
Unified Models for Dynamical Systems

Carlton Downey

MAY 2019
CMU-ML-19-107

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:

Geoffrey Gordon, Chair
Byron Boots

Arthur Gretton
Ruslan Salakhutdinov

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy.

Copyright c© 2019 Carlton Downey

This research was sponsored by the Office of Naval Research award N000141512365 and grants from Intel Corporation
and PNC Financial Services.

Keywords: Spectral Algorithms, Bayes Filters, Recurrent Neural Networks, Kernel Methods,
Filtering, Time Series, Tensors, Tensor Decomposition, Predictive State Representations, Method
of Moments, Quantum Mechanics

To my Family

iv

Abstract
Intuitively a dynamical system is any observable quantity which changes over

time according to some fixed rule. Building models to understand, predict, and
control dynamical systems has been a field of study for many years, resulting in a
large and diverse array of distinct models. Each of these models offers its own unique
advantages and disadvantages, and choosing the best model for a given task is a
difficult problem where a variety of tradeoffs must be considered. In this work we
explore the complex web of relationships between these models, and use the insights
gained to derive new connections. Our goal is to unify these many diverse models
into sophisticated hybrid models which offer the best of all worlds. In particular
we focus on unifying two main categories of models: Bayes Filters and Recurrent
Neural Networks. Bayes Filters model dynamical systems as probability distributions
and offer a wealth of statistical insight. In contrast Recurrent Neural Networks are
complex functions design to produce accurate predictions, but lack the statistical
theory of Bayes Filters. By drawing on insights from each of these fields we develop
new models which combine an axiomatic statistical theory with rich functional forms,
are widely applicable and offer state of the art performance.

Acknowledgments
I would like to take a moment to express my profound gratitude to all the incredible people who
were a part of this journey with me, and without whom this work would not have been possible.

First and foremost I would like to thank my adviser, Geoffrey Gordon. It is under his guidance
that I first fell deeply in love with the wonder of machine learning, an affection which has only
grown as time moved forwards. Geoff encouraged me to explore widely and let my interests guide
me, whilst also keeping me firmly focused on the path forwards. Through the highs and lows of
my PhD Geoff has been supportive at every turn. He has listened to my crazy ideas, nurtured me
with his insights, and helped me grow into the person that I am today.

I would also like to thank Stephen Fienberg for helping advise me during my early years at
CMU. Steve was a mentor, friend and teacher, and I regret that his passing robbed me of the
opportunity to spend more time learning from him.

I would like to thank my thesis committee: Byron Boots, Arthur Gretton, and Ruslan Salakhut-
dinov. I am indebted to them for their time, their support, their ideas and their advice.

The work presented in this thesis is the result of many fruitful collaborations. To this end I
would like to thank Ahmed Hefny, Byron Boots, Boyue Li, Krzysztof Choromanski, and Siddarth
Srinivasan. I learned a great deal from working with each and every one of them, and this work
is as much theirs as it is mine. I would also like to thank Avinava Dubey, Sashank Reddi, Zita
Marinho, Suvrit Sra, Quan Wang, Ignacio Lopez Moreno, Li Wan, and Philip Andrew Mansfield
for similar contributions to work which was not included in this thesis.

I would like to thank the CMU staff for their myriad contributions great and small to the
department, and for helping ensure my time at CMU was so special. In particular I would like to
thank Diane Stidle for her tireless work to help and support me through the complexities of grad
school.

My time at CMU has been deeply enriched by sharing this journey with the many other
incredible people there. In particular I would like to thank Shing-hon Lau, Adona Iosif, Jesse
Dunietz, Avinava Dubey, Sashank Reddi, Jing Xiang, William Bishop, Eric Wong, Maruan
Al-Shedivat, Manzil Zaheer, and Aaditya Ramdas for the countless interesting discussions.

Finally I would like to thank my family; Kristin, Rod, and Alex Downey. A PhD is a difficult
journey, and their continuous support meant everything to me. They have been there for me day in
and day out, through good times and bad, always ready to pick me back up when I was knocked
down.

vi

Contents

1 Introduction 1
1.1 Main Contributions . 1
1.2 Organisation . 3

I Background 5

2 Background 7
2.1 Dynamical Systems . 7

2.1.1 Models . 9
2.1.2 State . 11

2.2 Bayes Filters . 12
2.2.1 Hidden Markov Models . 13
2.2.2 Kalman Filters . 15
2.2.3 Observable Operator Models . 17
2.2.4 Predictive State Representations . 19
2.2.5 Hilbert Space Embeddings of Bayes Filters 20

2.3 Recurrent Neural Networks . 23
2.3.1 Elman Networks . 24
2.3.2 Long-Short Term Memory Units . 25
2.3.3 Gated Recurrent Units . 26

2.4 Generative Learning . 27
2.4.1 Maximum Likelihood . 28
2.4.2 Gradient Methods . 28
2.4.3 Expectation Maximization . 29
2.4.4 Method of Moments . 29
2.4.5 Subspace Identification . 30
2.4.6 Tensor Decomposition Methods . 31

2.5 Discriminative Learning . 34
2.5.1 Back Propagation Through Time . 35

2.6 Discussion . 36

vii

II Unifying Method of Moments Learning 37

3 Method of Moments Learning for Uncontrolled Systems 39
3.1 Predictive State Models . 40
3.2 Two-Stage Regression . 42
3.3 Connections with prior work . 44

3.3.1 HMM . 45
3.3.2 Stationary Kalman Filter . 47
3.3.3 HSE-PSR . 49

3.4 Theoretical Analysis . 50
3.5 Experiments . 52

3.5.1 Learning A Knowledge Tracing Model 52
3.5.2 Modeling Independent Subsystems Using Lasso Regression 54

3.6 Related Work . 55
3.7 Conclusions . 56
3.A Proofs . 57

3.A.1 Proof of Main Theorem . 57
3.A.2 Proof of Lemma 6 . 62

3.B Examples of S1 Regression Bounds . 62

4 Method of Moments Learning for Controlled Systems 65
4.1 Introduction . 65
4.2 Formulation . 65

4.2.1 Model Definition . 66
4.3 Learning A Predictive State Controlled Model 67

4.3.1 Joint S1 Approach . 68
4.3.2 Conditional S1 Approach . 68
4.3.3 S2 Regression and Learning Algorithm 69
4.3.4 Theoretical Guarantees . 69

4.4 Connections with HSE-PSRs . 70
4.4.1 HSE-PSR as a predictive state controlled model 70
4.4.2 S1 Regression for HSE-PSR . 71

4.5 Experiments . 72
4.5.1 Synthetic Data . 72
4.5.2 Predicting windshield view . 72
4.5.3 Predicting the nose position of a simulated swimmer robot 72
4.5.4 Tested Methods and Evaluation Procedure 73
4.5.5 Results and Discussion . 73

4.6 Other Examples of Predictive State Controlled Models 74
4.6.1 IO-HMM . 74
4.6.2 Kalman Filter with inputs . 75

4.7 Theoretical Analysis . 76
4.7.1 Case 1: Discrete Observations and Actions 77
4.7.2 Case 2: Continuous System . 77

viii

4.8 Conclusions . 78
4.A RFF-PSR Learning Algorithm . 80
4.B Proofs of theorems . 80

4.B.1 Proof of Theorem 24 . 84
4.B.2 Sketch Proof for joint S1 . 85

III Hybrid Models 87

5 Predictive State Recurrent Neural Networks 89
5.1 Predictive State Recurrent Neural Networks . 89

5.1.1 HSE-PSRs as RNNs . 90
5.1.2 From PSRs to PSRNNs . 91

5.2 Theory . 91
5.3 Learning Multilayer PSRNNs . 92
5.4 Factorized PSRNNs . 93
5.5 Discussion . 94
5.6 Experiments . 94

5.6.1 Results . 95
5.7 Related Work . 97
5.8 Conclusions . 99

6 Hilbert Space Embedding of Hidden Quantum Markov Models 101
6.1 Quantum Mechanics . 101
6.2 Advantages of Quantum Mechanics . 103

6.2.1 Continuous Time . 104
6.2.2 Richer Class of Transformations . 105
6.2.3 Easier to Learn . 105
6.2.4 Rotational Symmetry . 106

6.3 Quantum Circuits . 106
6.4 Quantum Graphical Models . 107
6.5 Translating to the language of Hilbert Space Embeddings 109

6.5.1 Hilbert Space Embeddings . 109
6.5.2 Quantum Sum Rule as Kernel Sum Rule 110
6.5.3 Quantum Bayes Rule as Nadaraya-Watson Kernel Regression 111
6.5.4 Quantum Bayes Rule as Kernel Bayes Rule 113

6.6 HSE-HQMMs . 114
6.7 Connections with PSRNNs . 117
6.8 Experiments . 117
6.9 Related Work . 119
6.10 Conclusions . 120
6.A Modifying the Quantum Circuit for Bayes rule 121
6.B Kernelizing HSE-HQMMs . 121
6.C Experimental Details . 122

ix

6.C.1 State Update . 122
6.C.2 Prediction . 122
6.C.3 Pure State HSE-HQMMs . 122
6.C.4 Parameter Values . 122

IV Scalable Implementations 125

7 Sketching for Predictive State Methods 127
7.1 Tensor Sketch . 128
7.2 Sketched Two-Stage Regression . 129

7.2.1 Tensor Sketch as PSRNN Parameters 131
7.2.2 Hybrid ALS with Deflation . 131
7.2.3 Learning a Factorized PSRNN . 132

7.3 Experiments . 134
7.3.1 Tensor Product vs. Tensor Decomposition 134
7.3.2 Tensor Decomposition: Alternating Least Squares vs. Deflation 134
7.3.3 Sketching for Factorized PSRNNs . 134

7.4 Conclusions . 136

8 Orthogonal Random Features for Predictive State Models 137
8.1 Orthogonal Random Features . 138
8.2 The theory of the orthogonal kernel ridge regression 140

8.2.1 Superiority of the orthogonal features for kernel ridge regression 141
8.3 Experiments . 142

8.3.1 Experimental Setup . 143
8.3.2 Results . 143
8.3.3 Discussion . 144

8.4 Related Work . 145
8.5 Conclusions . 146
8.A Proof of Theorem 38 . 147
8.B Proof of Theorem 39 . 153

V Conclusions 155

9 Conclusions 157

Bibliography 159

x

List of Figures

2.1 Dynamical System . 8
2.2 Hidden Markov Model (HMM) as a graphical model. Here nodes represent

random variables, while arrows represent conditional independence assumptions. 14
2.3 Filtering (The Forward Algorithm) In an HMM 15
2.4 Neural Network Diagram of an OOM . 17
2.5 Network Diagram for an Elman Network . 25
2.6 CP Decomposition . 32
2.7 A variable HMM. Note how all three observations o1,o2, and o3 depend on state

s2 and hence provide different views of s2 . 33

3.1 Illustration of the concepts of Future, Extended Future, and Shifted Future (for a
fixed, finite horizon k at time t). 40

3.2 Illustration of the Expansion/Conditioning decomposition of the Bayes Filter
update rule. 41

3.3 Learning and applying a dynamical system using instrumental regression. S1 re-
gression is trained to provide data to train S2 regression. At test time, starting from
an initial belief state q0, we alternate between S2 regression and filtering/prediction 44

3.4 Transitions and observation emissions of the BKT model. (Each node represents
a possible value of the state/observation). Solid arrows represent transitions while
dashed arrows represent emissions. 53

3.5 Experimental results: each graph depicts the performance of two models (mea-
sured by mean absolute error) on 1000 train/test splits. The black line represents
the x = y lines. More points below the line indicates that model y is better
than model x. The table depicts training time of each model relative to model 1
(spectral HMM). 54

3.6 Left singular vectors of (left) true linear predictor from ot−1 to ot (i.e. OTO+),
(middle) covariance matrix between ot and ot−1 and (right) S1 Sparse regression
weights. Each column corresponds to a singular vector (only absolute values are
depicted). Singular vectors are ordered by their mean coordinate, interpreting
absolute values as a probability distribution over coordinates. 55

4.1 An example of windshield view output by TORCS. 73

xi

4.2 Mean square error for 10-step prediction on (from left to right) synthetic model,
TORCS car simulator, swimming robot simulation with 80% blind test-policy,
and swimming robot with 20% blind test policy. Baselines with very high MSE
are not shown for clarity. A comparison with HSE-PSR on TORCS and swimmer
datasets was not possible as it required prohibitively large memory. 74

5.1 PSRNN architecture: See equation 5.3 for details. We omit bias terms to avoid
clutter. 91

5.2 Factorized PSRNN Architecture . 93
5.3 PTB Experiments . 96
5.4 MSE vs Epoch on the Swimmer, Mocap, and Handwriting datasets 97
5.5 Test Data vs Model Prediction on a single feature of Swimmer. The first row

shows initial performance. The second row shows performance after training. In
order the columns show KF, RNN, GRU, LSTM, and PSRNN. 98

6.1 An example of classical mechanics. We transform a stochastic vector representing
information about an unknown quantity (in this case a coin flip) into another
stochastic vector using a stochastic matrix. 102

6.2 An example of quantum mechanics. We transform a unitary vector representing
information about an unknown quantity (in this case a coin flip) into another
unitary vector using a unitary matrix. The vectors in red are the squared absolute
values of the unitary vectors. 103

6.3 scale=0.3 . 103
6.4 Example of how quantum mechanics allow for continuous time. Given an operator

which advances the system state by 2 seconds we can obtain an operator which
advances the system one second by taking the square root of the original operator. 105

6.5 Illustration of the state space: Probability Simplex vs. Unit Sphere 106
6.6 Simple quantum circuit operations . 107
6.7 Quantum-circuit analogues of conditioning in graphical models 109
6.8 Quantum circuit to compute posterior P (X|y) 112
6.9 The relationship between Bayes Rule, Kernel Bayes Rule, and Quantum Bayes

Rule. Quantum Bayes Rule and Kernel Bayes Rule both generalize bayes rule.
Quantum Bayes Rule is obtained from Bayes by representing uncertainy using
Quantum Mechanics via density matrices. Kernel Bayes Rule is obtained from
Bayes Rule by embedding our probability distributions in an RKHS. Kernel Bayes
Rule and Quantum Bayes rule are equivalent. 114

6.10 Quantum Circuit for HSE-HQMM . 114
6.11 Performance of HSE-HQMM, PSRNN, and LSTM on Mocap, Swimmer, and PTB 118
6.12 Heatmap Visualizing the Probability Densities generated by our HSE-HQMM

model. Red indicates high probability, blue indicates low probability, x-axis corre-
sponds to time, y-axis corresponds to the feature value. Each column corresponds
to the predicted marginal distribution of a single feature changing with time. The
first row is the probability distribution after 2SR initialization, the second row is
the probability distribution after the model in row 1 has been refined via BPTT. . 119

xii

7.1 Approximation quality of general tensor contraction vs. recovering the first rank-1
component of a tensor. (left): Histogram of dot product between normalized
true and approximate contraction results. (middle): Histogram of dot product
between true and approximate first rank-1 component vector. (right): Histogram
of maximum dot product between approximate first rank-1 component vector and
all true rank-1 components, showing that failures in (middle) are due to recovering
a different rank-1 component. 135

7.2 Relative residual norm for different decomposition methods using tensor sketches. 136
7.3 Log Perplexity on PTB for factorized PSRNN initialized using Sketched 2SR . . 136

8.1 Common RBF kernels, the corresponding functions φ, and probability density
functions (here: w = (w1, ..., wn)>). 138

8.2 MSE for Orthogonal RF vs Standard RF after two stage regression 144
8.3 MSE for Orthogonal RF vs Standard RF after two stage regression and BPTT . . 144

xiii

xiv

List of Tables

2.1 Some popular kernels and their Fourier transforms 23

3.1 Examples of existing spectral algorithms reformulated as two-stage instrument
regression with linear S1 regression. Here ot1:t2 is a vector formed by stacking ob-
servations ot1 through ot2 and⊗ denotes the outer product. Details and derivations
can be found in the supplementary material. 45

4.1 Comparison between proposed RFF-PSR and existing system identification meth-
ods in terms of the type of systems they can model as well as their computational
efficiency and statistical consistency. The table should be interpreted as follows:
for each method there exists an instantiation that simultaneously satisfies all prop-
erties marked with X but there is no instantiation that is guaranteed to satisfy the
properties marked with ×. A method is scalable if computational and memory
costs scale at most linearly with the number of training examples. For RFF-based
methods, consistency is up to an approximation error that is controllable by the
number of features [92]. 66

6.1 Hyperparameter values used in experiments . 124

xv

xvi

List of Algorithms

1 Two-stage regression for predictive state controlled models 69
2 Learning Predictive State Representation with Random Fourier Features (LEARN-

RFF-PSR) . 80
3 Learning Algorithm using Two-Stage Regression for HSE-HQMMs 116
4 Learning Algorithm using Two-Stage Regression for Pure State HSE-HQMMs . 123
5 Sketching the parameter tensor W . 130
6 Fast ALS using sketches (DECOMPALS) . 133
7 Hybrid Decomposition with ALS and Deflation (DECOMPHYBRID) 133

xvii

xviii

Chapter 1

Introduction

Building models to understand, predict, and control dynamical systems has been a field of study
for many years, resulting in a large and diverse array of distinct models. Each of these models
offers its own unique advantages and disadvantages, and choosing the best model for a given task
is a difficult problem where a variety of tradeoffs must be considered.

Many of these approaches can be categorized as either recursive Bayes Filtering or Recurrent
Neural Networks. Bayes Filters are a probabilistic approach for modelling dynamical systems.
They maintain a belief state corresponding to a probability distribution over future observations,
and update this distribution recursively over time using incoming measurements and Bayes Rule.
In contrast Recurrent Neural Networks are arbitrary functions which take past observations as
inputs and produces predictions about future observations as output.

Bayes Filters possess a strong statistical theory, affording these models a host of useful
properties: we can easily include prior or expert knowledge when constructing our model; there
exist efficient and consistent learning algorithms; and we can use them to gain insight into the
underlying system. Unfortunately due to various issues practical implementations of these models
are often limited to relatively simple functional forms which make unrealistic assumptions about
the underlying distribution.

Recurrent Neural Networks offer complementary advantages; they focus on developing rich,
complex models which can still be efficiently learned from data. To achieve this goal Recurrent
Neural Networks abandon much of the axiomatic statistical theory which makes Bayes Filters so
useful. In particular their lack of statistical theory makes them difficult to analyze, and limits their
learning to simple gradient based methods.

In this thesis we explore the complex web of relationships between Bayes Filters and RNNs.
We leverage the insights to develop novel hybrid models which unify the axiomatic statistical
theory of Bayes Filters with the rich functional forms and practical performance of RNNs.

1.1 Main Contributions
The main contributions of this thesis are:
• We unify the various Method-of-Moments learning algorithms for Bayes Filters under a

single learning framework. Specifically, we propose a framework which reduces MoM

1

learning to solving three supervised learning problems using the idea of instrumental-
variable regression. This allows us to directly apply the rich literature on supervised
learning methods to incorporate many types of prior knowledge about problem structure.
We show that this framework subsumes a wide variety of existing spectral algorithms. This
work is split into two parts: In the first we develop these ideas in the context of uncontrolled
systems. In the second we extend our earlier work to the more difficult setting of controlled
systems.

• We leverage this framework to develop two new hybrid models which unify the advantages
of Bayes Filters and Recurrent Neural Networks in a single model. Our new models are
Predictive State Recurrent Neural Networks (PSRNNs) and Hilbert Space Embedding of
Hidden Quantum Markov Models (HSE-HQMMs).
PSRNNs use bilinear functions to combine information from multiple sources. We show
that such bilinear functions arise naturally from state updates in Bayes filters, in which
observations can be viewed as gating belief states. We show that PSRNNs directly generalize
discrete PSRs, and can be learned effectively by combining Backpropagation Through
Time (BPTT) with two-stage regression. We also show that PSRNNs can be factorized
using tensor decomposition, reducing model size and suggesting interesting connections to
existing multiplicative architectures such as LSTMs.
We investigate the link between Quantum Mechanics and HSEs and show that the sum
rule and Bayes rule in Quantum Mechanics are equivalent to the kernel sum rule in HSEs
and a special case of Nadaraya-Watson kernel regression, respectively. We show that these
operations can be kernelized, and use these insights to propose a Hilbert Space Embedding
of Hidden Quantum Markov Models (HSE-HQMM) to model dynamics. We present
experimental results showing that HSE-HQMMs are competitive with state-of-the-art
models like LSTMs and PSRNNs on several datasets, while also providing a nonparametric
method for maintaining a probability distribution over continuous-valued features.

• We show how these new ideas can be implemented at scale. We focus on solving two
concrete problems: 1) how to use Tensor Sketching to reduce the cost of two-stage regression
and 2) how to use Orthogonal Random Features to reduce the cost of embedding distributions
in Hilbert spaces.
We present Sketched 2SR, a novel formulation of two-stage regression which uses ten-
sor sketches, combined with tensor power iteration, to efficiently learn PSRNNs from
data. Sketched 2SR requires only O(d) space and O(d2) time, compared with two-stage
regression which requires O(d3) space and O(d4) time.
We show that orthogonal random features can be used in place of conventional random
features to learn smaller, faster PSRNNs. We theoretically analyze the orthogonal version
of two-stage regression, and show that we obtain strictly better empirical risk. In particular,
we show that OPSRNN models can achieve accuracy similar to PSRNNs with an order of
magnitude fewer features needed.

2

1.2 Organisation
The remainder of this thesis is organised as follows:
Part I: Background
• Chapter 2 We present an overview of dynamical systems, how they are modelled, and the

algorithms used for learning said models. This chapter concludes with a discussion on the
pros and cons of the various techniques, and sets the stage for later contributions.

Part II: Unifying Method of Moments Learning.
• Chapter 3 We develop a new framework for learning uncontrolled dynamical systems by

reduction to supervised learning. This framework defines a new class of models, called
Predictive State Models, and a new learning algorithm, called Two Stage Regression. This
chapter is based on [59].

• Chapter 4 We extend the framework developed in chapter 3 to controlled dynamical
systems. This chapter is based on [60]

Part III: Hybrid Models
• Chapter 5 We introduce a new model in the class of predictive state models which is called

a Predictive State Recurrent Neural Network (PSRNN). PSRNNs draw on insights from
both Recurrent Neural Networks and Predictive State Models, and inherit advantages from
both types of models. This chapter is based on [44].

• Chapter 6 We generalize PSRNNs using ideas from quantum mechanics to obtain a new
model, called Hilbert Space Embeddings of Hidden Quantum Markov Models (HSE-
HQMMs), which describes a rich class of probability distributions over sequences of
continuous observations. This chapter is based on [107].

Part IV: Practical Implementations
• Chapter 7 We show how to learn large predictive state models efficiently using ideas from

tensor-sketching. This chapter is not yet submitted.
• Chapter 8 We show how to further reduce the size of predictive state models using orthog-

onal random features. This chapter is based on [38].

.
Part V: Conclusions and Future Work
• Chapter 9 We present a summary of our conclusions.

3

4

Part I

Background

5

Chapter 2

Background

In this chapter we present an overview of the background material on which the work in this
thesis both depends and builds. We begin by introducing the notion of dynamical systems, and
how they can be used. We then discuss the various types of dynamical system models, with
particular attention to the distinction between Bayes Filters and Recurrent Neural Networks. We
then discuss the various ways these models can be learned from data, distinguishing between
Generative approachs and Discriminative approaches. Finally we end with a discussion of the
pros and cons of these various techniques and how we might want to extend them. Our hope is
that the reader can take away from this section that 1) Dynamical systems are ubiquitous and
important, 2) There are a wide variety of techniques for modelling dynamical systems, each with
their own strengths and weaknesses, and 3) Many of these ideas have been developed in isolation,
and have the potential to benefit from being combined.

2.1 Dynamical Systems

Intuitively a dynamical system is any observable quantity which changes over time according
to some fixed rule. Dynamical systems are an incredibly broad class of objects, with examples
as complex and disparate as a pendulum swinging, a car being driven, the stock market, a leaf
blowing in the wind, speech, text, a person running, or even the human brain. We can also
categorize dynamical systems as controlled or uncontrolled, i.e., whether or not our actions can
influence the behavior of the system.

Formally we define a dynamical system in terms of time t, (system) states q, observations o,
actions a, system dynamics f() and emission dynamics g(). State qt is a description or snapshot
of the system at a given point in time t. For example the state of a pendulum would consist of its
position and velocity. Observations ot are a (probabilistic) function of the state, and correspond to
our perception of the state at time t. For example an observation of a pendulum might consist
of its position, or simply a picture of the pendulum at a given point in time. We note that there
may be partial observability, e.g. while it is possible to obtain the position of the pendulum from
a single observation (picture), it is not possible to obtain its velocity. Actions at correspond to
interventions we take at time t which influence the behavior of the system. These will be discussed
in more detail in Chapter 4; for now we will focus on uncontrolled systems.

7

Figure 2.1: Dynamical System

The state evolves over time according to the system dynamics f():

qt+1 = f(q1, ..., qt) = f(q1:t)

One way to think of f() is as a description of the physical laws governing the system. In the
case of the pendulum if we know the length of the string, the weight and shape of the pendulum,
the materials used, etc., then we can use our knowledge of physics to describe the future state
(position and velocity) as a function of the current state (position and velocity) and the change in
time.

f() may be stochastic, i.e.:

qt+1 = f(q1, ..., qt, zt) = f(q1:t)

where zt is random.
The emission dynamics g() define the relationship between the qt and ot:

ot = g(qt)

We can think of g() as a description of our ability to observe qt with a set of measuring devices
(e.g. camera, radar, etc). In some rare cases the system is fully observable, i.e. qt = ot, however
for the vast majority of interesting systems the system is partially observable.

Thus far we have assumed that observations occur at fixed discrete intervals, i.e. time is
an Integer. In reality time can be Integer or Real, and can be measured at fixed or varying
intervals. For example a sentence forms a dynamical system with discrete time where each word
corresponds to an observation, while the previous pendulum example clearly exists in the physical
world with continuous time. In a similar vein observations can be categorical, Integer, Real or
Complex, and can be scalar or vector valued. Different disciplines have traditionally focused on
dynamical systems of a particular type: For example, Physicists study problems with continuous
time and complex vector valued observations (e.g. atomic particles), whereas Linguists study

8

problems with discrete fixed interval time, and categorical observations (e.g. text). The category
of dynamical system has a major impact on the types of models developed, with different fields
developing models with different strengths and weaknesses.

In practice we often treat continuous dynamical systems as if time was discrete and occurred
at fixed intervals. The reason for this is that our perception of the world is often via measurement
devices which record observations at fixed intervals, e.g. cameras, microphones, sonar, etc. Thus
for all intents and purposes these systems can be viewed as discrete. In this thesis we will focus
on dynamical systems with discrete time at fixed intervals, and real vector valued observations.
Assuming discrete time is common in many domains, as even if the system is continuous, the
observations are obtained via a sensor with a discrete fixed sampling rate.

To give some idea of the sheer number and variety of applications which use dynamical system
model we now list a few examples:
• Aircraft Autopilot [32]
• Brain-computer interface [79]
• Object Tracking [39]
• Stock Market Forecasting [58]
• Satellite navigation [40]
• Seismology [55]
• Speech Recognition [54]
• Weather forecasting [13]
• Molecular analysis [99]
• Cryptography [9]
• Handwriting recognition [54]
• Activity recognition [45]
• Protein folding [91]

2.1.1 Models

Modelling dynamical systems is the problem of finding a mathematical description of the system.
Dynamical Systems are of great interest in just about every scientific discipline, and a great deal
of effort has been spent developing models for them. We model dynamical systems for a variety
of purposes:

• Understanding: By developing a good model we can often gain insight or understanding
about a system. This is a common approach in the biological sciences where we wish to
better understand complex subjects such as the human brain.

• Prediction: We can use models to make predictions about future states/observations of the
system. Having good estimates for future quantities is of obvious benefit when purchasing
stocks, making policy decisions, etc. The task of computing predictions or related quantities
from history is often called inference.

9

• Control: Good models are important in any controlled system, such as robotics. If we want
our robot to be able to navigate the world, we first need a model for how our low level
actions such as activating a motor will influence our robots state.

• Optimize: In disciplines such as chemical engineering we are often trying to build dynam-
ical systems such as chemical pipelines. By obtaining good models of these systems it
allows us to optimize them for the required task without physical trial and error.

• Simulation: Good models of dynamical systems allow us to generate fake or imaginary
data via simulation. This is incredibly useful in fields such as game design as it allows
studios to obtain dynamic textures such as fires, hair, etc., without expensive hand sculpting.

In this thesis we will focus on modelling dynamical systems for the purpose of prediction,
where we predict future observations given a history of previous observations. We note that it is
possible to use the techniques discussed for other tasks, however this is beyond the scope of this
thesis.

Dynamical systems can be extremely difficult to model for a number of reasons:
• Transitions/Observations are noisy Many dynamical systems are stochastic, with tran-

sition/behavior which is highly random. This means that it is necessary to extract the
model dynamics from the noise. If care is not taken models can end up learning spurious
correlations and performing poorly.

• We do not observe the true state Most dynamical systems of interest are Partially Observable,
in other words it is not possible to observe the state, only the observations. This means we
must determine what state cause the given observations without ever actually seeing it. This
can be difficult given stochasticity, and the fact that different states can result in the same
observations.

• We don’t know what the true state looks like, or it may be too large to be useful In many
simple systems we know exactly the information required precisely and compactly describe
the system (position and velocity). However in more complex systems such as text, the
brain, the stock market, we are stuck making educated guesses.

• We don’t know the functional form of f() or g() Similarly in simple systems we often know
the exact relationship between one state and the next. In the case of the pendulum the
change in the state depends on the laws of gravity, momentum, etc. However in more
complex systems we once again can only make estimates.

• We have to generalize to unseen observations and states We learn dynamical systems by
collecting a data set, use this data to build a model of the system, then apply the learned
model to make predictions about a different data set, or future behavior. The difficulty
is that this data is different to the data we used to learn the system. If we have learned a
good model which accurately represents the state/dynamics of the system this will work
well, however instead we often end up learning models which are fragile, and only work on
previously seen data.

Due to their almost universal interest across so many domains there are a vast array of models
for dynamical systems. Traditionally we model dynamical systems using recursive models.
These models parallel the functional form of the dynamical systems they model: They define a
state, and update that state recursively over time as they receive new information (in the form of

10

observations).
Most recursive models can be categorized as either recursive Bayes Filters (BFs) or Recurrent

Neural Networks (RNNs). These two classes follow fundamentally different design philosophies,
resulting in two very different classes of models. Bayes Filters maintain a probability distribution
over system states, and update this distribution using Bayes rule when they receive new infor-
mation. Conversely RNNs maintain an arbitrary state with no relation to the system state, and
update it using some arbitrary function. For many years, most dynamical systems models were
Bayes Filters, however the last decade has seen the emergence of new RNNs which have quickly
overtaken Bayes Filters in performance and popularity on many tasks. We will now introduce
these two classes in more depth, and compare and contrast their various strengths and weaknesses.

Inference can be separated into filtering and prediction.1 Filtering (also known as State
Tracking) is the process of updating the state as we receive new information: i.e. given the current
state qt and an observation ot we wish to obtain an updated state qt+1. Prediction is the problem
of predicting the value of future observations: i.e. given the current state qt we would like to
estimate the probability of future observations ot+1:t+n. These two problems are intimately linked,
as we often learn to filter by updating our model parameters based on errors in predictions.

We note that in this thesis we restrict ourselves to the class of Markovian movdels, where the
state is a function of only the previous state:

qt+1 = f(qt)

Many systems of interest admit simple Markovian models, and many that are not can be effectively
approximated by Markovian models. This Markovian property is important as it allows for
tractable computation and modelling, as it allows the size of the state to be fixed rather than
growing unboundedly over time.

2.1.2 State
The notion of State is at the core of the study of dynamical systems. Unfortunately there are
several different notions of state, all of which are often confusing referred to as simply “the” state
of the system, with the reader left to figure out which kind of state is being discussed from context.
In particular the differences between the notions of Observable State, System State, Belief State,
Latent State, and RNN (arbitrary) state are often poorly defined.

An Observable State is any state which can be observed. In contrast a latent state is any state
which cannot be observed. Observable states are easy to model, as their value can be directly
observed from training data. In contrast latent states are often difficult to learn as their value must
be obtained via inference.

We note that the notion of observability is a function of our sensors. A state may be observable
with one set of sensors, but latent with a different set of sensors. Consider the example of a
pendulum, where the state consists of the position and the velocity. If we use a camera as our only
sensor then the position is observable, while the velocity is not. If we wish to obtain an estimate
of the velocity then it must be inferred from a combination of several positional observations.

1There are other forms of inference in addition to filtering and prediction, such as smoothing and likelihood
evaluation, but they are outside the scope of this thesis.

11

However if we augment our sensor suite with a radar gun then we can directly observe the velocity
at a given point in time, rendering the full state observable.

A System State is a state of the underlying dynamical system. It represents a description of
the instantaneous condition of the system at a specific point in time. The state evolves over time
according to the system dynamics described previously:

qt+1 = f(q1, ..., qt) = f(q1:t)

The notion of a system state is useful for reasoning about dynamical systems and their models.
In particular it allows us to encode prior knowledge about the system dynamics or physical laws
governing the system. Unfortunately the system state view often leads to latent states which are
difficult to learn.

A Belief State is a state which corresponds to a probability distribution or belief over future
observations. Formally a belief state is a set of statistics, which, if known at time t, are sufficient
to predict all future observations as accurately as if we know the full history. An overly simplistic,
but useful, interpretation of the belief state is as a distribution over system states. A more precise
interpretation is the statistics of a distribution over the latent state of a data generating process,
conditioned on history. A third is as a bottleneck that compresses the entire observation history
for the purpose of future predictions.

An RNN or Arbitrary state is an arbitrary collection of information maintained by an RNN
at each time step and which is used to make predictions about future observations. It does NOT
correspond in any simple way to a probability distribution, or have any simple relationship to
the underlying system state. This is in contrast to a belief state which directly corresponds to a
probability distribution.

These definitions and distinctions will become clear in the context of the various models and
learning algorithms introduced throughout this chapter.

2.2 Bayes Filters

Bayes Filters (BFs) [94] are a general probabilistic approach for modelling dynamical systems.
They maintain a belief state corresponding to a probability distribution over future observations,
and update this distribution recursively over time using incoming measurements and Bayes Rule.
Another way to think about BFs is that the entire BF is a single large probability distribution
which has been factorized using conditional independence assumptions.

Formally a Bayes Filter maintains a conditional probability distribution or belief over system
states qt|t = Pr(st | o1:t) where o1:t denotes the first t observations. qt|t is called a Belief State and
represents both our knowledge and our uncertainty about the true state of the system.

Filtering with BFs is straightforwards: given the current belief qt = qt|t and a new observation
ot, we use Bayes rule to calculate an updated belief qt+1 = qt+1|t+1 that incorporates ot+1. This
can be achieved using Bayes rule as follows:

12

qt+1 = Pr(st+1 | o1:t+1) (2.1)

=
Pr(st+1, ot+1 | o1:t)

Pr(ot+1 | o1:t)
(2.2)

=

∑
st

Pr(ot+1 | st+1)Pr(st+1 | st)Pr(st | o1:t)

Pr(ot+1 | o1:t)
(2.3)

=

∑
st

Pr(ot+1 | st+1)Pr(st+1 | st)qt
Pr(ot+1 | o1:t)

(2.4)

We note that the denominator in Equation 2.4 is rarely computed explicitly, and instead we
normalize the resulting probability distribution to sum to 1. As we shall see shortly in the case of
an HMM qt is represented by a probability vector over latent system states, and the numerator of
Equation 2.4 is the forwards algorithm. For a linear dynamical system with Gaussian noise, qt
consists of the mean and covariance of the system state. The corresponding Bayes filter is known
as a Kalman Filter.

Prediction with BFs involves projecting our belief into the future: given a belief qt|t we estimate
qt+k|t = Pr(st+k | o1:t) for some k > 0 (without incorporating any intervening observations). We
achieve this via the sum rule:

Pr(ot+1 | o1:t) =
∑
st,st+1

Pr(ot+1 | st+1)Pr(st+1 | st)Pr(st | o1:t) (2.5)

Due to their probabilistic grounding, BFs possess a strong statistical theory leading to efficient
learning algorithms. In particular, Method-of-Moments algorithms provide consistent parameter
estimates for a range of BFs [22, 59, 68, 100, 113]. Unfortunately, current versions of Method-of-
Moments initializations restrict BFs to relatively simple functional forms such as linear-Gaussian
(KFs) or linear-multinomial (HMMs). We will discuss this in more detail in Chapter 3.

We now discuss a few of the most common types of BFs in more detail:

2.2.1 Hidden Markov Models
Hidden Markov Models [15] (HMMs) are one of the simplest and most popular examples of Bayes
Filters [14]. HMMs assume the state is categorical, i.e. discrete and finite, and that the system
dynamics are linear. The observations are often assumed to be categorical as well, although the
model can handle continuous observations with a simple extension.

Formally let there be a finite set of possible states st ∈ 1, ..., n and a finite set of observations
ot ∈ 1, ...,m. We represent the system state (observation) as a one-hot encoded vector of length n
(m). Given this formalism we define a HMM in terms of:
• T : The Transition Model, an n× n stochastic matrix (i.e. non-negative entries, where each

column sums to 1)
• E: The Emission Model, an m× n stochastic matrix
• q0: The initial belief state, an n× 1 stochastic vector

13

Figure 2.2: Hidden Markov Model (HMM) as a graphical model. Here nodes represent random
variables, while arrows represent conditional independence assumptions.

T encodes the conditional probability of transitioning between each possible pair of system states:

Pr(qt+1 | qt) = Tqt ∀t

E encodes the conditional probability of observing each possible observation conditioned on each
possible state:

Pr(ot | qt) = Eqt ∀t
and q0 is a stochastic vector which describes the initial belief state. Together T , E, and q0 define a
joint distribution over all possible sequences of observations:

Pr(o1:T) = 1>

(∏
t

Tdiag(Eot)

)
q0

This is represented graphically using a factor graph in figure 2.2.
HMMs are generative models in the sense that the HMM formulation leads to a simple

algorithm for sampling sequences of observations distributed according to the density defined by
T , E, and q0. We sample s ∼ q0, then repeatedly sample o ∼ Es and s ∼ Ts.

Prediction in HMMs is straightforwards: Given state qt we apply T to obtain qt+1 then apply
emission matrix E to obtain a distribution over observations:

Pr(ot+1 | st) = ETqt

As a Bayes Filter, we perform filtering in HMMs by invoking Bayes rule. Given state
qt = Pr(st | o1:t−1) and observation ot we wish to obtain qt+1 = Pr(st+1 | o1:t). Using equation
2.4 we have:

Pr(st+1 | o1:t) =
∑
st

Pr(st+1 | st)Pr(ot | st, o1:t−1)Pr(st | o1:t−1)

Pr(ot | o1:t−1)
(2.6)

=
Tdiag(Eot)qt

1>Tdiag(Eot)qt
(2.7)

14

Filtering in HMMs, and Bayes Filters in general, can be visualized using a neural network
diagram, as shown in figure 2.3. Please note the difference between figure 2.2 and figure 2.3:
while both are graphical models, figure 2.2 is a factor graph, representing a factorized probability
distribution via variables and conditional independence assumptions. Conversely figure 2.2 is
a neural network diagram, showing the flow of information through a model/algorithm. Neural
network diagrams can be thought of as a visualization of a complex function which takes inputs
and produces outputs.

Figure 2.3: Filtering (The Forward Algorithm) In an HMM

HMMs are typical of the class of Bayes filters: We begin by defining a generative model
corresponding to a factorized probability distribution over sequences of observations, then use
the axioms of probability to derive the corresponding filtering procedure. HMMs serve as a good
example of both the strengths and weaknesses of BFs: On the plus side they are a complete,
axiomatic model which can be used for any number of tasks, are well understood, can be used
to gain insights from data, and can easily be modified to incorporate domain knowledge. The
downside is that we are limited to extremely simple assumptions about the model dynamics
(linear) and the distribution (categorical).

Despite their limitations and restrictive modelling assumptions, HMMs are used for a wide
variety of applications including many of those listed earlier.

2.2.2 Kalman Filters
Kalman Filters [70] are the continuous Gaussian analog of Hidden Markov Models. Specifically
Kalman Filters (KFs) assume the state is continuous, the system dynamics are linear, and random
noise is always Gaussian. This means the state is an arbitrary vector of length n, and observations
are arbitrary vectors of length m. Formally we define a Kalman Filter in terms of a belief state qt
and the following quantities:
• F : The transmission model, an n× n matrix
• H: The emission model, an n×m matrix
• Q: The covariance of the transmission noise, an n× n matrix
• R: The covariance of the observation noise, an m×m matrix

15

• q0: The initial belief state, an m× 1 vector
Note that in the Hidden Markov model the Transmission and Emission matrices accounted for
both the dynamics and the noise, whereas in the Kalman Filter we separate these quantities and
explicitly account for the noise. In a Kalman Filter the state transition is:

qt+1 = Fqt + wt

where wt ∼ N (0, Q). The emission is:

ot+1 = Hot + vt

where vt ∼ N (0, R).
We can generate samples from KFs with the same approach used for HMMs: We begin in

the initial belief state q0, then repeatedly apply the trasmission and emission equations with noise
vectors sampled from the appropriate distributions to obtain a sequence of observations.

Prediction in Kalman Filters is also similar to HMMs, but with one important difference; we
need to explicitly keep track of the “noise” or “uncertainty” associated with our estimated state
qt. As a reminder our belief state is a probability distribution over system states. In HMMs we
kept track of this distribution explicitly as a vector of probabilities, with one number for each
possible system state – clearly this is not possible in Kalman Filters, where we are working with
continuous observations. Instead we make use of our assumption that the noise in our model is
Gaussian, allowing us to parameterize our belief state in terms of the mean qt and the covariance
of our system state Pt. We can think of these two quantities together as our new belief state, as
together they describe a distribution over system states.

Given qt and Pt prediction is straightforwards due to the nice properties of Gaussian distribu-
tions. First we project qt and Pt forwards in time using the transmission model:

qt+1 = Fqt (2.8)

Pt+1 = FPtF
> +Q (2.9)

We then obtain a (Gaussian) distribution over observations using the emission model, parameter-
ized in terms of a mean ot+1 and covariance Ct+1:

ot+1 = Hqt (2.10)

Ct+1 = HPtH
> +R (2.11)

Filtering in Kalman Filters requires us to use incoming observations to refine our estimate of
both the mean system state qt and the noise covariance Pt. This is similar to filtering in HMMs –
a simple application of Bayes Rule, however the algebra is significantly more complex:

yt = ot −Hqt (2.12)

St = R +HPtH
> (2.13)

Kt = PtH
>S−1

k (2.14)
(2.15)

qt+1 = qt +Ktyt (2.16)

Pt+1 = (I −KtH)P (I −KtH)> +KtRK
>
t (2.17)

(2.18)

16

For a complete derivation please see [70].
HMMs and Kalman Filters are by far the two most commonly used Bayes Filters, and were the

workhorses of dynamical system modelling for many years. However they both possess several
signifcant limitations, leading to the development of alternative models.

2.2.3 Observable Operator Models
One of the problems with many BFs, and HMMs in particular, is that they are difficult to learn due
to their reliance on latent variables. When variables are observable they are easy to learn, as we
can simply compare the estimated values to the observed values, and update our model parameters
to correct discrepancies. We cannot do this with latent variables, so instead we are reduced to
various strategies which involve making educated guesses about the value of latent variables.

