
Accelerating Exact k-means Algorithms

with Geometric Reasoning

Dan Pelleg Andrew Moore

January 2000

CMU-CS-00-105

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

An extract of this work appeared in KDD-99.

Research support provided by an NSF-KDI Grant to Andrew Moore and Bob Nichol

Keywords: computational geometry, classi�cation, density estimation, kd-

trees, clustering, K-means

Abstract

We present new algorithms for the k-means clustering problem. They use the
kd-tree data structure to reduce the large number of nearest-neighbor queries
issued by the traditional algorithm. Su�cient statistics are stored in the
nodes of the kd-tree. Then, an analysis of the geometry of the current cluster

centers results in great reduction of the work needed to update the centers.
Our algorithms behave exactly as the traditional k-means algorithm. Proofs
of correctness are included. The kd-tree can also be used to initialize the
k-means starting centers e�ciently. Our algorithms can be easily extended
to provide fast ways of computing the error of a given cluster assignment,
regardless of the method in which those clusters were obtained. We also show

how to use them in a setting which allows approximate clustering results, with
the bene�t of running faster.
We have implemented and tested our algorithms on both real and simulated
data. Results show a speedup factor of up to 170 on real astrophysical
data, and superiority over the naive algorithm on simulated data in up to 5

dimensions. Our algorithms scale well with respect to the number of points

and number of centers, allowing for clustering with tens of thousands of
centers.

1 Introduction

Consider a dataset with R records, each having M attributes. Given a con-

stant k, the clustering problem is to partition the data into k subsets such

that each subset behaves \well" under some measure. For example, we might

want to minimize the squared Euclidean distances between points in any sub-

set and their center of mass. The k-means algorithm for clustering �nds a

local optimum of this measure by keeping track of centroids of the subsets,

and issuing a large number of nearest-neighbor queries [7].

A kd-tree is a data structure for storing a �nite set of points from a

�nite-dimensional space [1]. Recently, Moore has shown its usage in very fast

EM-based Mixture Model Clustering [9]. The need for such a fast algorithm

arises when conducting massive-scale model selection, and in datasets with a

large number of attributes and records (see also [10]). An extreme example

is the data which is gathered in the Sloan Digital Sky Survey (SDSS) [12],

where M is about 500 and R is in the millions.

We show that kd-trees can be used to reduce the number of nearest-

neighbor queries in k-means by using the fact that their nodes can represent

a large number of points. We are frequently able to prove for certain nodes of

the kd-tree statements of the form \any point associated with this node must

have X as its nearest neighbor" for some center X. This, together with a set

of statistics stored in the kd-nodes, allows for great reduction in the number

of arithmetic operations needed to update the centroids of the clusters.

We have implemented our algorithms and tested their behavior with re-

spect to variations in the number of points, dimensions, and centers, as mea-

sured on synthetic data. We also present results of tests on preliminary SDSS

data.

The remainder of this paper is organized as follows. In Section 2 we

discuss related work, introduce notation and describe the naive k-means al-

gorithm. In Section 3 we present our algorithms with proofs of correctness.

1

Section 4 discusses results of experiments on real and simulated data, and

Section 5 concludes and suggests ideas for further work.

2 De�nitions and Related Work

Throughout this paper, we denote the number of records by R, the number

of dimensions by M and the number of centers by k.

We �rst describe the naive k-means algorithm for producing a clustering

of the points in the input into k clusters [5, 2]. It partitions the data-points

into k subsets such that all points in a given subset \belong" to some center.

The algorithm keeps track of the centroids of the subsets, and proceeds in

iterations. We denote the set of centroids after the i-th iteration by C
(i).

Before the �rst iteration the centroids are initialized to random values. The

algorithm terminates when C
(i) and C

(i�1) are identical. In each iteration,

the following is performed:

1. For each point x, �nd the center in C(i) which is closest
to x. Associate x with this center.

2. Compute C(i+1) by taking, for each center, the center of
mass of points associated with this center.

Our algorithms involve modi�cation of just the code within one iteration.

We therefore analyze the cost of a single iteration. Naive k-means performs

a \nearest-neighbor" query for each of the R points. During such a query

the distances in M -space to k centers are calculated. Therefore the cost is

O(kMR).

