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When thou shalt do wonderful things,
we shall not bear them:
thou didst come down,

and at thy presence the mountains melted away.

From the beginning of the world they have not heard,
nor perceived with the ears:

the eye hath not seen, O God, besides thee,
what things thou hast prepared for them that wait for thee.
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Abstract
Recent technologies are generating an abundance of genome sequence data and

molecular and clinical phenotype data, providing an opportunity to understand the
genetic architecture and molecular mechanisms underlying diseases. Previous ap-
proaches have largely focused on the co-localization of single-nucleotide polymor-
phisms (SNPs) associated with clinical and expression traits, each identified from
genome-wide association studies and expression quantitative trait locus (eQTL) map-
ping, and thus have provided only limited capabilities for uncovering the molecular
mechanisms behind the SNPs influencing clinical phenotypes. Here we aim to ex-
tract rich information on the functional role of trait-perturbing SNPs that goes far
beyond this simple co-localization. We introduce a computational framework called
PerturbNet for learning the gene network that modulates the influence of SNPs on
phenotypes, using SNPs as naturally occurring perturbation of a biological system.
PerturbNet uses a probabilistic graphical model to directly model both the cascade
of perturbation from SNPs to the gene network to the phenotype network and the
network at each layer of molecular and clinical phenotypes. PerturbNet learns the
entire model by solving a single optimization problem with an extremely fast algo-
rithm that can analyze human genome-wide data within a few hours. In our analysis
of asthma data, for a locus that was previously implicated in asthma susceptibility
but for which little is known about the molecular mechanism underlying the asso-
ciation, PerturbNet revealed the gene network modules that mediate the influence
of the SNP on asthma phenotypes. Many genes in this network module were well
supported in the literature as asthma-related.
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Chapter 1

Introduction

1.1 Motivation

One of the key questions in biology is how genetic variation perturbs gene regulatory systems
to influence disease susceptibility or other phenotypes in a population. Recent advances in tech-
nologies have allowed researchers to obtain genome sequence data along with phenotype data at
different levels of biological systems, such as gene expression [41], proteome [4], metabolome
[85], and various clinical phenotype data. Combining genome sequence data with various types
of molecular and clinical phenotype data in a computational analysis has the potential to reveal
the complex molecular mechanisms controlled by different genetic loci that underlie diseases
and other phenotypes.

To study gene regulatory systems, many previous works have considered the naturally-occurring
perturbation of gene expression by genetic variants such as single nucleotide polymorphisms
(SNPs), captured in expression and genotype data collected from a population. Compared to
experimental perturbation methods such as gene knockdown [23] and genome editing tech-
niques [83], SNP perturbation for functional genomics studies has an advantage of being more
cost effective, being easily applicable to humans, and being potentially more meaningful sub-
tle perturbations because they exist in nature [51]. However, it comes with the computational
challenge of having to isolate the perturbation effect of each individual genetic variant, when
a large number of genetic variants are perturbing the gene network simultaneously. Several
computational methods have been proposed to address this challenge. Sparse conditional Gaus-
sian graphical models (sCGGMs) have been introduced for simultaneously identifying the gene
network and expression quantitative trait loci (eQTLs) from population SNP and expression data
[31, 87, 104]. Many other works have relied on statistically less powerful approaches of identify-
ing eQTLs first and then incorporating the eQTLs in the network learning procedure [27, 79, 80].

However, there have been relatively few works on modeling how a gene network perturbed
by SNPs mediates the SNP perturbation of phenotypes. Most of the existing methods did not
directly address this problem and thus, provided only limited capabilities for uncovering the
molecular mechanisms behind the SNP perturbation of clinical phenotypes. Many of the pre-
vious approaches were concerned with identifying simply the co-localization of eQTLs and
trait-associated SNPs [33, 36, 45], each of which were identified in a separate eQTL mapping

1



[27, 37, 40, 41] and a genome-wide association study [65, 93]. These methods did not provide
a description of the regulatory roles of the trait-associated SNPs beyond their co-localization
with eQTLs. The genome-transcriptome-phenome structured association method [22] focused
only on identifying eQTLs and trait-associated SNPs, and was concerned with neither learning
a gene network nor uncovering its role in modulating SNP effects on phenotypes. A predic-
tive network model for diseases that involves Bayesian networks for gene regulatory networks
have been proposed [73], but this approach relied on an elaborate pipeline of analysis to identify
disease-related gene modules and genetic variants that could potentially lead to loss of statistical
power.

Here, our goal is to extract rich information on the functional role of trait-perturbing SNPs
that goes far beyond the simple co-localization with eQTLs, which was the focus of many of the
previous studies [33, 36, 45]. Towards this goal, we introduce a computational framework called
Perturb-Net for directly modeling and learning the gene network that modulates the influence of
SNPs on phenotypes, using SNPs as naturally occurring perturbation of a biological system.
Perturb-Net builds on the key idea in the previous work on sCGGMs [87, 104] for learning a
gene network using SNP perturbations, and models the cascade of a gene network and a pheno-
type network under SNP perturbations as a cascade of sCGGMs, called a sparse Gaussian chain
graph model.Our probabilistic graphical model framework naturally leads to a set of inference
algorithms for inferring a detailed description of how different parts of the gene network mediate
the influence of SNPs on phenotypes, given the model estimated from population genotype, ex-
pression, and phenotype data.The Perturb-Net model and inference procedures together provide
a powerful tool for studying the gene regulatory mechanisms whose perturbations by SNPs lead
to diseases.

We present a statistically powerful and extremely efficient algorithm for learning the Perturb-
Net model. The Perturb-Net learning algorithm is statistically powerful, since it estimates the
entire model by solving a single optimization problem with minimal loss of statistical power
and with a guarantee in finding the optimal solution due to the convexity of the optimization
problem. The Perturb-Net learning algorithm is also computationally efficient and can analyze
human genome-wide data with 500,000 SNPs, 11,000 gene expression levels, and several dozens
of phenotype data within a few hours. The performance of the Perturb-Net learning algorithm
directly depends on that of sCGGM optimization, since it uses the sCGGM learning algorithm as
a key module. The previous state-of-the-art method [100] had limited scalability due to expensive
computation time and large memory requirement, requiring more than 4 hours for only 10,000
SNPs and running out of memory for 40,000 SNPs. We present a new learning algorithm Fast-
sCGGM and its extension Mega-sCGGM with orders-of-magnitude speed-up in computation
time that runs on a single machine without running out of memory and that is parallelizable. Our
new sCGGM learning algorithms allow Perturb-Net to be applied to human genome-wide data.

We demonstrate Perturb-Net on the data collected for participants in the Childhood Asthma
Management Program Continuation Study (CAMP-CS) [20, 21, 67]. Perturb-Net revealed the
asthma gene network and how different parts of this gene network mediate the SNP perturbations
of phenotypes. Furthermore, for a locus that was previously implicated in asthma susceptibility
but for which little has been known about the molecular mechanism underlying the association,
Perturb-Net revealed the gene network modules that mediate the influence of the SNP on asthma
phenotypes. Many genes in this network module were well supported in the literature as asthma-
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related, suggesting our framework can reveal the molecular mechanisms underlying the SNP
perturbations of phenotypes.

1.2 Thesis objectives
We focus on four subgoals to provide statistical machine learning methods for genome-wide
analysis of genotypic variation influencing clinical traits via gene regulatory networks.

1. Develop scalable convex optimization methods for learning sCGGMs. Our new learn-
ing algorithm has orders-of-magnitude speedup over previous methods and scales to genome-
wide SNP data on machine with limited memory.

2. Develop the sparse Gaussian chain graph model in order to model the cascaded in-
fluence from SNPs to gene expression levels to clinical phenotypes. We address how to
use the learned model to extract information about the role of both individual genes and
also gene modules in mediating the effect of genetic variants on phenotypes. We also use
our proposed model to enable utilization of samples where genotype and phenotype data
are available but gene expressions are missing.

3. We apply our method to asthma data to show how to extract from the estimated model
rich information on the molecular interactions underpinning the association between
gene variants and traits. We show how to perform colocalization analysis on our learned
model to uncover the gene modules with eQTLs that colocalize with the trait-associated
SNPs. We also show how, using the learned model, one may focus in on the SNPs and
gene modules which influence lung function traits and blood measurement traits.

The work described in the previous objectives has been completed. We plan to accomplish
the following objectives.

4. Compare the power and specificity of our model with other statistical models. We
will use both simulated and asthma data to examine whether our method provides better
recovery of colocalized SNPs at the same false-positive error rate as other methods. To
evaluate the power and specificity for recovering gene networks, we will compare our ap-
proach with sparse GGMs. Furthermore, we will examine how the power of our approach
compares to univariate tests in detecting SNP-gene and SNP-trait associations.

1.3 Background on sparse modeling
In this section, we first describe approaches to learning the structure of sparse probabilistic graph-
ical models that build on Lasso [90] and Graphical Lasso [30]. Next, we describe the sCGGM
[86, 100], as well as previously developed optimization methods for this model.

1.3.1 The Lasso and sparse Gaussian graphical models
Our work on sparse probabilistic graphical model learning is closely related to problems in sparse
regression. The Lasso [90] for sparse linear regression is a key building block for many recent
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approaches to sparse regression and sparse graphical model learning, including our work. Rather
than minimizing the least-squares error subject to a constraint on the number of non-zero pa-
rameters, the Lasso constrains the `1-norm of the parameters, leading to a convex problem with
global optimum and efficient solution via a coordinate descent algorithm.

GGMs [30] have been extremely popular as a tool for learning a network structure over a
large number of continuous variables in many different application domains including neuro-
science [68] and biology [30]. A sparse GGM can be estimated as a sparse inverse covariance
matrix by minimizing the convex function of `1-regularized negative log-likelihood. Non-zero el-
ements in the estimated GGM parameter matrix indicate conditional independence relationships
between the two corresponding variables given all the other variables.

Highly scalable learning algorithms such as Graphical Lasso [30], QUIC [47], and BigQUIC [48]
have been proposed to learn GGMs. The QUIC algorithm finds in each iteration a generalized
Newton descent direction by forming a second-order approximation of the smooth part of the
objective and minimizing this along with the `1 penalty. Finding the Newton descent direction is
itself solved iteratively, by solving a series of Lasso subproblems. Given this Newton direction,
the parameter estimates are updated with a step size found by backtracking line search. BigQUIC
extends QUIC to high-dimensional problems where the large dense matrices computed in QUIC
do not fit in memory. This algorithm divides the parameters into blocks and passes through these
blocks while computing the Newton direction, requiring only smaller portions of these large
dense matrices to avoid exceeding computer system memory.

1.3.2 The sparse conditional Gaussian graphical model
Sparse CGGMs have been introduced as a discriminative extension of sparse GGMs to model a
sparse network over outputs conditional on input variables [86, 100]. CGGMs can be viewed as
a Gaussian analogue of conditional random field [61], while GGMs are a Gaussian analogue of
Markov random field. Sparse CGGMs have recently been applied to various settings including
energy forecasting [99], finance [103], and biology [104], where the goal is to predict structured
outputs influenced by inputs. A sparse CGGM can be estimated by minimizing a convex function
of l1-regularized negative log-likelihood. This optimization problem is closely related to that for
sparse GGMs because CGGMs also model the network over outputs. However, the presence of
the additional parameters in CGGMs for the functional mapping from inputs to outputs makes
the optimization significantly more complex than in sparse GGMs.

A CGGM [86, 100] models the conditional probability density of x ∈ Rp given y ∈ Rq as
follows:

p(y|x; Λ,Θ) = exp{−yTΛy − 2xTΘy}/Z(x),

where Λ is a q× q matrix for modeling the network over y and Θ is a p× q matrix for modeling
the mapping between the input variables x and output variables y. The normalization constant is
given as Z(x) = (2π)q/2|Λ|−1 exp(xTΘΛ−1ΘTx).

Non-zeros in Λ indicate conditional dependencies between the corresponding pairs of output
variables, given all inputs and the other output variables. Similarly, non-zeros in Θ encode
conditional dependencies between the corresponding output variable and input variable, given
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all the other input and output variables. Inference in a CGGM gives p(y|x) = N (BTx,Λ−1),
where B=−ΘΛ−1, showing the connection to multivariate linear regression.

A sparse estimate of CGGM parameters can be obtained by minimizing the negative log-
likelihood combined with `1-regularization. As observed in [86, 100, 103], this objective is
convex. Several different approaches have been previously proposed to estimate sparse CGGMs,
including OWL-QN [86], accelerated proximal gradient method [103], and Newton coordinate
descent algorithm [100]. In particular, the Newton coordinate descent algorithm extends the
QUIC algorithm [47] for sparse GGM estimation to the case of CGGMs, and has been shown to
have superior computational speed and convergence. This approach finds in each iteration a de-
scent direction by minimizing a quadratic approximation of the original negative log-likelihood
function along with l1 regularization. Then, the parameter estimate is updated with this descent
direction and a step size found by line search.

The previous state-of-the-art Newton coordinate descent method [100] was not efficient enough
to be applied to many real-world problems even with tens of thousands of variables. More im-
portantly, it suffers from a large space requirement, because for very high-dimensional prob-
lems, several large dense matrices need to be precomputed and stored during optimization. For a
CGGM with p inputs and q outputs, the algorithm requires storing several p× p and q × q dense
matrices, which cannot fit in memory for large p and q. In this dissertation, we introduce a fast
algorithm that substantially improves the scalability both in terms of time and space.

1.4 Background on modeling genomic data
In this section we review existing methods for inferring the genetic basis of clinical traits and
expression traits, for learning gene networks from gene expression data, and for combining such
information with integrative methods. We also discuss the shortcomings and difficulties with
applying such methods in piecemeal fashion, rather than addressing these problems together
with a single model.

1.4.1 GWAS and eQTL mapping
A genome-wide association study (GWAS) aims at finding the genome-wide set of genetic vari-
ants, typically SNPs, that are statistically associated with a trait in order to establish the genetic
causes of phenotypic variation. The dominant paradigm in GWAS analysis is to perform sepa-
rate univariate statistical tests for all SNP-trait pairs. While GWAS data have greatly facilitated
discovery of the genetic basis of complex-trait diseases, such traits are very polygenic, with each
causal SNP explaining on average a small proportion of population variation, so that GWAS
analyses still often lack the statistical power to detect all the causal variants [92], especially in
cases of linkage disequilibrium. To tackle this, combining all SNPs together into a single sparse
regression model for each phenotype has been proposed [97], using either Lasso or `1-penalized
logistic regression.

Expression quantitative trait loci (eQTL) analysis investigates the genetic basis of gene ex-
pression by treating gene transcript abundances as phenotypes, using computational methods
similar to those for GWAS. The goal of such eQTL analyses is to learn the molecular basis of
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associations between genetic variation and traits. Because gene expression levels are influenced
not only by genotype, but also by tissue and disease state, eQTL mapping studies must be spe-
cific to a particular disease state or tissue type, as in the GTEx Project [41]. As in GWAS, most
eQTL studies rely on simple univariate testing for each SNP-transcript pair, in part due to the
computational demands of analyzing tens of thousands of gene transcripts. Various computa-
tional methods have been developed to improve the scalability of univariate testing in eQTL
mapping [34, 82].

1.4.2 Statistical learning approaches to gene network learning
The graphical Lasso [30] for learning sparse GGMs was motivated by the problem of gene net-
work estimation from gene expression level data gathered through microarray experiments. Since
then, it has gained wide use as a gene regulatory network learning approach [59, 64]. Various
extensions of the sparse GGM have also been proposed to utilize prior knowledge about regula-
tory pathways [39, 84], to jointly learn multiple related networks for different tissues or disease
types [24, 66], and to learn time-varying gene networks [43, 95]. However, these approaches
do not jointly learn the eQTLs, and are therefore unable to factor out the portion of the observed
correlations among gene expressions that arise from shared causal SNPs rather than gene-gene
regulatory effects [72].

Sparse multivariate linear regression with sparse inverse covariance estimation (MRCE) [78]
has been applied to learn gene networks after adjusting for the effect of genotype covariates
[15, 102]. However, because this approach led to a non-convex optimization problem that scales
poorly with the number of SNPs, these studies limited their analysis to only a few hundreds of
SNPs.

The sparse CGGM has also been proposed as an approach to learning gene networks under
SNP perturbations [104]. This method, unlike MRCE, distinguished between marginal SNP-
gene relationships, captured by sparse regression coefficients, and conditional SNP-gene depen-
dencies after conditioning on the learned gene network, in order to identify the genes directly
perturbed by a SNP versus those indirectly affected through the gene regulatory network. The
gene network learned from the sparse CGGM model has been used to infer the correlation matrix
among genes after accounting for the gene correlations induced by SNPs [3]. In that study, the
sparse CGGM was shown to scale to a few thousand SNPs and a few thousand gene expression
levels, but was not yet capable of performing genome-wide analysis of human data. Furthermore,
this approach did not allow incorporation of phenotypic data into the learning algorithm.

1.4.3 Three-way integrative genomics analyses
Colocalization methods are a leading general approach to integrating genotype, gene expression,
and phenotype data in order to uncover genes which lead to disease traits. In colocalization anal-
yses, GWAS and eQTL mapping are first performed separately to find SNP-gene and SNP-trait
associations. Next, these approaches link genes and traits with common patterns of underlying
SNP associations. Sherlock [45], COLOC [36], and eCAVIAR [46] are Bayesian methods that
compare p-values from GWAS and eQTL mapping hypothesis tests to find SNPs that show up
as associated with both gene expression and clinical traits. However, these analyses are limited
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by their reliance on univariate tests. Wen et al. [94] generalize COLOC and eCAVIAR with a
model that incorporates the effect of multiple SNPs on each trait using a sparse regression model,
but like the previous method it does not account for correlations among genes through the gene
regulatory network or correlations between gene expression levels and clinical traits.

Another set of integrative techniques is built on imputation of gene expression levels us-
ing eQTL mapping study results, such as from the GTEx Project. These two-step procudures
[33, 71] predict gene expression levels for individuals from their genotypes, then regress pheno-
types on these imputed gene expression values. While these methods reduce the multiple-testing
burden from examining genome-wide SNPs, they do not model the gene and trait networks, or
the colocalization of SNPs regulating both genes and traits.

Another branch of three-way integrative analyses methods incorporate all variables into a
Bayesian network [19, 91]. While Bayesian networks are able to model all the interactions
among the genotype, gene expression, and phenotype variables, learning Bayesian networks
poses serious statistical and computational difficulties. To address this, the authors of [19,
91] employed a complex analysis pipeline with rules to favor or exclude possible edges in the
network model. The complexity of this pipeline makes it challenging to apply to data collected
from other diseases. To overcome the complexities of the previous approaches, we will develop
a method that models all interactions among genomic data types, automatically learns these
interactions from data, and uses these learned interactions to discover the molecular basis of
traits, including the role of the gene network and the colocalization between trait SNPs and
eQTLs.

7



8



Chapter 2

Optimization for Sparse CGGMs

In this chapter, we address the problem of scaling up the optimization of the sCGGM to very large
problem sizes without requiring excessive time or memory. We propose sparse CGGM learning
algorithms called Fast-sCGGM for reducing computation time and Mega-sCGGM for further
improving Fast-sCGGM to remove the memory constraint. Fast-sCGGM improves the compu-
tation time of the previous Newton coordinate descent method [100] by alternately optimizing
the network parameters and the input-output perturbation parameters. While Fast-sCGGM im-
proves the computation time of the previous method, it is limited by the memory size required
to store large q× q or p× q matrices during the iterative optimization. Hence, we combine Fast-
sCGGM with block coordinate descent and introduce the Mega-sCGGM algorithm to scale up
the optimization to very large problems on a machine with limited memory. During the iterative
optimization, we update blocks of the large matrices so that within each block, the computation
of the large matrices can be cached and re-used.

Our Fast-sCGGM algorithm is based on the key observation that the computation simplifies
drastically if we alternately optimize the two sets of parameters for output network and for map-
ping inputs to outputs, instead of updating all parameters at once as in the previous approach.
The previous approach updated all parameters simultaneously by forming a second-order ap-
proximation of the objective on all parameters, which requires an expensive computation of the
large Hessian matrix of size (p + q) × (p + q) in each iteration. Our approach of alternate op-
timization forms a second-order approximation only on the network parameters, which requires
the Hessian of size q × q, as the other set of parameters can be updated easily using a simple
coordinate descent.

