Approximation Algorithms Going Online

Sham Kakadé Adam Tauman Kalat Katrina Ligett3
January 23, 2007
CMU-CS-07-102

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

In an online linear optimization problem, on each peripdn online algorithm chooses € S from a fixed (possibly
infinite) setS of feasible decisions. Nature (who may be adversarial) se®@ weight vectow; € R", and the
algorithm incurs cost(s;, w;), wherec is a fixed cost function that is linear in the weight vectortHefull-information
setting, the vectow; is then revealed to the algorithm, and in tienditsetting, only the cost experienceds;, w;),

is revealed. The goal of the online algorithm is to perforrarheas well as the best fixede S in hindsight. Many
repeated decision-making problems with weights fit nalyinato this framework, such as online shortest-path, anlin
TSP, online clustering, and online weighted set cover.

Previously, it was shown how to convert any efficieractoffline optimization algorithm for such a problem into an
efficient online bandit algorithm in both the full-informan and the bandit settings, with average cost nearly as good
as that of the best fixed € S in hindsight. However, in the case where the offline algaoniils an approximation
algorithm with ratioo. > 1, the previous approach only worked for special types of @gpration algorithms.

We show how to convert any efficient offlireapproximation algorithm for a linear optimization proiménto an
efficient algorithm for the corresponding online problenithmaverage cost not much larger thartimes that of the
bests € S, in both the full-information and the bandit settings. Owiminnovation is in the full-information setting:
we combine Zinkevich’s algorithm for convex optimizatioitiwa geometric transformation that can be applied to any
approximation algorithm. In the bandit setting, standahhiques apply, except that a “Barycentric Spanner” fer th
problem is also (provably) necessary as input.

Our algorithm can also be viewed as a method for playing eelaepeated games, where one can only compute
approximatebest-responses, rather than best-responses.

TTI-C. sham@tti-c.org
2Georgia Tech. atk@cc.gatech.edu
3Carnegie Mellon. katrina@cs.cmu.edu

Keywords: approximation algorithms, regret minimization, onlinedar optimization

1 Introduction

In an offline optimization problem, one must select a singdeislons from a known set of decisionsS,

in order to minimize a known cost function. In an offliieear optimization problem, a weight vector
w € R™ is given as input, and the cost functiofs, w) is assumed to be linear in. Many combinatorial
optimization problems fit into this framework, includingeling salesman problems (wh&&onsists of a
subset of paths in a graph), clusteri®)i partitions of a graph), weighted set covéri¢ the set of covers),
and knapsack{ is the set of feasible sets of items and weights correspoitdrtovaluations).

Each of these problems hasamiine sequential version, in which on every period the player reelsct
her decision without knowing that period’s cost functiorhal'is, there is an unknown sequence of weight
vectorswi, wo, ... € R™ and for eacht = 1,2,.. ., the player must selesi € S and payc(s;, w;). In the
full-information version, the player is then informed @f, while in thebanditversion she is only informed
of the valuec(s;, wy). (The namebanditrefers to the similarity to the classic multi-armed banddhem
[10]).

The player’s goal is to achieve low average cost. In padigcuke compare her cost with that of the
best fixed decision: she would like her average cost to apprtiat of the best single point #, where the
best is chosen with the benefit of hindsight. This differened "/, c(s¢, wy) — minges & 31—, (s, wy),
is termedregret

Prior work showed how to convert axactalgorithm for the offline problem into an online algorithm
with low regret, both in the full-information setting andtime bandit setting. In particular, Kalai and Vem-
pala showed [8] that using Hannan’s approach [7], one caragteeO(7~'/2) regret for any linear opti-
mization problem, in the full-information version, as thember of periodd” increases. It was later shown
[1, 9, 5] how to convert exact algorithms to achig¥él'~1/3) regret in the more difficult bandit setting.

This prior work was actually a reduction showing that one salve the online problenmearly as
efficientlyas one can solve the offline problem. (They used the offlinenigdr as a black box.) However,
in many cases of interest, such as online combinatoriai@ugrroblems [2], even the offline problem is
NP-hard. Hannan's “follow-the-perturbed-leader” appto@an also be applied to some special types of
approximation algorithms, but fails to work directly in ggal. Finding a reduction that maintains good
asymptotic performance usirggneralapproximation algorithms was posed as an open problem [8]; w
resolve this problem.

In this paper, we show how to conveay approximation algorithm for a linear optimization problem
into an algorithm for the online sequential version of thelyem, both in the full-information setting and
in the bandit setting. Our reduction maintains the asymptgpproximation guarantee of the original al-
gorithm, relative to the average performance of the betitslacision in hindsight. Our new approach is
inspired by Zinkevich’'s algorithm for the problem of minimg convex functions over a convex feasible
setS C R™ [11]. However, the application is not direct and requiregargetric transformation that can be
applied to any approximation algorithm.

Example 1 (online metric TSP).A delivery company serves the samecustomers every day. The
company must schedule its daily route without foreknowedfjthe traffic on each street. The time on any
street may vary unpredictably from day to day due to traffamstruction, accidents, or even competing
delivery companies. lonline metric TSPwe are given a undirected gragh and on every period, we
must output a tour that starts at a specified vertex, visitdhalvertices at least once, then returns to the
initial vertex. After we announce our tour, the traffic patteare revealed (in the full-information setting,
the costs on all the edges; in the bandit setting, just theafdke tour) and we pay the cost of the tour.

Example 2 (online weighted set cover) Every financial quarter, our company hires vendors from a
fixed pool of subcontractors to cover a fixed set of tasks. Bablontractor can handle a known, fixed sub-
set of the tasks, but the price they charge varies from guartpiarter. Ironline weighted set covahe ven-
dors are fixed set#y, ..., P, C [m]. Each period, we choose a legal co¥eiC [n], i.e.,J;c,, Pi = [m].

There is an unknown sequence of cost vectorsws, ... € [0, 1]", indicating the quarterly vendor costs.
Each quarter, our total costs;, w;) is the sum of the costs of the vendors we chose for that quémtére
full-information setting, at the end of the quarter we find the price charged by each of the subcontractors;
in the bandit setting, we receive a combined bill showing/anlr total cost.

