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ABSTRACT

Probabilistic modeling refers to a set of techniques for modeling data that allows one to
specify assumptions about the processes that generate data, incorporate prior beliefs
about models, and infer properties of these models given observed data. Benefits
include uncertainty quantification, multiple plausible solutions, reduction of overfit-
ting, better performance given small data or large models, and explicit incorporation
of a priori knowledge and problem structure. In recent decades, an array of inference
algorithms have been developed to estimate these models.

This thesis focuses on post-inference methods, which are procedures that can be
applied after the completion of standard inference algorithms to allow for increased
efficiency, accuracy, or parallelism when learning probabilistic models of big data
sets. These methods also allow for scalable computation in distributed or online
settings, incorporation of complex prior information, and better use of inference
results in downstream tasks. A few examples include:

¢ Embarrassingly parallel inference. Large data sets are often distributed over a
collection of machines. We first compute an inference result (e.g. with Markov
chain Monte Carlo or variational inference) on each machine, in parallel, with-
out communication between machines. Afterwards, we combine the results to
yield an inference result for the full data set.

¢ Prior swapping. Certain model priors limit the number of applicable inference
algorithms, or increase their computational cost. We first choose any “conve-
nient prior” (e.g. a conjugate prior, or a prior that allows for computationally
cheap inference), and compute an inference result. Afterwards, we use this
result to efficiently perform inference with other, more sophisticated priors or
regularizers.

* Sequential decision making and optimization. Model-based sequential deci-
sion making and optimization methods use models to define acquisition func-
tions. We compute acquisition functions using the inference result from any
probabilistic program or model framework, and perform efficient inference in
sequential settings.

We also describe the benefits of combining the above methods, present methodology
for applying the embarrassingly parallel procedures when the number of machines
is dynamic or unknown at inference time, illustrate how these methods can be ap-
plied for spatiotemporal analysis and in covariate dependent models, show ways to
optimize these methods by incorporating test-functions of interest, and demonstrate
how these methods can be implemented in probabilistic programming frameworks
for automatic deployment.
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INTRODUCTION

Probabilistic modeling allows us to incorporate assumptions about the processes
that generate data, explore prior beliefs about our models, infer properties of these
models when given observations, and quantify uncertainty about our inferences.
These types of models are often called probabilistic graphical models, or generative
latent variable models. They are typically defined via a generative process that
produces data x € X, and consist of latent variables 6 € ©, a prior distribution p(0)
over these variables, and a generating distribution p(x|0) that describes how the
data is generated given 0. Bayesian inference algorithms are used to compute or
approximate distributions associated with a given model. One primary task of these
algorithms is to infer the conditional distribution over the latent variables given the
data, known as the posterior distribution p(6[x). Posterior inference can become
more difficult in the following settings:

¢ Big data: when datasets contain large numbers of observations, there can be a
high computational cost of many inference algorithms.

¢ Distributed data: when data are partitioned over multiple machines or loca-
tions, it may be difficult for inference algorithms to operate in these distributed
settings without high communication costs, especially if the data are private
and cannot be moved or pooled.

¢ Streaming data: when data are collected in a streaming manner, it may be
difficult to process the data and perform correct inference, especially when we
want to use multiple machines to process the data without storing it.

* Rich priors: when we have complicated or sophisticated prior modeling as-
sumptions, there may be a much higher computational cost of many inference
algorithms.

This thesis concerns new techniques that allow posterior inference to be more-
easily performed in the above settings. It also focuses on the development of new
models and procedures for downstream tasks in computer vision, network and text
analysis, and in model-based sequential decision making and optimization.

1.1 POST-INFERENCE METHODS

Algorithmically, our main strategy involves post-inference methods. These are pro-
cedures that can be applied after the completion of standard inference algorithms
to provide increased efficiency, accuracy, or parallelism when learning probabilistic



INTRODUCTION

models. These methods allow for scalable computation in distributed or online set-
tings, incorporation of complex prior information, and better use of inference results
in downstream tasks. Three examples of post-inference methods are:

1. Embarrassingly parallel inference. Large data sets are often distributed over a
collection of machines. We first compute an inference result (e.g. with Markov
chain Monte Carlo or variational inference) on each machine, in parallel, with-
out communication between machines. Afterwards, we combine the results
to yield an inference result for the full data set. These methods can allow for
efficient inference on large, distributed, and streaming datasets.

2. Prior swapping. Certain model priors limit the number of applicable inference
algorithms, or increase their computational cost. We first choose any “conve-
nient prior” (e.g. a conjugate prior, or a prior that allows for computationally
cheap inference), and compute an inference result. Afterwards, we use this
result to efficiently perform inference with other, more sophisticated priors or
regularizers. This also lets us efficiently incorporate new or updated prior in-
formation, post inference. These methods can allow for efficient inference on
models with complex priors, and can also aid in the application of embarrass-
ingly parallel inference methods.

3. Sequential Decision Making and Optimization Model-based sequential de-
cision making and optimization methods use probabilistic models to define
acquisition functions, which are used to determine subsequent queries or de-
cisions. Today, Gaussian process models are predominantly used, which allow
for easy computation of acquisition functions. However, we may wish to use a
broader set of modeling tools and techniques. We develop methods to compute
acquisition functions using the inference result from any probabilistic program
or model framework, and to perform efficient inference in sequential settings.

In this thesis, we aim to develop scalable inference methods that can be applied
to large, streaming, and distributed datasets, and to probabilistic models with com-
plex priors. We also aim to demonstrate how these methods can help probabilistic
modeling in downstream applications. Towards this end, we develop new Bayesian
models for text, network, and video data, and new procedures for flexibly defining
and using models for improved sequential decision making and Bayesian optimiza-
tion.

Concretely, in Part 1 of this thesis, we present new probabilistic models for tasks
in computer vision and analysis of citation networks; in Part 2, we focus on em-
barrassingly parallel inference methods, which allow for more efficient inferences
given large and distributed datasets; and in Part 3, we focus on methods to flexibly
incorporate useful structure into both models and model-based sequential decision
making procedures. This includes methods for prior swapping, which allow for
more efficient inferences given models with complex priors, and a system called
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ProBO, which more easily allows for models defined using different probabilistic
modeling frameworks to be used for model-based sequential decision making and
optimiation.

In this thesis, we also describe strategies for combining embarrassingly parallel
and prior swapping methods, present methodology for applying the parallel pro-
cedures when the number of machines is dynamic or unknown at inference time,
develop randomized algorithms for efficient application of post-inference methods
in distributed environments, show ways to optimize the post-inference methods by
incorporating test-functions of interest, outline how these methods can be applied
to aid in the analysis of spatiotemporal and streaming data, and demonstrate how
these methods can be implemented in probabilistic programming frameworks for
automatic deployment.

1.2 USE CASES FOR PROBABILISTIC MODELING

In this section, we aim to describe the benefits of probabilistic modeling over other
non-probabilistic or non-Bayesian strategies for machine learning, give application
areas where it is useful, and detail various downstream applications.

WHY IS PROBABILISTIC MODELING USEFUL? It is important to consider and
summarize the benefits of probabilistic modeling over other strategies for modeling
and machine learning, and discuss the settings where it is most useful. To be con-
crete, we use the term probabilistic modeling to mean using latent variable probabilistic
graphical models to define a generative process, and then using the mechanisms of
Bayesian inference to update our prior beliefs about the latent variables to posterior
beliefs about these variables given a set of observed data. A few of the main benefits
of probabilistic modeling are that it can

* Quantify uncertainty over estimated quantities: performing inference in prob-
abilistic models returns a posterior distribution over possible models (or some
function of this distribution).

¢ Provide multiple plausible solutions: inference algorithms can be used to com-
pute multiple models, of which each could plausibly explain an observed set
of data.

e Allow for explicit incorporation of prior knowledge and problem structure:
this additional information can be incorporated both by specifying how the
data is generated and by specifying prior distributions over latent variables.

* Help reduce overfitting: prior distributions in these models often provide reg-
ularization, which helps reduce overfitting to observed (training) data.

* Yield better performance given small data or large models: due to the incor-
poration of constraints, regularization, and additional model structure, proba-
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bilistic models can perform well when learning large models, i.e. models with
many parameters relative to the number of observations.

A few example areas of machine learning where the above properties are useful
include unsupervised machine learning, such as generative modeling, or analysis
of large unstructured data; supervised machine learning that requires uncertainty
quantification, such as Bayesian classification or Gaussian process regression; and
sequential decision making, such as Bayesian optimization or Bayesian design of
experiments.

USE CASES IN INDUSTRY We now describe a few popular real-world and indus-
try applications in which these models are used.

Topic modeling, such as the method of latent Dirichlet allocation (LDA) [28] is
used for feature exactraction for text and web corpora [88, 211], user modeling, and
recommendation systems, by many large technology companies. It is also used for
data compression, representation, and embedding. Related models are probabilistic
clustering models, record linkage models [179], and probabilistic matrix factoriza-
tion models [160]. Inference in these models can be carried out with sampling meth-
ods (e.g. Gibbs sampling), variational inference (e.g. stochastic variational inference),
or optimization to a maximum a posteriori (MAP) point estimate.

Bayesian versions of standard parametric models are often used when it is ben-
eficial to quantify the uncertainty of estimation results. For example, in simple
classification or regression tasks, Bayesian logistic regression [66, 67] or Bayesian
linear regression [113] are used in industry settings. Inference in these models can
sometimes be carried out exactly (depending on the model and choice of prior) or
via sampling or variational inference methods.

Bayesian optimization is a popular method for query-efficient hyperparameter
tuning and model selection [174] in industry [47, 167]. A popular recent use case
is for tuning the hyperparameters of large neural network models [75]. Bayesian
models are particularly useful here, because Bayesian optimization algorithms lever-
age the models’” uncertainty estimates to effectively manage the tradeoff between
exploration and exploitation, which allows them to achieve efficient optimization
performance [32]. For this application, Gaussian process models are typically used,
where inference can often be carried out exactly.

Hierarchical Bayesian models (particularly parametric regression and classifica-
tion models) are used in marketing and decision sciences. Here, the ability to incor-
porate structure between groups or hierarchies of data, quantification of uncertainty
over estimated quantities, and incorporation of specific prior assumptions, is partic-
ularly useful [157]. In these settings, even when data grows large, there may still be
high levels of uncertainty over fine-grained or local components of models, such as
those corresponding to individual consumers [156].

Deep generative models are used for generating complex, structured, or high di-
mensional data (such as images) [76, 100, 154]. A majority of these models have
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been developed in recent times and the broad potential for industry impact is still
being explored.

1.3 A FEW KEY CONCEPTS AND NOTATION

Here we include common notation and definitions used throughout this thesis, de-
scribe the distributed and streaming data settings, and formalize the typical goals of
Bayesian inference.

Data. Suppose we have n data points in p dimensions, denoted

n

X" =(x1,...,%Xn) € X C RP*™, (1)

Likelihood. Assume that the data are drawn from a class of models parameterized
by 0 € ® C R¢, with a likelihood function

£(8) =p(x™0) (2)

where p(x™|0) denotes the probability density function (PDF) of a conditional distri-
bution over X.

Prior. Suppose we’ve chosen a prior distribution over ©, with PDF p(6). Note that,
at various points in this thesis, when noted, we denote the prior PDF as 7t(0).

