
Garbage Collection Based on a Linear Type System

Atsushi Igarashi

Dept. of Graphics and Computer Science

Graduate School of Arts and Sciences

University of Tokyo

igarashi@graco.c.u-tokyo.ac.jp

Naoki Kobayashi

Dept. of Information Science

Graduate School of Science

University of Tokyo

koba@is.s.u-tokyo.ac.jp

Abstract

We propose a type-directed garbage collection (GC) scheme for a programming language with static

memory management based on a linear type system. Linear type systems, which can guarantee certain

values (called linear values) to be used only once during program execution, are useful for memory

management: memory space for linear values can be reclaimed immediately after they are used. However,

conventional pointer-tracing GC does not work under such a memory management scheme: if the memory

space for used linear values is still reachable through pointers, dangling pointers are created.

This problem is solved by exploiting static type information during garbage collection in a way

similar to tag-free GC. Type information in our linear type system represents not only the shapes of

heap objects but also how many times the heap objects are accessed in the rest of computation. Using

such type information at GC-time, our GC can avoid tracing dangling pointers; in addition, our GC can

reclaim even reachable garbage. We formalize such a GC algorithm and sketch a proof of its correctness.

1 Introduction

1.1 Memory Management and Linear Type Systems

Automatic memory management, one of the important features of modern high-level programming languages,
releases programmers from burdens of correctly inserting explicit declarations of memory deallocation in
programs. It is typically realized by garbage collection (GC), which is periodically invoked and �nds unused
memory spaces by traversing pointers. Although GC is indeed very useful run-time machinery, reclamation
is delayed until the invocation of the garbage collector. Moreover, a traditional tracing garbage collector
cannot reclaim memory space that is semantically garbage but reachable from the stack or registers.

To reuse memory space more eagerly, several techniques have been proposed based on region infer-
ence [TT94,AFL95,BTV96] or linear type systems1 [GH90,Wad90,CGR92,TWM95, Iga97,Mog97, IK00b,
Kob99,WJ99]. We follow the latter approach here. Linear (more precisely, aÆne linear) type systems can
guarantee that certain values (called linear values) are used at most once, so we can reclaim memory space
for such linear values immediately after they are used. The basic idea of linear type systems is to annotate
type constructors with information about how often the memory space for values are accessed. For example,
consider the expressions x+1 and x+x. In a conventional type system, both expressions are given type Int
under the assumption that x is given type Int, written as follows:

x: Int ` x+ 1 : Int
x: Int ` x+ x : Int

In a linear type system, each type Int is annotated with a use. It is either 0, 1, or ! and denotes how often
a value is used for the primitive operation such as + during the execution. For example, an expression of

1Strictly speaking, some of these type systems, including the one presented here, are classi�ed as variants of aÆne linear

type systems. Throughout this paper, we lump together type systems that can take into account how often values are used and

refer to them as linear type systems.

1

2

the type Int1 can be used at most once as an integer, that of the type Int! can be used an arbitrary number
of times, and that of the type Int0 cannot be used. Then, the type judgments below are both valid:

x: Int1 ` x+ 1 : Int!

x: Int! ` x+ x : Int!

while the type judgment

x: Int1 ` x+ x : Int!

is not because x is used twice in x + x. By using such a type system, linear values can be statically found
and the compiler can statically insert deallocation code at certain primitive operations. Such deallocation,
however, is performed independently of reachability of the memory space from the run-time stack or registers.
Thus, it may create dangling pointers in the memory space, making conventional tracing GC fail.

1.2 Our Approach

In this paper we propose a GC scheme that can coexist with static memory management based on a linear
type system. The basic idea is to exploit static type information during GC in a way similar to tag-free
GC [App89,Tol94,MFH95,Mor95,MH96]. It may help to review the idea of tag-free GC (for languages with
a monomorphic type system) �rst. The intuition behind tag-free GC was that \types represent the shapes
of values." When we begin to trace a variable in the environment, its static type tells how to trace it: if x
is given type (Int � Int) � Int, then we know the memory space for x stores (a pointer to) an integer pair
and an integer. Thus, we can perform GC without run-time tags by recording the static type information
on the free variables of function closures and of the program point where GC may happen.

In our GC, the above intuition is extended as follows: \types represent not only the shapes of values
but also how often they are used in a certain context." For example, if x is given type Real0, then we
know not only that x points to a real number but also it is no longer used. Since variables corresponding
to dangling pointers are always given the use 0, the garbage collector can avoid tracing dangling pointers
by ignoring variables with the use 0. In fact, it does not matter whether it is really a dangling pointer or
not: even if there is a value at the address, the heap value need not be marked. As a result, our GC can
collect semantic garbage reachable from the root set, as some GC schemes based on GC-time type inference
can [GG92,Fra94,MFH95,HY98].

As in recent linear type systems [Mog97,Kob99], our type system can express non-uniform patterns of
access to a single data structure in several contexts. For example, consider the expression (#1x) + (#2x)
(where #i extracts the i-th element of a pair). It is typed under the assumption that x is given type
Real1 �! Real1 as follows:

x:Real1 �1 Real
0
` #1x : Real1

x:Real0 �1 Real
1
` #2x : Real1

x:Real1+0
�1+1 Real0+1(= Real1 �! Real1) ` (#1x) + (#2x) : Real!

Since #1x does not use the second element of x, the use of the second element type is 0; similarly for #2x.
As a whole, x is given type Real1�! Real1, which is obtained by adding each use. The obtained type means
that a pair of the type can be accessed arbitrarily many times but each element can be used at most once
in total. Thus, the memory space for the �rst element can be reclaimed immediately after the execution of
+. Notice that element types of x are given di�erent uses in each occurrence, expressing the context's own
access pattern.

However, this non-uniformity introduces another subtlety not observed in conventional GC: our garbage
collector may need to visit one heap value more than once. Consider the following Standard ML program:

let val p = (1.5, 2.2)

fun f x = x + (#1 p)

fun g x = x + (#2 p)

in f 3.1 + g 4.3 end

3

f :Real1 1Real1

heap

x+(#1 p)

x+(#2 p)

root set (f 3.1) + (g 4.3)

p:Real1 1Real0

p:Real0 1Real1

p:Real0 0Real0

g:Real1 1Real1
1.5 2.2

Figure 1: The real numbers 1.5 and 2.2 are marked by the traverses from f and g, respectively. The pair
is marked twice by both traverses.

and suppose the garbage collector is invoked just before the execution of f 3.1 + g 4.3. As in the previous
example, the variable p is given type Real1�1Real

0 in f while the same variable is given type Real0�1Real
1

in g. Thus, the traverse from the closure of f marks only the �rst element of p; the second element is marked
when traverse from the closure of g happens, marking the pair for the second time. (See Figure 1.)

This multiple traverses on one value may cause a lot of verbose marking, or even nontermination in
the presence of cycles in the heap space. To prevent it, we extend the mechanism of mark bits, used by
conventional GC; our garbage collector keeps track of the types of the marked objects to remember which
part of an object is already marked. If the garbage collector reaches a marked object again, it compares the
type of heap object derived from the current scan set with the one derived from the marked objects. The
garbage collector does not go further if the access pattern expressed by the latter type subsumes that by
the former because it means that the heap objects that the current traverse tries to mark have been already
marked (or scheduled to be marked) in the previous traverses. (Earlier linear type systems [TWM95, Iga97]
cannot express the non-uniformity mentioned above; thus, the usual mark bits would work. However, static
memory management would be less e�ective since such a type system cannot ensure that, for example, the
elements in p above are linear. See Section 5 for discussion.)