In order to overcome the constraint on the space requirement, we then introduce Mega-
sCGGM, an alternating Newton block coordinate descent method that can be applied to problems
of unbounded size on a machine with limited memory. A naive approach to reduce the memory
footprint would be to recompute portions of these matrices on demand for each coordinate up-
date, which would be very expensive. Hence, we divide the parameters into blocks for block-wise
updates such that the results of computation can be reused within each block. Block-wise param-
eter updates were previously used in BigQUIC [48] for learning a sparse GGM, where the block
sparsity pattern of the network parameters was leveraged to overcome the space limitations. We
propose an approach for block-wise update of the output network parameters in CGGMs that
extends their idea. We then propose a new block-wise update strategy for the parameters for
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mapping inputs to outputs. These blocks are determined automatically in each iteration by ex-
ploiting the sparse structure within the network parameters and the input-output parameters. In
our experiments, we show that we can solve problems with a million inputs and hundreds of
thousands of outputs on a single machine.

2.1 Background on Newton Coordinate Descent Optimization

In this section we first describe the Newton coordinate descent algorithm [100], and then de-
scribe the difficulty with scaling this method to large problems due to its time and space com-
plexity.

2.1.1 Optimization Method

Given a mean-centered dataset of X ∈ Rn×p and Y ∈ Rn×q for n samples, and their covariance
matrices Sxx = 1

n
XTX,Sxy = 1

n
XTY,Syy = 1

n
YTY, a sparse estimate of CGGM parameters

can be obtained by minimizing l1-regularized negative log-likelihood. This can be written as the

min
Λ�0,Θ

f(Λ,Θ) = g(Λ,Θ) + h(Λ,Θ), (2.1)

where g(Λ,Θ)=−log |Λ|+tr(SyyΛ+2Sxy
TΘ+Λ−1ΘTSxxΘ) for the smooth negative log-

likelihood and h(Λ,Θ)=λΛ‖Λ‖1+λΘ‖Θ‖1 for the non-smooth elementwise l1 penalty. λΛ, λΘ >
0 are regularization parameters. As observed in [86, 100, 103], this objective is convex.

The current state-of-the-art method for solving Eq. (2.1) for l1-regularized CGGM is the
Newton coordinate descent algorithm [100] that extends QUIC [47] for l1-regularized GGM
estimation. In each iteration, this algorithm found a generalized Newton descent direction by
forming a second-order approximation of the smooth part of the objective and minimizing this
along with the l1 penalty. Given this Newton direction, the parameter estimates were updated
with a step size found by line search using Armijo’s rule [7].

In each iteration, the Newton coordinate descent algorithm found the Newton direction as
follows:

DΛ,DΘ = argmin
∆Λ,∆Θ

ḡΛ,Θ(∆Λ,∆Θ)

+ h(Λ+∆Λ,Θ+∆Θ), (2.2)

where ḡΛ,Θ is the second-order approximation of g given by Taylor expansion:

ḡΛ,Θ(∆Λ,∆Θ) = vec(∇g(Λ,Θ))T vec([∆Λ ∆Θ])

+
1

2
vec([∆Λ ∆Θ])T∇2g(Λ,Θ) vec([∆Λ ∆Θ]).
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The gradient and Hessian matrices above are given as:

∇g(Λ,Θ) = [∇Λg(Λ,Θ) ∇Θg(Λ,Θ)]

= [Syy−Σ−Ψ 2Sxy + 2Γ] (2.3)

∇2g(Λ,Θ) =

[
∇2

Λg(Λ,Θ) ∇Λ∇Θg(Λ,Θ)
∇Λ∇Θg(Λ,Θ)T ∇2

Θg(Λ,Θ)

]
=

[
Σ⊗ (Σ + 2Ψ) −2Σ⊗ ΓT

−2Σ⊗ Γ 2Σ⊗ Sxx

]
, (2.4)

where Σ = Λ−1, Ψ = ΣΘTSxxΘΣ, and Γ = SxxΘΣ. Given the Newton direction in Eq.
(2.2), the parameters can be updated as Λ ← Λ + αDΛ and Θ ← Θ + αDΘ, where step size
0 < α ≤ 1 ensures sufficient decrease in Eq. (2.1) and positive definiteness of Λ.

The Lasso problem [89] in Eq. (2.2) was solved using coordinate descent. Despite the
efficiency of coordinate descent for Lasso, applying coordinate updates repeatedly to all q2 + pq
variables in Λ and Θ is costly. So, the updates were restricted to an active set of variables given
as:

SΛ = {(∆Λ)ij : |(∇Λg(Λ,Θ))ij| > λΛ ∨Λij 6= 0}
SΘ = {(∆Θ)ij : |(∇Θg(Λ,Θ))ij| > λΘ ∨Θij 6= 0}.

Because the active set sizes mΛ = |SΛ|,mΘ = |SΘ| approach the number of non-zero entries in
the sparse solutions for Λ∗ and Θ∗ over iterations, this strategy yields a substantial speedup.

To further improve the efficiency of coordinate descent, intermediate results were stored for
the large matrix products that need to be computed repeatedly. At the beginning of the opti-
mization for Eq. (2.2), U := ∆ΛΣ and V := ∆ΘΣ were computed and stored. Then, after a
coordinate descent update to (∆Λ)ij , row i and j of U were updated. Similarly, after an update
to (∆Θ)ij , row i of V was updated.

2.1.2 Computational Complexity and Scalability Problems
Although the Newton coordinate descent method is computationally more efficient than other
previous approaches, it does not scale to problems even with tens of thousands of variables. The
main computational cost of the algorithm comes from computing the large (p + q) × (p + q)
Hessian matrix in Eq. (2.4) in each application of Eq. (2.2) to find the Newton direction. At
the beginning of the optimization in Eq. (2.2), large dense matrices Σ, Ψ, and Γ, for computing
the gradient and Hessian in Eqs. (2.3) and (2.4), are precomputed and reused throughout the
coordinate descent iterations. Initializing Σ = Λ−1 via Cholesky decomposition costs up to
O(q3) time, although in practice, sparse Cholesky decomposition exploits sparsity to invert Λ in
much less than O(q3). Computing Ψ = 1

n
RTR, where R = XΘΣ, requires O(nmΘ + nq2)

time, and computing Γ costs O(npq + nq2). After the initializations, the cost of coordinate
descent update per each active variable (∆Λ)ij and (∆Θ)ij is O(p + q). During the coordinate
descent for solving Eq. (2.2), the entire (p + q) × (p + q) Hessian matrix in Eq. (2.4) needs
to be evaluated, whereas for the gradient in Eq. (2.3) only those entries corresponding to the
parameters in active sets are evaluated.
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A more serious obstacle to scaling up to problems with large p and q is the space required
to store dense matrices Σ (size q×q), Ψ (size q×q), and Γ (size p×q). In our experiments on
a machine with 104 Gb RAM, the Newton coordinate descent method exhausted memory when
p+ q exceeded 80,000.

In the next section, we propose a modification of the Newton coordinate descent algorithm
that significantly improves the computation time. Then, we introduce block-wise update strate-
gies to our algorithm to remove the memory constraint.

2.2 Fast-sCGGM for Improving Computation Time
In this section, we introduce our Fast-sCGGM algorithm for learning an l1-regularized CGGM
that significantly reduces computation time compared to the previous method. Instead of per-
forming Newton descent for all parameters Λ and Θ simultaneously, our approach alternately
updates Λ and Θ, optimizing Eq. (2.1) over Λ given Θ and vice versa until convergence.

Our approach is based on the key observation that with Λ fixed, the problem of solving Eq.
(2.1) over Θ becomes simply minimizing a quadratic function with l1 regularization. Thus, it
can be solved efficiently using a coordinate descent method, without the need to form a second-
order approximation or to perform line search. On the other hand, optimizing Eq. (2.1) for Λ
given Θ still requires forming a quadratic approximation to find a generalized Newton direction
and performing line search to find the step size. However, this computation involves only q × q
Hessian matrix and is significantly simpler than performing the same type of computation on
both Λ and Θ jointly as in the previous approach.

2.2.1 Coordinate Descent Optimization for Λ

Given fixed Θ, the problem of minimizing the objective in Eq. (2.1) with respect to Λ becomes

argmin
Λ�0

gΘ(Λ) + λΛ‖Λ‖1,

where gΘ(Λ) = − log |Λ| + tr(SyyΛ + Λ−1ΘTSxxΘ). In order to solve this, we first find
a generalized Newton direction that minimizes the l1-regularized quadratic approximation of
gΘ(Λ):

DΛ = argmin
∆Λ

ḡΛ,Θ(∆Λ) + λΛ‖Λ + ∆Λ‖1, (2.5)

where ḡΛ,Θ(∆Λ) is obtained from a second-order Taylor expansion and is given as

ḡΛ,Θ(∆Λ) = vec(∇Λg(Λ,Θ))T vec(∆Λ)

+
1

2
vec(∆Λ)T∇2

Λg(Λ,Θ) vec(∆Λ).

The∇Λg(Λ,Θ) and∇2
Λg(Λ,Θ) above are components of the gradient and Hessian matrices

corresponding to Λ in Eqs. (2.3) and (2.4). We solve the Lasso problem in Eq. (2.5) via
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input : Inputs X ∈ Rn×p and Y ∈ Rn×q; regularization parameters λΛ, λΘ

output: Parameters Λ,Θ
Initialize Θ← 0,Λ← Iq
for t = 0, 1, . . . do

Determine active sets SΛ,SΘ

Solve via coordinate descent:
DΛ =argmin

∆Λ

ḡΛ,Θ(Λ + ∆Λ,Θ) + h(Λ+∆Λ,Θ)

Update Λ+ = Λ + αDΛ, where step size α is found
with line search

Solve via coordinate descent:
Θ+ = argminΘ gΛ(Θ) + λΘ‖Θ‖1

end

Algorithm 1: Fast-sCGGM

coordinate descent. Similar to the Newton coordinate descent method, we maintain U := ∆ΛΣ
to reuse intermediate results of the large matrix-matrix product. Given the Newton direction for
Λ, we update Λ← Λ + α∆Λ, where α is obtained by line search.

During coordinate descent to solve the Lasso problem, each element of ∆Λ is updated as
follows:

(∆Λ)ij ←(∆Λ)ij − cΛ + SλΛ/aΛ
(cΛ −

bΛ
aΛ

),

where Sr(w) = sign(w) max(|w| − r, 0) is the soft-thresholding operator and

aΛ =Σ2
ij + ΣiiΣjj + ΣiiΨjj + 2ΣijΨij + ΣjjΨii

bΛ =(Syy)ij −Σij −Ψij + (Σ∆ΛΣ)ij + (Ψ∆ΛΣ)ij + (Ψ∆ΛΣ)ji

cΛ =Λij + (∆Λ)ij.

Restricting the generalized Newton descent to Λ simplifies the computation significantly for
coordinate descent updates, compared to the previous approach [100] that applies it to both Λ
and Θ jointly. Our updates only involve ∇Λg(Λ,Θ) and ∇2

Λg(Λ,Θ), and no longer involve
∇Θg(Λ,Θ) and ∇Λ∇Θg(Λ,Θ), eliminating the need to compute the large p × q dense matrix
Γ in O(npq + nq2) time. Our approach also reduces the computational cost for the coordinate
descent update of each element of ∆Λ from O(p+ q) to O(q).

2.2.2 Coordinate Descent Optimization for Θ

With Λ fixed, the optimization problem in Eq. (2.1) with respect to Θ becomes

argmin
Θ

gΛ(Θ) + λΘ‖Θ‖1, (2.6)

where gΛ(Θ) = tr(2Sxy
TΘ + Λ−1ΘTSxxΘ). Since gΛ(Θ) is a quadratic function itself, there

is no need to form its second-order Taylor expansion or to determine a step size via line search.
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Instead, we solve Eq. (2.6) directly with coordinate descent method, storing and maintaining
V := ΘΣ. Our approach reduces the computation time for updating Θ compared to the corre-
sponding computation in the previous algorithm [100]. We avoid computing the large p×q matrix
Γ, which had dominated overall computation time with O(npq). Our approach also eliminates
the need for line search for updating Θ. Finally, it reduces the cost for each coordinate descent
update in Θ to O(p), compared to O(p + q) for the corresponding computation for ∆Θ in the
previous method.

The coordinate descent updates applied directly to Θ take the following form:

Θij ←Θij − cΘ + SλΘ/aΘ
(cΘ −

bΘ
aΘ

),

where

aΘ =2Σjj(Sxx)ii

bΘ =2(Sxy)ij + 2(SxxΘΣ)ij

cΘ =Θij.

Our approach is summarized in Algorithm 1. In practice, we approximately solve Eqs. (2.5)
and (2.6) by using a warm-start for Λ and Θ with the results of the previous iteration and making
a single pass over the active set. This ensures decrease in the objective in Eq. (2.1) and reduces
the overall computation time in practice.

2.3 Mega-sCGGM for Removing Memory Requirement
The Fast-sCGGM algorithm in the previous section improves the computation time of the previ-
ous state-of-the-art method, but is still limited by the space required to store large matrices during
coordinate descent computation. Solving Eq. (2.5) for updating Λ requires precomputing and
storing q×q matrices, Σ and Ψ, whereas solving Eq. (2.6) for updating Θ requires Σ and a p×p
matrix Sxx. A naive approach to reduce the memory footprint would be to recompute portions
of these matrices on demand for each coordinate update, which would be very expensive.

Here, we describe Mega-sCGGM that combines the alternating Newton coordinate descent
algorithm in Fast-sCGGM with block coordinate descent to scale up the optimization to very
large problems on a machine with limited memory. During coordinate descent optimization, we
update blocks of Λ and Θ so that within each block, the computation of the large matrices can
be cached and re-used, where these blocks are determined automatically by exploiting the sparse
stucture. For Λ, we extend the block coordinate descent approach in BigQUIC [48] developed
for GGMs to take into account the conditioning variables in CGGMs. For Θ, we describe a new
approach for block coordinate descent update. Our algorithm can, in principle, be applied to
problems of any size on a machine with limited memory.

2.3.1 Blockwise Optimization for Λ

Block Coordinate Descent Method A coordinate-descent update of (∆Λ)ij requires the ith
and jth columns of Σ and Ψ. If these columns are in memory, they can be reused. Otherwise,
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Figure 2.1: Schematic of block coordinate descent for Λ in Mega-sCGGM. The Λ of size
q = 9 is updated for each of the k2

Λ blocks in turn with kΛ = 3. Filled elements denote the
parameters in the active set. The green arrows denote rows of Σ and Ψ that are computed once
and reused while sweeping through a row of blocks. The red arrows denote cache misses and the
corresponding columns of Σ and Ψ need to be recomputed.

Figure 2.2: Schematic of block coordinate descent for Θ in Mega-sCGGM. The Θ of size
p= 8, q = 6 is updated for each of the p × kΘ blocks with kΘ = 2. Filled elements denote the
parameters in the active set. Green arrows denote columns of Σ that are computed once and
reused while sweeping through the column of p blocks. The red arrows denote cache misses for
(Sxx)i.

it is a cache miss and we should compute them on demand. Σi for the ith column of Σ can be
obtained by solving linear system ΛΣi = ei with conjugate gradient method in O(mΛK) time,
where K is the number of conjugate gradient iterations. Then, Ψi can be obtained from 1

n
RTRi

in O(nq) time, where R = XΘΣ.
In order to reduce cache misses, we perform block coordinate descent, where within each

block, the columns of Σ are cached and re-used. Suppose we partition N = {1, . . . , q} into
kΛ blocks, C1, . . . , CkΛ

. We apply this partitioning to the rows and columns of ∆Λ to obtain
kΛ × kΛ blocks. We perform coordinate-descent updates in each block, updating all elements
in the active set within that block. Let ACr denote a q by |Cr| matrix containing columns of A
that corresponds to the subset Cr. In order to perform coordinate-descent updates on (Cz, Cr)
block of ∆Λ, we need ΣCz , ΣCr , ΨCz , and ΨCr . Thus, we pick the smallest possible kΛ such
that we can store 2q/kΛ columns of Σ and 2q/kΛ columns of Ψ in memory. When updating the
variables within block (Cz, Cr) of ∆Λ, there are no cache misses once ΣCz , ΣCr , ΨCz , and ΨCr
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are computed and stored. After updating each (∆Λ)ij to (∆Λ)ij + µ, we maintain UCz and UCr

by Uit ← Uit + µΣjt,Ujt ← Ujt + µΣit,∀t ∈ {Cz ∪ Cr}.
To go through all blocks, we update blocks (Cz, C1), . . . , (Cz, CkΛ

) for each z ∈ {1, . . . , kΛ}.
Since all of these blocks share ΣCz and ΨCz , we precompute and store them in memory. When
updating an off-diagonal block (Cz, Cr), z 6= r, we compute ΣCr and ΨCr . In the worst case,
overall Σ and Ψ will be computed kΛ times.

Reducing Computational Cost Using Graph Clustering In typical real-world problems, the
graph structure of Λ will exhibit clustering, with an approximately block diagonal structure. We
exploit this structure by choosing a partition {C1, . . . , CkΛ

} that reduces cache misses. Within
diagonal blocks (Cz, Cz)’s, once ΣCz and ΨCz are computed, there are no cache misses. For off-
diagonal blocks (Cz, Cr)’s, r 6= z, we have a cache miss only if some variables in {(∆Λ)ij|i ∈
Cz, j ∈ Cr} lie in the active set. We thus minimize the active set in off-diagonal blocks via
clustering, following the strategy for sparse GGM estimation in [48]. In the best case, if all
parameters in the active set appear in the diagonal blocks, Σ and Ψ are computed only once with
no cache misses. We use the METIS [53] graph clustering library. Our method for updating Λ is
illustrated in Figure 2.1.

2.3.2 Blockwise Optimization for Θ

Block Coordinate Descent Method The coordinate descent update of Θij requires (Sxx)i and
Σj to compute (Sxx)Ti Vj , where Vj = ΘΣj . If (Sxx)i and Σj are not already in the memory,
it is a cache miss. Computing (Sxx)i takes O(np), which is expensive if we have many cache
misses.

We propose a block coordinate descent approach for solving Eq. (2.6) that groups these com-
putations to reduce cache misses. Given a partition of {1, . . . , q} into kΘ subsets, C1, . . . , CkΘ

,
we divide Θ into p×kΘ blocks, where each block comprises a portion of a row of Θ. We denote
each block (i, Cr), where i ∈ {1, . . . , p}. Since updating block (i, Cr) requires (Sxx)i and ΣCr ,
we pick the smallest possible kΘ such that we can store q/kΘ columns of Σ in memory. While
performing coordinate descent updates within block (i, Cr) of Θ, there are no cache misses,
once (Sxx)i and ΣCr are in memory. After updating each Θij to Θij + µ, we update VCr by
Vit ← Vit + µΣjt,∀t ∈ Cr.

In order to sweep through all blocks, each time we select a q ∈ {1, . . . , kΘ} and update
blocks (1, Cr), . . . , (p, Cr). Since all of these p blocks with the same Cr share the computation
of ΣCr , we compute and store ΣCr in memory. Within each block, the computation of (Sxx)i is
shared, so we pre-compute and store it in memory, before updating this block. The full matrix of
Σ will be computed once while sweeping through the full Θ, whereas in the worst case Sxx will
be computed kΘ times.

Reducing Computational Cost Using Row-wise Sparsity We further reduce cache misses for
(Sxx)i by strategically selecting partition C1, . . . , CkΘ

, based on the observation that if the active
set is empty in block (i, Cr), we can skip this block and forgo computing (Sxx)i. We therefore
choose a partition where the active set variables are clustered into as few blocks as possible.
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Formally, we want to minimize
∑

i,r Iφ(S(i,Cr)), where Iφ(S(i,Cr)) is an indicator function that
outputs 1 if the active set S(i,Cr) within block (i, Cr) is not empty.We therefore perform graph
clustering over the graph G = (V,E) defined from the active set in Θ, where V = {1, . . . , q}
with one node for each column of Θ, and E = {(j, k)|∃i : Θij ∈ SΘ,Θik ∈ SΘ}, connecting
two nodes j and k with an edge if both Θij and Θik are in the active set. This edge set corresponds
to the non-zero elements of ΘTΘ, so the graph can be computed quickly in O(mΘq).

We also exploit row-wise sparsity in Θ to reduce the cost of each cache miss. Every empty
row in Θ corresponds to an empty row in V = ΘΣ. Because we only need elements in (Sxx)i
for the dot product (Sxx)Ti Vj , we skip computing the kth element of (Sxx)i if the kth row of Θ
is all zeros. Our strategy for updating Θ is illustrated in Figure 2.2.

Our method is summarized in Algorithm 2. See Appendix for analysis of the computational
cost.