Joint distribution. The likelihood and prior can be used to define a joint distribution
over © x X, with PDF

p(6,x™) =p(0)p(x™0). (3)

Posterior distribution. In Bayesian inference, we are interested in the posterior
distribution, a conditional of this joint distribution, with PDF defined to be

p(O)p(x™8)  _ p(B)p(x"6)
[p@)p(xre)de —  pxm)

Data-distributed setting. Suppose that we have paritioned our data into M groups,
ie.

p(Ox™) = (4)

X =], X (5)
where Xx™ = (Xm,1,-++, Xmm,,) € X C RPX™m (6)

and the m™ set has n,, data points. We will refer to these as local data sets. We can
also write the full or aggregate set of data by x™ = JM_,xTtm.
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Factorization assumption. We assume that each local data set is independent given
a parameter 0, i.e. that the likelihood factorizes in the following way:

M
£(0) =p (U xieie) = T pixiro). @
m=1

Posterior expectation. When performing Bayesian inference, we are often interested
in the following task: for a chosen prior p(0) and set of observations x™, sample from
or compute the PDF of the associated target posterior p(6[x™)—or, more generally,
for some test function h(6), compute the expectation

un = Ep [h(0)] 8)

with respect to the target posterior.

1.4 AN INTUITIVE MODEL OVERVIEW

In this section we give a non-technical overview of different model types that will
be encountered in this thesis. Namely, we describe models with global latent vari-
ables, models with local latent variables, and models that are dependent on some
covariate. In the following chapters, we will develop post-inference methods—e.g.
algorithms that allow for distributed inference or efficient inferences with additional
prior information—for these different model types.

1.4.1  Global Variable Models

An initial class of models to consider is the set of probabilistic models for a dataset
xii" ; with a single global latent variable 0. A couple examples of this are:

¢ Bayesian logistic regression: in this model [66, 67], a global parameter dictates
the probability of binary observations.

¢ Bayesian neural networks: in this model [119, 135], a global parameter corre-
sponding to neural network weights yields predictions.

Note that the global parameter 6 is associated with (i.e. is assumed to control gen-
eration of) the full set of data x;{* ;. We visualize a graphical model with a global
latent variable, using plate notation, in Figure 1 (left).

1.4.2 Local Variable Models

Some models have local variables associated with data points or subsets of data,
possibly in addition to global variables associated with an entire data set. A couple
examples of this are:
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* Mixture models: in some formulations [22, 49], there are assignment latent
variables for each data point, which specify the mixture component that a
given data belongs to.

¢ Topic models: in some formulations [28, 78] there are latent variables corre-
sponding to each document in a corpus, and other latent variables correspond-
ing to each word in a document.

We visualize a graphical model with local latent variables, using plate notation, in
Figure 1 (right). Here, we assume that each observation x; has an associated local

latent variable z;.

Figure 1: Model with global latent variables 6 (left), and model with both global latent vari-
ables 8 and local latent variables z; (right).

1.4.3 Couvariate Dependent Models

Some models have repetitive structure that depends on a certain covariate, such as
time, spatial position, or network structure. In this thesis, we refer to these models as
dependent models. Dependent models can have both local and global latent variables.
A couple examples of this are:

¢ Hidden Markov models: in HMMs [72, 159], there is typically a latent variable
at each time step, which is generated dependent on the latent variable at the
previous time step. Observations are drawn given the latent variable at each
time step.

* Network dependent models: in dependent models with network covariates
[57, 102], a directed network is defined over a collection of models (where each
model is associated with a node of the graph), and each model is dependent
on its parents in the graph.

We visualize a covariate dependent graphical model with both global and local la-
tent variables, using plate notation, in Figure 2. Here, the dependent model is the
graphical model with local variables shown in Figure 1 (right), and the covariate is
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Figure 2: Covariate dependent model with both global and local time-varying latent vari-
ables (0 and z; ¢, respectively). Here, the covariate is the time step t.

the time step t for a sequence 1, ..., T. We assume that both global and local latent
variables are dependent on the respective latent variables of the previous time step.
In the following sections we give examples of Bayesian models for spatio-temporal
and network data. These models are typically dependent on some covariate, such
as time or network structure. We will define these probabilistic graphical models
and describe typical inference algorithms for these models. In later chapters, we
will develop new inference algorithms for models like these, and show how these
models and inference procedures can be used for sequential decision making.

1.5 OVERVIEW OF PROBABILISTIC PROGRAMMING

Probabilistic programming languages (PPLs) are modern tools for specifying Bayesian
models and performing inference. At a high level, most PPLs:

1. Allow users to specify a Bayesian model, including the generative process that
yields data, the unknown (latent) model parameters, and prior beliefs over
these latent parameters.

2. Allows users to provide a set of observed data.

3. Compute and return the posterior beliefs over the latent model parameters in
an automatic fashion.

PPLs allow for easy incorporation of prior knowledge and model structure, com-
position of models, quick deployment, and automatic inference, often in the form
of samples from or variational approximations to a posterior distribution. PPLs
may be used to specify and run inference in a variety of models, such as graphical
models, GPs, deep Bayesian models, hierarchical models, and implicit (simulator-
based) models, to name a few [7, 21, 38, 50, 117, 121, 127, 161, 186, 202]. In this
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thesis, we will discuss the interplay between post-inference methods, probabilistic
programming, and sequential decision making.

1.6 CHAPTER OVERVIEW

In Part 1, we develop probabilistic models for text, network, and video data, and de-
rive approximate inference algorithms for these models. In Chapter 2, we introduce
the latent random offset (LRO) model for citation networks. In Chapter 3, we intro-
duce the dependent Dirichlet process mixture of objects for detection-free tracking
and object modeling.

In Part 2, we present algorithms for scalable approximate inference on big data
and in distributed settings. In Chapter 4, we introduce methods for embarrassingly
parallel Markov chain Monte Carlo (MCMC). In Chapter 5, we introduce methods
for embarrassingly parallel variational inference (VI), and for low-communication
black box variational inference (BBVI). In Chapter 6, we describe methods for em-
barrassingly parallel inference in quasi-ergodic settings and in dependent models or
models with local latent variables.

In Part 3, we focus on methods that allow for the incorporation of structure: either
prior structure in models, or model structure in model-based sequential decision
making and optimization procedures. In Chapter 7, we introduce methods for prior
swapping for efficient incorporation of prior information. In Chapter 8, we intro-
duce methods for allowing arbitrary probabilistic models, defined via probabilistic
programs, to be used in Bayesian optimization and other sequential decision making
procedures.

We visualize the components and contributions of this thesis (with a focus on
applications, models, and inference methods) in Figure 3.
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of this thesis are in bold.
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PROBABILISTIC MODELS FOR TEXT, NETWORK, AND
VIDEO DATA






MODELING CITATION NETWORKS USING LATENT
RANDOM OFFSETS

2.1 CHAPTER SUMMARY

Out of the many potential factors that determine which links form in a document
citation network, two in particular are of high importance: first, a document may
be cited based on its subject matter—this can be modeled by analyzing document
content; second, a document may be cited based on which other documents have
previously cited it—this can be modeled by analyzing citation structure. Both factors
are important for users to make informed decisions and choose appropriate citations
as the network grows. In this chapter, we present a novel model that integrates
the merits of content and citation analyses into a single probabilistic framework.
We demonstrate our model on three real-world citation networks. Compared with
existing baselines, our model can be used to effectively explore a citation network
and provide meaningful explanations for links while still maintaining competitive
citation prediction performance.

2.2 INTRODUCTION

Many large citation networks—Wikipedia, arXiv, and PubMed', to name a few—
continue to quickly grow in size, and the structure of these networks continues
to increase in complexity. To effectively explore large-scale and complex data like
these and extract useful information, users rely more and more on various types
of guidance for help. An important type of guidance comes from the citations (or
links) in the network. Citations serve as paths that users can easily follow, and do
not require users to specify certain keywords in advance. In scientific research, for
example, researchers often find potentially interesting articles by following citations
made in other articles. In Wikipedia, users often find explanations of certain terms
by following the links made by other Wikipedia users. Thus, generating relevant
citations is important for many users who may frequently rely on these networks to
explore data and find useful information.

We believe that, among many, two important factors largely determine how a doc-
ument citation network is formed: the documents” contents and the existing citation
structure. Take as an example a citation network of computer science articles. A re-
search paper about “support vector machines (SVMs)”, for instance, might be cited

http:/ /www.wikipedia.org/, http://arxiv.org/,
and http://www.ncbi.nlm.nih.gov/pubmed

13
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by several other articles that develop related methods, based on the subject matter
alone. This type of information can be well captured by analyzing the content of the
documents. However, the existing citation structure is also important. If this SVM
paper included great results on a computer vision dataset, for example, it might be
cited by many vision papers that are not particularly similar in content. Though
different in content, this SVM paper could be very important to users in a different
topic area, and should be considered by these users when choosing citations. This
type of information cannot be easily captured by analyzing document content, but
can be discovered by analyzing the existing citation structure among documents
while studying the contents of the papers that generated these citations.

Given these observations, we present a probabilistic model to accurately model
citation networks by integrating content and citation/link information into a single
framework. We name our approach a latent random offset (LRO) model. The basic
idea is as follows: we first represent the content of each document using a latent
vector representation (i.e. “topics”) that summarizes the document content. Then,
each latent representation is augmented in an additive manner with a random offset
vector; this vector models information from the citation structure that is not well
captured by document content. The final augmented representation is then used
to model how this document is cited by other documents. To motivate this rep-
resentation, we present sample outputs from running LRO on the Simple English
Wikipedia.

Examples from Simple English Wikipedia. = The first graph in the top row of Fig-
ure 4 shows, for the Sistine Chapel article in the Simple English Wikipedia, the latent
vector representation, which is concentrated around three topics: countries (italy,
italian, china, russian), Christianity (church, christ, jesus, god), and architecture
(built, side, large, design). Here we’ve listed the top four words in each topic (in
parens). The incoming links to the Sistine Chapel article are also shown; these cit-
ing documents determine the random offsets for Sistine Chapel. The random off-
sets can be thought of as “corrections” to the latent vector representation, based on
the content of citing documents—for example, the two largest positive offsets are
Christianity (church, christ, jesus, god) and Anglicanism (english, knight, translated,
restoration), meaning that the citing documents strongly exhibit these two topics
(compared to the Sistine Chapel article). On the other hand, there is a large negative
offset on architecture (built, side, large, design), indicating that the citing documents
do not exhibit this topic as much as Sistine Chapel.

Notably, the topic Anglicanism (containing words related to Christianity in Eng-
land) is found in the random offsets for Sistine Chapel, but is absent from its latent
vector representation. This is because the Sistine Chapel is in the Vatican City, and
thus its article does not emphasize content relating to England or Anglicanism (even
though they are all related to Christianity). However, documents that link to Sistine
Chapel, such as Chapel, talk about the Anglican Church in England. This is an ex-



Sistine Chapel (Simple English Wikipedia)
Text: "The Sistine Chapel is a large chapel in the Vatican Palace, the place in Italy where the Pope lives. The
Chapel was built between 1473 and 1481 by Giovanni dei Dolci for Pope Sistus IV...The Sistine Chapel is

famous for its fresco paintings by the Renaissance painter Michelangelo..."
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Figure 4: Analysis of content, latent offsets, and predicted links for the Sistine Chapel docu-
ment in the Simple English Wikipedia dataset. The first row shows an example
passage from the document. The next row shows the names of the documents
that cite Sistine Chapel. The next row shows the initial latent topics (first column),
the latent offsets learned from links (second column), and the latent topics after
applying the offsets (third column). The final row shows interpretable link predic-
tions; for each predicted link, we show the relative weight that each latent topic
contributed to the prediction.

ample where pertinent information is found in the citation structure, but not in the
document content. By capturing this citation information, the LRO model provides
insights into the context surrounding a document.