1.3 Our Contribution

The contributions of the present work are formalization of our GC algorithm for a language with a monomor-
phic linear type system and a proof of correctness of the algorithm. Our formalization also includes opera-
tional semantics that takes account of immediate reclamation of memory space for linear values; as in the
previous work [MFH95,Mor95,MH96] on formalization of memory management, the operational semantics
of our language makes run-time mechanisms such as stacks or heap space explicit. We also prove soundness
of our linear type system with respect to the operational semantics. Here, only one particular instance of
monomorphic linear type systems is dealt with, but our technique would be applicable to a language based on
another variant of linear type system, even to an extension with the ML-style polymorphism (and use poly-
morphism [Iga97,WJ99]). We could use techniques similar to the existing tag-free GC schemes [Tol94,MH96],
which exploit run-time type passing.

1.4 Structure of the Paper

The rest of the paper is organized as follows: Section 2 introduces our target language and its operational
semantics. Then, the type system is presented in Section 3; Section 4 presents the GC algorithm formally
and states its correctness. After discussing related work in Section 5, we conclude this paper in Section 6
with discussion on future work in Section 7. For brevity, proofs are only sketched; interested readers are
referred to the companion technical report [IK00a].

4

2 Language �
�
gc

In this section, we de�ne a language called ��gc and give its operational semantics. The language ��gc is based
on a call-by-value lambda-calculus equipped with integers, pairs, and recursive functions. We use a variant
of A-normal form [FSDF93] so that the evaluation order is made explicit and all temporal results are bound
to variables. In addition, each heap-allocated value is associated with a use, which denotes how often a value
is used. Expressions and functions are annotated with type information on their free variables; they are
required by the garbage collector, as mentioned in the previous section. Our operational semantics is given
in a way similar to preceding work on abstract models of GC [MFH95,Mor95,MH96]: the heap, stack, and
register �le are made explicit in the reduction relation. Moreover, deallocation of memory space for linear
values is also explicit.

2.1 Syntax of Types

Before giving the syntax of expressions, we begin with the syntax of uses, types, and type environments.

2.1.1 De�nition [uses, types]: The set of uses, ranged over by the metavariable �, and the set of types,
ranged over by the metavariable � , are given by the following syntax.

� ::= 0 j 1 j ! (uses)
� ::= Int j �1 !

� �2 j �1 �
� �2 (types)

The type Int denotes integers, the type �1 !
� �2 functions from �1 to �2, and �1 �

� �2 pairs of values of
the types �1 and �2. Uses in a type denote how a value of the type can be used: a use 0 means that a
value is never used, 1 means that a value can be used at most once, and ! means that a value can be used
an arbitrary number of times. For example, Int�1 Int denotes a type of pairs, from which we can extract
integers at most once. Uses are not attached to Int because integers are not \boxed" in the operational
semantics de�ned below and we are not concerned with uses of unboxed values.

Type environments de�ned below are not only used in the type system as usual but also attached to
expressions to represent type information on the program point at which GC may be invoked. Our garbage
collector computes the types of the memory locations in the root set from such type environments; they are
also stored in function closures, making it possible to compute the types of the free variables in a closure.

2.1.2 De�nition [type environments]: The metavariables x, y, z, and w range over a countably in�nite
set V of variables. A type environment � is a mapping from a �nite set of variables to the set of types.

2.1.3 Notation: We write dom(�) for the domain of � and x1: �1; : : : ; xn: �n, abbreviated to ~x: ~� , for the
type environment � such that dom(�) = fx1; : : : ; xng and �(xi) = �i for each i 2 f1; : : : ; ng. The empty
type environment is written ;. When x 62 dom(�), we write �; x: � for the type environment �0 such that
dom(�0) = dom(�) [fxg, �0(x) = � and �0(y) = �(y) if x 6= y. The type environment � n fx1; : : : ; xng
denotes the restriction of � to the domain dom(�) n fx1; : : : ; xng.

2.2 Syntax of Expressions

The metavariable n ranges over the set of integers; the metavariable v ranges over the set of non-heap values;
the metavariable e ranges over the set of expressions. The syntax of expressions is given by the following
syntax:

v ::= x j n

e ::= h�ix j h�i let x = v in e j h�i let x = (h�0ifun y(z) = e0)
� in e

j h�i let x = (y1; y2)
� in e j h�i let x = y z in e j h�i let x = y + z in e

j h�i let (x; y) = z in e j h�i if0 x then e1 else e2

The form fun y(z) = e is a recursive function taking z as an argument; y refers to the function itself. An
expression e is return from a function call, declaration of a value (i.e., a non-heap value, a function, or a

5

pair), function application, addition of two integers, extraction from a pair2, or a conditional branch. Type
environments are attached to functions and each step of an expression, recording types of variables in them.
We call them type environment annotations and often use TE(e) to denote that of e. When they are not
important, we often omit to write them explicitly.

The bound variables of expressions are de�ned in a customary fashion, i.e., (1) the variable x is bound
in e of let x = � � � in e (2) the variables x and y are bound in e of let (x; y) = z in e and funx(y) = e. A
variable that is not bound will be called a free variable. We de�ne substitutions of variables and �-conversion
in a customary fashion and assume that the bound variables in an expression are pairwise distinct by �-
conversion.

2.2.1 Remark: Note that programmers need not write explicit type and use annotations: ��gc is considered
an intermediate form after type reconstruction. For type reconstruction, we can use techniques developed
elsewhere [Iga97, IK00b,Kob99,Mog97]; some of them can handle pair types that can express non-uniform
access patterns.

2.3 Operational Semantics

In our semantics, we make run-time mechanisms of program execution, such as stack frames, explicit. To
represent such run-time citizens, we introduce environments representing register �les, heaps representing
memory space, and stacks representing run-time stacks. A state of program execution is represented as
a quadruple consisting of a heap, a stack, an environment and an expression; execution is represented as
rewriting of states.

2.3.1 De�nition [environments]: An environment is a mapping from a �nite set of variables to the set
of non-heap values.

We use the metavariable V for environments. We write dom(V) for the domain of V and fx1 = v1; : : : ; xn =
vng for the environment V such that dom(V) = fx1; : : : ; xng and V (xi) = vi for each i 2 f1; : : : ; ng. When
dom(V1) \ dom(V2) = ;, we write V1] V2 for the environment V such that dom(V) = dom(V1) [dom(V2),
V (x) = Vi(x) for x 2 dom(Vi).

2.3.2 De�nition [heap values, heaps]: The set of heap values, ranged over by the metavariable h, is
given by the following syntax:

h ::= (v1; v2) j (V;
h�ifunx(y) = e)

A heap is a mapping from a �nite set of variables to the set of pairs, written h�, of a heap value h and a
non-zero use � (i.e., either 1 or !).

We use the metavariable H for a heap. The notations dom(H), fx1 = h�11 ; : : : ; xn = h�nn g, and H1]H2

are de�ned similarly to the corresponding notations for environments.

