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Abstract

In this dissertation I argue that modal type systems provide an elegant
and practical means for controlling local resources in spatially distributed
computer programs. A distributed program is one that executes in multiple
physical or logical places. It usually does so because those places have local
resources that can only be used in those locations. Such resources can include
processing power, proximity to data, hardware, or the physical presence of
a user. Programmers that write distributed applications therefore need to be
able to reason about the places in which their programs will execute. This
work provides an elegant and practical way to think about such programs
in the form of a type system derived from modal logic.

Modal logic allows for reasoning about truth from multiple simultaneous
perspectives. These perspectives, called “worlds,” are identified with the lo-
cations in the distributed program. This enables the programming language
to be simultaneously aware of the various hosts involved in a program, their
local resources, and their differing perspectives on each other’s code and
data. This leads to a clean and general type structure for programs that re-
spects locality while permitting high-level language features.

To argue that this system is elegant, I present a modal logic formulated
for this purpose and then prove its global soundness and completeness and
its equivalence to known logics. I then show how a small programming lan-
guage can be derived from the logic, and how it can be implemented, prov-
ing properties of this abstract compilation procedure. All of these theorems
are formalized in Twelf and can be checked by computer.

To demonstrate that it is practical, I then extend the modal calculus to
a full-fledged programming language based on ML. I implemented a com-
piler for this language for the specific case of web applications, a distributed
computation involving two hosts with widely different capabilities: the web
server and the web browser. I then use the completed implementation to
build realistic web applications.
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Chapter 1

Introduction

This thesis project’s goal is to demonstrate that modal type systems provide an elegant
and practical means for controlling local resources in spatially distributed computer
programs. To do this, I have designed a new formulation of modal logic from which I
derived a modally-typed lambda calculus. I then extended this calculus to a full-fledged
programming language. I implemented the programming language by building a type-
directed compiler and a runtime system specialized to web applications. I then demon-
strated my language’s effectiveness by building realistic web applications with it. In
this dissertation I present the theoretical components of my work and describe the im-
plementation components; the source code and on-line demos are available separately!

1.1 Overview

Some history will be useful to provide context for the problem I solve. This work arose
from the ConCert project, in which we built theory and infrastructure for trustless peer-
to-peer “Grid Computing.” Grid computing, which is named by analogy with electric
power grids, is the practice of coupling diverse computational resources into a large
shared computer. Grid applications are mobile in the sense that they run on multiple
different hosts, in different locations, during the course of their execution. One of the
programming languages we implemented for the ConCert project was Grid/ML, an
ML-like language with simple support for massively parallel computations.

Grid/ML. InGrid/ML, the programmer writes his whole Grid application as a unified
program. This program is made of two parts: the client, which runs only on the user’s
computer and interacts with him, and the mobile code, which runs on arbitrary hosts
in the network. (The ConCert infrastructure automatically allocates the mobile code to
idle hosts.)

Grid/ML is practical for a certain class of problems, and has been used for a few
Grid programming experiments. However, it has two major shortcomings. First, the

'They can be found at http://tom7.org/ml5/
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mobile code is agnostic to where it is running, so applications must treat the hosts in
the network uniformly; it is not possible to make use of special resources only available
at certain sites. Since distributed computing is often motivated by the desire to make
use of resources other than mere processing power, this rules out an important set of
applications.

Second, even with the assumption of uniformity for the mobile code, Grid /ML still
has a distinction between client code and mobile code. The client is the part of the
Grid /ML application that the user interacts with, and the mobile code is what is actually
run on the Grid. Certain operations, such as I/O, can only be performed on the client
and result in run-time failure if used in mobile code.

My solution to both problems is to enrich the ML type system with a concept of
place. By doing so, the language is able to support location-aware programming, so that
network locations need not be treated uniformly. As a consequence, the client is simply
another place, and we will be able to distinguish its capabilities from the capabilities of
other hosts. Because we use a type system, we can make these distinctions statically, ex-
cluding errors before the program is ever run. Although the shortcomings of Grid/ML
inspired ML5 (and the language would be an appropriate successor to Grid/ML), ML5
is an independent language suitable for many sorts of distributed programs. The cur-
rent implementation is not designed for Grid computing with ConCert; rather, we target
the Web as our application domain. This is a particular case of distributed programming
where there are exactly two hosts, with widely different capabilities: the web browser
and the web server.

Modal logic and a modal type system. Type systems for functional languages like
ML have a close connection to logic, called the Curry-Howard isomorphism. Under
this view, the propositions of intuitionistic logic are interpreted as the types of a pro-
gramming language. Proofs of propositions then become programs inhabiting those
types. Different logics, viewed through the lens of the Curry-Howard isomorphism,
give rise to a variety of elegant and useful type systems for programming languages.

In order to develop a type system with a notion of place, we use a logic with the
ability to reason spatially, namely modal logic. The propositional logic upon which ML
is based is concerned with the truth of propositions from a single universal viewpoint.
Modal logic introduces the concept of truth from multiple different perspectives, which
are called “worlds.” The logic is then able to reason simultaneously about truth in these
worlds. Under the Curry-Howard view, these worlds become hosts in the network, and
so our type system is correspondingly endowed with a notion of place.

Modal distributed programming. Because a proof in modal logic contains reasoning
from multiple different worlds, programs in our modal programming language span
multiple hosts. That is, each program consists of nested expressions and declarations
to be evaluated at various hosts in the network. These fragments make reference to the
other sites in the network, and the resources particular to those sites. The main purpose
of the type system is to track these references to remote resources so that they are only
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used in a safe way: Localized resources can only be used in the correct place. When
code or data do not depend on their location, we are also able to indicate this in the
type system. This allows them to be safely used anywhere. This brings us to the thesis
statement:

Thesis Statement. Modal type systems provide an elegant and practical
means for controlling local resources in spatially distributed computer pro-
grams.

Although modal types naturally address spatial distribution, this is only one facet
of distributed computing. In particular, a logical approach to concurrency and failure is
beyond the scope of this project. However, ML5 has rudimentary support for these for
the purpose of building realistic applications.

Web programming. The Web has evolved from a way of linking formatted documents
together to a platform for application delivery. The modern web application is pre-
sented as a single web page with a client side program (written in JavaScript) that com-
municates with a server side program (written in Java or another server programming
language) to access databases and other server resources. This style is known as “AJAX”
and is an instance of distributed programming; the two hosts (browser and server) run
in different locations and have different capabilities. For example, only the server can
access the database, and only the client can interact with the user.

Implementation. My ML5 implementation targets web programming by compiling
MLS5 source programs into JavaScript for the client and a simple bytecode language for
the server. The compiler is type-directed, meaning that it additionally transforms the
types of the program through the phases of compilation, and type-checks the interme-
diate representations. Type-directed compilation has many conceptual and engineering
benefits: it increases the robustness of the compiler by catching errors earlier, it exercises
the type system in a way that informs its design, and it is necessary for our marshaling
strategy? Therefore we will expend a lot of effort, both in the design of the languages
and in the engineering of the compiler, to make it type-directed.

The implementation also includes a web server that runs server-side code, serves
the client-side code to the client, and manages the communication between the client
and server. Although the runtime is specialized to web programming, the language
and compiler are general enough to permit programming for an arbitrary set of hosts,
including the discovery of hosts at runtime. To do this, only the runtime system would
need to be extended.

2We also leave open the possibility of producing typed object code (certificates), but do not do that in
this implementation.



1.2 Organization

The dissertation is organized following the same trajectory that the research took: an
end-to-end study of programming language design and implementation from the iden-
tification of the problem domain to the crafting of applications using the completed
implementation. I begin by briefly describing the ConCert project for the purpose of
showing how its programming language, Grid /ML, has a type system too weak for safe
distributed programming (Section 2.1). I then present our formulation of modal logic,
called Lambda 5, which is the basis of a new calculus and type system for distributed
programming (Section 3.2). To promote this calculus to a full-fledged programming
language requires extending it in a number of ways. We first explore a classical variant,
called C5, that adds continuations to the language (Section 3.4); these are used in com-
pilation and in the implementation of threads and some programming idioms. We also
find that we must extend the calculus with support for global reasoning (Section 3.5)
in order to write some programs; this will also be required for compilation. I study
the first few phases of compilation for our extended calculus, formalizing and proving
properties in the Twelf system (Chapter 4). This concludes the foundational portion of
the project.

Given these foundations, I then describe the programming language ML5 (a straight-
forward integration of the calculus into ML) and its implementation (Chapter 5). Fol-
lowing this I present my example applications, built with ML5 (Chapter 6). I conclude
with a discussion of related work and ideas for the future (Chapter 7). The formalization
of the calculi and proofs appear in full in the appendix.



Chapter 2

Located programming

In this chapter I motivate a manner of thinking about resources in distributed program-
ming, which is the conceptual basis of ML5’s type system. I do this by presenting the
simplistic type system of Grid/ML and illustrating its shortcomings by example, and
then arguing that a first-class notion of place is the appropriate way of addressing these
shortcomings. This issue is not unique to Grid /ML; I also compare a few common ways
that other programming languages deal with it and show that they also have unneces-
sary limitations. (A complete comparison to related literature appears in Section 7.1.)

2.1 ConCert and Grid/ ML

For the ConCert project [16] we built a peer-to-peer infrastructure for trustless Grid
computing. The ConCert system is designed to harness one specific resource: idle CPU
power from a large network of volunteered computers. A program for ConCert is bro-
ken up into pieces of independent mobile code (called “cords”) that may run in paral-
lel. To the programmer, ConCert acts as a single, highly parallel computer with simple
primitives for fork-join parallelism (see below).

A computer becomes part of the ConCert network by running a piece of software
called the Conductor. The Conductor is responsible for maintaining contact with its
peers, and for allocating cords to idle computers in order to be executed. This allocation
is done using a “work-stealing” model: Each host maintains a queue of cords that are
ready to be executed, and when a host is idle, it “steals” work out of the queues of other
hosts. This model is efficient [9], but because the location in which a cord will eventually
run depends on the idle status of the machines in the network, it is not possible for the
programmer to know in advance where his code will run. Moreover, to support fault
tolerance (by restarting failed cords), a cord must be able to be run multiple times in
different places and always produce the same result.

As a consequence, we provide cords with a uniform view of the network—a cord
cannot tell what host it is running on, nor can it access any of that host’s local resources
like permanent storage and 1/0O. This is acceptable because the only resource ConCert
seeks to harness is idle CPU power. In contrast, ML5 allows programs to make use of
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any sort of distributed resource.

Programmers can produce cords by hand or by using one of the programming lan-
guages we designed for ConCert, such as Grid/ML [85]. Even though cords have this
uniform view, a Grid/ML program is not entirely uniform; it also includes a client part
that can run only on the user’s machine (because it accesses local resources like the
keyboard and screen). Therefore, we still have an issue with controlling access to local
resources. Let’s look at an example program in Grid/ML that illustrates the language
and some of the problems with it:

let
val £ = openfile "numbers.txt"
val f2 openfile "factors.txt"

(+ append the list 1 to the output file =x)
fun writeresult 1 =
write (£2, nums-to-string 1 =~ "\n")

val inputs = readfile f

(» prime factorization of n for n > 0 x)
fun factor n =

let
fun trial 1 = n :: nil
| trial m = 1if n mod m = 0
then factor m @ factor (n div m)
else trial (m - 1)
in
trial (floor (sgrt (real n)))
end

val cords =

map (fn n => submit (fn () => factor n)) inputs
val results = waitall cords
in
app writeresult results
end

This Grid/ML program' computes the prime factorizations of the numbers in the
file "numbers.txt" and writes those to the file "factors.txt" (both files reside on
the client). It does this by creating a cord for each factoring task and submitting them to
the local work queue with the primitive submit. The Grid/ML primitives used have
these types:

IThe example takes the liberty of assuming the existence of some library code, for instance
nums-to-stringand readfile.



submit : (unit — «) — « cord
waitall : «o cord list — o list

A value of type « cord is a running (or finished) computation that returns a result of
type a. Grid/ML allows « to be instantiated with any type. In this case each factoring
task is an int list cord. After submitting the cords, the program then waits for
them all to complete, and writes the results to the output file.

The file I/O that the program performs is an effect. Such effects are allowed only in
the part of the Grid /ML program that runs on the client. This is because I/O interacts
with the external world, and so it depends on the place in which the code is executed.
Therefore, an effect inside cord code would violate the requirement that it be agnostic
about the host on which it runs. In Grid /ML, such errors are detected only at run-time.
For example, if we modify the program so that the body of factor tries to write to the
tile £2 or read from the file £, then the program will abort at that operation. Although
both files are in scope, the file descriptors do not make sense when executing at remote
sites—even if we wanted to allow I/O in cord code, we would not be able to access those
files once execution has left the client.

This does not necessarily mean that open file descriptors can never leave the client.
Suppose the program is modified to be higher-order:

let

(*» .. %)

fun factor n =

let
(*x .. %)
val factors = trial (floor (sqgrt (real n)))
in
(fn () => writeresult factors)
end
(x ... *)

in
app (fn g => g ()) results
end

Now, instead of returning the list of factors directly, each cord returns a function that
writes the result to the file on the client. The client consumes these results by calling the
functions. This program has the same behavior as the first version. The reference to
the local file safely makes a round trip from the client to the cord code and back in the
environment of each function. We wish to permit programs like this one: Although this
example is gratuitous, we will see many examples of useful higher-order programming
in our applications (Chapter 6). Additionally, the process of compilation via CPS and
closure conversion (Sections 4.5, 4.7) introduces higher-order functions and round-trip
dependencies that were not evident in the source program.

7



2.2 Marshaling and location

To account for programs like this one, ML5 is designed around a concept of place. Each
expression and variable in the program has associated with it a location. For an ex-
pression, the location indicates the place in which the expression may be evaluated to
produce a value. For a bound variable, the location indicates where the value bound
to it can be consumed. An important facet of this style is that it allows one part of the
program—which runs on host A—to safely manipulate code and data that can only be
executed or used at a different host B.

To further illustrate why this is important, let us compare a mainstay of distributed
programming: the remote procedure call. Most RPC systems limit the forms of data that
can be passed as arguments and returned as results from a remote procedure call. For
example, CORBA limits the types of RPC arguments to a few simple base types such
as strings and arrays [138, 145]. In Java RMI [37], objects matching the Serializable
interface can be passed to remote methods, but this does not include references to local
resources such as file handles. The Serializable interface is an empty “marker” interface
and so can be applied to any class; it merely acts as a record of the programmer’s intent
that instances should be mobile. Therefore, almost no static checking is performed, and
errors are caught at runtime or produce unintended behavior [72].

Java both fails to statically exclude unsafe programs (those that attempt to transmit
local resources and use them remotely) and unnecessarily terminates programs that
would be safe (those that transmit local resources, but do not misuse them). This is
because it makes the decision at the moment the transmission is about to occur, but
this is too early to know if the resource will be used in the wrong place, and too late
to reject the program statically. This is a very common design in mobile programming
languages, as discussed in Section 7.1.

I contend that this is a design mistake, and that it stems from a conflation of two
separate notions. First is the implementation technique of marshaling, which is sim-
ply a way of representing a piece of data in a format suitable for transmission on a
network. The second is the potential mobility of data; the semantic quality of mak-
ing sense at more than one place. In most languages these ideas are conflated because
distributed applications essentially consist of a collection of separate programs, each
of which can only understand data from its own perspective. When a Java program
performs a remote procedure call, the function that is called can’t help but require that
all its arguments make sense to it, because the only notion of “making sense” is one of
“making sense locally.” Therefore, every remote procedure call requires that the argu-
ments shift from making sense to the caller to making sense at the receiver. Because this
shift in perspective always occurs at the same time as marshaling, they seem like the
same operation.

Located programming allows us to clearly separate these concepts by allowing us
to reason from multiple simultaneous perspectives. A remote procedure call consists of
two steps: preparing arguments that are appropriate for the callee, and then sending
those arguments to the callee. The caller performs the first step by preparing values
whose location is the callee (it can create them from scratch, use callee values that it
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received previously, or convert some of its own values, subject to the rules of the type
system). The type system ensures that any such values will indeed make sense to the
callee. The implementation then uses its marshaling facility to transmit the values to the
callee and unmarshal them. We permit any value to be marshaled, so this step can only
fail if the network malfunctions. We are then able to analyze the issue of what values can
be converted from one location to another as a semantic issue, not an implementation
one.

We use logic to address this semantic issue in a principled way, by deriving the type
system of ML5 from a spatial modal logic. Because we prove that the logic has strong
soundness and completeness properties, we have good reason to believe that our type
system properly embodies the relevant notions of locality and mobility—that it is not
accidentally too restrictive. (In some cases we make concessions, but do so conscious
of their nature.) The correspondence between the type theory and proof theory also
serves as a way of recasting ideas in a different light. In this project this lead to concrete,
unanticipated improvements in both the logics and programming language.

MLS5 also decouples the remote call construct from the procedure (or method) con-
struct; it simply includes a way to nest an expression to be evaluated at a remote site
within a local expression. The expression may be a function call, in which case it looks
like RPC; it may be some other expression, in which case the “arguments” described
above are whatever free variables are used in that expression.

Local resources are an important part of distributed programming, and the located
programming model gives us an effective way of controlling them. However, much
of a distributed program is code or data that makes sense anywhere. For example, in
the Grid /ML program above, the factor function refers to the functions sqgrt and @,
which are defined as part of the standard library, use no local resources, and can thus
be used anywhere. If we required them to have locations, we would need to explicitly
coerce them before using them in other locations, which would make the language very
cumbersome. An important feature of the ML5 type system is that it also accounts for
values like these that can be used anywhere. As a result, when ML5 is used to write non-
distributed applications or when the distributed applications do not use local resources,
its type system degenerates into ML's.

We have now motivated a type system enhanced with a notion of place. To sum-
marize, the type system for ML5 will ensure that localized resources are only used in
the correct place by associating with each sub-expression the place in which it will be
evaluated, and associating with each bound variable the place where it may be used.
We will also introduce support for bindings that are usable in any place, since this is
very common. The foundation of this type system comes from modal logic, which is
introduced in the next chapter.
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Chapter 3

A modal logic for distributed computing

In this chapter I present the modal logics and calculi that we use as the basis of the
MLS5 type system. I begin with an overview of modal logic and motivate our choices for
this research project in Section 3.1. In Section 3.2 I give the simplest formulation of our
modal logic and lambda calculus, and then extend it with continuations in Section 3.4
and validity in Section 3.5.

3.1 Modal logic

Modal logic is actually a family of logics that share a common characteristic: They allow
the simultaneous reasoning about truth from multiple different perspectives. These
perspectives are called “possible worlds” (or just “worlds”). Worlds differ in the set of
contingent truths that they affirm; in some worlds it is raining, in other worlds it is not.

Modal logics are distinguished by the way in which the worlds relate to one another,
which is called the accessibility relation. Let us begin by using an abstract accessibility
relation, writing w; = wy to indicate that world w; can access w; (the syntax for worlds
and propositions appears in Figure 3.1).

A non-modal propositional logic, such as the one that ML is based upon, has a single
universal notion of truth. That is, its principal judgment is of the form

A F A true

meaning that the proposition A is true under the assumptions in A. Modal logic rela-
tivizes truth to worlds by instead using the judgment

I'F A trueew

that is: A is true from the perspective of the world w. The context I' collects hypotheses
of the form B trueew’ for various propositions B and worlds.! This will be the only

'Throughout this work we mean for I to support the natural structural properties such as exchange

and weakening. These properties are made precise through the definition of the languages in Twelf, in
the Appendix.
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propositions A, B,C = OA|ADB|<CB|Aatw|AANB|AVB|p
primitive propositions
world expressions
world variables

world constants

= W w

g € =20

Figure 3.1: Syntax of worlds and propositions. The propositions are defined by the rules
of the modal logic in question; we use the same syntax in each logic for brevity. Worlds
can either be named constants or variables.

notion of truth until we reintroduce universal reasoning in Section 3.5. We may also
hypothesize the existence of a world (written w world, where w is a world variable) or its
accessibility from another world (written wy => wo).

Given this judgment, we can now prescribe the logic. We call this style of describing
the logic, which is due to Simpson [126], an “explicit worlds” formulation. Some other
formulations and their computational interpretations are described in Section 7.1.

The connectives A, V, D are essentially the same as their non-modal intuitionistic
counterparts. We simply add “ew” to each of the judgments, for the same world w,
to allow reasoning as usual within a particular world. (Note however that V E allows
the disjunction eliminated to come from a different world than the conclusion. This
will be of concern in Section 3.2.3.) Similarly, we can only use a hypothesis Aew to
conclude A at that same world w (Rule hyp). The modal judgment makes it possible
to define new connectives O, ¢ and at. The proposition JA means that A is true in all
(accessible) worlds. If we know OAew, then we can conclude Aew’ as long as w can
access w' (Rule O E). The accessibility condition is reflected as a premise of the rule
requiring a proof of w=>w’; the only way to prove this is to use an assumption of that
form (Rule rhyp). To prove JA, we assume the existence of a hypothetical world about
which nothing is known, assume we can access that world, and then prove A there
(Rule O I). If A is true at such a world, then it is true in any accessible world, because it
relies on no assumptions particular to it. Reasoning at a fresh hypothetical world will
be a recurring theme of this work.

The connective ¢ A means that A is true at some unknown (but accessible) world.
We can prove ¢ A by giving an accessible world and a proof of A there (Rule < I). If we
know ¢ Aew’, then we can reason as follows: Assume the existence of a world w, assume
that w can access w’, and assume that A is true there to conclude C'ew (Rule < E). The
world variable w stands in for the actual (now unknown) world in which A is true, just
like when we eliminate an existential type, we do not know the identity of the actual
type. Note that this rule involves three different worlds; this will be of concern in our
computational interpretation of the logic (Section 3.2).

Following Jia and Walker [62], we also find it profitable to include one more connec-
tive not typically seen in modal logic, written Aatw. With this proposition the logic
belongs in the family known as “hybrid logics” [59]. Contrary to its name, I will argue
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I'FAew I'F Bew ' AN Bew ' AN Bew
T AABaw ! - Adew B0 - Bow D2
I'FAV Bew
T+ Aew Vi T+ Bew v F,A@W’FO@W F,B@W’FO@W VE
I'AV Bew = I'AV Bew @ 2 I'FCew
F,A@Wl—B@WDI ' AD Bew FI—A@WDE
I'AD Bew ' Bew
' Aew I I'FAatw’ew’ I',Aew”F Cew B
TF Aatwow °F TFCow at
F,wworld,w:mul—A@wDI ['OAew FI—W’:>WDE
I'FDOAew I'F Aew
'k Aew’ TFwaw I ' <CAew F,wworld,w’@w,A@wl—C@WoE
TFSAew © TFCaw

I' Aew - Aew hyp Lwawkwaw rhyp

Figure 3.2: Intuitionistic modal logic (IK), as described by Simpson [126]. We include the
“hybrid” connective at. Different modal logics can be produced by adding deductive
rules for the relation =>; here it obeys no additional structural properties. Intuitionistic
S5 results when the relation is reflexive, symmetric, and transitive (Figure 3.3).
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'-w=w sym

refl oW

I'Fw=aw

'rwew ['Fwow
'-w=w’

trans

Figure 3.3: The IS5 accessibility relation

in Section 4.1 that this connective is more important and more natural than O and <. It
is simply an internalization of the judgment Aew as a proposition; to prove Aat w we
prove Aew anywhere (Rule at I). To use a proof of A at w”, we introduce a hypothesis
Aew"” and go on to prove another proposition (Rule at E).

In our computational interpretation of modal logic, the worlds will be the hosts in
the network, and proofs at those worlds will correspond to programs that can be exe-
cuted at those worlds. Our next step is to choose an appropriate accessibility relation
between worlds for this application.

3.1.1 Accessibility

The explicit worlds formulation of modal logic allows us to express different logics by
adding deductive rules for the => judgment. In order to justify our choice of accessibility
relation, let us build intuition for the intended computational interpretation by looking
at the meaning of some propositions as types:

* AD B. Asina Curry-Howard view of propositional logic, the proposition A D
B will be the type of functions from A to B.

e OA. The universal proposition OA will be the type of code that can run any-
where (accessible) and produce a value of type A, that is, mobile code.

e OA.  The existential proposition A will be the type of addresses pointing to an
(accessible) location with a value of type A.

e Aatw. Thehybrid connective will be the type of an encapsulated value of type
A that we know can be used specifically at w.

Since our computational model is a computer network, we take accessibility to be
the ability to communicate on the network. We then choose an accessibility relation
that is reflexive (a host can “access” itself, via loopback), transitive (a host can forward
messages through the intermediate host) and symmetric (network connections are typ-
ically two-way). This gives us the logic IS5 (Figure 3.3). Some characteristic axioms
of IS5 (given in Hilbert style; in this judgmental presentation they are simply provable
propositions) illustrate why this is an appropriate choice:

e OA D A. If we have a piece of mobile code here, we can execute it to produce a
value of type A here.

e A OGA.  If wehave a value of type A, then we can take its address.
e UA D OOA. Mobile code is itself mobile.
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e OOA D CA. If we have the address of an address of a value, we can shorten this
to a direct address.

e OOA D OA.  If we have the address of some mobile code, we can retrieve that
mobile code.

e OA D OOCA. Addresses are mobile.

e 0(A D B) D A D ¢B. If we have a mobile function from A to B, and the
address of a value of type A, then we can run that mobile function wherever the A
is, and take the address of the result.

Additionally, some non-theorems illustrate the limitations on mobile code and val-
ues:

e A>5A Not all values are mobile.
o oA>S-A  Having the address of a value does not necessarily give us that value.

Other accessibility relations have been studied in the context of distributed com-
puting. As discussed in Section 7.2, not all real networks (including in particular the
network available for web programming) are actually symmetric or transitive. IS5 is a
reasonable choice because we can usually implement a symmetric and transitive net-
work (an overlay network) atop one that is not (Section 5.5). More importantly for our
purposes, IS5 admits a formulation that dispenses with the accessibility relation, leading
to a more straightforward programming language. This is the topic of the next section.

3.1.2 1IS5"

The reflexive, symmetric, and transitive accessibility relation of IS5 separates worlds
into a set of equivalence classes. Since every world we learn about in a derivation is
related to an existing world, if we start with a single equivalence class then every world
we learn about will also be in that equivalence class, and all worlds will be related.
This suggests a simplification of the accessibility relation => to the universal relation,
where w=>w’ for all w and w'. Figure 3.4 gives the simplified rules when accessibility is
universal; we call the logic IS5".

IS5 and IS5 prove the same exact theorems in the empty context starting with a sin-
gle constant world or set of related worlds; the only difference arises when IS5 reasons
about multiple equivalence classes of worlds simultaneously. (All of the propositions
we used as justification in the previous section are provable in IS5".) For our compu-
tational interpretation, we don’t have any reason to write programs about two uncon-
nected networks, so this distinction is unimportant to us. In fact, these two logics are so
close that many just call the modal logic with universal accessibility S5 [30, 70, 116]. Re-
gardless of its name, this is the modal logic that we base our calculus and programming
language on.
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['FAew I'F Bew ' AA Bew ' AN Bew
TFAABow M T Aew " E1 - Bow E2
I'HAV Bew'
T Aew I I'E Bew | I'Aew' - Cew TI',BewF Cew
TFAvBew "' TFAvBaw ' 2 TF Caw VE
F,A@WFB@WDI '+ AD Bew F"A@WDE
I'-AD Bew '+ Bew
'+ Aew I I'-Aatw’ew TI,Aew”tF Cew .
I'F Aatwaw 20 I'FCew at
I'w world - Aew T OAdew’
TFOdew °1 TF Aew °F
' Aew’ I'-<CAew’ TI',wworld, Aew F Cew £
TFodew TFCow ©

T Aow F Aew hyp

Figure 3.4: IS5". If the = relation is the universal relation (w=>w’ for all w and w’), then
we get this simpler deductive system that does not need to track accessibility.
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3.2 Lambda5

Having chosen a logic appropriate for our problem domain of distributed computing,
the next step is to add proof terms to it. These proof terms will be a computational
lambda calculus whose types are the propositions of modal logic.

3.2.1 Action at a distance

Although we could give proof terms to IS5 directly (we get essentially the system of
Jia and Walker [62]), this formulation has a quality that makes it awkward for compu-
tational purposes. Consider the rule O E, which says that if we have a piece of mobile
code (of type A) at some world w’, we can evaluate it to produce a value of type A at w.
Because the two worlds involved are in general different, the rule has what we call “ac-
tion at a distance;” it requires coordination between two hosts to perform the operation
of executing mobile code. The rules & I, O E, at I, at E, and V E also have this quality.
We wish for these rules, which are the primitive operations of our calculus, to have as
simple behavior as possible: To analyze an object of sum type, we should not have to
also evaluate some code remotely.

In this work we will eliminate action at a distance in two ways: by limiting some
primitives to act only on values, and by isolating all communication between hosts into
a single primitive. First, recall that the modal typing judgment Aew is not literally
about the location of an expression or value, but about where that expression or value
makes sense. In the case of an expression of type Aew, the only thing we can do with it
is run it at the world w to get a result. In the case of a value, however, we do not need to
do anything because it is already a value. Consider the IS5 rule at I, augmented with
proof terms:

'FM: Aew
['+hold M : Aatw'ew

at |

In order to evaluate an expression hold M at the world w, we must evaluate M at w’,
return the value to w and wrap it; this is action at a distance. However, if M is already
a value, then we can perform the action locally.

The other technique is to decompose rules like at Iinto two parts: A local rule that
requires its argument to be at the same world, and a single rule (called get) that allows
us to transfer control and data between worlds. It is not obvious that rewriting the rules
this way does not damage the logic; the major technical content of this section is a proof
that our calculus is equivalent (for provability) to IS5-.

Because our logic does not make a distinction between value and expression, we
will postpone discussion of the first point until we transition to a more computational
perspective in Chapter 4. However, note that the calculus we present here is the most
conservative one—every primitive acts only locally—yet it retains all of the expressive-
ness of IS5”. Relaxing our locality restriction for some rules (when they act on values)
therefore will not change the expressiveness of the language.
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I'FM: Aew FI—N:B@W/\I I'EM: AN Bew
I'F(M,N): AN Bew D'E#1M: Aew

I'EM:AANBew
I'-#2 M : Bew

/\E1 /\EQ

I'EM: Aew
I'Finl M : AV Bew

I'M: Bew
I'Finr M : AV Bew

V1

VI

I'EM:AV Bew
I'N'v:Aew Ny : Cew T',y:BewF Ny :Cew

VI
case M of
'+ inlx = N; :Cew
inry = N
F,aZ:A@WI—M:B@WDI 'M:AD Bew FI—N:A@WDE
I'-Xxe.M: AD Bew I'M N : Bew
T M: Aew I 'EM:Aatw”"ew I',z:Aew”F N :Cew E
I'Fhold M : Aatwew at I'+letax =M in N : Cew at
F,wworIdI—M:A@wDI I'M:OAew O
I'Fboxw.M: OAew I' - unbox M : Aew
L M: Aew ol 'EM: < Aew F,wworld,:B:A@wl—N:C@WOE
[' Fhere M : CAew I'Fletdw,z =M in N : Cew
Amobile T'FM: Aew’
et
I'z:Aew 2 : Aew hyp I'Fget[w| M : Aew 8

Figure 3.5: Lambda 5 natural deduction, with proof terms. Compared to IS5, we have
added the get rule and constrained the remainder of the rules to act locally.

3.2.2 Lambda 5 natural deduction

The natural deduction for Lambda 5 is given in Figure 3.5. We have added proof terms;
the judgment is now

I'FM: Aew

meaning that M is a proof of Aew under the hypotheses in I', which now contains
hypotheses of the form z;:4;ew; and w world. (The presence of proof terms also allows
us to distinguish this judgment from the similar one of IS5".) For the connectives D, A,
and V the proof terms are as usual. Let us preview the computational interpretation of
the others. For the at modality, we have hold M, which wraps the value of M to mark it
as possibly belonging to another world. The elimination form, leta x = M in N binds
the variable x at that other world. (Binding a variable for a remote world is not action
at a distance, because it requires no remote computation.) For O, we have box w.},
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which suspends the execution of the mobile code M until we use unbox to evaluate it.
A value of type ¢ A can be introduced with here M, if M is of type A at the same world.
When we consume a value of type ¢A with letd w,x = M in N we learn of a new
hypothetical world w and bind a variable of type Aew. Note that all of these rules act
locally. If we want to reason across worlds, we use the get construct. get[w'] M at the
world w evaluates the expression M at w' and returns the resulting value to w. The
evaluation of M at w’ produces a value whose type is Aew’, but get[w’] M has type
Aew. We therefore have a restriction on the types A that we can use get on; without
this, all worlds would conclude the same set of facts, making the logic too degenerate
to be useful.

OAmobile M SAmobile ©M
A at w mobile at M
A mobile B mobile A mobile B mobile
A A B mobile "M AV B mobile vM

Figure 3.6: Definition of the mobile judgment.

We restrict get to types that satisfy the mobile judgment, which is given in Figure 3.6.
Thinking computationally, a type is mobile if every value of that type is portable to any
world; for example, strings and integers are mobile types, as are pairs of mobile types.
An encapsulated value A at w is mobile no matter what A is. In Chapter 4 we will see
this property formalized for the proof of type safety.

The mobility judgment also has a logical justification, which we use in the proof that
Lambda 5 is equivalent to IS5" below.

Examples. Some examples will help to illustrate the interaction between get and the
local rules. Here are proofs of some of the propositions we used to motivate our choice
of S5 in Section 3.1.1, assuming some constant world w at which to prove them:

1. F Az.unbox x : OA D Aew
FAz.herex: A D CAew
FAz.letdw,y =z in getjw| y: OOCA D CAew
FAz.letdw,y =z ingetjw] y: COA D DAew
F Azx.box w.get|w] z : OA D O0Aew
F Az.box w.get[w] z : CA D OCAew
FAfAr.letd w,y = x in get|w| here ((unbox get|w] f) a)
:0(A D B) D<A D OBew

Examples 1 and 2 are simply the eta expansions of the unbox and here primitives.

Example 3 works by eliminating the outer <> and moving the inner one from the hypo-

AN

N
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I — Aew I — Bew 'y AN Bew, Aew, Baw — Cew’
I' = AN Bew I AN Bew = Cew

AL

I'AV Bew, Aew =— Cew’
I'bAV Bew, Bew —> C'ew’

AV Bew = Cew’

I' = Aew R, I' — Bew

I — AV Baw [ — AV Baw vL

V R

'y AD Bew = Aew

I', Aew = Bew ['VAD Bew,Bew = Cew’
F:ADB@WDR I'AD Bew — Caw - L
I = Aew R IAatwew', Aew — Cew” L
T — Aatwow °° I'Aatwew =— Cew” at
I' wworld = Aew I''OAew, Aew — Cew” oL
' = OAew H INOAew = Cew”
I = Aew’ OR I, CAew,w world, Aew — Cew’ ol

[ = CAew I CAew — Cew’

I Aew — Aew it

Figure 3.7: IS5” sequent calculus. The sequent calculus is given in terms of left and right
rules instead of introduction and elimination. It has the subformula property and a cut
principle (Theorem 2).

thetical world w to w using get. Since get works on any mobile type, the same term
has type COA D UA as well (Example 4). Examples 5 and 6 work by constructing box
and moving the argument to that hypothetical world. Example 7 is the most complex.
It takes a mobile function f:0(A D B)ew and the address of an argument z:CAew.
Deconstructing the address gives us a hypothetical world w and the argument at that
world y:Aew. We travel to that world with get; in order to call the function, we must
get it from our original world w and unbox it. After applying it to a, we take the ad-
dress of the result with here and return that to w. Note that in this example we make
two round trips: one to go to w, and one to get the mobile function from w. We will be
able to write a more direct program with a single round trip once we introduce validity
in Section 3.5.
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3.2.3 Soundness and completeness

To prove that Lambda 5 is equivalent to IS5, we will prove that it is sound and complete
relative to a sequent calculus that is itself equivalent to IS5 (Figure 3.8). This sequent
calculus appears in Figure 3.7.

The central judgment of the sequent calculus is I' = Aew, where I is a series of
hypotheses of the form B;ew;. However, the rules are given in terms of left and right
rules instead of introduction and elimination. Every rule (other than init) works by
breaking down a single formula, either on the left or right side, into components. This is
known as the subformula property. Due to this property, it is easy to see what sequent
calculus proofs are possible for a formula. For example, any proof of A A Bew with no
hypotheses must begin with the rule A R, and thus contain proofs of Aew and Bew as
subterms. We can also easily refute the existence of proofs, which give us consistency
easily:

Theorem 1 (Consistency of IS5" sequent calculus)
Not all sequents are provable.

Proof: Immediate, by counterexample. Consider the sequent - = pew for some
primitive proposition p and constant world w. The only rule that can conclude pew is
init, but the rule does not apply because there are no hypotheses. Therefore, it has no
proof. D

In the natural deduction, there are many rules that might apply, suchas > Eand V E;
the sequent calculus insists that no detours through unrelated propositions are allowed.
The soundness of Lambda 5 relative to IS5" sequent calculus will give us consistency of
Lambda 5 as well.

Soundness

In order to prove soundness, we will need a few lemmas. We will use D, £, and F to
stand for derivations, and the syntax

D
D:J or J

to mean that D is a derivation of the judgment J. The first lemma is cut:

Theorem 2 (Cut)
If D:T'I" = Aew
and & :: T, Aew,[" = Bew’

then F :T.I" = Bew
Cut says that if we have a proof of a proposition, we are licensed to use it as a hy-
pothesis. The proof proceeds by lexicographic induction on (in order) the cut formula A4,
the derivation D, and the derivation &, following Pfenning [104]. It is a straightforward
extension of our earlier proof [90] to a more complete set of connectives, so I only give
a few cases here. All of the inductive cases of the theorem take the form of commutative
cases or principal cases. A principal case for some connective is when D is a derivation
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of the formula A by a right rule for that connective, and £ is a use of the formula A by
a left rule for that connective. Any other case is a commutative case. For example, the
principal case for Aat w” is as follows; suppose

D’ &
r, 1 — Aew" R I' Aat W”@W,AéW”,F’ — Bew’ L
D = Il = Aatw’ew at E = I'Aatw”"ew,[" = Bew’ at

then we first remove the hypothesis A at w”ew from £’ by cut(D, £') to get
E T Aew”, I' = Bew
and then remove the hypothesis Aew” from &, with cut(D’, &) to get
F T, TV = Bew

as required. The first appeal to induction is justified by the smaller input derivation &,
and the second by the smaller cut formula A. Appendix A.1 contains the entire proof in
machine checkable form as the relation cut. o

Cut is a standard property of a sequent calculus. The other lemmas are particular to
our modal setting, forming the logical justification for the mobile judgment:

Theorem 3 (Expansion)
If A mobile
then Aew — Aew’
Theorem 4 (Shift)
If A mobile
and ' — Aew
then I' = Aew’

Expansion says that we are licensed to use a hypothesis of mobile type to form the
same conclusion at a different world. Shift says that if we can conclude a mobile type at
one world, we can conclude it at any other world. Note that expansion is an instance of
shift when I' is Aew and the first derivation is the init rule, but the proof of shift appeals
to expansion in precisely this case.

The proof of shift is by induction over the derivation of the sequent premise. Sup-
pose the input derivation is of the form

D, D,

I — Aew I — Bew
I'=—= AN Bew

AR

then by inversion on the derivation of A A B mobile, we have A mobile and B mobile.
Therefore by induction hypothesis we have

E = Aew
Ey:: ' = Bew
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and therefore
&1 &
I — Aew T — Bew
I'= AN Bew

AR

The cases introducing the primitively mobile types (0A, A, Aatw) are non-
inductive. For example, if the derivation is of the form

D

I — Aew”
= Aatwew

at R

then the result is simply the derivation

D

I' = Aew”
' = Aatwew’

at R

because at R allows us to reason non-locally. (This is the reason that A at w is mobile for
any A.) The other cases are similar, except for the init case, in which we appeal directly
to expansion. The full proof appears in machine checkable form in Appendix A.1 as the
relation shift. D

The proof of expansion is a bit more interesting, proceeding by induction on the
derivation of A mobile. We will give all of the cases:

rule concluding A mobile proof of Aew — Aew’

init
OL
OR

OA'ew,w world, Aew = A'ew
OA ew,w world = A’ew
oM OA'ew = OA ew’

init

CA'ew,w world, A'ew — A'ew
O R

CA'ew,w world, A'ew =— CA'ew’
OM CAlew = CA'ew’

Alatw’ew, Alew’ — A'ew
Aatw"ew, Aew’ =— A’ at w"ew
at M Alatw"ew = A at wew’

The cases for A M :: A; A Ay mobile and V M :: A; V Ay mobile are inductive. In
each case we have subderivations of A; mobile and A; mobile. Therefore we have by
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induction hypothesis D; :: Ajew = Ajew’ and D, :: Ayew = Ayew’. For A; N Ay,
the derivation is
weak_en D, weakgn D,
A A Ayaw, A, aw, Ayaw => A, ew’ A A Avaw, A ew, Ayaw = Ayaw’
A A Ayaw, Ajow, Agow —> A; A Ayow A
AN Ayew = A N Ayew’

and for A; V A, itis

weakgn D, weak_en D,
Al V A2 @w, Al.@W — Al ew’ R1 Al V AQ@W, AQ.@W — AQ@W’ R
A1VA2@W,A1@W:>A1\/A2@W, v A1VA2@W,A2@W:>A1\/A2@W/ \/L
Al\/AQ@W:Al\/AQ@W, v
which concludes the proof. D

Note that we have some flexibility in how we define the mobile judgment. The mo-
bility of 0A, ©A and Aatw is required for completeness; otherwise our restriction to
local introduction and elimination forms is too severe. However, the rule A M is not
needed anywhere; we can remove it from our natural deduction and retain soundness
and completeness (in fact, normalizing a natural deduction proof by applying Theo-
rems 5 and 6 eliminates uses of A M). We choose to include it because it is natural to
send aggregations of mobile data in distributed programs, and easy to implement. We
could choose to have the rule

A mobile B mobile
A D B mobile

> M

but doing so requires a more complicated dynamic semantics (the dynamic creation of
mobile proxies for functions). Therefore, we continue to make choices about the formu-
lation of the logic that are influenced by its intended computational interpretation, but
do so in a way that does not affect its underlying meaning.

Given cut and shift, we can state and prove soundness:

Theorem 5 (Soundness of Lambda 5 relative to IS5 sequent calculus)
If Du:THFM: Aew
then £:'I''= Aew

The operation "z, : Ajewy,...x, : A,ew, ' erases variables (since they are not used
in the sequent calculus), producing A,ew, ..., A,ew,. Soundness simply states that
for every Lambda 5 natural deduction proof (ignoring the proof terms) there exists a
sequent derivation of the same formula, under the same hypotheses.

This proof is by induction over D. The cases where D is an introduction rule are
trivial by induction hypothesis (the right rules in the sequent calculus match the intro-
duction rules in natural deduction). The translation of elimination rules appeals to cut;
for example, if

D/
'+ _:0Aew
D = TIF_:Aew - E
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then we have by induction hypothesis on D’
& ' T'= DAew

and by construction

init

T, 0Adew, Aew = Aew
oL

& = T' OAdew = Aew

so by cut(&;, &;) we have
E:'T' = Aew

as required. The other left rules are similar.
The only other case is get, where we have

Fi D,

Amobile TF_: Aew
D = I'kF_: Aew

get

By induction hypothesis we have
T = Aaw
and since A is mobile, by shift(F;, £’) we have
E:'T = Aew

as required. The full proof appears in Appendix A.1 as the relation ndseaq. O

Completeness

To show that we have not made Lambda 5 too restrictive, we prove a completeness
theorem.

Theorem 6 (Completeness of Lambda 5 relative to IS5" sequent calculus)

If D:T = Aew
then € ::1I"F M : Aew, forsome M andI” 3T

Here I'" O I" if I'” has the same hypotheses as I, each given a unique variable name.
For this proof we will need the following substitution lemmas:
Theorem 7 (World substitution for Lambda 5)
If T'Fwworld
and I',wworld, "+ M : Aew’
then I, IVF [Y,]M : [V]Ae[V/]w
Theorem 8 (Term substitution for Lambda 5)
If THM:Aew
and I z:Aew,I"F N :Cew
then T, TV [M/]N: Aew
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The world substitution operation [ "/,] is defined in the obvious way on proof terms,
types, world expressions, and derivations. The term substitution operation [ /,] is sim-
ilarly defined on proof terms. Each substitution proof is by induction on the second
premise. O

Completeness is proved by induction on D. The right rules proceed directly by in-
duction hypothesis (since the introduction rules take the same form), except that we
may insert uses of get. For example, if

D/
I — Aew’
D = TI'= Aatwew

at R

then we have by induction hypothesis on D’
ExwT'FM: Aew

which is at the wrong world to use with the local-only Lambda 5 rule at I, but by using
get we have

((:l
' M: Aew'
A mobile at M I"FM: Aatw ew thI
E = I+ get[w| M : Aatw'ew

as required.
The translations of left rules appeal to substitution. For example, if

D/
I'DAew, A@:W/ — Cew”
D = I'OAew — Cew” 0L
then by induction hypothesis we have
g = T, x0Aew,y:Aew M : Cew”

and we can discharge the hypothesis by substitution. Let

OA mobile OM I''z:OAew F x: OAew hzf
['z:0Aew F get[w] 2 : DAew’ 5 ]5{(];
F = I',z:0Aew F unbox get[w| z : Aew’

and then by term substitution on F and £’ we have
£ T, x:0Aew - [uRbox getlv] M : Caw”
as required.
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Disjunction. Disjunction is not so easy. If
Dl DQ

F,AVB@W’,A@W’ — Cew F,A\/B@W’,B@W’ = Cew
D = AV Bew — Cew

VL

we have by induction hypothesis

E o 1" x:AV Bew',y:Aew' - M; : Cew
Ey = 1" x:AV Bew',y:Bew' = M, : Cew

and would like to apply V E as in

case x of
N = inl Yy = M1
inr y = M>

but cannot because the case object + must be at the same world as the conclusions M,
and M, in our local-only rule. We cannot use get either; A V B is only mobile when A
and B are mobile. Fortunately, the IS5" rule that allows “action at a distance” is in fact
derivable in Lambda 5. The proof we use is
case (get[w'] case = of
inl z = inl (hold z)
inr z = inr (hold z)) of
inly =letay =19y
in M,
end
inry = letay =1/
in M2
end

What we do is perform a remote case analysis at w’ in order to turn the hypothesis
2:AV Bew' into a proof of (Aat w') V (Bat w’')ew’. We can then get that proof because
it is now guaranteed to be mobile. At w we perform another case analysis, unwrap the
at modality to bind remote hypotheses, and continue with M; or M,. Note that this
proof is somewhat odd, in that we enlist the at connective, which does not necessarily
appear elsewhere in the formula. The consequence is that the logical completeness of
V in Lambda 5 relies on the presence of at (at least for this specific proof). This means
that the two are not truly orthogonal in the language.

The full Twelf proof of completeness appears in Appendix A.1 as the relations segnd
and hypnd. o

3.24 Equivalence to IS5"

To complete the proof that Lambda 5 is equivalent to IS5, we now prove the soundness
and completeness of IS5" relative to the sequent calculus (Figure 3.8). These proofs are
easier than the ones from the previous section.
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cut, expansion, shift substitution

/ (soundness) w f (completeness)\

sequent IS5Y natural
Lambda 5 [ calculus ] [deduction]

K(completeness) / & (soundness) /

substitution

Figure 3.8: The soundness and completeness argument for Lambda 5. Lambda 5 is
equivalent to the IS5" sequent calculus (Theorems 5 and 6), which is itself equivalent to
IS5" (Theorems 9 and 10).

Theorem 9 (Soundness of IS5" relative to sequent calculus)
If D:TF Aew
then & : [ = Aew

Theorem 10 (Completeness of IS5 relative to sequent calculus)
If D:uTl= Aew
then &£ :TF Aew

Proof of Theorem 9 is the same as Theorem 5, but we do not require shift or ex-
pansion since IS5- does not have get. The proof of Theorem 10 follows the proof of
Theorem 6, but is easier because the rules are not restricted to be local. Both proofs
appear in Appendix A.2 as the relations nndseq and ssegnd. o

Theorem 11 (Equivalence of Lambda 5 and IS5“)
' M: Aew (in Lambda 5, for some M)
ifand only if I'+ Aew (in IS5Y)

Equivalence is an easy corollary of Theorems 5, 6, 9, and 10. o

We spent a lot of effort proving that Lambda 5 natural deduction is equivalent to the
more straightforward formulation IS5°. The purpose of this was to create a logic whose
proof terms were a lambda calculus with a simple dynamic semantics that can be used
to write distributed applications. In the next section I describe this semantics.

3.3 Dynamic semantics
I give Lambda 5’s dynamic semantics here in terms of a big-step evaluation relation
|}. Other ways of presenting the dynamic semantics are possible; in Section 3.4.6 I will

give a dynamic semantics in terms of continuations that lets us be more explicit about
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values v == (vy,ve) |inlv |inrv | Az.M | box w.M | there[w,v] | heldv |

I'v: Aew TI'Foy: Bew

I'F (v, v2) : AN Bew AV
T'Fov: Aew I'v: Bew
FFinlv:AvBoew ” "' Trinrv: AV Bow * V2
['x:Aew - M : Bew v F'Fv: Aew’ v
TFAzM:AD Baw — TFheldv: Aat waw 20
Fwworld - M : Aew Fv: Aew’

oV

TF boxw M : Odew =V I' F there[w’,v] : CAew

'Fv:Aew
I''v:Aew -z : Aew hyp 'Fvalv: Aew val

Figure 3.9: The syntax for Lambda 5 values and their typing rules.

the transfer of control between worlds, as well as give meaning to non-terminating pro-
grams. In our previous paper on Lambda 5 we give a continuation-based semantics
that explicitly stores references to remote objects in tables [89], similar to the way we
implement marshaling (Section 5.5.4). For this discussion our main concern is defining
the location in which computation takes place. The || relation suffices for that purpose
and is briefer to define than a small-step relation.

The evaluation relation |} is between an expression and a value, and is indexed by
the (concrete) world in which the evaluation takes place:

M | v

Expressions are the proof terms from Lambda 5, and their typing rules are the infer-
ence rules in Figure 3.5. We provide a different syntactic class for values v, and define
typing for them via a judgment I' - v : Aew for them. These appear in Figure 3.9.

Variables are now considered values, which changes the meaning of the expression
typing rules (the context now contains hypotheses about the typing of values, not ex-
pressions), but we do not repeat the rules here because they would be syntactically
identical. The val rule allows us to use a value as an expression of the same type. The
main thing to notice about the value typing rules is that they are non-local, like the in-
troduction rules from IS5". (For example, at V allows the value within it to be typed at
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M v (v1,v2) M v (v1,v2) Mywvi Nwv
————"C#1 ————C#2 ,
#1M*uw U1 U( #QM‘U’W V2 U’ <M7N> ‘uw (U17U2) >U
Miwv . M Jw v :
inl M |y inl v inl § inr M |}y inr v inr
M ‘U’w inl 0 [vl/x]Nl ‘Uw v
: - case |1
case M of inlz = N; | inr & = Ny {yw v
M |y inr vy ["2/] N Jw v
: - case
case M of inlx = N |inrz = Ny |y v
M Jw Az M N gt [Y]M' |y v
e Gt MY MN Jy v app |
M |w boxw.N [V IN |wv
box w.M | box w.M box unbox M |« v unbox
M |y v M | held v'  [Y/,]N Jw v
hold A |, held v Nold ¥ letaz = Min N Jg v @ ¥
M |y v M |y there[w’, v'] [V ][N Jw v
here M |y there|w,v] here § letdw,z =M in N |y v letd §
M ‘U’w' v
_ t
val v {w v val 4 get[w'| M | v get |

Figure 3.10: Lambda 5 big-step dynamic semantics, given as a relation M |, v between
an expression M and its value v.

another world.) This is allowable because, as values, they do not need any more evalua-
tion, and therefore require no “action at a distance.” Because typing is non-local, we will
be able to move certain values from world to world and retain their well-formedness
(Theorem 13). Most of the values resemble the expressions that construct them, but a
value of type <A is different. It is written there[w, v] where w is a world constant (the
world where A is true) and v is the value well-typed at w. We need both because the
elimination form binds a world variable and value variable.

