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Abstract

We present Pegasus, a compact and expressive intermediate representation for imperative lan-
guages. The representation is suitable for target architectures supporting predicated execution and
aggressive speculation. In Pegasus information about the global dataflow of the program is en-
coded in local structures, enabling compact and efficient algorithms for program optimizations.
As a proof of the versatility of Pegasus, we have used it in a compiler translating C programs to
hardware implementations.
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1 Introduction

The choice of intermediate representation (IR) has an enormous impact on all aspects of com-
piler design and implementation. A good IR can create opportunities for new optimizations and
analysis algorithms by summarizing important program properties. For example, the static single
assignment representation (SSA) [1, 21] and a fast algorithm for its computation [8] enabled a
wealth of efficient and powerful program optimizations.

The importance of a good IR is magnified when the target architecture of the compilation
process has significantly different semantic properties from the source language. For example, the
generation of code for parallel computers starting from a sequential language is a very challenging
task. Another example is compilation for predicated architectures, which is hard to support using
classical IRs.

In this paper we present Pegasus [Predicated Explicit GAted Simple Uniform Ssa], a new
IR which makes explicit — in a single representation — the control flow, the data flow, and the
synchronization of operations which interfere through side-effects. More importantly, Pegasus
has a clean semantics, independent of the target architecture. This enables its use, for example, to
bridge the gap between C programs and hardware implementations, enabling the convertion from
an imperative, single-threaded model of computation to a highly-parallel, asynchronous, explicitly
synchronized target.

Pegasus combines predicated SSA [5] and gated SSA [17], making explicit the switching of
data values, enabling the compiler to use predication and aggressive speculation for exposing
instruction-level parallelism (ILP). In the next section we describe the basic components of Pe-
gasus and how the IR can be constructed starting from an imperative language. The operational
semantics of Pegasus is described, informally in Section 3, and formally in Appendix A.

Section 4 shows that the compactness of Pegasus enables the use of extremely simple and
efficient algorithms for many major compiler optimizations; in particular, we exhibit linear-time
algorithms for almost all of the scalar optimizations from Muchnick [16]. The versatility of Pega-
sus is demonstrated in Section 5, where we describe its use in a compiler which translates ANSI
C programs into hardware.

1.1 Contributions

In this paper we make the following contributions:
(1) We unify in one sparse intermediate representation Predicated SSA and the explicit repre-

sentation of gating functions from GSA [17, 24]. The resulting representation summarizes many
important program properties without the need for any external annotations.

(2) We show that Pegasus is flexible enough to express concepts such as control-flow, data-
flow, def-use chains, predication and speculative execution using a single simple data structure.

(3) We show that Pegasus permits concise and efficient implementations of most major pro-
gram optimizations. Moreover, because Pegasus summarizes important program dataflow infor-
mation, program transformations implicitly recompute what in other representations would be
changes in the dataflow information.

(4) We give a formal semantics for Pegasus.
(5) We show how the versatility of Pegasus can be used to synthesize application-specific

hardware directly from ANSI C programs.
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2 Building Pegasus

In this section we present an algorithm which constructs a Pegasus graph starting from a conven-
tional control-flow graph (CFG) of each procedure; we introduce the basic components of Pegasus
one by one, as they are built by this algorithm. The semantics of the basic components is presented
informally in Section 3 and formally in Appendix A.

The construction of the Pegasus IR from a program is achieved in several stages: first the CFG
is decomposed into large fragments (Section 2.2), some of which will be the innermost loops.
Each fragment is compiled into speculatively executed code, in order to extract the maximum
instruction-level parallelism (ILP). For this purpose the control-flow inside each fragment is trans-
formed into data-flow (Section 2.3), and branches are transformed into multiplexors (Section 2.4),
resulting in an SSA representation. In order to maintain the correct program execution, predicated
execution is used for the operations which cause side-effects or exceptions, (Sections 2.5 and 2.6).
Finally, the fragments are linked together into a complete Pegasus graph by using special control-
flow operators (Section 2.7). The resulting representation is used by both the optimizer and the
back-end.

The various algorithms and data structures we describe have the following asymptotic com-
plexities:

� The complexity of the entire construction algorithm is given by the complexity of the com-
ponent phases, the most complicated of which is a dataflow analysis used to determine
points-to sets. Given the results of this analysis, constructing the IR takes linear time in the
size of the resulting structure.