2.3.3 Parallelization

The most expensive computations in our algorithm are embarrassingly parallelizable, allowing
for further speedups on machines with multiple cores. Throughout the algorithm, we parallelize
matrix and vector multiplications. In addition, for block-wise Λ updates, we compute multiple
columns of ΣCz and ΨCz as well as multiple columns of ΣCr and ΨCr for multiple cache misses
in parallel, running multiple conjugate gradient methods in parallel. For block-wise Θ updates,
we compute multiple columns of Σ in parallel before sweeping through blocks and perform a
parallel computation within each cache miss, computing elements within each (Sxx)i in parallel.

2.3.4 Time Complexity Analysis

In this section we describe the time complexity of the alternating Newton block coordinate de-
scent method. The active set sizes for Λ and Θ are mΛ and mΘ, respectively. Also, K is the
number of conjugate gradient iterations.

The time complexity of each Λ update is dominated by the cost of precomputing columns
of Σ and Ψ. The cost of these precomputations is O

([
1 + BΛ

q

]
[mΛKq + nq2]

)
where BΛ =∑

z 6=r |{j|i ∈ Cz, j ∈ Cr, (i, j) ∈ SΛ}| is the number of cache misses. Although the worst-case
of BΛ = kΛq requires computing Σ and Ψ a total of kΛ times, in practice, graph clustering
dramatically reduces this additional cost of block-wise optimization. In the best case, when
graph clustering identifies perfect block-diagonal structure in the active set, the number of cache
misses BΛ = 0 and we incur no runtime penalty from limited memory.

For Θ, the overall runtime is dominated by the cost of precomputing columns of Sxx and
Σ. The complexity of these operations is O(mΛKq+mΘq+np̃BΘ), where p̃ is the number of
non-empty rows in Θ and BΘ =

∑
i,r |{i|j ∈ Cr, (i, j) ∈ SΘ}| is the number of cache misses.

Without any row-wise sparsity we have p̃ = p and BΘ = kΘp, so the worst-case is that Sxx is
computed a total of kΘ times. This additional cost is substantially reduced in real datasets, where
most input variables influence few or none of the outputs. In the best case, if the active set of
Θ has a block structure, where each group of inputs are influencing only one group of outputs,
overall Sxx will be computed only once. We can further save the computation of Sxx, if the entire
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row of Θ is not in the active set, by entirely skipping the computation for the corresponding
column of Sxx.
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input : Inputs X ∈ Rn×p and outputs Y ∈ Rn×q; regularization parameters λΛ, λΘ

output: Parameters Λ,Θ
Initialize Θ← 0,Λ← Iq
for t = 0, 1, . . . do

Determine active sets SΛ,SΘ

Partition columns of Λ into kΛ blocks
. Minimize over Λ

Initialize ∆Λ ← 0
for z = 1 to kΛ do

Compute ΣCz ,UCz , and ΨCz

for r = 1 to kΛ do
if z 6= r then

Identify columns Bzr ⊂ Cr with active
elements in Λ

Compute ΣBzr ,UBzr , and ΨBzr

end
Update all active (∆Λ)ij in (Cz, Cr)

end
end
Update Λ+ ← Λ + α∆Λ, where step size α is found

with line search
Partition columns of Θ into kΘ blocks

. Minimize over Θ
for r = 1 to kΘ do

Compute ΣCr , and initialize V← ΘΣCr

for row i ∈ {1, . . . , p} if Iφ(S(i,Cr)) do
Compute (Sxx)ij for non-empty rows j in VCr

Update all active Θij in (i, Cr)

end
end

end

Algorithm 2: Mega-sCGGM
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2.4 Experiments
We compare the performance of our methods with the existing state-of-the-art Newton coor-
dinate descent algorithm, using synthetic and real-world genomic datasets. All methods were
implemented in C++ with parameters represented in sparse matrix format. All experiments were
run on 2.6GHz Intel Xeon E5 machines with 8 cores and 104 Gb RAM, running Linux OS. We
run the Newton coordinate descent and alternating Newton coordinate descent algorithms as a
single thread job on a single core. For our alternating Newton block coordinate descent method,
we run it on a single core and with parallelization on 8 cores.

2.4.1 Synthetic Data Experiments
We compare the different methods on two sets of synthetic datasets, one for chain graphs and
another for random graphs with clustering for Λ, generated as follows. For chain graphs, the
true sparse parameters Λ is set with Λi,i−1 = 1 and Λi,i = 2.25 and the true Θ is set with
Θi,i = 1. We perform one set of chain graph experiments with p = q, and another set with an
additional q irrelevant features unconnected to any outputs, so that p = 2q. For random graphs
with clustering, following the procedure in [48] for generating a GGM, we set the true Λ to a
graph with clusters of nodes of size 250 and with 90% of edges connecting randomly-selected
nodes within clusters. We set the number of edges so that the average degree of each node is
10, with edge weights set to 1. We then set the diagonal values so that Λ is positive definite. To
set the sparse patterns for Θ, we randomly select 100

√
p input variables as having edges to at

least one output and distribute total 10q edges among those selected inputs to influence randomly
selected outputs. We set the edge weights of Θ to 1.

Then, we draw samples from the CGGM defined by these true Λ and Θ. We generate datasets
with n = 100 samples for the chain graphs and n = 200 samples for random graphs with
clustering. We choose λΛ and λΘ so that the number of edges in the estimated Λ and Θ is close
to ground truth. Following the strategy used in GGM estimation [48], we use the minimum-norm
subgradient of the objective as our stopping criterion: ‖gradS(Λt,Θt)‖1 < 0.01(‖Λ‖1 + ‖Θ‖1).

We compare the scalability of the different methods on chain graphs of different sizes. We
show the computation times for datasets with p = q in Figure 2.3A and for datasets with p = 2q
with q additional irrelevant features in Figure 2.3B. For large problems, computation times are
not shown for Newton coordinate descent and alternating Newton coordinate descent methods
because they could not complete the optimization with limited memory. In addition, for large
problems, alternating block coordinate descent was terminated after 60 hours of computation. We
provide results on varying the sample size n in Appendix. In Figure 2.3C, using the dataset with
p = 40,000 and q = 20,000, we plot the suboptimality in the objective f−f ∗ over time, where f ∗

is obtained by running alternating Newton coordinate descent algorithm to numerical precision.
Our new methods converge substantially faster than the previous approach, regardless of desired
accuracy level. We notice that as expected from the convexity of the optimization problem, all
algorithms converge to the global optimum and find nearly identical parameter estimates.

In Figure 2.4, we compare scalability of different methods for random graphs with clustering.
In Figure 2.4A, we vary p, while setting q to 10,000. In Figure 2.4B, we vary q, fixing p to
40,000. Similar to the results from chain graph, for larger problems, Newton coordinate descent
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Figure 2.3: Comparison of scalability on chain graphs. We vary p and q, where (A) p = q and
(B) p = 2q. The Newton coordinate descent and alternating Newton coordinate descent methods
could not be run beyond the problem sizes shown due to memory constraint. (C) Convergence
when q = 20,000 and p = 40,000.

104 105 106

p (input dimension)

0

10

20

30

40

50

60

ti
m

e
 (

h
o
u
rs

)

Newton CD

Alt Newton CD

Alt Newton BCD (1 core)

Alt Newton BCD (8 cores)

103 104 105

q (output dimension)

0

10

20

30

40

50

60

ti
m

e
 (

h
o
u
rs

)

0 2 4 6 8 10
time (hours)

105

106

a
ct

iv
e
 s

e
t 

si
ze

(A) (B) (C)

Figure 2.4: Comparison of scalability on random graphs with clustering. (A) Varying p with
q fixed at 10,000. (B) Varying q with p fixed at 40,000. (C) Active set size versus time with
p = 20,000 and q = 10,000.
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Table 2.1: Computation time in hours on genomic dataset. ‘*’ indicates running out of memory.
p q ‖Λ∗‖0 ‖Θ∗‖0 Newton CD Alternating Newton CD Alternating Newton BCD

34,249 3,268 34,914 28,848 22.0 0.51 0.24
34,249 10,256 86,090 103,767 > 50 2.4 2.3

442,440 3,268 26,232 30,482 * * 11

1 4 8 12 16
number of cores

1

4

8

12

16

sp
e
e
d
u
p

104gb RAM

28.8gb RAM

Figure 2.5: Speedup with parallelization for alternating Newton block coordinate descent.

and alternating Newton coordinate descent methods ran out of memory and alternating block
coordinate descent was terminated after 60 hours. For all problem sizes, our alternating Newton
coordinate descent algorithm significantly reduces the computation time of the previous method,
the Newton coordinate descent algorithm. This gap in the computation time increases for larger
problems. In Figure 2.4C, we compare the convergence in sparsity pattern for the different
methods as measured by the active set size, for p = 20,000 and q = 10,000. All our methods
recover the optimal sparsity pattern much more rapidly than the previous approach.

Figures 2.3 and 2.4 show that our alternating Newton block coordinate descent can run on
much larger problems than any other methods, while those methods without block coordinate
descent run out of memory. For example, in Figure 2.4A alternating Newton block coordinate
descent could handle problems with one million inputs, while without block-wise optimization
it ran out of memory when p > 100,000. We also notice that on a single core, the alternating
Newton block coordinate descent is slighly slower than the same method without block-wise
optimization because of the need to recompute Σ and Sxx. However, it is still substantially faster
than the previous method.

Finally, we evaluate the parallelization scheme for our alternating Newton block coordinate
descent method on multi-core machines. Given a dataset generated from cluster graph with
p = 40,000 and q = 20,000, in Figure 2.5, we show the folds of speedup for different numbers of
cores with respect to a single core. We obtained about 7 times speedup on a 8-core machine with
104Gb RAM, and about 12 times speedup on a 16-core machine with 28Gb RAM. In general,
we observe greater speedup on larger problems and for random graphs, because such problems
tend to have more cache misses that can be computed in parallel.

We additionally analyzed the performance of our approach in scaling with the number of
samples. We compare the performance of the different algorithms on synthetic datasets with
different sample sizes n, using a chain graph structure with p = q = 10,000. Figure 2.6A shows
that our methods run significantly faster than the previous method across all sample sizes. In
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Figure 2.6: Results from varying sample size n on chain graph with p = q = 10,000. (A) Com-
parison of computation time of different methods. (B) Comparison of edge recovery accuracy as
measured by F1-score.

Figure 2.6B we measure the accuracy in recovering the true chain graph structure in terms of
F1-score for different sample sizes n. At convergence, F1-score was the same for all methods to
three significant digits. As expected, the accuracy improves as the sample size increases.

2.4.2 Genomic Data Analysis
We compare the different methods on a genomic dataset. The dataset consists of genotypes
for 442,440 single nucleotide polymorphisms (SNPs) and 10,256 gene expression levels for 171
individuals with asthma, after removing genes with variance < 0.01. We fit a sparse CGGM
using SNPs as inputs and expressions as outputs to model a gene network influenced by SNPs.
We also compared the methods on a smaller dataset of 34,249 SNPs from chromosome 1 and
expression levels for 3,268 genes with variance > 0.1. As typically sparse model structures are
of interests in this type of analysis, we chose regularization parameters so that the number of
non-zero entries in each of Θ and Λ at convergence was approximately 10 times the number
of genes. The alternating Newton block coordinate descent was run on a 8-core machine with
parallelization.

The computation time of different methods are provided in Table 2.1. On the largest problem,
the previous approach could not run due to memory constraint, whereas our block coordinate
descent converged in around 11 hours. We also compare the convergence of the different methods
on the dataset with 34,249 SNPs and 3,268 gene expressions in Figure 2.7, and find that our
methods provide vastly superior convergence than the previous method.
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Figure 2.7: Convergence results on genomic dataset. (A) Suboptimality and (B) active set size
over time.

24



2.5 Conclusions for Optimization for Sparse CGGMs
In this chapter, we addressed the problem of large-scale optimization for sparse CGGMs. We pro-
posed a new optimization procedure, called alternating Newton coordinate descent, that reduces
computation time by alternately optimizing for the two sets of parameters Λ and Θ. Further,
we extended this with block-wise optimization so that it can run on any machine with limited
memory.
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Chapter 3

Sparse Gaussian Chain Graph Models

Probabilistic graphical models have been extensively studied as a powerful tool for modeling
a set of conditional independencies in a probability distribution [57]. In this chapter, we are
concerned with a class of graphical models, called chain graph models, that has been proposed
as a generalization of undirected graphical models and directed acyclic graphical models [13, 32,
62]. Chain graph models are defined over chain graphs that contain a mixed set of directed and
undirected edges but no partially directed cycles.

In particular, we study the problem of learning the structure of Gaussian chain graph mod-
els in a high-dimensional setting. While the problem of learning sparse structures from high-
dimensional data has been studied extensively for other related models such as Gaussian graphi-
cal models (GGMs) [29] and more recently conditional Gaussian graphical models (CGGMs) [86,
100], to our knowledge, there is little previous work that addresses this problem for Gaussian
chain graph models. Even with a known chain graph structure, current methods for parameter
estimation are hindered by the presence of multiple locally optimal solutions [2, 26, 101].

Since the seminal work on conditional random fields (CRFs) [60], a general recipe for con-
structing chain graph models [57] has been given as using CRFs as building blocks for the model.
We employ this construction for Gaussian chain graph models and propose to use the recently-
introduced sparse CGGMs [86, 100] as a Gaussian equivalent of general CRFs. When the goal is
to learn the model structure, we show that this construction is superior to the popular alternative
approach of using linear regression as component models. Some of the key advantages of our
approach are due to the fact that the sparse Gaussian chain graph models inherit the desirable
properties of sparse CGGM such as convexity of the optimization problem and structured output
prediction. In fact, our work is the first to introduce a joint estimation procedure for both the
graph structure and parameters as a convex optimization problem, given the groups of variables
for chain components. Another advantage of our approach is the ability to model a functional
mapping from multiple related variables to other multiple related variables in a more natural way
via moralization in chain graphs than other approaches that rely on complex penalty functions
for inducing structured sparsity [50, 70].

Our work on sparse Gaussian chain graphs is motivated by problems in integrative genomic
data analyses [19, 91]. While sparse GGMs have been extremely popular for learning networks
from datasets of single modality such as gene-expression levels [29], we propose that sparse
Gaussian chain graph models with CGGM components can be used to learn a cascade of net-
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works by integrating multiple types of genomic data in a single statistical analysis. We show
that our approach can reveal the module structures as well as the functional mapping between
modules in different types of genomic data effectively. Furthermore, as the cost of collecting
each data type differs, we show that semi-supervised learning can be used to make effective use
of both fully-observed and partially-observed data.

3.1 Sparse Gaussian Chain Graph Models

We consider a chain graph model for a probability distribution over J random variables x =
{x1, . . . , xJ}. The chain graph model assumes that the random variables are partitioned into C
chain components {x1, . . . ,xC}, the τ th component having size |τ |. In addition, it assumes a
partially directed graph structure, where edges between variables within each chain component
are undirected and edges across two chain components are directed. Given this chain graph
structure, the joint probability distribution factorizes as follows:

p(x) =
C∏
τ=1

p(xτ |xpa(τ)),

where xpa(τ) is the set of variables that are parents of one or more variables in xτ . Each factor
p(xτ |xpa(τ)) models the conditional distribution of the chain component variables xτ given xpa(τ).
This model can also be viewed as being constructed with CRFs for p(xτ |xpa(τ))’s [60].

The conditional independence properties of undirected and directed graphical models have
been extended to chain graph models [32, 62]. This can be easily seen by first constructing
a moralized graph, where undirected edges are added between any pairs of nodes in xpa(τ) for
each chain component τ and all the directed edges are converted into undirected edges (Figure
3.1). Then, subsets of variables xa and xb are conditionally independent given xc, if xa and xb
are separated by xc in the moralized graph. This conditional independence criterion for a chain
graph is called c-separation and generalizes d-separation for Bayesian networks [57].

In this section, we focus on Gaussian chain graph models, where both p(x) and p(xτ |xpa(τ))’s
are Gaussian distributed. Below, we review linear regression models and CGGMs as chain com-
ponent models, and introduce our approach for learning chain graph model structures.
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Figure 3.1: Illustration of chain graph models. (A) A chain graph with two components, {x1, x2}
and {x3}. (B) The moralized graph of the chain graph in (A). (C) After inference in the chain
graph in (A), inferred indirect dependencies are shown as the dotted line. (D) A chain graph with
three components, {x1, x2}, {x3}, and {x4}. (E) The moralized graph of the chain graph in (D).
(F) After inference in the chain graph in (D), inferred indirect dependencies are shown as the
dotted lines.
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3.1.1 Sparse Linear Regression as Chain Component Model
As the specific functional form of p(xτ |xpa(τ)) in Gaussian chain graphs models, a linear regres-
sion model with multivariate responses has been widely considered [5, 6, 26]:

p(xτ |xpa(τ)) = N(Bτxpa(τ),Ω
−1
τ ), (3.1)

where Bτ ∈ R|τ |×|pa(τ)| is the matrix of regression coefficients and Ωτ is the |τ | × |τ | inverse
covariance matrix that models correlated noise. Then, the non-zero elements in Bτ indicate the
presence of directed edges from xpa(τ) to xτ , and the non-zero elements in Ωτ correspond to the
undirected edges among the variables in xτ . When the graph structure is known, an iterative
procedure has been proposed to estimate the model parameters, but it converges only to one of
many locally-optimal solutions [26].

When the chain component model has the form of Eq. (3.1), in order to jointly estimate the
sparse graph structure and the parameters, we adopt sparse multivariate regression with covari-
ance estimation (MRCE) [77] for each chain component and solve the following optimization
problem:

min
C∑
τ=1

tr((Xτ −Xpa(τ)B
T
τ )Ωτ (Xτ −Xpa(τ)B

T
τ )T )−N log |Ωτ |+λ

C∑
τ=1

||Bτ ||1 + γ
C∑
τ=1

||Ωτ ||1,

where Xα ∈ RN×|α| is a dataset for N samples, || · ||1 is the sparsity-inducing L1 penalty, and λ
and γ are the regularization parameters that control the amount of sparsity in the parameters. As
in MRCE [77], the problem above is not convex, but only bi-convex.

3.1.2 Sparse CGGM as Chain Component Model
As an alternative model for p(xτ |xpa(τ)) in Gaussian chain graph models, a re-parameterization
of the linear regression model in Eq. (3.1) with natural parameters has been considered [62].
This model also has been called a CGGM [86] or Gaussian CRF [100] due to its equivalence to
a CRF. A CGGM for p(xτ |xpa(τ)) takes the standard form of undirected graphical models as a
log-linear model:

p(xτ |xpa(τ)) = exp
(
− 1

2
xTτ Λτxτ − xTτ Θτ,pa(τ)xpa(τ)

)
/A(xpa(τ)), (3.2)

where Λτ ∈ R|τ |×|τ | and Θτ,pa(τ) ∈ R|τ |×|pa(τ)| are the parameters for the feature weights between
pairs of variables within xτ and between pairs of variables across xτ and xpa(τ), respectively, and
A(xpa(τ)) is the normalization constant. The non-zero elements of Λτ and Θτ,pa(τ) indicate edges
among the variables in xτ and between xτ and xpa(τ), respectively.

The linear regression model in Eq. (3.1) can be viewed as the result of performing inference
in the probabilistic graphical model given by the CGGM in Eq. (3.2). This relationship between
the two models can be seen by re-writing Eq. (3.2) in the form of a Gaussian distribution:

p(xτ |xpa(τ)) = N(−Λ−1
τ Θτ,pa(τ)xpa(τ),Λ

−1
τ ), (3.3)
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where marginalization in a CGGM involves computing Bτxpa(τ) = −Λ−1
τ Θτ,pa(τ)xpa(τ) to obtain

a linear regression model parameterized by Bτ .
In order to estimate the graph structure and parameters for Gaussian chain graph models with

CGGMs as chain component models, we adopt the procedure for learning a sparse CGGM [86,
100] and minimize the negative log-likelihood of data along with sparsity-inducing `1 penalty:

min−L(X; Θ) + λ

C∑
τ=1

||Θτ,pa(τ)||1 + γ
C∑
τ=1

||Λτ ||1,

where Λ = {Λτ , τ = 1, . . . , C}, Θ = {Θτ,pa(τ), τ = 1, . . . , C}, and L(X; Λ,Θ) is the data
log-likelihood for dataset X ∈ RN×J for N samples. Unlike MRCE, the optimization problem
for a sparse CGGM is convex, and efficient algorithms have been developed to find the globally-
optimal solution with substantially lower computation time than that for MRCE [86, 100].