2.3.3 De�nition [stacks]: A stack is a sequence whose elements have the form [V ; �; �x:e], called a stack

frame.

We use the metavariable S for a stack; we write [] for the empty stack and S[V ; �; �x:e] for a stack whose
�rst element is [V ; �; �x:e] and the remainder is S.

2.3.4 De�nition [programs, answers]: A program P is de�ned as a quadruple (H; S; V ; e) of a heap, a
stack, an environment and an expression. In particular, a program (H; []; V ; h�ix) consisting of the empty
stack and a return expression is called an answer program.

2We use this form of simultaneous extraction rather than ordinary projection operations: if we could not extract two

components simultaneously, a pair would be considered non-linear as its two elements are used.

6

Then, we de�ne rewriting rules for ��gc programs. We use the following auxiliary notations H �fx = h�g

and H�x in the de�nition:

H � fx = h�g =

8<
:

H (if � = 0 and x 62 dom(H))
H] fx = h�g (if � 6= 0 and x 62 dom(H))
unde�ned (otherwise)

(H] fx = h1g)�x = H

(H] fx = h!g)�x = H] fx = h!g

2.3.5 De�nition: The relation P 7�! P 0 is the least relation closed under the following rules:

(H;S; V; h�i let x = y in e) 7�! (H;S; V] fx = V (y)g; e) (R-Var)

(H;S; V; h�i let x = n in e) 7�! (H;S; V] fx = ng; e) (R-Int)

z fresh

(H;S; V; h�i let x = (y1; y2)
� in e0) 7�! (H � fz = (V (y1); V (y2))

�g; S; V] fx = zg; e0)
(R-Pair)

z fresh

(H;S; V; h�i let x = (h�0ifun y(w) = e0)
� in e0)

7�! (H � fz = (V; h�0ifun y(w) = e0)
�g; S; V] fx = zg; e0)

(R-Fun)

H(V (z)) = (v1; v2)
�

(H;S; V; h�i let (x; y) = z in e) 7�! (H�V (z); S; V] fx = v1; y = v2g; e)
(R-Ext)

n1 = V (y1) n2 = V (y2)

(H;S; V; h�i let x = y1 + y2 in e) 7�! (H;S; V] fx = n1 + n2g; e)
(R-Plus)

H(V (y1)) = (V0;
h�0ifun z(w) = e0)

�

(H;S; V; h�i let x = y1 y2 in e)

7�! (H�V (y1); S[V;TE(e) n fxg; �x:e]; V0] fz = V (y1); w = V (y2)g; e0)

(R-App)

V (x) = 0

(H;S; V; h�i if0 x then e1 else e2) 7�! (H;S; V; e1)
(R-IfT)

V (x) 6= 0

(H;S; V; h�i if0 x then e1 else e2) 7�! (H;S; V; e2)
(R-IfF)

(H;S[V0; �0; �x:e0];
h�iy) 7�! (H;S; V0] fx = V (y)g; e0) (R-Ret)

We write 7�!� for the reexive and transitive closure of 7�!.
The rules are fairly straightforward. In the rules R-Pair and R-Fun, the heap value is allocated in the

heap at a fresh address z; the execution continues after assigning z to x in the environment. When the
program uses a heap value (R-Ext and R-App), it is checked whether the value is linear; if so, the memory
space will be reclaimed (using H�x). In the rule R-Plus, the notation n1 + n2 denotes the summation of
the two integers n1 and n2 (not the syntactic expression \n1+n2"). The rules R-App and R-Ret are about
function calls, involving manipulation of the stack. When a function is called (R-App), the continuation �x:e
after the call is pushed onto the stack together with its environment V and type environment TE(e) n fxg;
then, the execution continues with the function body e0 under the closure's environment V0 augmented with
bindings of the actual argument V (y2) and the address V (y1) of the function itself. When execution reaches
the end of a function (R-Ret), the top of the stack is popped and the continuation is applied to the result
V (y).

7

2.3.6 Remark: Notice that type environment annotations do not play a signi�cant role during execution.
They are just stored in closures and stack frames, and will not be used unless GC occurs. Thus, it is not
necessary, in practice, to attach them at every step; they are required only at (1) every function de�nition,
(2) the program point after every function call, and (3) program points at which GC may happen.

2.3.7 Remark: As we see in the typing rules, a non-linear value can be passed where a linear value is
expected. Thus, to reclaim the memory space for linear values, we have to perform a dynamic check, requiring
uses in heaps. The cost of the check can be, however, fairly cheap (without requiring extra memory space
for use tags), as discussed elsewhere [Kob99].

3 Type System

In this section, we give a type system for ��gc. Our type system can ensure the lack of not only illegal
operations (such as application of a non-function value) but also illegal access to already deallocated heap
space. We begin with several operations on uses, types, and type environments, used in the typing rules.

3.1 Notational Preliminaries

The relation �1 � �2 below means that an expression of type �1 can be more frequently used than that of �2;
we allow an expression of type �1 to be coerced to that of type �2. Similarly, �1 � �2 means that the type
bound in �2 is less than that in �1 for each variable in dom(�2).

3.1.1 De�nition: The binary relation � between uses is the total order de�ned by ! � 1 � 0. The binary
relation �1 � �2 is de�ned by:

Int � Int

�1 !
�1 �2 � �1 !

�2 �2 if �1 � �2
�11 �

�1 �12 � �21 �
�2 �22 if �1 � �2 and �1i � �2i for i = 1; 2

We also write �1 � �2 if dom(�1) � dom(�2) and �1(x) � �2(x) for all x 2 dom(�2).

The relation �1 � �2 would correspond to a subtyping relation �1 � �2, meaning �1 is subtype of �2. Note
that � is the inverse of the usual subtyping relation.

3.1.2 Remark: We could adopt usual structural subtyping for function types, without which the use anal-
ysis gets rather coarser. It is not adopted simply to make the presentation simpler (while pair types require
a structural rule, which is crucial to express non-uniform access patterns, mentioned in Section 1). In fact,
introduction of the structural subtyping for function types would not a�ect our GC algorithm itself (even
though it would complicate a proof of correctness of the GC): our GC algorithm could work as long as
attached uses are correct with respect to the operational semantics.

3.1.3 Example: (x: (Int�! Int)�1 Int; y: Int!! Int; z: Int) � (x: (Int�0 Int)�1 Int; y: Int!1 Int).

The summation of two types, de�ned below, is used to compute the total use of a variable. Suppose a
variable is given type �1 in e1 and �2 in e2; if both expressions may be executed, then the total usage of the
variable is represented by �1 + �2.

3.1.4 De�nition: The summation of two uses, written �1+�2, is the commutative and associative operation
that satis�es 0 + 0 = 0, 1 + 0 = 1, and 1 + 1 = ! + 0 = ! + 1 = ! + ! = !. The summation of two types,
written �1 + �2, is de�ned as follows:

Int+ Int = Int

(�1 !
�1 �2) + (�1 !