� The Pegasus graph is a sparse representation: its space complexity is similar to a classical
SSA representation.

� All optimization algorithms we present in Section 4 have linear time and space complexity
in the size of the Pegasus representation.

2.1 The Pegasus Graph

Pegasus’ representation is a directed graph whose nodes are operations and whose edges indicate
value flow. A node may fanout the data value it produces to multiple nodes; the fanout is repre-
sented as multiple graph edges, one for each destination. An edge runs between the producer of
the value and the consumer of the value. We call the incoming edges of a node “inputs” and the
outgoing edges “outputs.”

The data is produced by the source of an edge, transported by the edge and consumed by the
destination. Once the data is consumed, it is no longer available. In general, nodes need all their
inputs to compute a result, though there are some exceptions.

Each node performs a computation on its inputs to produce its outputs. We assume the ex-
istence of primitive nodes for all the major arithmetic and logic operations. We also have nodes
which represent constant values and some special nodes for complex operations, such as memory
access or procedure calls. Parameter nodes denote procedure arguments.

All the pictures of Pegasus graphs in this paper were automatically generated by our prototype
compiler, using the dot graph drawing tool [10] as a back-end (some pictures were hand-edited to
remove redundant details).
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2.2 Decomposing the CFG into Hyperblocks

Building the Pegasus representation of a procedure starts by partitioning the CFG into a collection
of hyperblocks. Hyperblocks were introduced in compilers that targeted predicated execution [15].
A hyperblock is a contiguous portion of the CFG, having a single entry point and possibly multiple
exits. Hyperblocks are thus directed, acyclic graphs. In Pegasus a hyperblock is the unit of (spec-
ulative) execution: once execution enters a hyperblock, all component instructions are executed to
completion. We will come back to this aspect in Section 2.5.

As pointed out in the literature about predicated execution, there are many choices for hyper-
block boundary selection. At one extreme, each basic block is a hyperblock on its own, and thus
there will be no speculative execution. At the other extreme, the CFG is covered with a minimal
number of hyperblocks, i.e., each hyperblock is as large as possible. This is done by using struc-
tural analysis and computing minimal CFG intervals [16]. Each resulting interval is a hyperblock.
No code duplication or loop peeling is performed. After this algorithm is executed, each reducible
innermost loop body in the CFG is a hyperblock. Outer loops will span multiple hyperblocks. Our
current implementation creates maximal hyperblocks.

After partitioning we distinguish two types of CFG edges: internal edges: whose ends are
within the same hyperblock and cross-edges: connecting two different hyperblocks.

2.3 Block and Edge Predicates

The next compilation step analyzes each hyperblock separately. It associates a predicate to each
basic block and control-flow edge. These predicates are similar to the full-path predicates from
PSSA [6] and to the gating paths from GSA [17, 24]. Let us denote the set of CFG edges in a
hyperblock by

� 1.
The predicate associated to basic block � , denoted by ������� , describes the condition under which

� is on some (non-speculative) execution path starting at the entry point of the hyperblock. In other
words, � is (non-speculatively) executed when ������� evaluates to “true”. Similarly, the predicate
�����	��
�� associated with a hyperblock edge �	��
 evaluates to “true” when the edge is on some non-
speculative execution path starting at the entry point. Notice that these predicates are defined with
respect to a hyperblock, and not with respect to the CFG.

The predicates are defined recursively, and can all be computed in �� � � time in depth first
order, as follows:

��������������������
������ �!�����#"$�!��%&�
hyperblock entry is always executed (if the hyperblock itself is executed)

���(')�*�+�,"-�#�('&�/.102�(')�*�+�
edge �('3�*��� is executed if block ' is executed and ' branches to �

���(���,"547698;: <>=�?A@B����C+�*���
block � is executed if some predecessor C branches to it

The predicates 02�('3�*��� correspond to the branch conditions in the code; their computation is part
of the computation of the basic block ' . If ' branches to � unconditionally, 02�('3�*���D"$�E�A%&� .