1.1 Hannan’s approach

In this section, we briefly describe the previous approachitie case of exact optimization algorithms
based on Hannan's idea of adding perturbations. We begmtht obvious “follow-the-leader” algorithm
which, each period, picks the decision that is best agamstdtal (equivalently, average) of the previous
weight vectors. This means, on perigcchoosings; = A(Zi;ll wT), whereA is an algorithm that, given
a cost vectorw, produces the best € S.!' Hannan’s perturbation idea, in our context, suggests using
st = A(pe + Zt;:ll w,) for uniformly random perturbatiop; € [0,+/¢]*. One can bound the expected
regret of following-the-perturbed-leader to ©¢7~'/2), disregarding other parameters of the problem.

Kalai and Vempala [8] note that Hannan’s approach maintairesymptotiev-approximation guarantee
when used with-approximation algorithms with a special property they eapoint-wise approximatian
meaning that on any input, the solution they find differs friti@ optimal solution by a factor of at maost
in every coordinate. They observe that a number of algosttsuch as the Goemans-Williamson max-cut
algorithm [6], have this property. Balcan and Blum [2] obsethat Hannan’s approach applies to another
type of approximation algorithm: one that uses an optimaigien for another linear optimization problem,
e.g., using MST for TSP. It is also not difficult to see that &R&B can be used to get(a + ¢)-competitive
online algorithm. We further note that the Hannan-Kalamyala approach extends to approximation algo-
rithms that perform a simple type of randomized rounding netthe randomness does not depend on the
input.

In Appendix A, we use an explicit example based on the greetig®ver approximation algorithm to
illustrate how Hannan's approach fails on more general@ppration algorithms.

1.2 Informal statement of results

The main result of this paper is a general conversion fromagupyoximate linear optimization algorithm to
an approximate online version in the full-information sejt(Section 3). The extension to the bandit setting
(Section 4) uses well-understood techniques, modulo owdgseie that arises in the case of approximation
algorithms. We summarize the problem, our approach, andesuits here.

We assume there is a known compact conveX8et R" of legal weight vectors (in many casgg =
[0,1]™), and a cost functior : S x W — [0, 1] that islinear in its second argument, i.ex(s, av + bw) =
ac(s,v)+bc(s,v) foralls € S,a,b € R, andv, w, av+bw € W. The generalization t@, A/]-bounded cost
functions forM > 0 is straightforward. We assume that we have a black-heapproximation algorithm,
which we abstract as an oractesuch that, for alkv € W, c(A(w),w) < aminses (s, w). Thatis, we do
not assume that our approximation oracle can optimize iryedieaction. In the full-information setting, we
assume our only accessdads via the approximation algorithm; in the bandit setting, meed an additional
assumption, which we describe below.

For simplicity, in this paper, we focus on then-adaptive settingn which the adversary’s choices of
wy can be arbitrary but must be chosen in advance. Iratfaptive settingon periodt, the adversary may
choosew; based ors{,wy,...,s:—1,w;_1. There is no clear reason why the results presented heretcann
be extended to the adaptive setting.

1This approach fails even on a two-decision problem, whezetsts of the two decisions are (0.5,0) during the first pleatiud
then alternaté1, 0), (0, 1), (1,0), ..., thereafter.
%In [8], the se?V = {w € R™ | |w|; < 1} was assumed.

For c-approximation algorithms, it is natural to consider thioiwing notion of a-regret in both the
full-information and the bandit-settings. It is the diffece between the algorithm’s average cost and
times the cost of the beste S, i.e.,% Zf c(sg, wy) — aminges % Zf c(s,wy).

1.2.1 Full-information results

Our approach to the full-information problem is inspireddigkevich’s algorithm (for a somewhat different
problem)[11], which uses an exact projection oracle toteraa online algorithm with low regret. An exact
projection oracldl; is an algorithm which can produeegmin, ; ||« — y|| for all y € R", whereJ is the
“feasible region” (in Zinkevich’s setting, a compact coxgeibset ofR™). The main algorithm presented in
Zinkevich's paper, ®EEDY PROJECTION determines its decisiar at timet asz; = 117 (zi—1 — nw—1),
wheren is a parameter called the learning rate and; is the cost vector at timg — 1). One can view the
approach in this paper as providing a method to simulateeadffapproximate” projection oracle using an
approximation algorithm. In Section 3 we show the following

Result 1.1. Given anyx-approximation oracle to an offline linear-optimizationoptem and anyl’, 7 > 1,
wy,ws, ... € W, our (full-information) algorithm outputsy, ss, ... € S achieving

To+T To+T

1 1 O(an)
E|= Z c(sg,wy) | — amin — Z c(s,wy) = .
T t=Top+1 8€5 T t=To+1 ﬁ

The algorithm makes paly, T') calls to the approximation oracle.

Note that the above bound on expectetegret holds simultaneously for every windowilotonsecutive
periods " must be known by the algorithm). We easily inherit this uaflaptation property of Zinkevich’s
algorithm. It is not clear to us whether one could eleganthieve this property using the previous approach.

1.2.2 Bandit results

Previous work in the bandit setting constructs an “exploreibasis” to allow the algorithm to discover better

decisions [1, 9, 5]. In particular, Awerbuch and Kleinbetgiptroduce a so-called Barycentric Spanner (BS)
as their exploration basis and show how to construct one fmooptimization oraclél : R® — S. However,

in the case where the oracle (exact or approximate) onlypd&@eputs in, say, the positive orthant, it may
be impossible to extract an exploration basis. Hence, wmnasshat we are given @BS for the problem

at hand as part of the input. Note that the BS only needs to lmpeted once for a particular problem and

then can be reused for all future instances of that probleiverG 3-BS, the standard reduction from the

bandit setting to the full-information setting gives:

Result 1.2. For any 8-BS and anyx-approximation oracle to an offline linear-optimizationoptem and
anyT, Ty > 1, wy, wo, ... € W, (bandit) Algorithm B.2 outputs;, so, ... € S achieving

To+T To+T 2/3
1 1 O(n(afB)*?)
E|= E c(st,wt) — amm — E C(S,'Il)t) =T 37
T = Tod1 seS T =Toa1 VT

The algorithm makes paly, T') calls to the approximation oracle.
We also show, in Section 4.1, that the assumption of a BS isgsecy.

