
Strategic Exploration in Reinforcement Learning - New
Algorithms and Learning Guarantees

Christoph Dann

September 2019
CMU-ML-19-116

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Emma Brunskill (Stanford University), Chair

Barnabás Póczos (Carnegie Mellon University)
Benjamin Recht (University of California Berkeley)

Benjamin Van Roy (Stanford University)
Rémi Munos (Deepmind)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2019 Christoph Dann

This research was funded by the National Science Foundation award IIS1350984, the Office of Naval Research award N000141612241,
the Air Force Research Laboratory award FA87501720152, and gifts from Microsoft Corporation, Google and Verizon.

Keywords: Reinforcement Learning, Sequential Decision Making Under Uncertainty, Learning Theory,
Exploration, Markov Decision Process, Accountability

Abstract
Reinforcement learning (RL) focuses on an essential aspect of intelligent behavior – how

an agent can learn to make good decisions given experience and rewards in a stochastic
world. Yet popular RL algorithms that have enabled exciting successes in domains with
good simulators (Go, Atari, etc) still often fail to learn in other domains because they rely on
simple heuristics for exploration. This provides additional empirical justification for essential
questions around RL, specifically around algorithms that learn in a provably efficient manner
through strategic exploration in any considered domain. This thesis provides new algorithms
and theory that enable good performance with respect to existing theoretical frameworks for
evaluating RL algorithms (specifically, probably approximately correct) and introduces new
stronger evaluation criteria, that may be particularly of interest as RL is applied to more real
world problems.

For the first line of work on probably approximately correct (PAC) RL algorithms, we
introduce a series of algorithms for episodic tabular domains with substantially better PAC
sample complexity bounds that culminate in a new algorithm with close to minimax optimal
PAC and regret bounds. Look up tables are required by most sample efficient and computa-
tionally tractable algorithms, but cannot represent many practical domains. We therefore also
present a new RL algorithm that can learn a good policy in environments with high dimensional
observations and hidden deterministic states; unlike predecessors, this algorithm provably
explores not only in a statistically but also computationally efficient manner assuming access
to function classes with efficient optimization oracles.

To make progress it is critical to have the right measures of success. While empirical
demonstrations are quite clear, we find that for theoretical properties, two of the most commonly
used learning frameworks, PAC guarantees and regret guarantees, each allow undesirable
algorithm behavior (e.g. ignoring new observations that could improve the policy). We present
a new stronger learning framework called Uniform-PAC that unifies the existing frameworks
and prevents undesirable algorithm properties.

One caveat of all existing learning frameworks is that for any particular episode, we do not
know how well the algorithm will perform. To address this, we introduce the IPOC framework
that requires algorithms to provide a certificate before each episode bounding how suboptimal
the current policy can be. Such certifications may be of substantial interest in high stakes
scenarios when an organization may wish to track or even pause an online RL system should
the potential expected performance bound drop below a required expected outcome.

Acknowledgments

I would like to express my gratitude towards my advisor, Emma Brunskill. Throughout the
past five years she has taught me to be a better researcher and I am particularly thankful for
her repeated encouragement to think more broadly about the impact of my work. I always felt
she has put my interests and development first, providing me with all resources and guidance
a young researcher could hope for. Many thanks especially for taking the risk and letting
an incoming PhD student with applied background try out theoretical research. Without this
opportunity I might have never discovered my passion of machine learning theory. Many
thanks also to Barnabás Póczos, Benjamin Recht, Benjamin Van Roy and Rémi Munos for
serving on my thesis committee and providing me with fruitful advice, shaping the direction
of this dissertation.

I would also like to extend many thanks to all collaborators who have been directly
involved in the work included in this dissertation: to Tor Lattimore who can explain complex
mathematical arguments in such amazingly simple and still precise terms and who has endless
patience to use this skill helping a young PhD student entering RL theory. This was essential
for the results in Chapters 3 and 4; to the team at Microsoft Research New York, Nan Jiang,
Akshay Krishnamurthy, Alekh Agarwal, John Langford and Rob Schapire, for an inspiring
summer internship and great collaborations. The work in Chapter 6 was truly a group effort
and would not exist without their enthusiasm and time commitment into this internship project;
to Wei Wei for being a supportive local mentor during my internship at Google that lead to
Chapter 5; and to Lihong Li who did not shy away from making many additional trips during
an already busy summer to be able to work with me in front of a white board and share his
impressively broad knowledge of RL.

Many thanks also to Sebastian Nowozin and Katja Hofmann for their guidance and the
freedom to shape a new research project together, making my second summer internship in
Cambridge, UK, such a wonderful experience. Thank you to Sebastian in particular for also
giving me a first glimpse of how fulfilling industrial machine learning research can be during
my first internship at Microsoft Research. I am also indebted to Peter Gehler who not only
fueled my enthusiasm for machine learning in his lectures at TU Darmstadt but also introduced
me to hands-on research as an undergraduate student. Many thanks to Jan Peters for the warm
welcome to his research group as Master’s student at TU Darmstadt, his invaluable career
advice and his truly inspiring research enthusiasm. Without all this, I would have never ended
up on a path to a PhD at CMU.

Many thanks to all current and former members of the AI for Human Impact Lab for the
countless research discussions and fun interactions at CMU and Stanford. It was a pleasure to
share the joys and hardships of being a PhD student. Many thanks especially to Phil Thomas
for introducing me to the RL family during my first NeurIPS conference, for the fun times
in front of the white board at CMU and for sharing his logic puzzles which kept my brain
occupied for many hours.

I feel grateful for the five years I have spent in the Machine Learning Department (MLD)
at CMU, a truly unique research community. Many thanks to all members, especially to
Diane Stidle who deserves large credit for making MLD such a supportive and welcoming
environment for PhD students; to Abulhair Saparov, Adarsh Prasad, Alnur Ali, Anthony
Platanios, Arun Sai Suggala, Avinava Dubey, Chun-Liang Li, Chenghui Zhou, Dan Schwartz,
Ezra Winston, Jacob Tyo, Mariya Toneva, Maruan Al-Shedivat, Mrinmaya Sachan, Otilia
Stretcu, Peter Stojanov, Robin Schmucker, William Herlands, Willie Neisswanger, Xun Zheng

iv

and to everyone else that I was fortunate enough to cross path with at CMU.
My endless gratitude goes towards my family; to my parents for their endless support

throughout my entire life. I would not be who I am today without their hard work and countless
sacrifices. They always encouraged my passion for sciences and mathematics but also made
sure to pass on their priceless practical skill set; to my big brother for being a role model in so
many ways and for teaching me how to ride a bicycle early on. Finally, I thank my best friend
and partner Mariya, who I met during my first days as a PhD student and who has become a
constant source of happiness and love in my life — to many more bikes, bakes and bacillus
bulgaricus together.

v

Contents

Contents vi

List of Figures x

List of Tables xii

List of Algorithms xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Near-Optimal Sample-Efficiency and Accountability in Episodic RL 3
1.3 Thesis Statement . 5
1.4 Organization . 5
1.5 Summary of Contributions . 6
1.6 Excluded Work . 7

2 Background on Episodic Reinforcement Learning and Notation 9
2.1 Episodic Finite-Horizon Markov Decision Processes . 9
2.2 Problem Setting: Reinforcement learning in episodic fixed-horizon MDPs 11
2.3 Existing Theoretical Learning Guarantees . 11

2.3.1 Probably-Approximately Correct (PAC) Learning 12
2.3.2 No-Regret Learning . 13
2.3.3 Our Focus: Worst-Case Problem-Independent Bounds 14

2.4 Helpful Notation . 14

3 Horizon-Optimal PAC Bounds for Episodic Reinforcement Learning 15
3.1 Introduction and Motivation . 15
3.2 Problem Setting and Notation . 16
3.3 Upper PAC-Bound . 17

3.3.1 PAC Analysis . 18
3.4 Lower PAC Bound . 22
3.5 Related Work on Fixed-Horizon Sample Complexity Bounds 23
3.6 Summary . 24
3.7 Fixed-Horizon Extended Value Iteration . 24
3.8 Runtime- and Space-Complexity of UCFH . 26
3.9 Detailed Proofs for the Upper PAC Bound . 26

3.9.1 Bound on the Number of Policy Changes of UCFH 26

vi

3.9.2 Proof of Lemma 7 – Capturing the true MDP . 26
3.9.3 Bounding the number of episodes with κ > |Xk,κ,ι| for some κ, ι 27
3.9.4 Bound on the value function difference for episodes with ∀κ, ι : |Xk,κ,ι| ≤ κ . . . 30
3.9.5 Proof of Theorem 6 . 40

3.10 Proof of the Lower PAC Bound . 41

4 Unifying PAC and Regret: Uniform-PAC Bounds for Episodic Reinforcement Learning 44
4.1 Introduction . 44
4.2 Uniform PAC and Existing Learning Frameworks . 45

4.2.1 Relationships between Performance Guarantees 47
4.3 The UBEV Algorithm . 49
4.4 Uniform PAC Analysis . 50

4.4.1 Enabling Uniform PAC With Law-of-Iterated-Logarithm Confidence Bounds . . . 51
4.4.2 Proof Sketch . 52
4.4.3 Discussion of UBEV Bound . 53

4.5 Summary . 54
4.6 Framework Relation Proofs . 54

4.6.1 Proof of Theorem 21 . 54
4.6.2 Proof of Theorem 22 . 55
4.6.3 Proof of Theorem 23 . 55

4.7 Experimental Details . 58
4.8 PAC Lower Bound . 58
4.9 Planning Problem of UBEV . 59
4.10 Details of PAC Analysis . 60

4.10.1 Proof of Theorem 24 . 61
4.10.2 Failure Events and Their Probabilities . 61
4.10.3 Nice Episodes . 63
4.10.4 Decomposition of Optimality Gap . 67
4.10.5 Useful Lemmas . 72

4.11 General Concentration Bounds . 73

5 Policy Certificates: Towards Accountable and Minimax-Optimal Reinforcement Learning 78
5.1 Introduction . 78
5.2 Setting and Notation . 80
5.3 The IPOC Framework . 81

5.3.1 Relation to Existing Frameworks . 82
5.4 Algorithms with Policy Certificates . 83

5.4.1 Tabular MDPs . 83
5.4.2 MDPs With Linear Side Information . 86

5.5 Simulation Experiment . 88
5.6 Related Work . 88
5.7 Summary . 89
5.8 Proofs of Relationship of IPOC Bounds to Other Bounds 89

5.8.1 Proof of Proposition 51 . 89
5.8.2 Proof of Proposition 52 . 90

5.9 Theoretical Analysis of Algorithm 4 for Tabular MDPs 93
5.9.1 Failure event and all probabilistic arguments . 93

vii

5.9.2 Admissibility of Certificates . 99
5.9.3 Bound on the size of a certificate . 106
5.9.4 Mistake IPOC bound proof . 107
5.9.5 Proof of IPOC bound of ORLC, Theorem 53 . 108
5.9.6 Tighter cumulative IPOC bound . 110
5.9.7 Technical Lemmas . 112

5.10 Theoretical analysis of Algorithm 5 for finite episodic MDPs with side information 117
5.10.1 Failure event and bounding the failure probability 117
5.10.2 Admissibility of guarantees . 119
5.10.3 Cumulative certificate bound . 120
5.10.4 Proof of Theorem 55 . 124
5.10.5 Technical Lemmas . 124

5.11 Mistake IPOC Bound for Algorithm 5? . 124
5.12 Additional Experimental Results . 125

5.12.1 More Details on Experimental Results in Contextual Problems 125
5.12.2 Empirical Comparison of Sample-Efficiency in Tabular Environments 126
5.12.3 Policy Certificates in Problems with no Context 127

6 Oracle-Efficient PAC Reinforcement Learning with Rich Observations 131
6.1 Introduction . 131
6.2 Related Work . 132
6.3 Setting and Background . 133

6.3.1 Function Classes and Optimization Oracles . 134
6.4 VALOR: An Oracle-Efficient Algorithm . 135

6.4.1 What is new compared to LSVEE? . 137
6.4.2 Computational and Sample Complexity of VALOR 138

6.5 Toward Oracle-Efficient PAC-RL with Stochastic Hidden State Dynamics 139
6.5.1 OLIVE is not Oracle-Efficient . 139
6.5.2 Alternative Algorithms. 140

6.6 Summary . 140
6.7 Additional Notation and Definitions . 141

6.7.1 Additional Oracles . 141
6.7.2 Assumptions on the Function Classes . 142

6.8 Analysis of VALOR . 142
6.8.1 Concentration Results . 142
6.8.2 Bound on Oracle Calls . 145
6.8.3 Depth First Search and Estimated Values . 146
6.8.4 Policy Performance . 147
6.8.5 Meta-Algorithm Analysis . 149
6.8.6 Proof of Sample Complexity: Theorem 83 . 150
6.8.7 Extension: VALOR with Constrained Policy Optimization 151

6.9 Alternative Algorithms . 153
6.9.1 Algorithm with Two-Sample State-Identity Test 154
6.9.2 Global Policy Algorithm . 161

6.10 Oracle-Inefficiency of OLIVE . 167
6.10.1 Proof for Polynomial Time of Oracles . 167
6.10.2 OLIVE is NP-hard in tabular MDPs . 168

viii

7 Conclusion 174
7.1 Future Research Possibilities . 174
7.2 Summary of Contributions . 175

Bibliography 178

ix

List of Figures

1.1 Main challenges in reinforcement learning define a landscape of different problems settings. 2

3.1 Class of a hard-to-learn finite horizon MDPs. The function ε′ is defined as ε′(a1) = ε/2,
ε′(a?i) = ε and otherwise ε′(a) = 0 where a?i is an unknown action per state i and ε is a
parameter. 22

4.1 Visual summary of relationship among the different learning frameworks: Expected regret
(ER) and PAC preclude each other while the other crossed arrows represent only a does-
not-implies relationship. Blue arrows represent imply relationships. For details see the
theorem statements. 47

4.2 Empirical comparison of optimism-based algorithms with frequentist regret or PAC bounds
on a randomly generated MDP with 3 actions, time horizon 10 and S = 5, 50, 200 states.
All algorithms are run with parameters that satisfy their bound requirements. A detailed
description of the experimental setup including a link to the source code can be found in
Section 4.7. 51

4.3 Relation of PAC-bound and Regret; The area of the shaded regions are a bound on the
regret after T episodes. 56

5.1 Certificates and (unobserved) optimality gaps of Algorithm 5 for 4M episodes on an MDP
with context distribution shift after 2M (episodes sub-sampled for better visualization) . . 88

5.2 Results of ORLC-SI for 8M episodes on a linear contextual bandit problem; certificates
are shown in blue and the true (unobserved) optimality gap in orange for increasing number
of episodes. 126

5.3 Experimental comparison of ORLC and existing approaches. The graph show the achieved
sum of rewards per episode averaged over 1000 episodes each to generate smoothed curves.
These results show representative single runs of each method on the same MDPs. Results
are consistent across different random MDPs and different runs of the methods. 127

5.4 Performance and certificates of ORLC on a multi-armed bandit problem with 100 arms,
generated randomly in the same way as tabular MDP instances above. Only every 10th
episode is plotted to improve visibility of individual spikes. 128

6.1 Graphical representation of the problem class considered by our algorithm, VALOR: The
main assumptions that enable sample-efficient learning are (1) that the small hidden state
sh is identifiable from the rich observation xh and (2) that the next state is a deterministic
function of the previous state and action. State and observation examples are from https:
//github.com/Microsoft/malmo-challenge. 133

x

https://github.com/Microsoft/malmo-challenge
https://github.com/Microsoft/malmo-challenge

6.2 Family of MDPs that are determined up to terminal rewards r1, . . . , rn ∈ [0, 1]. Finding
the optimal value of the most optimistic MDP in this family solves the encoded 3-SAT
instance. Solid arrows represent actions and dashed arrows represent random transitions. . 168

6.3 Family of MDPsM for a specific instance of a 3-SAT problem. 170

xi

List of Tables

5.1 Comparison of the state of the art problem-independent bounds for episodic RL in tabular
MDPs. This includes UCBVI-BF (Azar, Osband, and Munos, 2017), UCBQ (Jin et al.,
2018), UCFH (Dann and Brunskill, 2015), UBEV (Dann, Lattimore, and Brunskill, 2017),
EULER (Zanette and Brunskill, 2019) and our ORLC algorithm. A dash means that the
algorithm does not satisfy a non-trivial bound without modifications. T is the number of
episodes and ln(1/δ) factors are omitted for readability. For an empirical comparison of
the sample-complexity of these approaches, see Section 5.12.2. 85

6.1 Exact values of parameters of VALOR run with inputs ε, δ ∈ (0, 1) and M,K ∈ N. 143

xii

List of Algorithms

1 UCFH: Upper-Confidence Fixed-Horizon episodic reinforcement learning algorithm 19
2 FixedHorizonEVI(M) subroutine for UCFH . 25

3 UBEV (Upper Bounding the Expected Next State Value) Algorithm 50

4 ORLC (Optimistic Reinforcement Learning with Certificates) 84
5 ORLC-SI (Optimistic Reinforcement Learning with Certificates and Side Information) . . 87
6 ORLC with tighter confidence widths . 94
7 ORLC-SI algorithm with probability mass constraints . 129
8 ProbEstNorm(p̂, ψ, v) function to compute normalized estimated expectation of v 130

9 VALOR (Values stored Locally for RL) Algorithm . 136
10 VALOR Subroutine: Policy optimization with local values 136
11 VALOR Subroutine: DFS Learning of local values . 136
12 Constrained policy optimization with local values . 151
13 Algorithm with Two-Sample State-Identity Test . 154
14 Global Policy Algorithm . 162

xiii

Chapter 1

Introduction

1.1 Motivation

Reinforcement learning (RL) is a branch of machine learning that studies sequential decision making under
uncertainty and provides a general framework for many practical problems in artificial intelligence. In the
basic RL setup, an agent interacts with an uncertain environment in order to perform a task by taking a
sequence of actions. Reinforcement learning provides algorithmic tools to optimize the agent’s strategy to
perform the given task. There have been impressive recent empirical successes propelled by deep learning
which demonstrate that reinforcement learning can solve challenging tasks. These include playing a range
of Atari video games (Mnih et al., 2015), achieving human-level performance in Go (Silver et al., 2017) or
beating professional players in Starcraft II (Vinyals et al., 2019). But the potential applications of RL go
beyond games. It is a natural framework for optimizing recommender systems, e.g., for news (Li, Chu, et al.,
2010) or videos (Chen et al., 2019), but also for optimizing adaptive treatments in health-care (Lei et al.,
2012), dialog systems (Singh et al., 2002) or instruction schedules in intelligent tutoring systems (Atkinson,
1972; Mandel et al., 2014).

When designing reinforcement learning algorithms, we typically face three main challenges: general-
ization, partial feedback, and long-term implications (see Figure 1.1):
Generalization: Generalization means that we want our agent to act well in situations it never encountered
before by generalizing from experience in similar situations. This is achieved by building on function
approximation techniques from supervised machine learning, where generalizing from samples in the
training data set to new samples in the text data set is a key challenge.
Partial feedback: Unlike in supervised learning where each training sample comes with the desired output,
the agent does not get to know which action it should have taken after each interaction. The only feedback
is a scalar reward which indicates how good the chosen action was, but no feedback on other actions. This
partial feedback necessitates to explore different actions in order to learn about them.
Long-term implications: The final challenge is that consequences of a single action are not entirely cap-
tured by the immediate reward feedback but there can be long-term implications. For examples, deciding to
undergo surgery causes risk and discomfort for the patient (low immediate reward) but will significantly
improve the long-term health (high reward at later times). For this reason, a good reinforcement learning
system must optimize for long-term total reward which is challenging as feedback can be severely delayed.
This is sometimes also referred to as credit assignment challenge in RL because the agent must figure out
which prior actions causes current feedback.

Many of the impressive empirical applications of reinforcement learning successfully address the
generalization and partial feedback challenges. This includes large-scale services such as the Decision

1

Generalization

Partial feedback Long-term consequences

Supervised learning

Multi-armed
bandits

RL with
generative
model

Tabular RL

Contextual
bandits

RL with rich
observations

Large-scale
 planning

Figure 1.1: Main challenges in reinforcement learning define a landscape of different problems settings.

Service (Agarwal, Bird, et al., 2016) which explicitly ignores long-term consequences by modeling the
decision problem as a so-called contextual bandit. Other successful empirical RL works, especially those
leveraging deep learning techniques like Mnih et al. (2015), do consider delayed consequences but become
very data-inefficient as the delay becomes longer. This is because they rely on heuristics to explore the
effect of actions. For example, Mnih et al. (2015) uses ε-greedy exploration where the agent flips a
biased coin before each action and with probability ε picks an action uniformly at random. This strategy
works very well empirically (Bietti, Agarwal, and Langford, 2018) in bandit problems without long-term
consequences but is also known require exponentially many interactions to learn long-term effects of
actions (see for example Section 4 of Osband, Van Roy, Russo, et al. (2017) for an illustration). As a result,
these approaches fail to learn good policies even with excessive amounts of data when long-term effects of
actions are essential, e.g., in the Atari game Montezuma’s revenge. There are several empirical efforts to
more efficient exploration (e.g. through reward bonuses, see below) but problems with long-term effects
remain a challenge.

If we want to unleash the full potential of reinforcement learning, we need algorithms that can deal in a
principled efficient manner with long-term effects (as well as partial feedback and generalization). Many
important applications have long-term consequences, including the following examples:
• Architecture Search (Zoph and Le, 2016): Searching for a good architecture of a neural network

machine learning model can be formulated as a reinforcement learning task. Here, the agent incre-
mentally defines an architecture (each action decides on an additional component) and only receives
a non-zero reward (the performance of the architecture on a certain task) when the architecture is
fully defined.

• Optimize User Engagement in Recommender Systems (Chen et al., 2019): Deciding what prod-
ucts to recommend to a user on a shopping platform or what songs/videos on a streaming platform is
a reinforcement learning problem with long-term effects. While recommending music that is very
similar to what the user usually listens is most engaging n the short-run, helping the user to develop
a taste for an entirely different genre can be more beneficial on the long-run.

• Sustainable Yield Optimization in Agriculture (Binas, Luginbuehl, and Bengio, 2019): When
modeling the control of plants in agriculture to maximize the long-term yield, long-term effects can

2

be crucial. For example, deciding to plant seedlings very densely can seem very promising for an
extended amount of time until the plants eventually become too large and do not grow to their full
potential due to limited space and nutrients.

• Treatment Optimization in Personalized Health Care (Liu et al., 2018): When optimizing the
long-term well-being of individuals long-term effects are abundant. Take starting to exercise or
undergoing coronary bypass surgery as an example. Both lead to short-term risk and discomfort but
eventually improve long-term well-being.

These applications are also examples where sample-efficiency is key for successful reinforcement learning
methods. That means the algorithm should learn to perform the task with as few interactions as possible.
Compared to the cost of simulating a game of Go, chess or even Star Craft II, the costs for obtaining
samples in these applications is significantly higher, ranging from excessive computational costs for training
and evaluating a neural network architecture, over physical resources required for farming, to harming
patients in health care applications. Especially in high-stakes applications that involve humans, our goal
should be algorithms that are as sample-efficient as possible in a provable or at least reliable manner.

However, sample-efficiency alone is not sufficient for successful RL methods in high-stakes applications.
Unlike in supervised learning, the performance of an RL algorithm is typically not monotonically increasing
with more data due to the trial-and-error nature of RL that necessitates exploration. Even sharp drops in
performance during learning are common, e.g., when the agent starts to explore a new part of the state
space. We argue that RL methods should be accountable, which means that they can predict when such
performance drops can happen. This allows domain experts to intervene or fallback systems to be triggered
if necessary. For example, in the treatment optimization application listed above, a human doctor could be
consulted if the RL algorithm is cannot ensure the performance of its treatment strategy for a particular
patient.

1.2 Near-Optimal Sample-Efficiency and Accountability in Episodic RL

The goal of this dissertation is to make reinforcement learning more sample-efficient and accountable so
that it becomes more suitable for real-world high-stakes applications such as the ones listed above. We
focus on episodic reinforcement learning problems where the interaction between environment and agent
happens in episodes of fixed number of decisions. This is a natural fit for many applications involving
humans, e.g., one episode corresponds to treating one patient, to a web session of a customer or to teaching
a certain topic to a student in automated tutoring systems.

Sample-efficient learning in tasks with long-term consequences as those above requires algorithms to
explore the effects of actions is a strategic way that takes the long-term effects after multiple time steps
into account. We refer to such exploration as strategic exploration (Dann, Jiang, et al., 2018; Dann, Li,
et al., 2019; Du et al., 2019; Sun et al., 2018) but it can be found under many names in the literature: deep
exploration (Osband, Blundell, et al., 2016), systematic exploration (Jiang, Krishnamurthy, et al., 2017;
Houthooft et al., 2016), temporally-extended exploration (Osband, Blundell, et al., 2016) or sample-efficient
exploration (Dann and Brunskill, 2015). There are two main principles to reliable strategic exploration:
optimism in the face of uncertainty (OFU) principle (Auer, Cesa-Bianchi, and Fischer, 2002) and Thompson
(posterior) sampling (Russo, Van Roy, et al., 2018). While there are other principles such as information
directed sampling (Russo and Van Roy, 2014), optimism in the face of uncertainty and Thompson sampling
have gained the most trust and acceptance in RL research through two main pillars:
• Theoretical guarantees about their sample-efficiency, mostly in simplified settings like multi-armed

bandits and tabular reinforcement learning where no generalization is necessary.
For OFU algorithms this includes Strehl and Littman (2005), Auer and Ortner (2005), Auer, Jaksch,

3

and Ortner (2009), Azar, Osband, and Munos (2017), and Jiang, Krishnamurthy, et al. (2017) and
for Thompson-sampling algorithms see Osband, Russo, and Van Roy (2013), Osband and Van Roy
(2017), and Russo (2019).

• Approximate implementations of these principles with empirical evaluations demonstrating that they
can learn good policies in more complicated problem settings where the agent has to learn from rich
observations such as images or text.
In the case of Thompson sampling this includes exploration via randomized value functions (Osband,
Blundell, et al., 2016; Osband, Van Roy, Russo, et al., 2017). The OFU principle is typically
implemented through reward bonuses (Tang et al., 2017; Bellemare et al., 2016; Ostrovski et al.,
2017; Burda et al., 2018)

The work in this dissertation provides a step towards more sample-efficient and accountable rein-
forcement learning by advancing the understanding of theoretical performance guarantees and strategic
exploration. We contribute to both pillars above, with a focus on the first. To gain insight, we first leave
generalization aside, and analyze in this dissertation tabular reinforcement learning in episodic Markov
decision processes (MDPs) where the agent does not need to generalize across observations and can simply
store all necessary information in look-up tables (hence the name tabular).

A key challenge in designing strategic exploration approaches is that the algorithm has to reason about
its uncertainty about the environment and how this translates into a policy (strategy for taking actions). This
policy should both achieve good performance (exploitation) and help to reduce the algorithm’s uncertainty
(exploration). While uncertainty in Thompson sampling algorithms is simply the Bayesian belief, it is
often non-trivial how to computationally represent and update this Bayesian belief. OFU algorithms have
the issue that one has to explicitly derive a representation of the uncertainty and the more accurate this
representation, the more sample-efficient the resulting algorithm is (Osband and Van Roy, 2017). The
first optimistic algorithms represented this uncertainty as a binary sets of known state-action pairs and
unknown state-action pairs (Brafman and Tennenholtz, 2002) while later approaches (Strehl and Littman,
2008; Auer and Ortner, 2005) used confidence sets around the environment parameters: the average
instantaneous reward as well as the transition probabilities to each successor state in all states and actions.
Such representations yield algorithms that do not scale well with the problem size, namely number of states
and horizon (number of decisions per episode). More precisely, for the episodic setting we consider, there
were only a few methods that achieve a sample-complexity (roughly speaking the number of episodes until
a good policy is found) that is polynomial in the problem size and their order are high.

This dissertation provides several insights on how to better represent uncertainty in OFU algorithms in
episodic tabular MDPs which yields more sample-efficient strategic exploration. First, we leverage empirical
Bernstein concentration bounds to more tightly quantify the uncertainty of the transition probabilities.
This yields a theoretical algorithm that scales optimally with horizon. Second, to improve scaling with
the number of states, we directly bound the uncertainty of average optimal next state value instead of the
transition probabilities. It turns out this is more accurate (tighter confidence set) and still sufficient for
determining the agent’s next policy. While Azar, Osband, and Munos (2017) developed an algorithm that
combines both of these insights, its sample-complexity does not quite scale optimally with the number of
states and horizon. We address this by incorporating a final insight: we not only quantify the uncertainty
over the optimal value function (expected rewards to go) but also the uncertainty of the algorithm’s currently
achieved value function. This results in an optimistic algorithm with sample-complexity that is minimax-
optimal (best achievable for the worst-case scenario) in the dominating terms. Interestingly, this final
insight was developed by aiming to improve accountability and not necessarily sample-efficiency.

While the benefit of empirical comparisons on benchmark problems are often clear, one should not
underestimate the importance of theoretical analyses that yield guarantees. There is growing awareness

4

that evaluations on a restricted set of benchmarks can sometimes leads to irreproducible results (Henderson
et al., 2017) and unlike empirical evaluations which are by nature limited to a finite (small) set of tasks,
theoretical learning guarantees can inform us about the performance of an algorithm on any task in the
considered problem class. As such they can be a helpful tool for comparing algorithms and can provide
insights that help us design improved algorithms. However, for these guarantees to be meaningful, we
need to ensure that they measure all aspects of the algorithm’s behavior that we care about. As we will
highlight in this dissertation, both PAC and regret bounds (Kearns and Singh, 2002; Auer, Jaksch, and
Ortner, 2009), the two most common types of sample-efficiency guarantees have blind-spots. That means
there are algorithms that enjoy good guarantees in these frameworks but still exhibit undesirable behavior
such as not converging to the optimal policy. We address these issues by introducing new, stronger types of
guarantees and use them for our new algorithms. This includes a learning framework that not only ensures
that the algorithm deploys better and better policies but that it also can certify online how good the current
policy is. This is the first step towards such online certificates with guaranteed accuracy in reinforcement
learning.

These insights into quantifying uncertainty in optimistic algorithms and theoretical guarantees have
demonstrated how to do reinforcement learning with near-optimal sample-efficiency and accountability in
tabular episodic tasks. However, our understanding of how to do provably sample-efficient reinforcement
learning is much more limited in problems where a succinct state representation is not given and the
algorithm has to work with rich observation such as images or texts. We show in this thesis that there are
significant computational challenges with strategic exploration in rich observation settings. On the negative
side, we show that OLIVE (Jiang, Krishnamurthy, et al., 2017), the only known algorithm with provably
polynomial sample-efficiency in a large class of rich observation problems, is computationally intractable
and we provide a first step to alleviate this issue by proposing an new algorithm that is both statistically and
computationally efficient in a more restricted class of rich observation problems.

1.3 Thesis Statement

The central thesis of this dissertation is that simple reinforcement learning algorithms with strategic
exploration through carefully designed reward bonuses are provably near-optimally sample-efficient and
accountable in finite episodic Markov decision processes. We demonstrate how to design such reward
bonuses by leveraging the decision process structure and introduce new types of performance guarantees
for sample-efficiency and accountability. These guarantees not only subsume existing learning frameworks
like PAC and regret but also guarantee that algorithms are accountable by accurately certifying their current
performance online. For environments beyond those with finite state spaces, we provide new insights into
the computational difficulty of strategic exploration.

1.4 Organization

Chapter 2 covers some background on Markov decision processes and episodic reinforcement learning and
introduces the common types of sample-complexity guarantees.

Chapter 3 introduces our analysis of sample-complexity of episodic MDPs with finite state and action
spaces (Dann and Brunskill, 2015). We prove a lower bound on the (worst-case) sample-complexity
achievable by any algorithm and provide an algorithm with a sample-complexity bound that matches the
lower bound up to a factor in the size of the state space and log-factors.

In Chapter 4 we discuss the existing performance guarantees, regret and PAC (probably approximately
correct) bounds and show that they are inherently incomparable and each allow undesirable algorithm

5

behavior. We further propose a new type of learning guarantee, Uniform-PAC bounds, which are stronger
than both regret and PAC bounds (Dann, Lattimore, and Brunskill, 2017). In fact, a Uniform-PAC bound
implies both a strong PAC and regret bound and prohibits undesirable algorithm behavior allowed by
either existing guarantee. To demonstrate these benefits, we provide a simple algorithm with a strong
Uniform-PAC bound that empirically outperforms other algorithms with known sample-complexity bounds.

While Uniform-PAC bounds address many issues of previous guarantees, it also does not provide
a guarantee on the performance of a policy in a single episode. We aim to address this short-coming
by proposing stronger IPOC (Individual policy certificates) guarantees in Chapter 5. In this learning
framework, the algorithm is required to output an upper bound on the suboptimality of the policy it is about
to execute before each episode. This not only allows the user to intervene in high-stakes applications but
also extract good policies at any time from the algorithm. We demonstrate this with an algorithm called
ORLC for episodic finite MDPs that leverages lower-confidence bounds to provide certificates in addition to
the upper confidence bounds that guide exploration. It turns out that this is a key insight that also improves
sample-efficiency and allows us to prove IPOC, regret and PAC bounds that are smaller that any prior work
and minimax-optimal up to lower-order terms.

In Chapter 6 we move from tabular problems to working on how to implement strategic exploration in
problems with rich observations. We present VALOR, an algorithm for reinforcement learning in episodic
reactive POMDPs with rich observations and deterministic hidden state dynamics (Dann, Jiang, et al.,
2018). Unlike predecessors this algorithm not only enjoys a polynomial sample-complexity bound but
is also provably computationally tractable in an oracle-model. Here, we assume that linear programs
for the chosen value function class and cost-sensitive classification problems for the policy class can be
solved efficiently. We hope that this work is a step toward provably sample- and computationally-efficient
reinforcement learning with function approximation and provides insights into extending this work to more
general problem settings.

1.5 Summary of Contributions

• Chapter 3: We quantify the difficulty of reinforcement learning in tabular episodic MDPs by proving
a lower bound for problem-independent PAC guarantees in this problem class. This bound is tight up
logarithmic terms.

• Chapter 3: We propose an optimism-based algorithm for tabular episodic MDPs and prove a PAC
bound with optimal dependency on the episode length (up to log-terms).

• Chapter 4: We quantify to what extend regret and PAC bounds can be converted to each other in
episodic problems.

• Chapter 4: As regret and PAC are not easily convertible and each allow undesirable algorithm
behavior, we introduce a new framework for learning guarantees called Uniform-PAC. We prove that
it is stronger than existing prevalent frameworks, including Mistake-PAC and regret.

• Chapter 4: We propose a simple optimism-based algorithm for tabular episodic MDPs and prove
that is has a Uniform-PAC bound.

• Chapter 5: We propose that algorithms output policy certificates during learning to make them
more accountable and introduce a new framework for providing learning guarantees that also ensure
accuracy of learning guarantees. This framework called IPOC is stronger than existing frameworks,
including Uniform-PAC and supervised-style PAC bounds.

• Chapter 5: We propose a simple optimistic algorithm that not only maintains upper confidence

6

bounds but also lower confidence bounds. We then prove that this technique allows it to achieve
minimax-optimal IPOC, PAC and regret bounds up to lower-order terms.

• Chapter 6: We prove that the only known statistically efficient algorithm for general problems with
rich observation spaces (problems with so-called low Bellman rank) is computationally intractable,
even when applied to tabular MDPs.

• Chapter 6: We propose a new algorithm called Valor for reinforcement learning for sub-class of
problems with rich observations (whose underlying unobserved states transition deterministically).
We show that this algorithm is not only statistically efficient but can also be implemented efficiently
with standard optimization oracles.

1.6 Excluded Work

This dissertation contains my main line of work on provably sample-efficient and accountable reinforcement
learning. I have contributed to other works during my PhD studies which are to varying extent beyond this
scope. These works are:
• Reinforcement learning with strategic exploration for risk-averse return objectives like conditional

value-at-risk. This work is the basis for future work on providing policy certificates for criteria
beyond expected return:
Ramtin Keramati, Alex Tamkin, Christoph Dann, and Emma Brunskill. “Being Optimistic to Be
Conservative: Quickly Learning a CVaR Policy”. In: in preparation (2019)

• Provably sample-efficient reinforcement learning in stopping problems:
Karan Goel, Christoph Dann, and Emma Brunskill. “Sample efficient policy search for optimal stop-
ping domains”. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence.
AAAI Press. 2017, pp. 1711–1717

• Analytical tool for determining how much history (information from observations before the current)
an observed behavior policy uses which can help to learn policies faster by restricting the policy
class to this amount of history:
Christoph Dann, Katja Hofmann, and Sebastian Nowozin. “Memory Lens: How Much Memory
Does an Agent Use?” In: arXiv preprint arXiv:1611.06928 (2016)

• New class of natural gradient algorithms that leverage more information than classic natural gradient
techniques which rely on the Fisher information matrix:
Philip Thomas, Bruno Castro Silva, Christoph Dann, and Emma Brunskill. “Energetic natural
gradient descent”. In: International Conference on Machine Learning. 2016, pp. 2887–2895

• Generalization of the natural gradient algorithm idea beyond algorithms that follow the gradient
direction, such as algorithm with momentum:
Philip Thomas, Christoph Dann, and Emma Brunskill. “Decoupling Gradient-Like Learning Rules
from Representations”. In: International Conference on Machine Learning. 2018, pp. 4924–4932

• Improving gernalization performance of Gaussian process regression by learning a kernel from
human predictions:
Andrew G Wilson, Christoph Dann, Chris Lucas, and Eric P Xing. “The human kernel”. In: Advances
in neural information processing systems. 2015, pp. 2854–2862

• Fast scalable inference and training for Guassian processes:
Andrew Gordon Wilson, Christoph Dann, and Hannes Nickisch. “Thoughts on massively scalable
Gaussian processes”. In: arXiv preprint arXiv:1511.01870 (2015)

7

• Algorithm for automated matching of detected defects in pipeline inspections (application work):
Markus R Dann and Christoph Dann. “Automated matching of pipeline corrosion features from
in-line inspection data”. In: Reliability Engineering & System Safety 162 (2017), pp. 40–50

8

Chapter 2

Background on Episodic Reinforcement
Learning and Notation

We first introduce the formal problem setting considered in Chapters 3 – 5 and then define additional
helpful notation. The setting in Chapter 6 is substantially more general asking for different notation, which
we introduce there when needed.

2.1 Episodic Finite-Horizon Markov Decision Processes

A Markov decision process or short MDP is a random process which formalizes sequential decision
making of an agent interacting with an environment (Puterman, 1994). This dissertation focuses on the
episodic finite horizon version of this process, called episodic fixed-horizon MDP defined by a tuple
M = (S,A,R, P, p0, H).
• The state space S is a set of states that the process can generate. We assume this set is finite of size
S and without loss of generality set S = {1, 2, . . . , S}.

• The action space A is a set of actions the agent is allowed to take after observing the state. Similar
to the state space, we assume this is a finite set of size A, that is, A = {1, 2, . . . , A}.

• The reward distributionR : S ×A → P[0,1] is a mapping from states and actions to distributions
with support [0, 1]. For their expected value, we use r(s, a) = Er∼R(s,a)[r].

• The transition distribution or next state distribution P : S ×A → PS maps state and action pairs
to distributions over states. We use P (s′|s, a) to mean the probability that s′ is the successor state of
s when action a was taken.

• The initial state distribution p0 ∈ PS is a distribution over states which the process is initialized to
at the beginning of each episode.

• The horizon H ∈ N is the number of time steps in each episode (”length” of the episode).
The process specified by the MDP describes an episodic interaction of an agent with an environment. We
typically use k to index episodes and at the beginning of each episode k, the initial state sk,1 ∼ p0 is drawn
from p0. For each time step within the episode (typically indexed by t or H), the agent observes state
sk,t ∈ S and takes an action ak,t ∈ A. It then receives a reward rk,t ∼ R(sk,t, ak,t) and observes the state
sk,t+1 ∼ P (sk,t, ak,t) of the next time step t+ 1. This interaction loop continues for a total of H time steps
before the next episode k + 1 begins. For notational convenience, we assume that the agent still observes
the H + 1th state in the episode sk,H+1 but then there is no following interaction. Formally, each episode

9

k is a sequence (sk,1, ak,1, rk,1, sk,2, ak,2, rk,2, . . . sk,H , ak,H , rk,H , sk,H+1).

Expected total reward and return. The objective for the agent is to play actions that maximize the
total expected reward in the episode E

[∑H
t=1 rk,t|ak,t ∼ π

]
which depends on how actions are taken. The

policy of the algorithm formalizes the strategy with which the agent picks the actions given all observations
so far. It is well known that there is always a deterministic Markov policy that maximizes the total expected
reward (Puterman, 1994). These policies simply pick the action as a function of the current state and
time step Π : S × [H]→ A where [H] = {1, 2, . . . H}. It is useful to interpret reinforcement learning
algorithms as learners of these deterministic policies. Formally, we can write the total expected reward as a
function of the algorithm’s (current) policy π ∈ Π

ρ(π) = E

[
H∑
t=1

rk,t|ak,t = π(sk,t, t)

]
,

where k is arbitrary as the total expected reward is identical across episodes as long as the algorithm follows
the same policy. Below, we omit the episode index k and only use the time step when the episode index is
arbitrary for readability. The quantity

∑H
t=1 rk,t is also known as return and ρ(π) as the expected return of

policy π.

Value functions and optimal policies. The value function V π
h and Q-function Qπh of a policy at time

step h ∈ [H] are defined as

V π
h (s) = E

[
H∑
t=h

rt

∣∣∣∣∣ sh = s, ah:H ∼ π

]

Qπh(s, a) = E

[
H∑
t=h

rt

∣∣∣∣∣ sh = s, ah = a, ah+1:H ∼ π

]

where we use the notation ah:H ∼ π to mean that all actions ah, ah+1, . . . aH to be taken according to π,
that is at = π(st, t) for t ∈ {h, h+ 1, . . . H}. These functions tell us how much total reward a policy is
expected to achieve until the end of the episode from a certain state or state-action pair. Value functions
satisfy the following relations

V π
h (s) = Qπh(s, π(s, h))

Qπh(s, a) = E
[
rh + V π

h+1(sh+1) | sh = s, ah = a
]

= r(s, a) + Es′∼P (s,a)

[
V π
h+1(s′)

]
= r(s, a) + P (s, a)V π

h+1. (2.1)

It is understood here that V π
H+1(s) = 0 for all s ∈ S and we use a handy notation that interprets

P (s, a)f :=
∑

s′∈S P (s′|s, a)f(s′) as a linear functional that maps state functions f : S → R to reals R.
To write Equation (2.1) even more concisely, we often even omit the state and action inputs and write it in
the functional form as

Qπh = r + PV π
h+1.

The expected return ρ(π) of a policy is simply the value function of the initial states, that is ρ(π) =
Es∼p0 [V π

1 (s)].

10

We call a policy optimal if it achieves the maximum value for all time steps and states. That is π? is
optimal if and only if

V π?

h (s) = max
π

V π
h (s) ∀ h ∈ [H], s ∈ S.

There always exist an optimal policy that is deterministic and Markov (Puterman, 1994), but optimal
policies are not necessarily unique. Their values are unique, however, and we use the following short-hand
notations for these optimal value- and Q-functions

V ?
h = max

π
V π
h Q?h = max

π
Qπh.

The optimal value function also satisfy the following identity, known as Bellman equation,

Q?h(s, a) = r(s, a) + P (s, a)V ?
h+1

V ?
h (s) = max

a∈A
Q?h(s, a).

This relation allows us to see an alternative definition of optimal policies: The set of optimal policies is
exactly the set of greedy policies for Q?, i.e., those that pick an action from argmaxa∈AQ

?
h(s, a) in each

state s and time step h. The Bellman equation also gives us a means to compute the optimal Q and value
function for a given MDP by dynamic programming: Start by computing Q?H(s, a) for all s ∈ S, a ∈ A,
then V ?

H(s) for all s ∈ S and then move on to earlier time steps, Q?H−1, V
?
H−1, Q

?
H−2, V

?
H−2 . . . until Q?1

and V ?
1 . Computing the optimal values and policy for a given MDP where we have full access to the reward

distributions and transition probabilities is also known as planning which is in contrast to reinforcement
learning.

2.2 Problem Setting: Reinforcement learning in episodic fixed-horizon MDPs

The main problem setting in this dissertation is reinforcement learning in tabular episodic finite-horizon
MDPs. Here an agent interacts with an environment as prescribed by an episodic finite-horizon MDP (see
above). The agent is assumed to
• know the state space S , action space A and time horizon H
• does not know the transition distribution P , initial state distribution p0 and reward distributionR.

The agent can only learn about these distributions through interaction. The agent’s goal is to learn good
policies as quickly as possible through interaction. This informally stated objective is interpreted in
several ways in the existing literature. It is most natural to contrast these different view-points by comparing
the formal evaluation criteria or performance guarantees used for algorithms in those viewpoints, which we
will do in the next section.

2.3 Existing Theoretical Learning Guarantees

Before discussing the different formalizations and evaluations of reinforcement learning, it is useful to
introduce some helpful notation. The optimal (expected) return is the best achievable expected return
ρ? = maxπ∈Π ρ(π) and a reference point for any algorithm. We use πk to denote the policy played by
algorithm in the k-th episode. The optimality gap is then defined as the difference between best and
achieved expected return

∆k := ρ? − ρ(πk) = E

[
H∑
t=1

rk,t

∣∣∣∣ak,t = π?(sk,t, t)

]
− E

[
H∑
t=1

rk,t

∣∣∣∣ak,t = πk(sk,t, t)

]
.

11

It is important to note that this assumes that the algorithm follows a fixed policy for the entire episode and
that the optimality gap measures the expected difference in the sum of rewards given the algorithm’s policy.

2.3.1 Probably-Approximately Correct (PAC) Learning

Probably-approximately correct (PAC) learning was introduced by Valiant (1984) in the context of super-
vised learning. It is primarily concerned with the sample-complexity of a machine learning algorithm. In
the context of supervised learning, the sample-complexity tells us the following: Given a fixed desired
accuracy ε > 0 and a failure tolerance δ > 0, the sample-complexity is the number of training samples
required by the algorithm to guarantee that its predictor has test error at most ε with probability at least
1−δ. An algorithm is said to PAC-learn a concept class (like bounded linear functions of certain dimension)
if it has polynomial sample-complexity in 1/ε and 1/δ. Formally this also requires the algorithm to have
polynomial computational complexity but this condition is often ignored. There are two main adaptations
of sample-complexity and PAC learning to reinforcement learning:

Supervised-style PAC bounds The first is what we call supervised-style PAC bounds. Here, the learning
protocol is as follows: The learning algorithm gets as input a desired accuracy ε and failure probability
δ. It then interacts with the environment until it decides to stop and return a policy π. With probability at
least 1− δ, this policy has to be ε-optimal, i.e., ρ(π) ≥ ρ? − ε and the number of episodes (or total number
of time steps) the algorithm interacted with the environment is called sample-complexity. A PAC bound
is a polynomial upper-bound on the sample-complexity and in the case of episodic finite MDPs depends
on the number of states S, the number of actions A, the episode length H , the inverse accuracy 1/ε and
inverse failure probability 1/δ. A slightly alternative version of this protocol is where the algorithm does
not explicitly stop but continues to a play policies indefinitely that are guaranteed to be at least ε-optimal
with high probability. As long as the algorithm knows its sample-complexity, this is an equivalent notion.
We make this version for our problem setting concrete with the following definition:
Definition 1 (Supervised-style PAC bound). An algorithm satisfies a supervised-style PAC boundF (1/ε, 1/δ, . . .)
if for a given input ε, δ > 0, it satisfies the following condition for any episodic fixed-horizon MDP. With
probability at least 1 − δ, the algorithm plays only policies that are at least ε-optimal after at most F
episodes. That is, with probability at least 1− δ

max{k ∈ N : ∆k > ε} ≤ F (1/ε, 1/δ, . . .),

where F is a polynomial that can depend on properties of the problem instance.
Supervised-style PAC bounds are for example used by Kearns and Singh (2002), Brafman and Tennen-

holtz (2002), and Jiang, Krishnamurthy, et al. (2017) and in Chapter 6 for the VALOR algorithm.

Mistake-style PAC bounds The second type of PAC bounds are slightly weaker and more popular than
supervised-style PAC bounds and have a flavor of mistake bounds. As before, the algorithm gets as input
a desired accuracy ε and failure probability δ. It then interacts with the environment forever. Here, the
sample-complexity is the number of episodes the algorithm may not follow a policy that is at least ε-optimal
with probability at least 1− δ. As before, mistake-style PAC bounds are polynomial upper-bounds on this
notion of sample-complexity. This notion of PAC bound is weaker as it does not prescribe when “mistakes”
– an episode with optimality gap ∆k > ε – happen while supervised-style PAC bounds prescribe that
mistakes need to happen in the beginning.
Definition 2 (Mistake-style PAC bound). An algorithm satisfies a mistake-style PAC bound F (1/ε, 1/δ, . . .)
if for a given input ε, δ > 0, it satisfies the following condition for any episodic fixed-horizon MDP. With

12

probability at least 1− δ, the algorithm plays policies that are not at least ε-optimal in at most F episodes.
That is, with probability at least 1− δ

∞∑
k=1

1{∆k > ε} ≤ F (1/ε, 1/δ, . . .),

where F is a polynomial that can depend on properties of the problem instance.
Examples of mistake-style PAC bounds in reinforcement learning include Strehl, Li, Wiewiora, et al.

(2006), Strehl, Li, and Littman (2009), Szita and Szepesvári (2010), and Lattimore and Hutter (2012) as
well as our first sample-complexity result for episodic fixed-horizon MDPs in Chapter 3.

2.3.2 No-Regret Learning

Using regret as an evaluation criterion for algorithms originates in online learning (Mohri, Rostamizadeh,
and Talwalkar, 2018). For episodic reinforcement learning, the most commonly used definition of regret is
the cumulative sum of optimality gaps. That is, the regret of an algorithm after T episodes is

R(T) =

T∑
k=1

∆k = Tρ? −
T∑
k=1

ρ(πk).

If R(T) is sub-linear in T , i.e., the average suboptimality goes to zero, R(T)/T → 0, one calls the
algorithm a no-regret learner. One can distinguish two learning protocols. In the first, the algorithm receives
the T as an input and interacts with the environment of exactly T episodes. In the second, T is not provided
and the algorithm continues to interact with the environment indefinitely. It is important to realize that the
regret R(T) is a random quantity because, even though it considers expected sum of rewards per episode
given the policy, the sequence of policies π1, . . . , πT is random. This gives rise to different notions of
regret bounds:
Definition 3 (Expected regret bound). An algorithm satisfies an expected bound F (T, . . .) if it satisfies for
any episodic fixed-horizon MDP the following condition. The expected regret is bounded for all T ∈ N as

E [R(T)] ≤ F (T, . . .) ∀ T ∈ N

where F can depend on properties of the problem instance.
Definition 4 (High-probability regret bound). An algorithm satisfies a high-probability regret bound
F (T, 1/δ, . . .) if for a given input T ∈ N it satisfies for any episodic fixed-horizon MDP the following
condition. With probability at least 1− δ, the regret after T episodes is bounded as

R(T) ≤ F (T, 1/δ, . . .)

where F can depend on properties of the problem instance.
Definition 5 (Uniform high-probability regret bound). An algorithm satisfies a uniform high-probability
regret bound F (T, 1/δ, . . .) if it satisfies for any episodic fixed-horizon MDP the following condition. With
probability at least 1− δ, the regret after T episodes for all episodes T is bounded as

R(T) ≤ F (T, 1/δ, . . .) ∀ T ∈ N

where F can depend on properties of the problem instance.

13

It is obvious that a uniform-high probability regret bound is a stronger statement than a high-probability
regret bound. For an extended discussion of these different bounds, see Chapter 4. We can find each type of
regret bound used in he literature in a variety of settings: (uniform) high-probability regret: (Azar, Osband,
and Munos, 2017; Zanette and Brunskill, 2019; Jaksch, Ortner, and Auer, 2010; Agarwal, Hsu, et al., 2014;
Srinivas et al., 2010); expected regret: (Russo, 2019; Audibert, Munos, and Szepesvári, 2009; Auer, 2000;
Bubeck and Cesa-Bianchi, 2012; Auer and Ortner, 2005)).

2.3.3 Our Focus: Worst-Case Problem-Independent Bounds

Worst-case vs. Bayesian guarantees. All types of learning guarantees are formulated as worst-case bounds
which hold for any problem instance in the class (and finite episodic fixed-horizon MDP). Especially for
Bayesian algorithms like those using Thompson sampling it can be more natural to provide Bayesian
guarantees (Osband, Russo, and Van Roy, 2013; Osband and Van Roy, 2017). These typically come in
the form of expected regret bounds that hold only in expectation over the problem instance sampled from
the assumed prior belief. As Bayesian guarantees are weaker, we focus in this dissertation on the stronger
worst-case guarantees.

Problem-independent vs. problem-dependent bounds. One distinguishes between two types of
bounds. Those that depend only on properties of the considered problem class that are known to the agent
(like number of states S and actions A and the horizon H) are called problem-independent bounds. Bounds
that also depend on properties of the specific problem instance (like variance of the optimal value function
Zanette and Brunskill (2019)) are called problem-dependent. The work in this dissertation is primarily
concerned with problem-independent guarantees.

2.4 Helpful Notation

The notation Õ is similar to the usual O-notation but ignores log-terms. More precisely f = Õ(g) if there
are constants c1, c2 such that f ≤ c1g(ln g)c2 and analogously for Ω̃. The natural logarithm is ln and
log = log2 is the base-2 logarithm.

14

Chapter 3

Horizon-Optimal PAC Bounds for Episodic
Reinforcement Learning

This chapter is based on the work published as:
Christoph Dann and Emma Brunskill. “Sample complexity of episodic fixed-horizon reinforcement
learning”. In: Advances in Neural Information Processing Systems. 2015, pp. 2818–2826

3.1 Introduction and Motivation

Consider test preparation software that tutors students for a national advanced placement exam taken at the
end of a year, or maximizing business revenue by the end of each quarter. Each individual task instance
requires making a sequence of decisions for a fixed number of steps H (e.g., tutoring one student to take
an exam in spring 2015 or maximizing revenue for the end of the second quarter of 2014). Therefore,
they can be viewed as a finite-horizon sequential decision making under uncertainty problem, in contrast
to an infinite horizon setting in which the number of time steps is infinite. When the domain parameters
(e.g. Markov decision process parameters) are not known in advance, and there is the opportunity to
repeat the task many times (teaching a new student for each year’s exam, maximizing revenue for each
new quarter), this can be treated as episodic fixed-horizon reinforcement learning (RL). One important
question is to understand how much experience is required to act well in this setting. We formalize this as
the sample complexity of reinforcement learning (Strehl and Littman, 2005), which is the number of time
steps on which the algorithm may select an action whose value is not near-optimal. RL algorithms with
a sample complexity that is a polynomial function of the domain parameters are referred to as Probably
Approximately Correct (PAC) (see Section 2.3 and Kearns and Koller, 1999; Brafman and Tennenholtz,
2003; Kakade, 2003; Strehl and Littman, 2005). Though there has been significant work on PAC RL
algorithms for the infinite horizon setting, there has been relatively little work on the finite horizon scenario.

In this chapter we present the first lower bound, and a new upper bound on the sample complexity of
episodic finite horizon PAC reinforcement learning in discrete state-action spaces. Our bounds are tight up
to log-factors in the time horizon H , the accuracy ε, the number of actions A and up to an additive constant
in the failure probability δ. These bounds improve upon existing results by a factor of at least H . Our
results also apply when the reward model is a function of the within-episode time step in addition to the
state and action space. While we assume a stationary transition model, our results can be extended readily
to time-dependent state-transitions. Our proposed UCFH (Upper-confidence fixed-horizon RL) algorithm
that achieves our upper PAC guarantee can be applied directly to wide range of fixed-horizon episodic

15

MDPs with known rewards.1 It does not require additional structure such as assuming access to a generative
model (Azar, Munos, and Kappen, 2012) or that the state transitions are sparse or acyclic (Lattimore and
Hutter, 2012).

The limited prior research on upper bound PAC results for finite horizon MDPs has focused on different
settings, such as partitioning a longer trajectory into fixed length segments (Kakade, 2003; Strehl and
Littman, 2005), or considering a sliding time window (Kolter and Ng, 2009). The tightest dependence
on the horizon in terms of the number of episodes presented in these approaches is at least H3 whereas
our dependence is only H2. More importantly, such alternative settings require the optimal policy to be
stationary, whereas in general in finite horizon settings the optimal policy is nonstationary (e.g. is a function
of both the state and the within episode time-step).2 Fiechter (Fiechter, 1994; Fiechter, 1997) and Reveliotis
and Bountourelis (2007) do tackle a closely related setting, but find a dependence that is at least H4.

Our work builds on recent work (Lattimore and Hutter, 2012; Azar, Munos, and Kappen, 2012) on
PAC infinite horizon discounted RL that offers much tighter upper and lower sample complexity bounds
than was previously known. To use an infinite horizon algorithm in a finite horizon setting, a simple change
is to augment the state space by the time step (ranging over 1, . . . ,H), which enables the learned policy to
be non-stationary in the original state space (or equivalently, stationary in the newly augmented space).
Unfortunately, since these recent bounds are in general a quadratic function of the state space size, the
proposed state space expansion would introduce at least an additional H2 factor in the sample complexity
term, yielding at least a H4 dependence in the number of episodes for the sample complexity.

Somewhat surprisingly, we prove an upper bound on the sample complexity for the finite horizon case
that only scales quadratically with the horizon. A key part of our proof is that the variance of the value
function in the finite horizon setting satisfies a Bellman equation. We also leverage recent insights that
state–action pairs can be estimated to different precisions depending on the frequency to which they are
visited under a policy, extending these ideas to also handle when the policy followed is nonstationary. Our
lower bound analysis is quite different than some prior infinite-horizon results, and involves a construction
of parallel multi-armed bandits where it is required that the best arm in a certain portion of the bandits is
identified with high probability to achieve near-optimality.

3.2 Problem Setting and Notation

We consider episodic fixed-horizon MDPs as introduced in Chapter 2. As a brief reminder, these MDPs
can be formalized as a tuple M = (S,A,R, P, p0, H). Both, the state space S and the action space A are
finite sets. The learning agent interacts with the MDP in episodes of H time steps. At time t = 1 . . . H ,
the agent observes a state st and chooses an action at based on a policy π that potentially depends on the
within-episode time step, i.e., at = π(st, t) for t = 1, . . . ,H . The next state is sampled from the stationary
transition kernel st+1 ∼ P (·|st, at) and the initial state from s1 ∼ p0. In addition the agent receives a
reward drawn from a distributionR(st)

3 with mean r(st) determined by the reward function. The reward
function r is possibly time-dependent (i.e., we denote it by rt in this case) and takes values in [0, 1]. The
quality of a policy π is evaluated by the total expected reward of an episode ρM (π) = E

[∑H
t=1 rt(st)

]
.

1 Previous works (Auer and Ortner, 2005) have shown that the complexity of learning state transitions usually dominates
learning reward functions. We therefore follow existing sample complexity analyses (Lattimore and Hutter, 2012; Szita and
Szepesvári, 2010) and assume known rewards for simplicity. The algorithm and PAC bound can be extended readily to the case of
unknown reward functions.

2The best action will generally depend on the state and the number of remaining time steps. In the tutoring example, even if
the student has the same state of knowledge, the optimal tutor decision may be to space practice if there is many days till the test
and provide intensive short-term practice if the test is tomorrow.

3It is straightforward to have the reward depend on the state, or state/action or state/action/next state.

16

When the MDP M is unambiguous, we omit the subscript. For simplicity,1 we assume that the reward
function r is known to the agent but the transition kernel P is unknown. The question we study is how
many episodes does a learning agent follow a policy π that is not ε-optimal, i.e., we look for a mistake-style
PAC bound (see Definition 2).

Notation. In the following sections, we reason about the true MDP M , an empirical MDP M̂ and an
optimistic MDP M̃ which are identical except for their transition probabilities P , P̂ and P̃t. We will
provide more details about these MDPs later. We introduce the notation explicitly only for M but the
quantities carry over to M̃ and M̂ with additional tildes or hats by replacing P with P̃t or P̂ . We add a
time index t as a subscript to the optimistic transition probabilities as this MDP can have time-dependent
dynamics (see technical details below).

The (linear) operator P πi f(s) := E[f(si+1)|si = s] =
∑

s′∈S P (s′|s, π(s, i))f(s′) takes any function
f : S → R and returns the expected value of f with respect to the next time step.4 For convenience, we
define the multi-step version as P πi:jf := P πi P

π
i+1 . . . P

π
j f . The value function from time h on is defined

as V π
h (s) := E

[∑H
t=h rt(st)|si = s

]
=
∑H

t=h P
π
h:t−1rt =

(
P πh V

π
h+1

)
(s) + rh(s) and V ?

h is the optimal
value-function. When the policy is clear, we omit the superscript π.

We denote by S(s, a) ⊆ S the set of possible successor states of state s and action a. The maximum
number of them is denoted by C = maxs,a∈S×A |S(s, a)|. In general, without making further assumptions,
we have C = S, though in many practical domains (robotics, user modeling) each state can only transition
to a subset of the full set of states (e.g. a robot can’t teleport across the building, but can only take local
moves). The notation Õ is similar to the usual O-notation but ignores log-terms. More precisely f = Õ(g)
if there are constants c1, c2 such that f ≤ c1g(ln g)c2 and analogously for Ω̃. The natural logarithm is ln
and log = log2 is the base-2 logarithm.

3.3 Upper PAC-Bound

We now introduce a new model-based algorithm, UCFH, for RL in finite horizon episodic domains
(Algorithm 1). We will later prove UCFH is PAC with an upper bound on its sample complexity that is
smaller than prior approaches. Like many other PAC RL algorithms (Brafman and Tennenholtz, 2002;
Strehl, Li, Wiewiora, et al., 2006; Strehl, Li, and Littman, 2009; Auer, Jaksch, and Ortner, 2009), UCFH
uses an optimism under uncertainty approach to balance exploration and exploitation. The algorithm
generally works in phases comprised of optimistic planning, policy execution and model updating that
take several episodes each. Phases are indexed by k. As the agent acts in the environment and observes
(s, a, r, s′) tuples, UCFH maintains a confidence set over the possible transition parameters for each state-
action pair that are consistent with the observed transitions. Defining such a confidence set that holds with
high probability can be be achieved using concentration inequalities like the Hoeffding inequality. One
innovation in our work is to use a particular new set of conditions to define the confidence set that enables
us to obtain our tighter bounds. We will discuss the confidence sets further below. The collection of these
confidence sets together form a class of MDPsMk that are consistent with the observed data. We define
M̂k as the maximum likelihood estimate of the MDP given the previous observations.

GivenMk, UCFH computes a policy πk by performing optimistic planning. Specifically, we use a
finite horizon variant of extended value iteration (EVI) Auer and Ortner, 2005; Strehl and Littman, 2005.
EVI performs modified Bellman backups that are optimistic with respect to a given set of parameters. That
is, given a confidence set of possible transition model parameters, it selects in each time step the model

4The definition also works for time-dependent transition probabilities.

17

within that set that maximizes the expected sum of future rewards. Section 3.7 provides more details about
fixed horizon EVI.

UCFH then executes πk until there is a state-action pair (s, a) that has been visited often enough since
its last update (defined precisely in the until-condition in UCFH). After updating the model statistics for
this (s, a)-pair, a new policy πk+1 is obtained by optimistic planning again. We refer to each such iteration
of planning-execution-update as a phase with index k. If there is no ambiguity, we omit the phase indices k
to avoid cluttered notation.

UCFH is inspired by the infinite-horizon UCRL-γ algorithm by Lattimore and Hutter (2012) but has
several important differences. First, the policy can only be updated at the end of an episode, so there is no
need for explicit delay phases as in UCRL-γ. Second, the policies πk in UCFH are time-dependent. Finally,
UCFH can directly deal with non-sparse transition probabilities, whereas UCRL-γ only directly allows two
possible successor states for each (s, a)-pair (C = 2).

Confidence sets. The class of MDPsMk consists of fixed-horizon MDPsM ′ with the known true reward
function r and where the transition probability p′t(s

′|s, a) from any (s, a) ∈ S ×A to s′ ∈ S(s, a) at any
time t is in the confidence set induced by p̂(s′|s, a) of the empirical MDP M̂ . Solely for the purpose of
computationally more efficient optimistic planning, we allow time-dependent transitions (allows choosing
different transition models in different time steps to maximize reward), but this does not affect the theoretical
guarantees as the true stationary MDP is still inMk with high probability. Unlike the confidence intervals
used by Lattimore and Hutter (2012), we not only include conditions based on Hoeffding’s inequality5 and
Bernstein’s inequality (Eq. 3.2), but also require that the standard deviation

√
p(1− p) of the Bernoulli

random variable associated with this transition is close to the empirical one (Eq. 3.1). This additional
condition (Eq. 3.1) is key for making the algorithm directly applicable to generic MDPs (in which states
can transition to any number of next states, e.g. C > 2) while only having a linear dependency on C in the
PAC bound.

3.3.1 PAC Analysis

For simplicity we assume that each episode starts in a fixed start state s0. This assumption is not crucial
and can easily be removed by additional notational effort.
Theorem 6. For any 0 < ε, δ ≤ 1, the following holds. With probability at least 1− δ, UCFH produces a
sequence of policies πk, that yield at most

Õ

(
SAH2C

ε2
ln

1

δ

)
episodes with ρ? − ρ(πk) = V ?

1 (s0)− V πk
1 (s0) > ε. The maximum number of possible successor states is

denoted by 1 < C ≤ S.

Similarities to other analyses. The proof of Theorem 6 is quite long and involved, but builds on similar
techniques for sample-complexity bounds in reinforcement learning (see e.g. Brafman and Tennenholtz
(2002) and Strehl and Littman (2008)). The general proof strategy is closest to the one of UCRL-γ
(Lattimore and Hutter, 2012) and the obtained bounds are similar if we replace the time horizon H with the
equivalent in the discounted case 1/(1− γ). However, there are important differences that we highlight
now briefly.

5The first condition in the min in Equation (3.2) is actually not necessary for the theoretical results to hold. It can be removed
and all 6/δ1 can be replaced by 4/δ1.

18

Algorithm 1: UCFH: Upper-Confidence Fixed-Horizon episodic reinforcement learning algorithm
Input :desired accuracy ε ∈ (0, 1], failure tolerance δ ∈ (0, 1], fixed-horizon MDP M
Result: with probability at least 1− δ: ε-optimal policy

1 k := 1, wmin := ε
4HS , δ1 := δ

2UmaxC
, Umax := SA log2

SH
wmin

;

2 m := 512(log2 log2H)2CH2

ε2
log2

(
8H2S2

ε

)
ln

6SAC log2
2(4S2H2/ε)
δ ;

3 n(s, a) = v(s, a) = n(s, a, s′) := 0 ∀, s ∈ S, a ∈ A, s′ ∈ S(s, a);
4 while do

/* Optimistic planning */

5 P̂ (s′|s, a) := n(s, a, s′)/n(s, a), for all (s, a) with n(s, a) > 0 and s′ ∈ S(s, a);
6 Mk :=

{
M̃ ∈Mnonst. : ∀(s, a) ∈ S ×A, t = 1 . . . H, s′ ∈ S(s, a)

7 P̃ t(s
′|s, a) ∈ ConfidenceSet(P̂ (s′|s, a), n(s, a))

}
;

8 M̃k, πk := FixedHorizonEVI(Mk);
/* Execute policy */

9 repeat
10 SampleEpisode(πk) ; // from M using πk

11 until there is a (s, a) ∈ S ×A with v(s, a) ≥ max{mwmin, n(s, a)} and n(s, a) < SmH;
/* Update model statistics for one (s, a)-pair with condition above */

12 n(s, a) := n(s, a) + v(s, a);
13 n(s, a, s′) := n(s, a, s′) + v(s, a, s′) ∀s′ ∈ S(s, a);
14 v(s, a) := v(s, a, s′) := 0 ∀s′ ∈ S(s, a);
15 k := k + 1

16 Procedure SampleEpisode(π)
17 s0 ∼ p0;
18 for t = 0 to H − 1 do
19 at := π(st, t) and st+1 ∼ p(·|st, at);
20 v(st, at) := v(st, at) + 1 and v(st, at, st+1) := v(st, at, st+1) + 1;

21 Function ConfidenceSet(p, n)
22

P :=

{
p′ ∈ [0, 1] : if n > 1 :

∣∣∣√p′(1− p′)−√p(1− p)∣∣∣ ≤√2 ln(6/δ1)

n− 1
, (3.1)

|p− p′| ≤ min

(√
ln(6/δ1)

2n
,

√
2p(1− p)

n
ln(6/δ1) +

7

3(n− 1)
ln

6

δ1

)}
(3.2)

return P

19

• A central quantity in the analysis by Lattimore and Hutter (2012) is the local variance of the value
function. The exact definition for the fixed-horizon case will be given below. The key insight
for the almost tight bounds of Lattimore and Hutter (2012) and Azar, Munos, and Kappen (2012)
is to leverage the fact that these local variances satisfy a Bellman equation (Sobel, 1982) and so
the discounted sum of local variances can be bounded by O((1− γ)−2) instead of O((1− γ)−3).
We prove in Lemma 10 that local value function variances σ2

h also satisfy a Bellman equation for
fixed-horizon MDPs even if transition probabilities and rewards are time-dependent. This allows us
to bound the total sum of local variances by O(H2) and obtain similarly strong results in this setting.

• Lattimore and Hutter (2012) assumed there are only two possible successor states (i.e., C = 2) which
allows them to easily relate the local variances σ2

h to the difference of the expected value of successor
states in the true and optimistic MDP (P − P̃h)Ṽh+1. For C > 2, the relation is less clear, but we
address this by proving a bound with tight dependencies on C (Lemma 18).

• To avoid super-linear dependency on C in the final PAC bound, we add the additional condition
in Equation (3.1) to the confidence set. We show that this allows us to upper-bound the optimality
ρ? − ρ(πk) of policy πk with terms that either depend on σ2

h or decrease linearly in the number of
samples. This gives the desired linear dependency on C in the final bound. We therefore avoid
assuming C = 2 which makes UCFH directly applicable to generic MDPs with C > 2 without the
impractical transformation argument used by Lattimore and Hutter (2012).

We will now introduce the notion of knownness and importance of state-action pairs that is essential for
the analysis of UCFH and subsequently present several lemmas necessary for the proof of Theorem 6. We
only sketch proofs here but detailed proofs for all results are available in Section 3.9.

