].

7

Figure 2: An approximation algorithm run on vectorw ∈ W always returns a points ∈ S such that the set
αK is contained in the halfspace tangent toΦ(s) whose normal direction isw. An extended approximation
algorithm takes anyw ∈ R

n as input and returns a pointx ∈ R
n such thatαK is contained in the halfspace

tangent tox with normal vectorw. In addition, it returns ans ∈ S such thatΦ(s) dominatesx.

Note that in our case ifv ∈ W+, then our approximation oracle is able to find a feasibles ∈ S such that

Φ(s) · v ≤ α min
s′∈S

Φ(s′) · v = min
x∈αK

x · v.

Loosely speaking, our oracle is able to perform minimization with respect to the setJ = αK (or better).
This is essentially how our algorithm will use the approximation oracle. However, as mentioned before,
many approximation algorithms can only handle non-negative weight vectors or weight vectors from some
other limited domain. Hence, we must extend the domain of theoracle whenv /∈ W+.

Extending the domain: We would like to find a feasibles ∈ S that satisfies the search condition
Φ(s) · v ≤ α mins′∈S Φ(s′) · v for a generalv ∈ R

n, but this is not possible only given anα-approximation
oracle that runs on only a subset ofR

n. Instead, we attempt to find a (potentially infeasible)x ∈ R
n which

does satisfy this search condition, and we also attempt to find ans ∈ S which dominatesx, meaning that
for all w ∈ W, c(s,w) ≤ x · w. More precisely, we will construct the following oracle:

Definition 3.4 (extended approximation oracle). An extended approximation oracleB : R
n → S × R

n is a
function such that, for allv ∈ R

n, if B(v) = (s, x), thenx · v ≤ α mins′∈S Φ(s′) · v andΦ(s) dominatesx.

Figure 2 depicts an extended approximation oracle. The following lemma, which we prove in the ap-
pendix, demonstrates that one can construct an extended approximation oracle from an approximation ora-
cle.

Lemma 3.5. Let A : W+ → S be anα-approximation oracle and suppose‖Φ(s′)‖ ≤ R for all s′ ∈ S.
Then the following is an extended approximation oracle: Ifv ∈ W+, thenB(v) = (A(v),Φ(A(v))), else

B(v) =

(

A(ΠW+
(v)), Φ(A(ΠW+

(v))) + R(α + 1)
ΠW+

(v) − v

||ΠW+
(v) − v||

)

.

Note that the magnitude of the outputx is at most‖Φ(s)‖ + (α + 1)R ≤ (α + 2)R; this bound will be
useful for bounding the runtime of our algorithm.

8

Input: x, z ∈ R
n, s ∈ S, and anα-approximation algorithmA (and parametersδ > 0, λ ∈ [0, 1]).

Output:(x′, s′) ∈ Πδ
αK × S

DefineB to be the extended approximation oracle obtained fromA using Lemma 3.5.

APPROX-PROJECTION(z, s, x)

1 Let (t, y) := B(x − z)
2 if x · (x − z) ≤ δ + y · (x − z)
3 then return(x, s)

4 else q =

{

s with probability1 − λ

t with probabilityλ

5 return APPROX-PROJECTION(z, q, λy + (1 − λ)x)

Figure 3: An iterative algorithm for computing approximateprojections.

The approximate projection algorithm: Using this extended approximation oracle, we can define
our APPROX-PROJECTION algorithm, which we present in Figure 3. The following lemma, whose proof
is in the appendix, shows that the algorithm returns both a valid approximate projection (which could be
infeasible) and a random feasible decision that dominates the approximate projection (assuming thatΦ of
the algorithm’s inputs dominated the algorithm’s inputx).

Lemma 3.6. SupposeAPPROX-PROJECTION(z, s, x) returns(x′, s′). Thenx′ ∈ Πδ
αK(z). If s is a random

variable such thatE[Φ(s)] dominatesx, thenE[Φ(s′)] will dominatex′.

It is straightforward to see that thex returned by APPROX-PROJECTIONsatisfies the approximate pro-
jection condition. The subtlety is in obtaining a feasible solution with the desired properties. It turns out
that t returned byB in line 1 does not suffice, as thist only dominatesy, but not necessarilyx. However,
our randomized scheme does suffice.