While maximum likelihood estimation leads to the equivalent parameter estimates for CG-
GMs and linear regression models via the transformation Bτ = −Λ−1

τ Θτ,pa(τ), imposing a spar-
sity constraint on each model leads to different estimates for the sparsity pattern of the parameters
and the model structure [86]. The graph structure of a sparse CGGM directly encodes the prob-
abilistic dependencies among the variables, whereas the sparsity pattern of Bτ = −Λ−1

τ Θτ,pa(τ)

obtained after marginalization can be interpreted as indirect influence of covariates xpa(τ) on re-
sponses xτ . As illustrated in Figures 3.1C and 3.1F, the CGGM parameters Θτ,pa(τ) (directed
edges with solid line) can be interpreted as direct dependencies between pairs of variables across
xτ and xpa(τ), whereas Bτ = −Λ−1

τ Θτ,pa(τ) obtained from inference can be viewed as indirect
and inferred dependencies (directed edges with dotted line).

We argue that when the goal is to learn the model structure, performing the estimation with
CGGMs for chain component models can lead to a more meaningful representation of the under-
lying structure in data than imposing a sparsity constraint on linear regresssion models. Then the
corresponding linear regression model can be inferred via marginalization. This approach also
inherits many of the advantages of sparse CGGMs such as convexity of optimization problem.

3.1.3 Markov Properties and Chain Component Models

When a CGGM is used as the component model, the overall chain graph model is known to
have Lauritzen-Wermuth-Frydenberg (LWF) Markov properties [32]. The LWF Markov proper-
ties also correspond to the standard probabilistic independencies in more general chain graphs
constructed by using CRFs as building blocks [57].

Many previous works have noted that LWF Markov properties do not hold for the chain
graph models with linear regression models [5, 6]. The alternative Markov properties (AMP)
were therefore introduced as the set of probabilistic independencies associated with chain graph
models with linear regression component models [5, 6]. It has been shown that the LWF and
AMP Markov properties are equivalent only for chain graph structures that do not contain the
graph in Figure 3.1A as a subgraph [5, 6]. For example, according to the LWF Markov property,
in the chain graph model in Figure 3.1A, x1 ⊥ x3|x2 as x1 and x3 are separated by x2 in the
moralized graph in Figure 3.1B. However, the corresponding AMP Markov property implies a
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different probabilistic independence relationship, x1 ⊥ x3. In the model in Figure 3.1D, accord-
ing to the LWF Markov property, we have x1 ⊥ x3|{x2, x4}, whereas the AMP Markov property
gives x1 ⊥ x3|x4.

We observe that when using sparse CGGMs as chain component models, we estimate a model
with the LWF Markov properties and perform marginalization in this model to obtain a model
with linear-regression chain components that can be interpreted with the AMP Markov proper-
ties.

3.1.4 Sparse Multi-layer Gaussian Chain Graph Models
In this section, we extend the two-layer Gaussian chain graph model from the previous section
into a multi-layer model to model data that are naturally organized into multiple layers. First,
we describe how sparse Gaussian chain graph models with linearly chained components can be
applied to problems in integrative genomics. Next, we compare the modeling assumptions of our
approach to those of colocalization approaches in genomics.

Our approach is motivated by problems in integrative genomic data analysis. In order to study
the genetic architecture of complex diseases, data are often collected for multiple data types, such
as genotypes, gene expressions, and phenotypes for a population of individuals [19, 91]. The
primary goal of such studies is to identify the genotype features that influence gene expressions,
which in turn influence phenotypes. In such problems, data can be naturally organized into mul-
tiple layers, where the influence of features in each layer propagates to the next layer in sequence.
In addition, it is well-known that the expressions of genes within the same functional module are
correlated and influenced by the common genotype features and that the coordinated expressions
of gene modules affect multiple related phenotypes jointly. These underlying structures in the
genomic data can be potentially revealed by inference and moralization in sparse Gaussian chain
graph models with CGGM components.

Models with linearly chained components

Given variables, x = {x1, . . . , xJ}, y = {y1, . . . , yK}, and z = {z1, . . . , zL}, at each of the three
layers, we set up a three-layer Gaussian chain graph model as follows:

p(z,y|x)=p(z|y)p(y|x)

=

(
exp(−1

2
zTΛzzz− yTΘyzz)/C2(y)

)(
exp(−1

2
yTΛyyy − xTΘxyy)/C1(x)

)
,

(3.4)

where C1(x) and C2(y) are the normalization constants. In our application, x, y, and z cor-
respond to genotypes, gene-expression levels, and phenotypes, respectively. As the focus of
such studies lies on discovering how the genotypic variability influences gene expressions and
phenotypes rather than the structure in genotype features, we do not model p(x) directly.

Given the estimated sparse model for Eq. (3.4), structured sparsity pattern can be recovered
via inference and moralization. Computing Bxy = −Λ−1

yyΘT
xy and Byz = −Λ−1

zz ΘT
yz corre-

sponds to performing inference to reveal how multiple related yk’s in Λyy (or zl’s in Λzz) are
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jointly influenced by a common set of relevant xj’s (or yk’s). On the other hand, the effects of
moralization can be seen from the joint distribution p(z,y|x) derived from Eq. (3.4):

p(z,y|x) = N(−Λ−1
(zz,yy)Θ

T
(yz,xy)x,Λ

−1
(zz,yy)),

where Θ(yz,xy) = (0J×L,Θxy) and Λ(zz,yy) =

(
Λzz ΘT

yz

Θyz Λyy + ΘyzΛ
−1
zz ΘT

yz

)
. Λ(zz,yy) corre-

sponds to the undirected graphical model over z and y conditional on x after moralization.

Comparison of our modeling assumptions with those of colocalization methods

Here we compare the independence assumptions made by our model with those of previous
colocalization-based approaches for integrating eQTL and GWAS analyses [36, 46, 94]. Both
these previous colocalization techniques and our model focus on settings with three types of
observed variables: genotypes x, gene expression levels y, and traits z.

Without any independence assumptions, any model conditioned on genotypes x can be writ-
ten as follows:

p(y, z|x) = p(z|y,x)p(y|x). (3.5)

The Naive Bayes assumption for the first term, p(z|y,x) = p(z|y)p(z|x), results in the
following 3-layer model:

p(y, z|x) =p(z|y)p(y|x)p(z|x) (3.6)

Both previous colocalization approaches and our linear chain models can be written as spe-
cial cases of of the model in Eq 3.6, with further independence assumptions. The conditional
independence assumption z ⊥ y|x, that phenotypes and gene expressions are independent given
genotype, combined with Eq. 3.6, provides the model used by colocalization methods:

p(y, z|x) = p(z|x)p(y|x). (3.7)

Colocalization methods learn p(z|x) from GWAS-type analyses and p(y|x) from eQTL-type
analyses, then look for SNPs in x that show up in both p(z|x) and p(y|x).

In our approach, we instead assume z ⊥ x|y, that phenotypes and genotype are independent
given gene expressions. Combined with Eq. 3.6, this gives

p(y, z|x) = p(z|y)p(y|x), (3.8)

with each factor modeled as a sparse CGGM. To find colocalized SNPs, we then look for SNPs
in x that show up in p(y, z|x).

A three-layer model for allele-specific expression

We present a three-layer Gaussian chain graph model for allele-specific expression. In this set-
ting, we model allele-specific gene expression levels a given genotypes g, and overall gene
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expression levels e given a. The distribution of allele-specific expressions a given genotypes
g is given by an sCGGM with additional constraints on the parameters, to model known sym-
metries among allele-specific expressions and to distinguish between the effects of cis and trans
eQTLs. The distribution of overall expressions given allele-specific expressions is given by an
sCGGM at the limit of zero-noise, because the overall expression of a particular gene is simply
given deterministically by the sum of its two allele’s expression levels. Let us assume we have
J SNPs and K genes, for which we observe expression levels for both alleles. We represent
the allele-specific expressions so that all paternal allele expressions are together in a(P ) ∈ RK ,
and all maternal allele data are together in a(M) ∈ RK . Furthermore, the genotype data con-
sists of paternal haplotypes g(P ) ∈ RJ , maternal haplotypes g(M) ∈ RJ , and overall genotypes
g∗ = g(P ) + g(M) ∈ RJ . Combining these allele specific expression and genotype information,
we have

a =

[
a(P )

a(M)

]
∈ R2K , g =

g(P )

g∗

g(M)

 ∈ R3p. (3.9)

We model these three data types as a sparse Gaussian chain graph model, with factorization
p(e, a|g) = p(a|g)p(e|a). The distribution for p(a|g) is given as an sCGGM:

p(a|g) = p(

[
a(P )

a(M)

]
|g) ∝ exp

(
−
[

a(P )

a(M)

]T
Λ

[
a(P )

a(M)

]
− 2gTΘ

[
a(P )

a(M)

])
/Z(g), (3.10)

with parameters

Λ =

[
Λ(P ) Λ(P,M)

Λ(M,P ) Λ(M)

]
∈ R2q×2q, Θ =

Θ(P,P ) Θ(P,M)

Θ(∗,P ) Θ(∗,M)

Θ(M,P ) Θ(M,M)

 ∈ R3p×2q.

Because Λ is a positive definite matrix, we know that ∀1 ≤ i, j ≤ K:

Λ(P ) = Λ(P )T =⇒ Λ(P )
ij = Λ(P )T

ji, (3.11)

Λ(M) = Λ(M)T =⇒ Λ(M)
ij = Λ(M)T

ji, and (3.12)

Λ(P,M) = Λ(M,P )T =⇒ Λ(P,M)
ij = Λ(M,P )T

ji. (3.13)

We place additional constraints on Λ and Θ to take advantage of known structure in this
particular setting. We constrain the four edges among allelic expressions for all genes i 6= j to
be of equal weight:

Λ(P )
ij = Λ(P,M)

ij = Λ(M,P )
ji = Λ(M)

ij, ∀i 6= j. (3.14)

This means that Λ(P ) = Λ(M) and Λ(P,M) = Λ(M,P ). Furthermore, we assume that the gene
node potentials for a(P )

i and a(M)
i are equal, so that Λ(P )

ii = Λ(M)
ii, with coefficients given in
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δ ∈ Rq. We also have edges between a(P )
i and a(M)

i for all i, given in η ∈ Rq. This implies the
following structure for Λ:

Λ =

[
Λ(P ) Λ(P,M)

Λ(M,P ) Λ(M)

]
=

[
Ω + diag (δ)) Ω + diag (η)
Ω + diag (η) Ω + diag (δ)

]
, (3.15)

where Ω has zeros on the diagonal.
For Θ, we enforce symmetry between a(P )

i and a(M)
i for allele-specific edges from SNP k,

Θ(P )
ki = Θ(M)

ki, (3.16)

and remove all edges from g(P ) to a(M) and from g(M) to a(P ). Furthermore, we constrain equal
weights for the edges from g∗ to a(P ) and a(M), respectively, corresponding to non-allele-specific
effects. This implies the following structure for Θ:

Θ =

Θ(P,P ) Θ(P,M)

Θ(∗,P ) Θ(∗,M)

Θ(M,P ) Θ(M,M)

 =

Π(P ) 0
Ξ Ξ

0 Π(M).

 (3.17)

The generative model for overall expressions is given by the sum of both allelic expressions:

e = a(P ) + a(M) ∈ RK . (3.18)

This can be written as an sCGGM with zero-noise:

p
(
e|
[

a(P )

a(M)

])
∼N

(
CTa, σ2Iq

)
= N

( [
Iq Iq

] [a(P )

a(M)

]
, σ2Iq

)
, where

C =

[
Iq
Iq

]
∈ R2q×q, and σ = 0.

3.2 Learning Sparse Gaussian Chain Graph Models

3.2.1 Learning Structured Sparsity
Another advantage of using CGGMs as chain component models instead of linear regression is
that the moralized graph, which is used to define the LWF Markov properties, can be leveraged
to discover the underlying structure in a correlated functional mapping from multiple inputs to
multiple outputs. In this section, we show that a sparse two-layer Gaussian chain graph model
with CGGM components can be used to learn structured sparsity. The key idea behind our
approach is that while inference in CGGMs within the chain graph model can reveal the shared
sparsity patterns for multiple related outputs, a moralization of the chain graph can reveal those
for multiple inputs.

Statistical methods for learning models with structured sparsity were extensively studied in
the literature of multi-task learning, where the goal is to find input features that influence multi-
ple related outputs simultaneously [18, 50, 70]. Most of the previous works assumed the output
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Figure 3.2: Illustration of sparse two-layer Gaussian chain graphs with CGGMs. (A) A two-
layer Gaussian chain graph. (B) The results of performing inference and moralization in (A).
The dotted edges correspond to indirect dependencies inferred by inference. The edges among
xj’s represent the dependencies introduced by moralization.

structure to be known a priori. Then, they constructed complex penalty functions that leverage
this known output structure, in order to induce structured sparsity pattern in the estimated pa-
rameters in linear regression models. In contrast, a sparse CGGM was proposed as an approach
for performing a joint estimation of the output structure and structured sparsity for multi-task
learning. As was discussed in Section 3.1.2, once the CGGM structure is estimated, the inputs
relevant for multiple related outputs could be revealed via probabilistic inference in the graphical
model.

While sparse CGGMs focused on leveraging the output structure for improved predictions,
another aspect of learning structured sparsity is to consider the input structure to discover multi-
ple related inputs jointly influencing an output. As CGGM is a discriminative model that does not
model the input distribution, it is unable to capture input relatedness directly, although discrim-
inative models in general are known to improve prediction accuracy. We address this limitation
of CGGMs by embedding CGGMs within a chain graph and examining the moralized graph.

We set up a two-layer Gaussian chain graph model for inputs x and outputs y as follows:

p(y,x) = p(y|x)p(x) =

(
exp(−1

2
yTΛyyy − xTΘxyy)/A1(x)

)(
exp(−1

2
xTΛxxx)/A2

)
,

where a CGGM is used for p(y|x) and a GGM for p(x), and A1(x) and A2 are normalization
constants. As the full model factorizes into two factors p(y|x) and p(x) with distinct sets of
parameters, a sparse graph structure and parameters can be learned by using the optimization
methods for sparse CGGM [100] and sparse GGM [29, 49].

The estimated Gaussian chain graph model leads to a GGM over both the inputs and outputs,
which reveals the structure of the moralized graph:

p(y,x) = N

(
0,

(
Λyy ΘT

xy

Θxy Λxx + ΘxyΛ−1
yyΘT

xy

)−1
)
.

In the above GGM, we notice that the graph structure over inputs x consists of two components,
one for Λxx describing the conditional dependencies within the input variables and another for
ΘxyΛ−1

yyΘT
xy that reflects the results of moralization in the chain graph. If the graph Λyy contains

connected components, the operation ΘxyΛ−1
yyΘT

xy for moralization induces edges among those
inputs influencing the outputs in each connected component.

Our approach is illustrated in Figure 3.2. Given the model in Figure 3.2A, Figure 3.2B illus-
trates the inferred structured sparsity for a functional mapping from multiple inputs to multiple
outputs. In Figure 3.2B, the dotted edges correspond to inferred indirect dependencies introduced
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via marginalization in the CGGM p(y|x), which reveals how each input is influencing multiple
related outputs. On the other hand, the additional edges among xj’s have been introduced by
moralization ΘxyΛ−1

yyΘT
xy for multiple inputs jointly influencing each output. Combining the

results of marginalization and moralization, the two connected components in Figure 3.2B rep-
resent the functional mapping from {x1, x2} to {y1, y2} and from {x3, x4, x5} to {y3, y4, y5},
respectively.

3.2.2 Semi-supervised Learning
Here we explore the use of semi-supervised learning, where the top and bottom layer data are
fully observed but the middle-layer data are collected only for a subset of samples. In our ap-
plication, genotype data and phenotype data are relatively easy to collect from patients’ blood
samples and from observations. However, gene-expression data collection is more challeng-
ing, as invasive procedure such as surgery or biopsy is required to obtain tissue samples. We
introduce a modification of our learning algorithm for semi-supervised learning, to handle the
situation where expression data are available only for a subset of individuals because of the diffi-
culty of obtaining tissue samples. This modification corresponds to an expectation maximization
(EM) algorithm [25] that imputes the missing expression levels in the E-step and performs our
Fast-sCGGM or Mega-sCGGM optimization in the M-step.

EM algorithm for semi-supervised learning

Given a dataset D = {Do,Dh}, where Do = {Xo,Yo,Zo} for the fully-observed data and
Dh = {Xh,Zh} for the samples with missing gene-expression levels, the data log-likelihood
based on the three-layer model can be written as:

L(D; Θ) = Lo(Do; Θ) + Lh(Dh; Θ),

where Lo(Do; Θ) is the data log-likelihood with respect to the model in Eq. (3.4) and Lh(Dh; Θ)
is the data log-likelihood based on the probability distribution after marginalizing out y from Eq.
(3.4), given as:

p(z|x) = N(µz|x,Σz|x), where

µz|x = Λ−1
zz ΘT

yzΛ
−1
yyΘT

xyx and Σz|x = Λ−1
zz + Λ−1

zz ΘT
yzΛ

−1
yyΘyzΛ

−1
zz .

Since the marginalization over y within Lh(Dh; Θ) leads to the coupling of many parameters,
making the optimization non-trivial, we adopt an EM algorithm that iteratively maximizes the
expected log-likelihood of complete data:

Lo(Do; Θ) + E
[
Lo(Dh,Yh; Θ)

]
, (3.19)

combined with L1-regularization.
Given the parameter estimate Θ(t−1) from the previous iteration (t − 1), the expectation in

the above equation is taken with respect to p(Yh|Xh,Zh,Θ
(t−1)), where

p(y|z,x) = N(µy|x,z,Σy|x,z),

µy|x,z = −Σy|x,z(Θyzz + ΘT
xyx) and Σy|x,z = (Λyy + ΘyzΛ

−1
zz ΘT

yz)−1.
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The expectation step computes the expected sufficient statistics to form Eq. (3.19) and the max-
imization step finds the parameter estimates that maximize Eq. (3.19).

Thus, during the M-step of the tth iteration, we maximize

log |Λyy|+ log |Λzz| −
[

tr S̃yyΛyy + 2S̃xyΘxy + Λ−1
yyΘT

xyŜxxΘxy

+ tr S̃zzΛzz + 2S̃yzΘyz + Λ−1
zz ΘT

yzŜyyΘyz

]
,

using expected sufficient statistics computed from the parameters at step t− 1:

S̃xy =
1

No +Nh

(
XT
o Yo + XT

pE1

)
,

S̃yy =
1

No +Nh

(
YT
o Yo +E2

)
,

S̃yz =
1

No +Nh

(
YT
o Zo +ET

1 Z
)
,

where

E1 = E
[
Yh

]
= −(XhΘxy + ZhΘ

T
yz)Σy|x,z, and E2 = E

[
YT
hYh

]
= ET

1 E1 +NhΣy|x,z.

The time complexity of each E-step is

O
(
K3 + L3 + JK2 +KL2 +No(JK +K2 +KL)

)
.

The first two terms come from matrix inversion, while the third and fourth terms come from
matrix-matrix multiplications. The term with coefficient No comes from summing over the ex-
pectation for each of the samples. Of course this final cost would be incurred once, even without
missing data and EM, though not repeated at every EM iteration.

Memory-efficient implementation of E-step

For problem sizes where we are constrained by limited memory, the M-step is carried out
by using our Mega-sCGGM algorithm. However, in the E-step, a naive inversion of Λyy +
ΘyzΛzz

−1ΘT
yz to obtain Σy|x,z is expensive and storage of this dense matrix may exceed com-

puter memory for large gene expression datasets. We reduce the time cost and avoid memory
limit in the E-step, assuming that the number of phenotypes r is relatively small compared to the
number of genes (i.e., r << q), which is typical for most studies. Instead of explicitly performing
the E-step, we embed the E-step within the M-step, such that the E-step results are represented
implicitly to fit in memory and computed explicitly on-demand as needed in the M-step. Specif-
ically, instead of performing the full E-step, we implicitly represent Λyy + ΘyzΛzz

−1ΘT
yz as

Λyy + KKT , using low-rank component K = ΘyzL
T
z and the sparse Cholesky factorization of

trait network LzL
T
z = Λzz. Then, during M-step, we invert Λyy + KKT , one column at a time

as needed, using the conjugate gradient method. This modified EM algorithm is equivalent to
the original EM algorithm that iterates between an M-step and an E-step, producing the same
estimate.
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EM algorithm with a deterministic chain component for allele-specific expression

In circumstances where, for certain samples, only overall gene expressions and not allele-specific
expressions are available, we propose using semi-supervised with EM. Combining Eqs 3.10 and
3.18, gives the following joint distribution:[

e
a

]
|g ∼N

([CTµa|g
µa|g

]
,

[
σ2Iq + CTΛ−1C CTΛ−1

Λ−1C Λ−1

])
where µa|g = −Λ−1Θg.