Observable Operator Models (OOMs) [69] are an attempt to avoid this problem by constructing
a dynamical system model using observable operators instead of latent states. To understand the
intuition behind this idea, consider the joint distribution over all possible sequences of observations
defined by an HMM:

Pr(o1:T) = 1>

(∏
t

Tdiag(Eot)

)
q0

We note that the latent state does not appear in this equation, except through the initial state q0.
In fact the probability of the given sequence is entirely determined by the collection of terms
Tdiag(Eot). Furthermore because the observation ot can is finite, there are at most m unique
terms. The idea behind OOMs is to define one observable operator Ax for each possible value x
of o. With this definition the probability of observing a sequence of observations becomes:

Pr(o1:T) = 1>

(∏
t

Aot

)
q0

Figure 2.4: Neural Network Diagram of an OOM

Formally an OOM with linear dynamics consists of:
• {A1, ..., Am}: A collection of m observable operators, one for each possible observation,

each of which is an n× n matrix
• q0: The initial belief state, an m× 1 stochastic vector

17

In order for an OOM to be valid, i.e. to represent a valid probability distribution over sequences,
the following two conditions must hold:

1>
∑
x

Ax = 1 (2.19)

1>Ao1 ...Aonq0 >= 0 ∀o1:n, n (2.20)

These two conditions can be derived directly from the axioms of probability, see .[69] for more
details.

At first glance OOMs may seem like a simple algebraic reformulation of HMMs, however
the key advantage is a change in perspective: Instead of viewing filtering as a sequence of states,
we can instead view it as a sequence of operators which generate the next observation from the
previous one. Crucially these operators are observable: The input and output to each operator are
simply pairs of consecutive data points. This in contrast to an HMM, where we have no idea what
the input and output to T is for a given training sequence.

An additional advantage of OOMs is that they are a generalization of HMMs. It is clear that
every HMM can be converted into an OOM, however it turns out that there are valid OOMs for
which there is no equivalent HMM. Another way of stating this result is that there are dynamical
systems which can be modelled exactly by an OOM, which cannot be modelled by an HMM. One
example of such an OOM is known as the “Probability Clock” and is defined as follows:

Let O = a, b be the space of observations. Let Tψ be the linear mapping which rotates vectors
in R3 by an angle ψ around (1, 0, 0) and ψ is not a rational multiple of 2π. Let Ta = αTψ, where
0 < α < 1. Let Tb be an operator which projects every vector on the direction of w0. Define the
following observable operators:

Ta = α

1 0 0
0 cos(ψ) sin(ψ)
0 − sin(ψ) cos(ψ)



Tb = w>0

 1− α
1 + α(sin(ψ)− cos(ψ))
1− α(sin(ψ) + cos(ψ))

>

Note that every occurrence of b “resets” the process to a multiple of the initial vector w0.
Therefore, only the conditional probabilities P (ot = a | o0 = a, o1 = a, ..., ot−1 = a) =
1T t+1

a w0/1T taw0 The probability clock cannot be modelled by an HMM, which shows that the
class of OOMs is greater than the class of HMMs. This can be proved by means of convex
analysis, see Jaeger [69].

One downside of OOMs is that they can be much larger than HMMs. An HMM consists of
T = n × n, E = n ×m, and q0 = n × 1, hence it contains n(n + m + 1) model parameters.
Using the transformation described earlier, the equivalent OOM would consist of m operators,
each of size n× n, hence it contains n2m+ n model parameters.

Another downside of OOMs is that they no longer explicitly model the underlying system
dynamics, and hence it is more difficult to gain insight, and or leverage expert knowledge about
the system to develop useful priors.

18

2.2.4 Predictive State Representations

Predictive State Representations (PSRs) [102] are another Bayes Filter developed in an effort to
avoid explicitly modelling latent states. Where HMMs/KFs explicitly model latent states, and
OOMs model sequences of operators, PSRs take a third approach: They use a predictive state. The
key insight behind PSRs is that we can view dynamical systems as generators of observations, and
therefore the state of the system is equivalent to a probability distribution over future observations.
In the language of PSRs a sequence of future observations is called a test, and our state is defined
to be a probability distribution over tests conditioned on past observations. Now, clearly we can’t
keep track of all possible tests, as such a state would be infinite, however it turns out that it is often
sufficient to keep track of a finite subset of such sequences. This subset, known as the core tests,
is then used to recover the probabilities of other sequences outside the core tests. Such a state is
known as a Predictive State. We make special note of the terms Past and Future observations,
they will occur frequently throughout this thesis.

To formally define a predictive state we begin by selecting our core tests. Let Z = z1, .., zn
each be a sequence of observations. We define our predictive state at time t to be:

qt = Pr(Z | o1:t)

In other words qt is a vector of probabilities, each corresponding to the probability of a particular
test zi occurring in the future given that the history o1:t has already occurred in the past. For
example, suppose we are using a dynamical system to model the weather by tracking whether
each day is sunny or rainy (a binary observation). Then our core tests might be ”tomorrow will
be sunny” and ”the next 3 days will be rainy”, and our state would be the probability of each of
these two events occurring, given the previous weather which has already occurred. Here we are
making the assumption that by tracking the probabilities of these two events, we are able to use
them to make predictions about the weather on other days not covered by the core tests (e.g. the
weather in 4 days time).

Formally we assume that for an arbitrary test z, which may or may not be in the core tests,
that there is some function fz() which recovers the conditional probability of z given the history
from the current state qt:

Pr(z | o1:t) = fz(qt)

fz() can be non-linear, however for ease of exposition we will focus on the linear case where fz()
is a vector az:

Pr(z | o1:t) = a>z qt

Given our predictive state, we now need to formalize how to perform filtering (state update)
and prediction. In filtering, given our current state qt = p(Z | o1:t) and a new observation ot+1 we
wish to obtain qt+1 = p(Z | o1:t+1). In other words we want to obtain the conditional probabilities
of the same set of tests after we augment the history with an additional observation. If we consider

19

a single core test z ∈ Z we obtain:

qt+1 = Pr(z | o1:t+1) (2.21)

=
Pr(ot+1z | o1:t)

Pr(ot+1 | o1:t)
(2.22)

=
a>ot+1z

qt

a>o+1qt
(2.23)

Where the last line follows from our assumptions on the core tests. If we collect the vectors aot+1z

together for all core tests z we obtain the matrix Aot+1z. Using this operator we obtain our state
update:

qt+1 =
A>ot+1z

qt

a>o+1qt

We can now formally define the class of PSRs as follows:
• q0: The initial predictive belief state, an n× 1 vector of non-negative numbers in the range

[0, 1].
• {A1, ..., Am}: A collection of m expansion operators, one for each possible observation,

each of which is an n× n matrix
• {a1, ..., am}: A collection of m normalizing operators, one for each possible observation,

each of which is an n× 1 matrix
We can view each of the operatorsAi as an operator which maps a marginal probability distribution
to a joint distribution, and each of the operators ai as an operator which maps a joint distribution
to a conditional distribution.

The key benefit of using a Predictive State is that it is observable: Given a sequence of
observations we can count the number of times each test occurs for each history, allowing us to
learn the value of our predictive state from data.

As a final point we note the equivalence between the update equation for OOMs and for PSRs.
As it turns out the matrices Ai correspond to observable operators in an OOM, and from an OOM
one can always obtain a PSR using the observable operators. Therefore OOMs and PSRs are
equivalent classes of models.

One disadvantage of the naive formulation of PSRs is that the set of core tests, and hence
the size of the state, may both be extremely large. This can be partly solved by working with
Transformed PSRs (TPSRs) [93]. The idea TPSRs is to maintain a linear transformation of the
state distribution over core tests, rather than the actual distribution itself. This (often) allows us to
represent the state in a much more compact form.

One facet of PSRs we have been silent on thus far is the question of how we select the set of
core tests in the first place. There are a variety of heuristics used in practice, however a this is
currently an open question.

2.2.5 Hilbert Space Embeddings of Bayes Filters
There are a couple of glaring weaknesses with many of the methods discussed thus far:

20

• They assume the system dynamics are linear.
• They assume discrete, low cardinality states/observations.

These assumptions are obviously false for a wide variety of applications, and attempting to
shoehorn such systems into these models can result in poor modelling behavior.

One recently developed technique which helps address these problems is Hilbert Space
Embeddings (HSE) of Distributions [103]. The idea is to embed each probability distribution into
a Reproducing Kernel Hilbert Space (RKHS), and manipulate the probability distributions in that
space using kernel versions of the rules of probability (e.g. kernel Bayes rule). When applied to
Bayes Filters this approach allows us to embed our state (a probability distribution) into an RKHS,
then update our state using Kernel Bayes Rule. The key advantages of using a HSE for modelling
are that:
• Linear transformations in the kernel space can correspond to non-linear transformations

in the original space. This means that we can learn a linear model which corresponds to
non-linear system dynamics

• They provide us with a straightforwards way to generalize discrete models to continuous
data.

• Data may be modeled non-parametrically, i.e. without assumptions about the form of the
distribution and the relationship between variables.

• Intermediate density estimation is not required. In other words we only estimate the density
when we wish to obtain an estimate of a particular quantity.

For those familiar with SVMs, HSE of distributions is the Bayes Filter equivalent of Kernel
SVMs, and shares many of the same advantages. We now give a formally overview of HSE of
distributions, and their applications to Bayes Filters.

Formal Definition

Let X denote a random variable with codomain Ω and distribution Pr(X). Given a kernel k
on Ω × Ω an RKHS H is a Hilbert space of functions f : Ω → R equipped with an innter
product 〈·, ·〉H and norm || · ||H in which the element k(x, ·) satisfies the reproducing property:
〈f, k(x, ·)〉H = f(x) ∀f ∈ H,∀x ∈ Ω. Intuitively k(x, ·) is an implicit feature map which we
denote by φ(x) from Ω to H so that k(x, x′) = 〈φ(x), φ(x′)〉H can be viewed as a measure of
similarity between x and x′.

The core concept behind HSE of distributions is the mean map:

µX = EX [k(X, ·)] (2.24)
= EX [φ(X)] (2.25)

=

∫
Ω

φ(x)dP (x) (2.26)

We can think of the mean map as the expected value of the feature mapping. Under mild
conditions it encodes a full description of the original distribution as an element of the RKHS. We

21

can calculate a similar embedding for joint distributions:

CXY = EXY [φ(X)⊗ φ(Y)] =

∫
Ω×Ω

φ(x)⊗ φ(y)dP (x, y)

and for conditional distributions:

µY |x = EY |x[φ(Y)] (2.27)

=

∫
Ω

φ(y)dP (y|x) (2.28)

We now have a way to embed each possible probability distribution into our RKHS. Furthermore,
given samples from any such distribution, we can calculate an estimate of the embedding by using
empirical moments. In other words an empirical estimate of an embedding is a weighted sum of
samples in the feature space.

Now that we have obtained a method for embedding distributions into an RKHS we can define
the axiomatic statistical rules which allow us to manipulate these distributions. Specifically we
want to define kernel analogs for Sum Rule, Chain Rule, and Bayes Rule. We begin by noting
that by the equivalence between a tensor and a linear map we can view the joint embedding CXY
as an uncentered cross-covariance operator CXY : H → H from which the cross-covariance of
mean-zero functions f, g ∈ H can be computed as:

CovXY (f(X), g(Y)) = EXY [f(X)g(Y)] (2.29)
= 〈f, CXY g〉mathcalH (2.30)
= 〈f ⊗ g, CXY 〉H⊗H (2.31)

Using this operator we can now define our three rules of probability. Kernel sum rule is defined
as:

µX = EY [CX|Y φ(Y)] (2.32)
= CX|YEY [φ(Y)] (2.33)
= CX|Y µY (2.34)

Kernel Chain Rule is defined as:

CXY = CX|YCY Y (2.35)

And Kernel Bayes Rule is defined as:

µY |x = CY |Xφ(x) (2.36)
= CY X(CXX)−1φ(x) (2.37)

Together these three operators allow us to manipulate embedded probability distributions freely in
the RKHS.

22

Kernel k(∆) ρ(ω)

Gaussian e−
||δ||22

2 (2π)−
D
2 e
||ω||22

2

Laplacian e−||∆||1
∏

d
1

π(1+ω2
d)

Cauchy
∏

d
2

1+∆2
d

e−1||∆||1

Table 2.1: Some popular kernels and their Fourier transforms

Random Features

Kernel methods such as HSE of distributions have traditionally had a glaring weakness – their
lack of scalability. Traditionally kernel methods are implemented via the “kernel trick”, where we
calculate calculate model parameters as a function of the Gram Matrix – a matrix of inner products
between all pairs of data points. Unfortunately such an implementation scales quadratically in
size and computational complexity with the amount of training data.

Fortunately, the development of Random Features [92] provides us with a solution to this
problem. The idea behind random features is that given data points x ∈ Rn and kernel k(·, ·)
there exists a mapping z = f(x) such that 〈f(x1), f(x2)〉 = k(x1, x2). The existence of such a
function is guaranteed for positive definite shift-invariant kernels by Bochner’s theorem.

One popular variant is to use Random Fourier Features. Formally given a positive definite shift-
invariant kernel k(x, y) = k(x−y) we can obtain a random Fourier feature map z(X) : Rd → RD

such that z(x)T z(y) ≈ k(x − y). To obtain z we first compute the Fourier transform p of the
kernel k : p(ω) = 1

2π

∫
e−iω

T δk(δ)d∆. We then draw D i.i.d. samples ω1, ..., ωD ∈ Rd from p
and D i.i.d samples b1, ..., bD ∈ R from the uniform distribution on [0, 2π]. We can now define
our mapping z:

z(x) =

√
2

D
[cos(ωT1 x+ b1), ..., cos(ωTDx+ bD)]T

Some popular kernels and their Fourier transforms are listed in table 2.1:

2.3 Recurrent Neural Networks
Recurrent Neural Networks are one answer to the question “What models can we build if we
don’t force our function to be a valid probability distribution?”. We can think of Recurrent
Neural Networks as a function which takes past observations as inputs and produces predictions
about future observations as output. RNNs belong to the class of “Neural Networks”, functions
loosely inspired by connectionist models of the brain. These models build complex functions by
combining large numbers of simple operators; typically alternating linear operators followed by
non-linear activation functions.

Formally an RNN is defined in terms of:
• q0: the initial state, an n× 1 vector of arbitrary numbers.
• f(): an arbitrary transition function
• g(): an arbitrary emission function

23

f() performs filtering by mapping the current state qt and an observation ot to the next state qt+1:

qt+1 = f(qt, ot)

while g() maps the current state to a prediction about future observations. This prediction
could can take on many forms: It might be a vector encoding a distribution over observations,
the parameters of some distribution (e.g. mean and variance for a Gaussian), the most likely
observation, the top few most likely observations etc. In the discrete case where we are predicting
a vector encoding a distribution over observations we would have:

p(ot+1 | o1:t) = g(qt+1)

At the core of most RNNs is the perceptron: A simple function loosely corresponding to the
connectionist model of a single neuron. A perceptron maps an input vector x to an output scalar y
using a linear operator w, a scalar bias b, and a nonlinear activation function σ():

y = σ(w>x+ b)

The particular activation function used varies depending on the application, the larger model, and
also what is trendy at a particular point in time, however common choices include:

• Sigmoid: σ(y) =
1

1 + e−y

• Tanh: σ(y) =
ey + e−y

ey − e−y

• Relu: σ(y) =

{
0 for y < 0

y for y ≥ 0

• Step: f(y) =

{
0 for y < 0

1 for y ≥ 0

• Gaussian: f(y) = e−y
2

• Exponential Linear: f(α, x) =

{
α(ex − 1) for x ≤ 0

x for x > 0

• Soft Plus: f(x) = ln(1 + ex)

A wide variety of RNNs have been developed over the years, some of which are extremely
complex, however the vast majority of such networks all use these same basic building blocks.
We now cover three of the most common RNN architectures in more detail.

2.3.1 Elman Networks
Elman Networks [47] were among the first RNNs to be developed, and are the simplest non-linear
RNN. Elman networks have the following architecture:

qt+1 = f(qt, ot) = σh(Whot + Uhqt + bh) (2.38)
ot+1 = g(qt1) = σo(Uoqt+1 + bo) (2.39)

24

Figure 2.5: Network Diagram for an Elman Network

which is illustrated in figure 2.5. Due to their simplicity these networks are also known as simple
recurrent networks.

Historically Elman Networks saw limited success and were often ignored in favor of Bayes
Filters, however they set the stage for more sophisticated networks such as Long-Short Term
Memory Units and Gated Recurrent Units which resulted in state of the art performance in a
number of fields.

2.3.2 Long-Short Term Memory Units
Long-Short Term Memory Units [64] (LSTMs) were the innovation that catapulted RNNs to the
forefront of sequence modelling. LSTMs were developed in response to a major problem with
Elman (and related) networks: an inability to learn long term dependencies in sequences.

Long term dependencies are one of the most important aspects of sequence modelling. It is easy
to build a model which can spot short term correlations between closely positioned observations,
however often the most interesting and informative connections are between observations separated
by large distances in the sequences. For example, consider the problem of language modelling;
we might name a character early on in a paragraph, then refer to “him” or “her” later on, using
our implicit knowledge of narrative context to disambiguate the character being referenced.

Now we note that it is theoretically possible for elman networks to model long term dependen-
cies, and in fact it can be done in practice with hand constructed networks, however the problem
is that it is difficult to do so when learning these networks from data. RNNs are learned by
initializing their parameters at random, then refining the parameters using Gradient Descent in
the form of Back-Propagation Through Time. This will be covered in more depth in Section
2.5, however the result is that initializing an Elman network randomly results in a model which
tends to quickly forget information about previous observations. This in turn results in a lack of
gradients and hence an inability for gradient descent to learn long term dependencies. We note
that this problem can be partly addressed in specific cases via orthogonal initialization with good
scaling, however this is not a general solution.

LSTMs are an RNN architecture specifically designed to learn long term dependencies. The
idea is that LSTMs have the notion of long-term memory built in as the default behavior for

25

random initialization. This means that random initializations will result in useful gradients,
allowing us to learn useful models.

An LSTM is defined as follows:

ft = σf (Wfot + Ufqt + bf) (2.40)
it = σi(Wiot + Uiqt + bi) (2.41)
jt = σo(Wjot + Uoqt + bo) (2.42)

ct+1 = ft ◦ ct + it ◦ σc(Wcxt + Ucqt + bc) (2.43)
qt+1 = jt ◦ σh(ct+1) (2.44)

The intermediate quantities are given special names related to their purpose in the network:
• ct is known as the cell. ct should be viewed as a type of internal memory separate to the

hidden state and responsible for remembering long-term dependencies.
• ft is known as the forget gate. ft controls the degree to which the new value of the cell ct+1

“forgets” the previous value of the cell ct.
• it is known as the input gate. it controls the degree to which the current input ot and current

state qt influence the new value of the cell ct+1

• jt is known as the output gate. jt controls the degree to which the new value of the cell ct+1

is expressed in the new hidden state qt+1.
Gradients don’t vanish because remembering is the “default” behavior for a random initial-

ization. LSTMs have been wildly successful, and are by far the most commonly used tool for
sequence modelling in modern machine learning applications.

2.3.3 Gated Recurrent Units
LSTMs solved the problem of modelling long dependencies, but they suffer from the problem
of objectionable complexity. This can lead to a variety of problems: for example if one uses an
LSTM to model a dynamical system it is difficult to use the resulting model to gain any insight
into the system. Furthermore if the LSTM fails to learn a good model it is often difficult to
determine why.

Gated Recurrent Units [34] (GRUs) emerged as an alternative to LSTMs which preserve the
ability to learn long-term dependencies, whilst offering a greatly simplified architecture. A GRU
is defined as follows:

zt = σg(Wzot + Uzqt + bz) (2.45)
rt = σg(Wrot + Urqt + br) (2.46)
qt = (1− zt) ◦ qt + zt ◦ σh(Wqot + Uq(rt ◦ qt) + bq) (2.47)

Similar to LSTMs, the intermediate quantities in GRUs are also given special names:
• zt is known as the update gate. zt controls the degree to which we update or modify the

current state. If zt is zero no update is performed and the previous state is copied verbatim.
• rt is known as the reset gate. zt controls the degree to which we reset or forget the current

state. If zt is 1 we completely reset the state.

26

The key insight behind GRUs is that the current state qt influences the next state qt+1 in two ways:
• The new state is a weighted combination of the current state and an update term.
• The update term itself is a function of both the input and the current state

This idea is very similar to Kalman Filters: We use the current state (and an observation) to
determine an update term, then comput the new state as a mixture of the current state and the
update term with mixture weights determined by our “confidence” in the update.

2.4 Generative Learning
Thus far we have spent considering time describing various dynamical system models, but with
almost no mention of how we might actually go about learning such models from data. This is
somewhat negligent of us, as the study of models and their learning algorithms are intimately
connected. In fact much of the development of new models has been driven by a desire to improve
their learnability. We already got a taste of this with LSTMs, which were developed to solve the
problem of learning long-term dependencies.

Algorithms for learning dynamical system models fall into two main categories: Generative
Approaches and Discriminative Approaches. Generative approaches view the model as a generator
of observations and try to optimize the model parameters to make the model distribution match
the observed distribution. Discriminative approaches directly learn the filter by minimizing the
error resulting from its use in predicting future observations. Generative approaches can be
further partitioned into Frequentist and Bayesian. In this thesis we will focus on frequentist and
discriminative approaches, however for more information about the Bayesian approaches such as
Variational Inference and Sampling please see Foti et al. [48], Frühwirth-Schnatter [49], Rydén
et al. [95].

Frequentist Generative approaches include Maximum Likelihood and Method of moments,
while discriminative approaches include Back Propagation Through Time (BPTT) and reduction
to supervised learning. We now discuss these techniques in more detail.

In the following discussion we assume we have a set of training examples x1, ..., xn, each of
is a sequence of target observations oi,1:T , together with a modelM with parameters θ which
produces predictions õ1:T via filtering:

x̃i = õi,1:T

=M(θ, oi,1:T)

=M(θ, xi)

We begin with a discussion of Generative Approaches to learning. Generative approaches view
the model as a generator of observations and try to optimize the model parameters to make the
model distribution match the observed distribution. Generative approaches are only appropriate
for models which encode valid probability distributions. i.e. Bayes Filters. RNNs must be trained
by discriminative approaches (see Section 2.5). Generative approaches have many attractive
properties: They result in valid probability distributions, they come with theoretical gaurantees
on the resulting model and the rate of convergence, etc. However they also have have several
weaknesses, such as being highly specialized and limited to models of modest complexity.

27

2.4.1 Maximum Likelihood
The traditional way of learning a probability distribution is by optimizing the likelihood of the
model given the data. The likelihood of a model is defined as the conditional probability of the
training data given the model:

l(θ) =
n∑
i=1

Pr(xi; θ)

where xi denotes the ith training trajectory. We note that in practice we often work with the log
of the likelihood (log-likelihood) in place of the likelihood as the likelihood may be extremely
small, especially for rare events or long sequences. This can result in numerical problems for the
optimizer when using floating point representations. This works because the log is a monotonically
increasing function.

In some extremely simple models this expression can be solved analytically, however in
virtually all interesting cases we are forced to resort to local optimization. The two most widely
used such methods are Gradient Methods and Expectation Maximization. It is worth noting that
local optimizers often perform well in practice, however except in certain extremely specific
situations they have no gaurantees on the final model, as they converge only to a local optimum.

2.4.2 Gradient Methods
Gradient Methods are a class of iterative optimization methods for optimizing a function. They
proceed by repeatedly updating the parameters by taking a step in the direction of a function of
gradient. The simplest and most widely used example is gradient descent, also known as steepest
descent, which takes a step in the direction of the gradient:

θ(j+1) = θ(j) + α(j)∇M(θi, xi)

Where α(j) is known as learning rate or step size and controls the magnitude of the step taken.
We note that there exist a variety of gradient methods other than steepest descent such as ADAM
[71], Nesterov Acceleration [85] etc. but they are beyond the scope of this thesis.

Gradient methods are the workhorse of optimization. They have a rich history dating back
centuries all the way to the time of Newton. Modern gradient methods are flexible, sophisticated,
and can can be quickly and easily deployed using a variety of black box solvers. They also allow
a great of flexibility in the loss function.

A key problem with using gradient based methods to optimize a generative model is con-
straining the resulting model to be a valid probability distribution. For example suppose we are
attempting to optimize the likelihood of an HMM using gradient descent. Taking a step in the
direction of the gradient may result in either the transmission matrix T or the emission matrix
E no longer being stochastic matrices. Indeed it might even result in either matrix containing
negative numbers! Clearly such a model is no longer a valid HMM, nor even a valid probability
distribution.

Performing gradient descent whilst constraining ourselves to the space of valid models is
known as constrained optimization. There are a number of techniques, the simplest of which is
called projected gradient descent and involves projecting back to the space of valid models after

28

each gradient step. The problem with such techniques is that the projection step may cause large
changes in the behavior of the model, and in fact in practice the model resulting from a gradient
step followed by a projection step may actually be worse than the original model! These problems
tend to limit the practical effectiveness of gradient methods for learning generative models.

We will revisit gradient methods in Section 2.5 when we cover discriminative approaches to
learning. In that setting we no longer require our models to be valid probability distributions,
allowing us to unleash the full potential of these approaches.

2.4.3 Expectation Maximization
As discussed above, a major problem with using gradient methods to maximize the likelihood is
that it can result in invalid models. Expectation Maximization (EM) [43] is a class of iterative
methods explicitly designed to optimize the likelihood over the space of valid models. This
means that when using EM to learn, for example, an HMM, each step will result in a valid HMM.
Expectation Maximization achieves this by explicitly representing the value of the state during
learning. This is in contrast to gradient descent which ignores the state and treats the entire model
as a compound function which produces some output.

EM consists of two steps for which it is named: An Expectation stepE and and a Maximization
step M . In the Expectation step we fix model parameters and find the expected state sequence
which lead to the observations conditioned on the current parameters. In the maximization step
we fix the states and optimize the model parameters conditioned on the current state sequence.
We can think of these two steps as alternately optimizing state/model parameters while fixing the
other.

Formally the E and M steps of EM are defined as follows:
• Expectation (E): Compute the expected value of the state b1:T conditioned on the model

parameters and training data. i.e. E[Pr(b1:T | o1:T , θ
(i))].

• Maximization (M): Find θ which maximizes the expected complete log likelihood. i.e.
maxθ EPr(b1:T

| o1:T , θ
(i)[log Pr(o1:T , b1:T , θ

(i))]

We repeat these two steps until the model converges to a solution. There are many variants of the
basic EM algorithm, a few examples include:
• stochastic EM [31]: The E step is replaced by sampling of the latent variables
• generalized EM [82]: The M step need only improve the value of the expected complete

log likelihood, rather than maximize it.
One additional benefit of EM is that there is no step size parameter α(i) to tune. In contrast a
major disadvantage of EM is its limited flexibility, as EM lacks access the many sophisticated
tools from the optimization literature.

2.4.4 Method of Moments
Method of Moments (MoM) [57] is another classic technique from statistics for learning the
parameters of a probability distribution. The idea behind MoM is to express the model parameters
as a function of the moments of the distribution. We can use training data to calculate the empirical
moments, then substitute these values to obtain estimates of the model parameters.

29

Formally MoM assumes there exists some θ0 such that x ∼ Pr(x; θ0), and the existence of
known functions f(x) and m(θ) which satisfy the moment condition:

Ex Pr(x;θ0)[f(x)] = m(θ) ⇐⇒ θ = θ0 (2.48)

Given samples x1, ..., xn Pr(x; θ0), method of moments computes the empirical moments:

m̃ =
1

n

n∑
i=1

f(xi)

and then solves equation 2.48 for θ i.e.:

m(θ) = m̃

We note that the above assumes that the datapoints are sampled i.i.d. from some underlying
distribution. Clearly this makes little sense in the context of dynamical systems, where data
consists of sequences of dependent observations. Fortunately it turns out we only require the
milder condition that the empirical moments converge to the true analytical moments. Therefore
it is acceptable to replace i.i.d. data with trajectories sampled from a stationary process. If the
process is also ergodic, we can compute empirical moments from a single long trajectory. The
only downside of this change is that the rate at which the empirical moments converge to the true
moments will now depend on the mixing rate of the underlying stochastic process.

MoM is a particularly attractive learning algorithm because under certain mild assumptions it
guarantees convergence to a globally optimal solution. This is in contrast to techniques such as
gradient descent of the log likelihood and EM which only guarantee a locally optimal solution.
Furthermore the resulting learning algorithm is typically simpler than maximum likelihood,
particularly EM.

While MoM has had some success for a few specific models (HMMs, PSRs), it has seen
little use in practice for two reasons: First, because there is no simple way to take an existing
MoM learner and adapt it to a new model architecture. Instead for each new model we must
painstakingly re-derive the relationship between the model parameters and the moments. Given
how difficult this can be for even simple models, it is little wonder practitioners have shied away
from it. Secondly, because MoM is less Statistically Efficient than alternative approaches such
as EM or Maximum Likelihood. This means that significantly more data is required to obtain a
model with comparable performance.

There are two main approaches to learning dynamical systems models via MoM: Subspace
Identification and Tensor Decomposition. Both subspace identification and tensor decomposition
are sometimes referred to as Spectral Algorithms as both make use of the spectrum or eigenvalues
of a matrix. This is somewhat unfortunate naming, as it obscures the connection to MoM.

2.4.5 Subspace Identification
Subspace Identification [112] is a technique from the signal processing and robotics literature.
Subspace Identification consists of two steps: 1) determining a belief state, and 2) Using MoM to
determine the model parameters in terms of that state.

30

We usually obtain a belief state by factorizing the cross-covariance matrix between past and
future observations CPF . We can think of ith, jth entry of CPF as the ability to predict future
observation j using past observation i. We can therefore think of CPF as encoding the part of
the future which is linearly predictable from the past. By factorizing CPF we obtain a basis for
this space, in other words a set of vectors which spans the space of all such predictions. There
are several there are many possible factorizations, but popular options include Singular Value
Decomposition (SVD) and Canonical Correlation Analysis (CCA).

Once we have obtained (identified) a state space, we can then use MoM to learn the model
parameters in terms of that state space. This typically results in solving a series of regression
problems.

2.4.6 Tensor Decomposition Methods

Tensor Decomposition [5] refers to a family of methods which combine MoM with tensor
CP-Decomposition. The key insight behind this line of work is that several important and well-
studied latent variable models – including Gaussian mixture models, HMMs, and Latent Dirichlet
allocation – share a certain structure in their low-order moments, and this permits certain tensor
decomposition approaches to parameter estimation.

Tensors

A n-mode tensor is an n dimensional array of numbers. Tensors are the n dimensional general-
ization of matrices; a scalar is a 0 mode tensor, vector a 1 mode tensor, and a matrix is a 2 mode
tensor. Formally a real n-mode tensor A is a member of the tensor product of Euclidean spaces
Rdi , i ∈ [n]:

A ∈
n⊗
i=1

Rdi

where ⊗ denotes the tensor product.
Tensors can also be viewed as multi-linear maps, mapping tensors in one space to tensors in

another space via the Tensor Contraction operation. Given Tensors A ∈ Rd1,..,dn and B ∈ Rc1,...,cm

tensor contraction over modes x ∈ [1, n] and y ∈ [1,m] where dx = cy is defined as:

[A×(x,y) B]i1,...,ix−1,ix+1...,in,j1,...,jy−1,jy+1,...,jm =
dx∑
z=1

Ai1,...,ix−1,z,ix+1...,inBj1,...,jy−1,z,jy+1,...,jm

This can be viewed as the mult-dimensional generalization of matrix multiplication. The extension
to contraction over multiple modes is obvious and straightforwards.

Another commonly used notation for tensor contraction is defined as follows. The contraction
of tensor A with matrices V1, ..., Vp is denoted by A(V1, ..., Vp):

[A(V1, ..., Vp)]i1,...,ip :=
∑

j1,...,jp∈[d1,...,dn]

Aj1,...,jp [V1]j1,i1 ...[Vp]jp,ip

31

Note that if A is a matrix (p = 2) then we have:

A(V1, V2) = V >1 AV2

We can write matrix-vector multiplication as follows:

A(I, v) = Av ∈ Rn

Where I is the n× n identity matrix. As a final example of this notation, observe:

A(ei1 , ..., eip) = Ai1,...,ip

where e1, ..., ep are orthogonal basis vectors.
A tensor is symmetric if it is invariant under permutations of its indices. i.e. :

Ai1,...,ip = Aiπi,...,iπp

for any permutation π on [p]. This reduces to the normal definition of symmetry for matrices
when p = 2.

We can also define an inner product between tensors. Given tensors A,B ∈ Rd1,...,dn their
inner products 〈A,B〉 is defined as:

〈A,B〉 :=
∑

j1,...,jp∈[d1,...,dn]

Aj1,...,jpBj1,...,jp

Which induces a norm:
‖A‖ =

√
〈A,A〉

CP Decomposition

Figure 2.6: CP Decomposition

This induces a Frobenius norm ‖A‖F :=
√
〈A,A〉. Another key operation is the tensor

product, which is the generalization of the matrix product.
Candecomp/Parafac (CP) decomposition [63] can be viewed as the tensor generalization of

the singular value decomposition. Given a tensor A ∈ Rd1,..,dn we can factorize the tensor as a
sum of rank one tensors, each of which is a tensor product of vectors. For example factorizing a 3
mode tensor A we obtain the following decomposition:

A =
k∑
i=1

ai ⊗ bi ⊗ ci

32

Where ai, bi and ci are vectors for all i. We note that contrary to the case of matrices, the rank m
of a tensor is presently not well understood, and in fact computing the rank of a tensor, and hence
its minimal CP decomposition, is NP hard.

Figure 2.7: A variable HMM. Note how all three observations o1,o2, and o3 depend on state s2

and hence provide different views of s2

Tensor Decomposition Methods for Dynamical Systems

They key observation behind tensor methods for learning dynamical system models is that there
are multiple different observations, or views, each of which is correlated with the same latent
states. Models that have this property are called multi-view models. For example consider the
Bayes net for a 3 observation HMM shown in figure 2.7. We note that all three observations o1,o2,
and o3 depend on state s2 and hence provide different views of s2. We can think about this in
terms of the conditional independence assumptions enforced in an HMM. The Current observation
is independent of all other observations given the current state, the previous observation is inde-
pendent of all future observations given the current state, and the next observation is independent
of all past observations given the current state. Informally we can think of the state as a bottleneck
which controls our ability to exchange information between past present and future. We know
that learning something about the past, present, or future observations should tell us something
about the other two, and that this information must be passed through the state. Therefore each of
these observations tell us something about the value of the state from a different perspective.

Tensor decomposition methods tell us how to combine the information present in each of these
disparate views to obtain estimates of the model parameters. A good metaphor for multi-view
learning is GPS triangulation to determine position. In this setting a number of different satellites
each provide a weak signal containing some information your position. In isolation none of the
satellites has the ability to determine your location, but by combining the information from a large
number of different satellites, each of which contains slightly different but realted information,
we are able to obtain a good estimate.

Formally let o1, o2 and o3 be three views of a state s2 as shown in Figure 2.7. Assume
s2 ∈ {1, ...,m}. Define

ωj = Pr(s2 = j) (2.49)
µij = E[oi | s2 = j)∀i ∈ {1, 2, 3}, j ∈ 1, ..., N (2.50)

33

It follows from conditional independence and iterative expectation that:

E[o1 ⊗ o2⊗ o3] =
∑
j

= 1mωjµ1,j ⊗ µ2,j ⊗ µ3,j (2.51)

We would like to obtain the expected value of the belief state s2. We note that Equation 2.51 has
the same form as the CP decomposition, thus the essence of tensor decomposition methods is
to estimate the empirical 3rd moment tensor from data, then decompose it into a sum of rank-1
tensors to obtain an estimate of ω2. The model parameters can then be recovered by matching the
results of tensor decomposition to their theoretical values. For more details please see [7].

We note that earlier it was mentioned that finding the CP-decomposition was NP-Hard in
general, however it turns out that under certain rank conditions [75] the decomposition is unique
up to a permutation of the rank-1 tensors and a re-scaling of their factors. Furthermore the
scaling ambiguity can be resolved by enforcing the constraint

∑m
j=1 ŵ = 1 as well as additional

constraints on the expectations µ̂ij depending on the model. To this end there are a number of
recent tensor decomposition methods with theoretical guarantees to perform CP decomposition
such as symmetric tensor power iteration [5], alternating rank-1 updates [7] and simultaneous
diagonalization [74].

On a final note, we include under the umbrella of of tensor methods previous work which
has the same basic approach but uses the singular value decomposition of matrices instead: e.g.
[6, 68]. This work is included in the tensor decomposition framework as a special case.

2.5 Discriminative Learning
Discriminative approaches directly learn a model by minimizing the error resulting from its use
in making predictions. They differ from Generative methods as they do not require the model
correspond to a valid probability distribution. This allows us far greater flexibility in the types of
model architectures.

All discriminative learning begins by defining a loss function. A loss function is a function
l() which takes the targets x = o1:T and predictions õ1:T as inputs and produces a single real y
number as output which represents the performance of the model:

y = l(o1:T õ1:T)

By convention the loss is largeMmakes poor predictions, and small ifMmakes good predictions.
Given a training set consisting of a collection of sequences x1, ..., xn we define the empirical loss
L associated with parameters θ to be:

L(θ) =
n∑
i=1

l(xi, x̃i)

The goal of discriminative learning is to minimize this expression. We often augment our loss
with an additional term R(θ) called a regularizer which is a function of the model parameters, but
not the model output. This term is used to control the complexity of the model by acting as loss
on the complexity of the model.

34

The exact form of the loss function l() and regularizer R() depend on a wide range of factors,
including the data type, model type, and desired application. In particular the output of a model
might be a probability distribution (parameterized or explicit), a point prediction, a category (one
hot encoded or otherwise) etc. Each of these leads to different types of loss. If we output a point
prediction some common examples of loss include:
• (x− x̃)2: squared loss
• | x− x̃ |: absolute loss

These loss functions measure the distance between the target observation and the predicted
observation. If we output a vector of probabilities over discrete observations:
• ∑

i xi log x̃i: Cross entropy loss
• maxi | xi − x̃i |: Total variation loss
• ‖x− x̃‖p: p-Wasserstein distance

Common regularizers include:
• ‖θ‖2

2: ridge regularization
• ‖θ‖1: lasso regularization

There are a huge variety of other regularizers, many hand crafted for specific applications, however
they are beyond the scope of this thesis.

By specifying a loss function we have now reduced the learning problem to an optimization
problem.

2.5.1 Back Propagation Through Time
By far the most common way to optimize equation 2.5 is by gradient descent. Gradient descent
in the context of dynamical systems is given a special name: Back Propagation Through Time
(BPTT) [119]. In order to perform BPTT we first unfold the recursive computation graph to
compute the belief state at each step. We then use backpropagation to compute the gradients via
the following recursion:

∂L

∂qt
=
∂L

∂x̃t

∂x̃t
∂qt

+

{
∂L
∂qt+1

∂qt+1

∂qt
if t < T

0 if t = T
(2.52)

From the chain rule we obtain:

∂L

∂θ
=

T∑
t=1

∂L

∂qt

∂qt
∂θ

+
∂L

∂x̃

∂x̃

∂θ

We note that BPTT for RNNs does not encounter many of the issues that plagued gradient descent
of the likelihood function when optimizing Bayes Filters. Specifically BPTT of RNNs is an
unconstrained optimization, in contrast to gradient descent of the likelihood function, which
was a constrained optimization. This is because any set of parameters constitutes a valid RNN,
wheras when working with Bayes Filters we were forced to optimize over the space of parameters
corresponding to valid probability distributions.

35

2.6 Discussion
As the previous sections show there are a wide variety of models for dynamical systems, and an
equally diverse set of methods for learning them. It is the (thankless) job of the machine learning
practitioner to intelligently choose a combination of model and learning algorithm given a problem
specification. Unfortunately this job is extremely difficult, even for expert practitioners, due to a
number of factors. First there are the large number of moving parts; besides the model and learning
algorithm we must also decide on the hyperparameters, the loss function, etc. Furthermore the
model and the learning algorithm cannot be chosen independently, and instead must be chosen
together. For instance if you decide to use an RNN model you must use a discriminative classifier.
This problem is further exacerbated by many of these techniques being developed by different
fields and often using diverse and contradictory terminology/notation in the relevant literature.

But what if we didn’t have to chose? What if we could develop models which combine all
these advantages in a single package? In this thesis we study the idea of developing hybrid models
which unify many of the models covered in the previous section. Specifically we want a model
which:
• Works for a wide range of common data types
• Is generative, i.e. corresponds to a probability distribution over observations
• Has a strong statistical theory
• Can be initialized via a globally optimal method of moments algorithm
• Can be refined using BPTT
• Performs well on a wide range of practical application
• Scales to large problems
• Has a simple functional form

In the remainder of this thesis we work towards this goal.

36

Part II

Unifying Method of Moments Learning

37

Chapter 3

Method of Moments Learning for
Uncontrolled Systems

In this chapter we take our first steps towards developing a unified model for dynamical systems.
One desirable property for such a unified model is the ability to perform learning via MoM. MoM
is special, in that it offers something virtually other learning algorithm for dynamical systems can
claim – guaranteed convergence to a globally optimal solution. The key difficulty in developing
a model which supports MoM learning is that the class of such models is not well defined. We
know that certain specific models admit MoM learning, but in each case the learning algorithm
has been hand derived from scratch. If we want to develop a unified model which supports MoM
learning we must first improve our understanding of this class of algorithms, and the model class
they support.

This chapter addresses this problem by developing a novel framework which unifies the many
disparate MoM algorithms. This framework consists of a model class and a learning algorithm.
The model class is Predictive State Models (PSMs), a Bayes filter that utilizes predictive states.
The learning algorithm is two stage-regression (2SR), which reduces MoM to supervised learning.
We focus for now on uncontrolled systems in order to simplify development and presentation of
these ideas. We extend this work to controlled systems in Chapter 4.

We propose a framework which reduces MoM learning to solving three supervised learning
problems using the idea of instrumental-variable regression. This allows us to directly apply the
rich literature on supervised learning methods to incorporate many types of prior knowledge about
problem structure. We show that this framework subsumes a wide variety of existing spectral
algorithms. We refer to the class of the algorithms subsumed by this framework as predictive
belief methods since they rely on representing the system state in terms of predictions of observed
quantities.

The remainder of this chapter is organised as follows: In Section 3.1 we define the class of
Predictive State Model, and in Section 3.2 we introduce the two-stage algorithm. In Section 3.3
we show that many previous instances of MoM learning are subsumed by our framework. In
Section 3.4 we present a theoretical analysis of two-stage regression. In section 3.5 we present
experimental results demonstrating how this framework can be used to design and learn novel
filters. A discussion of related work can be found in Section 3.6, conclusions in Section 3.7, and
proofs of key results in Appendix 3.A.

39

Figure 3.1: Illustration of the concepts of Future, Extended Future, and Shifted Future (for a fixed,
finite horizon k at time t).

3.1 Predictive State Models
Our discussion of PSMs hinges on the concepts of Future observations, Past observations, and
Present observations. Imagine that we are performing filtering on an observation sequence. Past
observations are observations which have already occurred, Future observations are observations
which have yet to occur, and the present observation is a new observation which we just obtained,
but has not yet been used to refine our estimate of the state.

Similar to PSRs, Predictive State Models (PSMs) are based on the concept of a predictive
belief state where the state corresponds to a belief over sufficient statistics of features of future
observations. We now define three quantities which will be used to define PSMs: Future features,
Extended Future Features, and Shifted Future Features. Future Features are defined as a function
ψ of a window of future observations:

ψt = ψ(ot:t+k)

The extended future features are similar to the future features, but we extend the window to
encompass an additional observation:

ξt = ξ(ot:t+k+1)

The shifted future is just the future features for a window of observations one time step in the
future:

ψt+1 = ψ(ot+1:t+k+1)

These ideas are illustrated in figure 3.1. We note that it’s really not necessary to use a window, but
we chose to do so for clarity of presentation as it leads to substatially simpler notation.

40

Figure 3.2: Illustration of the Expansion/Conditioning decomposition of the Bayes Filter update
rule.