Fine-grained categorization of (s, a)-pairs. Many PAC RL sample complexity proofs (Brafman and
Tennenholtz, 2002; Kakade, 2003; Strehl, Li, Wiewiora, et al., 2006; Strehl and Littman, 2008) only have a
binary notion of “knownness”, distinguishing between known (transition probability estimated sufficiently
accurately) and unknown (s, a)-pairs. However, as recently shown by Lattimore and Hutter (2012) for the
infinite horizon setting, it is possible to obtain much tighter sample complexity results by using a more fine
grained categorization. In particular, a key idea is that in order to obtain accurate estimates of the value
function of a policy from a starting state, it is sufficient to have only a loose estimate of the parameters of
(s, a)-pairs that are unlikely to be visited under this policy.

Let the weight of a (s, a)-pair given policy πk be its expected frequency in an episode

wk(s, a) :=
H∑
t=1

P(st = s, πk(st, t) = a) =

H∑
t=1

P1:t−1I{s = ·, a = πk(s, t)}(s0).

The importance ιk of (s, a) is its relative weight compared to wmin := ε
4HS on a log-scale

ιk(s, a) := min

{
zi : zi ≥

wk(s, a)

wmin

}
where z1 = 0 and zi = 2i−2 ∀i = 2, 3,

Note that ιk(s, a) ∈ {0, 1, 2, 4, 8, 16 . . . } is an integer indicating the influence of the state-action pair on
the value function of πk. Similarly, we define the knownness

κk(s, a) := max

{
zi : zi ≤

nk(s, a)

mwk(s, a)

}
∈ {0, 1, 2, 4, . . . }

20

which indicates how often (s, a) has been observed relative to its importance. The constant m is defined in
Algorithm 1. We can now categorize (s, a)-pairs into subsets

Xk,κ,ι := {(s, a) ∈ Xk : κk(s, a) = κ, ιk(s, a) = ι} and X̄k = S ×A \Xk

where Xk = {(s, a) ∈ S × A : ιk(s, a) > 0} is the active set and X̄k the set of state-action pairs that
are very unlikely under the current policy. Intuitively, the model of UCFH is accurate if only few (s, a)
are in categories with low knownness – that is, important under the current policy but have not been
observed often so far. Recall that over time observations are generated under many policies (as the policy is
recomputed), so this condition does not always hold. We will therefore distinguish between phases k where
|Xk,κ,ι| ≤ κ for all κ and ι and phases where this condition is violated. The condition essentially allows
for only a few (s, a) in categories that are less known and more and more (s, a) in categories that are more
well known. In fact, we will show that the policy is ε-optimal with high probability in phases that satisfy
this condition.

We first show the validity of the confidence setsMk.
Lemma 7 (Capturing the true MDP whp.). M ∈Mk for all k with probability at least 1− δ/2.

Proof Sketch. By combining Hoeffding’s inequality, Bernstein’s inequality and the concentration result on
empirical standard deviations by Maurer and Pontil (2009) with the union bound, we get that p(s′|s, a) ∈ P
with probability at least 1− δ1 for a single phase k, fixed s, a ∈ S × A and fixed s′ ∈ S(s, a). We then
show that the number of model updates is bounded by Umax and apply the union bound.

The following lemma bounds the number of episodes in which ∀κ, ι : |Xk,κ,ι| ≤ κ is violated with
high probability.
Lemma 8. Let E be the number of episodes k for which there are κ and ι with |Xk,κ,ι| > κ, i.e. E =∑∞

k=1 I{∃(κ, ι) : |Xk,κ,ι| > κ} and assume that m ≥ 6H2

ε ln 2Emax
δ . Then P(E ≤ 6NEmax) ≥ 1− δ/2

where N = SAm and Emax = log2
H

wmin
log2 S.

Proof Sketch. We first bound the total number of times a fixed pair (s, a) can be observed while being
in a particular category Xk,κ,ι in all phases k for 1 ≤ κ < S. We then show that for a particular (κ, ι),
the number of episodes where |Xk,κ,ι| > κ is bounded with high probability, as the value of ι implies a
minimum probability of observing each (s, a) pair in Xk,κ,ι in an episode. Since the observations are not
independent we use martingale concentration results to show the statement for a fixed (κ, ι). The desired
result follows with the union bound over all relevant κ and ι.

The next lemma states that in episodes where the condition ∀κ, ι : |Xk,κ,ι| ≤ κ is satisfied and the true
MDP is in the confidence set, the expected optimistic policy value is close to the true value. This lemma is
the technically most involved part of the proof.
Lemma 9 (Bound mismatch in total reward). Assume M ∈ Mk. If |Xk,κ,ι| ≤ κ for all (κ, ι) and

0 < ε ≤ 1 and m ≥ 512CH
2

ε2
(log2 log2H)2 log2

2

(
8H2S2

ε

)
ln 6

δ1
. Then |Ṽ πk

1 (s0)− V πk
1 (s0)| ≤ ε.

Proof Sketch. Using basic algebraic transformations, we show that |p− p̃| ≤
√
p̃(1− p̃)O

(√
1
n ln 1

δ1

)
+

O
(

1
n ln 1

δ1

)
for each p̃, p ∈ P in the confidence set as defined in Eq. 3.2. Since we assume M ∈ Mk,

we know that P (s′|s, a) and P̃ (s′|s, a) satisfy this bound with n(s, a) for all s,a and s′. We use that to
bound the difference of the expected value function of the successor state in M and M̃ , proving that |(P −
P̃h)Ṽh+1(s)| ≤ O

(
CH

n(s,π(s,h)) ln 1
δ1

)
+O

(√
C

n(s,π(s,h)) ln 1
δ1

)
σ̃h(s), where the local variance of the value

21

0 2

1

...

n

+

−

r(+) = 1

r(−) = 0

p(i|0, a) = 1
n

p(+|i, a) = 1
2 + ε′i(a)

p(−|i, a) = 1
2 − ε

′
i(a)

Figure 3.1: Class of a hard-to-learn finite horizon MDPs. The function ε′ is defined as ε′(a1) = ε/2,
ε′(a?i) = ε and otherwise ε′(a) = 0 where a?i is an unknown action per state i and ε is a parameter.

function is defined as σ2
h(s, a) := E

[
(V π
h+1(sh+1)− P πh V π

h+1(s))2|sh = s, ah = a
]

and σ2
h(s) :=

σ2
h(s, π(s, h)). This bound then is applied to |Ṽ1(s0)− V1(s0)| ≤

∑H
t=1 P1:t|(P − P̃t)Ṽt+1(s)|. The basic

idea is to split the bound into a sum of two parts by partitioning of the (s, a) space by knownness, e.g.
that is (st, at) ∈ X̄κ,ι for all κ and ι and (st, at) ∈ X̄ . Using the fact that w(st, at) and n(st, at) are
tightly coupled for each (κ, ι), we can bound the expression eventually by ε. The final key ingredient in the
remainder of the proof is to bound

∑H
t=1 P1:t−1σt(s)

2 by O(H2) instead of the trivial bound O(H3). To
this end, we show the lemma below.

Lemma 10. The variance of the value function defined as Vπh(s) := E
[(∑H

t=h rt(st)− V π
h (sh)

)2
|sh = s

]
satisfies a Bellman equation Vπh = P πh V

π
h+1 + σ2

h which gives Vπh =
∑j

t=h P
π
h:t−1σ

2
t . Since 0 ≤ Vπ1 ≤

H2r2
max, it follows that 0 ≤

∑j
t=1 Ph:t−1σ

2
t (s) ≤ H2r2

max for all s ∈ S.

Proof Sketch. The proof works by induction and uses fact that the value function satisfies the Bellman
equation and the tower-property of conditional expectations.

Proof Sketch for Theorem 6. The proof of Theorem 6 consists of the following major parts:
1. The true MDP is in the set of MDPsMk for all phases k with probability at least 1− δ

2 (Lemma 7).

2. The FixedHorizonEVI algorithm computes a value function whose optimistic value is higher
than the optimal reward in the true MDP with probability at least 1− δ/2 (Lemma 12).

3. The number of episodes with |Xk,κ,ι| > κ for some κ and ι are bounded with probability at least

1− δ/2 by Õ(|S × A|m) if m = Ω̃
(
H2

ε ln S
δ

)
(Lemma 8).

4. If |Xk,κ,ι| ≤ κ for all κ, ι, i.e., relevant state-action pairs are sufficiently known and m =

Ω̃
(
CH2

ε2
ln 1

δ1

)
, then the optimistic value computed is ε-close to the true MDP value. Together

with part 2, we get that with high probability, the policy πk is ε-optimal in this case.

5. From parts 3 and 4, with probability 1− δ, there are at most Õ
(
SAH2C

ε2
ln 1

δ

)
episodes that are not

ε-optimal.

3.4 Lower PAC Bound

Theorem 11. There exist positive constants c1, c2, δ0, ε0 such that for every δ ∈ (0, δ0) and ε ∈ (0, ε0)
and for every algorithm A that satisfies a PAC guarantee for (ε, δ) and outputs a deterministic policy, there
is a fixed-horizon episodic MDP Mhard with

E[nA] ≥c1(H − 2)2(A− 1)(S − 3)

ε2
ln

(
c2

δ + c3

)
= Ω

(
|S × A|H2

ε2
ln

(
c2

δ + c3

))
(3.3)

22

where nA is the number of episodes until the algorithm’s policy is (ε, δ)-accurate. The constants can be set
to δ0 = e−4

80 ≈
1

5000 , ε0 = H−2
640e4

≈ H/35000, c2 = 4 and c3 = e−4/80.
The ranges of possible δ and ε are of similar order than in other state-of-the-art lower bounds for

multi-armed bandits (Mannor and Tsitsiklis, 2004) and discounted MDPs (Strehl and Littman, 2008;
Lattimore and Hutter, 2012). They are mostly determined by the bandit result by Mannor and Tsitsiklis
(2004) we build on. Increasing the parameter limits δ0 and ε0 for bandits would immediately result in larger
ranges in our lower bound, but this was not the focus of our analysis.

Proof Sketch. The basic idea is to show that the class of MDPs shown in Figure 3.1 require at least a
number of observed episodes of the order of Equation (3.3). From the start state 0, the agent ends up in
states 1 to n with equal probability, independent of the action. From each such state i, the agent transitions
to either a good state + with reward 1 or a bad state − with reward 0 and stays there for the rest of the
episode. Therefore, each state i = 1, . . . , n is essentially a multi-armed bandit with binary rewards of
either 0 or H − 2. For each bandit, the probability of ending up in + or − is equal except for the first action
a1 with P (st+1 = +|st = i, at = a1) = 1/2 + ε/2 and possibly an unknown optimal action a?i (different
for each state i) with P (st+1 = +|st = i, at = a?i) = 1/2 + ε.

In the episodic fixed-horizon setting we are considering, taking a suboptimal action in one of the bandits
does not necessarily yield a suboptimal episode. We have to consider the average over all bandits instead.
In an ε-optimal episode, the agent therefore needs to follow a policy that would solve at least a certain
portion of all n multi-armed bandits with probability at least 1− δ. We show that the best strategy for the
agent to achieve this is to try to solve all bandits with equal probability. The number of samples required to
do so then results in the lower bound in Equation (3.3).

Similar MDPs that essentially solve multiple of such multi-armed bandits have been used to prove
lower sample-complexity bounds for discounted MDPs (Strehl and Littman, 2008; Lattimore and Hutter,
2012). However, the analysis in the infinite horizon case as well as for the sliding-window fixed-horizon
optimality criterion considered by Kakade (2003) is significantly simpler. For these criteria, every time
step the agent follows a policy that is not ε-optimal counts as a ”mistake”. Therefore, every time the agent
does not pick the optimal arm in any of the multi-armed bandits counts as a mistake. This contrasts with
our fixed-horizon setting where we must instead consider taking an average over all bandits.

3.5 Related Work on Fixed-Horizon Sample Complexity Bounds

We are not aware of any lower sample complexity bounds beyond multi-armed bandit results that directly
apply to our setting. Our upper bound in Theorem 6 improves upon existing results by at least a factor of
H . We briefly review those existing results in the following.

Timestep bounds. Kakade (2003, Chapter 8) proves upper and lower PAC bounds for a similar setting
where the agent interacts indefinitely with the environment but the interactions are divided in segments of
equal length and the agent is evaluated by the expected sum of rewards until the end of each segment. The
bound states that there are not more than Õ

(
S2AH6

ε3
ln 1

δ

)
6 time steps in which the agents acts ε-suboptimal.

Strehl, Li, and Littman (2009) improves the state-dependency of these bounds for their delayed Q-learning
algorithm to Õ

(
SAH5

ε4
ln 1

δ

)
. However, in episodic MDP it is more natural to consider performance on the

entire episode since suboptimality near the end of the episode is no issue as long as the total reward on the
6For comparison we adapt existing bounds to our setting. While the original bound stated by Kakade (2003) only has H3, an

additional H3 comes in through ε−3 due to different normalization of rewards.

23

entire episode is sufficiently high. Kolter and Ng (2009) use an interesting sliding-window criterion, but
prove bounds for a Bayesian setting instead of PAC. Timestep-based bounds can be applied to the episodic
case by augmenting the original statespace with a time-index per episode to allow resets after H steps. This
adds H dependencies for each S in the original bound which results in a horizon-dependency of at least H6

of these existing bounds. Loosely translating the regret bounds of UCRL2 in Corollary 3 by Jaksch, Ortner,
and Auer (2010) yields a PAC-like bound on the number of episodes of at least Õ

(
S2AH3

ε2
ln 1

δ

)
even if

one ignores the reset after H time steps. Timestep-based lower PAC-bounds cannot be applied directly to
the episodic reward criterion.

Episode bounds. Similar to us, Fiechter (1994) uses the value of initial states as optimality-criterion, but
defines the value w.r.t. the γ-discounted infinite horizon. His results of order Õ

(
S2AH7

ε2
ln 1

δ

)
episodes of

length Õ(1/(1− γ)) ≈ Õ(H) are therefore not directly applicable to our setting. Auer and Ortner (2005)
investigate the same setting as we and propose a UCB-type algorithm that has no-regret, which translates
into a basic PAC-like bound of order Õ

(
S10AH7

ε3
ln 1

δ

)
episodes. We improve on this bound substantially

in terms of its dependency on H , S and ε. Reveliotis and Bountourelis (2007) also consider the episodic
undiscounted fixed-horizon setting and present an efficient algorithm in cases where the transition graph is
acyclic and the agent knows for each state a policy that visits this state with a known minimum probability
q. These assumptions are quite limiting and rarely hold in practice and their bound of order Õ

(
SAH4

ε2q
ln 1

δ

)
explicitly depends on 1/q.

3.6 Summary

We have shown upper and lower bounds on the sample complexity of episodic fixed-horizon RL that are
tight up to log-factors in the time horizon H , the accuracy ε, the number of actions A and up to an additive
constant in the failure probability δ. These bounds improve upon existing results by a factor of at least
H . However, their dependency on the number of states S which we will address in the next chapters.
Our proposed UCFH algorithm that achieves our PAC bound can be applied to directly to a wide range of
fixed-horizon episodic MDPs with known rewards and does not require additional structure such as sparse
or acyclic state transitions assumed in previous work.

3.7 Fixed-Horizon Extended Value Iteration

We want to find a policy πk and optimistic M̃k ∈ Mk which have the highest total reward ρM̃k
(πk) =

maxπ,M ′∈Mk
ρM ′(π). Note that πk is an optimal policy for Mk but not necessarily for M . To facilitate

planning, we relax this problem and instead compute a policy and optimistic MDP with ρM̃k
(πk) =

maxπ,M ′∈M′k ρM
′(π) with

M′k :=
{
M̃ ∈Mnonst. : ∀(s, a) ∈ S ×A, t = 1 . . . H, s′ ∈ S(s, a)

p̃t(s
′|s, a) ∈ conv(ConfidenceSet(p̂(s′|s, a), n(s, a)))

}
.

Our statistical analysis only requires the transition probabilities to be in the convex hull of the confidence
sets instead of the confidence sets. Since this is a relaxation, we haveMk ⊆ M′k. We can find such a
policy by dynamic programming similar to extended value iteration (Strehl and Littman, 2008; Auer and

24

Ortner, 2005). The optimal Q-function can be computed as Q̃H(s, a) = rH(s) and for i = H − 1, . . . , 2, 1
as

Q̃h(s, a) =rh(s) + max
P̃h∈Ps,a

 ∑
s′∈S(s,a)

P̃h(s, a) max
b∈A

Q̃h+1(s′, b)

 .

The feasible set is defined as

Ps,a := {p ∈ [0, 1]|S(s,a)| : ‖p‖1 = 1, ∀s′ ∈ S(s, a) :

p(s′) ∈ conv(ConfidenceSet(P̂ (s′|s, a), n(s, a)))}.

The optimal policy πk(s, t) at time t is then simply the maximizer of the inner max operator and the
transition probability P̃t(·|s, a) is the maximizer of the outer maximum. The inner max can be solved
efficiently by enumeration and the outer maximum similar to extended value iteration (Strehl and Littman,
2008). The basic idea is to put as much probability mass as possible to successor states with highest value.
See the following algorithm for the implementation details. Note that due to the nonlinear constraint in

Algorithm 2: FixedHorizonEVI(M) subroutine for UCFH

1 Q̃H(s, a) = rH(s) ∀s, a ∈ S ×A ; // O(SA)

2 for t = H − 1 to 1 do // O(HS logS +HSAC))

3 π(s, t+ 1) := argmaxa∈A Q̃t+1(s, a) ∀s ∈ S ; // O(SA)

4 sort states s(1), . . . s(S) such that
5 Q̃t+1(s(i), π(s(i), t+ 1)) ≥ Q̃t+1(s(i+1), π(s(i+1), t+ 1)) ; // O(S logS)

6 for s, a ∈ S ×A do // O(SAC)

7 P̃t(s
′|s, a) := minConfidenceSet(P̂ (s′|s, a), n(s, a)) ∀s′ ∈ S(s, a) ; // O(C)

8 ∆ := 1−
∑

s′∈S(s,a) P̃t(s
′|s, a) ; // O(C)

9 i := 1 ; // O(1)

10 while ∆ > 0 do // O(C)

11 s′ := s(i);
12 ∆′ := min{∆,maxConfidenceSet(P̂ (s′|s, a), n(s, a))− P̃t(s′|s, a)};
13 P̃t(s

′|s, a) := P̃t(s
′|s, a) + ∆′;

14 ∆ := ∆−∆′; i := i+ 1;

15 Q̃t(s, a) =
∑

s′∈S(s,a) P̃t(s
′|s, a)Q̃t+1(s′, π(s′, t+ 1)) ; // O(C)

16 π(s, 1) := argmaxa∈A Q̃1(s, a) ∀s ∈ S ; // O(SA)

17 return MDP with transition probabilities p̃t, optimal policy π

Equation (3.1), ConfidenceSet(P̂ (s′|s, a), n(s, a)) may be the union of two disjoint intervals instead
of one interval. Still, min- and max-operations on the confidence sets can be computed readily in constant
time. Therefore, the transition probabilities P̃t(·|s, a) for a single time step t and state-action pair s, a
can be computed in O(SAC) given sorted states. Sorting the states takes O(S logS) which results in
O(HS logS +HSAC) runtime complexity of FixedHorizonEVI (see comments in Function 2). The
Algorithm requires O(HSAC) additional space besides the storage requirements of the input MDPM as
the transition probabilities P̃t are returned by the algorithm. If those are not required and only the optimal
policy is of interest, the additional space can be reduced to O(SA).

25

Lemma 12 (Validity of optimistic planning). FixedHorizonEVI(Mk) returns

M̃k, πk = argmax
M∈M′k,π

ρM (π).

SinceMk ⊆M′k, it also holds that ρM̃k
(πk) ≥ maxM∈Mk,π ρM (π).

Proof Sketch. This result can be proved straight-forwardly by showing that πk is optimal in the last time
stepH with highest possible reward and then subsequently for all previous time steps inductively. It follows
directly from the definition of the algorithm in Function 2 that the returned MDP is inM′k.

3.8 Runtime- and Space-Complexity of UCFH

Sampling one episode and updating the respective v variables has O(H) runtime. Each update of the policy
involves updating the n variables andMk which takes runtime O(C) and a call of FixedHorizonEVI
with runtime cost O(HSAC+HS logS). From Lemma 13 below, we know that the policy can be updated
at most Umax times which a gives total runtime for policy updates of

O(UmaxHS(AC + logS)) =O

(
HS2A(AC + logS) log

S2H2

ε

)
=Õ

(
HS2A2C log

1

ε

)
.

The space complexity of UCFH is dominated by the requirement to store statistics for each possible
transition which gives O(SAC) complexity.

3.9 Detailed Proofs for the Upper PAC Bound

3.9.1 Bound on the Number of Policy Changes of UCFH

Lemma 13. The total number of updates is bounded by Umax = |S × A| log2
|S|H
wmin

.

Proof. First note that n(s, a) is never never decreasing and no updates happen once n(s, a) ≥ SmH for
all (s, a). In each update, the n(s, a) of exactly one (s, a) pair increases by max{mwmin, n(s, a)}. For a
single (s, a) pair, such updates can happen only log2(SmH)− log2(mwmin) times. Hence, there are at
most |S × A| log2

SmH
wminm

updates in total.

3.9.2 Proof of Lemma 7 – Capturing the true MDP

Proof. For a single (s, a) pair, s′ ∈ S(s, a) and k, we can treat the event that s′ is the successor state of
s when chosing action a as a Bernoulli random variable with probability p(s′|s, a). Using Hoeffding’s
inequality,7 we then realize that

|P (s′|s, a)− P̂ (s′|s, a)| ≤
√

ln(6/δ1)

2n

7While the considered random variables are strictly speaking not necessarily independent, they can be treated as such for the
concentration inequalities applied here. See Appendix A of Strehl and Littman (2008) for details. In the analyses in later Chapters
we directly use Martingale concentration results to avoid this additional argument.

26

and by Bernstein’s inequality

|P (s′|s, a)− P̂ (s′|s, a)| ≤
√

2P (s′|s, a)(1− P (s′|s, a)) ln(6/δ1)

n
+

1

3n
ln(6/δ1)

with probability at least 1− δ1/3 respectively. Using both inequalities of Theorem 10 by Maurer and Pontil
(2009)8, we have

|
√
P (s′|s, a)(1− P (s′|s, a))−

√
P̂ (s′|s, a)(1− P̂ (s′|s, a))| ≤

√
2 ln(6/δ1)

n− 1
(3.4)

for n > 1 with probability at least 1 − δ1/3. All three inequalities hold with probability 1 − δ1 by the
union bound. Applying Inequality (3.4) to Bernstein’s inequality, we obtain

|P (s′|s, a)− P̂ (s′|s, a)| ≤
√

2P (s′|s, a)(1− P (s′|s, a)) ln(6/δ1)

n
+

1

3n
ln(6/δ1)

≤

(√
P̂ (s′|s, a)(1− P̂ (s′|s, a)) +

√
2 ln(6/δ1)

n− 1

)√
2 ln(6/δ1)

n
+

1

3n
ln(6/δ1)

≤

√
2P̂ (s′|s, a)(1− P̂ (s′|s, a)) ln(6/δ1)

n
+

7

3(n− 1)
ln(6/δ1).

By Lemma 13, there are at most Umax updates and so there are at most Umax different k to consider. Since
in each update, only a single (s, a) pair with at most C successor states is updated, for all k and (s, a),
there are only UmaxC different P̂ (s′|s, a) to consider. Applying the union bound, we get that Mk /∈Mk

for any k with probability at most UmaxCδ1. By setting δ1 = δ
2CUmax

we get the desired result.

3.9.3 Bounding the number of episodes with κ > |Xk,κ,ι| for some κ, ι

Before presenting the proof of Lemma 8 which bounds the total number of episodes where there is a κ and
ι such that κ > |Xk,κ,ι|, we establish a bound for each individual κ and ι in the following two additional
lemmas.
Lemma 14 (Bound on observations of X·,κ,ι). The total number of observations of (s, a) ∈ Xk,κ,ι where
κ ∈ [1, S − 1] and ι > 0 over all phases k is at most 3|S × A|mwικ. The variable wι is the smallest
possible weight of a (s, a)-pair that has importance ι.

Proof. We denote the smallest possible weight for any (s, a) pair such that ι(s, a) = ι by wι :=
min{w(s, a) : ιk(s, a) = ι}. Note thatwι+1 = 2wι for ι > 0. Consider any phase k and fix (s, a) ∈ Xk,κ,ι

with ι > 0. Since we assumed ιk(s, a) = ι > 0, we have wι ≤ wk(s, a) < 2wι. From κk(s, a) = κ, it
follows that

nk(s, a)

2mwk(s, a)
≤ κ ≤ nk(s, a)

mwk(s, a)

which implies that

mwικ ≤ mwk(s, a)κ ≤ nk(s, a) ≤ 2mwk(s, a)κ ≤ 4mwικ. (3.5)

Hence, each state can only be observed 3mwι times while being in {(s, a) ∈ Xk,κ,ι : k ∈ N}.
8The empirical variance denoted by Vn(X) by Maurer and Pontil (2009) is P̂ (s′|s, a)(1− P̂ (s′|s, a)) in our case and EVn is

the true variance which amounts to P (s′|s, a)(1− P (s′|s, a)) for us.

27

Lemma 15. The number of episodes Eκ,ι in phases with |Xk,κ,ι| > κ is bounded for every α ≥ 3 with
high probability,

P(Eκ,ι > αN) ≤ exp

(
−βwι(κ+ 1)N

H

)
where N = |S × A|m and β = α(3/α−1)2

7/3−1/α .

Proof. Let νi :=
∑H

t=1 I{(st, at) ∈ Xk,κ,ι} be the number of observations of (s, a) in Xk,κ,ι in the ith
epsiode with Xk,κ,ι > κ. We have i ∈ {1, . . . Eκ,ι}) and k is the phase that episode i belongs to.

Since Xk,κ,ι ≥ κ+ 1 and all states in partition (κ, ι) have wk(s, a) ≥ wι , we get

E[νi|ν1, . . . νi−1] ≥ (κ+ 1)wι. (3.6)

Also Var[νi|ν1 . . . νi−1] ≤ E[νi|ν1, . . . νi−1]H as νi ∈ [0, H].
To reason about Eκ,ι, we define the continuation

ν+
i :=

{
νi if i ≤ Eκ,ι
wι(κ+ 1) otherwise

and the centered auxiliary sequence

ν̄i :=
ν+
i wι(κ+ 1)

E[ν+
i |ν

+
1 , . . . ν

+
i−1]

.

By construction

E[ν̄i|ν̄1, . . . ν̄i−1] = wι(κ+ 1)
E[ν+

i |ν̄1, . . . , ν̄i−1]

E[ν+
i |ν

+
1 , . . . ν

+
i−1]

= wι(κ+ 1).

By Lemma 14, we have that Eκ,ι > αN only if

αN∑
i=1

ν̄i ≤ 3Nwικ ≤ 3Nwι(κ+ 1).

Define now the martingale

Bi := E

αN∑
j=1

ν̄j |ν̄1, . . . ν̄i

 =

i∑
j=1

ν̄j +

αN∑
j=i+1

E[ν̄j |ν̄1 . . . ν̄i]

which gives B0 = αNwι(κ+ 1) and BαN =
∑αN

i=1 ν̄i. Further, since ν+
i ∈ [0, H] and Equation (3.6), we

have

|Bi+1 −Bi| = |ν̄i − E[ν̄i|ν̄1, . . . , ν̄i−1]| =

∣∣∣∣∣wι(κ+ 1)(ν+
i − E[ν+

i |ν̄1, . . . ν̄i−1])

E[ν+
i |ν

+
1 , . . . ν

+
i−1]

∣∣∣∣∣
≤
∣∣ν+
i − E[ν+

i |ν̄1, . . . ν̄i−1]
∣∣ ≤ H.

28

Using

σ2 :=
αN∑
i=1

Var[Bi −Bi−1|B1 −B0, . . . Bi−1 −Bi−2]

=

αN∑
i=1

Var[ν̄i|ν̄1, . . . ν̄i−1] ≤ αNHwι(κ+ 1) = HB0

we can apply Theorem 22 by Chung and Lu (2006) and obtain

P(Eκ,ι > αN) ≤ P

(
αN∑
i=1

ν̄i ≤ 3Nwι(κ+ 1)

)
= P(BαN −B0 ≤ 3B0/α−B0) = P(BαN −B0 ≤ − (1− 3/α)B0)

≤ exp

(
− (3/α− 1)2B2

0

2σ2 +H(1/3− 1/α)B0

)
for α ≥ 3. We can further simplify the bound to

P(Eκ,ι > αN) ≤ exp

(
− (3/α− 1)2B2

0

2HB0 +H(1/3− 1/α)B0

)
≤ exp

(
− (3/α− 1)2

2 + (−1/α+ 1/3)

B0

H

)
= exp

(
−α(3/α− 1)2

7/3− 1/α

Nwι(κ+ 1)

H

)
.

We are now ready to prove Lemma 8 by combining the bound in the previous lemma for all κ and ι.

Proof of Lemma 8. Since wk(s, a) ≤ H , we have that wk(s,a)
wmin

< H
wmin

and so ιk(s, a) ≤ H/wmin =

4H2S/ε. In addition, |Xk,κ,ι| ≤ S for all k, κ, ι and so |Xk,κ,ι| > κ can only be true for κ ≤ S. Hence,
only

Emax = log2

H

wmin
log2 S

possible values for (κ, ι) exists that can have |Xk,κ,ι| > κ. Using the union bound over all (κ, ι) and
Lemma 15, we get that

P(E ≤ αNEmax) ≥P(max
(κ,ι)

Eκ,ι ≤ αN) ≥ 1− Emax exp

(
−βwι(κ+ 1)N

H

)
≥1− Emax exp

(
−βwminN

H

)
= 1− Emax exp

(
−βwminm|S × A|

H

)
=1− Emax exp

(
−βεm|S × A|

4H2S

)
Bounding the right hand-side by 1− δ/2 and solving for m gives

1− Emax exp

(
−βεm|S × A|

4H2S

)
≥1− δ/2 ⇔ m ≥ 4H2S

|S × A|βε
ln

2Emax

δ

29

Hence, the condition

m ≥ 4H2

βε
ln

2Emax

δ

is sufficient for the desired result to hold. By plugging in α = 6 and β = α(3/α−1)2

7/3−1/α = 9
13 ≥

2
3 , we obtain

the statement to show.

3.9.4 Bound on the value function difference for episodes with ∀κ, ι : |Xk,κ,ι| ≤ κ

To prove Lemma 9, it is sufficient to consider a fixed phase k. To avoid notational clutter, we therefore
omit the phase indices k in this section.

For the proof, we reason about a sequence of MDPs Md which have the same transition probabilities
but different reward functions r(d). For d = 0, the reward function is the original reward function r of
M , i.e. r(0)

t = rt for all t = 1 . . . H . The following reward functions are then defined recursively as
r

(2d+2)
t = σ

(d),2
t , where σ(d),2

t is the local variance of the value function w.r.t. the rewards r(d). Note that
for every d and t = 1 . . . H and s ∈ S , we have r(d)

t (s) ∈ [0, Hd]. In complete analogy, we define M̃d and
M̂d.

We first prove a sequence of lemmas necessary for Lemma 9.
Lemma 16.

Vh − Ṽh =
H−1∑
t=h

Ph:t−1(Pt − P̃t)Ṽt+1

Proof.

Vh(s)− Ṽh(s) =r(s) + PhVh+1(s)− r(s)− P̃hṼh+1(s) + PhṼh+1(s)− PhṼh+1(s)

=Ph(Vh+1 − Ṽh+1) + (Ph − P̃h)Ṽh+1(s)

Since we have VH(s) = rH(s) = ṼH(s), we can recursively expand the first difference until i = j and get

Vh − Ṽh =

H−1∑
t=h

Ph:t−1(Pt − P̃t)Ṽt+1

Lemma 17. Assume p, p̂, p̃ ∈ [0, 1] satisfy p ∈ P and p̃ ∈ conv(P) where

P :=

{
p′ ∈ [0, 1] :|p̂− p′| ≤

√
ln(6/δ1)

2n
,

|p̂− p′| ≤
√

2p̂(1− p̂)
n

ln(6/δ1) +
7

3(n− 1)
ln(6/δ1),

if n > 1 :
∣∣∣√p′(1− p′)−√p̂(1− p̂)∣∣∣ ≤√2 ln(6/δ1)

n− 1

}
.

Then

|p− p̃| ≤
√

8p̃(1− p̃)
n

ln(6/δ1) +
26

3(n− 1)
ln(6/δ1).

30

Proof. We have P = P1 ∩ P2 with

P1 =

{
p′ ∈ [0, 1] :|p̂− p′| ≤

√
ln(6/δ1)

2n
,

|p̂− p′| ≤
√

2p̂(1− p̂)
n

ln(6/δ1) +
7

3(n− 1)
ln(6/δ1),

if n > 1 :

(
max

{
0,
√
p̂(1− p̂)−

√
2 ln(6/δ1)

n− 1

})2

≤ p′(1− p′)
}
.

and

P2 =

{
p′ ∈ R : if n > 1 :

√
p′(1− p′) ≤

√
p̂(1− p̂) +

√
2 ln(6/δ1)

n− 1

}
.

Note that the last condition of P1 is equivalent to
√
p̂(1− p̂) ≤

√
p′(1− p′) +

√
2 ln(6/δ1)
n−1 as p′ ∈ [0, 1].

As an intersection of a polytope and the superlevel set of a concave function p′(1− p′), the set P1 is convex.
Hence conv(P) = conv(P1 ∩ P2) ⊆ conv(P1) = P1. It therefore follows that p̃ ∈ P1. We now bound

|p− p̃| ≤|p− p̂|+ |p̂− p̃| ≤ 2

√
2p̂(1− p̂)

n
ln(6/δ1) + 2

7

3(n− 1)
ln(6/δ1)

=
√
p̂(1− p̂)

√
8

n
ln(6/δ1) +

14

3(n− 1)
ln(6/δ1)

≤

(√
p̃(1− p̃) +

√
2 ln(6/δ1)

n− 1

)√
8

n
ln(6/δ1) +

14

3(n− 1)
ln(6/δ1)

≤
√

8p̃(1− p̃)
n

ln(6/δ1) +
26

3(n− 1)
ln(6/δ1)

Lemma 18. Assume

|p(s′|s, a)− p̃i(s′|s, a)| ≤ c1(s, a) + c2(s, a)
√
p̃i(s′|s, a)(1− p̃i(s′|s, a))

for a = π(s, i) and all s′, s ∈ S. Then

|(Pi − P̃i)Ṽi+1(s)| ≤ c1(s, a)|S(s, a)|‖Ṽi+1‖∞ + c2(s, a)
√
|S(s, a)|σ̃i(s)

for any (s, a) ∈ S ×A where S(s, a) denotes the set of possible successor states of state s and action a.

Proof. Let s and a = π(s, i) be fixed and define for this fixed s the constant function V̄ (s′) = P̃iṼi+1(s)
[sic] as the expected value function of the successor states of s. Note that V̄ (s′) is a constant function and

31

so V̄ = P̃iV̄ = PiV̄ .

|(Pi − P̃i)Ṽi+1(s)| = |(Pi − P̃i)Ṽi+1(s) + V̄ (s)− V̄ (s)|
=|(Pi − P̃i)(Ṽi+1 − V̄)(s)|

≤
∑

s′∈S(s,a)

|p(s′|s, a)− p̃i(s′|s, a)||Ṽi+1(s′)− V̄ (s′)| (3.7)

≤
∑

s′∈S(s,a)

(
c1(s, a) + c2(s, a)

√
p̃i(s′|s, a)(1− p̃i(s′|s, a))

)
|Ṽi+1(s′)− V̄ (s′)|

≤|S(s, a)|c1(s, a)‖Ṽi+1‖∞ + c2(s, a)
∑

s′∈S(s,a)

√
p̃i(s′|s, a)(1− p̃i(s′|s, a))(Ṽi+1(s′)− V̄ (s′))2

≤|S(s, a)|c1(s, a)‖Ṽi+1‖∞ + c2(s, a)

√
|S(s, a)|

∑
s′∈S(s,a)

p̃i(s′|s, a)(1− p̃i(s′|s, a))(Ṽi+1(s′)− V̄ (s′))2

(3.8)

≤|S(s, a)|c1(s, a)‖Ṽi+1‖∞ + c2(s, a)

√
|S(s, a)|

∑
s′∈S(s,a)

p̃i(s′|s, a)(Ṽi+1(s′)− V̄ (s′))2

=|S(s, a)|c1(s, a)‖Ṽi+1‖∞ + c2(s, a)
√
|S(s, a)|σ̃i(s)

In Inequality (3.7), we wrote out the definition of Pi and P̃i and applied the triangle inequality. We
then applied the assumed bound and bounded |Ṽi+1(s′)− V̄ (s′)| by ‖Vi+1‖∞ as all value functions are
nonnegative. In Inequality (3.8), we applied the Cauchy-Schwarz inequality and subsequently used the fact
that each term is the sum is nonnegative and that (1− p̃i(s′|s, a)) ≤ 1. The final equality follows from the
definition of σ̃i.

Bounding the difference in value function

Lemma 19. Assume M ∈Mk. If |Xκ,ι| ≤ κ for all (κ, ι). Then

|V (d)
1 (s0)− Ṽ (d)

1 (s0)| =: ∆d ≤ Âd + B̂d + min{Ĉd, Ĉ ′d + Ĉ ′′
√

∆2d+2}

where

Âd =
ε

4
Hd, B̂d =

52Hd+1 |K × I|C
3m

ln
6

δ1
,

and

Ĉ ′d =

√
C |K × I| 8

m
H2d+2 ln

6

δ1
Ĉd = Ĉ ′d

√
H, Ĉ ′′ =

√
C |K × I| 8

m
ln

6

δ1
.

32

Proof.

∆d =|V (d)
1 (s0)− Ṽ (d)

1 (s0)| =

∣∣∣∣∣
H−1∑
t=1

P1:t−1(Pt − P̃t)Ṽ (d)
t+1(s0)

∣∣∣∣∣
≤
H−1∑
t=1

P1:t−1|(Pt − P̃t)Ṽ (d)
t+1|(s0)

=
H−1∑
t=1

P1:t−1

 ∑
s,a∈S×A

I{s = ·, a = π(s, t)}|(Pt − P̃t)Ṽ (d)
t+1|

 (s0)

=
∑

s,a∈S×A

H−1∑
t=1

P1:t−1

(
I{s = ·, a = π(s, t)}|(Pt − P̃t)Ṽ (d)

t+1|
)

(s0)

=
∑

s,a∈S×A

H−1∑
t=1

P1:t−1

(
I{s = ·, a = π(s, t)}|(Pt − P̃t)Ṽ (d)

t+1(s)|
)

(s0)

The first equality follows from Lemma 16, the second step from the fact that Vt+1 ≥ 0 and P1:t−1 being
non-expansive. In the third, we introduce an indicator function which does not change the value as we sum
over all (s, a) pairs. The fourth step relies on the linearity of the Pi:j operators. In the fifth step, we realize
that I{s = ·, a = π(s, t)}|(Pt − P̃t)Ṽ (d)

t+1(·) is a function that takes nonzero values only for input s. We
can therefore replace the argument of the second term with s without changing the value. The term then
becomes constant and by linearity of Pi:j , we can write

|V (d)
1 (s0)− Ṽ (d)

1 (s0)| = ∆d ≤
∑

s,a∈S×A

H−1∑
t=1

|(Pt − P̃t)Ṽ (d)
t+1(s)|(P1:t−1I{s = ·, a = π(s, t)})(s0)

≤
∑
s,a/∈X

H−1∑
t=1

‖Ṽ (d)
t+1‖∞(P1:t−1I{s = ·, a = π(s, t)})(s0)

+
∑
s,a∈X

H−1∑
t=1

|(Pt − P̃t)Ṽ (d)
t+1(s)|(P1:t−1I{s = ·, a = π(s, t)})(s0)

≤
∑
s,a/∈X

H−1∑
t=1

Hd+1(P1:t−1I{s = ·, a = π(s, t)})(s0)

+
∑
s,a∈X

H−1∑
t=1

|(Pt − P̃t)Ṽ (d)
t+1(s)|(P1:t−1I{s = ·, a = π(s, t)})(s0)

≤
∑
s,a/∈X

H−1∑
t=1

Hd+1(P1:t−1I{s = ·, a = π(s, t)})(s0)

+
∑
s,a∈X

H−1∑
t=1

∣∣∣|S(s, a)|c1(s, a)Hd+1 + c2(s, a)
√
|S(s, a)|σ̃(d)

t (s, a)
∣∣∣ (P1:t−1I{s = ·, a = π(s, t)})(s0)

33

≤
∑
s,a/∈X

H∑
t=1

Hd+1(P1:t−1I{s = ·, a = π(s, t)})(s0)

+
∑
s,a∈X

H∑
t=1

∣∣∣|S(s, a)|c1(s, a)Hd+1
∣∣∣ (P1:t−1I{s = ·, a = π(s, t)})(s0)

+
∑
s,a∈X

H−1∑
t=1

∣∣∣c2(s, a)
√
|S(s, a)|σ̃(d)

t (s, a)
∣∣∣ (P1:t−1I{s = ·, a = π(s, t)})(s0)

≤
∑
s,a/∈X

Hd+1w(s, a) +
∑
s,a∈X

|S(s, a)|c1(s, a)Hd+1w(s, a)

+
∑
s,a∈X

√
|S(s, a)|c2(s, a)

H−1∑
t=1

σ̃
(d)
t (s, a)(P1:t−1I{s = ·, a = π(s, t)})(s0)

≤
∑
s,a/∈X

Hd+1w(s, a) +
∑
s,a∈X

Cc1(s, a)Hd+1w(s, a)

+
∑
s,a∈X

√
Cc2(s, a)

H−1∑
t=1

σ̃
(d)
t (s, a)(P1:t−1I{s = ·, a = π(s, t)})(s0)

In the second inequality, we split the sum over all (s, a) pairs and used the fact that Pt and P̃t are non-
expansive, i.e., |(Pt−P̃t)Ṽ (d)

t+1(s)| ≤ ‖V (d)
t+1‖∞. The next step follows from ‖V (d)

t+1‖∞ ≤ ‖V
(d)

1 ‖∞ ≤ Hd+1.
We then apply Lemma 18 and subsequently use that all terms are nonnegative and the definition of w(s, a).
Eventually, we use that |S(s, a)| ≤ C for all s, a. Using the assumption that M ∈Mk and M̃ ∈M′k from
Lemma 12, we can apply Lemma 17 and get that

c2(s, a) =

√
8

n(s, a)
ln

6

δ1
and c1(s, a) =

26

3(n(s, a)− 1)
ln

6

δ1
.

Hence, we can bound
∆d ≤ A(s0) +B(s0) + C(s0)

as a sum of three terms which we will consider individually in the following. The first term is

A(s0) =
∑
s,a/∈X

Hd+1w(s, a) ≤ wminSH
d+1 ≤ εHd+1S

4HS
=
ε

4
Hd = Âd

as w(s, a) ≤ wmin for all s, a not in the active set and that the policy is deterministic, which implies that
there are only S nonzero w. The next term is

B(s0) =C
∑
s,a∈X

w(s, a)Hd+1 26

3(n(s, a)− 1)
ln

6

δ1

=Hd+1C ln
6

δ1

∑
κ,ι

∑
s,a∈Xκ,ι

w(s, a)
26

3(n(s, a)− 1)

≤Hd+1 26C

3
ln

6

δ1

∑
κ,ι

∑
s,a∈Xκ,ι

w(s, a)

n(s, a)

n(s, a)

n(s, a)− 1
.

34

For s, a ∈ Xκ,ι, we have n(s, a) ≥ mw(s, a)κ (see Equation (3.5)) and so

w(s, a)

n(s, a)
≤ 1

κm
. (3.9)

Further, for all relevant (s, a)-pairs, we have n(s, a) > 1 (follows from |Xκ,ι| ≤ κ) which implies

B(s0) ≤Hd+1 52C

3
ln

6

δ1

∑
κ,ι

|Xκ,ι|
κm

and since we assumed |Xκ,ι| ≤ κ

B(s0) ≤ 52Hd+1 |K × I|C
3m

ln
6

δ1
= B̂d

where K × I is the set of all possible (κ, ι)-pairs. The last term is

C(s0) =
√
C
∑
s,a∈X

c2(s, a)
H−1∑
t=1

σ̃
(d)
t (s, a))P1:t−1I{s = ·, a = π(s, t)}

≤
√
C
∑
s,a∈X

c2(s, a)

H−1∑
t=1

σ̃
(d)
t (s, a))P1:t−1I{s = ·, a = π(s, t)}

≤
√
C
∑
s,a∈X

c2(s, a)

√√√√H−1∑
t=1

P1:t−1I{s = ·, a = π(s, t)}

√√√√H−1∑
t=1

σ̃
(d),2
t (s, a))P1:t−1I{s = ·, a = π(s, t)}

≤
√
C
∑
s,a∈X

√√√√8w(s, a)

n(s, a)
ln

6

δ1

H−1∑
t=1

σ̃
(d),2
t (s, a))P1:t−1I{s = ·, a = π(s, t)}

where we first applied the Cauchy-Schwarz inequality and then used the definition of c2(s, a) and w(s, a).

C(s0) ≤
√
C
∑
κ,ι

∑
s,a∈Xκ,ι

√√√√8w(s, a)

n(s, a)
ln

6

δ1

H−1∑
t=1

σ̃
(d),2
t (s, a))P1:t−1I{s = ·, a = π(s, t)}(s0)

≤
√
C
∑
κ,ι

√√√√|Xκ,ι|
∑

s,a∈Xκ,ι

8w(s, a)

n(s, a)
ln

6

δ1

H−1∑
t=1

σ̃
(d),2
t (s, a))P1:t−1I{s = ·, a = π(s, t)}(s0)

≤
√
C
∑
κ,ι

√√√√ ∑
s,a∈Xκ,ι

8

m
ln

6

δ1

H−1∑
t=1

σ̃
(d),2
t (s, a))P1:t−1I{s = ·, a = π(s, t)}(s0)

≤

√√√√C |K × I| 8

m
ln

6

δ1

∑
s,a∈X

H−1∑
t=1

σ̃
(d),2
t (s, a))P1:t−1I{s = ·, a = π(s, t)}(s0)

≤

√√√√C |K × I| 8

m
ln

6

δ1

∑
s,a∈S×A

H−1∑
t=1

σ̃
(d),2
t (s, a))P1:t−1I{s = ·, a = π(s, t)}(s0)

35

=

√√√√C |K × I| 8

m
ln

6

δ1

H−1∑
t=1

P1:t−1σ̃
(d),2
t (s0) (3.10)

≤
√
C |K × I| 8H

2d+3 ln(6/δ1)

m
= Ĉd

We first split the sum and applied the Cauchy-Schwarz inequality. Then we used again Inequality (3.9)
and |Xκ,ι| ≤ κ. In the fourth step, we applied Cauchy-Schwarz and the final inequality follows from
‖σ̃(d),2

t ‖∞ ≤ H2d+2 and the fact that P1:t−1 is non-expansive. Alternatively, we can rewrite the bound in
Equation (3.10) as

C(s0) ≤

√√√√C |K × I| 8

m
ln

6

δ1

H−1∑
t=1

P1:t−1σ̃
(d),2
t (s0)

=

√√√√C |K × I| 8

m
ln

6

δ1

H−1∑
t=1

P1:t−1σ̃
(d),2
t (s0)− P̃1:t−1σ̃

(d),2
t (s0) + P̃1:t−1σ̃

(d),2
t (s0).

Lemma 10 shows that the variance Ṽ
(d)
1 also satisfies the Bellman equation with the local variances

σ̃
(d),2
i . This insight allows us to bound

∑H−1
t=1 P̃1:t−1σ̃

(d),2
t (s0) = Ṽ

(d)
1 (s0) ≤ H2d+2. Also, note that

σ̃
(d),2
t = r

(2d+2)
t which gives us

C(s0) ≤

√√√√C |K × I| 8

m
ln

6

δ1

(
H2d+2 +

H−1∑
t=1

P1:t−1r
(2d+2)
t (s0)− P̃1:t−1r

(2d+2)
t (s0)

)

=

√
C |K × I| 8

m
ln

6

δ1

(
H2d+2 + V

(2d+2)
1 (s0)− Ṽ (2d+2)

1 (s0)
)

≤
√
C |K × I| 8

m
ln

6

δ1
(H2d+2 + ∆2d+2)

≤
√
C |K × I| 8

m
H2d+2 ln

6

δ1
+

√
C |K × I| 8

m
∆2d+2 ln

6

δ1
= Ĉ ′d + Ĉ ′′

√
∆2d+2

Proof of Lemma 10 (Bellman equation of local value function variances)

Proof of Lemma 10.

Vi(s) =E

(H∑
t=i

rt(st)− Vi(si)

)2

|si = s


=E

(H∑
t=i+1

rt(st)− Vi+1(si+1) + Vi+1(si+1) + ri(si)− Vi(si)

)2

|si = s


=E

(H∑
t=i+1

r(st)− Vi+1(si+1)

)2

|si = s


36

+ 2E

[(
H∑

t=i+1

rt(st)− Vi+1(si+1)

)
(Vi+1(si+1) + ri(si)− V (si)) |si = s

]
+ E

[
(Vi+1(si+1) + ri(si)− Vi(si))2 |si = s

]
=E [Vi+1(si+1)|si = s]

+ 2E

[
E

[(
H∑

t=i+1

rt(st)− Vi+1(si+1)

)
(Vi+1(si+1) + ri(si)− Vi(si)) |si+1

]
|si = s

]
+ E

[
(Vi+1(si+1)− PiVi+1(si))

2 |si = s
]

where the final equality follows from the tower property of conditional expectations, and the fact that
Vi(si) = PiVi+1(si) + ri(si). Since by the definition of the value function

E

[(
H∑

t=i+1

rt(st)− Vi+1(si+1)

)
|si+1

]
= 0

the middle term vanishes and the last term is by definition σ2
i (s) we obtain

Vi(s) = PiVi+1(s) + σ2
i (s).

Noting that VH(s) = (rH(s)− rH(s))2 = 0, we can unroll the equation and obtain

Vi(s) =
H∑
t=i

Pi:t−1σ
2
t (s).

From the definition of V1 and the fact that 0 ≤ r(·) ≤ rmax, we see that 0 ≤ V1 ≤ H2r2
max and the final

statement of the lemma follows.

Proof of Lemma 9

Proof of Lemma 9. The recursive bound from Lemma 19

∆d ≤ Âd + B̂d + Ĉ ′d + Ĉ ′′
√

∆2d+2

has the form ∆d ≤ Yd + Z
√

∆2d+2. Expanding this form and using the triangle inequality gives

∆0 ≤Y0 + Z
√

∆2 ≤ Y0 + Z

√
Y2 + Z

√
∆6 ≤ Y0 + Z

√
Y2 + Z3/2∆

1/4
6

≤Y0 + Z
√
Y2 + Z3/2Y

1/4
6 + Z7/4∆

1/8
14 ≤ . . .

and by doing this up to level γ = d lnH
2 ln 2e, we obtain

∆0 ≤
∑

d∈D\{γ}

Z
2d
2+dY

2
2+d

d + Z
2γ
2+γ ∆

2
2+γ
γ

37

where D = {0, 2, 6, 14, . . . γ}. Note that the exponent of H compared to m is the larger in Ĉ ′d than in B̂d.
Therefore, for sufficiently large m, Ĉ ′d dominates the other term. More precisely, for

m ≥ 338H

9
C |K × I| ln 6

δ1
(3.11)

we have B̂d ≤ Ĉ ′d. We can therefore consider Z = Ĉ ′′ and Yd = 2Ĉ ′d + Âd. Also, since Ĉd ≥ Ĉ ′d, we can
bound ∆γ ≤ Âd + 2Ĉd. For notational simplicity, we will use the auxiliary variable

m1 =
8C|K × I|H2

mε2
ln

6

δ1
.

and get

Z = Ĉ ′′ =
√
m1

ε

H
and

Yd = Âd + 2Ĉ ′d = (1/4 + 2
√
m1)Hdε and

∆γ ≤ Âγ + 2Ĉγ = (1/4 + 2
√
m1H)Hγε.

Then (
Z2dY 2

d

)(2+d)−1

=
(
md

1ε
2d+2(1/4 + 2

√
m1)2

)(2+d)−1

= ε
(
md

1ε
d(1/4 + 2

√
m1)2

)(2+d)−1

and

(
Z2γ∆γ

)(2+γ)−1

=
(
mγ

1ε
2γ+2(1/4 + 2

√
m1H)2

)(2+γ)−1

= ε
(
mγ

1ε
γ(1/4 + 2

√
m1H)2

)(2+γ)−1

.

Putting these pieces together, we obtain

∆0

ε
≤

∑
d∈D\{γ}

(εm1)
d

2+d

(
1

4
+ 2
√
m1

) 2
d+2

+ (εm1)
γ
γ+2

(
1

4
+ 2
√
Hm1

) 2
γ+2

=
1

4
+ 2
√
m1 +

∑
d∈D\{0,γ}

(εm1)
d

2+d

(
1

4
+ 2
√
m1

) 2
d+2

+ (εm1)
γ
γ+2

(
1

4
+ 2
√
Hm1

) 2
γ+2

≤1

4
+ 2
√
m1 +

∑
d∈D\{0,γ}

(εm1)
d

2+d

[(
1

4

) 2
d+2

+ (2
√
m1)

2
d+2

]

+ (εm1)
γ
γ+2

[(
1

4

) 2
γ+2

+
(

2
√
Hm1

) 2
γ+2

]

where we used the fact that (a+ b)φ ≤ aφ + bφ for a, b > 0 and 0 < φ < 1. We now bound the H1/(2+γ)

by using the definition of γ. Since

1

2 + γ
=

2 ln 2

4 ln 2 + lnH
≤ 2 logH 2

38

and since H ≥ 1, we have H1/(2+γ) ≤ 4. Therefore

∆0

ε
≤1

4
+ 2
√
m1 +

∑
d∈D\{0,γ}

(εm1)
d

2+d

[(
1

4

) 2
d+2

+ (2
√
m1)

2
d+2

]

+ (εm1)
γ
γ+2

[(
1

4

) 2
γ+2

+ 4 (2
√
m1)

2
γ+2

]

≤1

4
+ 2
√
m1 +

∑
d∈D\{0}

(εm1)
d

2+d

[(
1

4

) 2
d+2

+ 4 (2
√
m1)

2
d+2

]

≤1

4
+ 2
√
m1 +

log2 γ∑
i=1

(εm1)1−2−i

[(
1

4

)2−i

+ 4 (2
√
m1)2−i

]

≤1

4
+ 2
√
m1 +

log2 γ∑
i=1

m1−2−i

1

[(
1

4

)2−i

+ 4 (2
√
m1)2−i

]

In the first inequality, we used the bound for H1/(2+γ) and in the second inequality we simplified the
expression by noting that all terms are nonnegative. In the next step, we re-parameterized the sum. In the
final inequality, we used the assumption that 0 < ε ≤ 1 and therefore ε1−2−i ≤ 1.

∆0

ε
≤1

4
+ 2
√
m1 +

1

4

log2 γ∑
i=1

(4m1)1−2−i + 4

log2 γ∑
i=1

(m1)1−2−i (4m1)2−i−1

≤1

4
+ 2
√
m1 +

1

4

log2 γ∑
i=1

(4m1)1−2−i + 16

log2 γ∑
i=1

(m1

4

)1−2−i−1

.

By requiring that

m1 ≤
1

4

and noting that 1− 2−i ≥ 1/2 and 1− 2−i−1 ≥ 3/4 for i ≥ 1, we can bound the expression by

∆0

ε
≤1

4
+ 2
√
m1 +

1

4
log2(γ)

√
4m1 + 16 log2(γ)

(m1

4

)3/4
.

By requiring that m1 ≤ 1/64 and m1 ≤ (2 log2 γ)−2 and m1 ≤ 1/64(log2 γ)−4/3, we can assure that
∆0 ≤ ε. Taking all assumptions on m1 we made above together, we realize that

m1 ≤
(

1

8 log2 log2H

)2

≤
(

1

8 log2 γ

)2

is sufficient for them to hold where we used log2 γ = log2(d1
2 log2He) ≤ log2 log2H . This gives the

following condition on m

m ≥ 512C(log2 log2H)2|K × I|H
2

ε2
ln

6

δ1

which is a stronger condition that the one in Equation (3.11).

39

By construction of ι(s, a), we have ι(s, a) ≤ 2 H
wmin

= 8SH2

ε = 8H2S
ε . Also, κk(s, a) ≤ SmH

mwmin
=

4S2H2

ε . Therefore

|K × I| ≤ log2

4S2H2

ε
log2

8H2S

ε
≤ log2

2

8H2S2

ε

which let us conclude that

m ≥ 512
CH2

ε2
(log2 log2H)2 log2

2

(
8H2S2

ε

)
ln

6

δ1

is a sufficient condition and thus, the statement to show, holds.

3.9.5 Proof of Theorem 6

Proof of Theorem 6. By Lemma 8, we know that the number of episodes where |Xκ,ι| > κ for some κ, ι is
bounded by 6Emax|S ×A|m with probability at least 1− δ/2. For all other episodes, we have by Lemma 9
that |ρM̃ (πk)− ρ(πk)| < ε. Since, with probability at least 1− δ/2, we have by Lemma 7 M ∈Mk, we
can use Lemma 12 which gives ρM̃ (πk) > ρ? ≥ ρ(πk) to conclude that with probabilty at least 1− δ/2,
for all episodes with |Xκ,ι| ≤ κ for all κ, ι, we have ρ? − ρ(πk) < ε. Applying the union bound, we get
the desired result, if m satisfies

m ≥512
CH2

ε2
(log2 log2H)2 log2

2

(
8H2S2

ε

)
ln

6

δ1
and

m ≥6H2

ε
ln

2Emax

δ
.

From the definitions, we get

ln
6

δ1
= ln

6CUmax

δ
= ln

6|S × A|C log2(SH/wmin)

δ
= ln

6|S × A|C log2(4S2H2/ε)

δ

and

Emax = log2 S log2

4H2S

ε
≤ log2

2

4H2S

ε
and

ln
2Emax

δ
= ln

2 log2 S log2(4H2S/ε)

δ
≤ ln

2 log2
2(4H2S/ε)

δ

≤ ln
6 |S × A| log2

2(4S2H2/ε)

δ
.

Setting

m = 512(log2 log2H)2CH
2

ε2
log2

(
8H2S2

ε

)
ln

6 |S × A|C log2
2(4S2H2/ε)

δ

is therefore a valid choice for m to ensure that with probability at least 1− δ , there are at most

6mEmax =3072(log2 log2H)2CH
2 |S × A|
ε2

× log2
2

(
4H2S

ε

)
log2

(
8H2S2

ε

)
ln

6|S × A|C log2
2(4S2H2/ε)

δ

ε-suboptimal episodes.

40

3.10 Proof of the Lower PAC Bound

Proof of Theorem 11. We consider the class of MDPs shown in Figure 3.1. The MDPs essentially consist
of n parallel multi-armed bandits. For each bandit, there exist m+ 1 = A possible instantiations, which
we denote by Ii = 0 . . .m. The instantiation, or hypothesis, Ii = 0 corresponds to εi(a) = I{a = a0}ε′/2,
that is, only action a0 has a small bias. The other hypotheses Ii = j for j = 1 . . .m correspond to
εi(a) = I{a = a0}ε′/2 + I{a = aj}ε′. We use I = (I1, . . . In) to indicate the instance of the entire MDP.

We define Gi = {ω ∈ Ω : π(i) = aIi}, the event that π, the policy generated by A chooses optimally
in bandit i. For a given instance I , the difference between the optimal expected cumulative reward ρ?I and
the expected cumulative reward ρI(π) of policy π is at least

ρ?I − ρI(π) ≥ (H − 2)

(
1− 1

n

n∑
i=1

I{Gi}

)
ε′

2
.

For π to be ε-optimal, we therefore need

ε ≥ρ?I − ρI(π) ≥ (H − 2)

(
1− 1

n

n∑
i=1

I{Gi}

)
ε′

2
,

2ε

(H − 2)ε′
≥

(
1− 1

n

n∑
i=1

I{Gi}

)
,

1

n

n∑
i=1

I{Gi} ≥
(

1− 2ε

(H − 2)ε′

)
,

1

n

n∑
i=1

I{Gi} ≥
(

1− 2ε(H − 2)η

(H − 2)16εe4

)
= 1− η

8e4

where we chose value ε′ := 16εe4

(H−2)η for ε′. We will specify the exact value of parameter η later. The
condition basically states that at least a fraction of φ := 1− η/(8e4) bandits need to be solved optimally
by A for the resulting policy π to be ε-accurate. For A to be (ε, δ)-correct, we therefore need

PI

(
1

n

n∑
i=1

I{Gi} ≥ φ

)
≥ PI(ρ?I − ρI(π) ≥ ε) ≥ 1− δ

for each instance I . Using Markov’s inequality, we obtain

1− δ ≤ PI

(
1

n

n∑
i=1

I{Gi} ≥ φ

)
≤ 1

nφ

n∑
i=1

EI [I{Gi}] ≤
1

nφ

n∑
i=1

PI(Gi)

All Gi are independent of each other by construction of the MDP. In fact
∑n

i=1 I{Gi} is Poisson-
binomial distributed as I{Gi} are independent Bernoulli random variables with potentially different
mean. Therefore, upper bounds δi must exist such that δi ≥ PI(G

C
i) for all hypotheses I and such that

1− δ ≤ 1
nφ

∑n
i=1(1− δi) or equivalently n(1 + δφ− φ) ≥

∑n
i=1 δi. Since all Gi are independent of each

other and

ε′ =
16εe4

(H − 2)η
≤ 16(H − 2)e4η

(H − 2)64e4η
=

1

4

41

we can apply Theorem 1 by Mannor and Tsitsiklis (2004) in cases where

δi ≤
1

η
(1− φ+ δφ) ≤ 1

η
(1− φ+ δ) ≤ 1

8e4
+
δ

η
≤ 2

8e4
.

This result gives us the minimum expected number of times EI [ni] we need to observe state i to ensure that
PI(G

C
i) ≤ δi

EI [ni] ≥
[
c1(A− 1)

ε′2
ln

(
c2

δi

)]
I{ηδi ≤ 1− φ+ φδ},

for appropriate constants c1 and c2 (e.g. c1 = 400 and c2 = 4). We can find a valid lower bound for the
total number of samples for any δ1, . . . δn by considering the worst bound over all δ1, . . . δn. The following
optimization problem encodes this idea

min
δ1,...δn

n∑
i=1

ln
1

δi
I{ηδi ≤ 1− φ+ φδ} (3.12)

s.t.
n∑
i=1

δi ≤ n(1 + φδ − φ)

As shown in Lemma 20 in the supplementary material, the optimal solution of the optimization problem in
Equation (3.12) is δ1 = · · · = δn = c if η(1− ln c) ≤ 1 with c = 1 + δφ− φ. Since the left-hand side of
this condition is decreasing in c, we can plug in a lower bound of c ≥ 1− φ = η

8e4
and get the sufficient

condition
η(1− ln

η

8e4
) = η(1− ln η + 4 + ln 8) ≤ 1.

It is easy to verify that η = 1/10 satisfies this condition. Hence δ1 = · · · = δn = c is the optimal solution
to the problem in Equation (3.12). In each episode, we only observe a single state i and therefore, there
need to be at least

EI [nA] ≥
n∑
i=1

EI [ni] ≥
c1(A− 1)n

ε′2
ln

(
c2

δi

)
≥ c1(A− 1)n

ε′2
ln

(
c2

δ + η
8e4

)

observed episodes for appropriate constants c1 and c2. Plugging in ε′ and n = S − 3, we obtain the desired
statement.

Lemma 20. The optimization problem

min
δ1...δn∈[0,1]

n∑
i=1

ln
1

δ i
I{ηδi ≤ c}

s.t.
n∑
i=1

δi ≤ nc

with c ∈ [0, 1] and
η(1− ln c) ≤ 1

has optimal solution δ1 = · · · = δn = c.

42

Proof. Without the indicator part in the objective, we can show that δ1 = · · · = δn = c is an optimal
solution by checking the KKT conditions and noting that the problem is convex. Let k denote the number
of δj that are set such that the indicator function is 0. Without loss of generality we can assume that their
value is δP := c/η and the remaining δj take the same value δA (for a fixed δP and k, the problem reduces
to the one without the indicator functions). Then the problem transforms into

min
δA∈(0,1),k∈{0,1,...n}

(n− k) ln
1

δA

(n− k)δA + kδP ≤ nc

We can rewrite the constraint as

(n− k)δA + kδP ≤ nc

(n− k)δA ≤ nc− kδP =

(
n− k

η

)
c

δA ≤
n− k

η

n− k
c.

Since the objective decreases with δA, it is optimal to choose δA as large as possible. The optimization
problem then reduces to

min
k∈{0,...bn/γc}

(n− k) ln

(
n− k
n− γk

c−1

)
.

where we used for convenience γ := 1/η. We want to show that the optimal solution to this problem is
k = 0. We can therefore relax the problem to the continuous domain without loss of generality

min
k∈[0,n/γ]

(n− k) ln

(
n− k
n− γk

c−1

)
.

By reparameterizing the problem with α = k/n, we get

min
α∈[0,1/γ]

n(1− α) ln

(
1− α

c(1− γα)

)
.

We realize that the minimizer does not depend on n (while the value does). The second derivative of the
objective function is

n
(γ − 1)2

(1− γα)2(1− α)
,

which is nonnegative for α ∈ [0, 1/γ]. Hence, the objective is convex in the feasible region and the
minimizer of this problem is α = 0 if the derivative of the objective is nonnegative in 0. The derivative of
the objective in 0 is given by

n(γ − 1 + ln(c)).

A sufficient condition for α = 0 being optimal is therefore

γ ≥ 1− ln c

or, in terms of the original problem with η = 1/γ, δ1 = . . . δn = c is optimal if

η(1− ln c) ≤ 1

43

Chapter 4

Unifying PAC and Regret: Uniform-PAC
Bounds for Episodic Reinforcement
Learning

This chapter is based on the work published as:
Christoph Dann, Tor Lattimore, and Emma Brunskill. “Unifying PAC and regret: Uniform PAC bounds
for episodic reinforcement learning”. In: Advances in Neural Information Processing Systems. 2017,
pp. 5713–5723

4.1 Introduction

The recent empirical successes of deep reinforcement learning (RL) are tremendously exciting, but the
performance of these approaches still varies significantly across domains, each of which requires the user
to solve a new tuning problem (François-Lavet, Fonteneau, and Ernst, 2015). Ultimately we would like
reinforcement learning algorithms that simultaneously perform well empirically and have strong theoretical
guarantees. Such algorithms are especially important for high stakes domains like health care, education
and customer service, where non-expert users demand excellent outcomes.

In this chapter, we propose a new framework for measuring the performance of reinforcement learning
algorithms called Uniform-PAC. Briefly, an algorithm is Uniform-PAC if with high probability it simultane-
ously for all ε > 0 selects an ε-optimal policy on all episodes except for a number that scales polynomially
with 1/ε. Algorithms that are Uniform-PAC converge to an optimal policy with high probability and
immediately yield both PAC and high probability regret bounds, which makes them superior to algorithms
that come with only PAC or regret guarantees. Indeed,

(a) Neither PAC nor regret guarantees imply convergence to optimal policies with high probability;

(b) (ε, δ)-PAC algorithms may be ε/2-suboptimal in every episode;

(c) Algorithms with small regret may be maximally suboptimal infinitely often.
Uniform-PAC algorithms suffer none of these drawbacks. One could hope that existing algorithms with
PAC or regret guarantees might be Uniform-PAC already, with only the analysis missing. Unfortunately
this is not the case and modification is required to adapt these approaches to satisfy the new performance
metric. The key insight for obtaining Uniform-PAC guarantees is to leverage time-uniform concentration
bounds such as the finite-time versions of the law of iterated logarithm, which obviates the need for
horizon-dependent confidence levels.

44

We provide a new optimistic algorithm for episodic RL called UBEV that is Uniform PAC. Unlike its
predecessors, UBEV uses confidence intervals based on the law of iterated logarithm (LIL) which hold
uniformly over time. They allow us to more tightly control the probability of failure events in which the
algorithm behaves poorly. Our analysis is nearly optimal according to the traditional metrics, with a linear
dependence on the state space for the PAC setting and square root dependence for the regret. Therefore
UBEV is a Uniform PAC algorithm with PAC bounds and high probability regret bounds that are near
optimal in the dependence on the length of the episodes (horizon) and optimal in the state and action spaces
cardinality as well as the number of episodes. To our knowledge UBEV is the first algorithm with both
near-optimal PAC and regret guarantees.

Notation and setup. We consider episodic fixed-horizon MDPs as introduced in Chapter 2 but with one
minor difference. In this chapter, we allow dynamics to be time-dependent. This can be formalized as a
tuple M = (S,A, pR, P, p0, H). The state space S and the action space A are finite sets with cardinality
S and A. The agent interacts with the MDP in episodes of H time steps each. At the beginning of each
time-step t ∈ [H] the agent observes a state st and chooses an action at based on a policy π that may
depend on the within-episode time step (at = π(st, t)). The next state is sampled from the tth transition
kernel st+1 ∼ P (·|st, at, t) and the initial state from s1 ∼ p0. The agent then receives a reward drawn
from a distribution pR(st, at, t) which can depend on st, at and t with mean r(st, at, t) determined by the
reward function. The reward distribution pR is supported on [0, 1].1 The value function from time step t for
policy π is defined as

V π
t (s) := E

[
H∑
i=t

r(si, ai, i)

∣∣∣∣st = s

]
=
∑
s′∈S

P (s′|s, π(s, t), t)V π
t+1(s′) + r(s, π(s, t), t) .

and the optimal value function is denoted by V ?
t . As a reminder, in any fixed episode, the quality of a

policy π is evaluated by the total expected return

ρ(π) := E

[
H∑
i=t

r(si, ai, i)
∣∣π] = p>0 V

π
1 ,

which is compared to the optimal return ρ? = p>0 V
?

1 . For this notation p0 and the value functions V ?
t ,

V π
1 are interpreted as vectors of length S. If an algorithm follows policy πk in episode k, then the

optimality gap in episode k is ∆k := ρ? − ρ(πk) which is bounded by ∆max = maxπ ρ
? − ρ(π) ≤ H .

We let Nε :=
∑∞

k=1 I{∆k > ε} be the number of ε-errors and R(T) be the regret after T episodes:
R(T) :=

∑T
k=1 ∆k. Note that T is the number of episodes and not total time steps (which is HT after T

episodes) and k is an episode index while t usually denotes time indices within an episode. The Õ notation
is similar to the usual O-notation but suppresses additional polylog-factors, that is g(x) = Õ(f(x)) iff
there is a polynomial p such that g(x) = O(f(x)p(log(x))).

4.2 Uniform PAC and Existing Learning Frameworks

We briefly summarize the most common performance measures used in the literature.

1The reward may be allowed to depend on the next-state with no further effort in the proofs. The boundedness assumption
could be replaced by the assumption of subgaussian noise with known subgaussian parameter.