One fundamental tool we will use to tackle the problem is the kd-tree

data-structure. A thorough discussion is out of the scope of this paper. We

just outline its relevant properties, and from this point on will assume that

a kd-tree for the input points exists. Further details about kd-trees can be

2

found in [8]. We will use a specialized version of kd-trees called mrkd-trees,

for \multi-resolution kd-trees" [4]. Their properties are:

� They are binary trees.

� Each node contains information about all points contained in a hyper-

rectangle h. The hyper-rectangle is stored at the node as two M -

length boundary vectors hmax and h
min. At the node are also stored

the number, center of mass, and sum of Euclidean norms, of all points

within h. All children of the node represent hyper-rectangles which are

contained in h.

� Each non-leaf node has a \split dimension" d and a \split value" v. Its

children l (resp. r) represent the hyper-rectangles hl (hr), both within

h, such that all points in hl (hr) have their d-th coordinate value smaller

than (at least) v.

� The root node represents the hyper-rectangle which encompasses all of

the points.

� Leaf nodes store the actual points.

For two points x; y we denote by d(x; y) their Euclidean distance. For a

point x and a hyper-rectangle h we de�ne closest(x; h) to be the point in h

which is closest to x. Note that computing closest(x; h) can be done in time

O(M) due to the following facts:

� If x 2 h, then x is closest.

� Otherwise, closest(x; h) is on the boundary of h. This boundary point

can be found by clipping each coordinate of x, to lie within h, as shown

in [8].

3

We de�ne the distance d(x; h) between a point x and a hyper-rectangle h

to be d(x; closest(x; h)). For a hyper-rectangle h we denote by width(h) the

vector hmax � h
min.

Given a clustering �, we denote by �(x) the centroid this clustering as-

sociates with an arbitrary point x (so for k-means, �(x) is simply the center

closest to x). We then de�ne a measure of quality for �:

distortion� =
1

R
�
X
x

d
2(x; �(x)) (1)

where R is the total number of points and x ranges over all input points.

The k-means algorithm is known to converge to a local minimum of the

distortion measure. It is also known to be too slow for practical databases.

Much of the related work does not attempt to confront the algorithmic issues

directly. Instead, di�erent methods of subsampling and approximation are

proposed. A way to obtain a small \balanced" sample of points by sampling

from the leaves of a R� tree is shown in [6]. In [11], a simulated-annealing

approach is suggested to direct the search in the space of possible partitions

of the input points. A tree structure with su�cient statistics is presented in

[13]. It is used to identify outliers and speed computations. However, the

calculated clusters are approximations, and depend on many parameters.

Note that although the starting centers can be selected arbitrarily, k-

means is fully deterministic, given the starting centers. A bad choice of

initial centers can have a great impact on both performance and distortion.

Bradley and Fayyad [3] discuss ways to re�ne the selection of starting centers

through repeated sub-sampling and smoothing.

Originally, kd-trees were used to accelerate nearest-neighbor queries. We

could, therefore, use them in the k-means inner loop transparently. For this

method to work we will need to store the centers in the kd-tree. So whatever

savings we achieve, they will be a function of the number of centers, and

not of the (necessarily larger) number of points. The number of queries

4

will remain R. Moreover, the centers move between iteration, and a naive

implementation would have to rebuild the kd-tree whenever this happens.

Our methods, in contrast, store the entire dataset in the kd-tree.

3 Algorithms

Our algorithms exploit the fact that instead of updating the centroids point

by point, a more e�cient approach is to update in bulk. This can be done

using the known centers of mass and size of groups of points. Naturally,

these groups will correspond to hyper-rectangles in the kd-tree. To ensure

correctness, we must �rst make sure that all of the points in a given rectangle

indeed \belong" to a speci�c center before adding their statistics to it. This

gives rise to the notion of an owner.

De�nition 1 Given a set of centers C and a hyper-rectangle h, we de�ne

by ownerC(h) a center c 2 C such that any point in h is closer to c than to

any other center in C, if such a center exists.