Figure 1 shows a program fragment and its associated CFG, which is a hyperblock. Some of
the predicates associated to the blocks and edges are:

1 F comprises all internal edges as well as the cross-edges originating in the current hyperblock.
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   a2p −= 100;

   a2p += 0xFF;

   a2p += fa1 >> 5;

else if (fa1 > 8191)

if (fa1 < −8191)

else

(B)

a2p += fa1 >> 5;a2p += 0xFF;

(fa1 > 8191)

(fa1 < −8191)

a2p −= 100;

f

e
d

c

a

b

(A)

Figure 1: (A) A code fragment (B) Its control-flow graph.
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A��� � " �������	�����������
����
A��� � " ����
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A��� � " 02� � ��
��3. 02��
A��� �
����� � " ����
A��� �
�����A� " ����
A� �	�

02���	���/� " 02�������/�D" 01�������/�," � ��%��
�����	���/� " �������/.102���	���/�,"-�������
����� ���/� " ����� �/.102�������/�,"-�#��� �
���������/� " �����A�/.102��� ���/�,"-�#���	�
�����/� " �����	���/�/4 ����� ���/�/4����������/�D" �������/4 � �#��� �/4��#���	�*�D"-�#���;�34�����
��D" � ��%&�

Predicate expressions are simplified using algebraic manipulations and by exploiting the CFG
structure. The latter simplifications are based on the fact (noted in [11]) that if basic blocks �
and � are control-equivalent in the hyperblock-induced CFG, then ��� � � " ������� (by definition, �
is control-equivalent to � if � dominates � and � post-dominates � ). Notice that � and � can be
control-equivalent in a hyperblock while not being control-equivalent in the procedure CFG. The
reverse however is always true. In example 1, blocks � and � are control equivalent, and thus have
the same predicate.

The predicate computations are synthesized as expressions explicitly represented in Pegasus.
In our figures edges carrying predicate values are denoted by dotted lines.

2.4 Multiplexors

The next step in building the Pegasus graph is to convert each hyperblock into Static Single As-
signment [8] form; that is, to connect variable definitions to uses. Pegasus explicitly represents the
conditions under which each variable flows from a definition to a use; this is similar to other inter-
mediate representations such as GSA [17], DFG [19], TGSA [12], or VDG [26]. We are currently
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Figure 2: Pegasus representation of the program fragment from Figure 1. The trapezoids are
multiplexors; the dashed lines carry predicate values, while the solid lines carry data.

using a simple implementation, which does not directly build a minimal SSA representation but
adds multiplexors at all join points in the CFG. A subsequent optimization phase (see Section 4.2
and Figure 5) removes the redundant multiplexors. In practice, the performance of our implemen-
tation is very good, especially since the complexity is bounded by the hyperblock size, and not by
the whole procedure CFG size; if necessary, we can implement the more efficient algorithm for
multiplexor placement described in [24].

Pegasus explicitly uses decoded multiplexors instead of the SSA
�

functions (our multiplexors
correspond to the � operations in GSA, PDW [17] and VDG). A decoded multiplexor selects one
of � reaching definitions of a variable; it has �A� inputs: one data and one predicate input for each
definition. When a predicate evaluates to “true”, the multiplexor selects the corresponding input.
Although this representation is redundant, its explicitness makes graph transformations during the
optimization phase significantly simpler to express.

Figure 2 illustrates how edge predicates are used to drive the multiplexors.

2.5 Speculation

Speculative execution exposes ILP through the removal of control dependences [13] and reduces
the control-height [22] of the code. Pegasus aggressively exploits speculation for these purposes.

Normally each instruction in block � is predicated on the value of �#���;� , i.e. the instruction
should be executed if and only if ������� evaluates to “true”. Predicate promotion, described in [14],
replaces the predicate guarding an instruction with a weaker one, causing the instruction to be
executed even if the block including it is not. This is a form of control speculation, allowing the
instruction to be executed before knowing the outcome of all controlling branches in the hyper-
block.

In Pegasus we promote all instructions without side-effects or exceptions, by replacing their
predicate with “true”. This aggressive speculation enables many program optimizations, because
all the speculated instructions become part of a large “straight-line” code region.