The definition of evaluation appears in Figure 3.10. Evaluation takes place on closed
terms so there is no case for evaluating variables (they are replaced with values by
substitution). Observe that evaluation only changes worlds in the get || rule; all other
action happens locally. Additionally, we are always evaluating at a constant world (not
a variable), meaning that there is always a specific concrete world at which to carry out
computation.
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The main theorem about the evaluation relation is that it preserves well-typedness:

Theorem 12 (Type preservation of |})
If D:-FM:Aew
and &M |y
then F:-Fov:Aew

The proof is by induction on the derivation &, and is completely standard except for
the get case. If

E = get[J\v{/’]U]v\v/} 1“, v get |
then by inversion on D we have
D, :: A mobile Dy::-FM:Aew
so by induction hypothesis we have
E ko Aew

but require v to be well-typed at the source world w. To prove this we need a lemma
that says that a value of mobile type at one world also has that type at other worlds
(Theorem 13 below). Applying this lemma, we get

Fi-Fov:Aew

as required. The full proof appears implicitly as the well-typedness of the eval relation
in Appendix A.3. O
The value shift lemma is stated as follows:
Theorem 13 (Value shift)
If D:-tFov:Aew
and & :: A mobile
then F:-Fuv:Aew

We consider this the computational justification for the mobile judgment. This proof
is a straightforward structural induction over the derivation £ that the type is mobile.
There are a few differences between this and the shift theorem (Theorem 4) we used
in Section 3.2.3. First, we insist that the same value be well-typed at both worlds—in
the shift theorem we allowed the proof to be transformed. This allows the dynamic
semantics to simply send the value from one world to another without modifying it.
Second, we require the value to be closed, so that we do not have to consider the case of
variables. The full proof appears in Appendix A.3. O

We also desire a progress theorem for || (otherwise we may have “forgotten” some
rules), but this is difficult to state for a big-step semantics (because of the possibility that
we may make progress but never terminate, and therefore have no finite derivation). In
the Twelf formalization we use its coverage checker [121] to prove that some rule of the
eval relation always immediately applies, even if the proof search process does not
terminate. O
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The dynamic semantics for Lambda 5 is close to what we want for our programming
language. When evaluating locally, the semantics match up with the familiar ones from
lambda calculus, giving a clear path to implementation. However, the concepts that it
offers are not enough to write and compile real programs. The two features that we
wish to add are universal reasoning and continuations. Universal reasoning allows us
to avoid explicitly moving values around with get when those values make sense any-
where, so that we are not burdened by the modal type system when we are not using it.
The logical basis for this is discussed in Section 3.5. Continuations allow us to compile
our language via Continuation Passing Style, which is the basis of our implementation
of threads, part of the interface to databases and the GUI, and a useful high-level pro-
gramming construct. The logical basis for continuations is classical modal logic, which
is discussed in the next section.

34 C5

Lambda 5 is a computational modal lambda calculus based on intuitionistic S5. In this
section I present C5, a calculus based on classical S5. This gives us a logical explanation
of continuations. Although ML5 supports first-class continuations, ultimately we do
not adopt the specific formalism presented in this section, because the full power of
network-wide continuations suggested by the logic is too heavyweight for our needs.
Therefore, this section can be seen as an excursion, and not necessary for understanding
the remainder of the dissertation.

3.4.1 Classical control flow

The notion that control operators such as Scheme’s call/cc or Felleisen’s C can be
given logical meaning via classical logic is well known. Essentially, if we interpret the
proposition —A as the type of a continuation expecting a value of type A, then the types
of these operators are classical tautologies. For example, in Standard ML, the types of
the control operators are

callcc : (o cont — a) — «
throw : acont —a— [

The type of callcc interpreted as a proposition is (A D A) D A, a classical theo-
rem similar to Peirce’s law. The type of throw as a propositionis A D A D B, which is
equivalent to (mA A A) D L, the law of non-contradiction. Griffin first proposed this in
1990 [47] with later refinements by (for example) Murthy [92]. Parigot’s Api-calculus [99]
takes this idea and develops it into a full-fledged natural deduction system for classical
logic. C5 is a similar account, extended to the modal case and presented in terms of true
and false judgments.
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I'M:Aew I'F N: Bew I'EM: AN Bew I'EM: AN Bew

TEOLN):AABow ' TF#1M:4ew "B TE#2M: Bew P
[,z:Aew - M : Baw _ TFM:ADBaw TEN:Aew _ o
I'EXe.M:AD Bew I'MN : Bew
T M: Aew I 'EM:Aatwew I',z:Aew'F N :Cew £

T Fhold M : Aatwew 2° I'letaxz =M in N : Cew at

F,u)worldl—]\J:A@wDI 'FM:OAew OE
['Fboxw.M: OAew I' F unbox M : Aew
' M: Aew o1 'EM:CAew F,wworld,x:A@wl—N:C’@WOE
' Fhere M : CAew I'Fletdw,z =M in N : Cew
Amobile T'HM: Aew’
et
[N o:Aew F x: Aew hyp ['Fget[w| M : Aew 8
'FM: lew
Fl—abortM:O@WJ‘E
IuAxwkE M : Aew [u:AxwkE M : Aew
bc #

'+ letccuin M : Aew I, u:Axw F throw M tou : Cew’

Figure 3.11: C5 natural deduction, based on classical S5.

3.4.2 Classical natural deduction

Classical logic exhibits a duality between truth (proofs) and falsehood (refutations). We
embody this duality by defining two judgments on propositions:

A trueew A falsexw

The first (abbreviated as Aew) says that the proposition A is true at the world w; a
witness to this fact is a proof of A, or an expression in our programming language. The
second, abbreviated A *w, says that A is false at the world w; a witness to this fact is a
refutation of A, or a continuation in our programming language.

We could contemplate giving a complete description of the truth and falsehood judg-
ments independently. If we did so, our logic would have some redundancy because
of the duality of truth and falsehood: for any proof of Aew, we could equally well
refute -A«w. Instead, we want to isolate a particular form of reasoning into either
the truth or falsehood judgment, leading to a more parsimonious logic. Some systems
work by allocating rules equally to the two judgments; for example in Wadler’s dual
calculus [140, 141] and the sequent calculus in Section 3.4.3 the left rules all operate on
truth, and the right rules all operate on falsehood. Nanevski gives a classical natural
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deduction system in which there are no elimination rules, only introduction of false-
hood and truth [94]. In each case, the expressiveness of the system comes from the
structural properties that allow for the mixing of proofs and refutations. In C5 natural
deduction we take a deliberately asymmetric view: We push all of the reasoning into the
truth judgment and provide only the structural rules for interfacing with the degener-
ate falsehood judgment. This is because programming with truth is programming with
values—a more familiar style than manipulating continuations. The calculus that re-
sults is just Lambda 5 extended with two structural rules, which are essentially callcc
and throw. We prove that this formulation of the logic sacrifices no expressiveness.

M M

OA mobile = O A mobile ©

Aatw mobile 2t M

A mobile B mobile
A A B mobile

MM T mobile +M

Figure 3.12: Definition of the mobile judgment for C5.

C5 natural deduction appears in Figure 3.11. The rules for A, D, 0, at, and < are
identical to those of Lambda 5. We omit V, since it can be defined in terms of DO, |, and
A, and anyway would be treated just as in Lambda 5. The only new connective is L. It
has no introduction form, and its elimination form (Rule L E) is restricted to be local as
usual. The L proposition is mobile, however (Figure 3.12).

In C5 the context I' can contain hypotheses of the form w world, z:Aew, and u:Axw.
Falsehood hypotheses are introduced by the rule bc (“by contradiction”), which corre-
sponds directly to the classical axiom (—mA D A) D A. Operationally, letcc captures
the current continuation (which expects a value of type Aew) and binds it as a contin-
uation variable A+w while continuing the proof of Aew. The # rule may be alarming
at first glance because it requires the assumption Axw to appear in the conclusion. This
is because the # rule is actually the hypothesis rule for falsehood, and will have a corre-
sponding substitution principle. The rule simply states that if we have the assumption
that A is false and are able to prove that A is true at the same world, then we can de-
duce a contradiction and thus any proposition. The # rule is realized operationally as a
throw of an expression to a matching continuation. Note that continuations are global—
we can throw from any world to a remote continuation Axw, provided that we are able
to construct a proof of Aew.

For each kind of hypothesis we have a substitution theorem.

Theorem 14 (C5 truth substitution)
If D:TFM: Aew

and & :T,z2:Aewt N : Bew
then F T+ [M/]N: Bew
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Theorem 15 (C5 falsehood substitution)
If VC,w. DT z:Aew - M : Cew
and & : T, uw:Axwhk N : Bew
then F:TF[*M,]N: Baw

Here, truth substitution [*/,]N is defined as in Lambda 5. Theorem 15, however,
warrants special attention. This principle is dual to the # rule just as Theorem 14 is
dual to hyp. The # rule contradicts an Axw with an Aew, so to eliminate a falsehood
assumption by substitution we are able to assume Aew and must produce another con-
tradiction. Reading |- as logical consequence, we have that if A false gives 55, and A true
gives C (for all C'), then B. This can easily be seen as a consequence of excluded middle
on A. We write this substitution as [ “*/,] N where z is a binder (with scope through M)
that stands for the value thrown to u. It is defined pointwise on N except for a use of
the # rule on u:

[=M/,]Jthrow N' tou = [Nl/x]M

This principle is close to what Parigot calls structural substitution for the Ap-calculus.
Operationally, we see this as replacing the throw with some other handler for A. Since
the new handler must have parametric type, typically it is a throw to some other con-
tinuation, perhaps after performing some computation on the proof of A.

Proof of Theorem 14 is by a trivial induction on £ (it comes “for free” in the Twelf
formalization in Appendix A.4). Proof of Theorem 15 is by induction on the derivation
£, appealing to Theorem 14 in the case above. The full proof is given as the relation xs
in Appendix A 4. O

We wish to know that our proof theory (specially constructed to give rise to a good
operational semantics) is not simply ad hoc; that it is consistent and really embodies
classical S5. To do so we prove in the next section a correspondence to a straightforward
sequent formulation of classical S5 with the subformula property. We’ll use the sequent
calculus as intuition as we develop proof terms for some classically true propositions in
Section 3.4.5, and then explore the dynamic semantics of the language in Section 3.4.6.

3.4.3 Classical sequent calculus

The classical S5 sequent calculus appears in Figure 3.13. This logic is motivated by sym-
metry and simplicity alone, so we do not include proof terms, restrict rules to act locally,
or bias the reasoning towards truth or falsehood. Because we want a system without
bias, the judgment should have a symmetric reading. Therefore we do not prove truth
from falsehood assumptions, nor refute falsehoods from truth assumptions; instead, hy-
potheses of truth and falsehood come together to derive mutual contradiction. We write
this judgment as
T # A

where I' contains hypotheses of the truth of propositions, and A contains hypotheses of
the falsehood of propositions [106]. The contra rule allows us to derive a contradiction
from a matching true and false hypothesis. The remainder of the rules show us how to
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T Aaw # Axrw, A cONtra T laow# A LT
['yAD Bew,Bew # A
[VAD Bew # Axw,A [, Aew # Bxw,A D Bxw,A .
T.A> Baw # A~ T # A> Bxw,A -
I'OAew, Aew’ # A OT [, wworld # Axw,OAxw, A OF
['OAew # A I' # OAxw, A
[ OAew,w world, Aew # A oT I # Axw', OCAxw, A
[CAew # A I' # CAxw, A
I' # Axw, AN Bxw, A
I' AN Bew, Aew, Bew # A T ['# Bxw, AN Bxw,A .
T, AABew # A A T # AABrw,&
INAatw'ew, Aew’ # A I' # Axw', Aat w'xw, A
at T at F

IAatwew # A I' # Aatw/xw, A
Figure 3.13: Classical S5 sequent calculus. Left rules operate exclusively on truth hy-
potheses in I', and right rules operate exclusively on falsehood hypotheses in A. The
sequent I' # A is read as follows: given hypotheses of truth I' and hypotheses of false-
hood A, we derive a contradiction. We include hypotheses about the existence of worlds
in I', as a convention.

decompose a connective in either the truth or falsehood context. It is best to read these
rules bottom-up, as if during proof search. For example, in the L T rule, | being true at
any world is contradictory, so we are done. In A T, to reason from the hypothesis that
A A B is true, we assume that A is true and B is true. In A F, A A B being false would
mean that either A is false or B is false, so we must show contradictions in each of those

cases. Note that O and < are dual in this presentation, and that the at connective is
self-dual.

Because each rule analyzes exactly one connective by breaking it into its compo-
nents, this sequent calculus also has the subformula property. This gives us consistency:

Theorem 16 (Consistency of classical S5 sequent calculus)
Not all sequents are provable.

Proof is immediate, by counterexample. Consider the sequent - # L xw for some
world constant w. There is no rule for decomposing L in the falsehood context, so there
is no proof. O
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3.4.4 Soundness and completeness

We would now like to prove that our local, truth-biased natural deduction system is
equivalent to the sequent calculus. We start by proving soundness. Like the soundness
of Lambda 5 with respect to the IS5" sequent calculus (Theorem 11) we require a cut
lemma about the sequent calculus. For the classical sequent calculus presented in this
symmetric manner, this lemma is excluded middle:

Theorem 17 (Excluded middle)
If D:: T,Aew # A
and ¢&: I' # Axw, A
then F:: I # A
Proof of Theorem 17 is by lexicographic induction over the structure of the formula

A and (simultaneously) the derivations D and €. The interesting cases are when D ends
with a truth rule acting on A and £ is a falsehood rule acting on A. For example, if

D g
I, 0Aew, Aew # A - I, wworld # Axw, OAxw, A OF
D = ['OAew # A and & = ' # OAxw, A

then by induction hypothesis (on JA, weaken(D), and weaken(€’)) we have
E" =T, wworld # Axw, A
and by induction hypothesis (on OA, D', and weaken(€)) we have
D" T, Aew’ # A
so by world substitution we get
[YJE" =T # Axw', A
and then by induction hypothesis (on 4, D, [V'/,]€") we have
F'oT # A

as required.
The full proof appears in Appendix A.4 as the relation xm. o
We also require a lemma that justifies the mobile judgment. Its statement is
Theorem 18 (Switch)
If D :: Amobile
and & = T'# Axw, A
then F : T'# Axw' A
The proof is similar to Theorem 4, proceeding by induction on D and appealing to
excluded middle. It appears as the relation switch in Appendix A.4. o
We can now state and prove soundness of C5:
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Theorem 19 (C5 soundness)
If D : I'FM:Aew

then F : I'® # Axw, A

['® selects all of the hypotheses of the form Bew’ (and w world) from the context, and
I selects the hypotheses of the form Bxw’. Soundness states that if from some hypothe-
ses we can derive a conclusion of A being true at w, then in the sequent calculus we
can derive a contradiction from those same hypotheses, plus a hypothesis that A is false
at w. (Operationally, we can think of falsehood assumption as the “final continuation”
that takes the result of our computation.)

The proof of soundness is by induction on D. The elimination rules are straightfor-
ward because they match the F rules in the sequent calculus. The get rule appeals to
Theorem 18. Elimination rules appeal to excluded middle. Interestingly, the structural
rules bc and # simply use contraction and weakening for the sequent calculus. If

Dl
I u:Axw M Aew b
D = TFletccuinM : Aaw €

then by induction hypothesis we have
D T® # Axw, Axw,T*
which gives us I'® # Axw, I* by contraction as required. If

D/
[ u:Axw M : Aew
D = T,u:Axwk throw M tou: Cew

##

then we have by induction hypothesis
D TC # Axw, Axw, I

which gives usI'® # Axw, I*by contraction and then I'® # Axw, Cxw’, [*by weakening

as required. The full proof of Theorem 19 appears as the relations contfalse and

ndseq in Appendix A 4. o
The other half of the equivalence argument is completeness:

Theorem 20 (C5 completeness)
If D = T#A
then F : I'AFM:Cew forsome M, forallC,w
The theorem statement is that if I' and A are contradictory hypotheses, then we can
prove any proposition true at any world in the natural deduction, under those same hy-

potheses. Proof is by induction on D. Uses of T rules are easy; they correspond directly
to the elimination rules in natural deduction. However, since the natural deduction is
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biased towards reasoning about truth rather than falsehood, the F rules are more diffi-
cult and make nontrivial use of the falsehood substitution theorem (Theorem 15). For
instance, in the AF' case we have by induction hypothesis:

T up: AN Bxw,ua:Axw = Ny : Cew (VC,w)
T up:AN Bxw,ub:Bxwt Ny : Cew (VC,w)

By two applications of Theorem 15, we get that the following proof term has any type
at any world:

[Luy-thrww I Na ﬂ N
ua

First, we form a throw of the pair (z,y) to our pair continuation up. This has free truth
hypotheses z:A and y:B. Therefore, we can use it to substitute away the ub continu-
ation in N, (any throw of M to ub becomes a throw of (x, M) to up). Finally, we can
use this new term to substitute away wa in N;, giving us a term that depends only on
the pair continuation up. This pattern of prepending work onto continuations through
substitution is characteristic of this proof, and reflects our bias towards the truth judg-
ment in natural deduction. As another example, in the case for the ¢ F rule we have by
induction hypothesis:

L,uAxw ud:OAxwE N : Cew (VC,w)

Our proof term in natural deduction is then:

z.throw (get[w’](here z)) to ud
[ an

Simply enough, if v is ever thrown to, then we instead take that term’s address (which
lives at w'), move it to w, and throw it to our ¢ A continuation ud.

Finally, the case for OF is interesting because it involves a letcc. By induction hy-
pothesis we have:

I, world, u: Axw', ub:O0A*xw F N : Cew (VC,w)
Then the proof term witnessing the theorem here is:
throw (box w’.letcc u in N) to ub

It is not possible to use falsehood substitution on « in this case. To do so we would
need to turn a term of type Aew’ into a JAew to throw to ub. Although at a meta-level
we know that we can choose any «’, it won’t be possible to internalize this in order to
create a proof of JA. Instead we must introduce a new box, and choose w’ to be the new
hypothetical world that the O/ rule introduces. At that point we use letcc to create
a real Axw' assumption to discharge u. The full proof appears in Appendix A.4 as the
relations t ruend and falsend.? o

2The most natural LF encoding of falsehood is 3"d-order [4]; we use a 2"d-order encoding in our proofs
(proving the falsehood substitution theorem by hand) because third-order proof checking is not available
in Twelf.
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The rule.... is admissible as ...

T

D-Aow # Axw, A TLAD Low # Axw,A F,ADJ_@W,J_@W#AJD‘T

—

I',—Aew # A IMAD Lew # A
[VAew # A D Lxw, A K
I'y Aew # —Axw, A F I'Aew # Lxw,AD Lxw,A we; en-1
T # —Axw,A T# A> Lxw,A -

Figure 3.14: The admissible rules for negation in the C5 sequent calculus and natural
deduction.

Equivalence. Putting Theorems 19 and 20 together, we have that I' - M : Aew gives
['® # Axw,I*(by soundness) which then gives VC, w.I'® | T*, u: Axw = M’ : C'ew. Observe
that ', I*is T, and by choosing C = Aand w = w we have I', u:Axw F M’ : Aew. Then
by application of the rule bc we are back to the original judgment I' - letcc u in M’ :
Aew (with a normalized proof term). Thus - and # are really equivalent.

3.4.5 Examples

Before presenting the operational semantics for C5, it may be helpful to see some exam-
ple proof terms and their intended computational meaning. Because our examples use
negation (—A), we’ll need to briefly explain how we treat it.

Negation

Although we have not given the rules for the negation connective, it is easily added
to the system. Here we equivalently take the standard shortcut of treating - A as an
abbreviation for A O 1. We computationally read —Aew as a continuation expecting A,
although this should be distinguished from primitive continuations v with type Axw:
the former is formed by lambda abstraction and eliminated by application, while the
latter is formed with letcc and eliminated by a throw to it. The two are related in that
we can reify a continuation assumption u:A xw as a negated formula - A by lambda
abstracting a throw to it: Aa.throw a to u. Likewise, we can get a falsehood assumption
from a term M of type —A, namely M (letccu in ...).

Finally, note that we have admissible sequent calculus rules —7" and —F'. Each just
flips the proposition under negation to the other side of the sequent, as expected (Fig-
ure 3.14).
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Classical axioms

Let’s begin with the following classical equivalence
0A=-0-4

(In fact, in classical logic it is standard practice to define O this way). From left to right
the implication is intuitionistically provable, so we’ll look at the proof of the implication
from right to left. We begin with the sequent calculus proof, to show why this is clearly
true classically. We elide any residual assumptions that go unused.

" Aew # Aew — contra
— # —Aeuw', Aeuw', — 2>FF
— # O-Aew, Aew’, —

OF

— # O-Aew, DAew T
-O-Aew # OAew B
# —C-A D DAew -

In this proof, we are using U F to get the hypothetical world «’ at which OA is false.
From there, we can learn —A at the same world, which leads to a contradiction. In
natural deduction, the proof tells an interesting story:

AZg. (g : ~O—Aew)
box w'. (need to return A)
letcc u in abort get[w]  (applying z, will yield L)
z4(get|[w] (here(Aa.throw a to u)))

In each example, we’ll assume that the whole term lives at the constant world w. Op-
erationally, the reading of ~®0—A D OA is that given a continuation =, (expecting the
address of an A continuation), we will return a boxed A that is well-formed anywhere.
The proof term given accomplishes this by creating a box that, when opened, grabs the
current continuation u, which has type Axw’. With the continuation in hand, we travel
back to w (where z, lives), and apply x, to the address of a function that throws to u. In
short, at the moment the box is opened we have a lack of an A, which we can grab with
letcc and then take the address of with here. This is enough to send to the continuation
that we’re provided.

Dually we can define < in terms of 0. Again, one direction is intuitionistically valid.
The other,

-0-A4AD CA

is a function from a continuation to the address of some arbitrary A. It is implemented
by the following proof term:

AL (:EC : ﬁD—\A@W)
letccu in (u: CAxw)
abort( (applying z. will yield L)

z.(box w'. Aa. a:Aew)
throw (get[w'](here a)) to u))
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Here, we immediately do a letcc, grabbing the ¢ A continuation at w. We then form
a box to pass to the continuation z.. It contains a function of type A O L, which takes
the address of its argument and throws it to the saved continuation u. Thus the source
of the ©A that we ultimately return is the world that invokes the continuation (of type
—A) that we’ve boxed up.

Excluded modal. The last example uses disjunction, which we left out of the calculus.
It can be added as a primitive connective in the same way as we did in Lambda 5 (Sec-
tion 3.2.3), or by de Morgan translation using the — and A connectives. In order to do
one more informal example, let’s assume the existence of proof terms inl and inr for
injecting into disjunctive type. Then we can prove the classical theorem

OAV O-A

which is similar to the excluded middle axiom AV —A. The proof term exhibits both the
“space travel” (moving between worlds) of modal logic and “time travel” (non-local
control flow) of classical logic. It is as follows:

letcc ug in (ug : DAV O-Axw)
inl (box w'.
letccu in (u: Axw')
throw (inr (get|w'| here (Aa.throw a to u)))
to Ud)

We start by immediately grabbing the current continuation as u,4, so that we can later
“change our minds” as to whether the left (JA) or right (®—A) disjunct is the case. We
will originally return a O A, asserting that A holds everywhere. If this is ever unboxed,
however, it grabs the current continuation u (which expects A at some world) and uses
that to construct a proof of &—A, which it then returns to the original continuation u,. If
this proof is ever used (by passing A to it to form a contradiction), it returns to the world
where the box was opened and can now satisfy the continuation expecting an A!

Having observed its capacity for time and space travel, we now turn our attention
to a formal definition of the operational semantics for C5.

3.4.6 Operational semantics

For Lambda 5, I gave an operational semantics based on substitution and a big-step
evaluation relation (Section 3.3). This semantics was clean, but does not closely resem-
ble how the programming language ML5 will actually be implemented. The dynamic
semantics of C5 will be more realistic in two senses. First, it uses a small-step evaluation
relation that relates network states with explicit control stacks. This allows us to see how
the state of the network evolves over time, to explain the behavior of infinitely looping
programs, and to transition smoothly to a nondeterministic concurrent semantics. Sec-
ond, some values at runtime cannot really be transmitted between worlds because they
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represent local resources, however, the substitution-based Lambda 5 semantics appears
to do just this. The C5 semantics uses tables to store local resources, so that integer in-
dexes into these tables can be transmitted between worlds instead. It also uses tables for
continuations, so that we do not need to transmit control stacks. In the implementation
of ML5, we will use a similar technique to marshal certain values (Section 5.5.4), so C5’s
table-based semantics provides some of the justification for that. However, because this
semantics is awkward to formalize in Twelf (Appendix A.5), this is the last store-based
dynamic semantics that we give.

types A B:= ADB|OA|QCA|AAB|L]|Aatw
networks N == W;R

configs W o= {wy:(x1,b01), -}

cursors R = w:lk=<v]|w:k> M|

tables b == e|bl=vw

conttables x == e |, K=k

config types X : {wyi (X1, B1), -+ }

table types (3 = e |, (: A

ctable types X = | X, K:A

worldexps w = w|w

world vars  w world names w

labels 14 value vars x,y

cont labs K cont vars u

values v = Ax.M | box w.M | w.l]| (v,v') | heldv
conts k= returnZ | finish | abort | k< f
cont exps Z = wK|u

frames f == oN|v o | here o| unbox o | holdo

| letd wer =o0inN | m, o | (o, N) | (v,0)
| letax =o0in N
exps M,N:= v |MN |z|/l| here M | get|w] M
| unbox M | letd w.x = M in N
| abort M | letccuin M | hold M
| throwMtoZ | (M,N) | m, M
| letax =M in N

Figure 3.15: The syntax for the C5 operational semantics. A network consists of a set
of worlds paired with a cursor; each world has a table of values and continuations. A
cursor indicates the evaluation state of a single thread at the selected world.

For the C5 operational semantics we give require a number of new syntactic con-
structs, given in Figure 3.15. The small-step semantics is given in terms of an abstract
network that steps from state to state. The network is built out of a fixed number of con-
stant worlds, whose names we write continue to write as bold w. A network state N has
two parts. First is a world configuration W which associates two tables with each world
w; present. The first table y; stores that world’s continuations by mapping continuation
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labels K to literal continuations k. The second table b; maps value labels ¢ to values in
order to store values whose address we have published (with here). These tables have
types X and 3 respectively (which map labels K and ¢ to types), and so we can likewise
construct the type of an entire configuration, written ¥.

Aside from the current world configuration, a network state also contains a cursor
denoting the current focus of computation. The cursor either takes the form w : [k < ]
(returning the value v to the continuation k) or w : [k > M] (evaluating the expression
M in continuation k). In either case it selects a specific world w where the computation
is taking place.

Continuations themselves are stacks of frames (expressions with a “hole,” written
o) with a bottommost return, finish or abort. The finish continuation represents the
end of computation, so a network state whose cursor is returning a value to finish is
called terminal. The abort continuation will be unreachable, and return will send the
received value to a remote continuation.

Most of the expressions and values are straightforward. As in Lambda 5, the canon-
ical value for O abstracts over the hypothetical world and leaves its argument uneval-
uated (box w’.M). For ¢A, which represents the address of a value at an undisclosed
world, we no longer ship the actual value but an index into some world’s table, paired
with the name of that world. This value takes the form w./, and is well-formed any-
where (assuming that w’s table has a label ¢ containing a value of type A). On the other
hand we have another sort of label, written just ¢, which is disembodied from its world.
These labels arise from the letd construct, which deconstructs an address w./¢ into its
components w and ¢ (see the < E rule from Figure 3.11). Disembodied labels only make
sense at a single world—here ¢ would have type Aew. When we attempt to evaluate a
disembodied label, we look it up in the current world’s table and return the associated
value.

Although the external language only allows a throw to a continuation variable, inter-
mediate states of evaluation require that these also include the continuation expression
w.KC, which pairs a continuation label (an index into the continuation table) with the
world at which it lives. These continuation expressions are filled in by letcc.

The type system is given in Figure 3.17, omitting the rules that are the same as in
Figure 3.11 except for the configuration typing ¥. There are several judgments involved,
an index of which appear in Figure 3.16.

The rules addr and lab are used to type the run-time artifacts of address publishing.
In either case, we look up the type in the appropriate table typing 3, which is part of the
configuration type X. As mentioned, throw allows a continuation expression Z, which
must take the form of a variable (typed with hyp”, as in the logic) or address into a
continuation table.

Typing of literal continuations k is straightforward. Note that the judgment ¥
k : Axw means that the continuation % expects a value of type A at w. The return
continuation arises from get, so it allows values of mobile type to be returned. We reuse
the network continuation mechanism here to refer to the outstanding get on the remote
machine.

For an entire network to be well-formed (Rule net), all of the tables must have the
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Judgment Reading

;' M : Aew The expression M has type A at world w
YFk:Axw  The continuation k expects a value of type A at world w
Y;I'+Z: Axw The continuation expression Z is well-formed, expecting A at w

Y+ bew The value table b is well-formed at the world named w
YExxw The continuation table y is well-formed at the world named w
YFR The cursor is well-formed
YEN The network is well-formed

Figure 3.16: Index of Judgments for the C5 operational semantics. In each judgment ¥ is
a configuration typing and I' is a context of value, world and continuation hypotheses.

type indicated by the configuration type ¥, which means that they must have exactly
the same labels, and the values or continuations must be well-typed at the specified
types (Rules b and ). Finally, the cursor must be well-formed: It must select a world
that exists in the network, and there must exist a type A such that its continuation and
value or expression both have type A at that world and are closed.

Having set up the syntax and type system, we can now give the evaluation relation
and prove a type safety theorem for it.

Evaluation relation

The operational semantics of C5 is given in Figure 3.18 as a binary relation — between
network states. The semantics evaluates programs sequentially, though we show how
the semantics can be made concurrent in the next section.

At any step, the cursor is selecting a world and continuation, with a value to return
to it or an expression to evaluate. The rules generally fall into a few categories, as
exemplified by the (standard) rules for D: There are push rules, in which we begin
evaluating a subexpression of some ), pushing the context into the continuation, swap
rules, where we have finished evaluating one sub-expression and move onto the next,
and reduction rules, where we have a value and consume it. Every well-typed machine
state is closed with respect to value, continuation, and world hypotheses, so we don’t
have rules for variables and can constrain some rules to operate only on constants.

The first interesting rule is <;-r, which publishes the value v and returns its address.
Executing at w, it generates a new label, maps that label to v within w’s private value
table, and returns the pair w.¢. Whenever we try to evaluate a label (Rule ¢-r), we look
it up in the current world’s value table in order to fetch the value. A key consequence
of type safety (Theorems 21, 22) is that labels are only evaluated in the correct world. To
eliminate an address (Rule ©.-r) we substitute the constituent world and label through
the body of the 1etd. Note that this step is slightly non-standard, because we substitute
the expression ¢ for a variable rather than some value. We delay the lookup of the value
to the point where / is evaluated (at its home world) so that we only have to look in
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N(w) =(X,5) B =A

ST Fwi:OAaw  2ddr

s:I'EM:Aew X, TF Z: Axw
;' throw M to Z : Cew’

S(w) = (X,6) X(K)= A
S TFwE: Axw

Y I'Fo: Aew’

held

throw

E(w) = (X,0) plH=A4
2 T'H: Aew a

NolLuAxw kM : Aew
;' letccuin M : Aew letec

YD uwAxwhu: Axw hyp

Y:I'Fheldv: Aatwew

A mobile X:-F Z:Axw
Y FreturnZ : Axw

YFEk:Bxw Z;-I—N:A@Wka
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YFk:ANBxw X;-F N:Bew
YFE<(o,N): Axw

YEEk: Aatwxw

kpair

YShk<dvo: Axw kapp,

Kletd Yk Axw

Y F k <unboxo: OAxw kunbox

YFEEk:ANBxw X;-Fov:Aew
YFEk<(v,0): Bxw

kpair,

YEk:Cxw Y;z:Aew'F N :Cew

SE k <holdo : Axw Khold
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Figure 3.17: The C5 type system, with rules for typing network states, continuation

expressions, tables, cursors, etc.
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W;w: [k > [¢/z][w'/w]N]
W;w : [k <unboxo > M]
[

Wiw: [k > [w/w]M]
{w:((x,K=k),b),--- }yw: [k > [wLC/u]M]
(K fresh)
(W' 060), - W' [K - M
(x(K) = )
{w: {(x, K =k),b),--- };w : [return w.K > M|
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Figure 3.18: The small-step evaluation relation — for C5.
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tables locally.

The rules for O are much simpler: box w.M is already a value (Rule O;-v), and to
unbox we simply substitute the current world for the hypothetical one (Rule O,-r).

When encountering a letcc, we grab the current continuation k. Because the con-
tinuation may be referred to from elsewhere in the network, we publish it in a table
and form a global address for it (of the form w.K), just as we did for ¢ addresses. This
address is substituted for the falsehood variable v using standard substitution—not the
special falsehood substitution (Theorem 15) we used in Section 3.4.2. The latter was a
proof-theoretic notion used to eliminate uses of the hypothesis; here we want the use of
the hypothesis (throw) to have run-time significance. A point of comparison is the above
paragraph, where we substituted the expression ¢ for a variable because we wanted to
delay the operation until the time the variable is “looked up.”

Throwing to a continuation (Rule throw) is handled straightforwardly. The continu-
ation expression will be closed, and therefore of the form w’.KC. We look up the label K
in w'—or rather, cause w' to look it up—and pass the expression M to it. Note that we
do not evaluate the argument before throwing it to the remote continuation. In general
we can not evaluate it, because it is only well-typed at the remote world, which may be
different from the world we’re in.

Finally, the get construct works as follows. Since the target world expression must
be closed it will be a world constant in the domain of W. We will move the cursor to
that world and begin evaluating the expression M. To arrange for the result of M to
be returned to us, we insert our current continuation in the local continuation table.
The bottom frame at the remote world is then a return to that continuation label. The
return frame reduces like throw. Unlike throw, its argument (restricted to mobile types)
will be eagerly evaluated—the whole point is to create the value at one world and then
move it to another.

Type safety

In order for C5 to make sense it must be type safe: any well-typed program must have
a meaning, given as a sequence of steps in the abstract network. For the small-step
semantics, we state type safety in terms of progress and preservation:

Theorem 21 (C5 Progress)
If YEFN
then either N isterminal
or IN'.N — N’

Theorem 22 (C5 Preservation)

If YFN
and N— N
then YO

such that Y F N

Progress says that any well-formed network state can take another step, or is done.
(Recall that a terminal network is one where the cursor is returning a value to a finish
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continuation.) Preservation says that any well-typed network state that takes a step
results in another well-typed state (perhaps in an extended configuration typing ¥'.
(X' D X iff ¥’ and ¥ each describe the same set of worlds, and for each world, if X'(K) =
Athen X (K) = A, and likewise for 3’ and ). By iterating alternate applications of these
theorems we see that any well-typed program is able to step repeatedly and remain
well-formed, or else eventually comes to rest in a terminal state.

The proof of Theorem 21 is by induction over the derivation that N is well-formed,
and proof of Theorem 22 is by induction over the derivation that N — N'. These proofs
are somewhat difficult to perform in Twelf due to the value/continuation tables; be-
cause they are indexed by labels (and not variables) we cannot use Twelf’s facilities for
higher order abstract syntax to encode them. This means that we must prove substitu-
tion and weakening theorems by hand. The full proofs appear in Appendix A.5 as the
relations progress and preservation. o

Uses of continuations

This cursor-based style of operational semantics admits an easy extension to support
concurrency. We simply replace the cursor R in our network state (W; R) with a multiset
of cursors R, each one represent an independent thread. We then permit a step on any
one of these cursors essentially according to the old rules. Formally,

W: R —° W;R
iff R=RUWY %rest
and W:R+— W' R
and R = R'W Regt

We can then add primitives as desired to spawn new cursors. A very simple one
evaluates M and N in parallel and returns each one to the same continuation:

I'FEM:Aew T'F N : Aew
['F M|N : Aew

par

W RWw:[k = M|N] = W; RYw:[k = M| W w:[k > N]

It is easy to see that suitable extensions of progress and preservation hold for —*.

In ML5, we implement concurrency in the same way. In interactive applications,
threads are inserted into the pool as a result of actions by the user such as keypresses
and mouseclicks on GUI elements. The interface to the database also allows a hook to
be registered with a key, so that the hook is launched as a new thread whenever the key
is moditfied.

This concludes the discussion of C5, a classical modal logic for distributed com-
puting. We will use continuations again starting in Chapter 4 when we formalize the
compilation of Lambda 5 via CPS conversion. ML5 also has the 1etcc and throw con-
structs, although there they will be limited to (spatially) local control flow (Chapter 5).
In the next section, we will look at an orthogonal extension to Lambda 5 for universal
reasoning.
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3.5 Validity

In our modal calculi so far, reasoning has always been attached to a specific world via
the “true ew” (or “false » w”) judgments. This is the critical technology in this work
because it allows us to express contingent truths, which correspond to programs that
are limited in where they may be executed. Nonetheless, distributed programs usually
contain a large fraction of data and code that can be used anywhere: simple data like in-
tegers, and library code that manipulates data structures like lists and trees, etc. We call
such unconstrained data and code “valid.” For these parts of the program, the modal
typing discipline is a burden, because it requires us to explicitly move valid things from
world to world. For example, the following Lambda 5 program of int D Ointew is not
as direct as we would like:
Az:int. box w.get[w] x

The problem is that the box that we create must return to w every time it is unboxed, in
order to retrieve x. This is more work than should be necessary; the box ought to simply
contain the integer. Because of the modal discipline, however, there is no way for us
to make x available for use at the hypothetical world w, because we cannot mention
the bound world variable until we introduce it with the box construct. This turns out
to be particularly troublesome when we introduce run-time addresses for worlds in
Section 4.2.1. When we begin writing the body of a box at some world where truly
nothing is known, then we won'’t even have the ability to get data from other worlds,
since we will not have access to their run-time addresses!

The solution is to introduce universal reasoning into the calculus. This will allow
us to assert that a piece of code or data is valid and can be used anywhere—including
hypothetical worlds that are introduced later. We will make such assertions in terms of
a new validity judgment, and introduce a modality that internalizes this judgment as a
type.

In this development we will see a widening gap between the logic and the program-
ming language based on it. Specifically, we will make a syntactic constraint similar to
ML’s value restriction [77] on polymorphism so that we always have a specific con-
crete place in which we are performing evaluation. This leads to an incompleteness of
the call-by-value dynamic semantics with respect to the proof theory. (Like ML’s value
restriction, this is rarely a problem in practice, because we can almost always lambda-
abstract something to make it a value.)

To this end, we only form hypotheses of validity, never conclusions. Operationally,
a hypothesis tells us that we have a value and tells us where we may use that value—a
valid hypothesis simply says that we can use it anywhere. The hypothesis form is

U~ w.A

where u is a new syntactic class of variable. The world variable w is bound within A and
stands for the world(s) at which u is used. It rarely occurs, so we leave it out when it
does not (or can not). Valid variables can be used at any world to conclude modal truth
at that world (Rule vhyp; Figure 3.19).
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Amobile T'HFM:Aew T'u~AFN:Cew

h t
F,UNw.AI—UZ[W/w]A@WV P 'Fputu=MinN:Cew pH
I'wworld= M : Aew I I'EM:8,Aew T'u~wAkF N:Cew
Fl—shamw.M:z‘I%wA@wg% I'+letshamu = M in N : Cew
£3,4 mobile 8M

Figure 3.19: Extensions to Lambda 5 for validity.

A hypothesis should have a corresponding substitution principle, which is as fol-
lows:

Theorem 23 (Validity substitution)
If I'-M:Aew (forallw)
and [u~wAF N:Bew
then T+ [“M,].N : Bew

The substitution operation [“*/,],, N is indexed by the world at which N is typed,
and is defined by induction over V. Itis pointwise except for the case for valid variables:

[ lwu =[] M

That is, when we arrive at a use of the valid variable u, we replace it with the expression
M but fill in the world variable w with the current world w. At runtime we will only
substitute values, just as we do with normal substitution in a call-by-value language.
One way to introduce a valid hypothesis is with the put construct. For example, the
proof term
putu=2+3in M

binds u ~ int within M. The rule for put appears in Figure 3.19. Like get, it requires
its argument to be mobile. Unlike get, it does not cause any communication to occur; it
simply binds the variable such that it can be used in any world.

The £ modality (pronounced “shamrock”) is the internalization of the validity judg-
ment as a type. Operationally, a value of type €34 is an encapsulated value of type A that
makes sense at any world. (Again the hypothetical world can appear in the type; when
it does we write &3,A4.) Its introduction rule is the same as the rule for O in the proof
theory, except for the possible appearance of the bound world variable. (In the dynamic
semantics (Section 3.5.2) we will require the body of the shamrock to be a value.) The
elimination rule £ E binds a valid variable in the body of the 1et sham.

Like the other modalities, £3A is mobile for any A.

3.5.1 Sequent calculus

To show that this natural deduction makes sense, we prove it is equivalent to a sequent
calculus with a cut principle and the subformula property. We do this for a miniature
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I'AD Bew — Aew

I'YAD Bew,Bew — Cew’ . I', Aew = Bew R
T,A> Baw — Caew  ~ I — A> Baw
I'Aatwew’, Aew — Cew” e L I — Aew £ R
I'Aatwew — Cew” a [ — Aatwaew
I8, Aew, ~ w.A = Cew a1 I',wworld = Aew
T.5,Aew — Caw T — 3, Adew SR

TR 1L

'= Tew I lew = Cew

I~ wA [V ]Aew = Cew
IN~wA= Cew

copy

' Aew = Aew it

Figure 3.20: A miniature sequent calculus with validity and the £ modality. Here,
hypotheses are not labeled with variable names, so a valid hypothesis takes the form
IIN w.A//.

system with very few connectives, since the reasoning for the remainder would be the
same as it was for Lambda 5. The sequent calculus appears in Figure 3.20.

The rules for D and at are the same as before, as is the initial sequent. The rules
for the & modality are straightforward; the right rule mimics the introduction rule from
natural deduction. The left rule produces a validity hypothesis. To use a validity hy-
pothesis, we choose a world and apply the copy rule to create a modal hypothesis of
the same formula at that world (with the target world substituted in for the hypotheti-
cal one). This is analogous to the copy rule used in Chang, Chaudhuri, and Pfenning’s
sequent calculus for linear logic [17]. After creating a modal hypothesis it can be used
like any other with the init rule.

Like the previous two sequent calculi, this one has the subformula property and so
it is easy to see consistency. We also have shift and expansion lemmas:

Theorem 24 (Consistency)
Not all sequents are provable.

Theorem 25 (Expansion)
If A mobile
then Aew — Aew
Theorem 26 (Shift)
If A mobile
and ' = Aew
then I'= Aew’

Proof of Theorem 24 is immediate by witness (no rule can conclude - = L ew), and
Theorems 25 and 26 proceed as Theorems 3 and 4 for Lambda 5, extended straightfor-

52



wardly to the new & connective. These appear as the Twelf relations shift and exp in
Appendix A.6. O
For this sequent calculus there are two cut principles, one for each form of hypothe-
sis:
Theorem 27 (Cut)
If D:Il"= Aew
and & =TI, Aew, " = Bew
then F :I,I" = Bew

Theorem 28 (Valid cut)
If D:TI'l" = Aew (for all w)

and & T ~w. ATl — Bew
then F: I, [" = Bew

Proof of Theorems 27 and 28 is by mutual lexicographic induction over the size of
the cut formula A, then simultaneously the derivations D and £. We define the size
of A such that the parameterized proposition w.A is larger than [ */,|A for any w. This
relies on worlds not having any inductive structure. The interesting case for Cut is the
principal cut for the £ connective. If

D’ &
Iw world = Aew I8, Aew, ~w A= Cow al
D — T—=o,dew OR gae = T,8,Aew — Cow

then by induction hypothesis on D and £’ we have
E:T,~wA—=— Cew

then by inductive appeal to Valid cut on D’ and &’ (justified by the smaller cut formula)
we have
F T = Cew

as required.

The cases for Valid cut generally mimic the ones for Cut; there are no principal cases
since none of the left rules can operate directly on a valid hypothesis. Therefore, we
also never need to distinguish cases on the rule that concludes D. The interesting case
is when we copy the cut formula; if

5/

I~ w A, [W//w];él@w’ = Cew
E = I''~wA= Cew

copy

then we have by induction hypothesis on D and &’
E" =T, [V, JAew = Cow
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To eliminate this hypothesis, we first observe that since D is parametric in its world,
(VD T = [V,]Aew

and so by an appeal back to Cut on [*/,]D and &’ (justified by the fact that [*//,]A is
smaller than w.A by our metric) we have

F il = Cew

as required. The full proof appears as the relations cut and vcut in Appendix A.6. ©
Given Cut, we can prove soundness and completeness in the typical way:

Theorem 29 (Soundness of validity extensions)
If D:THFM: Aew
then £:'T'' = Aew

Theorem 30 (Completeness of validity extensions)
If D:l = Aew
then & ::I"F M : Aew, forsome M andI” 3T

These proofs follow the same structure as Theorems 5 and 6 for Lambda 5. It is
interesting to note that we completely eliminate the put construct when translating
to the sequent calculus and do not use it when translating back to natural deduction;
therefore it is an admissible rule. The full proofs appear in Appendix A.6 as the relations
ndseq, uhyp, seqgnd, hypnd, and vhypnd. o

3.5.2 Operational semantics

For the purpose of the operational semantics, we make a restriction on the introduction
form for &: that the body be a syntactic value. To see why, assume that we have ML-
style references in our language and consider the following program (typed at the world
home):

letsham u = sham wv. ref 0
in

u = 1;

get[w’] (! u)
end

Our options for evaluating this program are as follows. We could delay evaluation of
the body of the sham and substitute the expression ref 0 through the body. The result
is that two different reference cells are created—one for each use—at both home and
w’ . This not what we would expect from a call-by-value language. We could attempt
to evaluate the body of the sham once. If we do, then we create a reference cell at
the hypothetical world w and then attempt to access it at both home and w’, which is
unsound. Instead, we reject this program because ref 0 isnot a value. This is the same
value restriction we have on type polymorphism in ML, which is not surprising because
£3 is used for a kind of polymorphism in ML5 (Section 5.3.3). When we do this, we will
actually relax the restriction to valuable (total, side-effect free) expressions, like ML.
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values v == Az.M | heldv |shamw.v | z | u

h
Io:Aew -z : Aew hyp Du~swAlFu: [Y,]Aew vayp

F,$:A@W|_MiB@WDV I'FM:AD Bew FI—N:A@WDE
I'EAXx.M:AD Bew I'EM N : Bew
L'M: Aew [ 'EM:Aatw"ew TI',z:Aew”F N :Cew E
T F hold M : Aatwaw’ ¢ I'-letax=Min N : Cew at
I'-v: Aew INwworld-v: Aew
I'heldv: Aatwew at Vv Fl—shamw.v:g%wA@wggV
F'Fov: Aew 'EM:8,Aew T u~wAF N:Cew

va

I'kFvalv: Aew I'Fletshamu = M in N : Cew

Amobile T'H-M:Aew T'u~AF N:Cew ut Amobile T'H M : Aew’
'Fputu=MinN:Cew P I'F get[w'] M : Aew

get

Figure 3.21: A miniature type system exhibiting the validity extensions.

Unfortunately, disallowing expressions as the body of the sham construct makes it
incomplete with respect to the sequent calculus. The language of course remains sound,
because values are a strict subset of expressions.

The full type system appears in Figure 3.21. Values now include valid variables u
and sham w.v. As discussed, the body of sham is limited to a syntactic value.

As for Lambda 5, I will give the operational semantics in terms of a big-step eval-
uation relation | that relates an expression with a value. Its definition appears in Fig-
ure 3.22. As before, the relation is indexed by the world in which evaluation is taking
place, and this world is always concrete (a constant). The two new rules are put | and
letsham |}. The put construct evaluates its argument to a value. It then uses validity
substitution (Theorem 23) to replace the valid variable from the body. Because the value
v produced by evaluating the argument M must be closed, the world variable w bound
in validity substitution can not occur, so this abstraction is vacuous. The 1et sham con-
struct works similarly. It evaluates its argument to a value of the form sham w.v, and
then uses validity substitution on that value to substitute away the bound variable in
the body.
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M o Az. M N lw ' [V]M Yy v

M N |y v app |
e R v S M

Figure 3.22: Big-step dynamic semantics for the miniature validity calculus, given as a
relation M |, v between an expression M and its value v.

3.5.3 Type safety

To prove type safety, we need the validity substitution theorem (Theorem 23) and a
value shift lemma:
Theorem 31 (Value shift)
If w;world,...w,world-uv: Aew

and A mobile
then w; world,...w, worldFv: Aew’

This lemma is proved the same way as it was for Lambda 5 (Theorem 23), but here
we extend the theorem statement from the empty context to a context that may contain
hypothetical worlds. This stronger form is used for the case of put below. Its proof
appears as the relation vsubst in Appendix A.7. O

Type preservation is stated as follows:

Theorem 32 (Type preservation of |})
If D:-FM:Aew
and &M |y v
then F:-Fuv:Aew

The proof of this theorem is by induction on £. The case for 1et sham is interesting;

if
5:1 5?2
M |y sham w.v  [“L]wDN o v/
E = letshamu = M in N | v/ letsham |}

then by inversion on D we have
Di:-FM:8,Aew and Dy::u~wAFN:Cew
so by induction hypothesis on D; and &; we get

& - Fshamw.v: G,Aew
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by inversion on this we have

El mwworld v : Aew
so by valid substitution on £} and D, we get

Foiu-F[“hu]wN : Cew
and then by induction hypothesis on F; and &, we get
Fiu-Fov:Cew
as required.
The case for put is similar but more subtle because we must derive the validity of a

value from the mobility of its type. Our strengthened value shift lemma allows us to do
this. If

‘ 2
MG v [*h]wN b v
E = put u =M in N |}y 0/ put §

then by inversion on D we have
D, :: A mobile and Dy::-EM: Aew and Ds::u~AFN:Cew
so we get by induction hypothesis
& kv Aew
as before. To use valid substitution, we need that v is well typed at any world. We can
use the stronger value shift lemma to do this. We first weaken &; to include a hypothet-
ical world in its context, giving
E swworld-v: Aew
and then apply value shift, with the destination being that hypothetical world, giving
E' wworld v : Aew
we then proceed using valid substitution and induction as above.

The full proof appears as the type correctness of the relation eval in Appendix A.7,
along with the lemmas vsubst and vshift. The proof requires a trick which may be

interesting to Twelf experts; I comment on it briefly in the appendix. O
We also desire a progress result for the evaluation relation; this takes the form of the
coverage (or partiality) of the evaluation relation as encoded in LF, as before. O
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3.5.4 Relationship with other connectives

The £ connective is related to—but distinct from—other connectives appearing in this
work and others. The most obvious relative is O, which also encodes universal reason-
ing. In fact, OA implies 834 and vice versa, in the proof theory. There are a number
of differences, however. First, in the lambda calculus OA does not imply ©A4, because
of its restriction to values. Secondly, the fact that the bound world variable w may ap-
pear in the type (because of the hybrid connective A at w) means that £, is more precise
than O. This means that when the variable appears, we can’t even state the equiva-
lence €3, A = OA—let alone prove it—because A mentions a variable not in scope. The
bound variable does not occur often in programs, but is important in the internals of the
compiler.