We will omit the subscript C where it is clear from the context. The rest

of this section discusses owners and e�cient ways to �nd them. We start by

analyzing a property of owners, which, by listing those centers which do not

have it, will help us eliminate non-owners from our set of possibilities. Note

that ownerC(h) is not always de�ned. For example, when two centers are

both inside a rectangle, then there exists no unique owner for this rectangle.

Therefore the precondition of the following theorem is that there exists a

unique owner. The algorithmic consequence is that our method will not

always �nd an owner, and will sometimes be forced to descend the kd-tree,

thereby splitting the hyper-rectangle in hope to �nd an owner for the smaller

hyper-rectangle.

5

Theorem 2 Let C be a set of centers, and h a hyper-rectangle. Let c 2 C

be ownerC(h). Then:

d(c; h) = min
c02C

d(c0; h) :

Proof: Assume, for the purpose of contradiction, that c 6= argminc02C d(c
0
; h) �

c
0. Then there exists a point in h (namely closest(c0; h)) which is closer to c0

than to c. A contradiction to the de�nition of c as owner(h). 2

Equivalently, we can say that when looking for owner(h), we should only

consider centers with shortest (as opposed to \minimal") distance d(c; h).

Suppose that two (or more) centers share the minimal distance to h. Then

neither can claim to be an owner.

Theorem 2 narrows down the number of possible owners to either one (if

there exists a shortest distance center) or zero (otherwise). In the latter case,

our algorithm will proceed by splitting the hyper-rectangle. In the former

case, we still have to check if this candidate is an owner of the hyper-rectangle

in question. As will become clear from the following discussion, this will not

always be the case. Let us begin by de�ning a restricted form of ownership,

where just two centers are involved.

De�nition 3 Given a hyper-rectangle h, and two centers c1 and c2 such that

d(c1; h) < d(c2; h), we say that c1 dominates c2 with respect to h if every point

in h is closer to c1 than it is to c
2.

Observe that if some c 2 C dominates all other centers with respect

to some h, then c = owner(h). A possible (albeit ine�cient) way of �nding

owner(h) if one exists would be to scan all possible pairs of centers. However,

using theorem 2, we can reduce the number of pairs to scan since c1 is �xed.

To prove this approach feasible we need to show that the domination decision

problem can be solved e�ciently.

6

Lemma 4 Given two centers c1; c2, and a hyper-rectangle h such that d(c1; h) <

d(c2; h), the decision problem \does c1 dominate c2 with respect to h?" can

be answered in O(M) time.

Proof: Observe the decision line L composed of all points which are

equidistant to c1 and c
2 (see Figure 1). If c1 and h are both fully contained

in one half-space de�ned by L, then c
1 dominates c2. The converse is also

true; if there exists a point x 2 h such that it is not in the same half-space

of L as c1, then d(c1; x) > d(c2; x) and c
1 does not dominate c2. It is left to

show that �nding whether c1 and h are contained in the same half-space of L

can be done e�ciently. Consider the vector ~v � c
2 � c

1. Let p be a point in

h which maximizes the value of the inner product hv; pi. This is the extreme

point in h in the direction ~v. Note that ~v is perpendicular to ~L. If p is closer

to c1 than it is to c2, then so is any point in h (p is the closest one can get

to L, within h). If not, p is a proof that c1 does not dominate c2.

Furthermore, the linear program \maximize hv; pi such that p 2 h" can

be solved in time O(M). Again we notice the extreme point is a corner of h.

For each coordinate i, we choose pi to be h
max

i if c2i > c
1

i , and h
min

i otherwise.

2

3.1 The Simple Algorithm

We now describe a procedure to update the centroids in C
(i). It will take

into consideration an additional parameter, a hyper-rectangle h such that all

points in h a�ect the new centroids. The procedure is recursive, with the

initial value of h being the hyper-rectangle with all of the input points in it.

If the procedure can �nd owner(h), it updates its counters using the center

of mass and number of points which are stored in the kd-node correspond-

ing to h (we will frequently interchange h with the corresponding kd-node).

7

p13

L12

h

p12

c2

c1

L13

c3

Figure 1: Domination with respect to a hyper-rectangle.
L12 is the decision line between centers c

1 and c2. Similarly,L13 is the decision
line between c1 and c

3. p12 is the extreme point in h in the direction c2� c
1,

and p13 is the extreme point in h in the direction c3� c
1. Since p12 is on the

same side of L12 as c
1, c1 dominates c2 with respect to the hyper-rectangle

h. Since p13 is not on the same side of L13 as c
1, c1 does not dominate c3.