Some instructions cannot be speculatively executed; these are control-flow transfers (e.g.,
inter-hyperblock transfers, procedure calls and returns) and memory operations (including some
reads, since reading an illegal address can cause an exception). For these instructions we keep the
controlling predicate unchanged.
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int a[10];

{
   a[2] += a[4] + *p;
}

void f(int *p)

(B)(A)

Figure 3: (A) Program using arrays and pointers and (B) Pegasus representation. We have omitted
all the predicates, which are constant “true”. Note the parallel scheduling of all the load operations
(denoted by =[]) and the dependence from all of them to the store (denoted by []=, going through
the combine “V” operator). The “*” node is the token input. The pointer analysis has assumed
that p and a may alias.

2.6 Tokens

As a result of the previous transformations we have completely removed all control-flow depen-
dences from each hyperblock. The only constraint on the execution order of the operations is
now given by the data dependences. However, not all data dependences are explicit: operations
with side-effects could interfere with each other through memory. Pegasus has to represent in-
formation maintaining program order for operations whose side-effects do not commute. For this
purpose we use a technique described in [19], adding edges between instructions that may depend
on each other. Such edges do not carry data values, instead, they carry an explicit synchronization
token. The presence of a token at the input is required for these instructions to be executed; on
completion, these instructions generate an output token to enable execution of their dependents.

As described in the previous section, when multiple CFG paths join, we normally use a multi-
plexor to join the data generated in different predecessors. However, because tokens can have only
one value, we can optimize their circulation by using a new type of operation, combine, instead of
multiplexors. A combine operation (denoted by “V” in our figures) only computes on tokens. A
combine has � inputs and one output; it generates an output when all inputs are present (at which
time all the inputs are consumed).

Each Pegasus graph has an associated special token value, which is depicted by a “star” in our
figures. These tokens are used to serialize the execution of consecutive hyperblocks: a hyperblock
passes control to its successor, by sending it a token.

Pointer analyses can help reduce the number of synchronized pairs of instructions. Currently,
we use the results of a simple intra-procedural points-to analysis: we insert a token edge between
two instructions only if the their points-to sets overlap and they do not commute. This method
of handling may-dependences is related to the one used in [23] to represent location-sets together
with memory access operations.
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merge node

parameter
1
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3

merge nodes

loop again

loop done

eta nodes

eta nodes
to hyper 2

to hyper 3int fib(int k)
{
   int a=0;
   int b=1;
   while (k) {

      a = b;
      b = b + tmp;

   }
   return a;
}

      k−−;

      int tmp = a;

Figure 4: (A) Iterative C program computing the � -th Fibonacci number and (B) its Pegasus
representation comprising 3 hyperblocks. We are not representing the token nodes for simplicity.

Figure 3 illustrates the translation of a C program with pointers and arrays. Because the
store operation depends on all the loads, a combine operation has been inserted, with the loads as
sources, and with the store as destination.

2.7 Control-flow and Cross-Edges

The compilation phases described so far deal with hyperblocks in isolation. This phase stitches the
hyperblocks together into a Pegasus graph representing the whole procedure by creating dataflow
edges connecting each hyperblock to its successors, i.e., it synthesizes objects corresponding to
the CFG cross-edges. A special instance of cross-edges are loop back-edges, which are also
synthesized in this step.

Cross-edges are just like all other regular dataflow edges, but each is cut by a special eta-node.
Eta nodes were originally introduced in the Gated-Single Assignment form [17]; they are depicted
by triangles pointing down (see Figure 4). Eta-nodes have two inputs—a value and a predicate—
and one output. When the predicate evaluates to “true”, the input value is moved to the output;
when the predicate evaluates to “false”, the input value and the predicate are simply consumed,
generating no output.

Hyperblocks with multiple predecessors may receive control from one of several different
points. To indicate such join points we use merge nodes, shown as triangles pointing up.

Figure 4 illustrates the representation of a program comprising multiple hyperblocks, includ-
ing a loop. The eta nodes in hyperblock 1 will steer data to either hyperblock 2 or 3, depending
on the test k != 0. Note that the etas going to hyperblock 2 are controlled by this predicate,
while the eta going to hyperblock 3 is controlled by the complement. There are merge nodes in
hyperblocks 2 and 3. The ones in hyperblock 2 accept data either from hyperblock 1 or from the
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back-edges in hyperblock 2 itself. The back-edges denote the flow of data along the “while” loop.
The merge node in hyperblock 3 can accept control either from hyperblock 1 or from hyperblock
2. The constant “1” feeding the “return” instruction is a predicate, showing that the return is
unconditionally executed, as soon as its input data is available.