3.3 Analysis

Our next lemma, which we prove in the appendix, allows us to bound the number of calls Algorithm 3.1
makes toA andΦ on each period.

Lemma 3.7. Suppose thatλ, δ > 0 and the magnitudes of all vectors output by the extended approximation

oracle are≤ 1
2

√

δ
λ and‖x‖ ≤ 1

2

√

δ
λ . ThenAPPROX-PROJECTION(z, s, x) terminates after at most‖x−z‖2

δλ
iterations.

This above lemma gives us a means of choosingλ. We are now ready to prove our main theorem about
full-information online optimization.

Proof of Theorem 3.2.Takeη = (α+1)R

W
√

T
andδ = (α+1)R2

T . Sincex1 = Φ(s1), by induction and Lemma

3.6, we have thatE[Φ(st)] dominatesxt for all t. Hence, it suffices to upper-bound
∑T

t=1 xt ·wt. By Lemma
3.6, we have thatxt ∈ Πδ

αK(zt−1) on each period, so by Lemma 3.3 we get

E[α − regret] ≤ 1

T

(

(α + 1)2R2

2η
+ T

δ

η
+

η

2
TW 2

)

.

Applying our chosen values ofη andδ, this gives anα-regret bound of1T ((α + 1)RW
√

T + RW
√

T) =
(α+2)RW√

T
as desired.

9

Now, as mentioned, the extended approximation oracle from Lemma 3.5 has the property that it returns

vectors of magnitude at mostH = 1
2

√

δ
λ = (α + 2)R. Furthermore, it is easy to see that all vectorsxt have

‖xt‖ ≤ H, by induction ont. Then by Lemma 3.7, the total number of iterations of APPROX-PROJECTION

periodt is at most(2H‖x − z‖/δ)2 ≤ (2(α + 2)RηW/δ)2 = 4(α + 2)2T .

4 Bandit algorithm

We now describe how to extend Algorithm 3.1 to the partial-information model, where the only feedback we
receive is the cost we incur at each period. The algorithm we describe here requires access to anexploration
basise1, . . . , en ∈ S, which is simply a set ofn decisions such thatΦ(e1), . . . ,Φ(en) spanR

n. (If no
such decisions exist, one can reduce the problem to a lower-dimensional problem.) Following previous
approaches, we will (probabilistically) try each of these decisions from time to time. As in the work of Dani
and Hayes [5], we will assume thatΦ(ei) is the standardith basis vector, i.e.,ei[i] = 1 andei[j] = 0 for
j 6= i. This assumption makes the algorithm cleaner to present, and is without loss of generality because we
can always useΦ(ei) as our basis for representingRn.

Definition 4.1. A set{x1, x2, . . . xm} ⊆ S is aβ-barycentric spanner (BS) forS ⊂ R
n if, for everyx ∈ S,

x can be written asx = β1x1 + . . . + βmxm for someβ1, . . . , βm ∈ [−β, β].

Note that we only need to construct a BS once for any problem, and then can re-use it for all future
instances of the problem.

Awerbuch and Kleinberg [1] prove that every compactS has a 1-BS of sizen, and, moreover, give
an algorithm for finding a size-n (1 + ǫ)-BS using poly(n, log(1/ǫ)) calls to an exact minimization oracle
M : R

n → S, whereM(v) ∈ argmins∈S Φ(s) · v. Unfortunately, as we show in Section 4.1, one cannot
find such a BS using a minimizer (exact or approximate) whose domain is not all ofRn. Moreover, we show
that one cannot guarantee low regret for the bandit problem using just a black-box optimization algorithm
A : W+ → S.

Hence, we assume that we are given aβ-BS for the problem at hand as part of the input. We feel that
this is a reasonable assumption. For example, note that it iseasy to find such a basis for TSP and set cover
with β =poly(n): In the case of set cover, one can take then covers consisting of all sets but one.6 In the
case of TSP, we can start with any tourσ that visits all the edges at least once and considerσe for each edge
e which is the same asσ but traversese an additional two times.