45

• (ε, δ)-PAC (mistake-style): There exists a polynomial function FPAC(S,A,H, 1/ε, log(1/δ)) such
that

P (Nε > FPAC(S,A,H, 1/ε, log(1/δ))) ≤ δ .

• Expected Regret: There exists a function FER(S,A,H, T) such that E[R(T)] ≤ FER(S,A,H, T).
• High Probability Regret: There exists a function FHPR(S,A,H, T, log(1/δ)) such that

P (R(T) > FHPR(S,A,H, T, log(1/δ))) ≤ δ .

• Uniform High Probability Regret: There exists a function FUHPR(S,A,H, T, log(1/δ)) such that

P (exists T : R(T) > FUHPR(S,A,H, T, log(1/δ))) ≤ δ .

In all definitions the function F should be polynomial in all arguments. For notational conciseness we
often omit some of the parameters of F where the context is clear. The different performance guarantees
are widely used (e.g. PAC: (Lattimore and Hutter, 2012; Dann and Brunskill, 2015; Jiang, Krishnamurthy,
et al., 2017; Strehl and Littman, 2008), (uniform) high-probability regret: (Jaksch, Ortner, and Auer, 2010;
Agarwal, Hsu, et al., 2014; Srinivas et al., 2010); expected regret: (Audibert, Munos, and Szepesvári,
2009; Auer, 2000; Bubeck and Cesa-Bianchi, 2012; Auer and Ortner, 2005)). Due to space constraints,
we will not discuss Bayesian-style performance guarantees that only hold in expectation with respect to a
distribution over problem instances. We will shortly discuss the limitations of the frameworks listed above,
but first formally define the Uniform-PAC criteria
Definition 1 (Uniform-PAC). An algorithm is Uniform-PAC for δ > 0 if

P (exists ε > 0 : Nε > FUPAC (S,A,H, 1/ε, log(1/δ))) ≤ δ ,

where FUPAC is polynomial in all arguments.
All the performance metrics are functions of the distribution of the sequence of errors over the episodes

(∆k)k∈N. Regret bounds are the integral of this sequence up to time T , which is a random variable. The
expected regret is just the expectation of the integral, while the high-probability regret is a quantile. PAC
bounds are the quantile of the size of the superlevel set for a fixed level ε. Uniform-PAC bounds are like
PAC bounds, but hold for all ε simultaneously.

Limitations of regret. Since regret guarantees only bound the integral of ∆k over k, it does not dis-
tinguish between making a few severe mistakes and many small mistakes. In fact, since regret bounds
provably grow with the number of episodes T , an algorithm that achieves optimal regret may still make
infinitely many mistakes (of arbitrary quality, see proof of Theorem 22 below). This is highly undesirable
in high-stakes scenarios. For example in drug treatment optimization in healthcare, we would like to
distinguish between infrequent severe complications (few large ∆k) and frequent minor side effects (many
small ∆k). In fact, even with an optimal regret bound, we could still serve infinitely patients with the worst
possible treatment.

Limitations of PAC. PAC bounds limit the number of mistakes for a given accuracy level ε, but is
otherwise non-restrictive. That means an algorithm with ∆k > ε/2 for all k almost surely might still be
(ε, δ)-PAC. Worse, many algorithms designed to be (ε, δ)-PAC actually exhibit this behavior because they
explicitly halt learning once an ε-optimal policy has been found. The less widely used TCE (total cost of
exploration) bounds (Pazis and Parr, 2016) and KWIK guarantees (Li, Littman, and Walsh, 2008) suffer
from the same issueand for conciseness are not discussed in detail.

46

Uniform PAC

Expected
Regret

High-Prob.
Regret

Uniform High-
Prob. Regret

PAC
implies

implies

implies

preclude

cannot imply
implies subopt.

 for single T

Figure 4.1: Visual summary of relationship among the different learning frameworks: Expected regret (ER)
and PAC preclude each other while the other crossed arrows represent only a does-not-implies relationship.
Blue arrows represent imply relationships. For details see the theorem statements.

Advantages of Uniform-PAC. The new criterion overcomes the limitations of PAC and regret guarantees
by measuring the number of ε-errors at every level simultaneously. By definition, algorithms that are
Uniform-PAC for a δ are (ε, δ)-PAC for all ε > 0. We will soon see that an algorithm with a non-trivial
Uniform-PAC guarantee also has small regret with high probability. Furthermore, there is no loss in the
reduction so that an algorithm with optimal Uniform-PAC guarantees also has optimal regret, at least
in the episodic RL setting. In this sense Uniform-PAC is the missing bridge between regret and PAC.
Finally, for algorithms based on confidence bounds, Uniform-PAC guarantees are usually obtained without
much additional work by replacing standard concentration bounds with versions that hold uniformly over
episodes (e.g. using the law of the iterated logarithms). In this sense we think Uniform-PAC is the new
‘gold-standard’ of theoretical guarantees for RL algorithms.

4.2.1 Relationships between Performance Guarantees

Existing theoretical analyses usually focus exclusively on either the regret or PAC framework. Besides
occasional heuristic translations, Proposition 4 in (Strehl and Littman, 2008) and Corollary 3 in (Jaksch,
Ortner, and Auer, 2010) are the only results relating a notion of PAC and regret, we are aware of. Yet the
guarantees there are not widely used2 unlike the definitions given above which we now formally relate to
each other. A simplified overview of the relations discussed below is shown in Figure 4.1.
Theorem 21. No algorithm can achieve
• a sub-linear expected regret bound for all T and
• a finite (ε, δ)-PAC bound for a small enough ε

simultaneously for all two-armed multi-armed bandits with Bernoulli reward distributions. This implies
that such guarantees also cannot be satisfied simultaneously for all episodic MDPs.

A full proof is in Section 4.6.1, but the intuition is simple. Suppose a two-armed Bernoulli bandit
has mean rewards 1/2 + ε and 1/2 respectively and the second arm is chosen at most F < ∞ times with
probability at least 1− δ, then one can easily show that in an alternative bandit with mean rewards 1/2 + ε

2The average per-step regret in (Jaksch, Ortner, and Auer, 2010) is superficially a PAC bound, but does not hold over infinitely
many time-steps and exhibits the limitations of a conventional regret bound. The translation to average loss in (Strehl and Littman,
2008) comes at additional costs due to the discounted infinite horizon setting.

47

and 1/2 + 2ε there is a non-zero probability that the second arm is played finitely often and in this bandit the
expected regret will be linear. Therefore, sub-linear expected regret is only possible if each arm is pulled
infinitely often almost surely.

Theorem 22. The following statements hold for performance guarantees in episodic MDPs:

(a) If an algorithm satisfies a (ε, δ)-PAC bound with FPAC = Θ(1/ε2) then it satisfies for a specific
T = Θ(ε−3) a FHPR = Θ(T 2/3) bound. Further, there is an MDP and algorithm that satisfies
the (ε, δ)-PAC bound FPAC = Θ(1/ε2) on that MDP and has regret R(T) = Ω(T 2/3) on that
MDP for any T . That means a (ε, δ)-PAC bound with FPAC = Θ(1/ε2) can only be converted to a
high-probability regret bound with FHPR = Ω(T 2/3).

(b) For any chosen ε, δ > 0 and FPAC, there is an MDP and algorithm that satisfies the (ε, δ)-PAC bound
FPAC on that MDP and has regret R(T) = Ω(T) on that MDP. That means a (ε, δ)-PAC bound
cannot be converted to a sub-linear uniform high-probability regret bound.

(c) For any FUHPR(T, δ) with FUHPR(T, δ) → ∞ as T → ∞, there is an algorithm that satisfies that
uniform high-probability regret bound on some MDP but makes infinitely many mistakes for any
sufficiently small accuracy level ε > 0 for that MDP. Therefore, a high-probability regret bound
(uniform or not) cannot be converted to a finite (ε, δ)-PAC bound.

(d) For any FUHPR(T, δ) there is an algorithm that satisfies that uniform high-probability regret bound
on some MDP but suffers expected regret ER(T) = Ω(T) on that MDP.

For most interesting RL problems including episodic MDPs the worst-case expected regret grows
with O(

√
T). The theorem shows that establishing an optimal high probability regret bound does not

imply any finite PAC bound. While PAC bounds may be converted to regret bounds, the resulting bounds
are necessarily severely suboptimal with a rate of T 2/3. The next theorem formalises the claim that
Uniform-PAC is stronger than both the PAC and high-probability regret criteria.

Theorem 23. Suppose an algorithm is Uniform-PAC for some δ with FUPAC = Õ(C1/ε+ C2/ε
2) where

C1, C2 > 0 are constant in ε, but may depend on other quantities such as S, A, H , log(1/δ), then the
algorithm

(a) converges to optimal policies with high probability: P(limk→∞∆k = 0) ≥ 1− δ.
(b) is (ε, δ)-PAC with bound FPAC = FUPAC for all ε.
(c) enjoys a high-probability regret at level δ with FUHPR = Õ(

√
C2T + max{C1, C2}).

Observe that stronger uniform PAC bounds lead to stronger regret bounds and for RL in episodic
MDPs, an optimal uniform-PAC bound implies a uniform regret bound. To our knowledge, there are no
existing approaches with PAC or regret guarantees that are Uniform-PAC. PAC methods such as MBIE,
MoRMax, UCRL-γ, UCFH, Delayed Q-Learning or Median-PAC all depend on advance knowledge of ε
and eventually stop improving their policies. Even when disabling the stopping condition, these methods
are not uniform-PAC as their confidence bounds only hold for finitely many episodes and are eventually
violated according to the law of iterated logarithms. Existing algorithms with uniform high-probability
regret bounds such as UCRL2 or UCBVI (Azar, Osband, and Munos, 2017) also do not satisfy uniform-PAC
bounds since they use upper confidence bounds with width

√
log(T)/n where T is the number of observed

episodes and n is the number of observations for a specific state and action. The presence of log(T) causes
the algorithm to try each action in each state infinitely often. One might begin to wonder if uniform-PAC is
too good to be true. Can any algorithm meet the requirements? We demonstrate in Section 4.4 that the
answer is yes by showing that UBEV has meaningful Uniform-PAC bounds. A key technique that allows us
to prove these bounds is the use of finite-time law of iterated logarithm confidence bounds which decrease
at rate

√
(log log n)/n.

48

4.3 The UBEV Algorithm

The pseudo-code for the proposed UBEV algorithm is given in Algorithm 3. In each episode it follows
an optimistic policy πk that is computed by backwards induction using a carefully chosen confidence
interval on the transition probabilities in each state. In line 8 an optimistic estimate of the Q-function for
the current state-action-time triple is computed using the empirical estimates of the expected next state
value V̂next ∈ R (given that the values at the next time are Ṽt+1) and expected immediate reward r̂ plus
confidence bounds (H − t)φ and φ. We show in Lemma 27 later in this chapter that the policy update in
Lines 3–9 finds an optimal solution to maxP ′,r′,V ′,π′ Es∼p0 [V ′1(s)] subject to the constraints that for all
s ∈ S, a ∈ A, t ∈ [H],

V ′t (s) = r(s, π′(s, t), t) + P ′(s, π′(s, t), t)>V ′t+1 (Bellman Equation) (4.1)

V ′H+1 = 0, P ′(s, a, t) ∈ ∆S , r′(s, a, t) ∈ [0, 1]

|[(P ′ − P̂k)(s, a, t)]>V ′t+1| ≤ φ(s, a, t)(H − t)
|r′(s, a, t)− r̂k(s, a, t)| ≤ φ(s, a, t) (4.2)

where (P ′ − P̂k)(s, a, t) is short for P ′(s, a, t)− P̂k(s, a, t) = P ′(·|s, a, t)− P̂k(·|s, a, t) and

φ(s, a, t) =

√
2 ln ln max{e, n(s, a, t)}+ ln(18SAH/δ)

n(s, a, t)
= O

(√
ln(SAH ln(n(s, a, t))/δ)

n(s, a, t)

)

is the width of a confidence bound with e = exp(1) and P̂k(s′|s, a, t) = m(s′,s,a,t)
n(s,a,t) are the empirical

transition probabilities and r̂k(s, a, t) = l(s, a, t)/n(s, a, t) the empirical immediate rewards (both at the
beginning of the kth episode). Our algorithm is conceptually similar to other algorithms based on the
optimism principle such as MBIE (Strehl, Li, and Littman, 2009), UCFH (Dann and Brunskill, 2015),
UCRL2 (Jaksch, Ortner, and Auer, 2010) or UCRL-γ (Lattimore and Hutter, 2012) but there are several
key differences:
• Instead of using confidence intervals over the transition kernel by itself, we incorporate the value

function directly into the concentration analysis. Ultimately this saves a factor of S in the sample
complexity, but the price is a more difficult analysis. Previously MoRMax (Szita and Szepesvári,
2010) also used the idea of directly bounding the transition and value function, but in a very different
algorithm that required discarding data and had a less tight bound. A similar technique has been used
by Azar, Osband, and Munos (2017).

• Many algorithms update their policy less and less frequently (usually when the number of samples
doubles), and only finitely often in total. Instead, we update the policy after every episode, which
means that UBEV immediately leverages new observations.

• Confidence bounds in existing algorithms that keep improving the policy (e.g. Jaksch, Ortner, and
Auer (2010) and Azar, Osband, and Munos (2017)) scale at a rate

√
log(k)/n where k is the number

of episodes played so far and n is the number of times the specific (s, a, t) has been observed. As the
results of a brief empirical comparison in Figure 4.2 indicate, this leads to slow learning (compare
UCBVI 1 and UBEV’s performance which differ essentially only by their use of different rate
bounds). Instead the width of UBEV’s confidence bounds φ scales at rate

√
ln ln(max{e, n})/n ≈√

(log log n)/n which is the best achievable rate and results in significantly faster learning.

49

Algorithm 3: UBEV (Upper Bounding the Expected Next State Value) Algorithm
Input : failure tolerance δ ∈ (0, 1]

1 n(s, a, t) = l(s, a, t) = m(s′, s, a, t) = 0; ṼH+1(s′) := 0 ∀s, s′ ∈ S, a ∈ A, t ∈ [H]
2 for k = 1, 2, 3, . . . do

/* Optimistic planning */

3 for t = H to 1 do
4 for s ∈ S do
5 for a ∈ A do
6 φ :=

√
2 ln ln(max{e,n(s,a,t)})+ln(18SAH/δ)

n(s,a,t) // confidence bound

7 r̂ := l(s,a,t)
n(s,a,t) ; V̂next := m(·,s,a,t)>Ṽt+1

n(s,a,t) // empirical estimates

8 Q(a) := min {1, r̂ + φ}+ min
{

max Ṽt+1, V̂next + (H − t)φ
}

9 πk(s, t) := argmaxaQ(a), Ṽt(s) := Q(πk(s, t))

/* Execute policy for one episode */

10 s1 ∼ p0;
11 for t = 1 to H do
12 at := πk(st, t), rt ∼ pR(st, at, t) and st+1 ∼ P (st, at, t)
13 n(st, at, t)++; m(st+1, st, at, t)++; l(st, at, t)+= rt // update statistics

4.4 Uniform PAC Analysis

We now discuss the Uniform-PAC analysis of UBEV which results in the following Uniform-PAC and regret
guarantee.
Theorem 24. Let πk be the policy of UBEV in the kth episode. Then with probability at least 1− δ for all
ε > 0 jointly the number of episodes k where the expected return from the start state is not ε-optimal (that
is ∆k > ε) is at most

O

(
SAH4

ε2
min {1+εS/H, S} polylog

(
A,S,H,

1

ε
,
1

δ

))
.

Therefore, with probability at least 1− δ UBEV converges to optimal policies and for all episodes T has
regret

R(T) = O
(
H2(
√
SAT + S2AH3) polylog(S,A,H, T)

)
.

Here polylog(x . . .) is a function that can be bounded by a polynomial of logarithm, that is, ∃k,C :
polylog(x . . .) ≤ ln(x . . .)k + C. In Section 4.8 we provide a lower bound on the sample complexity
that shows that if ε < H/S, the Uniform-PAC bound is tight up to log-factors and a factor of H . To our
knowledge, UBEV is the first algorithm with both near-tight (up to H factors) high probability regret and
(ε, δ) PAC bounds as well as the first algorithm with any nontrivial uniform-PAC bound.

Using Theorem 23 the convergence and regret bound follows immediately from the uniform PAC
bound. After a discussion of the different confidence bounds allowing us to prove uniform-PAC bounds,
we will provide a short proof sketch of the uniform PAC bound.

50

103 104 105 106 107

Number of Episodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
x
p
e
ct

e
d
 R

e
tu

rn
 S

=
5

103 104 105 106 107

Number of Episodes

0.5

1.0

1.5

2.0

2.5

3.0

E
x
p
e
ct

e
d
 R

e
tu

rn
 S

=
5
0

103 104 105 106 107

Number of Episodes

0.5

1.0

1.5

2.0

2.5

E
x
p
e
ct

e
d
 R

e
tu

rn
 S

=
2
0
0

MoRMax

UBEV

UCRL2

MBIE

MedianPAC

DelayedQL

OIM

UCFH

UCBVI_1 UCBVI_2 optimal

Figure 4.2: Empirical comparison of optimism-based algorithms with frequentist regret or PAC bounds on
a randomly generated MDP with 3 actions, time horizon 10 and S = 5, 50, 200 states. All algorithms are
run with parameters that satisfy their bound requirements. A detailed description of the experimental setup
including a link to the source code can be found in Section 4.7.

4.4.1 Enabling Uniform PAC With Law-of-Iterated-Logarithm Confidence Bounds

To have a PAC bound for all ε jointly, it is critical that UBEV continually make use of new experience. If
UBEV stopped leveraging new observations after some fixed number, it would not be able to distinguish
with high probability among which of the remaining possible MDPs do or do not have optimal policies that
are sufficiently optimal in the other MDPs. The algorithm therefore could potentially follow a policy that is
not at least ε-optimal for infinitely many episodes for a sufficiently small ε. To enable UBEV to incorporate
all new observations, the confidence bounds in UBEV must hold for an infinite number of updates. We
therefore require a proof that the total probability of all possible failure events (of the high confidence
bounds not holding) is bounded by δ, in order to obtain high probability guarantees. In contrast to prior
(ε, δ)-PAC proofs that only consider a finite number of failure events (which is enabled by requiring an RL
algorithm to stop using additional data), we must bound the probability of an infinite set of possible failure
events.

Some choices of confidence bounds will hold uniformly across all sample sizes but are not sufficiently
tight for uniform PAC results. For example, the recent work by Azar, Osband, and Munos (2017) uses

confidence intervals that shrink at a rate of
√

lnT
n , where T is the number of episodes, and n is the number

of samples of a (s, a) pair at a particular time step. This confidence interval will hold for all episodes,
but these intervals do not shrink sufficiently quickly and can even increase. One simple approach for
constructing confidence intervals that is sufficient for uniform PAC guarantees is to combine bounds for
fixed number of samples with a union bound allocating failure probability δ/n2 to the failure case with n
samples. This results in confidence intervals that shrink at rate

√
1/n lnn. Interestingly we know of no

algorithms that do such in our setting.
We follow a similarly simple but much stronger approach of using law-of-iterated logarithm (LIL)

bounds that shrink at the better rate of
√

1/n ln lnn. Such bounds have sparked recent interest in sequential
decision making (Jamieson et al., 2014; Balsubramani and Ramdas, 2016; Garivier, Lattimore, and
Kaufmann, 2016; Massart, 2007; Garivier and Cappé, 2011) but to the best of our knowledge we are the
first to leverage them for RL. We prove several general LIL bounds Section 4.11 and explain how we use
these results in our analysis in Section 4.10.2. These LIL bounds are both sufficient to ensure uniform PAC
bounds, and much tighter (and therefore will lead to much better performance) than

√
1/n lnT bounds.

Indeed, LIL have the tightest possible rate dependence on the number of samples n for a bound that holds

51

for all timesteps (though they are not tight with respect to constants).

4.4.2 Proof Sketch

We now provide a short overview of our uniform PAC bound in Theorem 24. It follows the typical scheme
for optimism based algorithms: we show that in each episode UBEV follows a policy that is optimal with
respect to the MDP M̃k that yields highest expected return in a set of MDPsMk given by the constraints
in Eqs. (4.1)–(4.2) (Lemma 27 in the later sections). We then define a failure event F (more details see
below) such that on the complement FC , the true MDP is inMk for all k.

Under the event that the true MDP is in the desired set, the V π
1 ≤ V ?

1 ≤ Ṽ πk
1 , i.e., the value Ṽ πk

1 of
πk in MDP M̃k is higher than the optimal value function of the true MDP M (Lemma 45). Therefore,
the optimality gap is bounded by ∆k ≤ p>0 (Ṽ πk

1 − V πk
1). The right hand side this expression is then

decomposed via a standard identity (Lemma 44) as

H∑
t=1

∑
(s,a)∈S×A

wtk(s, a)((P̃k − P)(s, a, t))>Ṽ πk
t+1 +

H∑
t=1

∑
(s,a)∈S×A

wtk(s, a)(r̃k(s, a, t)− r(s, a, t)),

where wtk(s, a) is the probability that when following policy πk in the true MDP we encounter st = s
and at = a. The quantities P̃k, r̃k are the model parameters of the optimistic MDP M̃k For the sake of
conciseness, we ignore the second term above in the following which can be bounded by ε/3 in the same
way as the first. We further decompose the first term as∑

t∈[H]
(s,a)∈Lctk

wtk(s, a)((P̃k − P)(s, a, t))>Ṽ πk
t+1 (4.3)

+
∑
t∈[H]

(s,a)∈Ltk

wtk(s, a)((P̃k − P̂k)(s, a, t))>Ṽ πk
t+1 +

∑
t∈[H]

(s,a)∈Ltk

wtk(s, a)((P̂k − P)(s, a, t))>Ṽ πk
t+1 (4.4)

where Ltk =
{

(s, a) ∈ S ×A : wtk(s, a) ≥ wmin = ε
3HS2

}
is the set of state-action pairs with non-

negligible visitation probability. The value of wmin is chosen so that (4.3) is bounded by ε/3. Since Ṽ πk is
the optimal solution of the optimization problem in Eq. (4.1), we can bound

|((P̃k−P̂k)(s, a, t))>Ṽ πk
t+1| ≤ φk(s, a, t)(H − t) = O

(√
H2 ln (ln(ntk(s, a))/δ)

ntk(s, a)

)
, (4.5)

where φk(s, a, t) is the value of φ(s, a, t) and ntk(s, a) the value of n(s, a, t) right before episode k.
Further we decompose

|((P̂k − P)(s, a, t))>Ṽ πk
t+1| ≤ ‖(P̂k − P)(s, a, t)‖1‖Ṽ πk

t+1‖∞ ≤ O

√SH2 ln lnntk(s,a)
δ

ntk(s, a)

 , (4.6)

where the second inequality follows from a standard concentration bound used in the definition of the
failure event F (see below). Substituting this and (4.5) into (4.4) leads to

(4.4) ≤ O

 H∑
t=1

∑
s,a∈Ltk

wtk(s, a)

√
SH2 ln(ln(ntk(s, a))/δ)

ntk(s, a)

 . (4.7)

52

On FC it also holds that ntk(s, a) ≥ 1
2

∑
i<k wti(s, a) − ln 9SAH

δ and so on nice episodes where
each (s, a) ∈ Ltk with significant probability wtk(s, a) also had significant probability in the past, i.e.,∑

i<k wti(s, a) ≥ 4 ln 9SA
δ , it holds that ntk(s, a) ≥ 1

4

∑
i<k wti(s, a). Substituting this into (4.7), we can

use a careful pidgeon-hole argument laid out it Lemma 35 to show that this term is bounded by ε/3 on all
but O(AS2H4/ε2 polylog(A,S,H, 1/ε, 1/δ)) nice episodes. Again using a pidgeon-hole argument, one
can show that all but at most O(S2AH3/ε ln(SAH/δ)) episodes are nice. Combining both bounds, we get
that on FC the optimality gap ∆k is at most ε except for at mostO(AS2H4/ε2 polylog(A,S,H, 1/ε, 1/δ))
episodes.

We decompose the failure event into multiple components. In addition to the events FNk that a (s, a, t)
triple has been observed few times compared to its visitation probabilities in the past, i.e., ntk(s, a) <
1
2

∑
i<k wti(s, a)− ln 9SAH

δ as well as a conditional version of this statement, the failure event F contains
events where empirical estimates of the immediate rewards, the expected optimal value of the successor
states and the individual transition probabilites are far from their true expectations. For the full definition
of F see Section 4.10.2. F also contains event FL1 we used in Eq. (4.6) defined as

{
∃k, s, a, t : ‖P̂k(s, a, t)− P (s, a, t)‖1 ≥

√
4

ntk(s,a)

(
2 llnp(ntk(s, a)) + ln 18SAH(2S−2)

δ

)}
.

It states that the L1-distance of the empirical transition probabilities to the true probabilities for any (s, a, t)
in any episode k is too large and we show that P(FL1) ≤ 1− δ/9 using a uniform version of the popular
bound by Weissman et al. (2003) which we prove in Section 4.11. We show in similar manner that the other
events in F have small probability uniformly for all episodes k so that P(F) ≤ δ. Together this yields the
uniform PAC bound in Thm. 24 using the second term in the min.

With a more refined analysis that avoids the use of Hölder’s inequality in (4.6) we obtain the bound
with the first term in the min. However, since a similar analysis has been recently released (Azar, Osband,
and Munos, 2017), we defer this discussion to the later sections.

4.4.3 Discussion of UBEV Bound

The (Uniform-)PAC bound for UBEV in Theorem 24 is never worse than Õ(S2AH4/ε2), which improves
on the similar MBIE algorithm by a factor ofH2 (after adapting the discounted setting for which MBIE was
analysed to our setting). For ε < H/S2 our bound has a linear dependence on the size of the state-space
and depends on H4, which is a tighter dependence on the horizon than MoRMax’s Õ(SAH6/ε2), the best
sample-complexity bound with linear dependency S so far.

Comparing UBEV’s regret bound to the ones of UCRL2 (Jaksch, Ortner, and Auer, 2010) and RE-
GAL (Bartlett and Tewari, 2009) requires care because (a) we measure the regret over entire episodes
and (b) our transition dynamics are time-dependent within each episode, which effectively increases the
state-space by a factor ofH . Converting the bounds for UCRL2/REGAL to our setting yields a regret bound
of order SH2

√
AHT . Here, the diameter is H , the state space increases by H due to time-dependent

transition dynamics and an additional
√
H is gained by stating the regret in terms of episodes T instead

of time steps. Hence, UBEV’s bounds are better by a factor of
√
SH . Our bound matches the recent

regret bound for episodic RL developed in parallel by Azar, Osband, and Munos (2017) in the S, A and
T terms but not in H . Azar, Osband, and Munos (2017) has regret bounds that close to optimal in H
(up to a spurious

√
H3T term and lower-order terms) but their algorithm is not uniform PAC, due to the

characteristics we outlined in Section 4.2.

53

4.5 Summary

The Uniform-PAC framework strengthens and unifies the mistake-style PAC and high-probability regret
performance criteria for reinforcement learning in episodic MDPs. The newly proposed algorithm is
Uniform-PAC, which as a side-effect means it is the first algorithm that is both PAC and has sub-linear
(and nearly optimal) regret. Besides this, the use of law-of-the-iterated-logarithm confidence bounds in
RL algorithms for MDPs provides a practical and theoretical boost at no cost in terms of computation or
implementation complexity.

This work opens up several immediate research questions for future work. The definition of Uniform-
PAC and the relations to other PAC and regret notions directly apply to multi-armed bandits and contextual
bandits as special cases of episodic RL, but not to infinite horizon reinforcement learning. An extension
to these non-episodic RL settings is highly desirable. Similarly, a version of the UBEV algorithm for
infinite-horizon RL with linear state-space sample complexity would be of interest. More broadly, if theory
is ever to say something useful about practical algorithms for large-scale reinforcement learning, then it will
have to deal with the unrealizable function approximation setup (unlike the tabular function representation
setting considered here), which is a major long-standing open challenge.

4.6 Framework Relation Proofs

4.6.1 Proof of Theorem 21

Proof. We will use two episodic MDPs, M1 and M2, which are essentially 2-armed bandits and hard to
distinguish to prove this statement. Both MDPs have one state, horizonH = 1, and two actionsA = {1, 2}.
For a fixed α > 0, the rewards are Bernoulli(1/2 + α/2) distributed for actions 1 in both MDPs. Playing
action 2 in M1 gives Bernoulli(1/2) rewards and action 2 in M2 gives Bernoulli(1/2 + α) rewards.

Assume now that an algorithm in MDP M1 with nonzero probability plays the suboptimal action only
at most N times in total, i.e., PM1(n2 ≤ N) ≥ β where n2 is the number of times action 2 is played and
∞ > N > 0, β > 0. Then

PM1(n2 ≤ N) = EM1 [I{n2 ≤ N}] = EM2

[
PM1(Y∞)

PM2(Y∞)
I{n2 ≤ N}

]
where Yk = (A1, R1, A2, R2, . . . Ak, Rk) denotes the entire sequence of observed rewards Ri and action
indices Ai after k episodes. Since PM1(Ak|Yk−1) = PM2(Ak|Yk−1) and PM1(Rk|Ak = 1, Yk−1) =
PM2(Rk|Ak = 1, Yk−1) and

PM1(Rk|Ak = 2, Yk−1)

PM2(Rk|Ak = 2, Yk−1)
≤ max

{
1/2

1/2 + α
,

1/2

1/2− α

}
=

1

1− 2α

the likelihood ratio of Y∞ is upper bounded by (1 + 2α)N if the second action has been chosen at most N
times. Hence

PM2 [n2 ≤ N] =
(1− 2α)N

(1− 2α)N
EM2 [I{n2 ≤ N}] ≥ (1− 2α)NEM2

[
PM1(Y∞)

PM2(Y∞)
I{n2 ≤ N}

]
≥(1− 2α)Nβ > 0

Therefore, the regret for M2 is for T large enough EM2R(T) ≥ (T −N)β(1− 2α)Nα/2 = O(T). Hence,
for the algorithm to ensure sublinear regret for M2, it has to play the suboptimal action for M1 infinitely
often with probability 1. This however implies that the algorithm cannot satisfy any finite PAC bound for
accuracy ε < α/2.

54

4.6.2 Proof of Theorem 22

Proof. PAC Bound to high-probability regret bound: Consider a fixed δ > 0 and PAC bound with
FPAC = Θ(1/ε2). Then there is a C > 0 such that the following algorithm satisfies the PAC bound. The
algorithm uses the worst possible policy with optimality gap H in all episodes on some event E and in the
first C/ε2 episodes on the complimentary event EC . For the remaining episodes on EC it follows a policy
with optimality gap ε. The probability of E is δ. The regret of the algorithm on E is R(T) = TH and on
EC it is R(T) = min{T,C/ε2}H + min{T − C/ε2, 0}ε. For T ≥ C/ε2, on any event the regret of this
algorithm is at least

R(T) =
CH

ε2
+

(
T − C

ε2

)
ε = Tε+

C(H − ε)
ε2

. (4.8)

The quantity

R(T)

T 2/3
=
C(H − ε)
T 2/3ε2

+ εT 1/3

takes its minimum at T = C(H−ε)
ε3

with a positive value and hence R(T) = Ω(T 2/3). Therefore a PAC
bound with rate 1/ε2 implies at best a high-probability regret bound of order O(T 2/3) and is only tight at
T = Θ(1/ε3). Furthermore, by looking at Equation (4.8), we see that for any fixed ε, there is an algorithm
that has uniform high-probability regret that is Ω(T).

PAC Bound to uniform high-probability regret bound: Consider a fixed δ > 0 and ε > 0 and
a PAC bound FPAC that evaluates to some value N for parameter ε. The algorithm uses the worst
possible policy with optimality gap H in all episodes on some event E and in the first N episodes on
the complimentary event EC . For the remaining episodes on EC it follows a policy with optimality
gap ε. The probability of E is δ. The regret of the algorithm on E is R(T) = TH and on EC it is
R(T) = min{T,N}H + min{T −N, 0}ε. For T ≥ N , on any event the regret of this algorithm is at least

R(T) = NH + (T −N) ε = Tε+H(T −N) = Ω(T).

Uniform high-probability regret bound to PAC bound: Consider an MDP such that at least one
suboptimal policy exists with optimality gap ε > 0. Further let L(T) be a nondecreasing function with
FUHPR(T) ≥ L(T) and L(T) → ∞ as T → ∞. Then the algorithm plays the optimal policy except for
episodes k where bL(k − 1)/εc 6= bL(k)/εc. This algorithm satisfies the regret bound but makes infinitely
many ε/2-mistakes with probability 1.

Uniform high-probability regret bound to expected regret bound: Consider an MDP such that at
least one suboptimal policy exists with optimality gap ε > 0. Consider an algorithm that with probability
δ always plays the suboptimal policy and with probability 1 − δ always plays the optimal policy. This
algorithm satisfies the uniform high-probability regret bound but suffers regret ER(T) = δεT = Ω(T).

4.6.3 Proof of Theorem 23

Proof. Convergence to optimal policies: The convergence to the set of optimal policies follows directly
by using the definition of limits on the ∆k sequence for each outcome in the high-probability event where
the bound holds.

55

Uniform PAC Bound

Number of Episodes

Optimality Gap

Figure 4.3: Relation of PAC-bound and Regret; The area of the shaded regions are a bound on the regret
after T episodes.

(ε, δ)-PAC: Due to sub-additivity of probabilities, we have

P
(
Nε > FPAC

(
1

ε
, log

1

δ

))
≤ P

(⋃
ε′

{
Nε′ > FPAC

(
1

ε′
, log

1

δ

)})

=P
(
∃ε′ : Nε′ > FPAC

(
1

ε′
, log

1

δ

))
≤ δ.

High-Probability Regret Bound: This part is proved separately in Theorem 25 below.

Theorem 25 (Uniform-PAC to Regret Conversion Theorem). Assume on some event E an algorithm
follows for all ε an ε-optimal policy πk, i.e., ∆k ≤ ε, on all but at most

C1

ε

(
ln
C3

ε

)k
+
C2

ε2

(
ln
C3

ε

)2k

episodes where C1 ≥ C2 ≥ 2 and C3 ≥ max{H, e} and C1, C2, C3 do not depend on ε . Then this
algorithm has on this event a regret of

R(T) ≤ (
√
C2T + C1) polylog(T,C3, C1) = O(

√
C2T polylog(T,C3, C1, H))

for all number of episodes T .

Proof. The mistake bound g(ε) = C1
ε

(
ln C3

ε

)k
+ C2

ε2

(
ln C3

ε

)2k ≤ T is monotonically decreasing for
ε ∈ (0, H]. For a given T large enough, we can therefore find an εmin ∈ (0, H] such that g(ε) ≤ T for all
ε ∈ (εmin, H]. The regret R(T) of the algorithm can then be bounded as follows

R(T) ≤ Tεmin +

∫ H

εmin

g(ε)dε.

This bound assumes the worst case where first the algorithm makes the worst mistakes possible with regret
H and subsequently less and less severe mistakes controlled by the mistake bound. For a better intuition,
see Figure 4.3.

We first find a suitable εmin. Define y = 1
ε

(
ln C3

ε

)k
then since g is monotonically decreasing, it is

sufficient to find a ε with g(ε) ≤ T . That is equivalent to C1y + C2y
2 ≤ T for which

1

ε

(
ln
C3

ε

)k
= y ≤ C1

2C2
+

√
C2

1 + 4TC2

2C2
=: a

56

is sufficient. We set now

εmin =
ln(C3a)k

a
=

2C2

C1 +
√
C2

1 + 4TC2

(
ln

(C1 +
√
C2

1 + 4TC2)C3

2C2

)k
which is a valid choice as

1

εmin

(
ln

C3

εmin

)k
=

a

ln(C3a)k

(
ln

C3a

ln(C3a)k

)k
=

a

ln(C3a)k
(ln(C3a)− k ln ln(C3a))k

≤ a

ln(C3a)k
(ln(C3a))k = a.

We now first bound the regret further as

R(T) ≤Tεmin +

∫ H

εmin

g(ε)dε ≤ Tεmin + C1

(
ln

C3

εmin

)k ∫ H

εmin

1

ε
dε+ C2

(
ln

C3

εmin

)2k ∫ H

εmin

1

ε2
dε

=Tεmin + C1

(
ln

C3

εmin

)k
ln

H

εmin
+ C2

(
ln

C3

εmin

)2k [1

εmin
− 1

H

]
and then use the choice of εmin from above to look at each of the terms in this bound individually. In the
following bounds we extensively use the fact ln(a+ b) ≤ ln(a) + ln(b) = ln(ab) for all a, b ≥ 2 and that√
a+ b ≤

√
a+
√
b which holds for all a, b ≥ 0.

Tεmin =
2TC2

C1 +
√
C2

1 + 4TC2

(
ln
C3(C1 +

√
C2

1 + 4TC2)

2C2

)k

≤ 2TC2√
4TC2

(
lnC3 + lnC1 + lnC1 + ln

2
√
TC2

2C2

)k
≤
√
TC2

(
ln(C3C

2
1

√
T)
)k

Now for a C ≥ 0 we first look at

ln
C

εmin
= lnC + ln

C1 +
√
C2

1 + 4TC2

2C2
− k ln ln

C3(C1 +
√
C2

1 + 4TC2)

2C2

≤ lnC + ln
C1 +

√
C2

1 + 4TC2

2C2

≤ lnC + lnC1 + lnC1 + ln

√
4TC2

2C2

≤ ln(CC2
1

√
T)

where the first inequality follows from the fact that C3(C1+
√
C2

1+4TC2)

2C2
≥ C32C1

2C2
≥ e. Hence, we can bound

C1

(
ln

C3

εmin

)k
ln

H

εmin
≤ C1

(
ln(C3C

2
1

√
T)
)k

ln(HC2
1

√
T).

Now since

1

εmin
=
C1 +

√
C2

1 + 4TC2

2C2

(
ln
C3(C1 +

√
C2

1 + 4TC2)

2C2

)−k
≤ C1

C2
+

√
T

C2

57

we get

C2

(
ln

C3

εmin

)2k [1

εmin
− 1

H

]
≤C2

(
ln(C3C

2
1

√
T)
)2k

[
C1

C2
+

√
T

C2

]

≤
(

ln(C3C
2
1

√
T)
)2k [

C1 +
√
TC2

]
.

As a result we can conclude that

R(T) ≤ (
√
C2T + C1) polylog(T,C3, C1, H) = O(

√
C2T polylog(T,C3, C1, H))

4.7 Experimental Details

We generated the MDPs with S = 5, 50, 200 states, A = 3 actions and H = 10 timesteps as follows: The
transition probabilities P (s, a, t) were sampled independently from Dirichlet

(
1
10 , . . .

1
10

)
and the rewards

were all deterministic with their value r(s, a, t) set to 0 with probability 85% and set uniformly at random in
[0, 1] otherwise. This construction results in MDPs that have concentrated but non-deterministic transition
probabilities and sparse rewards.

Since some algorithms have been proposed assuming the rewards r(s, a, t) are known and we aim for a
fair comparison, we assumed for all algorithms that the immediate rewards r(s, a, t) are known and adapted
the algorithms accordingly. For example, in UBEV, the min

{
1, l(s,a,t)

max{1,n(s,a,t)} + φ
}

term was replaced
by the true known rewards r(s, a, t) and the δ parameter in φ was scaled by 9/7 accordingly since the
concentration result for immediate rewards is not necessary in this case. We used δ = 1

10 for all algorithms
and ε = 1

10 if they require to know ε beforehand.
We adapted MoRMax, UCRL2, UCFH, MBIE, MedianPAC, Delayed Q-Learning and OIM to the

episodic MDP setting with time-dependent transition dynamics by using allowing them to learn time-
dependent dynamics and use finite-horizon planning. We did adapt the confidence intervals and but did
not re-derive the constants for each algorithm. When in doubt we opted for smaller constants typically
resulting better performance of the competitors. We further replaced the range of the value function O(H)
by the observed range of the optimistic next state values in the confidence bounds. We also reduced the
number of episodes used in the delays by a factor of 1

1000 for MoRMax and Delayed Q-Learning and by
10−6 for UCFH because they would otherwise not have performed a single policy update even for S = 5
within the 10 million episodes we considered. This scaling violates their theoretical guarantees but at least
shows that the methods work in principle.

The performance reported in Figure 4.2 are the expected return of the current policy of each algorithm
averaged over 1000 episodes. The figure shows a single run of the same randomly generated MDP but the
results are representative. We reran this experiments with different random seeds and consistently obtained
qualitatively similar results.

Source code for the experiments including concise but efficient implementations of the algorithms is
available at https://github.com/chrodan/FiniteEpisodicRL.jl.

4.8 PAC Lower Bound

Theorem 26. There exist positive constants c, δ0 > 0, ε0 > 0 such that for every ε ∈ (0, ε0), S ≥ 4, A ≥ 2

and for every algorithm A that and n ≤ cASH3

ε2
there is a fixed-horizon episodic MDP Mhard with time-

dependent transition probabilities and S states and A actions so that returning an ε-optimal policy after n

58

https://github.com/chrodan/FiniteEpisodicRL.jl

episodes is at most 1−δ0. That implies that no algorithm can have a PAC guarantee better than Ω
(
ASH3

ε2

)
for sufficiently small ε.

Note that this lower bound on the sample complexity of any method in episodic MDPs with time-
dependent dynamics applies to the arbitrary but fixed ε PAC bound and therefore immediately to the stronger
uniform-PAC bounds. This theorem can be proved in the same way as Theorem 5 by Jiang, Krishnamurthy,
et al. (2017), which itself is a standard construction involving a careful layering of difficult instances of
the multi-armed bandit problem.3 For simplicity, we omitted the dependency on the failure probability δ,
but using the techniques in the proof of Theorem 26 by Strehl, Li, and Littman (2009), a lower bound of
order Ω

(
ASH3

ε2
log(SA/δ)

)
can be obtained. The lower bound shows for small ε the sample complexity

of UBEV given in Theorem 24 is optimal except for a factor of H and logarithmic terms.

4.9 Planning Problem of UBEV

Lemma 27 (Planning Problem). The policy update in Lines 3–9 of Algorithm 3 finds an optimal solution
to the optimization problem

max
P ′,V ′,π′,r′

Es∼p0 [V ′1(s)]

∀s ∈ S, a ∈A, t ∈ [H] :

V ′H+1 =0, P ′(s, a, t) ∈ ∆S , r′(s, a, t) ∈ [0, 1]

V ′t (s) =r′(s, π′(s, t), t) + Es′∼P ′(s,π′(s,t),t)[V ′t+1]

|(P ′(s, a, t)− P̂k(s, a, t))>V ′t+1| ≤ φ(s, a, t)(H − t)
|r′(s, a, t)− r̂k(s, a, t)| ≤ φ(s, a, t)

where φ(s, a, t) =
√

2 llnp(n(s,a,t))+ln(18SAH/δ)
n(s,a,t) is a confidence bound and P̂k(s′|s, a, t) = m(s′,s,a,t)

n(s,a,t) are
the empirical transition probabilities and r̂k(s, a, t) = l(s, a, t)/n(s, a, t) the empirical average rewards.

Proof. Since ṼH+1(·) is initialized with 0 and never changed, we immediately get that it is an optimal
value for V ′H+1(·) which is constrained to be 0. Consider now a single time step t and assume V ′t+1 are
fixed to the optimal values Ṽt+1. Plugging in the computation of Q(a) into the computation of Ṽt(s), we
get

Ṽt(s) = max
a

Q(a) = max
a∈A

[
min {1, r̂(s, a, t) + φ(s, a, t)}

+ min
{

max Ṽt+1, I{n(s, a, t) > 0}(P̂ (s, a, t)>Ṽt+1) + φ(s, a, t)(H − t)
}]

using the convention that r̂(s, a, t) = 0 if n(s, a, t) = 0. Assuming that V ′t+1 = Ṽt+1, and that our goal for

3We here only use H/2 timesteps for bandits and the remaining H/2 time steps to accumulate a reward of O(H) for each
bandit

59

now is to maximize Ṽt(s), this can be rewritten as

max
P ′(s,a,t),r′(s,a,t)

Ṽt(s) = max
P ′(s,a,t),r′(s,a,t),π′(s,t)

[
r′(s, π′(s, t), t) + P ′(s, π′(s, t), t)>Ṽt+1

]
s.t. ∀a ∈ A : r′(s, a, t) ∈ [0, 1], P ′(s, a, t) ∈ ∆S

|(P ′(s, a, t)− P̂k(s, a, t))>V ′t+1| ≤φ(s, a, t)(H − t)
|r′(s, a, t)− r̂k(s, a, t)| ≤φ(s, a, t)

since in this problem either P ′(s, π′(s, t), t)>Ṽt+1 = P̂ (s, π′(s, t), t)>Ṽt+1 +φ(s, a, t)(H− t) if that does
not violate P ′(s, π′(s, t), t)>Ṽt+1 ≤ max Ṽt+1 and otherwise P ′(s′, s, π′(s, t), t) = 1 for one state s′ with
Ṽt+1(s′) = max Ṽt+1. Similarly, either r′(s, π′(s, t), t) = r̂(s, π′(s, t), t) + φ(s, π′(s, t), t) if that does
not violate r′(s, π′(s, t), t) ≤ 1 or r′(s, π′(s, t), t) = 1 otherwise. Using induction for t = H,H − 1 . . . 1,
we see that UBEV computes an optimal solution to

max
P ′,V ′,π′,r′

V ′1(s̃)

∀s ∈ S, a ∈A, t ∈ [H] :

V ′H+1 =0, P ′(s, a, t) ∈ ∆S , r′(s, a, t) ∈ [0, 1]

V ′t (s) =r′(s, π′(s, t), t) + Es′∼P ′(s,π′(s,t),t)[V ′t+1]

|(P ′(s, a, t)− P̂k(s, a, t))>V ′t+1| ≤ φ(s, a, t)(H − t)
|r′(s, a, t)− r̂k(s, a, t)| ≤ φ(s, a, t)

for any fixed s̃. The intersection of all optimal solutions to this problem for all s̃ ∈ S are also an optimal
solution to

max
P ′,V ′,π′,r′

p>0 V
′

1

∀s ∈ S, a ∈A, t ∈ [H] :

V ′H+1 =0, P ′(s, a, t) ∈ ∆S , r′(s, a, t) ∈ [0, 1]

V ′t (s) =r′(s, π′(s, t), t) + Es′∼P ′(s,π′(s,t),t)[V ′t+1]

|(P ′(s, a, t)− P̂k(s, a, t))>V ′t+1| ≤ φ(s, a, t)(H − t)
|r′(s, a, t)− r̂k(s, a, t)| ≤ φ(s, a, t).

Hence, UBEV computes an optimal solution to this problem.

4.10 Details of PAC Analysis

In the analysis, we denote the value of n(·, t) after the planning in iteration k as ntk(·). We further denote
by P (s′|s, a, t) the probability of sampling state s′ as st+1 when st = s, at = a. With slight abuse of
notation, P (s, a, t) ∈ [0, 1]S denotes the probability vector of P (·|s, a, t). We further use P̃k(s′|s, a, t) as
conditional probability of st+1 = s′ given st = s, at = a but in the optimistic MDP M̃ computed in the

60

optimistic planning steps in iteration k. We also use the following definitions:

wmin =w′min =
εcε
H2S

cε =
1

21e
Ltk ={(s, a) ∈ S ×A : wtk(s, a) ≥ wmin}

llnp(x) = ln(ln(max{x, e}))
rng(x) = max(x)−min(x)

δ′ =
δ

8

In the following, we provide the formal proof for Theorem 24 and then present all necessary lemmas:

4.10.1 Proof of Theorem 24

Proof of Theorem 24. Corollary 32 ensures that the failure event has probability at most δ. Outside the
failure event Lemma 34 ensures that all but at most S

2AH3

ε polylog(A,S,H, 1/ε, 1/δ) episodes are nice. Fi-
nally, Lemma 39 shows that all nice episodes except at most

(
S + H

ε

)
SAH3

ε polylog(A,S,H, 1/ε, 1/δ) are
ε-optimal. Furthermore, Lemma 38 shows that all nice episodes except at most S

2AH4

ε2
polylog(A,S,H, 1/ε, 1/δ)

are ε-optimal.

4.10.2 Failure Events and Their Probabilities

In this section, we define a failure event F in which we cannot guarantee the performance of UBEV. We
then show that this event F only occurs with low probability. All our arguments are based on general
uniform concentration of measure statements that we prove in Section 4.11. In the following we argue how
the apply in our setting and finally combine all concentration results to get P(F) ≤ δ. The failure event is
defined as

F =
⋃
k

[
FNk ∪ FPk ∪ F Vk ∪ FL1

k ∪ FRk
]

where

FNk =

{
∃s, a, t : ntk(s, a) <

1

2

∑
i<k

wti(s, a)− ln
SAH

δ′

}

F Vk =

{
∃s, a, t : |(P̂k(s, a, t)− P (s, a, t))>V ?

t+1| ≥

√
rng(V ?

t+1)2

ntk(s, a)

(
2 llnp(ntk(s, a)) + ln

3SAH

δ′

)}

FPk =

{
∃s, s′, a, t : |P̂k(s′|s, a, t)− P (s′|s, a, t)| ≥

√
2P (s′|s, a, t)
ntk(s, a)

(
2 llnp(ntk(s, a)) + ln

3S2AH

δ′

)

+
1

ntk(s, a)

(
2 llnp(ntk(s, a)) + ln

3S2AH

δ′

)}
61

FL1
k =

{
∃s, a, t : ‖P̂k(s, a, t)− P (s, a, t)‖1 ≥

√
4

ntk(s, a)

(
2 llnp(ntk(s, a)) + ln

3SAH(2S − 2)

δ′

)}

FRk =

{
∃s, a, t : |r̂k(s, a, t)− r(s, a, t)| ≥

√
1

ntk(s, a)

(
2 llnp(ntk(s, a)) + ln

3SAH

δ′

)}
.

We now bound the probability of each type of failure event individually:
Corollary 28. For any δ′ > 0, it holds that P

(⋃∞
k=1 F

V
k

)
≤ 2δ′ and P

(⋃∞
k=1 F

R
k

)
≤ 2δ′

Proof. Consider a fix s ∈ S, a ∈ A, t ∈ [H] and denote Fk the sigma-field induced by the first k − 1
episodes and the k-th episode up to st and at but not st+1. Define τi to be the index of the episode where
(s, a) was observed at time t the ith time. Note that τi are stopping times with respect to Fi. Define
now the filtration Gi = Fτi = {A ∈ F∞ : A ∩ {τi ≤ t} ∈ Ft ∀ t ≥ 0} and Xk = (V ?

t+1(s′k) −
P (s, a, t)>V ?

t+1)I{τk <∞} where s′i is the value of st+1 in episode τi (or arbitrary, if τi =∞).
By the Markov property of the MDP, we have thatXi is a martingale difference sequence with respect to

the filtration Gi. Further, since E[Xi|Gi−1] = 0 and |Xi| ∈ [0, rng(V ?
t+1)], Xi conditionally rng(V ?

t+1)/2-
subgaussian due to Hoeffding’s Lemma, i.e., satisfies E[exp(λXi)|Gi−1] ≤ exp(λ2 rng(V ?

t+1)2/2).
We can therefore apply Lemma 46 and conclude that

P

(
∃k : |(P̂k(s, a, t)− P (s, a, t))>V ?

t+1| ≥

√
rng(V ?

t+1)2

ntk(s, a)

(
2 llnp(ntk(s, a)) + ln

3

δ′

))
≤ 2δ′ .

Analogously

P

(
∃k : |r̂k(s, a, t)− r(s, a, t)| ≥

√
1

ntk(s, a)

(
2 llnp(ntk(s, a)) + ln

3

δ′

))
≤ 2δ′ .

Applying the union bound over all s ∈ S, a ∈ A and t ∈ [H], we obtain the desired statement for F V . In
complete analogy using the same filtration, we can show the statement for FR.

Corollary 29. For any δ′ > 0, it holds that P
(⋃∞

k=1 F
P
k

)
≤ 2δ′.

Proof. Consider first a fix s′, s ∈ S , t ∈ [H] and a ∈ A. Let K denote the number of times the triple s, a, t
was encountered in total during the run of the algorithm. Define the random sequence Xi as follows. For
i ≤ K, let Xi be the indicator of whether s′ was the next state when s, a, t was encountered the ith time
and for i > K, let Xi ∼ Bernoulli(P (s′|s, a, t)) be drawn i.i.d. By construction this is a sequence of i.i.d.
Bernoulli random variables with mean P (s′|s, a, t). Further the event

⋃
k

{∣∣∣P̂k(s′|s, a, t)− P (s′|s, a, t)
∣∣∣ ≥√2P (s′|s, a, t)

ntk(s, a)

(
2 llnp(n(s, a, t)) + ln

3S2AH

δ′

)

+
1

ntk(s, a)

(
2 llnp(ntk(s, a)) + ln

3S2AH

δ′

)}
is contained in the event⋃

i

{
|µ̂i − µ| ≥

√
2µ

i

(
2 llnp(i) + ln

3

δ′

)
+

1

i

(
2 llnp(i) + ln

3S2AH

δ′

)}

62

whose probability can be bounded by 2δ′/S2/A/H using Lemma 47. The statement now follows by
applying the union bound.

Corollary 30. For any δ′ > 0, it holds that P
(⋃∞

k=1 F
L1
k

)
≤ δ′

Proof. Using the same argument as in the proof of Corollary 29 the statement follows from Lemma 48.

Corollary 31. It holds that

P

(⋃
k

FNk

)
≤ δ′

Proof. Consider a fix s ∈ S, a ∈ A, t ∈ [H]. We define Fk to be the sigma-field induced by the first k − 1
episodes and Xk as the indicator whether s, a, t was observed in episode k. The probability wtk(s, a) of
whether Xk = 1 is Fk measurable and hence we can apply Lemma 49 with W = ln SAH

δ′ and obtain that
P
(⋃

k F
N
k

)
≤ δ′ after applying the union bound.

Corollary 32. The total failure probability of the algorithm is bounded by P (F) ≤ 8δ′ = δ.

Proof. Statement follows directly from Corollary 28, Corollary 29, Corollary 30, Corollary 31 and the
union bound.

4.10.3 Nice Episodes

We now define the notion of nice . In nice episodes, all states either have low probability of occuring or the
sum of probability of occuring in the previous episodes is large enough so that outside the failure event we
can guarantee that

ntk(s, a) ≥ 1

4

∑
i<k

wti(s, a).

This allows us to then bound the number of nice episodes by the number of times terms of the form

H∑
t=1

∑
s,a∈Ltk

wtk(s, a)

√
llnp(ntk(s, a)) +D

ntk(s, a)

can exceed a chosen threshold (see Lemma 35 below). In the next section, we will bound the optimality gap
of an episode by terms of such form and use the results derived here to bound the number of nice episodes
where the algorithm can follow a ε-suboptimal policy. Together with a bound on the number of non-nice
episodes, we obtain the sample complexity of UBEV shown in Theorem 24.
Definition 2 (Nice Episodes). An episode k is nice if and only if for all s ∈ S, a ∈ A and t ∈ [H] the
following condition holds:

wtk(s, a) ≤ wmin ∨ 1

4

∑
i<k

wti(s, a) ≥ ln
SAH

δ′
.

We denote the set of all nice episodes by N ⊆ N.

63

Lemma 33 (Properties of nice episodes). If an episode k is nice, i.e., k ∈ N , then on F c (outside the
failure event) for all s ∈ S, a ∈ A and t ∈ [H] the following statement holds:

wtk(s, a) ≤ wmin ∨ ntk(s, a) ≥ 1

4

∑
i<k

wti(s, a).

Proof. Since we consider the event (FNk)
c, it holds for all s, a, t triples with wtk(s, a) > wmin

ntk(s, a) ≥ 1

2

∑
i<k

wti(s, a)− ln
SAH

δ′
≥ 1

4

∑
i<k

wti(s, a)

for k ∈ N .

Lemma 34 (Number of non-nice episodes). On the good event F c, the number episodes that are not nice
is at most

84eS2AH3

ε
ln
SAH

δ′
.

Proof. If an episode k is not nice, then there is a (s, a, t) with wtk(s, a) > wmin and
∑

i<k wti(s, a) <
4 ln SAH

δ′ . Since the sum on the left-hand side of this inequality increases by at least wmin when this
happens and the right hand side stays constant, this situation can occur at most

4SAH

wmin
ln
SAH

δ′
=

84eS2AH3

ε
ln
SAH

δ′

times in total.

Lemma 35 (Main Rate Lemma). Let r ≥ 1 fix and C > 0 which can depend polynomially on the relevant
quantities and ε′ > 0 and let D ≥ 1 which can depend poly-logarithmically on the relevant quantities.
Then ∑

t

∑
s,a∈Ltk

wtk(s, a)

(
C(llnp(ntk(s, a)) +D)

ntk(s, a)

)1/r

≤ ε′

on all but at most

8CASHr

ε′r
polylog(S,A,H, δ−1, ε′−1).

nice episodes.

Proof. Define

∆k =
∑
t

∑
s,a∈Ltk

wtk(s, a)

(
C(llnp(ntk(s, a)) +D)

ntk(s, a)

)1/r

=
∑
t

∑
s,a∈Ltk

wtk(s, a)1− 1
r

(
wtk(s, a)

C(llnp(ntk(s, a)) +D)

ntk(s, a)

)1/r

.

64

We first bound using Hölder’s inequality

∆k ≤

∑
t

∑
s,a∈Ltk

CHr−1wtk(s, a)(llnp(ntk(s, a)) +D)

ntk(s, a)

 1
r

.

Using the property in Lemma 33 of nice episodes as well as the fact thatwtk(s, a) ≤ 1 and
∑

i<k wti(s, a) ≥
4 ln SAH

δ′ ≥ 4 ln(2) ≥ 2, we bound

ntk(s, a) ≥ 1

4

∑
i<k

wti(s, a) ≥ 1

8

∑
i≤k

wti(s, a).

The function llnp(x)+D
x is monotonically decreasing in x ≥ 0 since D ≥ 1 (see Lemma 37). This allows us

to bound

∆r
k ≤

∑
t

∑
s,a∈Ltk

CHr−1wtk(s, a)(llnp(ntk(s, a)) +D)

ntk(s, a)

≤8CHr−1
∑
t

∑
s,a∈Ltk

wtk(s, a)
(

llnp
(

1
8

∑
i≤k wti(s, a)

)
+D

)
∑

i≤k wti(s, a)

≤8CHr−1
∑
t

∑
s,a∈Ltk

wtk(s, a)
(

llnp
(∑

i≤k wti(s, a)
)

+D
)

∑
i≤k wti(s, a)

.

Assume now ∆k > ε′. In this case the right-hand side of the inequality above is also larger than ε′r and
there is at least one (s, a, t) with wtk(s, a) > wmin and

8CSAHr
(

llnp
(∑

i≤k wti(s, a)
)

+D
)

∑
i≤k wti(s, a)

>ε′r

⇔
llnp

(∑
i≤k wti(s, a)

)
+D∑

i≤k wti(s, a)
>

ε′r

8CSAHr
.

Let us denote C ′ = 8CASHr

ε′r . Since llnp(x)+D
x is monotonically decreasing and x = C ′2 + 3C ′D satisfies

llnp(x)+D
x ≤

√
x+D
x ≤ 1

C′ , we know that if
∑

i≤k wti(s, a) ≥ C ′2 + 3C ′D then the above condition cannot
be satisfied for s, a, t. Since each time the condition is satisfied, it holds that wtk(s, a) > wmin and so∑

i≤k wti(s, a) increases by at least wmin, it can happen at most

m ≤ ASH(C ′2 + 3C ′D)

wmin

times that ∆k > ε′. Define K = {k : ∆k > ε′} ∩N and we know that |K| ≤ m. Now we consider the
sum

∑
k∈K

∆r
k ≤

∑
k∈K

8CHr−1
∑
t

∑
s,a∈Ltk

wtk(s, a)
(

llnp
(∑

i≤k wti(s, a)
)

+D
)

∑
i≤k wti(s, a)

≤8CHr−1
(
llnp

(
C ′2 + 3C ′D

)
+D

)∑
t

∑
s,a∈Ltk

∑
k∈K

wtk(s, a)∑
i≤k wti(s, a)I{wti(s, a) ≥ wmin}

65

For every (s, a, t), we consider the sequence of wti(s, a) ∈ [wmin, 1] with i ∈ I = {i ∈ N : wti(s, a) ≥
wmin} and apply Lemma 36. This yields that∑

k∈K

wtk(s, a)∑
i≤k wti(s, a)I{wti(s, a) ≥ wmin}

≤ 1 + ln(m/wmin) = ln

(
me

wmin

)
and hence ∑

k∈K
∆r
k ≤8CASHr ln

(
me

wmin

)(
llnp

(
C ′2 + 3C ′D

)
+D

)
Since each element in K has to contribute at least ε′r to this bound, we can conclude that∑

k∈N
I{∆k ≥ ε′} ≤

∑
k∈K

I{∆k ≥ ε′} ≤ |K| ≤
8CASHr

ε′r
ln

(
me

wmin

)(
llnp

(
C ′2 + 3C ′D

)
+D

)
.

Since ln
(

me
wmin

) (
llnp

(
C ′2 + 3C ′D

)
+D

)
is polylog(S,A,H, δ−1, ε′−1), the proof is complete.

Lemma 36. Let ai be a sequence taking values in [amin, amax] with amax ≥ amin > 0 and m > 0, then
m∑
k=1

ak∑k
i=1 ai

≤ ln

(
meamax

amin

)
.

Proof. Let f be a step-function taking value ai on [i − 1, i) for all i. We have F (t) :=
∫ t

0 f(x)dx =∑t
i=1 ai. By the fundamental theorem of Calculus, we can bound

m∑
k=1

ak∑k
i=1 ai

=
a1

a1
+

∫ m

1

f(x)

F (x)− F (0)
dx = 1 + lnF (m)− lnF (1)

≤1 + ln(mamax)− ln amin = ln

(
meamax

amin

)
,

where the inequality follows from a1 ≥ amin and
∑m

i=1 ai ≤ m.

Lemma 37 (Properties of llnp). The following properties hold:
1. llnp is continuous and nondecreasing.
2. f(x) = llnp(nx)+D

x with n ≥ 0 and D ≥ 1 is monotonically decreasing on R+.
3. llnp(xy) ≤ llnp(x) + llnp(y) + 1 for all x, y ≥ 0.

Proof. 1. For x ≤ e we have llnp(x) = 0 and for x ≥ e we have llnp(x) = ln(ln(x)) which is
continuous and monotonically increasing and limx↘e ln(ln(x)) = 0.

2. The function llnp is continuous as well as 1/x on R+ and therefore so it f . Further, f is differentiable
except at x = e/n. For x ∈ [0, e/n), we have f(x) = D/x with derivative −D/x2 < 0. Hence
f is monotonically decreasing on x ∈ [0, e/n). For x > e/n, we have f(x) = ln(ln(nx))+D

x with
derivative

−D + ln(ln(nx))

x2
+

1

x2 ln(nx)
=

1− ln(nx)(D + ln(ln(nx)))

x2 ln(nx)
.

The denominator is always positive in this range so f is monotonically decreasing if and only if
ln(nx)(D − ln(ln(nx))) ≥ 1. Using D ≥ 1, we have ln(nx)(D + ln(ln(nx))) ≥ 1(1 + 0) = 1.

66

3. First note that for xy ≤ ee we have llnp(xy) ≤ 1 ≤ llnp(x)+ llnp(y)+1 and therfore the statement
holds for x, y ≤ e.
Then consider the case that x, y ≥ e and llnp(x) + llnp(y) + 1 − llnp(xy) = ln lnx + ln ln y +
1 − ln(ln(x) + ln(y)) = − ln(a + b) + 1 + ln(a) + ln(b) where a = lnx ≥ 1 and b = ln y ≥ 1.
The function g(a, b) = − ln(a + b) + 1 + ln(a) + ln(b) is continuous and differentiable with
∂g
∂a = b

a(a+b) > 0 and ∂g
∂b = a

b(a+b) > 0. Therefore, g attains its minimum on [1,∞) × [1,∞) at
a = 1, b = 1. Since g(1, 1) = 1− ln(2) ≥ 0, the statement also holds for x, y ≥ e.
Finally consider the case where x ≤ e ≤ y. Then llnp(xy) ≤ llnp(ey) = ln(1 + ln y) ≤
ln ln y + 1 ≤ llnp(x) + llnp(y) + 1. Due to symmetry this also holds for y ≤ e ≤ x.

4.10.4 Decomposition of Optimality Gap

In this section we decompose the optimality gap and then bound each term individually. Finally, the rate
lemma presented in the previous section is used to determine a bound on the number of nice episodes where
the optimality gap can be larger than ε. The decomposition in the following lemma is a simple approach to
bound the optimality gap and eventually lead to the second term in the min in Theorem 24.
Lemma 38 (Optimality Gap Bound On Nice Episodes). On the good event F c it holds that V ?

1 (s0) −
V πk

1 (s0) ≤ ε on all nice episodes k ∈ N except at most

S2AH4

ε2
polylog(A,S,H, 1/ε, 1/δ)

episodes.

Proof. Using optimism of the algorithm shown in Lemma 45, we can bound

V ?
1 (s0)− V πk

1 (s0)

≤|Ṽ πk
1 (s0)− V πk

1 (s0)|

≤
H∑
t=1

∑
s,a

wtk(s, a)|(P̃k(s, a, t)− P (s, a, t))>Ṽ πk
t+1|+

H∑
t=1

∑
s,a

wtk(s, a)|r̃k(s, a, t)− r(s, a, t)|

≤
H∑
t=1

∑
s,a∈Ltk

wtk(s, a)|(P̃k(s, a, t)− P (s, a, t))>Ṽ πk
t+1|+

H∑
t=1

∑
s,a∈Ltk

wtk(s, a)|r̃k(s, a, t)− r(s, a, t)|

+
H∑
t=1

∑
s,a/∈Ltk

wtk(s, a)|(P̃k(s, a, t)− P (s, a, t))>Ṽ πk
t+1|+

H∑
t=1

∑
s,a/∈Ltk

wtk(s, a)|r̃k(s, a, t)− r(s, a, t)|

≤
H∑
t=1

∑
s,a/∈Ltk

Hwmin +

H∑
t=1

∑
s,a∈Ltk

wtk(s, a)

[
|(P̃k(s, a, t)− P̂k(s, a, t))>Ṽ πk

t+1|

+ |(P̂k(s, a, t)− P (s, a, t))>Ṽ πk
t+1|+ |r̃k(s, a, t)− r(s, a, t)|

]
The first term is bounded by cεε ≤ ε

3 . We now can use Lemma 40, Lemma 41 to bound the other terms by

H∑
t=1

∑
s,a∈Ltk

wtk(s, a)

√
8(H +H

√
S + 2)2

ntk(s, a)

(
llnp(ntk(s, a)) +

1

2
ln

6SAH

δ

′)
.

67

We can then apply Lemma 35 with r = 2, C = 8(H+H
√
S+2)2, D = 1

2 ln 6SAH
δ′ (≥ 1 for any nontrivial

setting) and ε′ = 2ε/3 to bound this term by 2ε
3 on all nice episodes except at most

64(H +
√
SH + 2)2ASH232

4ε2
polylog(A,S,H, 1/ε, 1/δ)

≤144(4 + 3H2 + 4SH2)ASH2

ε2
polylog(A,S,H, 1/ε, 1/δ) =

S2AH4

ε2
polylog(A,S,H, 1/ε, 1/δ)

Hence V ?
1 (s0)− V πk

1 (s0) ≤ ε holds on all nice episodes except those.

The lemma below is a refined version of the bound above which eventually leads to the first bound in
min in Theorem 24.
Lemma 39 (Optimality Gap Bound Using Recursion). On the good event F c it holds that V ?

1 (s0) −
V πk

1 (s0) ≤ ε on all nice episodes k ∈ N except at most(
S2AH3

ε
+
SAH4

ε2

)
polylog(A,S,H, 1/ε, 1/δ)

episodes.

Proof. We first consider the suboptimality in an arbitrary state s ∈ S at time t ∈ [H]. With a = πk(s, t) and

shorthand ψtk(s, a) =

√
1

ntk(s,a)

(
2 llnp((ntk(s, a)) + ln 18S2AH

δ′

)
and ψ′tk(s, a) = min{ψtk(s, a), 1} ,

we can bound

V ?
t (s)− V πk

t (s)

Using optimism (Lemma 45):

≤Ṽ πk
t (s)− V πk

t (s) = Q̃πkt (s, a)−Qπkt (s, a)

=Q̃πkt (s, a)− P̂k(s, a, t)>Ṽ πk
t+1 − r̂(s, a, t)

+ r̂(s, a, t) + P̂k(s, a, t)
>Ṽ πk

t+1 − P (s, a, t)>V πk
t+1 − r(s, a, t)

The expression Q̃πkt (s, a) − P̂k(s, a, t)>Ṽ πk
t+1 − r̂(s, a, t) is the amount of optimism and by Lemma 27

upper-bounded by (H + 1− t)φk(s, a, t) ≤ (H + 1− t)ψtk(s, a) and (H + 1− t):

≤(H + 1− t)ψ′tk(s, a) + r̂(s, a, t)− r(s, a, t) + P̂k(s, a, t)
>Ṽ πk

t+1 − P (s, a, t)>V πk
t+1

Using now Lemma 41 and we can bound r̂(s, a, t)− r(s, a, t) ≤ min{
√

2ψtk(s, a), 1} and get

≤(H + 1− t+
√

2)ψ′tk(s, a) + P̂k(s, a, t)
>Ṽ πk

t+1 − P (s, a, t)>V πk
t+1

=(H + 1− t+
√

2)ψ′tk(s, a) + (P̂k − P)(s, a, t)>Ṽ πk
t+1 + P (s, a, t)>(Ṽ πk

t+1 − V
πk
t+1)

=(H + 1− t+
√

2)ψ′tk(s, a) + (P̂k − P)(s, a, t)>V ?
t+1

+ (P̂k − P)(s, a, t)>(Ṽ πk
t+1 − V

?
t+1) + P (s, a, t)>(Ṽ πk

t+1 − V
πk
t+1)

Applying Lemma 42:

≤(3H + 1− t+
√

2)ψ′tk(s, a) + (P̂k − P)(s, a, t)>(Ṽ πk
t+1 − V

?
t+1) + P (s, a, t)>(Ṽ πk

t+1 − V
πk
t+1)

≤6Hψ′tk(s, a) + (P̂k − P)(s, a, t)>(Ṽ πk
t+1 − V

?
t+1) + P (s, a, t)>(Ṽ πk

t+1 − V
πk
t+1)

68

Applying the recursive lemma for the lower-order term (Lemma 43), the term (P̂k − P)(s, a, t)>(Ṽ πk
t+1 −

V ?
t+1) can be bounded recursively. Alternatively, it can be bounded by H using the fact that 0 ≤ (Ṽ πk

t+1 −
V ?
t+1) ≤ H and that (P̂k − P) is a difference of probability vectors. This gives :

≤6Hψ′tk(s, a) + min{3H2Sψtk(s, a)2, H}+

(
1 +

1

H

)
P (s, a, t)>(Ṽ πk

t+1 − V
πk
t+1)

We therefore have obtained a recursive bound that we can now roll out for t = 1, . . . H until Ṽ πk
H+1(s)−

V πk
H+1(s) = 0 and get that

V ?
1 (s0)− V πk

1 (s0)

≤
H∑
t=1

(
1 +

1

H

)t−1 ∑
s,a∈S×A

wtk(s, a)
[
6Hψ′tk(s, a) + min{3H2Sψtk(s, a)2, H}

]
≤6He

H∑
t=1

∑
s,a∈S×A

wtk(s, a)ψ′tk(s, a) + e
H∑
t=1

∑
s,a∈S×A

wtk(s, a) min{H, 3H2Sψtk(s, a)2}

Splitting now in (s, a, t) that are likely to be visited or not:

≤7He
H∑
t=1

∑
s,a/∈Ltk

wtk(s, a) +
H∑
t=1

∑
s,a∈Ltk

wtk(s, a)[6Heψtk(s, a) + 3eH2Sψtk(s, a)2]

≤7eSH2wmin + 6He

H∑
t=1

∑
s,a∈Ltk

wtk(s, a)ψtk(s, a) + 3e

H∑
t=1

∑
s,a∈Ltk

wtk(s, a)H2Sψtk(s, a)2

We now apply Lemma 35 with r = 2, C = 2(6He)2, an approproate D and ε′ = ε/3 to bound the second
term by ε

3 on all nice episodes except at most

8
18(6He)2ASH2

ε2
polylog(A,S,H, 1/ε, 1/δ)

≤722e2ASH4

ε2
polylog(A,S,H, 1/ε, 1/δ).