Another question is whether the elimination form for O ought to use the validity
judgment like the elimination form for &. This is what Jia and Walker do [62] and it
would be sound in our proof theory as well. However, the body of a box must be an
expression for it to be the O connective, and we do not want to have to substitute ex-
pressions for valid variables (Section 3.5.2). Therefore we prefer to use the formulation
where each use of A is an explicit unbox that evaluates the expression when it is un-
boxed. This leaves the logical meaning of U intact in our call-by-value language.

The shamrock modality was inspired by Park’s [ connective [100, 101]. A value of
type [JA is a suspended computation that, when evaluated, results in a value that is
portable to any world? The modality is defined in terms of a validity judgment, but un-
like the validity judgment here, there are structured conclusions of validity. Validity can
be concluded by (possibly effectful) expressions of primitive type (which corresponds to
our mobile judgment and the put construct) or by a small language of pure expressions.
This means that [JA itself would not be mobile in our setting, since the evaluation of its
contents can have effects. The proof theory uses a form of leftist substitution where the
substitution operation is defined inductively on the term being substituted, which does
not appear to admit a straightforward compilation strategy. It is not known whether
the logic containing []is globally sound and complete (equivalent to a sequent calculus
with the subformula property and cut). In comparison, we treat £ as an encapsulated
value that is already portable to every world, and use a form of substitution that can be
readily implemented using standard compiler techniques.

Finally, note that we cannot achieve the effect of validity by adding new types or
by using polymorphism. For example, if we had quantification over worlds (which
will be introduced in the next chapter) this would not be sufficient. Suppose we had
a function f that we want to be able to use anywhere. We cannot simply bind it as a
modal hypothesis f:Vw.int D intew. This judgment is ill-formed because the scope of
the quantifier does not include ew, which is part of the judgment, not the type. Using the
type f:Vw.(A at w) also does not work, because the modal judgment requires us to place
[ at some specific world and then move it around explicitly. Therefore, we really need
a new judgment.

3 He formerly called this the O modality, which is why it appears that way in my Thesis Proposal [86]
and other places.
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3.6 Summary

In this chapter I have presented a series of logics and calculi that form the theoretical
basis for the programming language ML5. For each proof theory I have demonstrated
its logical status by proving it equivalent to a known logic, or to a natural sequent cal-
culus with the subformula property. Each logic is accompanied by a lambda calculus
derived from its proof terms. Although these lambda calculi are not always as strong
(or direct) as the proof theory, we make such concessions with our eyes open, and justify
the gap in terms of a dynamic semantics that suggests a straightforward path towards
implementation on a distributed set of hosts. For each lambda calculus we provide a
type safety result. Every proof has been formalized in a machine-checkable form.

We now shift gears slightly. In the next chapter, I investigate the process of compil-
ing a small programming language based on the calculi in this chapter. I do so in the
abstract, defining the compilation relations only for simple language features, without
any regard to convenience, efficiency or other implementation concerns. Each of these
compilation passes is performed in Twelf, with formalized type safety and type preser-
vation results. However, we do not seek out connections with logic in this chapter. Once
I have justified the major phases of compilation for this little language, I then present
the full-scale programming language ML5 in Chapter 5, at which time I will be mainly
concerned with pragmatic and not theoretical issues.
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Chapter 4

Modal typed compilation

ML5 is implemented by compilation, which consists of a series of translations into sim-
pler and simpler intermediate languages. The compiler is type-directed, meaning that
these intermediate languages are themselves typed. In this chapter, I present a mini-
mal programming language based on Lambda 5 called MinML5 and show how it can
be compiled. This means defining a few intermediate languages, proving type safety
for them, and defining type-preserving translations between the languages. Specifi-
cally, these translations are an elaboration phase to remove some derived forms from
the external language (Section 4.4), CPS conversion (Section 4.5), and closure conver-
sion (Section 4.7). Each language and translation is defined and shown to be (statically)
correct in Twelf.

The language in this chapter is too minimal to write real programs in, and the com-
pilation relations that I define are too inefficient to be used in a real compiler. Therefore,
the actual implementation of ML5 (Chapter 5) is more complex, and I only give infor-
mal arguments for its correctness. However, this formal account of compilation is quite
useful. For one, it is naturally part of the informal argument (by analogy) that the imple-
mentation is correct. Additionally, it exercises the language’s expressiveness in a way
that we have not done yet, because CPS and closure conversion make nontrivial use of
the language features. We also find that as we compile the constructs of the language
into simpler ones, those simpler ones are often more precise and thus more useful than
the high-level constructs they encode. In fact, this exploration of compilation is what
informed our addition of the at and &3, modalities, as well as the put construct, into the
external language.

Let’s begin by seeing how the O and < connectives lack precision, and why the at
modality is more expressive. We'll then present MinML5 and define the first translation,
which expands O and < as derived forms for quantification and at.

4.1 The at modality

We included the at modality in Lambda 5 and justified it as a logical connective via the
sequent calculus. However, we did not provide much motivation for it. There are sev-
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eral good reasons to include it; for one, it is a natural result of using an explicit worlds
formulation of modal logic, because it is a direct internalization of the @ judgment. This
makes it not seem very exotic, since such internalizations are commonplace: For ex-
ample, in propositional logic the D connective is an internalization of the - judgment
for hypothetical reasoning. Related to this point, we will see that the at modality is
necessary for closure conversion in Section 4.7.

From a high-level programming point of view, at is useful because it is very precise.
To illustrate, consider the following theorem of IS5:

OADB)DOCAD OB

The reading of this proposition is as follows: Given that A implies B in every world,
and given that A is true in some world, B is true in some world. This proposition is true
by virtue of the fact that B is true at the same world that A is true (we go to that world
and apply the mobile function from A to B). However, the proposition does not state
that B is true at the same world; in fact, we unable to state such a thing with the O and
<& connectives at all. In this sense the O and ¢ connectives, being unable to mention
worlds, are “lossy.”

The at modality allows us to make such statements. The MinML5 internal language
introduces quantification over worlds, so we will be able to say

O0(AD B) DVw.(Aatw) D (Batw)

which is stronger than the above. In fact, in the logic the O and < modalities are defin-
able in terms of at and quantification:

OA =Vw.Aatw
OCA=dw.Aatw

In the translation that follows, we will eliminate O and < by using at and quantifi-
cation over worlds (the translation will be a bit more complicated than the above due to
other operational concerns), and then not consider them again.

4.2 MinML5 external language

MinMLS5 is a miniature programming language based on Lambda 5. It has all of the
connectives from Lambda 5 except for disjunction (which would not cause any special
problems; I simply omit it for simplicity) plus the validity extensions. A new addition
will be world addresses.

4.2.1 Addresses

The worlds in the typing judgment are the static representations of hosts in the network.
At runtime, we will need tokens with which to refer to these worlds. A value of type
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variables x,y
valid variables

valid values s = ww|u

expressions M,N := hereM | M N |letax =M in N |letsu= M in N |
letdw,z,y = M in N | val v | unbox M |
putu =M in N | get[M] N | (M, N)

values v = Az.M |heldv | shamw.v | vvals |z

there[w,v] | box w.M | (v1,vs)

Figure 4.1: MinMLS5 external language syntax

w addr is such a token, which acts as the address of a host. It is a singleton type; there
is only one value of type w addr for a given w. A host can compute its own address by
using the localhost() primitive, which results in an address value, written w:

[' - localhost() : waddr ew localhost I' W :waddr ew’ address

The way an address is used is by switching the location of evaluation to the world
described by the address, using get. Thus, get now takes a new argument, which is
the address of the remote world:

A mobile
I'-M:w addrew
I'-N:Aew

'k get[M]N : Aew

get

Addresses are themselves mobile. The put construct does not need an address, because
it does not communicate with a remote host. However, the elimination form for ¢ now
binds both the static world variable and its address; otherwise, we would be unable
to contact that world in the body. The introduction form of O does not need to be

changed, because its body can use 1ocalhost () tofind out where it is being evaluated,
if desired.

4.2.2 Syntax and static semantics

The MinML5 external language syntax appears in Figure 4.1. The elements are familiar:
We have syntactic classes of values and expressions, where some constructors have both
expression and value forms (for example the pairing expression (A, V) and the paired
value (v, v,)). We have added addresses for worlds, as described above. As a minor
technical difference, we now have a syntactic class s of valid value, which can be either
a valid variable u or a value w.v parametric in its world. We therefore have a judgment

'Fs~w.A
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I'Fov: Aew

'Fvalv: Aew val

ie{l,2} THM:A NAew I'-M,: Aew T©T'F M, : Bew

TF#i M: Aow A B TF (M, M) AABow M

I'FM:ADBew I'HN:Aew

TEAMN: Bow o E

I'M: Aew I I'EM:Aatw”"ew’ T ,z:Aew”F N :Cew

I'Fhold M : Aatwew at I'Fletaz =M in N : Cew at E

I'-M:OAew OF I'-M: Aew o1
I' - unbox M : Aew I'Fhere M : OCAew

I'EM:QCAew TI',wworld, z:waddr ew,y:Aew - N : Cew

'Fletdw,z,y =M in N : Cew CE

I'EM:8,Aew Tu~wAkF N:Cew

I'F letshamu = M in N : Cew 8E
A mobile A mobile
I'FM: Aew I'M:w addr ew
u~AFN:Cew I'EN:Aew

get

|
TFputu=MinN:Caew P TF get[M]N : Aaw

localhost

['F localhost() : waddr ew

Figure 4.2: The MinML external language typing rules for expressions
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[ rz:Aew -z Aew hyp Nu~wAFu~wA vhyp

'Fs~wA
C'Fwvvals: [Y,]Aew

; address vval

I'+w:waddr ew

I'-v,: Aew TI'Fovy: Bew ['x:Aew - M : Bew

I'F (v, v2) : AN Bew A TFAzM:A>S Bow = 1
'v: Aew’ at I I'wworld- M : Aew a1
I'heldv: Aatwew Y I'boxw.M : OAew
['W: waddr F"U:A@WOIU I'Nwworld - s: Aew a1

I' F there[w,v] : CAew I'Fshamw.s : 8§,Aew

Figure 4.3: The MinML external language typing rules for values and valid values

for the well-formedness of valid values. The rules for valid values and modal values ap-
pear in Figure 4.3. Valid values are values and values are expressions, via the inclusions
vval and val. The typing rules for expressions appear in Figure 4.2.

4.2.3 Dynamic semantics

I do not give a dynamic semantics for the MinML5 external language, for two reasons.
First, it would mostly be redundant to the semantics for Lambda 5 (except for the addi-
tion of addresses) and the MinML5 internal language. Simply note that in the semantics
for Lambda 5, the evaluation rule for get only knew where to evaluate the subexpres-
sion by virtue of the world annotation on the get construct. This is somewhat unrealis-
tic, since worlds are intended to be a purely static part of the type system. Now, because
we have a runtime address indicating the destination, the dynamic semantics need not
depend on static worlds at all.

The second reason is that there is an easy shortcut to defining an external language
dynamic semantics, by composition of the elaboration relation with the evaluation rela-
tion of the internal language. In the next section we present the first internal language
and its dynamic semantics, so that we can define the translation from the external lan-
guage into it.

4.3 MinML5 internal language
The MinML5 internal language is similar to the external language, but some constructs

have been added and some have been removed. Its syntax appears in Figure 4.4. First,
we introduce type-level quantification over worlds. We have the types

Yw.A and Jw. A
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variables z,y
valid variables  u

valid values s == w.w|u

expressions M,N := M N |letax=Min N |letsu= M in N |
letx=Min N | valv | M(w) | unpack w,z = M in N |
putu =M in N | get[M]| N

values v = Aw.M | Az.M | pack w,v as Jw.A | held v |

() | {(v1,v9) | shamw.v | vvals | x

Figure 4.4: MinML5 internal language syntax

T'Fov: Aew 26{1,2} FI_MAl/\AQ@W/\E

IFvalv: Aew '@ TF#iM: Aew ‘
I'M:A>Bew ['FN: Aew B I'-M: Aew F,x:A@WI—N:(]@Wl
TFMN :Baw - TFletz=Min N :Cow et

I'-M:Vw.Aew
L' MW):[Y]Aew

VE

'FM:3wAew [ wworld,z:Aewk N:Cew (w¢ FV(C))
I' munpackw,z = M in N : Cew

JE

'EM:Aatw”ew’ T, ,z:Aew”F N:Cew E
I'Fletax =M in N : Cew at

'-M:8,Aew Tu~wAFN:Cew
I'Fletshamu = M in N : Cew

A mobile A mobile
I'-M: Aew ' M :w addr ew
Lu~AF N :Cew I'EN:Aew

t et
Fl—putu:MinN:C@Wpu 'k get[M] N : Aew 5

['F localhost() : waddr ew localhost

Figure 4.5: The MinML internal language typing rules for expressions
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h 'Fs~wA
[Nz:Aew F x : Aew yp I'Fwvvals: [Y,]Aew

vval

I'-ov: Aew F"?}QIB@W/\I I'x:Aew + M : Bew |
['F (v, v2) : AN Bew TFAzM:A> Bew ~
T'Fov: Aew’ I F,wworldl—v:A@WVI
TFheldv: Aatwow 2° ' Aw.v: Vw.Aew
id FFov:[Y,]Aew o
T'FWw: waddr ew 299T€SS I' - pack w,v as dw.A : Jw.Aew
e 1 'Fs~w.A I
['F{):unitew und 'k sham s : 8,Aew &
vh I'wworld-v: Aew lid
Mu~wAFu~w. A yp TFwo~wA VAl

Figure 4.6: The MinML internal language typing rules for values and valid values.

A mobile B mobile A mobile A mobile
A A B mobile AM Yw.A mobile vM Jw.A mobile

M

addr M at M

3, A mobile .M w addr mobile A at w mobile

unit mobile unit M

Figure 4.7: The definition of the mobile judgment for the MinML5 internal language.

for universal and existential quantification, respectively, where w is bound within A.
These quantified types are mobile only if the body is mobile (Figure 4.7). We also add a
standard let construct and the unit type.

Some features in the external language will be translated away, which means that
they do not appear in the internal language. The O and < connectives do not appear;
they will be translated as below. We also have no need for expressions that construct
pairs or values of at type; we can always sequence the evaluation of the body with
let and then construct the value. This leaves us with a nice system where all of the
introduction forms are values and all of the elimination forms are expressions.

The type system appears in Figures 4.5 and 4.6. The rules for world quantification are
straightforward. To type check A, we simply assume the hypothetical world and check
the body. To check pack, we verify that it has the abstract type from the annotation if we
substitute in the actual world. Note that in both cases the body is required to be a value;
this is because we do not want these constructs to have any run-time behavior. To use a
term of type Aw.A, we can apply it to a static world expression, resulting in that instance
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of A. To use a term of type Jw.A, we bind the hypothetical world w, and a value of type
A. Note that this unpack construct does not bind an address for the abstract world, so
our translation from letd will need to do that manually.

4.3.1 Dynamic semantics

For the MinMLS5 internal language I give a small-step dynamic semantics based on eval-
uation contexts. This semantics is much simpler than the one for C5 (Section 3.4.6) be-
cause we do not use tables to store values, instead simply using substitution. The syntax
and typing rules for evaluation contexts appear in Figure 4.8. The judgment

I'kFe: Axw

states that the evaluation context e is well-formed and expects a value of type A in the
world w. A machine m is then
elwM

and is well-formed (in the empty context) if its evaluation context and expression agree:

Fe:Axw -F M Aew
-Felw M ok

machine

The evaluation relation —, is a relation between two machines, indexed by the
world at which evaluation takes place. It is defined in Figure 4.9.

Rules roughly fall into two categories. The first is where the machine state consists of
an evaluation context and unevaluated expression, in which case we extend the evalua-
tion context and begin evaluating the expression. The second is where the machine state
consists of an evaluation context and a value appropriate for that context (via the val
inclusion), in which case we perform the reduction and continue. For localhost (),
we extract the world from the machine state (this assumes that every world can com-
pute its own address, which is reasonable) and return it. We use this same ability in
the rule for get to supply the return frame with the address of the world it should
return to.

The get and put use a partial function lift to make a value of mobile type into a
valid value (so these rules only apply when lift is defined). The definition of lift appears
in Figure 4.10. It is a straightforward induction that adds an unused world argument,
except in the case where the value is actually a vval, in which case we instantiate it at
the current world and then lift that value instead.

The final rule deserves some attention. If we have a valid value being used as a
value (via the inclusion vval), then we can instantiate it with the current world to get a
regular value. We are only forced to use this rule when we otherwise require a specific
form of value (for example in the reduction rule for leta); otherwise, we can delay
its application. This causes minor trouble in the proof of safety because it means that
we have multiple canonical forms for a given type: for A O B we have Az.M and
vval w.v where v is a canonical form for A D B. (On the other hand, we do not have
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evaluation
contexts e = finish | e; get[o] M | e; return[w] o |e; putu=oin N |
e;oN [e;vo |eo(w)|e #lo[e#2o |
e; letax=o0in N | e; letx =o0in N |
¢; letsu=o0in N | e; unpack w,z = o in N

I'F finish: Axw finish

Amobile T'Fe:Axw T'FM: Aew
['Fe; get[o] M : w' addr*w

Amobile T'Fe:Axw
'k e; return[w]| o : Axw

get, get,

Amobile T'Fe:Cxw T,u~AF N :Cew
'Feputu=oin N : Axw

put

'Fe:Bxw I'FN:Aew
I'Fe;oN:AD Bxw

'Fe:Bxw I'bv:AD Bew ,
ke vo:Axw

app, PPs

Dke:[Y/,]Axw
I'Fe; o(w) : Vw Axw

wapp

I'kFe: Axw 41 I'e: Bxw 49
ke #1o: ANBxw I'Fe #20: AN Bxw

'Fe:Cxw TI'z:Aew'F N :Cew
I'Fe;letaz=o0oin N: Aatw*w

leta

I'Fe:Cxw T'z:AewkF N :Cew
'Fe;letx=o0in N : Axw

let

'Fe:Cxw T u~w. A N:Cew
I'Fe letsu=o0in N : S, A*xw

lets

'Fe:Cxw T,wworld, xz:Aew - N : Cew
't e; unpackw,r =o0in N : Jw. Axw

unpack

Figure 4.8: Syntax and typing for evaluation contexts. The type A in the judgment
I' = e : Axw is the type that the context expects (the type of the “hole” o).
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e; unpack w,r = oin N |y

val (pack w',vas Jw.d) v Chw [TAIAIN
e |wunpack w,z = M in N e; unpack w,x = oin N | M
e |w Localhost() e|wval W
elw#l M e; #1 o |w M
elw#2 M e; #2 o | M
e; #1 o |wval (v, v2) e w1
¢; #2 o |wval (v1,vs) e |w va
e ‘WM N e; o N |w M
e; o N|yvalw ;v 0 |wN
e; (Ax.M) o |y valv e lw [*L]M
e |w M(w) e; o(w) |w M

e|wvall Vv

e; put u=o0in N |, M
€ |w [Iift wv N

e; get[o] N |w M

e; return[w| o |y N

e |w val (vval(lift w’ v))
e; letz=o0in N | M

e; o(w) |wval Aw.v
elwputu=Min N

e; put u=o0in N |y valwv
e |wget[M] N

e; get[o] N | val w’

e; return[w] o | valv
elwletz =M in N

£ £ £ £ £ ¢ ¢ ¢ ¢ £ £ £ £ £ £ £ £ £ ¢ ¢ ¢

e; letx =oin N |, valw elw [N
elwletaz=Min N e; letaz =oin N | M

e; letax =oin N |y, val held v elw [N
elwletsu=M in N e; letsu=oin N |, M

e; letsu =oin N |y val sham s +—y el [%]N

L A A A A A )

€

e |wval (vval w.v) e |wval [V/,]v

Figure 4.9: The small-step evaluation relation for MinML5 internal language machines.

lift w (held v) = w.(held v)

lift w (vq, v2) = w.(vval (lift w vq), vval (lift w vy))
lift w (Aw'.v) = w.Au'.(vval (lift w vy))

lift w (pack w,v as Jw'.A) = w.(pack w, (vval (lift wv)) as Jw'.A)
lift w w’ = ww

lift w (sham s) = w.sham s

lift w (vval w'.v) = liftw ([V//]v)

Figure 4.10: The definition of the partial function lift, which takes a world and a value,
and returns a valid value.
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to define a special validity substitution operation as in Section 3.5.) The reason that this
nondeterminism is acceptable is that we have in mind an implementation where valid
values and values have the same representation, meaning that this instantiation has no
run-time effect.

The MinMLS5 internal language is type safe:

Theorem 33 (Type preservation of —,)
If D:-FelwMok
and €& :e|lw M=y € | M
then F:-F ¢ |w M ok

Theorem 34 (Progress for —,)
If D:-FelwMok
then either & :e|w M —y € | M’ for some ¢/, w/, and M
or el M is terminal

The only terminal state is finish |, val v. Proof of Theorem 33 is an easy induction
on &£ and appears as the Twelf relation presv in Appendix A.8.3. The only thing to
mention is that we need a lemma that the lift operation produces a well-typed valid
value if its input is well-typed:

Theorem 35 (Type preservation of lift)
If D:Tkuv:Aew
and € :liftwo=s
then F:uT'Fs:wA

Proof is straightforward by induction on &, and the full proof appears as the Twelf
relation momo in Appendix A.8.3.

Proof of Theorem 34 is also straightforward. The necessary lemma is that lift w v is
defined whenever v has mobile type:

Theorem 36 (Totality of lift on values of mobile type)
If D:-Fov:Aew
and & :: A mobile
then F:liftwov=s (for some s)

It is also an easy induction, appearing as the relation mobmov in Appendix A.8.3.
To conveniently state the progress theorem, we use the standard trick of defining the
evaluation relation in Twelf to relate a terminal machine to itself. The totality of the
relation encodes the disjunctive theorem statement, by either encoding +—, when one
of its steps applies, or by self-stepping when the machine is terminal. The proof appears
as the Twelf relation presv in Appendix A.8.3. O

4.4 Elaboration

Having defined the external and internal languages, we can now give the elaboration
relation. The translation is type-directed, so it is only defined for well-typed terms,
and is defined inductively on the external language typing derivation rather than the
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[AANB]e = [A]e A [B]e

[OA]e = Vo.((unit — [A]¢)at w)
[CA]le = Fw.([A]eatw A waddr)

Figure 4.11: The elaboration relation from external language types to internal language
types.

term. Since we lack a convenient notation for functions on typing derivations, I will
give the translation informally on the syntax and assume access to some parts of the
typing derivation (types and worlds) that are necessary. The formal relation is defined
in Twelf, and is discussed briefly in Section 4.4.1.

We define a collection of relations, relating external language types, expressions, val-
ues, and valid values to their internal language counterparts. Since most of the external
language constructs have a directly analogous counterpart in the internal language, I
avoid giving those cases except for illustration.

The translation of types is a good starting point, since it shows how O and < will be
treated. It is given as a function [-]¢, defined for all well-formed external language types,
and appears in Figure 4.11. Most cases are pointwise, as the case given for A. A value of
type 0A is a suspended computation that can be evaluated at any world. Therefore we
translate this type to a function taking the trivial unit argument (a suspension) which
is encapsulated with at to mark that it makes sense at some other world, and then that
world is made polymorphic with V. A value of type ¢A is a value that makes sense
at some abstract world. We pair that value with a dynamic address for that world, and
then pack it into the existential type to hide the world. (Recall that the external language
constructs for O do not do anything with addresses, since the suspended expression can
just compute its address with localhost() if desired.) Because OA and <A are mobile
for any A, it is important that their translations be mobile as well. This is the case here
because A at w is also mobile for any A.

Next is the elaboration relation for values, given as a function [-]{:®" defined for all
well-typed external language values, and indexed by the world and type of the value.
It appears along with the elaboration relation for expressions and valid values (with
which it is mutually recursive) in Figure 4.12. The translation of the box and there
constructors is straightforward knowing the translation of the types. The only thing we
must be careful about is that a translated value is also a value, because we continue to
have syntactic value restrictions in the intermediate language (particularly on held and
A). The translation of valid values is given by [-]¢:* and has only two cases, both of
which are pointwise.

The translation of expressions is given by [-]4®" and also indexed by the world and
type of the expression. Note how for the expression constructors (A, N) and hold we
just sequence the evaluation of the body and then use the value constructors, obviating
the need for these constructors in the internal language.

For unbox, we apply the translated value (which is polymorphic in its world) to
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[boxw. M]A®Y

[there[w,v]]oA®Y

[(M, N)[EnEe

[hold M]gatwe
[unbox M]Ae™
[here M]SACY

[letd w,z,y = M in N]¢@V

Figure 4.12: The elaboration relation from the external language to internal language,

for values, expressions, and valid values.
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Aw.(held Az.[M]A9%)
pack w, (held [v]{®", W)
as Jw.([A]e at w A waddr)

let x = [M]2®" in held =
letax = [M]Z4®Y(w) in z ()
let y = [M]4®Y in
let z = localhost() in
pack w, (held y, x)
as Jw.([A]r at w A w addr)
unpack w,z’ = [M]4®Y in
let © = #2 2’ in

letay = #1 2’ in [N]¢®V

E

u

w.[v]

AQuw
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the current world. This gives us an expression of type (unit O A)atw, which we
consume by using leta. Note that because this term is “at” the current world, when
we bind it with 1leta we get a local hypothesis which we can use immediately. We then
apply that function to (), which evaluates the suspension. The translation of here is
like there, but we sequence the evaluation of the expression and use localhost() to
compute the current world’s address before packing the existential. The elimination
form, letd, simply unpacks the term, then projects out the stored address and value.
Observe that in this case our inductive call to [M]Z4®" must apparently “guess” the
type A. This is why (for example) the translation is actually defined on type derivations;
in the derivation that the 1etd expression is well-typed, we can simply read off the type
O A from the subderivation that M is well-typed.

Elaboration is type-correct and defined for all well-formed types, values, expres-
sions, and valid values:

Theorem 37 (Functionality of type elaboration)
[A]e is defined and unique for all well-formed A

Theorem 38 (Static correctness of expression elaboration)
If D:T'FM:Aew (in the external language)
then [v]4®Y = M’ (for some M’)
and [I']F M'": [A]cew (in the internal language)

Theorem 39 (Static correctness of value elaboration)
If DuT'kFov:Aew (in the external language)

then [v]a®Y =/ (for some ')
and [k :[A]cew (in the internal language)

Theorem 40 (Static correctness of valid value elaboration)
If DuT'Fs~wA (in the external language)

then [s]e! =& (for some s')
and [I']F s ~w.[A]e (in the internal language)

The operation [I'] simply translates the types of the variables in I" in the obvious
way. The informal proof of each theorem is by induction on the typing derivation (or
for Theorem 37, the structure of the type). The formal proof comes from the totality
of the Twelf translation relations on typing derivations, which is discussed in the next
section.

4.4.1 Elaboration in Twelf

Although all of the theorems in this dissertation so far have been proved in Twelf, this
is the first Twelf formalization that I will discuss in any detail. This particular proof is
fairly easy, but its simplicity makes it an appropriate way to set the stage for the next
two translations, which are much less simple. The two important lessons here are the
(somewhat nonstandard) methodology of using the computational content of a proof to
define a translation, and a particular trick for defining type-directed translations. Both
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lessons will be important for understanding the Twelf encodings of CPS (Section 4.6.2)
and closure conversion (Section 4.7.1).

Brief introduction to Twelf

To refresh the reader’s memory, I give a brief and informal tour of Twelf and how it can
be used to formalize programming languages and their metatheory. For a more com-
plete and formal discussion, I recommend Harper and Licata’s Mechanizing Metatheory
in a Logical Framework [52].

Twelf is an implementation of the LF logical framework [51], which allows us to
encode judgments as type families in a dependently-typed lambda calculus. We can en-
code a programming language’s syntax as a type family, and then encode the language’s
typing judgment in terms of its syntax [105]. For example, a fragment of the MinML5
internal language is as follows:

world : type.

Lty : type.

val : type.

unit : ty.

at : ty —> world —> ty.
1 : val.

held : val -> val.

We define three type families, for the syntactic classes of worlds, types, and values
(type is a Twelf keyword, whereas ty is the name of the syntactic class in MinML5).
We then declare that the constant unit is a ty, and that the constant at, applied to a
type and a world, is a ty. Finally, we declare the value 1 and value constructor held.
Having made these definitions, we can then define the typing judgment using the same
mechanisms:

ofv : val —> ty —-> world -> type.

unitI : ofv 1 unit W.
atl : ofv VAW —>
ofv (held V) (A at W') W.

The type family ofv is a three place relation between a value, a type, and a world, with
the intention of encoding the typing judgment I' - v : Aew. If we want to prove that the
ofv type family really encodes the typing judgment, we can prove a bijection between
canonical LF terms and typing derivations; this theorem is known as adequacy. I do not
give any adequacy theorems in this dissertation because I consider the LF formalization
to be primary and inference rules to be merely presentational.

The constants that inhabit ofv correspond to the inference rules; unit1I is the rule
concluding that () (here written 1) has type unit. We can conclude this in any world;
the capital existential variable W is syntax for an implicit argument to this constructor
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indicating the world. The atI constructor is similar, but takes a subderivation that the
embedded value is well-typed.

Because Twelf is also a logic programming system, we can define relations on terms
that have computational content. For example, supposing we have declarations for
external language values, well-typedness (suffixed with the letter e; for example, vale,
and ofve). We can then define an elaboration relation for values:

elabv : vale -> val —-> type.

smode elabv +VE -VI.

elabv/1l : elabv le 1.
elabv/held : elabv (helde V) (held V')
<- elabv Vv V’.

This type family relates an external language value with an internal language value.
By declaring its mode, we assert that the relation can be run as a program, where the
external language value is an input (+) and the internal language value is an output
(=). Running this relation as a program means requesting a derivation of elabv v VI
where v is a canonical LF term of type vale and VI is an existential variable. Twelf’s
operational semantics defines how to search the constants defining elabv to find a
matching derivation. In the case that the input is (helde 1le), for example, search
sees that only elabv/held could be the outermost constructor on the derivation. Since
this constructor needs an argument, it recursively searches for a derivation of elabv 1
V', finds that elabv/1 matches, and so returns the derivation elabv/held elabv/1.

Metatheorems

To prove a metatheorem about a relation, we use Twelf’s facilities for verifying totality
assertions [52, 121]. For instance, we typically want to know that a translation is type
preserving. We can state this for elabv as an LF relation:

elabok : ofve VA W —>

elabv V V' —>
ofv. V" AW ->
type.

smode elabok +WV +EL -WV’.

The idea is that elabok relates three derivations: the derivation that v is well formed,
the derivation that v translates to V’ , and a derivation that V' is well-formed at the same
type and world. What we want to express is that if there are derivations for first two
positions (the inputs) then there is a derivation for the output position. We use the rela-
tion’s mode to indicate the inputs and outputs, as above. The proof of this theorem has
two parts. We first give constants defining this relation, such that Twelf’s search strategy
will always find a derivation of elabok it when a query is made with canonical input
derivations. We then use Twelf’s metatheory system to verify that our proof (a program
that transforms the input derivations into the output derivation) always succeeds. This
property is called totality.
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The cases for this proof (constants inhabiting e 1abok) are:
elabok/1 : elabok unitTe elabv/1 unitI.
elabok/held : elabok (atIe WV) (elabv/held E) (atI WV')
<- elabok WV E WV’.
To verify that this relation is total, we first specify what sorts of LF terms may appear
in the context:

$block w : block {W : world}.
S$worlds (w) (elabok WV EL WV’').

In Twelf terminology, the “world” is a description of the context. This is somewhat
confusing in the current work, where we use “world” in a completely different way. I
therefore say “context” except when using the $worlds keyword.

In this case we assume only hypotheses of the existence of object language worlds
(without this, there would be no derivations of o fv at all, since we declared no constants
of type world). The $worlds declaration checks that the relation recursively maintains
this form of context. We can then assert the totality of the relation elabok.

$total EL (elabok WV EL WV’).

The parameter EL is the induction metric, which in this case is just the structure of
the second input. Internally, Twelf checks several properties when verifying a totality
assertion. First, it checks that for any query matching the mode, some case of the proof
matches it. It then checks that any subgoals (premises of the case) obey the induction
metric, so that proof search always makes progress. (There are also some subtle restric-
tions on the form of subgoals, which I do not discuss here.) If the totality assertion
succeeds, then we know formally that for all canonical LF terms in the input positions
(living in the context we declared), there exists a canonical LF term in the output posi-
tion. If we believe that the LF terms adequately represent what we intend, then we have
a proof of an “If.. . then” statement. In this case, we have proved thatif I' - v : Aew and
[v] = thenT F v : Aew, provided that I" takes the form w; world . . . w,, world.

Exploiting the computational content of “metatheorems”

The totality assertion is typically used to prove metatheorems in the manner described
above [50, 52]. In fact, the meaning of the totality assertion is somewhat stronger, which
gives us a shortcut to developing some kinds of metatheory. The important fact is that
the totality assertion does not just mean “for all inputs, there exist outputs,” but also that
there is a derivation of the inductively-proved theorem that specifically relates those
inputs to the outputs. What this means is that it matters which proof we give for a
particular theorem, because it describes how we get the outputs from the inputs. I exploit
this computational content to make the translation and its proof of static correctness the
same entity.

Forgetting the definitions elabv and elabok, let’s define the following relation be-
tween external and internal language typing derivations:

delabv : ofve VA W -> ofv V! A W —-> type.

smode delabv +WV -WV’

77



delabv/1 : delabv unitIe unitI.
delabv/held : delabv (atIe WV) (atI WV')
<— delabv WV WV’.

sworlds () (delabv _ _).

stotal D (delabv D _).

Taken as a metatheorem of the above form, the totality of this relation is uninterest-
ing: it states that if there is some well-typed term in the external language, then there
is some well-typed term in the internal language. This statement is particularly weak if
we have a construct like raise in our language, where we can create an abortive term
at any type! However, if we consider that the totality assertion means that this relation
is total, then we get as much as we did in the previous development. Because it trans-
lates the typing derivations it also translates the terms within them, and because the
Twelf relation is well-typed, the resultant terms are manifestly well-typed. Because the
relation is total, the translation succeeds for every well-typed term.

I use this technique as often as I can, because it means writing fewer relations, the
content of which would be somewhat redundant. (For instance, observe that elabok
could treat the translation relation as an output argument, or leave it out entirely!) There
are a few ways in which this approach might be considered inferior, however. First, we
do not give any translation to ill-typed terms. This is not a problem, since we expect
to only try to compile well-typed terms. (In comparison, the previous formulation did
not give any translation for syntactically ill-formed terms, which is considered normal.)
Second, if we wish for the translation to only depend on the term (because we want a
coherence property or because when we implement it we expect to not have the typing
derivation around), this formulation makes it harder to see that. This is also not an
issue, for two reasons: Either way we have to prove a coherence or functionality result
if we want it, and in the specific domain of type-directed compilers, by their very nature
we do generally depend on more than just the term.

4.4.2 The elaboration relations

Let us now look at the real elaboration relations. Figure 4.13 summarizes the Twelf type
families that encode the syntax and judgments of the external and internal languages.
Given these, we can define the type translation relation:

ettoit : tye -> ty -> type.

smode ettoit +TE -TI.

This translation just relates an external language type to its translated internal lan-
guage type and is defined in the obvious way. We need it to define the translations for
expression, value, and valid value typing derivations. The translation for values is, for
example,

elabvt+ : {A:tye} {V : vale} ofve VA W —>

ettoit A A’ —>
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Language Declaration Meaning
EL

IL world : type Worlds
EL tye : type
Types
IL ty : type yp
le:
EL vale : type Values
IL val : type
EL :t .
expe : tybe Expressions
IL exp : type
EL vvale: type Valid values
IL vval : type
EL ofe : expe -> tye —-> world —-> type .
Typing of ex
IL of texp -> ty -> world —-> type yping ot exps
EL ofve :vale —-> tye —-> world —-> type .
Typing of values
IL ofv:val -> ty —-> world —-> type ypmg otv
EL ofvve:vvale —-> (world -> tye) -> type Typing of
IL ofvv:vval -> (world -> ty) —-> type valid values

Figure 4.13: Twelf type families defining the external language and internal language.

{vv : val} ofv VV A’ W —> type.
$mode elabv+ +A +B +BW +BT —-E -OE.

elabv—- : {A:tye} {V : vale} ofve VA W —>

ettoit A A’ —>
{Vv : val} ofv VV A’ W —> type.

mode elabv- +A +B +BW —-BT -E -OE.

The two relations elabv+ and elabv- have the same type, but different modes—
the type translation from A to A’ is an input in the first and an output in the second.
Ultimately we only care about the first one, but we need both in order to prove the
theorem. This mutually inductive definition is the second technique that I want to point
out, and it is used in several of the proofs.

The reason that we do this is subtle, and ultimately comes down to the fact that the
relation ettoit is a function but that Twelf does not know this unless we prove it. We
can begin by stating that lemma because we use it later:

ettoit_fun : ettoit A A’ —-> ettoit A A’ —>

egtyp A’ A’'’ -> type.

smode ettoit_fun +X +Y -Z.

Given two translations of 2, this theorem supplies a proof that they produce equal
results. It is an easy induction over the two input derivations. However, we must
prove this lemma; though we wrote the translation on paper using suggestive notation,
it is not automatic that it is a function. (For example, it might have overlapping cases
that produce different results.) Additionally, we need to know that ettoit can always
successfully be run on a type:
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ettoit_gimme : {A:tye} {A’:ty} ettoit A A’ -> type.
%$mode ettoit_gimme +A -A’ -D.
This is known as an “effectiveness” lemma [68] and is also easy to prove.

A failed attempt

To see why we must have both an input and output version of our theorems, let us try
to prove elab+ and elabv+ directly. We will consider the cases for application and
lambdas. Application does work:

- : elab+ _ _ (=>Ee Df Da) ETb _ (=>E Df’ Da’)
<- ettoit_gimme A A’ ETa

<- elab+ _ _ Df (ettoit_=> ETa ETb) _ Df’

<— elab+ _ _ Da ETa _ Da’.

The application of a function of type A => B has type B, so we get an input deriva-
tion ETb : ettoit B B’. To elaborate the function and argument, we also need a
derivation of ETa : ettoit A A’.An appeal to the functionality lemma gives us this,
and then we can apply induction on both components.

The lambda case comes close to working, but fails because of the way variables are
handled in Twelf. A (very) naive attempt is as follows

- : elabv+ _ _ (=>Ie D) (ettoit_=> ETa ETb) _ (=>I D’)
<= ({ve : valel}{ove : ofve ve A W}
{v ¢+ wval} {ov : ofv v A" W}
elab+ _ _ (D ve ove) ETb _ (D" v ov)).

Since we are translating a lambda, we know that the external language type is of
the form A => B, and therefore its translation takes the form ettoit_=> ETa ETb
(ettoit_=> is the case of the translation for arrow types, and takes derivations of the
translations of A and B). This gives us a translation derivation for B which we can pass
off to translate the body. However, in doing so we have introduced EL variables into the
context, which means that we need to say how to elaborate them. This is accomplished
by adding an elaboration derivation into the context along with the variable and then
declaring (with the $worlds declaration) that EL variables are always accompanied by
elaboration derivations. The standard thing to try here would be:

- : elabv+ _ _ (=>Ie D) (ettoit_=> ETa ETb) _ (=>I D'")
<-= ({ve : valel}l{ove : ofve ve A W}
{v : val} {ov : ofv v A" W}
{thm : elabv+ A ve ove ETa v ov}
elab+ _ _ (D ve ove) ETb _ (D" v ov)).

$block blockve
some {A:tye}{A’:ty}{W:world}{ETv : ettoit A A’}
block {ve : wvale}{ove : ofve ve A W}
{v. : wval} {ov = ofv v A’ W}
{thm : elabv+ A ve ove ETv v ov}.
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sworlds (blockve) (elab+ _ _ _ _ _ _ ) (elabv+ _ _ _ _ _ _ ) .

This does not work. The reason is somewhat subtle. To check that our proof covers
all of the cases, Twelf looks at the constants defining our language and the description
of the context given by the $worlds declaration to see what possible forms the input
might take. It then checks to see that the input is matched either by one of the cases
of the proof, or by a case that must be in the context because of its regular form. For
elabv+, the inputs are the type, value typing derivation, and type translation. This
includes variables from the block declaration we just made, so we must be able to match

elabv+ A ve ove ET _ _

for some arbitrary A : tye, A’ : tye and ET : ettoit A A’. None of the cases will
match variables because they all case-analyze the form of the derivation. Therefore,
only the case that we inserted for the variables could match. Unfortunately, it doesn't.
The derivationET of ettoit A A’ thatwe're trying to match isn’t necessarily the same
as the one that we put into the context with the variables; in fact, it doesn’t necessarily
even translate A to the same A’ . Input coverage therefore fails. Although the reasoning
to show that this doesn’t matter (because et toit is a function) is easy to carry out, we
have no place to do it, so this attempt is a dead end.

Reversing the polarity

Instead we will carry out the cases for elab- and elabv-. Here the lambda case works
out cleanly:

- : elabv- _ _ (=>Ie D) (ettoit_=> ETa ETb) _ (=>I D’)
<- ettoit_gimme A A’ ETa
<—= ({ve : vale}{ove : ofve ve A W}
{v. : wval} {ov = ofv v A’ W}
{thm : elabv- A ve ove ETa v ov}
elab- _ _ (D ve ove) ETb _ (D' v ov)).

%$block blockve
some {A:tye}{A’ :ty}{W:world}{ETv : ettoit A A’}

block {ve : wvale}{ove : ofve ve A W}
{v. : wval} {ov : ofv v A’ W}
{thm : elabv- A ve ove ETv v oV}.

Because we must output the type translation, we sometimes must appeal to effec-
tiveness, as we do here. When we descend under the binder, we introduce external lan-
guage and internal language variables, and the case for elaboration that relates them.
Since the type translation derivation is now an output, it is not considered during input
coverage checking and therefore does not suffer from the problem above.

In essence, we have changed the meaning of the theorem from “give me any type
translation you like and I will elaborate using it” to “I will elaborate and tell you which
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type translation I used.” Since there is only one translation of any type, these two are
actually the same, but it is easier to check coverage for the second. We carry out the
equality reasoning to implement the elab+ relations in terms of the elab- ones. This
is a single case that covers all inputs:

of_resp : of M AW -> eqtyp A A" —> of M A" W —> type.

$mode of_resp +BOF +EQ —-BOF’.

el : elab+ A M WM BTi E OE’
<- elab- A M WM BTo E OE
<— ettoit_fun BTo BTi EOQ
<— of_resp OE EQ OE’.
The of_resp lemma states that typing derivations respect the equality of types, and is
trivial to prove. To implement elab+, we receive the type translation as an input (BT1).
We immediately invoke elab- on the same inputs, getting the elaborated expression
but a second type translation BTo. We use functionality to prove that they translate A to
equal types. We then use the fact that typing derivations respect equality to produce a
derivation that agrees with the input type translation, and return that.
Having these two versions of the lemma is convenient when writing the cases for the
elab- family as well, because it saves us from having to carry out equality reasoning.
For example, the case for application is as follows:

- : elab- _ _ (=>Ee Df Da) ETb _ (=>E Df’ Da’)
<- elab- _ _ Df (ettoit_=> ETa ETb) _ Df’
<— elab+ _ _ Da ETb _ Da’.

We must produce as output ETb : ettoit B B’, the translation of the result type.
We start by recursing on the typing derivation for the function, using the “~" version of
elaboration. This gives us a translation for the function type 2 => B, which contains as
subderivations the translations of A and B. Since we already have a translation of B, we
use elab+ to translate the function’s argument. If we appealed to elabv- again, we
would then need to reason that the translation for B that it produced the same result as
the translation we already have. This is easy to do, but it is nicer to use the two different
versions as appropriate.

Theorem

The rest of the cases go through easily using these same techniques. (The elaboration
of valid values only needs a “~" version because is syntax is so simple.) Once they are
complete, we can verify the totality all of the (mutually inductive) elaboration relations
at once:

$total (D1 D2 D3 D4 D5) (elab- _ _ D1 _ _ )
(elab+ _ _ D2 _ _ ) (elabv- _ _ D3 _ _ )
(elabv+ _ _ D4 _ _ ) (elabvv _ _ D5 _ _ ).

Induction is on the typing derivation, as expected. The order of the relations here
is important, because the one case of elab+ appeals to elab- on a typing derivation
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of the same size; therefore we must consider the elab- relation to be smaller in our
simultaneous induction metric. The full proof appears in Appendix A.8.5. o

Elaboration is a simple translation, but its formalization displays some of the tech-
niques that are important for the following translations, which are less straightforward.
The first is conversion to continuation passing style, which begins in the next section.

4.5 Continuation passing style

The next phase of compilation is translation to continuation passing style (CPS), af-
ter which the remainder of the compiler operates on CPS internal languages. In a
CPS language, the control stack is represented explicitly as a heap object. For this rea-
son CPS-based compilers are somewhat rare—most production compilers are based on
direct-style internal languages so that they can make use of the machine stack. For
MLS5, the CPS representation gives us numerous advantages. Because the control stack
can span worlds, we cannot easily make use of the machine stack. It gives us an easy
way to implement first-class continuations, which we use in some applications (Chap-
ter 6). Exceptions are also easily translated away at this step via a double-barreled CPS
translation (Section 5.4.2), which avoids us having to treat them in the remainder of the
compiler. In the particular domain of web programming, CPS allows us to avoid re-
strictions on the stack depth and the length of computations in JavaScript, and allows
us to implement threads in a straightforward way. For similar reasons, several related
web languages such as Links [21] have CPS-based compilers.

The syntax of the CPS language appears in Figure 4.14. The language sequences the
evaluation of expressions: Continuation expressions ¢ mostly take the form of a let
that performs a primitive operation on some number of values, binding some variables
within the nested continuation expression. The continuation expression can end with
a halt (ending the program) or a call to a continuation value on an argument. Calls
do not return; the essence of the CPS translation is that the return continuation becomes
part of the argument to the call. Additionally, the IL get construct (which evaluates
an expression at a remote world and returns its value) has been replaced with the CPS
language go. This construct transfers control (only) to a continuation at a remote world,
and does not return. Values v are the same as in the IL, except for Az.c, which now
encapsulates a continuation expression and so does not return when invoked. Such
values have type A cont, which replaces the A D B function type. It is similarly not
mobile (Figure 4.15).

The well-formedness of valid values and values follows closely the typing of the
internal language analogues; only the Az.s construct differs (Figure 4.16). The typing
rules for continuation expressions appear in Figure 4.17. The judgment

'k cxw

states that the continuation c is well-formed for evaluation at w. These are mostly
straightforward. To call a continuation (Rule call) we simply need an argument value
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conts ¢ = letaxr=winc

| letsu=winc

| putu=wvinc

| letx=f~fstvinc

| letx=sndvinc

| letx = localhost() inc
| letx=wv(w)inc

| letw,z =unpackwvinc
|

|

|

go[w; vg] ¢
call vs(v,)
halt
values v == (v1,v2) | () | held v | pack w,v as Jw.A
| Az.c| Aw.w | vvalv | W | sham s |z
valid values s = u|ww
types A, B = Acont | AANB|Aatw |&,A

| Vw.A|3JwA|waddr | unit

Figure 4.14: The syntax of the CPS language.

A mobile B mobile A mobile A mobile
AABmobile "M G Amobile ™M 3.4 mobile - M
£3,A mobile B.M w addr mobile addr M Aatw mobile 2 M
unit M

unit mobile

Figure 4.15: The definition of the mobile judgment for the CPS language.
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'Fs~w.A

[Nz:Aew F x : Aew hyp I'Fwvvals: [Y,]Aew vval
I'ov: Aew Fl—vg:B@w/\I ['z:Aew F cxw |
I'F(v1,v2) : AN Bew T'F Az.c: Acontew —

F'v: Aew’ I F,wworldl—v:A@WVI
TFheldv: Aatwow 2° ' Aw.v: Vw.Aew
id F'Fov:[V,|Aew 0
T'FWw: waddr ew 299T€SS I' - pack w,v as dw.A : Jw.Aew
e 1 'Fs~w.A [
T'F():uitew I'Fshamw.s: 8,Aew ©
vh Iwworld-v: Aew lid
Mu~w AFu~w. A yp TFwo~wA VAl

Figure 4.16: The CPS language typing rules for values and valid values.

of the right type; both must be at the current world. The continuation halt is well-
typed at any world. Like get, the go construct requires the address of the target world
(Rule go), and the subcontinuation must be well-typed there. However, it does not re-
quire its argument to be mobile—in fact, it has no type to insist is mobile in the first
place! The go construct is only concerned with control flow, as will be clear from the
dynamic semantics in the next section. The translation from get to go will encode the
data transfer using put, which still requires its argument to be mobile. This translation
is described in Section 4.6, immediately following the dynamic semantics.

4.5.1 Dynamic semantics

Again, we will give a dynamic semantics for the CPS internal language and prove that
the language’s typing rules induce type safety. Owing to the fact that the language has
become simpler (as would be expected from a lower-level intermediate language), the
semantics is easy to give. We do not need to introduce evaluation frames or abstract
machines, simply a single-step evaluation relation between continuation expressions:

C =W C
It is indexed by the concrete world at which evaluation is taking place, as usual. Because
a value may be an uninstantiated valid value, we also need an evaluation relation for
values.

/
V ~oy U

This relation ensures that v’ is not of the form vval s, by instantiating s at the current
world if v is of that form. Because we consider such instantiations to have no runtime
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'Fov:Aatwew @' z:Aew F cxw
I'-letaxr =vincxw

leta

I'Fv:8,Aew T, u~w.AF cxw
I'kFletsu=vincxw

lets

I'Fv:Aew A mobile I'Ju~Atb cxw

t
'Fputu=vincxw PH
'Fv:AANBew I x:Aewlk cxw c
I'Fletx=fstvincxw st
I'Fv:AANBew I x:Bewl cxw 4
I'Fletx =sndvincxw sn
I', z:waddr ew F cxw 1h
['F let x = localhost() in c*xw
I'Fov:Vwdew I,z:[V/]Aewl cxw wapp
['Fletz =v(w) inc*w
N'Fv:3dwAew T wworld,z:Aew - cxw unpack
' let w,z = unpack v in cxw P
I'Fv,:waddrew I'F cxw
go
I'F go[w';u,| cxw
I'Fvs: Acontew I'Fu,:Aew
call

I'F call vp(v,) *xw
' haltxw halt

Figure 4.17: The CPS language typing rules for continuation expressions.
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vvalw.v ~y [Vl
Vo oty U iff v # vval w.v’

Figure 4.18: The value instantiation relation for the CPS language. The world index on
the relation is used when instantiating a valid value; however, this use has no run-time
effect. I use a side condition to cover the cases for all value forms that are not vval, since
these are the same.

significance, these steps are just coercions. The relation is defined in Figure 4.18.

The evaluation relation for continuation expressions appears in Figure 4.19. It uses a
partial function lift (Rule put), which is defined identically to the one from the internal
language in Figure 4.10 (so I do not repeat it here). Recall that lift hoists a value to a valid
value, and that it is not defined for all inputs.

The evaluation relation also uses the value stepping relation we just defined. For
elimination rules, we expect the input value to have a particular form; we achieve this
form by appealing to the value stepping relation. For go, we simply check that the
address matches the indicated world, and then start evaluating the nested continuation
(the next step will therefore take place at the remote world).

4.5.2 Type safety

Type safety is straightforward for the CPS language.

Theorem 41 (Type preservation of —,)
If D:u-Fexw
and £ :c ey
then F:-Fcdxw (for some w’)

Theorem 42 (Progress for —,)
If D:-Fexw
then either & :c iy ¢ (for some )
or c ishalt

For preservation (Theorem 41) we state that the output continuation is typed at some
world, possibly different from the input (the go rule, particularly, changes the world).
(If we were to state the theorem as a relation between abstract worlds, as before, then
this world annotation would be the only additional data in the abstract machine.) For
progress (Theorem 42) we know that a single step can be carried out at the same world
at which the continuation is typed, or else that the continuation is halt.

