Lightening the Cognitive Load of Shell
Programming

Ishaan Gandhi* Anshula Gandhi'

November 2020
CMU-ISR-20-115B

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This paper was presented at PLATEAU 2020:
The 11th Annual Workshop on the Intersection of HCI and PL
November 2020, Co-located with SPLASH 2020

*Department of Computer Science, Harvey Mudd College, Claremont, CA, USA
fDepartment of Brain and Cognitive Sciences, Massachusetts Institute of Technology,
Cambridge, MA, USA

Keywords: Terminal, Shell, Scripting Languages

Abstract

Terminal emulators, or simply terminals, are used ubiquitously by developers. While many have
proposed alternatives, this paper examines the fundamental reasons why shell programming, es-
pecially when using a terminal as a programming environment, can be difficult, as understood
through the Cognitive Dimensions Framework. We will present a task analysis of the shell pro-
gramming language itself (which we’ll refer to as “the shell””) and the application most often used
to interact with it (which we’ll refer to as “the terminal”). We lay out many usability problems of
interactive programming via shell in the hopes that tool developers may be able to build upon this
analysis in the future.

Lightening the Cognitive Load of Shell
Programming

Ishaan Gandhi
Harvey Mudd College, Claremont, CA, US
igandhi@hmec.edu

Anshula Gandhi
MIT, Cambridge, MA, US
anshula@mit.edu

—— Abstract

Terminal emulators, or simply terminals, are used ubiquitously by developers. While many have
proposed alternatives, this paper examines the fundamental reasons why shell programming, especially
when using a terminal as a programming environment, can be difficult, as understood through the
Cognitive Dimensions Framework [7]. We will present a task analysis of the shell programming
language itself (which we’ll refer to as “the shell”) and the application most often used to interact
with it (which we’ll refer to as “the terminal”). We lay out many usability problems of interactive
programming via shell in the hopes that tool developers may be able to build upon this analysis in
the future.

2012 ACM Subject Classification Software and its engineering — Scripting languages; Human-
centered computing — Command line interfaces

Keywords and phrases Terminal, Shell, Scripting Languages

Acknowledgements We want to thank Will Crichton, to whom we owe many structural ideas of this

paper. We also thank Lucas Bang for his valuable feedback.

1 Introduction

The “principles of cognitive dimensions” create a way to evaluate programming languages or
programming environments based on how the notation of the language adds or alleviates the
cognitive load on a programmer. These dimensions include, among others, consistency (how
much of the usage of the language can be inferred), progressive evaluation (if partially
complete programs can still be executed to aid the developer), and hard mental operations
(if the user might need to take separate notes to make sense of the notation). Ultimately,
“the understandability of a programming language depends on the match between the way
it is structured and the type of question to be answered” [7]. These dimensions help to
measure this match. Throughout the paper, we will emphasize these dimensions in bold
type for clarity. In this paper, we will provide a task analysis of shell programming via
the terminal, emphasizing difficulties, and including justifications from both the cognitive
dimensions theory and anecdotal programmer experience. What assumptions about shell
programming are implicit in the design of the terminal? We draw attention to areas where
the terminal provides a poor fit for the kinds of tasks users want to undertake. While the
focus of this paper is on interactive shell programming, many of the observations will be
applicable to other manners of using the shell language (e.g. shell scripts and make files).

Programming in shell via a terminal involves two tasks:

Writing a single shell command. A command containing only a program name and its

flags, or a shell builtin, like cd or source is called simple. A command can also contain

constructs like pipelines, lists, loops, conditionals, and groups. [5] We will call this second

type of command compound, and any single command, whether simple or compound, a
? Ishaan Gandhi anc% Anshula Gand.hi;

5v icensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1-23:6

mailto:igandhi@hmc.edu
mailto:anshula@mit.edu
https://creativecommons.org/licenses/by/3.0/

23:2 Lightening the Cognitive Load of Shell Programming

statement.

Issuing multiple statements in order to accomplish a task. As we will see, unique challenges
arise when commands are issued as individual statements, (for example, cd /tmp/, then
rm -rf) instead of as an equivalent compound command, (cd /tmp/ && rm -rf.)

We break this paper down, accordingly, into a task analysis of writing single commands,
and a task analysis of issuing multiple statements.

2 Task Analysis

2.1 What makes writing each command hard?

The terminal emphasizes issuing commands as one-offs as opposed to repetitive
actions

Yet, in practice, many commands are actually needed repeatedly. Within a project, a
programmer frequently runs the same few commands, which are often long. Think tight
loops of compile, test, debug, edit.