Following this idea, we can add the latent vector and random offsets together to
obtain the “augmented representation” of a document (i.e. the “topics after random
offsets” graph in Figure 4), which takes into account not just its content, but the
content of its citing documents as well. Link predictions in the LRO model are based
upon the intuition that a document i cites document j only if both documents have
similar representations. This intuition is captured in the bottom row of graphs in
Figure 4, which explains three out-links predicted by the LRO model for the Sistine
Chapel document. For each predicted link, we show the topics that contributed most
to the prediction, and not surprisingly, the most important topics for each link also
feature strongly in the augmented representation for the Sistine Chapel. Knowing
which topics contributed to the prediction of links not only helps users interpret
existing links within a document corpus, but also gives users an explanation for

15



16

MODELING CITATION NETWORKS USING LATENT RANDOM OFFSETS

every new link predicted by the LRO model—for instance, a user might invoke LRO
to recommend citations for an academic paper, and such “link explanations” give
the user a quick overview of why each recommendation is relevant.

We note that of the three predicted out-links for Sistine Chapel, two of them (Chapel,
Italy) are actual out-links in Sistine Chapel, while the third, Christian, is obviously rel-
evant but not found in the document. This motivates another application of LRO:
predicting relevant but missing links in document corpora; in this case, we are com-
pleting the references for a Wikipedia article. Another application context is aca-
demic paper writing: LRO can be used to recommend important (but otherwise
overlooked) citations for a newly-written academic paper.

The rest of this chapter is organized as follows: we begin by formalizing latent ran-
dom offset modeling, and then show how we can use it to model citation networks.
We then develop a fast learning algorithm with linear complexity in the size of the
number of citations, and empirically evaluate our approach using three real-world
citation networks. Compared with several baselines, our model not only improves
citation prediction performance, but also provides meaningful explanations for ci-
tations within the networks. By studying latent random offset representations, we
show these explanations can be used to effectively interpret why our model predicts
links for given documents and to explore citation networks.

2.3 LATENT RANDOM OFFSET MODELS

We introduce the general framework of latent random offsets for citation network
modeling. Suppose our citation network consists of D documents (i.e. nodes), D =
{x1,%2,....,xp}. We use yij = 1 or 0 to indicate whether document i cites document j
or not. Note that yj; is directed, meaning y;; is not necessarily the same as yjj;.

Each document x; is usually a high-dimensional vector in RY, where V is the
vocabulary size, so it is desirable to represent x; using a low-dimensional vector 0;.
In other words, the mapping

05 = 0;(x5) 9)

serves as a summarization of the original document content x;, and these summa-
rizations can be used to measure the content similarities of different documents.

However, in real citation networks, a document can be cited by others for reasons
outside of its content information. For example, a target document might provide
an influential idea that can be used in many different fields and thus be cited by a
diverse set of documents. This information is encoded not in the document content
but in the citation network structure. We choose to model this phenomenon by
allowing a random offset vector €; to augment the low-dimensional vector 0;, which
gives the augmented representation

vy = 6) + €j. (10)
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The offset vector €; is used to capture the network structure information that is not
contained in the document’s content. One important property of this augmented
representation is that the random offset ¢; is aligned in the same space as 0;. If
the dimension of 0; has some semantic explanations, then €; can be understood as
modifications of those explanations.

Finally we consider using a function f to model the citation from document i to
document j, such that

(01,05 + €j) = yi; (foralli,j)

where yj; is the citation indicator from document i to document j. Notice the asym-
metric structure here for document 1 and j—we do not consider the offset vector €;
for document i in our function f. In real citation networks, when a new document
joins the citation network by citing some other documents, this new document is
effectively “not in” the network. It will be most likely to cite other documents based
only on their content and their citations, as no network information exists for this
new document. One advantage of this formulation is that we can make citation
predictions for a brand new document by only using its content information.

In the next two sections, we first describe how we create the low-dimensional
document content representation 0; and how we use the latent random offset model
for citation network modeling.

2.3.1 Probabilistic Topic Models for Representing the Contents of Documents

There are many potential ways to create the low-dimensional document content rep-
resentation described in Eq. 9. Here we choose to use probabilistic topic models.
Topic models [24] are used to discover a set of “topics” (or themes) from a large
collection of documents. These topics are distributions over terms, which are biased
to be associated under a single theme. One notable property of these models is
that they often provide an interpretable low-dimensional representation of the docu-
ments [41]. They have been used for tasks like corpus exploration [39], information
retrieval [197] and recommendation [190].

Here we describe the simplest topic model, latent Dirichlet allocation (LDA) [26]
and use it to create the low-dimensional document content representations. Assume
there are K topics, By, k =1,..., K and each By is a distribution over a fixed vocabu-
lary. For each document j, the generative process is as follows,

1. Draw topic proportions 0; ~ Dirichlet(o)

2. For each word x;,, in document j,
a) Draw topic assignment z;,, ~ Mult(0;)

b) Draw word xjn ~ Mult(f;,)

17
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Figure 5: Left: The LRO graphical model. Only two documents (i and j) and one citation
(from 1 to j) are shown. The augumented latent representation representation for
document j is vj = 0; + €. Right: An illustration of the random offsets. We show
each document’s content vector 6; (which lies on the simplex), its offsets €; due
to link structure (the superscript indicates the dimension for €;), and the resulting
augmented latent representation vj.

This process describes how the words of a document are generated from a mixture of
topics that are shared by the corpus. The topic proportions 0; are document-specific
and we use these topic proportions as our low-dimensional document content rep-
resentation.

Given a document collection, the only observations are the words in the docu-
ments. The topics, topic proportions for each document, and topic assignments for
each word, are all latent variables that have to be determined from the data. LDA
has been extensively studied in the literature and many efficient algorithms have
been proposed to fit the LDA model variables [26, 86, 172]. For example, standard
learning algorithms like variational EM or Gibbs sampling can be used to estimate
these quantities [26]. These methods give us the estimated document content repre-
sentations 0; in terms of an approximate posterior distribution or point estimates.

2.3.2  Modeling Citations via Random Offsets

Having described how we represent the documents in a low dimensional space, we
now consider how to create the augmented representations introduced in Eq. 10. We
model our latent random offset vector €; with a multivariate Gaussian distribution

e; ~ N(O,A" Iy).

where A is a scalar precision parameter for the latent random offsets.
Using the general idea of latent random offset modeling shown in Eq. 10 and
probabilistic topic models described in Section 2.3.1, our latent random offset model
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(LRO) for citation network modeling has the following generative process (Figure 5
shows the graphical model). Assuming K topics, 1.k,

1. For each document j,
a) Draw topic proportions 05 ~ Dirichlet(o)

b) Draw latent random offset €; ~ N(0, A~ 'Ik) and set the document aug-
mented representation as vj = 0; + €;

c) For each word xj,,
i. Draw topic assignment z;,, ~ Mult(0)

ii. Draw word xjn ~ Mult(Bz;,)
2. For each directed pair of documents (i,j), draw the citation indicator

Yij ~ J\f(yh/veg—\)j,’ri_)-1 ).

where w € R is a global scaling parameter to account for potential inefficiencies
of the topic proportions 6;, which are constrained to the simplex.> We chose a
Gaussian response to model the citations, in similar fashion to [190]. Notation Ti_j1
is the precision parameter for the Gaussian distribution. Here, we choose to stray
from a formal generative process and also treat the yi; as parameters, such that ty;

satisfies

T ifyy =1
Ty = 1 1IYij

To if Yij = 0.

In this formulation, T; specifies the precision if a link exists from document i to j,
while T is for the case where the link does not exist. We set 1y to be much smaller
(i.e. higher noise) than Ty — this is similar to the assumption made in [190], which
models the fact that yi; = 0 could either mean it is not appropriate for document
i to cite document j, or simply that document i should cite document j but has
inadvertently neglected to cite it. This also enables a fast learning algorithm with
complexity linear in the number of citations (See Section 2.4 for details).

The expectation of the citation can be computed as

Elyyl = WSiij = w(eje]-) —I-W(eiTej)-

This reveals how likely it is for a citation from document i to document j to occur
under our model. If the documents have similar content or document j has certain
large positive offsets, it is more likely to be cited by document i.

For a document j, our latent representation 0; is over a simplex. In Figure 5 (right),
we show how the random offsets €; produce the augmented representation v;.

2 Our experiments show that optimizing the global scaling parameter w is important for obtaining good
results.
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2.3.3 Citation Prediction

In a system for citation prediction, it is more realistic to suggest citations than to
make hard decisions for the users. This is common in many recommender sys-
tems [89, 190]. For a particular document i, we rank the potential citations according
to the score

_ T,,.
Sij =wb; vj,

for all other documents j, and suggest citations based on this score (excluding docu-
ment i and all pre-existing citations).

2.4 LEARNING ALGORITHM

We use maximum a posteriori (MAP) estimation to learn the latent parameters of
the LRO, where we perform a coordinate ascent procedure to carry out the opti-
mization. Maximization of the posterior is equivalent to maximizing the complete
log likelihood of vi.p, 01.p and (371.x, which we can write as

N .
L==353 (vi—0;)T(vi—0;) =3 —Hyy —woiv)?
j i#j

+ Z Z log <% ijfsklxjn> .
j n

where we have omitted a constant and set o« = 1.

First, given topics [31.x and augmented representations v1.p, for all documents, we
describe how to learn the topic proportions 0;. We first define ¢jnx = q(zjn = k).
Then we separate the items that contain 05 and apply Jensen’s inequality,

A
£(65) > —5 ) (v —0;) " (v; —65)
j
+ Z Z djnk (10g 051 Brx;, —10g Pjni)
n k
— (0, ).

where ffi; = (‘bjnk)géfk:]- The optimal ¢jn then satisfies

d)jnk X ejkﬁk,xjn-

The £(05, ffi;) gives the tight lower bound of £(0;). We cannot optimize 0; analyti-
cally, but we can use the projection gradient [18] method for optimization.3

3 On our data, we found that simply fixing 0; as the estimate from the LDA model gives comparable
performance and saves computation.
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Second, given this ffi, we can optimize the topics (371.x with
Bix < ) Y byl xjn =xI.
j n

This is the same M-step update for topics as in LDA [26].
Next, we would like to optimize the augmented representations vi.p. We can
write the component of the log likelihood with terms containing v; as

A
L(V]‘) = — E(\)j —ej)T(v]- —Gj)
T..
-y 71](91)' —wo; vj)?.
Li#j

To maximize this quantity, we take the gradient of £(v;) with respect to v; and set it
to 0, which gives an update for vj

—1
Vi (AIK +w? ((n —T0) Y 00 +1o Y eie)T))
iefiri—g} ii#j
X (Gj +wTtq Z Gi) (11)
ie{ifi—j)
where {i : i — j} denotes the set of documents that cite document j. For the second
line of Eq. 11, we can see that the augmented representation vj is affected by two
main parts: the first is the content from document j (topic proportions 0;) and the
second is the content from other documents who cite document j (topic proportions
0;, where i € {i:1 —j}).
Next, we want to optimize the global scaling variable w. Isolating the terms in the
complete log likelihood that contain w gives
Tis
Lw)==) %(Uij —we{ v;)%.
i#j
In a similar manner as the previous step, to maximize this quantity we take the
gradient of £(w) with respect to w and set it to 0, which gives its update*

-1
w* <—<Z <(T1 — 1) Z (er]-)z + 7o Z (Oiij)z>>

j iefii—g) ii#j
X <T1 Z Z er]->. (12)
joiefiiog}
Empirically, we found that an optimal trade-off between computation time and per-
formance involves performing LDA [26] initially to learn the latent representations

0;, and then performing coordinate ascent to learn the augmented representations
v; and global parameter w. We detail this procedure in Algorithm 1.