The key insight behind PSMs is that we can reformulate the Bayes Filter state update (Equation
2.4) in terms of these quantities. Consider Equation 2.2:

qt+1 =
Pr(st+1, ot+1 | o1:t)

Pr(ot+1 | o1:t)

We see that the numerator of this expression is exactly the extended future. One way of thinking
about this is we extended the current marginal distribution over states to obtain a joint distribution
over states and observations. The denominator of this expression acts to condition this joint
distribution to obtain a conditional distribution corresponding to the next state. Therefore we can
think of the Bayes Filter state update as consisting of two steps:
• Extension where we obtain a joint distribution over states and observations
• Conditioning where we condition on the current observation to obtain the updated belief

state
This decomposition is illustrated in figure 3.2. We define the state qt at time t of a PSM as the
expected value of ψt conditioned on past observations:

qt = E[ψt | o1:t−1]

ψ is sufficient if E[ψt | o1:t−1] is a sufficient state representation. Two common choices of ψ are 1)
an indicator vector, or one-hot vector (for discrete models, e.g. 1-observable HMM [68]) and 2) a
stack of the next n observations (e.g. linear Gaussian systems [114]). It follows immediately that
the state at time t+ 1 corresponds to the shifted future:

qt+1 = E[ψt+1 | o1:t]

Unfortunately it is not possible to learn a mapping directly from the future to the shifted future
from training data for reasons which will be made clear in Section 3.2. This is where the notion
of the extended future comes in handy: We use the extended future to define the notion of an
extended state pt:

pt = E[ξt | o1:t−1]

41

We then define two mappings, one from qt to pt and a second from pt to qt+1. By doing so we
circumvent the problems associated with learning a mapping directly from qt to qt+1. Formally a
PSM is defined as follows:
Definition 1. A dynamical system is said to conform to a predictive state model (PSM) if it
satisfies the following properties for some future features ψ and extended future features ξ:
• For each time t there exists a predictive belief state qt = E[ψt | o1:t−1] which constitutes a

sufficient state representation
• For each time t there exists an extended state pt = E[ξt | o1:t−1]
• There exists a filtering function ffilter such that, for each time t:

qt+1 = ffilter(pt, ot)

ffilter is typically non-linear, but is known in advance.
• There exists a linear map Wsystem such that, for each time t:

pt = Wsystemqt (3.1)

This definition implies that the recursive state update for PSMs is:

qt+1 = ffilter(Wsystemqt, ot)

This filter is a Bayes Filter that follow sthe two-step update described in Section 3.2.
• State Expansion: pt = Wsystemqt

• Conditioning: qt+1 = ffilter(pt, ot)

In other words, a predictive state model is a Bayes filter with a predictive state representation,
and a linear state expansion. Note that we need only learn the expansion operator Wsystem and
the initial state q0. The linearity of Wsystem and the prespecified relation between qt and future
observations are what we exploit to develop a tractable learning algorithm, which we describe in
the next section.

3.2 Two-Stage Regression
The main idea behind Two-Stage Regression is that it suffices for the purpose of prediction to
learn the mapping W from qt to pt (as well as the initial distribution of qt=1). Unfortunately, we
do not observe qt or pt but noisy versions thereof, namely ψt and ξt. Moreover, due to the overlap
between observation windows, the noise terms on ψt and ξt are correlated. This noise correlation
means that ”naı̈ve” linear regression (using samples of ψt and ξt in place of qt and pt) will give a
biased estimate of W .

To counteract this bias, we employ instrumental regression [89, 109]. Instrumental regression
uses instrumental variables that are correlated with the input qt but not with the noise εt:t+k. This
property provides a criterion to denoise the inputs and outputs of the original regression problem:
we remove that part of the input/output that is not correlated with the instrumental variables.
Since past observations o1:t−1 do not overlap with future or extended future windows, they are

42

not correlated with the noise εt:t+k+1. Therefore, we can use history features ht ≡ h(o1:t−1) as
instrumental variables.

Note that we assume that the process noise is white (i.e. independent at each time step). With
this assumption, one can think of a graphical model at time t where observed future features are
a common child of future noise, past features and past noise. This v-structure implies that past
observations are independent of future noise.

The key idea behind instrumental regression is that if two random variables are related by a
linear map W , their conditional expectations are related by the same linear map W . By taking
conditional expectation w.r.t instrumental variables, we can eliminate the noise while preserving
the linear map that we are attempting to estimate.

In more detail, by taking the expectation of (3.1) over ht we obtain an instrument-based
moment condition (for all t)

E[pt | ht] = E[Wqt | ht]
E[E[ξt | o1:t−1] | ht] = WE[E[ψt | o1:t−1] | ht]

E[ξt | ht] = WE[ψt | ht] (3.2)

Assuming that there are enough independent dimensions in ht that are correlated with qt, we
maintain the rank of the moment condition when moving from (3.1) to (3.2), and we can recover
W by least squares regression if we can compute E[ψt | ht] and E[ξt | ht] for sufficiently many
examples t.

So, we first use regression models to estimate E[ψt | ht] and E[ξt | ht], effectively denoising
the training examples and then use these estimates to compute W be finding the least squares
solution to (3.2), which can be thought of as performing linear regression on denoised training
data.

In summary, learning and inference of a dynamical system through instrumental regression
can be described as follows:
• Model Specification: Pick features of history ht = h(o1:t−1), future ψt = ψ(ot:t+k−1) and

extended future ξt = ξ(ot:t+k). ψt must be a sufficient statistic for P(ot:t+k−1 | o1:t−1). ξt
must satisfy

E[ψt+1 | o1:t−1] = fpredict(E[ξt | o1:t−1]) for a known function fpredict.

E[ψt+1 | o1:t] = ffilter(E[ξt | o1:t−1], ot) for a known function ffilter.
• S1A (Stage 1A) Regression: Learn a (possibly non-linear) regression model to estimate
ψ̄t ≡ E[ψt | ht]. The training data for this model are (ht, ψt) across time steps t.1

• S1B Regression: Learn a (possibly non-linear) regression model to estimate ξ̄t ≡ E[ξt | ht].
The training data for this model are (ht, ξt) across time steps t.

• S2 Regression: Use the feature expectations estimated in the previous two steps to train a
model to predict ξ̄t = Wψ̄t, where W is a linear operator. The training data for this model
are estimates of (ψ̄t, ξ̄t) across time steps t obtained from S1 steps.

1Our bounds assume that the training time steps t are sufficiently spaced for the underlying process to mix, but in
practice, the error will only get smaller if we consider all time steps t.

43

𝑜𝑡−1 𝑜𝑡 𝑜𝑡+𝑘−1 𝑜𝑡+𝑘

history ℎ𝑡 future 𝜓𝑡/𝑞𝑡

shifted future 𝜓𝑡+1

extended future 𝜉𝑡/𝑝𝑡

S1A regression 𝐸[𝑞𝑡|ℎ𝑡]

S1B regression  𝐸[𝑝𝑡|ℎ𝑡]

S2 regression

Condition on 𝑜𝑡 (filter)  𝑞𝑡+1
Marginalize 𝑜𝑡 (predict)  𝑞𝑡+1|𝑡−1

Figure 3.3: Learning and applying a dynamical system using instrumental regression. S1 regres-
sion is trained to provide data to train S2 regression. At test time, starting from an initial belief
state q0, we alternate between S2 regression and filtering/prediction

• Initial State Estimation: Estimate an initial state q1 = E[ψ1] by averaging ψ1 across
several example realizations of our time series.2

• Inference: Starting from the initial state q1, we can maintain the predictive belief qt ≡
E[ψt | o1:t−1] through filtering: given qt we compute pt ≡ E[ξt | o1:t−1] = Wqt. Then,
given the observation ot, we can compute qt+1 = ffilter(pt, ot). Or, in the absence of ot, we
can predict the next state qt+1|t−1 = fpredict(pt). Finally, by definition, the predictive belief
qt is sufficient to predict P(ot:t+k−1 : o1:t−1).

The process of learning and inference is depicted in Figure 3.3. Modeling assumptions are
reflected in the choice of the statistics ψ, ξ and h as well as the regression models in stages S1A
and S1B. Table 3.1 demonstrates that we can recover existing spectral algorithms for dynamical
systems learning using linear S1 regression. The two stage framework not only provides a unifying
view of some of the successful dynamical systems learning algorithms but also paves the way for
extending them in a theoretically justified manner, as we demonstrate in the experiments.

3.3 Connections with prior work

In this section we provide examples of mapping some of the successful dynamical system learning
algorithms to our framework.

2This is the only step that needs multiple realizations of our time series. If only a single long realization is
available, we need additional assumptions to be able to estimate an initial state; for example, if we assume stationarity,
we can set the initial state to be the empirical average vector of future features, 1

T

∑T
t=1 ψt.

44

Model/Algorithm future features ψt extended future fea-
tures ξt

ffilter

Spectral Algo-
rithm for HMM
[65]

U>eot where eo1 is an indicator
vector and U spans the range of qt
(typically composed of top m left
singular vectors of the joint proba-
bility table P (o2, o1))

U>eot+1 ⊗ eot Estimate a state normalize from
S1A output states.

SSID for Kalman
filters (time de-
pendent gain)

xt and xt ⊗ xt, where xt =
U>ot:t+k−1 for a matrix that U
spans the range of qt (typically
composed of top m left singular
vectors of the covariance matrix
Cov(ot:t+k−1, ot−k:t−1))

yt and yt ⊗ yt, where
yt is formed by stack-
ing U>ot+1:t+k and
ot.

pt specifies a Gaussian distribution
where conditioning on ot is straight-
forward.

SSID for stable
Kalman filters
(constant gain)

U>ot:t+k−1 (U obtained as
above)

ot and U>ot+1:t+k Estimate steady-state covariance by
solving Riccati equation [112]. pt
together with the steady-state co-
variance specify a Gaussian distri-
bution where conditioning on ot is
straightforward.

Uncontrolled
HSE-PSR [28]

Evaluation functional
ks(ot:t+k−1, .) for a charac-
teristic kernel ks

ko(ot, .) ⊗ ko(ot, .)
and ψt+1 ⊗ ko(ot, .)

Kernel Bayes rule [50]

Table 3.1: Examples of existing spectral algorithms reformulated as two-stage instrument regres-
sion with linear S1 regression. Here ot1:t2 is a vector formed by stacking observations ot1 through
ot2 and ⊗ denotes the outer product. Details and derivations can be found in the supplementary
material.

3.3.1 HMM

In this section we show that we can use instrumental regression framework to reproduce the
spectral learning algorithm for learning HMM [65]. We consider 1-observable models but the
argument applies to k-observable models. In this case we use ψt = eot and ξt = eot:t+1 =
eot ⊗k eot+1 , where ⊗k denotes the kronecker product. Let Pi,j ≡ E[eoi ⊗ eoj] be the joint
probability table of observations i and j and let P̂i,j be its estimate from the data. We start with
the (very restrictive) case where P1,2 is invertible. Given samples of h2 = eo1 , ψ2 = eo2 and
ξ2 = eo2:3 , in S1 regression we apply linear regression to learn two matrices Ŵ2,1 and Ŵ2:3,1 such
that:

Ê[ψ2|h2] = Σ̂o2o1Σ̂−1
o1
h2 = P̂2,1P̂

−1
1,1 ht ≡ Ŵ2,1h2 (3.3)

Ê[ξ2|h2] = Σ̂o2:3o1Σ̂−1
o1
h2 = P̂2:3,1P̂

−1
1,1 h2 ≡ Ŵ2:3,1h2, (3.4)

where P2:3,1 ≡ E[eo2:3 ⊗ eo1]

In S2 regression, we learn the matrix Ŵ that gives the least squares solution to the system of
equations

Ê[ξ2|h2] ≡ Ŵ2:3,1eo1 = Ŵ (Ŵ2,1eo1) ≡ Ŵ Ê[ψ2|h2]

45

for given samples of h2, which gives

Ŵ = Ŵ2:3,1Ê[eo1e
>
o1

]Ŵ>
2,1

(
Ŵ2,1Ê[eo1e

>
o1

]Ŵ>
2,1

)−1

=
(
P̂2:3,1P̂

−1
1,1 P̂

>
2,1

)(
P̂2,1P̂

−1
1,1 P̂

>
2,1

)−1

= P̂2:3,1

(
P̂2,1

)−1

(3.5)

Having learned the matrix Ŵ , we can estimate

p̂t ≡ Ŵ qt

starting from a state qt. Since pt specifies a joint distribution over eot+1 and eot we can easily
condition on (or marginalize ot) to obtain qt+1. We will show that this is equivalent to learning
and applying observable operators as in [65]:

For a given value x of o2, define

Bx = u>x Ŵ = u>x P̂2:3,1

(
P̂>2,1

)−1

, (3.6)

where ux is an |O| × |O|2 matrix which selects a block of rows in P̂2:3,1 corresponding to o2 = x.
Specifically, ux = δx ⊗k I|O|. 3.

qt+1 = Ê[eot+1|o1:t] ∝ u>otÊ[eot:t+1 |o1:t−1]

= u>otÊ[ξt|o1:t−1] = u>otŴE[ψt|o1:t−1] = Botqt

with a normalization constant given by
1

1>Botqt
(3.7)

Now we move to a more realistic setting, where we have rank(P2,1) = m < |O|. Therefore
we project the predictive state using a matrix U that preserves the dynamics, by requiring that
U>O (i.e. U is an independent set of columns spanning the range of the HMM observation matrix
O).

It can be shown [65] thatR(O) = R(P2,1) = R(P2,1P
−1
1,1). Therefore, we can use the leading

m left singular vectors of Ŵ2,1 , which corresponds to replacing the linear regression in S1A
with a reduced rank regression. However, for the sake of our discussion we will use the singular
vectors of P2,1. In more detail, let [U, S, V] be the rank-m SVD decomposition of P2,1. We
use ψt = U>eot and ξt = eot ⊗k U>eot+1 . S1 weights are then given by Ŵ rr

2,1 = U>Ŵ2,1 and
Ŵ rr

2:3,1 = (I|O| ⊗k U>)Ŵ2:3,1 and S2 weights are given by

Ŵ rr = (I|O| ⊗k U>)Ŵ2:3,1Ê[eo1e
>
o1

]Ŵ>
2,1U

(
U>Ŵ2,1Ê[eo1e

>
o1

]Ŵ>
2,1U

)−1

= (I|O| ⊗k U>)P̂2:3,1P̂
−1
1,1 V S

(
SV >P̂−1

1,1 V S
)−1

= (I|O| ⊗k U>)P̂2:3,1P̂
−1
1,1 V

(
V >P̂−1

1,1 V
)−1

S−1 (3.8)

3Following the notation used in [65], u>x P̂2:3,1 ≡ P̂3,x,1

46

In the limit of infinite data, V spans range(O) = rowspace(P2:3,1) and hence P2:3,1 =
P2:3,1V V

>. Substituting in (3.8) gives

W rr = (I|O| ⊗k U>)P2:3,1V S
−1 = (I|O| ⊗k U>)P2:3,1

(
U>P2,1

)+

Similar to the full-rank case we define, for each observation x an m × |O|2 selector matrix
ux = δx ⊗k Im and an observation operator

Bx = u>x Ŵ
rr → U>P3,x,1

(
U>P2,1

)+
(3.9)

This is exactly the observation operator obtained in [65]. However, instead of using 3.8, they use
3.9 with P3,x,1 and P2,1 replaced by their empirical estimates.

Note that for a state bt = E[ψt|o1:t−1], Bxbt = P (ot|o1:t−1)E[ψt+1|o1:t] = P (ot|o1:t−1)bt+1.
To get bt+1, the normalization constant becomes 1

P (ot|o1:t−1)
= 1

b>∞Bxbt
, where b>∞b = 1 for any

valid predictive state b. To estimate b∞ we solve the aforementioned condition for states estimated
from all possible values of history features ht. This gives,

b>∞Ŵ
rr
2,1I|O| = b>∞U

>P̂2,1P̂
−1
1,1 I|O| = 1>|O|,

where the columns of I|O| represent all possible values of ht. This in turn gives

b>∞ = 1>|O|P̂1,1(U>P̂2,1)+

= P̂>1 (U>P̂2,1)+,

the same estimator proposed in [65].

3.3.2 Stationary Kalman Filter
A Kalman filter is given by

st = Ost−1 + νt

ot = Tst + εt

νt ∼ N (0,Σs)

εt ∼ N (0,Σo)

We consider the case of a stationary filter where Σt ≡ E[sts
>
t] is independent of t. We choose our

statistics

ht = ot−H:t−1

ψt = ot:t+F−1

ξt = ot:t+F ,

Where a window of observations is represented by stacking individual observations into a
single vector. It can be shown [20, 112] that

E[st|ht] = Σs,hΣ
−1
h,hht

47

and it follows that

E[ψt|ht] = ΓΣs,hΣ
−1
h,hht = W1ht

E[ξt|ht] = Γ+Σs,hΣ
−1
h,hht = W2ht

where Γ is the extended observation operator

Γ ≡


O
OT

...
OT F

 ,Γ+ ≡


O
OT

...
OT F+1


It follows that F and H must be large enough to have rank(W) = n. Let U ∈ RmF×n be

the matrix of left singular values of W1 corresponding to non-zero singular values. Then U>Γ is
invertible and we can write

E[ψt|ht] = UU>ΓΣs,hΣ
−1
h,hht = W1ht

E[ξt|ht] = Γ+Σs,hΣ
−1
h,hht = W2ht

E[ξt|ht] = Γ+(U>Γ)−1U>
(
UU>ΓΣs,hΣ

−1
h,hht

)
= WE[ψt|ht]

which matches the instrumental regression framework. For the steady-state case (constant Kalman
gain), one can estimate Σξ given the data and the parameter W by solving Riccati equation as
described in [112]. E[ξt|o1:t−1] and Σξ then specify a joint Gaussian distribution over the next
F + 1 observations where marginalization and conditioning can be easily performed.

We can also assume a Kalman filter that is not in the steady state (i.e. the Kalman gain is
not constant). In this case we need to maintain sufficient statistics for a predictive Gaussian
distribution (i.e. mean and covariance). Let vec denote the vectorization operation, which stacks
the columns of a matrix into a single vector. We can stack ht and vec(hth

>
t) to into a single vector

that we refer to as 1st+2nd moments vector. We do the same for future and extended future. We
can, in principle, perform linear regression on these 1st+2nd moment vectors but that requires an
unnecessarily large number of parameters. Instead, we can learn an S1A regression function of
the form

E[ψt|ht] = W1ht (3.10)

E[ψtψ
>
t |ht] = W1hth

>
t W1 +R (3.11)

(3.12)

Where R is simply the covariance of the residuals of the 1st moment regression (i.e. covariance of
rt = ψt − E[ψt|ht]). This is still a linear model in terms of 1st+2nd moment vectors and hence
we can do the same for S1B and S2 regression models. This way, the extended belief vector pt
(the expectation of 1st+2nd moments of extended future) fully specifies a joint distribution over
the next F + 1 observations.

48

3.3.3 HSE-PSR
We define a class of non-parametric two-stage instrumental regression models. By using con-
ditional mean embedding [105] as S1 regression model, we recover a single-action variant of
HSE-PSR [28]. Let X ,Y ,Z denote three reproducing kernel Hilbert spaces with reproducing
kernels kX , kY and kZ respectively. Assume ψt ∈ X and that ξt ∈ Y is defined as the tuple
(ot⊗ ot, ψt+1⊗ ot). Let Ψ ∈ X ⊗RN , Ξ ∈ Y ⊗RN and H ∈ Z ⊗RN be operators that represent
training data. Specifically, ψs, ξs, hs are the sth ”columns” in Ψ and Ξ and H respectively. It is
possible to implement S1 using a non-parametric regression method that takes the form of a linear
smoother. In such case the training data for S2 regression take the form

Ê[ψt | ht] =
N∑
s=1

βs|htψs

Ê[ξt | ht] =
N∑
s=1

γs|htξs,

where βs and γs depend on ht. This produces the following training operators for S2 regression:

Ψ̃ = ΨB

Ξ̃ = ΞΓ,

where Bst = βs|ht and Γst = γs|ht . With this data, S2 regression uses a Gram matrix formulation
to estimate the operator

W = ΞΓ(B>GX ,XB + λIN)−1B>Ψ∗ (3.13)

Note that we can use an arbitrary method to estimate B. Using conditional mean maps, the
weight matrix B is computed using kernel ridge regression

B = (GZ,Z + λIN)−1GZ,Z (3.14)

HSE-PSR learning is similar to this setting, with ψt being a conditional expectation operator
of test observations given test actions. For this reason, kernel ridge regression is replaced by
application of kernel Bayes rule [50].

For each t, S1 regression will produce a denoised prediction Ê[ξt | ht] as a linear combination
of training feature maps

Ê[ξt | ht] = Ξαt =
N∑
s=1

αt,sξs

This corresponds to the covariance operators

Σ̂ψt+1ot|ht =
N∑
s=1

αt,sψs+1 ⊗ os = Ψ′diag(αt)O
∗

Σ̂otot|ht =
N∑
s=1

αt,sos ⊗ os = Odiag(αt)O
∗

49

Where, Ψ′ is the shifted future training operator satisfying Ψ′et = ψt+1 Given these two covari-
ance operators, we can use kernel Bayes rule [50] to condition on ot which gives

qt+1 = Ê[ψt+1 | ht] = Σ̂ψt+1ot|ht(Σ̂otot|ht + λI)−1ot. (3.15)

Replacing ot in (3.15) with its conditional expectation
∑N

s=1 αsos corresponds to marginalizing
over ot (i.e. prediction). A stable Gram matrix formulation for (3.15) is given by [50]

qt+1

= Ψ′diag(αt)GO,O((diag(αt)GO,O)2 + λNI)−1

.diag(αt)O
∗ot

= Ψ′α̃t+1, (3.16)

which is the state update equation in HSE-PSR. Given α̃t+1 we perform S2 regression to estimate

P̂t+1 = Ê[ξt+1 | o1:t+1] = Ξαt+1 = WΨ′α̃t+1,

where W is defined in (3.13).

3.4 Theoretical Analysis
In this section we present error bounds for two-stage regression. These bounds hold regardless of
the particular S1 regression method used. Assuming that the S1 predictions converge to the true
conditional expectations, the bounds imply that our overall method is consistent.

Let (xt, yt, zt) ∈ X × Y × Z be i.i.d. triplets of input, output, and instrumental variables.
Let x̄t and ȳt denote E[xt | zt] and E[yt | zt]. Let x̂t and ŷt denote Ê[xt | zt] and Ê[yt | zt] as
estimated by the S1A and S1B regression steps. We assume that x̄t, x̂t ∈ X and ȳt, ŷt ∈ Y We
want to analyze the convergence of the output of S2 regression – that is, of the weights W given
by ridge regression between S1A outputs and S1B outputs:

Ŵλ =

(
T∑
t=1

ŷt ⊗ x̂t
)(

T∑
t=1

x̂t ⊗ x̂t + λIX

)−1

(3.17)

where ⊗ denotes tensor product and λ > 0 is a regularization parameter that ensures the invert-
ibility of the estimated covariance.

Before we state our main theorem, we need to quantify the quality of S1 regression in a way
that is independent of the S1 functional form. To do so, we place a bound on the S1 error:
Definition 2 (S1 Regression Bound). For any δ > 0 and N ∈ N+ the S1 regressino bound ηδ,N
is a number such that, with probability at least (1− δ/2) the following holds:

1

N

N∑
t=1

||ȳt||Y ||x̂t − x̄t||X + ||x̄t||X ||ŷt − ȳt||Y + ||x̂t − x̄t||X ||ŷt − ȳt||Y ≤ ηδ,N

The S1 regression bound depends on the joint performance of two regression models. Below
we show one possible method to construct such a bound:

50

Definition 3 (Uniform S1 Regression Bound). For any δ > 0 and N ∈ N+, the Uniform S1
regression bound η̃δ,N > 0 is a number such that, with probability at least (1−δ/2), the following
holds for all 1 ≤ t ≤ N :

‖x̂t − x̄t‖X < ηδ,N

‖ŷt − ȳt‖Y < ηδ,N

Proposition 4. Let η̃δ,N be a uniform S1 regression bound that satisfies Definition 3. Assuming
that ||ȳt||Y < c and ||x̄t||X , then

ηδ,N ≡ 2cη̃δ,N + η̃2
δ,N = O(η̃δ,N)

satisfies Definition 2
A consistent learning algorithm requires that, for each fixed δ, limN→∞ ηδ,N = 0. Thus, the

uniform regression bound might seem to be a strong assumption. However, we show examples
where it is realizable in the following subsection.

In many applications, X , Y and Z will be finite dimensional real vector spaces: Rdx , Rdy

and Rdz . However, for generality we state our results in terms of arbitrary reproducing kernel
Hilbert spaces. In this case S2 uses kernel ridge regression, leading to methods such as HSE-PSRs
[28]. For this purpose, let Cx̄, and Cȳ denote the (uncentered) covariance operators of x̄ and ȳ
respectively: Cx̄ = E[x̄⊗ x̄], Cȳ = E[ȳ ⊗ ȳ] and letR(Cx̄) denote the closure of the range of Cx̄

With the above assumptions, Theorem 5 gives a generic error bound on S2 regression in terms
of S1 regression error. If X and Y are finite dimensional and Cx̄ has full rank, then using ordinary
least square (i.e. setting λ = 0) will give the same bound, but with λ in the firsrt two terms
replaced by the minimum eigenvalue of Cx̄, and the last term dropped.
Theorem 5. Assume that ‖x̄‖X , ‖x̄‖Y < c <∞ almost surely. Assume W is a Hilbert-Schmidt
operator, let Ŵλ be as defined in (3.17). Then with probability at least 1− δ for each xtest ∈ Cx̄
s.t. ‖xtest‖X ≤ 1, the error ‖Ŵλxtest −Wxtest‖Y is bounded by:

O

ηδ,N
1

λ
+

√
1 +

√
log(1/δ)

N

λ
3
2




︸ ︷︷ ︸
error in S1 regression

+O

(
log(1/δ)√

N

(
1

λ
+

1

λ
3
2

))
︸ ︷︷ ︸

error from finite samples

+ O
(√

λ
)

︸ ︷︷ ︸
error from regularization

A variation of Theorem 5 applies if the true model is not linear. In this case the reference
value W is a linear predictor of y given x̄ that minimizes MSE.

It is important to note that Theorem 5 assumes xtest ∈ R(Cx̄). For dynamical systems, all valid
states satisfy this property. However, with finite data, estimation errors may cause the estimated
state q̂t (i.e. xtest) to have a non-zero component inR⊥(Cx̄), the orthogonal complement ofR(Cx̄).
Lemma 6 bounds the effect of such errors: it states that, in a stable system, this component gets
smaller as S1 regression performs better. The main limitation of Lemma 6 is the assumption

51

that ffilter is L-Lipchitz, which essentially means that the models estimated probability for ot is
bounded below. A similar condition was assumed in [68] for HMMs. To guarantee this property
depends heavily on the filtering function. Therefore, Lemma 6 provides suggestive evidence
rather than a guarantee that our learned dynamical system will predict well.
Lemma 6. For a test sequence o1:T , let q̂t denote the estimated state given o1:t−1. Let q̃t denote
the projection of q̂t onto R(Cx̄). Assume that ffilter is L-Lipchitz continuous on Pt and that
ffilter(Pt, ot) ∈ R(Cx̄) for any Pt ∈ R(Cȳ). Given the assumptions in theorem 5 and assuming
that ‖Q̂t‖X ≤ R for all 1 ≤ t ≤ T , the following holds for all 1 ≤ t ≤ T with probability at least
1− δ/2.

‖εt‖X = ‖q̂t − q̃t‖X = O

(
ηδ,N√
λ

)
Since Ŵλ is bounded, the prediction error due to εt dimishes at the same rate as ||εt||X .

3.5 Experiments

3.5.1 Learning A Knowledge Tracing Model
In this section we demonstrate that we can learn a hidden Markov model using the two stage
regression framework. In addition we show that we can use non-linear S1 regression models
to reduce the number of parameters we need to learn, resulting in better empirical prediction
accuracy compared to linear models while still maintaining consistency.

In this experiment we attempt to model and predict the performance of students learning
from an interactive computer-based tutor. We use the Bayesian knowledge tracing (BKT) model
[41], which is essentially a 2-state HMM: the state st represents whether a student has learned a
knowledge component (KC), and the observation ot represents the success/failure of solving the
tth question in a sequence of questions that cover the said KC. Figure 3.4 summarizes transitions
and emissions in that model. The events denoted by guessing, slipping, learning and forgetting
typically have relatively low probabilities.

Data Description

We evaluate the model using “Geometry Area (1996-97)” data available from DataShop[73].
This data was generated by students learning introductory geometry, and contains attempts by 59
students in 12 knowledge components. As is typical for BKT, we consider a student’s attempt at a
question to be correct iff the student entered the correct answer on the first try, without requesting
any hints from the help system. Each training sequence consists of a sequence of first attempts
for a student/KC pair. We discard sequences of length less than 5, resulting in a total of 325
sequences.

Models and Evaluation

Under the (reasonable) assumption that the two states have distinct observation probabilities, this
model is 1-observable. Hence we define the predictive state to be the expected next observation,

52

Correct
Answer

Skill
Known

Skill
Known

Skill
Unknown

Skill
Unknown

Incorrect
Answer

Figure 3.4: Transitions and observation emissions of the BKT model. (Each node represents a
possible value of the state/observation). Solid arrows represent transitions while dashed arrows
represent emissions.

which results in the following statistics: ψt = ot and ξt = ot ⊗k ot+1,

where ot is represented by a 2 dimensional indicator vector and ⊗k denotes the Kronecker
product. Given these statistics, pt = E[ξt|o1:t−1] is a joint probability table of ot:t+1 from which
conditioning on ot (filtering) and marginalizing over ot (prediction) are simple operations. It
remains to choose the history features ht and the S1 regression model. In the supplementary
material, we show that if use ht = ot−1 and linear regression as S1 regression model, the
resulting algorithm is equivalent to spectral HMM method of [65]. We use this model (denoted by
“Spec-HMM”) as a baseline.

Our second baseline (denoted by “Feat-HMM”) is feature-based spectral HMM [101]. This
can be thought of as using linear S1 regression with arbitrary history features. We consider
a window of previous observations of length b > 1 and represent ht as an indicator vector of
dimension 2b. This is to ensure the linearity of the optimal of ot from ht.

We compare these baselines to a model that exploits our insights on predictive belief methods
(“LR-HMM”). This model represents the previous b observations with a vector of length b and
uses logistic regression as S1 regression. This effectively reduces the number of parameters we
need to learn from O(2b) to O(b).

We evaluated the aforementioned models using 1000 random splits of the 325 sequences
into 200 training and 125 testing. For each testing observation ot we compute the absolute error
between actual and expected value (i.e. |δot=1 − P̂ (ot = 1|o1:t−1)|). We report the mean absolute
error for each split. The results are displayed in figure 3.5. We see that, while incorporating
more history information increases accuracy (model 2 vs. model 1), being able to incorporate the
same information using a more compact model gives an additional gain in accuracy (model 3 vs
model 2). We also compared our predictive belief method (model 3) to an HMM trained using
expectation maximization (EM). We found that the predictive belief model is much faster to train
than EM while being on par with it in terms of accuracy.

53

Spec-HMM
0.26 0.3 0.34

F
ea

t-
H

M
M

0.26

0.28

0.3

0.32

0.34

Spec-HMM
0.26 0.3 0.34

LR
-H

M
M

0.26

0.28

0.3

0.32

0.34

Feat-HMM
0.26 0.3 0.34

LR
-H

M
M

0.26

0.28

0.3

0.32

0.34

EM
0.26 0.3 0.34

LR
-H

M
M

0.26

0.28

0.3

0.32

0.34

Model Spec-HMM Feat-HMM LR-HMM EM
Training time4 (relative to Spec-HMM) 1 1.02 2.219 14.323

Figure 3.5: Experimental results: each graph depicts the performance of two models (measured
by mean absolute error) on 1000 train/test splits. The black line represents the x = y lines. More
points below the line indicates that model y is better than model x. The table depicts training time
of each model relative to model 1 (spectral HMM).

3.5.2 Modeling Independent Subsystems Using Lasso Regression

Spectral algorithms for kalman filters typically use the left singular vectors of the covariance
between history and future features as a basis for the state space. In this experiment, we show that
we can use Lasso as S1 regression algorithm. This is useful when the system consists of multiple
independent subsystems each of which affects a subset of observation coordinates.

To test this idea we generate a sequence of 30-dimensional observations from a Kalman filter.
Observations 1 through 10 and 11 through 20 are generated from two independent subsystems
of state dimension 5. Observations 21-30 are generated from white noise. Each subsystem was
generated by a transition and observation matrices with random Gaussian coordinates and scaling
the transition matrix to have a maximum eigenvalue of 0.95. States and observations are perturbed
by Gaussian noise with diagonal covariance matrix of value equal to 0.01 and 1.0 respectively.

We estimate the state space basis using 1000 examples (assuming 1-observability) and compare

54

Figure 3.6: Left singular vectors of (left) true linear predictor from ot−1 to ot (i.e. OTO+),
(middle) covariance matrix between ot and ot−1 and (right) S1 Sparse regression weights. Each
column corresponds to a singular vector (only absolute values are depicted). Singular vectors are
ordered by their mean coordinate, interpreting absolute values as a probability distribution over
coordinates.

the singular vectors of the past to future regression matrix to those obtained from the Lasso
regression matrix. The result is shown in figure 3.6. Clearly, using Lasso as stage 1 regression
results in a basis that better matches the structure of the underlying system.

3.6 Related Work
This work extends predictive state learning algorithms for dynamical systems, which include
spectral algorithms for Kalman filters [20], Hidden Markov Models [65, 101], Predictive State
Representations (PSRs) [23, 25] and Weighted Automata[12]. One important advancement to
these algorithms is introducing kernel variants such as [104] and [28]. These methods allow for
modeling non-linear dynamics by transforming observations and predictive beliefs into higher
dimensional spaces where linear ridge regression is performed. However, by allowing regression
forms other than ridge regression, we can incorporate prior knowledge to learn compact or
regularized models, which is not directly offered by kernel extensions, as we demonstrate in
experiments.

One common aspect of predictive state learning algorithms is that they exploit the covariance
structure between future and past observation sequences to obtain an unbiased observable state
representation. Boots and Gordon [24] note the connection between the HSE-HMM and instru-
mental variables. We use this connection to build a general framework for dynamical system
learning where the state-space can be identified using arbitrary supervised learning methods.

Reducing dynamical systems learning to supervised learning dates back to auto-regressive
models [87], where the state of the system is assumed to be fully determined by the previous k
observations. Our aim is to use supervised learning methods to learn latent state models from
observation sequences. This bears similarity to Langford et al.’s sufficient posterior representation
(SPR) [76], which encodes the state by the sufficient statistics of the conditional distribution of
the next observation and represents system dynamics by three vector-valued functions that are
estimated using supervised learning approaches. While SPR allows all of these functions to be
non-linear, there are some advantages that distinguish our work. First, while SPR is limited to
1-step observable systems, our framework can seamlessly handle k-step observable systems by
choosing a large enough (or even unbounded) window size. Secondly, SPR involves a rather

55

complicated training procedure, involving multiple iterations of model refinement and model
averaging, whereas our framework only requires solving three regression problems in sequence.
Finally, the theoretical analysis of [76] only establishes the consistency of SPR learning assuming
that all regression steps are solved perfectly. Our work, on the other hand, establishes convergence
rates based on the performance of S1 regression.

This work can also be viewed as an extension to convex optimization based approach for
learning weighted automata by Balle et. al.[12], which first estimates a set of Hankel matrices and
then solves a least squares problem with trace norm regularization to estimate system matrices.
We go one step further by allowing an arbitrary model of the dependency between past and future
observations in place of Hankel matrices.

3.7 Conclusions
In this work we developed a general framework for dynamical system learning using supervised
learning methods. The proposed framework is based on two-stage regression: in the first stage we
use history features to train regression models that denoise future observation windows into state
estimates. In the second stage we use these state estimates to train a linear model that represents
system dynamics.

This framework encompasses and provides a unified view of some successful dynamical
system learning algorithms. We demonstrated the proposed framework in learning a Hidden
Markov Model, where we have shown that we can use non-linear regression to incorporate more
history features in identifying the latent state without an exponential increase in the number of
parameters.

As future work, we would like to apply this framework to more scenarios where we can
leverage additional techniques such as manifold embedding and transfer learning in stage 1
regression. We would also like to extend the framework to controlled processes.

56

3.A Proofs

3.A.1 Proof of Main Theorem
In this section we provide a proof for theorem 5. We provide finite sample analysis of the effects
of S1 regression, covariance estimation and regularization. The asymptotic statement becomes a
natural consequence.

We will make use of matrix Bernstein’s inequality stated below:
Lemma 7 (Matrix Bernstein’s Inequality [67]). Let A be a random square symmetric matrix, and
r > 0, v > 0 and k > 0 be such that, almost surely,

E[A] = 0, λmax[A] ≤ r,

λmax[E[A2]] ≤ v, tr(E[A2]) ≤ k.

If A1, A2, . . . , AN are independent copies of A, then for any t > 0,

Pr

[
λmax

[
1

N

N∑
t=1

At

]
>

√
2vt

N
+

rt

3N

]
≤ kt

v
(et − t− 1)−1. (3.18)

If t ≥ 2.6, then t(et − t− 1)−1 ≤ e−t/2.

Recall that, assuming xtest ∈ R(Cx̄), we have three sources of error: first, the error in S1
regression causes the input to S2 regression procedure (x̂t, ŷt) to be a perturbed version of the
true (x̄t, ȳt); second, the covariance operators are estimated from a finite sample of size N ; and
third, there is the effect of regularization. In the proof, we characterize the effect of each source
of error. To do so, we define the following intermediate quantities:

Wλ = Cȳx̄ (Cx̄ + λI)−1 (3.19)

W̄λ = Ĉȳx̄
(
Ĉx̄ + λI

)−1

, (3.20)

where

Ĉȳx̄ ≡
1

N

N∑
t=1

ȳt ⊗ x̄t

and Ĉx̄ is defined similarly. Basically, Wλ captures only the effect of regularization and W̄λ

captures in addition the effect of finite sample estimate of the covariance. W̄λ is the result of S2
regression if x̄ and ȳ were perfectly recovered by S1 regression. It is important to note that Ĉx̄ȳ
and Ĉx̄ are not observable quantities since they depend on the true expectations x̄ and ȳ. We will
use λxi and λyi to denote the ith eigenvalue of Cx̄ and Cȳ respectively in descending order and we
will use ‖.‖ to denote the operator norm.

Before we prove the main theorem, we define the quantities ζ x̄x̄δ,N and ζ x̄ȳδ,N which we use to
bound the effect of covariance estimation from finite data, as stated in the following lemma:

57

Lemma 8 (Covariance error bound). Let N be a positive integer and δ ∈ (0, 1) and assume that
‖x̄‖, ‖ȳ‖ < c <∞ almost surely. Let ζ x̄ȳδ,N be defined as:

ζ x̄ȳδ,N =

√
2vt

N
+

rt

3N
, (3.21)

where

t = max(2.6, 2 log(4k/δv))

r = c2 + ‖Cȳx̄‖
v = c2 max(λy1, λx1) + ‖Cx̄ȳ‖2

k = c2(tr(Cx̄) + tr(Cȳ))

In addition, let ζ x̄x̄δ,N be defined as:

ζ x̄x̄δ,N =

√
2v′t′

N
+
r′t′

3N
, (3.22)

where

t′ = max(2.6, 2 log(4k′/δv′))

r′ = c2 + λx1

v′ = c2λx1 + λ2
x1

k′ = c2tr(Cx̄)

and define ζ ȳȳδ,N similarly for Cȳ.
It follows that, with probability at least 1− δ/2,

‖Ĉȳx̄ − Cȳx̄‖ < ζ x̄ȳδ,N

‖Ĉx̄ − Cx̄‖ < ζ x̄x̄δ,N

‖Ĉȳ − Cȳ‖ < ζ ȳȳδ,N

Proof. We show that each statement holds with probability at least 1 − δ/6. The claim then
follows directly from the union bound. We start with ζ x̄x̄δ,N . By setting At = x̄t ⊗ x̄t − Cx̄ then we
would like to obtain a high probability bound on ‖ 1

N

∑N
t=1At‖. Lemma 7 shows that, in order to

satisfy the bound with probability at least 1− δ/6, it suffices to set t to max(2.6, 2k log(6/δv)).
So, it remains to find suitable values for r, v and k:

λmax[A] ≤ ‖x̄‖2 + ‖Cx̄‖ ≤ c2 + λx1 = r′

λmax[E[A2]] = λmax[E[‖x̄‖2(x̄⊗ x̄)− (x̄⊗ x̄)Cx̄ − Cx̄(x̄⊗ x̄) + Cx̄2]

= λmax[E[‖x̄‖2(x̄⊗ x̄)− Cx̄2]] ≤ c2λx1 + λ2
x1 = v′

tr[E[A2]] = tr[E[‖x̄‖2(x̄⊗ x̄)− Cx̄2]] ≤ tr[E[‖x̄‖2(x̄⊗ x̄)]] ≤ c2tr(Cx̄) = k′

58

The case of ζ ȳȳδ,N can be proven similarly. Now moving to ζ x̄ȳδ,N , we have Bt = ȳt ⊗ x̄t − Cȳx̄.
Since Bt is not square, we use the Hermitian dilation H (B) defined as follows[110]:

A = H (B) =

[
0 B
B∗ 0

]
Note that

λmax[A] = ‖B‖, A2 =

[
BB∗ 0

0 B∗B

]
therefore suffices to bound ‖ 1

N

∑N
t=1 At‖ using an argument similar to that used in ζ x̄x̄δ,N case.

To prove theorem 5, we write

‖Ŵλxtest −Wxtest‖Y ≤ ‖(Ŵλ − W̄λ)x̄test‖Y
+ ‖(W̄λ −Wλ)x̄test‖Y
+ ‖(Wλ −W)x̄test‖Y (3.23)

We will now present bounds on each term. We consider the case where x̄test ∈ R(Cx̄). Extension
toR(Cx̄) is a result of the assumed boundedness ofW , which implies the boundedness of Ŵλ−W .
Lemma 9 (Error due to S1 Regression). Assume that ‖x̄‖, ‖ȳ‖ < c <∞ almost surely, and let
ηδ,N be as defined in Definition 3. The following holds with probability at least 1− δ

‖Ŵλ − W̄λ‖ ≤
√
λy1 + ζ ȳȳδ,N

(2cηδ,N + ηδ,N
2)

λ
3
2

+
(2cηδ,N + ηδ,N

2)

λ

= O

ηδ,N
1

λ
+

√
1 + log(1/δ)√

N

λ
3
2

 .

The asymptotic statement assumes ηδ,N → 0 as N →∞.

Proof. Write Ĉx̂ = Ĉx̄+∆x and Ĉŷx̂ = Ĉȳx̄+∆yx. We know that, with probability at least 1−δ/2,
the following is satisfied for all unit vectors φx ∈ X and φy ∈ Y

〈φy,∆yxφx〉Y =
1

N

N∑
t=1

〈φy, ŷt〉Y〈φx, x̂t〉X

− 〈φy, ŷt〉Y〈φx, x̄t〉X
+ 〈φy, ŷt〉Y〈φx, x̄t〉X − 〈φy, ȳt〉Y〈φx, x̄t〉X
=

1

N

∑
t

〈φy, ȳt + (ŷt − ȳt)〉Y〈φx, x̂t − x̄t〉X

+ 〈φy, ŷt − ȳt〉Y〈φx, x̄t〉X
≤ 2cηδ,N + η2

δ,N

59

Therefore,

‖∆yx‖ = sup
‖φx‖X≤1,‖φy‖Y≤1

〈φy,∆yxφx〉Y ≤ 2cηδ,N + η2
δ,N ,

and similarly

‖∆x‖ ≤ 2cηδ,N + ηδ,N
2,

with probability 1− δ/2. We can write

Ŵλ − W̄λ = Ĉȳx̄
(

(Ĉx̄ + ∆x + λI)−1 − (Ĉx̄ + λI)−1
)

+ ∆yx(Ĉx̄ + ∆x + λI)−1

Using the fact that B−1 − A−1 = B−1(A−B)A−1 for invertible operators A and B we get

Ŵλ − W̄λ = −Ĉȳx̄(Ĉx̄ + λI)−1∆x(Ĉx̄ + ∆x + λI)−1

+ ∆yx(Ĉx̄ + ∆x + λI)−1

we then use the decomposition Ĉȳx̄ = Ĉ
1
2
ȳ V Ĉ

1
2
x̄ , where V is a correlation operator satisfying

‖V ‖ ≤ 1. This gives

Ŵλ − W̄λ =

− Ĉ
1
2
ȳ V Ĉ

1
2
x̄ (Ĉx̄ + λI)−

1
2 (Ĉx̄ + λI)−

1
2 ∆x(Ĉx̄ + ∆x + λI)−1

+ ∆yx(Ĉx̄ + ∆x + λI)−1

Noting that ‖Ĉ
1
2
x̄ (Ĉx̄ + λI)−

1
2‖ ≤ 1, the rest of the proof follows from triangular inequality and

the fact that ‖AB‖ ≤ ‖A‖‖B‖

Lemma 10 (Error due to Covariance). Assuming that ‖x̄‖X , ‖ȳ‖Y < c < ∞ almost surely, the
following holds with probability at least 1− δ

2

‖W̄λ −Wλ‖ ≤
√
λy1ζ

x̄x̄
δ,Nλ

− 3
2 +

ζ x̄ȳδ,N
λ

, where ζ x̄x̄δ,N and ζ x̄ȳδ,N are as defined in Lemma 8.