How can a programmer find a command they previously ran in order to run it again?
Remembering which previously used command pairs with which action is a hard mental
operation. In our experience, terminal users complete such a task by piecing together
evidence from their shell’s history. If they are lucky, they might remember a substring of
the command and find it with a reverse search. Without such luck, they are relegated to
repeatedly pressing the up key. In either case, they must filter out irrelevant commands
along the way and remember the correct order to run the relevant ones.

Both command names and flags are hard to remember. To keep terminal usage concise,
users often prefer to use shortened flags or commands instead of the full version. These
shorthands make the terminal productive but are not role expressive. Would a programmer
be able to scroll back through their terminal history and understand what they did? Would
they be able to find the command they previously used with a reverse search? For many
programmers, the answer is “probably not”.

Suppose a programmer wants to write a compound command by composing together 5
simple commands. If they are typing them in a terminal, they might first make sure that
simple command A does what they want it to do. Then, they’d want to make sure A and B
work correctly together, perhaps typing B | A. Then they might add in ¢, B | A & C. In
general, building up to a series of N simple commands in this way would require typing
on the order of N2 commands. The user might therefore decide to just write out all the
commands in one go (B | A & C | D; E) to spare themselves this process. The terminal
is not conducive to progressive evaluation. The programmer had to retype commands
because the outputs were needed by later commands. Could a terminal let programmers use
the outputs of previous commands as inputs into future commands?

Progressive evaluation is important because programmers prefer to code “in little spurts
(possibly corresponding to mental chunks or schemas) which are knitted into what has been
written so far” [7] [6]. Novice programmers especially rely on progressive evaluation: “the
less experienced the programmer, the smaller the amount that is produced before it must
be evaluated” [7]. Thus, shell programming with software that is less-than-conducive to
progressive evaluation may prove to be a stumbling block allowing more entry of programmers
into the field. What would software that emphasized progressive evaluation look like? Would
programmers make fewer mistakes if they could view the entirety of a command’s output
before it gets piped into the next command?

l. Gandhi and A. Gandhi

The terminal forces users to trade off between terseness and visibility. This makes
commands, especially when compound, hard to debug.

Expansion occurs in a way that is not observable, and the behavior of the program is not
visible from reading the statement. For example rm -r $(./files_to_delete) does not tell
you what files are going to be deleted. While powerful, shell expansions like these make it
easy to make mistakes. A better terminal might allow a user to expand some expressions as
the shell evaluates the code.

The conflict between terseness and visibility is also apparent in the ubiquity of aliases

[9]. Aliases provide a way for programmers to reuse code without retyping an entire command.

However, when a command is aliased, there is almost no visibility into what command the
shell will run. The command being run could have come from any number of sourced files.

The terminal has a textual user interface (TUI) as opposed to the more common
graphical user interface (GUI). The standard idioms for interaction used by most
other applications do not work in the terminal.

The TUI on terminals (on MacOS, the Emacs key bindings, shortcuts, and commands) are
in principle perfectly productive. In practice, most programmers do not understand them
well enough to use them productively.

Suppose a programmer needs to change a character in the middle of a 40 character
command, and their cursor is on the last character. A savvy Emacs user can quickly perform
the desired change. In practice, only 4.5% of developers use Emacs as their editor [13]. The
rest of us are pressing the left-arrow key 20 times, a form of repetition viscosity.

Programmers might make their terminal experience more similar to what they are used
to by, for example, using alt-click to move their cursor with the mouse, or remapping Ctrl-R
to the more idiomatic Ctrl-F. Even skilled typists have little explicit knowledge of key
locations on the keyboard, and instead type reflexively. Novel tasks like learning a new
keybinding, by contrast, require loading explicit knowledge into working memory [15]. One
might hypothesize that users can therefore use the wrong shortcut through muscle memory,
even if they consciously know the shortcut is different on different programs. The issue at
hand is the closeness of mapping between what the user expects the notation to be, and
what it is. A study of how terminal designers might make these controls more discoverable
to programmers accustomed to GUIs would be a valuable contribution.

The shell interpreter in a terminal is a read-eval-print-loop, or REPL

REPLs, by definition, offer the programmer only 1 statement of editable text at a time. Once
a statement is issued, it is no longer editable. The space to edit a command is restricted
to a single line at the bottom of the screen. However, large windows of spaces to edit are
important to programmers. Research into programmer experience shows that “an editor

which allows easy access to a large window of code makes the [editing] cycle easier..” [7] [4].