Similarly, we apply Lemma 35 with r = 1, C = 6eH2S, an approproate D and ε′ = ε/3 to bound the
third term by ε

3 on all nice episodes except at most

8
3(6eH2S)ASH

ε
polylog(A,S,H, 1/ε, 1/δ)

≤144eAS2H3

ε
polylog(A,S,H, 1/ε, 1/δ).

Finally, the first term is bounded by 7eSH2wmin = 7ecεε ≤ ε
3 since cε ≤ 1

21e .

Lemma 40 (Algorithm Learns Fast Enough). It holds for all s ∈ S, a ∈ A and t ∈ [H]

|(P̂k(s, a, t)− P̃k(s, a, t))>Ṽ πk
t+1| ≤

√
2H2

ntk(s, a)

(
llnp(ntk(s, a)) +

1

2
ln

3SAH

δ′

)
.

69

Proof. Using the definition of the constraint in the planning step of the algorithm shown in Lemma 27 we
can bound

|(P̂k(s, a, t)− P̃k(s, a, t))>Ṽ πk
t+1| ≤

√
H2

ntk(s, a)

(
2 llnp(ntk(s, a)) + ln

3SAH

δ′

)
.

≤

√
2H2

ntk(s, a)

(
llnp(ntk(s, a)) +

1

2
ln

3SAH

δ′

)
.

Lemma 41 (Basic Decompsition Bound). On the good event F c it holds for all s ∈ S, a ∈ A and t ∈ [H]

|(P̂k(s, a, t)− P (s, a, t))>Ṽ πk
t+1| ≤

√
8H2S

ntk(s, a)

(
llnp(ntk(s, a)) +

1

2
ln

6SAH

δ′

)

|r̃k(s, a, t)− r(s, a, t)| ≤

√
4

ntk(s, a)

(
llnp(ntk(s, a)) +

1

2
ln

3SAH

δ′

)
.

Proof. On the good event (FL1
k)c we have using Hölder’s inequality

|(P̂k(s, a, t)− P (s, a, t))>Ṽ πk
t+1| ≤‖P̂k(s, a, t)− P (s, a, t))‖1‖Ṽ πk

t+1‖∞

≤H

√
4

ntk(s, a)

(
2 llnp(ntk(s, a)) + ln

3SAH(2S − 2)

δ′

)

≤

√
8H2S

ntk(s, a)

(
llnp(ntk(s, a)) +

1

2
ln

6SAH

δ′

)
.

Further, on (FRk)c we have

|r̃k(s, a, t)− r(s, a, t)| ≤|r̃k(s, a, t)− r(s, a, t)|+ |r̃k(s, a, t)− r̂(s, a, t)|

≤2

√
1

ntk(s, a)

(
2 llnp(ntk(s, a)) + ln

3SAH

δ′

)

Lemma 42 (Fixed V Term Confidence Bound). On the good event F c it holds for all s ∈ S, a ∈ A and
t ∈ [H]

|(P̂k(s, a, t)− P (s, a, t))>V ?
t+1| ≤

√
2H2

ntk(s, a)

(
llnpntk(s, a) +

1

2
ln

3SAH

δ′

)

Proof. Since we consider the event (F Vk)c, we can bound

|(P̂k(s, a, t)− P (s, a, t))>V ?
t+1| ≤

√
2H2

ntk(s, a)

(
llnpntk(s, a) +

1

2
ln

3SAH

δ′

)

70

Lemma 43 (Lower Order Term Recursion). On the good event F c it holds for all s ∈ S, a ∈ A and
t ∈ [H]

(P̂k(s, a, t)− P (s, a, t))>(Ṽ πk
t+1 − V

?
t+1) ≤ 1

H
P (s, a, t)>(Ṽ πk

t+1 − V
πk
t+1) + 3H2Sψtk(s, a)2

where

ψtk(s, a) =

√
1

ntk(s, a)

(
2 llnp((ntk(s, a)) + ln

18S2AH

δ′

)
.

Proof. We use the short-hand notation

ψtk(s, a) =

√
1

ntk(s, a)

(
2 llnp((ntk(s, a)) + ln

18S2AH

δ′

)
and apply the definition of the event F c to bound

(P̂k(s, a, t)− P (s, a, t))>(Ṽ πk
t+1 − V

?
t+1)

≤
∑
s′∈S

[√
2P (s′|s, a, t)ψtk(s, a)(Ṽ πk

t+1(s′)− V ?
t+1(s′)) + ψtk(s, a)2(Ṽ πk

t+1(s′)− V ?
t+1(s′))

]
Using that the range of value functions is H:

≤SHψtk(s, a)2 +
∑
s′∈S

ψtk(s, a)
√

2P (s′|s, a, t)(Ṽ πk
t+1(s′)− V ?

t+1(s′))

=SHψtk(s, a)2 +
∑
s′∈S

ψtk(s, a)

√
2

P (s′|s, a, t)
P (s′|s, a, t)(Ṽ πk

t+1(s′)− V ?
t+1(s′))

Using the optimality of V ?:

≤SHψtk(s, a)2 +
∑
s′∈S

ψtk(s, a)

√
2

P (s′|s, a, t)
P (s′|s, a, t)(Ṽ πk

t+1(s′)− V πk
t+1(s′))

Splitting the sum based on magnitude of individual probabilities:

≤SHψtk(s, a)2 +
1

H
P (s, a, t)>(Ṽ πk

t+1 − V
πk
t+1)

+
∑
s′∈S

ψtk(s, a)

√
2

P (s′|s, a, t)
P (s′|s, a, t)(Ṽ πk

t+1(s′)− V πk
t+1(s′))I{

√
P (s′|s, a, t) <

√
2Hψtk(s, a)}

≤SHψtk(s, a)2 +
1

H
P (s, a, t)>(Ṽ πk

t+1 − V
πk
t+1) + 2H2Sψtk(s, a)2

71

4.10.5 Useful Lemmas

Lemma 44 (Value Difference Lemma). For any two MDPs M ′ and M ′′ with rewards r′ and r′′ and
transition probabilities P ′ and P ′′, the difference in values with respect to the same policy π can be written
as

V ′i (s)− V ′′i (s) =E′′
[
H∑
t=i

(r′(st, at, t)− r′′(st, at, t))
∣∣∣∣si = s

]

+ E′′
[
H∑
t=i

(P ′(st, at, t)− P ′′(st, at, t))>V ′t+1

∣∣∣∣si = s

]

where V ′H+1 = V ′′H+1 = ~0 and the expectation E′ is taken w.r.t to P ′ and π and E′′ w.r.t. P ′′ and π.

Proof. For i = H + 1 the statement is trivially true. We assume now it holds for i+ 1 and show it holds
also for i. Using only this induction hypothesis and basic algebra, we can write

V ′i (s)− V ′′i (s)

=Eπ[r′(si, ai, i) + V ′i+1
>
P ′(si, ai, i)− r′′(si, ai, i)− V ′′i+1

>
P ′′(si, ai, i)|si = s]

=Eπ[r′(si, ai, i)− r′′(si, ai, i)|si = s] + Eπ

[∑
s′∈S

V ′i+1(s′)(P ′(s′|si, ai, i)− P ′′(s′|si, ai, i))
∣∣∣∣si = s

]

+ Eπ

[∑
s′∈S

P ′′(s′|si, ai, i)(V ′i+1(s′)− V ′′i+1(s′))

∣∣∣∣si = s

]

=Eπ[r′(si, ai, i)− r′′(si, ai, i)|si = s] + Eπ

[∑
s′∈S

V ′i+1(s′)(P ′(s′|si, ai, i)− P ′′(s′|si, ai, i))
∣∣∣∣si = s

]

+ E′′
[
V ′i+1(si+1)− V ′′i+1(si+1))

∣∣∣∣si = s

]
=Eπ[r′(si, ai, i)− r′′(si, ai, i)|si = s] + Eπ

[∑
s′∈S

V ′i+1(s′)(P ′(s′|si, ai, i)− P ′′(s′|si, ai, i))
∣∣∣∣si = s

]

+ E′′
[
E′′
[

H∑
t=i+1

(r′(st, at, t)− r′′(st, at, t))
∣∣∣∣si+1

]
+ E′′

[
H∑

t=i+1

(P ′(st, at, t)− P ′′(st, at, t))>V ′t+1

∣∣∣∣si+1

] ∣∣∣∣si = s

]

=E′′
[
H∑
t=i

(r′(st, at, t)− r′′(st, at, t))
∣∣∣∣si = s

]
+ E′′

[
H∑
t=i

(P ′(st, at, t)− P ′′(st, at, t))>V ′t+1

∣∣∣∣si = s

]

where the last equality follows from law of total expectation

Lemma 45 (Algorithm ensures optimism). On the good event F c it holds that for all episodes k, t ∈ [H],
s ∈ S that

V πk
t (s) ≤ V ?

t (s) ≤ Ṽ πk
t (s).

72

Proof. The first inequality follows simply from the definition of the optimal value function V ?.
Since all outcome we consider are in the event (F Vk)c, we know that the true transition probabilities P ,

the optimal policy π? and optimal policy V ? are a feasible solution for the optimistic planning problem in
Lemma 27 that UBEV solves. It therefore follows immediately that p>0 Ṽ

πk
1 ≥ p>0 V ?

1 .

4.11 General Concentration Bounds

Lemma 46. Let X1, X2, . . . be a martingale difference sequence adapted to filtration {Ft}∞t=1 with Xt

conditionally σ2-subgaussian so that E[exp(λ(Xt−µ))|Ft−1] ≤ exp(λ2σ2/2) almost surely for all λ ∈ R.
Then with µ̂t = 1

t

∑t
i=1Xi we have for all δ ∈ (0, 1]

P

(
∃t : |µ̂t − µ| ≥

√
4σ2

t

(
2 llnp(t) + ln

3

δ

))
≤ 2δ .

Proof. Let St =
∑t

s=1(Xs − µ). Then

P

(
∃t : µ̂t − µ ≥

√
4σ2

t

(
2 llnp(t) + ln

3

δ

))

≤P

(
∃t : St ≥

√
4σ2t

(
2 llnp(t) + ln

3

δ

))

≤
∞∑
k=0

P

(
∃t ∈ [2k, 2k+1] : St ≥

√
4σ2t

(
2 llnp(t) + ln

3

δ

))

≤
∞∑
k=0

P

(
∃t ≤ 2k+1 : St ≥

√
2σ22k+1

(
2 llnp(2k) + ln

3

δ

))

We now consider Mt = exp(λSt) for λ > 0 which is a nonnegative sub-martingale and use the short-hand

f =
√

2σ22k+1
(
2 llnp(2k) + ln 3

δ

)
. Then by Doob’s maximal inequality for nonnegative submartingales

P
(
∃t ≤ 2k+1 : St ≥ f

)
= P

(
max
t≤2k+1

Mt ≥ exp(λf)

)
≤ E[M2k+1]

exp(λf)
≤ exp

(
2k+1λ

2σ2

2
− λf

)
.

Choosing the optimal λ = f
σ22k+1 we obtain the bound

P
(
∃t ≤ 2k+1 : St ≥ f

)
≤ exp

(
− f2

2k+2σ2

)
= exp

(
−2 llnp(2k)− ln

3

δ

)
=
δ

3
exp

(
−2 llnp(2k)

)
(4.9)

=
δ

3
exp

(
−max{0, 2 ln max{0, ln 2k}}

)
=
δ

3
min

{
1, (k ln 2)−2

}
≤δ

3
min

{
1,

1

k2 ln 2

}
.

73

Plugging this back in the bound from above, we get

P

(
∃t : µ̂t − µ ≥

√
4σ2

t

(
2 llnp(t) + ln

3

δ

))
≤δ

3

∞∑
k=0

min

{
1,

1

k2 ln(2)

}
=δ

1

3

(
π2

6 ln 2
+ 2− 1/ ln(2)

)
≤ δ . (4.10)

For the other side, the argument follows completely analogously with

P
(
∃t ≤ 2k+1 : St ≤ −f

)
=P
(
∃t ≤ 2k+1 : −St ≥ f

)
=P
(

max
t≤2k+1

exp(−λSt) ≥ exp(λf)

)
≤E[exp(−λS2k+1)]

exp(λf)
≤ exp

(
2k+1λ

2σ2

2
− λf

)
.

Lemma 47. Let X1, X2, . . . be a sequence of Bernoulli random variables with bias µ ∈ [0, 1]. Then for
all δ ∈ (0, 1]

P

(
∃t : |µ̂t − µ| ≥

√
2µ

t

(
2 llnp(t) + ln

3

δ

)
+

1

t

(
2 llnp(t) + ln

3

δ

))
≤ 2δ

Proof.

P

(
∃t : µ̂t − µ ≥

√
2µ

t

(
2 llnp(t) + ln

3

δ

)
+

1

t

(
2 llnp(t) + ln

3

δ

))

=P

(
∃t : St ≥

√
2µt

(
2 llnp(t) + ln

3

δ

)
+ 2 llnp(t) + ln

3

δ

)

≤
∞∑
k=0

P

(
∃t ≤ 2k+1 : St ≥

√
2µ2k

(
2 llnp(2k) + ln

3

δ

)
+ 2 llnp(2k) + ln

3

δ

)

Let g = 2 llnp(2k) + ln 3
δ and f =

√
2k+1µg+ g. Further define St =

∑t
i=1Xi− tµ and Mt = exp(λSt)

which is by construction a nonnegative submartingale. Applying Doob’s maximal inequality for nonnegative
submartingales, we bound

P
(
∃t ≤ 2k+1 : St ≥ f

)
= P

(
max
i≤2k+1

Mi ≥ exp(λf)

)
≤ E[M2k+1]

exp(λf)
= exp (lnE[M2k+1]− λf) .

Since this holds for all λ ∈ R, we can bound

P
(
∃t ≤ 2k+1 : St ≥ f

)
≤ exp

(
− sup
λ∈R

(λf − lnE[M2k+1])

)

74

and using Corollary 2.11 by Boucheron, Lugosi, and Massart (2013) (see also note below proof of
Corollary 2.11) bound that by

exp

(
− f2

2(2k+1µ+ f/3)

)
We now argue that this quantity can be upper-bounded by exp(−g). This is equivalent to

− f2

2(2k+1µ+ f/3)
≤− g

f2 ≥2g(2k+1µ+ f/3) =
2

3
gf +

2k+2

3
µg

g2 + 2
√

2k+1µgg + 2k+1µg ≥2

3
g2 +

2

3

√
2k+1µgg +

2k+2

3
µg

1

3
g2 +

4

3

√
2k+1µgg +

1

3
2k+1µg ≥0.

Each line is an equivalent inequality since g, f ≥ 0 and each term on the left in the final inequality is
nonnegative. Hence, we get P

(
∃t ≤ 2k+1 : St ≥ f

)
≤ exp(−g). Following now the arguments from the

proof of Lemma 46 in Equations (4.9)–(4.10), we obtain that

P

(
∃t : µ̂t − µ ≥

√
2µ

t

(
2 llnp(t) + ln

3

δ

)
+

1

t

(
2 llnp(t) + ln

3

δ

))
≤ δ.

For the other direction, we proceed analogously to above and arrive at

P
(
∃t ≤ 2k+1 : −St ≥ f

)
≤ exp

(
− sup
λ∈R

(−λf − lnE[M2k+1])

)
which we bound similarly to above by

exp

(
− f2

2(2k+1µ− f/3)

)
≤ exp

(
− f2

2(2k+1µ+ f/3)

)
≤ exp(−g).

Lemma 48 (Uniform L1-Deviation Bound for Empirical Distribution). Let X1, X2, . . . be a sequence of
i.i.d. categorical variables on [U] with distribution P . Then for all δ ∈ (0, 1]

P

(
∃t : ‖P̂t − P‖1 ≥

√
4

t

(
2 llnp(t) + ln

3(2U − 2)

δ

))
≤ δ

where P̂t is the empirical distribution based on samples X1 . . . Xt.

Proof. We use the identity ‖Q− P‖1 = 2 maxB⊆BQ(B)− P (B) which holds for all distributions P,Q

75

defined on the finite set B to bound

P

(
∃t : ‖P̂t − P‖1 ≥

√
4

t

(
2 llnp(t) + ln

3(2U − 2)

δ

))

=P

(
max
t,B⊆[U]

P̂t(B)− P (B) ≥ 1

2

√
4

t

(
2 llnp(t) + ln

3(2U − 2)

δ

))

≤
∑
B⊆[U]

P

(
max
t
P̂t(B)− P (B) ≥

√
1

t

(
2 llnp(t) + ln

3(2U − 2)

δ

))
.

Define now St =
∑t

i=1 I{X1 ∈ B} − tP (B) which is a martingale sequence. Then the last line above is
equivalent to

∑
B⊆[U]

P

(
max
t
St ≥

√
t

(
2 llnp(t) + ln

3(2U − 2)

δ

))

≤
∑
B⊆[U]

P

(
max

k∈N,t∈[2k,2k+1]
St ≥

√
t

(
2 llnp(t) + ln

3(2U − 2)

δ

))

≤
∑
B⊆[U]

∞∑
k=0

P

(
max

t∈[2k,2k+1]
St ≥

√
t

(
2 llnp(t) + ln

3(2U − 2)

δ

))

≤
∑
B⊆[U]

∞∑
k=0

P

(
max
t≤2k+1

St ≥

√
2k
(

2 llnp(2k) + ln
3(2U − 2)

δ

))

=
∑
B⊆[U]

∞∑
k=0

P
(

max
t≤2k+1

exp(λSt) ≥ exp(λf)

)

=
∑

B⊆[U],B 6=∅,B 6=[U]

∞∑
k=0

P
(

max
t≤2k+1

exp(λSt) ≥ exp(λf)

)

where f =

√
2k
(

2 llnp(2k) + ln 3(2U−2)
δ

)
and λ ∈ R and the last equality follows from the fact that for

B = ∅ and B = [U] the difference between the distributions has to be 0. Since I{X1 ∈ B} − tP (B) is a
centered Bernoulli variable it is 1/2-subgaussian and so St satisfies E[exp(λSt)] ≤ exp(λ2t/8)]. Since
St is a martingale, exp(λSt) is a nonnegative sub-martingale and we can apply the maximal inequality to
bound

P
(

max
t≤2k+1

exp(λSt) ≥ exp(λf)

)
≤ exp

(
1

8
λ22k+1 − λf

)
.

Choosing λ = 4f
2k+1 , we get P

(
maxt≤2k+1 exp(λSt) ≥ exp(λf)

)
≤ exp

(
−f2

2k

)
. Hence, using the same

steps as in the proof of Lemma 46, we get P
(
maxt≤2k+1 exp(λSt) ≥ exp(λf)

)
≤ δ

3(2[U]−2)
min

{
1, 1

k2 ln 2

}
76

and then

P

(
∃t : ‖P̂t − P‖1 ≥

√
4

t

(
2 llnp(t) + ln

3(2U − 2)

δ

))

≤
∑

B⊆[U],B 6=∅,B 6=[U]

δ

3(2[U] − 2)

∞∑
k=0

min

{
1,

1

k2 ln 2

}
≤

∑
B⊆[U],B 6=∅,B 6=[U]

δ

2[U] − 2
= δ.

Lemma 49. Let Fi for i = 1 . . . be a filtration and X1, . . . Xn be a sequence of Bernoulli random
variables with P(Xi = 1|Fi−1) = Pi with Pi being Fi−1-measurable and Xi being Fi measurable. It
holds that

P

(
∃n :

n∑
t=1

Xt <

n∑
t=1

Pt/2−W

)
≤ e−W

Proof. Pt−Xt is a Martingale difference sequence with respect to the filtrationFt. SinceXt is nonnegative
and has finite second moment, we have for any λ > 0 that E

[
e−λ(Xt−Pt)|Ft−1

]
≤ eλ2Pt/2 (Exercise 2.9,

Boucheron, Lugosi, and Massart (2013)). Hence, we have

E
[
eλ(Pt−Xt)−λ2Pt/2|Ft−1

]
≤ 1

and by setting λ = 1, we see that

Mn = e
∑n
t=1(−Xt+Pt/2)

is a supermartingale. It hence holds by Markov’s inequality

P

(
n∑
t=1

(−Xt + Pt/2) ≥W

)
= P

(
Mn ≥ eW

)
≤ e−WE[Mn] ≤ e−W

wich gives us the derised result

P

(
n∑
t=1

Xt ≤
n∑
t=1

Pt/2−W

)
≤ e−W

for a fixed n. We define now the stopping time τ = min{t ∈ N : Mt > eW } and the sequence τn =
min{t ∈ N : Mt > eW ∨ t ≥ n}. Applying the convergence theorem for nonnegative supermartingales
(Theorem 5.2.9 in Durrett (2010)), we get that limt→∞Mt is well-defined almost surely. Therefore, Mτ

is well-defined even when τ = ∞. By the optional stopping theorem for nonnegative supermartingales
(Theorem 5.7.6 by Durrett (2010)), we have E[Mτn] ≤ E[M0] ≤ 1 for all n and applying Fatou’s lemma,
we obtain E[Mτ] = E[limn→∞Mτn] ≤ lim infn→∞ E[Mτn] ≤ 1. Using Markov’s inequality, we can
finally bound

P

(
∃n :

n∑
t=1

Xt <
1

2

n∑
t=1

Pt −W

)
≤ P(τ <∞) ≤ P(Mτ > eW) ≤ e−WE[Mτ] ≤ e−W .

77

Chapter 5

Policy Certificates: Towards Accountable
and Minimax-Optimal Reinforcement
Learning

This chapter is based on the work which I started during an internship at Google Cloud AI. It was published
as:
Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. “Policy Certificates: Towards Accountable
Reinforcement Learning”. In: International Conference on Machine Learning (2019)

5.1 Introduction

There is increasing excitement around applications of machine learning, but also growing awareness and
concerns about fairness, accountability and transparency. Recent research aims to address these concerns
but most work focuses on supervised learning and only few results (Jabbari et al., 2016; Joseph et al., 2016;
Kannan et al., 2017; Raghavan et al., 2018) exist on reinforcement learning (RL).

One challenge when applying RL in practice is that, unlike in supervised learning, the performance of
an RL algorithm is typically not monotonically increasing with more data due to the trial-and-error nature of
RL that necessitates exploration. Even sharp drops in policy performance during learning are common, e.g.,
when the agent starts to explore a new part of the state space. Such unpredictable performance fluctuation
has limited the use of RL in high-stakes applications like healthcare, and calls for more accountable
algorithms that can quantify and reveal their performance online during learning.

To address this lack of accountability, we propose that RL algorithms output policy certificates in
episodic RL. Policy certificates consist of (1) a confidence interval of the algorithm’s expected sum of
rewards (expected return) in the next episode (policy return certificates) and (2) a bound on how far
from the optimal return the performance can be (policy optimality certificates). Certificates make the
policy’s performance more transparent and accountable, and allow designers to intervene if necessary.
For example, in medical applications, one would need to intervene unless the policy achieves a certain
minimum treatment outcome; in financial applications, policy optimality certificates can be used to assess
the potential loss when learning a trading strategy. In addition to accountability, we also want RL algorithms
to be sample-efficient and quickly achieve good performance. To formally quantify accountability and
sample-efficiency of an algorithm, we introduce a new framework for theoretical analysis called IPOC.
IPOC bounds guarantee that certificates indeed bound the algorithm’s expected performance in an episode,
and prescribe the rate at which the algorithm’s policy and certificates improve with more data. IPOC is

78

stronger than other frameworks like regret (Jaksch, Ortner, and Auer, 2010), PAC (Kakade, 2003) and
Uniform-PAC (Dann, Lattimore, and Brunskill, 2017), that only guarantee the cumulative performance
of the algorithm, but do not provide bounds for individual episodes during learning. IPOC also provides
stronger bounds and more nuanced guarantees on per episode performance than KWIK Li, Littman, and
Walsh, 2008.

A natural way to create accountable and sample-efficient RL algorithms is to combine existing sample-
efficient algorithms with off-policy policy evaluation approaches to estimate the expected return (expected
sum of rewards) of the algorithm’s policy before each episode. Existing policy evaluation approaches
estimate the return of a fixed policy from a batch of data (e.g., Thomas, Theocharous, and Ghavamzadeh,
2015a; Jiang and Li, 2016; Thomas and Brunskill, 2016). They provide little to no guarantees when the
policy is not fixed but computed from that same batch of data, as is here the case. They also do not reason
about the expected return of the unknown optimal policy which is necessary for providing policy optimality
certificates. We found that by focusing on optimism-in-the-face-of-uncertainty (OFU) based RL algorithms
for updating the policy and model-based policy evaluation techniques for estimating the policy returns, we
can create sample-efficient algorithms that compute policy certificates on both the current policy’s expected
return and its difference to the optimal return. The main insight is that OFU algorithms compute an upper
confidence bound on the optimal return from an empirical model when updating the policy. Model-based
policy evaluation can leverage the same empirical model to compute a confidence interval on the policy’s
expected return, even when the policy depends on the data. We illustrate this approach with new algorithms
for two different episodic settings.

Perhaps surprisingly, we show that in tabular Markov decision processes (MDPs) it can be beneficial to
explicitly leverage the combination of OFU-based policy optimization and model-based policy evaluation
to improve either component. Specifically, computing the certificates can directly improve the underlying
OFU approach and knowing that the policy converges to the optimal policy at a certain rate improves
the accuracy of policy return certificates. As a result, the guarantees for our new algorithm improve
state-of-the-art regret and PAC bounds in problems with large horizons and are minimax-optimal up to
lower-order terms.

The second setting we consider are finite MDPs with linear side information (context) (Abbasi-Yadkori
and Neu, 2014; Hallak, Di Castro, and Mannor, 2015; Modi et al., 2018), which is of particular interest in
practice. For example, in a drug treatment optimization task where each patient is one episode, context
is the background information of the patient which influences the treatment outcome. While one expects
the algorithm to learn a good policy quickly for frequent contexts, the performance for unusual patients
may be significantly more variable due to the limited prior experience of the algorithm. Policy certificates
allow humans to detect when the current policy is good for the current patient and intervene if a certified
performance is deemed inadequate. For example, for this health monitoring application, a human expert
could intervene to either directly specify the policy for that episode, or in the context of automated customer
service, the service could be provided at reduced cost to the customer.

To summarize, we make the following main contributions in this chapter:
1. We introduce policy certificates and the IPOC framework for evaluating RL algorithms with certifi-

cates. Similar to existing frameworks like PAC, it provides formal requirements to be satisfied by
the algorithm, here requiring the algorithm to be an efficient learner and to quantify its performance
online through policy certificates.

2. We provide a new RL algorithm for finite, episodic MDPs that satisfies this definition, and show that
it has stronger, minimax regret and PAC guarantees than prior work. Formally, our sample complexity
bound is Õ(SAH2/ε2 + S2AH3/ε) vs. prior Õ(SAH4/ε2 + S2AH3/ε) (Dann, Lattimore, and
Brunskill, 2017), and our regret bound Õ(

√
SAH2T +S2AH2) improves prior work (Azar, Osband,

79

and Munos, 2017) since it has minimax rate up to log-terms in the dominant term even for long
horizons H > SA.

3. We introduce a new RL algorithm for finite, episodic MDPs with linear side information that has a
cumulative IPOC bound, which is tighter than past results Abbasi-Yadkori and Neu, 2014 by a factor
of
√
SAH .

5.2 Setting and Notation

We consider episodic RL problems where the agent interacts with the environment in episodes of a certain
length. While the framework for policy certificates applies more breadly, we focus on finite MDPs with
linear side information (Modi et al., 2018; Hallak, Di Castro, and Mannor, 2015; Abbasi-Yadkori and Neu,
2014) for concreteness. This setting includes tabular MDPs as a special case but is more general and can
model variations in the environment across episodes, e.g., because different episodes correspond to treating
different patients in a healthcare application. Unlike the tabular special case, function approximation is
necessary for efficient learning.

Tabular MDPs The agent interacts with the MDP in episodes indexed by k. Each episode is a sequence
(sk,1, ak,1, rk,1, . . . , sk,H , ak,H , rk,H) of H states sk,h ∈ S, actions ak,h ∈ A and scalar rewards rk,h ∈
[0, 1]. For notational simplicity, we assume that the initial state sk,1 is deterministic. The actions are
taken as prescribed by the agent’s policy πk and we here focus on deterministic time-dependent policies,
i.e., ak,h = πk(sk,h, h) for all time steps h ∈ [H] := {1, 2, . . . H}. The successor states and rewards are
sampled from the MDP as sk,h+1 ∼ P (sk,h, ak,h) and rk,h ∼ PR(sk,h, ak,h). In tabular MDPs the size of
the state space S = |S| and action space A = |A| are finite.

Finite MDPs with linear side information. We assume that state- and action-space are finite as in
tabular MDPs, but here the agent essentially interacts with a family of infinitely many tabular MDPs
that is parameterized by linear contexts. At the beginning of episode k, two contexts, x(r)

k ∈ Rd(r) and
x

(p)
k ∈ Rd(p) , are observed and the agent interacts in this episode with a tabular MDP, whose dynamics

and reward function depend on the contexts in a linear fashion. Specifically, it is assumed that the
rewards are sampled from PR(s, a) with means rk(s, a) = (x

(r)
k)>θ

(r)
s,a and transition probabilities are

Pk(s
′|s, a) = (x

(p)
k)>θ

(p)
s′,s,a where θ(r)

s,a ∈ Rd(r) and θ(p)
s′,s,a ∈ Rd(p) are unknown parameter vectors for

each s, s′ ∈ S, a ∈ A. As a regularity condition, we assume bounded parameters, i.e., ‖θ(r)
s,a‖2 ≤ ξθ(r) and

‖θ(p)
s′,s,a‖2 ≤ ξθ(p) as well as bounded contexts ‖x(r)

k ‖2 ≤ ξx(r) and ‖x(p)
k ‖2 ≤ ξx(p) . We allow x

(r)
k and x(p)

k

to be different, and use xk to denote (x
(r)
k , x

(p)
k) in the following. Note that our framework and algorithms

can handle adversarially chosen contexts.

Return and optimality gap. The quality of a policy π in any episode k is evaluated by the total expected
reward or expected return: ρk(π) := E

[∑H
h=1 rk,h

∣∣ak,1:H ∼ π
]
, where this notation means that all actions

in the episode are taken as prescribed by a policy π. Optimal policy and return ρ?k = maxπ ρk(π) may
depend on the episode’s contexts. The difference of achieved and optimal return is called optimality gap
∆k = ρ?k − ρk(πk) for each episode k where πk is the algorithm’s policy in that episode.

Additional notation. We denote the largest possible optimality gap by ∆max = H , and the value
functions of π in episode k by Qπkh (s, a) = E[

∑H
t=h rk,t|ak,h = a, ak,h+1:H ∼ π] and V πk

h (s) =
Qπkh (s, π(s, h)). Optimal versions are marked by superscript ? and subscripts are omitted when un-
ambiguous. We treat P (s, a) as a linear operator, that is, P (s, a)f =

∑
s′∈S P (s′|s, a)f(s′) for any

80

f : S → R. We also use σq(f) =
√
q(f − qf)2 for the standard deviation of f with respect to a state

distribution q and V max
h = (H − h + 1) for all h ∈ [H]. We also use the common short hand notation

a ∨ b = max{a, b} and a ∧ b = min{a, b} as well as Õ(f) = O(f · poly(log(f))).

5.3 The IPOC Framework

During execution, the optimality gaps ∆k are hidden and the algorithm only observes the sum of rewards
which is a sample of ρk(πk). This causes risk as one does not know whether the algorithm is playing a
good or potentially bad policy. We introduce a new learning framework that mitigates this limitation. This
framework forces the algorithm to output its current policy πk as well as certificates εk ∈ R+ and Ik ⊆ R
before each episode k. The return certificate Ik is a confidence interval on the return of the policy, while
the optimality certificate εk informs the user how sub-optimal the policy can be for the current context,
i.e., εk ≥ ∆k. Certificates allow one to intervene if needed. For example, in automated customer services,
one might reduce the service price in episode k if certificate εk is above a certain threshold, since the
quality of the provided service cannot be guaranteed. When there is no context, an optimality certificate
upper bounds the sub-optimality of the current policy in any episode which makes algorithms anytime
interruptable (Zilberstein and Russell, 1996): one is guaranteed to always know a policy with improving
performance. Our learning framework is formalized as follows:
Definition 50 (Individual Policy Certificates (IPOC) Bounds). An algorithm satisfies an individual policy
certificate (IPOC) bound F if for a given δ ∈ (0, 1) it outputs the current policy πk, a return certificate
Ik ⊆ R and an optimality certificate εk with εk ≥ |Ik| before each episode k (after observing the contexts)
so that with probability at least 1− δ:

1. all return certificates contain the expected return of policy πk played in episode k and all optimality
certificates are upper bounds on the sub-optimality of πk, i.e., ∀ k ∈ N : εk ≥ ∆k and ρk(πk) ∈ Ik
; and either

2a. for all number of episodes T the cumulative sum of certificates is bounded
∑T

k=1 εk ≤ F (W,T, δ)
(Cumulative Version), or

2b. for any threshold ε, the number of times certificates can exceed the threshold is bounded as∑∞
k=1 1{εk > ε} ≤ F (W, ε, δ) (Mistake Version).

Here, W can be (known or unknown) properties of the environment. If conditions 1 and 2a hold, we say
the algorithm has a cumulative IPOC bound and if conditions 1 and 2b hold, we say the algorithm has a
mistake IPOC bound.

Condition 1 alone would be trivial to satisfy with εk = ∆max and Ik = [0,∆max], but condition 2
prohibits this by controlling the size of εk (and therefore the size of |Ik| ≤ εk). Condition 2a bounds the
cumulative sum of optimality certificates (similar to regret bounds), and condition 2b bounds the size of the
superlevel sets of εk (similar to PAC bounds). We allow both alternatives as condition 2b is stronger but
one sometimes can only prove condition 2a (see Section 5.11). An IPOC bound controls simultaneously
the quality of certificates (how big εk −∆k and |Ik| are) as well as the optimality gaps ∆k themselves and,
hence, an IPOC bound not only guarantees that the algorithm improves its policy but also becomes better at
telling us how well the policy performs. Note that the condition εk ≥ |Ik| in Definition 50 is natural as any
upper bound on ρ?k is also an upper bound on ρk(πk) and is made for notational convenience.

We would like to emphasize that we provide certificates on the expected return, the expected sum of
rewards given the algorithm’s policy, in the next episode. Due to the stochasticity in the environment, one
in general cannot hope to accurately predict the sum of rewards directly. Since expected return is the default
optimization criteria in RL, certificates for it are a natural starting point and relevant in many scenarios.
Nonetheless, certificates for other properties of the sum-of-reward distribution of a policy are an interesting

81

direction for future work. For example, one might want certificates on properties that take into account the
variability of the sum of rewards (e.g., conditional value at risk) in high-stakes applications which are often
the objective in risk-sensitive RL.

5.3.1 Relation to Existing Frameworks

Unlike IPOC, existing frameworks for RL only guarantee sample-efficiency of the algorithm over multiple
episodes and do not provide performance bounds for single episodes during learning. The common existing
frameworks are:
• Mistake-style PAC bounds (Strehl, Li, Wiewiora, et al., 2006; Strehl, Li, and Littman, 2009; Szita

and Szepesvári, 2010; Lattimore and Hutter, 2012; Dann and Brunskill, 2015) bound the number of
ε-mistakes, that is, the size of the set {k ∈ N : ∆k > ε} with high probability, but do not tell us
when mistakes happen. The same is true for the stronger Uniform-PAC bounds (Dann, Lattimore,
and Brunskill, 2017) which hold for all ε jointly.

• Supervised-learning style PAC bounds (Kearns and Singh, 2002; Jiang, Krishnamurthy, et al., 2017;
Dann, Jiang, et al., 2018) ensure that the algorithm outputs an ε-optimal policy for a given ε, i.e.,
they ensure ∆k ≤ ε for k greater than the bound. Yet, they need to know ε ahead of time and tell us
nothing about ∆k during learning (for k smaller than the bound).

• Regret bounds (Osband, Russo, and Van Roy, 2013; Osband, Van Roy, and Wen, 2016; Azar, Osband,
and Munos, 2017; Jin et al., 2018) control the cumulative sum of optimality gaps

∑T
k=1 ∆k (regret)

which does not yield any nontrivial guarantee for individual ∆k because it does not reveal which
optimality gaps are small.

We show that mistake IPOC bounds are stronger than any of the above guarantees, i.e., they imply
Uniform PAC, PAC, and regret bounds. Cumulative IPOC bounds are slightly weaker but still imply regret
bounds. Both versions of IPOC also ensure that the algorithm is anytime interruptable, i.e., it can be used
to find better and better policies that have small ∆k with high probability 1− δ. That means IPOC bounds
imply supervised-learning style PAC bounds for all ε jointly. These claims are formalized as follows:
Proposition 51. Assume an algorithm has a cumulative IPOC bound F (W,T, δ).

1. Then it has a regret bound of same order, i.e., with probability at least 1 − δ, for all T the regret
R(T) :=

∑T
k=1 ∆k is bounded by F (W,T, δ).

2. If F has the form
∑N

p=0(Cp(W, δ)T)
p
p+1 for appropriate functions Cp, then with probability at least

1− δ for any ε, it outputs a certificate εk ≤ ε within
N∑
p=0

Cp(W, δ)
p(N + 1)p+1

εp+1

episodes. Hence, for settings without context, the algorithm outputs an ε-optimal policy within that
number of episodes (supervised learning-style PAC bound).

Proposition 52. If an algorithm has a mistake IPOC bound F (W, ε, δ), then
1. it has a uniform PAC bound F (W, ε, δ), i.e., with probability at least 1− δ, the number of episodes

with ∆k ≥ ε is at most F (W, ε, δ) for all ε > 0;
2. with probability ≥ 1 − δ for all ε, it outputs a certificate εk ≤ ε within F (W, ε, δ) + 1 episodes.

For settings without context, that means the algorithm outputs an ε-optimal policy within that many
episodes (supervised learning-style PAC).

3. if F has the form
∑N

p=1
Cp(W,δ)

εp

(
ln C̃(W,δ)

ε

)np
with Cp(W, δ) ≥ 1 and constants N,n ∈ N, it also

has a cumulative IPOC bound of order

82

Õ

 N∑
p=1

Cp(W, δ)
1/pT

p−1
p polylog(∆max, C̃(W, δ), T)

 .

The functional form in part 2 of Proposition 51 includes common polynomial bounds like O(
√
T)

or O(T 2/3) with appropriate factors and similarly for part 3 of Proposition 52 which covers for example
Õ(1/ε2).

Our IPOC framework is similar to KWIK (Li, Littman, and Walsh, 2008), in that the algorithm is
required to declare how well it will perform. Hower, KWIK only requires an algorithm to declare whether
the output will perform better than a single pre-specified input threshold. Existing KWIK for RL methods
only provide such a binary classification, and have less strong learning guarantees. In a sense IPOC is a
generalization of KWIK.

5.4 Algorithms with Policy Certificates

A natural path to obtain RL algorithms with IPOC bounds is to combine existing provably efficient online
RL algorithms with an off-policy policy evaluation method to compute a confidence interval on the online
RL algorithm’s policy for the current episode. This yields policy return certificates, but not necessarily
policy optimality certificates – bounds on the difference of the optimal and current policy’s expected
return. Estimating the optimal return using off-policy evaluation algorithms in order to compute optimality
certificates would require a significant computational burden, e.g. evaluating all (exponentially many)
policies.

However optimism in the face of uncertainty (OFU) algorithms can be modified to provide both policy
return certificates and optimality certificates without the need for a separate off-policy policy optimization
step. Specifically, we here consider OFU algorithms that maintain an upper confidence bound (for a
potentially changing confidence level) on the optimal value function Q?k,h and therefore optimal return ρ?k.
This bound is also an upper bound on the expected return of the current policy which is chosen to maximize
this bound. Many OFU methods explicitly maintain a confidence set of the MDP model to compute the
upper confidence bound on Q?k,h. These same confidence sets of the model can be used to compute a lower
bound on the value function of the current policy. In doing so, OFU algorithms can be modified with little
computational overhead to provide policy return and optimality certificates.

For these reasons, we focus on OFU methods, introducing two new algorithms with policy certificates,
one for tabular MDPs and and one for the more general MDPs with linear side information setting. Both
approaches have a similar structure, but leverage different confidence sets and model estimators. In the first
case, we show that maintaining lower bounds on the current policy’s value has significant benefits beyond
enabling policy certificates: lower bounds help us to derive a tighter bound on our uncertainty over the
range of future values. Thus we are able to provide the strongest, to our knowledge, PAC and regret bounds
for tabular MDPs. It remains an intriguing but non-trivial question if we can create confidence sets that
leverage explicit upper and lower bounds for the linear side information setting.

5.4.1 Tabular MDPs

We present the ORLC (optimistic RL with certificates) Algorithm shown in Algorithm 4 (see Algorithm 6
in Section 5.9 for a version with empirically tighter confidence bounds but same theoretical guarantees). It
shares similar structure with recent OFU algorithms like UBEV (Dann, Lattimore, and Brunskill, 2017)
and UCBVI-BF (Azar, Osband, and Munos, 2017) but has some significant differences highlighted in
red. Before each episode k, Algorithm 4 computes an optimistic estimate Q̃k,h of Q?h in Line 10 by

83

Algorithm 4: ORLC (Optimistic Reinforcement Learning with Certificates)
Input : failure tolerance δ ∈ (0, 1]

1 φ(n) = 1 ∧
√

0.52
n

(
1.4 ln ln(e ∨ n) + ln 26SA(H+1+S)

δ

)
; Ṽk,H+1(s) = 0;

˜
Vk,H+1(s) =

0 ∀s ∈ S, k ∈ N;
2 for k = 1, 2, 3, . . . do
3 for s′, s ∈ S, a ∈ A do // update empirical model and number of observations

4 nk(s, a) =
∑k−1

i=1

∑H
h=1 1{si,h = s, ai,h = a} ; // number of times (s,a) was

observed

5 r̂k(s, a) = 1
nk(s,a)

∑k−1
i=1

∑H
h=1 ri,h1{si,h = s, ai,h = a} ; // avg. reward observed

for (s,a)

6 P̂k(s
′|s, a) = 1

nk(s,a)

∑k−1
i=1

∑H
h=1 1{si,h = s, ai,h = a, si,h+1 = s′}

7 for h = H to 1 and s ∈ S do // optimistic planning with upper and lower

confidence bounds

8 for a ∈ A do
9 ψk,h(s, a) =

(1+
√

12σP̂k(s,a)(Ṽk,h+1))φ(nk(s, a))+45SH2φ(nk(s, a))2+ 1
H P̂ (s, a)(Ṽk,h+1−

˜
Vk,h+1);

10 Q̃k,h(s, a) = 0 ∨ (r̂k(s, a) + P̂k(s, a)Ṽk,h+1 + ψk,h(s, a)) ∧ V max
h ; // UCB of Q?h+1

11
˜
Qk,h(s, a) = 0 ∨ (r̂k(s, a) + P̂k(s, a)

˜
Vk,h+1 − ψk,h(s, a)) ∧ V max

h ; // LCB of Q
πk
h+1

12 πk(s, h) = argmaxa Q̃k,h(s, a); Ṽk,h(s) =

Q̃k,h(s, πk(s, h));
˜
Vk,h(s) =

˜
Qk,h(s, πk(s, h));

13 output policy πk with certificates Ik = [
˜
Vk,1(s1,1), Ṽk,1(s1,1)] and εk = |Ik|;

14 sample episode k with policy πk; // Observe sk,1, ak,1, rk,1, sk,2, . . . , sk,H , ak,H , rk,H

dynamic programming on the empirical model (P̂k, r̂k) with confidence intervals ψk,h. Importantly, it also
computes

˜
Qk,h, a pessimistic estimate of Qπkh in similar fashion in Line 11. The optimistic and pessimistic

estimates
˜
Qk,h, Q̃k,h (resp.

˜
Vk,h, Ṽk,h) allow us to compute the certificates εk and Ik and enables more

sample-efficient learning. Specifically, Algorithm 4 uses a novel form of confidence intervals ψ that
explicitly depends on this difference. These confidence intervals are key for proving the following IPOC
bound:
Theorem 53 (Mistake IPOC Bound of Alg. 4). For any given δ ∈ (0, 1), Alg. 4 satisfies in any tabular
MDP with S states, A actions and horizon H , the following Mistake IPOC bound: For all ε > 0, the
number of episodes where Alg. 4 outputs a certificate |Ik| = εk > ε is

Õ

((
SAH2

ε2
+
S2AH3

ε

)
ln

1

δ

)
.

By Proposition 52, this implies a Uniform-PAC bound of same order as well as the regret and PAC
bounds listed in Table 5.1. This table also contains previous state of the art bounds of each type1 as well as

1These model-free and model-based methods have the best known bounds in our problem class. Q-learning with UCB and
UBEV allow time-dependent dynamics. One might be able to improve their regret bound by

√
H when adapting them to our setting.

Note that by augmenting our state space with a time index, our algorithm also achieves minimax optimality with Õ(
√
SAH3T)

regret up to lower order terms in their setting.

84

Algorithm Regret PAC Mistake IPOC

UCBVI-BF Õ(
√
SAH2T +

√
H3T + S2AH2) - -

UCBQ 1 Õ(
√
SAH4T + S1.5A1.5H4.5) - -

UCFH - Õ
(
S2AH2

ε2

)
-

UBEV 1 Õ(
√
SAH4T + S2AH3) Õ

(
SAH4

ε2
+ S2AH3

ε

)
-

EULER Õ(
√
SAH2T + S1.5AH2(

√
S +H)) - -

ORLC (this work) Õ(
√
SAH2T + S2AH2) Õ

(
SAH2

ε2
+ S2AH3

ε

)
Õ
(
SAH2

ε2
+ S2AH3

ε

)
Lower bounds Ω

(√
SAH2T

)
Ω
(
SAH2

ε2

)
Ω
(
SAH2

ε2

)
Table 5.1: Comparison of the state of the art problem-independent bounds for episodic RL in tabular MDPs.
This includes UCBVI-BF (Azar, Osband, and Munos, 2017), UCBQ (Jin et al., 2018), UCFH (Dann and
Brunskill, 2015), UBEV (Dann, Lattimore, and Brunskill, 2017), EULER (Zanette and Brunskill, 2019)
and our ORLC algorithm. A dash means that the algorithm does not satisfy a non-trivial bound without
modifications. T is the number of episodes and ln(1/δ) factors are omitted for readability. For an empirical
comparison of the sample-complexity of these approaches, see Section 5.12.2.

lower bounds. The IPOC lower bound follows from the PAC lower bound by Dann and Brunskill (2015)
and Proposition 52. For ε small enough (≤ O(1/(SH)) specifically), our IPOC bound is minimax, i.e.,
the best achievable, up to log-factors. This is also true for the Uniform-PAC and PAC bounds implied
by Theorem 53 as well as the implied regret bound when the number of episodes T = Ω(S3AH4) is
large enough. ORLC is the first algorithm to achieve this minimax rate for PAC and Uniform-PAC. While
UCBVI-BF achieves minimax regret for problems with small horizon, their bound is suboptimal when
H > SA.

While the lower-order term in our IPOC mistake bound is Õ(S2AH3), we can achieve a tighter
Õ(S2AH2) dependency in our cumulative IPOC and regret bound with a slightly refined analysis:
Theorem 54. For any given δ ∈ (0, 1), Alg. 4 satisfies in any tabular MDP with S states, A actions and
horizon H , the following cumulative IPOC bound

Õ

(√
SAH2T ln

1

δ
+ S2AH2 ln

T

δ

)
,

where T is the number of episodes.
This results is to the best of our knowledge the tightest problem-independent regret bound for this

setting, including a slight improvement over the recent problem-independent bound by Zanette and Brunskill
(2019).

We defer details of our IPOC analysis to Section 5.9 but the main advances leverage that [
˜
Qk,h(s, a), Q̃k,h(s, a)]

is an observable confidence interval for both Q?h(s, a) and Qπkh (s, a). Specifically, our main novel insights
are:
• While prior works (e.g. Lattimore and Hutter, 2012; Dann and Brunskill, 2015) control the subopti-

mality Q?h −Q
πk
h of the policy by recursively bounding Q̃k,h −Qπkh , we instead recursively bound

Q̃k,h −
˜
Qk,h ≤ 2ψk,h + P̂k(Ṽk,h+1 −

˜
Vk,h+1) which is not only simpler but also controls both the

suboptimality of the policy and the size of the certificates simultaneously.
• As existing work (e.g. Azar, Osband, and Munos, 2017; Jin et al., 2018), we use empirical Bernstein-

type concentration inequalities to construct Q̃k,h(s, a) as an upper bound to Q?h(s, a) = r(s, a) +

85

P (s, a)V ?
h+1. This results in a dependency of the upper bound on the variance of the optimal next

state value σP̂k(s,a)(V
?
h+1)2 under the empirical model. Since V ?

h+1 is unknown this has to be upper-

bounded by σP̂k(s,a)(Ṽk,h+1)2 +B with an additional bonus B to account for the difference between

the values, Ṽk,h+1 − V ?
h+1, which is again unobservable. Azar, Osband, and Munos (2017) now

constructs an observable bound on B through an intricate regret analysis that involves additional
high-probability bounds on error terms (see their Efr/Eaz events) which causes the suboptimal

√
H3T

term in their regret bound. Instead, we use the fact that Ṽk,h+1 −
˜
Vk,h+1 is an observable upper

bound on Ṽk,h+1 − V ?
h+1 which we can directly use in our confidence widths ψk,h (see the last term

in Line 9 of Alg. 4). Hence, availability of lower bounds through certificates improves also our upper
confidence bounds on Q?h and yields more sample-efficient exploration with improved performance
bounds as we avoid additional high-probability bounds of error terms.

• As opposed to the upper bounds, we cannot simply apply concentration inequalities to construct

˜
Qk,h(s, a) as a lower bound toQπk because the estimation targetQπk(s, a) = r(s, a)+P (s, a)V πk

h+1

is itself random. The policy πk depends in highly non-trivial ways on all samples from which
we also estimate the empirical model P̂k, r̂k. A prevalent approach in model-based policy eval-
uation (Strehl and Littman, 2008; Ghavamzadeh, Petrik, and Chow, 2016, e.g.) to deal with this
challenge is to instead apply a concentration argument on the `1 distance of the transition esti-
mates ‖P (s, a) − P̂k(s, a)‖1 ≤

√
Sφ(nk(s, a)). This yields confidence intervals that shrink at

a rate of H
√
Sφ(nk(s, a)). Instead, we can exploit that πk is generated by a sample-efficient al-

gorithm and construct
˜
Qk,h as a lower bound to the non-random quantity r(s, a) + P (s, a)V ?

h+1.
We account for the difference P (s, a)(V ?

h+1 − V
πk
h+1) ≤ P (s, a)(Ṽk,h+1 −

˜
Vk,h+1) explicitly, again

through a recursive bound. This allows us to achieve confidence intervals that shrink at a faster
rate of ψk,h ≈ Hφ(nk(s, a)) + SH2φ(nk(s, a))2 without the

√
S dependency in the dominating

φ(nk(s, a)) term (recall φ(nk(s, a)) ≤ 1 and goes to 0). Hence, by leveraging that πk is computed
by a sample-efficient approach, we improve the tightness of the certificates.

5.4.2 MDPs With Linear Side Information

We now present an algorithm for the more general setting with side information, which, for example,
allows us to take background information about a customer into account and generalize across different
customers. Algorithm 5 gives an extension, called ORLC-SI, of the OFU algorithm by Abbasi-Yadkori
and Neu (2014). Its overall structure is the same as the tabular Algorithm 4 but here the empirical model
are least-squares estimates of the model parameters evaluated at the current contexts. Specifically, the
empirical transition probability P̂k(s′|s, a) is (x

(p)
k)>θ̂s′,s,a where θ̂s′,s,a is the least squares estimate of

model parameter θs′,s,a. Since transition probabilities are normalized, this estimate is then clipped to [0, 1].
This model is estimated separately for each (s′, s, a)-triple, but generalizes across different contexts. The
confidence widths ψk,h are derived using ellipsoid confidence sets on model parameters. We show the
following IPOC bound:
Theorem 55 (Cumulative IPOC Bound for Alg. 5). For any δ ∈ (0, 1) and regularizer λ > 0, Alg. 5
satisfies the following cumulative IPOC bound in any MDP with contexts of dimensions d(r) and d(p) and
bounded parameters ξθ(r) ≤

√
d(p), ξθ(p) ≤

√
d(p). With prob. at least 1− δ all return certificates contain

the expected return of πk and optimality certificates are upper bounds on the optimality gaps and their
total sum after T episodes is bounded for all T by

Õ

(
√
S3AH4Tλ(d(p) + d(r)) log

ξ2
x(p)

+ ξ2
x(r)

λδ

)
.

86

Algorithm 5: ORLC-SI (Optimistic Reinforcement Learning with Certificates and Side
Information)

Input : failure prob. δ ∈ (0, 1], regularizer λ > 0
1 ξθ(r) =

√
d; ξθ(p) =

√
d; Ṽk,H+1(s) = 0;

˜
Vk,H+1(s) = 0 ∀s ∈ S, k ∈ N;

2 φ(N, x, ξ) :=
[√

λξ +
√

1
2 ln S(SA+A+H)

δ + 1
4 ln detN

det(λI)

]
‖x‖N−1 ;

3 for k = 1, 2, 3, . . . do
4 Observe current contexts x(r)

k and x(p)
k ;

5 for s, s′ ∈ S, a ∈ A do // estimate model with least-squares

6 N
(q)
k,s,a = λI +

∑k−1
i=1

∑H
h=1 1{si,h = s, ai,h = a}x(q)

k (x
(q)
k)> for q ∈ {r, p};

7 θ̂
(r)
k,s,a = (N

(r)
k,s,a)

−1
∑k−1

i=1

∑H
h=1 1{si,h = s, ai,h = a}x(r)

k ri,h; r̂k(s, a) =

0 ∨ (x
(r)
k)>θ̂

(r)
k,s,a ∧ 1;

8 θ̂
(p)
s′,s,a = (N

(p)
k,s,a)

−1
∑k−1

i=1

∑H
h=1 1{si,h = s, ai,h = a, si,h+1 = s′}x(p)

k ;

9 P̂k(s
′|s, a) = 0 ∨ (x

(p)
k)>θ̂

(p)
k,s′,s,a ∧ 1;

10 for h = H to 1 and s ∈ S do // optimistic planning with ellipsoid confidence

bounds

11 for a ∈ A do
12 ψk,h(s, a) = ‖Ṽk,h+1‖1φ(N

(p)
k,s,a, x

(p)
k , ξθ(p)) + φ(N

(r)
k,s,a, x

(r)
k , ξθ(r));

13 Q̃k,h(s, a) = 0 ∨ (r̂k(s, a) + P̂k(s, a)Ṽk,h+1 + ψk,h(s, a)) ∧ V max
h ; // UCB of Q?h+1

14
˜
Qk,h(s, a) = 0 ∨ (r̂k(s, a) + P̂k(s, a)

˜
Vk,h+1 − ψk,h(s, a)) ∧ V max

h ; // LCB of Q
πk
h+1

15 πk(s, h) = argmaxa Q̃k,h(s, a); Ṽk,h(s) = Q̃k,h(s, πk(s, t));
˜
Vk,h(s) =

˜
Qk,h(s, πk(s, t));

16 output policy πk with certificates Ik = [
˜
Vk,1(s1,1), Ṽk,1(s1,1)] and εk = |Ik|;

17 sample episode k with policy πk ; // Observe sk,1, ak,1, rk,1, sk,2, . . . , sk,H , ak,H , rk,H

By Proposition 51, this IPOC bound implies a regret bound of the same order which improves on the
Õ(
√
d2S4AH5T log 1/δ) regret bound of Abbasi-Yadkori and Neu (2014) with d = d(p) +d(r) by a factor

of
√
SAH . While they make a different modelling assumption (generalized linear instead of linear), we

believe at least our better S dependency is due to using improved least-squares estimators for the transition
dynamics 2 and can likely be transferred to their setting. The mistake-type PAC bound by Modi et al.
(2018) is not comparable because our cumulative IPOC bound does not imply a mistake-type PAC bound.3

Nonetheless, loosely translating our result to a PAC-like bound yields Õ
(
d2S3AH5

ε2

)
which is much smaller

than their Õ
(
d2SAH4

ε5
max{d2, S2}

)
bound for small ε.

The confidence bounds in Alg. 5 are more general but looser than those for the tabular case of Alg. 4.
Instantiating the IPOC bound for Alg. 5 from Theorem 55 for tabular MDPs (x(r)

k = x
(p)
k = 1) yields

Õ(
√
S3AH4T) which is worse than the cumulative IPOC bound Õ(

√
SAH2T + S2AH3) of Alg. 4

implied by Thm. 53 and Prop. 52.

2They estimate θs′,s,a only from samples where the transition s, a→ s′ was observed instead of all occurrences of s, a (no
matter whether s′ was the next state).

3An algorithm with a sub-linear cumulative IPOC bound can output a certificate larger than a threshold εk ≥ ε infinitely often
as long as it does so sufficiently less frequently (see Section 5.11).

87

0.0M 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M 3.5M 4.0M

Episodes

0

1

2

3

4

5

Correlation 0.94

Certificates

Optimality Gap

Figure 5.1: Certificates and (unobserved) optimality gaps of Algorithm 5 for 4M episodes on an MDP with
context distribution shift after 2M (episodes sub-sampled for better visualization)

By Prop. 52, a mistake IPOC bound is stronger than the cumulative version we proved for Algorithm 5.
One might wonder if Algorithm 5 also satisfies a mistake bound, but in Section 5.11 we show that this is
not the case because of its non-decreasing ellipsoid confidence sets. There could be other algorithms with
mistake IPOC bounds for this setting, but they they would likely require entirely different confidence sets.

5.5 Simulation Experiment

One important use case for certificates is to detect sudden performance drops when the distribution of
contexts changes. For example, in a call center dialogue system, there can be a sudden increase of customers
calling due to a certain regional outage. We demonstrate that certificates can identify such performance
drops caused by context shifts. We consider a simulated MDP with 10 states, 40 actions and horizon 5
where rewards depend on a 10-dimensional context and let the distribution of contexts change after 2M
episodes. As seen in Figure 5.1, this causes a spike in optimality gap as well as in the optimality certificates.
While our certificates need to upper bound the optimality gap / contain the expected return in each episode
up to a small failure probability, even for the worst case, our algorithm reliably can detect this sudden
decrease of performance. In fact, the optimality certificates have a very high correlation of 0.94 with the
unobserved optimality gaps.

One also may wonder if our algorithms leads to improvements over prior approaches in practice or
only in the theoretical bounds. To help answer this, we present results in Section 5.12 both on analyzing
the policy certificates provided, and examining ORLC’s performance in tabular MDPs versus other recent
papers with similar regret Azar, Osband, and Munos, 2017 or PAC Dann, Lattimore, and Brunskill, 2017
bounds. Encouragingly in the small simulation MDPs considered, we find that our algorithms lead to faster
learning and better performance. Therefore while our primary contribution is theoretical results, these
simulations suggest the potential benefits of the ideas underlying our proposed framework and algorithms.

5.6 Related Work

The connection of IPOC to other frameworks is formally discussed in Section 5.3. Our algorithms essentially
compute confidence bounds as in OFU methods, and then use those in model-based policy evaluation to

88

obtain policy certificates. There are many works on off-policy policy evaluation (e.g., Jiang and Li, 2016;
Thomas and Brunskill, 2016; Mahmood, Yu, and Sutton, 2017), some of which provide non-asymptotic
confidence intervals (e.g., Thomas, Theocharous, and Ghavamzadeh, 2015a; Thomas, Theocharous, and
Ghavamzadeh, 2015b; Sajed, Chung, and White, 2018). However, these methods focus on the batch setting
where a set of episodes sampled by fixed policies is given. Many approaches rely on importance weights
that require stochastic data-collecting policies but most sample-efficient algorithms for which we would
like to provide certificates deploy deterministic policies. One could treat previous episodes to be collected
by one stochastic data-dependent policy but that introduces bias in the importance-weighting estimators
that is not accounted for in the analyses.

Interestingly, there is very recent work (Zanette and Brunskill, 2019) that also observed the benefits
of using lower bounds in optimism-based exploration in tabular episodic RL. Though both their and our
work obtain improved theoretical results, the specific forms of the optimistic bonuses are distinct and the
analyses differ in many parts (e.g., we provide (Uniform-)PAC and regret bounds instead of only regret
bounds). Most importantly, our work provides policy certificate guarantees as a main contribution whereas
that work focuses on problem-dependent regret bounds.

Approaches on safe exploration (Kakade and Langford, 2002; Pirotta et al., 2013; Thomas, Theocharous,
and Ghavamzadeh, 2015b; Ghavamzadeh, Petrik, and Chow, 2016) guarantee monotonically increasing
performance by operating in a batch loop. Our work is orthogonal, as we are not restricting exploration but
rather exposing its impact to the users and give them the choice to intervene.

5.7 Summary

We introduced policy certificates to improve accountability in RL by enabling users to intervene if the
guaranteed performance is deemed inadequate. Bounds in our new theoretical framework IPOC ensure that
certificates indeed bound the expected return and suboptimality in each episode and prescribe the rate at
which certificates and policy improve. By combining optimism-based exploration with model-based policy
evaluation, we have created two algorithms for RL with policy certificates, including for tabular MDPs
with side information. For tabular MDPs, we demonstrated that policy certificates help optimism-based
policy learning and vice versa. As a result, our new algorithm is the first to achieve minimax-optimal PAC
bounds up to lower-order terms for tabular episodic MDPs, and, also the first to have both, minimax PAC
and regret bounds, for this setting.

5.8 Proofs of Relationship of IPOC Bounds to Other Bounds

5.8.1 Proof of Proposition 51

Proof of Proposition 51. We prove each part separately:
Part 1: With probability at least 1− δ, for all T , the regret is bounded as

T∑
k=1

∆k ≤
T∑
k=1

εk ≤ F (W,T, δ)

where the first inequality follows from condition 1 and the second from condition 2a. Hence, the algorithm
satisfied a high-probability regret bound F (W,T, δ) uniformly for all T .

Part 2: By assumption, the cumulative sum of certificates is bounded byF (W,T, δ) =
∑N

p=0(Cp(W, δ)T)
p
p+1 .

Since the minimum is always smaller than the average, the smallest certificates output in the first T episodes

89

is at most

min
k∈[T]

εk ≤
∑T

k=1 εk
T

≤ F (W,T, δ)

T
=

N∑
p=0

Cp(W, δ)
p
p+1T

− 1
p+1 .

For T ≥ Cp(W,δ)p(N+1)p+1

εp+1 we can bound

Cp(W, δ)
p
p+1T

− 1
p+1 ≤ Cp(W, δ)

p
p+1

(
Cp(W, δ)

p(N + 1)p+1

εp+1

)− 1
p+1

≤ ε

N
.

As a result, for T ≥
∑N

p=0
Cp(W,δ)p(N+1)p+1

εp+1 ≥ maxp∈[N]∪{0}
Cp(W,δ)p(N+1)p+1

εp+1 , we can ensure that
F (W,T,δ)

T ≤ ε, which completes the proof.

5.8.2 Proof of Proposition 52

Proof of Proposition 52. We prove each part separately:
Part 1:
By Definition 50 and the assumption, we have that with probability at least 1− δ for all ε > 0, it holds

∞∑
k

1{∆k > ε} ≤
∞∑
k

1{εk > ε} ≤ F (W, ε, δ),

where the first inequality follows from condition 1 of IPOC and the second from condition 2b. This proves
that the algorithm also satisfies a Uniform-PAC bound as defined by Dann, Lattimore, and Brunskill (2017).

Part 2: Since by definition of IPOC, with probability at least 1 − δ for all ε > 0, the algorithm can
output a certificate εk > ε at most F (W, ε, δ) times. By the pigeon hole principle, the algorithm has to
output at least one certificate εk ≤ ε in the first F (W, ε, δ) + 1 episodes.

Part 3: This part of the proof is based on the proof of Theorem A.1 in Dann, Lattimore, and Brunskill
(2017). For convenience, we omit the dependency of C̃ and Cp on W and δ in the following. We assume

F (W, ε, δ) =

N∑
p=1

Cp
εp

(
ln
C̄

ε

)np
=

N∑
p=1

Cpg(ε)p

where C̄ is chosen so that for all p ∈ [N] holds C̄p ≥ ∆maxCp as well as C̄ ≥ C̃. We also defined

g(ε) := 1
ε

(
ln C̄

ε

)n
. Consider now the cumulative sum of certificates after T episodes. We distinguish two

cases:
Case 1: T ≤ maxp∈[N]

ep

C̄p
NCp. Note that e = exp(1) here. We use the fact that all certificates are at

most ∆max and bound
T∑
k=1

εk ≤ ∆maxT ≤ max
p∈[N]

ep

C̄p
NCp∆max ≤ NeN

where the final inequality leverages the assumption on C̄.
Case 2: T ≥ maxp∈[N]

ep

C̄p
NCp. The mistake bound F (W, ε, δ) is monotonically decreasing for

ε ∈ (0,∆max]. If T is large enough, we can therefore find an εmin ∈ (0,∆max] such that F (W, ε, δ) ≤ T
for all ε ∈ (εmin,∆max]. The cumulative sum of certificates can then be bounded as follows

T∑
k=1

εk ≤Tεmin +

∫ ∆max

εmin

F (W, ε, δ)dε. (5.1)

90

This bound assumes the worst case where the algorithm first outputs as many εk = ∆max as allowed and
subsequently smaller certificates as controlled by the mistake bound.

Before further simplifying this expression, we claim that

εmin =

ln

(
C̄ minp∈[N]

(
T

NCp

)1/p
)n

minp∈[N]

(
T

NCp

)1/p

satisfies the desired property F (W, εmin, δ) ≤ T . To see this, it is sufficient to show that g(εmin) ≤

minp∈[N]

(
T

NCp

)1/p
, as it implies

N∑
p=1

Cpg(εmin)p =

N∑
p=1

Cp min
p∈[N]

(
T

NCp

)p/p
≤

N∑
p=1

T

N

Cp
Cp

= T.

To show the bound on g(εmin), we verify that for any x ≥ exp(1)/C̄

g

(
(ln(C̄x))n

x

)
= x

ln
(

C̄x
ln(xC̄)n

)n
ln(C̄x)n

= x
1

ln(C̄x)n
(
ln(C̄x)− n ln(ln(xC̄))

)n ≤ x.
Since εmin has this form for x = minp∈[N]

(
T

(N)Cp

)1/p
and minp∈[N]

(
T

(N)Cp

)1/p
≥ e

C̄
by case assumption

on T , εmin satisfies the desired property F (W, εmin, δ) ≤ T .
We now go back to Equation (5.1) and simplify it to

T∑
k=1

εk ≤Tεmin +

∫ ∆max

εmin

F (W, ε, δ)dε.

=Tεmin +

N∑
p=1

Cp

∫ ∆max

εmin

g(ε)pdε

=Tεmin +

N∑
p=1

Cp

∫ ∆max

εmin

1

εp
ln

(
C̄

ε

)np
dε

≤Tεmin +

N∑
p=1

Cp ln

(
C̄

εmin

)np ∫ ∆max

εmin

1

εp
dε

=Tεmin + C1

(
ln

C̄

εmin

)n
ln

∆max

εmin
+

N∑
p=2

Cp
1− p

(
ln

C̄

εmin

)np [
∆1−p

max − ε
1−p
min

]
. (5.2)

For each term in the final expression, we show that it is Õ
(∑N

p=1C
1/p
p T

p−1
p polylog(C̄T)

)
. Starting with

91

the first, we bound

Tεmin =

T ln

(
C̄ minp∈[N]

(
T

NCp

)1/p
)n

minp∈[N]

(
T

NCp

)1/p
= ln

(
C̄ min
p∈[N]

(
T

NCp

)1/p
)n

max
p∈[N]

TN1/pC
1/p
p

T 1/p

≤ ln

(
C̄

T

NC1

)n
N max

p∈[N]
T
p−1
p C1/p

p ≤ ln
(
C̄T
)n
N max

p∈[N]
T
p−1
p C1/p

p

=Õ

 N∑
p=1

C1/p
p T

p−1
p polylog(C̄T)

 .

For the second term, we start with bounding the inverse of εmin separately leveraging the case assumption
on T :

1

εmin
= min
p∈[N]

(
T

NCp

)1/p 1

ln

(
C̄ minp∈[N]

(
T

NCp

)1/p
)n ≤ min

p∈[N]

(
T

NCp

)1/p 1

ln
(
C̄ minp∈[N]

(
ep

C̄p

)1/p)n

≤ min
p∈[N]

(
T

NCp

)1/p

≤ T.