We present the algorithm for the bandit setting in Figure 4 inthe appendix. We remark that our approach
is essentially the same as previous approaches and can be used as a generic conversion from a black-box
full-information online algorithm to a bandit algorithm. Previous approaches also worked in this manner,
but the analysis depended on the specific bounds of the black-box algorithm in a way that, unfortunately, we
cannot simply reference.

Theorem 4.2. For α, β ≥ 1, integerT ≥ 0 and anyw1, . . . , wT , given anα-approximation oracle and a
β-BS, Algorithm B.2 in the bandit setting achieves an expected α-regret bound of

E[α-regret] ≤ 7n(αβ)2/3T−1/3.

Because the conversion from full-information to bandit is similar to other conversions [1, 9, 5], we defer
its proof to the the appendix.

6If any of these is not a cover, that set must be mandatory in anycover and we can simplify the problem. If this set of covers
is not linearly independent, then we can reduce the dimensionality of the problem and use the fact that ifT is a (possibly linearly
dependent)β-BS forS andR is aγ-BS forT thenR is a(γβ|T |)-BS forS.

10

4.1 Difficulty of the black-box reduction

We now point out that it is impossible to solve the bandit problem with general algorithms (approximation or
exact) without an exploration basis (i.e., if our only access toS is through a black-box optimization oracle).
The counterexample is randomized. We will take

W = {w ∈ R
n | w[1] ∈ [0, 1] and‖w‖2 ≤ 2(w[1])2}.

The setS will consist of two points:s = (1/2, 0, . . . , 0) as well as a second points′ = (1, 0, . . . , 0) − u
where‖u‖ = 1 andu[1] = 0. The mappingΦ is the identity mapping. The cost sequence will be constant
wt = (1, 0, . . . , 0)+u. Hencec(s,wt) = 1/2 while c(s′, wt) = 0. Now, suppose we as algorithm designers
know that this is the setup butu is chosen uniformly at random from the set of unit vectors with u[1] = 0.

Observation 4.3. For any bandit algorithm that makesk calls to black-box optimization oracleA, any
α ≥ 0, with probability 1 − ke−0.1n over u, the algorithm hasα-regret 1/2 on a sequence of arbitrary
length.

Proof. No information is conveyed by the costs returned in the bandit setup of our example—they are
always 1/2 ifs′ has not been discovered, while the minimal cost is 0. Thus thealgorithm must find some
w ∈ W such thatc(s,w) > c(s′, w) (whence an exact optimization algorithm must returns′). Without loss
of generality, we can scalew so thatw[1] = 1 and‖w‖ ≤ 2. Hence, we can writew = (1, 0, 0 . . . , 0) + v
wherev[1] = 0 and‖v‖ ≤ 1. In this case,w · s = 1/2, while w · s′ = 1 − u · v. Foru a random unit vector
and any fixed‖v‖ ≤ 1, it is known thatPr[u · v ≥ 1/2] is exponentially small inn. A very loose bound can
be seen directly, since for a ball of dimensionn, this probability is

∫ 1
1/2(

√

(1 − x2))n−2dx
∫ 1
−1(
√

(1 − x2))n−2dx
≤

∫ 1
1/2(3/4)

n−2

2 dx
∫ 1/

√
n

−1/
√

n
(1 − n−1)

n−2

2 dx
≤

√
ne

2

(

3

4

)
n

2
−1

,

which isO(e−0.1n).

5 Conclusions and Open Problems

We present a reduction converting approximate offline linear optimization problems into approximate online
sequential linear optimization problems that holds forany approximation algorithm, in both in the full-
information setting and the bandit setting.

Our algorithm can be viewed as an analog to Hannan’s algorithm for playing repeated games against an
unknown opponent. In our case, however, we cannot compute best responses but only approximately best
responses.

The problem of obtaining similar results for interesting classes of non-linear optimization problems
remains open.

References

[1] B. Awerbuch and R. Kleinberg. Adaptive routing with end-to-end feedback: Distributed learning and
geometric approaches. InProceedings of the 36th ACM Symposium on Theory of Computing(STOC),
2004.

[2] M.-F. Balcan and A. Blum. Approximation algorithms and online mechanisms for item pricing. In
Proceedings of the 7th ACM Conference on Electronic Commerce (EC), 2006.