Result 1.3. There is no polynomial-time black-box reduction from @@approximation algorithm for a
general linear optimization problem (without additionalput) to a bandit algorithm guaranteeing low
regret.

2 Formal definitions

We formalize the natural notion of arrdimensionalinear optimization problem

Definition 2.1 (n-dimensional linear optimization problemAn n-dimensional linear optimization problem
consists of a convex compact setfefisible weight vectorsy ¢ R"”, a set offeasible decisions, and a
cost functionc : S x W — [0, 1] that is linear in its second argument.

Due to the linearity of, there must exist a mapping : S — R" such thate(s, w) = ®(s) - w for all
s € S,w € W. In the case where the standard basis is contain&d,iwe have

®(s) = (c(s,(1,0,...,0)),¢(s, (0,1,0,...,0),...,¢(s,(0,...,0,1))).

More generally, the mapping can be computed directly fromby evaluating: at any set of vectors whose
span includesV. We will assume that we have accessbtandc interchangeably. Note that previous work
represented the problem directly as a geometric probleR"inbut in our case we hope that making the
mapping® explicit clarifies the algorithm.

An a-approximation algorithmA (o > 1) for such a problem takes as input any veatiorE)V and
outputsA(w) € S such thate(A(w), w) < aminges c(s,w). To ensure that thenin is well-defined, we
also assume(S) = {®(s) | s € S} is compact.

Define aprojection oraclell; : R™ — J, wherell ;(z) = argmin,; ||z — z|| is the unique projection
of z to the closest point in the setJ.

Definew, = {awl|a > 0,w € W} C R™. Note thatW/, is convex, which follows from the convexity
of W. We assume that we have an exact projection orBgle . This is generally straightforward to
compute. In many caseBy = [0,1]", in which casé/V, is the positive orthant anly, (w)][:] is simply
max(wli],0), wherew]i] denotes theth component of vectow. More generally, given a membership
oracle toW (and a pointwy € VW and appropriate bounds on the radii of contained and cantplvalls),
one can approximate the projection to within any desiredi@ye > 0 in time poly(n,log(1/¢)).

We also assume, for convenience, that 1V, — S because we know that(w) can be chosen to be
equal toA(aw) for anya > 0, and findinge such thatww € WV is a one-dimensional problem. (Again, given
a membership oracle %/ one can findy € W which is within e of being a scaled version af using time
poly(n, 1/€)). However, the restriction on the approximation algarithdomain is important because many
natural approximation algorithms only apply to restrictiEgnains such as non-negative weight vectors.

In an online linear optimizationproblem, there is a sequeneg,ws,...,€ W of weight vectors.
Due to the linearity of the problem, aoffline optimumcan be computed using an exact optimizer, i.e.

minges & Y1, ®(s) - wy = minges (s) - (% S wt) gives the average cost of the best single decision
if one had to use a single decision during all time peribds 1,2,...,T. Similarly, ana-approximation

algorithm, when applied tg‘; Zle we, gives a decision whose average cost is not more than a factor
larger than that of the offline optimum.

Definition 2.2 (full-information online linear optimization problem)There is an unknown sequence of
weight vectorswy, ws,... € W (possibly chosen by an adversary). On each period, theidegisaker
chooses a decisiofy € S based orsy, wq, s9,wa, ..., s:—1,w;—1. Thenw, is revealed and the decision-
maker incurs cost(s;, wy).

Finally, we define the bandit version of the problem, in whiwh algorithm finds out only the cost of its
decision,c(s¢, w), butnotwy itself.

Definition 2.3 (bandit online linear optimization problem}here is an unknown sequence of weight vectors
wy,ws, ... € YW (possibly chosen by an adversary). On each period, theidegizaker chooses a decision
s; € S based only upoRy, c(w1, $1), ..., St—1, c(wi—1, s¢—1). Then only the cost(s;, w;) is revealed.

4

The performance of an online algorithm is measured by comgats cost on a sequence of weight
vectors with the cost of the best static decision for thatisage.

Definition 2.4. The a-regretof an algorithm that selects decisiofis sy € S is defined to be

S wt
seSs T

”Mﬂ

T
1
a-regretsi, wy ..., sp,wr) = Zc St, W) —amln
TS

The termregretby itself refers tal-regret.

Forz,y € R® andWW C R"”, we sayr dominatesgy if x - w < y - w for all w € W (equivalently, for all
weWy).3

Define K C R to be the convex hull of6(S), K = {Z;‘jf&@@ﬁ‘ s5i €S, >0, 0 =1},
Note thatmingcx « - w = minges ¢(s,w) for all w € W. The cost of any point i can be achieved

by choosing a randomized combination of decisiers S. However, we must find such a combination of
decisions and compute projections in our setting, wher@plyraccess t& is via an approximation oracle.

3 Full-information algorithm

We now present our algorithm for the full-information sedti Definez; = x; — nw,. Intuitively, one
might like to playz, on period¢ + 1 becausez; has less cost thap, againstw,. Unfortunately,z; may
not be feasible. In the REEDY PROJECTIONalgorithm of Zinkevich, the decision played on periog 1

is the projection ot; into the feasible set. Our basic approach is to implemenipanoaimate projection
algorithm and play the approximate projectionzpbn step(t + 1).

There are a number of technical challenges to this appro&dist, we only have access to an
approximation oracle with which to implement this. Due te thultiplicative nature of this approximation,
we proceed by attempting to project into the séf, wherea K = {ax|x € K}. Second, even if we could
do this perfectly (which is not possible), this would stidtiresult in a feasible decision. We then must find
a way to play a feasible decision.

We can intuitively view our algorithm as follows. The alghm keeps track of a parametey, which
we can think of as the attempt to projegt ; into K (though this is not done exactly, ag is not even
in aK). We show that if the algorithm actually were allowed to plgaythen it would have lowx-regret.
Our algorithm uses this; to find a randomized feasible decisien We show that the expected cost of this
random feasible decisiosy is no larger than that of the infeasihte.

Our algorithm for the full-information setting is based te approximate projection routine defined in
Figure 3.