Proof. Write Ĉx̄ = Cx̄ + ∆x and Ĉȳx̄ = Cȳx̄ + ∆yx. Then we get

W̄λ −Wλ = Cȳx̄
(
(Cx̄ + ∆x + λI)−1 − (Cx̄ + λI)−1

)
+ ∆yx(Cx̄ + ∆x + λI)−1

Using the fact that B−1 − A−1 = B−1(A−B)A−1 for invertible operators A and B we get

W̄λ −Wλ = −Cȳx̄(Cx̄ + λI)−1∆x(Cx̄ + ∆x + λI)−1 + ∆yx(Cx̄ + ∆x + λI)−1

60

we then use the decomposition Cȳx̄ = Cȳ
1
2V Cx̄

1
2 , where V is a correlation operator satisfying

‖V ‖ ≤ 1. This gives

W̄λ −Wλ =

− Cȳ
1
2V Cx̄

1
2 (Cx̄ + λI)−

1
2 (Cx̄ + λI)−

1
2

.∆x(Cx̄ + ∆x + λI)−1

+ ∆yx(Cx̄ + ∆x + λI)−1

Noting that ‖Cx̄
1
2 (Cx̄ + λI)−

1
2‖ ≤ 1, the rest of the proof follows from triangular inequality and

the fact that ‖AB‖ ≤ ‖A‖‖B‖
Lemma 11 (Error due to Regularization on inputs within R(Cx̄)). For any x ∈ R(Cx̄) s.t.
‖x‖X ≤ 1 and ‖Cx̄−

1
2x‖X ≤ C. The following holds

‖(Wλ −W)x‖Y ≤
1

2

√
λ‖W‖HSC

Proof. Since x ∈ R(Cx̄) ⊆ R(Cx̄
1
2), we can write x = Cx̄

1
2v for some v ∈ X s.t. ‖v‖X ≤ C.

Then

(Wλ −W)x = Cȳx̄((Cx̄ + λI)−1 − Cx̄−1)Cx̄
1
2v

Let D = Cȳx̄((Cx̄ + λI)−1 − Cx̄−1)Cx̄
1
2 . We will bound the Hilbert-Schmidt norm of D. Let

ψxi ∈ X , ψyi ∈ Y denote the eigenvector corresponding to λxi and λyi respectively. Define
sij = |〈ψyj, Cx̄ȳψxi〉Y |. Then we have

|〈ψyj, Dψxi〉Y | =
∣∣∣∣∣〈ψyj, Cȳx̄ λ

(λxi + λ)
√
λxi

ψxi〉
Y

∣∣∣∣∣
=

λsij

(λxi + λ)
√
λxi

=
sij√
λxi

1
1

λ/λxi
+ 1

≤ sij√
λxi

.
1

2

√
λ

λxi
=

1

2

√
λ
sij
λxi

=
1

2

√
λ|〈ψyj,Wψxi〉Y |,

where the inequality follows from the arithmetic-geometric-harmonic mean inequality. This gives
the following bound

‖D‖2
HS =

∑
i,j

〈ψyj, Dψxi〉2Y ≤
1

2

√
λ‖W‖2

HS

and hence

‖(Wλ −W)x‖Y ≤ ‖D‖‖v‖X ≤ ‖D‖HS‖v‖X
≤ 1

2

√
λ‖W‖HSC

61

Note that the additional assumption that ‖Cx̄−
1
2x‖X ≤ C is not required to obtain an asymptotic

O(
√
λ) rate for a given x. This assumption, however, allows us to uniformly bound the constant.

Theorem 5 is simply the result of plugging the bounds in Lemma 9, 10, and 11 into (3.23) and
using the union bound.

3.A.2 Proof of Lemma 6

for t = 1: Let I be an index set over training instances such that

Q̂test
1 =

1

|I|
∑
i∈I

Q̂i

Then

‖Q̂test
1 − Q̃test

1 ‖X =
1

|I|
∑
i∈I

‖Q̂i − Q̃i‖X ≤
1

|I|
∑
i∈I

‖Q̂i −Qi‖X ≤ ηδ,N

for t > 1: Let A denote a projection operator onR⊥(Cȳ)

‖Q̂test
t+1 − Q̃test

t+1‖X ≤ L‖P̂ test
t − P̃ test

t ‖Y ≤ L‖AŴλQ̂
test
t ‖Y

≤ L

∥∥∥∥∥∥ 1

N

(
N∑
i=1

AP̂i ⊗ Q̂i

)(
1

N

N∑
i=1

Q̂i ⊗ Q̂i + λI

)−1
∥∥∥∥∥∥
∥∥∥Q̂test

t

∥∥∥
X

≤ L

∥∥∥∥∥ 1

N

N∑
i=1

AP̂i ⊗ AP̂i
∥∥∥∥∥

1
2

1√
λ
‖Q̂test

t ‖X ≤ L
ηδ,N√
λ
‖Q̂test

t ‖X ,

where the second to last inequality follows from the decomposition similar to ΣY X = Σ
1
2
Y V Σ

1
2
X ,

and the last inequality follows from the fact that ‖AP̂i‖Y ≤ ‖P̂i − P̄i‖Y .

3.B Examples of S1 Regression Bounds

The following propositions provide concrete examples of S1 regression bounds ηδ,N for practical
regression models.
Proposition 12. Assume X ≡ Rdx ,Rdy ,Rdz for some dx, dy, dz <∞ and that x̄ and ȳ are linear
vector functions of z where the parameters are estimated using ordinary least squares. Assume
that ‖x̄‖X , ‖ȳ‖Y < c <∞ almost surely. Let ηδ,N be as defined in Definition 3. Then

ηδ,N = O

(√
dz
N

log((dx + dy)/δ)

)

62

Proof. (sketch) This is based on results that bound parameter estimation error in linear regression
with univariate response (e.g. [66]). Note that if x̄ti = U>i zt for some Ui ∈ Z , then a bound on
the error norm ‖Ûi − Ui‖ implies a uniform bound of the same rate on x̂i − x̄. The probability of
exceeding the bound is scaled by 1/(dx + dy) to correct for multiple regressions.

Variants of Proposition 12 can also be developed using bounds on non-linear regression models
(e.g., generalized linear models).

The next proposition addresses a scenario where X and Y are infinite dimensional.
Proposition 13. Assume that x and y are kernel evaluation functionals, x̄ and ȳ are linear vector
functions of z where the linear operator is estimated using conditional mean embedding [105]
with regularization parameter λ0 > 0 and that ‖x̄‖X , ‖ȳ‖Y < c <∞ almost surely. Let ηδ,N be
as defined in Definition 3. It follows that

ηδ,N = O

√λ0 +

√
log(N/δ)

λ0N


Proof. (sketch) This bound is based on [105], which gives a bound on the error in estimating the
conditional mean embedding. The error probability is adjusted by δ/4N to accommodate the
requirement that the bound holds for all training data.

63

64

Chapter 4

Method of Moments Learning for
Controlled Systems

We now extend the framework introduced in Chapter 3 to controlled systems.

4.1 Introduction

Controlled dynamical systems, where an agent can influence an environment through actions and
receive partial observations, emerge in numerous applications in robotics and automatic control.
Modeling and learning these systems from data is of great importance in these fields.

Unfortunately, the formulation in Chapter 3 is limited to uncontrolled systems. We are now
interested in controlled systems, where the user can affect the system through actions. This gives
rise to a key issue: the policy that determines the actions can change at test time. For this reason
the representation of the predictive state must be independent of the training policy and therefore
must encode a conditional distribution of future observations given future actions. To adopt
such a representation into a practical method that retains the benefits of the two-stage regression
formulation, there are a number of challenges that need to be tackled.

First, A key assumption of two-stage regression for uncontrolled systems is that future
observations provide an unbiased estimate of the predictive state, which is not true when the state
is a conditional distributions. This means we need to define a new state representation which is
valid for conditional distributions. Second, if we modify the state representation and introduce an
action policy then the theoretical analysis from Chapter 3 is no longer valid. Third, because they
are based on method of moments, two stage regression models are statistically inefficient. Having
the ability to refine the model using local optimization can lead to significant gains in predictive
performance.

4.2 Formulation

We define a class of models that extends predictive state models (PSMs) to controlled systems.
We first introduce some notation: We denote by Pr[x | do(Y = y)] the probability of x given that

65

Method Actions Continuous Non-
linear

Partially
observ-

able

Scalable Consistent

Non-linear ARX X X X × X X
N4SID for Kalman Filter X X × X X X

Non-convex optimization (e.g. EM) X X X X X ×
Gram-Matrix (e.g. HSE-PSR) X X X X × X

Spectral PSR/POMDP X × X X X X
Reduction to Supervised Learning × X X X X X

RFF-PSR X X X X X X

Table 4.1: Comparison between proposed RFF-PSR and existing system identification methods
in terms of the type of systems they can model as well as their computational efficiency and
statistical consistency. The table should be interpreted as follows: for each method there exists an
instantiation that simultaneously satisfies all properties marked with X but there is no instantiation
that is guaranteed to satisfy the properties marked with ×. A method is scalable if computational
and memory costs scale at most linearly with the number of training examples. For RFF-based
methods, consistency is up to an approximation error that is controllable by the number of
features [92].

we intervene by setting Y to y. This is different from Pr[x | Y = y] which denotes conditioning
on observing Y = y; in the former case, we ignore all effects on Y by other variables. We denote
by VA|B;c the linear operator that satisfies

E[A|B = b, C = c] = VA|B;cb ∀b, c

In other words for each c, VA|B;c is a conditional expectation operator from B to A (In the discrete
case, VA|B;c is just a conditional probability table).

When dealing with multiple variables, we will use tensor notation e.g. VA,B|C,D is a 4-mode
tensor. We will use

VA,B|C,D ×C c×D d

to denote multiplying VA,B|C,D by c along the mode corresponding to C and by d along the mode
corresponding to D. If c is a matrix then the multiplication is performed along the first dimension
of c.

We will also use ‖ · ‖F to denote Frobenius norm, a⊗ b to denote Kronecker product of two
vectors and A ? B to denote the Khatri-Rao product of two matrices (columnwise Kronecker
product).

4.2.1 Model Definition

We will consider k-observable systems, where the posterior belief state given all previous observa-
tions and actions is uniquely identified by the conditional distribution Pr[ot:t+k−1 | do(at:t+k−1)].

66

we denote by ψot , ψ
a
t , ξot and ξat sufficient features of future observations ot:t+k−1, future

actions at:t+k−1, extended future observations ot:t+k and extended future actions at:t+k at time t
respectively.

We also use h∞t ≡ o1:t−1, a1:t−1 to denote the entire history of observations and actions at
time t and use ht ≡ h(o1:t−1, a1:t−1) to denote finite features of previous observations and actions
before time t1.

We are now ready to define the class of systems we are interested in.
Definition 14. A dynamical system is said to conform to a predictive state controlled model
(PSCM) if it satisfies the following properties:
• For each time t, there exists a linear operator Qt = Vψot |do(ψat);h∞t

(referred to as predictive
state) such that E[ψot | do(at:t+k−1), h∞t] = Qtψ

a
t

• For each time t, there exists a linear operator Pt = Vξot |do(ξat);h∞t
(referred to as extended

state) such that E[ξot | do(at:t+k), h
∞
t] = Ptξ

a
t

• There exists a linear map Wsys (referred to as system parameter map), such that, for each
time t,

Pt = Wsys(Qt) (4.1)

• There exists a filtering function ffilter such that, for each time t, Qt+1 = ffilter(Pt, ot, at).
ffilter is typically non-linear but known in advance.

It follows that a PSCM is specified by the tuple (Q0,Wsys, ffilter), where Q0 denotes the initial
belief state.

There are a number of aspects of PSCMs that warrant discussion. First, unlike latent state
models, the state Qt is represented by a conditional distribution of observed quantities. Second,
Qt is a deterministic function of the history h∞t . It represents the belief state that one should
maintain after observing the history to make optimal predictions. Third, a PSCM specifies a
recursive filter where given an action at and an observation ot, the state update equation is given
by

Qt+1 = ffilter(Wsys(Qt), ot, at) (4.2)

This construction allows us to learn a linear map Wsys and use it to build models with non-linear
state updates, including IO-HMMs citepiohmm, Kalman filters with inputs [112] and HSE-
PSRs [29] 2. As we see in Section 4.3, avoiding latent variables and having a linear Wsys enable
the formulation of a consistent learning algorithm.

4.3 Learning A Predictive State Controlled Model
We assume that the extended features ξot and ξat are chosen such that ffilter is known. The
parameters to learn are thus Wsys and Q0. We also assume that a fixed blind (open-loop) policy is

1Often but not always, ht is a computed from fixed-size window of previous observations and actions ending at
t− 1.

2We discuss HSE-PSRs in more detail in Section 4.4. We defer a more detailed discussion of Kalman filters and
IO-HMMs to the supplementary material.

67

used to collect training data and so, we can treat causal conditioning on action do(at) as ordinary
conditioning on at. 3 It is possible, however, that a different (possibly non-blind) policy is used at
test time.

To learn model parameters, we will adapt the two-stage regression method of Chapter 3.
Let Q̄t ≡ E[Qt | ht] (resp. P̄t ≡ E[Pt | ht]) be the expected state (resp. expected extended
state) conditioned on finite history features ht. For brevity, we might refer to Q̄t simply as the
(predictive) state when the distinction from Qt is clear. It follows from linearity of expectation
that E[ψot | ψat , ht] = Q̄tψ

a
t and E[ξot | ξat , ht] = P̄tξ

a
t ; and it follows from the linearity of Wsys

that

P̄t = Wsys(Q̄t)

So, we train regression models (referred to S1 regression models) to estimate Q̄t and P̄t
from ht. Then, we train another (S2) regression model to estimate Wsys from Q̄t and P̄t. Being
conditional distributions, estimating Q̄t and P̄t from ht is more subtle compared to uncontrolled
systems, since we cannot use observation features as estimates of the state. We describe two
methods to construct an S1 regression model to estimate Q̄t. The same methods apply to P̄t. As
we show below, instances of both methods exist in the literature of system identification.

4.3.1 Joint S1 Approach

Let ψoat denote a sufficient statistic of the joint observation/action distribution Pr(ψot , ψ
a
t | ht).

This distribution is fixed for each value of ht since we assume a fixed model and policy. We use
an S1 regression model to learn the map f : ht 7→ E[ψaot | h] by solving the optimization problem

arg min
f∈F

T∑
t=1

l(f(ht), ψ
oa
t) +R(f)

for some suitable Bregman divergence loss l (e.g. square loss) and regularization R.
Once we learn f , we can estimate Q̄t by first estimating the joint distribution Pr(ψot , ψ

a
t | ht)

and then deriving the conditional operator Q̄t. By the continuous mapping theorem, a consistent
estimator of f results in a consistent estimator of Q̄t. An example of applying this method is using
kernel Bayes rule [50] to estimate states in HSE-PSR [29].

4.3.2 Conditional S1 Approach

In this method, instead of estimating the joint distribution represented by E[ψoat | ht], we directly
estimate the conditional distribution Q̄t. We exploit the fact that each training example ψot is an
unbiased estimate of Q̄tψ

a
t = E[ψot | ψat , ht]. We can formulate the S1 regression problem as

3One way to deal with non-blind training policies is to assign importance weight to training examples to correct
the bias resulting from non-blindness [25, 30]. This, however, requires knowledge of the data collection policy and
can result in a high variance of the estimated parameters. We defer the case of unknown non-blind policy to future
work.

68

learning a function f : ht 7→ Q̄t that best matches the training examples. i.e. we solve the problem

arg min
f∈F

T∑
t=1

l(f(ht)ψ
a
t , ψ

o
t) +R(f) (4.3)

for some suitable Bregman divergence loss l (e.g. square loss) and regularizationR. An example of
applying this method is the oblique projection method used in spectral system identification [112].
It is worth emphasizing that both the joint and conditional S1 approaches assume the state to be a
conditional distribution. They only differ in the way to estimate that distribution.

4.3.3 S2 Regression and Learning Algorithm
Given S1 regression models to estimate Q̄t and P̄t, learning a controlled dynamical system
proceeds as shown in Algorithm 1.

Algorithm 1 Two-stage regression for predictive state controlled models
Input: ψon,t, ψan,t, ξon,t, ξan,t for 1 ≤ n ≤ N , 1 ≤ t ≤ Tn (N is the number of trajectories, Tn is
the length of nth trajectory)
Output: Dynamics matrix Ŵsys and initial state Q̂0

Use S1A regression to estimate Q̄n,t.
Use S1B regression to estimate P̄n,t.
Let Ŵsys be the (regularized) least squares solution to the system of equations

P̄n,t ≈ Wsys(Q̄n,t) ∀n, t

if N is sufficiently large then
Let Q̄0 be the (regularized) least square solution to the system of equations ψon,1 ≈

Q0ψ
a
n,1 ∀n

else
Set Q̂0 to the average of Q̄n,t

end if

4.3.4 Theoretical Guarantees
It is worth noting that Algorithm 1 is still an instance of the two stage regression framework
described in Chapter 3 and hence retains its theoretical guarantees: mainly that we can bound the
error in estimating the dynamics matrix Wsys in terms of S1 regression error bounds, assuming
that we collect examples from the stationary distribution of some blind policy. 4

A blind policy provides sufficient exploration if it has a stationary distribution that (1) visits a
sufficient history set such that the set of equations E[Pt|ht] = Wsys(E[Qt|ht]) are sufficient for
estimating Wsys ,and (2) provides training data to estimate E[Qt|ht] with increasing accuracy.

4The theoretical guarantee of Algorithm 1 applies to any blind policy. However, to obtain low S1 regression
errors, a good exploration policy is needed

69

Theorem 15. Let π be a blind data collection policy with a stationary distribution. If history, ac-
tion and observation features are bounded, π provides sufficient exploration, and ridge regression
is used with λ1 and λ2 regularization parameter for S1 and S2 regression respectively, then for all
valid states Q the following is satisfied with probability at least 1− δ.

‖(Ŵsys −Wsys)(Q)‖ ≤ O

ηδ,N
 1

λ2

+

√
1 +

√
log(1/δ)

N

λ
3
2
2




+O

(
log(1/δ)√

N

(
1

λ2

+
1

λ
3
2
2

))
+O

(√
λ2

)
,

where

ηδ,N = Op

(
1/
√
N + λ1

λ1

)

We provide proofs and discussion of sufficient exploration condition in the supplementary material.

4.4 Connections with HSE-PSRs
Having a general framework for learning controlled dynamical systems, we now focus on HSE-
PSR [29] as a non-parametric instance of that framework using Hilbert space embedding of
distributions [105]. We describe HSE-PSR learning as a two-stage regression method.

4.4.1 HSE-PSR as a predictive state controlled model
HSE-PSR is a generalization of IO-HMM that has proven to be successful in practice [21, 29].
It is suitable for high dimensional and continuous observations and/or actions. HSE-PSR uses
kernel feature maps as sufficient statistics of observations and actions. We define four kernels
kO, kA, ko, ka over future observation features, future action features, individual observations and
individual actions respectively.

We can then define ψot = φO(ot:t+k−1) and similarly ψat = φA(at:t+k−1). We will also use φot
and φat as shorthands for φo(ot) and φa(at). The extended future is then defined as ξot = ψot ⊗ φot
and ξat = ψat ⊗ φat

Under the assumption of a blind learning policy, the operators Qt and Pt are defined to be

Qt = Vψot |ψat ;h∞t
(4.4)

Pt = (P ξ
t , P

o
t) = (Vψot+1⊗φot |ψat+1⊗φat ;h∞t

, Vφot⊗φot |φat ;h∞t
) (4.5)

70

Therefore, Qt specifies the state of the system as a conditional distribution of future observa-
tions given future actions while Pt is a tuple of two operators that allow us to condition on the
pair (at, ot) to obtain Qt+1. In more detail, filtering in an HSE-PSR is carried out as follows
• From ot and at, obtain φot and φat .
• Compute Cotot|h∞t ,at = Vφot⊗φot |φat ;h∞t

φat
• Multiply by inverse observation covariance to change “predicting φot” into “conditioning on
φot”:

Vψot+1|ψat+1,φ
o
t ,φ

a
t ;h∞t

= Vψot+1⊗φot |ψat+1,φ
a
t ;h∞t
×φot (Cotot|h∞t ,at + λI)−1 (4.6)

• Condition on φot and φat to obtain shifted state

Qt+1 ≡ Vψot+1|ψat+1;φot ,φ
a
t ,h
∞
t

= Vψot+1|ψat+1,φ
o
t ,φ

a
t ;h∞t
×φot φot ×φat φat

Thus, in HSE-PSR, the parameter Wsys is composed of two linear maps; fo and fξ such that
P ξ
t = fξ(Qt) and P o

t = fo(Qt). In the following section we show how to estimate Q̄t and P̄t from
data. Estimation of fξ, fo can then be carried out using kernel regression.

Learning and filtering in an HSE-PSR can be implicitly carried out in RKHS using a Gram
matrix formulation. We will describe learning in terms of RKHS elements and refer the reader
to [29] for details on the Gram matrix formulation.

4.4.2 S1 Regression for HSE-PSR
As discussed in section 4.3 we can use a joint or conditional approach for S1 regression. We now
demonstrate how these two approaches apply to HSE-PSR.

Joint S1 Regression for HSE-PSR

This is the method used in [29]. In this approach we exploit the fact that

Q̄t = Wψot |ψat ;ht = Cψotψat |ht(Cψat ψat |ht + λI)−1

So, we learn two linear maps Toa and Ta such that Toa(ht) ≈ Cψotψat |ht and Ta(ht) ≈ Cψat ψat |ht .
The training examples for Toa and Ta consist of pairs (ht, ψ

o
t ⊗ψat) and (ht, ψ

a
t ⊗ψat) respectively.

Once we learn this map, we can estimate Cψotψat |ht and Cψat ψat |ht and consequently estimate Q̄t.

Conditional S1 Regression for HSE-PSR

It is also possible to apply the conditional S1 regression formulation in Section 4.3.2. Specifically,
let F be the set of 3-mode tensors, with modes corresponding to ψot , ψ

o
t and ht. We estimate a

tensor T ∗ by optimizing

T ∗ = arg min
T∈F
‖(T ×ht ht ×ψta ψta)− ψto‖2 + λ‖T‖2

HS,

71

where ‖.‖2
HS is the Hilbert-Schmidt norm, which translates to Frobenius norm in finite-dimensional

Euclidan spaces. We can then use

Q̄t = T ∗ ×ht ht

For both regression approaches, the same procedure can be used to estimate the extended state
P̄t by replacing features ψot and ψat with their extended counterparts ξot and ξat .

4.5 Experiments

4.5.1 Synthetic Data
We also test the proposed model on the benchmark synthetic non-linear system used by Boots
et al. [29]:

ẋ1(t) = x2(t)− 0.1 cos(x1(t))(5x1(t)− 4x3
1(t) + x5

1(t))

− 0.5 cos(x1(t))a(t),

ẋ2(t) = −65x1(t) + 50x3
1(t)− 15x5

1(t)− x2(t)− 100a(t),

o(t) = x1(t)

The input a is generated as zero-order hold white noise, uniformly distributed between -0.5 and
0.5. We collected 20 trajectories of 100 observations and actions at 20Hz and we split them into
10 training, 5 validation and 5 test trajectories. The prediction target for this experiment is o(t).

4.5.2 Predicting windshield view
In this experiment we used TORCS car simulation server, which outputs 64x64 images (see Figure
4.1). The observations are produced by converting the images to greyscale and projecting them to
200 dimensions via PCA. The car is controlled by a built-in controller that controls acceleration
while the external actions control steering. We collected 50 trajectories by applying a sine wave
with random starting phase to the steering control and letting the simulator run until the car gets
of of track. We used 40 trajectories for training, 5 for validation and 5 for testing. The prediction
target is the projected image.

4.5.3 Predicting the nose position of a simulated swimmer robot
We consider the 3-link simulated swimmer robot from the open-source package RLPy [52]. The
2-d action consists of torques applied on the two joints of the links. The observation model returns
the angles of the joints and the position of the nose (in body coordinates). The measurements
are contaminated with Gaussian noise whose standard deviation is 5% of the true signal standard
deviation. To collect the data, we use an open-loop policy that selects actions uniformly at random.
We collected 25 trajectories of length 100 each and use 24 for training and 1 for validation. We
generate test trajectories using a mixed policy: with probability pblind, we sample a uniformly
random action, while with probability 1 − pblind, we sample an action from a pre-specified

72

deterministic policy that seeks a goal point. We generate two sets of 10 test trajectories each, one
with pblind = 0.8 and another with pblind = 0.2. The prediction target is the position of the nose.

Figure 4.1: An example of windshield view output by TORCS.

4.5.4 Tested Methods and Evaluation Procedure

We tested three different initializations of RFF-PSR (with RBF kernel): random initialization,
two-stage regression with joint S1, and two-stage regression with conditional S1 (Section 4.4.2).
For each initialization, we tested the model before and after BPTT. For BPTT we used a decreasing
step size: the step size is reduced by half if validation error increases. Early stopping occurs if the
step size becomes too small (10−5) or the relative change in validation is insignificant (10−3). We
also test the following baselines.

HSE-PSR: We implemented the Gram matrix formulation of HSE-PSR as described in [29],
learned using a combination of two-stage regression and BPTT.

N4SID: We used MATLAB’s implementation of subspace identification of linear dynamical
systems.

Non-linear Auto Regression with Exogenous Inputs (RFF-ARX): We implemented a ver-
sion of auto regression where the predictor variable is the RFF representation of future actions
together with a finite history of previous observations and actions, and the target variable is future
observations.

Models were trained with a future length of 10 a history of 20. For RFF-PSR and RFF-ARX
we used 10000 RFF features and applied PCA to project features onto 20 dimensions. Kernel
bandwidths were set to the median of the distance between training points (median trick). For
evaluation, we perform filtering on the data and estimate the prediction target of the experiment at
test time t given the history o1:t−H , a1:t, where H is the prediction horizon. We report the mean
square error across all times t for each value of H ∈ {1, 2, . . . , 10}.

4.5.5 Results and Discussion

The results are shown in Figure 4.2 5. There are a number of important observations.
• In general, joint S1 training closely matches or outperforms conditional S1 training, both

with and without BPTT.
• BPTT significantly improves predictive performance for all initialization methods.

5 We omit the results for randomly initialized RFF-PSR as they were significantly worse. A comparison with
HSE-PSR on the swimmer dataset was not possible as it required prohibitively large memory.

73

Figure 4.2: Mean square error for 10-step prediction on (from left to right) synthetic model,
TORCS car simulator, swimming robot simulation with 80% blind test-policy, and swimming
robot with 20% blind test policy. Baselines with very high MSE are not shown for clarity. A
comparison with HSE-PSR on TORCS and swimmer datasets was not possible as it required
prohibitively large memory.

• BPTT, on its own, is not sufficient to produce a good model. The two stage regression
provides a good initialization of the BPTT procedure.

• Even without BPTT, RFF-PSR matches or outperforms HSE-PSR. This is remarkable since
RFF-PSR requires less computation and memory.

• In the synthetic experiment, non-refined RFF-PSR is giving poor mid-range predictions.
We conjecture that short-range predictions are easier as they largely depend on the previous
observations, and long-range predictions are also easier because they largely depend on the
sequence of actions. However, BPTT was able to produce a model that performs well at all
prediction horizons.

• Compared to other methods, RFF-PSR has better performance with non-blind test policies.

4.6 Other Examples of Predictive State Controlled Models
Here we discuss IO-HMM and Kalman filter with inputs, showing that they are instances of
PSCMs. We do this for each model by defining the predictive state, showing that it satisfies the
condition Pt = WQt and describing an S1 regression method.

4.6.1 IO-HMM
Let T be the transition tensor such that T ×s st ×a at = E[st+1|at, st] and O be the observation
tensor such that O ×s st ×a at = E[ot|at, st].

DefineOk to be the extended observation tensor whereOk×sst×aat:t+k−1 = E[ot:t+k−1|at:t+k−1, st]
As a shortcut, we will denote by Tij the product T ×s ei ×a ej .
For k = 1, we have O1 = O.
For k > 1 we can think of at:t+k−1 as the outer product at ⊗ at+1:t+k. So we can define Ok

such that

Ok ×s ei ×a (ej ⊗ el) = (Oij ⊗ (Ok−1 ×a el ×s Tij)) (4.7)

74

In words, starting from state ei and applying an action ej followed by a sequence of k − 1
actions denoted by indicator el. The expected indicator of the next k observations is the outer
product of expected observation ot (given by Oij) with the expected indicator of observations
ot+1:t+k−1 as predicted by Ok−1. Note that the two expectations being multiplied are conditionally
independent given the state ei and the action sequence.

Given the tensor Ok the predictive states Qt and Pt are defined to be

Qt = Ok ×s st
Pt = Ok+1 ×s st

Now to show that (4.1) holds, let Õk be a reshaping of Ok into a matrix such that

(Qt) = Õkst

It follows that

Pt = Ok+1 ×s st = Ok+1 ×s ((Õk)+(Qt)),

which is linear in Qt.

S1 Regression

Let st = s(h∞t) be the belief state at time t. Note that st is a deterministic function of the entire
history.

Under a fixed policy assumption, an indicator vector of the joint observation and action
assignment is an unbiased estimate of the joint probability table P[ψat , ξ

a
t | h∞t]. An S1 regression

model can be used to learn the mapping ht 7→ P[ψat , ξ
a
t | ht]. It is then easy to estimate the

conditional probability table Q̄t from the joint probability table P[ψat , ξ
a
t | ht].

We can also use the conditional S1 approach. By exploiting the fact that ψot is an unbiased
estimate of a single column of Qt corresponding to ψat . We can use (4.3) to learn a function
f : ht 7→ Q̄t that best matches the training examples.

4.6.2 Kalman Filter with inputs

The Kalman filter is given by

xt = Axt−1 +But + εt

ot = Cxt + νt

Given a belief state st ≡ E[xt−1|h∞t] we can write the predictive state as

E[ot:t+k−1 | st, at:t+k−1] = Γkst + Ukat:t+k−1,

75

where

Γk =


CA
CA2

...
CAk



Uk =


B 0 . . . 0
AB B 0 . . . 0
A2B AB B 0 . . . 0

...
Ak−1B . . . AB B



The extended predictive state have similar form with Γk and Uk replaced with Γk+1 and Uk+1.
Since U is fixed, keeping track of the state amounts to keeping track of Qt ≡ Γkst. It follows that

Pt = Γk+1st = Γk+1Γ+
kQt = WQt

If ht is a linear projection of h∞t (e.g. stacking of a finite window of observations and actions),
it can also be shown [112] that

E[Qt|ht] = Γ̃kht,

for some matrix Γ̃k.

S1 Regression

Let F be the set of functions that take the form

f(h)ψat = Γht +Bψat

The oblique projection method [112] uses linear regression to estimate Γ and B (essentially
solving (4.3)). Having a fixed B, the conditional operator is determined by Γht through an affine
transformation. Therefore we can use Q̄t = Γht.

4.7 Theoretical Analysis
LetH = {hi}Ni=1 be set of histories generated from an i.i.d distribution. 6 We use Q(h) to denote
E[Q|h].

The main theorem in [59] bounds parameter estimation error in terms of S1 regression error.
This implies that we need to analyze the properties of S1 regression to prove Theorem 15. We will
look at multiple scenarios where in each scenario we develop sufficient exploration conditions
and provide an S1 error bound for these conditions.

6The i.i.d property is achieved if we can restart the system or if the data collection policy induces an ergodic
process with a stationary distribution. In the latter case, we assume the examples are sufficiently spaced in time to
that allow the process to mix. However, in practice, we use all examples as this makes the error only smaller.

76

Definition 16 (Sufficient history set). Consider a PSCM that satisfies

Pt = Wsys(Qt)

A set of historiesH = {hi}Mi=1 is called a sufficient history set if it is sufficient to estimate Wsys

using E[Q|h(h)] and E[P |h(h)] for each h ∈ H.
Note that Wsys may not be unique, we care about estimating WsysQ for any valid Q. From the

above definition, it follows that a data collection policy provides sufficient exploration if it allows
for estimating E[Q|h(h)] and E[P |h(h)] for a sufficient history set with increasing accuracy.

4.7.1 Case 1: Discrete Observations and Actions
Consider a discrete system where H, A, A+, O, O+ are the set of all possible histories, future
action sequences, extended future action sequences, future observation sequences and extended
future observation sequences respectively.
Theorem 17. Assume a discrete system where the data collection policy induces an i.i.d dis-
tribution over histories. If the policy generates each possible extended future action sequence
starting from each possible history M times, then it generates an S2 training dataset of size

N = M |H||A+| with S1 error bound ηN,δ =

√
|H||A+||O+|

2M
log
(

2|H||A+||O+|
δ

)
Proof. The proof follows immediately from Heoffding’s inequality which bounds the error in
estimating the probability of an event by averaging.

Note that we need to estimate |H||A||O| probabilities to estimate Q and |H||A+||O+| proba-
bilities to estimate P . Therefore we divide δ by 2|H||A+||O+| to correct for multiple probability
estimates.

Remark 18. Assume the system to be 1-observable, where the history and future are of length
1. Then a consistent estimate of Q and P can be obtained by a consistent estimate of the joint
probability table P (ot−1:t+1, at−1:t+1).

4.7.2 Case 2: Continuous System
Definition 19 (Range and span of a policy). Let π be a data collection policy with a stationary
distribution. For a random vector Xt = f(h,O,A), the range of π on X is the support of the
stationary distribution of Xt induced by the policy π (i.e. the set of all possible values of Xt that
can be generated by the stationary distribution).

The span of π on X is the subspace spanned by the range of π on X .
When referring to the policy range or span, we may omit the variable name when it is clear in

the context.
Condition 20 (Action span for joint S1). Let π be data collection policy and letH be the range
of π on histories. The action span condition for joint S1 requires that the following are satisfied:

1. H is a sufficient history set.
2. For any h ∈ H, the conditional covariance ΣA|h is full rank.

77

Condition 21 (Action span for conditional S1). Let π be data collection policy and letH be the
range of π on histories. The action span condition for conditional S1 requires that the following
are satisfied:

1. H is a sufficient history set.
2. For any h ∈ H and any future action feature vector ψa, the quantity (ψh ⊗ ψa) is in policy

span.
Remark 22. Condition 20 implies Condition 21.
Assumption 23 (Bounded features). Assume that ‖ψh‖ < ch for all h ∈ H. Also, assume that
‖ψo‖ ≤ cO and ‖ψa‖ ≤ cA for any valid future observation sequence and action sequence
respectively.
Theorem 24. Let π be data collection policy and letH be the span of π on histories. If Assumption
23 and Condition 21 are satisfied and conditional S1 regression is used with a liner model as the
correct model, then π provides sufficient exploration and for all h ∈ H the following holds with
probability at least 1− δ

‖Q̂(h)−Q(h)‖ ≤ ch

(√
λmax(ΣO)

λmin(Σh⊗A)

(√
λmin(Σh⊗A)∆1 + λ

λmin(Σ̂h⊗A) + λ

)
+

∆2

λmin(Σ̂h⊗A) + λ

)
,

where

∆1 = 2chcA

√
log(2dhdA/δ)

N
+

2 log(2dhdA/δ)

3N

(
c2
hc

2
A√

λmin(Σh⊗A)
+ chcA

)

∆2 = 2cOchcA

√
log((dO + dhdA)/δ)

N
+

4cOchcA log((dO + dhdA)/δ)

3N

In the following section we provide a proof sketch for the asymptotic form in Theorem 15 for
joint S1.
Remark 25 (Conditioning). It is known that linear regression converges faster if the problem is
well-conditioned. In the two stage regression we need the good conditioning of both stages– that
is,
• The set of training histories result in a problem P̄t = WQ̄t that is well conditioned (S2

conditioning).
• The S1 regression problem is well conditioned.
The second requirement ensures that we converge fast to good estimates of Q̄t and P̄t. De-

signing exploration policies that result in well conditioned two stage regression problems is an
interesting direction for future work.

4.8 Conclusions
We proposed a framework to learn controlled dynamical systems using two-stage regression.
We then applied this framework to develop a scalable method for controlled non-linear system
identification: using RFF approximation of HSE-PSR together with BPTT to enhance the model

78

after a two-stage regression initialization. We have demonstrated promising results for the
proposed method in terms of predictive performance. As future work, we would like to go
beyond predicting observations, by using this framework for planning, imitation learning and
reinforcement learning.

79

4.A RFF-PSR Learning Algorithm
For ease of exposition, we assume that RFF features are computed prior to PCA. In our im-
plementation, we compute the RFF features on the fly while performing PCA to reduce the
required memory footprint. Here we use A ? B to denote the Khatri-Rao product of two matrices
(columnwise Kronecker product).

Algorithm 2 Learning Predictive State Representation with Random Fourier Features (LEARN-
RFF-PSR)

Input: Matrices Φh,Φo,Φa of history, observation and action features (each column corre-
sponds to a time step). Matrices Ψo,Ψa,Ψo′,Ψa′ of test observations, test actions, shifted test
observations and shifted test actions.
Output: S2 regression weights Ŵξ and Ŵo.
Subroutines:
SVD(X, p), returns the tuple (U,U>X), where U consists of top p singular vectors of X .

{Feature projection using PCA}
Uh,Φh ← SVD(Φh, p);
U o,Φo ← SVD(Φo, p); Ua,Φa ← SVD(Φa, p);
U o
ψ,Ψ

o ← SVD(Ψo, p); Ua
ψ,Ψ

a ← SVD(Ψa, p);
U o
ξ ,Ξ

o ← SVD((U o
ψ
>Ψo′) ? Φo, p);

Ua
ξ ,Ξ

a ← SVD(Φa ? (Ua
ψ
>Ψa′), p);

U oo,Φoo ← SVD(Φo ? Φo, p)

{S1 Regression and State Projection}
Estimate Q̄t, P̄

ξ
t , P̄ o

t for each time t using the one of the S1 methods in 4.4.2.
Reshape Q̄t, P̄t as column vectors for each t and then stack the resulting vectors in matrices Q,
Pξ and Po.
U q,Q← SVD(Q, p)
{S2 Regression}
Ŵξ ← arg minW∈Rp2×p ‖Pξ −WQ‖2 + λ2‖W‖2

F

Ŵo ← arg minW∈Rp2×p ‖Po −WQ‖2 + λ2‖W‖2
F

4.B Proofs of theorems
Lemma 26 (Matrix Bernstein [111]). Consider a finite sequence {Sk} of independent, random
matrices with common dimensions d1 × d2. Assume that

E[Sk] = 0 and ‖Sk‖ ≤ L for each index k

Introduce the random matrix

Z =
∑
k

Sk

80

Let v(Z) be the matrix variance statistic of the sum:

v(Z) = max{‖E(ZZ>),E(Z>Z)‖}

Then

Pr(‖Z‖ ≥ t) ≤ (d1 + d2) exp

(−t2/2
v(Z) + Lt/3

)

Corollary 27 (Error in empirical cross-covariance). With probability at least 1− δ

‖Σ̂Y X − ΣY X‖ ≤
√

2 log((dX + dY)/δ)v

N
+

2 log((dX + dY)/δ)L

3N
,

where

L = cycx + ‖ΣY X‖ ≤ 2cycx

v = max(c2
y‖ΣX‖, c2

x‖ΣY ‖) + ‖ΣY X‖2 ≤ 2c2
yc

2
x

Proof. Define Sk = ykx
>
k − ΣY X , it follows that

E[Sk] = 0

‖Sk‖ = ‖ykx>k − ΣY X‖ ≤ ‖yk‖‖xk‖+ ‖ΣY X‖ ≤ cycx + ‖ΣY X‖

‖E[ZZ>]‖ =

∥∥∥∥∥∑
i,j

(E[yix
>
i xjy

>
j]− ΣY XΣXY)

∥∥∥∥∥
=

∥∥∥∥∥∑
i

(E[‖xi‖2yiy
>
i]− ΣY XΣXY) +

∑
i,j 6=i

(E[yix
>
i]E[xjy

>
j]− ΣY XΣXY)

∥∥∥∥∥
≤ N(c2

x‖ΣY ‖+ ‖ΣY X‖2)

‖E[Z>Z]‖ ≤ N(c2
y‖ΣX‖+ ‖ΣY X‖2)

Applying Lemma 26 we get

δ = Pr(‖Z‖ ≥ Nt) ≤ (dX + dY) exp

(−Nt2/2
v + Lt/3

)
and hence

t2 − 2 log((dX + dY)/δ)Lt

3N
− 2 log((dX + dY)/δ)v

N
≤ 0

This quadratic inequality implies

t ≤ log((dX + dY)/δ)L

3N
+

√
log2((dX + dY)/δ)L2

9N2
+

2 log((dX + dY)/δ)v

N

81

Using the fact that
√
a2 + b2 ≤ |a|+ |b| we get

t ≤ 2 log((dX + dY)/δ)L

3N
+

√
2 log((dX + dY)/δ)v

N

Corollary 28 (Normalized error in empirical covariance). With probability at least 1− δ

‖Σ−1/2
X (Σ̂X − ΣX)‖ ≤ 2c

√
2 log(2d/δ)

N
+

2 log(2d/δ)L

3N
,

where

L =
c2√

λmin(ΣX)
+ c

Proof. Define Sk = Σ
−1/2
X xkx

>
k − Σ

1/2
X , it follows that

E[Sk] = 0

‖Sk‖ ≤ ‖Σ−1/2
X ‖‖xk‖2 + ‖Σ1/2

X ‖ ≤
c2√

λmin(ΣX)
+ c

‖E[Z>Z]‖ = ‖E[ZZ>]‖ =

∥∥∥∥∥∑
i,j

(Σ
−1/2
X E[xix

>
i xjx

>
j]Σ

−1/2
X − ΣX)

∥∥∥∥∥
=

∥∥∥∥∥∑
i

(E[‖xi‖2Σ
−1/2
X xix

>
i Σ
−1/2
X]− ΣX) +

∑
i,j 6=i

(Σ
−1/2
X E[xix

>
i]E[xjx

>
j]Σ

−1/2
X − ΣX)

∥∥∥∥∥
≤ N(c2

x + ‖ΣX‖2) ≤ 2Nc2

Applying Lemma 26 we get

δ = Pr(‖Z‖ ≥ Nt) ≤ 2d exp

(−Nt2/2
2c2 + Lt/3

)
and similar to the proof of Corollary 27, we can show that

t ≤ 2 log(2d/δ)L

3N
+ 2c

√
log(2d/δ)

N

82

Lemma 29. Let Σ̂Y X = ΣY X + ∆Y X and Σ̂X = ΣX + ∆X where E[∆Y X] and E[∆Y X] are
not necessarily zero and Σ̂X is symmetric positive semidefinite. Define W = ΣY XΣ−1

X and
Ŵ = Σ̂Y X(Σ̂X + λ)−1. It follows that

‖Ŵ −W‖ ≤
√
λmax(ΣY)

λmin(ΣX)

(√
λmin(ΣX)‖Σ−1/2

X ∆X‖+ λ

λmin(Σ̂X) + λ

)
+

‖∆Y X‖
λmin(Σ̂X) + λ

Proof.