8

Otherwise, it splits h by recursively calling itself with the children of h. The

proof of correctness follows from the discussion above.

Update(h;C):

1. If h is a leaf:

(a) For each data point in h, �nd the closest center to

it and update that center's counters.

(b) Return.

2. Compute d(c; h) for all centers c. If there exists one
center c with shortest distance:

If for all other centers c0, c dominates c0 with re-
spect to h (so we have established c = owner(h)):

(a) Update c's counters using the data in h.

(b) Return.

3. Call Update(hl; C).

4. Call Update(hr; C).

We would not expect our Update procedure to prune in the case that h is

the universal set of all input points (since all centers are contained in it, and

therefore no shortest-distance center exists). We also notice that if the hyper-

rectangles were split again and again so that the procedure is dealing just

with leaves, this method would be identical to the original k-means. In fact,

this implementation will be much more expensive because of the redundant

overhead. Therefore our hope is that large enough hyper-rectangles will be

owned by a single center to make this approach worthwhile. See Figure 2 for

a visualization of the procedure operation.

9

Figure 2: Visualization of the hyper-rectangles

owned by centers. The entire two-dimensional

dataset is drawn as points in the plane. All points

that \belong" to a speci�c center are colored the

same color (here, K=2). The rectangles for which

it was possible to prove that belong to speci�c

centers are also drawn. Points outside of rectan-

gles had to be determined in the slow method (by

scanning each center). Points within rectangles

were not considered by the algorithm. Instead,

their number and center of mass are stored to-

gether with the rectangle and are used to update

the center coordinates.

3.2 The \Blacklisting" Algorithm

Our next algorithm is a re�nement of the simple algorithm. The idea is

to identify those centers which will de�nitely not be owners of the hyper-

rectangle h. If we can show this is true for some center c, there is no point

in checking c for any of the descendants of h, hence the term \blacklisting".

Let c
1 be a minimal-distance center to h, and let c2 be any center such

that d(c2; h) > d(c1; h). If c1 dominates c2 with respect to h, we have two

possibilities. One, that c1 = owner(h). This is the good case since we do not

need any more computation. The other option is that we have no owner for

this node. The slow algorithmwould have given up at this point and restarted

a computation for the children of h. The blacklisting version notices that c1

dominates c2 with respect to h
0 for any h

0 contained in h. This is true by

de�nition. Now, since the descendants of h in the kd-tree are all contained

in h, we can eliminate c2 from the list of possible centers at this point for

all descendants. Thus the list of prospective owners shrinks until it reaches

a size of 1. At this point we declare the only remaining center the owner of

the current node h. Again, we hope this happens before h is a leaf node,

otherwise our overhead is wasted. For a typical run with 30000 points and

10

100 centers, the blacklisting algorithm calculates distances from points to

centers about 270000 times each iteration. This, plus the overhead, is to be

compared with the 3 million distances the naive algorithm has to calculate.

3.3 E�ciently Computing Goodness-Of-Fit Statistics

As an added bonus, the \ownership" property can help accelerate other com-

putations. With the small price of storing, in each kd-node, the sum of the

squared norms of all points of this node, one can use the exact same algo-

rithm to compute the distortion measure de�ned in Equation 1. We omit

the straightforward algebra. For other obtainable statistics see [13].

4 Experimental Results

We have conducted experiments on both real and randomly-generated data.

The real data is preliminary SDSS data with some 400,000 celestial objects.

The synthetic data covers a wide range of parameters that might a�ect the

performance of the algorithms. Some of the measures are comparative, and

measure the performance of our algorithms against the naive algorithm, and

against the BIRCH [13] algorithm. Others simply test our fast algorithms'

behavior on di�erent inputs.