11

[3] R. Carr and S. Vempala. Randomized metarounding.Random Struct. Algorithms, 20(3):343–352,
2002.

[4] D. Chakrabarty, A. Mehta, and V. Vazirani. Design is as easy as optimization. In33rd International
Colloquium on Automata, Languages and Programming (ICALP), 2006.

[5] V. Dani and T. P. Hayes. Robbing the bandit: Less regret inonline geometric optimization against
an adaptive adversary. InProceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2006.

[6] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming.J. ACM, 42(6):1115–1145, 1995.

[7] J. Hannan. Approximation to Bayes risk in repeated play.In M. Dresher, A. Tucker, and P. Wolfe,
editors,Contributions to the Theory of Games, volume III, pages 97–139. Princeton University Press,
1957.

[8] A. Kalai and S. Vempala. Efficient algorithms for online decision problems.J. Comput. Syst. Sci.,
71(3):291–307, 2005.

[9] H. McMahan and A. Blum. Online geometric optimization inthe bandit setting against an adaptive
adversary. InProceedings of the 17th Annual Conference on Learning Theory (COLT), 2004.

[10] H. Robbins. Some aspects of the sequential design of experiments. InBulletin of the American
Mathematical Society, volume 55, 1952.

[11] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. InProceed-
ings of the 20th International Conference on Machine Learning (ICML), 2003.

A Example where “follow-the-leader” fails

First consider the setS = {1, 2, . . . , n} and the cost sequence(1, 1, . . . , 1) (repeatedT/n times),(1, 0, . . . , 0)
(repeatedT/n times),(0, 1, 0, . . . , 0) (repeatedT/n times),. . . ,(0, . . . , 0, 1) (repeatedT/n times). Notice
that a selection of decision, each period, which costs 1 is always a valid(α = 2)-approximation to the leader
on the previous examples. Moreover, its cost isT while the cost of the best (in factevery) s ∈ S is 2T/n,
hence giving largeα-regret. Unfortunately, adding perturbations ofO(

√
T) as in follow-the-leader will not

significantly improve matters. WhenT/n ≫
√

T , a choice of decision which costs 1 each period is still an
α)-approximation for, say,α = 3.

Of course, one may be suspicious that no common approximation algorithms would have such peculiar
behavior. We now give a similar example based on the standardgreedy set cover approximation algorithm
A (α = log m) applied to the online set cover problem described earlier.The example hasn/2 covers
of size 2: Si = S \ Sn+1−i, for i = 1, 2, . . . , n. Furthermore, suppose the sets are of increasing size
|Si| =

(

0.4 + 0.2 i−1
n−1

)

m and|Si ∪ Sj| ≤ 0.9m for all 1 ≤ i, j ≤ n wherei 6= n + 1− j.7 The sequence of
costs (weight) vectors is divided inton/2 phasesj = 0, 1, . . . , n/2 − 1, each consisting of2T/n identical
cost vectors. In phasej = 0, all sets have cost 1. For phasej = 1, . . . , n/2 − 1: the cost of the2j − 1 sets
S1, . . . , Sj andSn−j+1, . . . , Sn are all 1, while the costs of the remaining sets are all 0.

7To design such a collection of sets (for evenn andm = 5(n − 1)), takeSi to be a uniformly random set of the desired
sizem for i = 1, . . . , n/2, andSn+1−i to be its complement. It is not hard to argue that, with high probability, the randomized
construction obeys the stated properties.

12

In this example, following the leader with greedy set cover will have an average per-period cost of at
least0.1. In particular, during the first 10% of any phasej ≥ 1, either greedy’s first choice will beSn−j, in
which case it’s second choice will beSj (because any other set covers at most 90% of the remaining items,
andSj ’s cost so far is at most 10% more than that of any other set), orgreedy’s first choice will be one of
Sn−j+1, . . . , Sn; in either case it pays at least 1 during that period. Hence, following the leader pays at least
0.1 + 19

5 n in expectation on average, while the coverSn/2 ∪Sn/2+1 has an average cost of only4/n, which
is far from matching greedy’sα = log m approximation ratio (forn = θ(m)).