4 In theory, this update could lead to a negative value. However, in our experiments, we did not see this
happen.
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Algorithmus 1 : MAP Parameter Learning from Neiswanger et al. [141]

Input : A citation network of documents {x; })D: 1 with directed links y; for
i,j €{1,...,D}, and stopping criteria 5
Output : Latent content representations 05, link-offset representations v;, and
global scale parameter w
1 Run LDA [26] on {x; }j'; ; tolearn 01.p
2 Initialize vi.p = 07.p and eps = oo
3 while eps > 6 do

4 | Update w + w* > Equation 12

5 forj=1to D do

6 L Update vj < v > Equation 11

7 Set eps — ||V];D —fﬁ;DH

Computational efficiency. We now show that our learning algorithm (Algo-

rithm 1) has runtime complexity linear in the number of documents and citations.

First, estimating the topic proportions 0;, j = 1,...,D has the same complexity as
the standard learning algorithm for LDA, which is linear in the number of docu-
ments.

Second, the augmented representations vj, j = 1, ..., D and global scaling parame-
ter w can be estimated in linear time, via a caching strategy — this is similar to the
method adopted by [89, 190]. We now describe this strategy.

For the augmented representation v; (Eq. 11), we cache 89 = ) ; 6;. This allows
us to update vj (Eq. 11) using the identity

Every time we update a 0;, we also update the cache 0o, and this takes constant time
w.r.t. the number of documents and citations.
For the global scaling parameter w (Eq. 12), we can compute

Zi,i;ﬁj (eiT"i)z = Zi,i;éj "jTeieiT"i
:V)T(Zi,i;éj eieiT)"i
= V)T(Zi 6161T)v] —v]TGJG]Tv]

in O(K?) time (constant in the number of docs and citations) by simply caching
@ = Y ; 0:0{ . This cache variable also requires O(K?) time to update whenever we
modify some 0;.

The remaining sums in Eqs 11,12 touch every citation exactly once, therefore a
single update sweep over all v and w only requires constant work per edge (treating
K as constant). We have therefore shown that Algorithm 1 is linear in the number
of documents and citations. Moreover, we have attained linear scalability without
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resorting to treating missing citations as hidden data. This gives our LRO a data
advantage over methods that hide missing citations, such as the RTM [40].

2.5 RELATED WORK

Our proposed work focuses on two aspects of citation network modeling: 1) net-
work understanding/exploration and 2) citation prediction. We therefore divide the
related work section into these two categories.

Network understanding/exploration. Network exploration is a broad empiri-
cal task concerned with, amongst other things, understanding the overall structure
of the network [148], understanding the context of individual nodes [4], and dis-
covering anomalous nodes or edges [169]. In addition to methods that operate on
purely graph data, there are techniques that leverage both the graph as well as tex-
tual content, such as relational topic models (RTM) [40], Link-PLSA-LDA [131], and
TopicFlow [133]. The idea behind such hybrid methods is that text and graph data
are often orthogonal, providing complementary insights [85].

Our LRO model incorporates network information by modeling per-document
random offsets that capture topical information from connected neighbors. These
random offsets represent relevant topics that would otherwise not be found in the
documents through content analysis. The Simple English Wikipedia analysis from
the introduction provides a good example: the Sistine Chapel article’s random offsets
(the top row of Figure 4) contain the topic Anglicanism (which is also related to
Christianity), even though the article text’s latent topic representation makes no
mention of it. In this manner, the LRO model helps us understand the context of
network nodes (a.k.a. documents), and helps us to detect anomalous nodes (such as
documents whose random offsets diverge greatly from their latent topic vectors).

Citation prediction.  The citation prediction task can be approached by consider-
ing text features, network features, or a combination of both. In the text-only setting,
approaches based on common text features (e.g., TF-IDF scores [20]) and latent space
models (e.g., topic models [24]) can be used to the measure similarities between two
documents, allowing for ranking and prediction. However, text-only approaches
cannot account for citation behavior due to the network structure.

In the network-only setting without document content, there are a number of
commonly-used measures of node similarity, such as the Jaccard Coefficient, the
Katz measure [99] and the Adamic/Adar measure [1]. Latent space models such
as matrix factorization (MF) methods [104] can be used here. However, when test
documents are out-of-sample with respect to the network (when we consider newly-
written papers with no preexisting citations), these measures are inapplicable.

Finally, there are methods that combine both document content and network struc-
ture to predict citations. One such method is the relational topic models (RTM) [40],
in which link outcomes depend on a reweighted inner product between latent po-
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sitions (under the LDA model). The weights are learned for each latent dimension
(topic), but are not specific to any document, and thus only capture network be-
havior due to topic-level interactions. In contrast, our random offsets are learned
on a per-document basis, capturing interaction patterns specific to each document,
which in turn yields better predictive performance as shown in our empirical study.
In [114], in addition to the document content, author information is also considered
to model the citation structure. In [131], citations were treated as a parallel docu-
ment (of citations) as to the document content of words. Neither of these methods
use per-document offsets to model citation structure.

2.6 EMPIRICAL STUDY

We will empirically demonstrate the use of our model for modeling citation net-
works. We will first show quantitative results for citation prediction then present
qualitative results using our model to explore citation networks.

Datasets.  We use three citation network datasets,

1. The ACL Anthology paper citation network (ACL) contains 16,589 documents
and 94,973 citations over multiple decades.

2. The arXiv high energy physics citation network (arXiv) contains 34,546 arXiv/hep-
th articles and 421,578 citations from January 1993 through April 2003.

3. The Simple English Wikipedia citation network (Wikipedia) contains 27,443 ar-
ticles, and 238,957 citations corresponding to user-curated hyperlinks between
articles.

2.6.1 Citation Prediction

For citation prediction, we compare against the RTM [40], matrix factorization (MF) [104],
LDA-based predictions [26], and three common baseline algorithms. A detailed de-
scription is given below.

The first task is predicting held-out citations. Here we used a five-fold cross
validation: for each document that has cited more than 5 documents, we held out
20% of the documents into test set and the rest into the training set.

The second task is predicting citations for new documents. To simulate this sce-
nario, we train our model using all the citations before a certain year and predict
the citations of the new documents published in that year. This task is important for
a real citation prediction system, where user may input some text without existing
citations. For this experiment, we excluded MF from the comparisons, because it
cannot perform this task.

Evaluation metric. Our goal is to make citation predictions, where it is more
realistic to provide a rank list of citation predictions than to make hard decisions for
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Figure 6: Left: Citation prediction performance on the ACL dataset for task one (predicting
held-out citations).Right: Citation prediction performance on task two (predicting
citations for new documents) on subsets of the ACL dataset for 7 years. In both
cases, the LRO yields the highest recall over all ranges.

the users. For a given set of M predicted citations, we use a performance metric,
Recall@M,
number of citations in the predicted set

total number of citations

which can be viewed as the proportion of “true” citations successfully predicted by
a given method, when the method is allowed to provide M guesses.

RecalleM =

Comparison methods. We compare our model with a number of competing
strategies, starting with the RTM [40]. In order to make predictions using the RTM,
we learn a latent representation for each document and predict citations using a
similarity function between these representations (detailed in [40]). The second com-
parison is an LDA-based prediction strategy, in which document predictions are
determined by the similarity between the latent document representation vectors 0;.
The similarity is computed using inverse of the Hellinger distance [25]

Si; =H(6,0;) 7" = Vv2|v/0; — \/97]"‘71 .

Third, we compare with matrix factorization (MF), but only on the first task. (MF
cannot make the citation predictions for a brand new document.) Finally, we com-
pare with three simple baseline methods on both tasks. The first is that of Adam-
ic/Adar [1], described in Section 2.5. The second is based on term frequence-inverse
document frequency (TF-IDF) scores, where citations are predicted based on similar-
ities in the documents” scores [20]. The third baseline is called “in-degree”, where
each document is given a score proportional to the number of times it is cited; in
this case, the same set of predictions are given for every test document. Hyperpa-
rameters are set via cross validation.
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Task one: predicting held-out citations. Given the document contents and the
remaining links, the task is to predict the held out citations for each document. We
show results for our model and six comparison methods on the ACL dataset in
Figure 6. Our model (LRO) achieves a significantly higher recall over all ranges
of the number of predictions, and we observed similar results for the other two
datasets.

We also wanted to determine how our method performs across different datasets.
To make the results comparable, we normalized the number of predictions M by set-
ting it to a fraction of the total number of documents in each respective dataset. The
results are shown in Figure 7: LRO performs well on all three datasets, though we
note that ACL has a much better score than the other two. We attribute this to the
fact that ACL contains only refereed academic papers, and is therefore more struc-
tured than either arXiv (which is unrefereed) or Simple English Wikipedia (whose
articles are not always subject to editorial attention).

Task two: predicting citations for new documents.  The second task is to predict
citations for documents with no prior citation information, corresponding to scenar-
ios in which one needs to suggest citations for newly written documents. This task
is often referred to as the “cold start problem” in recommender systems.

We simulate the process of introducing newly written papers into a citation net-
work by dividing them according to publication year. Specifically, from the ACL
citation network dataset, we select the citations and documents that existed before
the year Y as training data, for Y ranging from 2001 to 2006. After training on
this subset, the task is then to predict the citations occurring in year Y for the new
documents written in year Y.

For this task, we compared our model against the same comparison methods used
in the previous task, except for matrix factorization, which cannot make citation
predictions for new documents. Figure 6 (right) shows the results. We fix the number
of citation predictions M = 150 (other M values have similar trends). Again, our
model achieves the best performance over a majority of the M values in all six years,
and increases its lead over the comparison methods in later years, after a larger
portion of the citation network has formed and can be used as training data.

Hyperparameter sensitivity. =~ We also study how different hyperparameters affect
performance, including the number of topics K, precision parameters 1ty and Ty, and
latent random offset precision parameter A (Figure 7, right). Again, we fix M = 150.
First, we varied the number of topics from 75 to 250, and found an optimal value
of approximately 175 topics. Next, in order to find the optimal balance between
parameters tp and Ty, we fixed 11 = 1 and varied 1o from 1/10000 to 1, finding an
optimal value of approximately to = 1/100. Finally, we varied the parameter A from
5 to 40, and found an optimal value at approximately A = 9.
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Figure 7: Left: citation prediction performance of our LRO model on three real-world
datasets. The ACL dataset has a better score than the other two datasets. See main
text for details. Right: citation prediction performance for a range of hyperparam-
eter settings, including the number of topics K, the non-link variance parameter T,
and the latent random offset variance parameter A.