2.2 Why is issuing multiple statements hard?

Writing a command requires knowledge of every command that has come before it
in the shell, since any could potentially alter the shell’s state.

The state of a shell session can affect the semantics of a command. For example, environment

variables, such as PATH or PWD can make the same command run a completely different program.

This is a hidden dependency: the relationship between the command a programmer ran

23:3

PLATEAU 2020

23:4

Lightening the Cognitive Load of Shell Programming

and the environment variable the command made use of is not visible from just the command.
This can make it hard to reproduce the result of a command.

Although most programming languages support both global and local variables, program-
mers should default to locals, using globals only when necessary. Could we make terminals
that more closely mirror conventional wisdom in most languages?

Context is lost when searching for individual statements in a command history

In Jupyter notebook, Python code is often chunked into semantic blocks, with a few lines
grouped together for one clear purpose, and the next few grouped together for another
purpose. By contrast, in a Python REPL, it can be more difficult to figure out what the
larger purpose of a line of code is.

The same difficulty of understanding the context of a previously run command exists
in terminal. The design of the terminal emphasizes temporal visibility; it can show a
programmer inputs and outputs in the order they were produced in. However, it won’t
show which commands should be run consecutively or why they should be run. Notebook
computing applied to shell programming might aid in code readability, as it does for Python
users.

Comparing multiple commands along an axis is limited by terminal

Suppose a programmer has run a particular command numerous times, with numerous
parameters and flags. If that user then wants to see all the different flags they used the
program with, their best option might be to use the history command. However, this can
be cognitively demanding for the user, as they scroll through various unrelated commands,
only looking for and comparing the ones that they are interested in.

We can justify this readability difficulty theoretically. Suppose the programmer has run
a command K different times with various flags. They want to search through their shell
history for all K variants to compare them, but their terminal window will only show them
N << K commands at a time. As they scroll off to another part of the screen, they can likely
only keep about 4 commands in their working memory [3]. However, they need to remember
all K — N other commands in order to do the comparisons. Thus, the poor juxtaposability
of this interface adds an additional cognitive burden to the programmer.

Easing this burden might involve showing the bash history of only the commands in the
project or "notebook" are currently working on, or showing commands sorted by command
prefix rather than time executed.

3 Potential Remedies

We can’t get away from the command line. Even though Netflix has decided to forgo shell
scripts and migrate towards Jupyter notebooks with Python, the software they’re using to
organize the execution of these notebooks requires heavy use of the command line [14, 12].
That is, they are likely still using a shell to execute the Jupyter notebook, to execute the
Python that executes the Jupyter notebook, and to upload the notebook to a remote server.

Making terminal alternatives is a long-standing tradition in the developer community.
One such alternative aims to make the terminal more visual by outputting images from the
browser, maps from the internet, and visualizations of working directories and disk space
[16]. A second alternative increases the visibility of shell computations by letting users

l. Gandhi and A. Gandhi

step through command expansions and evaluations [8]. Another alternative involves using a
Jupyter notebook with a bash kernel [10].

In addition, efforts by the zsh community help address some of the issues mentioned in
this paper. For example, one widely used history-based autocompletion plugin unobtrusively
presents users with previously run commands as they type, easing the burden of repeatedly
recalling frequently used actions [2]. Fish shell addresses the visibility of aliases problem by
replacing aliases with their definitions once executed [1].

Terminal designers might look to the Python community for inspiration. While Python
ships with a REPL, many programmers who want to interactively use the language use
Jupyter notebooks. While the primitive input in a REPL is a command, the primitive
input in notebook computing is the cell. A cell is simply a series of commands that can
be run together via a button or a keyboard shortcut. Notebook computing recognizes that
commands Python users ran weren’t necessarily one-offs, and lets users save their work. It
also uses a more IDE-like UI, and shows context around individual statements. As with
terminal, however, notebooks require users to have knowledge of every cell previously run to
keep track of global state. Furthermore, the fact that the Python kernel is used ubiquitously
with Jupyter, unlike the bash kernel, might indicate some other weaknesses of notebook
computing for the interactive shell programming domain.

4 Conclusion

Programmers who get past the initial steep learning curve and appreciate the power of shell
programming in the terminal might prefer the terminal to doing the same tasks through
GUIs. Indeed, the move away from the command line and towards GUIs “has resulted in
programs that are easier to learn and use, but harder to automate and reuse.” [11].