Algorithm 3.1. On period 1, we choose an arbitrary(which could be selected by running the approxima-
tion oracle on any input) and let = ®(s;). On periodt, we plays; and let

(441, St+1) = APPROXPROJECTIONz; — nwy, ¢, ¢).

It may be helpful to the reader to note that the sequepnéedeterministically determined (if the approxi-
mation oracle is deterministic) by the sequence of weights. . , w;_1, while s; is necessarily randomized.
In Section 3.1, we show that if we had a particular kind of agpnate projection algorithm, then the
x; values produced by that algorithm would have (hypothéticaV «-regret. In Section 3.2, we show how

®Note that this definition differs from the standard definitio R™ wherez dominatesy if z[i] > y[i] for all i but resembles
the game-theoretic notion of dominant strategies.

to extend the domain of any approximation algorithm, whittbves us to construct such an approximate
projection algorithm: the APROXPROJECTIONalgorithm used in Algorithm 3.1. We also show that the
cost of the (infeasible) decisiary, it produces can only be larger than the expected cost irgtuoyethe
feasible decision; it also generates. This will allow us to prove our main theoia the full-information
setting:

Theorem 3.2. Consider am-dimensional online linear optimization problem with fides setS and map-
ping® : S — R™. Let A be ana-approximation algorithm and tak&, W > 0 such that|®(A(w))|| < R
and|jw| < W forall w € W.

For any fixedw, we, ... wr € W and anyl’ > 1, withn =
Algorithm 3.1 achieves expectedregret at most

wvT ' T

(e+1)R (a+1)R? _ (a+41)
g »andA = oo

E

1 1 (a +2)RW
T Zc(&,u&)] — amin — ;c(s,wt) < —r

e ses T

Each period, the algorithm makes at maét + 2)27T calls to A and .

We present the proof of Theorem 3.2 in Section 3.3. To get IR&sl in the introduction, we note
that it is possible to get a priori bounds & and R by a simple change of basis so tHat} = O(n). It
is possible to do this from the s&V alone. In particular, one can compute-darycentric spanner (BS)
e, ..., e, for W [1] and perform a change of basis so tlgk;), ..., ®(e,) is the standard basis (as we
describe in greater detail in Section 4). By the definitiorad-BS, this implies thayy C [—2,2]" and
hencelV = 2/n is a satisfactory upper bound. Since we have assumed traistll are iff0, 1] and the
standard basis is W, this implies thatb(.S) C [0, 1]" and hence? = \/n is also a valid upper bound. The
guarantees with respect to every windowlotonsecutive periods hold because our algorithm’s guagante
hold starting at arbitrarys;, z;) such that£[®(s,)] dominates;.

3.1 Approximate Projection

We first define the notion of approximate projection. It ism@p@mate in two senses: first, even if we had
an exactoptimization oracleq¢ = 1), we could not find theabsoluteclosest pointr € K to any point
z € R™.* The second and more important sense in which it is approgiisahat, because we only have an
a-approximate oracle, we cannot find the closest poirt’iar even inaK = {ax|z € K}.

Note that for a closed convex sétC R”, if I1;(z) = z, then

_ e < mi — TR
(¢~ 2)-w <minz—2) -y
This is essentially the separating hyperplane theoremr@vhe- z is the normal vector to the separating
hyperplane). Also note that;(z) = z if x € J.
Our approximate projection property, illustrated in Figur, relaxes the above condition. Define the set
of §-approximate projections to be, fé6r> 0 and anyz € R",

% (2) = {z € R" | (:E—z)-:ngrzjaei?(m—z)-y+5}.
It is important to note that we have not required an approteénpaojection to be in/. However, note that
in the case where the projection isdnands = 0, it is exactly the projection, i.elJ%(z) N J = {I1;(z)}.
While we refer to it as an approximate projection, it is al&ady related to a separation oracle. From a

“We are not assuming thaf is defined by a finite number of hyper-planes—it can be quitedo

L J

Figure 1: An approximate projection oracle, for set conweix/sC R™ andé = 0, returns a poinﬂ?,(z) €
R™ that is closer to any point € J thanz is, i.e.,vy € J [[1%(2) — y|| < ||z — y]|.

hyperplane separating from .J, one can take the closest point on that hyperplane as an approximate
projection. The difficulty is in finding a feasible sueh

We now bound thex-regret of the hypothetical algorithm which projects \AEI@K The proof, which
we defer to the appendix, is essentially a straightforwatdreion of Zinkevich’s proof [11]. This lemma
shows that indeed this hypothetical algorithm has a gradefgradation in quality.

Lemma 3.3. Let K C R" be a convex set such thatr € K ||z|| < R. Letwi,...,wr € R" be
an arbitrary sequence. Then, for any initial point € K and any sequence;, zo, ...,z such that
Ty1 € T 4 (w0 — mwy),

T
Z:L’t wt—airéan:E wy < OH_lQRZ gz_: w? + T_

Note that if we set) = 1/4/T, the sum of the first two terms of this bound would®é/T). However,
the last termT%, would beO(T*55). Hence, we need to achieve an approximation quality efO(1/7)

in order for thea-regret of our (infeasible); values to bed(v/T).

3.2 Constructing the Algorithm

One simple method to (approximately) find a the projection @fto a convex set/, given an exact opti-
mization oracle foJ, is as follows. Start with a point i € .J. Then choose the search directios- = — z,
and find a minimal point” € J in the direction ofy, i.e.,z’ € J such thate’ - v < min,c;y - v. It can be
seen that ifr is not minimal in the direction of, then there must be a point on the segment joinihgnd
z that is closer ta: thanz was. Then repeat this procedure starting’atin the case where € .J, this will
be still be useful in representingnearly as a combination of points output by the minimizaaayorithm?®

SNote that representing a given feasible point as a convedoiration of feasible points is similar tandomized metarounding
[3]. It would be interesting to extend their approach, basedhe ellipsoid algorithm, to our problem and potentialthiave a
more efficient algorithm. Related but simpler issues aridd].

Figure 2: An approximation algorithm run on vectore W always returns a point € S such that the set
aK is contained in the halfspace tangentits) whose normal direction ig. An extended approximation
algorithm takes any € R"™ as input and returns a poimte R"™ such thaixK is contained in the halfspace
tangent tar with normal vectorw. In addition, it returns an € S such thatb(s) dominatese.