�2 �2) = �1 !
�1+�2 �2

(�11 �
�1 �12) + (�21 �

�2 �22) = (�11 + �21)�
(�1+�2) (�12 + �22)

8

The operation `+' on types are pointwise extended to type environments: the summation �1 + �2 of two
type environments is de�ned by:

dom(�1 + �2) = dom(�1) [dom(�2)

(�1 + �2)(x) =

8<
:

�1(x) + �2(x) if x 2 dom(�1) \ dom(�2)
�1(x) if x 2 dom(�1) n dom(�2)
�2(x) if x 2 dom(�2) n dom(�1)

As mentioned in Section 1, the summation of two pair types are obtained by adding uses pointwise
because a use inside a pair type constructor denotes how may times an element in the pair is used in total.
Thus, for example, the summation of two types (Int �0 Int) �1 Int and (Int �1 Int) �1 Int is de�ned to be
(Int�1 Int) �! Int. The obtained type means that the inner pair can be used at most once in total even if
the outer pair can be accessed arbitrarily many times.

3.1.5 Example: (x: Int; y: (Int�1 Int)�1 Int) + (y: (Int�0 Int)�1 Int) = x: Int; y: (Int�1 Int)�! Int.

The product of a use � and a type is de�ned below as the summation of the type � times.

3.1.6 De�nition: The product of two uses, written �1 � �2, is the commutative and associative operation
that satis�es 0 � 0 = 0 � 1 = 0 �! = 0, 1 � 1 = 1, and 1 �! = ! �! = !. The product is extended to an operation
on uses and types by:

� � Int = Int

� � (�1 !
�0

�2) = �1 !
���0

�2

� � (�1 �
�0

�2) = (� � �1)�
���0

(� � �2)

It is further extended to an operation on uses and type environments by:

� � (x1: �1; : : : ; xn: �n) = x1:� � �1; : : : ; xn:� � �n

3.1.7 Example: ! � (Int�1 (Int�0 Int)) = (Int�! (Int�0 Int)):

3.1.8 Example: 0 � (x: Int�! Int; y: Int) = x: Int�0 Int; y: Int:

If a heap value refers to another heap value through a variable whose use is 0, then the referred heap
value actually need not exist in the heap. To ignore such potential dangling pointers, we discard bindings of
types with the use 0 from a type environment, by using the truncation, de�ned below.

3.1.9 De�nition: The truncation b�c of a type environment � is de�ned by:

b�c = � n fx j �(x) = �1 �
0 �2 or �1 !

0 �2g

3.1.10 Example: bx: Int; y: Int�! Int; z: Int!0 Intc = x: Int; y: Int�! Int:

3.2 Typing Rules

Typing Rules for Expressions

A type judgment for expressions is of the form � ` e : � . It means not only that e is well-typed in the
ordinary sense, but also that each function and pair declared in e is used according to its use and each free
variable is used according to the use of its type in �. For example, �; x: Int!1 Int ` e : � means that e uses
x as a function on integers at most once.

The formal rules are given in Figure 2. Since type environments contain information on how of-
ten variables are accessed, we need to take special care in merging type environments. For example, if
�1; y: Int!

1 Int ` y : Int!1 Int and �2; x: Int!
1 Int; y: Int!1 Int ` e : �2, then y is used totally twice in

let x = y in e. Therefore, the total use of a variable in let x = y in e should be obtained by adding the uses
in two type environments as in the rule T-Dec. Similarly for the rules T-Pair, T-App, T-Sum, and T-Ext.
On the other hand, in a conditional expression if0 x then e1 else e2, either e1 or e2 is executed. Thus, the

9

Non-heap/heap values:

�(x) � �

� ` x : �
(T-Var)

� ` n : Int (T-Int)

Expressions:

� ` x : �

� ` h�ix : �
(T-Ret)

�1 ` v : � 0 �2; x: �
0 ` e : �

�1 + �2 `
h�1+�2i let x = v in e : �

(T-Dec)

�1; y: �1 !
�1 �2; z: �1 ` e0 : �2

�2; y: �1 !
�2 �2 ` e : �

� = �2 � (�1 + 1) � = (� � �1) + �2

� ` h�i
let x = (h�1ifun y(z) = e0)

�

in e : �
(T-Fun)

�0; x: �1 �
� �2 ` e : �

� = �0 + y1: �1 + y2: �2

� ` h�i
let x = (y1; y2)

�

in e : �
(T-Pair)

�0; x: �2 ` e : �

� = �0 + (y1: �1 !
1 �2) + (y2: �2)

� ` h�i
let x = y1 y2 in e : �

(T-App)

�0; x: Int ` e : �

� = �0 + y1: Int+ y2: Int

� ` h�i
let x = y1 + y2 in e : �

(T-Sum)

�0; x: �1; y: �2 ` e : �

� = �0 + z: �1 �
1 �2

� ` h�i
let (x; y) = z in e : �

(T-Ext)

�0 ` e1 : � �0 ` e2 : � � = �0 + x: Int

� ` h�i
if0 x then e1 else e2 : �

(T-If)

Figure 2: Typing rules for expressions

two branches should be typed under the same environment (T-If). In the rule T-App, the use of the type
of the variable y1 should be 1 since the function stored in y1 is accessed there; similarly for the rule T-Ext.
In the rule T-Fun, the two uses �1 and �2 represent the number of times of recursive calls and that of calls
in e, respectively. Thus, the type environment of the function body � is multiplied by �2 � (�1+1), an upper
bound of the total number of times that the function is applied [Kob99, IK00b]. (The type environment �
for a single call is attached as the type environment annotation rather than �2 � (�1 + 1) � �; this is mainly
for ease of our type soundness proof. Note that, as we will see later, it does not matter whether we attach �
or �2 � (�1+1) �� for the purpose of GC: the distinction between 1 and ! is not important in GC.) The rule
T-Var allows coercion to a smaller type, making it possible to pass non-linear values to where linear values
are expected. Annotated type environments must agree with ones from the type derivation to provide the
garbage collector with correct type information.

Typing Rules for Programs

We also give a type system for environments, stacks, heaps, and programs. A type system for programs is
important to show correctness of both static and dynamic memory management. As stated below, we can
show that a well-typed program cannot go wrong under an execution without GC (Theorem 3.3.2), by the
standard technique based on subject reduction. This means that, at least, static memory management based
on uses is correct. In the next section, correctness of GC will also be stated in terms of well-typedness of a
program: it is shown that, given a well-typed program, our garbage collection always succeeds and preserves
well-typedness of the program after GC (with the garbage-collected heap). Then, the results of executions
with and without GC agree. This means that GC, the dynamic memory management, is also correct.

We use the following type judgments for programs:

� ` V : �0 (V is a well-typed environment providing �0 under �)
� ` S : �1 !

1 �2 (S is a well-typed stack of type �1 !
1 �2)

� ` H : �1; �2 (H is a well-typed heap described by �1 and �2)
` P : � (P is a well-typed program of type �)

10

Environments, Heap Values:

V = f~x = ~zg] f~y = ~ng

x1: �1; : : : xn: �n; y1: Int; : : : ; ym: Int � �

z1: �1 + � � �+ zn: �n ` V : �
(T-Env)

�1 ` v1 : �1 �2 ` v2 : �2

�1 + �2 ` (v1; v2)
� : �1 �

� �2
(T-HPair)

�; y: �1; x: �1 !
�1 �2 ` e : �2

�0 ` V : � � = �2 � (�1 + 1)

� � �0 ` (V; h�i
funx(y) = e)� : �1 !