The merge and eta nodes essentially transform control-flow into data-flow. The Pegasus IR
tends to be more verbose than the classical CFG-based representations because the control-flow for
each variable is represented separately. Notice for example how in hyperblock 2 of Figure 4 there
are eta and merge nodes for all three loop induction variables, a, b and k. There are many benefits
in this explicit representation, which naturally exposes loop-level parallelism; see Section 5 for an
example on how this parallelism is exploited by our C to hardware compiler.

3 Pegasus Semantics and Lenient Evaluation

In this section we describe some aspects of the Pegasus semantics that were not covered previously.
See the Appendix for a formal definition.

Most Pegasus operators are strict, i.e. they require all their inputs in order to generate an
output. An exception is “merge”, which generates the output with only one input present. All
operators consume their inputs when computing a result. An “eta” consumes its inputs without
producing anything, if the controlling predicate is “false”.

The semantics explicitly precludes an operator from computing unless all its previous out-
put values have been consumed. The producer of data must signal that data is valid, while the
consumer(s) must signal that they have received the data, i.e., that the channel can be reused.

This type of operational semantics, where data is explicitly produced and consumed, is also
used in some types of asynchronous hardware [9] (this protocol is essentially the Two-Phase Bun-
dled Data convention) and in dataflow machine architectures [25].

Most arithmetic operations need to have all their inputs before they can decide the output
value. However, some operations can compute their output earlier, for some special values of the
inputs. A classical example are the boolean “and” and “or” operations: if one operand of an “and”
is zero, the value of the other one is irrelevant. The generation of the output based only on some
inputs is called lenient evaluation.

Several basic operations in our computational model can be evaluated in this way: the boolean
operations and the multiplexors (as soon as a selector evaluates to “true” and the corresponding
input is available a multiplexor can generate the output). Our semantics also allows for lenient
evaluation of all predicated operations: as soon as the guarding predicate is known to evaluate to
“false”, the side-effect is not produced, and a don’t care result can be generated, together with a
token.

Well-structured Pegasus graphs compute the same values irrespective of whether the lenient
or strict definition is used for operations. In practice lenient implementations reduce the dynamic
critical path length, speeding up the computation.

4 Optimizations

Pegasus’s strength is apparent when we examine how it is used by a compiler to implement opti-
mizations. The advantages of our representation are the following:

� Pegasus represents a lot of useful “global” information locally, making many dataflow anal-
yses unnecessary.
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� Pegasus is self-contained. Thus, it is not necessary to incrementally update dataflow prop-
erties during program optimization.

� The formal semantics allows us to reason about the correctness of the optimizations. An
optimization is correct if it does not change the outcome of the computation. The notion of
outcome can be defined formally. We relegate such proofs to future work.

In this section we discuss informally most of the scalar compiler optimizations described by
Muchnick [16]. We can classify these into three categories:

� Unchanged optimizations, performed in the same way as in a traditional setting.

� “Free” optimizations, that happen automatically during the construction of the Pegasus
graph.

� Efficient optimizations, which are substantially easier to describe and implement using Pe-
gasus, compared to other representation forms, as described in much of the related work and
in [16].

The first type of optimization does not require global information and thus does not benefit
from the increased expressiveness of Pegasus. It includes constant folding, strength reduction,
re-association and loop-induction variable optimizations.

Before reviewing the optimizations it is important to note that Pegasus converts all control flow
into data flow, so some optimizations no longer strictly correspond to their original definition. For
example, straightening is an operation that chains multiple basic blocks in a single basic block
under some appropriate conditions. However, there are no basic blocks in Pegasus, so we cannot
speak of straightening any longer. However, we define a transformation

�
on Pegasus and claim it

is equivalent to straightening, in the following sense: if we apply straightening on the source and
next translate to Pegasus we obtain the same result as if we translate the source to Pegasus and
next apply

�
. In other words, the following diagram commutes:

source 
 
 
�� Pegasus

Straightening
�
�
�

�
�
���

optimized source 
 
 
�� optimized Pegasus

4.1 Free Optimizations

These optimizations are implicitly executed during the creation of the Pegasus representation.
They do not require any code to be implemented.

Global copy and constant propagation occur automatically during the construction of the SSA
form.