Note that in our case if € W_, then our approximation oracle is able to find a feasibeS such that

®(s)-v<amin®(s') -v= min z-v.
s'eS zeaK
Loosely speaking, our oracle is able to perform minimizatiath respect to the set = oK (or better).
This is essentially how our algorithm will use the approxima oracle. However, as mentioned before,
many approximation algorithms can only handle non-negatieight vectors or weight vectors from some
other limited domain. Hence, we must extend the domain obthele wherv ¢ W,..

Extending the domain: We would like to find a feasible € S that satisfies the search condition
®(s)-v < aminges P(s’) - v for a generab € R™, but this is not possible only given arapproximation
oracle that runs on only a subset®t. Instead, we attempt to find a (potentially infeasibte} R™ which
does satisfy this search condition, and we also attempt doaiins € S which dominates:, meaning that
forallw e W, ¢(s,w) < x - w. More precisely, we will construct the following oracle:

Definition 3.4 (extended approximation oraclein extended approximation oracle: R” — S x R"isa
function such that, for alb € R", if B(v) = (s,z), thenz - v < amingcs ®(s') - v and®(s) dominatese.

Figure 2 depicts an extended approximation oracle. Thevitig lemma, which we prove in the ap-
pendix, demonstrates that one can construct an extendeoxapgtion oracle from an approximation ora-
cle.

Lemma 3.5. Let A : W, — S be ana-approximation oracle and suppog@(s’)|| < Rforall s’ € S.
Then the following is an extended approximation oracle: § W, thenB(v) = (A(v), ®(A(v))), else

Iy, (v) —v)
[T, (v) =l)

Note that the magnitude of the outputs at mostj|®(s)|| + (o + 1)R < (« + 2)R; this bound will be
useful for bounding the runtime of our algorithm.

B(v) = <A(HW+ (v)), B(A(y, ())) + R(a + 1)

Input: z, z € R", s € S, and amy-approximation algorithmi (and parameter§ > 0, A € [0, 1]).
Output: (z/,s") € TI j x S
Define B to be the extended approximation oracle obtained froasing Lemma 3.5.

APPROXPROJECTION 2, 8, x)
1 Let(t,y) = B(z —z)
2 ife-(x—2)<d+y-(rv—2)

3 then return(z, s)
ith probability 1 — A
4 elseq{ Wihprobabily
t with probability A
5 return APPROXPROJECTION z, ¢, Ay + (1 — A)x)

Figure 3: An iterative algorithm for computing approximat®jections.

The approximate projection algorithm: Using this extended approximation oracle, we can define
our APPROXPROJECTION algorithm, which we present in Figure 3. The following lemmadnose proof
is in the appendix, shows that the algorithm returns bothlid @goproximate projection (which could be
infeasible) and a random feasible decision that domindgespproximate projection (assuming tidaof
the algorithm’s inputs dominated the algorithm’s input).

Lemma 3.6. SUppOSAPPROXPROJECTION(z, 5,) returns(z/, s'). Thenz’ € T1° . (2). If s is a random
variable such thaE[®(s)] dominatest, thenE[®(s’)] will dominatez’.

It is straightforward to see that thereturned by AAPROXPROJECTION Satisfies the approximate pro-
jection condition. The subtlety is in obtaining a feasibtdution with the desired properties. It turns out
thatt returned byB in line 1 does not suffice, as thisonly dominateg,, but not necessarily. However,
our randomized scheme does suffice.

3.3 Analysis

Our next lemma, which we prove in the appendix, allows us tandathe number of calls Algorithm 3.1
makes toA and® on each period.

Lemma 3.7. Suppose thak, 4§ > 0 and the magnitudes of all vectors output by the extendedappation

. .2
oracle are< %\/g and|jz|| < %\/g ThenAPPROXPROJECTION?Z, s, x) terminates after at moék%
iterations.

This above lemma gives us a means of choosing/e are now ready to prove our main theorem about
full-information online optimization.

Proof of Theorem 3.2Taken = % andé = (a+%)R2. Sincez; = ®(s1), by induction and Lemma

3.6, we have tha[®(s;)] dominates:; for all t. Hence, it suffices to upper-boudd’_, z; -w;. By Lemma
3.6, we have that; ¢ H‘;K(zt_l) on each period, so by Lemma 3.3 we get

1 ((a+1)*R? 0 Mo
— <=7 — — .
E[a — regret < T < o +T77 + 2TW
Applying our chosen values af andd, this gives am-regret bound of%((a + 1)RWVT + RWVT) =

% as desired.

Now, as mentioned, the extended approximation oracle fremrha 3.5 has the property that it returns

vectors of magnitude at mo&t = %\/§ = (a+ 2)R. Furthermore, itis easy to see that all vectoyhave

llx¢|] < H, by induction ort. Then by Lemma 3.7, the total number of iterations @fPR0OxPROJECTION
periodt is at most(2H ||z — z||/6)? < (2(a + 2)RypW/§)? = 4(a + 2)*T. O

4 Bandit algorithm

We now describe how to extend Algorithm 3.1 to the partiébimation model, where the only feedback we
receive is the cost we incur at each period. The algorithmeseribe here requires access taeaploration
basisey,...,e, € S, which is simply a set ofi decisions such thab(e;), ..., ®(e,) spanR™. (If no
such decisions exist, one can reduce the problem to a lowsrrgional problem.) Following previous
approaches, we will (probabilistically) try each of thegeidions from time to time. As in the work of Dani
and Hayes [5], we will assume thét(e;) is the standardth basis vector, i.eg;[i] = 1 ande;[j] = 0 for

j # i. This assumption makes the algorithm cleaner to presedisanithout loss of generality because we
can always us@(e;) as our basis for representifiy’.

Definition 4.1. A set{x1,zs,...z,,} C Sis af-barycentric spanner (BS) fof C R” if, for everyz € S,
x can be written ag = Sz + ... + By, for somesy, ..., Gy, € [-05, 6.

Note that we only need to construct a BS once for any problem,tlhen can re-use it for all future
instances of the problem.