The second term of Equation (5.2) can now be upper bounded by:

C1

(
ln

C̄

εmin

)n
ln

∆max

εmin
≤ C1 ln(C̄T)n ln(∆maxT) ≤ C1 ln(C̄T)n+1 = Õ

 N∑
p=1

C1/p
p T

p−1
p polylog(C̄T)



where the last inequality leverages the definition of C̄. Finally, consider the last term of Equation (5.2) for
p > 2:

Cp
1− p

(
ln

C̄

εmin

)np [
∆1−p

max − ε
1−p
min

]
=

Cp
p− 1

(
ln

C̄

εmin

)np [
ε1−pmin −∆1−p

max

]
≤ Cp
p− 1

ln(C̄T)npε1−pmin

=
Cp
p− 1

ln(C̄T)np(ε−1
min)p−1 ≤ Cp

p− 1
ln(C̄T)np

(
T

NCp

)(p−1)/p

≤ ln(C̄T)npC1/p
p T (p−1)/p

=Õ

 N∑
p=1

C1/p
p T

p−1
p polylog(C̄T)

 .

Combining all bounds above we obtain that

T∑
k=1

εk ≤ Õ

 N∑
p=1

C1/p
p T

p−1
p polylog(C̄T)

 ≤ Õ
 N∑
p=1

C1/p
p T

p−1
p polylog(∆max, C̃, T)

 .

92

5.9 Theoretical Analysis of Algorithm 4 for Tabular MDPs

To ease the presentation, we chose valid but slightly loose confidence widths ψk,h in Algorithm 4. In
Algorithm 6 is a version of ORLC with slightly tighter confidence intervals. It uses different width for upper
ψ̃k,h and lower

˜
ψk,h confidence widths and is expected to perform better empirically. The IPOC analysis

below applies to both algorithms.
To ease the notation in the analysis of ORLC, we first introduce several helpful definitions:

wk,h(s, a) =E
[
1{sk,h = s, ak,h = a}

∣∣∣∣ak,1:h ∼ πk, sk,1 = sk,1

]
wk(s, a) =

H∑
h=1

wk,h(s, a)

wmin =
εcε

S(A ∧H)H
where cε = e−6/4

Lk ={(s, a) ∈ S ×A : wk(s, a) ≥ wmin}
llnp(x) = ln(ln(max{x, e}))
rng(x) = max(x)−min(x) for vector x

δ′ =
δ

5SAH + 4SA+ 4S2A
(5.3)

φ(n) =1 ∧

√
0.52

n

(
1.4 llnp (2n) + log

5.2

δ′

)
.

The proof proceeds in four main steps. First, we define all concentration arguments needed in the form
of a failure event and gives an upper bound for its probability. We then prove that all value estimates Q̃
and

˜
Q are indeed optimistic / pessimistic outside the failure event. In a third step, we show a bound on

the certificates in the form of a weighted sum of decreasing terms and finally apply a refined pigeon hole
argument to bound the number of times this bound can exceed a given threshold.

5.9.1 Failure event and all probabilistic arguments

The failure event is defined as F = FN ∪ FP ∪ FPE ∪ F V ∪ F V E ∪ FL1 ∪ FR where

FR = {∃ k, s, a : |r̂k(s, a)− r(s, a)| ≥ φ(nk(s, a))}

F V =
{
∃k, s, a, h : |(P̂k(s, a)− P (s, a))V ?

h+1| ≥ rng(V ?
h+1)φ(nk(s, a))

}
F V E =

{
∃k, s, a, h : |(P̂k(s, a)− P (s, a))V ?

h+1| ≥
√

4P̂k(s, a)[(V ?
h+1 − P (s, a)V ?

h+1)2]φ(nk(s, a))

+ 4.66 rng(V ?
h+1)φ(nk(s, a))2

}
FP =

{
∃ k, s, s′, a : |P̂k(s′|s, a)− P (s′|s, a)| ≥

√
4P (s′|s, a)φ(nk(s, a)) + 1.56φ(nk(s, a))2

}
FPE =

{
∃ k, s, s′, a : |P̂k(s′|s, a)− P (s′|s, a)| ≥

√
4P̂k(s′|s, a)φ(nk(s, a)) + 4.66φ(nk(s, a))2

}
FL1 =

{
∃ k, s, a : ‖P̂k(s, a)− P (s, a)‖1 ≥ 2

√
Sφ(nk(s, a))

}
93

Algorithm 6: ORLC with tighter confidence widths
Input : failure tolerance δ ∈ (0, 1]

1 φ(n) = 1 ∧
√

0.52
n

(
1.4 ln ln(e ∨ n) + ln 26SA(H+1+S)

δ

)
; Ṽk,H+1(s) = 0;

˜
Vk,H+1(s) =

0 ∀s ∈ S, k ∈ N;
2 for k = 1, 2, 3, . . . do
3 for s′, s ∈ S, a ∈ A do // update empirical model and number of observations

4 nk(s, a) =
∑k−1

i=1

∑H
h=1 1{si,h = s, ai,h = a};

5 r̂k(s, a) = 1
nk(s,a)

∑k−1
i=1

∑H
h=1 ri,h1{si,h = s, ai,h = a};

6 P̂k(s
′|s, a) = 1

nk(s,a)

∑k−1
i=1

∑H
h=1 1{si,h = s, ai,h = a, si,h+1 = s′}

7 for h = H to 1 and s ∈ S do // optimistic planning leveraging upper and lower

confidence bounds

8 for a ∈ A do

9 ψ̃k,h(s, a) = min

{
(V max
h+1 + 1)φ(nk(s, a)),

10 (1 +
√

12
√
σ2
P̂k(s,a)

(Ṽk,h+1) + P̂k(s, a)(Ṽk,h+1 −
˜
Vk,h+1)2φ(nk(s, a))

11 +8.13V max
h+1 φ(nk(s, a))2,

12 (1 +
√

12σP̂k(s,a)(Ṽk,h+1))φ(nk(s, a)) + 1
H P̂ (s, a)(Ṽk,h+1 −

˜
Vk,h+1)

13 +(20.13H‖Ṽk,h+1 −
˜
Vk,h+1‖1)φ(nk(s, a))2

}
;

14
˜
ψk,h(s, a) = min

{
(2
√
SV max

h+1 + 1)φ(nk(s, a)),

15
(
V max
h+1 + 1 + 2

√
Pk(s, a)(Ṽk,h+1 −

˜
Vk,h+1)

)
φ(nk(s, a))

16 +4.66‖Ṽk,h+1 −
˜
Vk,h+1‖1φ(nk(s, a))2,

17
√

12
√
σ2
P̂k(s,a)

(Ṽk,h+1) + P̂k(s, a)(Ṽk,h+1 −
˜
Vk,h+1)2φ(nk(s, a))

18 +
(

1 + 2
√
Pk(s, a)(Ṽk,h+1 −

˜
Vk,h+1)

)
φ(nk(s, a))

19 +(8.13V max
h+1 + 4.66‖Ṽk,h+1 −

˜
Vk,h+1‖1)φ(nk(s, a))2,

20 (1 +
√

12σP̂k(s,a)(Ṽk,h+1))φ(nk(s, a)) + 1
H P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1)

21 +(8.13V max
h+1 + (32H + 4.66)‖Ṽk,h+1 −

˜
Vk,h+1‖1)φ(nk(s, a))2

}
;

22 Q̃k,h(s, a) = 0 ∨ (r̂k(s, a) + P̂k(s, a)Ṽk,h+1 + ψ̃k,h(s, a)) ∧ V max
h ;

23
˜
Qk,h(s, a) = 0 ∨ (r̂k(s, a) + P̂k(s, a)

˜
Vk,h+1 −

˜
ψk,h(s, a)) ∧ V max

h ;

24 πk(s, h) = argmaxa Q̃k,h(s, a); Ṽk,h(s) = Q̃k,h(s, πk(s, h));
˜
Vk,h(s) =

˜
Qk,h(s, πk(s, h));

25 output policy πk with certificate εk = Ṽ1(sk,1)−
˜
V1(sk,1);

26 sample episode k with policy πk;

94

FN =

{
∃ k, s, a : nk(s, a) <

1

2

∑
i<k

wi(s, a)−H ln
SAH

δ′

}
.

The following lemma shows that F has low probability.
Lemma 56. For any parameter δ′ > 0, the probability of each failure event is bounded as

P
(
F V
)
≤2SAHδ′ P(F V E) ≤2SAHδ′ P(FR) ≤2SAδ′ P(FP) ≤2S2Aδ′

P(FPE) ≤2S2Aδ′ P(FL1) ≤2SAδ′ P(FN) ≤SAHδ′.

The failure probability is thus bounded by P(F) ≤ δ′(5SAH + 4SA + 4S2A) = δ, since we set
δ′ = δ

5SAH+4SA+4S2A
.

Proof. When proving that these failure events indeed have low probability, we need to consider sequences
of random variables whenever a particular state and action pair (s, a) was observed. Since the number
of times a particular (s, a) was observed as well as in which episodes, is random, we have to treat this
carefully. To that end, we first define σ-fields Gs,ai which correspond to all observations up to exactly i
observations of that (s, a)-pair.

Consider a fixed (s, a) ∈ S ×A, and denote by F(k−1)H+h the sigma-field induced by the first k − 1
episodes and the k-th episode up to sk,h and ak,h but not sk,h+1. Define

τi = inf

(k − 1)H + h :
k∑
j=1

H∑
t=1

1{sj,t = s, aj,t = a}+
h∑
t=1

1{sk,t = s, ak,t = a} ≥ i


to be the index where (s, a) was observed the ith time. Note that τi are stopping times with respect to Fi.
Hence, the stopped version Gs,ai = Fτi = {A ∈ F∞ : A ∩ {τi ≤ t} ∈ Ft ∀ t ≥ 0} is a filtration as well.
We are now ready to bound the probability of each failure event.

Failure event F V : For a fixed s ∈ S, a ∈ A, h ∈ [H], we define Xi = 1
rng(V ?h+1)(V ?

h+1(s′i) −
P (s, a)V ?

h+1)1{τi <∞} where s′i is the value of the successor state when (s, a) was observed the ith time
(formally sk,j+1 with k = bτi/Hc and j = τi mod H) or arbitrary, if τi =∞).

By the Markov property of the MDP,Xi is a martingale difference sequence with respect to the filtration
Gs,ai , that is, E[Xi|Gs,ai−1] = 0. Furthermore, it is bounded as

Xi ∈

[
minV ?

h+1 − P (s, a)V ?
h+1

rng(V ?
h+1)

,
maxV ?

h+1 − P (s, a)V ?
h+1

rng(V ?
h+1)

]
where the range is

maxV ?
t+1 − P (s, a)V ?

t+1

rng(V ?
t+1)

−
minV ?

t+1 − P (s, a)V ?
t+1

rng(V ?
t+1)

=
rng V ?

t+1

rng V ?
t+1

= 1.

Hence, Sj =
∑j

i=1Xi with Vj = j/4 satisfies Assumption 1 by Howard et al. (2018) (see Hoeffding I
entry in Table 2 therein) with any sub-Gaussian boundary ψG. The same is true for the sequence −Sk.
Using the sub-Gaussian boundary from Corollary 71, we get that with probability at least 1− 2δ′ for all
n ∈ N ∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≤ 1.44

√
n

4

(
1.4 llnp(n/2) + log

5.2

δ′

)
. (5.4)

95

Since that holds after each observation, this is in particular true before each episode k + 1 where (s, a) has
been observed nk(s, a) times so far. We can now rewrite the value of the martingale as∣∣∣∣∣∣
nk(s,a)∑
i=1

Xi

∣∣∣∣∣∣ =
1

rng(V ?
h+1)

∣∣∣∣∣∣
nk(s,a)∑
i=1

(V ?
h+1(s′i)− P (s, a)V ?

h+1)

∣∣∣∣∣∣ =
nk(s, a)

rng(V ?
h+1)

∣∣∣∣∣
∑nk(s,a)

i=1 V ?
h+1(s′i)

nk(s, a)
− P (s, a)V ?

h+1

∣∣∣∣∣
=

nk(s, a)

rng(V ?
h+1)

∣∣∣P̂k(s, a)V ?
h+1 − P (s, a)V ?

h+1

∣∣∣ (5.5)

and combine this equation with Equation (5.4) to realize that for all k

|(P̂k(s, a)− P (s, a))V ?
h+1| ≤ rng(V ?

h+1)

√
0.52

nk(s, a)

(
1.4 llnp

(
nk(s, a)

2

)
+ log

5.2

δ′

)

≤ rng(V ?
h+1)

√
0.52

nk(s, a)

(
1.4 llnp (2nk(s, a)) + log

5.2

δ′

)
holds with probability at least 1− 2δ′. Since in addition |(P̂k(s, a)− P (s, a))>V ?

h+1| ≤ rng(V ?
h+1) at all

times, we can bound |(P̂k(s, a)− P (s, a))>V ?
h+1| ≤ rng(V ?

h+1)φ(nk(s, a)) which shows that F V has low
probability for a single (s, a, h) triple. Applying a union bound over all h ∈ [H] and s, a ∈ S ×A, we can
conclude that P(F V) ≤ 2SAHδ′.

Failure event F V E: As an alternative to the Hoeffding-style bound above, we can use Theorem 5
by Howard et al. (2018) with the sub-exponential bound from Corollary 71 and the predictable sequence
X̂i = 0. This gives that with Vn =

∑n
i=1(Xi − X̂i)

2 =
∑n

i=1X
2
i ≤ n it holds with probability at least

1− 2δ′ for all n ∈ N∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≤1.44

√
Vn

(
1.4 llnp(2Vn) + log

5.2

δ′

)
+ 2.42

(
1.4 llnp(2Vn) + log

5.2

δ

)

≤1.44

√
Vn

(
1.4 llnp(2n) + log

5.2

δ′

)
+ 2.42

(
1.4 llnp(2n) + log

5.2

δ

)
.

Hence, in particular before each episode k when there are nk(s, a) observations, we have by the identity in
Equation (5.5) that in the same event as above

|(P̂k(s, a)− P (s, a))>V ?
h+1| ≤

√
4 rng(V ?

h+1)2Vnk(s,a)

nk(s, a)

√
0.52

nk(s, a)

(
1.4 llnp (2nk(s, a)) + log

5.2

δ′

)
+

2.42 rng(V ?
h+1)

0.52

0.52

nk(s, a)

(
1.4 llnp(2nk(s, a)) + log

5.2

δ

)
.

Similar to Equation (5.5), the following identity holds

4 rng(V ?
h+1)2Vnk(s,a)

nk(s, a)
= 4P̂k(s, a)[(V ?

h+1 − P (s, a)V ?
h+1)2]

and since |(P̂k(s, a)− P (s, a))V ?
h+1| ≤ 4.66 rng(V ?

h+1) at any time

|(P̂k(s, a)− P (s, a))>V ?
h+1| ≤

√
4P̂k(s, a)[(V ?

h+1 − P (s, a)V ?
h+1)2]φ(nk(s, a))2 + 4.66 rng(V ?

h+1)φ(nk(s, a))2.

96

This shows that F V E has probability at most 1−2δ′ for a specific (s, a, t) triple. Hence, with an appropriate
union bound, we get the desired bound P(F V E) ≤ 2SAHδ′.

Failure event FR: For this event, we define Xi as Xi = (r′i − r(s, a))1{τi < ∞} where r′i is the
immediate reward when s, a was observed the ith time (formally rj,l with j = bτi/Hc and l = τi mod H
or arbitrary (e.g. 1), if τi =∞).

Similar to above, Xi is a martingale w.r.t. Gs,ai and by assumption is bounded as Xi ∈ [−r(s, a), 1−
r(s, a)], i.e., has a range of 1. Therefore, Sn =

∑n
i=1Xi under the current definition with Vn = n/4

satisfies Assumption 1 by Howard et al. (2018) and Corollary 71 gives that with probability at least 1− 2δ′

for all n ∈ N ∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≤ 1.44

√
n

4

(
1.4 llnp(n/2) + log

5.2

δ′

)
.

Identical to above, this implies that with probability at least 1 − 2δ′ for all episodes k ∈ N it holds that
|r̂k(s, a) − r(s, a)| ≤ φ(nk(s, a)) for this particular s, a. Applying a union bound over S × A finally
yields that P(FR) ≤ 2SAδ′.

Failure event FP : In addition to s, a, consider a fixed s′ ∈ S. We here define Xi as Xi = (1{s′ =
s′i} − P (s′|s, a))1{τi <∞} where s′i is the successor state when s, a was observed the ith time (formally
sk,j with k = bτi/Hc and j = τi mod H) or arbitrary, if τi = ∞). By the Markov property, Xi is a
martingale with respect to Gs,ai and is bounded in [−1, 1].

Hence, Sn =
∑n

i=1Xi with Vn =
∑n

i=1 E[X2
i |G

s,a
i−1] = P (s, a)(1{s′ = ·}−P (s′|s, a))2

∑n
i=1 1{τi <

∞} ≤ n satisfies Assumption 1 by Howard et al. (2018) (see Bennett entry in Table 2 therein) with sub-
Gaussian ψP . The same is true for the sequence −Sn. Using Corollary 71, we get that with probability at
least 1− 2δ′ for all n ∈ N

|Sn| ≤1.44

√
Vn

(
1.4 llnp(2Vn) + log

5.2

δ′

)
+ 0.81

(
1.4 llnp(2Vn) + log

5.2

δ

)

≤1.44

√
Vn

(
1.4 llnp(2n) + log

5.2

δ′

)
+ 0.81

(
1.4 llnp(2n) + log

5.2

δ

)
.

Hence, in particular after each episode k, we have in the same event because Snk(s,a) = nk(s, a)(P̂k(s
′|s, a)−

P (s′|s, a)) that

|P̂k(s′|s, a)− P (s′|s, a)| ≤1.44

√
Vn

0.52nk(s, a)

√
0.52

nk(s, a)

(
1.4 llnp(2nk(s, a)) + log

5.2

δ′

)
+

0.81

0.52

0.52

nk(s, a)

(
1.4 llnp(2nk(s, a)) + log

5.2

δ

)
.

Combining this bound with |P̂k(s′|s, a)−P (s′|s, a)| ≤ 1.56 gives the inequality |P̂k(s′|s, a)−P (s′|s, a)| ≤√
1.442Vn

0.52nk(s,a)φ(nk(s, a)) + 1.56φ(nk(s, a))2. It remains to bound the first coefficient as

1.442Vn
0.52nk(s, a)

≤4P (s, a)(1{s′ = ·} − P (s′|s, a))2 = 4P (s, a)1{s′ = ·}2 − 4P (s′|s, a)2

=4P (s′|s, a)− 4P (s′|s, a)2 ≤ 4P (s′|s, a).

97

Hence, for a fixed s′, s, a, with probability at least 1− δ′ the following inequality holds for all episodes k

|P̂k(s′|s, a)− P (s′|s, a)| ≤
√

4P (s′|s, a)φ(nk(s, a)) + 1.56φ(nk(s, a))2.

Applying a union bound over S ×A× S, we get that P(FP) ≤ 2S2Aδ′.
Failure event FPE: The bound in FP uses the predictable variance of Xi which eventually leads

to a dependency on the unknown P (s′|s, a) in the bound. In FPE , the bound instead depends on the
observed Pk(s′|s, a). To achieve that bound, we use Theorem 5 by Howard et al. (2018) in combination
with Corollary 71, similar to event F V E . For the same definition of Xi as in FP , we then get that with
probability at least 1− 2δ′ for all n ∈ N

|Sn| ≤1.44

√
Vn

(
1.4 llnp(2Vn) + log

5.2

δ′

)
+ 2.42

(
1.4 llnp(2Vn) + log

5.2

δ

)

≤1.44

√
Vn

(
1.4 llnp(2n) + log

5.2

δ′

)
+ 2.42

(
1.4 llnp(2n) + log

5.2

δ

)
,

where Vn =
∑n

i=1 ((Xi + P (s′|s, a))1{τi <∞})2 ≤ n (that is, we choose the predictable sequence as
X̂i = −P (s′|s, a)1τi <∞). Analogous to FP , we have in the same event for all k

|P̂k(s′|s, a)− P (s′|s, a)| ≤

√
1.442Vn

0.52nk(s, a)
φ(nk(s, a)) + 4.66φ(nk(s, a))2

and the first coefficient can be written as

1.442Vn
0.52nk(s, a)

≤ 4

nk(s, a)

nk(s,a)∑
i=1

(1{s′ = s′i})21{τi <∞})2 = 4P̂k(s
′|s, a).

After applying a union bound over all s′, s, a, we get the desired failure probability bound P(FPE) ≤
2S2Aδ′.

Failure event FL1: Consider a fix s ∈ S, a ∈ A and B ⊆ S and define Xi = (1{s′i ∈ B} − P (s′ ∈
B|s, a))1{τi < ∞}. In complete analogy to FR, we can show that with probability at least 1 − 2δ′ the
following bound holds for all episodes k

|P̂k(s′ ∈ B|s, a)− P (s′ ∈ B|s, a)| ≤ φ(nk(s, a)).

We can use this result with δ′/2S in combination with union bound over all possible subsets B ⊆ S to get
that

max
B⊆S
|P̂k(s′ ∈ B|s, a)− P (s′ ∈ B|s, a)| ≤

√
Sφ(nk(s, a)).

with probability at least 1− 2δ′ for all k. Finally, the fact about total variation

‖p− q‖1 = 2 max
B⊆S
|p(B)− q(B)|

as well as a union bound over S ×A gives that with probability at least 1− 2SAδ′ for all k, s, a it holds
that ‖P̂k(s, a)− P (s, a)‖1 ≤ 2

√
Sφ(nk(s, a)), i.e., P(FL1) ≤ 2SAδ′.

Failure event FN : Consider a fixed s ∈ S, a ∈ A, t ∈ [H]. We define Fk to be the sigma-field
induced by the first k − 1 episodes and sk,1. Let Xk as the indicator whether s, a was observed in episode
k at time t. The probability P(s = sk,t, a = ak,t|sk,1, πk) of whether Xk = 1 is Fk-measurable and
hence we can apply Lemma F.4 by Dann, Lattimore, and Brunskill (2017) with W = ln SAH

δ′ and obtain
that P(FN) ≤ SAHδ′ after summing over all statements for t ∈ [H] and applying the union bound over
s, a, t.

98

5.9.2 Admissibility of Certificates

We now show that the algorithm always gives a valid certificate in all episodes, outside the failure event F .
We call its complement, F c, the “good event”. The following three lemmas prove the admissibility.
Lemma 57 (Lower bounds admissible). Consider event F c and an episode k, time step h ∈ [H] and
s, a ∈ S ×A. Assume that Ṽk,h+1 ≥ V ?

h+1 ≥ V
πk
h+1 ≥ ˜

Vk,h+1 and that the lower confidence bound width
is at least

˜
ψk,h(s, a) ≥αP̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1) + βφ(nk(s, a))2 + γφ(nk(s, a))

where there are four possible choices for α, β and γ:

α =0 β =0 γ =2
√
SV max

h+1 + 1 or (5.6)

α =0 β =4.66‖ρ‖1 γ =2

[√
P̂k(s, a)

]
ρ+ V max

h+1 + 1 or (5.7)

α =0 β =(8.13V max
h+1 + 4.66‖ρ‖1) γ =1 +

√
12

√
σ2
P̂k(s,a)

(Ṽk,h+1) + P̂k(s, a)ρ2 + 2

[√
P̂k(s, a)

]
ρ

(5.8)

α =
1

C
β =(8.13V max

h+1 + (32C + 4.66)‖ρ‖1) γ =1 +
√

12σP̂k(s,a)(Ṽk,h+1) (5.9)

with ρ = Ṽk,h+1 −
˜
Vk,h+1 and for any C > 0. Then the lower confidence bound at time h is admissible,

i.e., Qπkh (s, a) ≥
˜
Qk,h(s, a).

Proof. We want to show that Qπkh (s, a)−
˜
Qk,h(s, a) ≥ 0. Since Qπkh ≥ 0, this quantity is non-negative

when the Q-value bound is clipped, i.e.,
˜
Qk,h(s, a) = 0. The non-clipped case is left, in which

Qπkh (s, a)−
˜
Qk,h(s, a) = P (s, a)V πk

h+1 + r(s, a)− r̂k(s, a) +
˜
ψk,h(s, a)− P̂k(s, a)

˜
Vk,h+1. (5.10)

For the first coefficient choice from Equation (5.6), we rewrite this quantity as

Qπkh (s, a)−
˜
Qk,h(s, a)

=
˜
ψk,h(s, a) + P (s, a)(V πk

h+1 − ˜
Vk,h+1) + (P (s, a)− P̂k(s, a))

˜
Vk,h+1 + r(s, a)− r̂k(s, a)

using the induction hypothesis for the second term and applying Hölder’s inequality to the third term

≥
˜
ψk,h(s, a) + 0− ‖P (s, a)− P̂k(s, a)‖1‖

˜
Vk,h+1‖∞ − |r(s, a)− r̂k(s, a)|

applying definition of the good event F c to the last terms and using the first choice of coefficients for
˜
ψk,h

≥ 2
√
SV max

h φ(nk(s, a))− 2
√
Sφ(nk(s, a))V max

h+1 − φ(nk(s, a)) ≥ 0 .

This completes the proof for the first coefficient choice. It remain to show the same for the second and third
coefficient choice. To that end, we rewrite the quantity in Equation (5.10) as

Qπkh (s, a)−
˜
Qk,h(s, a)

=
˜
ψk,h(s, a) + (P (s, a)− P̂k(s, a))(V πk

h+1 − V
?
h+1) + P̂k(s, a)(V πk

h+1 − ˜
Vk,h+1)

+ (P (s, a)− P̂k(s, a))V ?
h+1 + r(s, a)− r̂k(s, a)

using the induction hypothesis, we can infer that P̂k(s, a)(V πk
h+1 − ˜

Vk,h+1) ≥ 0 and get

≥
˜
ψk,h(s, a)− |(P (s, a)− P̂k(s, a))(V πk

h+1 − V
?
h+1)| − |(P (s, a)− P̂k(s, a))V ?

h+1| − |r(s, a)− r̂k(s, a)|

99

applying definition of the good event F c to the last term and reordering gives

≥ −|(P (s, a)− P̂k(s, a))(V πk
h+1 − V

?
h+1)| − |(P (s, a)− P̂k(s, a))V ?

h+1|
− φ(nk(s, a)) +

˜
ψk,h(s, a). (5.11)

We now first consider |(P (s, a)− P̂k(s, a))(V πk
h+1 − V

?
h+1)| and bound it using Lemma 68 where we bind

f = V ?
h+1 − V

πk
h+1 and with ‖f‖1 ≤ ‖Ṽk,h+1 −

˜
Vk,h+1‖1

|(P (s, a)− P̂k(s, a))(V πk
h+1 − V

?
h+1)|

≤ 4.66‖Ṽk,h+1 −
˜
Vk,h+1‖1φ(nk(s, a))2 + 2φ(nk(s, a))

√
P̂k(s, a)(V ?

h+1 − V
πk
h+1)

and since 0 ≤ V ?
h+1 − V

πk
h+1 ≤ Ṽk,h+1 −

˜
Vk,h+1 this is upper-bounded by

≤ 4.66‖Ṽk,h+1 −
˜
Vk,h+1‖1φ(nk(s, a))2 + 2φ(nk(s, a))

√
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1) (5.12)

and again by Lemma 68 we can get a nicer form for any C > 0 as follows

≤ 1

C
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1)− (4C + 4.66)‖Ṽk,h+1 −

˜
Vk,h+1‖1φ(nk(s, a))2. (5.13)

After deriving runtime-computable bounds for |(P (s, a) − P̂k(s, a))(V πk
h+1 − V

?
h+1)|, it remains to

upper-bound |(P (s, a)− P̂k(s, a))V ?
h+1| in Equation (5.11). Here, we can apply the definition of the failure

event F V and bound |(P (s, a)− P̂k(s, a))V ?
h+1| ≤ V max

h+1 φ(nk(s, a)). Plugging this bound together with
the bound from (5.12) back into (5.11) gives

Qπkh (s, a)−
˜
Qk,h(s, a) ≥ −

(
V max
h+1 + 1 + 2

√
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1)

)
φ(nk(s, a))

− 4.66‖Ṽk,h+1 −
˜
Vk,h+1‖1φ(nk(s, a))2 +

˜
ψk,h(s, a)

which is non-negative when we use the second coefficient choice from Equation (5.7) for
˜
ψk,h. Alternatively,

we can apply the definition of the failure event F V E which uses an empirical variance instead of the range
of V ?

h+1 and bound

|(P (s, a)− P̂k(s, a))V ?
h+1|

≤
√

4P̂k(s, a)[(V ?
h+1(·)− P (s, a)V ?

h+1)2]φ(nk(s, a)) + 4.66V max
h+1 φ(nk(s, a))2

≤
√

12

√
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1)2 + σ2

P̂k(s,a)
(Ṽk,h+1)φ(nk(s, a)) + 8.13V max

h+1 φ(nk(s, a))2(5.14)

≤
√

12σP̂k(s,a)(Ṽk,h+1)φ(nk(s, a)) +
1

C
Pk(s, a)(Ṽk,h+1 −

˜
Vk,h+1)

+ (8.13V max
h+1 + 12C‖Ṽk,h+1 −

˜
Vk,h+1‖1)φ(nk(s, a))2 (5.15)

where we applied Lemma 60. Plugging the bound from (5.14) and (5.12) into (5.11) gives

Qπkh (s, a)−
˜
Qk,h(s, a) ≥ −

√
12

√
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1)2 + σ2

P̂k(s,a)
(Ṽk,h+1)φ(nk(s, a))

−
(

1 + 2

√
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1)

)
φ(nk(s, a))

− (8.13V max
h+1 + 4.66‖Ṽk,h+1 −

˜
Vk,h+1‖1)φ(nk(s, a))2 +

˜
ψk,h(s, a).

100

Applying the coefficient choice from Equation (5.8) for
˜
ψk,h shows that this bound becomes non-negative

as well. Finally, we plug the bound from (5.15) and (5.13) into (5.11) to get

Qπkh (s, a)−
˜
Qk,h(s, a)

≥ − 2

C
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1)− (8.13V max

h+1 + (16C + 4.66)‖Ṽk,h+1 −
˜
Vk,h+1‖1)φ(nk(s, a))2

− (1 +
√

12σP̂k(s,a)(Ṽk,h+1))φ(nk(s, a)) +
˜
ψk,h(s, a).

We rebind C ← 2C and use the last coefficient choice from Equation (5.9) for
˜
ψk,h to show the above is

non-negative. Hence, we have shown that for all choices for coefficients Qπkh (s, a)−
˜
Qk,h(s, a) ≥ 0.

Lemma 58 (Upper bounds admissible). Consider event F c and an episode k, time step h ∈ [H] and
s, a ∈ S ×A. Assume that Ṽk,h+1 ≥ V ?

h+1 ≥ V
πk
h+1 ≥ ˜

Vk,h+1 and that the upper confidence bound width
is at least

ψ̃k,h(s, a) ≥αP̂k(s, a)(Ṽk,h+1 −
˜
Vk,h+1) + βφ(nk(s, a))2 + γφ(nk(s, a))

where there are three possible choices for α, β and γ:

α =0 β =0 γ =1 + V max
h+1 or (5.16)

α =0 β =8.13V max
h+1 γ =1 + 3.47

√
σ2
P̂k(s,a)

(Ṽk,h+1) + P̂k(s, a)(ρ2)(5.17)

α =
1

C
β =(8.13V max

h+1 + 12C‖ρ‖1) γ =1 + 3.47σP̂k(s,a)(Ṽk,h+1) (5.18)

with ρ = Ṽk,h+1 −
˜
Vk,h+1 and C > 0 arbitrary. Then the upper confidence bound at time h is admissible;

that is, Q?h(s, a) ≤ Q̃k,h(s, a).

Proof. We want to show that Q̃k,h(s, a)−Q?h(s, a) ≥ 0. Since Q?h ≤ V max
h , this quantity is non-negative

when the optimistic Q-value is clipped, i.e., Q̃k,h(s, a) = V max
h . It remains to show that this quantity is

non-negative in the non-clipped case in which

Q̃k,h(s, a)−Q?h(s, a) =r̂k(s, a) + ψ̃k,h(s, a) + P̂k(s, a)Ṽk,h+1 − P (s, a)V ?
h+1 − r(s, a)

=r̂k(s, a)− r(s, a) + P̂k(s, a)(Ṽk,h+1 − V ?
h+1) + (P̂k(s, a)− P (s, a))V ?

h+1 + ψ̃k,h(s, a)

by induction hypothesis, we know that P̂k(s, a)(Ṽk,h+1 − V ?
h+1) ≥ 0, which allows us to bound

≥r̂k(s, a)− r(s, a) + (P̂k(s, a)− P (s, a))V ?
h+1 + ψ̃k,h(s, a)

≥− |r̂k(s, a)− r(s, a)| − |(P̂k(s, a)− P (s, a))V ?
h+1|+ ψ̃k,h(s, a)

and applying the definition of the failure event FR to the first term

≥− φ(nk(s, a))− |(P̂k(s, a)− P (s, a))V ?
h+1|+ ψ̃k,h(s, a). (5.19)

It remains to bound the |(P̂k(s, a)− P (s, a))V ?
h+1| term for which we have two ways. First, we can apply

the definition of F V which allows us to use |(P̂k(s, a)− P (s, a))V ?
h+1| ≤ V max

h φ(nk(s, a)). This yields

Q̃k,h(s, a)−Q?h(s, a) ≥ψ̃k,h(s, a)− φ(nk(s, a))− V max
h+1 φ(nk(s, a))

101

which is non-negative using the first choice of coefficients for ψ̃k,h from Equation (5.16). Second, we can
apply the definition of F V E which relies on the empirical variance instead of the range of the optimal value
of the successor state. This bound gives

|(P (s, a)− P̂k(s, a))V ?
h+1|

≤
√

4P̂k(s, a)[(V ?
h+1(·)− P (s, a)V ?

h+1)2]φ(nk(s, a)) + 4.66V max
h+1 φ(nk(s, a))2 (5.20)

≤
√

12

√
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1)2 + σ2

P̂k(s,a)
(Ṽk,h+1)φ(nk(s, a)) + 8.13V max

h+1 φ(nk(s, a))2

where we applied Lemma 60. Plugging that result into the bound in Equation (5.19) yields

Q̃k,h(s, a)−Q?h(s, a) ≥ψ̃k,h(s, a)− φ(nk(s, a))− 8.13V max
h+1 φ(nk(s, a))2

−
√

12

√
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1)2 + σ2

P̂k(s,a)
(Ṽk,h+1)φ(nk(s, a)).

This lower bound is non-negative when we use the second coefficient choice from Equation (5.17) for ψ̃k,h.
Finally, we can also apply the second inequality from Lemma 60 to Equation (5.20) to get

|(P (s, a)− P̂k(s, a))V ?
h+1|

≤
√

12σP̂k(s,a)(Ṽk,h+1)φ(nk(s, a)) + (8.13V max
h+1 + 12C‖1{P̂k(·|s, a) > 0}(Ṽk,h+1 −

˜
Vk,h+1)‖2)φ(nk(s, a))2

+
1

C
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1)

and plugging that result into the bound in Equation (5.19) with ‖1{P̂k(·|s, a) > 0}(Ṽk,h+1 −
˜
Vk,h+1)‖2 ≤

‖Ṽk,h+1 −
˜
Vk,h+1‖1 shows that the result holds for the third coefficient choice from Equation (5.18) for

ψ̃k,h. Hence, we have shown that under either coefficient choice, we have Q̃k,h(s, a)−Q?h(s, a) ≥ 0.

Lemma 59 (Optimality guarantees admissible). In the good event F c, for all episodes k, the certificate is
valid, that is, ∆k ≤ εk. In addition, all Q-value bounds are admissible, i.e., for all k ∈ N, h ∈ [H] and
s ∈ S, a ∈ A,

˜
Qk,h(s, a) ≤ Qπkh (s, a) ≤ Q?h(s, a) ≤ Q̃k,h(s, a).

Proof. Consider the good event F c. Since we assume that the initial state is deterministic, we have
∆k = V ?

1 (sk,1) − V πk
1 (sk,1). By induction we can show that Ṽk,h(s) ≥ V ?

h (s) ≥ V πk
h (s) ≥

˜
Vk,h(s) for

all k, h, s, a. The induction start is h = H + 1 which holds by definition and due to the specific values of

˜
ψ and ψ̃ in the algorithm, we can apply Lemmas 57 and 58 in each induction step. It then follows that in
particular V πk

1 (sk,1) ≥
˜
V1(sk,1) and the claim follows from

∆k = V ?(sk,1)− V πk(sk,1 ≤Ṽk,1(sk,1)−
˜
Vk,1(sk,1) = εk .

The following two lemmas give us upper bounds on the empirical variance terms. The first lemma is
used to show that the algorithm produces admissible bounds while the second is relevant for bounding the
number of certificate mistakes.

102

Lemma 60. Consider the good event F c and any episode k ∈ N and time step h ∈ [H]. If
˜
Vk,h+1 ≤ V πk

h+1

and V ?
h+1 ≤ Ṽk,h+1, then for any s ∈ S and a ∈ A and C > 0√

4P̂k(s, a)[(V ?
h+1(·)− P (s, a)V ?

h+1)2]φ(nk(s, a))

≤
√

12
√
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1)2 + σ2

P̂k(s,a)
(Ṽk,h+1)φ(nk(s, a)) +

√
12V max

h+1 φ(nk(s, a))2

≤
√

12σP̂k(s,a)(Ṽk,h+1)φ(nk(s, a)) + (
√

12V max
h+1 + 12C‖1{P̂k(·|s, a) > 0}(Ṽk,h+1 −

˜
Vk,h+1)‖2)φ(nk(s, a))2

+ 1
C P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1).

Proof. We first focus on the inner term

P̂k(s, a)[(V ?
h+1(·)− P (s, a)V ?

h+1)2]

=P̂k(s, a)[(Ṽk,h+1 − P̂k(s, a)Ṽk,h+1 + V ?
h+1 − Ṽk,h+1 + P̂k(s, a)(Ṽk,h+1 − V ?

h+1) + (P̂k(s, a)− P (s, a))V ?
h+1)2]

applying the Cauchy-Schwarz inequality which gives (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2

≤3P̂k(s, a)[(Ṽk,h+1 − P̂k(s, a)Ṽk,h+1)2]

+ 3P̂k(s, a)[(V ?
h+1 − Ṽk,h+1 + P̂k(s, a)(Ṽk,h+1 − V ?

h+1))2] + 3((P̂k(s, a)− P (s, a))V ?
h+1)2.

The term P̂k(s, a)[(V ?
h+1 − Ṽk,h+1 + P̂k(s, a)(Ṽk,h+1 − V ?

h+1))2] is the variance of a r.v. V ?
h+1(s′) −

Ṽk,h+1(s′) when Ṽk,h+1 is fixed and s′ is drawn from P̂k(s, a). We can apply the standard identity of vari-
ances Var(X) = E[X2]−E[X]2 and rewrite this term as P̂k(s, a)(V ?

h+1− Ṽk,h+1)2− (P̂k(s, a)(Ṽk,h+1−
V ?
h+1))2. Plugging this back in gives the bound

3P̂k(s, a)[(Ṽk,h+1 − P̂k(s, a)Ṽk,h+1)2] + 3P̂k(s, a)(V ?
h+1 − Ṽk,h+1)2

− 3(P̂k(s, a)(Ṽk,h+1 − V ?
h+1))2 + 3((P̂k(s, a)− P (s, a))V ?

h+1)2

leveraging (F V)c for the final term and dropping the third term which cannot be positive

≤3P̂k(s, a)[(Ṽk,h+1 − P̂k(s, a)Ṽk,h+1)2] + 3P̂k(s, a)(V ?
h+1 − Ṽk,h+1)2 + 3(V max

h+1)2φ(nk(s, a))2.

We substitute this bound on P̂k(s, a)[(V ?
h+1(·)− P (s, a)V ?

h+1)2] back into Equation (5.21):√
4P̂k(s, a)[(V ?

h+1(·)− P (s, a)V ?
h+1)2]φ(nk(s, a))

≤
√

12σ2
P̂k(s,a)

(Ṽk,h+1) + 12P̂k(s, a)(V ?
h+1 − Ṽk,h+1)2φ(nk(s, a)) +

√
12V max

h+1 φ(nk(s, a))2.

We now leverage that
˜
Vk,h+1 ≤ V πk

h+1 ≤ V
?
h+1 ≤ Ṽk,h+1 to get a computable bound

≤
√

12σ2
P̂k(s,a)

(Ṽk,h+1) + 12P̂k(s, a)(Ṽk,h+1 −
˜
Vk,h+1)2φ(nk(s, a)) +

√
12V max

h+1 φ(nk(s, a))2.

This is the first inequality to show. For the second inequality, we first bound this expression further as

√
12σP̂k(s,a)(Ṽk,h+1)φ(nk(s, a)) +

√
12V max

h+1 φ(nk(s, a))2 +

√
12P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1)2φ(nk(s, a)).

(5.25)

103

We now treat the last term in Equation (5.25) separately as√
12P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1)2φ(nk(s, a))2 =

√∑
s′∈S

12φ(nk(s, a))2

P̂k(s′|s, a)
P̂k(s′|s, a)2(Ṽk,h+1 −

˜
Vk,h+1)2

splitting the sum based on whether P̂k(s′|s, a) ≤ 12C2φ(nk(s, a))2 for C > 0 and making repeated use of√∑
i ai ≤

∑
i

√
ai

≤
√∑
s′∈S

1

C2
P̂k(s′|s, a)2(Ṽk,h+1 −

˜
Vk,h+1)2 + 12

√∑
s′∈S

1{P̂k(s′|s, a) > 0}C2φ(nk(s, a))4(Ṽk,h+1 −
˜
Vk,h+1)2

≤ 1

C
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1) + 12C‖1{P̂k(·|s, a) > 0}(Ṽk,h+1 −

˜
Vk,h+1)‖2φ(nk(s, a))2.

Plugging this bound for the final term back in to Equation 5.25 gives the desired statement√
4P̂k(s, a)[(V ?

h+1(·)− P (s, a)V ?
h+1)2]φ(nk(s, a))

≤
√

12σP̂k(s,a)(Ṽk,h+1)φ(nk(s, a))

+ (
√

12V max
h+1 + 12C‖1{P̂k(·|s, a) > 0}(Ṽk,h+1 −

˜
Vk,h+1)‖2)φ(nk(s, a))2

+
1

C
Pk(s, a)(Ṽk,h+1 −

˜
Vk,h+1).

Lemma 61. Consider the good event F c and any episode k ∈ N and time step h ∈ [H]. If
˜
Vk,h+1 ≤ V πk

h+1

and V ?
h+1 ≤ Ṽk,h+1, then for any s ∈ S, a ∈ A and C,D > 0√

Dσ2
P̂k(s,a)

(Ṽk,h+1)φ(nk(s, a)) ≤
√

4Dσ2
P (s,a)(V

πk
h+1)φ(nk(s, a))

+(6
√
D + 4CD)V max

h+1 Sφ(nk(s, a))2

+ 1
C P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1).

Proof. Note that the proof proceeds in the same fashion as Lemma 60. We first focus on the inner term

P̂k(s, a)[(Ṽk,h+1 − P̂k(s, a)Ṽk,h+1)2]

=P̂k(s, a)[(V πk
h+1 − P (s, a)V πk

h+1 + Ṽk,h+1 − V πk
h+1 − P̂k(s, a)(Ṽk,h+1 − V πk

h+1) + (P (s, a)− P̂k(s, a))V πk
h+1)2]

applying (a+ b)2 ≤ 2a2 + 2b2 twice

≤2P̂k(s, a)[(V πk
h+1 − P (s, a)V πk

h+1)2]

+ 4P̂k(s, a)[(Ṽk,h+1 − V πk
h+1 − P̂k(s, a)(Ṽk,h+1 − V πk

h+1))2] + 4((P (s, a)− P̂k(s, a))V πk
h+1)2

using the identity of variances applied to the variance of Ṽk,h+1 − V πk
h+1 w.r.t. P̂k(s, a)

=2P̂k(s, a)[(V πk
h+1 − P (s, a)V πk

h+1)2] + 4P̂k(s, a)(Ṽk,h+1 − V πk
h+1)2

− 4(P̂k(s, a)(Ṽk,h+1 − V πk
h+1))2 + 4((P (s, a)− P̂k(s, a))V πk

h+1)2

104

dropping the third term which cannot be positive and applying the definition of event FL1 to the last term

≤2P̂k(s, a)[(V πk
h+1 − P (s, a)V πk

h+1)2] + 4P̂k(s, a)(Ṽk,h+1 − V πk
h+1)2 + 16(V max

h+1

√
Sφ(nk(s, a)))2

=2P (s, a)[(V πk
h+1 − P (s, a)V πk

h+1)2] + 2(P̂k(s, a)− P (s, a))[(V πk
h+1 − P (s, a)V πk

h+1)2]

+ 4P̂k(s, a)(Ṽk,h+1 − V πk
h+1)2 + 16(V max

h+1)2Sφ(nk(s, a))2

applying Lemma 68 to the second term with C = 1 and f = (V πk
h+1 − P (s, a)V πk

h+1)2

≤4P (s, a)[(V πk
h+1 − P (s, a)V πk

h+1)2] + 12.5‖(V πk
h+1 − P (s, a)V πk

h+1)2‖1φ(nk(s, a))2

+ 4P̂k(s, a)(Ṽk,h+1 − V πk
h+1)2 + 16(V max

h+1)2Sφ(nk(s, a))2

≤4P (s, a)[(V πk
h+1 − P (s, a)V πk

h+1)2] + 4P̂k(s, a)(Ṽk,h+1 − V πk
h+1)2 + 28.5(V max

h+1)2Sφ(nk(s, a))2.

We now plug this result into the right hand expression of Equation 5.26 to get√
DP̂k(s, a)[(Ṽk,h+1 − P̂k(s, a)Ṽk,h+1)2]φ(nk(s, a)) ≤

√
4DP (s, a)[(V πk

h+1 − P (s, a)V πk
h+1)2]φ(nk(s, a))

+ 6
√
DV max

h+1

√
Sφ(nk(s, a))2

+
√

4DP̂k(s, a)(Ṽk,h+1 − V πk
h+1)2φ(nk(s, a)).

We now treat the last term separately and start by using the assumption that
˜
Vk,h+1 ≤ V πk

h+1 ≤ Ṽk,h+1√
4DP̂k(s, a)(Ṽk,h+1 − V πk

h+1)2φ(nk(s, a))2 ≤
√

4DP̂k(s, a)(Ṽk,h+1 −
˜
Vk,h+1)2φ(nk(s, a))2

=

√∑
s′∈S

4Dφ(nk(s, a))2

P̂k(s′|s, a)
P̂k(s′|s, a)2(Ṽk,h+1 −

˜
Vk,h+1)2

splitting the sum based on whether Pk(s′|s, a) ≤ 4DC2φ(nk(s, a))2 for C > 0 and making repeated use
of
√∑

i ai ≤
∑

i

√
ai

≤
√∑
s′∈S

1

C2
P̂k(s′|s, a)2(Ṽk,h+1 −

˜
Vk,h+1)2 +

√∑
s′∈S

(4D)2C2φ(nk(s, a))4(Ṽk,h+1 −
˜
Vk,h+1)2

≤ 1

C
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1) + 4DC‖Ṽk,h+1 −

˜
Vk,h+1‖1φ(nk(s, a))2.

Plugging this bound for the final term back in gives the desired statement√
DP̂k(s, a)[(Ṽk,h+1 − P̂k(s, a)Ṽk,h+1)2]φ(nk(s, a)) ≤

√
4DP (s, a)[(V πk

h+1 − P (s, a)V πk
h+1)2]φ(nk(s, a))

+ (6
√
D + 4CD)V max

h+1 Sφ(nk(s, a))2

+
1

C
Pk(s, a)(Ṽk,h+1 −

˜
Vk,h+1).

105

5.9.3 Bound on the size of a certificate

We start by deriving an upper bound on each certificate in terms of the confidence bound widths.
Lemma 62 (Upper bound on certificates). Let wk,h(s, a) = P(sk,h = s, ak,h = a|sk,1, πk) be the
probability of encountering s, a at time h in the kth episode. In the good event F c, for all episodes k, the
following bound on the optimality-guarantee holds

εk ≤ exp(6)
∑

s,a∈S×A

H∑
h=1

wk,h(s, a)(H ∧ (βφ(nk(s, a))2 + γk,h(s, a)φ(nk(s, a))))

with β = 336SH2 and γk,h(s, a) = 14σP (s,a)(V
πk
h+1) + 2.

Proof. In this lemma, we use the definition of
˜
ψk,h = ψ̃k,h = 1

H P̂k(s, a)(Ṽk,h+1−
˜
Vk,h+1)+45SH2φ(nk(s, a))2+(

1 +
√

12σP̂k(s,a)(Ṽk,h+1)
)
φ(nk(s, a)) from the algorithm in the main text (Algorithm 4 and note that is

an upper bound on the definition of the bonus terms in Algorithm 6. Hence, the lemma holds for both. We
start by bounding the sum of confidence widths as

ψ̃k,h(s, a) +
˜
ψk,h(s, a) ≤ 2

H
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1) + β̂φ(nk(s, a))2 + γ̂k,h(s, a)φ(nk(s, a))

where we define

β̂ = 90SH2

γ̂k,h(s, a) = 2
(

1 +
√

12σP̂k(s,a)(Ṽk,h+1)
)
.

Before moving on, we further bound the final term using Lemma 61 as

γ̂k,h(s, a)φ(nk(s, a)) =2φ(nk(s, a)) +
√

48σ2
P̂k(s,a)

(Ṽk,h+1)φ(nk(s, a))

≤(14σP (s,a)(V
πk
h+1) + 2)φ(nk(s, a))

+ (42 + 192H)V max
h+1 Sφ(nk(s, a))2 +

1

H
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1).

Hence, we can bound the sum of confidence widths as

ψ̃k,h(s, a) +
˜
ψk,h(s, a) ≤ 3

H
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1) + β̃φ(nk(s, a))2 + γk,h(s, a)φ(nk(s, a))

where we define

β̃ = (42 + 192 + 90)SH2 = 324SH2

γk,h(s, a) = 14σP (s,a)(V
πk
h+1) + 2.

By definition of the upper and lower bound estimates

Q̃k,h(s, a)−
˜
Qk,h(s, a)

≤ ψ̃k,h(s, a) +
˜
ψk,h(s, a) + P̂k(s, a)Ṽk,h+1 − P̂k(s, a)

˜
Vk,h+1

≤
(

1 +
3

H

)
P̂k(s, a)(Ṽk,h+1 −

˜
Vk,h+1) + β̃φ(nk(s, a))2 + γk,h(s, a)φ(nk(s, a)). (5.29)

106

We first treat P̂k(s, a)(Ṽk,h+1 −
˜
Vk,h+1) separately as

P̂k(s, a)(Ṽk,h+1 −
˜
Vk,h+1) ≤ P (s, a)(Ṽk,h+1 −

˜
Vk,h+1) + (P̂k(s, a)− P (s, a))(Ṽk,h+1 −

˜
Vk,h+1)

and bound the final term with Lemma 68 binding f = Ṽk,h+1 −
˜
Vk,h+1 ∈ [0, H] and C = H/3

≤
(

1 +
3

H

)
P (s, a)(Ṽk,h+1 −

˜
Vk,h+1) + 3SH2φ(nk(s, a))2.

Plugging this result back in the expression in (5.29) and setting β = 336SH2 ≥ β̃ + 3(1 + 3/H)SH2

yields

Q̃k,h(s, a)−
˜
Qk,h(s, a)

≤
(

1 +
3

H

)2

P (s, a)(Ṽk,h+1 −
˜
Vk,h+1) + βφ(nk(s, a))2 + γk,h(s, a)φ(nk(s, a))

=

(
1 +

3

H

)2

P πkh (s, a)(Q̃k,h+1 −
˜
Qk,h+1) + βφ(nk(s, a))2 + γk,h(s, a)φ(nk(s, a)).

Here, P πkh (s, a)f = E[f(sk,h+1, πk(sk,h+1, h + 1))|sk,h = s, ak,h = a, πk] denotes the composition
of P (s, a) and the policy action selection operator at time h + 1. In addition to the bound above, by
construction also 0 ≤ Q̃k,h(s, a)−

˜
Qk,h(s, a) ≤ V max

h holds at all times. Resolving this recursive bound
yields

εk = (Ṽk,1 −
˜
Vk,1)(sk,1) = (Q̃k,1 −

˜
Qk,1)(sk,1, πk(sk,1, 1))

≤
∑

s,a∈S×A

H∑
h=1

(
1 +

3

H

)2h

wk,h(s, a)(V max
h ∧+(βφ(nk(s, a))2 + γk,h(s, a)φ(nk(s, a))))

≤ exp(6)
∑

s,a∈S×A

H∑
h=1

wk,h(s, a)(H ∧ (βφ(nk(s, a))2 + γk,h(s, a)φ(nk(s, a)))).

Here we bounded with x = 2H(
1 +

3

H

)2h

≤
(

1 +
3

H

)2H

=

(
1 +

6

x

)x
≤ lim

x→∞

(
1 +

6

x

)x
= exp(6).

5.9.4 Mistake IPOC bound proof

We now follow the proof structure of Dann, Lattimore, and Brunskill (2017) and define nice episodes, in
which all state-action pairs either have low probability of occurring or the sum of probability of occurring
in the previous episodes is large enough so that outside the failure event we can guarantee that

nk(s, a) ≥ 1

4

∑
i<k

wi(s, a).

This allows us then to bound the number of nice episodes with large certificates by the number of times
terms of the form ∑

s,a∈Lk

wk(s, a)

√
llnp(nk(s, a)) +D

nk(s, a)

can exceed a chosen threshold (see Lemma 69 below).

107

Definition 63 (Nice Episodes). An episode k is nice if and only if for all s ∈ S, a ∈ A the following
condition holds:

wk(s, a) ≤ wmin ∨ 1

4

∑
i<k

wi(s, a) ≥ H ln
SAH

δ′
.

We denote the set of indices of all nice episodes as N ⊆ N.
Lemma 64 (Properties of nice episodes). If an episode k is nice, i.e., k ∈ N , then in the good event F c,
for all s ∈ S, a ∈ A the following statement holds:

wk(s, a) ≤ wmin ∨ nk(s, a) ≥ 1

4

∑
i<k

wi(s, a).

Proof. Since we consider the event FNc, it holds for all s, a pairs with wk(s, a) > wmin

nk(s, a) ≥ 1

2

∑
i<k

wi(s, a)−H ln
SAH

δ′
≥ 1

4

∑
i<k

wi(s, a)

for k ∈ N .

Lemma 65 (Number of episodes that are not nice). On the good event F c, the number of episodes that are
not nice is at most

4S2A(A ∧H)H2

cεε
ln
SAH

δ′
.

Proof. If an episode k is not nice, then there is s, a with wk(s, a) > wmin and∑
i<k

wi(s, a) < 4H ln
SAH

δ′
.

The sum on the left-hand side of this inequality increases by at least wmin after the episode while the right
hand side stays constant, this situation can occur at most

4SAH

wmin
ln
SAH

δ′
=

4S2A(A ∧H)H2

cεε
ln
SAH

δ′

times in total.

5.9.5 Proof of IPOC bound of ORLC, Theorem 53

We are now equipped with all tools to complete the proof of Theorem 53:

Proof of Theorem 53. Consider event F c which has probability at least 1 − δ due to Lemma 56. In this
event, all optimality guarantees are admissible by Lemma 59. Further, using Lemma 62, the optimality
guarantees are bounded as

εk ≤ exp(6)
∑

s,a∈S×A

H∑
h=1

wk,h(s, a)(H ∧ (βφ(nk(s, a))2 + γk,h(s, a)φ(nk(s, a))))

108

where β = 336SH2 and γk,h(s, a) = 14σP (s,a)(V
πk
h+1) + 2. It remains to show that for any given

threshold ε > 0 this bound does not exceed ε except for at most the number of times prescribed by
Equation 53. Recall the definition of Lk as the set of state-action pairs with significant probability of
occurring, Lk = {(s, a) ∈ S ×A : wk(s, a) ≥ wmin}, and split the sum as

εk ≤ exp(6)
∑
s,a/∈Lk

wk(s, a)H

+ exp(6)β
∑
s,a∈Lk

wk(s, a)φ(nk(s, a))2 + exp(6)
∑
s,a∈Lk

H∑
h=1

wk,h(s, a)γk,h(s, a)φ(nk(s, a))

and bound each of the three remaining terms individually. First, the definition of Lk was chosen such that

e6
∑
s,a/∈Lk

wk(s, a)H ≤ e6HwminS(A ∧H) =
e6HS(A ∧H)εcε
HS(A ∧H)

= cεe
6ε,

where we used the fact that the number of positive wk(s, a) is no greater than SA or SH per episode k.
Second, we use Corollary 70 with r = 1, C = 0.728, D = 0.72 ln 5.2

δ′ (which satisfies D > 1 for any
δ′ ≤ 1) and ε′ = cεε

β to bound

exp(6)β
∑
s,a∈Lk

wk(s, a)φ(nk(s, a))2 ≤ cεεe6

on all but at most

O

(
SAβ

ε
polylog(S,A,H, 1/ε, ln(1/δ))

)
= O

(
S2AH2

ε
polylog(S,A,H, 1/ε, ln(1/δ))

)
nice episodes. Third, we use Lemma 69 with r = 2, C = 0.728, D = 0.72 ln 5.2

δ′ and ε′ = cεε to bound

exp(6)
∑
s,a∈Lk

H∑
h=1

wk,h(s, a)γk,h(s, a)φ(nk(s, a)) ≤ cεe6ε

on all but at most

O

(
SAB

ε2
polylog(S,A,H, 1/ε, ln(1/δ))

)
= O

(
SAH2

ε2
polylog(S,A,H, 1/ε, ln(1/δ))

)
nice episodes. Here we choose B = 400H2 + 4H which is valid since

∑
s,a∈Lk

H∑
h=1

wk,h(s, a)γk,h(s, a)2 ≤
∑

s,a∈S×A

H∑
h=1

wk,h(s, a)γk,h(s, a)2

≤2
∑

s,a∈S×A

H∑
h=1

wk,h(s, a)22 + 2
∑

s,a∈S×A

H∑
h=1

wk,h(s, a)142σ2
P (s,a)(V

πk
h+1)

≤8H + 400
∑

s,a∈S×A

H∑
h=1

wk,h(s, a)σ2
P (s,a)(V

πk
h+1) ≤ 8H + 400H2.

109

The first inequality comes from the definition of γk,h and applying the fact (a + b)2 ≤ 2a2 + 2b2. The
second inequality follows from the fact that wk,h is a probability distribution over state and actions and
hence their total sum over all time steps is H . Finally, we applied Lemma 4 by Dann and Brunskill (2015)
which tells us that the sum of variances is simply the variance of the sum of rewards per episode and hence
bounded by H2.

Combining the bounds for the three terms above, we obtain that εk ≤ 3cεε ≤ ε on all nice episodes
except at most

O

((
SAH2

ε2
+
S2AH2

ε

)
polylog(S,A,H, 1/ε, ln(1/δ))

)
nice episodes. Further, Lemma 65 states that the number of episodes that are not nice is bounded by

O

(
S2A(A ∧H)H2

ε
polylog(S,A,H, 1/ε, ln(1/δ))

)
.

Taking all these bounds together, we can bound εk ≤ 4cεε ≤ ε for all episodes k except at most

O

((
SAH2

ε2
+
S2A(A ∧H)H2

ε

)
polylog(S,A,H, 1/ε, ln(1/δ))

)
which completes the proof.

5.9.6 Tighter cumulative IPOC bound

Theorem 66 (Restatement of Theorem 54). Algorithm 4 and Algorithm 6 satisfy the following cumulative
IPOC bound:

Õ

(√
SAH2T ln

1

δ
+ S2AH2 ln

T

δ

)
Proof. Consider event F c which has probability as least 1−δ due to Lemma 56. In this event, all certificates
are admissible by Lemma 59 and using Lemma 62 the size of the certificate εk is bounded for all episodes
k by

εk ≤ exp(6)
∑

s,a∈S×A

H∑
h=1

wk,h(s, a)(H ∧ (βφ(nk(s, a))2 + γk,h(s, a)φ(nk(s, a))))

where β = 336SH2 and γk,h(s, a) = 14σP (s,a)(V
πk
h+1) + 2. Let us now leverage this bound in the

cumulative certificate size after T episodes

T∑
k=1

εk ≤ exp(6)

T∑
k=1

∑
s,a∈S×A

H∑
h=1

wk,h(s, a)
[
H ∧ (βφ(nk(s, a))2 + γk,h(s, a)φ(nk(s, a)))

]
.

We now split this sum over state-action pairs into three different categories: state-action pairs that have low
expected visitation Lck = {(s, a) ∈ S×A : wk(s, a) < wmin}, state-action pairs that have substantial visi-
tation probability but have not been observed often enoughUk =

{
s, a ∈ Lk :

∑
i<k wi(s, a) < 4H ln SAH

δ′

}
and the remaining state action pairs Wk =

{
s, a ∈ Lk :

∑
i<k wi(s, a) ≥ 4H ln SAH

δ′

}
. Note that these

110

definitions include wmin which we leave arbitrary for now and will set differently than in the IPOC mistake
bound proof. This yields

T∑
k=1

εk ≤ exp(6)

T∑
k=1

∑
s,a/∈Lk

wk(s, a)H + exp(6)

T∑
k=1

∑
s,a∈Uk

wk(s, a)H

+ exp(6)

T∑
k=1

∑
s,a∈Wk

H∑
h=1

wk,h(s, a)
[
H ∧ (βφ(nk(s, a))2 + γk,h(s, a)φ(nk(s, a)))

]
.(5.30)

We now bound each term individually, starting with the first,

T∑
k=1

∑
s,a/∈Lk

wk(s, a)H ≤ SAHTwmin.

The second term is bounded as
T∑
k=1

∑
s,a∈Uk

wk(s, a)H = H
∑

s,a∈S×A

T∑
k=1

wk(s, a)1

{∑
i<k

wi(s, a) < 4H ln
SAH

δ′

}
and now let for each s, a be ys,a ∈ N the largest index so that

∑ys,a
k=1wk(s, a) < 4H ln SAH

δ′ and write the
sum as

≤ H
∑

s,a∈S×A

[
4

ys,a∑
k=1

wk(s, a) + wys,a+1(s, a)

]
≤ SAH

(
4H ln

SAH

δ′
+H

)
.

Let us now move on to the final term in (5.30). We first look at the sub-term of the form

T∑
k=1

∑
s,a∈Wk

wk(s, a)φ(nk(s, a))2 =
∑

s,a∈S×A

T∑
k=1

1{s, a ∈Wk}wk(s, a)φ(nk(s, a))2 (5.31)

We upper-bound φ(nk(s, a))2 by a slightly simpler expression J
nk(s,a) where J = 0.75 ln 5.2 ln(HT)

δ′ ≥
0.52×1.4 ln 5.2 ln(e∨nk(s,a))

δ′ ≥ 0.52(1.4 ln ln(e∨nk(s, a))+ln(5.2/δ′)) which replaces the dependency on
the number of observations nk(s, a) in the log term by the total number of time stepsHT ≥ Hk ≥ nk(s, a).
Applying this bound to (5.31) gives

J
∑

s,a∈S×A

T∑
k=1

1{s, a ∈Wk}
wk(s, a)

nk(s, a)
. (5.32)

By the definition of Wk, we know that for all (s, a) ∈Wk the following chain of inequalities holds∑
i<k

wi(s, a) ≥ 4H ln
SAH

δ′
≥ 8H ≥ 8wk(s, a).

The second inequality is true because of the definition of δ′ in Equation (5.3) gives SAHδ′ = SAH(5SAH+4SA+4S2A)
δ

which is lower bounded by 13 ≥ exp(2) because δ ≤ 1 and S,A,H ≥ 1. Leveraging this chain of inequal-
ities in combination with (FN)C , we can obtain similar to the property of nice episodes a lower bound on
nk(s, a) for (s, a) ∈Wk as

nk(s, a) ≥ 1

2

∑
i<k

wi(s, a)−H ln
SAH

δ′
≥ 1

4

∑
i<k

wi(s, a) ≥ 2

9

∑
i≤k

wi(s, a).

111

Plugging this back into (5.32) and applying Lemma 36 gives

9J

2

∑
s,a∈S×A

T∑
k=1

1{s, a ∈Wk}
wk(s, a)∑
i≤k wi(s, a)

≤ 9JSA

2
ln
HTe

wmin
.

We have just derived that
∑T

k=1

∑
s,a∈Wk

wk(s, a)φ(nk(s, a))2 ≤ 9JSA
2 ln HTe

wmin
and we now move on to

the dominant term of the form

T∑
k=1

∑
s,a∈Wk

H∑
h=1

wk,h(s, a)γk,h(s, a)φ(nk(s, a))

≤

√√√√ T∑
k=1

∑
s,a∈Wk

H∑
h=1

wk,h(s, a)γk,h(s, a)2

√√√√ T∑
k=1

∑
s,a∈Wk

H∑
h=1

wk,h(s, a)φ(nk(s, a))2

where the inequality follows from Cauchy-Schwarz. In the proof of Theorem 53, we have derived that
the expression under the first √ can be upper-bounded by 8T (H + 50H2) and we just derived that the
expression under the second√ is upper bounded by 9JSA

2 ln HTe
wmin

. Putting all these pieces together gives

T∑
k=1

∑
s,a∈Wk

H∑
h=1

wk,h(s, a)γk,h(s, a)φ(nk(s, a)) ≤
√

1836JSAH2T ln
HTe

wmin
.

Plugging all the bounds together in (5.30) gives

T∑
k=1

εk ≤ SAHTwmin + SAH

(
4H ln

SAH

δ′
+H

)

+ exp(6)βSA
9J

2
ln
HTe

wmin
+ 43 exp(6)

√
JSAH2T ln

HTe

wmin
.

Setting wmin = 1√
SAT

gives

T∑
k=1

εk = O
(√

SAH2T
)

+ Õ(SAH2 ln 1/δ)

+ Õ(S2AH2 lnT/δ) + Õ(
√
SAH2T ln 1/δ)

= Õ

(√
SAH2T ln

1

δ
+ S2AH2 ln

T

δ

)

5.9.7 Technical Lemmas

Lemma 67. Let τ ∈ (0, τ̂] andD ≥ 1. Then for all x ≥ x̌ = ln(C/τ)+D
τ with C = 16∨ τ̂D2, the following

inequality holds

llnp(x) +D

x
≤ τ.

112

Proof. Since by Lemma 37 the function llnp(x)+D
x is monotonically decreasing in x, we can bound

llnp(x) +D

x
≤ llnp(x̌) +D

x̌
=

llnp(x̌) +D

ln(C/τ) +D
τ.

It remains to show that ln(x̌) ∨ 1 ≤ C
τ . First, note that Cτ ≥

C
τ̂ ≥ D2 ≥ 1. Also, we can bound using

ln(x) ≤ 2
√
x

ln(x̌) = ln

(
ln(C/τ) +D

τ

)
≤ 2

√
ln(C/τ) +D

τ
≤ 2

√
2
√
C/τ +D

τ

≤4

(
C

τ3

)1/4

≤
(
C

τ

)3/4

≤ C

τ
,

since
√
C ≥ 4 and C/τ ≥ 1.

Lemma 68. Let f : S 7→ [0,∞] be a (potentially random) function. In the good event F c, for all episodes
k, states s ∈ S and actions a ∈ A, the following bound holds for any C > 0

|(P̂k − P)(s, a)f | ≤1.56‖f‖1φ(nk(s, a))2 + 2φ(nk(s, a))
∑
s∈S

√
P (s′|s, a)f(s′)

≤(4C + 1.56)‖f‖1φ(nk(s, a))2 +
1

C
P (s, a)f

and

|(P̂k − P)(s, a)f | ≤4.66‖f‖1φ(nk(s, a))2 + 2φ(nk(s, a))
∑
s∈S

√
P̂k(s′|s, a)f(s′)

≤(4C + 4.66)‖f‖1φ(nk(s, a))2 +
1

C
P̂k(s, a)f.

Proof.

|(P̂k − P)(s, a)f | ≤
∑
s′∈S
|(P̂k − P)(s′|s, a)|f(s′)

We now apply the definition of F c on each |(P̃k − P)(s′|s, a)| individually. Specifically, we use FP and
FPE for the first and second bound respectively. To unify their treatment, we use P̃ for P and P̂k, c1 = 4
and c2 for 1.56 and 4.66 respectively.

≤
∑
s′∈S

f(s′)c2φ(nk(s, a)2 +

√
c1P̃ (s′|s, a)φ(nk(s, a))f(s′))

=c2‖f‖1φ(nk(s, a))2 + φ(nk(s, a))
∑
s′∈S

√
c1P̃ (s′|s, a)f(s′)

This is the first inequality to show but we can further rewrite this to show the second inequality as follows

=c2‖f‖1φ(nk(s, a))2 + φ(nk(s, a))
∑
s′∈S

√
c1

P̃ (s′|s, a)
P̃ (s′|s, a)f(s′) .

113

Splitting the last sum based on whether
√
P̃ (s′|s, a) is smaller or larger than

√
c1Cφ(nk(s, a))

≤c2‖f‖1φ(nk(s, a))2 +
1

C
P̃ (s, a)f

+ φ(nk(s, a))
∑
s′∈S

√
c1

P̃ (s′|s, a)
P̃ (s′|s, a)f(s′)1{

√
P̃ (s′|s, a) <

√
c1Cφ(nk(s, a))}

≤c2‖f‖1φ(nk(s, a))2 +
1

C
P̃ (s, a)f + φ(nk(s, a))2

∑
s′∈S

c1Cf(s′)

≤c2‖f‖1φ(nk(s, a))2 +
1

C
P̃ (s, a)f + φ(nk(s, a))2c1C‖f‖1

≤(c1C + c2)‖f‖1φ(nk(s, a))2 +
1

C
P̃ (s, a)f .

Lemma 69 (Rate Lemma, Adaption of Lemma E.3 by Dann, Lattimore, and Brunskill (2017)). Fix r ≥ 1,
ε′ > 0, C > 0 and D ≥ 1, where C and D may depend polynomially on relevant quantities. Let
wk,h(s, a) = P(sk,h = s, ak,h = a|sk,1, πk) be the probability of encountering s, a at time h in the kth
episode. Then for any functions γk,h : S ×A → R+ indexed by h ∈ [H]

∑
s,a∈Lk

H∑
h=1

wk,h(s, a)γk,h(s, a)

(
C(llnp(2nk(s, a)) +D)

nk(s, a)

)1/r

≤ ε′

on all but at most

6CASBr−1

ε′r
polylog(S,A,H, δ−1, ε′−1), where B ≥

∑
s,a∈Lk

H∑
h=1

wk,h(s, a)γk,h(s, a)r/(r−1)

nice episodes.

Proof. Define

∆k =
∑
s,a∈Lk

H∑
h=1

wk,h(s, a)γk,h(s, a)

(
C(llnp(2nk(s, a)) +D)

nk(s, a)

)1/r

=
∑
s,a∈Lk

H∑
h=1

(wk(s, a)γk,h(s, a)r/(r−1))1− 1
r

(
wk,h(s, a)

C(llnp(2nk(s, a)) +D)

nk(s, a)

)1/r

.