Then, the conditional distribution p(a|e,g) is as follows:

a|e,g ∼ N (µa|e,g,Σa|e,g) (3.20)

where Σa|e,g = Λ−1 −Λ−1C
(
σ2Iq + CTΛ−1C

)−1
CTΛ−1

)
, (3.21)

and µa|e,g = µa|g + Λ−1C
(
σ2Iq + CTΛ−1C

)−1
(e−CTµa|g).

Because σ = 0, the mean simplifies as follows:

µa|e,g =
1

2

[
µa(P )|g + e− µa(M)|g
µa(M)|g + e− µa(P )|g

]
.

Because σ = 0, the covariance simplifies as follows:

Σa|e,g =
1

2

[
Σ(P ) −Σ(P,M) Σ(P,M) −Σ(P )

Σ(P,M) −Σ(P ) Σ(P ) −Σ(P,M)

]

3.3 Inference in Sparse Gaussian Chain Graph Models
While the sparse Gaussian chain graph model explicitly represents pair-wise dependencies among
variables as edges in the graph, there are other dependencies that are only implicitly represented
in the model but can be revealed by performing an inference on the estimated probabilistic graph-
ical model. Here, we provide an overview of the inferred dependencies, all of which involve
simple matrix operations.

3.3.1 Dependencies from inference procedures for sparse CGGMs
The following two inference methods directly follow from the inference method for a sparse
CGGM (Figure 3.3A) [87, 104], which infers the indirect perturbation effects that arise from the
direct perturbation effects propagating to other parts of the network.
• Indirect SNP perturbation effects on gene expression levels: Bxy = −ΘxyΛyy

−1,
where [Bxy]i,j represents the indirect perturbation effect of SNP i on the expression level
of gene j (blue dashed arrow in Figure 3.3A). This can be seen by deriving the marginal
distribution from the sparse CGGM component model p(y|x) as follows:

p(y|x) = N(BT
xyx,Λyy

−1). (3.22)
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Figure 3.3: Illustration of the PerturbNet approach. (A) PerturbNet uses a sparse Gaussian chain
graph model with a cascade of two sparse CGGMs, one for a gene network influenced by SNPs
(blue solid edges and nodes) and the other for a clinical trait network influenced by gene expres-
sion levels (red solid edges and nodes). The sparse CGGM inference procedures can be used to
infer hidden interactions in each of the two component sparse CGGMs, such as the indirect effect
of SNP x1 on expression level y2 through expression level y3 (blue dashed arrow) and the indi-
rect effect of expression level y3 on phenotype z2 through phenotype z3 (red dashed arrow). (B)
The inference procedures of sparse Gaussian chain graph models are used to infer the informa-
tion on how the gene network mediates SNP effects on phenotypes. Examples of such inferred
interactions are shown for the perturbation effect of SNP x1 on phenotype z3 (purple dashed
arrow), which can be decomposed into two components mediated by each of the two gene mod-
ules (yellow and orange nodes), and the inferred dependencies between expression level y3 and
expression level y14 (blue dashed line) induced by phenotype z3 in the posterior gene network,
after seeing the clinical phenotypes.
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From Eq. (3.22), the marginal distribution for the expression level [y]i of gene i can be
obtained as p([y]i|x) = N

([
[Bxy]:,i

]T
x, [Λyy

−1]i,i
)
. While [Θxy]i,j represents the direct

perturbation effect of SNP i on the expression of gene j, [Bxy]i,j represents the overall
perturbation effect that aggregates all indirect influence of this SNP on gene j through
other genes. When SNP i does not influence the expression of gene j directly but exerts
influence on gene j through other genes connected to gene j in the network Λyy, we have
[Θxy]i,j = 0 but [Bxy]i,j 6= 0.

• Indirect effects of gene expression levels on clinical phenotypes: Byz = −ΘyzΛzz
−1,

where [Byz]i,j represents the indirect influence of the expression level of gene i on pheno-
type j (red dashed arrow in Figure 3.3A). Similarly as above, this can be seen by deriving
the marginal distribution from the sparse CGGM component model p(z|y), as follows:

p(z|y) = N(BT
yzy,Λzz

−1).

Then, the marginal distribution for [z]i of phenotype i can be obtained as p([z]i|y) =

N
([

[Byz]:,i
]T

y, [Λzz
−1]i,i

)
. While [Θyz]i,j represents the direct influence of gene i on

phenotype j, [Byz]i,j represents the overall influence that aggregates all indirect influence
of this expression level on phenotype j through other phenotypes.

3.3.2 Dependencies from inference procedures for sparse Gaussian chain
graph models

The sparse Gaussian chain graph model provides the following additional inference procedures
for extracting the information on whether SNP perturbation effects on the gene network reach
the phenotypes and how different genes or subnetworks of the gene network mediate SNP effects
on phenotypes (Figure 3.3B).
• SNP effects on clinical phenotypes: Bxz = BxyByz, where [Bxz]i,j represents the overall

influence of SNP i on phenotype j mediated by gene expression levels in gene network Λyy

(purple dashed arrow in Figure 3.3B). The effects of SNPs on phenotypes are not directly
modeled in our model but can be inferred by deriving the marginal distribution p(z|x) as
follows:

p(z|x) = N(BT
xzx,Λzz

−1 + Λzz
−1ΘT

yzΛyy
−1ΘyzΛzz

−1).

The marginal distribution for the phenotype [z]i of phenotype i given x can be obtained as
p([z]i|x) = N

([
[Bxz]:,i

]T
x, [Λzz

−1 +Λzz
−1ΘT

yzΛyy
−1ΘyzΛzz

−1]i,i), where each element
[Bxz]i,j represents the overall influence of SNP i on phenotype j mediated by the gene
network in Λyy and other phenotypes connected to phenotype j in Λzz.

• SNP effects on clinical phenotypes mediated by a gene module: The overall SNP ef-
fects on phenotypes in Bxz above can be decomposed into the SNP effects on phenotypes
mediated by each gene module. Let M be a gene module that consists of a subset of the q
genes whose expression levels were modeled in Λyy (yellow and orange gene modules in
Figure 3.3B). Then, the effects of SNPs on phenotypes mediated by the genes in module
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M can be obtained as follows:

BM
xz =

∑
k∈M

[Bxy]:,k[Byz]k,:,

where [Bxy]:,a represents the ath row of Bxy and [Byz]b,: represents the bth column of Byz.
In the above equation, [BM

xz]i,j quantifies the effect of SNP i on phenotype j through the
expression levels of genes in module M . If M1, . . . ,Ms are disjoint subsets of q genes,
where ∪m=1,...,sMm is the full set of q genes, we have the following decomposition:

Bxz =
s∑

m=1

BMm
xz . (3.23)

• Inferred dependencies among genes after seeing phenotype data: Λy|x,z = Λyy +
ΘyzΛzz

−1ΘT
yz represents gene network Λyy augmented with the component ΘyzΛzz

−1ΘT
yz

introduced through dependencies in phenotype network Λzz (blue dashed edge in Figure
3.3B). In this augmented network, additional edges are introduced between two genes if
their expression levels influence the same trait or if they both affect traits that are con-
nected in the phenotype network Λzz. The posterior gene network Λy|x,z, which contains
the dependencies among expression levels after taking into account phenotype data, can
be obtained by inferring the posterior distribution given phenotypes from the estimated
Gaussian chain graph model as follows:

p(y|x, z) = N
(
−
(
zTΘT

yz + xTΘxy

)
Λ−1

y|x,z, Λ−1
y|x,z

)
,

where

Λy|x,z = Λyy + ΘyzΛzz
−1ΘT

yz.

The inferred network Λy|x,z can also be seen by inferring from the estimated model the
joint distribution

p(z,y|x) = N
(
−Λ−1

(zz,yy)Θ
T
(yz,xy)x,Λ

−1
(zz,yy)

)
,

where Θ(yz,xy) = (0p×r,Θxy) with p × r matrix of 0’s and Λ(zz,yy) =

(
Λzz ΘT

yz

Θyz Λy|x,z

)
.

This joint distribution is an alternative representation of the same Gaussian chain graph
model in Eq. (3.4) and corresponds to another sparse CGGM over y and z conditional on
x. This process of introducing the additional dependencies via ΘyzΛzz

−1ΘT
yz in this new

sparse CGGM, which is equivalent to the original chain graph model, is also known as
moralization in the probabilistic graphical model literature [58].

3.3.3 Flow of SNP perturbation effects through the gene network onto
traits

Motivated by SNP-trait regression decomposition (Eq. 3.23) we define a network flow tensor
representing how SNP perturbations effect traits via the gene network. Score functions defined
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as summations over the tensor summarize the role of genes or gene modules in mediating the
effect of SNPs on traits or trait groups. Each coefficient in the tensor, corresponding to SNP s,
gene g, and trait t, captures the mediating role of gene g in propagating perturbations of s onto t.

Various different order-3 network flow tensors can be chosen, which represent the flow of
either direct or indirect perturbations through 3-layer chain model.
• Indirect perturbation effects on gene levels and indirect effects of gene levels on clin-

ical traits
The network flow tensor is computed using Bxy, which represents indirect SNP perturba-
tion effects, and Byz, which represents indirect gene effects on traits:

Tsgt = [Bxy]sg[Byz]gt. (3.24)

Each coefficient Tsgt measures the contribution of gene g in the decomposition of Bxz,
shown in Eq. (3.23).
Inspired by this decomposition of indirect SNP-trait effects into indirect SNP-gene effects
and indirect gene-trait effects, we propose using other additive decompositions involving
direct effects, as below.

• Indirect perturbation effects on gene levels and direct effects of gene levels on clinical
traits
The network flow tensor is now computed using Bxy, which represents indirect SNP per-
turbation effects, and Θyz, which represents direct gene effects on traits, as follows:

Usgt = [Θxy]sg[Byz]gt. (3.25)

• Direct perturbation effects on gene levels and indirect effects of gene levels on clinical
traits
The network flow tensor is computed using Θxy, which represents direct SNP perturbation
effects, and Byz, which represents indirect gene effects on traits, as follows:

Vsgt = [Bxy]sg[Θyz]gt. (3.26)

• Direct perturbation effects on gene levels and direct effects of gene levels on clinical
traits
The network flow tensor is computed from Θxy, which represents direct SNP perturbation
effects, and Θyz, which represents direct gene effects on traits, as follows:

Wsgt = [Θxy]sg[Θyz]gt. (3.27)

Questions about how SNPs and gene modules work in concert to effect phenotypes can be an-
swered via score functions operating on these network flow tensors. We can rank the importance
of SNPs and genes (or gene modules) by their score function output, selecting the SNPs and
genes which maximize the score function output for a particular trait or trait group. Each score
function can be computed for a network flow tensor F ∈ {T, U, V,W}, depending on whether
we want to base our analysis on the flow of either direct or indirect relationships for SNP-gene
perturbations and gene-trait effects.
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• Scoring genes and gene modules by their mediation of a SNP on a trait group
For each SNP s and trait group T , we define a score function with query input G, which is
either a single gene or gene module, as follows:

cs,T (G;F ) =
∑
t∈T

∑
g∈G

|Fsgt|. (3.28)

• Scoring SNPs by how much they influence a trait group through the gene network
For a trait group T , we define a score function with query input SNP s as follows:

bT (s;F ) =
∑
t∈T

∑
g

|Fsgt|. (3.29)

• Scoring genes or modules by their mediation of all genetic variation on a trait group
For a trait group T , we define a score with input G, a gene or gene module, as follows:

dT (G;F ) =
∑
s

∑
t∈T

∑
g∈G

|Fsgt|. (3.30)

3.4 Experiments
In this section, we empirically demonstrate that CGGMs are more effective components for
sparse Gaussian chain graph models than linear regression for various tasks, using synthetic and
real-world genomic datasets. We used the sparse three-layer structure for p(z,y|x) in all our
experiments.

3.4.1 Simulation Study
In simulation study, we considered two scenarios for true models, CGGM-based and linear-
regression-based Gaussian chain graph models. We evaluated the performance in terms of graph
structure recovery and prediction accuracy in both supervised and semi-supervised settings.

In order to simulate data, we assumed the problem size of J=500, K=100, and L=50 for x,
y, and z, respectively, and generated samples from known true models. Since we do not model
p(x), we used an arbitrary choice of multinomial distribution to generate samples for x. The true
parameters for CGGM-based simulation were set as follows. We set the graph structure in Λyy to
a randomly-generated scale-free network with a community structure [96] with six communities.
The edge weights were drawn randomly from a uniform distribution [0.8, 1.2]. We then set Λyy

to the graph Laplacian of this network plus small positive values along the diagonal so that Λyy

is positive definite. We generated Λzz using a similar strategy, assuming four communities. Θxy

was set to a sparse random matrix, where 0.4% of the elements have non-zero values drawn from
a uniform distribution [-1.2,-0.8]. Θyz was generated using a similar strategy, with a sparsity
level of 0.5%. We set the sparsity pattern of Θyz so that it roughly respects the functional
mapping from communities in y to communities in z. Specifically, after reordering the variables
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(A) (B)

(C) (D) (E)

Figure 3.4: Illustration of the structured sparsity recovered by the model with CGGM compo-
nents, simulated dataset. (A) Λzz. (B) Byz = −Λ−1

zz ΘT
yz shows the effects of marginalization

(white vertical bars). The effects of moralization are shown in (C) Λyy + ΘyzΛ
−1
zz ΘT

yz, and its
decomposition into (D) Λyy and (E) ΘyzΛ

−1
zz ΘT

yz.

in y and z by performing hierarchical clustering on each of the two networks Λyy and Λzz, the
non-zero elements were selected randomly around the diagonal of Θyz.

We set the true parameters for the linear-regression-based models using the same strategy as
the CGGM-based simulation above for Λyy and Λzz. We set Bxy so that 50% of the variables
in x have non-zero influence on five randomly chosen variables in y in one randomly chosen
community in Λyy. We set Byz in a similar manner, assuming 80% of the variables in y are
relevant to eight randomly-chosen variables in z from a randomly-chosen community in Λzz.

Each dataset consisted of 600 samples, of which 400 and 200 samples were used as training
and test sets. To select the regularization parameters, we estimated a model using 300 samples,
evaluated prediction errors on the other 100 samples in the training set, and selected the values
with the lowest prediction errors. We used the optimization methods in [100] for CGGM-based
models and the MRCE procedure [77] for linear-regression-based models.

Figure 3.4 illustrates how the model with CGGM chain components can be used to discover
the structured sparsity via inference and moralization. In each panel, black and bright pixels
correspond to zero and non-zero values, respectively. While Figure 3.4A shows how variables in
z are related in Λzz, Figure 3.4B shows Byz = −Λ−1

zz ΘT
yz obtained via marginalization within the

CGGM p(z|y), where functional mappings from variables in y to multiple related variables in z
can be seen as white vertical bars. In Figure 3.4C, the effects of moralization Λyy +ΘyzΛ

−1
zz ΘT

yz

are shown, which further decomposes into Λyy (Figure 3.4D) and ΘyzΛ
−1
zz ΘT

yz (Figure 3.4E).
The additional edges among variables in y in Figure 3.4E correspond to the edges introduced via
moralization and show the groupings of the variables y as the block structure along the diagonal.
By examining Figures 3.4B and 3.4E, we can infer a functional mapping from modules in y to
modules in z.

In order to systematically compare the performance of CGGM-based and linear-regression-
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Figure 3.5: Precision/recall curves for graph structure recovery in CGGM-based simulation
study. (A) Λyy, (B) Λzz, (C) Bxy, (D) Byz, and (E) Θxy and (F) Θyz. (CG: CGGM-based mod-
els with supervised learning, CG-semi: CG with semi-supervised learning, LR: linear-regression-
based models with supervised learning, LR-semi: LR with semi-supervised learning.)

based models, we examined the average performance over 30 randomly-generated datasets. We
considered both supervised and semi-supervised settings. Assuming that 200 samples out of
the total 400 training samples were missing data for y, for supervised learning, we used only
those samples with complete data; for semi-supervised learning, we used all samples, including
partially-observed cases.

The precision/recall curves for recovering the true graph structures are shown in Figure 3.5,
using datasets simulated from the true models with CGGM components. Each curve was ob-
tained as an average over 30 different datasets. We observe that in both supervised and semi-
supervised settings, the models with CGGM components outperform the ones with linear re-
gression components. In addition, the performance of the CGGM-based models improves sig-
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Figure 3.6: Prediction errors in CGGM-based simulation study. The same datasets and estimated
models in Figure 3.5 were used to predict (A) y given x, z, (B) z given x, (C) y given x, and (D)
z given y.

nificantly, when using the partially-observed data in addition to the fully-observed samples (the
curve for CG-semi in Figure 3.5), compared to using only the fully-observed samples (the curve
for CG in Figure 3.5). This improvement from using partially-observed data is substantially
smaller for the linear-regression-based models. The average prediction errors from the same set
of estimated models in Figure 3.5 are shown in Figure 3.6. The CGGM-based models outper-
form in all prediction tasks, because they can leverage the underlying structure in the data and
estimate models more effectively.

For the simulation scenario using the linear-regression-based true models, we show the results
for precision/recall curves and prediction errors in Figures 3.7 and 3.8, respectively. We find that
even though the data were generated from chain graph models with linear regression components,
the CGGM-based methods perform as well as or better than the other models.

We also examined the performance of the CGGM-based models, as we varied the number of
samples with missing observations for y. Figure 3.9 shows precision/recall curves averaged over
30 datasets, using datasets simulated from CGGM-based true models. We find that the accuracy
for recovering the true graph structures improves, as more data are available for y, although the
recovery of Λzz remains unaffected by the number of samples with missing data.

3.4.2 Integrative Genomic Data Analysis

We applied the two types of three-layer chain graph models to single-nucleotide-polymorphism
(SNP), gene-expression, and phenotype data from the pancreatic islets study for diabetic mice
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Figure 3.7: Performance for graph structure recovery in linear-regression-based simulation
study. Precision/recall curves are shown for (A) Λyy, (B) Λzz, (C) Bxy, and (D) Byz.

[91]. We selected 200 islet gene-expression traits after performing hierarchical clustering to
find several gene modules. Our dataset also included 1000 SNPs and 100 pancreatic islet cell
phenotypes. Of the total 506 samples, we used 406 as training set, of which 100 were held out
as a validation set to select regularization parameters, and used the remaining 100 samples as
test set to evaluate prediction accuracies. We considered both supervised and semi-supervised
settings, assuming gene expressions are missing for 150 mice. In supervised learning, only those
samples without missing gene expressions were used.

As can be seen from the prediction errors in Table 3.1, the models with CGGM chain com-
ponents are more accurate in various prediction tasks. In addition, the CGGM-based models can
more effectively leverage the samples with partially-observed data than linear-regression-based
models.