Awerbuch and Kleinberg [1] prove that every compé&chas a 1-BS of size,, and, moreover, give
an algorithm for finding a size-(1 + ¢)-BS using polyn,log(1/¢)) calls to an exact minimization oracle
M :R" — S, whereM (v) € argmin, s ®(s) - v. Unfortunately, as we show in Section 4.1, one cannot
find such a BS using a minimizer (exact or approximate) whaseain is not all ofR™. Moreover, we show
that one cannot guarantee low regret for the bandit probleimgyjust a black-box optimization algorithm
A: W+ — S.

Hence, we assume that we are givefi-BS for the problem at hand as part of the input. We feel that
this is a reasonable assumption. For example, note thagdtsyg to find such a basis for TSP and set cover
with 3 =poly(n): In the case of set cover, one can taketheovers consisting of all sets but ofién the
case of TSP, we can start with any taeuthat visits all the edges at least once and considdor each edge
e which is the same as but traverseg an additional two times.

We present the algorithm for the bandit setting in Figure thenappendix. We remark that our approach
is essentially the same as previous approaches and candasisegeneric conversion from a black-box
full-information online algorithm to a bandit algorithm.ré®ious approaches also worked in this manner,
but the analysis depended on the specific bounds of the blaiclelgorithm in a way that, unfortunately, we
cannot simply reference.

Theorem 4.2. For o, 3 > 1, integerT > 0 and anyws, ..., wp, given ana-approximation oracle and a
(-BS, Algorithm B.2 in the bandit setting achieves an expleeteegret bound of

Ela-regref < 7n(a8)?/3171/3,

Because the conversion from full-information to banditimsikar to other conversions [1, 9, 5], we defer
its proof to the the appendix.

bIf any of these is not a cover, that set must be mandatory ircamgr and we can simplify the problem. If this set of covers
is not linearly independent, then we can reduce the dimaakty of the problem and use the fact thaffifis a (possibly linearly
dependentp-BS for S andR is ay-BS forT thenR is a(y3|T'|)-BS for S.

10

4.1 Difficulty of the black-box reduction

We now point out that it is impossible to solve the bandit peabwith general algorithms (approximation or
exact) without an exploration basis (i.e., if our only ascEsS is through a black-box optimization oracle).
The counterexample is randomized. We will take

W = {w e R" | wll] € 0,1] and |Jw||? < 2(w[1])?}.

The setS will consist of two points:s = (1/2,0,...,0) as well as a second poist = (1,0,...,0) — u
where||u|| = 1 andu[1] = 0. The mapping? is the identity mapping. The cost sequence will be constant
we = (1,0,...,0)+u. Hencec(s, w;) = 1/2 while ¢(s’, w;) = 0. Now, suppose we as algorithm designers

know that this is the setup butis chosen uniformly at random from the set of unit vectordwitl] = 0.

Observation 4.3. For any bandit algorithm that makes calls to black-box optimization oracld, any
a > 0, with probability 1 — ke=%!" over u, the algorithm hasx-regret 1/2 on a sequence of arbitrary
length.

Proof. No information is conveyed by the costs returned in the Haselup of our example—they are
always 1/2 ifs’ has not been discovered, while the minimal cost is 0. Thusldaithm must find some
w € W such that(s, w) > ¢(s’,w) (whence an exact optimization algorithm must retsfj)n Without loss
of generality, we can scale so thatw[1] = 1 and|w|| < 2. Hence, we can writes = (1,0,0...,0) +v
wherev[1] = 0 and||v|| < 1. Inthis casew - s = 1/2, whilew - s’ = 1 — w - v. Foru a random unit vector
and any fixed|v|| < 1, itis known thatPr|u - v > 1/2] is exponentially small im. A very loose bound can
be seen directly, since for a ball of dimensiesthis probability is

A=) e [,/ de m<3>’5-1
1

n— - n _ n—2 - N
JAO=ar2de = [V —n) a2\

which isO(e=%17), O

5 Conclusions and Open Problems

We present a reduction converting approximate offline lilnggimization problems into approximate online
sequential linear optimization problems that holds doy approximation algorithm, in both in the full-
information setting and the bandit setting.

Our algorithm can be viewed as an analog to Hannan’s algofith playing repeated games against an
unknown opponent. In our case, however, we cannot compusterésponses but only approximately best
responses.

The problem of obtaining similar results for interestingsdes of non-linear optimization problems
remains open.

References

[1] B. Awerbuch and R. Kleinberg. Adaptive routing with etadend feedback: Distributed learning and
geometric approaches. Rroceedings of the 36th ACM Symposium on Theory of Comp{&ingC)
2004.

[2] M.-F. Balcan and A. Blum. Approximation algorithms andlioe mechanisms for item pricing. In
Proceedings of the 7th ACM Conference on Electronic Comen@&c€) 2006.

11

[3] R. Carr and S. Vempala. Randomized metaroundiRandom Struct. Algorithm=0(3):343-352,
2002.

[4] D. Chakrabarty, A. Mehta, and V. Vazirani. Design is asyeas optimization. 1183rd International
Colloquium on Automata, Languages and Programming (ICARB)6.

[5] V. Dani and T. P. Hayes. Robbing the bandit: Less regrairiline geometric optimization against
an adaptive adversary. Iroceedings of the 17th ACM-SIAM Symposium on Discreteriftigts
(SODA) 2006.

[6] M. X. Goemans and D. P. Williamson. Improved approximatalgorithms for maximum cut and
satisfiability problems using semidefinite programmidgACM, 42(6):1115-1145, 1995.

[7] J. Hannan. Approximation to Bayes risk in repeated pllyM. Dresher, A. Tucker, and P. Wolfe,
editors,Contributions to the Theory of Gameslume lll, pages 97—-139. Princeton University Press,
1957.

[8] A. Kalai and S. Vempala. Efficient algorithms for onlineaision problems.J. Comput. Syst. Sg¢i.
71(3):291-307, 2005.

[9] H. McMahan and A. Blum. Online geometric optimizationthre bandit setting against an adaptive
adversary. IProceedings of the 17th Annual Conference on Learning ThEOLT) 2004.