Straightening and branch chaining occur because unconditional branches are transformed into
constant “true” predicates which are removed from all path expressions by boolean formula
simplifications.

Unreachable code elimination occurs during the covering with hyperblocks, because the depth-
first traversal does not assign unreachable blocks to any hyperblock.
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Figure 5: Some new algebraic simplifications: (a) multiplexor with constant “true” predicate, (b)
multiplexor with constant “false” predicate (c) multiplexor with only one input, (d) multiplexor
with two identical inputs, (e) chained multiplexors, (f) “eta” with constant “false” predicate, (g)
merge with a single input.

4.2 Efficient Optimizations

These optimizations can be expressed very concisely on the Pegasus form. In fact the description
of each optimization given below is complete and unambiguous. The actual code implementing
these optimizations is extremely compact and easy to understand: all the optimizations below,
minus loop-invariant code motion, which we haven’t yet implemented, but including constant
folding and strength reduction are implemented in less than 1000 lines of C++ code.

Dead code elimination is a trivial optimization: each side-effect-free operation whose output is
not connected to another operation can be deleted.

Removal of if statements with empty branches occurs due to predicate simplification and dead-
code elimination. Basic blocks before and after an empty conditional are control-equivalent,
thus the conditional expression from an empty if will not appear in the expression for the
selectors of any multiplexor and thus becomes dead code.

Constant conditionals in if statements are eliminated by a special case of algebraic simplifi-
cation for multiplexors: these translate into constant selectors for a multiplexor, which can
be simplified as in Figure 5(a,b).

Further unreachable code elimination following simplifications of constant “if” conditions is
achieved by removing the hyperblocks having merge nodes with no inputs.

SSA form minimization is obtained after repeatedly simplifying multiplexors as shown in Fig-
ure 5(b,c,d).2

Global common-subexpression elimination, value numbering, partial redundancy elimina-
tion, redundant memory operation removal are actually all the same operation, due to
the speculation and copy-propagation. The algorithm to implement all of these is trivial:
two identical operations can be merged into one if all their corresponding in-edges origi-
nate from the same sources (e.g., they have the same source for the first input and the same
source for the second input).3

2A minimal SSA representation results for each individual hyperblock; the form is not globally minimal.
3A linear time implementation can be obtained by hashing nodes based on their inputs.
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Even operations with side-effects (memory loads and stores, function calls and returns)
that have identical inputs (including the predicate) are coalesced by common-subexpression
elimination.

Code hoisting and tail merging are subsumed by common subexpression elimination, because
expressions which compute the same value in different basic blocks of the same hyperblock
become identical after predicate promotion.

Stored value forwarding can be coded as a simple adaptation of common-subexpression elimi-
nation: a load immediately dependent on a store to the same address (and sharing the same
predicate) can be replaced with the stored expression.

Loop-invariant code motion is illustrated in Figure 6. A loop-invariant expression is defined [16]
as (1) a constant, (2) an expression not changed within the loop, or (3) a computation hav-
ing all inputs loop-invariant. In Pegasus, expressions of type (2) are represented as a cycle
merge–eta without intervening operations.

Finding the maximal loop-invariant code then amounts to (a) marking all constant and sim-
ple loop-invariant expressions and (b) traversing the graph forward and marking the expres-
sions reachable only from already marked expressions. Moving a loop-invariant expression
before the loop requires the creation of a new merge–eta cycle, which carries around the
value of the expression.

5 Compiling C to Hardware

Pegasus is the intermediate representation of the CASH compiler, which translates C programs
into hardware circuits. CASH is built using the SUIF 1.3 compiler framework [27]. CASH’s
back-end does not yet generate hardware for creating stack frames, thus we currently translate
only programs without recursive procedures. Support for these is in progress; when completed,
this compiler will handle the complete ANSI C language.

The compiler builds a Pegasus representation for the source program starting from the low-
Suif intermediate representation, which is akin to three-operand code. We perform a simple flow-
sensitive intra-procedural pointer analysis before constructing Pegasus. Then each procedure is
transformed into a Pegasus graph which is optimized as described in Section 4.
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Figure 7: (A) C program (B) its implementation using an 8-stages pipelined multiplier (C) abstract
loop structure.