�2 �2
(T-HFun)

Stacks, Heaps, Programs:

� ` [] : � !1 � (T-Empty)

�1 ` S : �2 !
1 �3 �2 ` V : �3

�3; x: �1 ` e : �2

�1 + �2 ` S[V;�3; �x:e] : �1 !
1 �3

(T-Push)

�1 ` h
�1

1 : �1 � � � �n ` h�n
n

: �n
�0 + (~x: ~�) � b� + �1 + � � � +�nc

�0 ` fx1 = h
�1

1 ; : : : ; xn = h�n
n
g : �; ~x: ~�

(T-Heap)

; ` H : �1 + �2; � �1 ` S : � 0 !1 �

�2 ` V : �3 �3 ` e : � 0

` (H;S; V; e) : �
(T-Prog)

Figure 3: Typing rules for stack, heap, and programs

The typing rules are given in Figure 3. In the rule T-Env, the type environment
x1: �1; : : : ; xn: �n; y1: Int; : : : ; ym: Int denotes how V can be used by an expression; the type environment
z1: �1 + � � �+ zn: �n denotes the types of the heap addresses referred to by the environment V . To deal with
possible aliasing (di�erent variables xi and xj may maps to the same address z), the summation is required.
The rules T-HPair and T-HFun are similar to the rules T-Pair and T-Fun, except that, in T-HFun, free
variables of the function refer outside through the environment V . The empty stack is given type � !1 � for
any � since it can be regarded as an identity function. If a top stack frame is a function of type �1 !

1 �2 and
the rest of the stack is given type �2 !

1 �3, then the whole stack, regarded as composition of the functions,
is given type �1 !

1 �3. Since each stack frame will be applied at most once, the use of a stack is given
1. The type judgment form � ` H : �1; �2 for heaps and the rule T-Heap are explained as follows. The
type environment �2 describes how each heap value can be used; thus, provided that �xi ` H(xi) : �i for
each xi 2 dom(H), the type environment �2 is x1: �1; : : : ; xn: �n. On the other hand, �1 describes how the
heap can be used by the stack and environment of a program. Since each �xi describes how the heap value
H(xi) uses other heap values, their total use �1 + �x1 + � � � + �xn should be less than �2. The truncation
in the rule T-Heap represents the fact that the stack, environment, and heap values may include dangling
pointers if they are given type with the use 0. The type environment � (on the left of `) describes references
to outside of the heap. In a well-typed program, the heap should be closed (except for dangling pointers)
and � is empty. On the other hand, in a proof of correctness of our GC, it plays an important role to
describe references from the collected heap values to the rest of heap values to be collected. Since the type
environment �2 is required mainly for conciseness of correctness of our GC and not important here, we often
abbreviate � ` H : �1; �2 to � ` H : �1. The rule T-Prog is straightforward: if a heap H is closed and
well typed, a stack S is given type � 0 !1 � , an environment is well typed, and e is given type � 0, then the
program (H; S; V ; e) is given type � .

3.3 Soundness of Type System

The type system introduced in this section guarantees that a well-typed program can cause neither run-time
type errors nor illegal memory access by dereferencing dangling pointers.

3.3.1 Theorem [Subject Reduction]: If ; ` P : � and P 7�! P 0, then ; ` P 0 : � .

Proof sketch: By a case analysis on the rule used to derive P 7�! P 0. �

11

3.3.2 Theorem [Type Soundness]: If ` P : � and P 7�!� P 0 with P 0 being a normal form, then P 0 is an
answer and ` P 0 : � .

Proof sketch: By a case analysis on the form of the expressions in P , we show that, if ` P : � with
P being non-answer, then there exists P 0 such that P 7�! P 0. Then, the conclusion is immediate from
Theorem 3.3.1. �

4 Garbage Collection

In this section we describe our GC algorithm for ��gc formally and show its correctness.

4.1 GC Algorithm

First, we de�ne three auxiliary functions TLenv, TLstack and TLhval to collect the type information on the
addresses referred to by an environment, a stack and a heap value, respectively. The �rst two are used when
the garbage collector is invoked: the initial scan set is computed by TLstack[S]+TLenv[V;TE(e)] where S, V ,
e are respectively the stack, environment, and expression from the program for which GC is invoked. The
function TLenv is also used to compute type information on (continuation) closures stored in a heap or a
stack. The last one is used when a heap value is marked and a new scan set is computed.

4.1.1 De�nition: The functions TLenv, TLstack and TLhval are de�ned as follows:

TLenv[V ; �] = ! �
P

x2dom(�);�(x)6=Int
V (x) : �(x)

TLstack[[]] = ;

TLstack[S[V ; �; �x:e]] = TLstack[S] + TLenv[V ; �]

TLhval[(V;
h�ifunx(y) = e)�; �1 !

�0

�2] = ! � TLenv[V;�]
TLhval[(v1; v2)

�; �1 �
�0

�2] = ! �
P

�i 6=Int
vi: �i

(TLenv[V;�] is unde�ned if �(x) 6= Int and V (x) is an integer for some x 2 dom(�). Similarly, TLhval[(v1; v2)
�; �1�

�0

�2] is unde�ned if �i 6= Int and vi is an integer.)

Note that, the garbage collector need not distinguish between the uses 1 and ! in the scan set (and type
information on the marked heap values). Hence, types are multiplied by ! to \normalize" type information.

Our GC algorithm is formally represented as rewriting of a quadruple (Hf ;�s; Ht;�t), consisting of two
heaps and two type environments. Intuitively, Hf corresponds to a \from-space," Ht to a \to-space," and �s
to a \scan-set," which maintains locations to be traced together with their types. The type environment �t,
which maintains types of Ht, is used for avoiding verbose tracing, mentioned in Section 1. This algorithm
could be implemented by extending either copying or mark-and-sweep GC, but, some implementation details
such as forwarding pointers or the sweeping phase are abstracted out from the model.

4.1.2 De�nition [GC algorithm]: The relation (Hf ; �s; Ht; �t) =) (H 0
f ; �

0
s; H

0
t; �

0
t) is the least relation

closed under the following rules:

(Hf] fx = h�g; (�s; x: �); Ht; �t) =) (Hf ; �s + TLhval[h
�; �]; Ht] fx = h�g; (�t; x: �)) (GC-Mark)

�t(x) 6� �

(Hf ; (�s; x: �); Ht; �t) =) (Hf ; �s + TLhval[Ht(x); �]; Ht;�t + x: �)
(GC-Remark)

� = �1 �
0 �2 or � = �1 !

0 �2 or �t(x) � �

(Hf ; (�s; x: �); Ht; �t) =) (Hf ; �s; Ht; �t)
(GC-Skip)

12

The ruleGC-Markmoves the heap value at x to the to-space, computes a new scan set �s+TLhval[h
�; �],

and adds the type of the variable to �t. As mentioned in Section 1, the garbage collector may mark one
heap value more than once; the rule GC-Remark is applied when the heap value itself has been already
marked but something reachable from it is neither marked nor scheduled to be marked yet. The premise
�t(x) 6� � , which judges existence of such unmarked values, holds if and only if, for some use 0 in �t(x),
there is a non-zero use in the corresponding position in the type � . For example, suppose � in the scan
set is (Int �! Int) �! Int and �t(x) is (Int �

0 Int) �! Int. Then, the pair pointed by x has to be marked
again since the previous traverses did not mark the inner pair of type Int�0 Int. After this traverse the type
�t(x) becomes (Int�! Int)�! Int and the rule GC-Skip explained below will always be applied whenever
x is selected from the scan set. The rule GC-Skip is used for two cases. One is when the use of the type
of the variable x in the scan set is 0, which means that the heap value at x does not have to be marked
(sometimes, the memory space at the address has been deallocated); the other is when the values that the
current traverse tries to copy are already marked or scheduled to be marked (�t(x) � �). Note that, in the
former case, the garbage collector may skip marking reachable garbage.