[10] H. Robbins. Some aspects of the sequential design afrewmpnts. InBulletin of the American
Mathematical Societywolume 55, 1952.

[11] M. Zinkevich. Online convex programming and genemiznfinitesimal gradient ascent. Rroceed-
ings of the 20th International Conference on Machine Leagr(iCML), 2003.

A Example where “follow-the-leader” fails

First consider the s&t = {1,2,...,n} and the costsequentg 1,..., 1) (repeated’/n times),(1,0,...,0)
(repeatedl’/n times),(0,1,0,...,0) (repeated’/n times),...,(0,...,0,1) (repeated’/n times). Notice
that a selection of decision, each period, which costs Iniays a valid(« = 2)-approximation to the leader
on the previous examples. Moreover, its cost'ishile the cost of the best (in faevery s € S is 27/n,
hence giving largex-regret. Unfortunately, adding perturbationsfy/T) as in follow-the-leader will not
significantly improve matters. WheR/n > /T, a choice of decision which costs 1 each period is still an
a)-approximation for, sayy = 3.

Of course, one may be suspicious that no common approximatgwrithms would have such peculiar
behavior. We now give a similar example based on the stargtaatly set cover approximation algorithm
A (o = logm) applied to the online set cover problem described earllére example has /2 covers
of size 2:S; = S\ Sp+1-4, fori = 1,2,...,n. Furthermore, suppose the sets are of increasing size
9i| = (0.4 4 0.2:=L)m and|S; U S;| < 0.9m forall 1 < 4, j < nwherei # n+1— j.” The sequence of
costs (weight) vectors is divided intg/2 phaseg = 0,1,...,n/2 — 1, each consisting df7'/n identical
cost vectors. In phasg= 0, all sets have cost 1. For phage- 1,...,n/2 — 1: the cost of the;j — 1 sets
Si,...,8;andS,_j11,...,5, are all 1, while the costs of the remaining sets are all 0.

"To design such a collection of sets (for everandm = 5(n — 1)), take S; to be a uniformly random set of the desired
sizemfori =1,...,n/2, andS,+1—; to be its complement. It is not hard to argue that, with higbbgbility, the randomized
construction obeys the stated properties.

12

In this example, following the leader with greedy set covél mave an average per-period cost of at
least0.1. In particular, during the first 10% of any phage> 1, either greedy'’s first choice will b, _;, in
which case it's second choice will g (because any other set covers at most 90% of the remainimg, ite
andS;’s cost so far is at most 10% more than that of any other segremdy’s first choice will be one of
Sn—j+1,-- -, 5, in either case it pays at least 1 during that period. Hermmtlewing the leader pays at least
0.1+ 1—59n in expectation on average, while the coy, U S,, 21 has an average cost of onlyn, which
is far from matching greedy’s = log m approximation ratio (for. = 6(m)).

Also note that perturbations on the order @fv/7’) will not solve this problem. It would be very
interesting to adapt Hannan’s approach to work for appration algorithms, especially because it is more
efficient than our approach. However, we have not found disalthat works across problems.

B Proofs

B.1 Lemma3.3

Proof of Lemma 3.3Let 2* = avargmingj, Sr, @ - wy, S0z* € aK. We will bound our performance
with respect tar*. Define the sequencg by 2} = z; andz), | = z; — nw, so thatz, € 1 ;- (z}). We

first claim that||z; — 2*||? < ||«} — z*||? + 26, i.e., our attempt at setting to be an approximate projection
of x; ontoa K does not increase the distancectosignificantly:

(p—2")? = (2} —z0) + (2 — 2"))"
(x} — wt)2 + (2 — x*)2 +2(z} —) - (mp —)

> 0+ (zp—x*)2 - 26

The last line follows from the definition of approximate prdiion and the fact that* € oK.
Hence, for any > 1, because’} = x; — nw; we have

(1 — %) < (@ —nqwp —2")? 4+ 26
= (w0 — ") +n’wi = 2nw; - (7, — x%) + 26
(z1 — 2*)? — (w441 —)2 + nwi + 20
2n
The lemma follows from a telescoping sum of the above andabietfiat

(w1 —2")? < (]l + 2"])* < (@ + 1)°R%. O

we - (xp —2*) <

B.2 Lemma3.5

Proof of Lemma 3.5For the case where € .., by definition,B(v) = (A(v), ®(A(v))) suffices. Hence,
assumer ¢ W,. Letw = Iy, (v), s = A(w), andz = ®(s) + (o + 1)Rﬁ. Then we must show (a)
x-v < aminges ®(s) - v and (b)®(s) dominatese.

We have assumed that is an «-approximation oracle with domaiv/,, and therefore it can accept
inputw. By the definition ofa-approximation, we have - ®(s) < aw - ®(s’) for all s’ € S. By the bound
R, we also have thata|jv —w||R < a(v—w)-®(s') forall ' € S. Adding these two gives, foral € S,

av-®(s') > w-®(s)—alv—w|R

= v-w+(w—v)-(I)(s)—(a—i—l)RﬁZ::?’ ‘v —allv—w|R
(w —v)

v

vex—|lw—v||R—-(a+1)R (v —w) —aljv —w||R

lw =]

= V-

13

This is what we need for part (a) of the lemma. The seconasbline follows from the fact thav —w)-w =
0. To see this, note that sineeis the projection oy onto W.., we have(v — w) - (v’ — w) < 0 for any
w' € Wy. Since0 € Wy, this implies that(v — w) - (—w) < 0. Since2w € Wy, this implies that
(v —w)-w <0, and hencgv — w) - w = 0.

This also means thdv — w) - (v’ —w) = (v —w) - w’ < 0 forall w’ € Wy, which directly implies
(b),i.e.,(z —®(s)) -w' > 0forallw’ e W. O

B.3 Lemma 3.6

Proof of Lemma 3.6The return condition of RPROXPROJECTIONStates that’- (2’ —2) < §+y- (2’ —2).
Using the definition of an extended approximation oracletivea get

(' —2) < 5+am1151<1>(8/) (2 - 2)
s'e

< 4 i (2 —
< 0+ Juin y (' = 2)
as desired.