Also note that perturbations on the order ofO(
√

T) will not solve this problem. It would be very
interesting to adapt Hannan’s approach to work for approximation algorithms, especially because it is more
efficient than our approach. However, we have not found a solution that works across problems.

B Proofs

B.1 Lemma 3.3

Proof of Lemma 3.3.Let x∗ = α argminx∈K

∑T
t=1 x · wt, sox∗ ∈ αK. We will bound our performance

with respect tox∗. Define the sequencex′
t by x′

1 = x1 andx′
t+1 = xt − ηwt, so thatxt ∈ Πδ

αK(x′
t). We

first claim that‖xt −x∗‖2 ≤ ‖x′
t −x∗‖2 + 2δ, i.e., our attempt at settingxt to be an approximate projection

of xt ontoαK does not increase the distance tox∗ significantly:

(x′
t − x∗)2 =

(

(x′
t − xt) + (xt − x∗)

)2

= (x′
t − xt)

2 + (xt − x∗)2 + 2(x′
t − xt) · (xt − x∗)

≥ 0 + (xt − x∗)2 − 2δ

The last line follows from the definition of approximate projection and the fact thatx∗ ∈ αK.
Hence, for anyt ≥ 1, becausex′

t = xt − ηwt we have

(xt+1 − x∗)2 ≤ (xt − ηwt − x∗)2 + 2δ

= (xt − x∗)2 + η2w2
t − 2ηwt · (xt − x∗) + 2δ

wt · (xt − x∗) ≤ (xt − x∗)2 − (xt+1 − x∗)2 + η2w2
t + 2δ

2η

The lemma follows from a telescoping sum of the above and the fact that

(x1 − x∗)2 ≤ (‖x1‖ + ‖x∗‖)2 ≤ (α + 1)2R2.

B.2 Lemma 3.5

Proof of Lemma 3.5.For the case wherev ∈ W+, by definition,B(v) = (A(v),Φ(A(v))) suffices. Hence,
assumev /∈ W+. Let w = ΠW+

(v), s = A(w), andx = Φ(s) + (α + 1)R w−v
||w−v|| . Then we must show (a)

x · v ≤ α mins′∈S Φ(s′) · v and (b)Φ(s) dominatesx.
We have assumed thatA is anα-approximation oracle with domainW+, and therefore it can accept

inputw. By the definition ofα-approximation, we havew ·Φ(s) ≤ αw ·Φ(s′) for all s′ ∈ S. By the bound
R, we also have that−α‖v−w‖R ≤ α(v−w) ·Φ(s′) for all s′ ∈ S. Adding these two gives, for alls′ ∈ S,

αv · Φ(s′) ≥ w · Φ(s) − α‖v − w‖R

= v · x + (w − v) · Φ(s) − (α + 1)R
(w − v)

‖w − v‖ · v − α‖v − w‖R

≥ v · x − ‖w − v‖R − (α + 1)R
(w − v)

‖w − v‖ · (v − w) − α‖v − w‖R
= v · x.

13

This is what we need for part (a) of the lemma. The second-to-last line follows from the fact that(v−w)·w =
0. To see this, note that sincew is the projection ofv ontoW+, we have(v − w) · (w′ − w) ≤ 0 for any
w′ ∈ W+. Since0 ∈ W+, this implies that(v − w) · (−w) ≤ 0. Since2w ∈ W+, this implies that
(v − w) · w ≤ 0, and hence(v − w) · w = 0.

This also means that(v − w) · (w′ − w) = (v − w) · w′ ≤ 0 for all w′ ∈ W+, which directly implies
(b), i.e.,(x − Φ(s)) · w′ ≥ 0 for all w′ ∈ W.

B.3 Lemma 3.6

Proof of Lemma 3.6.The return condition of APPROX-PROJECTIONstates thatx′ ·(x′−z) ≤ δ+y ·(x′−z).
Using the definition of an extended approximation oracle, wethen get

x′ · (x′ − z) ≤ δ + α min
s′∈S

Φ(s′) · (x′ − z)

≤ δ + min
y′∈αK

y′ · (x′ − z)

as desired.
The proof of the second property proceeds by induction on thenumber of recursive calls made by

APPROX-PROJECTION. The base case holds trivially. Now suppose the inductive hypothesis holds (E[Φ(s)]
dominatesx). We will show that if (t, y) = B(x − z), the resultingE[Φ(λt + (1 − λ)s)] dominates
λy + (1 − λ)x.