Ŵ −W = ΣY X

(
(ΣX + ∆X + λI)−1 − Σ−1

X

)
+ ∆Y X(ΣX + ∆X + λI)−1 = T1 + T2

It follows that

‖T2‖ ≤
‖∆Y X‖

λmin(Σ̂X) + λ

As for T1, using the matrix inverse Lemma B−1 − A−1 = B−1(A − B)A−1 and the fact that
ΣY X = Σ

1/2
Y V Σ

1/2
X , where V is a correlation matrix satisfying ‖V ‖ ≤ 1 we get

T1 = −ΣY XΣ−1
X (∆X + λI)(ΣX + ∆X + λI)−1

= −Σ
1/2
Y V Σ

−1/2
X (∆X + λI)(ΣX + ∆X + λI)−1,

and hence

‖T1‖ ≤
√
λmax(ΣY)

(
‖Σ−1/2

X ∆X‖+ λ‖Σ−1/2
X ‖

λmin(Σ̂X) + λ

)

=

√
λmax(ΣY)

λmin(ΣX)

(√
λmin(ΣX)‖Σ−1/2

X ∆X‖+ λ

λmin(Σ̂X) + λ

)

Corollary 30. With probability 1− 2δ.

‖Ŵ −W‖ ≤
√
λmax(ΣY)

λmin(ΣX)

(√
λmin(ΣX)∆1 + λ

λmin(Σ̂X) + λ

)
+

∆2

λmin(Σ̂X) + λ
,

where

∆1 = 2cx

√
log(2dX/δ)

N
+

2 log(2dX/δ)

3N

(
c2
x√

λmin(ΣX)
+ cx

)

∆2 = 2cycx

√
log((dY + dX)/δ)

N
+

4cycx log((dY + dX)/δ)

3N

83

Proof. This corollary follows simply from applying Lemmata 27 and 28 to Corollary 29.

Lemma 31. Let Σ̂Y X = ΣY X + ∆Y X and Σ̂X = ΣX + ∆X where E[∆Y X] and E[∆Y X] is
not necessarily zero and Σ̂X is symmetric but not necessarily positive semidefinite. Define
W = ΣY XΣ−1

X and Ŵ = Σ̂Y XΣ̂X(Σ̂2
X + λ)−1. It follows that

‖Ŵ −W‖ ≤
√
λmax(ΣY)

λ3
min(ΣX)

‖∆X‖2 + 2λmax(ΣX)‖∆X‖+ λ

λ2
min(Σ̂X) + λ

+
‖ΣY X‖‖∆X‖+ ‖∆Y X‖‖ΣX‖+ ‖∆Y X‖‖∆X‖

λ2
min(Σ̂X) + λ

Proof.

Ŵ −W = (ΣY X + ∆Y X)(ΣX + ∆X)((ΣX + ∆X)2 + λI)−1 − ΣY XΣXΣ−2
X

= ΣY XΣX(((ΣX + ∆X)2 + λI)−1 − Σ−2
X) + (ΣY X∆X + ∆Y XΣX + ∆Y X∆X)((ΣX + ∆X)2 + λI)−1

= T1 + T2

Using the matrix inverse Lemma B−1 − A−1 = B−1(A − B)A−1 and the fact that ΣY X =

Σ
1/2
Y V Σ

1/2
X , where V is a correlation matrix satisfying ‖V ‖ ≤ 1 we get

T1 = −Σ
1/2
Y XV Σ

−3/2
X (∆2

X + ΣX∆X + ∆XΣX + λI)((ΣX + ∆X)2 + λI)−1

‖T1‖ ≤
√
λmax(ΣY)

λ3
min(ΣX)

‖∆X‖2 + 2λmax(ΣX)‖∆X‖+ λ

λ2
min(Σ̂X) + λ

‖T2‖ ≤
‖ΣY X‖‖∆X‖+ ‖∆Y X‖‖ΣX‖+ ‖∆Y X‖‖∆X‖

λ2
min(Σ̂X) + λ

4.B.1 Proof of Theorem 24
Proof. In the linear case, we estimate a tensor T with modes corresponding to h, A and O by
solving the minimization problem in Section 4.4.2. Equivalently, we estimate a matrix Tr of size
dO × dhdA where an input h⊗ ψa is mapped to an output E[ψo | h, ψa]. Note that

Q(h)ψa = T ×h h×A ψa = Tr(h⊗ ψa)
For any history h ∈ H and future action feature vector ψa we have

‖Q̂(h)−Q(h)‖ = argmaxψa
‖(Q̂(h)−Q(h))ψa‖

‖ψa‖

= argmaxψa
‖(T̂r − Tr)(h⊗ ψa)‖

‖ψa‖ ≤ ‖T̂r − Tr‖‖ψh‖

Note that Condition 21 implies that h⊗ ψa will eventually be in the span of training examples.
This rules out the case where the inequality is satisfied only because (h⊗ ψa) is incorrectly in the
null space of T̂r and Tr.

The theorem is proven by applying Corollary 30 to bound ‖T̂r − Tr‖.

84

4.B.2 Sketch Proof for joint S1
In order to prove Theorem 15 for joint S1, note that

‖Σ̂A|h − ΣA|h‖ ≤ ‖T̂A − TA‖‖h‖
‖Σ̂OA|h − ΣOA|h‖ ≤ ‖T̂OA − TOA‖‖h‖

From Lemma 29, we obtain a high probability bound on ‖T̂A − TA‖ and ‖T̂A − TA‖. Then we
apply these bounds to Lemma 31 to obtain an error in Q(h).

85

86

Part III

Hybrid Models

87

Chapter 5

Predictive State Recurrent Neural
Networks

Having formalized a class of models which admit consistent method of moments learning in
chapters 3 and 4 we are now ready to begin our exploration of hybrid models.

As we saw in chapter 2, RNNs and BFs offer complementary advantages and disadvantages:
RNNs offer rich functional forms at the cost of statistical insight, while BFs possess a sophisticated
statistical theory but are restricted to simpler functional forms in order to maintain tractable training
and inference.

By drawing insights from both PSRs and RNNs we now develop a novel hybrid model,
Predictive State Recurrent Neural Networks (PSRNNs). Like many successful RNN architectures,
PSRNNs use (potentially deeply composed) bilinear transfer functions to combine information
from multiple sources. We show that such bilinear functions arise naturally from state updates in
Bayes filters, in which observations can be viewed as gating belief states. We show that PSRNNs
directly generalize discrete PSRs, and can be learned effectively by combining Backpropagation
Through Time (BPTT) with an approximately consistent method-of-moments initialization based
on two-stage regression. We also show that PSRNNs can be factorized using tensor decomposition,
reducing model size and suggesting interesting connections to existing multiplicative architectures
such as LSTMs.

5.1 Predictive State Recurrent Neural Networks

In this section we introduce Predictive State Recurrent Neural Networks (PSRNNs), a new Hybrid
model which is both a PSM and a Bayes Filter. PSRNNs allow for a principled initialization and
refinement via BPTT. The key contributions which led to the development of PSRNNs are: 1)
a new normalization scheme for PSRs which allows for effective refinement via BPTT; 2) the
extention of the 2SR algorithm to a multilayered architecture; and 3) the optional use of a tensor
decomposition to obtain a more scalable model.

89

5.1.1 HSE-PSRs as RNNs
As discussed in chapter 2 PSRs can be embedded in an RKHS to obtain HSE-PSRs. HSE-PSRs
possess a rich functional form and can model a wide variety of dynamical systems. In Chapter
3 we showed that HSE-PSRs belong to the class of PSMs. We saw (see Equation 3.15) that the
HSE-PSR state update can be expressed in terms of two operators Σ̂φt+1,ot|ht and Σ̂ot,ot|ht:

qt+1 = Σ̂φt+1,ot|ht(Σ̂ot,ot|ht)
−1ot (5.1)

We can reformulate this as follows. First the simpler task: predict qt+1 = E[ft+1 | ht+1) from ot
and ht using kernel Bayes rule.

qt+1 = E[ft+1 | otht)]
= Cft+1,ot|htC

−1
ot,ot|htot

where

Cft+1,ot|ht = C(ft+1,ot)htC
−1
ht,ht

ht

Cot,ot|ht = C(ot,ot)htC
−1
ht,ht

ht

We want to condition on (and update) qt, not condition on ht. However:

qt = E(ft | ht)
= Cft,htC

−1
ht,ht

ht

and so
C−1
ht,ht

ht = C†ft,htqt

Here ot, and qt are each elements of an RKHS. If we represent them explicitly using Random
Features (see Chapter 2) each is a finite dimensional vector.

Let W = C(ft+1,ot)htC
−1
ht,ht

and Z = C(ot,ot)htC
−1
ht,ht

, each is a 3-mode tensor. Therefore our
update equation becomes:

qt+1 = (W ×3 qt) (Z ×3 qt)
−1 ×2 ot. (5.2)

We can now view (5.2) as an RNN, parameterized by tensors W and Z. In fact if we wanted to
we could ignore all of the preceding theory and learn such a network entirely via BPTT.

The key difference between this network and more conventional networks, is the presence
of the matrix inverse. This is not a commonly used operation in RNNs because it is poorly
conditioned, making it difficult to optimize via local optimization techniques such as BPTT.
Suitability for local optimization is an essential component of any useful RNN, therefore if we
wish to obtain a true hybrid model, we need a model which is well conditioned and can be
easily optimized via BPTT. We now show how obtain such a model by extending PSRs to obtain
PSRNNs, a family of models which share a similar update and statistical theory, but do not require
a matrix inverse in the state update.

90

5.1.2 From PSRs to PSRNNs
The basic building block of a PSRNN is a 3-mode tensor, which can be used to compute a bilinear
combination of two input vectors. We note that, while bilinear operators are not a new development
(e.g., they have been widely used in a variety of systems engineering and control applications for
many years [78]), the current chapter shows how to chain these bilinear components together into
a powerful new predictive model.

Let qt and ot be the state and observation at time t. Let W be a 3-mode tensor, and let q be a
vector. The 1-layer state update for a PSRNN is defined as:

qt+1 =
W ×2 ot ×3 qt + b

‖W ×2 ot ×3 qt + b‖2

(5.3)

Here the 3-mode tensor of weights W and the bias vector b are the model parameters. This
architecture is illustrated in Figure 5.1a. It is similar, but not identical, to the PSR update (Eq.
5.2); sec 5.1.1 gives more detail on the relationship. This model may appear simple, but crucially
the tensor contraction W ×2 ot ×3 qt integrates information from bt and ot multiplicatively, and
acts as a gating mechanism, as discussed in more detail in section 5.5.

The typical approach used to increase modeling capability for BFs (including PSRs) is to use
an initial fixed nonlinearity to map inputs up into a higher-dimensional space [78, 104]. PSRNNs
incorporate such a step, via RFFs. However, a multilayered architecture typically offers higher
representation power for a given number of parameters [17].

To obtain a multilayer PSRNN, we stack the 1-layer blocks of Eq. (5.3) by providing the
output of one layer as the observation for the next layer. (The state input for each layer remains
the same.) In this way we can obtain arbitrarily deep RNNs. This architecture is displayed in
Figure 5.1b.

We choose to chain on the observation (as opposed to on the state) as this architecture leads to
a natural extension of 2SR to multilayered models (see Sec. 5.3). In addition, this architecture is
consistent with the typical approach for constructing multilayered LSTMs/GRUs [64]. Finally,
this architecture is suggested by the full normalized form of an HSE PSR, where the observation
is passed through two layers.

(a) Single Layer PSRNN (b) Multilayer PSRNN

Figure 5.1: PSRNN architecture: See equation 5.3 for details. We omit bias terms to avoid clutter.

5.2 Theory
We now provide a theoretical justification for PSRNNs by showing that in the case of discrete
observations and a single layer the PSRNN provides a good approximation to a consistent model.

91

We first show that in the discrete setting using a matrix inverse is equivalent to a sum normalization.
We subsequently show that, under certain conditions, two-norm normalization has the same effect
as sum-normalization.

Let qt be the PSR state at time t, and ot be the observation at time t (as an indicator vector).
In this setting the covariance matrix Ct = E[ot × ot|o1:t−1] will be diagonal. By assumption, the
normalization term Z in PSRs is defined as a linear function from qt to Ct, and when we learn
PSRNNs by 2-stage regression we estimate this linear function consistently. Hence, for all qt,
Z ×3 qt is a diagonal matrix, and (Z ×3 qt)

−1 is also a diagonal matrix. Furthermore, since ot is
an indicator vector, (Z ×3 qt)

−1 ×2 ot = ot/P (ot) in the limit. We also know that as a probability
distribution, qt should sum to one. This is equivalent to dividing the unnormalized update q̂t+1 by
its sum. i.e.

qt+1 = q̂t+1/P (ot)

= q̂t+1/(1
>q̂t+1)

Now consider the difference between the sum normalization q̂t+1/(1
>q̂t+1) and the two-norm

normalization q̂t+1/ ‖q̂t+1‖2. Since qt is a probability distribution, all elements will be positive,
hence the sum norm is equivalent to the 1-norm. In both settings, normalization is equivalent to
projection onto a norm ball. Now let S be the set of all valid states. Then if the diameter of S is
small compared to the distance from (the convex hull of) S to the origin then the local curvature of
the 2-norm ball will be negligible, and both cases will be approximately equivalent to projection
onto a plane. We note we can obtain an S with this property by augmenting our state with a set of
constant features.

5.3 Learning Multilayer PSRNNs

As a hybrid model PSRNNs are both valid PSMs and well conditioned RNNs. Therefore we can
initialize PSRNNs using two-stage regression, followed by refinement via BPTT.

we now extend two-stage regression to multilayered PSRNNs. Suppose we have learned a
1-layer PSRNN P using two-stage regression. We can use P to perform filtering on a dataset
to generate a sequence of estimated states q̂1, ..., q̂n. According to the architecture described
in Figure 5.1b, these states are treated as observations in the second layer. Therefore we can
initialize the second layer by an additional iteration of two-stage regression using our estimated
states q̂1, ..., q̂n in place of observations. This process can be repeated as many times as desired to
initialize an arbitrarily deep PSRNN. If the first layer were learned perfectly, the second layer
would be superfluous; however, in practice, we observe that the second layer is able to learn to
improve on the first layer’s performance.

Once we have obtained a PSRNN using the 2SR approach described above, we can use BPTT
to refine the PSRNN. We note that we choose to use 2-norm divisive normalization because it is
not practical to perform BPTT through the matrix inverse required in PSRs: the inverse operation
is ill-conditioned in the neighborhood of any singular matrix. We observe that 2SR provides us
with an initialization which converges to a good local optimum.

92

5.4 Factorized PSRNNs
In this section we show how the PSRNN model can be factorized to reduce the number of
parameters prior to applying BPTT.

Let (W, b0) be a PSRNN block. Suppose we decompose W using CP decomposition to obtain

W =
n∑
i=1

ai ⊗ bi ⊗ ci

Let A (similarly B, C) be the matrix whose ith row is ai (respectively bi, ci). Then the PSRNN
state update (equation (5.3)) becomes (up to normalization):

qt+1 = W ×2 ot ×3 qt + b (5.4)
= (A⊗B ⊗ C)×2 ot ×3 qt + b (5.5)

= AT (Bot � Cqt) + b (5.6)

where � is the Hadamard product. We call a PSRNN of this form a factorized PSRNN. This
model architecture is illustrated in Figure 5.2. Using a factorized PSRNN provides us with
complete control over the size of our model via the rank of the factorization. Importantly, it
decouples the number of model parameters from the number of states, allowing us to set these
two hyperparameters independently.

Figure 5.2: Factorized PSRNN Architecture

We determined experimentally that factorized PSRNNs are poorly conditioned when compared
with PSRNNs, due to very large and very small numbers often occurring in the CP decomposition.
To alleviate this issue, we need to initialize the bias b in a factorized PSRNN to be a small multiple
of the mean state. This acts to stabilize the model, regularizing gradients and preventing us from
moving away from the good local optimum provided by 2SR.

We note that a similar stabilization happens automatically in randomly initialized RNNs: after
the first few iterations the gradient updates cause the biases to become non-zero, stabilizing the
model and resulting in subsequent gradient descent updates being reasonable. Initialization of the
biases is only a concern for us because we do not want the original model to move away from our
carefully prepared initialization due to extreme gradients during the first few steps of gradient
descent.

In summary, we can learn factorized PSRNNs by first using 2SR to initialize a PSRNN, then
using CP decomposition to factorize the tensor model parameters to obtain a factorized PSRNN,
then applying BPTT to the refine the factorized PSRNN.

93

5.5 Discussion
The value of bilinear units in RNNs was the focus of recent work by Wu et al [121]. They
introduced the concept of Multiplicative Integration (MI) units — components of the form
Ax � By — and showed that replacing additive units by multiplicative ones in a range of
architectures leads to significantly improved performance. As Eq. (5.6) shows, factorizing W
leads precisely to an architecture with MI units.

Modern RNN architectures such as LSTMs and GRUs are known to outperform traditional
RNN architectures on many problems [64]. While the success of these methods is not fully
understood, much of it is attributed to the fact that these architectures possess a gating mechanism
which allows them both to remember information for a long time, and also to forget it quickly.
Crucially, we note that PSRNNs also allow for a gating mechanism. To see this consider a single
entry in the factorized PSRNN update (omitting normalization).

[qt+1]i =
∑
j

Aji

(∑
k

Bjk[ot]k �
∑
l

Cjl[qt]l

)
+ b (5.7)

The current state qt will only contribute to the new state if the function
∑

k Bjk[ot]k of ot is
non-zero. Otherwise ot will cause the model to forget this information: the bilinear component of
the PSRNN architecture naturally achieves gating.

We note that similar bilinear forms occur as components of many successful models. For
example, consider the (one layer) GRU update equation:

zt = σ(Wzot + Uzqt + cz)

rt = σ(Wrot + Urqt + cr)

qt+1 = zt � qt + (1− zt)� σ(Whot + Uh(rt � qt) + ch)

The GRU update is a convex combination of the existing state qt and and update term Whot +
Uh(rt � qt) + ch. We see that the core part of this update term Uh(rt � qt) + ch bears a striking
similarity to our factorized PSRNN update. The PSRNN update is simpler, though, since it omits
the nonlinearity σ(·), and hence is able to combine pairs of linear updates inside and outside σ(·)
into a single matrix.

Finally, we would like to highlight the fact that, as discussed in section 5.5, the bilinear form
shared in some form by these models (including PSRNNs) resembles the first component of the
Kernel Bayes Rule update function. This observation suggests that bilinear components are a
natural structure to use when constructing RNNs, and may help explain the success of the above
methods over alternative approaches. This hypothesis is supported by the fact that there are no
activation functions (other than divisive normalization) present in our PSRNN architecture, yet it
still manages to achieve strong performance.

5.6 Experiments
In this section we describe the datasets, models, model initializations, model hyperparameters,
and evaluation metrics used in our experiments and present our results.

94

We use the following datasets in our experiments:
• Penn Tree Bank (PTB) This is a standard benchmark in the NLP community [80]. Due to

hardware limitations we use a train/test split of 120780/124774 characters.
• Swimmer We consider the 3-link simulated swimmer robot from the open-source package

OpenAI gym.1 The observation model returns the angular position of the nose as well as
the angles of the two joints. We collect 25 trajectories from a robot that is trained to swim
forward (via the cross entropy with a linear policy), with a train/test split of 20/5.

• Mocap This is a Human Motion Capture dataset consisting of 48 skeletal tracks from three
human subjects collected while they were walking. The tracks have 300 timesteps each,
and are from a Vicon motion capture system. We use a train/test split of 40/8. Features
consist of the 3D positions of the skeletal parts (e.g., upper back, thorax, clavicle).

• Handwriting This is a digit database available on the UCI repository [4, 46] created using
a pressure sensitive tablet and a cordless stylus. Features are x and y tablet coordinates and
pressure levels of the pen at a sampling rate of 100 milliseconds. We use 25 trajectories
with a train/test split of 20/5.

Models compared are LSTMs [78], GRUs [33], basic RNNs [47], KFs [70], PSRNNs, and
factorized PSRNNs. All models except KFs consist of a linear encoder, a recurrent module, and a
linear decoder. The encoder maps observations to a compressed representation; in the context
of text data it can be viewed as a word embedding. The recurrent module maps a state and an
observation to a new state and an output. The decoder maps an output to a predicted observation.2

We initialize the LSTMs and RNNs with random weights and zero biases according to the Xavier
initialization scheme [53]. We initialize the the KF using the 2SR algorithm described in [59].
We initialize PSRNNs and factorized PSRNNs as described in section 5.1.1.

In two-stage regression we use a ridge parameter of 10(−2)n where n is the number of training
examples (this is consistent with the values suggested in [27]). (Experiments show that our
approach works well for a wide variety of hyperparameter values.) We use a horizon of 1 in the
PTB experiments, and a horizon of 10 in all continuous experiments. We use 2000 RFFs from
a Gaussian kernel, selected according to the method of [92], and with the kernel width selected
as the median pairwise distance. We use 20 hidden states, and a fixed learning rate of 1 in all
experiments. We use a BPTT horizon of 35 in the PTB experiments, and an infinite BPTT horizon
in all other experiments. All models are single layer unless stated otherwise.

We optimize models on the PTB using Bits Per Character (BPC) and evaluate them using
both BPC and one-step prediction accuracy (OSPA). We optimize and evaluate all continuous
experiments using the Mean Squared Error (MSE).

5.6.1 Results

In Figure 5.3a we compare performance of LSTMs, GRUs, and Factorized PSRNNs on PTB, where
all models have the same number of states and approximately the same number of parameters. To

1https://gym.openai.com/
2This is a standard RNN architecture; e.g., a PyTorch implementation of this architecture for text prediction can

be found at https://github.com/pytorch/examples/tree/master/word_language_model.

95

https://gym.openai.com/
https://github.com/pytorch/examples/tree/master/word_language_model

achieve this we use a factorized PSRNN of rank 60. We see that the factorized PSRNN significantly
outperforms LSTMs and GRUs on both metrics. In Figure 5.3b we compare the performance of
1- and 2-layer PSRNNs on PTB. We see that adding an additional layer significantly improves
performance. In Figure 5.3c we compare PSRNNs with factorized PSRNNs on the PTB. We
see that PSRNNs outperform factorized PSRNNs regardless of rank, even when the factorized
PSRNN has significantly more model parameters. (In this experiment, factorized PSRNNs of
rank 7 or greater have more model parameters than a plain PSRNN.) This observation makes
sense, as the PSRNN provides a simpler optimization surface: the tensor multiplication in each
layer of a PSRNN is linear with respect to the model parameters, while the tensor multiplication
in each layer of a Factorized PSRNN is bilinear. In addition, we see that higher-rank factorized
models outperform lower-rank ones. However, it is worth noting that even models with low rank
still perform well, as demonstrated by our rank 40 model still outperforming GRUs and LSTMs,
despite having fewer parameters.

In Figure 5.4 we compare model performance on the Swimmer, Mocap, and Handwriting
datasets. We see that PSRNNs significantly outperform alternative approaches on all datasets. In
Figure 5.5 we attempt to gain insight into why using 2SR to initialize our models is so beneficial.
We visualize the the one step model predictions before and after BPTT. We see that the behavior
of the initialization has a large impact on the behavior of the refined model. For example the
initial (incorrect) oscillatory behavior of the RNN in the second column is preserved even after
gradient descent.

(a) BPC and OSPA on PTB. All
models have the same number
of states and approximately the
same number of parameters.

(b) Comparison between 1- and
2-layer PSRNNs on PTB.

(c) Cross-entropy and prediction
accuracy on Penn Tree Bank for
PSRNNs and factorized PSRNNs
of various rank.

Figure 5.3: PTB Experiments

96

Figure 5.4: MSE vs Epoch on the Swimmer, Mocap, and Handwriting datasets

5.7 Related Work

It is well known that a principled initialization can greatly increase the effectiveness of local
search heuristics. For example, Boots [19] and Zhang et al. [125] use subspace ID to initialize
EM for linear dyanmical systems, and Ko and Fox [72] use N4SID [114] to initialize GP-Bayes
filters.

Pasa et al. [88] propose an HMM-based pre-training algorithm for RNNs by first training an
HMM, then using this HMM to generate a new, simplified dataset, and, finally, initializing the
RNN weights by training the RNN on this dataset.

Belanger and Kakade [16] propose a two-stage algorithm for learning a KF on text data. Their
approach consists of a spectral initialization, followed by fine tuning via EM using the ASOS
method of Martens [81]. They show that this approach has clear advantages over either spectral
learning or BPTT in isolation. Despite these advantages, KFs make restrictive linear-Gaussian
assumptions that preclude their use on many interesting problems.

Haarnoja et al. [56] also recognize the complementary advantages of Bayes Filters and RNNs,
and propose a new network architecture attempting to combine some of the advantages of both.
Their approach differs substantially from ours as they propose a network consisting of a Bayes
Filter concatenated with an RNN, which is then trained end-to-end via backprop. In contrast our
entire network architecture has a dual interpretation as both a Bayes filter and a RNN. Because of
this, our entire network can be initialized via an approximately consistent method of moments
algorithm, something not possible in [56].

Finally, Kossaifi et al. [74] also apply tensor decomposition in the neural network setting.
They propose a novel neural network layer, based on low rank tensor factorization, which can

97

Figure 5.5: Test Data vs Model Prediction on a single feature of Swimmer. The first row shows
initial performance. The second row shows performance after training. In order the columns show
KF, RNN, GRU, LSTM, and PSRNN.

98

directly process tensor input. This is in contrast to a standard approach where the data is flattened
to a vector. While they also recognize the strength of the multilinear structure implied by tensor
weights, both their setting and their approach differ from ours: they focus on factorizing tensor
input data, while we focus on factorizing parameter tensors which arise naturally from a kernelized
interpretation of Bayes rule.

5.8 Conclusions
We present PSRNNs: a new approach for modelling time-series data that hybridizes Bayes filters
with RNNs. PSRNNs have both a principled initialization procedure and a rich functional form.
The basic PSRNN block consists of a 3-mode tensor, corresponding to bilinear combination of the
state and observation, followed by divisive normalization. These blocks can be arranged in layers
to increase the expressive power of the model. We showed that tensor CP decomposition can be
used to obtain factorized PSRNNs, which allow flexibly selecting the number of states and model
parameters. We showed how factorized PSRNNs can be viewed as both an instance of Kernel
Bayes Rule and a gated architecture, and discussed links to existing multiplicative architectures
such as LSTMs. We applied PSRNNs to 4 datasets and showed that we outperform alternative
approaches in all cases.

99

100

Chapter 6

Hilbert Space Embedding of Hidden
Quantum Markov Models

In this chapter we present our second hybrid model, Hilbert Space Embedding of Hidden Quantum
Markov Models (HSE-HQMMs). Where PSRNNs brought together ideas from HSE-PSRs and
RNNs, HSE-HQMMs include an additional element: Quantum Mechanics. Quantum Mechanics
is a key formalism for modelling many dynamical systems in physics, and is often useful where
alternative models fail. We provide a brief introduction to quantum mechanics, and show how
it can be used to derive a new class of models. Specifically we investigate the link between
Quantum Mechanics and HSEs and show that the sum rule and Bayes rule in Quantum Mechanics
are equivalent to the kernel sum rule in HSEs and a special case of Nadaraya-Watson kernel
regression, respectively. We show that these operations can be kernelized, and use these insights
to propose a Hilbert Space Embedding of Hidden Quantum Markov Models (HSE-HQMM) to
model dynamics. We present experimental results showing that HSE-HQMMs are competitive
with state-of-the-art models like LSTMs and PSRNNs on several datasets, while also providing a
nonparametric method for maintaining a probability distribution over continuous-valued features.

Overall, we present four contributions: (1) we show that the sum rule for QGMs is identical to
the kernel sum rule for HSEs, while the Bayesian update in QGMs is equivalent to performing
Nadaraya-Watson kernel regression, (2) we show how to kernelize these operations and argue
that with the right choice of features, we are mapping our data to quantum systems and modeling
dynamics as quantum state evolution, (3) we use these insights to propose a HSE-HQMM to model
dynamics by mapping data to quantum systems and performing inference in Hilbert space, and,
finally, (4) we present a learning algorithm and experimental results showing that HSE-HQMMs
are competitive with other state-of-the-art methods for modeling sequences, while also providing
a nonparametric method for estimating the distribution of continuous-valued features.

6.1 Quantum Mechanics

There is a great deal of missinformation and hype surrounding the field of Quantum Mechanics.
Slogans such as “light is both a wave and a particle”, “the cat is neither dead nor alive until
you look”, and “you can ask about the position or the momentum, but not both” have given the

101

field a (mostly undeserved) reputation for complexity. While many of the problems in physics
which are studied using quantum mechanics are indeed complex, quantum mechanics itself is
not. Quantum Mechanics should be viewed as nothing more or less than a system for formalising
and manipulating uncertainty. In this it is no different to Classical Probability theory, except
in the way it choose to represent uncertainty, and the functions we choose to manipulate such
representations.

Classical Probability theory, otherwise known as classical mechanics, represents uncertainty
over a discrete system using the notion of a stochastic vector – a vector of real, non-negative
numbers which sums to 1. We manipulate such vectors using stochastic matrices – matrices of
non-negative real numbers where each column sums to 1. This system works because the space
of stochastic vectors is closed under the action of stochastic matrices, in other words applying a
stochastic matrix to a stochastic vector always results in another stochastic vector. This ensures we
never end up with something which is not a valid distribution. An example of classical mechanics
is provided in figure 6.1

Figure 6.1: An example of classical mechanics. We transform a stochastic vector representing
information about an unknown quantity (in this case a coin flip) into another stochastic vector
using a stochastic matrix.

Quantum Mechanics takes an alternative approach, instead of representing uncertainty over
a discrete system using stochastic vectors instead we use unitary vectors – a vector of complex
numbers with norm 1. Crucially the square of the absolute value of a unitary vector is a stochastic
vector, therefore every unitary vector corresponds to a valid probability distribution. In the
language of quantum mechanics unitary vectors contain probability amplitudes whose squared
values are probabilities. Instead of stochastic matrices we manipulate unitary vectors using unitary
matrices – matrices whose conjugate transpose is equal to their inverse. We note that in the case of
real numbers the class of unitary matrices is equal to the class of orthonormal matrices – matrices
whoose columns are orthogonal and have norm 1.

Vectors and matrices in quantum mechanics are traditionally represented using Bra-Ket
notation. In Braket notation a row vector x is denoted by 〈x| called a Bra and a column vector is
denoted by |x〉 called a Ket. Using this notation an inner product between x and y is denoted by
〈x|y〉 and an outer product between x and y is denoted by |x〉〈y|. To maintain consistency with
literature we also use this notation for this section.

In quantum mechanics unitary vectors are known as pure states. We we can combine quantum
mechanics with classical mechanics to obtain a classical mixture of quantum pure states, known
as a mixed state. We can think about this as a mixture of particles, each of which has a distribution
represented as a pure state. We represent a mixed state using the notion of a density matrix.

102

Figure 6.2: An example of quantum mechanics. We transform a unitary vector representing
information about an unknown quantity (in this case a coin flip) into another unitary vector using
a unitary matrix. The vectors in red are the squared absolute values of the unitary vectors.

Given a collection of pure states x1, ..., xn and a classical probability distribution p(x) over xi∀i a
density matrix D is defined as the expected outer product of the pure states:

D = Ex p[|x〉〈x|] (6.1)

=
∑
i

Pr(xi)|xi〉〈xi| (6.2)

If the pure states are orthogonal we can recover them from the density matrix using the eigen-
decomposition operation. An example of the construction of a mixed state is shown in figure
6.3

Figure 6.3: Example illustrating the construction of a mixed state (density matrix) from a
distribution over two pure states

The diagonal entries of a density matrix give the probabilities of being in each system state,
and off-diagonal elements represent quantum coherences, which have no classical interpretation.
Consequently, the normalization condition is tr(ρ̂) = 1. Uncertainty about an n-state system
is represented by an n × n density matrix. The density matrix is the quantum analogue of the
classical belief x.

6.2 Advantages of Quantum Mechanics
A natural question one might ask is why it’s worth going through the effort to develop machine
learning models which incorporate quantum mechanics at all. Why not just stick with the models

103

based on classical mechanics that we already have? In this section we discuss the various ways
in which quantum mechanical systems differ from classical ones, and the possible advantages
this offers when building machine learning systems. Note that we do not claim that our models,
as presented here, provably benefit from all of these properties. Rather this material instead is
intended to serve as a thought-provoking discussion, and a general motivation for the study of
quantum - machine learning systems. In this chapter we will take the initial steps towards building
such models, with the hope that future work may realize some of these benefits.

6.2.1 Continuous Time

Many real world systems are continuous in the time domain. In contrast the vast majority
of existing models assume that observations occur at fixed discrete intervals. This is often a
reasonable assumption as measuring devices tend to collect samples at fixed intervals, it still falls
short in several cases. For example there might be missing data points, or we might collect data at
irregular intervals. Both cases are difficult to deal with when filtering algorithms are designed
around fixed regular observations. Furthermore we might want to make predictions about the
behavior of our system between scheduled observations. For example we might have a GPS
system that reports an estimate of the location once per second, but we might want to estimate our
location after half a second.

The problem is that in most Bayes filters such as HMMs, when we are given an operator
which advances the system forwards one second in time, there is no obvious way to extend it to an
operator which advances us forwards half a second in time (or by some other arbitrary multiple).
Formally given a state qt and an operator A which advances qt to qt+1 via qt = Aqt where t is
measured in 1 second intervals there should be some way to obtain a new operator B such that B
advances us forwards half a second in time. Clearly a desirable property of any such B is that
applying it twice should be the same as applying A once. In other words what we really want is to
be able to take the square root of the update operator A. Unfortunately in classical mechanics A
is a stochastic matrix, and this square root is unlikely to be a valid stochastic matrix.

Fortunately this is not the case when working with Quantum Mechanics. This is because the
square root of a unitary operator is guaranteed to exist, and furthermore is guaranteed to be unitary.
The intuition behind this is that every unitary operator can be thought of as a set of rotations in
the complex field. Therefore we can always compute arbitrary fractions of this operator in terms
of partial rotations. Another way to see this is via the eigendecomposition. Given a unitary matrix
A its eigendecomposition A = USU∗ is gauaranteed to exist. Therefore for arbitrary n ∈ [0, 1]

we can compute A
1
n as:

A
1
n = US

1
nU∗ (6.3)

sinceA is unitary, all of the eigenvalues ofA in have absolute value of 1. Therefore the eigenvalues
of A

1
n also have value 1. This idea is illustrated in figure 6.4

Therefore by developing models based on quantum mechanics we hope to one day obtain
models which are naturally continuous in the time domain.

104

(a) Operator A advances the state 2 seconds forwards in time

(b) The square root of operator A advances the state 1 second forwards in time

Figure 6.4: Example of how quantum mechanics allow for continuous time. Given an operator
which advances the system state by 2 seconds we can obtain an operator which advances the
system one second by taking the square root of the original operator.

6.2.2 Richer Class of Transformations

Another potential benefit of quantum mechanics is that it represents a potentially richer class
of functions. Many operations which require exponential space for classical systems can be
represented using linear space using quantum mechanics. This suggests that it may be possible to
build much more compact models by using quantum mechanics.

6.2.3 Easier to Learn

A third potential benefit of quantum mechanics is that it may lead to models which are easier
to learn (in the optimization sense) than many many systems which rely on classical mechanics.
As we discussed in chapter 2 many Bayes Filters are difficult to learn because of the positivity
constraint. While there exist techniques such as projected gradient descent which attempt to solve
this problem they often produce poor results. In contrast there is no such constraint on quantum
mechanical systems as unitary matrices may contain negative numbers.

It is important to note here that we have trade one constraint for another: In order to learn a
valid quantum mechanical model we are required to constrain our optimization procedure to valid
unitary operators. Nonetheless this is a different problem, and may prove easier to solve.

105

6.2.4 Rotational Symmetry
Finally quantum mechanical systems may offer a particular advantage when modelling systems
which exhibit rotational symmetry. Many dynamical systems exhibit rotational symmetry in their
features, where the feature space forms an n dimensional sphere. For example the wind direction
is a feature which lies on a circle, the images from a camera lie on the surface of a 3 dimensional
sphere, etc. These features can prove difficult to model using classical mechanics. To see why
consider the state space.

In classical mechanics our state space consists of all valid stochastic vectors. The space of
such vectors of length n is known as the Probability simplex of dimension n. For length 2 vectors
this is a line, for length 3 vectors a triangle, etc. This means it can be difficult to model features
with rotational symmetry, where if we move far enough away from our original state we will
eventuall end back at the same state. In contrast the space of valid unitary vectors is a sphere of
dimension n. This perfectly matches the symmetry of the underlying dynamical system. The state
space for 3 dimensional systems is illustrated in figure 6.5.

(a) Classical Mechanics State Space – the
probability simplex

(b) Quantum Mechanics State space – the
unit sphere

Figure 6.5: Illustration of the state space: Probability Simplex vs. Unit Sphere
.

6.3 Quantum Circuits
Prior to launching into a discussion of quantum mechanics in the context of dynamical system
models we take a short detour to introduce the concept of quantum circuits, a useful tool used
throughout the remainder of this chapter. Quantum Circuits provide a useful graphical language
for illustrating models involving quantum mechanics, in much the same way that graphical models
provide a useful graphical language for illustrating conditional independence assumptions in
classical mechanics. For this reason quantum circuits are ubiquitous in the quantum computing
literature, and we refer the reader to Nielsen and Chuang [86] for a more complete treatment. We
note that we use quantum circuits for d-dimensional quantum states, while traditionally quantum
circuits illustrate operations on 2-dimensional quantum states (‘qubits’).

Generally speaking, the boxes in a quantum circuit represent a bilinear unitary operation (or
matrix) on a density matrix, and the wire entering from the left represents the input, and the wire
exiting the right represents the output. A matrix Û that take multiple wires as input/output are
operating on a state space that is the tensor product of the state spaces of the inputs. A matrix û

106

that takes one wire as input while a parallel wire passes untouched can equivalently be written as
a matrix (I⊗ û) operating on the joint state space of the two inputs. Finally, note that while we
can always tensor two smaller state spaces to obtain a larger state space which we then operate on,
the reverse isn’t usually possible even though we may draw the wires separately, i.e., it may not
be possible to decompose the output of an operation on a larger state space into the smaller state
spaces. This is analogous to how distributions of two random variables can be tensored to obtain
the joint, but the joint can only be factored if the constituent variables are independent. These
examples are illustrated below.

ρ̂A
ρ̂B

(a) ρ̂A ⊗ ρ̂B = ρ̂AB if the two states start
off separable

ρ̂A
Û

ρ̂B

(b) Û(ρ̂A ⊗ ρ̂B)Û † = ρ̂′AB 6= ρ̂′A ⊗ ρ̂′b in
general

ρ̂A

ρ̂B û

(c) ρ̂A ⊗ ûρ̂Bû† = (I⊗ û) ˆρAB(I⊗ û)†

Figure 6.6: Simple quantum circuit operations

6.4 Quantum Graphical Models
In this section we connect the core concepts of classical mechanics (Joint Distribution, Marginal-
ization, Sum rule, chain rule, Bayes Rule) to the quantum mechanics setting. Once we have
established these connections we can use them to build quantum mechanical models for dynamical
systems. Our key assumption throughout this section is that that the density matrix is the quantum
analogue of a classical belief state. This work is extends earlier work by Srinivasan et al. [108].

Joint Distributions The joint distribution of an n-state variableA andm-state variableB can be
written as an nm×nm ‘joint density matrix’ ρ̂AB. WhenA andB are independent, ρ̂AB = ρ̂A⊗ ρ̂B .
As a valid density matrix, the diagonal elements represent probabilities corresponding to the states
in the Cartesian product of the basis states of the composite variables (so tr (ρ̂AB) = 1).

Marginalization Given a joint density matrix, we can recover the marginal ‘reduced density
matrix’ for a subsystem of interest with the ‘partial trace’ operation. This operation is the quantum
analogue of classical marginalization. For example, the partial trace for a two-variable joint
system ρ̂AB where we trace over the second particle to obtain the state of the first particle is:

ρ̂A = trB (ρ̂AB) =
∑
j

B〈j|ρ̂AB|j〉B (6.4)

Finally, we discuss the quantum analogues of the sum rule and Bayes rule. Consider a prior
π = P (X) and a likelihood P (Y |X) represented by the column stochastic matrix A. We can
then ask two questions: what are P (Y) and P (X|y)?

107

Sum Rule The classical answer to the first question involves multiplying the likelihood with
the prior and marginalizing out X , like so:

P (Y) =
∑
x

P (Y |x)P (x) (6.5)

= Aπ (6.6)

Srinivasan et al. [108] show how we can construct a quantum circuit to perform the classical
sum rule (illustrated in Figure 6.7a. First, recall that all operations on quantum states must be
represented by unitary matrices in order to preserve the 2-norm of the state. ρ̂env is an environment
‘particle’ always prepared in the same state that will eventually encode ρ̂Y : it is initially a matrix
with zeros everywhere except ρ̂1,1 = 1. Then, if the prior π is encoded in a density matrix ρ̂X ,
and the likelihood table A is encoded in a higher-dimensional unitary matrix, we can replicate
the classical sum rule. Letting the prior ρ̂X be any density matrix and Û1 be any unitary matrix
generalizes the circuit to perform the ‘quantum sum rule’. This circuit can be written as the
following operation (the unitary matrix produces the joint distribution, the partial trace carries out
the marginalization):

ρ̂Y = trX
(
Û1 (ρ̂X ⊗ ρ̂env) Û †1

)
(6.7)

Bayes Rule Classically, we perform Bayesian update as follows (where diag(A(:,y)) selects the
row of matrix A corresponding to observation y and stacks it along a diagonal):

P (X|y) =
P (y|X)P (X)∑

x(y|x)P (x)
(6.8)

=
diag(A(y,:))π

1Tdiag(A(y,:))π
(6.9)

The quantum circuit for Bayesian update presented by Srinivasan et al. [108] is shown in Figure
6.7b. It involves encoding the prior in ρ̂X as before, and encoding the likelihood table A in a
unitary matrix Û2. Applying the unitary matrix Û2 prepares the joint state ρ̂XY , and we apply a
von Neumann projection operator (denoted P̂y) corresponding to the observation y (the D-shaped
symbol in the circuit), to obtain the conditioned state ρ̂X|y in the first particle. The projection
operator selects the entries from the joint distribution ρ̂XY that correspond to the actual observation
y, and zeroes out the other entries, analogous to using an indicator vector to index into a joint
probability table. This operation can be written (denominator renormalizes to recover a valid
density matrix) as:

ρ̂X|y =
trenv

(
PyÛ2 (ρ̂X ⊗ ρ̂env) Û †2P †y

)
tr
(

trenv
(
PyÛ2 (ρ̂X ⊗ ρ̂env) Û †2P †y

)) (6.10)

However, there is an alternate quantum circuit that could implement Bayesian conditioning.
Consider re-writing the classical Bayesian update as a linear update as follows:

P (X|y) = (A · diag(π))T (diag (Aπ))−1 ey (6.11)

108

ρ̂X
Û1

ρ̂env ρ̂Y

(a) Quantum circuit
to compute P (Y)

ρ̂X
Û2

ρ̂X|y

ρ̂env

(b) Quantum circuit
to compute P (X|y)

ρ̂env
Ûπ

3

ρ̂X|y

ρ̂y

(c) Alternate circuit
to compute P (X|y)

Figure 6.7: Quantum-circuit analogues of conditioning in graphical models

where (A · diag(π))T yields the joint probability table P (X, Y), (diag (Aπ))−1 is a diagonal
matrix with the inverse probabilities 1

P (Y=y)
on the diagonal, serving to renormalize the columns

of the joint probability table P (X, Y). Thus, (A · diag(π))T (diag (Aπ))−1 produces a column-
stochastic matrix, and ey is just an indicator vector that selects the column corresponding to the
observation y. Then, just as the circuit in Figure 6.7a is the quantum generalization for Equation
6.6, we can use the quantum circuit shown in 6.7c for this alternate Bayesian update. Here,
ρ̂y encodes the indicator vector corresponding to the observation y, and Ûπ

3 is a unitary matrix
constructed using the prior π on X . Letting Ûπ

3 to be any unitary matrix constructed from some
prior on X would give an alternative quantum Bayesian update.