Finally, the whole GC process, which computes a garbage-collected heap called collection from a program,
is de�ned below. Given a program, it computes an initial scan set by using TLenv and TLstack, begins
rewriting de�ned above with the given heap and the initial scan set until it reaches the empty scan set; then,
the to-space is the collection:

4.1.3 De�nition [collection]: A heap H 0 is a collection of a program (H; S; V ; e) if and only if

(H; TLstack[S] + TLenv[V ; TE(e)]; ;; ;) =)
� (H 00; ;; H 0; �t)

where =)� is the reexive and transitive closure of =).

4.1.4 Example: A collection of a program P

P = (H; []; fp = x1; f = x3; g = x4g;
hp:Int�0(Int�0

Int);f :Int!1
Int;g:Int!1

Intif 1 + g 2)

where

H =

8>><
>>:

x1 = (2; x2)
!;

x2 = (3; 4)1;

x3 = (fp = x1g;
hp:Int�1(Int�0

Int)ifun f 0(y) = y + (#1 p));

x4 = (fp = x1g;
hp:Int�1(Int�1

Int)ifun g0(y) = y + (#1 (#2 p)))

9>>=
>>;

is H (for brevity, we use the direct-style and the projection operators #1 and #2 in Section 1); a possible
sequence of GC rewriting steps is given as follows:

(H; (x3: Int!
! Int; x4: Int!

! Int); ;; ;)
(GC-Mark) =) (H n fx3g; (x1: Int�

! (Int�0 Int); x4: Int!
! Int); fx3 = H(x3)g; x3: Int!

! Int)
(GC-Mark) =) (H n fx1; x3g; (x2: Int�

0 Int; x4: Int!
! Int); fx1 = (2; x2)

!; x3 = H(x3)g;
(x1: Int�

! (Int�0 Int); x3: Int!
! Int))

(GC-Skip) =) (H n fx1; x3g; (x4: Int!
! Int); fx1 = (2; x2)

!; x3 = H(x3)g;
(x1: Int�

! (Int�0 Int); x3: Int!
! Int))

(GC-Mark) =) (fx2 = (3; 4)1g; x1: Int�
! (Int�! Int); H n fx2g;

(x1: Int�
! (Int�0 Int); x3: Int!

! Int; x4: Int!
! Int))

(GC-Remark) =) (fx2 = (3; 4)1g; x2: Int�
! Int; H n fx2g;

(x1: Int�
! (Int�! Int); x3: Int!

! Int; x4: Int!
! Int))

(GC-Mark) =) (;; ;; H; (x1: Int�
! (Int�! Int); x2: Int�

! Int; x3: Int!
! Int; x4: Int!

! Int))

Notice how the rule GC-Remark is applied and the type of x1 is changed afterwards, and that the use of
the rules GC-Skip and GC-Remark could be dispensed with if x4 were traversed �rst.

13

4.2 Correctness of GC

Correctness of the GC algorithm is proved by showing that a collectionH 0 of a well-typed program (H; S; V ; e)
is always obtained and both heaps are well typed with respect to the same type environment, i.e., ; ` H : �
and ; ` H 0 : �. If the above condition holds, we can safely replace the heap in a well-typed program with
its collection and obtain the same result (if exists) because the collection is a subset of the original heap and
the program after GC does not cause run-time type errors. A more formal argument would be similar to the
discussions found in [MFH95,MH96].

We only state a correctness theorem with main lemmas and sketch their proofs here. The main lemmas
(4.2.3, 4.2.4, and 4.2.5) ensure that a certain invariant (the well-formedness condition in De�nition 4.2.2
below) holds during GC and that GC always terminates with the empty scan set without failure. Then, the
main theorem (4.2.6) is an easy consequence from the three lemmas.

Before the de�nition of well-formedness, we introduce an operation to recover the actual types of the
scan set �s and the marked set �t.

4.2.1 De�nition: The �ltered use of �1 by �2, written �1] �2, is de�ned by: �] ! = � and �] 0 = 0.
Moreover, it is pointwise extended to types and type environments:

Int] Int = Int

(�1 !
�1 �2)] (�1 !

�2 �2) = �1 !
�1]�2 �2

(�11 �
�1 �12)] (�21 �

�2 �22) = (�11] �21)�
�1]�2 (�21] �22)

dom(�1] �2) = dom(�1) \ dom(�2)
(�1] �2)(x) = �1(x)] �2(x) for each x 2 dom(�1) \ dom(�2)

4.2.2 De�nition [Well-Formedness]: Suppose ; ` H : �; �H . The tuple (Hf ;�s; Ht;�t) is well formed

with respect to ; ` H : �; �H i�:

1. H = Hf]Ht

2. b! � � +
P

x2dom(�t)
TLhval[H(x);�H (x)]c � b�sc+ �t

3. (�H] b�sc) ` Ht : �; (�H] �t)

Intuitive meanings of the conditions are as follows: (1) a heap value is in either the from-space or the
to-space; (2) the type of a variable in the scan set is compatible with the corresponding heap value's actual
type (we can easily show that ! � �H � b�sc+ �t); and (3) the scan-set holds all free variables used by the
heap values in the to-set. The �ltered type environments �H] b�sc and �H] �t are used to recover the
actual type information on the scan set and the types of marked heap values from the normalized ones �s
and �t.

4.2.3 Lemma [GC Well-Formedness Preservation]: Suppose ; ` H : �; �H . If (H1;�1; H2;�2) is well
formed with respect to ; ` H : �; �H and (H1;�1; H2;�2) =) (H 0

1;�
0
1; H

0
2;�

0
2), then (H 0

1;�
0
1; H

0
2;�

0
2) is well

formed with respect to ; ` H : �; �H .

Proof sketch: By a case analysis on the rule used to derive (H1;�1; H2;�2) =) (H 0
1;�

0
1; H

0
2;�

0
2). �

4.2.4 Lemma [GC Progress]: If ; ` H : �; �H and (H1;�1; H2;�2) is well-formed with respect to ; `
H : �; �H , then either �1 is empty or (H1;�1; H2;�2) =) (H 0

1;�
0
1; H

0
2;�

0
2) for some (H 0

1;�
0
1; H

0
2;�

0
2).

Proof sketch: It is easy to show dom(b�1c+ �2) � dom(�H) from the second well-formedness condition
and the assumption ; ` H : �; �H . Since H = H1] H2 and dom(H) = dom(�H), either x 2 dom(H1) or
x 2 dom(H2) holds for each x 2 dom(b�1c). Then, it is easy to show that one of the three rules can be
applied for a quadruple with a non-empty scan set �1. (In any case, it is easy to show well-de�nedness of
the right-hand side of =).) �

4.2.5 Lemma [GC Termination]: If (H1;�1; H2;�2) is well-formed with respect to ; ` H : �; �H , then
there is no in�nite sequence (H1;�1; H2;�2) =) (H 0

1;�
0
1; H

0
2;�

0
2) =) � � �.