The real data is a two-dimensional data-set, containing the X and Y

coordinates of objects observed by a telescope. There were 433,208 such

objects in our data-set. Note that \clustering" in this domain has a well-

known astrophysical meaning of clusters of galaxies, etc. Such clustering,

however, is somewhat insigni�cant in a two-dimensional domain since the

physical placement of the objects is in 3-space. The results are shown in

Table 1. The main conclusion is that the blacklisting algorithm executes 25

to 176 times faster than the naive algorithm, depending on the number of

points.

11

points blacklisting naive speedup

50000 2.02 52.22 25.9

100000 2.16 134.82 62.3

200000 2.97 223.84 75.3

300000 1.87 328.80 176.3

433208 3.41 465.24 136.6

Table 1: Comparative results on real data.

Run-times of the naive and blacklisting algorithm, in seconds per iteration. Run-times

of the naive algorithms also shown as their ratio to the running time of the blacklisting

algorithm, and as a function of number of points. Results were obtained on random

samples from the 2-D \petro" �le using 5000 centers.

In addition, we have conducted experiments with the BIRCH algorithm

[13]. It is similar to our approach in that it keeps a tree of nodes representing

sets of data-points, together with su�cient statistics. The experiment was

conducted as follows. We let BIRCH run through phases 1 through 4 and

terminate, measuring the total run-time. Then we ran our k-means for as

many iterations as possible, given this time limit. We then measured the

distortion of the clustering output by both algorithms. The results are in

Table 2. In seven experiments out of ten, the blacklisting algorithm produced

better (i.e., lower distortion) results. These experiments include randomly

generated data �les originally used as a test-case in [13], random data �les

generated by us, and real data.

The synthetic experiments were conducted in the following manner. First,

a data-set was generated using 72 randomly-selected points (class centers).

For each data-point, a class was �rst selected at random. Then, the point

coordinates were chosen independently under a Gaussian distribution with

mean at the class center, and deviation � equal to the number of dimen-

sions times 0:025. One data-set contained 20; 000 points drawn this way.

The naive, \slow", and blacklisting algorithms were run on this data-set and

measured for speed. The CPU time measured was then divided by the num-

12

dataset form points K blacklisting BIRCH BIRCH,

distortion distortion relative

1 grid 100000 100 1.85 1.76 0.95

2 sine 100000 100 2.44 1.99 0.82

3 random 100000 100 6.98 8.98 1.29

4 random 200000 250 7.94e-04 9.78e-04 1.23

5 random 200000 250 8.03e-04 1.01e-03 1.25

6 random 200000 250 7.91e-04 1.00e-03 1.27

7 real 100000 1000 3.59e-02 3.17e-02 0.88

8 real 200000 1000 3.40e-02 3.51e-02 1.03

9 real 300000 1000 3.73e-02 4.19e-02 1.12

10 real 433208 1000 3.37e-02 4.08e-02 1.21

Table 2: Comparison against BIRCH
The distortion for the blacklisting and BIRCH algorithms, given equal run-time, is shown.

Six of the datasets are simulated and 4 are real (\petro" data). Datasets 1-3 are as

published in [13]. Datasets 4-6 were generated randomly. For generated datasets, the

number of classes in the original distribution is also the number of centers reported to

both algorithms. The last column shows the BIRCH output distortion divided by the

blacklisting output distortion.

13

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2 3 4 5 6 7 8

tim
e

#dimensions

plot for: 20000 points, 40 classes

"method=slow"
"method=hplan"
"method=black" Figure 3: Comparative results on simulated data.

Running time, in seconds per iteration, is shown

as the number of dimensions varies. Each line

stands for a di�erent algorithm: the naive algo-

rithm (\slow"), our simple algorithm (\hplan"),

and the blacklisting algorithm (\black").

ber of iterations to get a time-per-iteration estimate. Notice that all three

algorithms generate exactly the same set of centroids at each iteration, so the

number of iterations for all three of them is identical, given the data-set. This

experiment was repeated 30 times and averages were taken. The number of

dimensions varied from 2 to 8. The number of clusters each algorithm was

requested to �nd was 40. The results are shown in Figure 3. The main conse-

quence is that in 2 to 5 dimensions, the blacklisting algorithm is faster than

the naive approach, with speedup of up to three-fold in two dimensions. In

higher dimensions it is slower. Our simple algorithm is almost always slower

than the naive approach.