We first bound using Hölder’s inequality

∆k ≤

 ∑
s,a∈Lk

H∑
h=1

wk,h(s, a)γk,h(s, a)r/(r−1)

1− 1
r
 ∑
s,a∈Lk

H∑
h=1

Cwk,h(s, a)(llnp(2nk(s, a)) +D)

nk(s, a)

 1
r

≤

 ∑
s,a∈Lk

CBr−1wk(s, a)(llnp(2nk(s, a)) +D)

nk(s, a)

 1
r

.

114

Using the property in Lemma 64 of nice episodes as well as the fact thatwk(s, a) ≤ H and
∑

i<k wi(s, a) ≥
4H ln SAH

δ′ ≥ 4H ln(2) ≥ 2H , we bound

nk(s, a) ≥ 1

4

∑
i<k

wi(s, a) ≥ 1

6

∑
i≤k

wi(s, a).

The function llnp(2x)+D
x is monotonically decreasing in x ≥ 0 since D ≥ 1 (see Lemma 37). This allows

us to bound

∆r
k ≤

∑
s,a∈Lk

CBr−1wk(s, a)(llnp(2nk(s, a)) +D)

nk(s, a)

≤6CBr−1
∑
s,a∈Lk

wk(s, a)
(

llnp
(

1
3

∑
i≤k wi(s, a)

)
+D

)
∑

i≤k wi(s, a)

≤6CBr−1
∑
s,a∈Lk

wk(s, a)
(

llnp
(∑

i≤k wi(s, a)
)

+D
)

∑
i≤k wi(s, a)

≤6CBr−1

0 ∨ max
s,a∈Lk

llnp
(∑

i≤k wi(s, a)
)

+D∑
i≤k wi(s, a)

 ∑
s,a∈Lk

wk(s, a)

which can be further bounded by leveraging that the sum of all weights wk sum to H for each episode k

≤6CHBr−1

0 ∨ max
s,a∈Lk

llnp
(∑

i≤k wi(s, a)
)

+D∑
i≤k wi(s, a)

 .
Assume now ∆k > ε′. In this case, the right-hand side of the inequality above is also larger than ε′r and
there is at least one (s, a) for which wk(s, a) > wmin and

6CHBr−1
(

llnp
(∑

i≤k wi(s, a)
)

+D
)

∑
i≤k wi(s, a)

>ε′r

⇔
llnp

(∑
i≤k wi(s, a)

)
+D∑

i≤k wi(s, a)
>

ε′r

6CHBr−1
.

Let us denote C ′ = 6CHBr−1

ε′r . Since llnp(x)+D
x is monotonically decreasing and x = C ′2 + 3C ′D satisfies

llnp(x)+D
x ≤

√
x+D
x ≤ 1

C′ , we know that if
∑

i≤k wi(s, a) ≥ C ′2 + 3C ′D then the above condition cannot
be satisfied for s, a. Since each time the condition is satisfied, it holds that wk(s, a) > wmin and so∑

i≤k wi(s, a) increases by at least wmin, it can happen at most

m ≤ SA(C ′2 + 3C ′D)

wmin

times that ∆k > ε′. Define K = {k : ∆k > ε′} ∩N and we know that |K| ≤ m. Now we consider the

115

sum

∑
k∈K

∆r
k ≤

∑
k∈K

6CBr−1
∑
s,a∈Lk

wk(s, a)
(

llnp
(∑

i≤k wi(s, a)
)

+D
)

∑
i≤k wi(s, a)

≤6CBr−1
(
llnp

(
C ′2 + 3C ′D

)
+D

) ∑
s,a∈Lk

∑
k∈K

wk(s, a)∑
i≤k wi(s, a)1{wi(s, a) ≥ wmin}

.

For every (s, a), we consider the sequence of wi(s, a) ∈ [wmin, H] with i ∈ I = {i ∈ N : wi(s, a) ≥
wmin} and apply Lemma 36. This yields that∑

k∈K

wk(s, a)∑
i≤k wi(s, a)1{wi(s, a) ≥ wmin}

≤ 1 + ln(mH/wmin) = ln

(
Hme

wmin

)
and hence ∑

k∈K
∆r
k ≤6CASBr−1 ln

(
Hme

wmin

)(
llnp

(
C ′2 + 3C ′D

)
+D

)
.

Since each element in K has to contribute at least ε′r to this bound, we can conclude that∑
k∈N

1{∆k ≥ ε′} ≤
∑
k∈K

1{∆k ≥ ε′} ≤ |K| ≤
6CASBr−1

ε′r
ln

(
Hme

wmin

)(
llnp

(
C ′2 + 3C ′D

)
+D

)
.

Since ln
(
Hme
wmin

) (
llnp

(
C ′2 + 3C ′D

)
+D

)
is polylog(S,A,H, δ−1, ε′−1), the proof is complete.

Corollary 70. Fix r ≥ 1, ε′ > 0, C > 0, and D ≥ 1, where C and D may depend polynomially on
relevant quantities. Then, ∑

s,a∈Lk

wk(s, a)

(
C(llnp(2nk(s, a)) +D)

nk(s, a)

)1/r

≤ ε′

on all but at most

6CASHr−1

ε′r
polylog(S,A,H, δ−1, ε′−1).

nice episodes.

Proof. This corollary follows directly from Lemma 69 with γh(s, a) = 1 and noting that

H ≥
∑

s,a∈S×A

H∑
h=1

wk,h(s, a) ≥
∑
s,a∈Lk

H∑
h=1

wk,h(s, a)γk,h(s, a)r/(r−1).

Corollary 71. Using the terminology by Howard et al. (2018), for any c > 0, δ ∈ (0, 1), the following
function is a sub-gamma boundary (and as such also a sub-exponential boundary) with scale parameter c
and crossing probability δ:

uc,δ(v) = 1.44

√
v

(
1.4 llnp(2v) + log

5.2

δ

)
+ 2.42c

(
1.4 llnp(2v) + log

5.2

δ

)
.

Further u0,δ is a sub-Gaussian boundary with crossing probability δ and uc/3,δ is a sub-Poisson boundary
with crossing probability δ for scale parameter c.

116

Proof. This result follows directly from Theorem 1 by Howard et al. (2018) instantiated with h(k) =
(k+ 1)sζ(s), s = 1.4 and η = 2. The final statements follows from the fact that ψN is a special case of ψG
with c = 0 and Proposition 5 in Howard et al. (2018).

5.10 Theoretical analysis of Algorithm 5 for finite episodic MDPs with side
information

5.10.1 Failure event and bounding the failure probability

We define the following failure event

F = F (r) ∪ F (p) ∪ FO

where

F (r) =

∃s, a ∈ S ×A, k ∈ N : ‖θ̂(r)
k,s,a − θ

(r)
s,a‖N(r)

k,s,a

≥
√
λ‖θ(r)

s,a‖2 +

√
1

2
log

1

δ′
+

1

4
log

detN
(r)
k,s,a

detλI

 ,

F (p) =

{
∃s′, s, a ∈ S × S ×A, k ∈ N : ‖θ̂(p)

k,s′,s,a − θ
(p)
s′,s,a‖N(p)

k,s,a

≥
√
λ‖θ(p)

s′,s,a‖2 +

√
1

2
log

1

δ′
+

1

4
log

detN
(p)
k,s,a

detλI

}
,

FO =

{
∃T ∈ N :

T∑
k=1

∑
s,a∈S×A

H∑
h=1

[P(sk,h = s, ak,h = a|sk,1, πk)− 1{s = sk,h, a = ak,h}]

≥ SH
√
T log

6 log(2T)

δ′

}
,

δ′ =
δ

SA+ S2A+ SH
.

Lemma 72. The failure probability P(F) is bounded by δ.

Proof. Consider an arbitrary s ∈ S, a ∈ A and define Ft where t = Hk + h with h ∈ [H] is the running
time step index as follows: Ft is the sigma-field induced by all observations up to sk,h and ak,h including
xk but not rk,h and not sk,h+1. Then ηt = 21{sk,h = s, ak,h = a}((x(r)

k)>θ
(r)
s,a − rk,h) is a martingale

difference sequence adapted to Ft. Moreover, since ηt takes values in [2(x
(r)
k)>θ

(r)
s,a − 2, 2(x

(r)
k)>θ

(r)
s,a]

almost surely it is conditionally sub-Gaussian with parameter 1. We can then apply Theorem 20.2 in
Lattimore and Czepesvari (2018) to get

2‖θ̂(r)
k,s,a − θ

(r)
s,a‖N(r)

k,s,a

≤
√
λ2‖θ(r)

s,a‖2 +

√
2 log

1

δ′
+ log

detN
(r)
k,s,a

detλI

117

for all k ∈ N with probability at least 1 − δ′. Similarly for any fixed s′ ∈ S, using ηt = 21{sk,h =

s, ak,h = a}((x(p)
k)>θ

(p)
s′,s,a − 1{sk,h+1 = s′}), it holds with probability at least 1− δ′ that

‖θ̂(p)
k,s′,s,a − θ

(p)
s′,s,a‖N(p)

k,s,a

≤
√
λ‖θ(p)

s′,s,a‖2 +

√
1

2
log

1

δ′
+

1

4
log

detN
(p)
k,s,a

detλI

for all episodes k. Finally, for a fixed s ∈ S and h ∈ [H] the sequence

ηk =
∑
a∈A

[P(sk,h = s, ak,h = a|sk,1, πk)− 1{s = sk,h, a = ak,h}]

is a martingale difference sequence with respect to Gk, defined as the sigma-field induced by all observations
up to including episode k − 1 and xk and sk,1. All but at most one action has zero probability of occurring
(πk is deterministic) and therefore ηk ∈ [c, c+ 1] with probability 1 for some c that is measurable in Gk.
Hence, St =

∑t
k=1 ηk satisfies Assumption 1 with Vt = t/4 and ψN and EL0 = 1 (Hoeffding I case in

Table 2 of the appendix). This allows us to apply Theorem 1 by Howard et al. (2018) where we choose
h(k) = (1 + k)sζ(s) with s = 1.4 and η = 2, which gives us (see Eq. (8) and Eq. (9)) specifically) that
with probability at least 1− δ′ for all T ∈ N

T∑
k=1

∑
a∈A

[P(sk,h = s, ak,h = a|sk,1, πk)− 1{s = sk,h, a = ak,h}] =
T∑
k=1

ηk ≤
√
T (log log(T/2) + log(6/δ′)).

Setting δ′ = δ
SA+S2A+SH

, all statements above hold for all s′, s, a, h jointly using a union bound with
probability at least 1− δ. This implies that P(F) ≤ δ.

Using the bounds on the linear parameter estimates, the following lemma derives bounds on the
empirical model.
Lemma 73 (Bounds on model parameters). Outside the failure event F , assuming ‖θ(p)

s′,s,a‖2 ≤ ξθ(p) and

‖θ(r)
s,a‖2 ≤ ξθ(r) for all s′, s ∈ S and a ∈ A we have

|r̂k(s, a)− rk(s, a)| ≤ 1 ∧ αk,s,a‖x
(r)
k ‖(N(r)

k,s,a)−1

|P̂k(s′|s, a)− Pk(s, a)‖1 ≤ 1 ∧ γk,s,a‖x
(p)
k ‖(N(p)

k,s,a)−1

where

αk,s,a =
√
λξθ(r) +

√√√√1

2
log

1

δ′
+

1

4
log

detN
(r)
k,s,a

det(λI)

γk,s,a =
√
λξθ(p) +

√√√√1

2
log

1

δ′
+

1

4
log

detN
(p)
k,s,a

det(λI)
.

Proof. Since r̂k ∈ [0, 1] and rk ∈ [0, 1], we have

|r̂k(s, a)− rk(s, a)| ≤ 1 ∧ |(x(r)
k)>θ̂

(r)
k,s,a − rk(s, a)|.

118

The last term can be bounded as

|(x(r)
k)>θ̂

(r)
k,s,a − rk(s, a)| = |(x(r)

k)>(θ̂
(r)
k,s,a − θ

(r)
s,a)| ≤ ‖x(r)

k ‖(N(r)
k,s,a)−1‖θ̂

(r)
k,s,a − θ

(r)
s,a‖N(r)

k,s,a

≤‖x(r)
k ‖(N(r)

k,s,a)−1

√λ‖θ(r)
s,a‖2 +

√√√√1

2
log

1

δ′
+

1

4
log

det(N
(r)
k,s,a)

det(λI)


≤αk,s,a‖x

(r)
k ‖(N(r)

k,s,a)−1

where we first used Hölder’s inequality, then the definition of F (r), and finally the assumption ‖θ(r)
s,a‖2 ≤

ξθ(r) . This proves the first inequality. Consider now the second inequality, which we bound analogously as

|P̂k(s′|s, a)− Pk(s′|s, a)| ≤ 1 ∧ |(x(p)
k)>θ̂

(p)
k,s′,s,a − Pk(s

′|s, a)|

=1 ∧ |(x(p)
k)>(θ̂

(p)
k,s′,s,a − θ

(p)
s′,s,a)| ≤ 1 ∧ ‖x(p)

k ‖(N(p)
k,s,a)−1‖θ̂

(p)
k,s′,s,a − θ

(p)
s′,s,a‖N(p)

k,s,a

≤1 ∧ ‖x(p)
k ‖(N(p)

k,s,a)−1

√λ‖θs′,s,a‖2 +

√√√√1

2
log

1

δ′
+

1

4
log

det(N
(p)
k,s,a)

det(λI)


≤1 ∧ γk,s,a‖x

(p)
k ‖(N(p)

k,s,a)−1 .

5.10.2 Admissibility of guarantees

Lemma 74 (Upper bound admissible). Outside the failure event F , for all episodes k, h ∈ [H] and
s, a ∈ S ×A

Q?k,h(s, a) ≤ Q̃k,h(s, a).

Proof. Consider a fixed episode k. For h = H + 1 the claim holds by definition. Assume the claim holds
for h+ 1 and consider Q̃k,h(s, a)−Q?k,h(s, a). Since Q?k,h ≤ V max

h , this quantity is non-negative when
Q̃k,h(s, a) = V max

h . In the other case

Q̃k,h(s, a)−Q?k,h(s, a)

≥r̂k(s, a) + P̂k(s, a)Ṽk,h+1 + ψk,h(s, a)− Pk(s, a)V ?
k,h+1 − rk(s, a)

=r̂k(s, a)− rk(s, a) + ψk,h(s, a) + P̂k(s, a)(Ṽk,h+1 − V ?
k,h+1)

+ (P̂k(s, a)− Pk(s, a))V ?
k,h+1

by induction hypothesis and P̂k(s′|s, a) ≥ 0

≥r̂k(s, a)− rk(s, a) + ψk,h(s, a) + (P̂k(s, a)− Pk(s, a))V ?
k,h+1

≥− |r̂k(s, a)− rk(s, a)|+ ψ̂kh(s, a)−
∑
s′∈S

V ?
k,h+1(s′)|P̂k(s′|s, a)− Pk(s′|s, a)|

by induction hypothesis

≥− |r̂k(s, a)− rk(s, a)|+ ψ̂kh(s, a)−
∑
s′∈S

Ṽh+1(s′)|P̂k(s′|s, a)− Pk(s′|s, a)|

119

using Lemma 73

≥ψk,h(s, a)− αk,s,a‖x
(r)
k ‖(N(r)

k,s,a)−1 − ‖Ṽh+1‖1γk,s,a‖x
(p)
k ‖(N(p)

k,s,a)−1 = 0 .

Using the same technique, we can prove the following result.
Lemma 75 (Lower bound admissible). Outside the failure event F , for all episodes k, h ∈ [H] and
s, a ∈ S ×A

Qπkk,h(s, a) ≥
˜
Qk,h(s, a).

Proof. Consider a fixed episode k. For h = H + 1 the claim holds by definition. Assume the claim
holds for h+ 1 and consider Qπkk,h(s, a)−

˜
Qk,h(s, a). Since Qπkk,h ≥ 0, this quantity is non-negative when

˜
Qk,h(s, a) = 0. In the other case

Qπkk,h(s, a)−
˜
Qk,h(s, a)

=Pk(s, a)V πk
k,h+1 + rk(s, a)− r̂k(s, a)− P̂k(s, a)

˜
Vk,h+1 + ψk,h(s, a)

=rk(s, a)− r̂k(s, a) + ψk,h(s, a) + Pk(s, a)(V πk
k,h+1 − ˜

Vk,h+1) + (Pk − P̂k)(s, a)
˜
Vk,h+1

by induction hypothesis and Pk(s′|s, a) ≥ 0

≥ψk,h(s, a)− |rk(s, a)− r̂k(s, a)| − |(Pk(s, a)− P̂k(s, a))
˜
Vk,h+1|

using Lemma 73

≥ψk,h(s, a)− αk,s,a‖x
(r)
k ‖(N(r)

k,s,a)−1 − ‖
˜
Vh+1‖1γk,s,a‖x

(p)
k ‖(N(p)

k,s,a)−1 = 0 .

5.10.3 Cumulative certificate bound

Lemma 76. Outside the failure event F , the cumulative certificates after T episodes for all T are bounded
by

T∑
k=1

εk ≤Õ

(
√
S3AH2TV max

1 λ(ξ2
θ(p)

+ ξ2
θ(r)

+ d(p) + d(r)) log
ξ2
x(p)

+ ξ2
x(r)

λδ

)
.

Proof. Let ψk,h(s, a) = αk,s,a‖x
(r)
k ‖(N(r)

k,s,a)−1 + V max
h+1 Sγk,s,a‖x

(p)
k ‖(N(p)

k,s,a)−1 We bound the difference

between upper and lower Q-estimate as

Q̃k,h(s, a)−
˜
Qk,h(s, a)

≤ 2ψk,h(s, a) + P̂k(s, a)>(Ṽk,h+1 −
˜
Vk,h+1)

= 2ψk,h(s, a) + (P̂k(s, a)− Pk(s, a))>(Ṽk,h+1 −
˜
Vk,h+1) + Pk(s, a)(Ṽk,h+1 −

˜
Vk,h+1)

≤ 2ψk,h(s, a) + V max
h+1 ‖P̂k(s, a)− Pk(s, a)‖1 + Pk(s, a)(Ṽk,h+1 −

˜
Vk,h+1)

120

and by construction we also can bound Q̃k,h(s, a) −
˜
Qk,h(s, a) ≤ V max

h . Applying both bounds above
recursively, we arrive at

εk = (Ṽk,1 −
˜
Vk,1)(sk,1) = (Q̃k,1 −

˜
Qk,1)(sk,1, πk(sk,1, 1))

≤
∑

s,a∈S×A

H∑
h=1

P(sh = s, ah = a|sk,1, πk)[V max
h ∧ (2ψk,h(s, a) + V max

h+1 ‖P̂k(s, a)− Pk(s, a)‖1)]

≤
∑

s,a∈S×A

H∑
h=1

P(sh = s, ah = a|sk,1, πk)[V max
h ∧ (2αk,s,a‖x

(r)
k ‖(N(r)

k,s,a)−1 + 3V max
h+1 Sγk,s,a‖x

(p)
k ‖(N(p)

k,s,a)−1)]

where we used Lemma 73 in the last step. We are now ready to bound the cumulative certificates after T
episodes as

T∑
k=1

εk

≤
T∑
k=1

∑
s,a∈S×A

H∑
h=1

P(sk,h = s, ak,h = a|sk,1, πk)[V max
h ∧ (2αk,s,a‖x

(r)
k ‖(N(r)

k,s,a)−1 + 3V max
h+1 Sγk,s,a‖x

(p)
k ‖(N(p)

k,s,a)−1)]

≤
T∑
k=1

H∑
h=1

[V max
h ∧ (2αk,sk,h,ak,h‖x

(r)
k ‖(N(r)

k,sk,h,ak,h
)−1 + 3V max

h+1 Sγk,sk,h,ak,h‖x
(p)
k ‖(N(p)

k,sk,h,ak,h
)−1)]

+
T∑
k=1

∑
s,a∈S×A

H∑
h=1

[P(sk,h = s, ak,h = a|sk,1, πk)− 1{s = sk,h, a = ak,h}]V max
h

applying definition of failure event FO

≤
T∑
k=1

H∑
h=1

[V max
h ∧ (2αk,sk,h,ak,h‖x

(r)
k ‖(N(r)

k,sk,h,ak,h
)−1 + 3V max

h+1 Sγk,sk,h,ak,h‖x
(p)
k ‖(N(p)

k,sk,h,ak,h
)−1)]

+ V max
1 SH

√
T log

6 log(2T)

δ′

splitting reward and transition terms

≤
T∑
k=1

H∑
h=1

[V max
h ∧ 2αk,sk,h,ak,h‖x

(r)
k ‖(N(r)

k,sk,h,ak,h
)−1] (5.33)

+
T∑
k=1

H∑
h=1

[V max
h ∧ 3V max

h+1 Sγk,sk,h,ak,h‖x
(p)
k ‖(N(p)

k,sk,h,ak,h
)−1] (5.34)

+ V max
1 SH

√
T log

6 log(2T)

δ′
. (5.35)

Before bounding the first two terms further, we first derive the following useful inequality using AM-GM
inequality which holds for any s ∈ A and s ∈ S

log
detN

(r)
k,s,a

det(λI)
≤ log

(
1
d

(r)
trN

(r)
k,s,a

)d(r)
λd

(r)
= d(r) log

trN
(r)
k,s,a

d(r)λ
≤ d(r) log

d(r)λ+ ξ2
x(r)

(k − 1)H

d(r)λ
(5.36)

121

where in the last inequality we used the fact that N (r)
k,s,a is the sum of λI and at most H(k − 1) outer

products of feature vectors. Analogously, the following inequality holds for the covariance matrix of the
transition features

log
detN

(p)
k,s,a

det(λI)
≤ d(p) log

d(p)λ+ ξ2
x(p)

(k − 1)H

d(p)λ
.

This inequality allows us to upper-bound for k ≤ T

αk,sk,h,ak,h =
√
λξθ(r) +

√√√√1

2
log

1

δ′
+

1

4
log

detN
(r)
k,sk,h,ak,h

det(λI)

≤
√
λξθ(r) +

√
1

2
log

1

δ′
+

1

4
d(r) log

d(r)λ+ ξ2
x(r)

(k − 1)H

d(r)λ

≤
√
λξθ(r) +

√
1

2
d(r) log

dλ+ ξ2
x(r)

HT

d(r)λδ′

using the fact that
√
a+
√
b ≤ 2

√
a+ b for all a, b ∈ R+

≤2

√
λξ2

θ(r)
+

1

2
d(r) log

dλ+ ξ2
x(r)

HT

d(r)λδ′

≤2V max
1

√
1

4
+ λξ2

θ(r)
+

1

2
d(r) log

d(r)λ+ ξ2
x(r)

HT

d(r)λδ′
=: αT .

Note that the last inequality ensures αT ≥ V max
1 . We now use αT to bound the term in Equation (5.33)

T∑
k=1

H∑
h=1

[V max
h ∧ 2αk,sk,h,ak,h‖x

(r)
k ‖(N(r)

k,sk,h,ak,h
)−1] ≤

T∑
k=1

H∑
h=1

[V max
h ∧ 2αT ‖x(r)

k ‖(N(r)
k,sk,h,ak,h

)−1]

≤2αT

T∑
k=1

H∑
h=1

[1 ∧ ‖x(r)
k ‖(N(r)

k,sk,h,ak,h
)−1]

using Cauchy-Schwarz inequality

≤

√√√√4α2
TTH

T∑
k=1

H∑
h=1

[1 ∧ ‖x(r)
k ‖2(N(r)

k,sk,h,ak,h
)−1

] . (5.37)

Leveraging Lemma 78, we can bound the elliptical potential inside the square-root as

T∑
k=1

H∑
h=1

[1 ∧ ‖x(r)
k ‖

2

(N
(r)
k,sk,h,ak,h

)−1
] =

∑
s,a∈S×A

H∑
h=1

T∑
k=1

1{s = sk,h, a = ak,h}[1 ∧ ‖x
(r)
k ‖

2

(N
(r)
k,s,a)−1

]

≤
∑

s,a∈S×A
H

T∑
k=1

[1 ∧ ‖x(r)
k ‖

2

(N
(r)
k,s,a)−1

] ≤
∑

s,a∈S×A
2H log

detN
(r)
k,s,a

detλI

applying Equation (5.36)

≤2SAHd(r) log
d(r)λ+ ξ2

x(r)
HT

d(r)λ

122

and applying the definition of αT

≤2SAH
α2
T

2(V max
1)2

≤
SAHα2

T

(V max
1)2

.

We plug this bound back in (5.37) to get

T∑
k=1

H∑
h=1

[V max
h ∧ 2αk,sk,h,ak,h‖x

(r)
k ‖(N(r)

k,sk,h,ak,h
)−1]

≤

√
4α4

TSAH
2T

(V max
1)2

=
√
SAH2T

2α2
T

V max
1

≤
√
SAH2TV max

1

[
2 + 8λξ2

θ(r)
+ 4d(r) log

d(r)λ+ ξ2
x(r)

HT

d(r)λδ′

]
. (5.38)

After deriving this upper bound on the term in Equation (5.33), we bound the term in Equation (5.34) in
similar fashion. We start with an upper bound on Sγk,sk,h,ak,h which holds for k ≤ T :

Sγk,sk,h,ak,h ≤

√
1 + 4λS2ξ2

θ(p)
+ 2S2d(p) log

d(p)λ+ ξ2
x(p)

HT

d(p)λδ′
=: γT ,

which is by construction at least 1. We now use this definition to bound as above

T∑
k=1

H∑
h=1

[V max
h ∧ 3V max

h+1 Sγk,sk,h,ak,h‖x
(p)
k ‖(N(p)

k,sk,h,ak,h
)−1] ≤ 3V max

1 γT

T∑
k=1

H∑
h=1

[1 ∧ ‖x(p)
k ‖(N(p)

k,sk,h,ak,h
)−1]

≤3V max
1 γT

√√√√TH

T∑
k=1

H∑
h=1

[1 ∧ ‖x(p)
k ‖2(N(p)

k,sk,h,ak,h
)−1

] ≤ 3V max
1 γT

√
TH2SAHd(p) log

d(p)λ+ ξ2
x(p)

HT

d(p)λ

≤3V max
1 γT

√
2SAH2T

γ2
T

2S2
≤
√
S3AH2TV max

1

[
3 + 12λξ2

θ(p)
+ 6d(p) log

d(p)λ+ ξ2
x(p)

HT

d(p)λδ′

]
. (5.39)

Combining (5.35), (5.38) and (5.39), the cumulative certificates after T episodes are bounded by

T∑
k=1

εk ≤
√
S3AH2TV max

1

[
14 + 12λ(ξ2

θ(p)
+ ξ2

θ(r)
) + 6(d(p) + d(r)) log

(d(p) + d(r))λ+ (ξ2
x(p)

+ ξ2
x(r)

)HT

(d(p) ∧ d(r))λδ′

]

+ V max
1 SH

√
T log

6 log(2T)

δ′

=Õ

(
√
S3AH2TV max

1 λ(ξ2
θ(p)

+ ξ2
θ(r)

+ d(p) + d(r)) log
ξ2
x(p)

+ ξ2
x(r)

λδ

)
.

123

5.10.4 Proof of Theorem 55

We are now ready to assemble the arguments above and prove the cumulative IPOC bound for Algorithm 5:

Proof. By Lemma 72, the failure event F has probability at most δ. Outside the failure event, for every
episode k, the upper and lower Q-value estimates are valid upper bounds on the optimal Q-function and
lower bounds on the Q-function of the current policy πk, respectively (Lemmas 74 and 75). Further,
Lemma 76 shows that the cumulative certificates grow at the desired rate

Õ

(
√
S3AH2TV max

1 λ(ξ2
θ(p)

+ ξ2
θ(r)

+ d(p) + d(r)) log
ξ2
x(p)

+ ξ2
x(r)

λδ

)
.

5.10.5 Technical Lemmas

We now state two existing technical lemmas used in our proof.
Lemma 77 (Elliptical confidence sets; Theorem 20.1 in Lattimore and Czepesvari (2018)). Let λ > 0,
θ ∈ Rd and (ri)i∈N and (xi)i∈N random processes adapted to a filtration Fi so that ri − x>i θ are
conditionally 1-sub-Gaussian. Then with probability at least 1− δ for all k ∈ N

‖θ − θ̃k‖Nk(λ) ≤
√
λ‖θ‖2 +

√
2 log

1

δ
+ log

det(Nk(λ))

det(λI)

where Nk(λ) = λI +
∑k

i=1 xix
>
i is the covariance matrix and θ̃k = Nk(λ)−1

∑k
i=1 rixi is the least-

squares estimate.
Lemma 78 (Elliptical potential; Lemma 19.1 in Lattimore and Czepesvari (2018)). Let x1, . . . , xn ∈ Rd
with L ≥ maxi ‖xi‖2 and Ni = N0 +

∑i
j=1 xjx

>
j with N0 being psd. Then

n∑
i=1

1 ∧ ‖xi‖N−1
i−1
≤ 2 log

detNn

detN0
≤ 2d log

tr(N0) + nL2

ddet(N0)1/d
.

5.11 Mistake IPOC Bound for Algorithm 5?

By Proposition 52, a mistake IPOC bound is stronger than the cumulative version we proved for Algorithm 5.
One might wonder whether Algorithm 5 also satisfies this stronger bound, but this is not the case:
Proposition 79. For any ε < 1, there is an MDP with linear side information such that Algorithm 5 outputs
certificates εk ≥ ε infinitely often with probability 1.

Proof. Consider a two-armed bandit where the two-dimensional context is identical to the deterministic

reward for both actions. The context alternates between xA :=

[
(1 + ε)/2
(1− ε)/2

]
and xB :=

[
(1− ε)/2
(1 + ε)/2

]
. That

means in odd-numbered episodes, the agent receives reward 1+ε
2 for action 1 and reward 1−ε

2 for action 2
(bandit A) and conversely in even-numbered episodes (bandit B). Let nA,i and nB,i be the current number

124

of times action i was played in each bandit and Ni = diag(nA,i + λ, nB,i + λ) the covariance matrix. One
can show that the optimistic Q-value of action 2 in bandit A is lower bounded as

Q̃(2) ≥
√

ln detN2‖xA‖N−1
2
∧ 1

=

√
ln(λ+ nA,2) + ln(λ+ nB,2)

nA,2
∧ 1. (5.40)

Assume now the agent stops playing action 2 in bandit A and playing action 1 in bandit B at some point.
Then the denominator in Eq (5.40) stays constant but the numerator grows unboundedly as nB,2 → ∞.
That implies that Q̃(2)→ 1 but the optimistic Q-value for the other action Q̃(1)→ 1+ε

2 ≤ 1 approaches
the true reward. Eventually Q̃(2) > Q̃(1) and the agent will play the ε-suboptimal action 2 in bandit A
again. Hence, Algorithm 5 has to output infinitely many εk ≥ ε.

This negative result is due to the non-decreasing nature of the ellipsoid confidence intervals. It does not
rule out alternative algorithms with mistake IPOC bounds for this setting, but they would likely require
entirely different estimators and confidence bounds.

5.12 Additional Experimental Results

5.12.1 More Details on Experimental Results in Contextual Problems

The results presented earlier in this chapter are generated on the following MDP with side information. It
has S = 10 states, A = 40 actions, horizon of H = 5, reward context dimension d(r) = 10, and transition
context dimension d(p) = 1. The transition context x(p)

k is always constant 1. We sample the reward
parameters independently for all s ∈ S, a ∈ A and i ∈ [d(r)] as

θ
(r)
i,s,a = Xi,s,aYi,s,a, Xi,s,a ∼ Bernoulli(0.5), Yi,s,a ∼ Unif(0, 1).

and the transition kernel for each s ∈ S, a ∈ A as

P (s, a) = θ(p)
s,a ∼ Dirichlet(α(p))

where α(p) ∈ RS with α(p)
i = 0.3 for i ∈ [S]. The reward context is again sampled from a Dirichlet

distribution with parameter α(r) ∈ Rd(r) where α(r)
i = 0.01 for i ≤ 4 in the first 2 million episodes and all

other times α(r)
i = 0.7. This shift in context distribution after 2 million episodes simulates rare contexts

becoming more frequent.
In addition, we applied Algorithm 5 to randomly generated contextual bandit problems (S = H = 1)

with d(r) = 10 dimensional context and 40 actions. We sample the reward parameters independently for all
s = 1, a ∈ A and i ∈ [d(r)] as

θ
(r)
i,s,a = Xi,s,aYi,s,a, Xi,s,a ∼ Bernoulli(0.9), Yi,s,a ∼ Unif(0, 1).

The context in each episode is sampled from a Dirichlet distribution with parameter α ∈ Rd(r) where
αi = 0.7 for i ≤ 7 and αi = 0.01 for i ≥ 10. This choice was made to simulate both frequent as well as a
few rare context dimensions. The ORLC-SI algorithm was run for 8 million episodes and we changed
context, certificate and policy only every 1000 episodes for faster experimentation. Figure 5.2 shows

125

0M 1M 2M 3M 4M 5M 6M 7M 8M
0.0

0.2

0.4

0.6

0.8

1.0 Certificates
Optimality Gap

Figure 5.2: Results of ORLC-SI for 8M episodes on a linear contextual bandit problem; certificates are
shown in blue and the true (unobserved) optimality gap in orange for increasing number of episodes.

certificates and optimality gaps of a representative run. Note that we sub-sampled the number of episodes
shown for clearer visualization.

Certificates and optimality gaps have a correlation of 0.88 which confirms that certificates are informa-
tive about the policy’s expected return. If one for example needs to intervene when the policy is more than
0.2 from optimal (e.g., by reducing the price for that customer), then in more than 42% of the cases where
the certificate is above 0.2, the policy is worse than 0.2 suboptimal.

In both experiments, we use a slightly more complicated version of ORLC-SI listed in Algorithm 7
which computes the optimistic and pessimistic Q estimates Q̃ and

˜
Q using subroutine ProbEstNorm in

Algorithm 8. For the sake of clarity, we presented a simplified version with the same guarantees in the main
text. While this simplified version of ORLC-SI does not leverage that the true transition kernel Pk(s, a)
has total mass 1, Algorithm 7 adds this as a constraint (see Lemma 80 below) similar to Abbasi-Yadkori
and Neu (2014). This change yielded improved estimates empirically in our simulation. Note that this does
not harm the theoretical properties. One can show the same cumulative IPOC bound for Algorithm 7 by
slightly modifying the proof for Algorithm 5.
Lemma 80. Let p̂ ∈ [0, 1]d, ψ ≥ 0 and v ∈ Rd and define Pp̂ = {p ∈ [0, 1]d : ≤ p̂ − ψ1d ≤ p ≤
p̂+ ψ1d ∧ ‖p‖1 = 1}. Then, as long as Pp̂ 6= ∅, the value returned by Algorithm 8 satisfies

ProbEstNorm(p̂, ψ, v) = max
p∈Pp̂

p>v

−ProbEstNorm(p̂, ψ,−v) = min
p∈Pp̂

p>v

and for any two p, p̃ ∈ Pp̂ it holds that |p>v − p̃>v| ≤ ‖v‖1‖p− p̃‖∞ = 2ψ‖v‖1.

5.12.2 Empirical Comparison of Sample-Efficiency in Tabular Environments

The simulation study above and in Section 5.5 demonstrates that policy certificates can be a useful predictor
for the (expected) performance of the algorithm in the next episode and the comparison of theoretical
guarantees in Table 5.1 indicates the improved sample-efficiency of the tabular algorithm ORLC compared
to existing approaches. However, do these tighter regret and PAC bounds indeed translate to an improved

126

0k 25k 50k 75k 100k 125k 150k 175k 200k
Episodes

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Re

tu
rn

Random MDP S=20 A=4 H=10

Optimal
UCBVI-BF
ORLC
UBEV

0k 25k 50k 75k 100k 125k 150k 175k 200k
Episodes

4

6

8

10

12

14

16

18

Re
tu

rn

Random MDP S=20 A=4 H=50

Optimal
UCBVI-BF
ORLC
UBEV

Figure 5.3: Experimental comparison of ORLC and existing approaches. The graph show the achieved
sum of rewards per episode averaged over 1000 episodes each to generate smoothed curves. These results
show representative single runs of each method on the same MDPs. Results are consistent across different
random MDPs and different runs of the methods.

sample efficiency empirically? To answer this question, we compare ORLC against UCBVI-BF and UBEV,
the methods with tightest regret and PAC bounds respectively and which we expect to perform the best
among existing approaches.

We evaluate the methods on tabular MDPs which are randomly generated as follows: With probability
0.85 the average immediate reward r(s, a) for any (s, a) is 0 and with probability 0.15 it is drawn from
a uniform distribution r(s, a) ∼ Unif[0, 1]. The transition kernel for each P (s, a) ∼ Dirichlet(0.1) are
drawn from a Dirichlet distribution with parameter α = 0.1.

Figure 5.3 shows the performance of each method on MDPs with S = 20 states and A = 4 actions.
The left plot shows the sum of rewards of each algorithm (averaged over a window of 1000 episodes) on
a problem with small horizon H = 10. ORLC4 converges to the optimal policy much faster than both
UCBVI-BF and UBEV. Note that we adjusted UBEV to time-independent MDPs (the rewards and transition
kernel do not depend on the time index within an episode) to make the comparison fair. On problems with
larger horizon H = 50 the performance gap between ORLC and the competitors increases. Hence, even
for problems of moderate horizon length compared H ≤ SA, ORLC outperforms UCBVI-BF despite both
methods having minimax-optimal regret bounds (in the dominant term) in this case. This difference can
likely be attributed to the tighter optimism bonuses of ORLC as opposed to those of UCBVI-BF which are
derived from an explicit regret-like bound with several additional approximations.

5.12.3 Policy Certificates in Problems with no Context

The simulation study above and in Section 5.5 demonstrate that policy certificates can be a useful predictor
for the optimality gap of the algorithm in the next episode. However, the experimental results only consider
problems with context and might therefore wonder whether simple baselines that only consider a certainty
measure over contexts can produce similar results. We would like to emphasize that this is not the case as
such baselines can only detect performance drops due to unfamiliar contexts but are blind to performance
drops due to exploration on familiar contexts. To illustrate this point, consider a multi-armed bandit
problem without context. The algorithm periodically (and less and less frequently) plays suboptimal arms

4We use Algorithm 6 with more refined bonuses compared to the simplified version in the main text.

127

0 200 400 600 800 1000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0 Certificates
Optimality Gap

Figure 5.4: Performance and certificates of ORLC on a multi-armed bandit problem with 100 arms,
generated randomly in the same way as tabular MDP instances above. Only every 10th episode is plotted
to improve visibility of individual spikes.

until it can be sufficiently certain that these arms cannot be optimal. Consider Figure 5.4 where we plot the
optimality gaps and optimality certificates of ORLC on a multi-armed bandit problem with A = 100 arms.
We see occasional performance drop and as in the contextual case, our algorithm’s certificates is able to
predict them. A baseline that is only measuring the familiarity of context would completely fail in this case.

128

Algorithm 7: ORLC-SI algorithm with probability mass constraints
Input : failure prob. δ ∈ (0, 1], regularizer λ > 0

1 ∀s, s′ ∈ S, a ∈ A, h ∈ [H] :

2 N
(p)
s,a ← λId(p)×d(p) ; N

(r)
s,a ← λId(r)×d(r) ;

3 M
(r)
s,a ← ~0d(r) ; M

(p)
s′,s,a ← ~0d(p) ;

4 ṼH+1 ← ~0S
˜
VH+1 ← ~0S V max

h ← (H − h+ 1);
5 ξθ(r) ←

√
d; ξθ(p) ←

√
d δ′ ← δ

S(SA+A+H) ;

6 φ(N, x, ξ) :=
[√

λξ +
√

1
2 ln 1

δ′ + 1
4 ln detN

det(λI)

]
‖x‖N−1 ;

7 for k = 1, 2, 3, . . . do
8 Observe current contexts x(r)

k and x(p)
k ;

/* estimate model with least squares */

9 for s, s′ ∈ S, a ∈ A do
10 θ̂

(r)
s,a ← (N

(r)
s,a)−1M

(r)
s,a ;

11 r̂(s, a)← 0 ∨ (x
(r)
k)>θ̂

(r)
s,a ∧ 1;

12 θ̂
(p)
s′,s,a ← (N

(p)
s,a)−1M

(p)
s′,s,a;

13 P̂ (s′|s, a)← 0 ∨ (x
(p)
k)>θ̂

(p)
s′,s,a ∧ 1;

/* optimistic planning */

14 for h = H to 1 and s ∈ S do
15 for a ∈ A do
16 ψ̃h(s, a)← φ(N

(r)
s,a , x

(r)
k , ξθ(r));

17
˜
ψh(s, a)← φ(N

(r)
s,a , x

(r)
k , ξθ(r));

18 Q̃h(s, a)← r̂(s, a) + ProbEstNorm(P̂ (s, a), φ(N
(p)
s,a , x

(p)
k , ξθ(p)), Ṽh+1) + ψ̃h(s, a);

19
˜
Qh(s, a)← r̂(s, a)− ProbEstNorm(P̂ (s, a), φ(N

(p)
s,a , x

(p)
k , ξθ(p)),−˜

Vh+1)−
˜
ψh(s, a);

// clip values

20 Q̃h(s, a)← 0 ∨ Q̃h(s, a) ∧ V max
h ;

21
˜
Qh(s, a)← 0 ∨

˜
Qh(s, a) ∧ V max

h ;

22 πk(s, h)← argmaxa Q̃h(s, a);
23 Ṽh(s)← Q̃h(s, πk(s, t));
24

˜
Vh(s)←

˜
Qh(s, πk(s, t));

/* Execute policy for one episode */

25 sk,1 ∼ P0;
26 εk ← Ṽ1(sk,1)−

˜
V1(sk,1);

27 output policy πk with certificate εk;
28 for h = 1 to H do
29 ak,h ← πk(sk,h, h);
30 rk,h ∼ PR(sk,h, ak,h); sk,h+1 ∼ P (sk,h, ak,h);

// Update statistics

31 N
(p)
sk,h,ak,h ← N

(p)
sk,h,ak,h + x

(p)
k (x

(p)
k)>;

32 N
(r)
sk,h,ak,h ← N

(r)
sk,h,ak,h + x

(r)
k (x

(r)
k)>;

33 M
(p)
sk,h+1,sk,h,ak,h ←M

(p)
sk,h+1,sk,h,ak,h + x

(p)
k ;

34 M
(p)
sk,h,ak,h ←M

(p)
sk,h,ak,h + x

(p)
k ;

129

Algorithm 8: ProbEstNorm(p̂, ψ, v) function to compute normalized estimated expectation of v

Input : estimated probability vector p̂ ∈ [0, 1]S

Input : confidence width ψ ∈ R+

Input :value vector v ∈ RS
1 Compute sorting σ of v so that vσi ≥ vσj for all i ≤ j;
2 p← p̂− ψ ∨ 0;
3 m← p>1;
4 r ← 0;
5 for i ∈ [S] do
6 s← m ∧ ((p̂σi + ψ ∧ 1)− pσi);
7 m← m− s;
8 r ← r + vσi(pσi + s);

Return :r

130

Chapter 6

Oracle-Efficient PAC Reinforcement
Learning with Rich Observations

This chapter is based on work I did during an internship with collaborators at Microsoft Research, New
York City. It was published as:
Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E
Schapire. “On Oracle-Efficient PAC Reinforcement Learning with Rich Observations”. In: Advances in
neural information processing systems (2018)

6.1 Introduction

We study episodic reinforcement learning (RL) in environments with realistically rich observations such as
images or text, which we refer to broadly as contextual decision processes. We aim for methods that use
function approximation in a provably effective manner to find the best possible policy through strategic
exploration.

While such problems are central to empirical RL research (Mnih et al., 2015), most theoretical results
on strategic exploration focus on tabular MDPs with small state spaces (Kearns and Singh, 2002; Brafman
and Tennenholtz, 2003; Strehl and Littman, 2005; Strehl, Li, Wiewiora, et al., 2006; Auer, Jaksch, and
Ortner, 2009; Dann and Brunskill, 2015; Azar, Osband, and Munos, 2017; Dann, Lattimore, and Brunskill,
2017). Comparatively little work exists on provably effective exploration with large observation spaces
that require generalization through function approximation. The few algorithms that do exist either have
poor sample complexity guarantees (e.g., Kakade, Kearns, and Langford, 2003; Pazis and Parr, 2013;
Grande, Walsh, and How, 2014; Pazis and Parr, 2016) or require fully deterministic environments (Wen and
Van Roy, 2013; Wen and Van Roy, 2017) and are therefore inapplicable to most real-world applications and
modern empirical RL benchmarks. This scarcity of positive results on efficient exploration with function
approximation can likely be attributed to the challenging nature of this problem rather than a lack of interest
by the research community.

On the statistical side, recent important progress was made by showing that contextual decision
processes (CDPs) with rich stochastic observations and deterministic dynamics overM hidden states can be
learned with a sample complexity polynomial in M (Krishnamurthy, Agarwal, and Langford, 2016). This
was followed by an algorithm called OLIVE (Jiang, Krishnamurthy, et al., 2017) that enjoys a polynomial
sample complexity guarantee for a broader range of CDPs, including ones with stochastic hidden state
transitions. While encouraging, these efforts focused exclusively on statistical issues, ignoring computation
altogether. Specifically, the proposed algorithms exhaustively enumerate candidate value functions to

131

eliminate the ones that violate Bellman equations, an approach that is computationally intractable for any
function class of practical interest. Thus, while showing that RL with rich observations can be statistically
tractable, these results leave open the question of computational feasibility.

In this paper, we focus on this difficult computational challenge. We work in an oracle model of
computation, meaning that we aim to design sample-efficient algorithms whose computation can be
reduced to common optimization primitives over function spaces, such as linear programming and cost-
sensitive classification. The oracle-based approach has produced practically effective algorithms for active
learning (Hsu, 2010), contextual bandits (Agarwal, Hsu, et al., 2014), structured prediction (Ross and
Bagnell, 2014; Chang et al., 2015), and multi-class classification (Allwein, Schapire, and Singer, 2000),
and here, we consider oracle-based algorithms for challenging RL settings.

We begin by studying the setting of Krishnamurthy, Agarwal, and Langford (2016) with deterministic
dynamics over M hidden states and stochastic rich observations. In Section 6.4, we use cost-sensitive
classification and linear programming oracles to develop VALOR, the first algorithm that is both com-
putationally and statistically efficient for this setting. While deterministic hidden-state dynamics are
somewhat restrictive, the model is considerably more general than fully deterministic MDPs assumed by
prior work (Wen and Van Roy, 2013; Wen and Van Roy, 2017), and it accurately captures modern empirical
benchmarks such as visual grid-worlds in Minecraft (Johnson et al., 2016). As such, this method represents
a considerable advance toward provably efficient RL in practically relevant scenarios.

Nevertheless, we ultimately seek efficient algorithms for more general settings, such as those with
stochastic hidden-state transitions. Working toward this goal, we study the computational aspects of the
OLIVE algorithm (Jiang, Krishnamurthy, et al., 2017), which applies to a wide range of environments.
Unfortunately, in Section 6.5.1, we show that OLIVE cannot be implemented efficiently in the oracle model
of computation. As OLIVE is the only known statistically efficient approach for this general setting, our
result establishes a significant barrier to computational efficiency. We also describe two other oracle-based
algorithms for the deterministic-dynamics setting that are considerably different from VALOR. The negative
results identify where the hardness lies while the positive results provide a suite of new algorithmic tools.
Together, these results advance our understanding of efficient reinforcement learning with rich observations.

6.2 Related Work

There is abundant work on strategic exploration in the tabular setting (Kearns and Singh, 2002; Brafman
and Tennenholtz, 2003; Strehl and Littman, 2005; Strehl, Li, Wiewiora, et al., 2006; Auer, Jaksch, and
Ortner, 2009; Dann and Brunskill, 2015; Azar, Osband, and Munos, 2017; Dann, Lattimore, and Brunskill,
2017). The computation in these algorithms often involves planning in optimistic models and can be solved
efficiently via dynamic programming. To extend the theory to the more practical settings of large state
spaces, typical approaches include (1) distance-based state identity test under smoothness assumptions
(e.g., Kakade, Kearns, and Langford, 2003; Pazis and Parr, 2013; Grande, Walsh, and How, 2014; Pazis
and Parr, 2016), or (2) working with factored MDPs (e.g., Kearns and Koller, 1999). The former approach
is similar to the use of state abstractions Li, Walsh, and Littman, 2006, and typically incurs exponential
sample complexity in state dimension. The latter approach does have sample-efficient results, but the
factored representation assumes relatively disentangled state variables which cannot model rich sensory
inputs (such as images).

Azizzadenesheli, Lazaric, and Anandkumar (2016a) have studied regret minimization in rich obser-
vation MDPs, a special case of contextual decision processes with a small number of hidden states and
reactive policies. They do not utilize function approximation, and hence incur polynomial dependence on
the number of unique observations in both sample and computational complexity. Therefore, this approach,

132

...

small hidden state

rich observation

state indenti�able
from observation

but mapping
unknown

Assumption:

time

Figure 6.1: Graphical representation of the problem class considered by our algorithm, VALOR: The
main assumptions that enable sample-efficient learning are (1) that the small hidden state sh is identifi-
able from the rich observation xh and (2) that the next state is a deterministic function of the previous
state and action. State and observation examples are from https://github.com/Microsoft/
malmo-challenge.

along with related works Azizzadenesheli, Lazaric, and Anandkumar, 2016b; Guo, Doroudi, and Brunskill,
2016, does not scale to the rich observation settings that we focus on here.

Wen and Van Roy (2013) and Wen and Van Roy (2017) have studied exploration with function
approximation in fully deterministic MDPs, which is considerably more restrictive than our setting of
deterministic hidden state dynamics with stochastic observations and rewards. Moreover, their analysis
measures representation complexity using eluder dimension Russo and Van Roy, 2013; Osband and Van
Roy, 2014, which is only known to be small for some simple function classes. In comparison, our bounds
scale with more standard complexity measures and can easily extend to VC-type quantities, which allows
our theory to apply to practical and popular function approximators including neural networks (Anthony
and Bartlett, 2009).

6.3 Setting and Background

We consider reinforcement learning (RL) in a common special case of contextual decision processes (Kr-
ishnamurthy, Agarwal, and Langford, 2016; Jiang, Krishnamurthy, et al., 2017), sometimes referred to
as rich observation MDPs (Azizzadenesheli, Lazaric, and Anandkumar, 2016a). We assume an H-step
process where in each episode, a random trajectory s1, x1, a1, r1, s2, x2, . . . , sH , xH , aH , rH is generated.
For each time step (or level) h ∈ [H], sh ∈ S where S is a finite hidden state space, xh ∈ X where X is
the rich observation (context) space, ah ∈ A where A is a finite action space of size K, and rh ∈ R. Each
hidden state s ∈ S is associated with an emission process Os ∈ ∆(X), and we use x ∼ s as a shorthand
for x ∼ Os. We assume that each rich observation contains enough information so that s can in principle
be identified just from x ∼ Os—hence x is a Markov state and the process is in fact an MDP over X—but
the mapping x 7→ s is unavailable to the agent and s is never observed. The hidden states S introduce
structure into the problem, which is essential since we allow the observation space X to be infinitely large.1

The issue of partial observability is not the focus of the paper.

1Indeed, the lower bound in Proposition 6 in Jiang, Krishnamurthy, et al. (2017) show that ignoring underlying structure
precludes provably-efficient RL, even with function approximation.

133

https://github.com/Microsoft/malmo-challenge
https://github.com/Microsoft/malmo-challenge

Let Γ : S ×A → ∆(S) define transition dynamics over the hidden states, and let Γ1 ∈ ∆(S) denote
an initial distribution over hidden states. R : X × A → ∆(R) is the reward function; this differs from
partially observable MDPs where reward depends only on s, making the problem more challenging. With
this notation, a trajectory is generated as follows: s1 ∼ Γ1, x1 ∼ s1, r1 ∼ R(x1, a1), s2 ∼ Γ(s1, a1),
x2 ∼ s2, . . . , sH ∼ Γ(sH−1, aH−1), xH ∼ sH , rH ∼ R(xH , aH), with actions a1:H chosen by the agent.
We emphasize that s1:H are unobservable to the agent.

To simplify notation, we assume that each observation and hidden state can only appear at a particular
level. This implies that S is partitioned into {Sh}Hh=1 with size M := maxh∈[H] |Sh|. For regularity,
assume rh ≥ 0 and

∑H
h=1 rh ≤ 1 almost surely.

In this setting, the learning goal is to find a policy π : X → A that maximizes the expected return
V π := E[

∑H
h=1 rh | a1:H ∼ π]. Let π? denote the optimal policy, which maximizes V π, with optimal

value function g? defined as g?(x) := E[
∑H

h′=h rh′ |xh = x, ah:H ∼ π?]. As is standard, g? satisfies the
Bellman equation: ∀x at level h,

g?(x) = max
a∈A

E[rh + g?(xh+1)|xh = x, ah = a],

with the understanding that g?(xH+1) ≡ 0. A similar equation holds for the optimal Q-value function
Q?(x, a) := E[

∑H
h′=h rh′ |xh = x, ah = a, ah+1:H ∼ π?], and π? = argmaxa∈AQ

?(x, a).2

Below are two special cases of the setting described above that will be important for later discussions.
Tabular MDPs: An MDP with a finite and small state space is a special case of this model, where X = S
and Os is the identity map for each s. This setting is relevant in our discussion of oracle-efficiency of the
existing OLIVE algorithm in Section 6.5.1.
Deterministic dynamics over hidden states: Our algorithm, VALOR, works in this special case, which
requires Γ1 and Γ(s, a) to be point masses. Originally proposed by Krishnamurthy, Agarwal, and Langford
(2016), this setting can model some challenging benchmark environments in modern reinforcement learning,
including visual grid-worlds common to the deep RL literature (e.g., Johnson et al., 2016). In such tasks,
the state records the position of each game element in a grid but the agent observes a rendered 3D view.
Figure 6.1 shows a visual summary of this setting. We describe VALOR in detail in Section 6.4.

Throughout the paper, we use ÊD[·] to denote empirical expectation over samples from a data set D.

6.3.1 Function Classes and Optimization Oracles

As X can be rich, the agent must use function approximation to generalize across observations. To that end,
we assume a given value function class G ⊂ (X → [0, 1]) and policy class Π ⊂ (X → A). Our algorithm
is agnostic to the specific function classes used, but for the guarantees to hold, they must be expressive
enough to represent the optimal value function and policy, that is, π? ∈ Π and g? ∈ G. Prior works often
use F ⊂ (X ×A → [0, 1]) to approximate Q? instead, but for example Jiang, Krishnamurthy, et al. (2017)
point out that their OLIVE algorithm can equivalently work with G and Π. This (G,Π) representation
is useful in resolving the computational difficulty in the deterministic setting, and has also been used in
practice (Dai et al., 2018).

When working with large and abstract function classes as we do here, it is natural to consider an oracle
model of computation and assume that these classes support various optimization primitives. We adopt this
oracle-based approach here, and specifically use the following oracles:

2Note that the optimal policy and value functions depend on x and not just s even if s was known, since reward is a function of
x.

134

Cost-Sensitive Classification (CSC) on Policies. A cost-sensitive classification (CSC) oracle receives
as inputs a parameter εsub and a sequence {(x(i), c(i))}i∈[n] of observations x(i) ∈ X and cost vectors
c(i) ∈ RK , where c(i)(a) is the cost of predicting action a ∈ A for x(i). The oracle returns a policy whose
average cost is within εsub of the minimum average cost, minπ∈Π

1
n

∑n
i=1 c

(i)(π(x(i))). While CSC is
NP-hard in the worst case, CSC can be further reduced to binary classification (Beygelzimer, Langford,
and Ravikumar, 2009; Langford and Beygelzimer, 2005) for which many practical algorithms exist and
actually form the core of empirical machine learning. As further motivation, the CSC oracle has been used
in practically effective algorithms for contextual bandits (Langford and Zhang, 2008; Agarwal, Hsu, et al.,
2014), imitation learning (Ross and Bagnell, 2014), and structured prediction (Chang et al., 2015).

Linear Programs (LP) on Value Functions. A linear program (LP) oracle considers an optimization
problem where the objective o : G → R and the constraints h1, . . . hm are linear functionals of G generated
by finitely many function evaluations. That is, o and each hj have the form

∑n
i=1 αig(xi) with coefficients

{αi}i∈[n] and contexts {xi}i∈[n]. Formally, for a program of the form

maxg∈G o(g), subject to hj(g) ≤ cj , ∀j ∈ [m],

with constants {cj}j∈[m], an LP oracle with approximation parameters εsub, εfeas returns a function ĝ that is
at most εsub-suboptimal and that violates each constraint by at most εfeas. For intuition, if the value functions
G are linear with parameter vector θ ∈ Rd, i.e., g(x) = 〈θ, x〉, then this reduces to a linear program in
Rd for which a plethora of provably efficient solvers exist. Beyond the linear case, such problems can be
practically solved using standard continuous optimization methods. LP oracles are also employed in prior
work focusing on deterministic MDPs (Wen and Van Roy, 2013; Wen and Van Roy, 2017).

Least-Squares (LS) Regression on Value Functions. We also consider a least-squares regression (LS)
oracle that returns the value function which minimizes a square-loss objective. Since VALOR does not use
this oracle, we defer details to later sections.

We define the following notion of oracle-efficiency based on the optimization primitives above.

Definition 81 (Oracle-Efficient). An algorithm is oracle-efficient if it can be implemented with polynomially
many basic operations and calls to CSC, LP, and LS oracles.

Note that our algorithmic results continue to hold if we include additional oracles in the definition,
while our hardness results easily extend, provided that the new oracles can be efficiently implemented in
the tabular setting (i.e., they satisfy Proposition 86; see Section 6.5).

6.4 VALOR: An Oracle-Efficient Algorithm

In this section we propose and analyze a new algorithm, VALOR (Values stored Locally for RL) shown in
Algorithm 9 (with 10 & 11 as subroutines). As we will show, this algorithm is oracle-efficient and enjoys
a polynomial sample-complexity guarantee in the deterministic hidden-state dynamics setting described
earlier, which was originally introduced by Krishnamurthy, Agarwal, and Langford (2016).

135

Algorithm 9: VALOR (Values stored Locally for
RL) Algorithm

1 Global: D1, . . .DH initialized as ∅;
2 Function MetaAlg
3 dfslearn (∅) ; // Alg.11

4 for k = 1, . . . ,MH do
5 π̂(k), V̂ (k) ← polvalfun() ; // Alg.10

6 T ← sample neval trajectories with π̂(k);
7 V̂ π̂(k) ← average return of T ;
8 if V̂ (k) ≤ V̂ π̂(k)

+ ε
2 then return π̂(k) ;

9 for h = 1 . . . H − 1 do
10 for all a1:h of nexpl traj. ∈ T do
11 dfslearn (a1:h) ; // Alg.11

12 return failure;

Algorithm 10: VALOR Subroutine: Policy opti-
mization with local values
1 Function polvalfun()
2 V̂ ? ← V of the only dataset in D1;
3 for h = 1 : H do

// CSC-oracle

4 π̂h ← argmax
π∈Πh

∑
(D,V,{Va})∈Dh

VD(π; {Va});

5 return π̂1:H , V̂
?;

Notation:
VD(π; {Va}) := ÊD[K1{π(x) = a}(r + Va)]

Algorithm 11: VALOR Subroutine: DFS Learning of local values

1 εfeas = εsub = εstat = Õ(ε2/MH3) ; // see exact values in Table 6.1

2 φh = (H + 1− h)(6εstat + 2εsub + εfeas) ; // accuracy of learned values at level h

3 Function dfslearn(path p with length h− 1)
4 for a ∈ A do
5 D′ ← Sample ntest trajectories with actions p ◦ a ;

// compute optimistic / pessimistic values using LP-oracle

6 Vopt ← maxg∈Gh+1
ÊD′ [g(xh+1)] (and Vpes ← ming∈Gh+1

ÊD′ [g(xh+1)])
s.t. ∀(D,V,) ∈ Dh+1 : |V − ÊD[g(xh+1)]| ≤ φh+1 ;

7 if |Vopt − Vpes| ≤ 2φh+1 + 4εstat + 2εfeas then
8 Va ← (Vopt + Vpes)/2 ; // consensus among remaining functions

9 else
10 Va ← dfslearn(p ◦ a) ; // no consensus, descend

11 D̃ ← Sample ntrain traj. with p and ah ∼ Unif(K);
12 Ṽ ← maxπ∈Πh VD̃(π; {Va}); // CSC-oracle

13 Add (D̃, Ṽ, {Va}a∈A) to Dh;
14 return Ṽ ;

Since hidden states can be deterministically reached by sequences of actions (or paths), from an
algorithmic perspective, the process can be thought of as an exponentially large tree where each node is
associated with a hidden state (such association is unknown to the agent). Similar to LSVEE (Krishnamurthy,
Agarwal, and Langford, 2016), VALOR first explores this tree (Line 3) with a form of depth first search
(Algorithm 11). To avoid visiting all of the exponentially many paths, VALOR performs a state identity
test (Algorithm 11, Lines 5–8): the data collected so far is used to (virtually) eliminate functions in G
(Algorithm 11, Line 6), and we do not descend to a child if the remaining functions agree on the value of
the child node (Algorithm 11, Line 7).

The state identity test prevents exploring the same hidden state twice but might also incorrectly prune
unvisited states if all functions happen to agree on the value. Unfortunately, with no data from such

136

pruned states, we are unable to learn the optimal policy on them. To address this issue, after dfslearn
returns, we first use the stored data and values (Line 5) to compute a policy (see Algorithm 10) that is near
optimal on all explored states. Then, VALOR deploys the computed policy (Line 6) and only terminates
if the estimated optimal value is achieved (Line 8). If not, the policy has good probability of visiting
those accidentally pruned states (see Section 6.8.5), so we invoke dfslearn on the generated paths to
complement the data sets (Line 11).

In the rest of this section we describe VALOR in more detail, and then state its statistical and computa-
tional guarantees. VALOR follows a dynamic programming style and learns in a bottom-up fashion. As a
result, even given stationary function classes (G,Π) as inputs, the algorithm can return a non-stationary
policy π̂1:H := (π̂1, . . . , π̂H) ∈ ΠH that may use different policies at different time steps.3 To avoid ambi-
guity, we define Πh := Π and Gh := G for h ∈ [H], to emphasize the time point h under consideration. For
convenience, we also define GH+1 to be the singleton {x 7→ 0}. This notation also allows our algorithms
to handle more general non-stationary function classes.

Details of depth-first search exploration. VALOR maintains many data sets collected at paths visited
by dfslearn. Each data set D is collected from some path p, which leads to some hidden state s. (Due
to determinism, we will refer to p and s interchangeably throughout this section.) D consists of tuples
(x, a, r) where x ∼ p (i.e., x ∼ Os), a ∼ Unif(K), and r is the instantaneous reward. Associated with D,
we also store a scalar V which approximates V ?(s), and {Va}a∈A which approximate {V ?(s ◦ a)}a∈A,
where s ◦ a denotes the state reached when taking a in s. The estimates {Va}a∈A of the future optimal
values associated with the current path p ∈ Ah−1 are either determined through a recursive call (Line 10),
or through a state-identity test (Lines 5–8 in dfslearn). To check if we already know V ?(p ◦ a), we
solve constrained optimization problems to compute optimistic and pessimistic estimates, using a small
amount of data from p ◦ a. The constraints eliminate all g ∈ Gh+1 that make incorrect predictions for
V ?(s′) for any previously visited s′ at level h + 1. As such, if we have learned the value of s ◦ a on a
different path, the optimistic and pessimistic values must agree (“consensus”), so we need not descend.
Once we have the future values Va, the value estimate Ṽ (which approximates V ?(s)) is computed (in
Line 12) by maximizing the sum of immediate reward and future values, re-weighted using importance
sampling to reflect the policy under consideration π:

VD(π; {Va}) := ÊD[K1{π(x) = a}(r + Va)]. (6.1)

Details of policy optimization and exploration-on-demand. polvalfun performs a sequence of
policy optimization steps using all the data sets collected so far to find a non-stationary policy that is near-
optimal at all explored states simultaneously. Note that this policy differs from that computed in (Alg. 11,
Line 12) as it is common for all datasets at a level h. And finally using this non-stationary policy, MetaAlg
estimates its suboptimality and either terminates successfully, or issues several other calls to dfslearn to
gather more data sets. This so-called exploration-on-demand scheme is due to Krishnamurthy, Agarwal,
and Langford (2016), who describe the subroutine in more detail.

6.4.1 What is new compared to LSVEE?

The overall structure of VALOR is similar to LSVEE (Krishnamurthy, Agarwal, and Langford, 2016). The
main differences are in the pruning mechanism, where we use a novel state-identity test, and the policy
optimization step in Algorithm 10.

3This is not rare in RL; see e.g., Chapter 3.4 of Ross (2013).

137

LSVEE uses a Q-value function class F ⊂ (X ×A → [0, 1]) and a state identity test based on Bellman
errors on data sets D consisting of (x, a, r, x′) tuples:

ÊD

[(
f(x, a)− r − Êx′∼a maxa′∈A f(x′, a′)

)2
]
.

This enables a conceptually simpler statistical analysis, but the coupling between value function and the
policy yield challenging optimization problems that do not obviously admit efficient solutions.

In contrast, VALOR uses dynamic programming to propagate optimal value estimates from future
to earlier time points. From an optimization perspective, we fix the future value and only optimize the
current policy, which can be implemented by standard oracles, as we will see. However, from a statistical
perspective, the inaccuracy of the future value estimates leads to bias that accumulates over levels. By a
careful design of the algorithm and through an intricate and novel analysis, we show that this bias only
accumulates linearly, which leads to a polynomial sample complexity guarantee.

6.4.2 Computational and Sample Complexity of VALOR

VALOR requires two types of nontrivial computations over the function classes. We show that they can be
reduced to CSC on Π and LP on G (recall Section 6.3.1), respectively, and hence VALOR is oracle-efficient.

First, Lines 4 in polvalfun and 12 in dfslearn involve optimizing VD(π; {Va}) (Eq. (6.1)) over
Π, which can be reduced to CSC as follows: We first form tuples (x(i), a(i), y(i)) from D and {Va} on
which VD(π; {Va}) depends, where we bind xh to x(i), ah to a(i), and rh + Vah to y(i). From the tuples,
we construct a CSC data set (x(i),−[K1{a = a(i)}y(i)]a∈A). On this data set, the cost-sensitive error of
any policy (interpreted as a classifier) is exactly −VD(π; {Va}), so minimizing error (which the oracle
does) maximizes the original objective.

Second, the state identity test requires solving the following problem over the function class G:

Vopt = max
g∈G

ÊD′ [g(xh)] (and min for Vpes)

s.t. V − φh ≤ ÊD[g(xh)] ≤ V + φh,∀(D,V) ∈ Dh.

The objective and the constraints are linear functionals of G, all empirical expectations involve polynomially
many samples, and the number of constraints is |Dh| which remains polynomial throughout the execution
of the algorithm, as we will show in the sample complexity analysis. Therefore, the LP oracle can directly
handle this optimization problem.

We now formally state the main computational and statistical guarantees for VALOR.
Theorem 82 (Oracle efficiency of VALOR). Consider a contextual decision process with deterministic
dynamics over M hidden states as described in Section 6.3. Assume π? ∈ Π and g? ∈ G. Then for any
ε, δ ∈ (0, 1), with probability at least 1 − δ, VALOR makes O

(
MH2

ε log MH
δ

)
CSC oracle calls and at

most O
(
MKH2

ε log MH
δ

)
LP oracle calls with required accuracy εfeas = εsub = Õ(ε2/MH3).

Theorem 83 (PAC bound of VALOR). Under the same setting and assumptions as in Theorem 82, VALOR
returns a policy π̂ such that V ? − V π̂ ≤ ε with probability at least 1 − δ, after collecting at most
Õ
(
M3H8K

ε5
log(|G||Π|/δ) log3(1/δ)

)
trajectories.4

Note that this bound assumes finite value function and policy classes for simplicity, but can be extended
to infinite function classes with bounded statistical complexity using standard tools, as in Section 5.3 of

4 Õ(·) suppresses logarithmic dependencies on M , K, H , 1/ε and doubly-logarithmic dependencies on 1/δ, |G|, and |Π|.

138

Jiang, Krishnamurthy, et al. (2017). The resulting bound scales linearly with the Natarajan and Pseudo-
dimension of the function classes, which are generalizations of VC-dimension. We further expect that one
can generalize the theorems above to an approximate version of realizability as in Section 5.4 of Jiang,
Krishnamurthy, et al. (2017).

Compared to the guarantee for LSVEE (Krishnamurthy, Agarwal, and Langford, 2016), Theorem 83
is worse in the dependence on M , H , and ε. Yet, in Section 6.8.7 we show that a version of VALOR with
alternative oracle assumptions enjoys a better PAC bound than LSVEE. Nevertheless, we emphasize that
our main goal is to understand the interplay between statistical and computational efficiency to discover
new algorithmic ideas that may lead to practical methods, rather than improve sample complexity bounds.

6.5 Toward Oracle-Efficient PAC-RL with Stochastic Hidden State Dy-
namics

VALOR demonstrates that provably sample- and oracle-efficient RL with rich stochastic observations is
possible and, as such, makes progress toward reliable and practical RL in many applications. In this section,
we discuss the natural next step of allowing stochastic hidden-state transitions.

6.5.1 OLIVE is not Oracle-Efficient

For this more general setting with stochastic hidden state dynamics, OLIVE (Jiang, Krishnamurthy, et al.,
2017) is the only known algorithm with polynomial sample complexity, but its computational properties
remain underexplored. We show here that OLIVE is in fact not oracle-efficient. A brief description of the
algorithm is provided below, and in the theorem statement, we refer to a parameter φ, which the algorithm
uses as a tolerance on deviations of empirical expectations.
Theorem 84. Assuming P 6= NP , even with algorithm parameter φ = 0 and perfect evaluation of
expectations, OLIVE is not oracle-efficient, that is, it cannot be implemented with polynomially many basic
arithmetic operations and calls to CSC, LP, and LS oracles.

The assumptions of perfect evaluation of expectations and φ = 0 are merely to unclutter the construc-
tions in the proofs. We show this result by proving that even in tabular MDPs, OLIVE solves an NP-hard
problem to determine its next exploration policy, while all oracles we consider have polynomial runtime
in the tabular setting. While we only show this for CSC, LP, and LS oracles explicitly, we expect other
practically relevant oracles to also be efficient in the tabular setting, and therefore they could not help to
implement OLIVE efficiently.

This theorem shows that there are no known oracle-efficient PAC-RL methods for this general setting
and that simply applying clever optimization tricks to implement OLIVE is not enough to achieve a
practical algorithm. Yet, this result does not preclude tractable PAC RL altogether, and we discuss plausible
directions in the subsequent section. Below we highlight the main arguments of the proof.