14

Proof sketch: We de�ne a partial order < by (H1;�1; H2;�2) < (H 0
1;�

0
1; H

0
2;�

0
2) i� (1) �1 � �01 with

�2 = �02 or (2) ! � �H � �2 � �02 with �2 6= �02. We can easily show that the order < is well-founded and
that =) generates a monotonically decreasing sequence with respect to <. �

4.2.6 Theorem [Correctness of GC Algorithm]: If ` (H; S; V ; e) : � , then there exists a collection H 0

of the program (H; S; V ; e) and ` (H 0; S; V ; e) : � .

Proof sketch: It is easy to show that, if a program is well typed, then the initial state of GC is well
formed. Then, by Lemmas 4.2.5, 4.2.4 and 4.2.3, it is shown that the rewriting will terminate in a well-
formed state with the empty scan set. By the third well-formedness condition, the collection is a well-typed
heap described by the same type environment. �

5 Related Work

Linear type systems. In most of the existing linear type systems [Wad90,TWM95,CGR92,WJ99], the
uses 0 and ! here are not distinguished. Thus, there would be no dangling pointers created in the heap
space and conventional tracing GC could be applied. Mogensen [Mog97] and the authors [Iga97, IK00b]
independently introduced 0 to the use information3. Under such a linear type system with the use 0, the
garbage collector has to avoid tracing dangling pointers. In [Iga97, IK00b], the summation of two pair
types is de�ned only when the element types are the same, i.e., elements of a data structure have to be
uniformly accessed in every context where the data structure is accessed. Thus, unlike our system, the
type information on marked objects would not be required and the usual mark-bit mechanism would be
enough. Furthermore, Mogensen's type system and Kobayashi's quasi-linear type system [Kob99] removed
the restriction on summation of types as in this paper. The new summation operator together with the use
0 play a signi�cant role to re�ne the analysis to detect linear values and so improve e�ectiveness of the static
memory management. On the other hand, as we have studied, GC has to know which part of the marked
object has been marked.

Chirimar, Gunter, and Riecke [CGR92] formalized memory management based on reference counting for
a language with a linear type system. There are no dangling pointers in the memory space and the memory
management algorithm itself was fairly straightforward.

Type-directed GC. There have been two approaches towards tag-free GC for ML-style polymorphic
languages. In order to recover the actual type arguments of a polymorphic function, in one approach,
explicit type arguments are passed at run-time [App89,Tol94,MH96] and, in the other, type reconstruction
is performed at GC-time [Gol91,GG92,Fra94,AFH94,MFH95,HY98]. Some type inference GC [GG92,Fra94,
MFH95,HY98] for polymorphic languages can collect reachable garbage as our GC also can. In some cases,
our GC can collect more garbage than the type inference GC schemes proposed so far. For example, consider
an expression f(x) + g(x) + g(y) and suppose the function f uses its argument but g does not. If both f

and g are used in a monomorphic context (as they are function arguments, for example), then y must be
given the same type as f 's domain type, which is concrete (i.e., not a type variable); thus, type inference
GC cannot collect an object at y. In our type system, on the other hand, the use of the type of y can be 0
even if the use of f 's domain type is more than 0. Thus, our garbage collector can collect the object at y.
We leave further comparison of our GC and type inference GC for future work.

Agesen, Detlefs, and Moss [ADM98] showed that, by a liveness analysis of local variables in a Java virtual
machine, a garbage collector can avoid tracing useless references, thus reducing the required heap size. In
fact, use of a liveness analysis seems to become fairly common in real compilers such as several Java JIT
compilers. Since our garbage collector can avoid tracing useless variables (with the use 0) not only in the
stack but also the heap, our technique can be more e�ective.

3The original idea of the use 0 is attributed to Bierman [Bie92] and the implicit idea of the use 0 is also found in the preceding

paper on a linear type system for the �-calculus [KPT96].

15

Region-based static memory management. Tofte et al. have proposed another technique for static
memory management, based on region inference [TT94, BTV96]; it analyzes the lifetime of regions, which
are fragments of memory space with nested lifetime, by using an e�ect-based type system and inserts ex-
plicit allocation/deallocation primitives into programs. The region-based memory management may also
deallocate elements of a data structure before the deallocation of itself, creating dangling pointers. Kariya
and Kobayashi [KK99] have developed an algorithm of tracing GC under the region-based static memory
management. The idea is similar to ours: since the static type information tells the garbage collector which
regions are not used by a certain value, it can be avoided to trace dangling pointers.

6 Conclusions

We have studied a GC scheme for a programming language with static memory management based on a
linear type system. Since it allows linear values to be reclaimed before the reclamation of values pointing to
them, dangling pointers may occur in the heap space; in order to deal with them, we exploited static type
information during GC; our GC scheme can not only avoid tracing dangling pointers but also collect some
of reachable garbage. We have formalized our GC algorithm and stated its correctness.

7 Future Work

The work presented here is rather preliminary; much work is left to be done to adopt our technique to a real
programming language like ML and evaluate a real impact.

First of all, integration with a polymorphic type system will be crucial. But, in fact, our GC scheme itself
can be extended in a fairly straightforward manner: the technique of run-time type passing [Tol94,MH96]
can be used to obtain actual type argument information on type variables, which the garbage collector will
require. Moreover, this technique would also be extended to polymorphism on uses.

However, naive implementation of our memory management scheme described here will not be very
e�ective. As in real implementation of region-based memory management [BTV96], auxiliary techniques
will be needed to reduce the overheads. We briey discuss main issues and possible solutions below:

E�ectiveness of use analysis. The present type system, apart from the lack of polymorphism, would
not be very useful for static memory management: as discussed elsewhere [Kob99], the condition of use-
onceness is too restrictive. Kobayashi's quasi-linear type system [Kob99] (extended with polymorphism),
a re�nement of a linear type system for memory management, would be a good base of our system. We
also should explore the design space about polymorphism, involving many engineering tradeo�s between the
power of the type system and the overhead of type reconstruction [WJ99,WJ00].

Reduction of run-time cost. One of the main potential run-time overheads of our memory manage-
ment would lie in deallocation of linear values involving dynamic check of uses, even though the check can
be implemented without extra memory space for tags. To omit those checks, we might be able to modify the
type system so that it also classi�es primitive operations into two: those accepting only linear values with
performing deallocation, and those accepting only non-linear values without deallocation. However, type
reconstruction for such a type system would be impractical; we expect the complexity to be exponential.
Instead, we will be able to bene�t from ow analysis to determine at which deallocation points dynamic
checks can be omitted. In the presence of polymorphism, the technique of type lifting [Tol94,Min96, SS98]
can be used to reduce the cost of run-time type passing.

Reduction of GC-time cost. Our garbage collector is presented so that it keeps track of type in-
formation on the heap values already marked. However, in real implementation, the full type information
is not needed: for example, for a function closure, only one bit information (0 or !), corresponding to the
outermost use of the function type, is suÆcient. Concerning pair types, the required information can be
represented by a bit vector of length 1 + n1 + n2 where ni is the length of such a bit vector for the i-th
component type. Thus, without deeply nested pair types (or large tuple types), the cost could be comparable

16

to conventional tracing GC, which uses a mark bit for each heap block. Moreover, such bit vectors may even
be omitted by analyzing aliasing in the heap space.