These are two different ways of generalizing classical Bayesian rule within quantum graphical
models. So which circuit should we use? One major disadvantage of the second approach is that
we must construct different unitary matrices Ûπ

3 for different priors on X (note that in figure 6.7
ρ̂X corresponds to the prior). The first approach also explicitly involves measurement, which is
nicely analogous to classical observation. As we will see in the next section, the two circuits are
different ways of performing inference in Hilbert space, with the first approach being equivalent
to Nadaraya-Watson kernel regression and the second approach being equivalent to kernel Bayes
rule for Hilbert space embeddings.

6.5 Translating to the language of Hilbert Space Embeddings

In the previous section, we generalized graphical models to quantum graphical models using the
quantum view of probability. And since quantum states live in complex Hilbert spaces, inference
in QGMs happens in Hilbert space. Here, we re-write the operations on QGMs in the language
of Hilbert space embeddings, which should be more familiar to the statistical machine learning
community.

6.5.1 Hilbert Space Embeddings

Previous work [103] has shown that we can embed probability distributions over a data domain
X in a reproducing kernel Hilbert space (RKHS) F – a Hilbert space of functions, with some
kernel k. The feature map φ(x) = k(x, ·) maps data points to the RKHS, and the kernel function
satisfies k(x, x′) = 〈φ(x), φ(x′)〉F . Additionally, the dot product in the Hilbert space satisfies the

109

reproducing property:

〈f(·), k(x, ·)〉F = f(x) (6.12)
〈k(x, ·), k(x′, ·)〉F = k(x, x′) (6.13)

Mean Embeddings

The following equations describe how a distribution of a random variable X is embedded as a
mean map [103], and how to empirically estimate the mean map from data points {x1, . . . , xn}
drawn i.i.d from P (X), respectively:

µX := EX [φ(X)] (6.14)

µ̂X =
1

n

n∑
i=1

φ(xi) (6.15)

Quantum Mean Maps We still take the expectation of the features of the data, except we
require that the feature maps φ(·) produce valid density matrices representing pure states (i.e.,
rank 1). Consequently, quantum mean maps have the nice property of having probabilities along
the diagonal. Note that these feature maps can be complex and infinite, and in the latter case, they
map to density operators. For notational consistency, we require the feature maps to produce
rank-1 vectorized density matrices (by vertically concatenating the columns of the matrix), and
treat the quantum mean map as a vectorized density matrix µX = ρX .

Cross-Covariance Operators

Cross-covariance operators can be used to embed joint distributions; for example, the joint
distribution of random variables X and Y can be represented as a cross-covariance operator (see
Song et al. [106] for more details):

CXY := EXY [φ(X)⊗ φ(Y)] (6.16)

Quantum Cross-Covariance Operators The quantum embedding of a joint distribution P (X, Y)
is a square mn ×mn density matrix ρ̂XY for constituent m ×m embedding of a sample from
P (X) and n×n embedding of a sample from P (Y). To obtain a quantum cross-covariance matrix
CXY , we simply reshape ρ̂XY to an m2 × n2 matrix, which is also consistent with estimating it
from data as the expectation of outer product of feature maps φ(·) that produce vectorized density
matrices.

6.5.2 Quantum Sum Rule as Kernel Sum Rule
We now re-write the quantum sum rule for quantum graphical models from Equation 6.7, in the
language of Hilbert space embeddings. Srinivasan et al. [108] showed that Equation 6.7 can be
written as ρ̂Y =

∑
i ViÛW ρ̂XW

†Û †V †i , where matrices W and V tensor with an environment
particle and partial trace respectively. Observe that a quadratic matrix operation can be simplified

110

to a linear operation, i.e., Û ρ̂Û † = reshape((Û∗ ⊗ Û)ρ) where ρ is the vectorized density matrix
ρ̂. Then:

µY =
∑
i

((
ViÛW

)∗
⊗
(
ViÛW

))
(6.17)

µX =

(∑
i

(
ViÛW

)∗
⊗
(
ViÛW

))
(6.18)

µX = AµX (6.19)

where A = (
∑

i(ViÛW)∗ ⊗ (ViÛW)). We have re-written the complicated transition update as a
simple linear operation, thoughA should have constraints to ensure the operation is valid according
to quantum mechanics. Specifically each operator should be sub-unitary, and the collection of
such operators should be normalized. Consider estimating A from data by solving a least squares
problem: suppose we have data (ΥX ,ΦY) where Φ ∈ Rd1×n,Υ ∈ Rd2×n are matrices of n
vectorized d1, d2-dimensional density matrices and n is the number of data points. Solving for A
gives us A = ΦY Υ†X(ΥXΥ†X)−1. But ΦY Υ†X = n · CY X where CY X = 1

n

∑n
i (µYi ⊗ µ†Xi). Then,

A = CY XC−1
XX , allowing us to re-write Equation 6.17 as:

µY = CY XC−1
XXµX (6.20)

But this is exactly the kernel sum rule from Song et al. [106], with the conditional embedding
operator CY |X = CY XC−1

XX . Thus, when the feature maps that produce valid (vectorized) rank-1
density matrices, the quantum sum rule is identical to the kernel sum rule. One thing to note is that
solving for A using least-squares needn’t preserve the quantum-imposed constraints; so either the
learning algorithm must force these constraints, or we project µY back to a valid density matrix.

Finite Sample Kernel Estimate We can straightforwardly adopt the kernelized version of the
conditional embedding operator from HSEs [106] (λ is a regularization parameter):

CY |X = Φ(Kxx + λI)−1Υ† (6.21)

where Φ = (φ(y1), . . . , φ(yn)), Υ = (φ(x1), . . . , φ(xn)), and K = Υ†Υ, and these feature maps
produce vectorized rank-1 density matrices. The data points in Hilbert space can be written as
µY = ΦαY and µX = ΥαX where α ∈ Rn are weights for the training data points, and the kernel
quantum sum rule is simply:

µY = CY |XµX ⇒ ΦαY = Φ(Kxx + λI)−1Υ†ΥαX ⇒ αY = (Kxx + λI)−1KxxαX (6.22)

6.5.3 Quantum Bayes Rule as Nadaraya-Watson Kernel Regression
Here, we re-write the Bayesian update for QGMs from Equation 6.10 in the language of HSEs.
First, we modify the quantum circuit in 6.7b to allow for measurement of a rank-1 density matrix
ρ̂y in any basis (see Appendix 6.A for details) to obtain the circuit shown in Figure 6.8, described
by the equation:

ρ̂X|y ∝ trenv
(

(I⊗ û)P (I⊗ û†)Û (ρ̂X ⊗ ρ̂env) Û †(I⊗ û†)†P †(I⊗ û)†
)

(6.23)

111

where û changes the basis of the environment variable to one in which the rank-1 density matrix
encoding the observation ρ̂Y is diagonalized to Λ – a matrix with all zeros except Λ1,1 = 1.
The projection operator will be P = (I ⊗ Λ), which means the terms (I ⊗ û)P (I ⊗ û†) =
(I⊗ û)(I ⊗ Λ)(I⊗ û†) = (I⊗ uΛu†) = (I⊗ ρ̂y), allowing us to rewrite Equation 6.23 as:

ρ̂X|y ∝ trenv
(

(I⊗ ρ̂y)Û (ρ̂X ⊗ ρ̂env) Û †(I⊗ ρ̂y)†
)

(6.24)

Let us break this equation into two steps:

ρ̂XY = Û (ρ̂X ⊗ ρ̂env) Û † = ÛW ρ̂XW
†Û †

ρ̂X|y =
trenv

(
(I⊗ ρ̂y)ρ̂XY (I⊗ ρ̂y)†

)
tr (trenv ((I⊗ ρ̂y)ρ̂XY (I⊗ ρ̂y)†))

(6.25)

ρ̂X
Û

ρ̂X|y

ρ̂env û† û

Figure 6.8: Quantum circuit to compute posterior P (X|y)

Now, we re-write the first expression in the language of HSEs. The quadratic matrix operation
can be re-written as a linear operation by vectorizing the density matrix as we did in Section
6.5.2: µXY = ((ÛW)∗ ⊗ (ÛW))µX . But for µX ∈ Rn2×1, W ∈ Rns×n, and Û ∈ Cns×ns

this operation gives µXY ∈ Rn2s2×1, which we can reshape into an n2 × s2 matrix CπXXY (the
superscript simply indicates the matrix was composed from a prior on X). We can then directly
write CπXXY = B ×3 µX , where B is ((ÛW)∗ ⊗ (ÛW)) reshaped into a three-mode tensor and ×3

represents a tensor contraction along the third mode. But, just as we solved A = CY XC−1
XX in

Section 6.5.2 we can estimate B = C(XY)XC−1
XX = CXY |X as a matrix and reshape into a 3-mode

tensor, allowing us to re-write the first step in Equation 6.25 as:

CπXXY = C(XY)XC−1
XXµX (6.26)

= CXY |X ×3 µX (6.27)

Now, to simplify the second step, observe that the numerator can be rewritten to get µX|y ∝
CπXXY

(
ρ̂Ty ⊗ ρ̂y

)
t, where t is a vector of 1s and 0s that carries out the partial trace operation. But,

for a rank 1 density matrix ρ̂y, this actually simplifies further:

µX|y ∝ CπXXY ρy (6.28)

=
(
CXY |X ×3 µX

)
ρy (6.29)

One way to renormalize µX|y is to compute
(
CXY |X ×3 µX

)
ρy and reshape it back into a density

matrix and divide by its trace. Alternatively, we can rewrite this operation using a vectorized
identity matrix I that carries out the full trace in the denominator to renormalize as:

µX|y =

(
CXY |X ×3 µX

)
ρy

IT
(
CXY |X ×3 µX

)
ρy

(6.30)

112

Finite Sample Kernel Estimate We kernelize these operations as follows (where φ(y) = ρy):

µX|y =
Υ · diag (αX) · ΦTφ(y)

ITΥ · diag (αX) · ΦTφ(y)
(6.31)

=

∑
i Υi (αX)i k(yi, y)∑
j (αX)j k(yj, y)

(6.32)

= Υα
(X)
Y (6.33)

where (α
(X)
Y)i =

(αX)ik(yi,y)∑
j(αX)jk(yj ,y)

, and ITΥ = 1T since Υ contains vectorized density matrices,
and I carries out the trace operation. As it happens, this method of estimating the conditional
embedding µX|y is equivalent to performing Nadaraya-Watson kernel regression [84, 118] from
the joint embedding to the kernel embedding. Note that this result only holds for the kernels
satisfying Equation 4.22 in Wasserman [117]; importantly, the kernel function must only output
positive numbers. One way to enforce this is by using a squared kernel; this is equivalent to a
2nd-order polynomial expansion of the features or computing the outer product of features. Our
choice of feature map produces density matrices (as the outer product of features), so their inner
product in Hilbert space is equivalent to computing the squared kernel, and this constraint is
satisfied.

6.5.4 Quantum Bayes Rule as Kernel Bayes Rule
As we discussed at the end of Section 6.4, Figure 6.7c is an alternate way of generalizing Bayes
rule for QGMs. But following the same approach of rewriting the quantum circuit in the language
of Hilbert Space embeddings as in Section 6.5.2, we get exactly Kernel Bayes Rule [106]:

µX|y = CπXY (CπY Y)−1φ(y) (6.34)

The relationship between Bayes Rule, Quantum Bayes Rule, and Kernel Bayes Rule is
illustrated in figure 6.9

What we have shown thus far As promised, we see that the two different but valid ways
of generalizing Bayes rule for QGMs affects whether we condition according to Kernel Bayes
Rule or Nadaraya-Watson kernel regression. However, we stress that conditioning according
to Nadaraya-Watson is computationally much easier; the kernel Bayes rule given by Song et al.
[106] using Gram matrices is written:

µ̂X|y = ΥDKyy((DKyy)
2 + λI)−1DK:y (6.35)

where D = diag((Kxx + λI)−1KxxαX). Observe that this update requires squaring and inverting
the Gram matrix Kyy – an expensive operation. By contrast, performing Bayesian update using
Nadaraya-Watson as per Equation 6.31 is straightforward. This is one of the key insights of this
paper; showing that Nadaraya-Watson kernel regression is an alternate, valid, but simpler way
of generalizing Bayes rule to Hilbert space embeddings. We note that interpreting operations on
QGMs as inference in Hilbert space is a special case; if the feature maps don’t produce density

113

Figure 6.9: The relationship between Bayes Rule, Kernel Bayes Rule, and Quantum Bayes Rule.
Quantum Bayes Rule and Kernel Bayes Rule both generalize bayes rule. Quantum Bayes Rule is
obtained from Bayes by representing uncertainy using Quantum Mechanics via density matrices.
Kernel Bayes Rule is obtained from Bayes Rule by embedding our probability distributions in an
RKHS. Kernel Bayes Rule and Quantum Bayes rule are equivalent.

matrices, we can still perform inference in Hilbert space using the quantum/kernel sum rule,
and Nadaraya-Watson/kernel Bayes rule, but lose the probabilistic interpretation of a quantum
graphical model.

6.6 HSE-HQMMs

We now consider mapping data to vectorized density matrices and modeling the dynamics in
Hilbert space using a specific quantum graphical model – hidden quantum Markov models
(HQMMs). The quantum circuit for HQMMs is shown in Figure 6.10 [108].

ρ̂t−1

Û1
ρ̂Xt

Û2

ρ̂t

ρ̂Yt û† û

Figure 6.10: Quantum Circuit for HSE-HQMM

We use the outer product of random Fourier features (RFF) [92] (which produce a valid
density matrix) to map data to a Hilbert space. Û1 encodes transition dynamics, Û2 encodes
observation dynamics, and ρ̂t is the density matrix after a transition update and conditioning
on some observation. The transition and observation equations describing this circuit (with

114

ÛI = I⊗ û†) are:

ρ̂′t = trρ̂t−1

(
Û1 (ρ̂t−1 ⊗ ρ̂Xt) Û †1

)
(6.36)

ρ̂t ∝ trYt
(
ÛIPyÛ

†
I Û2 (ρ̂′t ⊗ ρ̂Yt) Û †2 ÛIP †y Û †I

)
(6.37)

As we saw in the previous section, we can rewrite these in the language of Hilbert Space
embeddings:

µ′xt = (Cxtxt−1C−1
xt−1xt−1

)µxt−1 (6.38)

µt =
(Cxtyt|xt ×3 µ

′
xt)φ(yt)

IT (Cxtyt|xt ×3 µ′xt)φ(yt)
(6.39)

And the kernelized version of these operations (where Υ = (φ(x1), . . . , φ(xn)) is (see appendix):

α′xt = (Kxt−1xt−1 + λI)−1Kxt−1xtαxt−1 (6.40)

αxt =

∑
i Υi

(
α′xt
)
i
k(yi, y)∑

j

(
α′xt
)
j
k(yj, y)

(6.41)

It is also possible to combine the operations setting Cxtyt|xt−1 = Cxtyt|xtCxtxt−1C−1
xt−1xt−1

to
write our single update in Hilbert space:

µxt =
(Cxtyt|xt−1 ×3 µxt−1)φ(yt)

IT (Cxtyt|xt−1 ×3 µxt−1)φ(yt)
(6.42)

Making Predictions As discussed in Srinivasan et al. [108], conditioning on some discrete-
valued observation y in the quantum model produces an unnormalized density matrix whose
trace is the probability of observing y. However, in the case of continuous-valued observations,
we can go further and treat this trace as the unnormalized density of the observation yt, i.e.,
fY (yt) ∝ IT (Cxtyt|xt−1 ×3 µ

′
t−1)φ(yt) – the equivalent operation in the language of quantum

circuits is the trace of the unnormalized ρ̂t shown in Figure 6.10. A benefit of building this model
using the quantum formalism is that we can immediately see that this trace is bounded and lies in
[0, 1]. It is also straightforward to see that a tighter bound for the unnormalized densities is given
by the largest and smallest eigenvalues of the reduced density matrix ρ̂Yt = trXt(ρ̂XtYt) where
ρ̂XtYt is the joint density matrix after the application of Û2.

To make a prediction, we sample from the convex hull of our training set, compute densities
as described, and take the expectation to make a point prediction. This formalism is potentially
powerful as it lets us maintain a whole distribution over the outputs (e.g. Figure 6.12), instead of
just a point estimate for the next prediction as with LSTMs. A deeper investigation of the density
estimation properties of our model would be an interesting direction for future work.

Learning HSE-HQMMs We estimate model parameters using 2-stage regression (2SR) [59],
and refine them using back-propagation through time (BPTT). With this approach, the learned
parameters are not guaranteed to satisfy the quantum constraints, and we handle this by projecting
the state back to a valid density matrix at each time step. Details are given in Algorithm 3

115

Algorithm 3 Learning Algorithm using Two-Stage Regression for HSE-HQMMs
Input: Data as y1:T = y1, ...,yT
Output: Cross-covariance matrix Cxtyt|xt−1

, can be reshaped into 3-mode tensor for prediction
1: Compute features of the past (h), future (f), shifted future (s) from data (with window k):

ht ← h(yt−k:t−1)

ft ← f(yt:t+k)

st ← f(yt+1:t+k+1)

2: Project data and features of past, future, shifted future into RKHS using random Fourier features of
desired kernel (feature map φ(·)) to generate quantum systems:

|y〉t ← φy(yt)

|h〉t ← φh(ht)

|f〉t ← φf (ft)

|s〉t ← φf (st)

Construct density matrices in the RKHS and vectorize them:

ρ
(y)
t ← vec (|y〉t〈y|t)
ρ

(h)
t ← vec (|h〉t〈h|t)
ρ

(f)
t ← vec (|f〉t〈f |t)
ρ

(s)
t ← vec (|s〉t〈s|t)

3: Compose matrices whose columns are the vectorized density matrices, for each available time-step
(accounting for window size k), denoted Φy, Υh, Υf , and Υs respectively.

4: Obtain extended future via tensor product ρ(s,y)
t ← ρ

(s)
t ⊗ ρ

(y)
t and collect into matrix Γs,y.

5: Perform Stage 1 regression

Cf |h ← ΥfΥ†h

(
ΥhΥ†h + λ

)−1

Cs,y|h ← Γs,yΥ
†
h

(
ΥhΥ†h + λ

)−1

6: Use operators from stage 1 regression to obtain denoised predictive quantum states:

Υ̃f |h ← Cf |hΥh

Γ̃s,y|h ← Cs,y|hΥh

7: Perform Stage 2 regression to obtain model parameters

Cxtyt|xt−1
← Γ̃s,y|hΥ̃†f |h

(
Υ̃f |hΥ̃†f |h + λ

)−1

116

6.7 Connections with PSRNNs
As a reminder, the PSRNN update equation is:

ωt =
W ×3 ωt−1 ×2 φ(yt)

||W ×3 ωt−1 ×2 φ(yt)||F
(6.43)

where W is a three mode tensor corresponding to the cross-covariance between observations
and the state at time t conditioned on the state at time t − 1, and ω is a factorization of a p.s.d
state matrix µt = ωωT (so renormalizing ω by Frobenius norm is equivalent to renormalizing µ
by its trace). There is a clear connection between PSRNNs and the HSE-HQMMs; this matrix
µt is what we vectorize to use as our state µt in HSE-HQMMs, and both HSE-HQMMs and
PSRNNs are parameterized (in the primal space using RFFs) in terms of a three-mode tensor
(W for PSRNNs and (Cxtyt|xt−1 for HSE-HQMMs). We also note that while PSRNNs modified
kernel Bayes rule (from Equation 6.34) heuristically, we have shown that this modification can be
interpreted as a generalization of Bayes rule for QGMs or Nadaraya-Watson kernel regression.
One key difference between these approaches is that we directly use states in Hilbert space to
estimate the probability density of observations; in other words HSE-HQMMs are a generative
model. By contrast PSRNNs are a discriminative model which rely on an additional ad-hoc
mapping from states to observations.

6.8 Experiments
We use the following datasets in our experiments:
• Penn Tree Bank (PTB) [80]. We train a character-prediction model with a train/test split

of 120780/124774 characters due to hardware limitations.
• Swimmer Simulated swimmer robot from OpenAI gym1. We collect 25 trajectories from a

robot that is trained to swim forward (via the cross entropy with a linear policy) with a 20/5
train/test split. There are 5 features at each time step: the angle of the robots nose, together
with the 2D angles for each of it’s joints.
• Mocap Human Motion Capture Dataset. We collect 48 skeletal tracks from three human

subjects with a 40/8 train/test split. There are 22 total features at each time step: the 3D
positions of the skeletal parts (e.g., upper back, thorax, clavicle).

We compare the performance of three models: HSE-HQMMs, PSRNNs, and LSTMs. We
initialize PSRNNs and HSE-HQMMs using Two-Stage Regression (2SR) [44] and LSTMs using
Xavier Initialization and refine all three models using Back Propagation Through Time (BPTT).
We optimize and evaluate all models on Swimmer and Mocap with respect to the Mean Squared
Error (MSE) using 10 step predictions as is conventional in the robotics community. This means
that to evaluate the model we perform recursive filtering on the test set to produce states, then use
these states to make predictions about observations 10 steps in the future. We optimize all models
on PTB with respect to Perplexity (Cross Entropy) using 1 step predictions, as is conventional
in the NLP community. As we can see in Figure 6.11, HSE-HQMMs outperform both PSRNNs

1https://gym.openai.com/

117

https://gym.openai.com/

and LSTMs on the swimmer dataset, and achieve comparable performance to the best alternative
on Mocap and PTB. Hyperparameters and other experimental details can be found in Appendix
6.C. One important point to note is that LSTMs and PSRNNs are both point-prediction models,

Figure 6.11: Performance of HSE-HQMM, PSRNN, and LSTM on Mocap, Swimmer, and PTB

while HSE-HQMMs are generative models which maintain a full probability distribution over
all possible observations. This means that this experiment actually disadvantages HSE-HQMMs
as we are asking them to perform a task which other two models are optimized to solve, without
taking into account the additional benefits offer by HSE-HQMMs (i.e. the ability to predict
multiple models, relative confidence of solution, etc.). This is particularly the case on PTB, where
we are building a continuous probability distribution over a discrete observation space when using
HSE-HQMMs. Therefore these results are extremely promising, as they show that we can build
fully principled models which also offer good point predictions.

Visualizing Probability Densities As mentioned previously, HSE-HQMMs can maintain a
probability density function over future observations, and we visualize this for a model trained on
the Mocap dataset in Figure 6.12. We take the 22 dimensional joint density and marginalize it to
produce three marginal distributions, each over a single feature. We plot the resulting marginal
distributions over time using a heatmap, and superimpose the ground-truth and model predictions.
We observe that BPTT (second row) improves the marginal distribution. Another interesting
observation, from the the last ∼30 timesteps of the marginal distribution in the top-left image, is

118

that our model is able to produce a bi-modal distribution with probability mass at both yi = 1.5
and yi = −0.5, without making any parametric assumptions. This kind of information is difficult
to obtain using a discriminative model such as a LSTM or PSRNN.

Figure 6.12: Heatmap Visualizing the Probability Densities generated by our HSE-HQMM model.
Red indicates high probability, blue indicates low probability, x-axis corresponds to time, y-axis
corresponds to the feature value. Each column corresponds to the predicted marginal distribution
of a single feature changing with time. The first row is the probability distribution after 2SR
initialization, the second row is the probability distribution after the model in row 1 has been
refined via BPTT.

6.9 Related Work
Various formulations of Quantum Graphical Models (QGMs) have been proposed by researchers
in physics and machine learning [77, 108, 122] as a way of generalizing probabilistic inference
on graphical models by adopting quantum mechanics’ formalism for reasoning about uncertainty.
While Srinivasan et al. [108] focused on modeling dynamical systems with Hidden Quantum
Markov Models (HQMMs) [83], they also describe the basic operations on general quantum
graphical models, which generalize Bayesian reasoning within a framework consistent with
quantum mechanical principles. Inference using Hilbert space embeddings (HSE) is also a
generalization of Bayesian reasoning, where data is mapped to a Hilbert space in which kernel
sum, chain, and Bayes rules can be used [103, 105, 106]. These methods can model dynamical
systems such as HSE-HMMs [104], HSE-PSRs [26], and PSRNNs [44]. [98] present related but
orthogonal work connecting kernels, Hilbert spaces, and quantum computing.

In the work most closely related to ours Srinivasan et al. [108] present a maximum-likelihood
learning algorithm to estimate the parameters of a HQMM from data. However, it is very limited
in its scope; the algorithm is slow and doesn’t scale for large datasets. In this paper, we leverage

119

connections to HSEs, kernel methods, and RFFs to achieve a more practical and scalable learning
algorithm for these models. However, one difference to note is that the algorithm presented
by Srinivasan et al. [108] guaranteed that the learned parameters would produce valid quantum
operators, whereas our algorithm only approximately produces valid quantum operators; we will
need to project the updated state back to the nearest quantum state to ensure that we are tracking a
valid quantum system.

6.10 Conclusions
We explored the connections between QGMs and HSEs, and showed that the sum rule and Bayes
rule in QGMs is equivalent to kernel sum rule and a special case of Nadaraya-Watson kernel
regression. We proposed HSE-HQMMs to model dynamics, and showed experimentally that
these models are competitive with LSTMs and PSRNNs on making point predictions, while also
being a nonparametric method for maintaining a probability distribution over continuous-valued
features. Looking forward, we note that our experiments only consider real kernels/features, so
we are not utilizing the full complex Hilbert space; it would be interesting to investigate whether
incorporating complex numbers improves our model. Additionally, by estimating parameters
using least-squares, the parameters only approximately adhere to quantum constraints. The final
model also bears strong resemblance to PSRNNs [44]. It would be interesting to investigate both
what happens if we are stricter about enforcing quantum constraints, and if we give the model
greater freedom to drift from the quantum constraints. Finally, the density estimation properties
of the model are also an avenue for future exploration.

120

6.A Modifying the Quantum Circuit for Bayes rule
In Figure 6.7b, an assumption in the way the observation update is carried out is that the mea-
surement on ρ̂Y is carried out in the same basis that the unitary operator Û is performed. When
using a HQMM to explicitly model some number of discrete observations, this is fine, since each
observation is a basis state, and we always measure in this basis. However, in the general case, we
may wish to account for measuring ρ̂Y in any basis. To do this, we get the eigendecomposition of
ρ̂Y , so that uΛu† = ρ̂Y (the eigenvectors of ρ̂Y will form a unitary matrix). We only need to rotate
ρ̂Y into the ‘correct’ basis before measurement; we can leave ρ̂X|y unchanged. This new, general
observation is implemented by the circuit in 6.8. The final û is not strictly necessary; since it
has no effect on the first particle, which stores ρ̂X|y, which is ultimately what we’re interested in.
However, including it allows us to simplify the update rule.

6.B Kernelizing HSE-HQMMs
Here we derive the kernel embedding update for HSE-HQMMs as given in Equation 6.41. The
observation update follows directly from the Nadaraya-Watson kernel regression given in Equation
6.31. The transition update comes from a recursive application of the quantum sum rule given in
Equation 6.21. Let Υ = (φ(x

(1)
t−1), φ(x

(2)
t−1), . . . , φ(x

(n)
t−1)) and Φ = (φ(x

(1)
t), φ(x

(2)
t), . . . , φ(x

(n)
t)).

Starting with µ̂t−1 = Υαt−1 using the kernel sum rule recursively twice with CXt|Xt−1 =
Φ(Kxt−1xt−1 + λI)−1Υ†, we get:

µ̂t+1 = CXt|Xt−1CXt|Xt−1µ̂t−1

⇒ Φαt+1 = Φ(Kxt−1xt−1 + λI)−1Υ†Φ(Kxt−1xt−1 + λI)−1Υ†Υαt−1

⇒ αt+1 = (Kxt−1xt−1 + λI)−1Kxt−1xt(Kxt−1xt−1 + λI)−1Kxt−1xt−1αt−1

(6.44)

If we break apart this two-step update to update for a single time-step, starting from αt−1 we can
write α′t = (Kxt−1xt−1 + λI)−1Kxt−1xtαt−1.

121

6.C Experimental Details

6.C.1 State Update
Given HSE-HQMM model parameters consisting of the 3-mode tensor Cxtyt|xt−1 , current state µxt
and observation in Hilbert space φ(yt) we perform filtering to update the state as follows:

µxt+1 =
(
Cxtyt|xt−1 ×3 µxt

)
φ(yt) (6.45)

where A×c b corresponds to tensor contraction of tensor A with vector b along mode c. In our
case this means performing tensor contraction of Cxtyt|xt−1 with the current state and observation
along the appropriate modes.

6.C.2 Prediction
Given HSE-HQMM model parameters consisting of the 3-mode tensor Cxtyt|xt−1 and current state
µxt we can estimate the probability density of an observation yt (up to normalization) as follows:

fY (yt) = IT ((Cxtyt|xt−1 ×3 µxt)φ(yt) (6.46)

If we want to make a point prediction from our model (in order to calculate the mean squared
error, etc) we can use the mean E[yt|xt]. In practice we approximate this quantity using a sample
y1:n:

E[yt|xt] =
1

n

n∑
i=1

yifY (yi) (6.47)

6.C.3 Pure State HSE-HQMMs
In our experiments we use a HSE-HQMM consisting of a single pure state, as opposed to the
full density matrix formalism. Using a single pure state is a special case of the general (mixed
state) HSE-HQMM, and allows the model to be efficiently implemented. The learning algorithm
modified for a pure state is shown in Algorithm 4.

6.C.4 Parameter Values
Hyperparameter settings can be found in table 6.1. Some additional details: In two-stage regression
we use history (future) features consisting of the past (next) 10 observations as one-hot vectors
concatenated together. We use a ridge-regression parameter of 0.05 (this is consistent with the
values suggested in Boots et al. [27], Downey et al. [44]). The kernel width is set to the median
pairwise (Euclidean) distance between neighboring data points. We use a fixed learning rate of
0.1 for BPTT with a BPTT horizon of 20.

122

Algorithm 4 Learning Algorithm using Two-Stage Regression for Pure State HSE-HQMMs
Input: Data as y1:T = y1, ...,yT
Output: Cross-covariance matrix Cxtyt|xt−1 , can be reshaped to 3-mode tensor for prediction

1: Compute features of the past (h), future (f), shifted future (s) from data (with window k):

ht = h(yt−k:t−1) ft = f(yt:t+k) st = f(yt+1:t+k+1)

2: Project data and features of past, future, shifted future into RKHS using random features of
desired kernel (feature map φ(·)) to generate quantum systems:

|y〉t ← φy(yt) |h〉t ← φh(ht) |f〉t ← φf (ft) |s〉t ← φf (st)

3: Compose matrices whose columns are |y〉t, |h〉t, |f〉t, |s〉t for each available time-step
(accounting for window size k), denoted Φy, Υh, Υf , and Υs respectively.

4: Obtain extended future via tensor product |s,y〉t ← |s〉t ⊗ |y〉t and collect into matrix Γs,y.
5: Perform Stage 1 regression

Cf |h ← ΥfΥ
†
h

(
ΥhΥ

†
h + λ

)−1

Cs,y|h ← Γs,yΥ
†
h

(
ΥhΥ

†
h + λ

)−1

6: Use operators from stage 1 regression to obtain denoised predictive quantum states:

Υ̃f |h ← Cf |hΥh

Γ̃s,y|h ← Cs,y|hΥh

7: Perform Stage 2 regression to obtain model parameters

Cxtyt|xt−1 ← Γ̃s,y|hΥ̃
†
f |h

(
Υ̃f |hΥ̃

†
f |h + λ

)−1

123

Parameter Value
Kernel Gaussian
Kernel Width Median Neighboring Pairwise Distance
Number of Random Fourier Features 1000
Prediction Horizon 10
Batch Size 20
State Size 20
Max Gradient Norm 0.25
Number of Layers 1
Ridge Regression Regularizer 0.05
Learning Rate 0.1
Learning algorithm Stochastic Gradient Descent (SGD)
Number of Epochs 50
BPTT Horizon 20

Table 6.1: Hyperparameter values used in experiments

124

Part IV

Scalable Implementations

125

Chapter 7

Sketching for Predictive State Methods

In Chapter 5 and Chapter 6 we introduced PSRNNs and HSE-HQMMs, two models which unify
Bayes Filters with Recurrent Neural Networks. We showed that these models possess many
attractive theoretical properties, and also perform well on a variety of real world data sets.

Unfortunately both models as currently described possess a significant weakness: They do
not scale well to large state spaces. To see why note that both PSRNNs and HSE-HQMMs are
parameterized using three-mode tensors, hence they require O(d3) space, where d is the size of
the state vector. In Chapter Section 5.4 we suggested a partial solution to this problem by using
tensor CP decomposition to factorize the 3-mode parameter tensors into low rank components,
reducing the size of the model from O(d3) to O(Kd). Unfortunately this approach is only a partial
solution, as such models cannot be learned directly using 2SR in its current form. At present the
only way to obtain a factorized model is to first learn the full tensor, then subsequently perform a
costly tensor decomposition. In other words the final model we obtain is small, but the cost of
obtaining it actually increases. If factorized models are to be of practical value for solving large
scale problems, we require a new formulation of 2SR which directly learns a factorized model
from data without being forced to compute the full model as an intermediate quantity.

We propose a solution to this problem using the recently developed concept of tensor sketching.
A tensor sketch maintains a “sketch” or summary of a tensor, similar to how we might compress
an image. The key difference between tensor sketch and alternative compression techniques (such
as random projections) is that many tensor operations can be performed directly on the sketched
tensors without reconstructing the full tensor. Tensor sketches are particularly useful in the context
of moment tensors (such as the tensors used in PSMs). In this setting we can compute a sketch
of the moment tensor as a simple function of the individual data points. We can then perform
operations such as tensor decomposition on the sketched moment tensor to recover the tensor
decomposition.

We present Sketched 2SR, a new formulation of 2SR which uses tensor sketches, combined
with tensor power iteration, to directly learn a factorized PSRNN from data. Sketched 2SR
requires only O(d) space and O(d2) time, compared with 2SR which requires O(d3) space and
O(d4) time.

For the remainder of this section we will focus on PSRNNs, in order to have a concrete
example to use for developing a sketched version of 2SR. Note that while we focus on PSRNNs,
this work is generally applicable to the entire class of predictive state models.

127

7.1 Tensor Sketch

Tensor sketching [90] is a compression algorithm specifically designed for tensors. Tensor
sketching allows us to convert large tensors into compact summaries or sketches which preserve
certain information.

The tensor sketch is an extension of the count sketch algorithm [42] for compressing vectors.
To hash a vector of dimensionality d, count sketch utilizes two pairwise independent hash functions
h : [d] 7→ [b] and ζ : [d] 7→ {±1}. A d dimensional vector x is hashed into a b dimensional vector
sx such that

sx[i] =
∑

j:h(j)=i

ζ(j)xj. (7.1)

Thus, the sketch of a vector can be computed in O(d) time. The above construction leads to
high-variance reconstructions on its own, so we repeat it, computing multiple hash functions and
using the median of the estimated inner products to increase robustness.

We can approximately reconstruct elements of a sketched vector by taking an inner product
with the corresponding indicator vector:

xi ≈ 〈sx, sei〉 = ζ(i)sx[h(i)]

We note that count sketching is a linear operation, an observation which will be important later.
We also note that count sketching is a lossy compression algorithm – we cannot recover the
original vector, we can only recover an approximation.

Tensor sketch extends the count sketch from vectors to arbitrary tensors as follows. To sketch
a tensor A ∈ Rd1,...,dn into a vector of length b we select hash functions {h1, ..., hn} where
hi : [di] → Z and ζ1, ..., ζn where ζi : [di] → {±1}. Using these we define two new hash
functions h() and ζ(), where h() maps locations in the tensor to locations in the sketch, and ζ()
maps locations in the tensor to {±1}:

h(i1, ..., in) =

(∑
j

hj(ij)

)
mod b (7.2)

ζ(i1, ..., in) =
∏

ζj(ij) (7.3)

Therefore the sketch of tensor A ∈ Rd1,...,dn is defined as:

sA[j] =
∑

i1,...,in:h(i1,...,in)=j

ζ(i1, ..., in)Ai1,...,in . (7.4)

The main advantage of constructing tensor sketches in this particular way is that it allows
for efficient sketching of rank-1 tensors. If tensor as is rank-1 it can be factorized into vectors
ai, ..., an such that:

A = ai ⊗ ...⊗ an

128

Suppose we have access to the factors a1, ..., an. Then we can construct the sketch of A using
a1, ..., an by convolving the sketches of its factors:

sA = sa1 ∗ ... ∗ san (7.5)
= F−1 (F(sa1) ◦ ... ◦ F(san)) (7.6)

where F denotes the fourier transform. This computation can be performend in O(b log(b) time,
as opposed to sketching the original tensor which requires O(

∏
di) time. Furthermore because

sketching is a linear operation we can use this same technique to efficiently sketch factorized
tensors, which are simply sums of rank-1 tensors.

The key advantage of tensor sketch over alternative compression algorithms is that tensor
sketch preserves the inner product between tensors in expectation. In other words:

E[〈sx, sy〉] = 〈x, y〉, Var[〈sx, sy〉] = O(
|〈sx, sy〉|2

b
). (7.7)

For a single copy; with n copies the variance scales as:

E[〈sx, sy〉] = 〈x, y〉, Var[〈sx, sy〉] = O(
|〈sx, sy〉|2

nb
).

This means that many tensor operations, including tensor contractions, are also approximately
preserved:

A(a1, ..., an) ≈ 〈sA, sa1 ∗ ... ∗ san , s〉T (I,b,c) ≈ 〈st, sei ∗ sb ∗ sc〉 (7.8)

Furthermore for a 3-mode tensor we can sketch partial contraction:

sA(I,b,c) ≈ F−1
(
F(sA) ◦ ¯F(sb) ◦ ¯F(sc)

)
(7.9)

7.2 Sketched Two-Stage Regression
As a reminder (one layer) PSRNNs are parameterized by a single 3-mode tensor W which is used
to update the state qt:

qt+1 = W (qt, ot, I)/||W (qt, ot, I)|| (7.10)

Suppose we are given a training dataset of tuples of the form (ht, ot, ψt) for t = 1, .., T .
Two-stage regression for learning PSRNNs (using ordinary least squares for stage 1B) first uses
ridge regression to compute a matrix W1 such that:

ψ̂t = E[ψt | ht] (7.11)
= W1ht (7.12)

We then use ψ̂t to estimate W:

W = M3((M2 + λI)−1, I, I) (7.13)

129

where:

M3 =
T∑
t=1

ψ̂t ⊗ ot ⊗ ψ̂t+1 (7.14)

M2 =
T∑
t=1

ψ̂t × ψ̂t (7.15)

Equation 7.13 can be understood as reshaping M3 into a matrix with dim ψ̂t rows and dim ot ×
dim ψ̂t+1 columns, then pre-multiplying it by (M2+λI)−1. Given T training examples, computing
M3 requires O(Tp3) where p is the dimension of features. We need O(p4) time to compute W
via 7.13. We also require O(p3) space to store both W and M3. We now show how to compute
a sketch of W using only sketched quantities. We can then use that sketch to reconstruct a CP
decomposition of W . This will be faster; analysis below.

From (7.14) and (7.13) we can rewrite W as follows

W =
∑
t

((M2 + λI)−1W1ht)⊗ ot ⊗ ψt+1 (7.16)

We note that each term in Equation 7.16 is either a sum of rank-1 tensors, or a tensor contraction.
This means we can efficiently compute a sketch of W by first sketching the components, then
combining them using Equation 7.6. Computing a sketch of W in this way requires three passes
through the training data, as shown in Algorithm 5. For simplicity, the algorithm assumes a single
sketch is used but can easily be extended to B sketches.

Algorithm 5 Sketching the parameter tensor W

Input:
• Training examples {(ht, φot , ψt)}Tt=1

• Hash functions ({hm, ζm}3
m=1)

• S1 regularization λ1

• S2 regularization λ2

Output:Parameter tensor sketch sW ∈ Rb.
1: // Stage 1 Regression
2: W1 ← (

∑
t ψt ⊗ ht)(

∑
t ht ⊗ ht + λ1I)

3: // Stage 2 Regression
4: M2 ←

∑T
t=1(W1ht)⊗ (W1ht)

5: sW ← 0
6: for t = 1 to T − 1 do
7: a← (M2 + λ2I)−1W1ht, b← ot, c← ψt+ 1

8: sW ← sW + F−1(F(s
(1)
a) ◦ F(s

(2)
b) ◦ F(s

(3)
c))

9: end for

The following proposition shows the time and space complexities of Algorithm 5.

130

Proposition 32. Assume that all feature vectors are of dimension p and that we use B sketches of
size b each. Then, for T training examples, Algorithm 5 has a time complexity of O(p3 + T [p2 +
Bp+ Bb log b]) and a space complexity of O(p2 + Bb).

Proof. ComputingM2 requiresO(Tp2) time. ComputingW1 as well as (M2 +λ2I)−1W1 requires
O(p3). Finally, to compute sW we repeat the following for each example t: Matrix-vector
product to compute a [O(p2)], computing the sketches [O(Bp)], and performing convolution
[O(Bb log b)].

The space complexity is the sum of the sizes of M2 and similar matrices [O(p2)] and the
sketches [O(Bb)].

Compared to the O(d4 + Td3) time and O(d3) memory when learning W directly, Algorithm
5 can result in significant gains for large values of d.

7.2.1 Tensor Sketch as PSRNN Parameters
Having shown that it is possible to efficiently obtain a sketch of W from data, we now discuss
how to use it to obtain a functional model. One obvious approach is to maintain a sketch of both
the state qt and the parameter tensor W and update the state using sketched tensor contraction.
We note that it is still possible to perform BPTT when using sketched quantities as sketching is
a linear (and hence differentiable) operation. However, initial experiments have shown that this
approach results in poor PSRNN performance. As we demonstrate in 7.3, this can be attributed to
the fact that, while tensor sketches provide a decent approximation when used inside of a tensor
decomposition algorithm, the approximation quality for general tensor contraction can be very
poor. We conjecture that tensor power iteration tends to correct errors because of contractive
iteration. We propose an alternative approach, where we use a sketch ofW to compute a factorized
PSRNN which does not use sketches. As a reminder, if we factorize W =

∑
i ai ⊗ bi ⊗ ci we can

write the PSRNN update equation as:

qt+1 =
C>(Aqt ◦Bot)
||C>(Aqt ◦Bot)||

(7.17)

which is referred to as a factorized PSRNN. Our approach involves using the sketch of W to
compute an approximate CP decomposition of the full W. To do this we use a modification of
alternating least squares to tensor-decompose W directly from its sketch.

Experimental results suggest that this approach is not subject to the limitations of the naive
approach and can be used to obtain a practical model. We currently lack a rigorous theoretical
explanation for this result, however we conjecture it is due to alternating least squares acting as a
denoising procedure.

7.2.2 Hybrid ALS with Deflation
Wang et al. [116] proposed a CP decomposition method based on alternating least squares
(Algorithm 6). The core operation in alternating least squares is the tensor product T(I, b, c),
which can be carried out with sketches using (7.9).

131

Proposition 33. For K components and L iterations, Algorithm 6 has O(LKB(d logB +
b log b) + L(dK2 +K3)) time complexity and O(bB +Kd+K2) space complexity.

Proof. For each iteration and each component, we need to (1) sketch the factors [O(Bd)] (2)
perform contraction [O(Bb log b)] and (3) perform reconstruction [O(dB logB)]. For each
iteration we also need to compute C>C ◦ B>B+ [O[(dK2 + K3)]] and update A [(dK2)].
Normalization and updating of B and C does not affect the asymptotic rate.