These theorems need progress and preservation lemmas for the ~-,, relation, similar
to the canonical forms properties in standard lambda calculi. We also require a lemma
about lift, stated and proved analogously to Theorem 36. The full proofs of these lemmas
and the type safety theorems appear in Appendix A.8.4. O

Having established that the CPS language is sound, we are now concerned with
showing that it is expressive enough to encode the internal language. This is the process
of CPS conversion, described in the next section.
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UV~ AZ.C

11
call vf(vy) —w ["ulc ca
lift wo = o’ __ put
put u =vinc =y YV

v ~»y held v’

; leta
letaz =vinc —y [V/]c

v ~>y sham s

letsu =vinc oy [*h]c lets

UV My (U1,U2)
let x = fstvinc —y [Y/]

fst
c

v~ (U1, 02)
let x = snd v inc —y [

snd

— 1h
let x = localhost() inc —y [Vc

/
V ~w Aw.v wapp

let z = v(W) inc oy [[w,/w}”//x]c

/ /
UV~ pack w0 as Jw. A unpack

let w,z = unpack v inc —y [V/L]["/lc

Vg ~w W

go

go[w'; v, ¢ oy ¢

Figure 4.19: The evaluation relation for CPS expressions.
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[AD B]c = ([A]c A[B]c cont) cont
[Aatw], = [A]lcatw

[Vw.Ale = Yw.[4]c

[Fw. Al = Fw.[A]c

[unit]; = unit
[AANB]e = [A]c A [Ble

Hg%wA]]C = &y [[A]]C
[waddr], = waddr

Figure 4.20: The translation of internal language types to CPS types.

4.6 CPS conversion

We convert internal language values and valid values to CPS values and valid values
using a translation very similar to the elaboration relations given in Section 4.4. The
translation of expressions to continuation expressions is higher-order, however; we use
continuations in the metalanguage to define the translation itself. In this section that
metalanguage is mathematics; in the implementation it is Standard ML, and in Sec-
tion 4.6.2 it is LF. A continuation-based CPS translation obviates the need for “adminis-
trative redices” [112], where the object language’s notion of continuation is used instead
of the metalanguage’s.

Let’s first state the translation relation for types, values and valid values, since they
are more straightforward. We have relations

[Ale  []&" [slec”
types values valid values

We can state the type translation relation, which guides the others. It appears in
Figure 4.20. The only type for which we do anything interesting is the function type.
Since continuations in the CPS language do not return, we encode an internal language
function as a continuation taking two arguments: the (translated) original argument
and a continuation representing “what to do next” with the result.

The translation of continuation expressions is given via a function convert:

convert C M Aw

It takes an internal language expression M to convert and its type A and world w.
It also takes a meta-level continuation K that describes what to do with the result of
M after conversion (it has type value — continuation expression) [5]. It is best to see an
example. The case for the internal language pair projection operation is
convert C(#1 M) Aw =
convert K" M (AN B)w
where £'(v) = let x = fst v
in K(x)
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In CPS form, we must first evaluate M to a value and then apply the let...fst
construct to it. So, we begin by recursively calling convert on M with a new meta-level
continuation K'. Here, the syntax “where” is an in-place mathematical definition; it
is not part of the CPS language. K’ is defined to take the value, project out the first
component and bind it to a variable . We then pass this variable (a value) to the initial
continuation . Observe that we have to guess the type B in the recursive use of convert.
Again, this description of the translation is informal; the real conversion is defined over
typing derivations, where the type B can be gleaned from the derivation that M is well-
typed.

The full translation for expressions is given in Figure 4.21, and most of the cases fol-
low this same form. The case for function application is interesting; after evaluating M
and N to values, M is a continuation that expects an argument and a return continua-
tion. We therefore pair the value resulting from N with a reification of the meta-level
continuation as an object-level A. For an internal language function value (Figure 4.22)
we project the original argument from the argument tuple and then run the body; when
it finishes, we project the continuation argument and call it on the result. The translation
of other values is completely pointwise. Finally, the internal language get construct de-
composes into two uses of go. First we save the current world’s address, and make it
valid with put so that we can use it from the remote world. We then go to the remote
world using the supplied address and evaluate the body. The resulting value must be
of mobile type, so we put it to make it valid as well. Using the saved address, we go
back and continue with the valid value. In this way we have separated the control and
data mobility aspects of get into the go and put constructs completely; now only go
changes between worlds and only put uses the mobile judgment.

To convert a whole program we need an initial continuation to pass to convert. The
natural choice is one that ignores its argument and returns the halt continuation ex-
pression.

4.6.1 Static correctness

We can now state the static correctness of CPS conversion. For values and valid-values
the statement is familiar; for expressions it is more complex, due to the higher-order
nature of the convert function.

Theorem 43 (Functionality of type translation)
[A]c is defined and unique for all well-formed A

Theorem 44 (Static correctness of value CPS conversion)
If D:T'kwv:Aew (in the internal language)

then [v]a®™ =/ (for some v')
and [I[']F v :[A]cew (in the CPS language)

Theorem 45 (Static correctness of valid value CPS conversion)
If D:I'ks~w.A (intheinternal language)

then [s]gd = (for some s')
and [I']F s ~w.[A]c (inthe CPS language)

90



convert K (val v) Aw=K(v)

convert € (#1 M) Aw =convert K’ M (AN B) w
where '(v) = let x = fst v in K(x)
convert K (#2 M) Aw =convert K’ M (AN B) w
where '(v) = let x = snd v in K(x)
convert K (let x=M in N)Cw =convert ' M Aw
where K'(v) = [ Y/ ](convert L N C w)
convert  (unpack w,x=M in N)Cw =
convert K’ M (3w.A) w
where £'(v) = let w,x = unpack v in convert C N C w

convert € (letax=M inN)Cw=
convert X' M (Aatw') w
where '(v) = letax=v inconvert C N Cw

convert K (letsx=M inN)Cw=

convert K" M (€,A) w

where K'(v) = letsu=v inconvert C NCw
convert K (put u=M inN)Cw =

convert K’ M A w
where '(v) =put u=v inconvert C N Cw

convert K (localhost ()) (waddr) w = let x = localhost () in K(x)

convert K (M (w')) ([¥/,]A) w = convert K’ M A w
where £'(v) = let x =v(w') in K(x)
convert (M N) Bw =convert K’ M (A D B)w
where K’(v) = convert C” N A w
where £”(v') = call v({ v/, AXx.K(x)))

convert K (get[M] N) A w = convert £’ M (w’ addr) w
where K’(v,) = let x, = localhost () in
put u, =z, in
go[w’; v,] convert C” N A w’
where K”(v) =put u =V in
go[w; vval u,] K(vval u)

Figure 4.21: The translation of internal language expressions to CPS expressions. The
function convert takes a meta-level continuation from CPS values to CPS expressions, an
internal language expression, its type and world. It returns a CPS expression. Variables
that do not appear in the input are assumed to be completely fresh.
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[(o1, )N = ([l [l

[Az. M]u@ASB = Ay.letx =#1yin
convert C M B w
where K(v) = let xp = #2 y in xy v

Figure 4.22: The translation of internal language values to CPS values. Only the case
for functions is interesting, so I give that along with the straightforward example of pair
values.

Theorem 46 (Static correctness of expression CPS conversion)

If DuT'FM:Aew (in the internal language)
and forallvsuchthat T'Fov: [A]cew,
' K(v)*w
then convert CM Aw=c (for some c)
and [I']F cxw (in the CPS language)

The convert function takes a meta-level continuation K, so the statement of type
correctness for convert must say what continuations are acceptable inputs. We insist
that if the input to K is a well-typed value v, that IC(v) is a well-typed continuation at
the same world. If that is the case, then the result of convert will also be well-formed.
Note that we implicitly quantify over all mathematical functions K obeying this form,
including ones that do things like inspect the argument or that are not constructive. This
is a little metatheoretically fishy and in any case far more than we need to prove the
theorem. When we formalize this theorem statement in Twelf, we will have a precisely
defined language in which to specify K (LF), and thus will be able to circumscribe the
forms it may take (for example, that it be parametric in its argument). This will be
especially important because we unify the translation and its proof of static correctness;
we care how it produces the typing derivation and not simply that it produces a typing
derivation.

The formal proofs of these theorems appear in Appendix A.8.6 and are discussed in
the next section.

4.6.2 CPS conversion in Twelf

In order to define CPS conversion in Twelf we will make use of the Twelf definitions
for the CPS language in Figure 4.23 and the IL in Figure 4.13 in Section 4.4.1. We have
LF type families for CPS types, values, continuation expressions, and valid values. We
have judgments for the well-formedness of these syntactic classes (except for types,
which are always well-formed). We also have a type translation function ttoct (“type
to ctype”) which converts IL types to CPS types, and ttoct £, which converts a world-
parameterized type of the form w.A.
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Declaration Meaning

ctyp : type CPS types
cval : type CPS values
cexp : type Continuation expressions
cvval : type CPS valid values
cof : cexp —> world —-> type Well-formedness of continuation
expressions
cofv:cval -> ctyp -> world —-> type Well-formedness of values
cofvv:cvval —-> Well-formedness of
(world -> ctyp) —-> type valid values
ttoct :typ —-> ctyp -> type Translation of IL types to CPS
types
ttoctf : (world —> typ) -> Translation of types
(world -> ctyp) —-> type parameterized by world

Figure 4.23: Twelf type families defining the CPS language.

The translation for values is a three-place relation, as it was for elaboration. It is
defined as follows:

tocpsv+ : {WV : ofv V A W}
{CT : ttoct A CA}
{WCV : cofv CV CA W}
type.

%¥mode tocpsvt tWV +CT —-WCV.
%¥mode tocpsv—- +WV -CT -WCV.

As before, there are actually two mutually recursive relations (ttocpsv+ and
ttocpsv-), which differ only in their modes. Similarly, we have a translation for valid
values:

tocpsvv— : {WV : ofvv V Af}
{CT : ttoctf Af CAf}
{WCV : cofvv CV CAf}

type.
$mode tocpsvv—- tWV —-CT —-WCV.

The validity judgment for valid values is with respect to a world-indexed type, so we
use the ttoct £ translation relation. Because the structure of valid values is so limited,
we will only need the “~” version of this relation.

The translation relation for expressions is intricate. I will step through it carefully:

tocps— : (M : exp}
(WM : of M A W}
{CT : ttoct A CA}

% output is parameterized by K
{CC : (cval -> cexp) —-> cexp}
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well-formedness of output is
parameterized by well-behavedness
of K
{wcc
{K : cval —-> cexp}
({cv : cval}
{wcv : cofv cv CA W}
cof (K cv) W) —>
cof (CC K) W}
type.
%¥mode tocps- +M +WM -CT -CC -WCC.
$mode tocps+ +M +WM +CT —-CC —-WCC.

o o° o°

The first three arguments are straightforward: the IL expression to convert, the
derivation of its well-formedness, and the translation of its IL type to a CPS type. (This
third argument is either an output or an input depending on whether this is t ocps- or
tocps+.) The two outputs are higher-order, like the convert function and its statement
of type correctness from the previous section. The output CC is a continuation expres-
sion that is parameterized by what we called KC; here it is an LF function that produces
a continuation expression from the value representing the result of evaluating M. For
example, if we CPS-convert the IL expression 1ocalhost, CC will be the LF term

Ak : (cval — cexp). clocalhost(Ax : cval. k x)

(Recall that in the CPS language, 1ocalhost takes the form let = localhost() inc.
The LF constant clocalhost has type (cval — cexp) — cexp, using higher-order
abstract syntax in the standard way to encode the binding of = within c.) If we apply cC
to the standard initial /C, Ay : cval. halt, we get

clocalhost(Az : cval. halt)

as expected.

CC, the output of the translation, must be also be well-formed. Since it is parame-
terized by K, the well-formedness of CC is contingent upon the well-behavedness of K.
Therefore the output WCC, representing the well-formedness of CC, has several nested
implications. First, we quantify over all K. Then, assuming some value cv and deriva-
tion that is well-formed, wcv, K applied to that value must be well-formed. If that is
true, then CC applied to K will also be well-formed.

The type of this relation may be more clear when we see how it is used. But before
we are able to give the translation for expressions and values, we need to prove some
lemmas about the type translation relation.

Lemmas

First, we define a shallow (non-inductive) equality relation on continuation types,
which internalizes LF equality:
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cegtyp : ctyp —> ctyp —> type.
cegtyp_ : ceqtyp A A.

We can then prove functionality and effectiveness for the type translation relation
ttoct. Functionality means that the output is deterministic, and effectiveness that the
translation can be performed for any input.

ttoct_fun : ttoct A A" -> ttoct A A’ -> ceqtyp A’ A’ -> type.
$mode ttoct_fun +X +Y —-Z.

ttoct_gimme : {A:typ} {A’:ctyp} ttoct A A’ —-> type.

%$mode ttoct_gimme +A -A’ -D.

(We have similar lemmas for the ttoctf relation, not shown here.) We need to
prove that continuation value typing respects equality, and that partial continuation
typing (the WCC output of tocps— above) respects equality. These theorems are trivial
because equality is shallow.

cofv_resp : cofv C A W —> ceqgtyp A A’ —> cofv C A" W -> type.
$mode cofv_resp +COF +EQ —-COF’'.

wcc_resp : {WCC
({K : cval —> cexp}
({cv : cval}
{wcv : cofv cv A W}
cof (K cv) W) —>
cof (CC K) W)}

{EQ : ceqgtyp A A’}

{wce’
({K : cval —> cexp}
({cv : cval}
{wev : cofv cv A" W}

cof (C cv) W) —>
cof (CC K) W)}

type.
%$mode wcc_resp +K +EQ —-K'.

The proofs of these lemmas are uninteresting and appear in Appendices A.8.4
and A.8.6.

Translation

We can now give the translation for expressions. We start by proving the tocps+ ver-
sion, since it is only one case:

tocps+/—- : tocps+ V WV (CTi : ttoct A A’) CC WCC
<—- tocps—- V WV (CTo : ttoct A A’’) CC WCC’
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<- ttoct_fun CTo CTi (EQ : cegtyp A’ A'")
<- wcc_resp WCC’" EQ WCC.

This looks almost the same as the analogous case from elaboration. We receive a
derivation of the type translation CT1i as input, and appeal to the tocps- version im-
mediately, which gives us another type translation CTo. We then use functionality of
ttoct to see that CTo and CT1 give the same result, and use the fact that WCC respects
equality of types to get a WCC’ that mentions A’ instead of A"/, as required.

The translation of the IL projection fst is illustrative.
c_fst : tocps—- (fst M) (&E1 WM) CT

% parameterized expression resulting from translation
([k:cval —> cexp]
CC ([v:cval] cfst v ([a:cval] k a)))
% 1its parameterized typing derivation
([k : cval —> cexp]([wk : ({cv : cval}
{wcv : cofv cv CA W}
cof (k cv) W)]
WCC _ ([v][wv] co_fst wv wk))
<- tocps—- M WM (ttoct/& CT _) CC WCC.

To translate the expression £st M, we inductively translate the argument. It must
have type 2 & B and so the only case for translating it is ttoct /&, so this subgoal
covers all outputs. It returns the translation for 2, called CT, and the translation of
M and its well-formedness, called CC and WCC respectively. Our job is now to build the
continuation expression for the £st projection and its typing derivation. The expression
is parameterized by k, which takes the result of the £st operation. Its body works by
first calling CC (the translation of M) and supplying it with a continuation that binds the
result of M to the variable v. We then project the first component using cfst, and apply
the outer continuation k to the result.

The parameterized typing derivation follows the same plan. It takes a continua-
tion k and a typing derivation for it, wk. The derivation starts with the typing for the
translation of M, which is represented by the function wCC. We apply WCC to the actual
continuation we supply above—Twelf can deduce what this is by unification, so we
just write _ to avoid repeating ourselves. The second argument is the typing derivation
for that continuation; it takes a variable v representing the result of evaluating M and a
typing derivation for it wv. The derivation consists simply of the typing rule for c_fst
applied to the well-formedness of its argument and the code that follows, both of which
we get from arguments.

The translation is challenging because it is so high-order (typing responsibilities pass
from callee to caller and vice versa) but most of the cases follow the same pattern.
Twelf’s term reconstruction allows us to supply only the essence of the translation and
it can often determine the rest. In particular, because typing derivations are indexed by
the terms that they type, we can usually perform the translation on typing derivations
and this will induce the appropriate translation for terms automatically. For example,
we can write the case for application as follows:
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c_app : tocps- (app M N) (=>E WM WN) CTB _
(fc] [wc]
% eval function, then argument
FM _ ([f] [wf]
FN _ ([a][wa]
co_call wf

(cov_pair wa (cov_lam ([r][wr] wc r wr)) ))))
<- ttoct_gimme (A => B) (A’ c& (B’ ccont) ccont) (ttoct/=> CTA CTB)
<- tocps+ M WM (ttoct/=> CTA CTB) _ FM

<— tocps+ N WN CTA _ FN.

The CC output is just _, and is recovered by Twelf from the WCC output ([c] [wc]
...). The first subgoal in this case (ttoct_gimme) exists to reconcile the various type
translations that will occur: We will have a translation for 2, B, and A => B which all
must agree. We therefore invoke the effectiveness lemma on the largest type (2 =>
B) and the others will be subterms. We then invoke tocps inductively to translate
the function and argument expressions (we use the “+” version here so that we need
not do equality reasoning about the type translations). The resulting typing derivation
begins with the derivations for the translation of M and N. Given these, it builds a pair
of the argument wa and return continuation. The body of the return continuation is the
outermost continuation passed to the translation of the app. We then end with a call to
the translated function value on the pair we created.

Binding

Constructs with binders require us to embed the case for variables within the subgoal.
For example, the translation of the IL 1et construct is as follows:

c_let : tocps- (let M N) (oflet WM WN) CTIN _
([c]l[wec] FM _ ([v][wv] FN v wv Cc wcC))
<- ttoct_gimme A A’ CTM
<- tocps+ M WM CTM _ FM
<- ( {x}{xof : ofv x A}
{x"}{x"0of : cofv x" A"}
{thm:tocpsv- xof CTM x'of}
tocps— (N x) (WN x xof) CTN (CC x") (FN x" x'of)).

This translation begins as before, by translating M. We then want to translate the
body, N, but it has type val -> exp, so it must be in a subgoal with a hypothetical
value variable in context. The subgoal actually introduces five hypotheses: the direct
style value x; a derivation that it is well-formed at type 2, xof; the CPS value it will
be translated to, x’; its derivation x’ of; and the case of the theorem that relates the
two. Once we have translated N and WN in this context, we build the result typing
derivation. Because we have set up the translation such that the continuation always
takes a value as an argument, we do not need a CPS-level let construct; we simply
invoke FM, which types the translation of M, and then invoke FN on the value and typing
derivation resulting from that, and finish with the outermost continuation.
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The other cases follow these same patterns or techniques already used in elaboration.
They can be found in full in Appendix A.8.6. In this formalism, the type-correctness
of the translations is manifest in the fact that they translate typing derivations. The
termination of the translations and their definedness for all well-typed inputs comes
from the Twelf totality assertions. D

4.7 Closure conversion

After converting to the CPS language, the code is at a fairly low level. Each continu-
ation (A) body is a sequence of primitive operations on values, ending with a call to
some other continuation (or a halt). However, in order to implement the semantics
not by substitution but with environments (which is much more efficient), we need to
make the creation of closures explicit. After doing this, every continuation body will be
closed code, and so we can hoist them out to the topmost level and give them global
names. I do not formalize this hoisting process, but its implementation is described in
Section 5.4.8. Therefore the closure conversion translation will be the last formalized
step of compilation before I shift focus to the actual implementation in the next chapter.

To perform closure conversion, we will define a variant of the CPS language that
changes the typing rule for Az.c to insist that ¢ have no modal or valid variables in scope
other than z. We will also modify the go construct, which transfers control to another
world and asks it to execute a continuation. In order to represent this continuation
(which may have free variables), it will be treated as a zero-argument function and
closure converted. The go construct will the be replaced with go_cc, which takes an
address and closure to execute at the remote world.

Closure conversion here is conceptually standard: For each lambda, we will gener-
ate a record (the environment) that collects all of the free variables of the function. This
environment will be passed as an additional argument to the function, which reconsti-
tutes its free variables by projecting them from the environment. In the modal setting
this is complicated by the presence of valid hypotheses and hypotheses at worlds other
than the current world. For instance, the following (IL) function at world w has a free
variable at w;:

a:wy addrew, z:int ew; F Ay.(y + get[wy;a] z) : int D intew

To generate an environment for this function, we need to reify the remote hypothesis
as a value. Because it does not make sense here, we do this by using the at modality.
Similarly, valid hypotheses are encapsulated using the 3, modality.

A continuation of type A cont could have any set of free variables, and therefore can
have an arbitrary environment type. It is important, however, that the translation of the
CPS type A cont to a CC type is only a function of A. We achieve this by hiding the
environment type using an existential type [78, 83]. The translation of the type A cont
is thus

[A cont]oc = Fany-Qeny X (([A]cc X teny) cont)
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types = ... |«
values v = ...
| pack B,vasda.A
valid vals =
conts

gofwsvale
go_cc[w; v,] .
let ,x = unpackv inc

ko, :waddrew T'F og: g (e A (unit A ag,,) cont)ew’

0_CC
I'F go_cc[w;u,] vpew &

Lx o Aew b cxw
I'F Az.c: A contew

Lo [PL]Aew
I' - pack B,v as dJa. A : Ja.Aew

pack «

'Fv:da.Aew T, atype z:Aew b cxw
' 1let a,x = unpack v in cxw

unpack

Figure 4.24: The closure converted (CC) language, defined as a modification of the CPS
language in Figures 4.17, 4.16, 4.15, and 4.14.
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No other types are affected by closure conversion, so the translation [-] is pointwise
there.

The CC language is given in Figure 4.24 as a modification of the CPS language. We
add type variables and existential types to support the translation of the continuation
type. We remove go and replace it with go_cc; its argument is a closure-converted
unit cont. Finally, the typing rule for A requires it to be closed. This makes the property
of the translation producing proper closures a matter of typing.

The translation of the program syntax is as follows. We only translate A values, call
and go expressions; every other construct is translated in a pointwise fashion. The call
construct is a good starting point because it shows how closures are used:

[call vf(vy)]ce = unpack [vf]cec as (Qeny, p) in
lete=fstpin
let f =sndpin
call f([vs]ce,e)

We start by unpacking the closure, to get the environment type and the pair value.
Its tirst component is the environment and the second is the function; we project these
out. We then call the function with a pair of arguments: the translated argument and
the extracted environment.

The go construct is translated by handing the work off to the case for A. It is as
follows:

[go[W;valclec = go-cc[w, [va]cc] [Ay-clec

We assume the variable y to be fresh; it has type unit and is unused.
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The translation of continuations is the crux of closure conversion:!

[Az.c]lec = pack (Buy, (Ve Ap.C'))
as Feny-Aeny N (([A] cc A Qeny) cont)

where. ..

d = letx=#2pin
lete=+#1pin
leta FV; = me in
leta FV,, = m,e in
lets FSV; = m,,1€ in
lets FSV,, = m,1me in
[cleo

Uew = (held FVy, ..., held FV,,

sham w.FSV;, ..., sham w.FSV,,)

Buw = [FVTi]ecat FVW; A ... A [FVT,]eo at FVW,A
B.FSVTL A ... AB,FSVT,,

n = Number of free modal variables in c.
FV; = The i*" free modal variable of c.
FVT; = The type of the i*" free modal variable of c.
FVW,; = The world of the i*" free modal variable of c.

m = Number of free valid variables in c.
FSV, The i*® free valid variable of c.
FSVT; = The type of the i"" free valid variable of c,
parameterized by w.

The continuation body ¢’ begins by projecting from its pair argument the real argu-
ment = and the environment e. It then extracts each of the free variables in sequence;
first the free modal variables (x:Aew’) and then the free valid variables (u ~ w.A). The
modal variables are encapsulated by the at modality so we use 1eta to bind them; the
valid variables by 3 and so we use lets to bind those. The type of the environment
reflects this representation; it is an iterated conjunction of A; at w; and then ©GwA;.

An interesting observation is how the process of closure conversion exercises the
expressiveness of the programming language. In order to do it, we must be able to
encapsulate any kind of dynamic hypothesis into a value in order to store it in the en-
vironment, and then restore that hypothesis into the context within the body of the
closure. This is a kind of completeness criterion akin to the identity property for se-
quent calculi [106]. At the source level it means that any piece of code can be hoisted
out of its context by abstracting over its free variables, an activity that is common when

To simplify the presentation we assume derived forms for iterated products, where (v1,vs,...,v,) is
(v1, {v2, (..., v,))), and m; is a projection of the i component.
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programming. In fact, during the development of this work, we originally omitted the
at connective and used a less precise version of the £ connective. Our inability to do
closure conversion was what alerted us to their expressiveness (and necessity!).

The static correctness of closure conversion is stated in the familiar way:

Theorem 47 (Functionality of CC type translation)
[A]cc is defined and unique for all well-formed A

Theorem 48 (Static correctness of value closure conversion)
If D:T'Fv:Aew (inthe CPSlanguage)

then [v]coy =0’ (for some ')
and [I']F v :[A]ccew (in the CC language)

Theorem 49 (Static correctness of valid value closure conversion)
If Du:TkFs~wA (inthe CPSlanguage)

then [s]ces =& (for some s')
and [[]F s ~w.[A]cc (inthe CC language)

Theorem 50 (Static correctness of expression closure conversion)
If D:TFcxw (inthe CPSlanguage)
then [c]ec = ¢ (for some )
and [I']Fd*w  (inthe CC language)

The typing condition on A in the CC language ensures that the output is indeed
closure-converted. Each of these theorems is an easy induction. For go, we appeal im-
mediately to induction on Ay.c; this is well-founded because we consider the induction
metric to be lexicographic in the number of occurrences of go and then the size of the
term. For call, after applying induction it is a simple matter of observing that the
unpack, projections, and call are well-typed.

In the case for Az.c, we have [I'], 2:[A]ccew F [¢]cc *w by induction hypothesis. We
then strengthen this to FV,FSV, z:[A]ccew F [c]cc xw where FV and FSV are the sets of
actually occurring modal and valid variables. In the translation, we discharge each of
these hypotheses by the series of 1ets and leta bindings wrapping the translated c,
leaving us with only the hypothesis p:[A]cc A B..., representing the argument. This meets
the typing condition for closed lambdas. It is easy to see that v,,, : B.,, and therefore that
the pack is well-formed. o

As usual, the formal statement and proof of the type correctness of closure conver-
sion is carried out in Twelf. The reader should note that this proof is the least similar
to the hypothetical paper version, because we encode an essentially different closure
conversion algorithm and introduce a special syntactic form for the representation of
closures. This is to keep the complexity of the proof manageable while still getting at its
essence; it is nonetheless the largest Twelf proof in this project. I describe the technique
in the next section.
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4,71 Closure conversion in Twelf
Higher order abstract syntax

Most Twelf encodings use the technique of higher order abstract syntax (HOAS) [108] to
represent binders in an object language using the binding structure of LFE. This technique
has many advantages, such as often getting object language mechanisms and metathe-
ory related to binding (such as substitution and its well-behavedness) “for free.”

Sometimes the object language’s notion of binding or substitution does not coincide
with LF’s. For example, in Section 3.4 we had a higher-order substitution operation for
falsehood variables that had to be described explicitly and for which we had to prove a
substitution theorem. This is seldom any trouble because substitution theorems are gen-
erally easy to prove. It can also be the case that we place additional restrictions on the
occurrence of variables. For example, to express linear logic [46] we can use LF’s bind-
ing structure to encode variables but also impose an additional restriction (enforced via
a judgment) that the appearance of these variables follow the rules of linear logic [24].
We define a relation

linear : (val —-> exp) —-> type.
that takes an expression z.e with one free variable and insists that the variable is used
linearly within that expression. In the well-formedness judgment for terms, we require
for each linear variable bound that it occurs linearly within the body. For example, the
case for functions might be

oflam : ofv (lam ([x:val]l] M x)) (A -0 B)

<- ({x:val} ofv x A —>
of (M x) B)
<- linear M.
We then need to prove that operations like substitution preserve linearity, but these are
straightforward properties.

We can sometimes encounter trouble with HOAS encodings because of the struc-
tured way in which we interact with the context in Twelf. For these, we can always
resort to a first-order representation where contexts are represented explicitly, but then
it becomes very tedious to manipulate terms and prove metatheory—at this level of
detail, many things that we take for granted (such as the commutation of bindings,
weakening, equality reasoning, etc.) become a substantial fraction of the work. (Fortu-
nately, it is possible to convert to explicit representations of various degrees only for a
local portion of a proof [66, 67].) We wish to avoid this as much as possible.

The heart of closure conversion is computing the free variable set of a function. This
operation is easy to define on paper but difficult when using a HOAS representation in
Twelf because we have no easy way of identifying those terms that are actually vari-
ables. In order to implement closure conversion without resorting to explicit contexts,
we instead redefine the algorithm so that it does not need to compute free variable sets.
We do this by orienting closure conversion not around lambdas themselves but around
the sites that bind variables. The resulting algorithm is not one that we would want to
use in a compiler (its performance is quadratic in the size of the term), but it produces
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the same output. This technique is due to Karl Crary.

Closure converted language

We begin by defining the CC language in Twelf. We have

ccexp : type.
ccval : type.
ccvval : type.

and reuse ctyp from CPS for CC types. Most of the syntax of the language is the same
as in CPS, however, we modify the go construct and replace A with a closure value:
ccgo : world —-> ccval —-> ccval —> ccexp.
ccclosure : (ccval —-> ccval —-> ccexp) -> ccval -> ccval.
The ccclosure construct encapsulates the idiomatic way in which we construct clo-
sures in the previous section; the closure

pack B, (U, Ap.let x = #1 pinlete = #2pinc)
as Ja.a A ((A A «) cont)

is instead represented as
closure z, e.c with v,

where z and e are bound within c. We regard the closure as having type A cont. This
means that the type translation from the CPS language to the CC language is the iden-
tity, which saves us some work in this proof.

The typing conditions for the language are interesting, because they ensure that clo-
sures are indeed closed. Rather than put a condition on the typing rule for ccclosure
(it is “too late” to do so) we instead put a condition on each variable binding site in the
language. This is similar to the 1inear judgment in the example above:

frozen : (ccval -> ccexp) —-> type.

vfrozen : (ccval -> ccval) —-> type.
An expression with a free variable z.c is frozen if + does not appear within the body of a
ccclosure. It may appear anywhere else, including the environment part of a closure.
It is easy to specify this in Twelf; the case for closures is:

vf/closure : vfrozen ([x] ccclosure ([a][e] BOD a e) (ENV x))

<- vfrozen ENV.

The variable x is the variable in question. Because the existential variable ENV is applied
to it, it may appear there (but must be recursively frozen). However, BOD is not applied
to x and therefore x cannot occur in it. A variable is also frozen within any expression
or value if it does not occur at all; this will later allow us to create environments that
contain only the free variables and no others:

vf/closed : vfrozen ([x] V).

We use the frozen family of judgments as a well-formedness condition for every
binder. For example, the typing rule for the first projection operation is
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cco_fst : ccofv V (A c& B) W —>
({vi{ov : ccofv v A W} ccof (C v) W) —>
frozen C —>
ccof (ccfst V C) W.
We also have relations for the frozenness of modal variables within valid values, and
for the frozenness of valid variables within values, expressions, and valid values.
During translation of the CPS cfst to the CC ccfst, we will first recursively trans-
late the body, which may contain clams that become ccclosures. Since cfst binds
a variable, we then crawl over the term to make sure it doesn’t appear in any closures;
we do this by modifying any closure where it does to store the variable in its environ-
ment and project it within the body. We extract from this traversal a derivation of the
variable’s frozenness, which we use to construct the well-typedness of the ccfst.
We therefore define a function that freezes a variable within an expression (and
value, and valid value):

freeze : {N : ccval —-> ccexp}
{N’ : ccval —-> ccexp}
{F : frozen N’}
type.
$mode freeze +N -N’ -F.
vireeze : {N : ccval —> ccval}
{N" : ccval —-> ccval}
{F : virozen N’}
type.

tmode vfreeze +N -N’ -F.
It takes an expression with a free variable, and returns a new expression (with a free
variable) and a derivation of its frozenness. There are two interesting cases. The first is
when the variable does not occur; we then do nothing;:
fz/closed : vfreeze ([v] V) ([v] V) vf/closed.
This is important so that we do not put all bound variables in every environment. We
place this case first in the logic program so that we always prefer it over the others? The
other case is where we reach a closure:
fz/closure
vireeze ([x:ccval] ccclosure
([a:ccval] [e:ccval] BOD a e x) (ENV x))
([x] ccclosure
([a:ccval] [e:ccval]
ccfst e [exh:ccval]
ccsnd e [envtail:ccvall]
ccleta exh [ex:ccval]
BOD’ a envtail ex)

Interestingly, however, the metatheorem holds for any order of the clauses, so we know that a whole

range of strategies are sound, from the most conservative (include every bound variable) to the one that
logic search returns first (include only the actually occurring variables).
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(ccpair (ccheld x) (ENV’ x)))
(vi/closure (vf/pair (vf/held vf/var) FENV))
<- ({a:ccval}{e:ccval}
freeze ([x] BOD a e xX) ([x] BOD’ a e x) _)
<—- vfreeze ENV ENV’ FENV.

To freeze a variable x within a closure, we first freeze it recursively within the en-
vironment part, where it is allowed to appear as usual. We then recursively freeze it
within the body—it may appear there as well (inside nested closures). Given the trans-
lated body and environment, we then construct a new closure whose body is closed
with respect to x. We construct a new environment, which is the pair of x and the old
(translated) environment. The variable x is held because it may be typed at another
world (to freeze a valid variable, we use the shamrock modality). The body of the clo-
sure takes an argument (which we leave untouched) and the environment, which will
now have held x as its first component. Inside the body we project out this value,
bind it with leta, and pass it with the argument and the tail of the environment to the
translated body. In this way, we incrementally build up the closure’s environment for
each variable binding we encounter during translation.

To CPS convert the program, we will convert each lambda to a closure with an empty
environment, and perform the freezing procedure for each binder we see. This transla-
tion will be given on typing derivations as usual, so we will first need a number of easy
lemmas about the well-behavedness of freezing.

Lemmas

The first family of lemmas state that freezing preserves the closedness of a term:

permaclosed
{FF : {v:ccval} freeze ([x] N x) ([x] N’ v x) (Z v)}
{E : {v} {x} ccexp-egqg (N’ x) (N’ v x)}
type.

smode permaclosed +F -E.

This lemma states that if, in some context where there is a bound variable v, we
freeze x.N (which does not mention v) to get x.N’, that N’ does not mention v either.
We state this by returning an equality between N’ and an N” where N” can not mention
v. Unfortunately we need many versions of this lemma: n * f where n is the number
of kinds of variables that might be bound (two: valid or mobile), and f is the number
of freezing operations we have (six: n times the number of syntactic classes, which is
three). This combinatoric explosion is what accounts for most of the bulk of this proof,
even though the lemmas are quite easy. (Polymorphism or automatic theorem proving
would help reduce the repetition, if they were to be implemented in Twelf.)

This lemma is used to prove another, that freezing preserves the frozenness of a term:

permafrost
{ZN : {v:ccval} frozen ([y] N v y)}
{FN : {y:ccval} freeze ([Vv] N v y) ([v] N v y) (F y)}
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{ZN": {v:ccval} frozen ([y] N’ v y)}
type.

smode permafrost +ZN +FN -ZN’.

Again we need 12 lemmas of this form. We prove that if we have a term frozen with
respect to the variable y, and we freeze some other variable y within it, then the term is
still frozen with respect to y.

Next, we prove that freezing preserves well-formedness of expressions (and values,
and valid values):

freeze/ok : {WN : {x}{xok:ccofv x A W} ccof (N x) W'}
{D : freeze N N’ F}
{WN’" : {x}{xok:ccofv x A W} ccof (N’ x) W'}
type.

$mode freeze/ok +WN +D -WN’.

This lemma is simple: If we have a well formed expression with a free variable, and
freeze it, then the result is also well-formed. Finally, we have an effectiveness lemma
for each of the freezing procedures:

freeze-gimme : {N : ccval -> ccexp} {Z : freeze N N’ F} type.

Translation

We can now define the translation on typing derivations. Because the translation on
types is the identity, it simply takes a CPS typing derivation and returns a CC typing
derivation at the same type.

cc : {D : cof M W}
{D" : ccof M’" W}
type.

$mode cc +D -D’.

ccv : {D : cofv V. A W}
{D" : ccofv V/ A W}
type.

%$mode ccv +D -D’.

To translate a binder like cfst,

— : cc (co_fst WV WN) (cco_£fst WV’ WN’'' F)
<- ccv WV wv’

<- ({x}{wx}{x"}{wx" : ccofv x’ A W}{thm : ccv wx wx’'}
cc (WN x wx) (WN’ x" wx'))
<- freeze-gimme M’ (2 : freeze _ _ F)

<- freeze/ok WN’ Z WN'’.
we translate the values and body recursively, getting derivations that they are well-
typed, Wv’ and WN’. We then use the effectiveness of freeze to see that we can freeze
the bound variable within the body. Using freeze/ok we know that this frozen body
is also well-typed, so we reassemble the £st and we are done.
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When we encounter a lambda, we translate it to a closure with an empty environ-
ment:

— : ccv (cov_lam [x][wx] WM x wx) (ccov_closure ccov_unit
([x] [x0of] [e] [eof] WM'' x xof)
([e] f/closed)
([x] FwrtBOD))
<- ({x}{wx}{x"}{wx" : ccofv x’ A W}{thm : ccv wx wx'}
cc (WM x wx) (WM’ x' wx’ : ccof (M' x’') W))
<- freeze-gimme M’ (Z : freeze _ _ FwrtBOD)

<- freeze/ok WM’ Z WM''.
For a closure to be well-formed (constant ccov_closure) its environment must be
well-formed, the body must be well-formed assuming a well-typed argument and en-
vironment, and the body must be frozen with respect to its environment and argument.
These are easy to establish because at this point the environment is empty (unit) and
unused in the body.

Finally, we translate the go construct to its closure-converted counterpart. In the last
section we took the shortcut of recursing on Ay.c where y is an unused variable of type
unit. If we did this here we would need a more complex induction metric because clam

([y] C) is not a subterm of cgo W V C. Instead, we build in the case for lambdas
above, specialized to this use:
- : cc (co_go WA WC) (cco_go WA’ (ccov_closure ccov_unit
([x][xof][e][eof] WC")
([x] f/closed)
([x] f£/closed)))
<— ccv WA WA’
<— cc WC (WC" : ccof M" W).
Here, building the closure is easier because neither the argument nor environment are
used within the body.

The rest of the cases follow the same basic pattern, and we can then verify that the
relations are total, giving us the desired result. The full proof (which is lengthy mostly
because of the lemmas) appears in Appendix A.8.7. o

4.8 Conclusion

In this chapter I have presented an idealization of the first few phases of typed compila-
tion for a modally-typed programming language. We began with the external language
and eliminated derived forms by elaborating to a simpler internal language. We then
converted to a continuation passing style, which sequences primitive operations and
represents the stack behavior of function calls explicitly. Finally, we performed closure
conversion to allow us to represent lexically-scoped, nested functions.

We formalized each of these languages in Twelf, as well as the translations between
them, and proved the static correctness of those translations. For the internal language
and CPS languages we gave dynamic semantics and proved that the type system is
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sound. It would be possible to continue further, but as we get deeper into compilation,
the languages and algorithms become more difficult to express (such as we found for
closure conversion) and less like the implementation we will ultimately use, leading to
diminishing intellectual returns on formalization.

Therefore, we now turn our focus to the actual implementation of ML5, which is the
subject of the next chapter.
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Chapter 5

MLS5 and its implementation

MLS5 is a programming language for distributed computing [88], based on the modal
logics presented in Chapter 3. It is an integration of those primitive constructs into a full-
fledged ML-style programming language. Because the language constructs are derived
from a propositions-as-types view of logic, they integrate cleanly with ML (which is
itself based on a compatible interpretation of propositional logic).

The ML5 implementation is based on the compilation strategy studied in Chapter 4.
It type-checks and translates an ML5 source program into low-level code for each of the
hosts involved in a computation, and provides a substrate on which that code can be
run. Currently, the implementation is specialized to web programming, a particular ap-
plication of distributed computing where there are exactly two hosts: the web browser
and the web server. With only some small changes to the runtime it could be extended
to networks of arbitrary size. Therefore, I will discuss the language in its full generality.

In the implementation we are concerned with the usability of the language and with
practical considerations of running it on real computers and networks. This will bring
up some issues that we have not yet encountered: type and validity inference in the
source language, network signatures, exceptions, optimizations to produce more effi-
cient code, the runtime system, and marshaling. These will make the implementation
substantially more complex than the idealized compiler from the previous chapter. For
this reason the argument for its correctness is informal, and the descriptions of the trans-
lations in this chapter are less rigorous. On the other hand, I evaluate the implementa-
tion by building applications in it; these are described in Chapter 6.

Finally, this compiler for an ML-like language is the seventh that I have worked on
or written. Writing similar programs over and over encourages experimentation, to
counter problems experienced in previous iterations and to reduce monotony. For this
compiler (particularly in its later phases) I have experimented with ML programming
techniques for the development of type-directed compilers. Although these are not
specific to the modal setting, I nonetheless spend some time explaining them because I
believe them to be worthwhile techniques.

This chapter is organized as follows. I begin by describing the ML5 language by ex-
ample, using web programming as the application domain (Section 5.1). I then broadly
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describe the compiler’s architecture and the marshaling strategy, since it has a substan-
tial impact on the way the compiler is designed (Section 5.2.1). After this, I present the
implementation following the route that code takes through the compiler. This starts
with the front-end (Section 5.3), which comprises the parser, elaborator, and internal
language. We then convert to the CPS language (Section 5.4.2). This language has an
interesting implementation (Section 5.4.1) and interface for writing type-directed trans-
formations (Section 5.4.3). It is also where most of the relevant work of the compiler
takes place, from type representation (Section 5.4.5) to closure conversion (Section 5.4.6)
and hoisting (Section 5.4.8) to optimizations (Section 5.4.4). Finally, we generate code
for the hosts involved in the computation (Section 5.4.9). The code is supported by
a runtime system for the client (Section 5.5.3) and a web server and execution engine
(Section 5.5.1) for the server. These parts communicate using a marshaled data format
(Section 5.5.4). I summarize in Section 5.6 before presenting some of the applications in
the following chapter.

51 ML5

MLS5 closely resembles Standard ML [77] in syntax and semantics. Its type system is, of
course, based upon the modal and validity typing judgments introduced in Chapter 3.
For simplicity, I do not include a module system. I believe that the modal type theory is
compatible and orthogonal. To ensure that the implementation does not abuse the fact
that there are no modules, I support abstract types via the network signature mecha-
nism. This gives a straightforward path to support for separate compilation [129, 130]
and suggests how modules could be integrated.

Essentially all the rest of Standard ML is supported, from mutually-recursive func-
tions to pattern matching, datatypes, extensible types and exceptions. I have also made
minor changes to excise warts or add incidental features, as is the prerogative of the
auteur.

MLS5 is implemented via elaboration, so to give a semantics at any level of formality
requires introducing the intermediate language. Rather than jump into the details, I
start with an informal tour of the external language by example. This includes showing
what happens when a program is compiled and run. After that, I begin describing
the implementation, which includes a more formal account of ML5’s type system via
elaboration.

5.1.1 Hello, version!

Let us begin with an example program before touring the language systematically.
unit
import "std.mlh"

extern bytecode world server
extern val version : unit -> string @ server
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extern val alert : string -> unit @ home
extern val server : server addr @ home

fun showversion () =
let val s = from server
get version ()
in
alert [Server’s version is: [s]]
end

do showversion ()

end

Every ML5 program is wrapped in the syntax unit...end to delineate it as a com-
pilation unit. Only one compilation unit is currently supported. The body of a compi-
lation unit is a series of declarations. We begin by importing the standard header file
that includes a number of common declarations. This includes declarations of the 1ist,
order, and option types, as well as primitive operations such as integer math, access
to arrays, strings, and references, etc.

We then describe what we need to know about the network by using extern dec-
larations; this is the network signature. First, we declare a world (host) called server.
When we attempt to run the program, there must be a host that actually exists called
server or the program will not be able to run. It will be the runtime system’s respon-
sibility to ensure this and to resolve the name “server” to a particular machine. The
keyword bytecode indicates the worldkind of the world, which tells us what kind of
low-level code it expects. The worldkind bytecode is a simple interpreted language
that runs within the ML5 web server (Section 5.5.1); the other available worldkind is
javascript for producing JavaScript [32] to run in a web browser. The set of avail-
able worldkinds is only limited by what code generators are actually available in the
compiler, and otherwise has no meaning in the language’s semantics.

There must be at least one world in order for the program to mean anything; this
world, where the program begins execution, is called home and is provided in the initial
environment. For web programming, this is the web client (web browser) and so it is a
javascript world.

Once we have declared the existence of worlds we can declare the existence of re-
sources at those worlds. (It is also possible to declare globally available resources and
abstract types. These will be discussed in Section 5.1.3.) The extern val declaration
asserts the existence of a value with the specified type and world, and binds an ML5
variable to it. The value’s name is assumed to be the same as the ML5 identifier, unless
the long syntax is used:

extern val v : string -> unit @ server = version
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(Here version is a label indicating which resource we are making reference to, and v
is the ML5 variable bound.) If these resources do not actually exist, then the program
will not be able to run; it is the responsibility of the runtime system to resolve them.

We declare that there is a function on the server that returns its version, and that
there is a function on the client that displays an alert message to the user. We also declare
that on the client we have the address of the server. The namespace for worlds, types,
and values are distinct, so the convention is to also call this server. To be clear, we
have imported a local resource whose label is server and bound it to an ML5 variable
called server;itis an address for the world also called server.

Now that we have described what we require of the network, we can write code
using those resources. We define a function showversion that displays the server’s
version on the client. The from address get expression construct is the get construct
from Lambda 5. Here server is the address of the world we wish to contact, and the
expression is a call to the version function that exists on the server. We bind the result
to a variable at home called s. The square brackets are ML5’s alternative string literal
syntax. As an ML5 expression, square brackets delimit a string; within a string, they
delimit an ML5 expression which must have type string. These brackets properly
nest, so here we build up a string containing the value of s. We pass this to alert
which will display it on the client. The do declaration simply evaluates an expression
and ignores the result; here we use it to invoke the function on the client to start the
program.

Compiling and running a program

The ML5 compiler is called ML5/pgh. We use it to generate the JavaScript and server-
side code that implements our application. Supposing the code above is in the file
tests/example.ml5, we compile it with

./ml5pgh tests/example.ml5
which produces the files example_home. js and example_server.b5 in the tests/
directory. The first is the JavaScript code particular to the example; it will be combined
with the JavaScript runtime system common to every program (Section 5.5.3) to run on
the client’s web browser. The second file is the server-side code, which is a type-erased
version of the lowest level intermediate language of the compiler (Section 5.4.9).

To run this application, we first ensure that the Server 5 web server (Section 5.5.1) is
running on our host (tom7 . org in this example) and configured to find applications in
the tests/ directory. We then visit a URL like

http://tom7.0rg:7777/5/example

in a web browser. (tom7. org is the internet host running Server 5; 7777 is the network
port, and example is the name of the application to launch.) When this URL is visited,
the server launches a new instance of the example program and gives it a fresh session
identifier. The instance contains a parsed version of the server code, a thread queue for
the server (which begins empty), for example. It then sends the common JavaScript run-
time to the client along with the session identifier and the code in example_home. js,
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inside of a tiny stub HTML page. The client runtime creates a network connection with
the server that it uses to exchange data with it, and begins executing the application
code. For this example, the code calls back to the server and causes it to run some code
that calls the version resource. The server code then calls to the client and causes it to
run code that uses the alert resource to display the version string.

5.1.2 Type and validity inference

MLS5 has two kinds of bindings for values: modal (z:Aew) and valid (u~w.A). An im-
portant feature of ML5 is type and validity inference, which enables the programmer
to syntactically omit types while still enjoying the benefits of static type-checking. Like
Standard ML, ML5 infers simple types for local variables (such as function arguments)
and polymorphic types for declarations (such as val and fun). In addition, ML5 infers
worlds for these; if the world is unconstrained, then it automatically produces a valid
declaration.

For example, the definition of the standard map function over lists is as follows:

fun map £ nil = nil

| map £ (h :: t) = f h :: map £ t

Like in Standard ML, the function has a polymorphic type, so it can be applied to
any type of list. Because the function does not access any local resources (in fact, it is
closed) ML5 also allows it to be valid. This means that it can be used at any world:

(x .. *)

val 1 = from server

get map (fn x => x + 1) (0 :: 1 :: nil)

World inference integrates cleanly into a standard Hindley-Milner approach to type
inference, using the same mechanisms. Validity inference is then analogous to polymor-
phic generalization. The implementation of these is discussed during the description of
elaboration (Section 5.3.3).

As is standard, a binding’s right-hand side must be a value in order for it to be
polymorphically generalized or made valid. The programmer can also bind the result
of an expression in the validity context by using put:

let
put message = "hello, " ~ "world"
in
from server
get display message
end
As it did in our lambda calculi, put requires its argument to be of mobile type.
In addition to validity inference and put, there are a few other ways that valid bind-
ings can be produced. One of these is the network signature, described next, and others
will be mentioned as they are encountered.
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5.1.3 Interacting with the environment

Let’s extend our example to make use of more interesting local resources, which will
exercise the network signature mechanism.

Network signatures and the DOM

We saw how we could declare worlds and import simple resources from them. In the
domain of web programming we know the set of worlds (the server which runs byte-
code and home, the client, which runs JavaScript). These worlds are declared for us in
the standard header, along with their addresses:

extern bytecode world server
extern javascript world home

extern val server = server addr
extern val home “ home addr

This means that we do not need to declare the worlds and addresses as we did in the
above example (although it does not hurt). The addresses that we import in this exam-
ple are global resources (indicated by the ~ character to mimic the validity judgment
~); the valid variable server is an address that can be used at any world. This is use-
ful because it allows us to write code that access the server, and that can be run in any
world because any world has the server’s address available.

ML5/pgh also provides some useful libraries that allow access to local resources.
An important one is the interface to the web browser’s Document Object Model [60]—
abbreviated DOM—which is the way of programmatically manipulating the current
web page. The DOM is the abstract syntax of the web page, represented as a hierarchical
tree of (optionally named) nodes. For example, Figure 5.1 shows HTML source code
and a (simplified) DOM tree for it. To define an interface to the DOM, we declare the
existence of an abstract type of nodes:

extern type dom.node = lc_domnode

This binds the ML5 identifier dom.node to an abstract type, imported from the envi-
ronment. Here we use the long form where we name the label of the type we are im-
porting, because labels (eventually compiled to JavaScript identifiers) are not allowed
to contain periods. Because we represent types at runtime for marshaling purposes
(Sections 5.2.1, 5.4.5, 5.5.4) this label will also denote a global resource that is the type’s
representation.

By importing worlds, types, and values with extern declarations, the compilation
unit we write is like a functor whose argument signature is the set of declarations. How-
ever, unlike functor arguments these are definite references [54, 129, 130]; they refer to
specific resources by label rather than to whatever argument happens to be passed to
the functor when it is instantiated.