2.6.2 Exploring Citation Networks

The latent random offsets can yield useful information that allows for analysis and
exploration of documents in the citation network. Our model provides, for each
document, a content representation vector 0;, which captures the topics associated
with the content of the document, and a latent offset vector €, which captures topics
not necesarily contained within the document but expressed by others who cited the
document. Highly positive latent offsets may capture the topics where a given doc-
ument has been influential within the context of the citation network; alternatively,
negative offsets can represent topics that are expressed highly in a document, but
that have not proven to be influential within the context of the network.

Given a document, we can therefore explore its contents by examining the learned
set of topics, and we can explore its role in the citation network (and see the topics of
documents that it has influenced) by examining the latent offsets. In Figures 4 and 8
we show the latent topic representations of document contents, the learned random
offsets, and the final augmented representations (the sum of topic representations
and random offsets), for a document in each of the Simple English Wikipedia and
ACL datasets. The augmented representations provide information on both the
content and context of a document: they incorporate information contained in the
document as well as in other documents that cite it.

For highly cited documents, we have a great deal of information from the citing
documents (i.e. the in-links), and this information can be used to more strongly off-
set the latent topic representations. Intuitively, the content is like a prior belief about
a document’s latent representation, and as more sources start citing the document,
this outside information further offsets the latent topic representations. Additionally,
the offsets do not only “add” more information to the latent representation from the
citing documents. In Figure 8 (top row), the offsets acted primarily to reduce the
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weights of many of the largest topics in the content representation, and only added
weight to two topics. Here, the offsets served to dampen many of the content topics
that did not appear to be relevant to the citing documents, and for this reason, the
augmented representation is more sparse than the initial content representation.

Automatic Recognition Of Chinese Unknown Words Based On Roles Tagging (ACL)

Text: "This paper ... is based on the idea of 'roles tagging', to the complicated problems of Chinese
unknown words recognition ... an unknown word is identified according to its component tokens and
context tokens. In order to capture the functions of tokens, we use the concept of roles...We have got
excellent precision and recalling rates, especially for person names and transliterations..."

In-Links (Citing Documents): (1) A...word segmentation system for Chinese, (2) Chinese lexical analysis..., (3)
HHMM-based Chinese lexical analyzer..., (4) Chinese word segmentation...of characters, (5) Chinese
unknown...character-based tagging...

Initial Topics

Offsets Learned from Links (Random Offsets) ~ Topics after Random Offsets
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Figure 8: Interpreting citation predictions for the document Automatic Recognition Of Chinese
Unknown Words Based On Roles Tagging in the ACL dataset. For each predicted link,
we show the relative weight that each latent topic (denoted by the top four words)
contributed to the prediction. These provide reasons why each predicted link was
chosen, in terms of the topics.

Interpreting predictions.  In addition to maintaining competitive prediction per-
formance, our model allows for interpretable link prediction: for each predicted link
we can use our latent representations to give users an understanding of why the link
was returned. In particular, we can find the contribution that each topic provides to
the final prediction score in order to determine the “reasons” (in terms of the latent
topics) why a given document was predicted. We illustrate this in Figures 4 and 8
(bottom row of graphs). In Figure 4, for the Sistine Chapel document, Chapel is cited
largely due to three topics (architecture, Christianity, and buildings), Christian
is cited primarily due to a single topic (Christianity), and Ifaly is mainly cited due
to six lower-weighted topics (countries, Christianity, architecture, buildings,
music, and populace). Since Ifaly is a highly cited document and its augmented la-
tent representation emphasizes a large number of topics (many of those expressed
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by its in-links), it was predicted due to a slight similarity in a number of topics as
opposed to a strong similarity in just a few.

In Figure 8 we show three predictions for the document Automatic Recognition of
Chinese Unknown Words Based on Roles Tagging. We can see that each of the predicted
documents was due to a different aspect of this paper: the document Automatic Rule
Induction For Unknown-Word Guessing was chosen primaily due to the unknown-word
topic (related to the paper’s goal of recognizing unknown words), the document
Word Identification for Mandarin Chinese Sentences was chosen primarily due to the
China topic (related to the paper’s language domain area), and the document A
Knowledge-Free Method For Capitalized Word Disambiguation was chosen primarily due
to the pronoun topic (related to the paper’s use of names, locations, and roles).

2.7 CONCLUSION

In this chapter, we proposed a probabilistic approach for citation network modeling
that integrates the merits of both content and link analyses. Our empirical results
showed improved performance compared with several popular approaches for ci-
tation prediction. Furthermore, our approach can suggest citations for brand new
documents without prior citations—an essential ability for building a real citation
recommendation system.

Qualitatively, our approach provides meaningful explanations for how predictions
are made, through the latent random offsets. These explanations provide additional
information that can be useful for making informed decisions. For example, in a ci-
tation recommendation system, we can inform users whether a citation is suggested
more due to content similarities or due to the existing network structure, and we can
show the relative amounts that individual topics contributed to the prediction. In
future work, we would like to conduct user studies to quantify how this additional
information helps users find more relevant citations in a more efficient way.

29






THE DEPENDENT DIRICHLET PROCESS MIXTURE OF
OBJECTS FOR DETECTION-FREE TRACKING

3.1 CHAPTER SUMMARY

This chapter explores a probabilistic model for finding, tracking, and representing
arbitrary objects in a video without a predefined method for object detection. We
present a model that localizes objects via unsupervised tracking while learning a
representation of each object, avoiding the need for pre-built detectors. Our model
uses a dependent Dirichlet process mixture to capture the uncertainty in the number
and appearance of objects and requires only spatial and color video data that can be
efficiently extracted via frame differencing. We give two inference algorithms for use
in both online and offline settings, and use them to perform accurate detection-free
tracking on multiple real videos. We demonstrate our method in difficult detection
scenarios involving occlusions and appearance shifts, on videos containing a large
number of objects, and on a recent human-tracking benchmark where we show per-
formance comparable to state of the art detector-based methods.

3.2 INTRODUCTION

Algorithms for automated object detection and tracking in video have found applica-
tion in a wide range of fields, including robotic vision, cell tracking, sports analysis,
video indexing, and video surveillance [188, 209]. The goal of these algorithms is
to find the sequences of positions held by each object of interest in a video. A ma-
jority of modern methods require a pre-trained object detector or make use of prior
knowledge about the objects” physical characteristics (such as their color or shape) to
perform detection [31]. Often, these methods will apply the detector in each frame
of a video, and then use the detection results in tracking or data association algo-
rithms. Other algorithms use heuristics to find, or require manual initialization of,
object positions and then search for similar image patches in consecutive frames to
perform tracking [124]. Both techniques require some predefined detection strategy
for each type of object they intend to find and track.

When the objects to be tracked have highly variable appearance, if one wishes to
track many different types of objects, or if one simply does not know the types of
objects in advance, it is often hard to find a suitable detection strategy [13]. Fur-
thermore, common video conditions such as variable lighting, low quality images,
non-uniform backgrounds, and object occlusions can all reduce detection accuracy

[203].
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Cases such as these, where it is difficult to construct an object detector in advance,
prompt the need for a method to automatically localize and track arbitrary objects.
Some methods towards this end have involved background subtraction and blob
tracking, which segment foreground patches to localize objects, and optical flow-
based tracking, which separate objects based on their relative motion. Both have
trouble consistently and accurately segmenting objects and tracking through occlu-
sion [15, 189]. A recent work introduced the term “detection-free tracking” for this
task, and proposed a method based on spectral clustering of trajectories [59].

Bayesian models have also been employed to capture the components of a video,
and a number of recent works have incorporated nonparametric Bayesian priors for
finding the patterns of motion in scenes [56, 195]. However, there has been little
work towards building Bayesian models of arbitrary objects in order to perform
detection-free tracking.

In this chapter, we develop a nonparametric Bayesian model for jointly learning a
representation of each object and performing unsupervised tracking, thereby allow-
ing for accurate localization of arbitrary objects. We combine a dependent Dirichlet
process mixture with object and motion models to form the dependent Dirichlet
process mixture of objects (DDPMO). The advantages of our model are that it can
(a) accurately localize and track arbitrary video objects in a fully unsupervised fash-
ion, (b) jointly learn a time-varying model for each object and use these models to
increase the localization/tracking performance, (c) infer a distribution over the num-
ber of distinct objects present in a video, (d) incorporate a model for the motion of
each object, and (e) begin tracking as objects enter the video frame, stop when they
exit, and track through periods of partial or full occlusion.

3.3 DEPENDENT DIRICHLET PROCESS MIXTURE OF OBJECTS

To find and track arbitrary video objects, the DDPMO models spatial and color
features that are extracted as objects travel within a video scene (described in Sec-
tion 3.3.1). The model isolates independently moving video objects and learns ob-
ject models for each that capture their shape and appearance. The learned object
models allow for tracking through occlusions and in crowded videos. The unify-
ing framework is a dependent Dirichlet process mixture, where each component is
a (time-varying) object model. This setup allows us to estimate the number of ob-
jects in a video and track moving objects that may undergo changes in orientation,
perspective, and appearance.

3.3.1 Preliminaries

Dependent Dirichlet process prior.  Dirichlet process (DP) priors for component
weights in mixture models have long been used as nonparametric Bayesian tools
to estimate the number of clusters in data [9]. Dependent Dirichlet process (DDP)
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mixtures extend this by allowing cluster parameters to vary with some covariate
[118]. In our case, a DDP object mixture lets us estimate, and capture the uncertainty
in, the number of objects while modeling their time-varying parameters.

A DDP known as a generalized Polya urn (GPU) [36] has the desired properties
that, when used in a mixture model, clusters can be created and die off and cannot
merge or split. In this model, the n'" data point at time t, x; n, has an assignment
ctn to a cluster k € {1,...,K¢n} (Where K, denotes the total number of assigned
clusters after reaching x¢ »). Each assignment increases the cluster’s size m},, by one.
After each time step, cluster sizes may decrease when observations are uniformly
“unassigned” in a deletion step. The generative process for the GPU, at each time
step t, is

1. Fork=1,..., K1 N,

a) Draw Am]t‘_] ~ Binom(m]t‘_],Nt_] ,P)
b) Set m]f,o = m]t<—1,NH —Amk

2. Forn=1,...,N¢

m1 mKt,nfl
a) Draw c¢ n~ Cat tnl tnl &«
n—1

x4+ my,

b) If Ctn < Kgno1:

Ctn __ Ctn \Ct,n o \Ct,n .
Setm ' = meng+ I,mg "= me "y and Ki¢n = Kgn_1
c) If cen > Ken—1:
Ct, \Ct/n _ \Ct, J—
Setm¢ ' =1 m " =m ", and Kgn = Kgno1 +1.
. . . . . \ct,n . 1 Kt,n Ctn
where Cat is the categorical distribution, m{ ;™ is the set {m ,,..., m¢ "I\ {m '},

Binom is the binomial distribution, « is the DP concentration parameter, and p is a
deletion parameter that controls temporal dependence of the DDP. We will refer to
this process as GPU(«, p).