The proof of the second property proceeds by induction onntireber of recursive calls made by
APPROXPROJECTION The base case holds trivially. Now suppose the inductiystiesis holdsH[®(s)]
dominatesr). We will show that if (t,y) = B(z — z), the resultingE[® (At + (1 — \)s)] dominates

Ay + (1= M)z
We observe:
xw Ay+(1—Nz)-w
= yw(dl-=Nz-w
> AO(t) w4+ (1—Nz-w
> AO(t)-w+ (1= NE[®(s)] - w
= EXO@E)+ (1 —N)P(s)] - w
= E[®(s)] - w.
Thus, if APPROXPROJECTIONterminates, the desired conditions will hold. O

B.4 Lemma3.7

Proof of Lemma 3.7Let H = %\/g To bound the number of recursive calls te ROXPROJECTION it

suffices to show that the non-negative quanfity— z||?> decreases by at least an additMgon each call
and that||x|| remains belowHd on successive calls. The latter condition holds becgude|y|| < H so
IAy+ (1 —Nz|| <AH+ (1 —\)H =H.

Notice that if the procedure does not terminate on a paatiaall, then

(r—y) (x—2)>0
This means that the decreasgin— z)? in a single recursive call is

@—2 =M+ (1-Nz—2" = @—2"-\Ny—2)+(&—2)°
= 2z —y)- (z—2) = N(y—u2)’
> 200 — A2y — z)2.

14

Also, ||y — z|| < 2H. Combining this with the previous observation gives
(x—2)% =y + (1 =Nz —2)%>20 — \24H? =)6

Hence the total number of iterations oPAROXPROJECTIONON each period is at mogt: — z||2/(AJ).

U
B.5 Lemma4.2
Proof of Theorem 4.2\We begin the proof with a lemma:
LemmaB.1. LetJ C R" be aconvex setsuch thét € J, ||z|| < R. Letw,...,wr € R™ be an arbitrary

sequence and, ... ,wr be a sequence of random variables such i, |z, w1, ..., x—1, W1, T¢] =
w; and E[?] < D2. Then, for any initial pointz; € J and any any sequence, s, ... such that
Ty1 € 110 (@ — mwy),

)2R2 0 M9
g Ty - Wy | — qmin E T-wy < +T—+ —D*T +2aRDVT.
xcJ 2n n 2
Proof of Lemma B.1By Lemma 3.3, we have that

oz—|—1)2R2
Zl’t wt—aglean:E wt 77

dloq
l\'>|3

T
Taking expectations of both sides gives
1)
Zwt w; — ab mme on §M T—+ED2T.
P zeJ 2n n 2

It thus suffices to show that

zeJ zeJ —

T
[mm Zw wt] > minz T wy — 2RDVT. Q)
1

Now, for anyx € J,

T

Zl"(?f]t—wt)

t=1

T
E UAJt—wt .

t=1

(2)

T
E fut—wt

t=1

< x| <R

This gives us a means of upper-bounding the difference lestwee minima. Namely,

T 2 T 2 T
E[i] <E (Zwt—wt> :ZE[(wt_wt)q, (3)
t=1 t=1 t=1

The last equality follows from the fact thBf(«w;, — wy,) (W, — wy,)] = 0 for t1 < ta, which follows from
the martingale-like assumption thiatw;, — wy, [w:, , wy, | = 0. Finally,

E[(; — wy)?] < E[? + 2||iy||||ws]| + w?] < D* + 2D* + D? = 4D

In the above we have used the facts tAti;|]* < E[w?] < D? and||w||? = E[@]? < E[@?] < D2
Hence, we have that the quantity in (3) is upper boundedm?, which, together with (2), establishes
(2). O

15

We remark that the parametein the statement of the theorem may be larger than 1, butsrcse the
regret bound is greater than 1 and hence holds for any digarit

Note that in the conversion algorithm the expected valu&;d w;, and this is true conditioned on all
previous information as well a&. Since Lemma 3.6 implies;,; € H‘;J(gct —nuwy), we can apply Lemma
B.1 to the sequence;. This gives

2R?)
ZE:L’t we] —ammZaj wy <) T—+QD2T+2aRD\/T.
zeJ 2n n 2

To apply the lemma, we use the bouRd= n~~'/2. This holds becausg € [0, 1], SOE[@7] < ~(nf;/v)?+
(1 —~)0 < n?/v. Also, we use the bound @t = 3,/n. Hence we choosg = % andé = nnT /3,
which simplifies the above equation to

T T

E E[#; - w] — amin g 2wy < (a+1)RDVT +nT?3 + 20RDVT < 4aRDVT + nT?/3,
zeJ

t=1 t=1

Substituting the values dd and R gives an upper bound db3n3/2~y~1/2/T + Tg
Next, as in the analysis of the full-information algorithid[®(3;)] dominatesk[z,] by Lemma 3.6.
Thus,

ZE (8¢, wy)] —ozm1? T - wt<4aﬁn3/2 12T 4 nT?/3.
HAS

Finally, we have thatl[c(s;, w;)] < E[c(8;,w;)] + v because with probability — ~, §; = s; and in the
remaining case the cost is|if, 1]. Putting these together implies

Z Elc(st, -wy)] — ami? Zw cwy < 4afn®2yTV2VT 4 nT?3 4 4T.
Te

Choosingy = (4a3)?/3nT—1/3 (note that if this quantity is larger than 1, then the regratirid in the
theorem is trivial) gives a bound @f.(4a3T)%/% + nT?/? < Tn(aBT)?/? as in the theorem. O

16

Algorithm B.2. Givend,n,~v > 0 and an initial points; as input, set:; = ®(3;). Perform a change of
basis so tha®(e;), ..., ®(e,) is the standard basis.

fort=1,2,...:
With probability-y, > exploration step
Choose € {1,...,n} uniformly at random.
St = €.
Play,).
Observel; = (s, wy).
Wy = (nly/v)P(e;).
(Z441, St+1) := APPROXPROJECTION &y — niit, §¢, Tt)-
else, with probabilityl — ~,
9 S = 4.
10 Playé;).
11 Observe; = c(s¢, wy).
12 (i’t—i-ly §t+1) = (l’t, St).

O~NO O WNPF

Figure 4: Algorithm B.2: the bandit setting.

17