Table 3.1: Prediction errors, mouse diabetes data

Task CG-semi CG LR-semi LR
y | x, z 0.9070 0.9996 1.0958 0.9671
z | x 1.0661 1.0585 1.0505 1.0614
y | x 0.8989 0.9382 0.9332 0.9103
z | y 1.0712 1.0861 1.1095 1.0765
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Figure 3.8: Prediction errors in linear-regression-based simulation study. The same estimated
models in Figure 3.7 were used to predict (A) y given x, z, (B) z given x, (C) y given x, and (D)
z given y.
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Figure 3.9: Performance in graph structure recovery in semi-supervised learning in simulation
study. Using different numbers of partially-observed samples Nh, precision/recall curves for
CGGM-based chain graphs are shown for (A) Λyy, (B) Λzz, (C) Θxy, and (D) Θyz.
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3.5 Conclusions for Sparse Gaussian Chain Graph Models
In this chapter, we addressed the problem of learning the structure of Gaussian chain graph mod-
els in a high-dimensional space. We argued that when the goal is to recover the model structure,
using sparse CGGMs as chain component models has many advantages such as recovery of struc-
tured sparsity, computational efficiency, globally-optimal solutions for parameter estimates, and
superior performance in semi-supervised learning.
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Chapter 4

Asthma PerturbNet Analysis

4.1 Preparation of asthma dataset
We applied our method to a dataset comprising genotype, gene expression, and clinical pheno-
type data, collected from asthma patients participating in CAMP study [20, 21, 67]. We used
174 non-Hispanic Caucasian subjects for whom both genotype and clinical phenotype data were
available. For a subset of 140 individuals, gene expression data from primary peripheral blood
CD4+ lymphocytes were also available. After removing SNPs with minor allele frequency less
than 0.1 and those with missing reference SNP ids, we obtained 495,597 SNPs for autosomal
chromosomes. We then imputed missing genotypes using fastPHASE [81]. Given expression
levels for 22,184 mRNA transcripts profiled with Illumina HumanRef8 v2 BeadChip arrays [67],
we removed transcript levels with expression variance less than 0.01, which resulted in a set of
11,598 expression levels to be used in our analysis. Then, we converted the expression values to
their z-scores. The clinical phenotype data comprised 35 phenotypes (Table 4.1), including 25
features related to lung function and 10 features collected via blood testing. The clinical pheno-
types were converted to their z-scores within each phenotype so that all phenotypes have equal
variance. We then imputed missing values using low-rank matrix completion [17], then repeated
the procedure for centering and scaling features to their z-scores.
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Table 4.1: Description of asthma clinical phenotypes in CAMP data.
Phenotype Name Phenotype Group Description
PREFVCPP lung Baseline FVC % predicted
HPRFVCPP lung Hankinson pre BD FVC % predicted
HPRFVCPC lung Hankinson pre BD FVC percentile
HPRFVCZS lung Hankinson pre BD FVC z-score
PREFEVPP lung Pre BD FEV % predicted
HPRFEVPP lung Hankinson pre BD FEV % predicted
HPRFEVPC lung Hankinson pre BD FEV percentile
HPRFEVZS lung Hankinson pre BD FEV z-score
PO1FEVPP lung 1st Post BD FEV % predicted
HPO1FEPP lung 1st Hankinson post BD FEV % predicted
HPO1FEPC lung 1st Hankinson post BD FEV percentile
HPO1FEZS lung 1st Hankinson post BD FEV z-score
PREFF lung Pre BD FEV/FVC ratio (%)
HPRFFPC lung Hankinson pre BD FEV/FVC percentile
HPRFFZS lung Hankinson pre BD FEV/FVC z-score
MC928 lung Baseline (pre-diluent) FEV1/FVC ratio
PREFVC lung Pre BD FVC
PREFEV lung Pre BD FEV
PO1FEV lung 1st Post BD FEV
MC935b lung FEV1 15 minutes after 2puffs albuterol
PREPF lung Pre BD peak flow
POSPF lung Post BD peak flow
lnpc20 lung Airway responsiveness to methacholine
rescueBD7day lung Rescue BD use last 7 days
preventBD7day lung Preventative BD use last 7 days
HEMOG blood Hemoglobin
WBC blood white blood cell count
MONOPCT blood Monocytes %
NEUTPCT blood Neutrophils (segs,polys) %
LYMPHPCT blood Lymphocytes %
BASOPCT blood Basophils %
TOTEOSP blood Total eosinophils count by % of WBC
EOSPCT blood Eosinophils %
log10ige blood Logarithm transformed IgE level
log10eos blood Logarithm transformed eosinophil level
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4.2 Comparison of the scalability of Mega-sCGGM and other
methods

In order to compare the computation of different algorithms, we used the following software and
hardware setup. For Lasso, we used the implementation in GLMNET [74] with a backend written
in Fortran. For Newton coordinate descent, which is the previous state-of-the-art approach for
optimizing sparse CGGMs, we took the implementation written in C++ provided by the authors
[100] and sped up this implementation with the Eigen matrix library, by employing low-rank
matrix representations and using sparse matrix multiplications. For all methods, the code was
compiled and run with OpenMP multi-threading enabled on the same machines with 20Gb of
memory and 16 cores. We used the same regularization parameters for our method and the
previous method for sparse CGGM optimization, so the resulting solutions were identical with
the same sparsity levels. For Lasso, we chose the regularization parameters so that the L1-norm
of the regression matrix roughly matched that of our inferred indirect SNP effects.

In all data points, the number of non-zeros in the Lasso was less than that of our model
(counting both Λyy and Θxy). For example, for our experiment including all 495,597 SNPs in
the model, there were 226,400 non-zero parameters in our model versus 162,836 in the Lasso
model.

We assess the scalability of Mega-sCGGM and other previous algorithms on the expression
measurements of 11,598 genes and the genotypes of 495,597 SNPs for 140 subjects from the
CAMP data. We estimated sparse CGGMs, using both our new method and the previous state-
of-the-art method based on the Newton coordinate descent method [100]. Since the sparse
CGGM optimization problem is convex with a single globally optimal solution, both our and
previous methods obtain the same parameter estimates, although the computation time differs
between the two methods. We also obtained the computation time of Lasso implemented in
GLMNET [74, 90], the well-known computationally efficient algorithm for learning a simple
but less powerful regression model. Although the sparse multivariate regression with covariance
estimation [78] has also provided a methodology that could be used for learning a gene network
influenced by SNPs, this approach has been found to take days to learn a model from a small
dataset of only 1,000 SNPs and 500 gene expression levels [104], so we did not include it in
our experiment. All of the optimization methods were run on the same hardware setup with
comparable software implementations.

In our comparison of different methods, our algorithm significantly outperformed the previ-
ous state-of-the-art method for learning a sparse CGGM in terms of both computation time and
memory requirement and scaled similarly to Lasso (Figure 4.1). In comparison of our method
with Lasso on datasets with 40,056 SNPs from chromosome 1, 21,757 SNPs for chromosomes 1
through 6, and 495,597 SNPs from all autosomal chromosomes and all expression measurements,
our method was not substantially slower than Lasso, even though our method learns a more ex-
pressive model than Lasso. The previous CGGM optimization algorithm ran out of memory even
on the smallest dataset above with SNPs only from chromosome 1, so we compared the two al-
gorithms on a much smaller dataset with 1,000 and 10,000 SNPs. On 10,000 SNPs, the previous
algorithm required more than four hours, whereas in less than four hours, our algorithm was able
to run on all 495,597 SNPs.
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Figure 4.1: Comparison of computation time of different methods. (A) The computation time
of our Mega-sCGGM is compared with that of previous learning algorithm for sparse CGGMs
and Lasso. We applied all methods to all expression data and genotype data from chromosome
1, chromosomes 1-6, chromosomes 1-16, and chromosomes 1-22. The previous algorithm for
sparse CGGMs ran out of memory at chromosome 1, so we obtained its computation time with
much smaller datasets with 1,000 and 10,000 SNPs. (B) Computation time for analysis of SNP,
expression, and clinical trait data from the CAMP study. The expression levels of 11,598 genes,
35 traits, and varying numbers of SNPs were used. We use runtimes for the PerturbNet method
with the EM algorithm for semi-supervised learning.
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Figure 4.2: The PerturbNet model estimated from asthma data. The parameters of the sparse Gaussian
chain graph model estimated from the asthma data are shown. (A) Asthma phenotype network Λzz.
The phenotypes were ordered by hierarchical clustering applied to within each of the two groups of
phenotypes, lung function traits (yellow) and blood test traits (purple). (B) Gene network Λyy. The
gene network is annotated with 20 modules obtained from applying a network clustering algorithm
METIS [53] to Λyy. (C) The influence of gene expression levels on phenotypes Θyz. (D) SNP pertur-
bation of gene expression levels Θxy for the top 1,000 eQTL hotspots, ordered by genomic location and
labeled by chromosomes. In each panel, non-zero elements of the estimated parameters are shown as
blue for positive interactions and red for negative interactions.
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4.3 Analysis of asthma data
We now fit a sparse Gaussian chain graph model to the genotype, expression, clinical phenotype
data gathered from participants in the Childhood Asthma Management Program (CAMP) [20,
21, 67]. After preprocessing the data, we applied our method to the data from 140 subjects for
whom all data were available for 495,597 SNPs on 22 autosomal chromosomes, 11,598 gene
expression levels, and 35 phenotypes (Table 4.1) and 34 additional subjects for whom data were
available only for genotypes and phenotypes but not for expression levels. Below we perform a
detailed analysis of the estimated model.

4.3.1 Overview of the PerturbNet model for asthma
We first examined the overall estimated model for the module structures in the phenotype and
gene networks (Figure 4.2). To see the structure in the phenotype network Λzz, we reordered
the nodes of the network by applying hierarchical clustering to each set of the lung function and
blood test phenotypes. This revealed the dense connectivities within the two known groups of
phenotypes and the two sub-clusters within the group of lung function phenotypes (Figure 4.2A).

The gene network Λyy also showed a clear module structure (Figure 4.2B). To find the mod-
ule structure in the network, we identified the genes that are connected to at least one other
gene in the network Λyy and partitioned the network over those genes into 20 subnetworks with
roughly equal number of nodes, using the network clustering algorithm METIS [53]. Out of
11,598 genes, 6,102 genes were connected to at least one other gene in the network. For the rest
of our analysis, we focus on the network and modules over the 6,102 genes, since these genes are
likely to form modules for pathways with a functional impact on asthma phenotypes. Modules
1-15 were densely connected clusters of co-expressed genes, suggesting those modules are likely
to consist of a functionally coherent set of genes, whereas modules 16-20 had relatively fewer
edge connections within each cluster.

Next, we considered the effects of the gene modules on the lung and blood phenotypes in
Θyz and the SNP perturbations of the gene modules in Θxy. Modules 1-12 had relatively small
effects on the phenotypes despite their dense connectivities, whereas modules 13-20 appeared
to have stronger effects on both groups of phenotypes (Figure 4.2C). The SNP effects on the
modules in Θxy for the top 1000 eQTL hotspots, determined by overall SNP effects on all genes
(
∑

j |[Θxy]i,j| for each SNP i), showed that many of these hotspots perturb the expression of
genes in the same module in the gene network (Figure 4.2D). Given these observations from the
visual inspection of Θyz and Θxy, we summarized Θyz and Θxy at module level and compared
the module-level summaries across modules. To quantify the module-level influence of expres-
sion levels on each group of phenotypes, from the direct influence Θyz and indirect influence
Byz we computed the overall effect sizes of all genes in the given gene module on all phenotypes
in each of the lung and blood phenotype groups (

∑
i∈M,j∈K |[Θyz]i,j| and

∑
i∈M,j∈K |[Byz]i,j| for

each gene module M and phenotype group K). Similarly, from Θxy and Bxy we computed the
overall SNP effect sizes on all genes in the given module (

∑
i,j∈M |[Θxy]i,j| and

∑
i,j∈M |[Bxy]i,j|

for each SNP i and module M ).
Among the 20 gene modules, modules 13-20 overall had stronger influence on phenotypes

than the other gene modules (Figures 4.3A), although SNP perturbations were found across all
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Figure 4.3: SNP effects on gene modules and gene-module effects on phenotypes. (A) Given the
estimated Θyz and inferred Byz for gene-expression effects on phenotypes from the PerturbNet
model, we show the gene module effects on phenotypes, computed as the sum of absolute effect
sizes across all genes within the module and across all phenotypes. (B) Given the estimated
Θxy and inferred Bxy for SNP effects on gene network, we show the SNP effects on each gene
module, summarized as the sum of absolute effect sizes across all SNPs and all genes within the
module.
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Figure 4.4: Effects of average gene module expression levels on phenotypes. (A) Given the
estimated Θyz and inferred Byz for gene-expression effects on phenotypes from the PerturbNet
model, we show the gene module effects on phenotypes, computed as the sum of effect sizes
across all genes within the module and across all phenotypes.
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gene modules without any preference to those modules with stronger influence on phenotypes
(Figure 4.3B). On the other hand, the overall SNP effects were similar across all gene modules
for both the direct and indirect SNP effects (Figure 4.3B). The overall indirect SNP effects were
larger for some modules (e.g., module 14), but this was largely because of the substantially
stronger edge connectivities in that module, which led to stronger propagation of the direct SNP
perturbation effects.

We also plot the effects of Θyz and Byz, if we avoid taking absolute values before summing
across genes within each module. By incorporating the signs of the gene effects rather than
taking absolute values before summing, we instead measure the effect of the average expression
level of each module on the phenotypes. Comparing Figures 4.3A and 4.4, we see that the
effect of modules 13 and 18 are still large when summing the signed gene effects, showing that
the average expression level of those modules are influencing traits. Meanwhile, the effects of
modules 16, 17, and 20 are smaller in Figure 4.4, showing that the genes in these modules have
effects on traits which cancel each other out, so that the average gene expression level for the
entire module is less related to the clinical traits.

4.3.2 Gene modules that influence phenotypes are enriched for immune
genes

To determine the functional role of the gene modules, we performed gene ontology (GO) gene
set enrichment analysis [8, 35]. For each module, we performed a Fisher’s exact test to find
the significantly enriched GO categories in biological processes (p-value < 0.05 after Bonferroni
correction for multiple testing), using the GO database with annotations for 21,002 genes.
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Figure 4.5: Asthma posterior gene network. The posterior gene network Λy|x,z after taking into
account the phenotype data.
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Figure 4.6: Top 50 SNPs perturbing phenotypes and their perturbations effects on phenotypes me-
diated by gene modules. For the top 50 SNPs perturbing lung phenotypes, we show (A) their effect
sizes on phenotypes Bxz and (C) the decomposition of Bxz into component effects BM1

xz , . . . ,B
M20
xz

mediated by each of the 20 gene modules. The sum over all component effects in Panel (B) is equal
to the overall effects in Panel (A). (B) We summarize each component SNP effect Bm

xz for module m
in Panel (C) as a row-wise sum of Bm

xz, shown as the mth column in the figure. The SNPs are ordered
according to their overall effect sizes on the phenotypes.
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Figure 4.7: Manhattan plots for overall SNP effects on asthma phenotypes determined by Per-
turbNet. The overall SNP effects on phenotypes from PerturbNet are shown for all SNPs across
the 22 autosomal chromosomes. Top 500 SNPs with the strongest effect sizes on phenotypes are
shown as SNPs above the green line.
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Figure 4.8: PerturbNet asthma SNPs as eQTLs. For each asthma SNP in Figure 4.6, its overall
effect on each gene module in the estimated PerturbNet model is shown.
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Table 4.2: GO categories enriched in gene modules in the estimated asthma gene network

Size Biological Process Pathway P-value Overlap*

1 314 Cellular macromolecule metabolic process 2.94×10−12 159 / 7006
2 297 Cellular nitrogen compound metabolic process 1.64×10−4 112 / 5164
3 314 Nucleobase-containing compound metabolic process 5.62×10−13 123 / 4538
4 314 Organelle organization 2.02×10−4 79 / 3167
5 314 Nucleobase-containing compound metabolic process 4.58×10−4 106 / 4538
6 314 Unclassified NA NA
7 314 Cellular localization 1.80×10−4 60 / 2287
8 314 Cellular metabolic process 1.73×10−4 178 / 9003
9 314 Cellular metabolic process 8.39×10−6 185 / 9003
10 314 Macromolecule metabolic process 8.73×10−5 159 / 7749
11 314 Heterocycle metabolic process 7.63×10−3 103 / 4715
12 298 Translation 1.65×10−9 27 / 383
13* 297 Immune system process

Response to stimulus
Response to stress

3.66×10−12

1.70×10−9

8.43×10−9

83 / 2552
162 / 8009
90 / 3333

14* 314 Immune response
Leukocyte activation involved in immune response
Granulocyte activation

3.96×10−38

9.04×10−31

1.24×10−26

106 / 1673
62 / 607
53 / 495

15* 313 Cell activation in immune response
Myeloid leukocyte activation
Immune system process

4.95×10−32

5.28×10−32

1.01×10−31

65 / 611
63 / 566
124 / 2552

16 290 Cellular process 3.73×10−3 132 /
15013

17 290 Regulation of macromolecule metabolic process 1.58×10−3 74 / 6142
18 282 Organonitrogen compound metabolic process 1.97×10−2 60 / 5523
19 285 Cell cycle 1.50×10−8 37 / 1355
20 295 Cellular component organization or biogenesis 4.34×10−3 66 / 5525
* The number of genes in the overlap / the total number of genes in the GO category

Among all 20 modules, modules 13-15 had a statistically significant enrichment of GO terms
related to immune system function, which also corresponded to the most significant enrichments
across all modules (Table 4.2). Even though modules 16-20 did not have any significant enrich-
ment of asthma-related GO categories, many of the genes in these modules were connected to
genes in modules 13-15 in the posterior gene network Λy|x,z (Figure 4.5), and thus this subset
of genes in modules 16-20 may be also involved with immune system function. To see if this
is indeed the case, we obtained the significantly enriched GO categories in the 374 genes in
modules 16-20 that are connected to modules 13-15 in the posterior network Λy|x,z (p-value <
0.05 after Bonferroni correction). This set of genes was significantly enriched for several GO
categories related to immune system processes, including cellular response to stress (p-value =
2.90 ×10−2 with overlap of 35 genes out of 1599 genes in the category), regulation of defense
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response to virus (p-value = 4.36×10−2 with overlap of 6 genes out of 71 genes in the category),
and regulation of immune effector process (p-value = 4.42 ×10−2 with overlap of 14 genes out
of 409 genes in the category).

Thus, all of the modules that influence phenotypes, modules 13-20, showed enrichments
in immune-related genes, with significant enrichment for modules 13-15 and weaker but still
significant enrichment for modules 16-20. Since asthma is an immune disorder, the enrichment
of immune-related genes in the trait-perturbing modules provides evidence that these modules
are likely to play an important role in asthma patients.

Another unique feature of PerturbNet is its inference methods for characterizing the role
of the gene network in modulating SNP effects on traits. To see if modules 13-20 are indeed
the key mediators of the genetic effects on asthma traits as suggested above, we applied two
of the PerturbNet inference procedures to the model estimated from the CAMP data. First, we
inferred the genetic effects on traits mediated by the network, identifying top 500 SNPs with the
largest overall effects on traits (Figure 4.7). Next, we inferred the decomposition of these SNP
effects into component effects mediated by different parts of the gene network (Figure 4.6). This
decomposition showed that for 99 out of 500 SNPs, the primary mediators of the genetic effects
were the gene modules rather than single isolated genes in the network. For all of those 99 SNPs,
modules 13-20 mediated nearly all of the genetic effects (Figure 4.6), providing further evidence
that these modules are implicated in asthma. Additionally, for nearly all of the 99 SNPs, only
one of modules 13-20 served as a mediator (Figure 4.6B), suggesting that a SNP influences traits
via localized perturbation of a gene subnetwork. These trait-perturbing SNPs were also eQTLs
for modules 13-20, suggesting co-localization between eQTLs and trait-perturbing SNPs (Figure
4.8). Our results demonstrate that PerturbNet inference methods can identify the gene modules
that are mediators of SNP effects on traits, providing insights into the functional roles of genetic
variants in the disease process.

4.3.3 SNPs perturbing asthma phenotypes overlap with SNPs perturbing
immune modules

The SNP perturbation of the gene modules above (Figure 4.3A) may or may not result in a change
in phenotypes. To see if the SNPs perturbing each gene module have an impact on the lung and
blood phenotypes, we compared the top module-specific eQTLs in Θxy with the SNPs with
the strongest effects on the lung or blood phenotypes in Bxz inferred from our sparse Gaussian
chain graph model. The SNPs with the strongest effects on the lung (or blood) phenotypes were
determined based on the sum over the SNP effects on all lung (or blood) phenotypes in |Bxz|.
Similarly, the top module-specific eQTLs were determined based on the sum over the SNP effect
sizes on all expression levels in each module in |Θxy|. We obtained the overlap between the
SNPs perturbing the phenotype network and the SNPs perturbing the gene network, considering
the top 100 and 200 module-specific eQTLs and top 200 SNPs perturbing each phenotype group
(the cutoff for top 200 SNPs shown as the magenta line at SNP effect size 0.01325 for lung traits
in Figure 4.9A and at SNP effect size 0.00375 for blood traits in Figure 4.9B). Using Fisher’s
exact test, we also assessed the significance of these overlaps within the set of SNPs with non-
zero effects in Θxy.
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(A)

(B)

Figure 4.9: Module-mediated SNP effects on asthma phenotypes. The SNP effects on lung
and blood phenotypes in Bxz inferred from our estimated model are shown for all SNPs across
the 22 autosomal chromosomes. For each SNP, we summarize its effect as the sum of absolute
values of effect sizes in Bm

xz across gene modules and across (A) lung phenotypes and (B) blood
phenotypes. Top 50 and 200 SNPs with the strongest effect sizes on each group of phenotypes
are shown as SNPs above the green and magenta lines respectively.

In our comparison, only a subset of the eQTLs influenced phenotypes, but the eQTLs perturb-
ing the immune modules, modules 13-20, were more likely to perturb the phenotypes than the
eQTLs for the other modules (Figures 4.10A and 4.10B). Among the top 100 module-specific
eQTLs, only a fraction of those SNPs overlapped with top 200 SNPs perturbing phenotypes
(ranging from 0% to 18% of eQTLs across modules for an overlap with SNPs perturbing lung
phenotypes and ranging from 2% to 20% of eQTLs across modules for an overlap with SNPs
perturbing blood phenotypes). These fractions increased as we considered more eQTLs as in
top 200 and all module-specific eQTLs. This matches with the observations from previous stud-
ies that not all of the eQTLs affect higher-level phenotypes [73] and that trait-associated SNPs
are likely to be eQTLs [69]. However, in our analysis, the eQTLs for immune-related modules,
modules 13-20, tended to have larger overlaps than the other modules (Figures 4.10A and 4.10B).
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Figure 4.10: Overlap between SNPs perturbing phenotype network and SNPs perturbing gene
network. For each gene module and each group of lung and blood phenotypes, we found the
overlap between the top 200 SNPs perturbing the phenotype subnetwork and each of the top 100,
200, and all eQTLs perturbing the gene module. The number of SNPs in the overlap is shown for
(A) lung phenotypes and (B) blood phenotypes. Statistical significance of the overlap is shown
for (C) lung phenotypes and (D) blood phenotypes.
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Furthermore, we found these overlaps are statistically significant for all of the immune modules,
modules 13-20, but not for all of the other modules, and the most statistically significant over-
laps were from the immune modules (Figures 4.10C and 4.10D). This suggests that eQTLs that
perturb the modules that influence phenotypes are more likely to perturb phenotypes than eQTLs
that perturb other gene modules.