Proof Sketch of Theorem 84. OLIVE is round-based and follows the optimism in the face of uncertainty
principle. At round k it selects a value function and a policy to execute (ĝk, π̂k) that promise the highest
return while satisfying all average Bellman error constraints:

ĝk, π̂k = argmax
g∈G,π∈Π

ÊD0 [g(x)] (6.2)

s.t. |ÊDi [K1{a = π(x)}(g(x)− r − g(x′))]| ≤ φ, ∀ Di∈D.

139

Here D0 is a data set of initial contexts x, D consists of data sets of (x, a, r, x′) tuples collected in the
previous rounds, and φ is a statistical tolerance parameter. If this optimistic policy π̂k is close to optimal,
OLIVE returns it and terminates. Otherwise we add a constraint to (6.2) by (i) choosing a time point
h, (ii) collecting trajectories with π̂k but choosing the h-th action uniformly, and (iii) storing the tuples
(xh, ah, rh, xh+1) in the new data set Dk which is added to the constraints for the next round.

The following theorem shows that OLIVE’s optimization is NP-hard even in tabular MDPs.
Theorem 85. Let POLIVE denote the family of problems of the form (6.2), parameterized by (X ,A,Env, t),
which describes the optimization problem induced by running OLIVE in the MDP Env (with states X ,
actions A, and perfect evaluation of expectations) for t rounds. OLIVE is given tabular function classes
G = (X → [0, 1]) and Π = (X → A) and uses φ = 0. Then POLIVE is NP-hard.

At the same time, oracles are implementable in polynomial time:
Proposition 86. For tabular value functions G = (X → [0, 1]) and policies Π = (X → A), the CSC, LP,
and LS oracles can be implemented in time polynomial in |X |, K = |A| and the input size.

Both proofs are in Section 6.10. Proposition 86 implies that if OLIVE could be implemented with
polynomially many CSC/LP/LS oracle calls, its total runtime would be polynomial for tabular MDPs.
Assuming P 6= NP, this contradicts Theorem 85 which states that determining the exploration policy of
OLIVE in tabular MDPs is NP-hard. Combining both statements therefore proves Theorem 84.

We now give brief intuition for Proposition 86. To implement the CSC oracle, for each of the polyno-
mially many observations x ∈ X , we simply add the cost vectors for that observation together and pick
the action that minimizes the total cost, that is, compute the action π̂(x) as mina∈A

∑
i∈[n]: x(i)=x c

(i)(a).
Similarly, the square-loss objective of the LS-oracle decomposes and we can compute the tabular solution
one entry at a time. In both cases, the oracle runtime is O(nK|X |). Finally, using one-hot encoding, G
can be written as a linear function in R|X | for which the LP oracle problem reduces to an LP in R|X |. The
ellipsoid method (Khachiyan, 1980) solves these approximately in polynomial time.

6.5.2 Alternative Algorithms.

An important element of VALOR is that it explicitly stores value estimates of the hidden states, which we
call “local values.” Local values lead to statistical and computational efficiency under weak realizability
conditions, but this approach is unlikely to generalize to the stochastic setting where the agent may not be
able to consistently visit a particular hidden state. In Sections 6.8.7-6.9.2, we therefore derive alternative
algorithms which do not store local values to approximate the future value g?(xh+1). Inspired by classical
RL algorithms, these algorithms approximate g?(xh+1) by either bootstrap targets ĝh+1(xh+1) (as in
TD methods) or Monte-Carlo estimates of the return using a near-optimal roll-out policy π̂h+1:H (as in
PSDP (Bagnell et al., 2004)). Using such targets can introduce additional errors, and stronger realizability-
type assumptions on Π,G are necessary for polynomial sample-complexity (see Section 6.9). Nevertheless,
these algorithms are also oracle-efficient and while we only establish statistical efficiency with deterministic
hidden state dynamics, we believe that they considerably expand the space of plausible algorithms for the
general setting.

6.6 Summary

This paper describes new RL algorithms for environments with rich stochastic observations and determinis-
tic hidden state dynamics. Unlike other existing approaches, these algorithms are computationally efficient
in an oracle model, and we emphasize that the oracle-based approach has led to practical algorithms

140

for many other settings. We believe this work represents an important step toward computationally and
statistically efficient RL with rich observations.

While challenging benchmark environments in modern RL (e.g. visual grid-worlds (Johnson et al.,
2016)) often have the assumed deterministic hidden state dynamics, the natural goal is to develop efficient
algorithms that handle stochastic hidden-state dynamics. We show that the only known approach for this
setting is not implementable with standard oracles, and we also provide several constructions demonstrating
other concrete challenges of RL with stochastic state dynamics. This provides insights into the key open
question of whether we can design an efficient algorithm for the general setting. We hope to resolve this
question in future work.

6.7 Additional Notation and Definitions

In the next few sections we analyze the new algorithms for the deterministic setting. We will adopt the
following conventions:
• In the deterministic setting (which we focus on here), a path p always deterministically leads to some

state s, so we use them interchangeably, e.g., V ?(p) ≡ V ?(s), x ∼ p⇔ x ∼ s.
• It will be convenient to define V π(s) := E[

∑H
h′=h rh′ | sh = s, ah:H ∼ π] for s at level h, which is

the analogy of V ?(s) for π. Recall that V π ≡ V π(∅) and V ? ≡ V ?(∅). Also define Q?(s, π) :=
Ex∼s[Q?(x, π(x))].

• We use ÊD[·] to denote empirical expectation over samples drawn from data set D, and we use Ep[·]
to denote population averages where data is drawn from path p. Often for this latter expectation, we
will draw (x, a, r, x′) where x ∼ p, a ∼ Unif(A) and r, x′ are sampled according to the appropriate
conditional distributions. In the notation Ep we default to the uniform action distribution unless
otherwise specified.

6.7.1 Additional Oracles

Least-Squares (LS) Oracle The least-squares oracle takes as inputs a parameter εsub and a sequence
{(x(i), v(i))}i∈[n] of observations x(i) ∈ X and values v(i) ∈ R. It outputs a value function ĝ ∈ G whose
squared error is εsub close to the least-squares fit

min
g∈G

1

n

n∑
i=1

(v(i) − g(x(i)))2.

Multi Data Set Classification Oracle The multi data set classification oracle receives as inputs a
parameter εfeas, m scalars that are upper bounds on the allowed cost {Uj}j∈[m] ∈ Rm, and m cost-sensitive

classification data sets D1, . . . Dm, each of which consists of a sequence of observations {x(i)
j }i∈[n] ∈ X n

and a sequence of cost vectors {c(i)
j }i∈[n] ∈ RK×n, where c(i)

j (a) is the cost of predicting action a ∈ A for

x
(i)
j . The oracle returns a policy that achieves on each data set Dj at most an average cost of Uj + εfeas, if a

policy exists in Π that achieves costs at most Uj on each dataset. Formally, the oracle returns a policy in{
π ∈ Π

∣∣∣∣ ∀j ∈ [m] :
1

n

n∑
i=1

c
(i)
j (π(x

(i)
j)) ≤ Uj + εfeas

}
.

This oracle generalizes the CSC oracle by requiring the same policy to achieve low cost on multiple CSC
data sets simultaneously. Nonetheless, it can be implemented with a CSC oracle as follows: We associate

141

a Lagrange parameter with each constraint, and optimize the Lagrange parameters using multiplicative
weights. In each iteration, we use the multiplicative weights to combine the m constraints into a single
one, and then solve the resulting cost-sensitive problem with the CSC oracle. The slack in the constraint
as witnessed by the resulting policy is used as the loss to update the multiplicative weights parameters.
See Arora, Hazan, and Kale, 2012 for more details.

6.7.2 Assumptions on the Function Classes

While VALOR only requires realizability of the policy and the value function classes, our other algorithms
require stronger assumptions which we introduce below.
Assumption 87 (Policy realizability). π? ∈ Π.
Assumption 88 (Value realizability). g? ∈ G.
Assumption 89 (Policy-value completeness). At each level h, ∀g′ ∈ Gh+1, there exists π?g′ ∈ Πh such that
∀x ∈ X ,

π?g′(x) = argmax
a∈A

E[r + g′(xh+1)|xh = x, ah = a].

In addition, ∀g′ ∈ Gh+1, ∃g?,g′ ∈ Gh s.t. ∀x ∈ X ,

g?,g′(x) = E[r + g′(x′)|xh = x, ah = π?g′(x)].

Assumption 90 (Policy completeness). For every h, and every non-stationary policy πh+1:H , there exists
a policy π ∈ Πh such that, for all x ∈ Xh, we have

π(x) = argmaxa E[
∑H

h′=h rh′ |x, a, ah+1:H ∼ πh+1:H].

Fact 91 (Relationship between the assumptions).
Assum.89⇒ Assum.90⇒ Assum.87. Assum.89⇒ Assum.88.

In words, these assumptions ask that for any possible approximation of the future value that we might
use, the induced square loss or cost-sensitive problems are realizable using G,Π, which is a much stronger
notion of realizability than Assumptions 87 and 88. Such assumptions are closely related to the conditions
needed to analyze Fitted Value/Policy Iteration methods (see e.g., Munos and Szepesvári, 2008; Antos,
Szepesvári, and Munos, 2008).

6.8 Analysis of VALOR

Definition 92. A state s ∈ Sh is called learned if there is a data set in Dh that is sampled from a path
leading to that state. The set of all learned states at level h is S learned

h and S learned :=
⋃
h∈[H] S learned

h .

6.8.1 Concentration Results

We now define an event E that holds with high probability and will be the main concentration argument in
the proof. This event uses a parameter εstat whose value we will set later.
Definition 93 (Deviation Bounds). Let E denote the event that for all h ∈ [H] the total number of calls to
dfslearn(p) at level h is at most Tmax = MHnexp + M during the execution of MetaAlg and that
for all these calls to dfslearn(p) the following deviation bounds hold for all g ∈ Gh and π ∈ Πh (where

142

εstat = εsub = εfeas =
ε

267H2Tmax

φh = (H − h+ 1)(6εstat + 2εsub + εfeas)

Tmax = MHnexp +M

ntest =
log (12KHTmax|G|/δ)

2ε2stat
,

ntrain =
16K log(12HTmax|G||Π|/δ)

ε2stat
,

nexp =
8 log(4MH/δ)

ε
,

neval =
32 log(8MH/δ)

ε2

Table 6.1: Exact values of parameters of VALOR run with inputs ε, δ ∈ (0, 1) and M,K ∈ N.

D′a is a data set of ntest observations sampled from p ◦ a in Line 5, and D̃ is the data set of ntrain samples
from Line 11 with stored values {Va}a∈A):∣∣∣ÊD′a [g(xh+1)]− Ep◦a[g(xh+1)]

∣∣∣ ≤ εstat, ∀a ∈ A (6.3)∣∣∣ÊD̃[g(xh)]− Ep[g(xh)]
∣∣∣ ≤ εstat∣∣∣ÊD̃[K1{π(xh) = ah}(rh + Va)]− Ep[K1{π(xh) = ah}(rh + Va)]

∣∣∣ ≤ εstat. (6.4)

In the next Lemma, we bound P[E], which is the main concentration argument in the proof. The bound
involves a new quantity Tmax which is the maximum number of calls to dfslearn. We will control this
quantity later.
Lemma 94. Set

ntest ≥
1

2ε2stat
ln

(
12KHTmax|G|

δ

)
, ntrain ≥

16K

ε2stat
ln

(
12HTmax|G||Π|

δ

)
.

Then P[E] ≥ 1− δ/2.

Proof. Let us denote the total number of calls to dfslearn before the algorithm stops by Ndfs (which is
random) and first focus on the j-th call to dfslearn. Let Bj be the sigma-field of all samples collected
before the jth call to dfslearn (if it exists, or otherwise the last call to dfslearn) and all intrinsic
randomness of the algorithm. The current path is denoted by pj at level hj and data sets D′a, D̃ collected
are denoted by D′j,a and D̃j respectively. Consider a fix a ∈ A and g ∈ G and define

Yi,j =

{
0 if j > Ndfs

g(x
(i,j)
h+1)− Epj◦a[g(xh+1)] otherwise

143

which is well-defined even if j > Ndfs and where x(i,j)
h+1 is the i-th sample of xh+1 in D′j,a. Since |Yi,j | ≤ 1

and since contexts xh+1 are sampled i.i.d. from pj ◦ a conditioned on pj which is measurable in Bj , we get
by Hoeffding’s lemma that E[exp(λYi,j)|Y1:i−1,j ,Bj] = E[exp(λYi,j)|Bj] ≤ exp(λ2/2) for λ ∈ R. As a
result, we have E[exp(λ

∑ntest
i=1 Yi,j)] = E[E[exp(λ

∑ntest
i=1 Yi,j)|Bj]] ≤ exp(ntestλ

2/2) and by Chernoff’s
bound the following concentration result holds∣∣∣ÊD′j,a [g(xh+1)]− Epj◦a[g(xh+1)]

∣∣∣ ≤
√

log(2K|G|/δ′)
2ntest

with probability at least 1− δ′

K|G| for a fixed a and g and j as long as j ≤ Ndfs. With a union bound over
A and G, the following statement holds: Given a fix j ∈ N, with probability at least 1− δ′, if j ≤ Ndfs

then for all g ∈ Gh+1 and a ∈ A∣∣∣ÊD′j,a [g(xh+1)]− Epj◦a[g(xh+1)]
∣∣∣ ≤

√
log(2K|G|/δ′)

2ntest
.

Choosing ntest ≥ 1
2ε2stat

ln
(

12KHTmax|G|
δ

)
and δ′ = δ

6HTmax
allows us to bound the LHS by εstat. In exactly

the same way since the data set D̃j consists of ntrain samples that, given Bj , are sampled i.i.d. from pj , we
have for all g ∈ Gh ∣∣∣ÊD̃j [g(xh)]− Epj [g(xh)]

∣∣∣ ≤
√

log(2|G|/δ′)
2ntrain

,

with probability 1 − δ′ as long as j ≤ Ndfs. As above, our choice of ntrain ensures that this deviation is
bound by εstat.

Finally, for the third inequality we must use Bernstein’s inequality. For the random variableK1{π(xh) =
ah}(rh + Vah), since ah is chosen uniformly at random, it is not hard to see that both the variance and
the range are at most 2K (see for example Lemma 14 by Jiang, Krishnamurthy, et al. (2017)). As such,
Bernstein’s inequality with a union bound over π ∈ Π gives that with probability 1− δ′,∣∣∣(ÊD̃j − Epj)[K1{π(xh) = ah}(rh + Vah)]

∣∣∣ ≤
√

4K log(2|Π|/δ′)
ntrain

+
4K

3ntrain
log(2|Π|/δ′) ≤ εstat,

since {Va} and pj can essentially be considered fixed at the time when D̃j is collected (a more formal
treatment is analogous to the proof of the first two inequalities). Using a union bound, the deviation bounds
(6.3)–(6.4) hold for a single call to dfslearn with probability 1− 3δ′.

Consider now the event E ′ that these bounds hold for the first Tmax calls at each level h. Applying a
union bound let us bound P(E ′) ≥ 1− 3HTmaxδ

′ = 1− δ
2 . It remains to show that E ′ ⊆ E .

First note that in event E ′ in the first Tmax calls to dfslearn, the algorithm does not call itself
recursively if p ◦ a leads to a learned state. To see this assume p ◦ a leads to a state s ∈ S learned. Let D′a be
the data set collected in Line 5 for this action a. Since the subsequent state s ∈ S learned, then there is a data
set (D,V, {Vb}) ∈ Dh+1 sampled from this state (we will only use the first two items in the tuple). This
means that D′a and D are two data sets sampled from the same distribution, and as such, we have

Vopt − Vpes = ÊD′a [gopt(xh+1)− gpes(xh+1)] ≤ Es[gopt(xh+1)− gpes(xh+1)] + 2εstat

≤ ÊD[gopt(xh+1)− gpes(xh+1)] + 4εstat

≤ V + φh+1 + εfeas − V + φh+1 + εfeas + 4εstat = 2φh+1 + 4εstat + 2εfeas.

144

The last line holds because the constraints for gopt and gpes include the one based on (D,V) (Line 6), so
the expectation of gopt and gpes on D can only differ by the amount of the allowed slackness 2φh+1 and the
violations of feasibility 2εfeas. Therefore the condition in the if clause is satisfied and the algorithm does
not call itself recursively. We here assumed that the constrained optimization problem has an approximately
feasible solution but if that is not the case, the if condition is trivially satisfied.

Since the number of learned states per level is bounded by M , this means that within the first Tmax calls
to dfslearn, the algorithm can make recursive calls to the level below at most M times. Further note
that for any fixed level h the total number of non-recursive calls to dfslearn is bounded by MHnexp
since MetaAlg has at most MH iterations and in each dfslearn is called nexp times at each level (but
the first). Therefore, in event E ′, the total number of calls to dfslearn at any level h is bounded by
MHnexp +M ≤ Tmax and the statement follows.

6.8.2 Bound on Oracle Calls

Proof of Theorem 82. Consider event E from Definition 93 which by Lemma 94 has probability at least
1− δ/2. VALOR requires two types of nontrivial computations over the function classes. We show that
they can be reduced to CSC on Π and LP on G (recall Sec. 6.3.1), respectively, and hence VALOR is
oracle-efficient.

First, Line 12 in dfslearn involves optimizing VD(π; {Va}) (Eq. (6.1)) over Π, which can be reduced
to CSC as follows: We first form tuples (x(i), a(i), y(i)) from D and {Va} on which VD(π; {Va}) depends,
where we bind xh to x(i), ah to a(i), and rh + Vah to y(i). From the tuples, we construct a CSC data set
(x(i),−[K1{a = a(i)}y(i)]a∈A), where the second argument is a K-dimensional vector with one non-zero.
On this data set, the cost-sensitive risk of any policy (interpreted as a classifier) is exactly −VD(π; {Va}),
so minimizing risk (which the oracle does) maximizes the original objective.5

Second, the optimization in Line 4 in polvalfun can be reduced to CSC with the very same argument,
except that we now accumulate all CSC inputs for each data set in Dh. Since |Dh| ≤ Tmax is polynomial,
the total input size is still polynomial.

Third, the state identity test in Line 6 in dfslearn requires solving the following problem over the
function class G:

Vopt = max
g∈G

ÊD′ [g(xh)] (and min for Vpes)

s.t. V − φh ≤ ÊD[g(xh)] ≤ V + φh,∀(D,V) ∈ Dh.

The objective and the constraints are linear functionals of G, all empirical expectations involve polynomially
many samples, and the number of constraints is |Dh| ≤ Tmax which remains polynomial throughout the
execution of the algorithm. Therefore, the LP oracle can directly handle this optimization problem.

Altogether, we showed that all non-trivial computations can be reduced to oracle calls with inputs
with polynomial description length. It remains to show that the number of calls is bounded. Since there
are at most Tmax calls to dfslearn at each level h ∈ [H], the total number of calls to the LP oracle is
TmaxHK. Similarly, the number of CSC oracle calls from dfslearn is at most TmaxH . In addition,
there at at most MH calls to the CSC oracle in polvalfun. The statement follows with realizing that
Tmax = MHnexp +M = O

(
MH
ε ln

(
MH
δ

))
.

5Note that the inputs to the oracle have polynomial length: D consists of polynomially many (x, a, r, x′) tuples, each of which
should be assumed to have polynomial description length, and {Va} similarly.

145

6.8.3 Depth First Search and Estimated Values

In this section, we show that in the high-probability event E (Definition 93), dfslearn produces good
estimates of optimal values on learned states. The next lemma first quantifies the error in the value estimate
at level h in terms of the estimation error of the values of the next time step {Va}a.
Lemma 95 (Error propagation when learning a state). Consider a call to dfslearn with input path p of
depth h. Assume that all values {Va}a∈A in Algorithm 11 satisfy |Va − V ?(p ◦ a)| ≤ β for some β > 0.
Then in event E , Ṽ returned in Line 14 satisfies |Ṽ − V ?(p)| ≤ εstat + β + εsub.

Proof. The proof follows a standard analysis of empirical risk minimization (here we are maximizing). Let
π̃ denote the empirical risk maximizer in Line 12 and let π? denote the globally optimal policy (which is in
our class due to realizability). Then

Ṽ ≤ ÊD̃[K1{π̃(xh) = ah}(rh + Vah)] ≤ Ep[K1{π̃(xh) = ah}(rh + Vah)] + εstat

≤ Ep[K1{π̃(xh) = ah}(rh + g?(xh+1))] + β + εstat

≤ Ep[K1{π?(xh) = ah}(rh + g?(xh+1))] + β + εstat = V ?(s) + β + εstat.

The first inequality is the deviation bound, which holds in event E . The second inequality is based on
the precondition on {Va}a∈A, linearity of expectation, and the realizability property of g?h+1. The third
inequality uses that π? is the global and point-wise maximizer of the long-term expected reward, which is
precisely rh + g?.

Similarly, we can lower bound Ṽ by

Ṽ = ÊD̃[K1{π̃(xh) = ah}(rh + Vah)]− εsub ≥ ÊD̃[K1{π?(xh) = ah}(rh + Vah)]− εsub

≥ Ep[K1{π?(xh) = ah}(rh + Vah)]− εstat − εsub

≥ Ep[K1{π?(xh) = ah}(rh + g?(xh+1))]− εstat − β − εsub = V ?(s)− εstat − β − εsub.

Here we first use Ṽ is optimal up to εsub and then that π̃ is the empirical maximizer. Subsequently, we
leveraged the deviation bounds of event E and finally used the assumption about the estimation accuracy
from the level below. This proves the claim.

The goal of the proof is to apply the above lemma inductively so that we can learn all of the values to
reasonable accuracy. Before doing so, we need to quantify the estimation error when Va is set in Line 8 of
the algorithm without a recursive call.
Lemma 96 (Error when not recursing). Consider a call to dfslearn with input path p of depth h. If g?

is feasible for Line 6 of dfslearn and Va is set in Line 8 of Algorithm 11, then in event E , the value
Va =

Vopt+Vpes
2 satisfies |Va − V ?(p ◦ a)| ≤ φh+1 + 3εstat + εfeas + εsub.

Proof. Recall that D′a is the data set sampled in Line 5 for the particular action a in consideration. Since
g?h+1 is feasible for both Vopt and Vpes, we have

Vpes − εsub =ÊD′a [gpes(xh+1)]− εsub ≤ ÊD′a [g?(xh+1)] ≤ ÊD′a [gopt(xh+1)] + εsub = Vopt + εsub.

Without loss of generality, we can assume that Vpes ≤ Vopt, otherwise we can just exchange them. This
implies that 0 ≤ Vopt − Va = Va − Vpes =

Vopt−Vpes
2 ≤ φh+1 + 2εstat + εfeas. Therefore,

ÊD′ [g
?(xh+1)]− Va ≤ Vopt − Va + εsub =

Vopt − Vpes
2

+ εsub ≤ φh+1 + 2εstat + εfeas + εsub.

Va − ÊD′ [g
?(xh+1)] ≤ Va − Vpes + εsub =

Vopt − Vpes
2

+ εsub ≤ φh+1 + 2εstat + εfeas + εsub.

146

By the triangle inequality

|Va − V ?(p ◦ a)| ≤|ÊD′a [g?(xh+1)]− Va|+ |ÊD′a [g?(xh+1)]− V ?(p ◦ a)|
≤φh+1 + 3εstat + εfeas + εsub.

The last inequality is the concentration statement, which holds in event E .

We now are able to apply Lemma 95 inductively in combination with Lemma 96 to obtain the main
result of dfslearn in this section.
Proposition 97 (Accuracy of learned values). Assume the realizability condition g? ∈ Gh. Set φh =
(H + 1−h)(6εstat + 2εsub + εfeas) for all h ∈ [H]. Then under event E , for any level h ∈ [H] and any state
s ∈ Sh all triplets (D,V, {Va}) ∈ Dh associated with state s (formally with paths p that lead to s) satisfy

|V − V ?(s)| ≤ φh − 2εstat, |Va − V ?(s ◦ a)| ≤ φh+1 + 3εstat + εfeas + εsub.

Moreover, under event E , we have g? is feasible for Line 6 of dfslearn for all h, at all times.

Proof. We prove this statement by induction over h. For h = H + 1 the statement holds trivially since
GH+1 = {g?h+1} the constant 0 function is the only function in GH+1 and therefore the algorithm always
returns on Line 8 and never calls level H + 1 recursively.

Consider now some data set (D̃, Ṽ, {Va}) ∈ Dh at level h associated with state s ∈ Sh. This data set
was obtained by calling dfslearn at some path p (pointing to state s). Since when we added this data set,
we have not yet exhausted the budget of Tmax calls to dfslearn (by the preconditions of the lemma), we
have that the once we reach Line 11 the inductive hypothesis applies for all data sets at level h+ 1 (which
may have been added by recursive calls of this execution). Each of the Va values can be set in one of two
ways.

1. The algorithm did not make a recursive call. Since by the inductive assumption g? is feasible for
Line 6 of dfslearn, we can apply Lemma 96 and get that

|Va − V ?(s ◦ a)| ≤ φh+1 + 3εstat + εfeas + εsub.

2. The algorithm made a recursive call. Since the value returned was added as a data set at level h+ 1,
it satisfies the inductive assumption

|Va − V ?(s ◦ a)| ≤ φh+1 − 2εstat.

This demonstrates the second inequality in the inductive step. For the first, applying Lemma 95 with β =
φh+1+3εstat +εfeas +εsub, we get that |Ṽ −V ?(s)| ≤ φh+1+4εstat +εfeas +2εsub = φh−2εstat, by definition
of φh. Finally, this also implies that |Ṽ − ÊD̃[g?h(xh)]| ≤ |Ṽ − V ?(s)| + |ÊD̃[g?h(xh)] − V ?(s)| ≤ φh
which means that g? is still feasible.

6.8.4 Policy Performance

In this section, we bound the quality of the policy returned by polvalfun in the good event E by using
the fact that dfslearn produces accurate estimates of the optimal values (previous section). Before we
state the main result of this section in Proposition 99, we prove the following helpful lemma. This Lemma
is essentially Lemma 4.3 in Ross and Bagnell (2014).

147

Lemma 98. The suboptimality of a policy π can be written as

V ? − V π = E

[
H∑
h=1

(V ?(sh)−Q?(sh, πh)) | ah ∼ πh

]
.

Proof. The difference of values of a policy π compared to the optimal policy in a certain state s ∈ Sh can
be expressed as

V ?(s)− V π(s) = V ?(s)− Es[K1{πh(xh) = ah}(rh + V π(xh+1)]

= V ?(s)− Es[K1{πh(xh) = ah}(rh + V ?(xh+1)− V ?(xh+1) + V π(xh+1))]

= V ?(s)−Q?(s, πh) + Es[K1{πh(xh) = ah}(V ?(xh+1)− V π(xh+1))]

= V ?(s)−Q?(s, πh) + Es[V ?(xh+1)− V π(xh+1) | ah ∼ πh].

Therefore, by applying this equality recursively, the suboptimality of π can be written as

V ?(s)− V π = E

[
H∑
h=1

(V ?(sh)−Q?(sh, πh)) | ah ∼ π̂h

]
.

Now we may bound the policy suboptimality.
Proposition 99. Assume g?h ∈ Gh and the we are in event E . Recall the definition φh = (H+1−h)(6εstat +
2εsub + εfeas) for all h ∈ [H]. Then the policy π̂ = π̂1:H returned by polvalfun satisfies

V π̂ ≥ V ? − pπ̂ul − 2H2Tmax(7εstat + 3εsub + 2εfeas)

where pπ̂ul = P(∃h ∈ [H] : sh /∈ S learned | a1:H ∼ π̂) is the probability of hitting an unlearned state when
following π̂.

Proof. To bound the suboptimality of the learned policy, we bound the difference of how much following
π̂h for one time step can hurt per state using Proposition 97. For a state s ∈ S learned at level h, we have

V ?(s)−Q?(s, π̂h)

= Es[K(1{π?h(xh) = ah} − 1{π̂h(xh) = ah})(rh + g?h+1(xh+1)]

≤
∑

s∈S learned
h

Es[K(1{π?h(xh) = ah} − 1{π̂h(xh) = ah})(rh + g?h+1(xh+1)]

≤
∑

(s, ,{Va})∈Dh

(
Es[K(1{π?h(xh) = ah} − 1{π̂h(xh) = ah})(rh + Vah)]

+ 2φh+1 + 6εstat + 2εfeas + 2εsub

)
≤

∑
(D̃, ,{Va})∈Dh

(
ED̃[K(1{π?h(xh) = ah} − 1{π̂h(xh) = ah})(rh + Vah)]

+ 2φh+1 + 8εstat + 2εfeas + 2εsub

)
≤ 2|Dh|(φh+1 + 4εstat + εfeas + 2εsub).

Here the first identity is based on expanding definitions. For the first inequality, we use that s ∈ S learned

and also that π? simultaneously maximizes the long term reward from all states, so the terms we added in

148

are all non-negative. In the second inequality, we introduce the notation (s, , {Va}) ∈ Dh to denote a data
set in Dh associated with state s with successor values {Va}. For this inequality we use Proposition 97 to
control the deviation of the successor values. The third inequality uses the deviation bound that holds in
event E .

Since per dfslearn call, only one data set can be added to Dh, the magnitude |Dh| ≤ Tmax is
bounded by the total number of calls to dfslearn at each level. Using Lemma 98, the suboptimality of π̂
is therefore at most

V ? − V π̂ ≤ pπ̂ul + (1− pπ̂ul)
H∑
h=1

2|Dh|(φh+1 + 4εstat + 2εsub + εfeas)

≤ pπ̂ul + 2HTmax(4εstat + 2εsub + εfeas) + 2Tmax

H∑
h=1

φh+1

≤ pπ̂ul + 2HTmax(4εstat + 2εsub + εfeas) + 2Tmax(6εstat + 2εsub + εfeas)
H∑
h=1

(H − h)

≤ pπ̂ul + 2HTmax(4εstat + 2εsub + εfeas) +H2Tmax(6εstat + 2εsub + εfeas)

≤ pπ̂ul + 14H2Tmaxεstat + 6H2Tmaxεsub + 3H2Tmaxεfeas.

This argument is similar to the proof of Lemma 8 in Krishnamurthy, Agarwal, and Langford (2016). Note
that we introduce the dependency on Tmax since we perform joint policy optimization, which will degrade
the sample complexity.

6.8.5 Meta-Algorithm Analysis

Now that we have the main guarantees for dfslearn and polvalfun, we may turn to the analysis of
MetaAlg.
Lemma 100. Consider running MetaAlg with dfslearn and polvalfun (Algorithm 9 + 10 + 11)
with parameters

nexp ≥
8

ε
ln

(
4MH

δ

)
, neval ≥

32

ε2
ln

(
8MH

δ

)
, εstat = εsub = εfeas =

ε

267H2Tmax

Then with probability at least 1− δ, MetaAlg returns a policy that is at least ε-optimal after at most MK
iterations.

Proof. First apply Lemma 94 so that the good event E holds, except with probability δ/2.
In the event E , since before the first execution of polvalfun, we called dfslearn(∅), by Proposi-

tion 97, we know that |V̂ ? − V ?| ≤ φ1 − 2εstat where V̂ ? is the value stored in the only dataset associated
with the root. This value does not change for the remainder of the algorithm, and the choice of εstat, φ
ensure that

|V̂ ? − V ?| ≤ φ1 − 2εstat = 6Hεstat + 2Hεsub +Hεfeas − 2εstat ≤ ε/8.

This is true for all executions of polvalfun (formally all V̂ (k) values). Next, since we perform at most
MH iterations of the loop in MetaAlg, we consider at most MH policies. Via a standard application of
Hoeffding’s inequality, with probability 1− δ/4, we have that for all k ∈ [MH]

|V̂ π̂k − V π̂k | ≤

√
log(8MH/δ)

2neval
.

149

The choice of neval ensure that this is at most ε/8. With these two bounds, if MetaAlg terminates, the
termination condition implies that

V ? − V π̂(k) ≤ V̂ (k) − V̂ π̂(k)
+
ε

4
≤ 3

4
ε ≤ ε

and hence the returned policy is ε-optimal.
On the other hand, if the algorithm does not terminate in iteration k, we have that V̂ (k) − V̂ π̂(k)

> ε
2

and therefore

V ? − V π̂(k) ≥ V̂ (k) − V̂ π̂(k) − ε

4
≥ ε

4
.

We now use this fact with Proposition 99 to argue that the policy π̂(k) must visit an unlearned state with
sufficient probability. Under the conditions here, applying Proposition 99, we get that

ε

4
≤ V ? − V π̂(k) ≤ pπ̂(k)

ul + 2TmaxH
2(7εstat + 3εsub + 2εfeas).

With the choice of εstat, rearranging this inequality reveals that pπ̂
(k)

ul ≥ ε/8 > 0. Hence, if the algorithm
does not terminate there must be at least one unlearned state, i.e., S \ S learned 6= ∅.

For the last step of the proof, we argue that since pπ̂
(k)

ul is large, the probability of reaching an unlearned
state is high, and therefore the additional calls to dfslearn in Line 11 with high probability will visit
a new state, which we will then learn. Specifically, we will prove that on every non-terminal iteration of
MetaAlg, we learn at least one previously unlearned state. With this fact, since there are at most MH
states, the algorithm must terminate and return a near-optimal policy after at most MH iterations.

In a non-terminal iteration k, the probability that we do not hit an unlearned state in Line 11 is

(1− pπ̂(k)

ul)nexp ≤ (1− ε/8)nexp ≤ exp(−εnexp/8).

This follows from independence of the nexp trajectories sampled from π̂(k). nexp ≥ 8
ε ln

(
4MH
δ

)
ensures

that the probability of not hitting unlearned states in any of the MH iterations is at most δ/4.
In total, except with probability δ/2 + δ/4 + δ/4 (for the three events we considered above), on every

iteration, either the algorithm finds a near optimal policy and returns it, or it visits a previously unlearned
state, which subsequently becomes learned. Since there are at most MH states, this proves that with
probability at least 1− δ, the algorithm returns a policy that is at most ε-suboptimal.

6.8.6 Proof of Sample Complexity: Theorem 83

We now have all parts to complete the proof of Theorem 83. For the calculation, we instantiate all the
parameters as

εstat = εsub = εfeas =
ε

267H2Tmax
,

φh = (H − h+ 1)(6εstat + 2εsub + εfeas), Tmax = MHnexp +M,

ntest =
log (12KHTmax|G|/δ)

2ε2stat
, ntrain =

16K log(12HTmax|G||Π|/δ)
ε2stat

,

nexp =
8 log(4MH/δ)

ε
, neval =

32 log(8MH/δ)

ε2
.

150

These settings suffice to apply all of the above lemmas and therefore with these settings the algorithm
outputs a policy that is at most ε-suboptimal, except with probability δ. For the sample complexity, since
Tmax is an upper bound on the number of data sets we collect (because Tmax is an upper bound on the
number of execution of dfslearn at any level), and we also neval trajectories for each of the MH
iterations of MetaAlg, the total sample complexity is

HTmaxntrain +KHTmaxntest +MHneval

= O

(
T 3

maxKH
5

ε2
log

(
MKH

εδ
|G||Π| log(MH/δ)

)
+
MH

ε2
log(MH/δ)

)
= O

(
M3KH8

ε5
log3(MH/δ) log

(
MKH

εδ
|G||Π| log(MH/δ)

))
.

This proves the theorem.

6.8.7 Extension: VALOR with Constrained Policy Optimization

We note that Theorem 83 suffers relatively high sample complexity compared to the original LSVEE.
The issue is that VALOR pools all the data sets together for policy optimization (Algorithm 10). This
implicitly weights all data sets uniformly, and allows some undesired trade-off: the policy that maximizes
the objective could sacrifice significant amount of value on one data set (for some hidden state) to gain
slightly more value on many others, only to find out later that the sacrificed state is visited very often during
execution. This is the well-known distribution mismatch issue of reinforcement learning.

To address this issue and attain better sample complexity results, Algorithm 12 shows an alternative
to the policy optimization component of VALOR in Algorithm 10. Instead of using an unconstrained
optimization problem, it finds the policy through a feasibility problem, and hence avoid the undesired
trade-off mentioned above. The computation can be implemented by the multi data set classification oracle
defined in Section 6.7.

Algorithm 12: Constrained policy optimization with local values

1 Function polvalfun()
2 V̂ ? ← V associated with only dataset in D1;
3 for h = 1 : H do
4 Pick π̂h such that the following constraints are violated at most εfeas for all

(D,V, {Va}a) ∈ Dh : ÊD[K1{π(xh) = ah}(rh + Vah)] ≥ V − 2φh + 4εstat + εsub ;

5 return π̂1:H , V̂
?;

Below, we prove a stronger version of Proposition 99 (which is for Algorithm 10) for this approach
based on feasibility. First, we show that π? is always a feasible choice in Line 4 in event E .
Lemma 101. Assume g? ∈ Gh, π? ∈ Πh and φh = (H + 1 − h)(6εstat + 2εsub + εfeas) for all h ∈ [H].
Then π? is a valid choice in Line 4 of polvalfun in Algorithm 12 in event E .

Proof. Consider a single data set (D,V, {Va}a) ∈ Dh that is associated with state s ∈ Sh. Using

151

Proposition 97, we can bound the deviation of the optimal policy for each constraint as

V − ÊD[K1{π?(xh) = ah}(rh + Vah)]

≤ V ?(s) + φh − 2εstat − ÊD[K1{π?(xh) = ah}(rh + Vah)]

≤ V ?(s) + φh − 2εstat − Es[K1{π?(xh) = ah}(rh + Vah)] + εstat

≤ V ?(s) + φh + 2εstat − Es[K1{π?(xh) = ah}(rh + V ?(s ◦ ah))] + φh+1 + εsub + εfeas

= φh + 2εstat + φh+1 + εsub + εfeas = 2φh − 4εstat − εsub.

Here we first used that V is close to the optimal value V ?(s), the deviation bounds next and finally leveraged
that Va is a good estimate. Since that inequality holds for all constraints, π? is feasible.

We now show that Algorithm 12 produces policies with a better guarantees than its unconstrained
counterpart. The difference is that we eliminate the Tmax term in the error bound.
Proposition 102 (Improvement over Proposition 99). Assume g? ∈ Gh and that we are in event E . Recall
the definition φh = (H + 1− h)(6εstat + 2εsub + εfeas) for all h ∈ [H]. Then the policy π̂ = π̂1:H returned
by polvalfun in Algorithm 12 satisfies

V π̂ ≥ V ? − pπ̂ul − 32H2(εstat + εfeas + εsub)

where pπ̂ul = P(∃h ∈ [H] : sh /∈ S learned | a1:H ∼ π̂) is the probability of hitting an unlearned state when
following π̂.

Proof. We bound the difference of how much following π̂h for one time step can hurt per state using
Proposition 97. First note that by Lemma 101, the optimization problem always has a feasible solution in
event E , so π̂h is well defined. For a state s ∈ S learned

h , we have

V ?(s)−Q?(s, π̂h)

= Es[K(1{π?h(xh) = ah} − 1{π̂h(xh) = ah})(rh + g?h+1(xh+1)]

≤ Es[K(1{π?h(xh) = ah} − 1{π̂h(xh) = ah})(rh + Vah)] + 2φh+1 + 6εstat + 2εsub + 2εfeas

≤ ÊD[K(1{π?h(xh) = ah} − 1{π̂h(xh) = ah})(rh + Vah)] + 2φh+1 + 8εstat + 2εsub + 2εfeas

≤ V + εsub − V + 2φh − 4εstat − εsub + εfeas + 2φh+1 + 8εstat + 2εsub + 2εfeas

= 4φh+1 + 16εstat + 5εfeas + 6εsub = 4φh − 8εstat − 2εsub + εfeas.

Here (D,V, {Va}) is one of the data sets in Dh that is associated with s, which has optimal policy value V
by construction. We first applied definitions and then used that Va are good value estimates. Subsequently
we applied the deviation bounds and finally leveraged the definition of V and the approximate feasibility of
π̂h. Using Lemma 98, the suboptimality of π̂ is therefore at most

V ? − V π̂ ≤ pπ̂ul + (1− pπ̂ul)
H∑
h=1

(4φh+1 + 16εstat + 5εfeas + 6εsub)

≤ pπ̂ul + 16Hεstat + 6Hεsub + 5Hεfeas + 4

H∑
h=1

φh+1

≤ pπ̂ul + 16Hεstat + 6Hεsub + 5Hεfeas + 4(6εstat + 2εsub + εfeas)

H∑
h=1

(H − h)

≤ pπ̂ul + 16Hεstat + 6Hεsub + 5Hεfeas + 2H2(6εstat + 2εsub + εfeas)

≤ pπ̂ul + 32H2(εstat + εfeas + εsub).

152

Using this improved policy guarantee, we obtain a tighter analysis of MetaAlg that does not have a
dependency on Tmax in εstat.
Lemma 103. Consider running MetaAlg with dfslearn and polvalfun (Algorithm 9 + 12 + 11)
with parameters

nexp ≥
8

ε
ln

(
4MH

δ

)
, neval ≥

32

ε2
ln

(
8MH

δ

)
, εstat = εfeas = εsub =

ε

210H2
.

Then with probability at least 1− δ, MetaAlg returns a policy that is at least ε-optimal after at most MK
iterations.

Proof. The proof is identical to the proof of Lemma 100 except using Proposition 102 in place of Proposi-
tion 99, and using Lemma 101 to guarantee that the optimization problem in Line 4 is always feasible, in
event E .

Finally, we are ready to assemble all statements to the following sample-complexity bound:
Theorem 104. Consider a Markovian CDP with deterministic dynamics overM hidden states, as described
in Section 6.3. When π? ∈ Π and g? ∈ G (Assumptions 87 and 88 hold), for any ε, δ ∈ (0, 1), the local
value algorithm with constrained policy optimization (Algorithm 9 + 12 + 11) returns a policy π such that
V ? − V π ≤ ε with probability at least 1− δ, after collecting at most Õ

(
MKH6

ε3
log(|G||Π|/δ) log(1/δ)

)
trajectories.

Proof. We now have all parts to complete the proof of Theorem 83. For the calculation, we instantiate all
the parameters as

εstat = εfeas = εsub =
ε

210H2
, φh = (H − h+ 1)(6εstat + 2εsub + εfeas),

Tmax = MHnexp +M,

ntest =
log (12KHTmax|G|/δ)

2ε2stat
, ntrain =

16K log(12HTmax|G||Π|/δ)
ε2stat

,

nexp =
8 log(4MH/δ)

ε
, neval =

32 log(8MH/δ)

ε2
.

These settings suffice to apply all of the above lemmas for these algorithms and therefore with these settings
the algorithm outputs a policy that is at most ε-suboptimal, except with probability δ. For the sample
complexity, since Tmax is an upper bound on the number of data sets we collect (because Tmax is an upper
bound on the number of execution of dfslearn at any level), and we also neval trajectories for each of
the MH iterations of MetaAlg, the total sample complexity is

HTmaxntrain +KHTmaxntest +MHneval

= O

(
TmaxKH

5

ε2
log

(
MKH

εδ
|G||Π| log(MH/δ)

)
+
MH

ε2
log(MH/δ)

)
= O

(
MKH6

ε3
log(MH/δ) log

(
MKH

εδ
|G||Π| log(MH/δ)

))
.

6.9 Alternative Algorithms

Theorem 105 (Informal statement). Under Assumption 89 or Assumptions 88+90, there exist oracle-
efficient algorithms with polynomial sample complexity in CDPs (contextual decision processes) with
deterministic dynamics over small hidden states. These algorithms do not store or use local values.

153

6.9.1 Algorithm with Two-Sample State-Identity Test

See Algorithm 9 + 13. The algorithm uses a novel state identity test which compares two distributions using
a two-sample test (Gretton et al., 2012) in Line 10 (recall that Gh = G for h ∈ [H] and GH+1 = {x 7→ 0}).
Such an identity test mechanism is very different from the one used in the VALOR algorithm, and the two
mechanisms have very different behavior. For example, if G = {g?}, the local value algorithm will claim
every state s as “not new” because it knows the optimal value V ?(s), whereas the two-sample test may still
declare a state s to be new if Es[g?(x)] 6= Es′ [g?(x)] for any previously visited s′. On the other hand, the
two-sample test algorithm may not have learned V ?(s) at all when it claims that a state s is not new. Given
the novelty of the mechanism, we believe analyzing the two-sample test algorithm and understanding its
computational and statistical properties enriches our toolkit for dealing with the challenges addressed in
this paper.

Algorithm 13: Algorithm with Two-Sample State-Identity Test

1 Function polvalfun()
2 ĝH+1 ← 0 ;
3 for h = H : 1 do
4 π̂h ← argmaxπ∈Πh

∑
D∈Dlearned

h
ÊD[K1{π(xh) = ah}(rh + ĝh+1(xh+1))] ;

5 ĝh ← argming∈Gh
∑

D∈Dval
h
ÊD[K1{π̂h(xh) = ah}(g(xh)− rh − ĝh+1(xh+1))2] ;

6 V̂ ? ← ÊD[ĝ1(x1)] where D is the only distribution in Dval
1 ;

7 return π̂1:H , V̂
?;

8 Function dfslearn(a1:h−1)
9 D̃ ← sample xh ∼ a1:h−1, ah ∼ Unif(A), rh, xh+1 ;

10 dMMD ← minD∈Dval
h

supg∈Gh

∣∣∣ÊD[g(xh)]− ÊD̃[g(xh)]
∣∣∣ ;

11 if dMMD ≤ 2τ and IS RECURSIVE CALL then
12 return
13 if dMMD > 2τ then
14 Add D̃ to Dval

h

15 Add D̃ to Dlearned
h ;

16 for a ∈ A do
17 dfslearn(a1:h−1 ◦ a) ;

Computational considerations

The two-sample test algorithm requires three types nontrivial computation. Line 4 requires importance
weighted policy optimization, which is simply a call to the CSC oracles. Line 5 performs squared-loss
regression on Gh, which is a call to a LS oracle.

The slightly unusual computation occurs on Line 10: we compute the (empirical) Maximum Mean
Discrepancy (MMD) between D and D̃ against the function class Gh, and take the minimum over D ∈ Dval.
First, since |Dval

h | remains small over the execution of the algorithm, the minimization over D ∈ Dval
h can

be done by enumeration. Then, for a fixed D, computing the MMD is a linear optimization problem over
Gh. In the special case where Gh is the unit ball in a Reproducing Kernel Hilbert Space (RKHS) (Schölkopf

154

and Smola, 2002), MMD can be computed in closed form by O(n2) kernel evaluations, where n is the
number of data points involved (Gretton et al., 2012).

To unclutter the sample-complexity analysis, we assume that perfect oracles, i.e., εfeas = εsub = 0.

Sample complexity

Theorem 106. Consider the same Markovian CDP setting as in Theorem 83 but we explicitly require
here that the process is an MDP over X . Under Assumption 89, for any ε, δ ∈ (0, 1), the two-sample
state-identity test algorithm (Algorithm 9+13) returns a policy π such that V ? − V π ≤ ε with probability
at least 1− δ, after collecting at most Õ

(
M2K2H6

ε4
log(|G||Π|/δ) log2(1/δ)

)
trajectories.

For this algorithm, we use the following notion of learned state:

Definition 107 (Learned states). Denote the sequence of states whose data sets are added to Dlearned
h as

S learned
h . States that are in S learned =

⋃
h∈[H] S learned

h are called learned. The sequence of states whose data
sets are added to Dval

h are denoted by Sval
h . Let Scheck

h denote the set of all states that have been reached by
any previous dfslearn call at level h.

Fact 108. We have Sval
h ⊆ S learned

h ⊆ Scheck
h . Furthermore, ∀s ∈ S learned

h and a ∈ A, s ◦ a ∈ Scheck
h+1 .

Define the following short-hand notations for the objective functions used in Algorithm 13:

VD(π; g′) :=ÊD[K1{π(x) = a}(r + g′(x′))].

VDlearned
h

(π; g′) :=
∑

D∈Dlearned
h

VD(π; g′).

LD(g;π, g′) :=ÊD[K1{π(x) = a}(g(x)− r − g′(x′))2].

LDval
h

(g;π, g′) :=
∑

D∈Dval
h

LD(g;π, g′).

Also define Vs, VS learned
h

, Ls, LSval
h

as the population version of VD, VDlearned
h

, LD, LDval
h

, respectively.

Concentration Results. For our analysis we rely on the following concentration bounds that define the
good event E . This definition involves parameters τ, τL, τV whose values we will set later.

Definition 109. Let E denote the event that for all h ∈ [H] the total number of calls to dfslearn(p) at
level h is at most Tmax = M(K + 1)(1 +Hnexp) during the execution of MetaAlg and that for all these
calls to dfslearn(p) the following deviation bounds hold for all g ∈ Gh, g′ ∈ Gh+1 and π ∈ Πh (where
D̃ is the data set of ntrain samples from Line 9 and s is the state reached by p):

|ÊD̃[g(x)]− Es[g(x)]| ≤τ (6.5)

|VD̃(π; g′)− Vs(π; g′)| ≤τV
|LD̃(g;π, g′)− Ls(g;π, g′)| ≤τL. (6.6)

We now show that this event has high probability.

155

Lemma 110. Set ntrain so that

ntrain ≥ max
{ 1

2τ2
ln

(
12HTmax|G|

δ

)
,

16K

τ2
V

ln

(
12HTmax|G||Π|

δ

)
,

32K

τ2
L

ln

(
12HTmax|G|2|Π|

δ

)}
.

Then P[E] ≥ 1 − δ/2 where E is defined in Definition 109. In addition, in event E , during all calls the
sequences are bounded as |Sval

h | ≤M and |S learned
h | ≤ Tmax.

Proof. Let us first focus on one call to dfslearn, say at path p at level h. First, observe that the data set
D̃ is a set of ntrain transitions sampled i.i.d. from the state s that is reached by p. By Hoeffding’s inequality
and a union bound, with probability 1− δ′, for all g ∈ Gh∣∣∣ÊD̃[g(xh)]− Es[g(xh)]

∣∣∣ ≤
√

log(2|G|/δ′)
2ntrain

.

With δ′ = δ
6HTmax

the choice for ntrain let us bound the LHS by τ .
For the random variable K1{π(xh) = ah}(rh + g′(xh+1)), since ah is chosen uniformly at random,

it is not hard to see that both the variance and the range are at most 2K (see for example Lemma 14 by
Jiang, Krishnamurthy, et al. (2017)). Applying Bernstein’s inequality and a union bound, for all π ∈ Πh

and g ∈ Gh+1, we have

|VD̃(π; g′)− Vs(π; g′)| ≤

√
4K log(2|G||Π|/δ′)

ntrain
+

4K

3ntrain
log(2|G||Π|/δ′)

with probability 1− δ′. As above, with δ′ = δ
6HTmax

our choice of ntrain ensures that this deviation is bound
by τV .

Similarly, we apply Bernstein’s inequality to the random variable K1{π(xh) = ah}(g(xh) − rh −
g′(xh+1))2 which has range and variance at most 4K. Combined with a union bound over all g ∈ Gh, g′ ∈
Gh+1, π ∈ Πh we have that with probability 1− δ′,

|LD̃(g;π, g′)− Ls(g;π, g′)| ≤

√
8K log(2|G|2|Π|/δ′)

ntrain
+

2K

ntrain
log(2|G|2|Π|/δ′) ≤ τL.

This last inequality is based on the choice for ntrain and δ′ = δ
6HTmax

. For details on this concentration
bound see for example Lemma 14 by Jiang, Krishnamurthy, et al. (2017). Using a union bound, the
deviation bounds (6.5)–(6.6) hold for a single call to dfslearn with probability 1− 3δ′.

Consider now the event E ′ that these bounds hold for the first Tmax calls at each level h. Applying a
union bound let us bound P(E ′) ≥ 1− 3HTmaxδ

′ = 1− δ
2 . It remains to show that E ′ ⊆ E .

First note that in event E ′ in the first Tmax calls to dfslearn at level h, the algorithm does not call
itself recursively during a recursive call if p leads to a state s ∈ Sval

h . To see this assume p leads to a state
s ∈ Sval

h and let D ∈ Dval
h be a data set sampled from this state. This means that D̃ and D are sampled

from the same distribution, and as such, we have for every g ∈ Gh

|ÊD̃[g(x)]− ÊD[g(x)]| ≤ |ÊD̃[g(x)]− Es[g(x)]|+ |Es[g(x)]− ÊD[g(x)]| ≤ 2τ. (6.7)

156

Therefore dMMD ≤ 2τ , the condition in the first clause is satisfied, and the algorithm does not recurse. If
this condition is not satisfied, the algorithm adds D̃ to Dval

h . Therefore, the initial call to dfslearn at the
root can result in at most MK recursive calls per level, since the identity tests must return true on identical
states.

Further, for any fixed level, we issue at most MHnexp additional calls to dfslearn, since MetaAlg
has at most MH iterations and in each one, dfslearn is called nexp times per level. Any new state
that we visit in this process was already counted by the MK calls per level in the initial execution of
dfslearn. On the other hand, these calls always descend to the children, so the number of calls to old
states is at most M(1 +K)Hnexp per level. In total the number of calls to dfslearn per level is at most
M(1 +K)Hnexp +MK ≤ Tmax, and P(E) ≤ δ/2 follows.

Further, the bound |S learned
h | ≤ Tmax follows from the fact that per call only one state can be added to

S learned
h and there are at most Tmax calls. The bound |Sval

h | ≤M follows from the fact that in E no state can
be added twice to Sval

h since as soon as it is in Sval
h once, dMMD ≤ 2τ holds (see Eq.(6.7)) and the current

data set is not added to Dval
h .

Depth-first search and learning optimal values. We now prove that polvalfun and dfslearn
produce good value function estimates.
Proposition 111. In event E , consider an execution of polvalfun and let {ĝh, π̂h}h∈[H] denote the
learned value functions and policies. Then every state s in Scheck

h satisfies

|Es[ĝh(xh)]− Es[g?(xh)]| ≤ (H + 1− h)(2MτV +
√

4M2τV + 2TmaxτL + 8τ), (6.8)

and every learned state s ∈ S learned
h satisfies

V ?(s)−Q?(s, π̂h) ≤ 2MτV + 2(H − h)(2MτV +
√

4M2τV + 2TmaxτL + 8τ). (6.9)

Proof. We prove both inequalities simultaneously by induction over h. For convenience, we use the
following short hand notations: εV = MτV and εL = TmaxτL. Using this notation, in event E ,
|VDval

h
(π; g′) − VSval

h
(π; g′)| ≤ εV and |LDlearned

h
(g;π, g′) − LS learned

h
(g;π, g′)| ≤ εL hold for all g, g′ and

π.

Base case: Both statement holds trivially for h = H + 1 since the LHS is 0 and the RHS is non-negative.
In particular there are no actions, so Eq. (6.9) is trivial.

Inductive case: Assume that Eq. (6.8) holds on level h+ 1. For any learned s ∈ S learned
h , we first show

that π̂h achieves high value compared to π?ĝh+1
(recall its definition from Assumption 89) under Vs(·; ĝh+1):

Vs(π
?
ĝh+1

; ĝh+1)− Vs(π̂h; ĝh+1) ≤
∑

s∈S learned
h

Vs(π
?
ĝh+1

; ĝh+1)− Vs(π̂h; ĝh+1)

= VS learned
h

(π?ĝh+1
; ĝh+1)− VS learned

h
(π̂h; ĝh+1)

≤ VDlearned
h

(π?ĝh+1
; ĝh+1)− VDlearned

h
(π̂h; ĝh+1) + 2εV ≤ 2εV .

157

Eq. (6.9) follows as a corollary:

V ?(s)−Q?(s, π̂h)

= Vs(π
?; g?)− Vs(π̂h; g?)

≤ Vs(π?; ĝh+1)− Vs(π̂h; ĝh+1) + 2 sup
s′ being child of s

|Ex′∼s′ [ĝh+1(xh+1)− g?(xh+1)]|

≤ Vs(π?ĝh+1
; ĝh+1)− Vs(π̂h; ĝh+1) + 2(H − h)(2εV +

√
4MεV + 2εL + 8τ)

≤ 2εV + 2(H − h)(2εV +
√

4MεV + 2εL + 8τ).

This proves Eq. (6.9) at level h. The rest of the proof proves Eq.(6.8). First we introduce and recall the
definitions:

gπ̂h,ĝh+1
(x) = E[r + ĝh+1(xh+1) | xh = x, ah = π̂h(x)],

g?,ĝh+1
(x) = E[r + ĝh+1(xh+1) | xh = x, ah = π?ĝh+1

(x)].

Note that gπ̂h,ĝh+1
/∈ Gh in general, but it is the Bayes optimal predictor for the squared lossesLs(·; π̂h, ĝh+1)

for all s simultaneously. On the other hand, Assumption 89 guarantees that g?,ĝh+1
∈ Gh, for any ĝh+1.

The LHS of Eq.(6.8) can be bounded as

|Es[g?(xh)]− Es[ĝh(xh)]| ≤
∣∣Es[g?(xh)]− Es[gπ̂h,ĝh+1

(xh)]
∣∣+
∣∣Es[gπ̂h,ĝh+1

(xh)]− Es[ĝh(xh)]
∣∣ .(6.15)

To bound the first term in Eq.(6.15),∣∣Es[g?(xh)]− Es[gπ̂h,ĝh+1
(xh)]

∣∣ ≤ ∣∣Es[g?(xh)]− Es[g?,ĝh+1
(xh)]

∣∣+
∣∣Es[g?,ĝh+1

(xh)]− Es[gπ̂h,ĝh+1
(xh)]

∣∣
=
∣∣Es [g?(xh)− g?,ĝh+1

(xh)
]∣∣+

∣∣∣Vs(π?ĝh+1
; ĝh+1)− Vs(π̂h; ĝh+1)

∣∣∣
≤
∣∣Es [g?(xh)− g?,ĝh+1

(xh)
]∣∣+ 2εV .

Now consider each individual context xh emitted in s ∈ Sh:

g?(xh)− g?,ĝh+1
(xh)

= Erh∼R(xh,π?(xh))[rh] + Es◦π?(xh)[g
?(xh+1)]−max

a∈A

(
Erh∼R(xh,a)[rh] + Es◦a[ĝh+1(xh+1)]

)
≤ Erh∼R(xh,π?(xh))[rh] + Es◦π?(xh)[ĝh+1(xh)]

−max
a∈A

(
Erh∼R(xh,a)[r] + Es◦a[ĝh+1(xh)]

)
+ |Es◦π?(xh)[ĝh+1(xh+1)− g?(xh+1)]|

≤ |Es◦π?(xh)[ĝh+1(xh+1)− g?(xh+1)]|

≤ (H − h)(2εV +
√

4MεV + 2εL + 8τ).

The second inequality is true since the second term optimizes over a ∈ A and the first term is the special
case of a = π?(xh). The last inequality follows from the fact that if s ∈ S learned

h ⇒ s ◦ a ∈ Scheck
h+1 and we

can therefore apply the induction hypothesis. We can use the same argument to lower bound the above
quantity. This gives∣∣Es[g?(xh)]− Es[gπ̂h,ĝh+1

(xh)]
∣∣ ≤ (H − h)(2εV +

√
4MεV + 2εL + 8τ) + 2εV .

Next, we work with the second term in Equation (6.15):∣∣Es[ĝh(xh)]− Es[gπ̂h,ĝh+1
(xh)]

∣∣
158

≤
√
Es[
(
ĝh(xh)− gπ̂h,ĝh+1

(xh)
)2

]

=
√
Ls(ĝh; π̂h, ĝh+1)− Ls(gπ̂h,ĝh+1

; π̂h, ĝh+1)

≤
√
LSval

h
(ĝh; π̂h, ĝh+1)− LSval

h
(gπ̂h,ĝh+1

; π̂h, ĝh+1)

≤
√
LDval

h
(ĝh; π̂h, ĝh+1)− LSval

h
(gπ̂h,ĝh+1

; π̂h, ĝh+1) + εL

≤
√
LDval

h
(g?,ĝh+1

; π̂h, ĝh+1)− LSval
h

(gπ̂h,ĝh+1
; π̂h, ĝh+1) + εL

≤
√
LSval

h
(g?,ĝh+1

; π̂h, ĝh+1)− LSval
h

(gπ̂h,ĝh+1
; π̂h, ĝh+1) + 2εL

=
√∑
s∈Sval

h

Ex∼s[(g?,ĝh+1
(x)− gπ̂h,ĝh+1

(x))2] + 2εL

≤
√∑
s∈Sval

h

Ex∼s[2|g?,ĝh+1
(x)− gπ̂h,ĝh+1

(x)|] + 2εL

=
√∑
s∈Sval

h

2Ex∼s[g?,ĝh+1
(x)− gπ̂h,ĝh+1

(x)] + 2εL

=
√∑
s∈Sval

h

2(Vs(π?ĝh+1
; ĝh+1)− Vs(π̂h; ĝh+1)) + 2εL

≤
√

4MεV + 2εL.

Put together, we get the desired result for states s ∈ Sval
h :

|Es[g?(xh)]− Es[ĝh(xh)]| ≤ (H − h)(2εV +
√

4MεV + 2εL + 8τ) + 2εV +
√

4MεV + 2εL.

It remains to deal with states s ∈ Scheck
h \ Sval

h . According to the algorithm, this only happens when the
MMD test suggests that the data set D̃ drawn from s looks very similar to a previous data set D ∈ Dval

h ,
which corresponds to some s′ ∈ Sval

h . So,

|Es[ĝh(xh)]− Es[g?(xh)]|
≤ |Es′ [ĝh(xh)]− Es′ [g?(xh)]|+ |Es′ [ĝh(xh)]− Es[ĝh(xh)]|+ |Es[g?(xh)]− Es′ [g?(xh)]|

≤ (H − h)(2εV +
√

4MεV + 2εL + 8τ) + 2εV +
√

4MεV + 2εL

+ |ÊD[ĝh(xh)]− ÊD̃[ĝh(xh)]|+ |ÊD[g?(xh)]− ED̃[g?(xh)]|+ 4τ

≤ (H − h)(2εV +
√

4MεV + 2εL + 8τ) + 2εV +
√

4MεV + 2εL + 2τ + 2τ + 4τ

= (H + 1− h)(2εV +
√

4MεV + 2εL + 8τ).

Quality of Learned Policies and Meta-Algorithm Analysis. After quantifying the estimation error of
the value function returned by polvalfun, it remains to translate that into a bound on the suboptimality
of the returned policy:
Proposition 112. Assume we are in event E . Then the policy π̂ = π̂1:H returned by polvalfun in
Algorithm 13 satisfies

V π̂ ≥ V ? − pπ̂ul − 2HMτV −H2(2MτV +
√

4M2τV + 2TmaxτL + 8τ)

159

where pπ̂ul = P(∃h ∈ [H] : sh /∈ S learned | a1:H ∼ π̂) is the probability of hitting an unlearned state when
following π̂.

Proof. Proposition 111 states that for every learned state s ∈ S learned
h

V ?(s)−Q?(s, π̂h) ≤ 2MτV + 2(H − h)(2MτV +
√

4M2τV + 2TmaxτL + 8τ).

Using Lemma 98, we can show that π̂ yields expected return that is optimal up to

V ? − V π̂ ≤pπ̂ul + (1− pπ̂ul)
H∑
h=1

(2MτV + 2(H − h)(2MτV +
√

4M2τV + 2TmaxτL + 8τ))

≤pπ̂ul + 2HMτV + 2(2MτV +
√

4M2τV + 2TmaxτL + 8τ)
H∑
h=1

(H − h)

≤pπ̂ul + 2HMτV +H2(2MτV +
√

4M2τV + 2TmaxτL + 8τ).

Lemma 113. Consider running MetaAlg with dfslearn and polvalfun (Algorithm 9 + 13) with
parameters

nexp ≥
8

ε
ln

(
4MH

δ

)
, neval ≥

32

ε2
ln

(
8MH

δ

)
,

τ =
ε

263H2
, τV =

ε2

2834M2H4
, τL =

ε2

2732H4Tmax

Then with probability at least 1− δ, MetaAlg returns a policy that is at least ε-optimal after at most MK
iterations.

Proof. The proof is completely analogous to the proof of Lemma 100 except with using Proposition 112
instead of Proposition 99. We set the parameters τ , τL and τV so that the policy guarantee of Proposition 112
is V π̂ ≥ V ? − pπ̂ul − ε/8. More specifically, we bound the guaranteed gap as

2HMτV +H2(2MτV +
√

4M2τV + 2TmaxτL + 8τ)

≤2MHτV + 2MH2τV + 2MH2√τV +H2
√

2TmaxτL + 8H2τ

≤6MH2√τV +H2
√

2TmaxτL + 8H2τ

and then set τ , τL and τV so that each terms evaluates to ε/24.

Proof of Theorem 106. We now have all parts to complete the proof of Theorem 106.

Proof. For the calculation, we instantiate all the parameters as

nexp =
8

ε
ln

(
4MH

δ

)
, neval =

32

ε2
ln

(
8MH

δ

)
, ntrain = 16K

(
2

τ2
L

+
1

τ2
V

)
ln

(
12HTmax|G|2|Π|

δ

)
.

τ =
ε

263H2
, τV =

ε2

2834M2H4
, τL =

ε2

2732H4Tmax
Tmax = M(K + 1)(1 +Hnexp).

These settings suffice to apply all of the above lemmas for these algorithms and therefore with these settings
the algorithm outputs a policy that is at most ε-suboptimal, except with probability δ. For the sample

160

complexity, since Tmax is an upper bound on the number of datasets we collect (because Tmax is an upper
bound on the number of execution of dfslearn at any level), and we also neval trajectories for each of
the MH iterations of MetaAlg, the total sample complexity is

HTmaxntrain +MHneval = Õ

(
M5H12K4

ε7
log(|G||Π|/δ) log3(1/δ)

)
.

6.9.2 Global Policy Algorithm

See Algorithm 14. As the other algorithms, this method learns states using depth-first search. The state
identity test is similar to that of VALOR at a high level: for any new path p, we derive an upper bound and a
lower bound on V ?(p), and prune the path if the gap is small. Unlike in VALOR where both bounds are
derived using the value function class G, here only the upper bound is from a value function (see Line 11),
and the lower bound comes from Monte-Carlo roll-out with a near-optimal policy, which avoids the need
for on-demand exploration.

More specifically, the global policy algorithm does not store data sets but maintains a global policy, a
set of learned paths, and a set of pruned paths, all of which are updated over time. We always guarantee that
π̂h:H is near-optimal for any learned state at level h, and leverage this property to conduct state-identity
test: if a new path p leads to the same state as a learned path q, then Eq.(6.26) yields a tight upper bound on
V ?(p), which can be achieved by π̂h:H up to some small error and we check by Monte-Carlo roll-outs. If
the test succeeds, the path p is added to the set PRUNED(h). Otherwise, all successor states are learned (or
pruned) in a recursive manner, after which the state itself becomes learned (i.e., p added to LEARNED(h)).
Then, the policy at level h is updated to be near-optimal for the newly learned state in addition to the
previous ones (Line 25). Once we change the global policy, however, all the pruned states need to be
re-checked (Line 26), as their optimal values are only guaranteed to be realized by the previous global
policy and not necessarily by the new policy.

Computational efficiency

The algorithm contains three non-trivial computational components. In Eq.(6.26), a linear program is
solved to determine the optimal value estimate of the current path given the value of one learned state
(LP oracle). In Line 24, computing the value of each learned path can be reduced to multi-class cost-
sensitive classification as in the other two algorithms (CSC oracle). Finally, fitting the global policy in
Line (25) requires the same problem as the policy fitting procedure discussed in Section 6.8.7 (multi data
set classification oracle).

As with the previous algorithm, we assume no error in the oracles (εfeas = εsub = 0) in the following to
simplify the analysis.

Sample complexity

Theorem 114. Consider a Markovian contextual decision process with deterministic dynamics over M
hidden states, as described in Section 6.3. When Assumption 90 and 88 hold, for any ε, δ ∈ (0, 1), the
global policy algorithm (Algorithm 14) returns a policy π such that V ? − V π ≤ ε with probability at least
1− δ, after collecting at most Õ

(
M3H3K

ε2
log (|Π||G|/δ)

)
trajectories.

In the following, we prove this statement but first introduce helpful notation:

161

Algorithm 14: Global Policy Algorithm

1 Function main
2 Global LEARNED(h), h ∈ [H];
3 Global PRUNED(h), h ∈ [H];
4 Global {π̂h}h∈[H];
5 dfslearn (◦);
6 return {π̂h}h∈[H];

7 Function TestLearned (p, h)
8 Collect dataset D = {(xh, r̄)} of size ntest where xh ∼ p, ah:H ∼ π̂h:H , r̄ =

∑H
h′=h rh′ ;

9 for q ∈ LEARNED(h) do
10 Collect dataset D′q = {(xh, r̄)} of size ntest where xh ∼ q, ah:H ∼ π̂h:H , r̄ =

∑H
h′=h rh′ ;

11 Solve

Vopt = max
g∈G

ED[g(xh)] s.t. ED′q [g(xh)− r̄] ≤ φh + 2τval (6.26)

if Vopt ≤ ED′q [r̄] + φh + 4τval and ED[r̄] ≥ ED′q [r̄]− 2τval then
12 return true;

13 return false;

14 Function dfslearn (p)
15 Let h = |p| − 1 the current level;
16 if not called from Line 28 and TestLearned (p, h) then
17 Add p to PRUNED(h);
18 return ;

19 for a ∈ A do
20 dfslearn (p ◦ a) ;

21 Add p to LEARNED(h);
22 for q ∈ LEARNED(h) do
23 Collect dataset Dq = {(xh, ah, r̄)} of size ntrain where xh ∼ q, ah ∼ Unif,

ah+1:H ∼ π̂h+1:H , r̄ =
∑H

h′=h rh′ ;
24 V̂ (q)← maxπ∈Π EDq [K1{ah = π(xh)}r̄] ;

25 Update π̂h to be any policy satisfying

∀q ∈ LEARNED(h) ÊDq [K1{ah = π(xh)}r̄] ≥ V̂ (q)− 2τpol

for q ∈ PRUNED(h) do
26 if TestLearned(q, h) = false then
27 remove q from PRUNED(h);
28 dfslearn (q) ;

29 return ;

162

Definition 115 (Deviation Bounds). We say the deviation bound holds for a data set of ntrain observations
sampled from q in Line 23 during a call to dfslearn if for all π ∈ Πh

|ÊDq [K1{a = π(x)}r̄]− Eq,π̂h+1:H [K1{ah = π(xh)}r̄]| ≤ τpol,

where we use Eq,π̂h+1:H
[·] as shorthand for E[·|sh = s, ah ∼ Uniform(K), ah+1:H ∼ π̂h+1:H] with s being

the state reached by p and π̂h+1:H being the current policy when the data set was collected. We say the
deviation bound holds for a data set of ntest observations sampled in Line 8 during a call to TestLearned
if for all g ∈ Gh:

|ÊD[g(xh)]− Ep[g(xh)]| ≤ τval, |ÊD[r̄]− V π̂h+1:H (p)| ≤ τval.

We say the deviation bound holds for a data set of ntest observations sampled in Line 10 during a call to
TestLearned if for all g ∈ Gh:

|ÊD′q [g(xh)]− Eq[g(xh)]| ≤ τval, |ÊD′q [r̄]− V
π̂h+1:H (q)| ≤ τval.