Having declared the type, we can now import functions that permit access to DOM
nodes, for example:
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<html>
<body>
<p>Please enter your name:

#document

<input type="text" name="nom" /> HTML
<input type="submit" value="go" />
</p> / \
</body> HEAD BODY
</html>

/

P

AN

Please enter
your name:

Figure 5.1: An example HTML document and its Document Object Model tree. There
are two kinds of nodes, elements and text nodes. Elements may have attributes (such
as for the INPUT nodes) and children. Text nodes are shown here with a double outline;
most consist only of whitespace. The DOM is an abstract representation, correcting for
syntactic and semantic errors in the input (such as the missing <HEAD> in this docu-

ment).
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extern val dom.getbyid
string -> dom.node @ home = lc_document_getelementbyid
extern val dom.getstring

dom.node * string -> string @ home = lc_domgetob]j
extern val dom.setstring
dom.node * string * string —-> unit @ home = lc_domsetobj

Each of these is supported by a small function in the runtime system that imple-
ments its behavior, because these are actually member method calls on nodes. The first
retrieves a DOM node by its name, given as a string. The dom. get string function al-
lows us to retrieve a property of a node, named by a string and whose value is a string.
(Unfortunately, many things in JavaScript are represented by strings. A more structured
interface to the DOM would be desirable, but it is outside the scope of this thesis.) For
example, we can change the contents of a form field (<input> element) named abox
on the page:

val b = dom.getbyid [abox]
do dom.setstring (b, [value], [hello])

In order for us to interact with page elements they must already exist in the page;
Server 5 provides us with a document that has one element called page. We can begin
the application by creating elements within the page. A convenient way to do this is
to set the innerHTML property, which renders HTML into a DOM tree. For example,
this program creates a page with an input box and then displays its contents in an alert
message:

unit
import "std.mlh"
import "dom.mlh"

do dom.setstring
(dom.getbyid [pagel,
[innerHTML],
[<input id="abox"
value="hello, world" />])

val b = dom.getbyid [abox]
do alert (dom.getstring (b, [value]))

end
The header file "dom.m1h" contains the extern declarations above and others for

manipulating the DOM.
Say

To make our application interactive, we can attach handlers to DOM elements that ex-
ecute code when events occur. For example, we can create a span of text that reacts to
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mouse click events:
(*x .. %)
do dom.setstring
(dom.getbyid [pagel,
[innerHTML],
[<span onClick="alert (‘clicked!’);">click me</span>])

The onC1lick attribute of a DOM element is JavaScript code to be executed when the
element is clicked. In this example the JavaScript code calls the familiar alert function.
We’d prefer to use ML5 to write event handlers, so we can use the say construct to
produce JavaScript (as a string) from an ML5 expression:

(x .. *)

fun handle_click () = alert [clicked!]

do dom.setstring

(dom.getbyid [page],

[innerHTML],

[<span onClick="[say handle_click ()]1">\
click me</span>])

This program has the same behavior as the above. The body of the say construct
can be any ML5 expression (here it is a function call), and the semantics are as follows:
At the time the say is evaluated, the body is suspended and converted to a JavaScript
expression. When that JavaScript expression is evaluated (because it is used as a handler
attribute), the suspended ML5 expression is evaluated as a new thread. This allows us
to dynamically generate handlers and to modify the behavior of the page at runtime.

Some events have parameters. For example, the onKeyUp event for input boxes
indicates the key that was pressed. Because the way that events work in JavaScript is
quite irregular (Section 5.4.9), we must explicitly specify the event properties that we
want and bind them to ML5 variables. For example, we can detect when the enter key
is pressed in a form input:

do dom.setstring
(dom.getbyid [page],
[innerHTML],
[<input type="text"
onkeyup="[say { event.keyCode = c }
case c of
?\r => alert [pressed enter!]
—=> 01"
/>1)

The syntax ?x is the character constant x, and \r is the escape sequence for the
return character.

Again, it would be nice to provide a more structured interface for interactivity that
allows us to use the type system to prevent mistakes. As it stands, the programmer
can modify the string that results from a say (or simply write his own JavaScript that
corrupts the ML5 runtime environment). Given the nature of JavaScript, this would
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take a bit of work to accomplish.

The interfaces in the example applications are all built around this way of interacting
with the DOM on the client. On the server, most applications interface with a simple
database described using the network signature mechanism. However, the purpose
of MLS5 is not simply to provide glue to resources but to give an expressive language
for doing computation with them. In the next section I tour the ML-like features to
highlight the differences with Standard ML and ML5, mention how they interact with
the modal type system, and to set the stage for a discussion of their implementation.

5.1.4 ML-like features
Datatypes

MLS5 supports datatypes in a similar fashion to Standard ML. There are a few minor dif-
ferences. First, we require that datatypes be uniform [98] and enforce this syntactically.
For example, the declaration of the polymorphic list type is

infixr

datatype a list =

nil
| :: of a + list

(Also note that ML5 does not use an apostrophe to distinguish type variables, in-
stead using the same identifier conventions as the rest of the language.) Within the dec-
laration of 1ist, the identifier 1ist refers to the inductive variable of the type being
defined, rather than the constructor that will be bound. This means that it is impossible
to write non-uniform declarations such as

(» SML =)

datatype ('a, ’'b) funny =

A of ((int, bool) funny, ’'a * "a) funny
| B of ("b, "a) funny
| C

Such declarations are almost useless because it is not possible to recurse over in-
stances of them due to SML’s lack of polymorphic recursion. Ironically, because Stan-
dard ML requires equality functions to be generated for any equality type, the compiler
must generate a polymorphically recursive function to implement equality for (’a,
"b) funny! The ML5 internal language does not have any way to represent non-
uniform datatypes, nor polymorphic recursion, so we prevent them syntactically. We
also do not have equality types of any sort.

Another kind of nonuniformity comes from mutually-recursive datatypes; in ML5
we require that they share the same set of type variables, which are bound at the begin-
ning:

datatype (a, b) tl = X of a | Y of t2

and t2 Z of b | W of tl
A datatype may have no arms at all; this is the definition of the standard void

type (L):
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datatype void =

In ML5, datatype declarations are transparent, meaning that they do not define new
types like Standard ML [137]. Rather, they declare the constructors and bind type names
to primitive recursive sum types that “already exist.” This means that if the programmer
declares the same datatype (up to reordering of constructors) in two places, then those
types will be equivalent. It also makes it easier to perform optimizations, since we have
more information about the representation when its type is not abstract.

Because datatypes are transparent, constructors can safely be bound in the valid
context—they could just as well have been defined anywhere. This is important so
that different worlds can share common data structures (and particularly important for
types like opt ion and bool).

The other way that datatypes require special consideration in ML5 is with regard
to the mobile judgment. We allow a datatype to be mobile when every datatype in its
bundle of mutually-recursive types consists only of arms with mobile types. This will
be made precise when we discuss the ML5 mobile judgment in Section 5.3.2.

Extensible types

Datatypes are closed disjoint unions where all of the possibilities (tags) are known at the
time of declaration. ML5 also supports extensible types, which are an “open” alternative
to datatypes where new tags can be created dynamically. Standard ML has one such
type, exn (which also happens to be the type of exception tags). In addition to exn,
ML5 supports the creation of new extensible types. For example, this declaration makes
a new extensible type called exp:

tagtype exp
We can then declare new tags for this type:

newtag Bool of bool in exp
newtag If of exp * exp * exp in exp

They are consumed by pattern matching:

fun eval (e : exp) =
case e of
If (c, el, e2) =>
(case eval c of
Bool true => eval el
| Bool false => eval e2)
| Bool b => Bool b

Interestingly, because extensible types are abstract (as opposed to transparent, like
datatypes) any extensible type is mobile. This turns out to be required to make the
implementation of exceptions work. The reason that this is safe is that any given con-
structor (tag) for an arm of an extensible type is not necessarily available at all worlds.
For example, given the above declaration of exp and Bool, the following program is
ill-typed:
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put x = If(Bool true, Bool false, Bool true)
do from server
get case x of
Bool b => b

The put is allowed because its body has mobile type (exp). However, the case anal-
ysis is ill-typed because the constructor Bool is modally typed at the client, not the
server. It is possible, however, to declare all or some of the tags in an extensible type to
be valid. For instance, this program is well-typed:

tagtype exp

newvtag Bool of bool in exp

newvtag If of exp * exp * exp 1in exp
newtag Ref of exp ref in exp

put x = If (Bool true, Ref (ref (Bool false)), Bool false)
do from server
get case x of
Bool b => 0
| If (a, b, ¢c) =>1
| _ => 2

The newvtag declaration creates a valid tag that can be used in any world. The type
that it contains must be mobile. The reason is that the constructor gives us permission
to project out the contents of an extensible type at the world where we possess the con-
structor. If we were allowed to declare the constructor Ref to be valid in the example
above, then we would be able to pattern match against it on the server and retrieve the
reference cell that was allocated at the client. Since reference cells are local resources,
this would be unsound. Nonetheless, local resources can be safely injected into exten-
sible types, even from different worlds, because only the world that tagged the value
with a modal tag has permission (the tag) to retrieve it.

Extensible types therefore permit more flexibility than datatypes. However, because
the set of tags is not known at compile-time, the compiler provides no exhaustiveness
checking on patterns and produces less efficient code for generating tags and case-
analyzing them. Because of this, extensible types are rarely used (but see Section 5.5.1
for a nice example in the implementation of Server 5)—not nearly as much as features
lacking from MLS5, like a module system! The only reason that they are supported is that
they are an easy generalization of the exn type, which is needed for exceptions anyway.

Exceptions

ML5 provides an exception mechanism for non-local control flow just like Stan-
dard ML’s. An extensible type exn with a valid tag Match is part of the initial envi-
ronment. New tags can be created by

exception Fail of string
which is equivalent to
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newtag Fail of string in exn

(It is also possible to declare valid exceptions with vexception.) An exception is
thrown by raise and caught by handle:

( raise Fail "oops" )

handle Fail s => alert [failure: [s]]
| Match => alert [match?]

and an unmatched exception is automatically reraised. The exn type, like other ex-
tensible types, is mobile. We use this fact during compilation (Section 5.4.2). The only
interesting thing about exceptions in ML5 is their interaction with get: When we raise
an exception in the body of a get, the exceptional control flow should propagate back
to the calling world. The implementation of this happens in CPS conversion when we
translate get to go (Section 5.4.2).

Functions and pattern matching

ML5 has clausal function declarations and pattern matching similar to Standard ML.
There are some extensions and restrictions, mostly syntactic.

Non-clausal patterns are restricted to irrefutable ones. For example, the following is
not allowed

val (h :: t) = map £ 1
because of the possibility that the right-hand side may be nil. (In Standard ML, such
patterns can raise the Bind exception and have unavoidable unexhaustive match warn-
ings. They also have a suspicious interaction with polymorphic generalization, for ex-
ampleinval (h::t) = nil))

Because constructor application cannot be curried, application patterns are right-
associative:

case x of
SOME SOME y => vy

For uniformity, case analyses and clausal function declarations can be completely
empty (no cases) and thus always raise Match. This allows the abort construct of
lambda calculus for eliminating the L type to naturally fall out of a 0-ary case analysis
on a datatype with zero arms.

‘When’ patterns. MLS5 also supports a pattern that may perform computation, which
is called a when pattern. The syntax is

patterns p == ... | (e)p

where e is an expression. This expression, which must have function type, is applied to
the case object and the result is matched against the pattern p. If the expression raises
Match, then the pattern match also fails. This allows us to implement something like
views [139] in a lightweight way; for example, we can pattern match against integers as
if they are natural numbers as follows:
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fun 2 O ()
fun S 0 raise Match
| Sn=n-1

fun fact (x : int) =
case x of
(z) (O =>1
| (S) n => x * fact n

The functions z and S are destructors for natural numbers: z matches 0 and S
matches any non-zero number, with its contents being the predecessor. Note that they
raise Match in the case they do not match; z by being inexhaustive and s explicitly. In
the implementation of factorial, we use ‘when’ patterns to distinguish the two cases.

This form of pattern is particularly useful when patterns are nested and there is no
other place to perform computation. (In this example we could have called a function
on x, for instance, and pattern matched on its result.) One application of this is the
“Wizard” interface for abstract datatypes [84], which is used in the ML5/pgh compiler
(Section 5.4.1).

First-class continuations

MLS5 supports first-class continuations (also sometimes known as call/cc) as well. We
can obtain the current continuation with letcc and activate it with throw:
val x =
letcc k
in
throw 5 to k;
6
end

(This code results in 5 being bound to x.) Continuation variables are never valid
and have type A cont where A is the type of value that they expect (k has type int cont
above). The continuation type is not mobile.

Continuations are somewhat esoteric, but find several uses in ML5. First, because a
continuation is a natural representation for a thread (a computation that never returns),
we use them in the interface to some resources that start threads. For example, the
server has a very simple database oriented around string key-value pairs. Its interface
is as follows:

extern val trivialdb.read : string -> string @ server
extern val trivialdb.update : string * string —-> unit @ server
extern val trivialdb.addhook

string * unit cont -> unit @ server

The functions for reading and updating keys are straightforward. We can also regis-
ter a hook to be activated (as a new thread) when a specific key changes. We use this in
many of the applications to get asynchronous updates of events.
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Another use of continuations is for “early exits” from code. This function computes
the product of a list of integers but stops if it sees a zero:
fun product 1 =
letcc ret
in list-foldl (fn (0, _) => throw 0 to ret
| (m, n) => m * n) 1 1
end
In ML, exceptions are typically used for this purpose. This idiom is more direct and
more efficient because it does not require the creation of tags or dispatch on them.
Continuations are usually employed in these two stylized ways, but sometimes they
are useful in their generality for the creation of user interface prompts. The chat appli-
cation (Section 6.2) has such an example.

51.5 Summary

This concludes the high-level tour of ML5. The language contains other minor features
and I have not given an explanation of the constructs that are common with ML. Such
a discussion would be better suited to a programming language manual; the purpose
of this dissertation is to investigate the type theory and the mechanics of its implemen-
tation. Therefore, let us now shift gears and transition to a systematic account of the
implementation and the language’s definition via elaboration.

5.2 ML5/pgh

ML5/pgh (“ML5 of Pittsburgh”) is the compiler for ML5 and—in the absence of a for-
mal semantics for the language—its definition qua reference implementation.

We have already seen several examples, so let us jump straight into the details of the
implementation. We’ll begin with a description of the compiler’s design, particularly
with regard to data marshaling, since this will have a pervasive effect on the way we
compile programs.

5.2.1 Design concerns

To implement the get primitive, which is the centerpiece of the language, we need to
be able to transmit data between hosts on the network. Since these hosts are connected
via network sockets, which can send only bytes, we need to be able to represent any
value as bytes so that it can be transmitted. This process is known as marshaling (it is
also sometimes called “serialization” or “pickling”) and its inverse is known as unmar-
shaling.

As discussed in Chapter 2, in ML5 we allow any value to be transmitted between
worlds. For example, we can create a local reference cell and wrap it with the at modal-
ity and it becomes a portable value that can be moved to a remote world. The process
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of closure conversion does this whenever it builds an environment containing remote
resources, for example. This means that we need to be able to marshal any kind of value.

Marshaling “plain old data”—strings and integers and aggregations of them—is
easy. We will be able to marshal code easily as well, because after closure conversion
and hoisting, every piece of code can be identified by a global label that can be rep-
resented as an integer. The hosts involved in a computation will agree on this set of
labels and receive the code for them before the program begins. A problem is posed by
polymorphism, however: How do we marshal some value whose type we don’t know?
For example, consider this version of the polymorphic identity function that prints a
message on the server each time it is called:

fun (a) id (x : a) =
let in
from server get display "called id...\n";
X
end

(The syntax (a) binds a type variable so that we can use it in the ascription for x.)
After CPS and closure conversion, the value of x will need to make a round-trip to
the server and back, so we must marshal and unmarshal it. However, this function
can be called with any type a, so we don’t know ahead of time what shape the value
of x might have and therefore how to marshal it! There are two potential solutions
to this problem. The first is to use a uniform representation for values that allows us to
programmatically discover their shape at runtime. This essentially requires adding a tag
to every value. Many language implementations work this way, because there are other
reasons (garbage collection being a common one) that an implementation needs this
information at runtime. (The Grid /ML compiler [85] did this for the sake of marshaling,
as well.) The other way to do it is to have data (tags) that describe the shape of the
values, but to disembody them from the values themselves. Conceptually, these data are
the run-time representations of types. For example, we can rewrite the above function
to take another parameter:

fun (a) 1id’ (tag : a rep, x : a) = (* ... *)

The type a rep is a singleton type, containing the run-time value that represents the
type a. If we have this run-time representation around, then it can be an additional
input to the marshaling routine and guide its processing of x. Decoupling tags from
values in this way has a few advantages. First, it constrains our implementation less,
because we can use native representations for values and treat the tag data as ancillary.
Second, when the type representations are not needed (because we do not attempt to
marshal), we can eliminate them from the code. This means that the programmer does
not need to pay a performance penalty for the feature when he is not using it.

In the ML5/pgh internals we will perform a type representation transformation (Sec-
tions 5.4.5 and 5.4.7) to make sure that whenever we marshal a value, we have a repre-
sentation of that value’s type. Because the modal type system assigns both types and
worlds to values, we additionally represent worlds at run-time. This is important be-
cause it allows us to specialize the representation of some value given its world. For
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Figure 5.2: The architecture of the ML5/pgh compiler.

example, local resources like DOM handles cannot be easily marshaled, because we do
not have control over their representation. Instead, we can do the following. When ex-
ecuting at home, we represent values of type dom.node @ home as native JavaScript
DOM nodes. When executing on another world server, we represent a value of type
dom.node @ home as an integer. This integer is an index into a table of values at home.
When at home we marshal a DOM node value, we insert it in this table and send an
integer in its place. When at home we unmarshal a dom.node @ home, which is repre-
sented as an integer, we look it up in the table and return the native pointer. Anywhere
else in the network, a DOM node is represented as an integer. (This process, called desic-
cation and reconstitution, is detailed in Section 5.5.4.) To use this representation we must
know the world of a value as we marshal it; because of world polymorphism we must
therefore represent worlds as we do types.

The overall architecture of the compiler appears in Figure 5.2. The front-end (Sec-
tion 5.3) lexes, parses, and elaborates the source text into the internal language. After a
phase of optimization we convert to CPS, where most of the compiler’s work is done.
We insert the type representations and perform closure conversion, maintaining the in-
variant that every type and world variable is paired with a representation for it. We then
reify these representations into actual data. Hoisting pulls each closed piece of code out
to the top-level and gives it a global label. Code generation produces code for each of
these labels, depending on what world(s) it needs to be defined for. For each world we
output either JavaScript or Server 5 bytecode.

It is worth mentioning a few other principles that guide the implementation. First,
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it is a type-directed compiler, meaning that each of these languages (up to code gener-
ation) has (possibly implicit) type information associated with it. Second, because this
is a prototype implementation not intended for production use, not much concern has
been given to the performance of the compiler itself. Instead, an emphasis has been
placed on simple and correct code. For example, after every phase in the CPS language,
we type-check the entire program again. All transformations are done on functional
data structures. Additionally, the interface to the CPS language has been engineered to
automatically alpha-vary code to prevent bugs resulting from variable capture.

5.3 Front-end

Now let us discuss the phases of the implementation. The front-end of the compiler is
the interface with the user: It reads the source program, type checks it (providing error
messages if it is ill-formed), and produces intermediate language code that the rest of
the compiler works on.

5.3.1 Parsing

Naturally, the first step is the parser, which reads the input files and produces a data
structure representing the external language’s abstract syntax. Most parsers are quite
boring, specifying the language’s grammar in BNF and using a tool like yacc to produce
a program implementing the grammar. ML5’s parser is somewhat unusual in that it is
written with parser combinators [42, 58]. Therefore I will discuss it briefly.

Parser combinators are a way of compositionally hand-writing parsers in functional
languages. We begin by defining a type

(o, B) parser

which can be thought of as a function that parses some prefix of a § stream into an «,
returning the remainder of the stream as well. Additionally, the parser may fail. Such
parsers may be composed; for example, the sequential parser

val && : (aq, ) parser X (ag, f) parser — (a1 X aw, ) parser

successively applies the two parsers to the same stream and returns a pair of the results.
Through careful design of the names of the combinators, the program implementing the
parser resembles the grammar of the object language. For example, here is a fragment
of the ML5 parser for declarations:
fun regulardec G =
' (alt [ “VAL >> tyvars && (call G pat suchthat irrefutable) &&
‘EQUALS && call G exp
wth (fn (tv, (pat, (_, e))) => Bind(Val, tv, pat, e)),

‘WAL —-- punt "expected val declaration after VAL",
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‘TAGTYPE >> id wth Tagtype,
‘NEWTAG >> expid && opt (‘OF >> typ) && ‘IN && id
wth (fn (i, (to, (_,ty))) => Newtag (i, false, to, ty)),

(x» ... %)])

The particular meaning of the combinators is not important here; simply observe
that each case begins with a keyword token (like val or tagtype), then the rule in the
grammar for that construct, which refers to other syntactic classes as parser functions
defined above (or mutually recursive with this one). It is not difficult to give error
messages, at least for the grammar of ML5—after seeing a keyword like val, if we do
not successfully parse a val declaration, we can abort and report the current location
to the user along with a message. This is the purpose of the second line starting with
‘VAL above.

One nice thing about parsing combinators is that we have the whole power of our
general purpose programming language at our disposal. This means that we are not
constrained by the particular algorithm that our parser-generator uses. (This is par-
ticularly relevant because most real programming languages are not actually context-
free.) In the case of ML5, this allows us to properly parse fixity declarations like infix
by passing along a parsing context to each parsing function. (This is the argument G
above.) Most ML compilers instead parse a different grammar and resolve fixity after
the fact. ML5’s nested string constants are implemented with no particular trouble. We
even properly parse Standard ML’s notoriously difficult nested pattern match [79]:

fun hard 0 =
case x of

1 => 2
| 3 =>4
| hard 5 = 6

Therefore, as long as some care is given to error messages, I believe that parser com-
binators are a good way to implement grammars for ML. Performance is fine, there is no
metaprogramming or dependency on other tools, writing the code is a joy, and there is
no danger of getting “stuck” being unable to express the desired grammar in a restricted
language.

Syntactic sugar

After parsing, there is a small pass to regularize the language by eliminating some syn-
tactic sugar. For example, in the translated code

datatype bool = true | false

fun not true : bool = false
| not false = true
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we rewrite the declaration of bool to take zero type arguments, and to be applied
to zero arguments wherever it is used. Now we can treat every datatype declaration
uniformly as being polymorphic (perhaps in zero arguments). More importantly, we
rewrite the variable patterns in the argument of not to be application patterns. This
makes pattern compilation much easier because all tag dispatches will be application
patterns. We could rewrite these constructors to take “of unit” so that every con-
structor carries a type; instead we internally support a special “of --" and a corre-
sponding application pattern to permit more efficient representations of non-carrying
constructors.

5.3.2 The internal language

The next step of compilation will be to elaborate the external language program into
a more type-theoretic internal language. This includes type and world inference, the
implementation of lexical conventions, and the expansion of heavyweight features (e.g.
datatypes) into primitive type constructors. To explain elaboration we must first present
the internal language. We'll begin with a description of its types.

Types and mobility

ML5 has a richer set of types than Lambda 5 did. The major way that these interact
with the modal features is via the mobile judgment. The language of types appears in
Figure 5.3; these are the internal language types that result from elaboration of an ML5
source language. This is the target of type inference, and so polymorphism is explicit.
Like Standard ML, ML5 has prenex polymorphism, meaning that type quantifiers all
appear at the outside. We maintain this through the internal language by having two
levels of type: polytypes, which may have quantification, and monotypes which do not.

The at type, £3 and addr types are as before; A ref is a reference to a value of type A,
and A array is an array of A values. An A cont is a first-class continuation expecting a
value of type A, and « is a type variable. (Primitive types such as string and int are
bound as type variables in the initial context.) The type {¢; : A;,...} is an unordered
record with distinct named fields; the empty record is the unit type. The type [(; : A, .. ]
is an unordered sum with distinct named arms; the empty sum is the void type. Like in
ML, an arm in a sum may optionally carry no value. For example, the type of booleans
is [true : —, false : —|.

A value of type A tag, is a dynamically-generated tag for the existential type a. It
can be used to tag a value of type A or to extract such a value from the extensible type.

To support mutually recursive functions, we have the individual function type R
which is a projection from a bundle of functions [R,, . ..]. Functions may take multiple
arguments.

To support mutually recursive inductive types, we have m; (1 ag. Ao, . . . ;. A,,) which
represents n + 1 mutually-recursive types locally named ag to a,,, where the i** one
has been selected. All of the bound variables are bound within each of the arms. For
example, in the mutually recursive datatype
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worlds w = w|w
monotypes A a | {l Ayl A AL, AT
R | [Ry,. .., R,]

Acont | Aref | Aarray | Atag,
Aatw | 8,A | waddr
mi(p . Ao, .. Ay)

optional type A’

arrow R = (Ag,...,A,) — A
polytypes P 1= Vwi...w,Voy...a,.A
kinds K := Reg|Ext
['a)=K ['(w) = world
' aoky I' - w ok, I' = w ok,
I'wy world, . .., w, world, a; :: Reg, ..., a, :: Reg - A oky
'V ...w,VYag...«qp.Aokp
'+ Aoky ['(a) =Ext I'F Aoky
I' F—oky? ' F A oky: '+ Atag, oky
FI‘ROkR FFRQOkR Fl_RnOkR
FI_ROkA P"[Ro,...,Rn}OkA
F"AOkA F"AOkA FI—AOkA
' A cont oky ' Aref oky ' A array oky
I' F w ok, I', w world = A oky I'Aoky T'Fwoky
I' - w addr oky4 I' - 23,A oky ' Aat woky
i€{0,...,n}
[, s Reg, ..., ay, : Reg = Ag oky
F"AOkA
I'-A;0kqy ... T'FHA,oky [, ::Reg,...,a, :: Reg - A, oka
'k (A17~ .. ;An) — AOkR 'k 7T,L(/L Oéo.Ao,. . OénAn) OkA

Figure 5.3: Types of the ML5 internal language. Each syntactic class C' has a well-
formedness judgment okc; the rules are given in this figure because they illustrate the
binding structure of types. In the remainder of the discussion, however, we will assume
that types are well-formed for brevity.
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I', &« mobile = o mobile I' H Aat w mobile

I' - £3,A mobile I' H w addr mobile

I'EA; mobile ... T'F A, mobile [ AZ mobile (where A%’ #—)
C'EA{t: Ay, ... 0, Ay} mobile Lk [0 : A ... ¢, : A’] mobile
[' = A mobile
[' - A tag, mobile
I', oy mobile, . . ., a,, mobile = Ay mobile
[, ap mobile, . .., o, mobile - A,, mobile

I'Fmi(p ag.Ag, . .. . Ay) mobile

Figure 5.4: The mobile judgment for ML5. The context I" here contains assumptions of
the form a mobile. This context will include base types like int and string, as well as
any extensible type.

datatype top = X of bot | Y
and bot = Z of top
the type top is
To (1t Qop. [ Xt Qpot, Y 1 —, Qpor.[Z 1 (top))

and the type bot is 7 ... for the same bundle.

Because of the presence of type variables, the mobile judgment is now made relative
to a context, which is a set of type variables assumed to be mobile. Its definition ap-
pears in Figure 5.4. Some of the base types such as int and string are assumed to be
mobile in the initial context. The most significant addition to what we had in Lambda 5
is the mobility of inductive types. When checking if an inductive type is mobile, we
assume that it (and the other types in its bundle) are mobile. For example, integer lists
as produced by the following declaration are mobile:

datatype intlist = Nil | Cons of int % intlist
However, the types resulting from the following declaration are not mobile:

datatype top = X of bot | Y

and bot = Z of top —-> top
This is because all of the types in the bundle must be mobile for any projection to be
mobile, and function types (top -> top) are never mobile.

Terms

The IL term language appears in Figure 5.5. As before, we have a syntactic distinc-
tion between values and expressions. This is important because of some syntactic value
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vals v (A W) | w(A; W) | n| "string"

{0 =v1,... by =v,} | injy v | inj —

held,, v | sham w.v | roll v

fns (fl(ZL'HlAH, e uxlm:Alm) = Ml, .. ) | fsel v.n
exps M,N valuev | M (My,...,My,) | {1 =M, ... 0y, = M,}

#( M | raisey M | M handle z.N

(M;N) | let D in M | unroll M

rolly M | say ((1:A1, ..., lpn:An) M

get[w; M| N | throwy M to N | letccy x inN
tag M with N

untag M with N of(yes = x.N; |no = Ns)
primapp p(A)(M) | jointext M

injf v | injj —

sumcase M of (¢, = . Ny | ... |y, = x.Ny | o= N)
intcase M of (ny = Ny | ... | npm = Np | - = N)
integers n o1 =171 ...
decls D do M | tagtype « | newtag, = of A
valoe = M

polyval (&,d) x =
polyput (d,&) u =
polyleta (&, &) z =
polyletsham (& Cu')

extern world J w

extern type o = ¢

externval u ~ Vw.d.Va.A =/
externval z : Vid.Va.Aew =/

worldkinds J

Figure 5.5: The ML5 internal language terms. We distinguish values and expressions as
before, with the boldface version of a construct being the value form. Many constructs
take a list of arguments; we use the syntax & (for example) to denote a sequence of type
variables a.
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restrictions (for polymorphism and the body of a sham constructor). Many of the con-
structs are self-explanatory, having appeared before or having direct analogues in ML;
I will only explain the ones that are new.

Every variable x (which is bound at a polytype) is applied to a sequence of types and
worlds, since terms are assigned monotypes. The same is true for valid variables «. The
typing rules appear in Figure 5.6 along with the other rules for values. Most of these are
straightforward. There are two forms of injection into sum types, for those constructors
that carry a type and those that don’t. An inductive type m;(1...) can be unrolled one
level by selecting the i*" component and substituting all of the inductive projections for
its free type variables. The roll construct is the injection into an inductive type; for it
to be well-formed, the value must be of the unrolled type. The value for a bundle of
mutually-recursive functions, fns, is complicated only because of the mutual recursion
and multiple arguments. Each function is bound within the body of all of the functions.
The fsel value retrieves an individual function from a bundle; this is how we get a value
of arrow type that we can call.

The typing rules for expressions appear in Figure 5.7. Most of these are straightfor-
ward as well. The rule for 1et uses the typing judgment for declarations,

'-D 5T

which means that in the context I', the declaration D yields at w the new bindings in
. The rules for declarations are discussed below. The unroll expression exposes one
level of an inductive type by substituting projections from the bundle for all of the free
variables. The say construct names the event fields that it expects, and their types,
and then supplies a continuation that takes those events as a record. It can only be
run at the constant world home, which is the client web browser, although this could
be relaxed to any world whose worldkind is javascript if we supported more than
two worlds. The jointext construct is primitive string concatenation. There are also
primitives for many other operations, such as the allocation of references and arrays,
subscripting and comparing strings and other base types, integer math, comparisons,
etc.. Their typing rules are not interesting so I do not give them here. A value can be
tagged with a compatible tag; the result is some extensible type. (All extensible types
are type variables.) To deconstruct a value of extensible type, we test it against a specific
tag. If the tag matches, then we retrieve the value embedded within it and proceed along
the yes branch; if not then we get nothing and proceed along the no branch. There are
two other kinds of case analysis as well. The sumcase construct destructs a labeled
n-ary sum, by providing some subset of the labels as distinguished cases and a default
in case none of them match. Within each of the distinguished cases a variable is bound
to the carried value, unless the label is a non-carrier. We also have int case for efficient
dispatch on integers; its rule is similar except that no variable is bound.

Declarations are interesting because they introduce polymorphic and valid bindings.
The typing rules for declarations appear in Figure 5.8. The tagtype declaration binds
a new type variable whose kind is Ext. Such variables can be used to make member
tags with newtag. We have a basic val binding that evaluates an expression and binds
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="y, zvVo; ... w, Vaq...ap.Bew,I'y, I'=11 u~wVw...w,Vay...a,.B,T'y
I'F (A W) [Ys][Yal Baw U ulA, W) [V Y] [ Vsl Baw

I'Fn:intew I'F s:stringew

'vy:Ajew ... ko, : A,ew
PE{t=v1,.... b =v )} {1 Ay, s Ay bew
I'v: Bew
A:[61;A717“.,£;_7,,_’£m;14;?n] A:[glAz,,fB,,gmA:n]
I'Finj, —: Aew I'Finj’ v: Aew
T'v: Aew Iwworld-v: Aew
I'+held, v: Aatwew I'Fshamw.v:S8,Aew
I'-v: Bew
0<i<m
A=mi(pag.Ag, ... oA
B = [7r0(,u ag.Ao,..., am.Am)/aO] L [wm(,u @0- Ay y0tm Am) am]Ai

I'Frollyv: Aew

=T, fi:Ry,..., fn:Rn
F,71’111A117 Ce ,.’L'lmliAlml l_ Ml . Bl@W Rl = (Alla Ce 7A1m1) — Bl

I 2p1: A, o Ty, Apm, B My, - Brew R, = (An,- ., Aum,) — Bn
F l_ fl’lS (fl('rll:Alla Ce ,.flflleAlml) = Ml, .. ) . [Rl, ey Rn]@W

F'Fov:[Ry,...,Rylew R,=(A,...,An) — B
I'Ffselv.n: (Ay,...,A,) — Bew

Figure 5.6: Typing rules for ML5 internal language values. Each value is assigned a
monotype and world with the judgment I' - v : Aew.
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C'EM:(Ay,...,A,) - Bew
I'Fov: Aew Fl_NliAl@W Fl_NliAl@W

'+ valuev: Aew I'FM(Ny,...,Ny): Bew

CEM:{l:A,... .0 A ... Ly Aytew
I'EH#40M : Aew

' M : exnew I'EM:Aew I, x:exnewht N:Aew

I' - raises M : Aew I' = M handle z.N : Aew
I'FM:Bew I'FN:Aew I'FD ST T.I'EM:Caew
'F(M;N): Aew I'Flet Din M : Cew
C'EM:m(pag.Ag, ... g Ap)@w
I' - unroll M : [wo(,u ag.Aog,..., am.Am)/aO] . [Wm(,u ap.Ao,..., Oém.Am)/am] i @W

C'EM:{1:A,...,m:A,} contehome
't say ((1:A1, ..., 0n:Ay) M @ stringehome

I'M:w addrew T'FN:Aew T F A mobile
'k get[w; M| N : Aew

I'M:Bew I'N:Bcontew l,7:Acontewhk N:Aew

I' - throwy M to N : Aew I'+letccyzin N : Aew
'k M : stringew --- T'k M, :stringew I'FN:Atag,ew I'FM:Aew
' jointext M; ... M, : stringew I'-tag M with N : cew

'-M:aew I'EN:Atag,ew I z:Aewrk N;:Cew I'FNy:Cew
[+ untag M with N of yes = 2.N; |no = Ny : Cew

CEM:[6: AL ... 0, Allew Tk N;:Cew when A! = —
m<n 'FN:Cew [ 2:Alew F N;: Cew when A} # —

I'+ sumcase M of (¢ = a.Ny| ... | by = 2Ny | .= N): Cew

I'M:intew T'FN,:Cew TI'HN:Cew
['Fintcase M of (ny = N1 | ... |nyp= Ny |-= N):Cew

Figure 5.7: Typing rules for ML5 internal language expressions. Expressions are as-
signed a type and world with the judgment I' = M : Aew. I omit the rules for record,
roll, and inj expressions because they are the same as their value counterparts. There
are many rules for primapp depending on the primitive operation being applied; they
are all straightforward and omitted here for brevity.
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the resulting value. There is also a polyval binding that is restricted to values and that
produces a polymorphic binding. The familiar put, leta, and let sham constructs
come in this polymorphic form. (When we put an expression in the external language,
we first evaluate the expression with val and then bind the result with no polymor-
phic types or worlds using a degenerate polyval.) The extern world declaration
produces no bindings. This is because it declares the existence of a world constant, not
a variable. Within this abstract presentation of the IL, world constants are drawn from
an unspecified set of constants w, just as integers n are drawn from the set of integers
and string constants are drawn from the set of strings. However, the set of constants is
less obvious than the integers (except that we know this set contains the initial world
home). Therefore we ask the programmer to declare these constants. After checking
that the programmer does not use any constants that were undeclared, we preserve the
set of world constants just so that we can know which world constants to generate code
for (the programmer may never otherwise mention them). They will later be hoisted
out of the program to determine this set; we could just as well have done this during
elaboration. The extern type declaration does bind a variable, as do the modal and
valid versions of extern world.

5.3.3 Elaboration

Elaboration is the process of transforming the external language (EL) abstract syntax
into the internal language (IL), possibly rejecting the program with an error message if
it is ill-formed. Traditionally there are two kinds of elaboration: a declarative semantics
that relates EL programs to IL programs nondeterministically, and an implementation
of those semantics as a syntax-directed transformation with reasonable algorithmic be-
havior. I do not give a complete elaboration semantics in either form, but show some of
the interesting declarative rules and discuss how they are implemented algorithmically.

For the sake of this presentation, I will assume simplified versions of the external
language constructs and only discuss the interesting ones. For example, functions will
take a single argument with no pattern matching. I will ignore non-carrying datatype
and extensible type constructors. I will leave out explicit type variables from val and
fun declarations, since they are not necessary there.

Elaboration is based on two judgments: one for elaborating EL expressions into IL
expressions and values, and one for elaborating EL declarations into IL declarations and
new context entries. The first is written

'FFE--» M: Aew

where M is the resulting IL expression from evaluating £ and Aew is its IL type and
world. For declarations, we have

T+L--»%T'|Dy,...,D,

where I is the new elaboration context entries produced from elaborating the IL decla-
ration L at the world w and D, through D,, are the IL declarations produced.
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I'EM: Aew
F'FdoM <5 -

[ tagtype a ~» a:Ext I F newtag, v of A ~ 1:4 tag, ew

T M: Aew I', & world, @::Reg v : Aew
I'Fvalez =M ~ z:Adew T'Fpolyval (4,8)z =v ~> 2:V3.Vad.Aew

I', & world, @::Reg = A mobile T',& world, @::Reg v : Aew

' polyput (@, &) u = v ~ u~Vid.va.A

', world, @:Reg v : Aat w'ew

[' - polyleta (@,&) z = v ~ z:Vo.Va.Aew’

I', & world,

[' - polyletsham (

a:Regh v: &8, Aew
A,&)u=1v ~ u~wVo.Va.A

' externworldJw’ ~5 - I'F externtypea =/ ~> a:Reg

'+ externval u ~ wVIVa.A = ~ u~wVIVa.A

I'F externval v : V4.Va.Aew = { ~> 1:V&.Va.Aew'
Figure 5.8: Typing rules for ML5 internal language declarations. Declarations are

checked with the judgment I' = D ~% TY, indicating that they may be evaluated at
the world w and produce the new bindings I".
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In both cases, the context I' is an elaboration context, which contains IL hypotheses
and other information we need to perform the translation. This includes information
about the constructor status of identifiers, and abbreviations for type identifiers that we
expand when we encounter them. I will mention these as they are needed.

Let’s begin with the case for EL expression identifiers. We have two rules that might
apply:

[(234) =Vwi ... wp Yoy ..., Bew
Tk id --» value Z5q(A1, ... Ap, Wi, ..., W) : [%s][Ys] Bew
D(uig) = wVwy . ..wp Vg ... a,.B
T'F id --» value usg(Aq, ... An,wi, .. W) [V /5] [ Vs Bew

The external language does not have different syntax for modal and valid variables,
so an identifier id could be either one. The convention x4 gives us the IL modal variable
corresponding to an identifier; if it is bound in the context then this is a modal variable.
Since variable bindings are given polytypes, we nondeterministically apply it to any A
and w. (In the implementation, these types will actually be determined by type infer-
ence.) The convention u;4 similarly gives us the IL valid variable; if that is bound, then
we apply it to the polymorphic type and world arguments, and instantiate the world
variable at the current world. Context lookup is arranged such that if the programmer
shadows an identifier standing for one sort of variable with an identifier standing for
the other, the shadowed variable is not found by the I'(x) operation. (Otherwise, both
rules might apply.)

We can insert a variable binding with the val declaration, for example:

I'FE --s M : Aew
'Fvalid=F --»)) ziq:Adew | val 39 = M

We produce an IL val binding along with the new context entry for it. (Here A is
actually the polytype V.V.A4; that is, with no type or world variables quantified. These
empty quantifiers are omitted for syntactic brevity.) In the case that A/ is an expression,
this is our only choice. However, if M is a value then we can choose to make the binding
polymorphic or polymorphic and valid.

I, world, @::Reg = E --» value v : Aew’
['Fval id = E --»)) 234:Va.Vd.Aew’ | polyleta (d,d) xi4 = held, v

In this first case, we choose some world and type variables to make the value poly-
morphic in, and a world w’ where it will be typed. The world is unconstrained; this
allows us to (for example) declare functions “e server” and “e@ home” at the top-level
in our program without first traveling there. To accomplish the binding at this possibly
remote world, we introduce the at modality with held and immediately eliminate it
with polyleta.

We can also make a binding that is valid:

[', w world, @::Reg, W world - E --» value v : Aew

['Fvalid = F --»}, ujqa~w.Va.VJ.A | polyletsham (@, d) usq = sham w.v
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[, world, d::Reg - E --» value v : Aat w'ew

['Fletaid = E --»)) x34:Va.Vd.Aew’' | polyleta (&4, &) xiqg = v

'FE--—»M:Aatwew
['Fletaid=FE --»}) y:Aatwew, ziq:Aew’ | val y = M, polyleta () x4 = y()

', world, @::Reg = E --» value v : &3, Aew
I'F letsham id = F --»}) u3qg~wVa.VdJ. A | polyletsham (&, &) uiq = v

'-E--- M :8,Aew
['F letsham id = E --»}) y:f3, Aew, ujq~w.A | valy = M, polyletsham () usq = y()

I'-FE --svaluev: Aew’
I' Fhold E --» held, v : Aat wew

'FE--+M: Aew
['Fhold E --» let val y = M in held,, y() : Aat wew

I' wigworld = E --» value v : Aew
'+ sham id. F --» sham w;4.v : §,,,Aew

Figure 5.9: Elaboration of the at and € modalities. Each binding has a polymorphic
and monomorphic version, depending on whether the body is a value or not. In the
monomorphic version, we sequence the evaluation of the expression with val and then
make a degenerate polymorphic binding that quantifies over no type or world vari-
ables. For hold, we might be writing the value held (which allows its body to be at
another world) or the expression hold that introduces the at modality locally. The
sham constructor, on the other hand, requires its body to be a value always.

In this case, we choose polymorphic type and world variables, and a hypothetical
world w at which to check the value. If it is well-typed there, we wrap it in the &,
modality with sham and immediately eliminate it with polyletsham to create a poly-
morphic valid binding.

Although they are rarely needed (because of the powerful val declaration), we also
give the programmer access to the at and & modalities directly. The rules for these
appear in Figure 5.9.

Functions

We treat functions as a form of val declaration in order to use the same mechanism
for polymorphic generalization and validity. The only complication is therefore mutual
recursion. We expand the bundle
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fun fl(x) = E1

and (* ... x)
and fm(x) = Em
to

val bundle = (fns fl(x) = E1
and (x ... %)
and fm(x) = Em)

val f1 = fsel bundle.O

(x .. %)

val fm = fsel bundle.m
and then elaborate that. (This requires adding a syntax for mutually recursive function
values and projection to the EL abstract syntax, but not to its concrete syntax.) Because
a bundle of functions is a value, and selecting a function from a bundle is a value, these
may all be generalized and /or made valid (if possible).

The IL has both the mutually recursive fns construct and the fsel value so elabora-
tion is totally straightforward; I do not give the rules.

Types

Elaborating types is simple. The EL supports a type abbreviation mechanism,

type (a, b) t = a » b x int

For simplicity, the IL does not have such a construct; we expand them during elabo-
ration. We therefore have another form of hypothesis that can appear in the elaboration
context:

id = \a.A

where id is an external language identifier, @ are its type arguments, and A is an internal
language type. We expand such abbreviations eagerly when we encounter them.

The rules for type elaboration are given by the judgment

THT - A
For example, tuples are expanded as records with fields labeled 1...n as in SML:

TET —sp Ay - DFT, ——sr A,
Fl_Tl* *Tn——+T{1:A1,...,n:An}

Identifiers are elaborated to type variables and type applications are expanded:
[(ayq) = K
I'Fid --+7 auq
I'(id) = A1, ...,a,. BT ETy ==37 Ay -+ THT, --s7 A,
CH(T1,...,T,) id —=»7 [Y0,] -+ [A/a, | B

The phase after parsing that eliminated syntactic sugar ensured that all defined types
appear as applications (possibly to zero arguments).
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Datatypes

Datatypes are an amalgam of several type-theoretic constructs. Their elaboration is
therefore somewhat intricate. For the sake of this presentation I will give the elaboration
rule for a datatype declaration consisting of exactly two types with one type parameter
and three total constructors, i.e.

datatype (a) tl = AA of tll | BB of tl2

and t2 = CC of t21

The result of elaboration is two new type constructors t1 and t2 that take a single
argument, and valid constructors A3, BB, and CC that produce them. Constructors have
no special status in the internal language because we simply use labels (derived from
the names of the constructors) to distinguish the branches of the sum. However, during
elaboration, constructors are special because they can be used in pattern matching and
their application is treated as a value. Therefore, in the elaboration context we have
hypotheses of the form

Uiq Ctory

to inform us that the value variable u;4 is a constructor associated with the label /. We
consider such hypotheses to be shadowed by a binding for w4 or 4, so that identifiers
can lose constructor status if they are rebound. Given this, the elaboration rule for the
limited datatype form above is

[, ay::Reg, a1 ::Reg, aip:Reg Ty ——+1 Apy
I, ay::Reg, agq:Reg, auai:Reg F Tio ——»1 Ao
[, a.::Reg, gy ::Reg, api:Reg - Ty ——+1 Agy

datatype (a)tl = AAof Ty | BBof Tio v

and t2 = CCof Ty b
tl = )\Oéa.ﬂ'()(,u O[().[KAA . AH,ZBB . Alg},al.[ﬁcc . Agl]),
t2 = )\O_/a.ﬂ'l(,u OéQ.[éAA . A117€BB . Alg}, Oél.[fcc . Agl]),
UAANVOéa(An) - 7T0(M OéO-VAA  Aqy, U Alﬂ, Oél-wcc : A21])7
Upp Ctory,,,
UBBNVOéa(Am) - 7r0(,u Oéo.[gAA s Av, leg A12L Oél.wcc : Am]);
Ugg CLOryg,,
UchVOZa(Am) - 7r1(,u Oéo-[éAA s Ay, leg A12L 041-[fcc : Azl]),
Uge Ctory,,
polyletsham uy, = sham(fsel (fns(f(x) = roll (inj** 2))).0)
polyletsham ug = sham(fsel (fns(f(x) = roll (inj z))).0)
polyletsham ue; = sham(fsel (fns(f(x) = roll (inj* 2))).0)

'

A datatype is elaborated into a i« type whose bodies are labeled sums. Each of the
carried types 141, T12, T can mention the explicitly quantified type a., and the names
of each of the datatypes in the bundles (o, a1,). Because of the syntactic enforcement
of uniformity, these types do not appear in application positions. After the declaration,
however, t1 and t2 are bound as lambdas that take o, as an argument and expand to
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the p. The IL does not have a type definition mechanism so this is accomplished using
the same mechanism we use for EL type abbreviations.

Each constructor is validly bound at the arrow type for injecting into the datatype;
this is so that they can be used as if regular functions. We additionally note that they
are constructors, however, so that we can pattern match against them and treat their
applications as valuable. These bindings are supported by IL declarations that declare
the constructor functions, using the 3 modality and immediately eliminating it, as usual.
(I have elided the type annotations on the roll and inj here.)

Extensible types

Though syntactically similar, extensible types are elaborated in a completely different
way. Most of the EL constructs have direct IL analogues. For example, the elaboration
of the declaration of a new extensible type is

I' F tagtype id --»}) auq::Ext | tagtype auq
and of a new tag

o) mExt T --370 A
' newtagg of T'int --»}
r:A tag, ew,
zg:(A) = o,
Ty tagger,

newtag, 1w of A,
val z, = fsel(fns(f(y) = tag y with z).0)

The hypothesis z, tagger, is like the ctor hypothesis for datatype constructors. It
enables us to recognize the identifier z, as an extensible type constructor and associates
it with the tag value x used for matching against it.

We also have valid tags, which are a bit more interesting:

[(og) mExt T --37 A A mobile

I' - newvtagg of T'int --»Y)
r:A tag, ew,

newtag, z of A,

u~A tag,
g put u = x,
ug~(A) — o, :
polyletsham () u, = sham(fsel(fns(f(y) = tag y with u).0))
ug tagger,

Here, after generating the tag we make it valid with put. (This requires that the
type carried by the tag is mobile, which we check.) We can then declare the construc-
tor function to be valid using the standard idiom of introducing the £ modality and
immediately eliminating it.

Case analysis on extensible types expands to iterated use of the untag construct in
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the IL. For example, the rule for elaborating a case analysis on extensible types is

I'E--s M: aew

['(T) = tagger,

[zsgxo B By --» Ny Cew
I'FFEy--s Ny : Cew

case E of untag M with v of
'k T id = E; --» yes = xi4.N; : Cew
’ - = F5 | no = Ny

where we also have a similar rule for when T is a valid tag.

Network signatures

The extern family of declarations are elaborated easily, since the IL has corresponding
constructs. For a value import:

I', s, Reg, ... ,aa,:Reg T -—2p A TEW -5y w

. . !
['F externval (aj,...,a,) id : TeW = id --»}
TigVag,,...,aa,. Aew | externval ziq:Va,,,...,aa,. Aew = id’

' wworld, oy, ::Reg, ..., aa, :Reg =T --»7 A
I' - externval (aj,...,a,) id ~ (wid.T) = id" --»}}
Usq: W .V, ..., 02, A | externval ujg~w.Vay,,. .., aa, A = id’

The elaboration of types is similar. We only allow imported types to have kind Reg;
they cannot be type constructors or extensible types.

['F extern type tid = tid’ --»}) ayiq::Reg | extern type aiig = leia

Because we bind a type variable, if the same type label is imported in multiple places
those bound type variables will not be equal. This is not desirable because these im-
ports are supposed to be definite references. There are a variety of ways to remedy this,
but the right one is to implement a real separate compilation system based on mod-
ules [130]. In the current implementation, the programmer can easily avoid this by only
importing a given type once, at the top of his program.

Finally, the extern world declaration informs us of the existence of the named
world constant. We record this fact of the identifier:

I'F extern J world wid --»Y, wid constant | extern world J wyq

When elaborating world expressions, we expect an identifier to either be in the con-
text as one of these constants (in which case it is elaborated to wy;4) or a variable (in
which case it becomes wyi4). Recall that extern world declarations are only kept in
the IL for the purposes of code generation, so that we know the worlds (and their world-
kinds) that we must generate code for.
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Pattern matching

Pattern matching in ML5/pgh accounts for about one third of the code implementing
elaboration, but very little of it is related to the modal features. Therefore, I will only
discuss it briefly.

The algorithm, which is based on the one used by TILT [134], works on a generaliza-
tion of case analysis to a matrix of rows and columns, i.e.,

case v :A; ... v,:A, of
| P11 ces Pin = b
\ _ =  PFaet

The values v; through v,, are already elaborated, and we insist that they are values
(usually variables) so that we can duplicate or eliminate them as we compile the pattern.
Every EL pattern can be straightforwardly converted to one of these extended patterns.
There are then two mutually recursive phases of compilation: clean and reduce.

Clean. Cleaning the pattern means establishing an invariant about each of the patterns
in the matrix: At its outer level, a pattern must be an application pattern, a constant pat-
tern (integer or char) or a wildcard. Cleaning therefore eliminates n-tuples (by explod-
ing them into n new columns that match on the components of the tuple); variables and
as patterns (by binding the variable within the arm and replacing it with a wild pattern
or the as pattern); when patterns (by applying the when expression and matching on the
result); and type constraints (by unification). A clean matrix is then subject to one round
of reduction.