4.3.4 The immune modules mediate SNP perturbation of phenotypes
To understand the molecular mechanisms that underlie the SNPs perturbing phenotypes beyond
the simple overlap of SNPs perturbing the phenotype network and SNPs perturbing the gene
network, we used the PerturbNet inference procedure to obtain the decomposition of the SNP
effects on phenotypes Bxz into the component SNP effects on phenotypes BM1

xz , . . . ,B
M20
xz me-

diated by each of the 20 gene modules. We examined this decomposition for the 50 SNPs with
the strongest effects on each group of lung and blood phenotypes (the cutoff for top 50 SNPs is
shown as the green line at SNP effect size 0.04 for the lung phenotypes in Figure 4.9A and at
SNP effect size 0.011 on blood phenotypes in Figure 4.9B).

For each set of 50 SNPs with the strongest perturbation effects on lung or blood phenotypes,
nearly all of their effects on phenotypes were mediated by modules 12 through 20. The decom-
position of the SNP effects on lung phenotypes (Figure 4.11A) into the 20 components (Figure
4.11C) shows that only the components for modules 12 through 20 contain non-zero SNP effects
on the lung phenotypes, except for module 6, which mediates the effects of SNP rs1008932. We
further summarized the component SNP effects by summing across all lung phenotypes for each
SNP (

∑
j∈Lung |[BM

xz]i,j| for module M and SNP i; Figure 4.11B). In Figure 4.11C, for 45 out of
the 50 SNPs the SNP effect on the lung phenotypes is mediated by a single module from mod-
ules 12-20. For the other 5 SNPs, although their effects on phenotypes were mediated by two or
three modules, the module with the strongest mediator effect had effect size at least 5 times as
large as the other modules. Although only 20 SNPs overlapped between the two sets of top 50
SNPs for lung and blood phenotypes, the SNP effects on blood phenotypes were also mediated
by modules 12-20 (Figure 4.12). This indicates that modules 12-20 can potentially explain the
molecular mechanisms behind the SNP perturbations of asthma phenotypes.

The effect of each SNP on the lung phenotypes is mediated by a single module for 45 out of
these 50 SNPs. For the 5 SNPs with effects mediated by multiple modules, the primary module
has effect size at least 5x as large as the minor mediating modules, with all secondary mediat-
ing modules having effects sizes ¡0.01. Furthermore, aside from rs1008932 which is mediated
through module 6, all SNPs are mediated through modules 12-20, and only modules 12-20 have
any non-zero effects > 0.05 for these top 50 lung SNPs. These observations provide evidence
that modules 12-20 provide insights on the molecular mechanisms behind SNPs influencing phe-
notypes.
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Figure 4.11: Top 50 SNPs perturbing lung phenotypes and their perturbations effects on phenotypes
mediated by gene modules. For the top 50 SNPs perturbing lung phenotypes, we show (A) their effect
sizes on phenotypes Bxz and (C) the decomposition of Bxz into component effects BM1

xz , . . . ,B
M20
xz

mediated by each of the 20 gene modules. The sum over all component effects in Panel (B) is equal
to the overall effects in Panel (A). (B) We summarize each component SNP effect Bm

xz for module m
in Panel (C) as a row-wise sum of Bm

xz, shown as the mth column in the figure. The SNPs are ordered
according to their overall effect sizes on the lung phenotypes.
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Figure 4.12: Top 50 SNPs perturbing blood phenotypes and their perturbations effects on phenotypes
mediated by gene modules. For the top 50 SNPs perturbing lung phenotypes, we show (A) their effect
sizes on phenotypes Bxz and (C) the decomposition of Bxz into component effects BM1

xz , . . . ,B
M20
xz

mediated by each of the 20 gene modules. The sum over all component effects in Panel (B) is equal
to the overall effects in Panel (A). (B) We summarize each component SNP effect Bm

xz for module m
in Panel (C) as a row-wise sum of Bm

xz, shown as the mth column in the figure. The SNPs are ordered
according to their overall effect sizes on the blood phenotypes.
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4.3.5 Module 13 explains the molecular mechanism of the previously known
association between SNP rs12441382 and asthma susceptibility

We examined module 13 that mediates the perturbation of asthma traits by SNP rs12441382,
This SNP is within the top 500 SNPs of our model, and the 41st largest among the 99 SNPs
in Figure 4.6. SNP rs12441382, located in genomic region 15q21.2, is 17kb from rs1841128,
the closest SNP listed in the National Human Genome Research Institute (NHGRI) GWAS cat-
alog [12] as being associated with a lung function trait FVC in asthma patients though little is
known about the underlying molecular mechanism [56]. This pair of SNPs has normalized LD
coefficient D′ = 1.0 for the CEU population in the 1000 Genomes Project [1]. PerturbNet found
SNP rs12441382 directly perturbs only two genes in module 13, ATF3 as the top perturbant and
EGR2 as the second-to-the-top perturbant, both of which have been previously linked with aller-
gic asthma. ATF3 is a known negative regulator of allergic asthma and of IFN-gamma, a cytokine
involved in asthmatic inflammation [38, 76], and was recently proposed to be a hub of the cellu-
lar adaptive-response network, playing a key role in immune diseases [42]. The perturbation of
ATF3 by this SNP is also reflected in statistically significant association in univariate regression
analysis (FDR q = 6.851 × 10−05). EGR2 has been linked to migration of CD4+ T cells to the
lung, and to blood eosinophil levels in asthma [9, 88, 98]. The effect of SNP rs12441382 on the
traits is also mediated by other indirectly perturbed genes near ATF3 and EGR2 in the network:
C2, SERPING1, ZG16B, and CEACAM3. C2 has not been directly associated with asthma, but
has been linked to immune balance and auto-immune diseases [52, 54, 55]. ZG16B has been
linked with severe asthma [63]. SERPING1 has been found to play an important role in heredi-
tary angiodema [16]. CEACAM3, though not directly associated with asthma, is solely expressed
in phagocytes and plays a role in immune response [14]. Our network analysis suggests that the
15q21.2 locus underlies asthmatic inflammation via ATF3-centered pathway, providing new in-
sights into the molecular characterization of the previously known GWAS SNP with little known
functional role.
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Figure 4.13: The gene network for module 13, its influence on asthma phenotypes, and its
perturbation by SNP rs12441382. The asthma phenotype network Λzz in our estimated model is
shown in the green box and the gene network Λyy for module 13 is shown outside of the green
box. The edges across the two networks correspond to direct influence of expression levels on
phenotypes Θyz. The two genes (ATF3 and EGR2) whose expression is directly perturbed by
SNP rs12441382 are labeled with arrows, colored red to indicate positive eQTL effects. Node
colors depict the indirect effects of this eQTL on gene expression levels Bxy and phenotypes
Bxz, with red for up-regulation and blue for down-regulation. Node size of genes depicts the
component of the eQTL effects on phenotypes mediated by the given gene, the row of Bm

xz for
SNP rs12441382 and for gene m in module 13 summed across all phenotypes.
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4.3.6 Module 13 mediates the effect of genetic variation on blood traits
We analyzed the mediatory roles of gene modules using their scoring functions (Eq. 3.30),
separately for lung and blood trait groups. It was previously seen in Figure 4.10 that blood
trait SNPs had greater overlap with module 13 eQTLs, while overlaps for modules 16-20 were
even between blood and lung traits. We now check whether, in addition to this colocalization
between module 13 eQTLs and blood traits, whether module 13 genes also play a mediating role
primarily for blood traits. The scores of gene modules for both trait groups are shown in Figure
4.14. Module 13 plays a leading role in propagating genetic variation effects onto blood traits
(Figure 4.14B) rather than lung phenotypes (Figure 4.14A).

4.3.7 Significance analysis of SNP effect sizes shows little to no confound-
ing from population stratification

We estimated the null distribution of effect sizes for PerturbNet on our asthma dataset using a
permutation test with 500 random permutations. Following the conservative approach in genet-
ical genomics [11] to handle correlated gene expressions and traits, in each permutation we
randomly shuffle separately each of the genotypes while leaving the gene expression and pheno-
type datasets intact. After creating each of the 500 shuffled datasets, we ran PerturbNet using the
same regularization parameters used on the real data, which also produces conservative p-values.
The distribution of p-values are shown as QQ-plots, both for SNP-gene (Figure 4.15) and SNP-
trait associations (Figure 4.16). The distribution of p-values is uniform, except at extremely small
values. This indicates that SNP effect sizes are not distorted by confounding, and that substantial
population stratification was not present in our study. After multiple-testing correction, our study
found 161 significant SNP-gene associations with FDR < 0.05. For SNP-trait associations, none
of the coefficients in Bxz, nor any overall SNP effects across all traits was found to be signifi-
cant at FDR < 0.05. However, aggregating SNP-trait effects separately for lung and blood traits
revealed two significant associations for lung traits and 17 for blood traits at FDR < 0.05. Our
significance testing procedure is conservative, and a less overly-conservative approach to getting
SNP effect p-values may reveal more statistically-significant non-zero effect sizes.

4.3.8 Local SNP perturbations and direct SNP perturbations have larger
eQTL effect sizes

Next, we examined the effect sizes of eQTLs identified by our method as perturbing the gene
network. Since the indirect perturbations represent the direct perturbation effects propagating
to other parts of the network, the direct SNP perturbation effects in Θxy may be stronger than
the indirect SNP perturbation effects in Bxy. We compared the distribution of SNP perturbation
effect sizes between Θxy and Bxy. We obtained the distribution of perturbation effect sizes as a
histogram of non-zero elements in Θxy and in Bxy, after normalizing the frequencies with the
total number of non-zero elements (99,055 in Θxy and 326,455 in Bxy after thresholding Bxy at
0.001 to rule out the perturbations with small effect sizes). The histograms in Fig 4.17A confirm
our hypothesis that overall, direct SNP perturbation effects are stronger than indirect perturbation
effects (rank sum test p-value = 0 within machine precision; 1,656 and 12,049 elements in Θxy
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Figure 4.14: Scores of gene modules 1-20 on (A) lung phenotypes and (B) blood phenotypes,
for mediating all genetic variation on these two trait groups. Scores are shown for the flow of all
combinations of direct and indirect effects onto and from the gene modules.
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Figure 4.15: QQ-plot for p-values of SNP-gene perturbation effect sizes. The distribution of
effect size significances are shown for all direct effects in Θxy. The dotted red line is the FWER
threshold at 0.05, while the dotted pink line is the FDR threshold at 0.05.
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Figure 4.16: QQ-plots for p-values of SNP-trait effect sizes. The distribution of effect size
significances are shown for (A) all coefficients in Bxz, (B) overall effects of SNPs across all
traits from Bxz, (C) overall effects of SNPs across lung traits from Bxz, and (D) overall effects
of SNPs across blood traits from Bxz. The dotted red line is the FWER threshold at 0.05, while
the dotted pink line is the FDR threshold at 0.05.
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with effect sizes greater than 0.1 and 0.05, and 0 and 9 elements in Bxy in the corresponding
ranges).

Among the direct perturbations in Θxy, the perturbations with stronger effects may be more
likely to be local eQTLs. We compared the distributions of the effect sizes of local and distal
eQTLs in Θxy, where the local eQTLs are defined as eQTLs located within 50kb from the
coding regions of perturbed genes, after normalizing the frequencies with the total number of
eQTLs in each category (279 for local eQTLs and 98,776 for distal eQTLs). The histograms in
Fig 4.17B show that overall, local eQTLs have larger effect sizes than distal eQTLs (rank sum
test p-value=2.0930×10−43), even though the number of local eQTLs with large effect sizes was
smaller than that of distal eQTLs (43 local eQTLs and 163 distal eQTLs with effect size>0.2,
11 local eQTLs and 42 distal eQTLs with effect size>0.4). Out of the 279 local eQTLs above,
65 eQTLs were found to affect the expression of the 20 gene modules in our gene network Λyy

but belong to one of the 20 modules in Table 4.2 These module-perturbing eQTLs are shown in
Table 4.3). Overall, our results indicate that strong perturbation effects tend to arise from local
eQTLs.

(A) (B)

Figure 4.17: SNP perturbations of the asthma gene network. (A) Comparison of the distributions
of the effect sizes for direct and indirect SNP perturbations of the gene network in the sparse
Gaussian chain graph model estimated from the asthma data. Histograms of the effect sizes in the
estimated Θxy and the inferred Bxy are shown after the frequencies were normalized by the total
numbers of SNP perturbations in each perturbation type. (B) Comparison of the distributions of
local and distal eQTL effect sizes among the direct perturbations in Θxy. The local eQTLs are
defined as 50kb from the coding region of the gene for the corresponding expression trait.

4.3.9 Trans eQTLs are more likely to perturb gene modules than cis eQTLs
We find that the trans eQTLs discovered by PerturbNet tend to effect gene modules, whereas cis
eQTLs tend to perturb individual singleton genes unconnected to other genes in the network. Out
of the direct eQTLs found in Θxy (Table 4.4), roughly a fourth of the cis eQTLs directly perturb
genes in modules 1-20, with the majority going to singleton genes. Meanwhile, almost half of the
trans eQTLs directly perturb genes within the gene modules. This association is even more stark
among indirect eQTLs recovered in Bxy, with less than a third of cis eQTLs indirectly perturbing
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RS id Region Gene Module Found in Murphy?
rs12951902 17p13.3 C17orf97 19
rs7556463 1q24.2 ATP1B1 18
rs12568757 1q21.3 CTSK 6
rs13166314 5p15.31 MTRR 1
rs2495396 1q21.3 TDRKH 6
rs12536500 7p12.1 GRB10 2 Yes
rs10797432 1p36.32 TNFRSF14 11
rs1040404 1q24.2 TIPRL 16 Yes
rs4729851 7q22.1 POLR2J3 17
rs2432540 16q12.2 AMFR 18
rs13102358 4p16.3 ZNF721 1
rs1029914 7q22.1 POLR2J3 17
rs9395049 6p21.1 SUPT3H 16
rs1680401 3p14.1 SLC25A26 17
rs2440467 16q12.2 AMFR 18
rs2712156 4p11 OCIAD2 17
rs152164 16q22.1 NAE1 19

rs1781423 1q21.3 TDRKH 6
rs7810893 7p21.3 ARL4A 16 Yes
rs9393708 6p22.2 BTN3A2 18
rs1885498 9p24.1 RLN2 16
rs4387211 1q32.1 DDX59 16
rs1262184 6p25.2 SERPINB1 14
rs4974608 4p16.3 CTBP1 18
rs7132019 12p13.31 LRRC23 16
rs2281014 1q24.2 TIPRL 16
rs2568065 11p15.4 AKIP1 16
rs1362633 16q12.1 HEATR3 17
rs4925041 17p11.2 ALDH3A2 17
rs17422760 6p21.1 SUPT3H 16
rs12933325 16q12.1 HEATR3 17
rs2025126 9p13.3 TPM2 19
rs593713 18p11.21 MPPE1 16 Yes

rs7522061 1q23.1 FCRL3 18 Yes
rs10840160 11p15.4 AKIP1 16
rs13406184 2p22.2 FEZ2 14 Yes
rs2038760 6p25.2 MYLK4 12
rs10189344 2p22.2 FEZ2 14

rs710415 12p13.31 LRRC23 16 Yes
rs7029205 9p22.1 HAUS6 3
rs13216116 6p21.1 SUPT3H 16 Yes
rs2295797 9p13.3 TPM2 19 Yes
rs10797802 1q25.3 LAMC1 15
rs8051216 16q12.1 HEATR3 17 Yes
rs9358945 6p22.2 BTN3A2 18
rs7314535 12p13.31 LRRC23 16

rs1978 6p22.2 BTN3A2 18
rs649537 10p15.1 ANKRD16 18 Yes

rs3770833 2p22.2 FEZ2 14
rs12315364 12p13.31 LRRC23 16

Table 4.3: Top 50 non-singleton cis eQTLs, found by L1-norm of row in Θxy. The right-most
column indicates whether the SNP-gene mapping in the PerturbNet asthma model matches the
eQTL mapping results from the earlier analysis on this same dataset [67].
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Table 4.4: Association between whether Θxy eQTLs are cis vs trans and whether the eQTLs
perturb modules vs singleton genes. Based on various distance thresholds, eQTLs are classified
as either cis or trans. We show the percentage of cis and trans eQTLs which go to singleton
genes rather than gene modules 1-20, as well as the resulting odds ratios and p-values.
Distance (in kb) Percent of cis eQTLs to

modules
Percent of trans eQTLs
to modules

Odds ratio p-value

10 24.62% 47.93% 2.8 1.03e-24
20 25.82% 47.99% 2.7 1.21e-34
50 25.28% 48.07% 2.7 1.57e-51

100 25.97% 48.10% 2.6 3.66e-56
200 27.29% 48.11% 2.5 2.46e-54

Table 4.5: Association between whether Bxy eQTLs are cis vs trans and whether the eQTLs
perturb modules vs singleton genes. Based on various distance thresholds, eQTLs are classified
as either cis or trans. We show the percentage of cis and trans eQTLs which go to singleton
genes rather than gene modules 1-20, as well as the resulting odds ratios and p-values.
Distance (in kb) Percent of cis eQTLs to

modules
Percent of trans eQTLs
to modules

Odds ratio p-value

10 26.74% 96.45% 74.4 4.94e-324
20 28.02% 96.46% 70.1 2.96e-323
50 28.07% 96.48% 70.2 3.95e-323

100 29.96% 96.49% 64.2 4.94e-323
200 33.47% 96.49% 54.7 1.48e-323

genes in modules, but more than 95% of trans eQTLs indirectly perturbing genes within gene
modules. This suggest that PerturbNet’s approach, which takes the gene network into account
when finding eQTLs, is better at recovering trans eQTLs, which would otherwise be hard to find
without network information, and that these trans eQTLs are especially important to correctly
model the genetic regulation of modules in the regulatory network.

4.4 Comparison with other methods

We compared PerturbNet with eCAVIAR, PrediXcan, and two-layer Lasso on the CAMP data
by evaluating top 500 SNPs identified by each method as perturbing both gene expression and
asthma traits based on the evidence provided by external sources: DNase-seq hypersensitiv-
ity sites from the ENCODE B-lymphoblastoid cell-line, the RegulomeDB annotations, and the
NHGRI GWAS database. We also compared our method with the two-layer Lasso both quantita-
tively by assessing the predictive power of different methods and qualitatively by visual inspec-
tion of the estimated parameters.

We compared PerturbNet with PrediXcan, eCAVIAR, and two-layer Lasso on the asthma
data. We applied PerturbNet with semi-supervised learning to all samples, including the sam-
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ples with only genotype and clinical trait data. With PrediXcan, we mimiced semi-supervised
learning by fitting elastic net to the samples with both expression and genotype data, imputing
the missing expression data, and using all samples to perform association tests between the im-
puted gene expression values and traits. To obtain top 500 trait-associated SNPs, we scored each
SNP by first scoring SNP-trait pairs as in the simulation study above and summing these scores
across all traits. For eCAVIAR, GWAS SNPs were found using all samples, while eQTLs were
found using only the samples with expression data. Then, top 500 asthma-associated SNPs were
found by summarizing CLPP scores of all triplets into scores of each SNP by taking maximum
over all mediator genes and summing over all traits. We applied the two-layer Lasso only to the
samples with all data and obtained top SNPs perturbing asthma traits using the same strategy as
in PerturbNet.

4.4.1 Comparison using gene expression and clinical data simulated from
CAMP genotype data

Using simulated data and patient cohort data from the Childhood Asthma Management Program
(CAMP) [20, 21, 67], we benchmarked PerturbNet against eCAVIAR [46], PrediXcan [33], and
two-layer Lasso. We demonstrate PerturbNet model and inference methods provide higher sen-
sitivities for detecting genetic variants that affect clinical traits and for identifying genes that
mediate these genetic effects on traits, and offer deeper insight on the molecular mechanism
underlying the SNP perturbations of disease phenotypes.