Data. At each frame t, we assume we are given a set of N foreground pixels,
extracted via some background subtraction method (such as those detailed in [209]).
These methods primarily segment foreground objects based on their motion relative
to the video background. For example, an efficient method applicable for stationary
videos is frame differencing: in each frame t, one finds the pixel values that have
changed beyond some threshold, and records their positions x§ ,, = (x{',,x{3,). In
addition to the position of each foreground pixel, we extract color information. The
spectrum of RGB color values is discretized into V bins, and the local color distribu-
tion around each pixel is described by counts of surrounding pixels (in an m x m
grid) that fall into each color bin, denoted x{,, = (x{},,...,x{%). Observations are
therefore of the form

Xtn = (xi,nfx‘g,n) - (Xi,]nfxi,znfx’ijnf' . "X‘t:,\T/L) (13)

Examples of spatial pixel data extracted via frame differencing are shown in Figure 9

(a)-(g)-
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Figure 9: (a - f) Two pairs of consecutive frames and the spatial observations x{ ,, extracted
by taking the pixel-wise frame difference between each pair. (g) The results of
frame differencing over a sequence of images (from the PETS2010 dataset).

3.3.2 DDPMO

Our object model F(0¥) is a distribution over pixel data, where 0F represents the
parameters of the k' object at time t. We wish to keep our object model general
enough to be applied to arbitrary video objects, but specific enough to learn a repre-
sentation that can aid in tracking. Here, we model each object with

xt,n ~ F(6F) = Normal(x{ , liue, Ze)Mult(x ,,15+) (14)

where object parameters 0 = {, Xy, 0}, and Z]-V:] 51 = 1. The object model cap-
tures the objects” locus and extent with the multivariate Gaussian and color distri-
bution with the multinomial. We demonstrate in Section 3.5 that this representation
can capture the physical characteristics of a wide range of objects while allowing ob-
jects with different shapes, orientations, and appearances to remain isolated during
tracking.
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We would also like to model the motion of objects. Assuming as little as possible,
we take each object’s parameters 0F to be a noisy version of the previous parameters
0K , (if the object existed at the previous time step) and define

T(B‘t‘q) ifk <Keo1ng
Go if k > th1,Nt,1

0r8r_q ~ (15)
where T denotes a transition kernel, the k > K¢_7, , case is when a new cluster
has been created at time t, and Gy is the base distribution of the dependent Dirichlet
process, which represents the prior distribution over object parameters. We define
Gy to be

Go(0}) = NiW (uf, Z¥lno, ko, Vo, Ao)Dir(8¢ o) (16)

where NiW denotes the normal-inverse-Wishart distribution and Dir denotes the
Dirichlet distribution; these act as a conjugate prior to the object model. We can
therefore write the generative process of the DDPMO as, for each time step t =
1,...,T:

1T:Ke1,N

1. Draw {c,1:n, Keng Mg 7'~ GPU (e, p)

2. Fork=1,..., K¢n,:

T(6k if k < K¢

draw 0k ~ (0¢1)1 t=INe
Go (1o, Ko, Vo, No, qo) if k > Ki 1N,

3. Forn=1,...,N¢ draw x¢n ~ F(B?’“)

where the notation c¢1,1.n, ={c1,1,...,¢1,N,)}. A graphical model for the DDPMO is
shown in Figure 10.
To meet technical requirements of the GPU, the transition kernel T must satisfy

jco(ek_1 JT(05[0%_,)dok | = Go(0k) (17)

or, equivalently, its invariant distribution must equal the base distribution [61]. One
way to satisfy this while providing a reasonable transition kernel is to introduce a

set of M auxiliary variables z‘f = (z],f,] P ,z‘;M) for cluster k at time t such that

P(akI0k ) = J P(OX1Z5)P (250K | )dz" (18)

With this addition, object parameters do not directly depend on their values at a pre-
vious time, but are instead dependent through an intermediate sequence of variables.
This allows the cluster parameters at each time step to be marginally distributed
according to the base distribution Gy while maintaining simple time varying be-
havior. We can therefore sample from the transition kernel using oF ~ T(Gf_ﬂ =
T, 0T (0¥ ), where

Z]’:J:M ~T (91[‘4 ) = Normal(p'fq,):l[i] )Mult(é‘ti] ) (19)

p']t<'r z]’:/ 6]t< ~ TZ(thi] :M) = NIW(HM/ KM, VM, AM)Dlr(qM) (20)
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Ct Ct+1

Xt Xt+1
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Figure 10: Graphical model of the dependent Dirichlet process mixture of objects (DDPMO).
All observations at time t are denoted as x; and their assignments as c.

where um, km, vm, Am and qm are posterior NiW and Dir parameters, given the
auxiliary variables z 1.m (formulas given in Section 3.4.1.1).

3.4 INFERENCE

We describe two inference algorithms for the DDPMO: sequential Monte Carlo
(SMC) with local Gibbs iterations, and Particle Markov Chain Monte Carlo (PM-
CMO).

3.4.1 Sequential Monte Carlo

We first derive an SMC (particle filter) inference algorithm where we draw samples
from a proposal distribution by iterating through local Gibbs updates (detailed in
Section 3.4.1.1). SMC allows us to make a single pass through the data and draw
posterior samples in an online fashion.

3.4.1.1  Local Gibbs Updates

We perform Gibbs sampling on the assighments and object parameters (at a given
t) to draw SMC proposals; this allows for the proposal of well-mixed samples
given newly introduced data in a particular frame. For an assignment c,,, we can
compute a value proportional to the posterior for each possible assignment value
1,...,K¢n, and then sample from the resulting categorical distribution (after nor-
malizing). The first proposal distribution Q1 is the probability of an assignment
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Algorithmus 2 : SMC for the DDPMO from Neiswanger et al. [144]

Input : Extracted pixel data {x1,1.N,,...,XT,1:N}, number of particles L,
number of local Gibbs iterations S, and prior parameters «, p, Hg, Ko,
Vo, Ao and qo.

. . (1:L)
Output : Posterior samples {6: KN S, GL'KT’NT} of the object model
parameters.

1 fort =1%o T do

2 forl=1to L do

3 foriter =1to S do

1:Ky,
4 t Sample (c¢,1:n,) Y ~ Q1 and (8, ")V ~ Q,
for k =1 to K¢ N, do

6 Sample (AmK)(W) ~ Bmom(( ]t‘N )L )

7 Set (mfﬂ,o)m = (tht) — (Amk )

8 Sample (zlfH,]:M)m ~Ti((6%) V)

9 | Compute particle weight 17\1,([ )
10 | Normalize particle weights and resample particles

Ct,n given current cluster sizes, cluster parameters, and concentration parameter o,
written

1:K 1:K K
Q1 (Ct,n|mtn“{ Lo, ) o Cat(m{,,_1,.. LMo, )
F(x,nl07) if con < Kino1 (21)

IP(Xt,n|e)GO(e)de Ctn > Kt,n—]

where we set the number of clusters K¢, and their sizes mll::f “" appropriately as
each c¢ n is assigned, and assume K o = 0 for consistency at t = 1. The integral in
the case of a new cluster (k > K¢ ,—1) has an analytic solution

Jp(xt,ne)(;o(e)de =ty, 1 (Xi,n | uof/,m)
] rr(xtn (ZV]-V_1 ‘10) .
i F(2j=1 X{n)

where t,,_7 denotes the multivariate t-distribution with vo — 1 degrees of freedom,
where we follow the three-value parameterization [64], and I" denotes the gamma
function.

The conjugacy of appearance model and transition kernel allow us to sample
from the second proposal distribution Q,, which is the posterior distribution over
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the object parameters given current observations, auxiliary variables, and previous
time object parameters, written

Q2(61c<|e]t<fllx‘]c<,1:NtlZ]’:,1:M) = F(X]f,hNJek)Tz(elﬂzlf,]:M)
= NIW(H]’:/ Z]t(”LN/ KN/VN/AN) (23)
X Dir(é]fqu)
where x‘;]:Nt = {Xt,n € Xt,1:N.lctn = k} and the parameters for the NiW and Dir

distributions are given when x‘tf1 N, and Zlf,] . are taken to be the “observations” in
the following posterior updates

KN = Ko+ N (24)

VN = Vo+N (25)

N KOK—ENP'O_'_ K()—Q—Nis (26)

AN = Ao+ Sy (27)
N

an = ot ) X (28)
i=1

where N is the number of observations, {1, ko, Vo, Ao} are the NiW prior parameters,
qo is the Dir prior parameter, x* and x° respectively denote the spatial and color
features of the observations, and X and S, respectively denote the sample mean and
sample covariance of the observations.

3.4.1.2 Particle Weights

At each time, the particle weights are set to be
1:K
P ((een) ™, (0 M)W xe 1, IA)
Wy = e (29)
P ((cern )V, (0N WIA)

where we’ve defined
1K1 Ng KNy
A={0, "W, (m ) (30)

Note that the numerator decomposes into

1:K
P (xt,1:Nt|(Ct,1:Nt)(Ur (et N )(U>

(31)
1:K
x P ((ecrn M, (0 "N MIA)

which can be computed using the DDPMO local probability equations defined in
Section 3.3.2, and the denominator can be computed using equations 21 and 23.
After the particle weights are computed, they are normalized; particles are then
redrawn based on their normalized weights in a multinomial resampling procedure

[52].
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3.4.1.3 Computational Cost

Assume N extracted pixels per frame, T frames, L particles, M auxiliary variables, S
local Gibbs iterations, and fewer than K sampled objects (K(T]]\Ei < K). In the SMC
inference algorithm, each local Gibbs iterations is O(KN + M) and evaluating each
particle weight is O(K + N); the SMC algorithm therefore scales as O(TL(K(SN +
M)+ SM + N)). If we neglect the number of auxiliary variables M, as we can usually
fix this at a small value, the algorithm scales as O(TLKSN). We have empirically
found that an SMC implementation in MATLAB, while not tuned for speed, usually
requires 4-20 seconds for every 1 second of video, depending on the number of
objects (after frame-rate has been subsampled to approximately 3 images/second
in all cases). It is not unreasonable to believe that this could be scaled to real time

tracking, given parallel computation and efficient image processing.

3.4.2 Particle Markov Chain Monte Carlo

SMC provides an efficient, online method for posterior inference, but can suffer from
degeneracy; notably, a large majority of the returned particles correspond to a single,
non-optimal tracking hypothesis. Ideally, we would like to infer a full posterior over
object paths. MCMC methods are guaranteed to yield true posterior samples as the
number of samples tends to infinity; however, we have found batch Gibbs sampling
to be impractical for inference in the DDPMO, as samples tend to remain stuck in
local posterior optima (often when a track begins on one object before switching to
another) and cannot converge to a high accuracy tracking hypothesis in a reasonable
amount of time.

PMCMC [8] is a Markov chain Monte Carlo method that attempts to remedy
these problems by using SMC as an intermediate sampling step to move efficiently
through high dimensional state spaces. We implement a specific case known as the
Particle Gibbs (PG) algorithm, where we sample from the conditional distributions
used in Gibbs sampling via a modified version of Algorithm 1 referred to as condi-
tional sequential Monte Carlo.

3.4.2.1  Conditional SMC

Conditional SMC [8] allows for SMC to be used as a proposal distribution in a Gibbs
sampling algorithm. We must first introduce the notion of a particle’s lineage. Let
Al'L denote the indices of the L particles chosen during the resampling step in time

t (in Algorithm 1). The lineage BgUT of a particle is recursively defined as B(TU =1

W
and fort=(T-1),...,1, B,([U = AE 1. More intuitively, for the [th particle, which

contains the variables @gUT at the final time T, B,([U denotes the index of the particle
that contained the variables @gl,lCG)g”T at time t.
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Conditional SMC uses lineages to ensure that a given particle will survive all re-
sampling steps, whereas the remaining particles are generated as before. We define
conditional SMC for the DDPMO in Algorithm 2. Note that computation of particle
weights and resampling (for relevant particles) is performed in the same manner as
in SMC inference (Algorithm 1).