Reduce. Reducing a pattern makes the matrix smaller through a variety of transforma-
tions. For example, a column that consists of only wildcard patterns can be eliminated.
A column that consists of application patterns (extensible and datatype constructors), or
of constants, is compiled into a primitive case construct (a sumcase, a series of untags
or an intcase), each with a nested pattern match for the rest of the matrix. We take
some care to make sure that these nested patterns do not duplicate code, by hoisting out
common pattern matches as functions. Heuristics guide when to apply the reductions;
some cause less code duplication than others.

This algorithm does not lend itself well to exhaustiveness checking, so we use a dif-
ferent technique to issue warnings. A special effectless primop CompileWarn is gener-
ated in the IL code right before the compiler inserts the raise Match corresponding
to an inexhaustive pattern match. This primop contains the name of the source file and
the position from which it arose. As the code is compiled and unreachable branches
are eliminated, so are the warning markers. When we finally generate code, we emit
the warnings if they still exist. This gives particularly good warning messages, which
are also precise because they take into account any optimizations that the compiler per-
forms.
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Type inference

Finally, the elaboration relation that I have described is highly nondeterministic, requir-
ing that types and worlds be guessed in order to form a derivation. Elaboration is actu-
ally implemented using a variant of Hindley-Milner type inference [27, 75]. We add to
the language of IL types a type metavariable X and to worlds a world metavariable O.
These are implemented as ML reference cells. During elaboration, we generate new
metavariables and perform unification to determine their true identities. For example,
consider a simplified rule for function application:

'FE--»M;:(A) - Bew I'F Ey--» M, : Aew
'k E1 EQ - Ml (MQ) : Bew

(It is actually more complicated, because the application of a constructor to a value is a
value, etc.) To type-check, it requires us to guess some combination of the types A and
B and the world w. To perform type inference, we do something like the following;:
elab (app(E1, Er)) =

let Xp=new-evar() in

let M : Al@Wl =elab FE; in

let My : Asewsy = elab E; in

unify-type A; ((A2) - Xp) in

unify-worldw; wg in

(Ml MQ) . XB@W1

We know that whatever M,’s type is, it must be a function, so we unify it against
a function type. This allows us to name the return type, even if it has not yet been
determined. We also unify the worlds of the function and its argument; unification is
much simpler here because worlds are not structured.

The interesting part of type inference is the inference of polymorphism and validity.
To elaborate a declaration val x = E, we elaborate E at an existential world O, in
general yielding M : AeO. If M is an expression, we must use the monomorphic IL
val rule, so we unify O with the current world and are done.

If M it is value v, we might make a polymorphic binding. For type polymorphism,
we inspect the type A to see if it has any metavariables in it whose identity has not yet
been determined (“free” metavariables). If these metavariables do not appear anywhere
in the elaboration context, then they will always be free because there will be no way
to unify with them again. We therefore instantiate each one with a new type variable «
and V-quantify over these variables.

World polymorphism is similar: We inspect A looking for world metavariables. If
any exist and are not bound in the context or are the metavariable O, then we instantiate
and V-quantify those as well.

The reason that we avoid the world O is that it is outside the scope of the V quan-
tifiers, since it is part of the judgment, not the type. However, we have a way to gen-
eralize it as well. If O is still free and does not appear in the context, then we use the
polyletsham elaboration rule to produce a valid, world- and type-polymorphic bind-
ing. If O is determined or escapes into the context, then we use the polyleta elabo-

146



ration rule to produce a world- and type-polymorphic binding at that possibly remote
world.

At the end of elaboration, some metavariables may have not been determined. If
this is the case, we set type metavariables to unit and world metavariables to home.

One complication of type inference is that we have a distinguished class of types:
those types that are mobile. For example, if we elaborate the program
fun £ y =
let put z =y
in O
end
we need to know that the type of y is mobile, but we don’t know what it is. We handle
this by postponing the mobility check (if necessary) until the end of elaboration. In the
above program, the declaration of £ cannot be polymorphically generalized, because
the metavariable will be considered “in the context” as it waits for the mobility check at
the end of elaboration! However, the program
fun g y =
let put z = hold y
in O
end
does produce a polymorphic binding for g, because the type of hold yis X at w, which
is mobile for any X.

5.3.4 Optimization

After the program is elaborated, there is a simple optimization phase to eliminate dead
code. This can usually discard much of the standard libraries, which is good because
the CPS phases are much slower than the IL phase. Conversion to CPS is next; the CPS
language is therefore described in the following section.

5.4 The CPS language

The ML5 CPS language resembles the CPS language we saw in the previous chapter,
augmented with the features of the ML5 IL. Since most of the work of the compiler is
on the CPS language, there several additional constructs as well. For instance, there are
constructs for type and world representations, which we need to perform marshaling at
runtime. The syntax for the CPS language is given in Figures 5.10, 5.11, and 5.12.

Types. The types that have changed are as follows. Functions have been replaced by
continuations, which do not return. However, we still have a bundle of mutually recur-

—

sive continuations, written (A1, ..., A,,) conts. Each may take multiple arguments. We

!If we had a kind of bounded quantifier over only mobile types, then we could generalize. Such a
construct is complicated and not well-motivated.
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worlds w
types A, B

w|w

a | {l: Ay, A AL, s AT
Acont | (4,...,A,,) conts

Aref | Aarray | Atag

Aatw | 8,A | waddr

mi(p . Ao, ...y Ay)

Ja. A | V(@; @: A).B

exn | bytes | Arep | wwrep

optional type A" = —| A

Figure 5.10: The types of the ML5 CPS language.

exps ¢ == call vy, | halt
| go[w, v, ¢ | go_cc[w, vy, Ve, Vf] | gomar|[w, v, vy,
| let x =marshal(v,v,) inc
| letz =primcall({: A — B)(?) inc
| let x = native(p,7, A) inc
| let u = localhost() inc
| putu=wvinc| letshamu =vinc
| letaz=wvinc|valz=wvinc
| unpack a;us;z: A=vinc
| casevof ({4 =ux.c1| by =a0n|-=C)
| externvalz:Aew=/{inc
| externvalu~w.A=/{inc
| externworld.Jwinc
| externtypea =/{inc
| externtypea =/{withrepu=/{inc
| sayx=/(:Avinc|sayccox=/:Avinc
| newtagx of Ainc
| untag v, with v; of (yes = z.c|no = ()

primops p = +|—|x*|/| < | stringeq | newref | ...

Figure 5.11: The continuation expressions of the ML5 CPS language. Again we use & or
x : A to denote a sequence of arbitrary length.
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vals v = z|u

fos(fi(z1: Ay) =cryo ooy fulzn s Ap) = ¢)
fselv.n | n | "string" | #0v

{6 =v1,....0,=0v,} | held,, v

sham w.v | inj;' v* | roll, v | unroll v
pack A, vy, U as Ja.B

unpack a;ua;x: A=vinv

AG;a A | vp (W; A;0)

tag v with v,

letar =v in v | letsham u = v in ¢/
wrepfor w | wrep w | repfor A

rep {l1 :v1,..., 0y v} | Tep [0y vl 0]
rep (U cont) | rep ((v1,...,v,) conts)
rep (vatv’) | rep B, v

optional vals v* = v |—

Figure 5.12: The values of the ML5 CPS language. For every syntactic form of type
there is a syntactic form of value, its representation. I do not repeat all of these here.

now have a single extensible type, called exn; all extensible types in the IL are trans-
lated to this one. The type of marshaled data is bytes. For closure conversion, we have
an existential type. We no longer have a prenex restriction on polymorphism, so we
have a first-class polymorphism construct. This V type quantifies over a series of world,
type, and value variables all at once.

We also have a type of run-time world representations, and a type of type represen-
tations. A value of type A rep is a representation of the type A4; it is a singleton type.
Similarly, a value of type w wrep is a representation of the world w.

Expressions. The syntax for CPS expressions appears in Figure 5.11 and their typing
rules in Figure 5.13. As usual, continuation expressions are typed with a judgment

'k exw

which means that c is well-typed to evaluate at the world w. Some constructs (go, say,
and extern type) have several versions (which have different typing rules), only one
of which will be in use depending on what phase of the compiler we are in. The bare go
construct takes an address and a continuation for us to execute at the remote world; it
does not return. The go_cc construct is the same thing post closure-conversion; it takes
a closure to execute remotely. The go_mar construct takes a marshaled closure. We can
marshal any value with marshal, as long as we have a representation of its type. (Un-
marshaling is implicit in the go_mar construct.) For say, we have a typing rule similar
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to the IL one. After closure conversion, say-cc expects a closure-converted continu-
ation, which unfortunately means that the type of a closure-converted continuation is
baked into the rule.?

The expression primcall represents a call to a function imported with the IL
extern val construct. Such functions cannot be CPS converted, so we need a spe-
cial way of making direct-style calls to them. The nat ive expression is a single primop
applied to values; primops include mathematical operations on integers, comparisons,
and access to arrays and references. (There are a variety of typing rules, all obvious,
so I do not give them here.) As in the IL, extern world has no effect on the typing
context. The extern type expression may additionally declare the label for the type’s
representation. These are inserted in the first type representation phase (Section 5.4.5).
The newtag and untag expressions are as in the IL except that they now use the single
universal type exn.

Values. As expected, the typing judgment for values (given in Figure 5.14) is
'Fov:Aew

meaning that v has the type A at the world w. It may be surprising, however, what we
consider a value in the CPS language. It includes, for instance, leta and letsham—which
bind variables—and other elimination forms such as the application of a A to types,
worlds, and values. These turn out to be necessary because as we compile the language,
things that were once simple values (e.g. functions) become more complicated. Because
the language has several value restrictions (for the body of held and sham, for example),
we must maintain valueness through these translations. Perhaps a better terminology
would be to call continuation expressions “statements” and values “pure expressions.”
This is because the value restriction is not really a restriction to values but a restriction
to non-effectful expressions. Still, this is the terminology we use elsewhere, so we will
stick with it here.

We have the usual constructs: variables, continuation bundles, selection from such
bundles, integer and string constants, records and projection from them, etc. We have
a value pack for creating existential types. In addition to the type, this requires a rep-
resentation of the type. This is so that when we unpack the existential, binding a type
variable, we will be able to maintain the invariant that every type variable in scope has
a representation also in scope. (The representation must be valid, which we encode by
using the € modality.) The existential package contains a series of values, which eases
closure conversion. Unpacking, which is also a value, binds a type variable and a valid
variable to its representation, as well as a variable for each of the packed values.

The value of V type is a lambda over a sequence of world, type, and value variables.
Its body must be a value, because the application of such a value to actual world, types,
and values is also considered a value. The order of the arguments is important, in

It would be nicer to make the say construct a primop or feature of the runtime system that we

simply import. Unfortunately the code generator must know about it because of problems with the way
that events work in JavaScript.
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'+ v, :w addrew

I'Fop:(A,...,A,) contew I'F v : Aew
'Fv:Ajew - T'hFo,:A,ew I'Fovs: Acontew’
I'Fcallvf (vg,...,0,)*W I' F go_cc|w, v, Ve, V] % W

F'Fexw’ I'Fo,:w addrew ['Fuv,:w addrew @'k wv, :bytesew

'k go[w', v,] cxw ['F gomar|[w' v,, Uy *xw
'Fv:Aew ['kFuo.:Arepew I, z:bytesewhr cxw [ x:A tagew - cxw
['F let © = marshal(v,v,) in cxw I' - newtag v of Aincxw

['Fv,:exnew ['Fuo: Atagew [x:Aewhkcexw [Edxw

[ - untag v, with v; of yes = z.c|no = 'xw

'Fv:Ajew -+ T'ho,:Ajew TI,z:Bewtlb cxw
I'Flet 2z = primcall({: (Ay, ..., An) — B)(v1,...,v,) incxw

'Fv:3da.Ay, ..., Ayew [ atype,us~arep,ri:Ajew, ... v A ew F exw
[' F unpack a;ug; x1: Ay, ., 20 Ay = v incxw
I x:Aew' F cxw I u~w. AF cxw

I'Fexternval z: Aew =/incxw ['Fexternvalu~ w.A=/¢incxw

Tk exw ' u~w addr F cxw

I'F externworld J wincxw ['F letu = localhost() in cxw

I'atype F cxw [, a type, u~a rep - cxw
' externtypea =/ incxw I'F externtypea =/withrepu =1/¢ incxw

FFov:({1:A4,...,m:A,}) contehome I z:stringehome I cxhome

I'Fsayz = ((1:A1,...,0n:Ay) vin cxhome

'Fo:3daa, (a,{1:Ay,...,m: A,}) contehome I z:stringehome - cxhome

I'Fsayccax = ({1:Ay, ..., ln:Ay) vin cxhome

Figure 5.13: The typing rules for ML5 CPS continuation expressions. I omit the typing
rules for put, letsham, leta, val, intcase and sumcase because they are essen-
tially the same as they were in the IL.
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['(z) = Aew I'u) =w.A
'Fa:Aew ThFu:[V,]Aew

F,, $11:A11@W, R $1miA1m@W H C1*W

IV xpi:Apiew, .. o Aprew B e xw

I"=T, fi1:(Aq1, ..., Aun) contew, ..., fui(Ap, ..., Apg) cont
filzn c A, oo T s Ai) = c, (A11, ..oy Aim),
['F fns( : ) ( : ) contsew
fo(Tnr : Anty ooy pg s Apk) = ¢ (Ant, -, Ank)
0<i<n Trwo:((Aot,.--sAom)s---s(An,..., Ank)) conts
'k fselv.i: (A;,...,Ay,) contew

I'Fov: Aew I'wworld-v: Aew 'Fv:Aew T['kFo: Atagew
I'+held, v: Aatw'ew I'Fshamw.v:8,Aew I' - tag v with v; : exnew
['Fog:B(Arep)ew T Fo:[4,]Bew oo TRy, [Y.]Brew
['F pack A,v4,v1,...,v, as Ja.(By, ..., B,)ew
[',wy world, . .., w, world, oy type, ..., a,, type, x1:Ajew, ..., xp:Arew - v : Bew
CE Alwr, oWy Qe Q210 AL - T Ao
V(Wi Wy Ay, L Ag) . Bew

F'Fop:Y(wr, ..., wps0n, .., s Ag,y oo Ag) . Bew

I',wy world, . .., w, world, a; type, ..., q,, type - v, : Ajew
[',wy world, . .. w, world, oy type, ..., a,, type - v : Ajew
DEvp (Wi, Wo Ay Ay v, o) = [0 1A A o | Bew

Figure 5.14: The typing rules for ML5 CPS values. I omit the typing rules for integers,
strings, records and record projection, sum injections and case analysis, and roll and
unroll for inductive types because they are essentially the same as they were in the
IL. I also omit the value versions of unpack, leta, and letsham because they are
essentially the same as their expression counterparts. Some of the rules for type and
world representation values appear in Figure 5.15.
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I' - wrepfor w' : w wrepew ['+ wrepw: wuwrepew I I repfor A: Arepew

I'Fv:Arepew

I'Frep (vref): (Aref) repew [I'Frep exn:exnrepew

I'+v: Ay repew -+ TI'kw,: A, repew

I'Frep (vy,...,v, cont) : (Ay,...,A,) cont repew

'Fov: Ay repew -+ T'Fuw,: A, repew
Fkrep{li:vy,.... 0, v} {l1:As,.... 0, Ay} repew

v = — when A = —

[ Fo: Al repew when A] # —
Chrep [y :v],... 0, 0] [0y AL .. 0, A’] repew

'Fv:Arepew I'F v :w wrepew

['Frep (vatv'): (Aatw') repew

I', w world, u~w wrep v : Arepew ['Fv:w wrepew

I' Frep &, ,v: (8,A) repew I'Frep (v addr) : (w' addr) repew

I =T, ap type, Ug,~0p TED, . . ., Ay tyPE, Upy, ~Cty TEP
I vy : Ag repew

I"+wv,: A, repew

I'Frep mi(p (o, Uag)-V0s - - - (O, Uay, )-Un) = T (1 9. Ay, - . . . Ay) Tepew

[, o type, up~a rep vy : Ay repew --- [' atype,u,~arept vy : A repew

['Frep (I(a,uq).v1,...,0,) 0 (JaAq, ..., Ay) repew

I, wy world, uy, ~wy wrep, ..., a; type, uq, ~a; wrep - vy : A; repew
I', wy world, u,,, ~w; wrep, ..., a; type, u,, ~a; wrep v, : A, repew
I', wy world, u,, ~wq wrep, ..., aq type, uy, ~a; wrep - v : B repew

['Frep (V{(wi, Uy, ), (@, Uy ), 301,..00) 0 (Vwr, .. .50q,...5 A, ...).B) repew

I'-v:Arepew I'Fv:w wrepew

['Frep (vrep): (Arep) repew I'F rep (vwrep): (w wrep) repew

Figure 5.15: The typing rules for ML5 CPS world and type representations, which are
values. I omit the straightforward rules for bytes, A array, A tag and conts.
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that the types of the value arguments may depend on the type arguments and world
arguments.

Finally we have world and type representations, whose typing rules appear in Fig-
ure 5.15 (though they are values like any other). World representations are simpler.
There are two: wrepfor w is a stand-in for the representation of the world w. We use
this form until we have established an invariant where every world variable w has asso-
ciated with it a valid variable of type w wrep, and then replace wrepfor w with that valid
variable (Section 5.4.7). A “real” value of type w wrep is wrep w for a concrete world w.
These are the representations that are actually passed around at runtime. The stand-in
repfor A is similar to wrepfor. There is one syntactic form of rep for each syntactic
form of CPS type (except variables). However, where there were type components in
the type, there are now value components in the representation. For example, the record
type

{01 : exn, ly: aref}

is represented by the value
rep {¢; : rep exn, {5 : rep(u, ref)}

if u, has type o rep. Moreover, those syntactic forms of type that bind type or world
variables (such as &,A4) must now bind two variables: the type or world variable, and
the valid variable standing for its representation. For example, the representation of

&, (exnat w)

is
rep (B(,,urep((rep exn)at u))
where u~w wrep is bound within the value’s body.

This syntactic redundancy is somewhat annoying, because in the implementation
each type constructor must be given twice (as a type and as a value), and any utility code
(for pretty-printing, etc.) must also be written twice. Fortunately, the CPS representa-
tion that we use in ML5/pgh has a nice interface that removes some of this redundancy.
Before we begin describing the translation from IL to CPS and the steps of compilation
that take place in the CPS representation, let us discuss its ML implementation.

5.4.1 Return to Oz

In this section I discuss the ML5/pgh implementation of the CPS abstract syntax. Al-
though I think this is a nice technique, it is not a main contribution of the dissertation
and not necessary for understanding the remainder of this chapter, and so may be safely
skipped.

The standard way of representing an abstract syntax tree in ML is via its algebraic
datatype mechanism. For example, a straightforward encoding of the ML5 CPS types
in Standard ML would be
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datatype ctyp =
At of ctyp * world
| Cont of ctyp list
| Conts of ctyp list list
| Shamrock of wvar *» ctyp
| Mu of int * (var * ctyp) list
I(x oo x)

This is a very convenient implementation, particularly because of our ability to write
functions over datatypes via pattern matching. However, it has a shortcoming, which
is that we do not have any control over the representation of the datatype. This can
be a problem when we want to do something special with the representation, such as
use a more efficient data structure, store additional information, or maintain certain
invariants. In these cases what we want from the datatype mechanism is its facility for
pattern matching, not its automatic creation of constructors and destructors from the
representation it chooses. Unfortunately, ML offers no direct way to decouple the two.?

In my undergraduate senior thesis I studied a technique for alternative implemen-
tations of datatypes while retaining a form of pattern matching, known as the “Wiz-
ard” [84]. The idea is to provide an abstract type (which can be implemented any way
we want) and a projection function that produces a single-level datatype that we can
pattern match on. For example,

type ctyp (x abstract «)

datatype ctypfront =

At of ctyp * world
| Cont of ctyp list
| Conts of ctyp list list
| Shamrock of var x ctyp
| Mu of int x (var * ctyp) list
(% ... %)

val look : ctyp —-> ctypfront

val hide : ctypfront -> ctyp

The important thing is that the datatype is only partially revealed; it refers to the
abstract type rather than being recursive. To create an element of the abstract type,
we repeatedly apply datatype constructors and the hide injection. When we want to
pattern match on a ctyp, we simply call the projection function on the case object:

case look t of

At (tl W) => (* o o o *)
| Cont 1 => (*x ... *)
| => (x ... *)

The biggest drawback is that we can only pattern match one level at a time, because
there is no place to put the projection function in a nested pattern match. I found such
patterns to be very rare in practice. A refinement of this representation is to make the

3Because Standard ML uses the opaque interpretation of datatypes [137], it would not be hard for a
future version to support such a mechanism, however.
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partially exposed datatype parameterized by a type:

type ctyp
datatype ’"a front =

At of "a % world

Cont of ’a list

Conts of "a list list
Shamrock of var = "a

Mu of int * (var * ’"a) list

|
|
|
|
|
val look : ctyp —> ctyp front

(* ... %)
val look2 : ctyp -> ctyp front front
(x .. %)

This allows us to provide a projection function that reveals the abstract type to two
or more levels, for nested pattern matches. Another useful trick is to provide injective
constructors

val At’ : ctyp * world -> ctyp
val Cont’ : ctyp list —-> ctyp
(% oo %)

so that we can build elements of the abstract type as if it were a datatype.

The purpose of the original project was to improve the performance of TILT by using
a more efficient representation (de Bruijn indices and hash consing) without rewriting
the code. Although it was feasible to retrofit a new representation into the compiler
with this technique, the performance results were negative. The code was substan-
tially slower when running through the Wizard interface, and—disappointingly—even
slower when the representation “optimizations” were turned on.

The ML5/pgh compiler uses a Wizard-like interface for the CPS language, but not
for efficiency (indeed, it comes at a performance cost here as well). Instead, we use
it to improve the correctness of the code, by providing an interface to the CPS lan-
guage that helps to avoid alpha-conversion bugs. (Various subtle alpha-conversion
mistakes were the predominant source of bugs in the Humlock compiler’s CPS lan-
guage [91] with hand-managed binding.) We do this by making the CPS representation
aware of the binding structure of the AST. We provide primitive substitution, renaming,
free variable computations and comparisons. Additionally, whenever we look under a
binder, we see a new freshly alpha-varied variable that has never been seen before.
Programming against this interface thus resembles programming with higher-order ab-
stract syntax (Section 4.7.1) or other high-level representations of binding structure like
FreshML’s [110].

Both the interface to the CPS language and its implementation are interesting; let us
first look at the interface.
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CPS interface

The CPS interface looks like the final code example above, with one further trick em-
ployed. Because we parameterized the datatype for type fronts, it can equally well be
used for the implementation of types and for the implementation of type representation
values. It looks like this:
datatype (’'tbind, ’ctyp, ’'wbind, ’world) ctypfront =
At of "ctyp x "world

| Cont of 'ctyp list

| TExists of ’"tbind x 'ctyp list
| Shamrock of ’'wbind *» ’ctyp
|

(* .. *)

type ctyp
val ctyp : ctyp —> (var, ctyp, var, world) ctypfront

datatype (’'cexp, ’'cval) cexpfront =
Go of world *x "cval x ’'cexp

(e oee %)

and ("cexp, ’'cval) cvalfront
Held of world * ’cval
| Rep of (var x var, 'cval, var % var, ’'cval) ctypfront

I (x .. %)
type cval
type cexp
val cval : cval -> (cexp, cval) cvalfront

val cexp : cexp —> (cexp, cval) cexpfront

Here the typfront type is parameterized over its recursive occurrence 'ctyp but also
the type of type bindings, world bindings, and worlds. When we project from the ab-
stract ctyp type, we get a ctypfront where the binders are single variables and types are
ctyps and worlds are worlds, as expected. To reuse the datatype (which is much longer
than shown here) for type representations, we instead instantiate ‘ctyp and ‘world with
the type of values, because the representations recursively contain more representa-
tions, not types. Binders are instantiated with pairs of variables: one for the static type
or world and one for its representation. This means that a lot of utility code (for exam-
ple, pretty printing) can be implemented once in a generic way for both types and their
representations.

In the interface we also have injective constructors for each arm of the datatypes,
functions for computing free variable sets, substitutions, alpha-equivalence respecting
total orders, etc. These have the straightforward types.

Again, the nice thing about this interface is that it automatically renames bound vari-
ables as we open their binders. This means that every binding we see is globally unique,
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so we do not have to worry about name clashes as we do transformations of the code.
This simplifies the client’s job. Such a representation also discourages the programmer
from doing wrong or suspicious things. For example, a naive program might make a
pass over the code to find functions that ought to be inlined, identifying those func-
tions by the variable they are bound to. Making a second pass and expecting to find
the functions bound to the same variables is ideologically suspect—names should not
matter!—and might even be wrong, if the process of inlining can cause these variables
to alpha-vary because of substitution.

CPS implementation

The first implementation of the CPS language was done by hand, writing the renaming
and substitution functions over the natural datatype representation. The language is
fairly large, so this turned out to be error-prone and difficult to experiment with. This is
frustrating because the algorithms are repetitive and structured: each binder or variable
occurrence is treated exactly the same way. To avoid writing repetitive code, I reimple-
mented the CPS language using a second Wizard. The second language, called “AST”,
is a tiny kernel language with constants, aggregation, binding structure, and nothing
else. The language is similar to an untyped LF or Harper’s Abstract Binding Trees [49].
The AST language is functorized over the type of variables and leaves:
signature ASTARG =

sig
type var
val var_cmp : var * var —> order
val var_vary : var —> var
type leaf
val leaf_cmp : leaf x leaf —-> order
end

For variables, we only need to know how to order them (and therefore test for equal-
ity) and to alpha-vary them. For leaves, which can be anything, we only need to know
how compare them. Given these types, the interface to the AST is

type ast

datatype "ast front =

$ of leaf
| / of "ast * ’ast
| \ of var = ’ast

| V of var
val look : ast —-> ast front
val look?2 : ast —> ast front front
(x ... %)
val hide : ast front —-> ast
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val $$ : leaf —> ast
val // : ast x ast —-> ast
val \\ : var x ast —> ast
val VV : var —-> ast

In this language, we can have a leaf, a pair of two ASTs, a variable bound within
an AST or a variable occurrence. (The actual implementation also supports a list of
ASTs and a list of binders, since these are quite common. I will ignore them for this
discussion.) We also get functions for comparing ASTs, substituting for variables, and
computing the free variables of an AST. Each time we look under the binder \, the
variable is renamed to a freshly generated variable that we have never seen before.

The nice thing about this language is that it is quite minimal, so it is possible to
easily experiment with different implementations of it. I have developed a few different
implementations; the most complex one uses a limited form of explicit substitution to
avoid the cost of renaming variables in certain common scenarios. A conformance suite
tests that it has the correct behavior.

We use the AST functor to build the implementation of the CPS language. We start
by declaring a leaf datatype that has all of the constructor names for our language;
these do not carry any values. (For example, there is a constructor AT_ which we use to
encode the At of ctyp * world constructor.) We must define a comparison functions on
leaves as well. The type of variables is instantiated with a disjoint union of four sorts of
variables:

datatype var =

WV of Var.var (*x world variable x)
| TV of Var.var (x type variable x)
| MV of Var.var (* modal variable «x)
| VV of Var.var (* valid variable «x)
Then, we can implement the CPS language by making each of the abstract types world,
ctyp, cval, and cexp be the ast type. The injective constructors encode the CPS lan-
guage elements into ASTs. For example:

fun At' (t, w) = S$SSAT_ // t // w

fun Shamrock’ (wv, t) = $$SHAMROCK_ // (WV wv \\ t)

Recall that $$, // and \\ (the latter two used with infix notation) are the injective
constructors for the AST, where \\ is the binder. To project out an abstract CPS world,
type, value, or expression, we project out the AST term that implements it (usually
several levels) and pattern match:

fun ctyp (typ : ast) =

case look2 typ of
SAT _/ t / w => At (t, w)
| $SSHAMROCK_ / (WV v \ t) => Shamrock (v, t)
[ (x ... %)
| _ => raise CPS "bad ctyp"

Note that we have some costs here. For one, we perform many more run-time tag

checks to distinguish the different cases during these pattern matches. Some of these tag
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checks result from a loss of static information about what forms a value might take. Each
of the syntactic classes is represented uniformly as an AST, and the type system does not
tell us that the AT_ leaf is always followed by a type and a world, for example? These
runtime costs are constants, however, and the loss in static checking easy to manage.
(Because we create ASTs in a structured way, our destructing pattern matches either
work every time or fail immediately.)

As benefits, we get correct substitution functions for all of the constructs of the lan-
guage, free variable computations, and alpha-conversion respecting comparison func-
tions. Comparisons are used on types during type-checking, naturally, but having a
for-free comparison function for expressions and values was quite useful during opti-
mizations (for example, in the hoisting phase we are able to conveniently coalesce code
that is identical up to alpha-conversion).

The implementation of the CPS language in terms of AST is only about twice as long
as its signature (which contains mainly the datatype declarations), so it is not much
code at all. Essentially, it consists of two (injection and projection) explications of the
binding structure of the language described by the constructs of AST. Other than this
duplication, it is about as terse and direct as could be.

5.4.2 CPS conversion

We first use the CPS implementation by transforming IL code into it, through the pro-
cess of CPS conversion. CPS conversion is very similar to how we formalized it for
MinMLS5 in Section 4.5. There are only a few things that are conceptually new: excep-
tions, first-class continuations, polymorphism, and imported values.

Double-barreled CPS

We translate away exceptions during CPS conversion by using “double-barreled CPS.”
The double barrels are the two continuations passed to each function: the return contin-
uation, used for returning normally, and the exception continuation, used for throwing
an exception.

CPS conversion of expressions is given almost as before:

convert ' K M Aw

where M is the expression to convert, A and w are its IL type and world. The context I
is a CPS typing context, and K is a meta-level function indicating how to form the tail
of the expression from the new context and CPS value. (As before, [A]; converts an IL
type to a CPS type and [v]4®" converts values.) To implement double-barreled CPS,
we maintain an additional invariant that I' contains a modal variable handler with type
exn cont at the current world w. Initially, this continuation simply halts the program.

The CPS conversion of the IL raise M expression is the simplest:

* A more clever use of the AST would be able to regain some amount of static checking through the
use of phantom types, but this code is so simple as to make this overkill.
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[fns(fi(z11, ldots) = My, ... )Jlt-mAm) =B dew
fons(fi(z11, ..., z.:[B]c cont, handler:exn cont) = ¢4, ...)
where ¢; =
convert (I', x11, .. ., 2,:[B]c cont)KC My Bw
where K(I';v) = call z, (v)

convertI' (M (Ny,...,N,)) Bw =
convert '’ M ((Ai,...,An) = B)w
where K'(I'; v) = convertI' K} Ny Ay w
where K} (T';vy) =
convert I' ) Ny Ay w

where K/ (T', v,,) =
val z; = (fn(z). (I, z:[B]cew; x)) in
call o (vy,...,v,, x;, handler)

Figure 5.16: Double-barreled CPS conversion of IL functions and applications, which is
fairly standard. (For brevity, the bundle of mutually recursive functions is abbreviated
to only show the first function and its first argument.)

convertI' K (raisey M) Aw =
convertI' ' M exn w
where K'(I'; v) = call handler(v)

We first CPS-convert M, which must be of type exn. When we have its value, v, we
simply call the current handler on v. Maintaining this handler is the job of the rest of
the translation. For example, the IL handle expression is converted as follows:

convertI' € (M handle 2.N) Aw =
val z; = fn(z,) (T, z,:[A]c; z) in
val handler = (fn(x).
convert (I', z:exnew) K' N Aw
where K'(I';v) = call z; (v)) in
convert (I', zj:exn cont) K" M Aw
where £"(I'; v) = call z; (V)

The function z; is the join point for the two possible ways of returning from this
expression: either directly or via the handler. (fn (Z).c is shorthand for a bundle con-
taining a single continuation, which is selected out.) It is simply the reification of the
input continuation K. We then shadow the continuation variable handler with the new
handler. It executes N (with the old handler in scope) and returns to the join point. With
this defined, we convert M/, which might call our new handler or return normally to the
join point.
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To maintain the handler dynamically through the call stack, we pass it as an addi-
tional argument to every function along with the return continuation (Figure 5.16). The
interesting part of the implementation of exceptions is their interaction with get. Recall
that get is translated into two gos; one to go to the remote world and one to return. To
implement exceptions, we need to make sure that we establish a handler at the remote
world that re-raises the exception at the source world. Let’s assume that get takes an
address as a value v, to shorten the presentation; then its translation is

convertI' K (get[w',v,] N) Aw =
val x,, = handler in
val z, = localhost () in
put u, =z, in
go[w’; v,]
val handler = (fn (z.).
put v, =z, in
golw; u,]
call z, (uy)) in
convert (I', z,:w addrew, u,~w addr, x,,:exn contew) K’ N A w’
where £'(I',v) =put u =wv in
golw; u,]
val handler = z,, in
K, u~[A]c; uw)

The idea is as follows. We save the current handler (at the source world w) in the
variable z,,. When we arrive at the destination, we immediately bind a new handler for
the time that we are executing there. It takes a value of type exn and binds it to a valid
variable with put—this requires that the extensible type exn be mobile (Section 5.1.4).
We then travel back to the source world and call the original handler z,,, on the exception
value. If we return from the get normally, we restore the handler to its original value.

First-class continuations

First-class continuations are also translated away during the conversion to CPS—in fact,
this is one of the reasons we use CPS, since there is no analog to letcc and throw in one
of our target languages, JavaScript.
The translation is isolated to the two constructs, and standard:
convertI' € (letccyzin M) Aw =
val x = fn(z,).K(T, z,:[A]c; x.) in
convert (I', x:[A]c contew) K' M Aw =
where (', v) = call z(v)
For letcc, we reify the current continuation K, which M might throw to. If it does
not, we throw the result of M to it ourselves.

convert I' K (throws M to N) Aw =
convertI' K' M B w =
where '(I',v) = convert I' K" N (B cont) w
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where K" (I',vy) = call vy(v)

For throw, we evaluate M and then N; N must be a continuation so we call it on the
result of evaluating M.

Polymorphism

Polymorphism is treated simply by using the V quantifier of the CPS language, which
quantifies over worlds, types, and values. In the IL all variables are fully applied to type
and world arguments, so their conversion is as follows

e W, cehWm Al Ana ..... an B@
[[$<A17'"7An;W1,---,Wm>]]\[/CI feo1, I[41 o1 |B@w

z([Ai]e, -, [Anlc; Wi, -+ oy Win; +)

if there are no type or world arguments, then we just generate the bare variable, not an
empty application. We do the same translation for valid variables.

Polymorphic variables are bound by various declarations. Conversion of IL declara-
tions is defined by the function

convertd ' K D w

which converts D at the world w. The continuation K takes only the new context, since
there is no value returned by a declaration.

We must do some reorganization of the polymorphic bindings so that the types work
out correctly. For example, the polyleta construct must bind a variable at another
world with polymorphic type. We translate it as

convertd I' I (polyleta (a1, ..., Wi, ... Wn) T =0) W=
leta z =held (A{w, ..., wp; a1, ..., Qp; ).
leta 2’ = [v];2*"' @Y in
') in
K x:¥{(wy, ... wp; 00, ..., ap; ) Bew')

Here is our first use of the value form for leta, used to expand a value of type
Aatw'ew’ to a value of type Aew’ in place. Since the object of a polyleta is usu-
ally an immediate held, this often creates a useless eta-expansion of the value. These
are reduced in an optimization phase later.

The polyletshambinding is similar:

convertd I' € (polyletsham (cv,. .., QW1 ... W) U = V) W =
letshamz = sham w.(A{wy, ..., wWp; Q1,0 Qs ).
letsham v = [[v]]é%“’@“’ in

u') in

KT u~w Y (wy, ..y wp; 1,0 ) B)
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Network signatures

The network signature declarations (extern) are straightforward in the case of type
and world imports. These are translated directly to their counterparts in CPS. The
extern val declaration also has a counterpart in the CPS, but we interpret it a different
way. The reason is that when we import a function, we need to use a direct-style calling
convention to call it, because we cannot CPS convert external functions. Therefore, the
translation of an extern val declaration differs based on the type of the imported value.

If Ais a base type...
convertd I' € (externval z : Vo ... anVwy ... wy Aew’ = {) w =
extern val x:Y{ay,...,qp;wy ... ,wn;).[A]cew =/ in

KT z¥{aq, . ..,an;wy .o wm; ) [A]cew’)

If the value is imported at base type, then we just use the extern val of the CPS
language, which expects base types.

If Ais{1: A;,...,k: Ay} — B where A; and B are base types ...
convertd I' € (externval z : Vo ..., Vwy ... wy Aew’ = {) w =
leta z = held,,
(Alag...ap;wy .. .wm, ).

(f(y : {1:[Ai]e,- .-k [Ak]c } x, : [B]c cont, handler : exn cont).
lei(: ;)): lprimcall(f ([Ad]es -+ [Anle) — [Ble)(#1y, ..., #ky) 1
KT m:V(al,r. ey wr e wi ) ({1 [Ad]es - K [Ak]G )
[B]c cont,

exn cont) contew’)

If it is a function taking a record as an argument, we treat this as a function taking
k arguments. We wrap a direct-style call to it using primcall in a continuation that
uses the CPS calling convention. We do a similar thing for imported valid values and
functions.

We also have a case for translating single-argument functions (so that they do not
need to be imported at the unitary record type, which is awkward). Additionally, if
the function returns unit, then we return a freshly created empty record rather than
use the return value of the primcall. This is because imported JavaScript functions
whose natural return type is unit don’t actually return an empty record, they return
“undefined.”

Summary

The rest of the conversion to CPS is similar to what we have discussed or otherwise not
interesting. Once in the CPS language, we immediately type-check the program to catch
compiler bugs, and then engage in a series of transformations from the CPS language
to itself. These transformations are all implemented using a functor for the convenient
definition of type-directed transformations, which is the subject of the next section.
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5.4.3 Type-directed translations

This section describes another programming idiom for implementing type directed
compilers in Standard ML. It is independent from the previous one (Section 5.4.1) and
not necessary for understanding the remainder of the dissertation, so it may safely be

skipped.

Pointwise transformations

Very frequently, a transformation on the programming language’s syntax or types is
defined in a “pointwise” fashion. For example, the translation of types during closure
conversion is defined as

[(Ay,..., Ay) cont]ee = FJa.(a, ([A1]ce, - - - [An]ec, @) cont)
[Aat w]ee = [A]ccatw
[[ggw A]] cc = [[AH cc
[exn]cc = exn

that is, we do a translation for the cont type but all of the other type constructors are
handled in a uniform way, simply applying the transformation recursively and recon-
structing the type. Similarly, closure conversion only needs to touch a few syntactic
forms (functions, calls to functions, etc.) and works in a similar pointwise fashion for
the others.

A nice way to implement these syntactic functions is to provide a single generic
pointwise transformation. This allows the individual transformations to be given by
only specifying the relevant cases. For example, the pointwise function on CPS types is

fun pointwiset (fw : world -> world) (ft : ctyp -> ctyp) typ =

case ctyp typ of

At (t, w) = At’ (ft t, fw w)
| Cont 1 = Cont’ (map ft 1)
| Shamrock (wv, t) = Shamrock’ (wv, ft t)
[ (x .. %)

It takes a function to apply to worlds, and a function to apply to types, and the type
to transform. Pointwise it is not recursive; it simply applies the functions to each of
the constituent parts of this level of the datatype. The implementation of a specific
pointwise transformation is then just
fun cct typ =
case ctyp typ of

Cont 1 =>
let val a = newvar ()
in TExists’ (a, [a, Cont’ (map cct 1 @ [a, Cont’ [all)l])
end

| _ => pointwiset I cct typ

165



where newvar creates a new variable and I is the identity function (on worlds). The
idea is that at each level of the datatype, our conversion function is run to see if it
applies; if not, it appeals back to pointwise to apply itself to all of the constituent parts
of the constructor. Programming this way, a transformation needs only contain code for
the constructs that are relevant to what it is doing. This results in shorter programs and
it makes transformations work even if irrelevant constructs are added to or removed
from the object language.

In ML5/pgh we have a family of pointwise functions for IL and CPS types, values,
and expressions. They are used in a few places in ML5/pgh to briefly define purely
syntactic transformations. However, because the CPS language is typed, and has type
annotations within the code so that it can be effectively type-checked, the pointwise
family turns out to be inadequate for most of the passes in the CPS phase. The Pass
functor is a generalization to type-directed transformations that is powerful enough for
us to write all of the CPS passes in the compiler.

The Pass functor

For a type-directed translation of expressions and values, we need more than just the
raw syntax. We need to know the types of the subterms and the current typing context,
and we may need additional contextual information (for example, the status of certain
variables). It would be possible to arrange this as a series of functions like pointwise,
but its type would be massively complex. Instead we use the module system, defining
a functor that is used to create uniform type-directed passes over the language. With it,
we will be able to specify only the cases that are relevant to our translation.

The PASSARG signature describes a uniform translation of the CPS language. It con-
sists of a single function for each construct of the language:
signature PASSARG =

sig

type arg

type selves = { selfv : arg —-> context -> cval -> cval % ctyp,
selfe : arg —-> context —-> cexp —-> cexp,
selft : arg —-> context -> ctyp —> ctyp }

(» types x)

val case_At : arg —-> selves % context -> ctyp *» world -> ctyp

val case_Cont : arg —-> selves * context -> ctyp list —-> ctyp

(x .. %)

(» exps x*)

val case_Go : arg —-> selves * context —>
world x cval * cexp —-> cexp

(x .. %)
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(» vals x)
val case_Proj : arg —-> selves * context ->
string * cval -> cval x ctyp

(x ... %)
end

The type arg is arbitrary, and chosen by the implementor. We can use it to pass
along contextual information needed by the transformation. Each case receives an arg.
It also receives a record containing the functions that should be used for recursive calls:
one each for values, expressions, and types. Then it receives the current typing context.
Finally, it has as arguments the body of the corresponding datatype constructor; the
case for At (t, w) gets a type and a world.

Each case should return the translated construct. For types and expressions, this
means returning a type or expression; for a value, we also must return its type.

From an argument module with signature PASSARG, the Pass functor produces a
structure that performs the complete transformation:

signature PASS =

sig
type arg
val convertv : arg —> context -> cval —-> cval x ctyp
val converte : arg —> context —-> cexp —> cexp
val convertt : arg —> context —> ctyp —> ctyp
end

The implementation of the Pass functor is very simple; it just pattern matches on
the construct and then “ties the knot” by passing the recursive function as the selves
argument to the appropriate case:

fun convertv z G va =

let val s = { selfv = convertv,
selfe = converte,
selft = convertt }
in

case cval va of
Lams a => case_Lams z (s, G) a
| Fsel a => case_Fsel z (s, G) a
I+ .0 %)
end
and converte z G ex = (% ... *)

The trick is then as follows. Since we have exploded the case analysis into a collec-
tion of independent functions and used open recursion to recurse between them, we can
now program in a style that allows us to override the behavior for a set of constructs
that we choose. This is like inheritance in Object Oriented Programming languages.

We start with a PASSARG that implements the identity transformation. It is actually
a functor that takes an arg type:
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functor IDPass (type arg) : PASSARG =

struct
fun case_Go z ({selfe, selfv, selft}, G) (w, va, e) =
let val (va, t) = selfv z G va

in case ctyp t of
Addr w’ => Go’ (w, va, selfe z (T.setworld G w) e)
| _ => raise Fail "go on non-addr"
end

(*» .. %)

end

For each construct it does the necessary work to maintain the typing context
(T.setworld switches the current world, so that we’ll always know where we are
translating). It makes recursive calls through the self arguments.

Finally, to create a pass that does something interesting, we start from the identity
pass and override the cases for the constructs we are interested in. For example, here is
a simple optimization pass that reduces projections from literal records.

structure Reduce : PASSARG =

struct
structure ID = IDPass (type arg = unit)
open ID
fun case_Proj () (s as {selfv, ...}, G) (1, wva) =

case cval va of
Record 1lvl =>
(case ListUtil.Alist.find op= 1lvl 1 of
NONE => raise Fail "bad constant proj"
| SOME wva’ => selfv () G va’
| _ => ID.case_Proj () (s, G) (1, wva)

end

This is the entire implementation. The utility function find searches for the label
in the record; if it is not found, the program is ill-formed. If it is, we just recurse on
that value, eliminating the projection and the rest of the record. If the projection is from
something other than a literal record (such as a variable), then we appeal to the function
drawn from the identity pass. This appeal is similar to a call to a method on super in
an object-oriented language.

The remainder of the functions are present in the module because we open the iden-
tity pass at the beginning. We then shadow the ones that we want to override. In
exchange for this convenience we lose exhaustiveness checking, but this is a small price
to pay for eliminating the code that would be repeated if each pass were defined over
the entire language by hand.
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In ML5/pgh, all of the passes of the CPS phase are implemented using the Pass
functor or the pointwise functions (when they are particularly simple), except for the
type checker and code generator—these both need to look at every construct, so there is
no benefit to be had. Several of these passes are independent optimizations that can be
run at various times during compilation; these are discussed next.

5.4.4 Optimizations

A round of optimizations is performed right after conversion to CPS, before we establish
the type representation invariant (which makes optimizations more difficult to perform)
or transform the program too much (which obscures high-level structure). Making the
program as small as possible at this point also makes the later expensive phases faster.

The optimizations that ML5/pgh performs are not very sophisticated, but they are
important for preventing the code from becoming unmanageably large. I only describe
each briefly:

Dead code elimination. The most important optimization removes effectless opera-
tions whose bound variables are never used. Several other optimizations rely on this
pass to clean up after them. Since the CPS language has a free variable calculation built
in, this pass is easily implemented; for each eligible construct, we just check to see if the
bound variable is used in the body, and eliminate it if it does not.

Inlining. It is also profitable to inline some values. If a value bound to a variable is
known to be small (like an integer) or is used only once, then we can substitute it for
the variable. We also non-conservatively inline some functions that appear to be good
candidates, because they look (for example) like datatype constructors. Inlining is also
easy to implement, because the free variable set also keeps track of how many times
each variable is used. Later optimizations reduce in-line function applications.

Beta reduction. We carry out beta redices that do not increase the size of the program.
For example, if we have a non-recursive literal function value applied to some values,
we reduce this by binding the values to the argument variables and expanding the func-
tion body. There are often many beta redices after expanding the function this way as
well. A related pass is specially tailored to run after closure conversion and remove
unnecessary closures.

Eta reduction. CPS conversion can produce eta-expanded continuations, for example
in the case where the last thing that a function does is call some other function. This
purely syntactic transformation eta-reduces functions where possible. Without it, we
would not have constant-space tail calls.
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Simplification. Primitive operations like comparisons applied to constants can be
simplified in the straightforward way. We also reduce jointext operations, which
is important because string manipulation is common in our applications.

Known. Even if we decide not to inline a function or record, we can sometimes sim-
plify operations applied to the variable it is bound to. For example, if = is bound to a
record {(; = y,l, = v} and we see a projection #/; x, we can reduce this to y. This
kind of situation is particularly common for closures that escape but that have some
direct calls as well. This pass uses the arg maintained by the Pass functor to collect
this information about bound variables.

Unreachable code. We eliminate unreachable code (such as the default case of an ex-
haustive sumcase, which reduces code size and false dependencies on variables (espe-
cially the Mat ch exception).

Here. If wehave leta z = held,, v and we are at the world w, then we simplify this to
a regular value binding. This helps us recognize other optimization opportunities.

Many more optimizations are possible, of course, from classic ones to optimizations
of our modal operations like put and go. My goal is to build a usable prototype, not a
high-performance production compiler, so I have avoided spending much time on op-
timizations. Of the potential optimizations to add, the one that would probably have
the biggest payoff would be monomorphization of needlessly polymorphic (or valid)
bindings. ML5’s type inference and automatic generalization are convenient, but fre-
quently produce code that is more polymorphic than the programmer needs or wants.
This is a problem only because ML5/pgh represents types at runtime in order to per-
form marshaling, so polymorphism and validity carry a cost. This will become evident
as we begin to discuss the type representation translations in the next section.

5.4.5 Type representation

The purpose of world and type representation is to provide data that the marshaling and
unmarshaling procedures can use to manipulate data of polymorphic type. Providing
this information is a two-stage process that brackets closure conversion: We begin by
establishing an invariant with a pass over the code, closure conversion requires and
maintains this invariant, and a final pass uses the invariant to create representations.
After this pass we still have types and worlds, but they are purely static entities.

The invariant that we establish is as follows: For any type variable « in scope, we
also have a valid variable of type a rep in scope. The variable must be valid because
a type is not tied to any particular world, and so we might use that type at any world
where it is in scope. We also have a corresponding invariant for worlds: for any world
variable w in scope, we also have a valid variable of type w wrep in scope.

This first phase simply establishes this invariant. To do so, we consider each of
the terms and values that bind world or type variables. We are not concerned with
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type-level constructs that bind variables, such as 1, because these type variables cannot
appear in terms. The relevant constructs are therefore A, which binds type and world
variables; sham, which binds a world variable; and extern type, which binds a type
variable. The unpack and unpack constructs for existential types also bind a type vari-
able, but we do not expect to see these at this phase of the compiler, because they are
introduced during closure conversion.

The way that we establish the invariant is to augment each of these three so that they
bind the representation variables in addition to the type and world variables. Each is
handled in a somewhat different manner. The A construct abstracts over worlds, types,
and values. This gives us a convenient place to put the representations;

Ao, ... 0o Wi, W T AL T Ag) v

is translated to
Ao, . o Wy, W
r1:AL, . T Ay,
yl:gg(al rep)a c 7yn:8(05n rep),
21:83(wy wrep), . .., 2;m:B(w,, wrep)).
letsham u,, = y; in

letsham u,, =y, in
letsham u,,, = z; in

letsham w,,, = z,, inv

by adding one value argument for each of the type and world arguments. The values
are wrapped in the £ modality so that they can be bound as valid variables in the body.
We use the value form of letsham because the body is a value. From this transformation
the type

V(... am; wi, .. wms A, Ag).B

becomes
v<OK1,...,Oén; W1y e v oy Wmys Al,...,Ak,
8(051 rep)7 s 78<04n rep>7
&B(wq wrep), ..., 8(w, wrep)).B

We must also transform applications of V type, since they would otherwise not pass
enough arguments. We do so by using the stand-in repfor and wrepfor values. So

v (A, Ap WL W) U1y, UR)
is transformed to

v (A, AR W Wi U1, Uk,
sham (repfor A,),...,sham (repfor A,),
sham (wrepfor w;), ...sham (wrepfor w,))
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This both establishes and uses the invariant: If in repfor A the type A contains a
type variable «, our ability to generate an actual representation at this point will rely on
there being a representation of « in scope.

The extern type import is very simple; since we can know nothing about this type,
we just require that the import be accompanied by a valid value that is its representa-
tion. We expect by convention that this value is associated with a label derived from the
type’s label. Therefore

externtypea =/{inc

is translated to
extern type a = { with rep u, = lyep inc

where /., is the arbitrary but agreed upon way of deriving the type representation’s
label from the type’s label.
Finally, the value of shamrock type is a little trickier. We transform

sham w.v
to
sham w.A(-; -; x:83(w wrep)). letsham u,, = x in v
and so the type
€8,A
becomes

€8,V(-; s B3(w wrep)).A

This is straightforward except for the elimination form. Because let sham binds a
variable, we must rewrite not let sham itself but uses of 1et sham-bound valid vari-
ables. (We also do a similar translation for the value form, letsham.) Therefore,

letshamu = v inc

becomes
letsham u = v in (inst u w ¢)

where the function inst instantiates uses of © within c. For continuation expressions, inst
just finds values and applies instv to them, keeping track of the current world. The func-
tion instv u w v is pointwise in v (also tracking the current world) except on a matching
valid variable:

instv u w u = u (-; -;sham (wrepfor w))

This part of the translation is implemented by maintaining a set of valid variables
that were bound by letsham or letsham. This set is the arg that is threaded through
the translation by the Pass functor.