Another interesting experiment to perform is to measure the sensitivity

of our algorithms to changes in the number of points, centers, and dimen-

sions. It is known, by direct analysis, that the naive algorithm has linear

dependence on these. It is also known that kd-trees tend to su�er from high

dimensionality. In fact, we have just established that in the comparison to the

naive algorithm. See [8] as well. To this end, another set of experiments was

performed. The experiments used generated data as described earlier (only

with 30000 points). But, only the blacklisting algorithm was used to cluster

the data-points and the running time was measured. In this experiment-set,

the number of dimensions varied from 1 to 8 and the number of centers the

program was requested to generate varied from 10 to 80 in steps of 10. The

results are shown in Figure 4. The number of dimensions seems to have a

14

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

tim
e

#dimensions

plot for: 30000 points

"nclasses=10"
"nclasses=20"
"nclasses=30"
"nclasses=40"
"nclasses=50"
"nclasses=60"
"nclasses=70"
"nclasses=80"

Figure 4: E�ect of dimensionality on the black-

listing algorithm. Running time, in seconds per

iteration, is shown as the number of dimensions

varies. Each line shows results for a di�erent num-

ber of classes (centers).

0

1

2

3

4

5

6

7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

tim
e

classes

’gpetro’ astrophysical data

"npoints=10000"
"npoints=50000"

"npoints=100000"
"npoints=200000"
"npoints=300000"
"npoints=433208" Figure 5: E�ect of number of centers on the black-

listing algorithm. Running time, in seconds per

iteration, is shown as the number of classes (cen-

ters) varies. Each line shows results for a di�erent

number of random points from the original �le.

super-linear, possibly exponential, e�ect on the blacklisting algorithm. This

worsens as the number of centers increases.

Shown in Figure 5 is the e�ect of the number of centers on the algo-

rithm. The run-time was measured for the blacklisting algorithm clustering

random subsets of varying size from the astronomical data, with 50, 500, and

5000 centers. We see that the number of centers has a linear e�ect on the

algorithm. This result was con�rmed on simulated data (data not shown).

In Figure 6 the same results are shown, now using the number of points

for the X axis. We see a very small increase in run-time as the number of

points increases.

4.1 Approximate Clustering

Another way to accelerate clustering is to prune the search when only small

error is likely to be incurred. We do this by not descending down the kd-tree

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

tim
e

#points

’petro’ astrophysical data

"nclasses=5"
"nclasses=50"

"nclasses=500"

Figure 6: E�ect of number of points on the black-

listing algorithm. Running time, in seconds per

iteration, is shown as the number of points varies.

Each line shows results for a di�erent number of

classes.

when a \small-error" criterion holds for a speci�c node. We then assume

that the points of this node (and its hyper-rectangle h) are divided evenly

among all current competitors. For each such competing center c, we update

its location as if the relative number of points are all located at closest(c; h).

Our pruning criterion is:

n �
MX
j=1

width(h)j

width(U)j

!2

� d
i

where n denotes the number of points in h, U is the \universal" hyper-

rectangle bounding all of the input points, i is the iteration number, and d

is a constant, typically set to 0:8.

We have conducted experiments with approximate clustering using sim-

ulated data. Again, the results shown are averages over 30 random datasets.

Figure 7 shows the e�ect approximate clustering has on the run-time of the

algorithm. We notice it runs faster than the blacklisting algorithm, with

larger speedups as the number of points increases. It is about 25% faster for

10,000 points, and twice as fast 50; 000 points or more. As for the quality

of the output, Figure 8 shows the distortion of the clustering of both algo-

rithms. The distortion of the approximate method is at most 1% more than

the blacklisting clustering distortion (which is exact).

16

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 20000 40000 60000 80000 100000 120000

tim
e

points

40 classes, 2 dimensions

"BL-approximate"
"blacklisting"

Figure 7: Runtime of approximate clustering.

Running time, in seconds per iteration, is shown

as the number of points varies. Each line stands

for a di�erent algorithm.

0.00368

0.00369

0.0037

0.00371

0.00372

0.00373

0.00374

0.00375

0.00376

0.00377

0 20000 40000 60000 80000 100000 120000

di
st

or
tio

n

points

40 classes, 2 dimensions

"BL-approximate"
"blacklisting"

Figure 8: Distortion of approximate clustering.