Algorithmus 3 : Conditional SMC for the DDPMO from Neiswanger et al.
[144]

Input : Extracted pixel data {x1,1.n,,...,XT,1:N;}, number of particles L,
number of local Gibbs iterations S, condition particle (D%”T) with
lineage BgnT) mef1,...,L}.

Output : Particle-conditional posterior samples {©; ;T}(1 ‘L) of all latent model

variables.
1 fort=1%toTdo

2 forl=1toL do

) if 1 £ B\" then

4 foriter =1to S do

5 t Sample (ct,1:n,) Y ~ Q1 and (elth/Nt)m ~ Q2

6 fork =1to Kyn, do

Sample (Amk)V) ~ Binom((m‘tht)“), p)
9 Sample (zf, ; 1. ~ T1((6F) M)
T:Ke Ny T: KNy T:Ke Ny

10 Set ®1(21) - {(CtJiNt)mf(et a )m,(th,g )(1)'(Zt+1,]1\‘:M)m}
11 else

12 L Set @J(EU = (DJ(ET])

13 | Compute particle weight Vv,(cl)
14 forl=1toL do

15 if 1 £ B!" then

16 L Normalize particle weights and resample particles

3.4.2.2 Particle Gibbs

In the particle Gibbs (PG) algorithm [8], the model variables are first initialized,
and then conditional SMC (Algorithm 2) is run for a number of iterations. More
specifically, at the end of each iteration, a sample is drawn from the set of weighted
particles returned by conditional SMC, and this sample is conditioned upon in the
next iteration. The PG algorithm for the DDPMO is formalized in Algorithm 3.
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As the PG inference requires all variables to be initialized, SMC inference (Algo-
rithm 1) can be used as a quick way to provide near-MAP initialization of variables.

Algorithmus 4 : PMCMC (Particle Gibbs) for the DDPMO from Neiswanger

et al. [144]
Input : Extracted pixel data {x1,1.n,,...,XT,1:Nn;}, number of global Gibbs
iterations G, number of particles L, number of local Gibbs iterations S

Output : Posterior samples {9: g S, 91T:KT'NT }]'G of the object model
parameters
1 Initialize all model variables to @ (()L)
2 forg=1to G do
3 Run conditional SMC (Algorithm 3) with input {x1,1.n,,...,XT,1:N7 1, L, S,

and conditional on particle d)éL_)] to get particle set {@%1:%,. . @%I:‘T)}

4+ | Draw @y” ~ Unif({e\l, ..., ey

1:K 1:K 1:G
5 Return {6] 1’N‘,...,6T T’NT} € q)g%

3.5 EXPERIMENTS

We demonstrate the DDPMO on three real video datasets: a video of foraging ants,
where we show improved performance over other detection-free methods; a human
tracking benchmark video, where we show comparable performance against object-
specific methods designed to detect humans; and a T cell tracking task where we
demonstrate our method on a video with a large number of objects and show how
our unsupervised method can be used to automatically train a supervised object
detector.

Detection-free comparison methods.  Detection-free tracking strategies aim to
find and track objects without any prior information about the objects” characteristics
nor any manual initialization. One type of existing strategy uses optical flow or fea-
ture tracking algorithms to produce short tracklets, which are then clustered into full
object tracks. We use implementations of Large Displacement Optical Flow (LDOF)
[34] and the Kanade-Lucas-Tomasi (KLT) feature tracker [184] to produce tracklets *.
Full trajectories are then formed using the popular normalized-cut (NCUT) method
[168] to cluster the tracklets or with a variant that uses non-negative matrix factor-
ization (NNMF) to cluster motion using tracklet velocity information [42] *. We also
compare against a detection-free blob-tracking method, where extracted foreground

The LDOF implementation can be found at http://www.seas.upenn.edu/~katef/LDOF.html and the KLT imple-
mentation at http://www.ces.clemson.edu/~sth/klt/.

The NCUT implementation can be found at http://www.cis.upenn.edu/~jshi/software/ and the NNMF imple-
mentation at http://www.ornl.gov/~czx/research.html.


http://www.seas.upenn.edu/~katef/LDOF.html
http://www.ces.clemson.edu/~stb/klt/
http://www.cis.upenn.edu/~jshi/software/
http://www.ornl.gov/~czx/research.html
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pixels are segmented into components in each frame [178] and then associated with
the nearest neighbor criterion [209].

Performance metrics. ~ For quantitative comparison, we report two commonly
used performance metrics for object detection and tracking, known as the sequence
frame detection accuracy (SFDA) and average tracking accuracy (ATA) [98]. These
metrics compare detection and tracking results against human-authored ground-
truth, where SFDAe€ [0, 1] corresponds to detection performance and ATAe [0, 1]
corresponds to tracking performance. We authored the ground-truth for all videos
with the Video Performance Evaluation Resource (ViPER) tool [51].

3.5.1 Insect Tracking

In this experiment, we aim to demonstrate the ability of the DDPMO to find and
track objects in a difficult detection scenario. The video contains six ants with a sim-
ilar texture and color distribution as the background. The ants are hard to discern,
and it is unclear how a predefined detection criteria might be constructed. Futher,
the ants move erratically and the spatial data extracted via frame differencing does
not yield a clear segmentation of the objects in individual frames. A still image
from the video, with ant locations shown, is given in Figure 3(a). We compare the
SMC and PMCMC inference algorithms, and find that PMCMC yields more accurate
posterior samples (3(d)) than SMC (3(c)). Ground-truth bounding boxes (dashed)
are overlaid on the posterior samples. The MAP PMCMC sample is shown in 3(b)
and posterior samples of the object tracks are shown in 3(f), along with overlaid
ground-truth tracks (dashed). SFDA and ATA performance metrics for all compar-
ison methods are shown in 3(e). The DDPMO yields higher metric values than all
other detection-free comparison methods, with PMCMC inference scoring higher
than SMC. The comparison methods seemed to suffer from two primary problems:
very few tracklets could follow object positions for an extended sequence of frames,
and clustering tracklets into full tracks sharply decreased in accuracy when the ob-
jects came into close contact with one another.

3.5.2 Comparisons with Detector-based Methods

In this experiment we aim to show that our general-purpose algorithm can com-
pete against state of the art object-specific algorithms, even when it has no prior
information about the objects. We use a benchmark human-tracking video from the
International Workshop on Performance Evaluation of Tracking and Surveillance
(PETS) 2009-2013 conferences [55], due to its prominence in a number of studies
(listed in Figure 12(f)). It consists of a monocular, stationary camera, 794 frame
video sequence containing a number of walking humans. Due to the large number
of frames and objects in this video, we perform inference with the SMC algorithm
only.
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(e)[ METHOD NAME | SFDA [ ATA | ®
LDOF + NCUT 0.26 0.15
KLT 4+ NCUT 0.22 0.16
LDOF 4 NNMF 0.25 0.19
KLT + NNMF 0.11 0.19
Blob-Tracking 0.29 0.06
DDPMO (SMC) | 0.44 | 0.41

DDPMO (PMCMC) | 0.50 0.47

Figure 11: The ants in (a) are difficult to discern (positions labeled). We plot 100 samples
from the inferred posterior over object parameters (using SMC (c) and PMCMC
(d)) with ground-truth bounding boxes overlaid (dashed). PMCMC proves to give
more accurate object parameter samples. We also plot samples over object tracks
(sequences of mean parameters) using PMCMC in (f) , and its MAP sample in (b).
We show the SFDA and ATA scores for all comparison methods in (e).

The DDPMO is compared against ten object-specific detector-based methods from
the PETS conferences. These methods all either leverage assumptions about the ori-
entation, position, or parts of humans, or explicitly use pre-trained human detectors.
For example, out of the three top scoring comparison methods, [31] uses a state of
the art pedestrian detector, [208] performs head and feet detection, and [43] uses as-
sumptions about human geometry and orientation to segment humans and remove
shadows.

In Figure 4(a-d), the MAP sample from the posterior distribution over the object
parameters is overlayed on the extracted data over a sequence of frames. The first 50
frames from the video are shown in 4(e), where the assignment of each data point
is represented by color and marker type. We show the SFDA and ATA values for all
methods in 4(f), and can see that the DDPMO yields comparable results, receiving
the fourth highest SFDA score and tying for the second highest ATA score.
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3.5.3 Tracking Populations of T Cells

Automated tracking tools for cells are useful for cell biologists and immunologists
studying cell behavior. We present results on a video containing T cells that are hard
to detect using conventional methods due to their low constrast appearance against
a background (Figure 5(a)). Furthermore, there are a large number of cells (roughly
60 per frame, 92 total). In this experiment, we aim to demonstrate the ability of the
DDPMO to perform a tough detection task while scaling up to a large number of
objects. Ground-truth bounding boxes for the cells at a single frame [123] are shown
in 5(b) and PMCMC inference results (where the MAP sample is plotted) are shown
in in 5(c). A histogram illustrating the inferred posterior over the total number of
cells is shown in 5(e). It peaks around 87, near the true value of 92 cells.

Manually hand-labeling cell positions to train a detector is feasible but time con-
suming; we show how unsupervised detection results from the DDPMO can be used
to automatically train a supervised cell detector (a linear SVM), which can then be
applied (via a sliding window across each frame) as a secondary, speedy method
of detection (Figure 5(d)). This type of strategy in conjunction with the DDPMO
could allow for an ad-hoc way of constructing detectors for arbitrary objects on the
fly, which could be taken and used in other vision applications, without needing an
explicit predefined algorithm for object detection.

3.6 CONCLUSION

The DDPMO provides the ability to find, track, and learn representations of arbitrary
objects in a video, in a single model framework, in order to accomplish detection-free
tracking. We detail inference algorithms that can be used in both online and offline
settings and provide results on a number of real video datasets. We consistently
achieve better performance than other detection-free tracking strategies and even
achieve competitive performance with object-specific detector-based methods on a
human tracking benchmark video. Furthermore, we’ve demonstrated the ability
of our model to perform accurate localization and tracking in videos with large
numbers of objects, and in those that contain instances of full or partial occlusion,
objects with shifting appearance or orientation, and objects for which it is difficult
to construct an explicit detection strategy.

We've also shown how the DDPMO can provide an unsupervised, detection-free
way to train a discriminative object detector for arbitary objects. This combination
could provide a way to build object detectors for unknown objects on the fly and
increase the accuracy or speed of localization and tracking within our model frame-
work. We envision the DDPMO to be particularly useful in settings where the num-
ber and type of objects are unknown, or the objects” appearances are highly variable,
and a high-quality general-purpose object localization and tracking method is desir-
able.