In the most straightforward translation, the resulting intermediate representation is almost in
a one-to-one correspondence with the target hardware. Each Pegasus operator gives rise to a
corresponding hardware circuit computing the same function. Each operator also has an output
register, used to store the result of the computation until the output channel is free. Handshaking
between producers and consumers is synthesized using a simple finite-state machine.

The boolean operations and multiplexors are implemented leniently; their finite-state control
is thus slightly different from the other operators. The result of using lenient computations is that
the dynamic critical path is not the same as the static critical path. In this way, we automatically
solve one of the main problems of speculated implementations, the imbalance of control-paths [3].

Because each induction variable has a separately synthesized loop, the hardware implementa-
tion is naturally pipelined, and can execute multiple loop iterations at once. Figure 7 shows how
pipelining is achieved. The computation of the loop induction variable i is very fast, and can
proceed in advance of the rest of the computation. The i-loop feeds a second data item to the
multiplier before the first result is computed.

Unfortunately the circuit in Figure 7 does not fully exploit the pipelining potential. The prob-
lem stems from the loop-control predicate value, which controls whether looping should continue.
The loop-control predicate is computed based on i’s value. The predicate value is needed by
sum’s loop as well. This causes a throttling of the i loop, because the predicate computation
circuit cannot accept new inputs as long as its previous outputs haven’t been consumed.

We can decouple the two loops by using a FIFO buffer to store the consecutive predicate
values, in this way allowing i’s loop to advance further ahead and fill the multiplier pipeline. The
simulated performance of the resulting circuit grows with the depth of the inserted FIFOs, until
the complete multiplier pipeline is full. At this point the i loop is several iterations ahead of the
sum loop, although they were produced from the same original loop. Notice that by using FIFOs
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the compiler has a certain control on the amount of exposed parallelism. The depth of the FIFOs
corresponds to the � -bounded loops of dataflow machines [7].

6 Related Work

The ideas in this paper unify significant prior work in five different areas: (a) dataflow machine
architecture, (b) predicated execution, (c) static single-assignment, (d) intermediate program rep-
resentation forms, and (e) hardware synthesis. It is difficult to fairly enumerate every related
contribution in all these subjects; we cite some of the most influential.

For a survey of the dataflow machine literature, see for instance [25]; most notably, the various
types of operations we propose (merge, eta), and the semantics of Pegasus are influenced by this
work.

From the area of predicated execution we borrow and extend the ideas of hyperblock [15], if-
conversion, and the combination of predication and speculation through predicate promotion [14,
2].

Static Single Assignment has been introduced in [1, 21, 8]; variations on this theme that
introduce explicit predicates into the

� �
� functions include the Gated Single Assignment and

Program Dependence Web [17], Thinned Gated Single Assignment [12], and Value Dependence
Graphs [26].

The idea of program-representation transformations preserving program semantics has been
suggested, for example, in the context of the Program Dependence Graph [18].

Some of the connections between the enumerated areas have been explored before: for exam-
ple, Dependence Flow Graphs [19] interpret the intermediate representation as a dataflow machine
(which is a particular case of our representation when hyperblocks are reduced to basic blocks),
while Predicated Static Single Assignment [5, 6] gives a uniform treatment of predicates and SSA
in the context of the hyperblock.

Using hyperblocks as a unit of speculation for synthesizing hardware has been done in the con-
text of the Garp reconfigurable hardware project and compiler [4]. Our compiler CASH extends
this work by generating dynamically scheduled hardware circuits, and compiling whole programs,
including procedure calls.

7 Conclusions

We have presented Pegasus, a novel intermediate program representation, which combines static
single assignment with predication using explicit predicate representations. Pegasus encodes in a
compact way important program properties enabling efficient implementations of many program
optimizations.

� The Pegasus representation is sparse (it has the same space complexity as static-single as-
signment).

� All optimizations presented in Section 4 take linear time in the size of the representation.

� The complete implementation of all the described optimizations required less than 1000
lines of C++ code.

We have shown how Pegasus can be given precise semantics, modeling the program as an
asynchronous dataflow machine. We have shown the versatility of Pegasus by using it as the
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intermediate representation of an optimizing compiler which translates ANSI C programs into
hardware implementations.
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A Formal Semantics

In this section we describe precisely the meaning of the basic constructs of Pegasus. We use a
Plotkin-style operational semantics [20].