However, "learnability" of software need not be in conflict with the automation and
reusability benefits of that software for power users. For example, consider the addition
of idiomatic keybindings to the terminal. A terminal using Ctrl-F instead of the default
Ctrl-R for searching through command history, as mentioned in section 2.1, might increase
"learnability" without harming reusability.

We advocate creating terminal alternatives that apply the design principles mentioned in
this paper, in order to create programs that are still easy to learn and use, without sacrificing
the automation advantage that shell provides. We hope these design principles based in
cognitive science will allow shell computing to be less of a cognitive burden, freeing up
bandwidth for the more impactful activities in a programmer’s life.

—— References

1 Friendly interactive shell, (accessed 2020). URL: https://fishshell.com/.

2 Zsh-autosuggestions, (accessed 2020). URL: https://github.com/zsh-users/
zsh-autosuggestions.

3 Nelson Cowan. The magical number 4 in short-term memory: A reconsideration of mental
storage capacity. Behavioral and brain sciences, 24(1):87-114, 2001.

4 Simon P. Davies. Externalising information during coding activities: Effects of expertise,
environment and task. ESP, 93(744):42-61, 1993.

5 Free Software Foundation. Bash Builtin Commands, (accessed 2020). URL: https://www.gnu.

org/software/bash/manual/html_node/Bash-Builtins.html.
6 Thomas R. G. Green, Rachel K. E. Bellamy, and J.M. Parker. Parsing and gnisrap: A model

of device use. In Human—Computer Interaction-INTERACT 87, pages 65-70. Elsevier, 1987.

23:5

PLATEAU 2020

https://fishshell.com/
https://github.com/zsh-users/zsh-autosuggestions
https://github.com/zsh-users/zsh-autosuggestions
https://www.gnu.org/software/bash/manual/html_node/Bash-Builtins.html
https://www.gnu.org/software/bash/manual/html_node/Bash-Builtins.html

23:6

Lightening the Cognitive Load of Shell Programming

10

11

12

13

14

15

16

Thomas R. G. Green and Marian Petre. Usability analysis of visual programming environments:
a ‘cognitive dimensions’ framework. Journal of Visual Languages

Computing, 7(2):131-174, 1996.

Michael Greenberg. Smoosh: the symbolic, mechanized, observable, operational shell, 2020.
Current version: 0.1. URL: https://github.com/mgree/smoosh.

Seth Kenlon. Bash aliases you can’t live without, (accessed 2020). URL: https://opensource.
com/article/19/7/bash-aliases.

Thomas Kluyver. A jupyter kernel for bash, (accessed 2020). URL: https://github.com/
takluyver/bash_kernel.

Robert C. Miller and Brad A. Myers. Integrating a command shell in a web browser. In
Proceedings of 2000 USENIX Annual Technical Conference, 2000.

Nteract. Papermill: Parameterize, execute, and analyze notebooks, (accessed 2020). URL:
https://github.com/nteract/papermill.

Stack Overflow. Developer Survey Results, 2019 (accessed 2020). URL: https://insights.
stackoverflow.com/survey/2019#development-environments-and-tools.

Matthew Seal, Kyle Kelley, and Michelle Ufford. Scheduling Notebooks at Netfliz, (accessed
2020). URL: https://netflixtechblog.com/scheduling-notebooks-348e6c14cfd6.

Kristy M Snyder, Yuki Ashitaka, Hiroyuki Shimada, Jana E Ulrich, and Gordon D Logan. What
skilled typists don’t know about the qwerty keyboard. Attention, Perception, & Psychophysics,
76(1):162-171, 2014.

Pramod Verma. Gracoli: a graphical command line user interface. In CHI’13 Extended
Abstracts on Human Factors in Computing Systems, pages 3143-3146. 2013.

https://github.com/mgree/smoosh
https://opensource.com/article/19/7/bash-aliases
https://opensource.com/article/19/7/bash-aliases
https://github.com/takluyver/bash_kernel
https://github.com/takluyver/bash_kernel
https://github.com/nteract/papermill
https://insights.stackoverflow.com/survey/2019#development-environments-and-tools
https://insights.stackoverflow.com/survey/2019#development-environments-and-tools
https://netflixtechblog.com/scheduling-notebooks-348e6c14cfd6

	Introduction
	Task Analysis
	What makes writing each command hard?
	Why is issuing multiple statements hard?

	Potential Remedies
	Conclusion