Using data simulated from real genotypes in the CAMP study, we evaluated PerturbNet on
the accuracy of detecting trait-perturbing SNPs and mediator genes and on the accuracy of gene
network recovery. To assess PerturbNet on the recovery of trait-associated SNPs and mediator
genes, we assumed two types of ground-truth models: a two-layer sCGGM as in PerturbNet to
mimic the SNP perturbations of clinical traits modulated by gene networks and a two-layer linear
regression model to mirror the assumptions of mediator genes acting independently of other
genes as in the existing methods. To assess the accuracy of gene network learning, we again
used two types of ground-truth models: a two-layer sCGGM with a gene network perturbed by
SNPs and a two-layer Gaussian graphical model (GGM) with no perturbations of networks. For
each type of models, we obtained sensitivities at different false discovery rates (FDRs) averaged
over 10 simulated datasets, each with 5,000 gene expression levels and 100 clinical trait values
generated from 10,000 SNPs from chromosome 1 of 540 non-Hispanic Caucasians from the
CAMP study.

PerturbNet had the highest sensitivities across all FDRs for detecting SNPs affecting traits
(Fig. 4.18A) and identifying mediator genes (Figs. 4.18B-C), regardless of the model types used
to simulate data. This suggests whether a gene is a mediator acting independently or cooperating
with other genes in the network, PerturbNet can correctly identify SNP effects on traits and
their mediator genes. Unlike other methods, PerturbNet has the ability to distinguish between
direct and indirect perturbation of a network, which further enables a categorization of the role
of the mediator gene into four possible combinations of direct vs. indirect perturbations the
mediator gene receives from SNPs and passes onto clinical trait network. PerturbNet identified
these categories for each mediating gene with high accuracy (Fig. 4.18B). On gene network
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recovery, PerturbNet had higher accuracy on data simulated with SNP perturbations and even on
data simulated without SNP perturbations the accuracy of PerturbNet did not suffer significantly
(Fig. 4.18D). Our results suggest that PerturbNet achieves higher accuracy and provides richer
information on the regulatory roles of SNPs and mediator genes.

4.4.2 Comparison with SNPs in the NHGRI GWAS catalog

We compared the asthma SNPs found by each method with the previously reported asthma-
associated SNPs in the NHGRI GWAS catalog [12]. Out of 557 SNPs in the NHGRI GWAS
catalog for asthma, we examined how many of these SNPs are within 10, 20, 50, and 100kb of
top k SNPs from each method, k ranging from 1 to 500. To assess the statistical significance of
the overlap between two sets of SNPs, we performed a permutation test: for top k SNPs from
the given method, we generated 10,000 random sets of k SNPs from the SNPs employed in the
analysis to find the distribution of overlaps under the null hypothesis and reported the overlaps
with p-value < 0.05.

In comparison with the 557 SNPs annotated as asthma-associated in the NHGRI GWAS cata-
log, 11 SNPs were within 20kb of the 500 SNPs found by PerturbNet (with enrichment p-value =
0.0575), while only 2 NHGRI SNPs overlapped for eCAVIAR (p-value = 0.950), 6 for two-layer
Lasso (p-value = 0.408), and 3 SNPs for PrediXcan (p-value = 0.861). Statistically significant
enrichment held up to the top K = 400 SNPs for PerturbNet, where K = 100, . . . , 500, but for
none of the top SNP sets from eCAVIAR, Lasso, or PrediXcan.

For the 32 NHGRI SNPs overlapping at a distance of 100kb of the top PerturbNet SNPs,
we examined the 12 NHGRI SNPs which were primarily mediated through the 20 gene mod-
ules, as opposed to singleton genes. For each of these NHGRI SNPs, we found the PerturbNet
SNPs within 100kb and recorded the gene modules which they perturbed according to our model.
These mediating modules for each of the NHGRI SNPs are shown in Fig. 4.20. The NHGRI
SNPs accounted for by our model, and not primarily mediated by singleton genes, are all medi-
ated by modules 13-20.

4.4.3 Functional annotations of asthma SNPs

We examined the functional annotations of the top 500 SNPs identified as asthma-associated by
each method, using two external sources of annotations: the ENCODE DNase hypersensitivity
sites (GSM1008572) from GM12878 B-lymphoblastoid cell line [28], a blood cell type as in
CD4+ T lymphocytes in the CAMP study; and RegulomeDB [10] integrating ENCODE and
other sources of annotations for a diverse set of cell types. For comparison with the DNase
hypersensitivity sites, we used the UES tool [44] to identify the sites enriched in top asthma
SNPs from each method and to compute the enrichment p-values for these overlaps with 100
Monte Carlo simulations. We used RegulomeDB [10] to score the top 500 asthma SNPs from
each method into six categories: category 1 for overlaps with previously reported eQTLs with
additional functional annotation on TF binding; categories 2-5 for overlaps with TF binding sites
in ChIP-seq, DNase-seq, and motif hits, where lower scores indicate stronger evidence for being
functional; and category 6 for little evidence of being functional.
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PerturbNet SNPs had the largest overlap with the DNase-seq hypersensitivity sites from the
ENCODE B-lymphoblastoid cell-line and PerturbNet along with two-layer Lasso were the only
two methods with statistically significant overlaps across top SNPs of different sizes, indicating
that PerturbNet SNPs were supported with the strongest evidence that they are likely to play
a role in gene regulation (Fig. 4.21A). Compared against the functional annotation of variants
in RegulomeDB, PerturbNet SNPs again had the largest overlap, especially with SNPs in the
RegulomeDB category of “1”, which corresponds to the strongest evidence of being located in
the functional region and includes SNPs previously identified as eQTLs (Fig. 4.21B).

4.4.4 Comparison of prediction accuracy
We use the estimated PerturbNet model and the results of probabilistic inference on this model
to make predictions on previously unseen patients. From each of the two component sparse
CGGMs in our model, we make the following predictions:
• ŷnew|xnew = BT

xyxnew for predicting the expression levels ŷnew given the genotypes xnew of
a new patient

• ẑnew|ynew = BT
yzynew for predicting the phenotypes ẑnew given the expression levels ynew

of a new patient
From the full sparse Gaussian chain graph model, we make the following predictions:
• ẑnew|xnew = BT

xzxnew for predicting the phenotypes ẑnew given the genotypes xnew of a new
patient

• ŷnew|xnew, znew = −
(
zTnewΘT

yz + xTnewΘxy

)
Λ−1

y|x,z for predicting the gene expression levels
ŷnew given the genotypes xnew and the phenotypes xnew of a new patient

Two-layer Lasso for comparison with PerturbNet We compare the performance of our method
with that of Lasso [90, 97], a popular statistical method based on linear regression models for
studying the associations among SNPs, expression measurements, and phenotypes. We begin
by setting up a two-layer multivariate regression model for genotypes x ∈ {0, 1, 2}p, expression
measurements y ∈ Rq, and phenotypes z ∈ Rr as follows:

y = AT
xyx + εy, εy ∼ N (0q,Ωy),

z = AT
yzy + εz, εz ∼ N (0r,Ωz),

where Axy ∈ Rp×q and Ayz ∈ Rq×r are regression coefficients, εy ∈ Rq and εz ∈ Rr are
noise distributed with zero means and diagonal covariances Ωy = diag(σ2

y1
, . . . , σ2

yq
) and Ωz =

diag(σ2
z1
, . . . , σ2

zq).
Given genotype data X ∈ {0, 1, 2}n×p for n samples and p SNPs, expression data Y ∈ Rn×q

for q genes, and phenotype data Z ∈ Rn×r for r phenotypes, we obtain a Lasso estimate of the
regression coefficients by minimizing L1-regularized negative log-likelihood as follows:

minAxy

1

n
tr
((

Y −XTAxy

)(
Y −XTAxy

)T)
+ γ1||Axy||1,

minAyz

1

n
tr
((

Z−YTAyz

)(
Z−YTAyz

))T
+ γ2||Ayz||1.
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Using the Lasso estimate of the regression coefficients Axy and Ayz, we compute predictions
for this model analogously to our sparse Gaussian chain graph model.
• ŷnew|xnew = AT

xyxnew

• ẑnew|ynew = AT
yzynew

• ẑnew|xnew = AT
xzznew, where Axz = AxyAyz.

• ŷnew|xnew, znew =
(
zTnewΩzA

T
yz+xTnewAxyΩz

)
Ωy|x,z, where Ωy|x,z =

(
[Ωy]−1+Ayz[Ωz]−1Ayz

T
)−1.

For this prediction task, we estimate the variances as follows [75]:

σ2
yi

=
1

n− syi

(
[Y]:,i −XT [Axy]:,i

)T (
[Y]:,i −XT [Axy]:,i

)
, for i = 1, . . . , q,

σ2
zi

=
1

n− szi

(
[Z]:,i −YT [Ayz]:,i

)T (
[Z]:,i −YT [Ayz]:,i

)
for i = 1, . . . , r,

where syi
and szi are the numbers of non-zero entries in [Axy]:,i and [Ayz]:,i respectively.

Table 4.6: Prediction errors of different methods on asthma test set
Prediction task Lasso Our Model Our Model with Semi-supervised Learning
y|x 0.76494 0.75322 0.75318
z|y 1.03486 0.97068 0.89317
y|x, z 0.78161 0.75346 0.75324
z|x 0.85785 0.85795 0.85709

Prediction comparison results We assess the ability to make predictions about new asthma
patients based on the estimated PerturbNet model and compare the results with those from the
two-layer Lasso. We split the data into train and test sets and obtained the prediction accuracy
using the test set after training a model on the train set. We set aside 25 samples as a test set
and used the remaining 115 fully-observed samples and 34 partially observed samples to train a
sparse Gaussian chain graph model with our semi-supervised learning method. We also trained
a model, using only the 115 fully observed samples with the supervised learning method, and
compared the results from the two-layer Lasso, also trained from the fully observed samples.
Given the estimated models, we performed prediction tasks and obtained the prediction error as
the squared difference between the observed and predicted values averaged across samples in
test set.

The PerturbNet model estimated from all data had the smallest prediction error for all of the
prediction tasks (Table 4.6). In particular, our model with semi-supervised learning performed
better than our model with supervised learning, demonstrating that leveraging partially observed
data can help learn a model with greater predictive power. For supervised learning, our model
outperformed Lasso. This demonstrates that taking into account the network structure in expres-
sion levels and clinical phenotypes increases the performance on prediction tasks.
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4.4.5 Visual comparison of the PerturbNet and two-layer Lasso models
We compared the results from our approach and the two-layer Lasso by visually inspecting the
estimated SNP effects on gene modules and the estimated gene module effects on phenotypes.
For the top 50 SNPs perturbing the lung phenotypes (Figure 4.11), we examined the overall SNP
effects on each gene module based on Θxy and Bxy from our model and Axy from the two-layer
Lasso (

∑
j∈M |[Θxy]i,j|,

∑
j∈M |[Bxy]i,j|, and

∑
j∈M |[Axy]i,j| for SNP i and module M ). To

see how each gene module influences phenotypes, we computed the magnitudes of overall gene
module effects on each phenotype from Θyz and Byz in our model and Ayz in the two-layer
Lasso (

∑
j∈M |[Θyz]j,k|,

∑
j∈M |[Byz]j,k|, and

∑
j∈M |[Ayz]j,k| for module M and phenotype k).

Unlike the PerturbNet model, the two-layer Lasso does not model direct and indirect pertur-
bation effects separately but attempts to capture both types of effects in a single set of parameters.
Thus, the perturbation effects captured by the two-layer Lasso appeared to be a compromise be-
tween the direct and indirect perturbation effects captured by PerturbNet (Figure 4.22). However,
the SNP effects appeared to be similar across Θxy, Bxy, and Axy in the module-level summaries
(Figures 4.22A-4.22C), because the direct SNP perturbation effects tended to propagate to other
genes only within each module, but not to genes in other modules. On the other hand, the module
effects on phenotypes showed a distinct pattern across Θyz, Byz, and Ayz (Figures 4.22D-4.22F),
because in our model, the direct influence of gene expression levels on a phenotype induces the
indirect influence on other correlated phenotypes, whereas the Lasso parameter tries to capture
both types of information in a single parameter. The Lasso model similarly tries to capture both
direct and indirect influences of averaged gene module expression levels on traits, compared to
PerturbNet which distinguishes between them, as shown in Figure 4.23.
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Figure 4.18: Results on simulated asthma data. Comparison of PerturbNet with eCAVIAR,
PrediXcan, and two-layer Lasso. The accuracy of each method is shown for (A) the recovery
of SNPs perturbing traits, (B) the recovery of genes mediating the perturbation effect of each
SNP on each trait, and (C) the recovery of genes mediating the overall SNP effects on each
trait. Ground-truth models with networks over genes and traits (left column) and no network
(right column) were used. (D) Comparison of network learning methods on simulated data.
PerturbNet and sparse GGMs were fit to data simulated from networks with SNP perturbations
(left) and without SNP perturbations (right). Sensitivities at FDR=0.05 are shown.
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Figure 4.19: Overlaps with asthma SNPs in the NHGRI GWAS catalog. An overlap is defined
as the SNPs in the GWAS catalog within (A) 10kb, (B) 20kb, (C) 50kb, and (D) 100kb of top k
SNPs from each method. Statistically significant enrichments (p-value < 0.05) are highlighted.
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Figure 4.20: PerturbNet gene modules mediating the effects of the NHGRI GWAS SNPs on
asthma traits. Out of 32 NHGRI SNPs within 100kb of our top 500 SNPs, 12 SNPs, shown in
rows, had most of their effects on traits mediated by gene modules that are not singletons. The
colorbar indicates the number of SNPs found by PerturbNet that are located in the region of each
SNP in the GWAS catalog.
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Figure 4.21: Overlaps with ENCODE DNase hypersensitivity sites and functionally annotated
SNPs in RegulomeDB. (A) Overlaps with the ENCODE DNase hypersensitivity sites for B-
lymphoblastoid cell line. Statistically significant enrichments (p-value < 0.05) are highlighted.
Enrichment p-values were computed with the UES software package [44]. (B) Overlaps with
functionally annotated SNPs in RegulomeDB [10]. Lower scores indicate more likely to be
functional. RegulomeDB scores rank genomic locations from 1 (strong evidence for being func-
tional) to 6 (minimal evidence).
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Figure 4.22: Comparison of PerturbNet and Lasso for learning the cascaded influence of SNPs
to gene modules to phenotypes. For the top 50 SNPs perturbing lung phenotypes (Figure 4.11),
the effects of these SNPs on each of the gene modules are shown for (A) Θyz from our model,
(B) Byz inferred from our model, and (C) Ayz from the two-layer Lasso. The effects of the
expression levels in each gene module on lung phenotypes are shown for (D) Θyz from our
model, (E) Byz inferred from our model, and (F) Ayz from the two-layer Lasso. The effect sizes
in each model parameter matrix above were summed across all genes within each module after
taking absolute values.
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Figure 4.23: Association between clinical traits and aggregated expression level of each gene
module, compared between PerturbNet and Lasso. (a) Direct edges in Θyz (b) regression coeffi-
cients Byz, (c) regression coefficients from Lasso model Ayz.
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4.5 Discussion of PerturbNet for Asthma
Our results from applying PerturbNet to asthma data confirmed the observations from the previ-
ous studies, including GWAS, eQTL mapping, and gene network modeling [69, 79]. Our results
confirmed the finding from previous studies on combining the results of GWAS and eQTL map-
ping [69] that there is a partial overlap between SNPs perturbing expression levels and SNPs
perturbing phenotypes. In addition, this overlap was more significant for eQTLs that perturb
trait-associated modules than eQTLs that perturb other parts of the gene network, as was previ-
ously reported [73].

The analysis of the asthma data with PerturbNet provided new insights. PerturbNet was able
to systematically reveal the gene network that lies between the SNPs and phenotypes and to
uncover how different parts of this gene network modulate the SNP effects on phenotypes in a
statistically principled manner. Often, there are genetic loci that have been previously known
to be linked to the disease susceptibility, though little is known about the underlying molecular
mechanism. In such cases, the PerturbNet analysis of asthma data demonstrated the potential to
reveal the molecular pathway that are perturbed by previously known trait-associated loci.
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Chapter 5

Discussion and Conclusion

5.1 Discussion
In this thesis, we have introduced a new machine learning framework called PerturbNet for learn-
ing a gene network underlying phenotypes using SNP perturbations and for identifying SNPs that
perturb this network, given population genotype, expression, and phenotype data. As part of our
framework, we have proposed new statistical models, combined with scalable learning algo-
rithms and intuitive inference procedures and scoring functions to make using the framework
simple and useful for systems biologists working with human genomic datasets.

Compared to many of the previous methods that focused on the co-localization of eQTLs and
genetic association signals for phenotypes [33, 36, 45], using multi-stage methods [27, 79, 80],
our approach combines all available data in a single statistical analysis and directly models the
multiple layers of a biological system with a cascade of influence from SNPs to expression
levels to phenotypes, while modeling each layer as a network. Our probabilistic graphical model
framework allows to model eQTLs with or without an impact on phenotypes for an investigation
of co-localization of SNPs perturbing expression levels and SNPs perturbing phenotypes and to
extract rich information on the molecular mechanisms that explains the influence of SNPs on
phenotypes. We developed fast learning algorithms called Fast-sCGGM and Mega-sCGGM for
learning sparse CGGM components of the PerturbNet model, which serve as the key subroutine
of our PerturbNet learning method, to enable analysis of human genome scale data within a few
hours.

5.2 Future Directions
We conclude with directions for future study.

5.2.1 Alternative threadings of sCGGM components for more complex in-
tegrative analyses

PerturbNet provides a flexible tool that can be extended in several different ways in a straightfor-
ward manner. Because the sparse Gaussian chain graph model in PerturbNet uses sparse CGGMs
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as building blocks, the sparse CGGM component models can be threaded in different ways to
form sparse Gaussian chain graph models with different structures. For example, if expression
data from multiple tissue types are available for a patient cohort along with genome sequence
and phenotype data, a sparse Gaussian chain graph model can be set up with multiple component
sparse CGGMs, each corresponding to the gene network under SNP perturbation in each tissue
type, linked to another sparse CGGM for modeling expression levels influencing phenotypes.
Models like this can reveal SNPs that perturb phenotypes through different tissue types and
through different modules in each tissue-specific gene network. Another possible extension is to
thread more than two component sparse CGGMs within a sparse Gaussian chain graph model
to model more than two layers in a biological system, including epigenomes, metabolomes, and
proteomes.

5.2.2 Mixed effects modeling extensions of sparse CGGMs
One advantage of PerturbNet over single-gene and single-trait methods such as Lasso, is that
our network-based method takes advantage of correlations among gene expressions and among
clinical traits to increase statistical power despite noisy gene expression levels and clinical traits
measurements. However, another type of correlation can potentially provide misleading results
due to confounding: correlations among subjects. In our analysis of CAMP asthma data, we
sidestepped this problem by simply excluding from our analysis all the data from individuals
who were not non-Hispanic Caucasians. Extending sparse CGGMs with a mixed effects ap-
proach would allow scientists to improve the power of their studies with more data while avoid-
ing confounding due to population stratification.

88



Bibliography

[1] 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092
human genomes. Nature, 491(7422):56, 2012. 4.3.5

[2] F. Abegaz and E. Wit. Sparse time series chain graphical models for reconstructing genetic
networks. Biostatistics, pages 586–599, 2013. 3

[3] Frank Wolfgang Albert, Joshua S Bloom, Jake Siegel, Laura Day, and Leonid Kruglyak.
Genetics of trans-regulatory variation in gene expression. eLife, 7:e35471, 2018. 1.4.2

[4] AF Maarten Altelaar, Javier Munoz, and Albert JR Heck. Next-generation proteomics:
towards an integrative view of proteome dynamics. Nature Reviews Genetics, 14(1):35,
2013. 1.1

[5] S. Andersson, D. Madigan, and D. Perlman. An alternative Markov property for chain
graphs. In Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence,
pages 40–48. Morgan Kaufmann, 1996. 3.1.1, 3.1.3

[6] S. Andersson, D. Madigan, and D. Perlman. Alternative Markov properties for chain
graphs. Scandinavian Journal of Statistics, 28:33–85, 2001. 3.1.1, 3.1.3

[7] Larry Armijo et al. Minimization of functions having lipschitz continuous first partial
derivatives. Pacific Journal of mathematics, 16(1):1–3, 1966. 2.1.1

[8] Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler,
J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al.
Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1):25, 2000. 4.3.2

[9] Cindy Barnig, Ghada Alsaleh, Nicolas Jung, Doulaye Dembélé, Nicodème Paul, Anh
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