As other theoretical issues, it is interesting to generalize our system so that the GC algorithm is param-
eterized by the underlying linear type system. Also, formal connection to type inference GC would be also
worth investigating.

Acknowledgment

Comments from anonymous referees of TIC2000 helped us improve the presentation.

References

[ADM98] Ole Agesen, David Detlefs, and J. Eliot B. Moss. Garbage collection and local variable type-precision

and liveness in Java virtual machines. In Proceedings of the ACM Conference on Programming Language

Design and Implementation (PLDI), pages 269{279, Montreal, Canada, June 1998.

[AFH94] Shail Aditya, Christine H. Flood, and James E. Hicks. Garbage collection for strongly-typed languages

using run-time type reconstruction. In Proceedings of the ACM Conference on Lisp and Functional Pro-

gramming (LFP), pages 12{23, Orlando, FL, June 1994.

[AFL95] Alexander Aiken, Manuel F�ahndrich, and Raph Levien. Better static memory management: Improving

region-based analysis of higher-order languages. In Proceedings of the ACM Conference on Programming

Language Design and Implementation (PLDI), pages 174{185, San Diego, CA, June 1995.

[App89] Andrew W. Appel. Runtime tags aren't necessary. Lisp and Symbolic Computation, 2(7):153{162, 1989.

[Bie92] Gavin M. Bierman. Type systems, linearity and functional languages. In Proceedings of the CLICS

Workshop, pages 71{92, March 1992. Available as Aarhus University Technical Report DAIMI PB 397-I.

[BTV96] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to von Neumann machines

via region representation inference. In Proceedings of the 23rd ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages (POPL), pages 171{183, St. Petersburg Beach, FL, January 1996.

[CGR92] Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Proving memory management invariants for a

language based on linear logic. In Proceedings of the ACM Conference on Lisp and Functional Programming

(LFP), pages 139{150, San Francisco, CA, July 1992.

[Fra94] Pascal Fradet. Collecting more garbage. In Proceedings of the ACM Conference on Lisp and Functional

Programming (LFP), pages 24{33, Orlando, FL, June 1994.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling with con-

tinuations. In Proceedings of the ACM Conference on Programming Language Design and Implementation

(PLDI), pages 237{247, Albuquerque, NM, June 1993.

[GG92] Benjamin Goldberg and Michael Gloger. Polymorphic type reconstruction for garbage collection without

tags. In Proceedings of the ACM Conference on Lisp and Functional Programming (LFP), pages 53{65,

San Francisco, CA, June 1992.

[GH90] Juan C. Guzm�an and Paul Hudak. Single-threaded polymorphic lambda calculus. In Proceedings of the

5th IEEE Symposium on Logic in Computer Science (LICS), pages 333{343, Philadelphia, PA, June 1990.

[Gol91] Benjamin Goldberg. Tag-free garbage collection for strongly typed programming languages. In Proceedings

of the ACM Conference on Programming Language Design and Implementation (PLDI), pages 165{176,

Toronto, Canada, June 1991.

[HY98] Haruo Hosoya and Akinori Yonezawa. Garbage collection via dynamic type inference | a formal treatment

|. In Proceedings of the 2nd International Workshop on Types in Compilation (TIC), volume 1473 of

Lecture Notes on Computer Science, pages 215{239, Kyoto, Japan, March 1998. Springer-Verlag.

[Iga97] Atsushi Igarashi. Type-based analysis of usage of values for concurrent programming languages. Master's

thesis, University of Tokyo, Tokyo, Japan, February 1997.

[IK00a] Atsushi Igarashi and Naoki Kobayashi. Garbage collection based on a linear type system. Technical

report, Department of Information Science, University of Tokyo, Tokyo, Japan, 2000. In preparation. To

be available through http://www.graco.c.u-tokyo.ac.jp/~igarashi/papers.html.

17

[IK00b] Atsushi Igarashi and Naoki Kobayashi. Type reconstruction for linear �-calculus with I/O subtyping.

Information and Computation, 2000. To appear. A preliminary summary was presented in Proceedings of

SAS'97 under the title \Type-based Analysis of Communication for Concurrent Programming Languages,"

Springer LNCS 1302, pages 187{201.

[KK99] Hideki Kariya and Naoki Kobayashi. Combining region-based memory management with conventional

garbage collection. JSSST Computer Software, 16(3):66{70, May 1999. (in Japanese).

[Kob99] Naoki Kobayashi. Quasi-linear types. In Proceedings of the 26th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages (POPL), pages 29{42, San Antonio, TX, January 1999.

[KPT96] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus. In Proceedings

of the 23rd ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL), pages

358{371, St. Petersburg Beach, FL, January 1996.

[MFH95] Greg Morrisett, Matthias Felleisen, and Robert Harper. Abstract models of memory management. In

Proceedings of the 7th International Conference on Functional Programming Languages and Computer

Architecture (FPCA), pages 66{77, San Diego, CA, June 1995.

[MH96] Greg Morrisett and Robert Harper. Semantics of memory management for polymorphic languages. Tech-

nical Report CMU-CS-96-176, Carnegie Mellon University, Pittsburgh, PA, September 1996.

[Min96] Yasuhiko Minamide. Compilation based on a calculus for explicit type passing. In Proceedings of the

Second Fuji International Workshop on Functional and Logic Programming, 1996.

[Mog97] Torben �. Mogensen. Types for 0, 1 or many uses. In Proceedings of the 9th International Workshop

on Implementation of Functional Languages, number 1467 in Lecture Notes on Computer Science, pages

157{165, St. Andrews, Scotland, September 1997. Springer-Verlag.

[Mor95] Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University, December 1995.

[SS98] Bratin Saha and Zhong Shao. Optimal type lifting. In Proceedings of the 2nd International Workshop on

Types in Compilation (TIC), volume 1473 of Lecture Notes on Computer Science, pages 156{177, Kyoto,

Japan, March 1998. Springer-Verlag.

[Tol94] Andrew Tolmach. Tag-free garbage collection using explicit type parameters. In ACM Conference on Lisp

and Functional Programming (LFP), pages 1{11, Orlando, FL, June 1994.

[TT94] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value �-calculus using a stack of

regions. In Proceedings of the 21st ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages (POPL), pages 188{201, Portland, OR, January 1994.

[TWM95] David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In Proceedings of the 7th

International Conference on Functional Programming Languages and Computer Architecture (FPCA),

pages 1{11, San Diego, CA, June 1995.

[Wad90] Philip Wadler. Linear types can change the world! In M. Broy and C. Jones, editors, Programming

Concepts and Methods, Sea of Galilee, Israel, April 1990. North Holland. IFIP TC 2 Working Conference.

[WJ99] Keith Wansbrough and Simon Peyton Jones. Once upon a polymorphic type. In Proceedings of the 26th

ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL), pages 15{28,

San Antonio, TX, January 1999.

[WJ00] Keith Wansbrough and Simon Peyton Jones. Simple usage polymorphism. In Proceedings of the 3rd

International Workshop on Types in Compilation (TIC), Montreal, Canada, September 2000.