The space complexity arises from the need to store the sketches [O(Bb)], rank-1 components
[O(Kd)] and matrices A>A,B>B,C>C [O(K2)].

Algorithm 6 scales linearly (instead of cubically) in the dimension d. [116] demonstrated that
Algorithm 6 can recover the top few components of a 1000 dimensional tensor. However, we have
observed that Algorithm 6 often has trouble when simultaneously considering a large number of
components, as we demonstrate in Section 7.3.2. Also, for a large number of components (which
may be required to accurately approximate W), the fact that the cost is super-linear in K can
become problematic.

For this reason we opt to use a deflation based approach. We use Algorithm 6 to recover
one component. Then we deflate the input tensor by subtracting that component and reiterate.
Note that deflation can be performed on sketched tensors. The process is detailed in Algorithm
7. Recovering a single component means the intermediate quantities A>A, B>B and C>C in
Algorithm 6 are simply scalars. Not only does this approach produce better decomposition, as we
demonstrate in Section 7.3.2, but it is also better in terms of time and space complexity, as we
show below.
Proposition 34. ForK components andL iterations per component, Algorithm 7 hasO(LKB(d log b+
b log b) +KLd) time complexity and O(bB +Kd) space complexity.

Proof. The result is derived by substituting K = 1 in the time complexity of Algorithm 6
(Proposition 33) and multiplying the result by K times. The deflation step needs O(Bb log b) time
and thus does not change the asymptotic rate.

Of course, it is possible to use a batched version of Algorithm 7, where in each iteration we
extract M components using ALS. However, we show in Section 7.3.2 that using M = 1 is more
effective.

7.2.3 Learning a Factorized PSRNN
Given the previous discussion, we propose the following algorithm for learning a factorized
PSRNN:

1. Estimate the initial state q1 as the average future feature vector 1
T

∑T
t=1 φ

f
t .

2. Estimate the parameter tensor sketch sW, using Algorithm 5.

3. Factorize the parameter tensor using Algorithm 7.

4. Use the factorized PSRNN to compute states q1:t by applying (7.10).

5. Solve a linear regression problem from qt to ot to estimate the prediction matrix Wpred.

6. Further refine the resulting PSRNN using backpropagation through time.

132

Algorithm 6 Fast ALS using sketches (DECOMPALS)
Input:
• Hash functions (h(i,j), ζ(i,j)) for i ∈ {1, 2, 3} and j ∈ [B].

• Tensor sketch s(j)
T for j ∈ [B] where T ∈ Rd1×d2×d3 .

• Number of factors K.
Output:Factor weights {λk}Kk=1 and unit vectors {(ak ∈ Rd1 , bk ∈ Rd2 , ck ∈ Rd3)}Kk=1 such

that W ≈∑K
k=1 λkak ⊗ bk ⊗ ck.

1: A,B,C ← random (d1, d2, d3)×K matrices with normalized columns.
2: for i = 1 to L do
3: for k = 1 to K do
4: for β = 1 to B do
5: Compute s(2,β)

bk
and s(3,β)

ck

6: s
(1,β)
ak ← s

(1,β)
T(I,bk,ck) (using (7.9))

7: end for
8: // reconstruct ak:
9: for j = 1 to d1 do

10: ak,j ← med(Re({s(1,β)
ak [h(1,β)(j)]ζ(1,β))}Bβ=1)

11: end for
12: end for
13: A← A((C>C) ◦ (B>B))+.
14: λk ← ‖ak‖ for k ∈ {1, . . . , K}
15: Normalize the columns of A.
16: Update B and C similarly.
17: end for

Algorithm 7 Hybrid Decomposition with ALS and Deflation (DECOMPHYBRID)
• Hash functions (h(i,j), ζ(i,j)) for i ∈ {1, 2, 3} and j ∈ [B].
• Tensor sketch s(j)

T for j ∈ [B] where T ∈ Rd1×d2×d3 .
• Number of factors K, block size M .

Factor weights {λk}Kk=1 and unit vectors {(ak ∈ Rd1 , bk ∈ Rd2 , ck ∈ Rd3)}Kk=1 such that
W ≈∑K

k=1 λkak ⊗ bk ⊗ ck.
1: for k = 1 to K do
2: λk, ak, bk, ck ← DECOMPALS(sT, K = 1)
3: for j = 1 to B do
4: s

(j)
∆ ← λis

(1,j)
ai ∗ s(2,j)

bi
∗ s(3,j)

ci

5: s
(j)
T ← s

(j)
T − s

(j)
∆

6: end for
7: end for

133

7.3 Experiments

7.3.1 Tensor Product vs. Tensor Decomposition
As mentioned in Section 7.1, tensor sketching allows us to approximate the tensor contraction by
applying (7.9) to the sketches of the tensor and the vectors. Tensor contraction appears as part of
the state update in (7.10) as well as a core operation in tensor CP decomposition.

In this experiment, we compare using tensor sketching to approximate contraction within
CP decomposition vs a general application scenario. To do so we conduct a number of trials; in
each trial we generate a tensor T =

∑50
i=1 λiui ⊗ vi ⊗ wi ∈ R200×200×200, where λi = e−0.5(i−1)

and ui, vi and wi are sampled uniformly from unit sphere. We use sketching with B = 10 and
b = 10000 to approximate two operations: (1) generic tensor contraction, where we approximate
y = T (I,b,c)

‖T (I,b,c)‖ for two random vectors b and c drawn from the unit sphere, and (2) recovering
u1 through the ALS method (Algorithm 6). We then compute the angle between the true and
approximated vectors.

The results are shown in Figure 7.1. The figure shows clearly that tensor contraction via
sketching is robust when used within CP decomposition, even when its approximation quality is
poor in general. We examined the cases where ALS failed to recover u1 and we found that this
“failure” is actually due to recovering a different vector uj . The results of this experiment provides
justification to use tensor sketching as a means to obtain a factorized PSRNN as opposed to using
it to represent the PSRNN, as described in Section 7.2.1.

7.3.2 Tensor Decomposition: Alternating Least Squares vs. Deflation
In the experiment shown in Figure 7.3, we compare different methods for tensor decomposition,
showing the efficacy of rank-1 updates with deflation.

7.3.3 Sketching for Factorized PSRNNs
Downey et al. [44] showed that initializing a PSRNN using 2SR can improve initial performance,
the convergence rate of BPTT, and the performance of the final model. In this experiment we
compare the initial performance of factorized PSRNNs initialized using sketched 2SR with that of
the corresponding full (unfactorized) PSRNN initialized using conventional 2SR. Each factorized
PSRNN can be thought of as an approximation of the full PSRNN, with factorized models of
higher rank corresponding to better approximations. The key question we seek to answer in
this experiment is to what degree the error introduced by compression via sketched factorization
impacts the performance of the model as a recursive filter. We compare the initial performance
(prior to BPTT) as our goal here is to examine how sketching degrades the performance of
two-stage regression.

We use the Penn Tree Bank (PTB) dataset for our experiments [80]. Due to hardware
limitations we use a train/test split of 120780/124774 characters. We use history (similarly future)
features consisting of the past (next) 10 characters as one-hot vectors concatenated together. We
use a ridge-regression parameter of 0.05 (consistent with the values suggested in [27, 44]). We use
a Gaussian kernel with width set to the median pairwise (Euclidean) distance between neighboring

134

λi = 1
i

0.00 0.25 0.50 0.75 1.00

|〈y, ŷ〉|

0

100

200

300

400

500

N
o.

o
f

o
cc

u
re

n
ce

s
0.00 0.25 0.50 0.75 1.00

|〈u1, û1〉|

0

100

200

300

400

500

0.00 0.25 0.50 0.75 1.00

maxj |〈uj , û1〉|

0

100

200

300

400

500

λi = e−
1
2 (i−1)

0.00 0.25 0.50 0.75 1.00

|〈y, ŷ〉|

0

100

200

300

400

500

N
o
.

of
o
cc

u
re

n
ce

s

0.00 0.25 0.50 0.75 1.00

|〈u1, û1〉|

0

100

200

300

400

500

0.00 0.25 0.50 0.75 1.00

maxj |〈uj , û1〉|

0

100

200

300

400

500

Tensor Contraction Accuracy ALS top-1 accuracy ALS any-component accuracy

Figure 7.1: Approximation quality of general tensor contraction vs. recovering the first rank-1
component of a tensor. (left): Histogram of dot product between normalized true and approximate
contraction results. (middle): Histogram of dot product between true and approximate first rank-1
component vector. (right): Histogram of maximum dot product between approximate first rank-1
component vector and all true rank-1 components, showing that failures in (middle) are due to
recovering a different rank-1 component.

data points, approximated using 1000 RFFs. We use a fixed learning rate of 0.1 for BPTT with a
BPTT horizon of 20. We evaluate using perplexity on the one-step prediction task.

Figure 7.3 shows the results. Each blue dot corresponds to a factorized PSRNN with some
level of compression. Compression is obtained by using smaller sketches, and a factorized PSRNN
with lower rank factors. A full PSRNN has n3 parameters, while a factorized PSRNN has 3nm
parameters where m is the number of factors. We use a state of size 50, therefore a full PSRNN
has 125, 000 parameters, and a factorized PSRNN with the same number of parameters has rank
m 800. Similarly a factorized PSRNN of size 0.2 has rank 160. We use sketches of size 2000, and
the number of sketches varies so that the memory used is equivalent to the number of parameters
in the final factorized PSRNN. We see that (unsurprisingly) as the compression rate increases,
model performance decreases. However this decrease is graceful, and we see that it is possible to
achieve high compression rates (e.g. 20x) while still offering significant performance benefits over
a randomly initialized model. This result shows that we can use sketched 2SR to directly learn
factorized PSRNNs which are orders of magnitude smaller than the corresponding full PSRNNs,
yet have comparable performance.

135

1 6 11 16 21 26 31 36 41 46
of components

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
re

si
d

u
al

n
or

m

DecompAls

DecompHybrid

DecompHybrid5

DecompSym

1 6 11 16 21 26 31 36 41 46
of components

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
re

si
d

u
al

n
or

m

DecompAls

DecompHybrid

DecompHybrid5

DecompSym

λi = e−
1
2

(i−1) λi = 1
i

Figure 7.2: Relative residual norm for different decomposition methods using tensor sketches.

Figure 7.3: Log Perplexity on PTB for factorized PSRNN initialized using Sketched 2SR

7.4 Conclusions
We present Sketched 2SR, a novel formulation of two-stage regression (2SR) which uses tensor
sketching, combined with tensor power iteration, to directly learn a factorized PSRNN from data.
Sketched 2SR requires only O(d) space and O(d2) time, compared with 2SR which requires
O(d3) space and O(d4) time.

This tensor sketch approach removes the scaling limitation of PSRNNs, overcoming a major
barrier preventing this class of models from being applied to real-world problems at commercial
scale. We note that while we focus on PSRNNs, this work can be easily extended to a variety of
other models which can be initialized using the 2SR framework.

In addition as part of this work, we also demonstrate observations about the use of tensor
sketching that could be of independent interest.

136

Chapter 8

Orthogonal Random Features for
Predictive State Models

The unified models previously developed in this thesis all rely on embedding and manipulating
the underlying probability distributions in an RKHS. To obtain practical implementations of these
models we use the machinery of Random Features (RFs): input features are mapped into a new
space where dot products approximate the kernel well [92]. While RFs are an extremely powerful
technique, they have the unfortunate downside that we often require a significant number of
RFs in order to obtain good results. Furthermore, the number of required RFs grows with the
dimensionality of the input, resulting in models which can be large, slow to execute, and slow to
train.

One technique that has proven to be effective for reducing the required number of RFs for
kernel machines is Orthogonal Random Features (ORFs) [123]. When using ORFs, the matrix
of RFs is replaced by a properly scaled random orthogonal matrix, resulting in significantly
decreased kernel approximation error. A particularly nice feature of ORFs is that [37, 123] prove
that using ORFs results in a guaranteed improvement in pointwise kernel approximation error
when compared with RFs.

Unfortunately the guarantees in Yu et al. [123] are not directly applicable to the models
discussed in this thesis. To see why note that PSMs first obtain a set of model parameters
via ridge regression, then use these model parameters to calculate inner products in RF space.
This “downstream” application of RFs goes beyond the results proven in Yu et al. [123] and
Choromanski et al. [37]. Hence it is not clear whether or not ORF can be applied to obtain an
improvement in the our setting.

In this work, we show that ORFs can be used to obtain Orthogonal PSRNNs (OPSRNs)and
we provide empirical and theoretical evidence that OPSRNNs are both smaller, and faster to
execute and train those initialized using conventional unstructured RFs. We theoretically analyze
an orthogonal version of the 2-stage regression algorithm for PSRNNs and show that orthogonal
models lead to kernel algorithms with strictly better spectral properties and explain how this
translates to strictly smaller upper bounds on failure probabilities regarding KRR empirical risk.
We compare the performance of OPSRNNs with that of LSTMs as well as conventional PSRNNs
on a number of robotics tasks, and show that OPSRRNs are consistently superior on all tasks. In
particular, we show that OPSRNN models can achieve accuracy similar to PSRNNs with an order

137

of magnitude smaller number of features needed.
The ideas developed in this chapter are more generally applicable than just PSRNNs, however

we focus on PSRNNs for clarity of exposition.

8.1 Orthogonal Random Features
We explain here how to construct orthogonal random features to approximate values of kernels
defined by the prominent family of radial basis functions. We then use ORFs to conduct kernel
ridge regression for the OPSRNN model. A class of RBF kernels K (RBFs in shorthand) is
a family of functions: Kn : Rn × Rn → R for n = 1, 2, ... such that Kn(x,y) = φ(z), for
z = ‖x− y‖2, where φ : R→ R is a fixed positive definite function (not parametrized by n). An

important example is the class of Gaussian kernels, φ = e
−x2

2λ2 .
Every RBF kernel K is shift-invariant, thus in particular its values can be described by an

integral via Bochner’s Theorem [92]:

K(x,y) = Re

∫
Rn

exp(iw>(x− y))µK(dw), (8.1)

where µK ∈M(Rn) stands for some finite Borel measure. Some commonly used RBF kernels K
together with the corresponding functions φ and probability density functions for measures µK
are given in Table 8.1. The above formula leads straightforwardly to the standard unbiased Monte-
Carlo estimator of K(x,y) given as K(x,y) = Φ>m,n(x)Φm,n(y), where a random embedding
Φm,n : Rn → R2m is given as:

Φm,n(x) =

(
1√
m

cos(w>i x),
1√
m

sin(w>i x)

)m
i=1

(8.2)

Here vectors wi ∈ Rn are sampled independently from µK and m stands for the number of
random features used. In this scenario we will often use the notation wiid

i , to emphasize that
different wis are sampled independently from the same distribution.

Name Positive-definite function φ Probability density function

Gaussian exp

(
− z2

2λ2

)
1

(2πλ2)n/2
exp

(
−‖w‖

2
2

2λ2

)
Laplacian exp

(−z
λ

) n∏
i=1

λ

π(1 + λ2w2
i)

Figure 8.1: Common RBF kernels, the corresponding functions φ, and probability density
functions (here: w = (w1, ..., wn)>).

For a dataset X we can use random features to obtain transformed data Φ(X) = {Φ(x) : x ∈
X}. The advantage of this transformation is that inner products in the new space are equivalent to
kernel evaluations in the original space, i.e. given x, y ∈ X :

K(x, y) = Φ(x)>Φ(y)

138

Random Features are crucial to scalable implementations for kernel methods. Specifically when
implementing kernels using random features the size of the model is independent of the number
of training examples. This is in contrast to conventional approaches to kernel methods which
leverage the gram matrix, hence the size of such models grows quadratically with the number of
training examples.

Orthogonal random features are obtained by replacing the standard mechanism of constructing
vectors wi described above with one where the sequence (w1, ...,wm) is sampled from a “related”
joint distribution µort

K,m,n on Rn× ...×Rn where µort
K,m,n satisfies the orthogonality condition: with

probability 1 different vectors wi are pairwise orthogonal. Since in practice we often need m > n,
the sequence (wi)i=1,...,m is obtained by stacking some number of blocks, each of length l ≤ n,
where the blocks are sampled independently from µort

K,l,n.
It remains to explain how µort

K,m,n is constructed. We consider two main approaches: The
first, which we will refer to as continuous-orthogonal, involves using the gram-schmidt process
to select random orthogonal vectors. The second, which we will refer to as discrete-orthogonal,
involves constructing specific matrices with useful properties and orthogonal columns.

In the continuous-orthogonal setting the marginal distributions (distributions of individual
vectors wi) are µK . Givenw1, ..., wi the distribution ofwi+1 is the restriction of µK to the subspace
orthogonal to w1, ..., wi. Therefore a sample (wort

1 , ...,wort
m) from the joint distribution might

be obtained for instance by constructing a random matrix G = [(wiid
1)>; ...; (wiid

m)>] ∈ Rm×n,
performing Gram-Schmidt orthogonalization and then renormalizing the rows such that the length
of the renormalized row is sampled from the distribution from which ‖wiid

i ‖s are sampled. Thus
the Gram-Schmidt orthogonalization is used just to define the directions of the vectors. The fact
that for RBF kernels the marginal distributions are exactly µK , and thus the kernel estimator is
still unbiased, is a direct consequence of the isotropicity of distributions from which the directions
of vectors wiid

i are sampled. For this class of orthogonal estimators we prove strong theoretical
guarantees showing that they lead to kernel ridge regression models superior to state-of-the-art
ones based on vectors wiid

i .
In the discrete-orthogonal setting we denote by D a random diagonal matrix with nonzero

entries taken independently and uniformly at random from the two-element set {−1,+1}. We
also denote by H a Hadamard matrix obtained via Kronecker-products (see: Choromanski et al.
[37]). An m-vector sample from the discrete-orthogonal joint distribution is obtained by taking
m first rows of matrix G defined as GHAD = HD1 · ... · HDk for fixed k > 0, independent
copies Di of D and then renormalizing each row in exactly the same way as we did it for
continuous-orthogonal joint distributions. Note that GHAD is a product of orthogonal matrices,
thus its rows are also orthogonal. In practice using k = 3 is typically sufficient to obtain a
sufficiently good approximation. The key advantage of a discrete approach is that it leads to
a more time- and space-efficient method for computing random feature maps (with the use of
Fast Walsh-Hadamard Transform; notice that the Hadamard matrix does not even need to be
stored explicitly), however this is not our focus in this work. Accuracy-wise, discrete-orthogonal
distributions lead to slightly biased estimators since RFs aren’t quite uniform on the unit sphere
(the bias is a decreasing function of the dimensionality n). However we have observed that in
practice discrete- and continuous-orthogonal implementations of PSRNNs give equally good
results, with both consistently beating approaches based on unstructured random features. One
intuitive explanation of this phenomenon is that, even though in that setting kernel estimators

139

are biased, they still have much lower variance than those based on unstructured features and
therefore total MSE is lower. We leave a throughout theoretical analysis of discrete-orthogonal
joint distributions in the RNN context to future work.

8.2 The theory of the orthogonal kernel ridge regression
In this section we extend the theoretical guarantees of Yu et al. [123] to give a rigorous analysis
of the initialization phase of OPSRNN. Specifically, we provide theoretical guarantees for kernel
ridge regression with orthogonal random features, showing that they provide strictly better bounds
on our spectral approximation of the ground-truth kernel matrix than unstructured random features.
As a corollary, we prove that orthogonal random features lead to strictly smaller empirical risk
of the model. While our theoretical results do not quantify this improvement, our experimental
results demonstrate significant improvement. Our results go beyond second moment guarantees
and enable us to provide the first exponentially small bounds on the probability of a failure for
random orthogonal transforms.

Before we state our main results, we will introduce some basic notation and summarize
previous results. Assume that labeled datapoints (xi, yi), where xi ∈ Rn, yi ∈ R for i = 1, 2, ...,
are generated as follows: yi = f ∗(xi) + νi, where f ∗ : Rn → R is a function that the model aims
to learn, and νi for i = 1, 2, ... are independent Gaussians with zero mean and standard deviation
σ > 0. The empirical risk of the estimator f : Rn → R is defined as follows:

R(f) ≡ E{νi}i=1,...,N
[

1

N

N∑
j=1

(f(xi)− f ∗(xi))2], (8.3)

where N stands for a dataset size.
By f∗vec ∈ RN we denote a vector whose ith entry is f ∗(xi). Denote by fKRR a kernel ridge

regression estimator applying an exact kernel method (no random feature map approximation).
Assume that we analyze kernel K : Rn × Rn → R with the corresponding kernel matrix K. It is
a well known result [3, 11] that the empirical risk of fKRR is given by the formula:

R(fKRR) = N−1λ2(f∗vec)
>(K + λNIN)−2f∗vec +N−1σ2Tr(K2(K + λNIN)−2) (8.4)

where λ > 0 stands for the regularization parameter and IN ∈ RN×N is an identity matrix.
Equation 8.4 can be viewed as a bias-variance decomposition of the risk. The first term corresponds
to the bias, the degree to which our modelling assumptions are incorrect. The second term
corresponds to the variance, the sensitivity of our model to small fluctuations in the training data.
We note that as the regularization increases the biases also increases, but the variance decreases.

Denote by f̂KRR an estimator based on some random feature map mechanism and by K̂ the
corresponding approximate kernel matrix.

The expression that is used in several bounds on the empirical risk for kernel ridge regression
(see for instance Avron et al. [10]) is a modified version of the above formula forR(fKRR) which

140

is easier to manipulate: R̄K(f∗vec) ≡ N−1λ2(f∗vec)
>(K + λNIN)−1f∗vec + N−1σ2sλ(K), where

sλ(K) ≡ Tr(K(K + λNIN)−1). It can be easily proven thatR(fKRR) ≤ R̄K(f∗vec).
To measure how similar two kernel matrices are in their spectral properties we use the notion

of ∆-spectral approximation [10].

Definition 35. For a given 0 < ∆ < 1, matrix A ∈ RN×N is a ∆-spectral approximation of a
matrix B ∈ RN×N if (1−∆)B � A � (1 + ∆)B.

It turns out that one can upper-bound the risk R(f̂KRR) for the estimator f̂KRR in terms of
∆ if the matrix K̂ + λNIN is a ∆-spectral approximation of the matrix K + λNIN , as the next
result [10] shows:

Theorem 36. Suppose that ‖K‖2 ≥ 1 and that matrix K̂ + λNIN obtained with the use of
random features is a ∆-spectral approximation of matrix K + λNIN . Then the empirical risk
R(f̂KRR) of the estimator f̂KRR satisfies:

R(f̂KRR) ≤ 1

1−∆
R̄K(f∗vec) +

∆

1 + ∆

rank(K̂)

N
σ2. (8.5)

Theorem 36 bounds the risk of the approximate KRR estimator as a function of both the risk
upper bound R̄K and an additive term which is small if rank(K̂) and/or ∆ is small. We note that
an approximation K̂ is only useful computationally if rank(K̂) << n so K̂ gives a significantly
compressed approximation to the original kernel matrix. Ideally we should have rank(K̂)/N → 0
as N →∞ so the additive term will also approach zero, and be small when N is large.

8.2.1 Superiority of the orthogonal features for kernel ridge regression
Consider the following RBF kernels, which we call smooth RBFs.
Definition 37 (smooth RBFs). Let a fixed φ : R→ R be a class of RBF kernels, where different
elements of the class corresponds to different input dimensionalities. Let {µ1, µ2, ...} (µi ∈M(Ri)
be an associated sequence of probabilistic measures. We say such a class is smooth if there exists
a nonincreasing function f : R → R such that f(x) → 0 as x → ∞ and furthermore the
kth moments of random variables Xn = ‖w‖, where w ∼ µn satisfy for every n, k ≥ 0:
E[Xk

n] ≤ (n− 1)(n+ 1) · ... · (n+ 2k − 3)k!fk(k).
Many important classes of RBF kernels are smooth, in particular the class of Gaussian kernels.

This follows immediately from the well-known fact that for Gaussian kernels the above kth

moments are given by: E[Xk
n] = 2k

(n
2

+k−1)!

(n
2
−1)!

for n > 1.
Our main result is given below and shows that orthogonal random features lead to tighter

bounds on ∆ for the spectral approximation of K + λNIN . Tighter bounds on ∆, as Theorem 36
explains, lead to tighter upper bounds also on the empirical risk of the estimator. We will prove it
for the setting where each structured block consists of a fixed number l > 1 of rows (note that
many independent structured blocks are needed if m > n), however our experiments suggest that
the results are valid also without this assumption.

141

Theorem 38 (spectral approximation). Consider a smooth RBF (such as the Gaussian kernel).
Let ∆̂iid denote the smallest positive number such that K̂iid + λNIN is a ∆-approximation of
K + λNIN , where K̂iid is an approximate kernel matrix obtained by using unstructured random
features. Then for any a > 0,

P[∆̂iid > a] ≤ piid
N,m(

aσmin

N
), (8.6)

where: piid
N,m is given as: piid

N,m(x) = N2e−Cmx
2

for some universal constant C > 0, m is the
number of random features used, σmin is the smallest singular value of K + λNIN and N is
dataset size. If instead orthogonal random features are used then for the corresponding spectral
parameter ∆̂ort the following holds:

P[∆̂ort > a] ≤ port
N,m(

aσmin

N
), (8.7)

where function port
N,m satisfies: port

N,m < piid
N,m for n large enough.

We see that both constructions lead to exponentially small (in the number of random features
m used) probabilities of failure, however the bounds are tighter for the orthogonal case. An exact
formula on port

N,m can be derived from the proof that we present in the Appendix, however for
space we do not give it here.

Theorem 38 combined with Theorem 36 lead to risk bounds for the kernel ridge regression
model based on random unstructured and random orthogonal features. We use the notation
introduced before and obtain the following:
Theorem 39. Under the assumptions of Theorem 36 and Theorem 38, the following holds
for the kernel ridge regression risk and any c > 0 if m-dimensional unstructured random
feature maps are used to approximate a kernel: P[R(f̂KRR) > c] ≤ piid

N,m(acσmin

N
), where ac is

given as: ac = 1 − R̄K(f∗vec)

c−mσ2

2N

and the probability is taken with respect to the random choices

of features. If instead random orthogonal features are used, we obtain the following bound:
P[R(f̂KRR) > c] ≤ port

N,m(acσmin

N
).

As before, since for large n function port
N,m satisfies port

N,m < piid
N,m, for orthogonal random

features we obtain strictly smaller upper bounds on the failure probability regarding empirical risk
than for the state-of-the-art unstructured ones. In practice, as we will show in the experimental
section, we see gains also in the regimes of moderate dimensionalities n.

8.3 Experiments

In section 8.2 we extended the theoretical guarantees for ORFs to the case of the initialization
phase of OPSRNNs. In this section we confirm these results experimentally and show that they
imply better performance of the entire model by comparing the performance of PSRNNs with that
of OPSRNNs on a selection of robotics time-series datasets. Since OPSRNN models obtained via
continuous-orthogonal and discrete-orthogonal joint sampling (see: Section 8.1) gave almost the
same results, presented OPSRNN-curves are for the continuous-orthogonal setting.

142

8.3.1 Experimental Setup
We now describe the datasets and model hyperparameters used in our experiments. All models
were implemented using the Tensorflow framework in Python.

We use the following datasets in our experiments:
• Swimmer We consider the 3-link simulated swimmer robot from the open-source package

OpenAI gym.1 The observation model returns the angular position of the nose as well as
the (2D) angles of the two joints, giving a total of 5 features. We collect 25 trajectories
from a robot that is trained to swim forward (via the cross entropy with a linear policy),
with a train/test split of 20/5.
• Mocap A Human Motion Capture dataset consisting of 48 skeletal tracks from three human

subjects collected while they were walking. The tracks have 300 time steps each, and
are from a Vicon motion capture system. We use a train/test split of 40/8. There are 22
total features consisting of the 3D positions of the skeletal parts (e.g., upper back, thorax,
clavicle).

• Handwriting This is a digital database available on the UCI repository [4] created using a
pressure sensitive tablet and a cordless stylus. Features are x and y tablet coordinates and
pressure levels of the pen at a sampling rate of 100 milliseconds giving a total of 3 features.
We use 25 trajectories with a train/test split of 20/5.
• Moving MNIST Pairs of MNIST digits bouncing around inside of a box according to ideal

physics. http://www.cs.toronto.edu/˜nitish/unsupervised_video/.
Each video is 64x64 pixels single channel (4096 features) and 20 frames long. We use 1000
randomly selected videos, split evenly between train and test.

In two-stage regression we use history (similarly future) features consisting of the past (next) 2
observations concatenated together. We use a ridge-regression parameter of 10−2 (this is consistent
with the values suggested in Boots et al. [27], Downey et al. [44]). The kernel width is set to the
median pairwise (Euclidean) distance between neighboring data points. We use a fixed learning
rate of 0.1 for BPTT with a BPTT horizon of 20. We use a single layer PSRNN.

We optimize and evaluate all models with respect to the Mean Squared Error (MSE) of one
step predictions (this should not be confused with the MSE of the pointwise kernel approximation
which does not give the downstream guarantees we are interested in here). This means that
to evaluate the model we perform recursive filtering on the test set to produce states, then use
these states to make predictions about observations one time step in the future. Making recursive
predictions with longer horizons is also possible, and significantly increases the difficulty of the
task.

8.3.2 Results
Orthogonal RF for 2SR

In our first experiment we examine the effectiveness of Orthogonal RF with respect to learning a
good PSRNN via 2SR. In figure 8.2 we compare the MSE for a PSRNN learned via Orthogonal

1https://gym.openai.com/

143

http://www.cs.toronto.edu/~nitish/unsupervised_video/
https://gym.openai.com/

RF with that of one learned using Standard RF for varying numbers of random features. Note
that these models were initialized using 2SR but were not refined using BPTT. We see that in all
cases when the ratio of RF to input dimension is small Orthogonal RF significantly outperforms
Standard RF. This difference decreases as the number of RF increases, with both approaches
resulting in similar MSE for large RF to input ratios.

Figure 8.2: MSE for Orthogonal RF vs Standard RF after two stage regression

Orthogonal RF for BPTT

In our second experiment we examine the effectiveness of Orthogonal RF with respect to learning a
good PSRNN via 2SR initialization combined with refinement via BPTT. In figure 8.3 we compare
the MSE for a PSRNN learned via Orthogonal RF with that of one learned using Standard RF over
a number of epochs of BPTT. We see that on all datasets, for both Orthogonal RF and Standard
RF, MSE decreases as the number of epochs increases. However it is interesting to note that in all
datasets Orthogonal RF converges to a better MSE than Standard RF.

Figure 8.3: MSE for Orthogonal RF vs Standard RF after two stage regression and BPTT

8.3.3 Discussion

These results demonstrate the effectiveness of Orthogonal RF as a technique for improving the
performance of downstream applications. First we have shown that Orthogonal RF can offer
significant performance improvements for kernel ridge regression, specifically in the context of
the 2SR algorithm for PSRNNs. Furthermore we have shown that not only does the resulting
model have lower error, it is also a better initialization for the BPTT gradient descent procedure.

144

In other words, using a model initialization based on orthogonal RF results in BPTT converging
to a superior final model.

While the focus of these experiments was to compare the performance of PSRNNs and
OPSRNNs, for the sake of completeness we also include error plots for LSTMs. We see that
OPSRNNs significantly outperform LSTMs on all datasets, and outperform PSRNNs of the same
size when the number of RFs is small.

8.4 Related Work

Orthogonal random features were introduced in Yu et al. [123] as an alternative to the standard
approach for constructing random feature maps to scale kernel methods [92]. Several other
structured constructions were known before [2, 18, 35, 36, 62, 115, 124], however these were
motivated by computational and space complexity gains and led to weaker accuracy guarantees.
In contrast to this previous work, orthogonal random features were proposed to improve accuracy
of the estimators relying on them. Such an improvement was theoretically and experimentally
verified, but only for pointwise kernel approximation [37, 123] and for specific kernels (such as
Gaussian for dimensionality large enough, as well as dot-product and angular kernels). It was not
clear whether these pointwise gains translate to downstream guarantees for algorithms relying
on kernels (for instance kernel ridge regression), even though there was some partial empirical
evidence that this might be the case (in Choromanski et al. [37] orthogonal random features were
experimentally tested to provide more accurate approximation of the groundtruth kernel matrix in
terms of the Frobenius norm error). Even for the pointwise estimators and for the selected kernels,
the guarantees were given only with the use of second moment methods (variance computation)
and thus did not lead to strong concentration results with exponentially small probabilities of
failure, which we obtain in this paper.

To the best of our knowledge, we are the first to apply orthogonal random features via
kernel ridge regression for recurrent neural networks. There is however vast related literature
on orthogonal recurrent neural networks, where the matrices are enforced to be orthogonal or
initialized to be random orthogonal. Probably some of the most exploited recent directions are
unitary evolution RNN architectures [8], where orthogonal and unitary matrices are used to
address a key problem of RNN training – vanishing or exploding gradients. Related results are
presented in
Henaff et al. [61], Saxe et al. [96] (orthogonal initialization for training acceleration), Ganguli et al.
[51] and White et al. [120]. Most of these results do not provide any strict theoretical guarantees
regarding the superiority of the orthogonal approach.

Even though these approaches are only loosely related to our work, there is a common
denominator: orthogonality, whether applied in our context or the aforementioned ones, seems
to be responsible in part for disentangling in (deep) representations [1]. Our theoretical analysis
suggests that this phenomenon occurs for the orthogonal KRR that is used as a subroutine of
OPSRNNs, but the general mechanism is still not completely understood from the theoretical
point of view.

145

8.5 Conclusions
We showed how structured orthogonal constructions can be effectively integrated with recurrent
neural network based architectures to provide models that consistently achieve performance
superior to the baselines. They also provide significant compression, achieving similar accuracy
as PSRNNs with an order of magnitude smaller number of features needed. Furthermore, we gave
the first theoretical guarantees showing that orthogonal random features lead to exponentially
small bounds on the failure probability regarding empirical risk of the kernel ridge regression
model. The latter result is an important property for RNN based architectures for state prediction
that we consider in this paper. Finally, we proved that these bounds are strictly better than for the
standard non-orthogonal random feature map mechanism. Our theoretical results do not provide a
quantitative bound on the improvement, however Experiments conducted on several robotics task
demonstrate that this improvement leads to significant practical performance improvements.

146

Proofs
We will use the notation from the main body of the paper.

8.A Proof of Theorem 38
We will assume that a dataset X = {x1, ...,xN} under consideration is taken from a ball B of a
fixed radius r (that does not depend on data dimensionality n and dataset size N) and center x0.
We begin with the following lemma:
Lemma 40. Fix an RBF kernel K : Rn × Rn. Consider a randomized kernel estimator K̂ with
a corresponding random feature map: Φm,n : Rn → R2m and assume that for any fixed i, j ∈
{1, ..., N} the followig holds for any c > 0: P[|Φm,n(xi)

>Φm,n(xj)−K(xi,xj)| > c] ≤ g(c) for
some fixed function g : R→ R. Then with probability at least 1−N2g(c), matrix K̂ + λIN is a
∆-spectral approximation of matrix K + λIN for ∆ = Nc

σmin
, where σmin stands for the minimal

singular value of K + λIN .

Proof. Denote K + λNIN = V>Σ2V, where an orthonormal matrix V ∈ RN×N and a diagonal
matrix Σ ∈ RN×N define the eigendecomposition of K + λNIN . Following [10], we notice that
in order to prove that K̂ + λIN is a ∆-spectral approximation of K + λIN , it suffices to show that:

‖Σ−1VK̂V>Σ−1 −Σ−1VKV>Σ−1‖2 ≤ ∆. (8.8)

From basic properties of the spectral norm ‖‖2 and the Frobenius norm ‖‖F we have:

P[‖Σ−1VK̂V>Σ−1 −Σ−1VKV>Σ−1‖2 > ∆] ≤ P[‖Σ−1V‖2‖K̂−K‖F‖V>Σ−1‖2 > ∆]
(8.9)

The latter probability is equal to p = P[‖K̂−K‖2
F >

∆2

‖Σ−1V‖22·‖V>Σ−1‖22
].

Furthermore, since V is an isometry matrix, we have: ‖Σ−1V‖2
2 ≤ 1

σmin
and ‖V>Σ−1‖2

2 ≤
1

σmin
.
Thus we have:

p ≤ P[‖K̂−K‖2
F > ∆2σ2

min]. (8.10)

Now notice that from the union bound we get:

p ≤ N2P[|K̂(i, j)−K(i, j)| > ∆σmin

N
] = N2P[|Φm,n(xi)

>Φm,n(xj)−K(i, j)| > ∆σmin

N
].

(8.11)
Therefore the probability that K̂ + λIN is a ∆-spectral approximation of K + λIN is at least

1−N2g(c) for c = ∆σmin

N
and that completes the proof.

Our goal right now is to compute function g from Lemma 40 for random feature maps
constructed according to two procedures: the standard one based on independent sampling and the
orthogonal one, where marginal distributions corresponding to the joint distribution (w1, ...,wm)
are the same, but vectors wi are conditioned to be orthogonal.

147

We start with a standard random feature map mechanism. Note first that from basic properties
of the trigonometric functions we conclude that for any two vectors x,y ∈ Rn, the random feature
map approximation of the RBF kernelK(x,y) which is of the form K̂(x,y) = |Φm,n(x)>Φm,n(y)

can be equivalently rewritten as: K̂(x,y) = 1
m

∑m
i=1 cos(w>i z) for z = x − y. This is true for

any joint distribution (w1, ...,wm).
Lemma 41. If mapping Φm,n is based on the standard mechanism of independent sampling
then one can take as function g from Lemma 40 a function given by the following formula:
g(x) = e−Cmx

2
for some universal constant C > 0.

Proof. Notice first that by the remark above, we get: P[|Φm,n(xi)
>Φm,n(xj)−K(xi,xj)| > x] =

P[
∑m

i=1 Zi > x], where Zi = 1
m

cos(w>i z) − 1
m
φ(z), z = ‖x − y‖2 and φ is a positive definite

function associated with an RBF kernel K. From the unbiasedness of the estimator we see that
E[Zi] = 0. Also, notice that: |Zi| ≤ 2

m
and different Zis are independent. Thus, from the standard

application of Chernoff inequality we get: P[
∑n

i=1 Zi > x] ≤ e−Cmx
2 for some universal constant

C > 0 (that does not depend on m). That completes the proof.

By combining Lemma 40 with the formula on g for the standard unstructured case from
Lemma 41, we already obtain the formula for piid

N,m from the statement of the theorem. It remains
to show that: port

N,m < piid
N,m.

Note that in the previous proof the upper bound on g is derived as a monotonic function of
E[et

∑m
i=1 Zi] for a parameter t > 0 (that is then being optimized),as it is the case for the standard

Chernoff’s argument. Now, since variables Zi are independent, we obtained: E[et
∑m
i=1 Zi] =∏m

i=1 E[etZi]. Thus, if we can prove that for the continuous-orthogonal distribution we have:
E[et

∑m
i=1 Zi] <

∏m
i=1 E[etZi], then we complete the proof of Theorem 38 (note that the marginal

distributions of Zi are the same for both: standard mechanism based on unstructured random
features and the one based on continuous-orthogonal sampling of the m-tuple of n-dimensional
vectors).

This is what we prove below.
Lemma 42. Fix some z ∈ Rn and t > 0. For a sample (wort

1 , ...,wort
m) from the continuous-

orthogonal distribution the following holds for n large enough:

E[e
t
n

∑m
i=1 cos((wort

i)>z)] <
m∏
i=1

E[e
t
n

cos((wort
i)>z)]. (8.12)

Proof. Since different blocks of vectors wi used to construct the orthogonal feature map are
independent (the number of blocks is greater than one if m > n), it suffices to prove the inequality
just for one block. Thus from now on we will focus just on one block and thus without loss of
generality we will assume that m ≤ n.

Note first that
m∏
i=1

E[e
t
n

cos((wort
i)>z)] = E[e

t
n

∑m
i=1 cos((wiid

i)>z)], (8.13)

where (wiid
1 , ...,w

iid
m) stands for the m-tuple sample constructed by the standard unstructured

mechanism.

148

Thus we need to prove that

E[e
t
n

∑m
i=1 cos((wort

i)>z)] < E[e
t
n

∑m
i=1 cos((wiid

i)>z)] (8.14)

Using Taylor expansion for ex, we conclude that it sufficies to prove that:

∑
j1,j2,...,jm

(
t

n
)j1+...+jmE[

cos((wort
1)>z)j1 · ... · cos((wort

m)>z)jm

j1! · ... · jk!
]

<
∑

j1,j2,...,jm

(
t

n
)j1+...+jmE[

cos((wiid
1)>z)j1 · ... · cos((wiid

m)>z)jm

j1! · ... · jk!
],

(8.15)

i.e. that:

∑
j1,j2,...,jm

(
t

n
)j1+...+jm

1

j1! · ... · jm!
Λ(j1, ..., jm) > 0, (8.16)

where:

Λ(j1, ..., jk) = E[cos((wiid
1)>z)j1 · ... · cos((wiid

m)>z)jm − cos((wort
1)>z)j1 · ... · cos((wort

m)>z)jm]
(8.17)

By applying the trigonometric formula:

cos(α) cos(β) =
1

2
(cos(α + β) + cos(α− β)), (8.18)

we get:

Λ(j1, ..., jk) =
1

2j1+...+jm

∑
s1,...,sj1+...+jm∈{−1,+1}

E[

cos
(
((wiid

1 ⊗s1 wiid
1 ⊗s2 ...⊗sj1−1

wiid
1)⊗sj1 ...)

>z
)
−

cos
(
((wort

1 ⊗s1 wort
1 ⊗s2 ...⊗sj1−1

wort
1)⊗sj1 ...)

>z
)
],

(8.19)

where ⊗1 stands for vector-addition operator and ⊗−1 stands for vector-subtraction operator.
Note that without loss of generality we can assume that sj1 = sj1+j2 = ... = +1, since for

other configurations we obtain a random variable of the same distribution. Consider a fixed
configuration (s1, s2, ..., sj1+...+jm) and the corresponding term of the sum above that can be
rewritten in the compressed way as:

F = E[cos(n1w
iid
1 +n2w

iid
2 +...+nmwiid

m)>z]−E[cos(n1w
ort
1 +n2w

ort
2 +...+nmwort

m)>z], (8.20)

for some n1, ..., nm ∈ Z. Without loss of generality, we can assume that n1, ..., nm ∈ N, since
the distribution of the random variables under consideration does not change if ni is replaced

149

with −ni. Without loss of generality we can also assume that there exists i ∈ {1, ...,m} such that
ni > 0, since otherwise the corresponding term F is equal to 0.

Denote by R1, ..., Rm the set of independent random variables, where each is characterized by
the distribution which is the distribution of vectors wiid

i (and thus also of vectors wort
i). Denote:

R =
√
n2

1R
2
1 + ...+ n2

mR
2
m. Note that n1w

ort
1 + n2w

ort
2 + ...+ nmwort

m ∼ Rv, where v is a unit
L2-norm vector taken uniformly at random from the sphere of radius 1 and furthermore: R and v
are chosen independently. That is implied by the isotropicity of vectors wort

i . Similarly, denote
R̂ =

√
R2 +

∑
i,j∈{1,...,m} ninjRiRjv>i vj , where v1, ...,vm stand for the independent copies of v.

Note that, by the similar analysis as before, we conclude that n1w
iid
1 +n2w

iid
2 + ...+nmwiid

m ∼ R̂v

and furthermore, R̂ and v are chosen independently.
Therefore, by expanding cos(x) using Taylor expansion, we get:

F =
∞∑
k=0

‖z‖2k(−1)kE[(v>ẑ)2k]

(2k)!
E[R̂2k]−

∞∑
k=0

‖z‖2k(−1)kE[(v>ẑ)2k]

(2k)!
E[R2k], (8.21)

where: ẑ = z
‖z‖ . Denote: A(k, n) = E[(v>ẑ)k] (note that v, ẑ ∈ Rn). It is easy to see that for

odd k we have: A(n, k) = 0. We obtain:

F =
∞∑
k=0

‖z‖2k(−1)kA(2k, n)

(2k)!
(E[R̂2k]− E[R2k]). (8.22)

The following technical fact will be useful:

Lemma 43. Expression A(k, n) is given by the following formula:

A(k, n) =
1∫ π

0
sinn−2(θ)dθ

∫ π

0

cosk(θ) sinn−2(θ)dθ, (8.23)

which can be equivalently rewritten (by computing the integrals explicitly) as:

A(2k, n) =
(n− 2)(n− 4) · ... · δ(n = 2)

(n− 3)(n− 5) · ... · γ(n = 2)
· (2k − 1)!!