We denote the set of program values by
�

, (values manipulated by the actual program: inte-
gers, floating point numbers, etc.). To this set we add some distinguished special values:

� the booleans � and � ;

� an abstract token value � ;

� a don’t care value � ;

� a special “undefined” value, denoted by � ;

� node names: are also values in order to implement “call” and “return” operations: the call
must name the parameter nodes of the called procedure, while the return indicates the
call node to which control is returned;
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� a ������� value, used for implementing lenient evaluation (Section 3).

A state associates to each edge ��� �
a value in

�
; that is, a state is a mapping 	�
 � �

�
.

We denote the fact that edge � has value � by 	D���	� "� . A computation is defined by a state
transition. We describe the semantics of each operation by indicating: (a) when the computation
can be carried and (b) how it changes the state. We denote by

��� precond
change

the fact that operation ��� requires precondition precond to be executed and then incurs the change
modification to the state. The transition relation is nondeterministic: at some point several op-
erations may be eligible for execution and the semantics does not specify the execution order.
It is expected that well-formed programs have a confluence property, i.e. the result is the same
irrespective of the execution order.

We write 	��)"�	�� �������� to indicate a state 	�� which coincides with 	 , except that it maps �
to � .

If node � has inedges ��� and ��� and outedge � , we write this as � "�� ��� ���!�"�	� . We use� � ��� to denote values which represent memory addresses; we write update � � � � �	�!�+� to indicate
that value � is stored in memory address � � ��� , and lookup � � � ��� � for the contents of memory
location � � � � .

We use suggestive edge names: � denotes predicates, � tokens, � and � input and respectively
output edges, � 
 edges whose values denote node names (from Program Counter). For example,
	D� � 
�� " main indicates that � 
 is the node representing the “main” procedure. In this case, we
denote by 	D� � 
�� # � �%$&� the first argument of “main”, 	D� � 
�� # � the token argument of “main”, etc.

For simplicity we allow in this model only a fanout of one for all nodes, except a special
“fanout” node, which can have an unlimited number of outputs, and which copies the input to all
the outputs.

In the initial state all values are undefined, i.e. '&�(#)	D���A� " � .
We abbreviate 	D���	��*" � with def ���A� , (i.e. the edge � has a “defined” value), and erase � � � as

a shorthand for � � �� �+� (i.e., a state in which � becomes undefined). We abuse the notation and
use def � � and erase � � with multiple arguments.
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��� un op
����� def

���	��
�
def

� � �
��� � ��� ���� un op

� � �����������
erase

�����
��� bin op

������
��	��� def
��� � 
�� � ��
�

def
� � �

��� � ��� ���� bin op
� � ��� �!��
 � ���	�"���	�#�

erase
������
��	���

� � 
!$�$!$%
 ��&'� fanout
����� def

�����(
)�
def

� � � 
�$!$�$�
 ��& �
��� � ��� � � �� � ������� � $�$!$ � � � & �� � ���������

erase
�����

��� constant

�
def

� � �
��� � ��� ���� constant

�

��� merge
��� � 
!$�$!$�
�� & � *,+ $

def
����-���
�

def
� � �

��� � ��� ���� � ���	-.���#�
erase

����-/�
All Pegasus graphs maintain the
invariant that exactly one of the
inputs of a merge can be present
at a time.

��� eta
�102
���� � �103� �54 


def
������
�

def
� � �

� � � ��� ���� � ���	�	�#�
erase

���
607�
��� eta
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���� � �103� �98 

def

�����
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erase
���)
�07�
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� : �"
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 : & � �
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� :	; �(
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� : �"
�$!$�$%
 : & �
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� : � 
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All Pegasus graphs maintain the
invariant that no more than one
selector of a mux can be 4 at
one time.
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 � & 
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def
� � ��
 def

��� � $ 0 � 
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	> + $ � �10 - � �58
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erase
�����"
603�"
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: ; � store
�6BACACED�
�0F
 GH
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def
� :�I ��


def
�6BACACED�
�G7
 : �(
 � �103� �94
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��BJCAC.D�
60F
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: ; � store
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Semantics for lenient evaluation; we present just formulas for the case of input 1 being available first.

��� lenient or
��� � 
�� � � � ������� �54

��� � ��� ����=4 � � ��� ���������� �
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��	��� def
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For simplicity we show just a two-way multiplexor.
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