This suffices to establish the type and world representation invariant. We must now
be somewhat careful when working on the code; for example, the dead code optimiza-
tion is unsafe because it might throw away apparently unused type representations.
This will be particularly delicate during closure conversion, which is the next phase.
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5.4.6 Closure conversion

In the closure conversion phase we will establish another invariant, which is that every
fns and A in the program is closed to modal and valid variables. We use this invariant
in the hoisting phase (Section 5.4.8) to pull each piece of code out to the top level so
that we can refer to them by global labels. In this phase we also translate go to take a
closure as an argument rather than a literal continuation, so that we can later marshal
this closure as data to be sent over the network.

This translation is complicated for a number of reasons. To highlight the important
aspects, I will start by giving the translation for the A construct, since it is non-recursive
and exposes all of the issues particular to the modal setting. I then explain how it is
extended to the mutually-recursive fns value. I will then discuss the direct call idiom,
which is an optimization to produce substantially better code in the case that functions
do not escape.

The heart of closure conversion is building an environment that contains the free
(dynamic) variables of a function, and then passing that environment as an additional
argument to the function. The body of the function then receives these free variables
from the explicit environment, rather than its surrounding context, making it closed.
The first complication in ML5/pgh is that dynamic variables include modal variables
bound at other worlds, and valid variables. We already discussed the solution to this in
the previous chapter; we use the at and & modalities to encapsulate these variables in
the environment. Therefore the environment for an abstraction A(@; J; x : A).v will take
the form

heldy,, xi,...,heldy, x,; sham w.uy,...,sham w.u,,

where z; are the free modal variables of type A;ew; and u; are the free valid variables
of type w.A;.

The next consideration is the maintenance of our type representation invariant. In
order to preserve the invariant that each type and world in scope also has a valid repre-
sentation variable, we must also include those valid representation variables in our en-
vironment. Naively, this would include every type variable in scope. This would make
environments much larger than they needed to be. Therefore, we relax this to those
representation variables that we might actually need. Which ones might we need? This
clearly includes the representation of any type or world variable that literally occurs
free in the body of the function. It is not enough, however, to just consider these—for
example, the A might contain within it the continuation

go[w’, v] call vy (V')

where v’ is free. This has no literally occurring type variables. However, compilation of
this will require us to marshal v; and v'. If one of these has a type involving a free type
variable a, then we will need its representation. Therefore, the right way to think of the
free type variables is as the variables of the typing derivation rather than the CPS term. It
suffices to take the set of actually occurring type and world variables, unioned with the
type and world variables that occur in the types and worlds of the free modal and valid
variables. We potentially need the representation for each of these types and worlds.
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There is one more subtlety to the computation of the free variable set. Just as we
should not consider a variable free if it is an argument to a function, a representation
variable need not be considered free if there is already a representation for that type
being passed to the function that we are closure converting. For example, if we have

A(; - :83(w wrep)). letshamu, =z in ... w ...

it may appear that we require a representation for w, because it appears free in the body
of the A. However, we already have a representation variable in scope for the body!
It is wasteful to pass another copy, but not doing so is also required for correctness in
some cases. This is because we use the same constructs that we are closure-converting
in order to establish the invariant in the first place. In particular, in the previous phase
the sham w.v construct was translated to

sham w.A(-; -; :83(w wrep)). letsham u,, = x in v

It would be a mistake to require a representation for w in the closure for the A here.
If we did so, then we would need to build an environment between the sham and the A
that contained a representation for w. However, we have no such representation to use,
because it is the argument to the A that is intended to provide the representation of the
world variable w that was just bound.

Therefore, the translation for A(d;J;y:A).v is as follows. Let y;:4;@w; be the free
modal variables of the A, and u;~w.:B; be the free valid variables. We then let the rep-
resentable type variables «;, be the be the free type variables of the typing derivation for
v, minus any among the arguments &, and minus any that appear as the type &(« rep)
of some value argument y. The representable world variables w; are defined the same
way. By our invariant, for each representable type and world variable we have a valid
variable u, or u, that is its representation in scope. These are added to the set of free
valid variables u; above. Finally, the environment env is

{¢,, = heldy, 1, ...,
¢y, = held,, y,,
l,, =shamw.uy, ...,
l,, = sham w.u,,}

and the environment type envt is

{yl:Alatwl, ceey

uligngl, ceey



The newly-closed A, which we'll call v;, projects out the components:

A{(@; & y: A, o envt).
leta y; = #¢(,, z. in

leta y, = #(,, . in
letsham u; = #/,, . in

letsham w,,, = #¢,, x. in
v

And finally, the closure is the environment and the function, packed into an existen-
tial so that the type of closures is uniform:

pack envt; sham (repfor envt); env, v,
as Ja.(o, V{d;d; A, ). B

which has the type that the annotation indicates. Recall that a pack always takes a
representation for the hidden type variable, which is embedded in the £ modality to
ensure its validity.

Of course, the types that are part of the annotations undergo a translation as well,
and the closure conversion transformation is applied recursively so that the any func-
tions within the body v are also closure converted; we omit that here to reduce distrac-
tions.

In addition to translating the functions into closures, we must also translate the call
sites so that they use the closure to make the call. An application

vy (A; W, 0)

is translated to the following value

xy (AW T, x.)

where, after unpacking, we are just passing along the environment as an additional final
argument.

Mutual recursion

The mutually recursive fns construct is closure-converted in a similar way. To simplify
the discussion, let us pretend that each function in the bundle takes a single argument:

fos(fi(z1) =c1; .. fulzn) = )
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We compute a single environment for the entire bundle of functions. The free vari-
ables y; and u;, as well as the environment env and the environment type envt are com-
puted the same way as before® Inside each ¢, we begin by binding all of the free vari-
ables from the environment in the familiar way. This leaves us with only thing left,
which is to account for the mutual recursion between the functions.

Within ¢;, we may use any of the functions f; (“friend” functions)—we could call
them (as closure calls) or pass them off to other functions. Therefore, after restoring the
free variables in the continuation body we then make a closure for each of the friends.
These are optimized away in the case that they are not used.

val fi = packenuvt; sham (repfor envt); z., fi in

valf, = packenuvt; sham (repfor enuvt); x., f, in
C;

We use the recursive variable bound by the fns construct, but wrap it as a closure,
using the same environment z. that was an argument to this function in the bundle.
The whole fns itself is packed into an existential, along with the environment, as
before. Because we select a function out of a bundle with fsel before calling it, we also
have to translate that. The value
fsel v.n

becomes the value

unpack o; u,; veo, x5 ((Ar, @), ... (A, @) conts = v in
pack a; u,; ., fsel x¢.n

as 373.(0, (An, 5) cont)

It is frequently the case that an fsel is applied to a literal fns value. (This is par-
ticularly common when there is just a single function in the bundle.) In this case we
will produce a spurious pack/unpack/pack sequence; one of the optimization phases
reduces this.

A call to a continuation unpacks the closure and calls it on its argument and envi-
ronment in the obvious way; I do not give the translation here.

Go

Aside from the A and fns constructs, we also closure convert the body of a go, so that
we can treat it as a piece of data to later be marshaled. This is accomplished simply by
pretending that it is actually a fns bundle of a single function taking zero arguments.
We translate the go to a go_cc, which expects a closure.

>We don’t exempt a type or world on account of its representation already being among the arguments.

For one thing, it would have to be an argument to all of the functions in order for this to be safe. More
importantly, representations never appear as arguments to fns at this stage of the compiler anyway:.
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Direct calls

The closure conversion algorithm that I have described here is correct and general, but
very simplistic. In fact, most functions in most programs are used in a stylized way,
where the function is defined and then called several times within its scope, but never
placed inside a data structure or passed as an argument to another function. For func-
tions used in this idiomatic way, building an environment is more costly than is neces-
sary. (One of the big costs is that we need to store type representations even when we
are not using polymorphism in the source program, because of the existential type.)

Another form of closure conversion, which we can apply selectively instead of the
above strategy, is the direct call calling convention. After computing the free variable set,
we just add these variables as additional parameters to the function rather than putting
them in an explicit environment. Because the function does not escape, each of the calls
to it also has those free variables in scope, so we just augment the call with the variables
as additional arguments. This works for recursive and mutually-recursive functions as
well, as long as the function does not escape within its own (or a friend’s) body.

I implement the direct call calling convention for a selection of common cases, but it
ought to be extended to more. The way that we bind functions using a variety of dif-
ferent binders (val, letsham, leta) and the fact that a function may be polymorphic
makes it difficult to recognize all instances of it. (The implementation is burdened by
having to maintain the type representation invariant, as well.) However, it is worth-
while to try, because when it applies it substantially reduces code size for that function
and results in noticeably better performance.

Having completed closure conversion, we now know all of the places where type
representations might be used. We therefore want to proceed immediately to producing
real representations for them. This allows us to discard the invariant and begin treating
data as data and types as purely static.

5.4.7 Type representation II

Type and world representations will be used wherever we perform a go_cc, to marshal
the closure so that it can be sent to the remote world. We now have a complete picture
of all of the places where type and world representations are generated (as the occur-
rences of repfor and wrepfor). We also have ensured that at any go_cc we can get the
representation of any type or world we need. The job of this next phase is to insert the
actual representations, and to insert the uses of marshal so that we can use the low-
level go_mar construct. These two are essentially separable; I will discuss the former
first.

Generating representations. For each wrepfor in the program, we perform a simple
translation. If if is wrepfor w, then we replace this with wrep w. This is the only closed
value of wrep type. If it is wrepfor w, then we translate this to u,,, where u,, is the valid
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representation variable associated with w by invariant. Since worlds have such simple
structure, this is all that is needed.

For types it is only a little more complicated. At each repforA value, we recurse
over the structure of A. At a type variable o we return the associated u,. Worlds can
appear in types as well, so at a world w we appeal to the above as if we saw wrepfor w.
For any type constructor, we recurse to produce the representations of the components,
and then use the corresponding representation constructor. For example, to compute
the representation of

{l1: A, 0y Ayatw}

we compute vy, vg, and v,,, which are the representations of A;, A, and w, and then
produce

rep({{, : v1,{y : rep(vo at vy,)}

The only last complication is types that bind type or world variables. For example,
when translating
V{a; ;). A

we will produce a representation of the form

rep(V{(a, uqa); 5 +).v)

where v is the representation of A. A may mention «, however, and should use the
representation u, in that case; we therefore just bind u,~a rep in the context as we
recurse and it works as desired.

Using marshal. The go_cc construct takes an address, (remote) environment, and (re-
mote) closure-converted function as an argument:

go_cc|w', Vg, Ve, V]

To translate this, we will use marshal to produce a marshaled value of type bytes
that we can then use with go_mar. At the other side—code that we will not write until
we look at the runtime system in Section 5.5.4—we will receive the bytes, unmarshal
them, and invoke the code on the environment. At the remote world, we will need to
know the type of the code and environment, so the natural thing to do is to wrap them in
an existential package so that the type is always the same. We can then pass a constant
representation to the unmarshal procedure. (This works because values of existential
type contain the dynamic representation of the hidden type, so we end up sending the
representation that way:.)

Suppose the type of the environment v, is envt. Then, the code we generate is

val p = held, (pack envt; repforenvt; v., vy
as Ja.(a, acont)) in
val b=marshal (p,repfor ((Ja.(a, acont))atw’)) in
gomar([w', v, b
where the repfor is expanded to a real representation as above. Therefore, at any given
world w we always unmarshal at the type (Ja.(«, acont)) at w.
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Representing representations. A natural question is, now that we have generated
these type representations, what form will they actually take at runtime? In fact, the
abstract representation we are using here is totally general, in that the representation
is isomorphic to the type itself. The actual representations that we will use (discussed
in Section 5.4.9) will not contain as much information—for instance, we will marshal
every arrow type the same way, so we only need to store enough to know that it is an
arrow type. By using this most general representation, we allow ourselves the freedom
to choose any “quotient” of it at the point we do code generation. (As a disadvantage of
leaving this decision to the last minute, we may end up keeping around more dynamic
information than we will ultimately need to use, however.)

Each world has a single representation, just as each world has a single address. In
fact, these will be the same at runtime. One consequence of our world representation
phase is that we could have provided the programmer not only with a 1localhost op-
eration for computing one’s own address, but an addressof operation that produced
the dynamic address for a static world variable. This is probably not important for the
current prototype, where there are only two worlds that we already know the identity
of, but might be a useful feature for a future iteration.

After inserting type and world representations, we perform dead code optimizations
to remove them, if possible. We also attempt to optimize poor closure conversions now,
since these optimizations are easier to do when they do not need to be sensitive to the
type representation invariant. Once the code has been cleaned up, it can finally be
hoisted, which is the last major phase before code generation.

5.4.8 Hoisting

The purpose of hoisting is to assign each closed piece of code a unique global label, so
that we can use these labels to refer to the code. The labels will later be compiled as
integers, so that calling a function will consist of looking up the code in an array and
jumping to it. We will also use these labels as the marshaled format of code on the
network; all of the worlds will agree upon the set and meaning of these integers.

Since all of the code will be arranged in an array at the top level, we need to pull
any nested code out of its scope. Because of closure conversion, each piece of code is
closed to any dynamic (modal and valid) variables. However, it may still have free static
(type and world) variables. As we pull code to the top level, we will need to abstract
over these static variables, so that the code remains well-formed. At this stage, we also
collect all of the world constants that are declared in the program with extern val. (This
is not really related to hoisting but it is a convenient place to do it.)

To represent the hoisted program, we need new constructs in the CPS language. A
program P is a set of labels (each associated with a global GG, which is some code with
its type), a set of worlds (each associated with its worldkind) and a distinguished label
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from the set, which is the entry point of the program:

{ labs€1 :Gl,...,fn :Gn
worlds wy/Jp, .., Wi /I
main =/ }

A global is either a modal value or a valid value:

G = v :Aew;
| wo; ~w. A

In either case, the type of the global will either be V(&; ; Y.((A)), ..., (A,)) conts or
V(@; @;-).V(o/; 'y A).B, since we hoist only the fns and A constructs. They each will be
abstracted over some type and world variables so that they can be hoisted from their
static contexts. To type check the program, we introduce two new kinds of hypotheses
that can appear in the context:

Ei . Ai@wi
b ~ w.Aj

J

for modal and valid globals, respectively. Since the globals may refer to one another
recursively, we begin by producing the context for type-checking the program, by as-
suming that the type annotations are correct. It is defined straightforwardly on the list
L of label/global bindings.

ctxfor(-) = -
ctxfor(¢ = v : Aew,L) = ctxfor(L), {: Aew
ctxfor({ = wv ~w. A, L) = ctxfor(L), { ~w.A

Then, checking a program is simple:

ctxfor(L) =T

I',wworld - v; : A;ew (when L; = {; = w; ~ w.A;)

'+ V; - Ai@wi (When Lz = Ez =7; Az@wz)

['Fw :Y{(;:).(() contsehome (for the i where L; = (= v; : A;ew;)
- {labs L; worlds wy/J,,,..., Wy, /Jn; main = (} ok

We check that every label has the type its annotation indicates, assuming that the
others are correct. We also check that the main label is a bundle with a single continu-
ation that takes no arguments. The code makes reference to other code by using labels
as values. There are two typing rules for labels, since they might be modal or valid:

[0: Aew, " /(: Aew

Pl~wAT L[V, ]Aew
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Translation

With this setup, the translation is easy. We crawl over the input expression (using the
Pass functor) while maintaining a partially-built program that we update imperatively.
When we see an extern world declaration, we insert that world with its worldkind
into the set of worlds, if it is not already there. When we see a fns or A, we first translate
its subterms recursively. We then compute the free type variables @ and world variables
& of its typing derivation. This will be a modal global if its world is a constant; other-
wise, it is a world variable wy that must be part of the set <. If modal, we abstract over
all of the free world and type variables to produce the following global:

(= ANa;d; )0 Y(d; ;). B

where v is the original value and B is its type. ¢ is a freshly-generated label. Since
we have abstracted over all of the value’s free static variables and it has been closure
converted, this global is well-formed in the empty context.

Having inserted the global into the program, we then replace its occurrence in the
expression with ¢, applied to all of the static variables that we abstracted over:

0 {d; ;-

This gives it the same type that it originally had.

For valid globals, it is only slightly trickier. We do not abstract over the world vari-
able wy (the world of the value) because the type-level V quantifier does not extend to
the judgment. Call w the set of free static variables other than wy (i.e. W' = & — wy). We
produce the global

(= wy. A& ;)0 ~ wy¥{a; ;). B

The use of the global is replaced with
(@)

where the world wj is filled in by the typing rule for valid labels.

Main. The input to the hoisting phase is a CPS expression. To produce a program,
which is just a list of labeled globals, we also pretend as though the whole expression
is itself a zero-argument continuation value to be hoisted. It will already be closed in
the empty context, but we abstract over the empty list of world and type variables for
uniformity. After it has been recursively translated, we insert the whole CPS expression
into the program at a freshly generated label, and then record that as the main label.

Optimization. When we insert code into the program, we need not necessarily gen-
erate a fresh label. If equivalent code of the same type already exists in the program,
we can re-use that label instead, coalescing the two. Because the CPS implementation
gives us alpha-conversion respecting comparison between values, this is easy to imple-
ment. However, since labels are not variables, we might not recognize some collections
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of mutually-recursive code that are equivalent up to the choice of labels without using
a more sophisticated algorithm.

After hoisting is complete, we can optimize and type check the program for a final
time, and then proceed to code generation.

5.4.9 Code generation

We are now ready to generate code for the languages that our compiler will output to.
(We do not need to do any traditional compiler back-end tasks like register allocation
because our target languages are currently very high-level.) Each platform has its own
code generator, though they are similar. A simple driver takes the hoisted program and
invokes the code generators for each of the worlds involved in the program.

All of the hosts need to agree on the program that they will run and a marshaled
format for the data that they share. On each host the code globals are arranged in an
array, where the indices are the same across hosts—this allows for hosts to marshal a
piece of code as the same global index for everyone. However, not every code global will
be generated for every host—for the world w, a modal code global typed at a different
world w’ will not be generated. (In fact, there may be no way to sensibly generate the
code, since it may make reference to local resources at w’.) This means that the array
of code on any given host contains gaps wherever the code global is specific to some
different world. Valid globals are always generated for every host.

For a program {labs L, worlds IV, main = (}, the driver arbitrarily orders L and
assigns consecutive integer indices to the labels. Then, for each world constant w with
worldkind J in W, it invokes the code generator for J on each of the modal labels at w
and all of the valid labels to populate the array. Each code generator also has a way of
marking the gaps in the array for labels at other worlds.

Currently there are two code generators, the Bytecode language for the server, and
JavaScript for the web client. Since the Bytecode language was designed for this task,
the code generator is much simpler. I will discuss it first.

Bytecode code generator

The bytecode B5 is a simple untyped interpreted language based on the ML5 CPS lan-
guage. Its syntax appears in Figure 5.17; there are statements (which roughly corre-
spond to CPS expressions), expressions and values (which correspond to CPS values)
and globals. A global can be of one of three forms: absent, meaning that there is no
code for this host at this index; a function global, which is a list of statements each with
a list of parameters (i.e., a bundle of functions); or a value global, which is a statement
taking a list of parameters. Since this language has no static types, these parameters are
all value variables, and there is no distinction between modal and valid variables. A
function global ends with a call to another function or a by halting. A value global
(implementing a hoisted A) ends with a return of some value. Such values are guaran-
teed to be pure and always return; we instantiate them with the expression e (e, . .., €,).
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vals v == i| "string" |inj,v |inj, —

| {ti=v, ..., b, =v,} | ptrp| tag "addr",i
| rep({li:vy, ..., l,:v,})
| rep(Fy.vg, ..., vy)
| rep([ty:v], ..., £, 0Y])
|  rep(v;atuy)
| rep(V(y1, -y MmN s Y )v)
| rep(By.v)
| rep(mi(pu(y1v1, oy Youn)))
| rep~y|repr | wrep "addr"
exps e == vl|z|injye|eer, ..., e)
primcall {(eq, ..., e,)
native p(ey,...,e,)

|
|
| newtag | marshal e, e,

| #lel|{li=e, ..., ly=¢en}
| rep({l1:e1, ..., by :en})

{ rep(Iv.e1, ..., €,)

optional vals v" == v|—
rep vars vy

primreps r Rcont | Rconts | Raddr | Rrep | Rwrep | Rint

Rstring | Rvoid | Rall | Rref | Rexn | Rtag

statement s val x = e ins

| callej.es(e],... e€))
| halt | returne
| golea; &)
| caseeofx.(l1=s1|...|ell,=s,|-=9)
| untage, withe; of (yes = z.5 | no = )
global g := Absent
| FunGlo ((x11, .-, Tn1)-S1y -« (T1ky -+, Tuk)-Sk)
| ValGlo ((x1, ..., Zn).s)

Figure 5.17: The B5 bytecode syntax. Many constructs resemble the CPS language.
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Within the code, we refer to globals by integers, so that (for example) call expects
e; (the global) and e, (the offset within the bundle) to evaluate to integers. Labels ¢
are just strings. For allocated reference cells, we have a syntactic class of pointers into
memory p (these are implemented as ML ref cells).

The last new element is type and world representations. (These have both expression
and value forms; I do not repeat all of the expressions.) The representation of a world
w is always a string (wrep "w"), its address. Many type representations are primitive
constants (the syntactic class r). This is because the marshaled format for these types

—

is uniform. For example, a bundle of continuations with CPS type ((A}),...,A,) conts
is always represented as an integer index into the array of globals, no matter what the
component types A are. The representation of any conts type is therefore rep Rconts.
Some other type representations, like the representation of a record type, are still struc-
tured. Additionally, some type representations bind representation variables, which are
in a different syntactic class 7. We will discuss marshaling and the representations that
support it in more detail in Section 5.5.4.

Generation. The translation from a hoisted program to B5 is continuation based. For
CPS values we define a function
convertv v K

that returns a B5 statement. Its arguments are a CPS value v and a meta-level continua-
tion that takes the converted B5 expression and returns a B5 statement. For convenience
we also define a function to convert a list of values

convertvs (vq,...,v,) K

where K takes a list of B5 expressions of the same length. A CPS expression is converted
directly to a B5 statement by the function [c]gs.
The code generation is a straightforward embedding of the CPS constructs into the
B5 ones, erasing types. For example, the pack value in CPS is converted into a B5 record
containing the type representation and the packed values:
convertv (pack A, vg,vy,...,v, as Ja.(By,...,B,)) K=
convertvs (vg, vy, ..., v,) K’
where ' (eg, e1,...,¢,) =K({d =eq, vl =¢y, ..., v =€, })
Constructs that have only static importance are eliminated entirely. For instance, we
compile a A with only static (type and world) arguments exactly as its body:

—

convertv (A(d; &; -).v) K = convertv v K

We should only see a A that takes value arguments at the top-level of a hoisted global, in
which case it is compiled to a ValGlo with the appropriate arguments. An instantiation
of a value of V type is complied (when there are value arguments) as

convertv (v (d; &; vy,...,v,)) K =
convertvs (v, vy, ..., v,) K’
where K'(e, e1,...,6e,) =
efer,...,en)
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At runtime, we expect e to evaluate to an integer, which we use as an index into the
array of hoisted globals. We evaluate that global (which should be a valG1lo), which is
guaranteed to return some value because it is total.

We associate with each CPS variable (valid or modal) a B5 variable, written z,, or z,,:

converty y KK = K(z,)

Some CPS values bind variables, which is why the output is a statement:®

convertv (letsham v = v inv’) K =
convertv v K’
where £'(e) =val z, = e in
convertv v’ K
Finally, we have two ways of interfacing with the local environment. When we see
an extern val, we presume that we have a corresponding variable available in the
initial context:

[externval y : Aew’' = { in c]gs = (val x, = x; in []ss)
Calls to imported functions are translated to B5’s own primitive call:

[let y = primcall({: (Ay,...,A,) — B)(v1,...,v,) in ] =

convertvs (vq, ..., v,) K

where K(eq, ..., e,) =
valr, = primcall {(ey, ..., e,) in
[[C]]BE

Execution of B5 is very simple, with the only complications coming from marshaling
and the interface with the runtime system. These are discussed in Section 5.5.

JavaScript code generator

The JavaScript code generator is morally the same as the bytecode one, but complicated
by the fact that we do not have control over the language. Let’s first discuss the fragment
of the language that we use.

JavaScript. The JavaScript language (formally known as ECMAScript for the stan-
dards body that defines it [32]) is an untyped interpreted language whose basic con-
struct is the object. Objects are property-value associations (hashes). Some specially
named properties have special effects, such as the __proto property, which indicates
a parent “prototype” object which can be consulted in the case that a property is not
found in the child object. Some objects are native, representing handles into the DOM

®This linearizes the evaluation of values, distorting the nested scopes of these constructs. We know

that this will not cause problems because the CPS representation ensures that all variables are globally
unique.
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exps e = x| {l:e1,..., 0, €}

| [er,...,en] | el€]
| 61:::€2|61&&62‘61+€2|...
| i| "string" | undefined
| el | lie, ..., en)

statements s = varxz =e¢;s
| switch(e){e; : s1;break; --- e, : s,;break;default : s;break; }
| if(e){si; Jelse{ss; }
e
| returne;
| return;

Figure 5.18: A limited portion of the JavaScript syntax.

tree or events. Manipulating these objects as data, the code takes a simple C- or Java-like
imperative form, with familiar for and if constructs, etc. as well as primitive syntax
for creating objects and selecting properties from them.

For the JavaScript code generator we ignore much of the language and use the ideal-
ized subset of its syntax shown in Figure 5.18. The expression {. . .} for creating an object
uses a colon where we have been using an equals sign throughout the dissertation; it
is not a type. The syntax [ey, ..., e,] creates an array with elements e, ..., e,, and e[€/|
subscripts an array. This language is much smaller than B5; we will represent almost
everything with objects, using the properties in different ways.

Code generation. As with the B5 code generator, we have continuation-based func-
tions convertv and convertvs for converting values to statements, and [c] s for converting
CPS expressions. The transformation is basically the same, except that we expend extra
effort encoding the values of B5 as JavaScript objects. For example, a value of sum type
is converted as
convertv (inj, v) K =
convertv v K’
where K'(e) =var oz = {t : {,v : e};
K()

That is, we represent an injection as an object containing a tag and a value; here the
property names t and v are fixed strings representing the tag field and value properties
respectively. In this sense the code is lower-level than B5 (which had injections as a
primitive notion). However, since JavaScript has run-time checks for every field lookup,
the code that manipulates these objects is also less efficient. It performs redundant
checks (the object will not be undefined and the t property is guaranteed to exist if
compilation is correct, etc.) and is needlessly general (the object will only have these two
tields, which could be therefore be at known offsets rather than looked up by name).
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Many constructs are supported by common code in the runtime system. For exam-
ple, newtag (which creates a new tag for the implementation of extensible types) is
translated to a call to the runtime function 1c_newtag:

[newtag y of Ainc|, =
val x, = lc_newtag() in

[clus

These runtime functions are implemented by hand in JavaScript. The 1c_newtag
function returns a value {a : "addr",s : i} where "addr" is the address of the current
world and 7 is an integer that is incremented each time the function is called. We include
the generating world’s address so that we do not need to coordinate unique integers
between hosts, which would be expensive.

We also expand some operations that are primitive in B5. For example, a tagged
object is represented as an object with properties t (the tag) and v (the embedded value).
untag is implemented by testing equality of the tag property:

[untag v, with v, of (yes = y.c|no = )]s =
convertvs (v,, v) K’
where K'(e,, e;) =

if (ep.t.a===¢pa && e, t.s ===¢;.8) {
Var Iy = €,.V;
[[C]]JS

}else{

[]s
}

The === operator is “strict equality”, which does not attempt to do any conversions
(between integers and strings, for example) which would be pointless and dangerous
since we know the form of the data we are working on.

For extern val we again assume there is a variable (properly, a property of the
JavaScript global object) with the same name in scope. For a primitive call, we generate
a call to a function of the same name. Currently, all of these values are provided by the
runtime system, though the programmer could also write his own JavaScript code and
import it this way as well.

Type representations are represented isomorphically to the values in B5, but by using
records and strings to distinguish the different cases; the details are uninteresting.

All objects in JavaScript are mutable. This means that we can represent a reference
cell as an object with a single property, its contents.

Globals. Code generation produces a declaration of a top-level array globalcode
containing the globals. Each global is either a hoisted A (taking value arguments), a
hoisted bundle of continuations, or not present because that global belongs to some
different constant world. In the last case, we can put anything we like in that slot; I
choose to put a function that displays an error message in case something goes wrong.
A hoisted A is represented as a JavaScript function taking one argument for each value
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argument to the A. A bundle of continuations is compiled as an array of functions, each
taking the same number of arguments as the corresponding continuation.
An instantiation of a value of V type is compiled as

convertv (v (a@; &; vy,...,v,)) K=
convertvs (v, vy,...,v,) K’
where K'(e, e1,...,¢e,) =
var x = globalcodele](eq, ..., e,);
K(z)

where we index into the globalcode array and call the function that is there. We
expect it to return a value.

As in B5, a function (continuation) is represented as a pair of integers: the index into
the global array of code and the offset within that bundle of functions. Thus the fsel
value is converted as

convertv (fsel v.7) K = convertv v K’
where K'(e) =
varz = {g=e,f =i},

K(z)

and a call to a function is

[call vf(ve, ..., vn)]ss =

convertvs (vg, vy, ..., 0,) K
where K(eys, e1,...,e,) =
lc_enqueue(es.g, er.f [e1,.. ., €,]);

return;

where the runtime function lc_enqueue enqueues the parameters (which represent a
thread ready to execute) and halts. When the scheduler decides to start this thread, it
indexes the globalcode array, then the bundle of continuations within that, and calls
that function with the supplied arguments.

Say. The say M keyword of ML5 produces a string containing a JavaScript expression
that, when evaluated, evaluates the ML5 expression M. At this low level, we have
say-cc, which takes a set of named parameters and a closure-converted continuation.

The named parameters are used to access JavaScript events. This system exists to
work around a shortcoming of JavaScript, being that it uses a single global property
called event to store the current event within an event handler. We must read the
properties that we want from this event before the handler returns, or they will be inac-
cessible. In the CPS construct

say_.ccx = ({1:A1, ..., lp:Ay)vine

the label /; is a string (like event .keyCode) that will be interpreted as a JavaScript
object selection expression. We expect it to have the type A;. (In the elaborator we
checked that the string belonged to a list of blessed expressions, so only those can appear
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here.) The value v is a continuation expression expecting a record of those values as its
argument. The translation relies mainly on functionality in the runtime, so is fairly
simple:
[say.ccy = ((1:A1,..., lp:Ay) vinc)s =
convertv v K

where K(e) =
var z; = lc_saveentry(e.vl.g,e.v1.f e.v0);
var v, = "lc_runentry (" + 21+ ", {" +
"1 : "4+ -+, In oz "4, +
n } ) ";
[c]us
The implementation of say relies on two runtime functions. The first,

lc_saveentry, takes a closure without arguments (as the index into the globals, the
offset within that bundle, and the environment). We get these from the components of
the argument to say. This runtime function stores the closure in a table and returns the
index into that table, which can be passed to 1c_runentry to later execute the saved
closure on some arguments. The say construct returns a JavaScript expression as a
string, which is a call to the 1c_runent ry runtime function on the index of the contin-
uation we just saved. It passes along in an object the values of all the event parameters.
For example, if we write in our ML5 source program

[<input type="text" onkeyup="[say { event.keyCode = c } keypress cl" />]
the resulting JavaScript string looks something like

'<input type="text" onkeyup="lc_runentry (15, { 11 : event.keyCode })" />'

if this is the 15" entry we have placed in the table. Crucially, we read from the global
event property before returning from the handler. Since l1c_runentry actually just
enqueues a thread and returns immediately, this is our last chance to read from event
before it is invalidated.

Optimizations. JavaScript is a performance bottleneck in the ML5/pgh implementa-
tion, so we perform some optimizations on the output of the code generator. There a
few reasons why optimizations are effective here: One is that the type-erasure process
has removed a level of abstraction that may have prevented us from recognizing op-
portunities for simplification. (For example, we can now “see through” what was once
held or sham, since these constructs do not exist in the JavaScript code.) Another is that
some type representations have become degenerate (like the representation of conts
types), which reduces dependencies on other representations, creating more dead code.
The third is that because JavaScript is oriented towards using string-based property
lookups, we gain a substantial performance increase simply by using short names for
variables.

Because it is an imperative, string-oriented language, it is difficult to do optimiza-
tions on JavaScript in generality. Therefore, this optimization phase assumes it is run-
ning on code that is the output of our code generator. Given that, the optimization
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phase is straightforward. It renames variables to be as short as possible, removes dead
code, and substitutes small pure expressions.

Output

Once the code generator has produced code for each of the worlds involved in the pro-
gram, it writes this code to disk—one file per host. This is the end of the compiler’s job.
Everything else in this chapter is concerned with how these programs are run, which is
the responsibility of a collection of software called the runtime system.

5.5 Runtime

We have been looking at details for some time; let us step back and remind ourselves
how an ML5 program is executed. From the source program, the compiler produces a
series of files—one for each host—containing the part of the program relevant to that
host and compiled to its architecture. In order to run the programs, we need a few
things: Something must cause the files to be loaded and executed, something must co-
ordinate the communication between hosts, and if the compiled programs need support
code, that must be provided as well. These tasks are all the responsibility of the runtime
system.

Aside from the fact that we had to make code generators for a concrete set of ar-
chitectures (B5 and JavaScript), the implementation so far has generally been agnostic
about the way that the programs will be run and the way they will communicate. In
fact, if we declare other worlds (of kind javascript or bytecode) in our program,
the compiler will happily output code for them. However, the current runtime system
is specialized to a two-party computation where the client is running JavaScript and the
server is running B5. These are expected to have the names home and server.

For this runtime, a compiled program consists of two files: the B5 source for the
server and the JavaScript source for the client. When the user wants to launch the ap-
plication, he does so by visiting a URL on a Server 5 web server (Section 5.5.1) that
has both compiled files available. It launches a new instance of the application on the
server (parsing and loading the B5 code) and sends a tiny web page to the client, which
includes the JavaScript runtime code (Section 5.5.3) and the JavaScript output of the
compiler. Execution begins on the client, by an effectful expression at the bottom of the
JavaScript source file that enqueues the main label (now a pair of integers and an array
of zero arguments) in the thread queue.

Since this process begins with the web server, let’s discuss it first.

5.5.1 Server5

Server 5 is a small program (about 3500 lines of Standard ML) that listens on a network
socket and implements a fragment of the Hypertext Transfer Protocol (HTTP) [38, 39].
Over HTTP it serves static content (such as images used by applications), launches ML5
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applications, and tunnels the protocol used by the server and client to communicate
within an application instance. It also executes the server half of ML5 applications and
provides the interface to server functionality like databases.

Network interface

For simplicity, Server 5 is a single-threaded, single-process program. It is structured
around an event loop, which collects all of the outstanding network connections to-
gether into a single join point, waiting for activity, and then dispatches events to the
modules responsible for those connections.

The networking library constitutes more than one third of the code of the server. It
was originally developed for the ConCert project [85]. Its design is somewhat inter-
esting, so I will describe it briefly here. It is based around an abstract type sock that
represents an outstanding connection:
signature NETWORK =
sig

type sock

type packet

(*» ... %)

val send : sock —-> packet -> unit
datatype sockevent =
Packet of packet * sock
| Closed of sock
| Timeout
(e e x)
val wait : sock list -> time option -> sockevent
end
The send function sends a packet (described below) on the socket asynchronously—
meaning that it is actually queued to be sent when the socket is ready to receive more
data. Data can only be received from a socket by using the wait function to synchronize
on a number of sockets at once (usually all of the sockets in the program). The second
parameter to wait is a timeout, so that if there is no activity, we will get the Timeout
event. This is a convenient interface because the network implementation manages the
state space of sockets in different modes, for example, a socket that is trying to connect
but has not yet succeeded, or a socket with some queued outgoing and incoming mes-
sages that is suddenly disconnected. What is interesting about the interface is that each
socket is associated with a protocol, which is a way of encoding values of a certain type
as bytes to be sent on the network. In the signature:

type "a protocol

val protocol
{ make : 'a —> string,
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parse : 'aprefix -> string -> 'a list * "aprefix,

empty : ’'aprefix } -> ’"a protocol
val decode : ’"a protocol -> packet -> 'a
val encode : ’"a protocol -> "a —-> packet

An a protocol is a method of converting a value of type « into the abstract packet
type, and vice versa. We can create a new protocol by explaining how packets are seri-
alized. This consists of four parts. The simplest is a function make that turns an « into
a string (bytes for the network). When we receive bytes on the network, however, we
may not always get enough to constitute an entire «. Therefore, we also need a type
Opresix Tepresenting some prefix of an o. We always start a new connection with the
value empty, the prefix represented by no bytes. Finally, when we receive some bytes,
we pass those along with the previous prefix to parse; the result is zero or more values
of type a and a new prefix.

The socket and packet types are not parameterized because we need to collect all
of the sockets together in one list for the event loop. (If they were parameterized by the
type of data sent, we would not be able to simultaneously wait on HTTP sockets and
bool sockets, for example.) The client therefore uses the encode and decode functions
to create packets with some protocol. The decode function can fail at runtime if given
the wrong protocol for the packet. This is because we use extensible types to implement
packets. In the implementation:

type packet = exn
type "a protocol = { encode : "a -> exn,
decode : exn -> 'a,

(x oo %)}

fun ("a, "aprefix) protocol { parse, make, empty } =
let exception Ptag of ’'a
in
{ encode = Ptag,
decode = fn (Ptag x) => x
| _ => raise Network "bad tag!",
(x ... %)}
end
The implementation of the o protocol type includes a decode and encode function
(among other things). When we create a new protocol, we create a new tag for the exten-
sible type exn (unfortunately done with the exception declaration in Standard ML)
which is tested against in the decode function. We also need a tag for this protocol’s
notion of an « prefix in order to build the parser for the protocol, which is not shown
here. In practice, a module that wants to use the network declares a single protocol at
its head, and uses that same protocol for every connection within the module (meaning
that it is very unlikely that we will have a confusion between protocols resulting in a
run-time error). The main benefit of this approach is that we do not need to have a
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/5/prog Create new session of program prog
/toclient/id Create the server to client socket for session id
/toserver/id Create the client to server socket for session id
/static/file  Return the file file as a web page

/demos Show a list of demos

/source/file  Display the file file as source code

Figure 5.19: The URLs that Server 5 uses to provide access to various functionality. The
toclient and toserver URLs are not accessed directly by users, but by the JavaScript
runtime.

centralized datatype enumerating the different kinds of protocols that are used in the
application; each module is responsible for implementing its own part of the extensible
set of tags itself.

This network interface was particularly useful for ConCert, where we had a number
of different packet formats in the same application. By necessity, Server 5 only listens
on a single port and uses HTTP for all of its connections. This means that there is cur-
rently only a single protocol for the entire application, making this generality somewhat
unnecessary. Still, the abstraction is desirable. For example, if we were to add support
for more than two hosts in an application, we would need a protocol to communicate
among them—HTTP would probably not be appropriate for this.

Event loop

When an HTTP request arrives to Server 5, we decide what to do with it based on
the URL that is accessed. If it is static data, we send the requested file from disk. If
it communication part of an existing session, we pass it off to that session. If it is a
request to launch a new session, we create an instance of the application, a new session
identifier, and begin execution. The possible URLs are summarized in Figure 5.19. We
begin with the URL for launching an application.

Server runtime

When the URL /5/prog is accessed by the user, the server loads the B5 and JavaScript
tiles that were the output of the compiler for prog (they must have already been com-
piled). The server parses the B5 code and creates an instance of the application: This
just consists of a thread queue (empty, since control begins on the client) and session
identifier (an integer). A session also maintains two references to sockets, the “to client”
and “to server” sockets. These are used to send messages between the client and server,
and are discussed in Section 5.5.2 below. They begin closed. The server then returns a
web page to the client that contains the session identifier, the JavaScript code, and the
JavaScript runtime. Since the client is where control flow begins, the server then returns
to its event loop, with this session idling while it waits for the client to initiate server
computation in it.
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Abstractly, a message from the client to the server represents a thread of control trav-
eling from client to server via a go. (The implementation is discussed below.) When a
thread of control arrives, we add it to the thread queue. Interleaved with network activ-
ity, Server 5 is also running a simple interpreter for B5. For each session, we check to see
if it has any outstanding threads that can be run. If so, we run some. (The scheduling
policy is round-robin and tuned for responsiveness rather than throughput.) A thread
can only run for a finite time before yielding because of the way that we have compiled
programs: Recursion is the only way for a program to loop, but calls are compiled to
push threads into the thread queue rather than looping eagerly. Therefore we do not
need to worry about preemption; we run the threads to completion and go on to the
next round. Additionally, if there are any queued messages from the server to the client
and we are in a position to send them, we do so.

Server 5 also provides some functionality that programs can access directly, such as
a rudimentary database (Section 5.1.4). The only interesting part of this is the imple-
mentation of addhook. Recall that it is imported to ML5 as

extern val trivialdb.addhook

string * unit cont -> unit @ server

This allows us to register a thread that will be executed whenever the indicated key is
updated. The implementation of the database just associates a list of such hooks with
each key, and when a key is updated, the continuation is launched in the same way
as a message from the client causes a continuation to be run. Because the database is
shared by all of the application instances running on Server 5, this gives us a limited (but
usually sufficient) way of having different application instances interact. We will see
several examples of this in Chapter 6. Of course, the right way to support applications
with more than two hosts would be to use the expressive language that we have gone
through so much trouble to build. The ability to do so is limited by runtime support,
with the chief limitation being the JavaScript security model. I describe this and the way
that we work around it in the next section.

5.5.2 Communication

The JavaScript security model is based on traditional sandboxing techniques (for pre-
serving memory safety on the client machine) and the same origin policy for enforcing ac-
cess control. The same origin policy asserts that JavaScript code can only access things
(DOM nodes, network sockets, etc.) that are from the same origin, where the “origin” is
taken to be the host, port, and URL that served the JavaScript [61, 120]. Furthermore, the
only way that JavaScript is able to communicate with other hosts is by actively opening
a connection;’ it is not possible for it to open a listening socket and wait for connections
from other hosts.

"There are in fact many ways of doing this to work around various browser quirks and attempts
at patching security holes. These range from the straightforward one that we use here to dynamically
generating HTML content that includes tiny invisible images (whose loading creates a minute covert
channel with the server that hosts them).
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This causes trouble for the ML5 model, where the server can initiate a thread on
the client with go at any time. The solution is standard in web programming practice:
The client preemptively makes a request to the server that the server delays responding
to until it wants to send a message. When it sends a message, the client destroys the
connection and creates a new one to replace it.

To make this work, the server keeps a queue of messages that it wants to send to the
client. The client attempts to always keep open a connection to the server by fetching
the toclient URL whenever it does not have an outstanding request. This has the
nice side effect of serving as the application’s keep-alive; even if the application is idle
and not making requests of the server, it still must create this connection. If it does not,
then the server can assume that the client has left the page and destroy the session to
reclaim resources.

This technique is reasonably simple and works well, because we always make a
connection back to the server that originally provided the JavaScript code. Unfortu-
nately, allowing for connections between clients or to other servers is much more diffi-
cult because of the same origin policy. The most general way to support multiple hosts
would be to build an overlay network where messages were routed through the origin
server(s) in a way that respected the same origin policy. This would be a nice next step
for Server 5.

5.5.3 Client runtime

The implementation of the client runtime is simpler in many ways, because the web
browser already provides a lot of the functionality that we need.

Like the server, the client has a thread queue and a simple round-robin scheduler.
The web browser runs JavaScript in a single thread—halting the user interface until
it is complete—so ML5/pgh’s CPS-based compilation and explicit yielding are neces-
sary here. (Many advanced web programmers manually CPS- and closure-convert their
programs for this reason, in fact.) Every call was compiled as a call to the runtime
function 1c_enqueue. The simplest implementation of it looks like this:

function lc_enqueue(g, £, args) {
lc_threadqueue.enqg( { g : g, £ : £, args : args } );
setTimeout (lc_schedule, 10);
bi
We just add the continuation and its arguments to the bottom of the thread queue,
and then set a timer to run the scheduler once after 10 milliseconds. We don’t achieve
10ms scheduling frequency in practice; this low number just gives the browser a chance
to process other events before returning to the ML5/pgh scheduler. In fact, it turns out
that the scheduling frequency is so low that we get abysmal performance if we yield at
every function call. An improved implementation of 1c_enqueue is therefore:

var THREADPACE = 6;
var lc_recsleft = 0;
function lc_enqueue (g, f, args) {
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if (lc_recsleft === 0) {
lc_threadqueue.eng( { g : g, £ : £, args : args } );
setTimeout (1lc_schedule, 10);
lc_recsleft = THREADPACE;

} else {
lc_recsleft ——;
var £ = globalcode[g][f];
f.apply (undefined, args);

}

bi

This version eagerly continues execution for 6 steps before yielding, by decrement-
ing a counter and then immediately scheduling the thread. This is a tradeoff between
the responsiveness of the user interface and the throughput of the JavaScript computa-
tions. We can not set it very high before being troubled by recursion limits or making
the application behave badly, but small factors give an almost linear speedup. A better
implementation would have a finer cost model for the underlying code [136]; right now
we only measure the cost in terms of the number of calls. The cost of each function can
vary widely depending on the program and how it happened to be compiled.

We arrange that we only run the scheduler when there are threads in it, so we never
waste time repeatedly checking an empty queue. We do this by installing a timer only
when we have added a thread to the queue, so that there is exactly one outstanding
JavaScript timer for each ML5 thread in the queue. This means that the thread queue
only consists of threads that are ready to run.

There are other sources of “waiting” threads, however, such as event handlers in
the UI and messages from the server. These become active through mechanisms other
than the thread queue. For example, JavaScript provides the XMLHt t pRequest object,
which is used to fetch the toserver and toclient URLs and establish communica-
tion with the server. The interface to XMLHttpRequest is asynchronous, meaning that
we give it a handler that runs whenever it receives data from the server. The handler
for our toclient connection checks to see if it has read a complete marshaled message
(which consists of a closure to execute); if so, it unmarshals the closure and puts it in
the thread queue. It then makes a replacement t oclient connection to wait for further
messages. Event handlers that we placed on Ul elements using say can also enqueue
threads; these come from the table of continuations that say saves into.

The client runtime also provides the implementation of some functionality that we
import using extern val. Though the interface we give for the DOM is very low-
level, it nonetheless requires brief stubs to implement it, since DOM operations are typ-
ically properties of the objects rather than “static” methods. For example, the function
that changes the UI focus to a DOM element is imported in ML5 as

extern val dom.focus : dom.node —> unit @ home = lc_domfocus
and implemented in the runtime as

function lc_domfocus (node) {
node.focus ();
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bi
Most of the JavaScript runtime consists of the marshaling and unmarshaling rou-
tines, which are the subject of the next section.

5.5.4 Marshaling and unmarshaling

Marshaling is the process of transforming an arbitrary runtime value into a string that
can be interpreted by another host to reproduce the value by the inverse process, un-
marshaling. Both marshaling and unmarshaling take as an argument the run-time rep-
resentation of the type of the value in question.

In ML5, marshaling and unmarshaling use the same algorithm on all of the hosts,
because they must agree on the format of marshaled data. Therefore I will discuss mar-
shaling from the server’s perspective, without loss of generality.

Marshaling. The marshal function takes the value and a representation of its type
and returns a string. It also takes a marshaling context A, which maps variables 7 to
type and world representation values. We need this because some representations have
binding structure. Finally, marshal keeps track of an optional concrete world w’, which
is the world of the value being marshaled. The marshaling context begins empty and
the world begins as the world doing the marshaling.

Most of the cases of marshaling are very simple, and just consist of converting the
value to a string in an arbitrary but consistent way. Rather than bother with the details
of how these strings are actually represented, I pretend as though marshaling produces
a list of tokens, which can be strings, integers, or other lists of tokens. For example, the
case for marshaling tags is as follows:

marshal A (tag "addr",i) (rep Rtag) w/ = ["addr",i]

That is, to marshal a tag (a value consisting of the address of the host that created the
tag, as a string, and a unique integer), we produce the address and integer. A less
degenerate case is for records:

marshal A ({1 =v1,..., 0, =v,}) (rep {l1 1 Vo1, ..., by i V) W =

? ?
[¢1, marshal A vy v,q W', ..., £, marshal A v, v, w’]

In this case we just recursively marshal each of the component values along with the
name of its label.® The marshaling of integers and strings, injections, continuations
(which are pairs of integers), addresses, type and world representations themselves,
and most other values are just straightforward recursive representations of their syntax.
I do not give those here, instead discussing only the remaining cases that are interesting.

The marshaling function is defined by case analysis on the type representation, not
the value being marshaled. For example, the held constructor is present at run time, but

8We could be more efficient by insisting that the values be sorted by name, or by not using named
labels at all, but that is an optimization for a later time.
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we do represent the at type:
marshal A v (rep(v; at v,,)) W’ = marshal A v v, (read (A, v,,))

Here we recursively marshal the same value at the representation v;. We also change
the current world, by using the read function, which is defined as

read (A, wrep "w") = w
read (A, rep 7) = A7)

The world may be either a literal world representation (in which case we extract it), or
it may be a representation variable, in which case we look it up in the context. In the
context it may have the value “—,” the reason for such optional worlds are discussed in
the case for £ below.

The reason that we record the current world is so that we can specialize the mar-
shaling of certain values—specifically local resources—based on the world that we are
marshaling them at. Suppose that we are marshaling a local mutable reference cell.

marshal A v (rep Rref) w' = ...

We use the primitive Rref representation for mutable references and other local re-
sources, so the value v could have the form ptr p, for example. Even if we knew that
it had this form, we cannot directly marshal pointer into memory p. This is because
we cannot get access to this pointer in JavaScript or ML, nor would we want to send
raw pointers over the network—it would interfere with garbage collection, for instance.
What we do instead is called desiccation: we store v in a local table and marshal the in-
teger index into that table instead. We only want to do this if the reference is a local
reference. The representation Rref does not tell us whether it is a local or remote refer-
ence, so this is where we use the world parameter to marshal. Supposing that we are
marshaling on the server, then the case is

marshal A v (rep Rref) server = [i]

where 7 is the index of v after it has been inserted into our local table. If the world does
not match, then the case is

marshal A i (rep Rref) w’ = [i] (when w’ # server)

In this case, we are marshaling a local reference that belongs to some other world. If
we have such a reference, then it was desiccated before it was sent to us, so it is locally
represented as an integer. Therefore, we expect an integer and marshal it as an integer.
Reconstitution of desiccated values takes place in unmarshaling, which is described
below.

The representation might be a variable, in which case we look it up in the context:

2

marshal A v (rep 7) w’ = marshal A v (A(7)) W’
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Note that this rule applies for any value v. We bind representation variables as we
recurse. For example, inductive types are marshaled as follows:

marshal A v (rep (m;(1(711.01, -+ Yn-Vn)))) W' =
marshal (A, v =7(1),..., 7%, =7(n)) vov; W’
where r(k) = (rep (m(u(v1-01, -5 Yn-vn))))

Because the roll coercion is erased at runtime, the value could take any form (in practice
it is an inj, because these come from source language datatypes). We will continue
marshaling the same value at an unrolled version of the representation. We extend the
context to bind the representation variables ; each one is bound to the representation
of the corresponding projection from the .. This case of marshaling does not make the
representation smaller (by some measure), so it is how we are able to marshal arbitrarily
large objects without necessarily having representations of the same size.