(n− 1)(n+ 1)...(n+ 2k − 3)
·

(n+ 2k − 3)(n+ 2k − 5)... · γ(n = 2)

(n+ 2k − 2)(n+ 2k − 4)... · δ(n = 2)
,

(8.24)

where: δ(n = 2) = 2 if n = 2 and δ(n = 2) = 1 otherwise and: γ(n = 2) = 1 if n = 2 and
γ(n = 2) = 2 otherwise.

In particular, the following is true:

|A(2k, n)| ≤ (2k − 1)!!

(n− 1)(n+ 1) · ... · (n+ 2k − 3)
. (8.25)

We will use that later. Note that v>i vj ∼ v>ẑ. Therefore we obtain:

F =
∞∑
k=0

‖z‖2k(−1)kA(2k, n)

(2k)!
αk, (8.26)

150

where

αk =
k∑
i=1

(
k

i

)
E[(R2)k−iλi], (8.27)

and λ =
∑

i,j∈{1,...,m} ninjRiRjv
>
i vj .

Note that E[(R2)k−1λ] = 0 since E[(v>i vj)] = 0 and furthermore, directions v1, ...,vm are
chosen independently from lengths R1, ..., Rm. Therefore we have:

αk =

(
k

2

)
E[(R2)k−2λ2] + βk, (8.28)

where:

βk =
k∑
i=3

(
k

i

)
E[(R2)k−iλi]. (8.29)

Now let us focus on a single term ρ = E[(R2)k−lλl] for some fixed l ≥ 3.
Note that the following is true:

ρ ≤ E[(R2)k−l(
∑

i,j∈{1,...,m}

ninjRiRj)
l] · max

i1,j1,...,il,jl
E[|v>i1vj1| · ... · |v>ilvjl |], (8.30)

where the maximum is taken over i1, j1, ..., il, jl ∈ {1, ...,m} such that is 6= js for s = 1, ..., l.
Note first that:

E[(R2)k−l(
∑

i,j∈{1,...,m}

ninjRiRj)
l] ≤

E[(R2)k−l(
∑

i,j∈{1,...,m}

(niRi)
2 + (njRj)

2

2
)l] ≤ E[(R2)k−l(m− 1)l(R2)l] ≤ (m− 1)lE[R2k].

(8.31)

Let us focus now on the expression maxi1,j1,...,il,jl E[|v>i1vj1| · ... · |v>ilvjl |].
We will prove the following upper bound on maxi1,j1,...,il,jl E[|v>i1vj1| · ... · |v>ilvjl |].

Lemma 44. The following is true:

E[|v>i1vj1| · ... · |v>ilvjl |] ≤ (
log(n)√

n−√n log(n)
)l + l(e−

log2(n)
4 + e−

log2(n)
2). (8.32)

Proof. Note that from the isotropicity of Gaussian vectors we can conclude that each single
|v>isvjs| is distributed as: g1√

g2
1+...+g2

n

, where g1, ..., gn stand for n independent copies of a random

variable taken from N (0, 1). Note that g2
1 + ...+ g2

n is taken from the χ2
n- distribution. Using the

well-known bounds for the tails of χ2
n- distributions, we get: P[g2

1 + ... + g2
n − n ≤ a] ≤ e−

a2

4n .

Note also that P[|g1| > x] ≤ 2 e
−x

2

2

x
√

2π
. Thus, by taking: a =

√
n log(n), x = log(n) and

applying union bound, we conclude that with probability at least 1 − e−
log2(n)

4 − e−
log2(n)

2 a

151

fixed random variable |v>isvjs| satisfies: |v>isvjs| ≤
log(n)√

n−
√
n log(n)

. Thus, by the union bound

we conclude that for any fixed i1, j1, ..., il, jl random variable |v>i1vj1| · ... · |v>ilvjl | satisfies:

|v>i1vj1| · ... · |v>ilvjl | ≤ (log(n)√
n−
√
n log(n)

)l with probability at least 1− l(e− log2(n)
4 + e−

log2(n)
2). Since

|v>i1vj1| · ... · |v>ilvjl | is upper bounded by one, we conclude that:

E[|v>i1vj1| · ... · |v>ilvjl |] ≤ (
log(n)√

n−√n log(n)
)l + l(e−

log2(n)
4 + e−

log2(n)
2). (8.33)

Using Lemma 44, we can conclude that:

ρ ≤ (m− 1)lE[R2k] ·
(

(
log(n)√

n−√n log(n)
)l + l(e−

log2(n)
4 + e−

log2(n)
2)

)
(8.34)

Therefore we have:

βk ≤
k∑
i=3

(
k

i

)
(m− 1)iE[R2k] ·

(
(

log(n)√
n−√n log(n)

)i + i(e−
log2(n)

4 + e−
log2(n)

2)

)
(8.35)

Thus we can conclude that for n large enough:

βk ≤ k(2m)k(
2 log3(n)

n
3
2

+ 2ke−
log2(n)

4)E[R2k]. (8.36)

Thus we get:

F =
∞∑
k=0

‖z‖2k(−1)kA(2k, n)

(2k)!

(
k

2

)
E[(R2)k−2λ2] + Γ, (8.37)

where:

|Γ| ≤
∞∑
k=0

‖z‖2kA(2k, n)

(2k)!
k(2m)k(

2 log3(n)

n
3
2

+ 2ke−
log2(n)

4)E[R2k]

=
2 log3(n)

n
3
2

A+ 2e−
log2(n)

4 B,

(8.38)

B satisfies: B = Ak and A is given as:

A =
∞∑
k=0

‖z‖2kE[R2k]A(2k, n)

(2k)!
k(2m)k. (8.39)

Now note that since data is taken from the ball of radius r, we have: ‖z‖ ≤ 2r. Furthermore,
from the smoothness of the considered class of RBF kernels, we obtain:

E[R2k] ≤ max
i=1,...,m

n2k
i m

k(n− 1)(n+ 1) · .. · (n+ 2k − 3)fk(k)k!. (8.40)

152

Denote h = argmaxi=1,...,mni. Note that (2k − 1)!! = (2k)!
2kk!

. Thus, by applying the above
upper bound on A(2k, n), we obtain:

A,B ≤
∞∑
k=0

(m2(2r)2n2
hf(k))kk2 ≤

∞∑
k=0

(4m2(2r)2n2
hf(k))k. (8.41)

Now, notice that for a given nh, m and r, the above upper bound is of the form
∑∞

k=0 q
k
k ,

where qk → 0 as k → ∞ (since fk → 0 as k → ∞ for smooth RBF kernels). Then we can
conclude that the contribution of the terms Γ to the expression τ = Λ(j1,...,jm)

j1!·...·jm!
from the LHS of

8.16 is of the order O(1

n
3
2

) (notice that every ni satisfies: ni ≤ ji). Now let us consider F − Γ.
We have:

F − Γ =
∞∑
k=0

‖z‖2k(−1)kA(2k, n)

(2k)!

(
k

2

)
E[(R2)k−2λ2] (8.42)

By the same analysis as before we conclude that

F − Γ = ρ+ on(
1

n
), (8.43)

where

ρ =
∞∑
k=0

‖z‖2k(−1)kA(2k, n)

(2k)!

(
k

2

)
E[(R̂2)k−2λ2] (8.44)

and futhermore: ρ = 1
n
ρ̃+ on(1

n
), where

ρ̃ = W
∞∑
k=0

‖z‖2k(−1)kA(2k, n)

(2k)!

(
k

2

)
E[(R̂2k)] (8.45)

and W is some constant (that depends on m). Thus to show Inequality 8.16 for n large enough, it
suffices to show that ρ̃ > 0 and that ρ does not depend on n (even though n is explicitly embedded
in the formula on ρ̃ via A(2k, n)). This follows from the straightforward extension (for different
nis) of the fact that for n1 = ... = nm, ρ̃ can be rewritten in terms of the positive definite function
φ describing an RBF kernel under consideration, namely:

ρ̃ =
1

8n
((‖n1z‖2d

2(φm(x))

dx2
)|x=‖n1z‖ − (‖n1z‖

d(φm(x))

dx
)|x=‖n1z‖). (8.46)

That the above expression is positive is implied by the fact that every positive definite function
φ (not parametrized by n) can be rewritten as φ(r) = σ(r2), where σ is completely monotone
on [0,+∞] and from the basic properties of completely monotone functions (see: [97]). That
completes the proof of the theorem.

8.B Proof of Theorem 39
The theorem follows straightforwardly from Theorem 36, Theorem 38 and the fact that rank(K̂) ≤
m (since m-dimensional random feature maps are used for kernel approximation).

153

154

Part V

Conclusions

155

Chapter 9

Conclusions

Building models to understand, predict, and control dynamical systems has been a field of study
for many years, resulting in a large and diverse array of distinct models. In this thesis we focused
on the idea of developing novel hybrid models which unify these many disparate approaches. In
particular we focused on two types of models: Bayes Filters and Recurrent Neural Networks.
We showed that these two model classes had complementary strengths and weakness, and that
combining them offered significant advantages. The work done in this thesis advances the field of
dynamical system modelling in a number of ways:

We began by unifying the various various Method-of-Moments learning algorithms for Bayes
Filters under a single learning framework called two-stage regression. This unification greatly
improves our understanding of this class of algorithms, and the models to which they are applicable.
As a consequence of this formulation it allows practitioners to directly apply the rich literature
on supervised learning methods to incorporate many types of prior knowledge about problem
structure.

We then leveraged this framework to develop two new hybrid models which unify the ad-
vantages of Bayes Filters and Recurrent Neural Networks in a single model. In our first model,
Predictive State Recurrent Neural Networks (PSRNNs), we developed a Bayes Filter with a pre-
dictive state which can also be initialized via Method-of-Moments and further refined via Gradient
Descent. In our second model, Hilbert Space Embedding of Hidden Quantum Markov Models
(HSE-HQMMs), we combine machine learning models with ideas from quantum mechanics. We
showed that by manipulating uncertainty using density matrices and unitary operators we can
obtain a nonparametric method for maintaining a probability distribution over continuous-valued
features.

Finally we showed how these new ideas can be implemented at scale by solving two implemen-
tation issues. Firstly, naive implementations of two-stage regression scale poorly due to the cubic
relationship between the size of the state and the number of model parameters. We showed how to
avoid this problem by using tensor sketches, combined with tensor power iteration, to efficiently
learn PSRNNs from data. Secondly techniques which use Random Features to approximate kernel
embeddings often require a large number of such features. We show that orthogonal random
features can be used in place of conventional random features to learn smaller, faster PSRNNs.

Together these contributions show that hybrid models which unify Bayes Filters with Recurrent
Neural Networks offer many exciting new possibilities. In essence they allow us to combine

157

the best parts of statistics, optimization, and machine learning into a single model which offers
statistical insight while often outperforming the best discriminative approaches on real world
applications. Furthermore we believe that we have only begun to scratch the surface of what is
possible with hybrid models, and we hope to encourage future researchers to further explore this
area.

158

Bibliography

[1] Alessandro Achille and Stefano Soatto. On the emergence of invariance and disentangling
in deep representations. CoRR, abs/1706.01350, 2017. URL http://arxiv.org/
abs/1706.01350. 8.4

[2] N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform. In STOC, 2006. 8.4

[3] A. El Alaoui and M. Mahoney. Fast randomized kernel ridge regression with statistical
guarantees. In Advances in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 775–783, 2015. 8.2

[4] E Alpaydin and Fevzi Alimoglu. Pen-based recognition of handwritten digits data set.
University of California, Irvine, Machine Learning Repository. Irvine: University of
California, 1998. 5.6, 8.3.1

[5] Anima Anandkumar, Rong Ge, Daniel J. Hsu, Sham M. Kakade, and Matus Telgarsky.
Tensor decompositions for learning latent variable models. CoRR, abs/1210.7559, 2012.
2.4.6, 2.4.6

[6] Animashree Anandkumar, Sham M Kakade, Dean P Foster, Yi-Kai Liu, and Daniel Hsu.
Two svds suffice: Spectral decompositions for probabilistic topic modeling and latent
dirichlet allocation. Technical report, 2012. 2.4.6

[7] Animashree Anandkumar, Rong Ge, and Majid Janzamin. Guaranteed non-orthogonal
tensor decomposition via alternating rank-1 updates. CoRR, abs/1402.5180, 2014. URL
http://arxiv.org/abs/1402.5180. 2.4.6

[8] Martı́n Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural
networks. In Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 1120–1128, 2016. URL
http://jmlr.org/proceedings/papers/v48/arjovsky16.html. 8.4

[9] M Arvandi, S Wu, and A Sadeghian. On the use of recurrent neural networks to design
symmetric ciphers. IEEE computational intelligence magazine, 3(2):42–53, 2008. 2.1

[10] H. Avron, M. Kapralov, C. Musco, C. Musco, A. Velingker, and A. Zandieh. Ran-
dom fourier features for kernel ridge regression: Approximation bounds and statistical
guarantees. In Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 253–262, 2017. URL
http://proceedings.mlr.press/v70/avron17a.html. 8.2, 8.2, 8.A

159

http://arxiv.org/abs/1706.01350
http://arxiv.org/abs/1706.01350
http://arxiv.org/abs/1402.5180
http://jmlr.org/proceedings/papers/v48/arjovsky16.html
http://proceedings.mlr.press/v70/avron17a.html

[11] F. Bach. Sharp analysis of low-rank kernel matrix approximations. In COLT 2013 - The
26th Annual Conference on Learning Theory, June 12-14, 2013, Princeton University,
NJ, USA, pages 185–209, 2013. URL http://jmlr.org/proceedings/papers/
v30/Bach13.html. 8.2

[12] Borja Balle, William Hamilton, and Joelle Pineau. Methods of moments for learning
stochastic languages: Unified presentation and empirical comparison. In Tony Jebara and
Eric P. Xing, editors, Proceedings of the 31st International Conference on Machine Learn-
ing (ICML-14), pages 1386–1394. JMLR Workshop and Conference Proceedings, 2014.
URL http://jmlr.org/proceedings/papers/v32/balle14.pdf. 3.6

[13] Thanasis G Barbounis, John B Theocharis, Minas C Alexiadis, and Petros S Dokopoulos.
Long-term wind speed and power forecasting using local recurrent neural network models.
IEEE Transactions on Energy Conversion, 21(1):273–284, 2006. 2.1

[14] Leonard E Baum and Ted Petrie. Statistical inference for probabilistic functions of finite
state markov chains. The annals of mathematical statistics, 37(6):1554–1563, 1966. 2.2.1

[15] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A maximization
technique occurring in the statistical analysis of probabilistic functions of markov chains.
The Annals of Mathematical Statistics, 41(1):pp. 164–171, 1970. ISSN 00034851. URL
http://www.jstor.org/stable/2239727. 2.2.1

[16] David Belanger and Sham Kakade. A linear dynamical system model for text. In Francis
Bach and David Blei, editors, Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pages 833–842, Lille,
France, 07–09 Jul 2015. PMLR. 5.7

[17] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends R© in
Machine Learning, 2(1):1–127, 2009. 5.1.2

[18] M. Bojarski, A. Choromanska, K. Choromanski, F. Fagan, C. Gouy-Pailler, A. Morvan,
N. Sakr, T. Sarlos, and J. Atif. Structured adaptive and random spinners for fast machine
learning computations. In AISTATS, 2017. 8.4

[19] Byron Boots. Learning stable linear dynamical systems. Online]. Avail.: https://www. ml.
cmu. edu/research/dap-papers/dap boots. pdf, 2009. 5.7

[20] Byron Boots. Spectral Approaches to Learning Predictive Representations. PhD thesis,
Carnegie Mellon University, December 2012. 3.3.2, 3.6

[21] Byron Boots and Dieter Fox. Learning dynamic policies from demonstration. NIPS
Workshop on Advances in Machine Learning for Sensorimotor Control, 2013. 4.4.1

[22] Byron Boots and Geoffrey Gordon. An online spectral learning algorithm for partially
observable nonlinear dynamical systems. In Proceedings of the 25th National Conference
on Artificial Intelligence (AAAI), 2011. 2.2

[23] Byron Boots and Geoffrey Gordon. An online spectral learning algorithm for partially
observable nonlinear dynamical systems. In Proceedings of the 25th National Conference
on Artificial Intelligence (AAAI-2011), 2011. 3.6

[24] Byron Boots and Geoffrey Gordon. Two-manifold problems with applications to nonlinear

160

http://jmlr.org/proceedings/papers/v30/Bach13.html
http://jmlr.org/proceedings/papers/v30/Bach13.html
http://jmlr.org/proceedings/papers/v32/balle14.pdf
http://www.jstor.org/stable/2239727

system identification. In Proc. 29th Intl. Conf. on Machine Learning (ICML), 2012. 3.6

[25] Byron Boots and Geoffrey J. Gordon. Predictive state temporal difference learning. CoRR,
abs/1011.0041, 2010. 3.6, 3

[26] Byron Boots, Arthur Gretton, and Geoffrey J. Gordon. Hilbert space embeddings of PSRs.
NIPS Workshop on Spectral Algorithms for Latent Variable Models, 2012. 6.9

[27] Byron Boots, Geoffrey J. Gordon, and Arthur Gretton. Hilbert space embeddings of
predictive state representations. CoRR, abs/1309.6819, 2013. 5.6, 6.C.4, 7.3.3, 8.3.1

[28] Byron Boots, Arthur Gretton, and Geoffrey J. Gordon. Hilbert Space Embeddings of
Predictive State Representations. In Proc. 29th Intl. Conf. on Uncertainty in Artificial
Intelligence (UAI), 2013. ??, 3.3.3, 3.4, 3.6

[29] Byron Boots, Arthur Gretton, and Geoffrey J. Gordon. Hilbert Space Embeddings of
Predictive State Representations. In UAI, 2013. 4.2.1, 4.3.1, 4.4, 4.4.1, 4.4.1, 4.4.2, 4.5.1,
4.5.4

[30] Michael Bowling, Peter McCracken, Michael James, James Neufeld, and Dana Wilkinson.
Learning predictive state representations using non-blind policies. In ICML, 2006. 3

[31] Gilles Celeux and Jean Diebolt. A stochastic approximation type em algorithm for the
mixture problem. Stochastics: An International Journal of Probability and Stochastic
Processes, 41(1-2):119–134, 1992. 2.4.3

[32] HaiYang Chao, YongCan Cao, and YangQuan Chen. Autopilots for small unmanned aerial
vehicles: a survey. International Journal of Control, Automation and Systems, 8(1):36–44,
2010. 2.1

[33] KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches. CoRR,
abs/1409.1259, 2014. 5.6

[34] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014. 2.3.3

[35] A. Choromanska, K. Choromanski, M. Bojarski, T. Jebara, S. Kumar, and Y. LeCun. Binary
embeddings with structured hashed projections. In ICML, 2016. 8.4

[36] K. Choromanski and V. Sindhwani. Recycling randomness with structure for sublinear
time kernel expansions. In ICML, 2016. 8.4

[37] K. Choromanski, M. Rowland, and A. Weller. The unreasonable effectiveness of structured
random orthogonal embeddings. In to appear in NIPS, volume arXiv abs/1703.00864,
2017. 8, 8.1, 8.4

[38] Krzysztof Choromanski, Carlton Downey, and Byron Boots. Initialization matters: Orthog-
onal predictive state recurrent neural networks. 2018. 1.2

[39] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Kernel-based object tracking.
IEEE Transactions on Pattern Analysis & Machine Intelligence, (5):564–575, 2003. 2.1

161

[40] Simon Cooper and Hugh Durrant-Whyte. A kalman filter model for gps navigation of land
vehicles. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’94), volume 1, pages 157–163. IEEE, 1994. 2.1

[41] Albert T. Corbett and John R. Anderson. Knowledge tracing: Modelling the acquisition of
procedural knowledge. User Model. User-Adapt. Interact., 4(4), 1995. 3.5.1

[42] Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in data streams.
Proc. VLDB Endow., 1(2):1530–1541, August 2008. ISSN 2150-8097. doi: 10.14778/
1454159.1454225. URL http://dx.doi.org/10.14778/1454159.1454225.
7.1

[43] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):1–22, 1977. 2.4.3

[44] Carlton Downey, Ahmed Hefny, Boyue Li, Byron Boots, and Geoffrey J. Gordon. Predic-
tive state recurrent neural networks. In Proceedings of Advances in Neural Information
Processing Systems (NIPS), 2017. 1.2, 6.8, 6.9, 6.10, 6.C.4, 7.3.3, 8.3.1

[45] Thi V Duong, Hung Hai Bui, Dinh Q Phung, and Svetha Venkatesh. Activity recognition
and abnormality detection with the switching hidden semi-markov model. In 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),
volume 1, pages 838–845. IEEE, 2005. 2.1

[46] Fevzi. Alimoglu E. Alpaydin. Pen-Based Recognition of Handwritten Digits Data Set.
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits.
5.6

[47] Jeffrey L. Elman. Finding structure in time. COGNITIVE SCIENCE, 14(2):179–211, 1990.
2.3.1, 5.6

[48] Nick Foti, Jason Xu, Dillon Laird, and Emily Fox. Stochastic variational inference for
hidden markov models. In Advances in neural information processing systems, pages
3599–3607, 2014. 2.4

[49] Sylvia Frühwirth-Schnatter. Markov chain monte carlo estimation of classical and dynamic
switching and mixture models. Journal of the American Statistical Association, 96(453):
194–209, 2001. 2.4

[50] Kenji Fukumizu, Le Song, and Arthur Gretton. Kernel bayes rule: Bayesian inference with
positive definite kernels. Journal of Machine Learning Research, 14(1):3753–3783, 2013.
??, 3.3.3, 3.3.3, 4.3.1

[51] Surya Ganguli, Dongsung Huh, and Haim Sompolinsky. Memory traces in dynamical
systems. 105(48):18970– 18975, 2008. doi: 10.1073/pnas.0804451105., 2008. 8.4

[52] Alborz Geramifard, Robert H Klein, Christoph Dann, William Dabney, and Jonathan P
How. RLPy: The Reinforcement Learning Library for Education and Research.
http://acl.mit.edu/RLPy, April 2013. 4.5.3

[53] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In In Proceedings of the International Conference on Artificial

162

http://dx.doi.org/10.14778/1454159.1454225

Intelligence and Statistics (AISTATS’10). Society for Artificial Intelligence and Statistics,
2010. 5.6

[54] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep
recurrent neural networks. In 2013 IEEE international conference on acoustics, speech
and signal processing, pages 6645–6649. IEEE, 2013. 2.1

[55] Ligdamis Gutiérrez, Jesús Ibañez, Guillermo Cortés, Javier Ramı́rez, Carmen Benı́tez,
Virginia Tenorio, and Álvarez Isaac. Volcano-seismic signal detection and classification
processing using hidden markov models. application to san cristóbal volcano, nicaragua.
In 2009 IEEE International Geoscience and Remote Sensing Symposium, volume 4, pages
IV–522. IEEE, 2009. 2.1

[56] Tuomas Haarnoja, Anurag Ajay, Sergey Levine, and Pieter Abbeel. Backprop kf: Learning
discriminative deterministic state estimators. In Advances in Neural Information Processing
Systems, pages 4376–4384, 2016. 5.7

[57] Lars Peter Hansen. Large sample properties of generalized method of moments estimators.
Econometrica: Journal of the Econometric Society, pages 1029–1054, 1982. 2.4.4

[58] Md Rafiul Hassan and Baikunth Nath. Stock market forecasting using hidden markov
model: a new approach. In 5th International Conference on Intelligent Systems Design and
Applications (ISDA’05), pages 192–196. IEEE, 2005. 2.1

[59] Ahmed Hefny, Carlton Downey, and Geoffrey J. Gordon. Supervised learning for dy-
namical system learning. In Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 1963–1971, 2015. 1.2, 2.2, 4.7, 5.6, 6.6

[60] Ahmed Hefny, Carlton Downey, and Geoffrey Gordon. An efficient, expressive and local
minima-free method for learning controlled dynamical systems. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018. 1.2

[61] Mikael Henaff, Arthur Szlam, and Yann LeCun. Recurrent orthogonal networks and
long-memory tasks. In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 2034–2042, 2016.
URL http://jmlr.org/proceedings/papers/v48/henaff16.html. 8.4

[62] A. Hinrichs and J. Vybı́ral. Johnson-Lindenstrauss lemma for circulant matrices. Random
Structures & Algorithms, 39(3):391–398, 2011. 8.4

[63] Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Studies
in Applied Mathematics, 6(1-4):164–189, 1927. 2.4.6

[64] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. 2.3.2,
5.1.2, 5.5

[65] Daniel Hsu, Sham M. Kakade, and Tong Zhang. A spectral algorithm for learning hidden
markov models. 2009. ??, 3.3.1, 3.3.1, 3.3.1, 3, 3.3.1, 3.5.1, 3.6

[66] Daniel Hsu, Sham M. Kakade, and Tong Zhang. Random design analysis of ridge re-
gression. In COLT 2012 - The 25th Annual Conference on Learning Theory, June 25-27,

163

http://jmlr.org/proceedings/papers/v48/henaff16.html

2012, Edinburgh, Scotland, pages 9.1–9.24, 2012. URL http://www.jmlr.org/
proceedings/papers/v23/hsu12/hsu12.pdf. 3.B

[67] Daniel Hsu, Sham M Kakade, and Tong Zhang. Tail inequalities for sums of random
matrices that depend on the intrinsic dimension. Electronic Communications in Probability,
17(14):1–13, 2012. 7

[68] Daniel J. Hsu, Sham M. Kakade, and Tong Zhang. A spectral algorithm for learning hidden
markov models. CoRR, abs/0811.4413, 2008. 2.2, 2.4.6, 3.1, 3.4

[69] Herbert Jaeger. Observable operator models for discrete stochastic time series. Neural
Computation, 12(6):1371–1398, 2000. 2.2.3, 2.2.3

[70] R. E. Kalman. A new approach to linear filtering and prediction problems. ASME Journal
of Basic Engineering, 1960. 2.2.2, 2.2.2, 5.6

[71] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 2.4.2

[72] Jonathan Ko and Dieter Fox. Learning gp-bayesfilters via gaussian process latent variable
models. Autonomous Robots, 30(1):3–23, 2011. 5.7

[73] Kenneth R. Koedinger, R. S. J. Baker, K. Cunningham, A. Skogsholm, B. Leber, and John
Stamper. A data repository for the EDM community: The PSLC DataShop. Handbook of
Educational Data Mining, pages 43–55, 2010. 3.5.1

[74] Jean Kossaifi, Zachary C Lipton, Aran Khanna, Tommaso Furlanello, and Anima Anandku-
mar. Tensor regression networks. arXiv preprint arXiv:1707.08308, 2017. 2.4.6, 5.7

[75] Joseph B Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with
application to arithmetic complexity and statistics. Linear algebra and its applications, 18
(2):95–138, 1977. 2.4.6

[76] John Langford, Ruslan Salakhutdinov, and Tong Zhang. Learning nonlinear dynamic
models. In Proceedings of the 26th Annual International Conference on Machine Learn-
ing, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009, pages 593–600, 2009.
doi: 10.1145/1553374.1553451. URL http://doi.acm.org/10.1145/1553374.
1553451. 3.6

[77] Matthew Leifer and David Poulin. Quantum graphical models and belief propagation. Ann.
Phys., 323:1899, 2008. 6.9

[78] Lennart Ljung. System identification. Wiley Online Library, 1999. 5.1.2, 5.1.2, 5.6

[79] Fabien Lotte, Marco Congedo, Anatole Lécuyer, Fabrice Lamarche, and Bruno Arnaldi. A
review of classification algorithms for eeg-based brain–computer interfaces. Journal of
neural engineering, 4(2):R1, 2007. 2.1

[80] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large
annotated corpus of english: The penn treebank. Computational linguistics, 19(2):313–330,
1993. 5.6, 6.8, 7.3.3

[81] James Martens. Learning the linear dynamical system with asos. In Proceedings of the
27th International Conference on Machine Learning (ICML-10), pages 743–750, 2010. 5.7

164

http://www.jmlr.org/proceedings/papers/v23/hsu12/hsu12.pdf
http://www.jmlr.org/proceedings/papers/v23/hsu12/hsu12.pdf
http://doi.acm.org/10.1145/1553374.1553451
http://doi.acm.org/10.1145/1553374.1553451

[82] Geoffrey McLachlan and Thriyambakam Krishnan. The EM algorithm and extensions,
volume 382. John Wiley & Sons, 2007. 2.4.3

[83] Alex Monras, Almut Beige, and Karoline Wiesner. Hidden quantum Markov models and
non-adaptive read-out of many-body states. arXiv preprint arXiv:1002.2337, 2010. 6.9

[84] Elizbar A Nadaraya. On estimating regression. Theory of Probability & Its Applications, 9
(1):141–142, 1964. 6.5.3

[85] Yurii E Nesterov. A method for solving the convex programming problem with convergence
rate o (1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983. 2.4.2

[86] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information,
2002. 6.3

[87] S.M. Pandit and S.M. Wu. Time series and system analysis, with applications. Wiley,
1983. ISBN 9780471868866. URL http://books.google.com/books?id=
v4sQAQAAIAAJ. 3.6

[88] Luca Pasa, Alberto Testolin, and Alessandro Sperduti. A hmm-based pre-training approach
for sequential data. In 22th European Symposium on Artificial Neural Networks, ESANN
2014, Bruges, Belgium, April 23-25, 2014, 2014. URL http://www.elen.ucl.ac.
be/Proceedings/esann/esannpdf/es2014-166.pdf. 5.7

[89] Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
New York, NY, USA, 2000. ISBN 0-521-77362-8. 3.2

[90] Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature
maps. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’13, pages 239–247, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2174-7. doi: 10.1145/2487575.2487591. URL http://doi.acm.
org/10.1145/2487575.2487591. 7.1

[91] Gianluca Pollastri, Darisz Przybylski, Burkhard Rost, and Pierre Baldi. Improving the
prediction of protein secondary structure in three and eight classes using recurrent neural
networks and profiles. Proteins: Structure, Function, and Bioinformatics, 47(2):228–235,
2002. 2.1

[92] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in neural information processing systems, pages 1177–1184, 2008. (document),
2.2.5, 4.1, 5.6, 6.6, 8, 8.1, 8.4

[93] Matthew Rosencrantz and Geoff Gordon. Learning low dimensional predictive represen-
tations. In ICML ’04: Twenty-first international conference on Machine learning, pages
695–702, 2004. URL http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.10.5163. 2.2.4

[94] Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian
models. Neural Comput., 11(2):305–345, February 1999. ISSN 0899-7667.
doi: 10.1162/089976699300016674. URL http://dx.doi.org/10.1162/
089976699300016674. 2.2

[95] Tobias Rydén et al. Em versus markov chain monte carlo for estimation of hidden markov

165

http://books.google.com/books?id=v4sQAQAAIAAJ
http://books.google.com/books?id=v4sQAQAAIAAJ
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2014-166.pdf
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2014-166.pdf
http://doi.acm.org/10.1145/2487575.2487591
http://doi.acm.org/10.1145/2487575.2487591
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.5163
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.5163
http://dx.doi.org/10.1162/089976699300016674
http://dx.doi.org/10.1162/089976699300016674

models: A computational perspective. Bayesian Analysis, 3(4):659–688, 2008. 2.4

[96] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. CoRR, abs/1312.6120, 2013. URL
http://arxiv.org/abs/1312.6120. 8.4

[97] I. Schoenberg. Metric Spaces and Completely Monotone Functions. The Annals of
Mathematics, 39(4):811–841, 1938. 8.A

[98] Maria Schuld and Nathan Killoran. Quantum machine learning in feature Hilbert spaces.
arXiv preprint arXiv:1803.07128, 2018. 6.9

[99] Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating
focused molecule libraries for drug discovery with recurrent neural networks. ACS central
science, 4(1):120–131, 2017. 2.1

[100] Amirreza Shaban, Mehrdad Farajtabar, Bo Xie, Le Song, and Byron Boots. Learning
latent variable models by improving spectral solutions with exterior point methods. In
Proceedings of The International Conference on Uncertainty in Artificial Intelligence
(UAI-2015), 2015. 2.2

[101] Sajid Siddiqi, Byron Boots, and Geoffrey J. Gordon. Reduced-rank hidden Markov models.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics (AISTATS-2010), 2010. 3.5.1, 3.6

[102] Satinder Singh, Michael R. James, and Matthew R. Rudary. Predictive state representations:
A new theory for modeling dynamical systems. In Proceedings of the 20th Conference on
Uncertainty in Artificial Intelligence, UAI ’04, pages 512–519, Arlington, Virginia, United
States, 2004. AUAI Press. ISBN 0-9749039-0-6. 2.2.4

[103] Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A hilbert space embedding
for distributions. In International Conference on Algorithmic Learning Theory, pages
13–31. Springer, 2007. 2.2.5, 6.5.1, 6.5.1, 6.9

[104] L. Song, B. Boots, S. M. Siddiqi, G. J. Gordon, and A. J. Smola. Hilbert space embeddings
of hidden Markov models. In Proc. 27th Intl. Conf. on Machine Learning (ICML), 2010.
3.6, 5.1.2, 6.9

[105] Le Song, Jonathan Huang, Alex Smola, and Kenji Fukumizu. Hilbert space embeddings of
conditional distributions with applications to dynamical systems. In Proceedings of the
26th Annual International Conference on Machine Learning, pages 961–968. ACM, 2009.
3.3.3, 13, 3.B, 4.4, 6.9

[106] Le Song, Kenji Fukumizu, and Arthur Gretton. Kernel embeddings of conditional distribu-
tions: A unified kernel framework for nonparametric inference in graphical models. IEEE
Signal Processing Magazine, 30(4):98–111, 2013. 6.5.1, 6.5.2, 6.5.2, 6.5.4, 6.5.4, 6.9

[107] Siddarth Srinivasan, Carlton Downey, and Byron Boots. Learning and inference in hilbert
space with quantum graphical models. In Advances in Neural Information Processing
Systems, pages 10359–10368, 2018. 1.2

[108] Siddarth Srinivasan, Geoffrey J. Gordon, and Byron Boots. Learning hidden quantum
Markov models. In Proceedings of the 21st International Conference on Artificial Intelli-

166

http://arxiv.org/abs/1312.6120

gence and Statistics, 2018. 6.4, 6.4, 6.4, 6.5.2, 6.6, 6.6, 6.9

[109] J.H. Stock and M.W. Watson. Introduction to Econometrics. Addison-Wesley series
in economics. Addison-Wesley, 2011. ISBN 9780138009007. URL http://books.
google.com/books?id=prLxRQAACAAJ. 3.2

[110] Joel A. Tropp. User-friendly tools for random matrices: An introduction. NIPS Tutorial,
2012. 3.A.1

[111] Joel A. Tropp. An introduction to matrix concentration inequalities. Found. Trends Mach.
Learn., 8(1-2):1–230, May 2015. ISSN 1935-8237. doi: 10.1561/2200000048. URL
http://dx.doi.org/10.1561/2200000048. 26

[112] P. van Overschee and L.R. de Moor. Subspace identification for linear systems: theory,
implementation, applications. Kluwer Academic Publishers, 1996. 2.4.5, ??, 3.3.2, 4.2.1,
4.3.2, 4.6.2, 4.6.2

[113] Peter Van Overschee and Bart De Moor. N4sid: numerical algorithms for state space
subspace system identification. In Proc. of the World Congress of the International
Federation of Automatic Control, IFAC, volume 7, pages 361–364, 1993. 2.2

[114] Peter Van Overschee and Bart De Moor. N4sid: Subspace algorithms for the identification
of combined deterministic-stochastic systems. Automatica, 30(1):75–93, January 1994.
ISSN 0005-1098. doi: 10.1016/0005-1098(94)90230-5. URL http://dx.doi.org/
10.1016/0005-1098(94)90230-5. 3.1, 5.7

[115] J. Vybı́ral. A variant of the Johnson-Lindenstrauss lemma for circulant matrices. Journal
of Functional Analysis, 260(4):1096–1105, 2011. 8.4

[116] Y. Wang, H.-Y. Tung, A. J. Smola, and A. Anandkumar. Fast and guaranteed tensor
decomposition via sketching. In NIPS, 2015. 7.2.2, 7.2.2

[117] Larry Wasserman. All of Nonparametric Statistics (Springer Texts in Statistics). Springer-
Verlag, Berlin, Heidelberg, 2006. ISBN 0387251456. 6.5.3

[118] Geoffrey S Watson. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics,
Series A, pages 359–372, 1964. 6.5.3

[119] Paul J Werbos et al. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, 1990. 2.5.1

[120] O. White, D. Lee, and H. Sompolinsky. Short-term memory in orthogonal neural networks.
Physical Review Letters, 92, 2004. ISSN 14., 2004. 8.4

[121] Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, and Ruslan Salakhutdinov. On
multiplicative integration with recurrent neural networks. CoRR, abs/1606.06630, 2016.
URL http://arxiv.org/abs/1606.06630. 5.5

[122] Chen-Hsiang Yeang. A probabilistic graphical model of quantum systems. In Machine
Learning and Applications (ICMLA), 2010 Ninth International Conference on, pages
155–162. IEEE, 2010. 6.9

[123] F. Yu, A. Suresh, K. Choromanski, D. Holtmann-Rice, and S. Kumar. Orthogonal random
features. In NIPS, pages 1975–1983, 2016. 8, 8.2, 8.4

167

http://books.google.com/books?id=prLxRQAACAAJ
http://books.google.com/books?id=prLxRQAACAAJ
http://dx.doi.org/10.1561/2200000048
http://dx.doi.org/10.1016/0005-1098(94)90230-5
http://dx.doi.org/10.1016/0005-1098(94)90230-5
http://arxiv.org/abs/1606.06630

[124] H. Zhang and L. Cheng. New bounds for circulant Johnson-Lindenstrauss embeddings.
CoRR, abs/1308.6339, 2013. 8.4

[125] Yuchen Zhang, Xi Chen, Denny Zhou, and Michael I Jordan. Spectral methods meet
em: A provably optimal algorithm for crowdsourcing. In Advances in neural information
processing systems, pages 1260–1268, 2014. 5.7

168

	1 Introduction
	1.1 Main Contributions
	1.2 Organisation

	I Background
	2 Background
	2.1 Dynamical Systems
	2.1.1 Models
	2.1.2 State

	2.2 Bayes Filters
	2.2.1 Hidden Markov Models
	2.2.2 Kalman Filters
	2.2.3 Observable Operator Models
	2.2.4 Predictive State Representations
	2.2.5 Hilbert Space Embeddings of Bayes Filters

	2.3 Recurrent Neural Networks
	2.3.1 Elman Networks
	2.3.2 Long-Short Term Memory Units
	2.3.3 Gated Recurrent Units

	2.4 Generative Learning
	2.4.1 Maximum Likelihood
	2.4.2 Gradient Methods
	2.4.3 Expectation Maximization
	2.4.4 Method of Moments
	2.4.5 Subspace Identification
	2.4.6 Tensor Decomposition Methods

	2.5 Discriminative Learning
	2.5.1 Back Propagation Through Time

	2.6 Discussion

	II Unifying Method of Moments Learning
	3 Method of Moments Learning for Uncontrolled Systems
	3.1 Predictive State Models
	3.2 Two-Stage Regression
	3.3 Connections with prior work
	3.3.1 HMM
	3.3.2 Stationary Kalman Filter
	3.3.3 HSE-PSR

	3.4 Theoretical Analysis
	3.5 Experiments
	3.5.1 Learning A Knowledge Tracing Model
	3.5.2 Modeling Independent Subsystems Using Lasso Regression

	3.6 Related Work
	3.7 Conclusions
	3.A Proofs
	3.A.1 Proof of Main Theorem
	3.A.2 Proof of Lemma 6

	3.B Examples of S1 Regression Bounds

	4 Method of Moments Learning for Controlled Systems
	4.1 Introduction
	4.2 Formulation
	4.2.1 Model Definition

	4.3 Learning A Predictive State Controlled Model
	4.3.1 Joint S1 Approach
	4.3.2 Conditional S1 Approach
	4.3.3 S2 Regression and Learning Algorithm
	4.3.4 Theoretical Guarantees

	4.4 Connections with HSE-PSRs
	4.4.1 HSE-PSR as a predictive state controlled model
	4.4.2 S1 Regression for HSE-PSR

	4.5 Experiments
	4.5.1 Synthetic Data
	4.5.2 Predicting windshield view
	4.5.3 Predicting the nose position of a simulated swimmer robot
	4.5.4 Tested Methods and Evaluation Procedure
	4.5.5 Results and Discussion

	4.6 Other Examples of Predictive State Controlled Models
	4.6.1 IO-HMM
	4.6.2 Kalman Filter with inputs

	4.7 Theoretical Analysis
	4.7.1 Case 1: Discrete Observations and Actions
	4.7.2 Case 2: Continuous System

	4.8 Conclusions
	4.A RFF-PSR Learning Algorithm
	4.B Proofs of theorems
	4.B.1 Proof of Theorem 24
	4.B.2 Sketch Proof for joint S1

	III Hybrid Models
	5 Predictive State Recurrent Neural Networks
	5.1 Predictive State Recurrent Neural Networks
	5.1.1 HSE-PSRs as RNNs
	5.1.2 From PSRs to PSRNNs

	5.2 Theory
	5.3 Learning Multilayer PSRNNs
	5.4 Factorized PSRNNs
	5.5 Discussion
	5.6 Experiments
	5.6.1 Results

	5.7 Related Work
	5.8 Conclusions

	6 Hilbert Space Embedding of Hidden Quantum Markov Models
	6.1 Quantum Mechanics
	6.2 Advantages of Quantum Mechanics
	6.2.1 Continuous Time
	6.2.2 Richer Class of Transformations
	6.2.3 Easier to Learn
	6.2.4 Rotational Symmetry

	6.3 Quantum Circuits
	6.4 Quantum Graphical Models
	6.5 Translating to the language of Hilbert Space Embeddings
	6.5.1 Hilbert Space Embeddings
	6.5.2 Quantum Sum Rule as Kernel Sum Rule
	6.5.3 Quantum Bayes Rule as Nadaraya-Watson Kernel Regression
	6.5.4 Quantum Bayes Rule as Kernel Bayes Rule

	6.6 HSE-HQMMs
	6.7 Connections with PSRNNs
	6.8 Experiments
	6.9 Related Work
	6.10 Conclusions
	6.A Modifying the Quantum Circuit for Bayes rule
	6.B Kernelizing HSE-HQMMs
	6.C Experimental Details
	6.C.1 State Update
	6.C.2 Prediction
	6.C.3 Pure State HSE-HQMMs
	6.C.4 Parameter Values

	IV Scalable Implementations
	7 Sketching for Predictive State Methods
	7.1 Tensor Sketch
	7.2 Sketched Two-Stage Regression
	7.2.1 Tensor Sketch as PSRNN Parameters
	7.2.2 Hybrid ALS with Deflation
	7.2.3 Learning a Factorized PSRNN

	7.3 Experiments
	7.3.1 Tensor Product vs. Tensor Decomposition
	7.3.2 Tensor Decomposition: Alternating Least Squares vs. Deflation
	7.3.3 Sketching for Factorized PSRNNs

	7.4 Conclusions

	8 Orthogonal Random Features for Predictive State Models
	8.1 Orthogonal Random Features
	8.2 The theory of the orthogonal kernel ridge regression
	8.2.1 Superiority of the orthogonal features for kernel ridge regression

	8.3 Experiments
	8.3.1 Experimental Setup
	8.3.2 Results
	8.3.3 Discussion

	8.4 Related Work
	8.5 Conclusions
	8.A Proof of Theorem 38
	8.B Proof of Theorem 39

	V Conclusions
	9 Conclusions
	Bibliography