Time step t

() | METHOD NAME SFDA | ATA
Breitenstein [9] 0.57 0.30
Yang [32] 0.55 0.45
Conte [13] 0.53 0.06
DDPMO (SMC) | 0.51 0.30
Berclaz [7 0.48 0.15
Alahi 1 [1 0.43 0.04
Alahi 2 [1 0.42 0.05
Bolme 1 (8] 0.41 NA
Ge [20] 0.38 0.04
Bolme 2 [3] 0.34 NA
Arsic [4] 0.18 0.02

Figure 12: DDPMO results on the PETS human tracking benchmark dataset and compari-
son with object-detector-based methods. The MAP object parameter samples are
overlaid on four still video frames (a-d). The MAP object parameter samples
are also shown for a sequence of frames (a 50 time-step sequence) along with
spatial pixel observations (e) (where the assignment variables ¢, for each pixel
are represented by marker type and color). The SFDA and ATA performance
metric results for the DDPMO and ten human-specific, detection-based tracking
algorithms are shown in (f), demonstrating that the DDPMO achieves compa-
rable performance to these human-specific methods. Comparison results were

provided by the authors of [55].

3.6 CONCLUSION
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(e) | (f) | MeTHOD NAME | SFDA | ATA |

2% LDOF + NCUT 017 [0.02
EE os KLT + NCUT 018 [0.08
8% .. - [ LDOF + NNMF 0.09  [0.03
CH- . [ KLT + NNMF 01 [ 0.09
il III III I - [ Blob-Tracking 021|003
; 0 Eﬁll?[lll?S 80 85 90 95llﬂli IlCIS DDPMO (SI\,IC) 031 011

o B 8 DDPMO (PMCMC) | 0.36 | 0.19

Figure 13: T cells are numerous, and hard to detect due to low contrast images (a). For a
single frame, ground-truth bounding boxes are overlaid in (b), and inferred detec-
tion and tracking results are overlaid in (c). A histogram showing the posterior
distribution over the total number of cells is shown in (e). The SFDA and ATA
for the detection-free comparison methods are shown in (f). Inferred cell posi-
tions (unsupervised) were used to automatically train an SVM for supervised cell
detection; SVM detected cell positions for a single frame are shown in (d).
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EMBARRASSINGLY PARALLEL MCMC

4.1 CHAPTER SUMMARY

Communication costs, resulting from synchronization requirements during learning,
can greatly slow down many parallel machine learning algorithms. In this chapter,
we present a parallel Markov chain Monte Carlo (MCMC) algorithm in which sub-
sets of data are processed independently, with very little communication. First, we
arbitrarily partition data onto multiple machines. Then, on each machine, any clas-
sical MCMC method (e.g., Gibbs sampling) may be used to draw samples from a
posterior distribution given the data subset. Finally, the samples from each machine
are combined to form samples from the full posterior. This embarrassingly parallel
algorithm allows each machine to act independently on a subset of the data (with-
out communication) until the final combination stage. We prove that our algorithm
generates asymptotically exact samples and empirically demonstrate its ability to
parallelize burn-in and sampling in several models.

42 INTRODUCTION

Markov chain Monte Carlo (MCMC) methods are popular tools for performing ap-
proximate Bayesian inference via posterior sampling. One major benefit of these
techniques is that they guarantee asymptotically exact recovery of the posterior dis-
tribution as the number of posterior samples grows. However, MCMC methods may
take a prohibitively long time, since for N data points, most methods must perform
O(N) operations to draw a sample. Furthermore, MCMC methods might require
a large number of “burn-in” steps before beginning to generate representative sam-
ples. Further complicating matters is the issue that, for many big data applications,
it is necessary to store and process data on multiple machines, and so MCMC must
be adapted to run in these data-distributed settings.

Researchers currently tackle these problems independently, in two primary ways.
To speed up sampling, multiple independent chains of MCMC can be run in parallel
[110, 130, 199]; however, each chain is still run on the entire dataset, and there is no
speed-up of the burn-in process (as each chain must still complete the full burn-in
before generating samples). To run MCMC when data is partitioned among multiple
machines, each machine can perform computation that involves a subset of the data
and exchange information at each iteration to draw a sample [109, 147, 173]; however,
this requires a significant amount of communication between machines, which can
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greatly increase computation time when machines wait for external information [2,
84].

We aim to develop a procedure to tackle both problems simultaneously, to allow
for quicker burn-in and sampling in settings where data are partitioned among ma-
chines. To accomplish this, we propose the following: on each machine, run MCMC
on only a subset of the data (independently, without communication between ma-
chines), and then combine the samples from each machine to algorithmically con-
struct samples from the full-data posterior distribution. We’d like our procedure to
satisfy the following four criteria:

1. Each machine only has access to a portion of the data.

2. Each machine performs MCMC independently, without communicating (i.e.
the procedure is “embarrassingly parallel”).

3. Each machine can use any type of MCMC to generate samples.

4. The combination procedure yields provably asymptotically exact samples from
the full-data posterior.

The third criterion allows existing MCMC algorithms or software packages to be
run directly on subsets of the data—the combination procedure then acts as a post-
processing step to transform the samples to the correct distribution. Note that this
procedure is particularly suitable for use in a MapReduce [46] framework. Also note
that, unlike current strategies, this procedure does not involve multiple “duplicate”
chains (as each chain uses a different portion of the data and samples from a differ-
ent posterior distribution), nor does it involve parallelizing a single chain (as there
are multiple chains operating independently). We will show how this allows our
method to, in fact, parallelize and greatly reduce the time required for burn-in.

In this chapter we will (1) introduce and define the subposterior density—a mod-
ified posterior given a subset of the data—which will be used heavily, (2) present
methods for the embarrassingly parallel MCMC and combination procedure, (3)
prove theoretical guarantees about the samples generated from our algorithm, (4)
describe the current scope of the presented method (i.e. where and when it can be
applied), and (5) show empirical results demonstrating that we can achieve speed-
ups for burn-in and sampling while meeting the above four criteria.

4.3 EMBARRASSINGLY PARALLEL MCMC

The basic idea behind our method is to partition a set of N i.i.d. data points xN =
{x1,--,xn}into M subsets, sample from the subposterior—the posterior given a data
subset with an underweighted prior—in parallel, and then combine the resulting
samples to form samples from the full-data posterior p(0/x"), where 6 € R¢ and

p(BIxN) oc p(0)p(xN16) = p(0) [TIL; p(xi/6).



4.4 COMBINING SUBPOSTERIOR SAMPLES

More formally, given data xN partitioned into M subsets {x™,...,x™M}, the pro-
cedure is:

1. Form =1,...,M (in parallel):
Sample from the subposterior p,, where

Pm(6) o p(6) Mp(x™™6). (32)

2. Combine the subposterior samples to produce samples from an estimate of the
subposterior density product pi---pa, which is proportional to the full-data
posterior, i.e. p1--pam(0) o p(OXN).

We want to emphasize that we do not need to iterate over these steps and the
combination stage (step 3) is the only step that requires communication between
machines. Also note that sampling from each subposterior (step 2) can typically be
done in the same way as one would sample from the full-data posterior. For example,
when using the Metropolis-Hastings algorithm, one would compute the likelihood
p(0) Mp(x"m[0%) 1p(xNje*

P R— instead of pp((g;)p(xN\e))’ where 0* is the proposed move.
P p(xnm

In the next section, we show how the combination stage (step 3) is carried out to
generate samples from the full-data posterior using the subposterior samples.

ratio as

4.4 COMBINING SUBPOSTERIOR SAMPLES

Our general idea is to combine the subposterior samples in such a way that we are
implicitly sampling from an estimate of the subposterior density product function
P1-Pm(0). If our density product estimator is consistent, then we can show that we
are drawing asymptotically exact samples from the full posterior. Further, by study-
ing the estimator error rate, we can explicitly analyze how quickly the distribution
from which we are drawing samples is converging to the true posterior (and thus
compare different combination algorithms).

In the following three sections we present procedures that yield samples from
different estimates of the density product. Our first example is based on a sim-
ple parametric estimator motivated by the Bernstein-von Mises theorem [111]; this
procedure generates approximate (asymptotically biased) samples from the full pos-
terior. Our second example is based on a nonparametric estimator, and produces
asymptotically exact samples from the full posterior. Our third example is based
on a semiparametric estimator, which combines beneficial aspects from the previous
two estimators while also generating asymptotically exact samples.

4.4.1 Approximate Posterior Sampling with Parametric Density Product Estimation

The first method for forming samples from the full posterior given subposterior sam-
ples involves using an approximation based on the Bernstein-von Mises (Bayesian
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central limit) theorem, an important result in Bayesian asymptotic theory. Assum-
ing that a unique, true data-generating model exists and is denoted 0y, this theorem
states that the posterior tends to a normal distribution concentrated around 0y as the
number of observations grows. In particular, under suitable regularity conditions,
the posterior P(0|x") is well approximated by Nd(GO,FQ]) (where Fy is the fisher
information of the data) when N is large [111]. Since we aim to perform posterior
sampling when the number of observations is large, a normal parametric form often
serves as a good posterior approximation. A similar approximation was used in
[3] in order to facilitate fast, approximately correct sampling. We therefore estimate
each subposterior density with pm(0) = Ng(Olfim, fm) where [,y and T, are the
sample mean and covariance, respectively, of the subposterior samples. The prod-
uct of the M subposterior densities will be proportional to a Gaussian pdf, and our
estimate of the density product function p1---pm(0) p(OIxN) is

P1Pm(0) =P1--Pm(0) x Nq (e\ﬁM,fM) ,

where the parameters of this distribution are

M -1
Im = (Z r‘) (33)
m=1
—~ M —~
im=Im| ) Z1ﬁm> : (34)
m=1

These parameters can be computed quickly and, if desired, online (as new subposte-
rior samples arrive).

4.4.2  Asymptotically Exact Posterior Sampling with Nonparametric Density Product Esti-
mation

In the previous method we made a parametric assumption based on the Bernstein-
von Mises theorem, which allows us to generate approximate samples from the full
posterior. Although this parametric estimate has quick convergence, it generates
asymptotically biased samples, especially in cases where the posterior is particu-
larly non-Gaussian. In this section, we develop a procedure that implicitly samples
from the product of nonparametric density estimates, which allows us to produce
asymptotically exact samples from the full posterior. By constructing a consistent
density product estimator from which we can generate samples, we ensure that the
distribution from which we are sampling converges to the full posterior.
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Given T samples’ {Om t,,—1 from a subposterior pm, we can write the kernel
density estimator p., (0) as,

1 10— 6|
Pm(e)—f Z1th< h >

tm=

.
1
=< D Na(0lo), h’La),

tm=1

where we have used a Gaussian kernel with bandwidth parameter h. After we have
obtained the kernel density estimator P, (0) for M subposteriors, we define our
nonparametric density product estimator for the full posterior as

P1Pm(0) =P1--Pm(0)

—z 2

T
1
= = > Ng(olof, h?1g)
m=1 tm:1
hZ
X Z Wi. Nd < Gt , Id> (35)
ti=1 ty=1

This estimate is the probability density function (pdf) of a mixture of TM Gaussians
with unnormalized mixture weights w.. Here, we use t- = {tj,...,tm} to denote
the set of indices for the M samples {Gt e ,BZ[V[ (each from a separate machine)

associated with a given mixture component, and we define

1 M

Dl
'T“

etm (36)

M
m=
M
= ] Na (618, h’14) . (37)
m=1

Although there are TM possible mixture components, we can efficiently generate
samples from this mixture by first sampling a mixture component (based on its
unnormalized component weight wy.) and then sampling from this (Gaussian) com-
ponent. In order to sample mixture components, we use an independent Metropolis
within Gibbs (IMG) sampler. This is a form of MCMC, where at each step in the
Markov chain, a single dimension of the current state is proposed (i.e. sampled)
independently of its current v