Distortion for approximate and exact clustering.

Each line stands for a di�erent algorithm.

5 Conclusion

The main message of this paper is that the well-known k-means algorithm

need not necessarily be considered an impractically slow algorithm, even with

many records. We have described, analyzed and given empirical results for

a new fast implementation of k-means. We have shown how a kd-tree of

all the datapoints, decorated with extra statistics, can be traversed with a

new, extremely cheap, pruning test at each node. Another new technique|

blacklisting|gives a many-fold additional speed-up, both in theory and em-

pirically.

For datasets too large to �t in main memory, the same traversal and

black-listing approaches could be applied to an on-disk structure such as an

R-tree, permitting exact k-means to be tractable even for many billions of

records.

This method performs badly in high (> 8) dimensions: it is not a clus-

17

tering panacea, but possibly a worthy problem-speci�c tool for domains in

which there is massively large amounts of low-dimensional data (e.g. astro-

physics, geo-spatial-data, and controls). We are also investigating whether

AD-trees [10] could be used to give similar speed-ups on categorical data: an

advantage of AD-trees is that, subject to many caveats, they remain e�cient

up to hundreds of dimensions.

Unlike previous approaches (such as the mrkd-trees for EM in [9]) this

new algorithm scales very well with the number of centers, permitting clus-

tering with tens of thousands of centers.

Why would we care about making exact k-means fast? Why not just

use a fast non-k-means approximate clusterer? First, exact k-means is a

well-established algorithm that has prospered for many years as a clustering

algorithm workhorse. Second, it is often used to help �nd starting clusters for

more sophisticated iterativemethods such as mixturemodels. Third, running

k-means on an in-memory sample of the points is a popular approximate

clustering algorithm for monstrously large datasets. The techniques in this

paper can make such preprocessing steps e�cient. Finally, with fast k-means,

we can a�ord to run the algorithm many times in the time it would usually

take to run it once. This allows automatic selection of k, or subsets of

attributes upon which to cluster, to become a tractable, real-time operation.

References

[1] J. L. Bentley. Multidimensional Divide and Conquer. Communications of the

ACM, 23(4):214|229, 1980.

[2] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,

Oxford, 1995.

[3] P. S. Bradley and Usama M. Fayyad. Re�ning initial points for K-Means

clustering. In Proc. 15th International Conf. on Machine Learning, pages

91{99. Morgan Kaufmann, San Francisco, CA, 1998.

18

[4] K. Deng and A. W. Moore. Multiresolution instance-based learning. In The

Proceedings of IJCAI-95, pages 1233{1242. Morgan Kaufmann, 1995.

[5] R. O. Duda and P. E. Hart. Pattern Classi�cation and Scene Analysis. John

Wiley & Sons, 1973.

[6] M. Ester, H.-P. Kriegel, and Xiaowei Xu. A database interface for clustering

in large spatial databases. In Proceedings of First International Conference

on Knowledge Discovery and Data Mining. AAAI; Menlo Park, CA, USA,

1995.

[7] A. Gersho and R. Gray. Vector quantization and signal compression. Kluwer

Academic Publishers; Dordrecht, Netherlands, 1992.

[8] Andrew W. Moore. E�cient Memory-based Learning for Robot Control. PhD

thesis, University of Cambridge, 1991. Technical Report 209, Computer Lab-

oratory, University of Cambridge.

[9] Andrew W. Moore. Very fast EM-based mixture model clustering using mul-

tiresolution kd-trees. In Neural Information Processing Systems Conference,

1998.

[10] Andrew W. Moore and Mary Soon Lee. Cached su�cient statistics for e�-

cient machine learning with large datasets. Journal of Arti�cial Intelligence

Research, 8:67{91, 1998.

[11] Raymond T. Ng and Jiawei Han. E�cient and e�ective clustering methods

for spatial data mining,. In Proc. of VLDB,, 1994.

[12] SDSS. The Sloan Digital Survey. http://www.sdss.org.

[13] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: An e�cient data

clustering method for very large databases,. In to appear on Proc. of ACM

SIGMOD Conf., pages 103{114, 1995.

19