Learning Values using Depth First Search. We first show that if the current policy is close to optimal
for all learned states, then the policy is also good on all states for which TestLearned returns true.
Lemma 116 (Policy on Tested States). Consider a call of TestLearned at path p and level h and
assume the deviation bounds of Definition 115 hold for all data sets collected during this and all prior calls.
Assume further that π̂h:H satisfies V π̂h:H (q) ≥ V ?(q)− φh for all q ∈ LEARNED(h). Then g? is always
feasible for the program in Equation (6.26) and if TestLearned returns true, then the current policy
π̂h:H is near optimal for p, that is V π̂h:H (p) ≥ V ?(p)− φh − 8τval.

Proof. The optimal value function g? is always feasible since

ÊD′ [g
?(x)− r̄] ≤ V ?(q)− V π̂h:H (q) + 2τval ≤ φh + 2τval.

Here, we first used the deviation bounds and then the assumption about the performance of the current
policy on learned states. Therefore, Vopt ≥ ÊD[g?(x)] ≥ V ?(p)− τval cannot underestimate the optimal
value of p by much. Consider finally the performance of the current policy on p if TestLearned returns
true:

V π̂h:H (p) ≥ ÊD[r̄]− τval ≥ ÊD′ [r̄]− 3τval

≥ Vopt − 3τval − 4τval − φh ≥ V ?(p)− 8τval − φh.

Here, the first inequality follows from the deviation bounds, the second from the second condition of the
if-clause in TestLearned, the third from the first condition of the if-clause and finally the fact that Vopt
is an accurate estimate of the optimal value of p.

Thus, the TestLearned routine can identify paths where the current policy is close to optimal if
this policy’s performance on all learned states is good. Next, we prove that the policy has near-optimal
performance on all the learned states.
Lemma 117 (Global policy fitting). Consider a call of dfslearn (p) at level h and assume the deviation
bounds hold for all data sets collected during this and all prior calls. Then the program in Line 25 is
always feasible and after executing that line, we have ∀q ∈ LEARNED(h),

Qπ̂h+1:H (q, π̂h) ≥ Qπ̂h+1:H (q, ?)− 3τpol,

163

where ? is a shorthand for π?π̂h+1:H
, the policy defined in Assumption 90 w.r.t. the current policy π̂h+1:H .

This implies that if all children nodes q′ of q satisfy V π̂h+1:H (q′) ≥ V ?(q′)−β for some β, then V π̂h:H (q) ≥
V ?(q)− β − 3τpol.

Proof. We prove feasibility by showing that π?π̂h+1:H
is always feasible. For each q ∈ LEARNED(h), let π̂qh

denote the policy that achieves the maximum in computing V̂ (q). Then

ÊDq [K1{ah = π?π̂h+1:H
(xh)}r̄] ≥ Qπ̂h+1:H (q, ?)− τpol ≥ Qπ̂h+1:H (q, π̂qh)− τpol ≥ V̂ (q)− 2τpol.

The first and last inequality are due to the deviation bounds and the second inequality follows from
definition of π?π̂h+1:H

. This proves the feasibility. Now, using this inequality along with V̂ (q) =

maxπ∈Π EDq [K1{ah = π(xh)}r̄], we can relate V̂ (q) and Qπ̂h+1:H (q, ?):

V̂ (q) ≥ ÊDq [K1{ah = π?π̂h+1:H
(xh)}r̄] ≥ Qπ̂h+1:H (q, ?)− τpol.

Finally, since π̂h is feasible in Line 25,

V π̂h:H (q) = Qπ̂h+1:H (q, π̂h) ≥ V̂ (q)− 2τpol ≥ Qπ̂h+1:H (q, ?)− 3τpol.

To prove the implication, consider the case where for a ∈ A, all paths q′ = q ◦ a satisfy V π̂h+1:H (q′) ≥
V ?(q′)− β. Then

V ?(q)− V π̂h:H (q) ≤ V ?(q)−Qπ̂h+1:H (q, ?) + 3τpol ≤ V ?(q)−Qπ̂h+1:H (q, π?) + 3τpol

= Eq′∼q◦π? [V ?(q′)− V π̂h+1:H (q′)] + 3τpol ≤ β + 3τpol,

where we first used the inequality from above and then the fact that π?π̂h+1:H
is optimal given the fixed

policy π̂h+1:H . The equality holds since both V ?(q)−Qπ̂h+1:H (q, π?) both are with respect to ah ∼ π?h
and finally we apply the assumption.

We are now ready to apply both lemmas above recursively to control the performance of the current
policy on all learned and pruned paths:
Lemma 118. Set φh = (H − h + 1)(8τval + 3τpol) and consider a call to dfslearn(p) at level h.
Assume the deviation bounds hold for all data sets collected until this call terminates. Then for all
p ∈ LEARNED(h), the current policy satisfies

V π̂h:H (p) ≥ V ?(p)− φh

at all times except between adding a new path and updating the policy. Further, for all p ∈ PRUNED(h)
the currently policy satisfies

V π̂h:H (p) ≥ V ?(p)− φh − 8τval

whenever dfslearn returns from level h to h− 1.

Proof. We prove the claim inductively. For h = H + 1 the statement is trivially true since there are no
actions left to take and therefore the value of all policies is identical 0 by definition.

Assume now the statement holds for h+ 1. We first study the learned states. To that end, consider a
call to dfslearn(p) at level h that does not terminate in Line 18 and performs a policy update. Since
dfslearn is called recursively for all p ◦ a with a ∈ A before p is added to LEARNED(h) and every path

164

that dfslearn is called with either makes that path learned or pruned, all successor states of p are in
PRUNED(h) or LEARNED(h) when p is added. Since the statement holds for h+ 1, for all successor paths
p′ we have V π̂h+1:H (p′) ≥ V ?(p′)−φh+1−8τval. We can apply Lemma 117 and obtain that after changing
π̂h, it holds that for all q ∈ LEARNED(h) V π̂h:H (q) ≥ V ?(q)−φh+1−8τval−3τpol = V ?(q)−φh. Since
that is the only place where the policy changes or a state is added to LEARNED(h), this proves the first part
of the statement for level h.

For the second part, we can apply Lemma 116 which claims that for all paths q for which TestLearned(q, h)
returns true, it holds that V π̂h:H (q) ≥ V ?(q)− φh − 8τval. It remains to show that whenever dfslearn
returns to a higher level, for all paths q ∈ PRUNED(h), TestLearned(q, h) evaluates to true. This
condition can only be violated when we add a new state to PRUNED(h) or change the policy π̂h:H .

For the later case, we explicitly check the condition in Lines 26-28 after we change the policy before
returning. Therefore dfslearn can only return after Line 28 without further recursive calls to dfslearn
if TestLearned evaluated to true for all q ∈ PRUNED(h). The statement is therefore true if the algorithm
returns after Line 28. Further, a path can only be added to PRUNED(h) after we explicitly checked that
TestLearned evaluates true for it before we return in Line 18. Hence, the second part of the statement
also holds for h which completes the proof.

Lemma 119 (Termination). Assume the deviation bounds hold for all Data sets collected during the first
Tmax = 3M2HK calls of dfslearn and TestLearned. The algorithm terminates during these calls
and at all times for all h ∈ [H] it holds |LEARNED(h)| ≤ M . Moreover, the number of paths that have
ever been added to PRUNED(h) (that is, counting those removed in Line 26) is at most KM .

Proof. Consider a call to TestLearned(p, h) where p leads to the same state as a q ∈ LEARNED(h).
Assume the deviation bounds hold for all data sets collected during this call and before, and we can
show that TestLearned must evaluate to true: Using Lemma 118 we get that on all learned paths
p it holds that V π̂h:H (p) ≥ V ?(p) − φh. Therefore, g? is feasible in (6.26) since ÊD′ [g

?(x) − r̄] ≤
V ?(q)− V π̂h:H (q) + 2τval ≤ φh + 2τval. This allows us to relate Vopt to the optimal value as

Vopt ≥ ÊD[g?(x)] ≥ V ?(p)− τval.

It further holds that

ÊD[r̄] ≥ V π̂h:H (p)− τval = V π̂h:H (q)− τval ≥ ÊD′ [r̄]− 2τval.

and so the second condition in the if-clause holds. For the first condition, let ĝ be the function that achieves
the maximum in the computation of Vopt. Then

Vopt = ÊD[ĝ(xh)] ≤ Es[ĝ(xh)] + τval ≤ ÊD′q [ĝ(xh)] + 2τval

≤ ÊD′q [r̄] + φh + 2τval + 2τval = ÊD′q [r̄] + φh + 4τval.

Then the first condition is also true and TestLearned returns true. Therefore, TestLearned evaluates
to true for all paths that reach the same state as a learned path. As a consequence, if dfslearn is called
with such a path it returns in Line 18. Furthermore, as long as all deviation bounds hold, the number of
learned paths per level is bounded by |LEARNED(h)| ≤M .

We next show that the number of paths that have ever appeared in PRUNED(h) is at most KM . This is
true since there are at most KM recursive calls to dfslearn at level h from level h− 1 and only during
those calls a path can be added to PRUNED(h) that has not been in PRUNED(h) before.

Assume the deviation bounds hold for all data sets collected during the first Tmax calls of dfslearn.
There can be at most MH calls of dfslearn in which a path is learned. Since the recursive call in

165

Line 28 always learns a new state at the next level, the only way to grow PRUNED(h) is via the recursive
call on Line 20, which occurs at most MKH times. Therefore the algorithm terminates after at most
MH +MHK calls to dfslearn. Each of these calls can make at most 1 call to TestLearned unless
it learns a new state and calls TestLearned up to |PRUNED(h)|+ 1 ≤MK + 1 times. Therefore, the
total number of calls to TestLearned is bounded by MH(MK + 1) +MHK. The lemma follows by
noticing that both numbers of calls are bounded by Tmax.

Lemma 120. Let E be the event that the deviation bounds in Definition 115 hold for all data sets collected
during Algorithm 14. Set ntrain and ntest such that

ntrain ≥
16K

τ2
pol

log

(
16TmaxM |Π||G|

δ

)
ntest ≥

1

2τ2
val

log

(
16TmaxM |Π||G|

δ

)
Then P(Ē) ≤ δ.

Proof. Consider a single data set Dq collected in dfslearn(p) at level h where p is learned for q ∈
LEARNED(h). For the random variable K1{π(xh) = ah}r̄, since ah is chosen uniformly at random, it is
not hard to see that both the variance and the range are upper-bounded by 2K (see for example Lemma 14
by Jiang, Krishnamurthy, et al. (2017)). As such, Bernstein’s inequality and a union bound over all π ∈ Πh

gives that with probability 1− δ′,

|ÊDq [K1{a = π(x)}r̄]− Eq,π̂h+1:H [K1{ah = π(xh)}r̄]| ≤

√
4K log(2|Π|/δ′)

ntrain
+

4K

3ntrain
log(2|Π|/δ′).

Consider a single data set D collected in TestLearned(p, h). By Hoeffding’s inequality and a union
bound, with probability 1− δ′, for all g ∈ Gh

|ÊD[g(xh)]− Ep[g(xh)]| ≤

√
log(2|G|/δ′)

2ntest

Analogously, for a data set D′q collected during TestLearned(p, h) with q ∈ LEARNED(q), we have
with probability at least 1− δ′ that

|ÊD′q [g(xh)]− Eq[g(xh)]| ≤

√
log(2|G|/δ′)

2ntest

Further, again by Hoeffding’s inequality and a union bound we get that for a single data set D col-
lected in TestLearned(p, h) and a single data set D′q collected during TestLearned(p, h) with
q ∈ LEARNED(q) with probability at least 1− δ′ it holds

|ÊD′q [r̄]− V
π̂h+1:H (q)| ≤

√
log(4/δ′)

2ntest
and

|ÊD[r̄]− V π̂h+1:H (p)| ≤

√
log(4/δ′)

2ntest
.

Combining all these bounds with a union bound and using δ′ = δ
4MTmax

, we get that the deviation bounds
hold for the first MTmax data sets of the form D′q and Dq and D with probability at least 1 − δ. Using
Lemma 119, this is sufficient to show that P(Ē) ≤ δ.

166

Proof of Theorem 114. We now have all parts to complete the proof of Theorem 83.

Proof. For the calculation, we instantiate all the parameters as

τpol =
ε

6H
, τval =

ε

6H
, φh = (H − h+ 1)(8τval + 3τpol), Tmax = 3M2HK,

ntest =
log(16TmaxM |Π||G|/δ)

2τ2
val

, ntrain =
16K log(16TmaxM |Π||G|/δ)

τ2
pol

.

These settings suffice to apply all of the above lemmas for these algorithms and therefore with these settings
the algorithm outputs a policy that is at most ε-suboptimal, except with probability δ. For the sample
complexity, since Tmax is an upper bound on the number of calls to TestLearned and at most M states
are learned per level h ∈ [H], we collect a total of at most the following number of episodes:

(1 +M)Tmaxntest +M2Hntrain

= Õ

(
TmaxMH2

ε2
log(|Π||G|/δ) +

M2H3K

ε2
log(|Π||G|/δ)

)
= Õ

(
M3KH3

ε2
log(|Π||G|/δ)

)
.

6.10 Oracle-Inefficiency of OLIVE

As explained in Section 6.5 Theorem 84 follows directly from Theorem 85 and Proposition 86 by proof
by contradiction with P 6= NP . In the following two sections, we first prove Proposition 86 and then
Theorem 85.

6.10.1 Proof for Polynomial Time of Oracles

Proof of Proposition 86. We prove the claim for each oracle separately

1. CSC-Oracle: For tabular functions, the objective can be decomposed as

n−1
n∑
i=1

c(i)(π(x(i))) =
∑
x∈X

n−1
n∑
i=1

1{x = x(i)}c(i)(π(x)).

Each of the |X | terms only depend on π(x) but not on any action chosen for different observations.
Hence, since Π = (X → A) , A|X |, the action chosen by π̂ = n−1 argminπ∈Π

∑n
i=1 c

(i)(π(x(i)))
for x ∈ X is argmina∈A

∑n
i=1 1{x = x(i)}c(i)(π(x)). To compute π̂, we first compute for each

x the total cost vector
∑n

i=1 1{x = x(i)}c(i)(π(x)) and then pick the smallest entry as the action
for π̂(x). Per x, this takes O(Kn) operations and therefore, the total runtime for this oracle is
O(nK|X |).

2. LS-Oracle: Similarly to the CSC objective, the least-squares objective can be decomposed as
n∑
i=1

(v(i) − g(x(i)))2 =
∑
x∈X

n∑
i=1

1{x = x(i)}(v(i) − g(x))2

and therefore ĝ = argmin g ∈ G
∑n

i=1(v(i) − g(x(i)))2 can be computed for each observation sepa-

rately. A minimizer per observation x of
∑n

i=1 1{x = x(i)}(v(i)−g(x))2 is ĝ(x) =
∑n
i=1 1{x=x(i)}v(i)∑n
i=1 1{x=x(i)} ,

where we set ĝ(x) arbitrarily if
∑n

i=1 1{x = x(i)} = 0. This can be computed with O(n) operations
and therefore the total runtime of the LS-oracle is O(|X |n).

167

[Solve]
r = 0

s0

C

1/n

[try C1]
r = -1/n

Cj = x1 ∨ xi ∨ xn

[001]
r = 0

1/3

1/3

1/3

[try xm]
r = 0

m

C1

Cj

 x1
1

 x1
0

 xi
1

 xi
0

 xn
1

 xn
0

r = 1 - r1

r = r1

r = 1 - ri

r = ri

r = 1 - rn

r = rn

Figure 6.2: Family of MDPs that are determined up to terminal rewards r1, . . . , rn ∈ [0, 1]. Finding the
optimal value of the most optimistic MDP in this family solves the encoded 3-SAT instance. Solid arrows
represent actions and dashed arrows represent random transitions.

3. LP-Oracle: We parameterize g ∈ G by vectors θ ∈ R|X | where each the value of g for each x ∈ X
is associated with a particular entry θx of θ. Then the LP problem reduces to a standard linear
program in R|X |. Khachiyan (1980) and Grötschel, Lovász, and Schrijver (1981) have shown using
the ellipsoid method, these problems can be solved approximately in polynomial time. Note that the
initial ellipsoid can be set to any ellipsoid containing [0, 1]|X | due to the normalization of rewards.
Further, the volume of the smallest ellipsoid can be upper bounded by a polynomial in εfeas using the
fact that we only require a solution that is feasible up to εfeas and applying the ellipsoid method to
the extended polytope with all constraints relaxed by εfeas.

6.10.2 OLIVE is NP-hard in tabular MDPs

Instead of showing Theorem 85 directly, we first show the following simpler version:
Theorem 121. Let P denote the family of problems of the form (6.2), parameterized by (X ,A, D0,D)
with implicit G = (X → [0, 1]) and Π = (X → A) (i.e., the tabular value-function and policy classes)
and with φ = 0. P is NP-hard.

Some remarks are in order about this statement
1. Our proof actually shows that it is NP-hard to find an ε-approximate solution to these optimization

problems, for polynomially small ε.

2. The two theorems differ in whether the data sets (Di ∈ D) are chosen adversarially (Theorem 121),
or induced naturally from an actual run of OLIVE (Theorem 85). Therefore, Theorem 85 is strictly
stronger.

3. At a high level, these results imply that OLIVE in general must solve NP-hard optimization problems,
presenting a barrier for computational tractability.

4. These results also hold with imperfect expectations and polynomially small φ.

5. We use the (G,Π) representation here but similar results hold with F representation (i.e., approxi-
mating the Q-function; see Theorems 122 and 123).

For intuition we first sketch the proof of Theorem 121. The complete proof follows below.

168

Proof Sketch of Theorem 121. We reduce from 3-SAT. Let ψ be a 3-SAT formula on n variables x1, . . . , xn
with m clauses c1, . . . , cm. We construct a family of MDPs as shown in Figure 6.2 that encodes the 3-
SAT problem for this formula as follows: For each variable xi there are two terminal states x1

i and x0
i

corresponding to the Boolean assignment to the variable. For each variable, the reward in either x1
i or x0

i

is 1 and 0 in the other. The family of MDPs contains all possible combinations of such terminal rewards.
There is also one state per clause cj and one start state s0. From each clause, there are 7 actions, one for
each binary string of length 3 except “000.” These actions all receive zero instantaneous reward. For clause
c` = xi ∨ x̄j ∨ x̄k, the action ”b1b2b3” transitions to states xb1i , x

1−b2
j , or x1−b3

k , each with probability 1/3.
The intuition is that the action describes which literals evaluate to true for this clause. From the start state,
there are n+m+ 1 actions. For each variable xi, there is a [try xi] action that transitions uniformly to
x0
i , x

1
i and receives 0 instantaneous reward. For each clause cj there is a [try cj] action that transitions

deterministically to the state for clause cj , but receives reward −1/n. And finally there is a [solve] action
that transitions to a clause state uniformly at random.

For each xi, we introduce a constraint into Problem (6.2) corresponding to the [try xi] action. These
constraints impose that the optimal ĝ ∈ G satisfies ∀i ∈ [m] : ĝ(x0

i) + ĝ(x1
i) = 1. We also introduce

constraints for the [try cj] actions and from s0. Recall that values must be in [0, 1].
With these constraints, if the 3-SAT formula has a satisfying assignment, then the optimal value from

the start state is 1, and it is not hard to see that there exists function ĝ ∈ G that achieves this optimal value,
while satisfying all constraints with a π̂ ∈ Π. Conversely, if the value of the start date is 1, we claim that
the 3-SAT formula is satisfiable. In more detail, the policy must choose the [solve] action, and the value
function must predict that each clause state has value 1, then the literal constraints enforce that exactly
one of x0

i , x
1
i has value 1 for each i. Thus the optimistic value function encodes a satisfying assignment,

completing the reduction.

Proof of Theorem 121

In this section, we prove that the optimization problem solved by OLIVE is NP-hard. The proofs rely on
the fact that OLIVE only adds a constraint for a single time step h that has high average Bellman error.
However, using an extended construction, one can show similar statements for a version of OLIVE that
adds constraints for all time steps if there is high average Bellman error in any time step.

For notational simplicity, we do not prove Theorem 121 and Theorem 85 directly, but versions of these
statements below with a tabular Q-function representation F instead of the (G,Π) version presented in
the paper. For this formulation, OLIVE picks the policy for the next round as the greedy policy πf̂k of the
Q-function that maximizes

f̂k = argmax
f∈F

ÊD0 [f(x, πf (x))] (6.27)

s.t. ∀ Di ∈ D :

|ÊDi [1{a = πf (x)}(f(x, a)− r − f(x′, πf (x′)))]| ≤ φ.

This proof naturally extends to the (G,Π) representation: note that OLIVE runs in a completely
equivalent way if it takes a set of (g, π) pairs induced by F as inputs, i.e., {(x 7→ f(x, πf (x)), x 7→
πf (x)) : f ∈ F} (Jiang, Krishnamurthy, et al., 2017, see Appendix A.2,). When F is the tabular Q-
function class, it is easy to verify that the induced set is the same as G ×Π where G and Π are the tabular
value-function / policy classes respectively. Therefore, the proof for Theorem 121 just requires a simple
substitution where f(x, πf (x)) is replaced by g(x) and πf (x) is replaced by π.

We first prove the simpler NP-hardness claim.

169

[Solve]
r = 0

s0

C

1/n

[try C1]
r = -1/n

Cj = x1 ∨ xi ∨ xn

[001]
r = 0

1/3

1/3

1/3

[try xm]
r = 0

m

C1

Cj

 x1
1

 x1
0

 xi
1

 xi
0

 xn
1

 xn
0

r = 1 - r1

r = r1

r = 1 - ri

r = ri

r = 1 - rn

r = rn

Figure 6.3: Family of MDPsM for a specific instance of a 3-SAT problem.

Theorem 122 (F-Version of Theorem 121). Let P denote the family of problems of the form (6.27),
parameterized by (X ,A, D0,D) with implicit F = (X ×A → [0, 1]) (i.e., the tabular Q-function class)
and with φ = 0. P is NP-hard.

Proof. For the ease of presentation, we show the statement for F = (X × A → [−1, 1]) and all values
scaled to be in [−1, 1]. By linearly transforming all rewards accordingly, one obtains a proof for the
statement with all values in [0, 1].

We demonstrate a reduction from 3-SAT. Recall that an instance of 3-SAT is a Boolean formula ψ on n
variables can be described by a list of clauses C1, . . . Cm each containing at 3 literals (a variable xi or its
negation x̄i), e.g. C1 = (x̄2 ∨ x3 ∨ x̄5). As notation let o1

j,i for i ∈ {1, 2, 3} denote the ith literal in the jth

clause and o0
j,i its negation (e.g. o1

1,3 = x̄5 and o0
1,3 = x5). Given a 3-SAT instance with m clauses C1:m

and n variables x1:n, we define a class of finite episodic MDPsM. This class contains (among others) 2n

MDPs that correspond each to an assignment of Boolean values to x1:n.
The proof proceeds as follows: First we describe the construction of this class of MDPs. Then we will

demonstrate a set of constraints for the OLIVE program. Importantly, these constraints do not distinguish
between the 2n MDPs in the classM corresponding to the binary assignments to the variables x1:n, so
the optimistic planning step in OLIVE needs to reason about all possible assignments. Finally, we show
that with the function class F = (X × A) → [−1, 1], the solution to the optimization problem (6.27)
determines whether ψ is satisfiable or not.

For simplicity, the MDPs inM have different actions available in different states and rewards are
in [−1, 1] instead of the usual [0, 1]. We can however find equivalent MDPs that satisfy the formal
requirements of OLIVE.

MDP structure. Let ψ be the 3-SAT instance with variables x1:n and clauses C1:m. The state space for
MDPs inM consists of m+ 2n+ 1 states, two for each variable, one for each clause, and one additional
starting state. For each variable xi, there are two states x0

i , x
1
i corresponding to the variable and its negation.

Each clause Cj has a state Cj , and the starting state is denoted s0.
The transitions are as follows: The states x0

i , x
1
i corresponding to the literals are terminal, with just a

single action. The classM differs only in how it assigns rewards to these terminal states. Specifically let

170

y ∈ {0, 1}n be a binary vector, then there is an MDP My ∈M where for all i ∈ [n] the reward for literal
xyii = 1 and x1−yi

i = 0. Specifically, all MDPs inM have values that satisfy V (x1
i) + V (x0

i) = 1 for all
i ∈ [n].

Each clause state Cj has 7 actions, indexed by b ∈ {0, 1}3 \ {“000”}, each corresponding to an
assignment of the variables that would satisfy the clause. Taking an action b transitions the agent to three
literal states with equal probability 1/3 and the agent receives no immediate reward. Which literals is
determined by the clause. Assume the clause consists of Ct = (x̄i ∨ xj ∨ x̄k). Then

P(x1
i |ct, b) =

1

3
1{b1 = 0}, P(x0

i |ct, b) =
1

3
1{b1 = 1}

P(x1
j |ct, b) =

1

3
1{b2 = 1}, P(x0

j |ct, b) =
1

3
1{b2 = 0}

P(x1
k|ct, b) =

1

3
1{b3 = 0}, P(x0

k|ct, b) =
1

3
1{b3 = 1}.

For example, taking action 011 in clause state C1 = (x̄2 ∨ x3 ∨ x̄5) transitions with equal probability to x1
2

(since the first component of the action is 0), x1
3 (second component is 1) and x0

5 (last component is 1).
The initial state has n+m+ 1 actions. The first set of actions are labeled [try xi], for i ∈ [n]. They

receive zero instantaneous reward and transition uniform to x1
i , x

0
i . The second set of actions are labeled

[try Cj] (for j ∈ [m]), which receives 1/m instantaneous reward and transitions deterministically to
cj . Finally there is a [solve] action that transitions uniformly to the {Cj}mj=1 states and receives zero
instantaneous reward.

OLIVE Constraints. We introduce constraints at the start state s0, all of the constraint states Cj , and the
distributions induced when taking the [try xi] action. Since the literal states x1

i , x
0
i have no actions,

we omit the second argument from the Q-functions f . We list these constraints in the following writing
out the constraints for each optimal action that are implied by the indicator of the original constraints in
Problem (6.27): From initial state:

f(s0,[try cj]) = max
b
f(c1, b)− 1/m if πf (s0) =[try cj] (6.28)

f(s0,[solve]) =
1

m

m∑
i=1

max
b
f(Cj , b) if πf (s0) =[solve]

f(s0,[try xi]) =
f(x0

i) + f(x1
i)

2
if πf (s0) =[try xi]

From clause j after [try Cj]:

f(Cj , b) =
f(o

b(1)
j,1) + f(o

b(2)
j,2) + f(o

b(3)
j,3)

3
if πf (Cj) =b

From variable i after [try xi]:

f(x1
i) + f(x0

i)

2
=

1

2
(6.29)

Note that all appearances of f on the LHS could be replaced by f(·, πf (·)). There are other types of
constraints involving literal states that could be imposed, specifically constraints of the form

m∑
i=1

w2i−1f(x1
i) + w2if(x0

i) = V (6.30)

171

for some V and w ∈ ∆([2m]), which appears by first applying [solve] or [try Cj] and then various
actions at the clause states to arrive at a distribution over the literal states. It is important here that constraints
of this type are not included in the optimization problem, since it distinguishes elements of the familyM.

The Optimal Value. Consider the OLIVE optimization problem (6.27) on the family of MDPsM with
constraints described above. Note that all MDPs in the family generate identical constraints, so formulating
the optimization problem does not require determining whether ψ has a satisfying assignment or not.

Now, if ψ has a satisfying assignment, say y? ∈ {0, 1}n, then the MDP My? ∈M has optimal value 1.
Moreover since the function class F is entirely unconstrained, this function class can achieve this value,
which is the solution to Problem (6.27). To see why My? has optimal value 1, consider the policy that
chooses the [solve] action and from each clause chooses the 3-bit string that transitions to the literal
states that have value 1. Importantly, since ψ has a satisfying assignment, this must be true for one of the 7
actions.

Conversely, suppose that Problem (6.27), with all the constraints described above, has value 1. We
argue that this implies ψ has a satisfying assignment. Let f̂, π̂ correspond to the Q-value and policy that
achieve the optimal value in the program. First, due to the constraints on the [try xi] distributions
and the immediate negative rewards for taking [try Cj] actions, we must have π̂(s0) = [solve]

and f̂(s0,[solve]) = 1. The constraints on f̂ now imply that for each clause Cj there exists a action
bj ∈ {0, 1}3 \ {000} such that f̂(Cj , bj) = 1. Proceeding one level further, if bj satisfies f̂(Cj , bj) = 1

then we must have that f̂(o
bj(k)
j,k) = 1 for all k ∈ {1, 2, 3}. And due to the boundedness conditions on f̂

along with the constraint that f̂(x0
i) + f̂(x0

i) = 1, one of these values must be 1, while the other is zero.
Therefore, for any variable that appears in some clause the corresponding literal states must have predicted
value that is binary. Since the constraints corresponding to the clauses are all satisfied (or else we could not
have value 1 at s0), the predicted values at the literal states encodes a satisfying assignment to ψ.

Proof of Theorem 85

After showing that Problem (6.27) is NP-hard when constraints are chosen adversarially, we extend this
result to the class of problems encountered by running OLIVE. Again, we prove a version of the statement
with F representation but the proof for Theorem 85 is completely analogous.
Theorem 123 (F Version of Theorem 85). Let POLIVE denote the family of problems of the form (6.27),
parameterized by (X ,A,Env, t), which describes the optimization problem induced by running OLIVE in
the MDP environment Env (with states X , actions A and perfect evaluation of expectations) for t iterations
with F = (X ×A → [0, 1]) and with φ = 0. POLIVE is NP-hard.

Proof. The proof uses the same family of MDPsM and set of constraints as the proof of Theorem 122
above. As mentioned there, it is crucial that constraints in Equations (6.28)-(6.29) are added for all clauses
and literals but none of the possible constraints of the form in Equation (6.30) that arise from distributions
over literal states after taking actions [try Cj] or [Solve]. To prove that OLIVE can encounter
NP-hard problems, it therefore remains to show that running OLIVE on any MDP inM can generate the
exact set of constraints in Equations (6.28)-(6.29).

The specification of OLIVE by Jiang, Krishnamurthy, et al. (2017) only prescribes that a constraint for
one time step h among all that have sufficiently large average Bellman error is added. It however leaves
open how exactly h is chosen and which f ∈ F is chosen among all that maximize Problem (6.27). Since
this component of the algorithm is under-specified, we choose h and f ∈ F in an adversarial manner within
the specification, which amounts to adversarial tie breaking in the optimization.

172

We now provide a run of OLIVE on an arbitrary MDP inM that generates exactly the set of constraints
in Equations (6.28)-(6.29):

• For the first t ∈ [m] iterations, OLIVE picks any Q-function ft ∈ F with ft(s0, b) = 1{b =
[try Ct]} and ft(Ct, b) = 1 and ft(x0

i , πft(x
0
i)) = ft(x

1
i , πft(x

1
i)) = 0 for all actions b and

i ∈ [n] and chooses to add constraints for h = 2. Since the context distributions is a different Ct for
every iteration t, this is a valid choice and generates constraints

f(Ct, b) =
f(o

b(1)
t,1) + f(o

b(2)
t,2) + f(o

b(3)
t,3)

3
if πf (Ct) =b

for all b.
• For the next n iterations t = m+ 1,m+ 2, . . .m+ n, OLIVE picks any Q-function ft ∈ F with
ft(s0, b) = 1{b = [try xt−m]} and ft(x0

t−m, πft(x
0
t−m)) = ft(x

1
t−m, πft(x

1
t−m)) = 1 for all

b. The only positive average Bellman error occurs in the mixture over literal states at h = 2 and
therefore constraints

f(x1
t−m, πf (x1

t−m)) + f(x0
t−m, πf (x0

t−m))

2
=

1

2

are added.
• Finally, in iteration t = m+ n+ 1, OLIVE picks any ft ∈ F with ft(s0, b) = 1{b = [try x1]}

and ft(x
0
1, πft(x

0
1)) = ft(x

1
1, πft(x

1
1)) = 1/2 for all actions b. Now there is positive average

Bellman error in the initial state s0 and with ht = 1 the following constraints are added

f(s0,[try cj]) = max
b
f(C1, b)− 1/m if πf (s0) =[try cj]

f(s0,[solve]) =
1

m

m∑
i=1

max
b
f(Cj , b) if πf (s0) =[solve]

f(s0,[try xi]) =
f(x0

i) + f(x1
i)

2
if πf (s0) =[try xi]

for all i ∈ [n] and j ∈ [m].

Since at iteration t = m+n+ 2, the set of constraints matches exactly the one in the proof of Theorem 122,
OLIVE solves exactly the problem instance described there which solves the given 3-SAT instance.

173

Chapter 7

Conclusion

7.1 Future Research Possibilities

We now briefly outline a few immediate directions for future research opportunities based on this disserta-
tion.

Minimax-optimal RL in tabular non-episodic MDPs: All algorithms in this dissertation have been
developed and analyzed for the episodic setting with a fixed horizon. For other important non-episodic
settings such as discounted infinite horizon MDPs, it is still unknown how to explore in a near-optimal
way. To the best of our knowledge, the best known PAC bounds for discounted RL are those by Szita and
Szepesvári (2010) and Lattimore and Hutter (2012) which are suboptimal in the dominant ε−2 term, either
in their horizon or state space dependency. It would be interesting to investigate to what extend the insights
developed in this dissertation can be transferred to this setting to achieve minimax-optimal regret and PAC
bounds.

Problem-dependent guarantees: While the sample-complexity bounds derived in this dissertation are
close to the best achievable ones for the finite episodic MDPs, they are still problem-independent bounds.
This makes them easily computable without any unknown property of the specific problem instance at
hand. A logical next step is to move on and provide similarly strong problem-dependent bounds that can
reveal what kind of MDP is more easy and or hard to solve for our algorithms. There has been some
very recent initial work on problem-dependent regret bounds for this setting (Zanette and Brunskill, 2018;
Zanette and Brunskill, 2019; Simchowitz and Jamieson, 2019) (building in parts on the results of this
dissertation). These bounds for example depend on the value gaps between the actions in the states. While
highly encouraging, it is not clear yet whether these can be tightened and whether problem-dependent
(Uniform-)PAC bounds can be achieved.

Policy certificates in model-free approaches and function approximation: Our ORLC and ORLC-SI
algorithms, the only known methods so far that provide certificates during learning, are both model-based.
That means they explicitly maintain a model of the environment (transition probabilities and average
instantaneous rewards). This is very sample-efficient but model-free approaches that e.g. only maintain
value estimates are typically computationally cheaper and are easier to extend to the function approximation
setting. Jin et al. (2018) have shown strong regret bounds for an optimistic version of model-free Q-learning
and recently, Efroni et al. (2019) reduced the computational complexity of model-based OFU methods while
still maintaining strong sample-efficiency guarantees. However, none of them provides certificates. It would

174

be highly interesting to investigate how one can provide certificates in a computationally and statistically
feasible manner for model-free methods. This is non-trivial because while the optimal Q-function stays
fixed throughout all episodes and can be estimated in a optimistic and model-free fashion, the Q-function of
the current policy (which we want to lower bound in certificates) can change drastically between episodes.
It is therefore an interesting challenge to devise an approach that can quickly adjust to this moving target
without access to an explicit empirical model.

Developing such a model-free approach in the tabular setting can also be a good pathway into extending
policy certificates to the function-approximation setting. One might not be able to achieve certificates with
guaranteed accuracy or guaranteed coverage but they could still provide a very useful tool to make deep
reinforcement learning approaches more accountable.

Certificates for other properties of the return distribution: This dissertation proposed policy certifi-
cates that tell the user what expected return the current policy will achieve at least and how far from optimal
it can be. This is a natural starting point and highly relevant for a wide range of applications. However, there
are also high-stakes applications where one might be interested in different properties of the sum of reward
distribution, especially those characterizing lower-tails to quantify risk. For example, in a health-care
application one might care about how good the outcome is at least in the worst 10% of cases for a particular
patient. It would therefore be highly desirable to have policy certificates for such risk-aware properties.
However, there is very little existing work on how to strategically explore to optimize such properties in
MDPs. In Keramati et al. (2019) we have initial results that provide a principled way for optimism (and
pessimism) with respect to a common risk-aware metric called conditional value at risk (CVaR). This is a
necessary foundation for policy certificates for CVaR in the future.

No-regret learning in problems with rich observations: The VALOR algorithm in this dissertation as
well as the OLIVE (Jiang, Krishnamurthy, et al., 2017) algorithm and other methods for problems with rich
observations and low Bellman rank all enjoy PAC bounds. By the results in this dissertation, this can be
translated to a T 2/3 high-probability regret bound but to the best of our knowledge, there is no algorithm
that achieves

√
T regret in problems with low Bellman rank. It is an exciting direction to develop such a

method both from a theoretical perspective but also from a practical lens. By combining ideas from OLIVE
with those from regret minimization in contextual bandits (Agarwal, Hsu, et al., 2014) one can hope to
achieve an algorithm with

√
T regret and which has a more practical nature than the existing approaches

for this setting.

7.2 Summary of Contributions

We have motivated the work in this dissertation by making reinforcement learning more sample-efficient
and accountable which are key requirements of applying RL in high-stakes applications. Tabular Markov
decision processes have long been a staple of theoretical reinforcement learning research as they allow
us to focus on the key challenges of RL, partial feedback and long-term consequences, without needing
to deal with generalization. There has been a long line of work on developing algorithms with better
sample-complexity bounds for tabular MDPs. However, most earlier work focuses on infinite-horizon
problems while many high-stakes applications such as treatment optimization or automated tutoring systems
have a rather episodic nature (one patient, customer, student corresponds to one episode). For this reason,
this dissertation focused on episodic tasks, starting with tabular environments.

In Chapter 3, we began by establishing the first lower bound on the sample complexity of reinforcement
learning in tabular episodic MDPs to set a reference point for how sample-efficient we can hope to be. We

175

have further made a initial attempt at matching this goal with a theoretical algorithm called UCFH that
achieves a PAC bound with the optimal scaling with the episode, improving upon any prior work when
applied to this setting. The key to this improved sample-complexity is the use of empirical Bernstein
concentration bounds to accurately quantify the variance of state transitions. However, this algorithm is
far from a practical method as it explicitly depends on loose constants and still has a suboptimal sample
complexity in the number of states.

In Chapter 4, we then focused on the state space dependency. We proposed a new algorithm called
UBEV and proved that its sample-complexity scales optimally with the number of unique states up to lower-
order terms and logarithmic factors. This was made possible because we directly bounded the uncertainty
of average optimal next state value instead of the transition probabilities. Unlike UCFH this algorithm
turns out to have rather simple structure and essentially uses planning in the empirical model with reward
bonuses. The algorithm itself further does not depend on loose constants and leverages time-uniform
concentration bounds that achieve the optimal scaling with the number of observations in the reward
bonuses. These concentration bounds were the key to be able to prove a new type of sample-complexity
bound called Uniform-PAC. We introduced Uniform-PAC for a unified analysis of regret and PAC bounds,
i.e., a Uniform-PAC bound implies both, a (mistake-style) PAC and a regret bound. This was necessary
because we proved that – against a common belief – converting regret and PAC bounds for the same
algorithm only yields suboptimal guarantees, making a direct comparison difficult.

While UBEV is a much more practical algorithm compared to UCFH, it scales worse with the horizon.
Azar, Osband, and Munos (2017) have used a combination of the techniques in Chapters 3–4 in their
UCBVI algorithm whose regret bound scales better in the horizon than UBEV’s and is minimax-optimal
but only if the problem horizon is small. In Chapter 5 we addressed this limitation and presented an
algorithm called ORLC that achieves minimax-optimal PAC and regret bounds up to lower-order terms
even if the horizon is large. To the best of our knowledge, this algorithm has better problem-independent
sample-efficiency guarantees than any other algorithm. The overall structure of ORLC is similar to UBEV
but it also computes lower confidence bounds on the current value function in addition to the usual upper
confidence bounds on the optimal value function. The lower and upper bounds tighten each other and are
the key to minimax-optimal reinforcement learning. In a sense, ORLC closes for the episodic setting a long
chapter of works that propose improved tabular RL algorithms with tighter problem-independent regret or
PAC guarantees.

However, improving sample-efficiency is not the only benefit to computing both upper and lower
confidence bounds. They can also be used to output what we call policy certificates before each episode.
These certificates tell the user how suboptimal the algorithm can perform in the next episode an allow
to intervene if necessary. This makes RL algorithms accountable and we introduced a new learning
framework called IPOC to ensure not only the sample-efficiency of policy learning but also accuracy of
these certificates. As demonstrated by the guarantees proved for ORLC, IPOC bounds imply Uniform-PAC,
PAC and regret bounds and are a first step toward theory for accountable reinforcement learning.

Finally, in Chapter 6, we went beyond the tabular setting and considered problems with rich observations
such as images or text where generalization is key to any sample-efficient learning. Here, we presented a
new provably sample-efficient algorithm called VALOR for environments with deterministic hidden state
dynamics and stochastic rich observations. It operates in an oracle model of computation – accessing policy
and value function classes exclusively through standard optimization primitives – and therefore represents
computationally efficient alternatives to prior algorithms that require enumeration. Further, with stochastic
hidden state dynamics, we proved that the only known sample-efficient algorithm at the time, OLIVE,
cannot be implemented in the oracle model. This highlights the computational challenges of provably
sample-efficient reinforcement learning in rich observation settings. To conclude while much work remains

176

this dissertation provides several concrete contributions towards efficient and accountable reinforcement
learning.

177

Bibliography

[1] Yasin Abbasi-Yadkori and Gergely Neu. “Online learning in MDPs with side information”. In:
arXiv preprint arXiv:1406.6812 (2014).

[2] Alekh Agarwal, Sarah Bird, Markus Cozowicz, Luong Hoang, John Langford, Stephen Lee, Jiaji Li,
Dan Melamed, Gal Oshri, Oswaldo Ribas, et al. “Making contextual decisions with low technical
debt”. In: arXiv preprint arXiv:1606.03966 (2016).

[3] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. “Taming
the monster: A fast and simple algorithm for contextual bandits”. In: International Conference on
Machine Learning. 2014, pp. 1638–1646.

[4] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. “Reducing multiclass to binary: A unifying
approach for margin classifiers”. In: Journal of machine learning research (2000).

[5] Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations. Cambridge
University Press, 2009.

[6] András Antos, Csaba Szepesvári, and Rémi Munos. “Learning near-optimal policies with Bellman-
residual minimization based fitted policy iteration and a single sample path”. In: Machine Learning
(2008).

[7] Sanjeev Arora, Elad Hazan, and Satyen Kale. “The Multiplicative Weights Update Method: a
Meta-Algorithm and Applications.” In: Theory of Computing (2012).

[8] Richard C Atkinson. “Optimizing the learning of a second-language vocabulary.” In: Journal of
experimental psychology 96.1 (1972), p. 124.

[9] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. “Exploration–exploitation tradeoff using
variance estimates in multi-armed bandits”. In: Theoretical Computer Science 410.19 (2009),
pp. 1876–1902.

[10] Peter Auer. “Using upper confidence bounds for online learning”. In: Foundations of Computer
Science, 2000. Proceedings. 41st Annual Symposium on. IEEE. 2000, pp. 270–279.

[11] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the multiarmed bandit
problem”. In: Machine learning 47.2-3 (2002), pp. 235–256.

[12] Peter Auer, Thomas Jaksch, and Ronald Ortner. “Near-optimal regret bounds for reinforcement
learning”. In: Advances in Neural Information Processing Systems. 2009.

[13] Peter Auer and Ronald Ortner. “Online regret bounds for a new reinforcement learning algorithm”.
In: (2005).

[14] Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. “On the sample complexity
of reinforcement learning with a generative model”. In: Proceedings of the 29th International
Coference on International Conference on Machine Learning. Omnipress. 2012, pp. 1707–1714.

[15] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. “Minimax Regret Bounds for Rein-
forcement Learning”. In: International Conference on Machine Learning. 2017, pp. 263–272.

178

[16] Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. “Reinforcement
Learning in Rich-Observation MDPs using Spectral Methods”. In: arXiv:1611.03907 (2016).

[17] Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. “Reinforcement
learning of POMDPs using spectral methods”. In: Conference on Learning Theory. 2016.

[18] J Andrew Bagnell, Sham M Kakade, Jeff G Schneider, and Andrew Y Ng. “Policy search by
dynamic programming”. In: Advances in neural information processing systems. 2004, pp. 831–
838.

[19] Akshay Balsubramani and Aaditya Ramdas. “Sequential nonparametric testing with the law of the
iterated logarithm”. In: Proceedings of the Thirty-Second Conference on Uncertainty in Artificial
Intelligence. AUAI Press. 2016, pp. 42–51.

[20] Peter L Bartlett and Ambuj Tewari. “REGAL: A regularization based algorithm for reinforcement
learning in weakly communicating MDPs”. In: Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence. AUAI Press. 2009, pp. 35–42.

[21] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
“Unifying count-based exploration and intrinsic motivation”. In: Advances in Neural Information
Processing Systems. 2016, pp. 1471–1479.

[22] Alina Beygelzimer, John Langford, and Pradeep Ravikumar. “Error-correcting tournaments”. In:
International Conference on Algorithmic Learning Theory. Springer. 2009, pp. 247–262.

[23] Alberto Bietti, Alekh Agarwal, and John Langford. “A contextual bandit bake-off”. In: arXiv
preprint arXiv:1802.04064 (2018).

[24] Jonathan Binas, Leonie Luginbuehl, and Yoshua Bengio. “Reinforcement Learning for Sustainable
Agriculture”. In: ICML 2019 Workshop Climate Change: How Can AI Help? 2019.

[25] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymp-
totic theory of independence. Oxford university press, 2013.

[26] Ronen I. Brafman and Moshe Tennenholtz. “R-max – a general polynomial time algorithm for
near-optimal reinforcement learning”. In: Journal of Machine Learning Research (2003).

[27] Ronen I Brafman and Moshe Tennenholtz. “R-max-a general polynomial time algorithm for near-
optimal reinforcement learning”. In: Journal of Machine Learning Research 3.Oct (2002), pp. 213–
231.

[28] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. “Regret analysis of stochastic and nonstochastic
multi-armed bandit problems”. In: Foundations and Trends R© in Machine Learning 5.1 (2012),
pp. 1–122.

[29] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
“Large-scale study of curiosity-driven learning”. In: arXiv preprint arXiv:1808.04355 (2018).

[30] Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daume III, and John Langford.
“Learning to search better than your teacher”. In: International Conference on Machine Learning.
2015.

[31] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H Chi. “Top-k
off-policy correction for a REINFORCE recommender system”. In: Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining. ACM. 2019, pp. 456–464.

[32] Fan Chung and Linyuan Lu. “Concentration inequalities and martingale inequalities: a survey”. In:
Internet Mathematics 3.1 (2006), pp. 79–127.

[33] Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, and Le Song.
“SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation”. In: Inter-
national Conference on Machine Learning. 2018, pp. 1133–1142.

179

[34] Christoph Dann and Emma Brunskill. “Sample complexity of episodic fixed-horizon reinforcement
learning”. In: Advances in Neural Information Processing Systems. 2015, pp. 2818–2826.

[35] Christoph Dann, Katja Hofmann, and Sebastian Nowozin. “Memory Lens: How Much Memory
Does an Agent Use?” In: arXiv preprint arXiv:1611.06928 (2016).

[36] Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert
E Schapire. “On Oracle-Efficient PAC Reinforcement Learning with Rich Observations”. In:
Advances in neural information processing systems (2018).

[37] Christoph Dann, Tor Lattimore, and Emma Brunskill. “Unifying PAC and regret: Uniform PAC
bounds for episodic reinforcement learning”. In: Advances in Neural Information Processing
Systems. 2017, pp. 5713–5723.

[38] Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. “Policy Certificates: Towards Account-
able Reinforcement Learning”. In: International Conference on Machine Learning (2019).

[39] Markus R Dann and Christoph Dann. “Automated matching of pipeline corrosion features from
in-line inspection data”. In: Reliability Engineering & System Safety 162 (2017), pp. 40–50.

[40] Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford.
“Provably efficient RL with Rich Observations via Latent State Decoding”. In: International
Conference on Machine Learning. 2019, pp. 1665–1674.

[41] Rick Durrett. Probability: theory and examples. Cambridge university press, 2010.
[42] Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, and Shie Mannor. “Tight Regret

Bounds for Model-Based Reinforcement Learning with Greedy Policies”. In: arXiv preprint
arXiv:1905.11527 (2019).

[43] Claude-Nicolas Fiechter. “Efficient reinforcement learning”. In: Proceedings of the seventh annual
conference on Computational learning theory. ACM. 1994, pp. 88–97.

[44] Claude-Nicolas Fiechter. “Expected mistake bound model for on-line reinforcement learning”. In:
ICML. Vol. 97. 1997, pp. 116–124.

[45] Vincent François-Lavet, Raphael Fonteneau, and Damien Ernst. “How to discount deep reinforce-
ment learning: Towards new dynamic strategies”. In: arXiv preprint arXiv:1512.02011 (2015).

[46] Aurélien Garivier and Olivier Cappé. “The KL-UCB algorithm for bounded stochastic bandits and
beyond”. In: Proceedings of the 24th annual conference on learning theory. 2011, pp. 359–376.

[47] Aurélien Garivier, Tor Lattimore, and Emilie Kaufmann. “On explore-then-commit strategies”. In:
Advances in Neural Information Processing Systems. 2016, pp. 784–792.

[48] Mohammad Ghavamzadeh, Marek Petrik, and Yinlam Chow. “Safe policy improvement by min-
imizing robust baseline regret”. In: Advances in Neural Information Processing Systems. 2016,
pp. 2298–2306.

[49] Karan Goel, Christoph Dann, and Emma Brunskill. “Sample efficient policy search for optimal stop-
ping domains”. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence.
AAAI Press. 2017, pp. 1711–1717.

[50] Robert Grande, Thomas Walsh, and Jonathan How. “Sample efficient reinforcement learning with
gaussian processes”. In: International Conference on Machine Learning. 2014, pp. 1332–1340.

[51] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander J.
Smola. “A kernel two-sample test”. In: Journal of Machine Learning Research (2012).

[52] Martin Grötschel, László Lovász, and Alexander Schrijver. “The ellipsoid method and its conse-
quences in combinatorial optimization”. In: Combinatorica 1.2 (1981), pp. 169–197.

[53] Zhaohan Daniel Guo, Shayan Doroudi, and Emma Brunskill. “A pac rl algorithm for episodic
pomdps”. In: Artificial Intelligence and Statistics. 2016, pp. 510–518.

180

[54] Assaf Hallak, Dotan Di Castro, and Shie Mannor. “Contextual Markov Decision Processes”. In:
arXiv:1502.02259 (2015).

[55] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
“Deep reinforcement learning that matters”. In: arXiv preprint arXiv:1709.06560 (2017).

[56] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. “Vime:
Variational information maximizing exploration”. In: Advances in Neural Information Processing
Systems. 2016, pp. 1109–1117.

[57] Steven R. Howard, Aaditya Ramdas, Jon Mc Auliffe, and Jasjeet Sekhon. “Uniform, nonparametric,
non-asymptotic confidence sequences”. In: arXiv preprint arXiv:1810.08240 (2018).

[58] Daniel Joseph Hsu. “Algorithms for active learning”. PhD thesis. UC San Diego, 2010.
[59] Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Morgenstern, and Aaron Roth. “Fair

learning in Markovian environments”. In: arXiv preprint arXiv:1611.03071 (2016).
[60] Thomas Jaksch, Ronald Ortner, and Peter Auer. “Near-optimal regret bounds for reinforcement

learning”. In: Journal of Machine Learning Research 11.Apr (2010), pp. 1563–1600.
[61] Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. “lil’ucb: An optimal

exploration algorithm for multi-armed bandits”. In: Conference on Learning Theory. 2014, pp. 423–
439.

[62] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. “Contex-
tual Decision Processes with low Bellman rank are PAC-Learnable”. In: International Conference
on Machine Learning. 2017, pp. 1704–1713.

[63] Nan Jiang and Lihong Li. “Doubly robust off-policy value evaluation for reinforcement learning”.
In: Proceedings of the 33rd International Conference on International Conference on Machine
Learning-Volume 48. JMLR. org. 2016, pp. 652–661.

[64] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. “Is Q-learning Provably
Efficient?” In: arXiv preprint arXiv:1807.03765 (2018).

[65] Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. “The Malmo Platform for
artificial intelligence experimentation”. In: International Joint Conference on Artificial Intelligence.
2016.

[66] Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth. “Fairness in learning:
Classic and contextual bandits”. In: Advances in Neural Information Processing Systems. 2016,
pp. 325–333.

[67] Sham Kakade. “On the sample complexity of reinforcement learning”. PhD thesis. University
College London, 2003.

[68] Sham M. Kakade and John Langford. “Approximately optimal approximate reinforcement learning”.
In: International Conference on Machine Learning. 2002.

[69] Sham Kakade, Michael J Kearns, and John Langford. “Exploration in metric state spaces”. In:
Proceedings of the 20th International Conference on Machine Learning (ICML-03). 2003, pp. 306–
312.

[70] Sampath Kannan, Michael Kearns, Jamie Morgenstern, Mallesh Pai, Aaron Roth, Rakesh Vohra,
and Zhiwei Steven Wu. “Fairness incentives for myopic agents”. In: Proceedings of the 2017 ACM
Conference on Economics and Computation. ACM. 2017, pp. 369–386.

[71] Michael Kearns and Daphne Koller. “Efficient reinforcement learning in factored MDPs”. In:
International Joint Conference on Artificial Intelligence. 1999.

[72] Michael Kearns and Satinder Singh. “Near-optimal reinforcement learning in polynomial time”. In:
Machine Learning (2002).

181

[73] Ramtin Keramati, Alex Tamkin, Christoph Dann, and Emma Brunskill. “Being Optimistic to Be
Conservative: Quickly Learning a CVaR Policy”. In: in preparation (2019).

[74] Leonid G Khachiyan. “Polynomial algorithms in linear programming”. In: USSR Computational
Mathematics and Mathematical Physics (1980).

[75] J Zico Kolter and Andrew Y Ng. “Near-Bayesian exploration in polynomial time”. In: Proceedings
of the 26th Annual International Conference on Machine Learning. ACM. 2009, pp. 513–520.

[76] Akshay Krishnamurthy, Alekh Agarwal, and John Langford. “PAC Reinforcement learning with
rich observations”. In: Advances in Neural Information Processing Systems. 2016.

[77] John Langford and Alina Beygelzimer. “Sensitive error correcting output codes”. In: International
Conference on Computational Learning Theory. Springer. 2005, pp. 158–172.

[78] John Langford and Tong Zhang. “The epoch-greedy algorithm for multi-armed bandits with side
information”. In: Advances in Neural Information Processing Systems. 2008.

[79] Tor Lattimore and Csaba Czepesvari. Bandit Algorithms. Cambridge University Press, 2018.
[80] Tor Lattimore and Marcus Hutter. “PAC bounds for discounted MDPs”. In: International Confer-

ence on Algorithmic Learning Theory. Springer. 2012, pp. 320–334.
[81] Huitian Lei, Inbal Nahum-Shani, K Lynch, David Oslin, and Susan A Murphy. “A” SMART”

design for building individualized treatment sequences”. In: Annual review of clinical psychology 8
(2012), pp. 21–48.

[82] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. “A contextual-bandit approach to
personalized news article recommendation”. In: Proceedings of the 19th international conference
on World wide web. ACM. 2010, pp. 661–670.

[83] Lihong Li, Michael L Littman, and Thomas J Walsh. “Knows what it knows: a framework for
self-aware learning”. In: Proceedings of the 25th international conference on Machine learning.
ACM. 2008, pp. 568–575.

[84] Lihong Li, Thomas J. Walsh, and Michael L. Littman. “Towards a unified theory of state abstraction
for MDPs”. In: International Symposium on Artificial Intelligence and Mathematics. 2006.

[85] Yao Liu, Omer Gottesman, Aniruddh Raghu, Matthieu Komorowski, Aldo A Faisal, Finale Doshi-
Velez, and Emma Brunskill. “Representation balancing mdps for off-policy policy evaluation”. In:
Advances in Neural Information Processing Systems. 2018, pp. 2644–2653.

[86] Ashique Rupam Mahmood, Huizhen Yu, and Richard S Sutton. “Multi-step off-policy learning
without importance sampling ratios”. In: arXiv preprint arXiv:1702.03006 (2017).

[87] Travis Mandel, Yun-En Liu, Sergey Levine, Emma Brunskill, and Zoran Popovic. “Offline policy
evaluation across representations with applications to educational games”. In: Proceedings of
the 2014 international conference on Autonomous agents and multi-agent systems. International
Foundation for Autonomous Agents and Multiagent Systems. 2014, pp. 1077–1084.

[88] Shie Mannor and John N Tsitsiklis. “The sample complexity of exploration in the multi-armed
bandit problem”. In: Journal of Machine Learning Research 5.Jun (2004), pp. 623–648.

[89] Pascal Massart. Concentration inequalities and model selection. Springer, 2007.
[90] Andreas Maurer and Massimiliano Pontil. “Empirical Bernstein bounds and sample variance

penalization”. In: arXiv preprint arXiv:0907.3740 (2009).
[91] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-

mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. “Human-level
control through deep reinforcement learning”. In: Nature 518.7540 (2015), p. 529.

[92] Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. “Markov Decision Processes with
Continuous Side Information”. In: Algorithmic Learning Theory. 2018, pp. 597–618.

182

[93] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT press, 2018.

[94] Rémi Munos and Csaba Szepesvári. “Finite-time bounds for fitted value iteration”. In: Journal of
Machine Learning Research (2008).

[95] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. “Deep exploration via
bootstrapped DQN”. In: Advances in neural information processing systems. 2016, pp. 4026–4034.

[96] Ian Osband, Daniel Russo, and Benjamin Van Roy. “(More) efficient reinforcement learning via
posterior sampling”. In: Advances in Neural Information Processing Systems. 2013, pp. 3003–3011.

[97] Ian Osband and Benjamin Van Roy. “Model-based reinforcement learning and the eluder dimen-
sion”. In: Advances in Neural Information Processing Systems. 2014.

[98] Ian Osband and Benjamin Van Roy. “Why is posterior sampling better than optimism for reinforce-
ment learning?” In: Proceedings of the 34th International Conference on Machine Learning-Volume
70. JMLR. org. 2017, pp. 2701–2710.

[99] Ian Osband, Benjamin Van Roy, Daniel Russo, and Zheng Wen. “Deep exploration via randomized
value functions”. In: arXiv preprint arXiv:1703.07608 (2017).

[100] Ian Osband, Benjamin Van Roy, and Zheng Wen. “Generalization and Exploration via Randomized
Value Functions”. In: International Conference on Machine Learning. 2016, pp. 2377–2386.

[101] Georg Ostrovski, Marc G Bellemare, Aäron van den Oord, and Rémi Munos. “Count-based
exploration with neural density models”. In: Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org. 2017, pp. 2721–2730.

[102] Jason Pazis and Ronald Parr. “Efficient PAC-Optimal Exploration in Concurrent, Continuous State
MDPs with Delayed Updates.” In: AAAI. 2016, pp. 1977–1985.

[103] Jason Pazis and Ronald Parr. “PAC Optimal Exploration in Continuous Space Markov Decision
Processes.” In: AAAI. 2013.

[104] Matteo Pirotta, Marcello Restelli, Alessio Pecorino, and Daniele Calandriello. “Safe Policy Itera-
tion”. In: PInternational Conference on Machine learning. 2013, pp. 307–315.

[105] Martin Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley-
Interscience, 1994.

[106] Manish Raghavan, Aleksandrs Slivkins, Jennifer Wortman Vaughan, and Zhiwei Steven Wu. “The
Externalities of Exploration and How Data Diversity Helps Exploitation”. In: arXiv preprint
arXiv:1806.00543 (2018).

[107] Spyros Reveliotis and Theologos Bountourelis. “Efficient PAC learning for episodic tasks with
acyclic state spaces”. In: Discrete Event Dynamic Systems (2007).

[108] Stephane Ross. “Interactive learning for sequential decisions and predictions”. PhD thesis. Carnegie
Mellon University, 2013.

[109] Stephane Ross and J Andrew Bagnell. “Reinforcement and imitation learning via interactive
no-regret learning”. In: arXiv:1406.5979 (2014).

[110] Dan Russo and Benjamin Van Roy. “Eluder dimension and the sample complexity of optimistic
exploration”. In: Advances in Neural Information Processing Systems. 2013.

[111] Daniel Russo. “Worst-Case Regret Bounds for Exploration via Randomized Value Functions”. In:
arXiv preprint arXiv:1906.02870 (2019).

[112] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. “A tutorial
on thompson sampling”. In: Foundations and Trends R© in Machine Learning 11.1 (2018), pp. 1–96.

[113] Daniel Russo and Benjamin Van Roy. “Learning to optimize via information-directed sampling”.
In: Advances in Neural Information Processing Systems. 2014, pp. 1583–1591.

183

[114] Touqir Sajed, Wesley Chung, and Martha White. “High-confidence error estimates for learned
value functions”. In: arXiv preprint arXiv:1808.09127 (2018).

[115] Bernhard Schölkopf and Alexander J. Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT Press, 2002.

[116] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. “Mastering the game of Go
without human knowledge”. In: Nature 550.7676 (2017), p. 354.

[117] Max Simchowitz and Kevin Jamieson. “Non-Asymptotic Gap-Dependent Regret Bounds for
Tabular MDPs”. In: arXiv preprint arXiv:1905.03814 (2019).

[118] Satinder Singh, Diane Litman, Michael Kearns, and Marilyn Walker. “Optimizing dialogue manage-
ment with reinforcement learning: Experiments with the NJFun system”. In: Journal of Artificial
Intelligence Research 16 (2002), pp. 105–133.

[119] Matthew J Sobel. “The variance of discounted Markov decision processes”. In: Journal of Applied
Probability 19.4 (1982), pp. 794–802.

[120] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. “Gaussian process
optimization in the bandit setting: No regret and experimental design”. In: Proceedings of the
International Conference on Machine Learning, 2010. 2010.

[121] Alexander L. Strehl, Lihong Li, and Michael L. Littman. “Reinforcement learning in finite MDPs:
PAC analysis”. In: Journal of Machine Learning Research (2009).

[122] Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L. Littman. “PAC
model-free reinforcement learning”. In: International Conference on Machine Learning. 2006.

[123] Alexander L. Strehl and Michael L. Littman. “A theoretical analysis of model-based interval
estimation”. In: International Conference on Machine learning. 2005.

[124] Alexander L Strehl and Michael L Littman. “An analysis of model-based interval estimation for
Markov decision processes”. In: Journal of Computer and System Sciences 74.8 (2008), pp. 1309–
1331.

[125] Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. “Model-based
reinforcement learning in contextual decision processes”. In: arXiv preprint arXiv:1811.08540
(2018).

[126] István Szita and Csaba Szepesvári. “Model-based reinforcement learning with nearly tight ex-
ploration complexity bounds”. In: Proceedings of the 27th International Conference on Machine
Learning (ICML-10). 2010, pp. 1031–1038.

[127] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. “# Exploration: A study of count-based exploration
for deep reinforcement learning”. In: Advances in neural information processing systems. 2017,
pp. 2753–2762.

[128] Philip S Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. “High-confidence off-
policy evaluation”. In: Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.

[129] Philip Thomas and Emma Brunskill. “Data-efficient off-policy policy evaluation for reinforcement
learning”. In: International Conference on Machine Learning. 2016, pp. 2139–2148.

[130] Philip Thomas, Christoph Dann, and Emma Brunskill. “Decoupling Gradient-Like Learning Rules
from Representations”. In: International Conference on Machine Learning. 2018, pp. 4924–4932.

[131] Philip Thomas, Bruno Castro Silva, Christoph Dann, and Emma Brunskill. “Energetic natural
gradient descent”. In: International Conference on Machine Learning. 2016, pp. 2887–2895.

184

[132] Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. “High confidence policy
improvement”. In: International Conference on Machine Learning. 2015, pp. 2380–2388.

[133] Leslie G Valiant. “A theory of the learnable”. In: Proceedings of the sixteenth annual ACM
symposium on Theory of computing. ACM. 1984, pp. 436–445.

[134] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Wojciech M.
Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, Timo Ewalds, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, John Agapiou, Junhyuk Oh, Valentin Dalibard, David
Choi, Laurent Sifre, Yury Sulsky, Sasha Vezhnevets, James Molloy, Trevor Cai, David Budden,
Tom Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen, Yuhuai Wu, Dani Yogatama,
Julia Cohen, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Chris Apps, Koray
Kavukcuoglu, Demis Hassabis, and David Silver. AlphaStar: Mastering the Real-Time Strategy
Game StarCraft II. https://deepmind.com/blog/alphastar-mastering-real-
time-strategy-game-starcraft-ii/. 2019.

[135] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger.
“Inequalities for the L1 deviation of the empirical distribution”. In: Hewlett-Packard Labs, Tech.
Rep (2003).

[136] Zheng Wen and Benjamin Van Roy. “Efficient exploration and value function generalization in
deterministic systems”. In: Advances in Neural Information Processing Systems. 2013.

[137] Zheng Wen and Benjamin Van Roy. “Efficient Reinforcement Learning in Deterministic Systems
with Value Function Generalization”. In: Mathematics of Operations Research (2017).

[138] Andrew G Wilson, Christoph Dann, Chris Lucas, and Eric P Xing. “The human kernel”. In:
Advances in neural information processing systems. 2015, pp. 2854–2862.

[139] Andrew Gordon Wilson, Christoph Dann, and Hannes Nickisch. “Thoughts on massively scalable
Gaussian processes”. In: arXiv preprint arXiv:1511.01870 (2015).

[140] A. Zanette and E. Brunskill. “Tighter Problem-Dependent Regret Bounds in Reinforcement Learn-
ing without Domain Knowledge using Value Function Bounds”. In: https://arxiv.org/abs/1901.00210
(2019).

[141] Andrea Zanette and Emma Brunskill. “Problem dependent reinforcement learning bounds which
can identify bandit structure in mdps”. In: International Conference on Machine Learning. 2018,
pp. 5732–5740.

[142] Shlomo Zilberstein and Stuart Russell. “Optimal composition of real-time systems”. In: Artificial
Intelligence 82.1-2 (1996), pp. 181–213.

[143] Barret Zoph and Quoc V Le. “Neural architecture search with reinforcement learning”. In: arXiv
preprint arXiv:1611.01578 (2016).

185

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Near-Optimal Sample-Efficiency and Accountability in Episodic RL
	Thesis Statement
	Organization
	Summary of Contributions
	Excluded Work

	Background on Episodic Reinforcement Learning and Notation
	Episodic Finite-Horizon Markov Decision Processes
	Problem Setting: Reinforcement learning in episodic fixed-horizon MDPs
	Existing Theoretical Learning Guarantees
	Probably-Approximately Correct (PAC) Learning
	No-Regret Learning
	Our Focus: Worst-Case Problem-Independent Bounds

	Helpful Notation

	Horizon-Optimal PAC Bounds for Episodic Reinforcement Learning
	Introduction and Motivation
	Problem Setting and Notation
	Upper PAC-Bound
	PAC Analysis

	Lower PAC Bound
	Related Work on Fixed-Horizon Sample Complexity Bounds
	Summary
	Fixed-Horizon Extended Value Iteration
	Runtime- and Space-Complexity of UCFH
	Detailed Proofs for the Upper PAC Bound
	Bound on the Number of Policy Changes of UCFH
	Proof of Lemma 7 – Capturing the true MDP
	Bounding the number of episodes with > |Xk, , | for some ,
	Bound on the value function difference for episodes with , : |Xk, , |
	Proof of Theorem 6

	Proof of the Lower PAC Bound

	Unifying PAC and Regret: Uniform-PAC Bounds for Episodic Reinforcement Learning
	Introduction
	Uniform PAC and Existing Learning Frameworks
	Relationships between Performance Guarantees

	The UBEV Algorithm
	Uniform PAC Analysis
	Enabling Uniform PAC With Law-of-Iterated-Logarithm Confidence Bounds
	Proof Sketch
	Discussion of UBEV Bound

	Summary
	Framework Relation Proofs
	Proof of Theorem 21
	Proof of Theorem 22
	Proof of Theorem 23

	Experimental Details
	PAC Lower Bound
	Planning Problem of UBEV
	Details of PAC Analysis
	Proof of Theorem 24
	Failure Events and Their Probabilities
	Nice Episodes
	Decomposition of Optimality Gap
	Useful Lemmas

	General Concentration Bounds

	Policy Certificates: Towards Accountable and Minimax-Optimal Reinforcement Learning
	Introduction
	Setting and Notation
	The IPOC Framework
	Relation to Existing Frameworks

	Algorithms with Policy Certificates
	Tabular MDPs
	MDPs With Linear Side Information

	Simulation Experiment
	Related Work
	Summary
	Proofs of Relationship of IPOC Bounds to Other Bounds
	Proof of Proposition 51
	Proof of Proposition 52

	Theoretical Analysis of Algorithm 4 for Tabular MDPs
	Failure event and all probabilistic arguments
	Admissibility of Certificates
	Bound on the size of a certificate
	Mistake IPOC bound proof
	Proof of IPOC bound of ORLC, Theorem 53
	Tighter cumulative IPOC bound
	Technical Lemmas

	Theoretical analysis of Algorithm 5 for finite episodic MDPs with side information
	Failure event and bounding the failure probability
	Admissibility of guarantees
	Cumulative certificate bound
	Proof of Theorem 55
	Technical Lemmas

	Mistake IPOC Bound for Algorithm 5?
	Additional Experimental Results
	More Details on Experimental Results in Contextual Problems
	Empirical Comparison of Sample-Efficiency in Tabular Environments
	Policy Certificates in Problems with no Context

	Oracle-Efficient PAC Reinforcement Learning with Rich Observations
	Introduction
	Related Work
	Setting and Background
	Function Classes and Optimization Oracles

	VALOR: An Oracle-Efficient Algorithm
	What is new compared to LSVEE?
	Computational and Sample Complexity of VALOR

	Toward Oracle-Efficient PAC-RL with Stochastic Hidden State Dynamics
	OLIVE is not Oracle-Efficient
	Alternative Algorithms.

	Summary
	Additional Notation and Definitions
	Additional Oracles
	Assumptions on the Function Classes

	Analysis of VALOR
	Concentration Results
	Bound on Oracle Calls
	Depth First Search and Estimated Values
	Policy Performance
	Meta-Algorithm Analysis
	Proof of Sample Complexity: Theorem 83
	Extension: VALOR with Constrained Policy Optimization

	Alternative Algorithms
	Algorithm with Two-Sample State-Identity Test
	Global Policy Algorithm

	Oracle-Inefficiency of OLIVE
	Proof for Polynomial Time of Oracles
	OLIVE is NP-hard in tabular MDPs

	Conclusion
	Future Research Possibilities
	Summary of Contributions

	Bibliography