We observe:

x′ · w = (λy + (1 − λ)x) · w
= λy · w(1 − λ)x · w
≥ λΦ(t) · w + (1 − λ)x · w
≥ λΦ(t) · w + (1 − λ)E[Φ(s)] · w
= E[λΦ(t) + (1 − λ)Φ(s)] · w
= E[Φ(s′)] · w.

Thus, if APPROX-PROJECTIONterminates, the desired conditions will hold.

B.4 Lemma 3.7

Proof of Lemma 3.7.Let H = 1
2

√

δ
λ . To bound the number of recursive calls to APPROX-PROJECTION, it

suffices to show that the non-negative quantity‖x − z‖2 decreases by at least an additiveλδ on each call
and that‖x‖ remains belowH on successive calls. The latter condition holds because‖x‖, ‖y‖ ≤ H so
‖λy + (1 − λ)x‖ ≤ λH + (1 − λ)H = H.

Notice that if the procedure does not terminate on a particular call, then

(x − y) · (x − zt) > δ.

This means that the decrease in(x − z)2 in a single recursive call is

(x − z)2 − (λy + (1 − λ)x − z)2 = (x − z)2 − (λ(y − x) + (x − z))2

= 2λ(x − y) · (x − z) − λ2(y − x)2

> 2λδ − λ2(y − x)2.

14

Also, ‖y − x‖ ≤ 2H. Combining this with the previous observation gives

(x − z)2 − (λy + (1 − λ) x − z)2 > 2λδ − λ24H2 = λδ.

Hence the total number of iterations of APPROX-PROJECTIONon each period is at most‖x−z‖2/(λδ).

B.5 Lemma 4.2

Proof of Theorem 4.2.We begin the proof with a lemma:

Lemma B.1. LetJ ⊆ R
n be a convex set such that∀x ∈ J, ‖x‖ ≤ R. Letw1, . . . , wT ∈ R

n be an arbitrary
sequence and̂w1, . . . , ŵT be a sequence of random variables such thatE[ŵt|x1, ŵ1, . . . , xt−1, ŵt−1, xt] =
wt and E[ŵ2

t] ≤ D2. Then, for any initial pointx1 ∈ J and any any sequencex1, x2, . . . such that
xt+1 ∈ Πδ

αJ(xt − ηwt),

E

[

T
∑

t=1

xt · wt

]

− αmin
x∈J

T
∑

t=1

x · wt ≤
(α + 1)2R2

2η
+ T

δ

η
+

η

2
D2T + 2αRD

√
T .

Proof of Lemma B.1.By Lemma 3.3, we have that

T
∑

t=1

xt · ŵt − α min
x∈J

T
∑

t=1

x · ŵt ≤
(α + 1)2R2

2η
+ T

δ

η
+

η

2

T
∑

t=1

ŵ2
t .

Taking expectations of both sides gives

T
∑

t=1

xt · wt − αE

[

min
x∈J

T
∑

t=1

x · ŵt

]

≤ (α + 1)2R2

2η
+ T

δ

η
+

η

2
D2T.

It thus suffices to show that

E

[

min
x∈J

T
∑

t=1

x · ŵt

]

≥ min
x∈J

T
∑

t=1

x · wt − 2RD
√

T . (1)

Now, for anyx ∈ J ,
∣

∣

∣

∣

∣

T
∑

t=1

x · (ŵt − wt)

∣

∣

∣

∣

∣

≤ |x|
∣

∣

∣

∣

∣

T
∑

t=1

ŵt − wt

∣

∣

∣

∣

∣

≤ R

∣

∣

∣

∣

∣

T
∑

t=1

ŵt − wt

∣

∣

∣

∣

∣

. (2)

This gives us a means of upper-bounding the difference between the minima. Namely,

E

[
∣

∣

∣

∣

∣

T
∑

t=1

ŵt − wt

∣

∣

∣

∣

∣

]2

≤ E





(

T
∑

t=1

ŵt − wt

)2


 =
T
∑

t=1

E
[

(ŵt − wt)
2
]

. (3)

The last equality follows from the fact thatE[(ŵt1 − wt1)(ŵt2 − wt2)] = 0 for t1 < t2, which follows from
the martingale-like assumption thatE[ŵt2 − wt2 |ŵt1 , wt1] = 0. Finally,

E[(ŵt − wt)
2] ≤ E[ŵ2

t + 2‖ŵt‖‖wt‖ + w2
t] ≤ D2 + 2D2 + D2 = 4D2.

In the above we have used the facts thatE[|ŵt|]2 ≤ E[ŵ2
t] ≤ D2 and‖wt‖2 = E[ŵt]

2 ≤ E[ŵ2
t] ≤ D2.

Hence, we have that the quantity in (3) is upper bounded by4TD2, which, together with (2), establishes
(1).

15

We remark that the parameterγ in the statement of the theorem may be larger than 1, but in this case the
regret bound is greater than 1 and hence holds for any algorithm.

Note that in the conversion algorithm the expected value ofŵt is wt, and this is true conditioned on all
previous information as well aŝxt. Since Lemma 3.6 implieŝxt+1 ∈ Πδ

αJ (xt − ηwt), we can apply Lemma
B.1 to the sequencêxt. This gives

T
∑

t=1

E[x̂t · wt] − α min
x∈J

T
∑

t=1

x · wt ≤
(α + 1)2R2

2η
+ T

δ

η
+

η

2
D2T + 2αRD

√
T .

To apply the lemma, we use the boundD = nγ−1/2. This holds becauseℓt ∈ [0, 1], soE[ŵ2
t] ≤ γ(nℓt/γ)2+

(1 − γ)0 ≤ n2/γ. Also, we use the bound ofR = β
√

n. Hence we chooseη = (α+1)R

D
√

T
andδ = ηnT−1/3,

which simplifies the above equation to

T
∑

t=1

E[x̂t · wt] − α min
x∈J

T
∑

t=1

x · wt ≤ (α + 1)RD
√

T + nT 2/3 + 2αRD
√

T ≤ 4αRD
√

T + nT 2/3.

Substituting the values ofD andR gives an upper bound of4αβn3/2γ−1/2
√

T + T δ
η .

Next, as in the analysis of the full-information algorithm,E[Φ(ŝt)] dominatesE[x̂t] by Lemma 3.6.
Thus,

∑

E[c(ŝt, ·wt)] − α min
x∈J

∑

x · wt ≤ 4αβn3/2γ−1/2
√

T + nT 2/3.

Finally, we have thatE[c(st, wt)] ≤ E[c(ŝt, wt)] + γ because with probability1 − γ, ŝt = st and in the
remaining case the cost is in[0, 1]. Putting these together implies

∑

E[c(st, ·wt)] − α min
x∈J

∑

x · wt ≤ 4αβn3/2γ−1/2
√

T + nT 2/3 + γT.

Choosingγ = (4αβ)2/3nT−1/3 (note that if this quantity is larger than 1, then the regret bound in the
theorem is trivial) gives a bound of2n(4αβT)2/3 + nT 2/3 ≤ 7n(αβT)2/3 as in the theorem.

16

Algorithm B.2. Given δ, η, γ > 0 and an initial point̂s1 as input, set̂x1 = Φ(ŝ1). Perform a change of
basis so thatΦ(e1), . . . ,Φ(en) is the standard basis.

for t = 1, 2, . . .:
1 With probabilityγ, � exploration step
2 Choosei ∈ {1, . . . , n} uniformly at random.
3 st := ei.
4 Play(st).
5 Observeℓt = c(st, wt).
6 ŵt := (nℓt/γ)Φ(ei).
7 (x̂t+1, ŝt+1) := APPROX-PROJECTION(x̂t − ηŵt, ŝt, x̂t).
8 else, with probability1 − γ,
9 st := ŝt.

10 Play(st).
11 Observeℓt = c(st, wt).
12 (x̂t+1, ŝt+1) := (xt, st).

Figure 4: Algorithm B.2: the bandit setting.

17