Three other constructs bind variables during marshaling. First, a value of existential
type is marshaled as follows:

marshal A ({d =v,, vl =vy,...,von=v,}) (rep (Fy.vp1, ..., Up)) W' =
[marshal A v, (rep Rrep) w’,
marshal (A, v = v,) vy v,1 W7,

marshal (A, v = v,) v, Vpp W]

The representation of 3. A binds a variable to the representation of a. This comes from
the d field of the value that has that type—since the hidden type could be many dif-
ferent things, we can not know it ahead of time. We marshal it and send it, since the
unmarshaling side will need to get the representation dynamically as well; when mar-
shaling the representation we use the representation of representations, rep Rrep. This
is followed by the marshaled values, which are marshaled in the extended marshaling
context.

Marshaling of V and € types is subtle because they are universal quantifiers, not
existential ones. This means that there is no one existential witness to bind to the repre-
sentation variable. Because the quantifier is universal, however, we can instead choose
any instantiation of it that we like. Let’s take a V quantifier that abstracts only over types
as an example:

2

marshal A v (rep(V(71, ..., Yu; =5 )0p)) W =
marshal (A, 7, = rep Rvoid, ..., 7, = rep Rvoid) v v, w’

We choose to instantiate the universal type at the empty type void, and therefore bind
all of the representation variables to rep Rvoid. Marshaling at this representation al-
ways fails, but there are no values of void type! Similarly, there is no value of type
V(o -5 -).a (or else there would be a value of type void). On the other hand, we do have
values of type V(a; -;-).(o cont). The marshaling of a continuation does not depend on
the types of its arguments, so instantiating o with void here does not cause trouble (we
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never look up the corresponding representation variable ). As another example, the
sum type [/, : int,{, : void] is inhabited, but only by a value of the form inj, n. This
means that we can marshal the compiled version of the polymorphic empty list nil, be-
cause the arm of the sum type that it occupies does not mention the polymorphic type
variable.

The fact that we can choose to instantiate a universal quantifier any way we want is
our justification for marshaling V this way. That we never try to marshal at the Rvoid
representation is a consequence of a correct implementation. In fact, since a correctly
compiled program should never use the representation variables bound by V, an opti-
mized implementation should probably not represent the V type at all. Either way, it is
important to observe that this is what we are doing.

The €, type constructor is also a universal quantifier. We treat it in the same spirit
as V, but have no direct analog of the void type for worlds. This is the reason that the
world argument to marshal is optional:

marshal A v (rep (£3,.v,)) w' = marshal (A, y = —) v v, —

When we marshal a value of €3 type, we bind the representation variable to “—” and also
begin marshaling at no concrete world. This is slightly different than the case for void in
that there are many values that are well-formed irrespective of the world (the cases for
records and integers do not care about the world at all, for example). The only marshal-
ing cases that are sensitive to the world are the ones that desiccate local resources. There
are no local resource values that are well-formed at every world, however, so these cases
do not arise. Worlds can also appear in some types. If this universally-quantified world
appears in an at type, we will just set the current world to “—” like we did with €. They
can appear in some other values, like the type of the address of a world. Again, there is
no value of address type that works for all worlds; every address is for a specific world.
Therefore, we should not encounter these cases either. Like ¥, we might as well not even
represent the £ constructor—but it is worthwhile to observe our justification for doing
SO.

For the same reasons, in the full version of the rule for V, we bind the representation
variables for the world arguments to “—”; the case is

marshal A v (rep(V{(71, -\ Vi Vi -y Vs ) 0r)) W=
marshal (A, v, = rep Rvoid, ...,7, = rep Rvoid, | = —, ..., 7, =—)vuv, w’
Unmarshaling. Unmarshaling is the inverse of marshaling. It is a function
unmarshal [ v, w’

where [ is a list of tokens, v, is the representation of the type of value we expect, and w’
is an optional concrete world as in marshaling. It returns the unmarshaled value and
some suffix of [. We write [; + [, for the concatenation of token lists /; and .

At the server we always begin unmarshaling at the same type,

Jdo.(a, a cont)) at server
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When we finish unmarshaling, we have a local continuation and an argument for it, so
we can insert this in our local thread queue.
Unmarshaling is simple in most cases, reversing the work done by marshaling. For
example, to unmarshal a value of sum type (when the arm carries a value):
unmarshal ([{] +1) (rep [( : v, ]) W' =
(inj 0.7
when unmarshal [ v, w’ = (v, )

Unmarshaling treats the at modality, the universal quantifiers, and inductive types
the same way that marshaling does. For existential types,

unmarshal Al (rep (37.01, - .., Upn)) W' =
({d=v.,vi=2v,...,vn =0, },1')
when unmarshal A [ (rep Rrep) w’ = (v,,1;)
and unmarshal (A, v = v,) [} v,y W’ = (v1,12)
and unmarshal (A, v = v,.) I, U W’ = (v, 1)

We begin by reading the representation of the hidden type from the list of tokens, using
the representation of the type of representations, (rep Rrep). We then bind that to the
representation variable and read the sequence of values using the sequence of represen-
tations that are components of the 3.

The inverse of desiccation is reconstitution. When unmarshaling a reference, we again
have two cases depending on the world:

unmarshal A ([;] 4+ 1) (rep Rref) w' = (i,1) (when w’ # server)

The marshaled format of a reference is always a desiccated integer; if it is not our own,
then we continue to represent it as an integer. If it is at server, however, we read the
value from our local table:

unmarshal A ([i] + 1) (rep Rref) server = (v, 1)

where v is the value in the local table at position i.

Other considerations

Sharing and cycles. Marshaling does not preserve sharing (where two identical ob-
jects live are allocated to the same place in memory). Sharing is important for some
functional algorithms in order to get good space behavior. In the Grid/ML marshal-
ing implementation we used pointer comparisons to preserve sharing and cycles [85].
We do not have direct access to pointer values in JavaScript, which makes sharing-
preserving marshaling hard to implement. Our best strategy would probably be hash
consing [6, 36], which would also have the advantage of finding accidental sharing in
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addition to the sharing already present, but would be quite costly. On the other hand,
cycles pose no problem because they can only come from mutable references. We don’t
look at the contents of mutable references, because we marshal them by desiccation. In
any case, the design of the language does not constrain our implementation of marshal-
ing much: only that we need to be able to marshal any value. Since desiccation is a
fairly general way of handling local resources like reference cells and DOM handles, the
remaining data can be marshaled using whatever technology is appropriate.

Garbage. One problem with desiccation, however, is that it accumulates values in the
local table. Currently, these can not be reclaimed. To do so, we would have to implement
distributed garbage collection, because the last outstanding reference to a desiccated
value might be as an index in a data structure at another world. Distributed garbage
collection is possible in principle, but quite difficult. Fortunately, we only pay this cost
when we use certain mutable structures and local resources—the local garbage collec-
tors in the web browser and Standard ML runtime can collect anything else. I do not
think that these unreclaimable resources are a big problem for our application domain.
Instances of web programs are usually short-lived, and users tolerate web browsers
that leak memory for existing web applications. An implementation that additionally
allowed for long-running programs would clearly be useful, however.

Data format. The server and client communicate using marshaled strings in the bodies
of HTTP requests. One good thing about using a mainstream protocol like HTTP for
communication is that network software usually assumes that the traffic is desirable
and therefore allows it through proxies. Unfortunately, some software also assumes that
it understands the contents of the request, and therefore will modify it! (For example,
some VPN software will rewrite the page to insert a control panel and modify links to
pass through the VPN.) I found it necessary to wrap the marshaled message in a tag
<ml5>s</ml15> and use a custom MIME type [41] in order to work around proxies; it
is not clear how general this solution is, but hard to accept blame for it not working.

5.6 Summary

In this chapter I described the programming language ML5, which is an ML-like lan-
guage for distributed computing based on the modal typing discipline that we derived
from the modal logic IS5 (Chapter 3). The language retains the spirit of ML: it is stati-
cally typed, higher-order, call-by-value, and has support for both functional and effect-
ful programming. Our modal typing judgment integrates cleanly into the language,
leading to an extension of the usual polymorphic type inference algorithm to type,
world, and validity inference. Owing in part to type inference, SML code in the com-
mon subset generally type-checks without modification. In this sense the distributed
features and typing discipline do not interfere with programs that do not make use of
them.
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I also described the type-directed ML5/pgh compiler, which follows the same basic
strategy as the abstract compilation I formalized in the previous chapter. It is extended
so that we can implement first-class continuations, algebraic datatypes and extensible
types, type polymorphism, an interface to local resources via network signatures, run-
time type representations for marshaling, and exceptions. The compiler is supported
by a runtime system, including a web server and interpreter for the server’s bytecode
language, as well as implementations of the marshaling algorithm for both client and
server.

Implementing a language is an intellectually valuable exercise even if we never use
it, but it is clearly also interesting to try to write programs in our language! The imple-
mentation currently works well enough to support some realistic demo web applica-
tions. These are the subject of the next chapter.
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Chapter 6

Applications

In this chapter I describe some of the applications that we have built using ML5. These
applications are intended as demonstrations and exercises of its features, so they are
somewhat small. Nonetheless, they suggest that with some more engineering, ML5
could be used to build full-scale applications, and show us what features work well and
which ones need to be improved.

The screenshots in this chapter have been modified slightly to make them more ap-
propriate for print. The applications can also be run online at http://tom7.org/
ml5/ or by installing and running Server 5 on a local computer.

6.1 Watchkey

In developing these applications I tried not to implement too much functionality on
the server in Standard ML or the client in JavaScript. This is because I didn’t want
ML5 code to just be “glue” between code written in native languages (although it can
clearly be used this way)—most of the computation should be expressed in ML5. One
consequence is that the database that all of the applications use is very rudimentary. It
is imported on the server with the following network signature:

extern val trivialdb.read : string -> string @ server
extern val trivialdb.update : string x string —-> unit @ server
extern val trivialdb.addhook

string * unit cont -> unit @ server

It associates string keys with string values. We use this simple database for persistent
storage in all of the applications. Let’s look at a simple use of it before moving on to the
real applications.

The Watchkey demo displays the current value of a database key on the server, and

allows the user to modify that key. A screenshot appears in Figure 6.1. It is good to see
one working program in its entirety; the source code is as follows:
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Figure 6.1: A screenshot of the Watchkey demo. The upper box (with DOM id showbox)
displays the current value of the database key; it is asynchronously updated whenever
the key is changed on the server. The input form on the bottom (with DOM id inbox)
allows the user to set the key by pressing the button.

unit
import "std.mlh"
import "dom.mlh"
import "trivialdb.mlh"

put k = [tdb-test]
fun getkey () =
let val v = from server get trivialdb.read k

in dom.setstring (dom.getbyid [showbox], [innerHTML], v) end
fun setkey ()
let put s = dom.getstring (dom.getbyid [inbox], [valuel])
in from server get trivialdb.update (k, s) end
do dom.setstring (dom.getbyid [page], [innerHTML],
[[k]"s value:
<div class="show" id="showbox">&nbsp;</div> <br />
<input class="in" type="text" id="inbox" /> <br />
<div onclick="[say setkey ()]1"
class="button">set key</div> 1)
do from server
get trivialdb.addhook (k, cont (fn () => from home get getkey ()))
end
We begin by importing header files that define the standard environment and import
the external resources for interacting with the client DOM and server database. The
database key that we use in this application is t db-test, which is bound to the valid
variable k. We use k on both the client and server below. (Note that we do not have to
use put here to make the binding of k valid—the binding would be generalized because
the right hand side is a value.) The function getkey retrieves the value of the key
from the server and modifies the page to display it. It uses get to evaluate a database
read expression on the server, and then uses the DOM routines to modify the page on
the client when it returns. The display box (which is later created as part of the page)
will have the DOM id showbox; setting its innerHTML property changes its displayed
contents. The setkey function reads the value of the input box (with id inbox), binds
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it to a valid variable s so that we can use it on the server, and then goes to the server to
update the database. Both of these functions have type unit — unitehome; they are
modal because they access the DOM tree, which is local to the client.

The next declaration has the effect of setting the entire page to the HTML document
given. The document contains the HTML elements that getkey and setkey refer to.
It also contains an element that handles the onclick event by calling setkey. The
CSS classes [11, 69] show, in, and button just change the presentation of the elements
so that (for example) the clickable button has a raised outline. The declaration of these
styles are not important to the behavior of the program and so I don’t show them.

After creating the page, we also make a trip to the server to register a hook for when
the key changes. We use the addhook function to do this. The hook that we send goes
home and runs the getkey function to update the contents of the display.! The cont
function is defined in the standard library; it converts a function of type unit — unit
and to a unit cont.

That’s it! The remainder of the applications use a similar model of creating a web
page with event handlers and modifying its contents in response to activity from the
user or asynchronous updates from the server. Since they are much larger, we will not
want to look at the entire source code. Instead, we will discuss their design, the most
interesting parts of their implementation, and how the features (or lack of features) in
MLS5 help and hinder us.

6.2 Chat

One consequence of using a persistent centralized database is that multiple instances of
the same application see the effects of each other’s database modifications. For example,
two instances of the Watchkey demo can see each other’s updates to the key. The first
application is a generalization of this mode of use to a two-party chat program.

The design of this application is based on having a database key for each of the two
players, representing their current message. (We actually have two keys per player, the
“old message” and the “current message”.) These have hooks installed, like in Watchkey,
so that the two players see updates to the keys as they are made. There are two phases
of the application. When it starts, the user selects which of the two players he is, and
then it proceeds to the actual chat.

Selecting the player consists of displaying a web page with two buttons on it. This
screen appears in Figure 6.2. First class continuations give us an elegant way to display

this prompt and react to the selection of a player. The beginning of the program looks
like this:

put (us, them) =
letcc ret
'This program can be made more efficient by reading the key before it goes to the client, so that it
does not need to make another round trip. This optimization could plausibly be done by the compiler,

in fact, because the get obeys certain equivalences. Such an optimization would be useful and a nice
consequence of using high-level language features to express the concepts of distribution.
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Chat! Choose your player:

player 1| player 2|

Figure 6.2: Choosing the player in the chat application. Each of the buttons has an
event-handler that continues at the top-level of the program with bindings for the player
selected.

in
let fun pick p = throw p to ret
in
dom.setstring
(dom.getbyid [pagel,
[innerHTML],
[<div class="heading">Chat! Choose your player:</div> <br />
<span class="button"

onclick="[say pick ([chat.1l], [chat.2])]">player 1</span>
<span class="button"
onclick="[say pick ([chat.2], [chat.l])]">player 2</span>
1)
halt ()
end
end

We are making a declaration of the pair of variables us and them, which are the
database keys for this player and the opposite player. (If we choose player 2, then us
is chat.2 and them is chat.1). We can’t wait in a loop for the prompt to return,
because this would lock the user out of the interface; instead we must react to actions
initiated by the user. To do so, we save the current continuation (of type (string x
string) contehome). The function pick takes a pair of strings and throws them to the
return continuation that we just saved. We then modify the page to display the prompt.
It has two buttons with event handlers. The “player 1” button calls pick with the keys
for the first player, and similarly for player 2. We then terminate the current (top-level!)
thread by calling the standard library function halt. The page waits idle until the user
triggers one of the two event handlers, at which point the appropriate strings are bound
by the put and we continue to the later top-level declarations, which enter the chat
mode.
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One shortcoming of this approach, which is a problem with all of our applications, is
race conditions. It is conceivable that (depending on how the program is compiled and
scheduled) the user could click both buttons and thus launch two concurrent threads
running the remainder of the application. This would not cause the application to crash,
but it would behave strangely (two competing server hooks would be added for each
of the keys, for example). There are a number of solutions we could contemplate for
this. It would be easy to add rudimentary locking or atomicity to the language because
JavaScript execution is already single-threaded. The intention that an event handler (or
an external disjunction of event handlers) be linear is common in these applications—
that it (and related alternatives) should only be used once. This would also be simple
to implement because JavaScript is single-threaded. In any case, a proper treatment
of user-interface concurrency is outside the scope of this dissertation, and so I do not
worry about it much in these applications.

After selecting the us and them keys, we proceed to replacing the page with the chat
interface. This appears in Figure 6.3. The chat bubbles are just styled <div> elements,
whose bodies we update as in the Watchkey demo. They show the value of the “old” key
(in grey) and the current key (in black). The input form at the bottom is the only source
of user input. It has an event handler registered for keypresses:

[<input type="text"
class="typebox"
onkeyup="[say { event.keyCode = c }
case c of
?\r => input-send ()
| _ => send-all ()1"
id="[id.input]" />]

The send-all function reads the input box and sends its contents to the server
to be saved at the us key. Because the other player will have a hook attached to this
key, he will see our message as we type it. If the return key is pressed (the keyCode
is the character \r) then we call the input-send function. This replaces the “old” us
key with the value of the current one, and blanks the current key, to visually indicate
that the player has committed to his message. This was the impetus for adding event
parameters to the say construct; without them there is no way to detect that the user
has pressed the return key.

That’s all there is to this application. There are a couple things that could be im-
proved about it. First, the application could automatically assign players to slots (or
support an arbitrary number of concurrent players). To do so it would have to use the
database to arrange that each player is assigned a unique identifier and key, and that
the list of active players is sent to each of them. The database is not really the most
appropriate structure for doing this. Moreover, since ML5 is already designed to sup-
port multiple hosts in the same computation, it would be better to build the application
that way and improve the runtime to support multiple hosts in an application. I dis-
cuss some ways this could possibly be accomplished in Chapter 7. Another problem is
that the application sends a lot of redundant messages. For each keypress, we make a
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Server 5 Chat!
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I'm great!
4 )
Great!
Ereat!

Figure 6.3: Chatting in the chat application. The bottom bubble is the user’s chat, and
the top is the opposite player’s. A form tracks the user’s input as he types.
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round-trip to the server and send not just that keypress but the entire string. Moreover,
the thread model does not guarantee that these threads will run in order, so an earlier
keypress could overwrite a later one. The cost of sending the entire input each time is
not serious, since the fixed overhead of a message is the overwhelming factor for the in-
put sizes we're concerned with here. Sending too many messages and the possibility for
sending them out of order is a more serious problem, however. In the next application
we will see one way of avoiding this problem.

6.3 Wiki

The next application is a Wiki, which is a collection of hyperlinked documents that are
easily editable by the user. The idea of this application is to associate each document
with a database key, and provide an interface for navigating between keys and editing
them. Its most important feature is that each document is rendered using a custom
markup language. All of this rendering is performed on the client.

The interface and markup language are designed to mimic the popular MediaWiki
software [71], which is used for Wikipedia [143]. Unlike MediaWiki, navigation between
documents is performed all within the same web page (rather than using the browser’s
native hyperlinks). To begin editing a page, the user clicks on the “edit” tab at the top,
which displays the editable document source without leaving the page. A screenshot of
the editing interface appears in Figure 6.4.

This application would be just like the Watchkey demo if not for the client-

side page rendering. As the user modifies the page source, a thread parses the
markup language and generates the rendered HTML for the display. The syntax
[ [dest |text]] creates a link to the page dest that displays with the text text.
These links are not real hyperlinks but colored text with an onclick handler gener-
ated by say that navigates to the referenced page. The wiki also supports the syntax
{{tmpl|sl|arg=s2|arg2=s3|s4}} for templates. A template is a parameterized
page fragment that can be used in the construction of other pages. The arguments are
separated by a vertical bar, and can be named or unnamed. (For example, the heading
template used in the screenshot renders its unnamed argument at a larger size followed
by a horizontal rule.) Within the definition of the template (itself just a page), uses of the
arguments are written { { {name} }} for a named argumentor { { {n}}} for the n'* un-
named argument. Rendering a page therefore may require the contents of other pages.
Additionally, because rendering takes place while the user is typing, the render function
must have reasonable behavior when the document ends with incomplete syntax like
{{tmpl|x=.

Most of the Wiki implementation consists of the hand-written parser and renderer.
They are written in a straightforward ML fashion: As a collection of mutually recursive
functions using datatypes and pattern matching to represent tokens and parsed phrases.

The parser was originally a major performance bottleneck in the Wiki application—
the original version was too slow to be used for anything more than a few dozen char-
acters. This is due to the poor design and performance of JavaScript in general, and
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Here are some pages that might interest you,

* About the wiki,

# il syntasx.

{{heading| Wiki demo}}
Here are some pages that might interest you:
# [[sbout]| About the wiki]].

# [[syntax|Wiki syntax]].

renderl sa\rel

dashedbox, heading

A Unsaved changes.

Figure 6.4: A screenshot of the Wiki application, while editing a page. The editable text
box at the bottom is the page’s source code and the display at the top is its rendered
version.
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the quality of the JavaScript code produced by ML5/pgh. Since I don’t have any con-
trol over JavaScript, improvements could only be made to the compiler. Many of the
optimizations in ML5/pgh were included to specifically address problems with the
code generated for this parser. The biggest improvement came from using a more ea-
ger scheduling strategy that executed several basic blocks in a thread before yielding
(Section 5.5.3). This is because the tokenization code is a small tight loop over the in-
put string, which otherwise causes an expensive yield for every character. Including a
primitive int case construct in the CPS language improved the inner loop, which was
previously compiled as a series of if tests for character equality. Many more optimiza-
tions are possible for the compiler, but what is currently implemented is enough for the
Wiki rendering code to run at a tolerable speed.

A consequence of a slow renderer is that we can get very bad behavior from race con-
ditions and overeager updates. For example, if every keypress triggers a render (which
can take up to a second for medium-sized pages), we will certainly have multiple ren-
derers running concurrently on different input, each attempting to update the display
with an outdated version of the page. The Wiki is therefore designed in a different way.
We maintain two reference cells that store time values: the time that the page source
was last modified, and the time that we read the page source that is currently rendered
and displayed. Keypresses just update the modified time. If the modified time is more
recent than the rendered time, then we must begin a new rendering thread to update the
display. We perform this check at periodic intervals by using JavaScript timers. (These
are just like the event handlers we place on Ul elements, but that trigger after a spec-
ified delay.) Each check and potential render is guarded by a lock that prevents two
outstanding renders from occurring simultaneously. This mutual exclusion routine

maybe-with-lock ! f

checks to see if the lock [ is currently held. If so, it discards f and does nothing. If
it is not held, it atomically takes the lock and executes f, then releases the lock when
f completes. The correctness of its implementation (which is part of a library) relies
on knowing that certain sequences of operations do not yield; it would be much better
to have language support for mutual exclusion and have the compiler guarantee the
semantics.

We also have a reference cell that keeps track of the last time that the page was saved
on the server, and a periodic timer that saves it. If the page has changed but has not been
saved yet, then a message is displayed; the user can trigger a save or render manually
by clicking one of the buttons in the interface.

The final interesting thing about the application is the treatment of templates. Dur-
ing the rendering of a page we might notice that we need the contents of another page
in order to use it as a template. We could retrieve it from the server with get, but this
would make rendering even slower. Instead, we keep a local cache of templates that we
use for rendering. When rendering, if we do not have the value of a template yet, we
render a placeholder. A separate thread retrieves the value of the template and updates
the cache; whenever the cache is updated we also mark the page as modified so that it is
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Figure 6.5: Lambdasheet screenshot showing the expression in cell G4 being edited.

rendered again. Finally, we install a hook for each template in the cache so that we can
be asynchronously notified if one of them is modified (by another user, for example).

Aside from the mediocre performance of rendering, this wiki is fairly close to what a
small real wiki would offer. Perhaps the only major missing feature is a way of tracking
the history of each page—which would be easy to implement if the server had support
in its database interface. On the negative side, the locking scheme used by the imple-
mentation is more complicated than I would like for such a small application. Writing
concurrent programs is difficult, but high level structures for correctly implementing
common idioms (at a minimum) would be desirable here.

6.4 Spreadsheet

The next application is a simple spreadsheet called Lambdasheet. A screenshot appears
in Figure 6.5. It is a 12 x 12 matrix (the screenshot is truncated for space) containing
named cells. Each cell contains an expression which may include the values of other
cells. An expression can be a literal number or string, a cell name like G4, or an arith-
metic expression in prefix form. For example, as shown in the screenshot, the expression
incell G4is * G2 G3, the unit cost times the number of items. Each cell also has a value
derived from its expression. By default the spreadsheet is displaying only the values.
Clicking on a cell allows the user to edit the expression. (Lambdasheet was co-written
with Rob Simmons.)

The expressions in lambdasheet are stored in the database on the server, and as the
values of HTML input boxes inside the DOM. These input boxes are hidden except
when the user clicks to edit a cell. We synchronize the values of these cells with the
database using a hook for each cell. (This means several users in different instances can
edit the spreadsheet at the same time.) In addition to the expressions, we have an array
of the same size as the matrix, which stores the last evaluated value of each cell’s expres-
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sion. We don’t use the DOM to store the authoritative version of the values, because we
want to distinguish the string value 3 from the numeric value 3 (even though they both
display the same), for example. A loop runs periodically over all of the expressions in
the spreadsheet, evaluating them using the current values of the cells in the value array,
and updating those. This allows expressions to be recursive, with each successive pass
computing the next iteration. Expressions are parsed and represented as ML datatypes,
and evaluation is a straightforward pattern-matching ML function.

Lambdasheet is interesting in that it stresses the network performance of ML5. For
example, if we used polling to update each cell from the server rather than asyn-
chronous notification, then we would poll 144 times in each period! Asynchronous
notification makes this efficient and reduces the update latency. Another instance of
this is as follows: In each of these applications, at the point that we register a hook for
a key, we also want to get the original value of that key. The typical pattern for this is
to execute the hook function (as if the key had changed) at the same time we attach it.
An early version of Lambdasheet did exactly this, but this resulted in very bad perfor-
mance when the spreadsheet was loaded, as 144 round-trips from server to client to call
the updated-cell function were initiated. Fortunately, this was easy to solve. As we
register the hooks on the server, we insert any non-empty keys into a list of key-value
pairs. Then, we return only this list to the client in a single message—its type is mobile,
as a list of pairs of mobile types. On the client we map the updated-cell function
over the list, registering the initial values all at once. The code is only a few lines long,
and completely solves the performance issue by using data structures and higher-order
functions.

6.5 Summary

In this chapter I presented a few web applications built with ML5. They all share the
common feature of connecting local resources (a user interface in the web browser and
the server-side database), making them true distributed computations. In some applica-
tions we also perform substantial computation on the client. Although the applications
are small, they resemble real web applications in everyday use, with the major differ-
ence being features and scale. On the other hand, our high level language makes it
simple to do things (such as threading and asynchronous notifications) that normally
take a large engineering effort using conventional tools.

A natural question is, how did ML5 help us in building these? It is difficult to eval-
uate this question objectively, because to some extent language choice is a matter of
taste, skill level varies greatly between programmers, and measures of code complex-
ity or programmer effort (such as lines of source code) are very coarse. However, I
will nonetheless argue for ML5’s benefits. As mentioned, its high-level language fea-
tures like get, higher-order functions, first-class continuations and algebraic datatypes
with pattern matching make programs shorter and simpler to express. Second, even
when used by experts (such as the language designer!), the type system does exclude
programs with erroneous use of local resources in practice. A handful of times while
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developing each of the applications, I encountered type errors (sometimes initially be-
lieving them to be bugs in the compiler) that indicated unsafe programs. Since no type
system can be exact, the rate of false positives is also important. For these examples, I
never found the type system to prevent a safe program that I wanted to write. Finally,
and most importantly, ML5’s modal type system yields a logical way of organizing a
program according to the places involved (worlds), their local resources (modal code
and data), and the computations and values that they share (valid code and data). This
simply leads to better programs.

There are still some problems with ML5 and its implementation that make it in-
appropriate for building production-quality applications today. We have discussed
some already, such as performance and language support for concurrency. In the next
chapter—which concludes the dissertation—I discuss concrete future improvements as
well as more speculative ideas. I also discuss related work, including some that could
serve as a way of addressing some of these deficiencies, and work that could potentially
benefit from the ideas prevented so far.
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Chapter 7

Conclusion

In this chapter I conclude with a comparison of ML5 to related work (Section 7.1) as
well as a discussion of some outstanding research problems and ideas for the future
(Section 7.2).

7.1 Related work

Distributed computing is a large area of research and practice with differing ideas of
what constitute it. Therefore, I will not attempt to compare ML5 to every language and
tool. Instead, I will concentrate on comparing specific related work when it shares at
least one of three salient features with this dissertation: Being based on modal logic,
being a distributed ML-like language, or being a unified language for web applications.
(Some related work is also discussed in the context of future work, in Section 7.2.) This
leaves out many apparently related projects, so I will first situate ML5 in general relation
to these as follows.

Located programming. ML5’s main contribution to the design of languages for dis-
tributed computing is a logical, type-based account of located programming: Program-
ming in a uniform language with an explicit notion of place (Chapter 2). Many pro-
gramming languages used for distributed computing identify hosts in the computation
using URLSs (represented by strings) or IP addresses. These are reasonable run-time rep-
resentations, but seldom do they find their way into the type system. This situation is
not well-suited for located programming, because the programmer is unable to express
the differing perspectives on code and data and his program except by informal means
like naming conventions and documentation. An expressive type system is useful for
structuring one’s program in a logical way, but programmer discipline is not the only
thing at stake. Lack of support for locations in the type system also leads to problems
with the design of the language’s distributed features. A common symptom of such
inexpressiveness is the premature termination of a program that attempts to send a ref-
erence to one of its own local resources to another party in the computation. To be
concrete, suppose that we have two parties in the program, A and B. A has a local open
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file descriptor f that it wants to send to B. (This situation is not artificial; it is particu-
larly common when f is within the environment of a closure.) If it tries, the program is
either excluded statically (rare, except when the set of types of data that are allowed to
be sent is extremely limited) or fails at runtime during marshaling. Both behaviors are
needlessly conservative, because this program is safe as long as B does not try to read
from or write to A’s file descriptor f. It can safely send f back to A, for example.

Let us diagnose how a missing language concept of location leads to this result.
Without being able to mention the principals A and B, “A’s file descriptor” and “B’s
file descriptor” just become “file descriptor.” (These English phrases correspond to the
typing judgments of the programming language, because we use the type system to
classify code and data.) Because the language must prevent an access to f from B’s
code, it must make sure that a file descriptor always refers to a local file. The standard
way to do this is to identify the fault as being at the moment that f is sent to B. It is at
this moment that we change perspective (running on A to running on B) and therefore
that our notion of (local) “file descriptor” changes as well. Therefore f is no longer a
file descriptor—the program must be rejected (statically or dynamically).

Located programming allows us to think more clearly about this situation, because
it allows us to express the multiple simultaneous perspectives. Not only can we be
explicit about where the code is running (by using the modal typing judgment on
code), but we can simultaneously manipulate data that belong to various principals
(by using the typing judgment on hypotheses, and using the types it engenders to
describe data). In particular, code running on A can safely hand off a file descriptor
(f:fileeA) to code running on B. It does this by first encapsulating it to mark that it
belongs to A (hold f:fileat AeA), then observing that the marked datum is portable
(fileat A mobile) and thus also makes sense from B’s perspective (fileat AeB). Al-
though B can now manipulate the encapsulated value (perhaps sending it back to A),
it is statically prevented from erroneously reading from it, as desired. This mindset
allows us to decouple the implementation technique of marshaling (which now never
fails) from the semantic quality of mobility.

Some languages address this problem in another way: transparent mobility. In such
a language the above program does not fail, but if B reads from f, then the system au-
tomatically forwards these reads to A and the results back to B. In doing so, the type
“file descriptor” now means “global file descriptor "—forcing a universal viewpoint of
data. This is legitimate and often what the programmer wants, but is not only what a
programmer wants. In ML5, we allow the programmer to implement global resources
by using local resources and mobility. These global resources can be given this univer-
sal viewpoint through the validity judgment. Therefore, such global resources are still
expressible when using located programming (perhaps provided as libraries), but we
additionally have the ability to be specific when we desire.

Process calculi. A long line of research in distributed programming languages focuses
on adding distribution to process calculi (such as the 7-calculus [74, 76]). This is usually
accomplished by adding explicit locations to the language. For example, the SAFEDPI
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calculus [56] extends the m-calculus to support distribution by wrapping processes with
explicit locations. A process can migrate to a new location via a construct goto, and
new locations can be created at runtime. The language addresses the control of access
to local resources (represented as names) by permitting a location to restrict the types of
code that can migrate to it. The type system is sophisticated, allowing the specification
of complex behaviors.

Nomadic Pict [125, 135] extends the m-calculus based programming language
Pict [109] to distributed processes. Each process again is marked with an explicit lo-
cation. The low-level calculus has only local communication primitives. The high-level
language implements unrestricted communication between processes at different loca-
tions by translation to the low-level language through various strategies.

This line of research on process calculi attempt to address similar problems as does
MLS5: locality; mobility; local and global resources. They also begin from foundational
calculi and their semantics rather than implementation concerns. However, the feel of
the work is very different, making a direct comparison difficult. In general, the primi-
tives of process and channel lead to a natural focus on concurrency and communication—
two facets that we have deemphasized in this work. Lambda 5’s basis in logic instead
naturally leads to a focus on types, data, and reduction-based operational semantics. It
also permits straightforward integration with functional programming languages like
ML that are already based on logic, and is compatible with traditional compiler tech-
niques. Because my goal is to give an account of the spatial component of distributed
computing—and to implement it—the logical approach fits well. Nonetheless, we have
observed that concurrency support is important, even in the simple applications I have
experimented with. Perhaps process calculi can provide the foundation for concurrency
support in ML5?

7.1.1 Modal logic in distributed computing

Other lines of research have investigated the use of modal logic for distributed comput-
ing. One of the earliest is Borghuis and Feijs’s Modal Type System for Networks [10].
It is a logic and operational semantics—by way of compilation into shell scripts!—for
network tasks with stationary services and mobile data. They use O, annotated with a
location, to represent services. For example, 0°(A D B) means a function from A to B at
the location (world) o. This corresponds to the type (A D B) at oin Lambda 5. However,
with no way of internalizing mobility as a proposition, the calculus limits mobile data
to base types. Services are similarly restricted to depth-one arrow types. In contrast,
MLS5 permits higher-order distributed programming in its full generality.

Cardelli and Gordon [15] provide an example of using modal logic for reasoning
about programs spatially, later refined by Caires and Cardelli [13, 14]. They do not take
a propositions-as-types view of their logic, instead using it as a way of stating and prov-
ing properties about distributed programs. Their object language is a process calculus,
mobile ambients [15]. Therefore, their classical modal logic is very different from the
one that we use, including connectives for stating temporal properties, security proper-
ties, and properties of parallel compositions. In contrast, ML5 is based on interpreting
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the propositions of modal logic as types, and giving them a computational interpreta-
tion based on proof reduction. This gives us a type theory (which allows us to logically
structure programs and prove certain properties about the language, like type safety)
for our programming language, rather than a theory for proving properties of specific
programs.

Moody [80, 81] gives a lambda calculus based on the constructive modal logic S4 of
Pfenning and Davies [107]. This logic’s accessibility relation is reflexive and transitive,
but not symmetric, and the presentation relies on judgments A true (here), A valid and
A poss rather than the indexed truth judgment of IS5-. As a result, worlds do not appear
explicitly in the judgments or types. The propositions are therefore somewhat “lossy”
in the sense we discussed in Section 4.1. As a result, the O and < connectives are in-
terpreted as representing potential mobility and locality, with a type-safe process-style
operational semantics to match.

More closely related is Jia and Walker’s computational interpretation of hybrid
S5 [62]. As we have discussed, this was the source of our at modality. They also have
a notion of validity, where the O connective is the source of valid hypotheses. (Unlike
Lambda 5’s validity judgment and & modality, these do not bind a world variable.) The
biggest difference in Lambda 5 is the presence of the get structural rule (and the mobile
judgment), and its restriction of the other rules to act only on local data. Without these,
Jia and Walker’s calculus has a process-style operational semantics that requires syn-
chronization across worlds. In contrast, Lambda 5’s operational model can be given in
terms of proof reduction, with standard substitution of values for variables being the
main force of computation.

Because in Lambda 5 and ML5 evaluation can take place in different locations, we are
not always in a position to evaluate an expression into its value. Therefore, we found it
important to distinguish between the modal typing judgment as applied to expressions
(code) and values (data). For example, the &34 type classifies mobile values of type A, and
the typing rules for the expression hold M and value held v are different. Park [100, 101]
studied the problem of mobile values in an S4-style modal logic by introducing a new
modality. His type [JA classifies computations that return mobile values of type A. (In
contrast, JA classifies mobile computations that return possibly non-mobile values of
type A). This modality was the original inspiration of Lambda 5’s €& modality. The
£3 modality is somewhat more simple, in that we do not have a validity judgment for
expressions—3A represents not a computation producing a mobile value of type A,
but an already evaluated mobile value of type A. (Since ultimately in the compiler
we require “values” to include some forms of pure computation, this is perhaps not a
difference after all.)

Park refines this calculus to AES, a call-by value parallel language with communica-
tion primitives [102]. By using the validity judgment and its internalization as a type,
the language is able to statically prevent local resources (references) from being sent
through a channel to another thread. They do this by splitting a communication chan-
nel into two distinct parts: its read half and its write half. The read half remains fixed
to the thread that created it, and the write half is allowed to be a global value. Channels
are restricted such that only global values can be sent over them. This is overconserva-
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tive in the sense described above: Programs are rejected because they try to share remote
resources, not because they try to improperly use them. Specifically, if the read half of
a channel always belongs to (say) thread g;, any value that is sent along the write half
always ends up in g;. Therefore, the channel ought to be restricted not to carry a global
value, but a value that makes sense specifically in the thread g;. There is no way to ex-
press the condition more tightly in A\ZF, since when typechecking the code for the thread
g2, we have only two typing notions available to us: “here” (wrong, since here means
g2, not ¢g;) and “global.”

7.1.2 Distributed ML-like languages

The ML family of programming languages has been extended in multiple ways to allow
for distribution. Distributed ML [22, 64] concentrated on the concurrency and failure as-
pects of distributed computation, with abstractions such as multicast port groups and
fault-tolerant port colonies. I deemphasize these in the design of ML5. Early work by
Ohori and Kato on dML showed how to provide marshaling and unmarshaling func-
tions in the presence of polymorphism, by a technique similar to type passing [97]. The
dML language only allowed marshaling of base types, creating proxies at run-time for
values of higher type. Harper and Morrisett remarked on how to implement this mar-
shaling strategy using a more general type passing technique [53].

Facile [132, 133] is a concurrent distributed programming language based on Stan-
dard ML and the CCS [73] process calculus. Facile uses SML’s type system almost di-
rectly; its features for distribution are expressed in terms of a module with an abstract
type nodeid, along with routines for manipulating nodes and launching processes on
them. The Facile model has each host running a number of processes, which commu-
nicate with each other over typed channels. These typed channels (similar to those in
CML [115]) are not restricted to simple data; they can transmit functions, channels, and
abstract types. There is no particular facility for safely delineating local resources as
in ML5: Reference cells are copied when they are marshaled, and other kinds of local
references can cause runtime failures if used improperly.

D’Caml [142] is a distributed extension of the O’Caml dialect of ML [96] that presents
a different model of computation: a single parallel computer with distributed shared
memory. In such a model, the ML type system suffices to ensure the proper use of
local resources, because it becomes the compiler and runtime’s job to make sure that
every use succeeds. ML5 is lower-level, in that the distribution and communication are
explicit.

JoCaml [63] is an extension of O’Caml with primitives for concurrent, distributed
programming inspired by the Join Calculus [40]. It allows the creation of hierarchically-
structured “locations,” which contain bindings and processes that are permanently lo-
calized to that location. However, locations themselves are mobile; they can move
from one parent location to another using the go statement. Since locations can move,
they are perhaps better thought of as delineating a region of the running program than
corresponding to the physical sites of computation. In comparison, ML5’s locations—
worlds—are unstructured names for fixed places; we achieve mobility by demonstrat-
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ing in the type system that a piece of code or data is well-formed independent of its
location.

Acute [123, 124] for distributed computing based on O’Caml. Rather than commit to
a high-level model of interaction like ML5’s get, they provide type-safe access to low-
level features like marshaling so that the programmer can implement his own. Acute’s
goal is somewhat different, in that it allows for the development of programs with-
out full static knowledge of the environment in which they will run. This is impor-
tant for distributed applications where hosts may be discovered at runtime or that are
upgraded in a piecemeal fashion. To accomplish this, Acute supports two ways of re-
solving a resource in a piece of code that arrives at a remote host. A representation of
the resource can simply be sent along with the code, or the resource can be rebound
to a local one—appropriate for library code, for example. Acute uses hashes of mod-
ule definitions and other techniques to guarantee type safe marshaling in the presence
of abstract types. This technique was later extended to account for type generativity
and polymorphism in HashCaml [7, 8]. ML5 does not attempt to maintain abstraction
at runtime, instead assuming that all of the code was produced by the same version
of the source program. Like Acute and HashCaml, the ML5 intermediate languages
use type representation passing to implement type-safe unmarshaling. However, Acute
and HashCaml are built on the O’Caml marshaling routine, which already has enough
information without type representations to guide the marshaling process. Therefore,
type representations are only used for a compositional run-time equality (rather than a
recursive inspection of their structure), so they are represented much more compactly
as 256-bit hashes. In ML5 we are using the type representations as disembodied tags for
the native representations, which gives us more flexibility but also makes them more
costly.

The Alice language [117, 118] is an extension of Standard ML to permit “open
programming”—dynamic integration of software components in a distributed pro-
gram. Its design is therefore closely related to Acute’s, allowing resource dependencies
to be sent along with components or dynamically rebound upon arrival at a site. Alice’s
facility of pickling [119] allows for the type-safe marshaling of arbitrary values (includ-
ing higher-order code and modules), but fails dynamically if it attempts to marshal a
local resource.

MLS5 is based on a more static view of distributed programs. It is clear that this
suffices for at least simple web applications, since the set of worlds and the resources
involved is small and fixed. However, because they are based in type theory, support
for dynamic components such as in Acute and Alice would probably integrate into ML5
in a clean way. In fact, Alice-style higher-order modules might give us a natural way
to discover worlds at runtime, by allowing abstract worlds to be a third component of
modules along with values and abstract types.

7.1.3 Languages for web applications

With the rise of the web as an application platform, there has been much interest in it
from programming language designers. One of the major focuses has been on creating
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a unified programming language for web applications. Current development practice
often involves several programming languages and tools within the same application
(JavaScript, Java, PHP, SQL, etc.) and ad hoc structures for communicating between
them (hand-written text- or XML-based protocols, string-based SQL query generators,
etc.).

QHTML [33] is a module for the Oz language [127] that allows it to be used for web
application development. It has a language for declarative GUI specifications (from
which HTML is derived) and a thread model for responding to UI events. Thread mo-
bility between client and server is transparent. QHTML works by embedding a Java
applet within the web page and using it to run Oz code and as the liaison between the
client and server.

Links [21] is a language designed particularly for web programming. It has a
JavaScript-like syntax but an ML-like semantics. Links has explicit distribution: Func-
tions may be annotated as client or server, and Links allows calls between client and
server code. However, its type system does no more to indicate what code and data
can be safely mobile, and marshaling can fail at runtime. On the other hand, Links has
many features (such as a facility for embedding and checking XML documents and gen-
erating database queries from Links code) that make typeful web programming easier.
It additionally supports a mode of page-oriented application where all of the session
state is stored on the client, as marshaled data inside of hyperlinks and forms. This
can be used to increase performance by reducing the amount of persistent storage on
the server. In contrast, ML5 only supports “AJAX” style web applications (i.e., a single
page that the user never leaves), because our symmetric computational model requires
that the server be able to contact the client at any time.

Hop [122] is another unified web programming language, based on Scheme. Hop
has constructs for embedding a client side expression within a server expression and
vice-versa, analogous to get in ML5 (but specific to the two-world case). The chief
difference is simply that Hop is untyped, and thus subject to run-time failures.

Swift [19] is a web programming language based on the Java variant Jif [93]. In
Swift, a web program is annotated with information flow properties about the secrecy
and authenticity of data. The program is then compiled (if possible) into client-side
JavaScript and server-side Java that respect the security annotations given. Distribu-
tion and communication are not explicit in the program, so compilation is achieved by
program partitioning. The program is partitioned in such a way as to minimize commu-
nication. Swift represents one solution to an important security problem that faces ML5
and other distributed programming languages; this is further discussed in Section 7.2.

7.2 Future work

There is much potential for future work on modal type systems and ML5.
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7.2.1 Modal type systems

Interpreting the modality. Lambda 5 was designed as a computational modal logic
where worlds are interpreted as places in a distributed computation. However, at this
abstract level there is nothing that forces us to interpret the worlds spatially. Indeed,
there have been many other uses of computational modal logics, interpreting the worlds
as security principals [1, 2, 44, 65], stages of computation in a metaprogramming lan-
guage [29], steps in a time-ordered sequence of computations [28, 35, 57], possibilities
in the decision making processes of agents [114], etc. Broadly speaking, whenever a
setting has multiple simultaneous perspectives, a modal logic may be good way to rea-
son about it and a modal lambda calculus may be the basis of a natural programming
language. Lambda 5’s decomposition into locally-acting introduction and elimination
rules and the perspective shifting get structural rule may be useful for these other in-
terpretations of modal logic as well. Of course, we have to make sure that our choice of
accessibility, as well as semantic notions such as the mobile judgment, are appropriate
for the application. For example, a temporal logic in which time may symmetrically
step backwards and forwards would be suspicious!

Wide-area physical distribution is also not the only spatial interpretation of worlds.
Computer architectures are becoming increasingly non-uniform, leading to a smaller-
scale notion of locality. Even though virtual memory machines present a flat address
space abstraction, the performance characteristics differ substantially between data that
reside in register-shadowed stack slots, L1 and L2 caches, main memory, memory-
mapped files, and disk. (The semantics of these can differ as well, for instance with
floating-point precision and memory coherence in multiprocessor environments.) A
type system for a low-level language could allow the programmer to make these loca-
tions explicit using the spatial modality of Lambda 5. The Java-based X10 language [18]
is designed for such non-uniform memories, but its notion of place is not logically de-
rived.

Accessibility. In our distributed interpretation of Lambda 5 the accessibility relation
is realized as the connectivity between hosts. We chose a universal accessibility rela-
tion (every host can access every host) for its simplicity and because many networks are
universal in this sense. However, because of technologies like NAT [128] and security
policies like the JavaScript same origin policy [120], many real networks are not sym-
metric or transitive. (It is somewhat ironic that the prototype ML5 implementation is
for the web, one of the most restrictive networks in wide use!) To use ML5 on such net-
works, we currently build support for universal accessibility into the runtime system.
Another approach would be to use an accessibility relation with fewer structural prop-
erties, so that accessibility resembles the low-level connectivity that we actually have
available. (The overlay network could then be written as a program in the language,
rather than in the runtime system.) Assumptions of the existence of worlds would be
augmented with accessibility assumptions, and the notion of global “addresses” (the
dynamic permission to access a world) would be replaced with local “routes” (a struc-
tured path from one world to another). Doing this for ML5 would be somewhat tricky;,
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because the completeness of the logic with local introduction and elimination rules de-
pends on the structural rule get. The get rule has some notion of symmetry built into
it, because it transfers the locus of reasoning to the remote world and then returns a
proposition. Therefore, its analogue in a non-symmetric network is not clear. We can
see this in the translation of get to the CPS language go, in which we bind the return
address as a valid variable. Interestingly, the go construct therefore does not have such
symmetry built in, so the CPS-style language is more straightforwardly compatible with
a non-universal accessibility relation.

7.2.2 ML5 and its implementation

For the ML5 language, there are numerous improvements that could be made. I have
remarked on some of the obvious missing features, such as modules and high-level con-
currency support. I believe a Standard ML style module system [31, 55] could be added
in a fairly orthogonal way. Acute and Alice provide a roadmap for integrating mod-
ules and distribution. More interesting would be the presence of abstract worlds within
modules; these would give us a natural way to provide compositional distributed ser-
vices as libraries. It is less obvious what to do for concurrency; a variety of different
mechanisms have been studied throughout the history of computer science, from pro-
cess calculi to software transactional memory.

Multiple worlds. Our type theory naturally supports an arbitrary number of worlds,
and most of the compiler does, as well. Adding the ability for a program to access many
different servers would just be a matter of adding runtime support for it. This would
take the form of an overlay network to circumvent JavaScript’s same-origin security
policy. Applications that have a single client and multiple servers are not as easy to
motivate as applications with a single server and multiple clients; we have already seen
some examples that would benefit from this latter model. This would take a bit more
design work, because we currently consider the thread of control to begin on the (one)
client. To support multiple clients, we would want to begin the thread of control on one
server, and then instantiate a piece of world-polymorphic code for each new client that
connected. This would mean adding a primitive for handling a new HTTP connection,
so that some part of what Server 5 does would become part of the application code.

Fault tolerance. I have so far ignored the issue of fault tolerance, which is a major
focus of research in distributed computing. For ConCert we built a system that auto-
matically tolerated host failure by repeating a computation on another host [85]. We
were able to do this because all computations were total, portable between machines,
and automatically allocated by the runtime. The ML5 programming model is much
lower-level in that the programmer explicitly chooses where a computation will run. In
the case that the host is unreachable or fails while the computation is active, there is not
much hope for automatic recovery since the computation would need to be run in that
same failed place. A simple notification (by raising an exception, for example) could
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inform the programmer and allow him to handle the failure in an appropriate way—
perhaps explicitly choosing to re-run the computation on a different host. It is helpful
that interaction between hosts only happens via the get construct, so the programmer
can identify the potential failure points in his program and know what actions are pos-
sible once a failure has been detected. Failure tolerance is very important for large-scale
computations, because the probability of failure rises as the number of hosts involved
increases. However, for our example domain of web applications it is not a serious
problem: If one of the two hosts fails, then there is not much to do except abort the
application. (The ML5/pgh runtime currently does detect communication failure and
display an error message.)

Garbage. Distributed garbage collection [111] is a notoriously difficult problem, and
I have avoided it completely in ML5. Therefore, although the garbage collectors in
the JavaScript and Server 5 runtimes can reclaim local garbage, once a reference to a
resource escapes a world it can never be freed. This manifests itself as a continually-
growing table of desiccated pointers (Section 5.5.4). Fortunately, web applications tend
to be short-lived, so this has not been a limiting factor for the example applications. For
any long-running computation, we would need a distributed garbage collector. Nothing
about the design of ML5 makes this problem any more difficult than usual.

Marshaling. The ML5/pgh runtime does only simple data validation during unmar-
shaling. Therefore, if the marshaled data is accidentally or maliciously corrupted, this
can lead to runtime failures. Because we unmarshal with respect to a type represen-
tation, we can easily add more checks to ensure that the runtime failure happens at
unmarshaling time rather than later. Currently the runtime assumes that the network is
reliable and the participants trustworthy. (This is mainly because I do not address more
difficult security issues, which are discussed below.) There are a variety of ways that
we could improve the robustness of unmarshaling, for example by using cryptographic
signatures to maintain the authenticity of data [3].

Certification. Related to the previous point is code certification. It would be possible
to remove the need for all of the code to be present before the program ran, by allowing
code to be marshaled along with a proof of its type-correctness, using proof carrying
code [95] or typed assembly language [23, 25, 82]. If we were using certified code, we
could do away with JavaScript sandboxing and run native code (via a browser plu-
gin), which could dramatically improve performance and reduce the size of the trusted
computing base. The fact that the ML5/pgh compiler is type-directed is an important
precondition for certification.

Security. A more serious security problem faces us when some of the participants in a
distributed computation are malicious. This is a realistic scenario for web applications—
although the application author can usually assume that the server is secure, web sites
are often deployed publicly. JavaScript code intended to run on the client is actually
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under the complete control of an attacker. He can inspect its source and cause it to
behave arbitrarily, and invoke any continuation on the server for which he is able to
craft acceptable arguments. This is true of any distributed system where some hosts are
controlled by attackers, and the programmer must defend against this by not trusting
(and explicitly checking) data and code it receives from the client. For example, take the
following program:

extern val format_hard_drive : unit —-> unit @ server
extern val prompt_password : unit -> string @ home

do 1f prompt_password () seq [secret]
then let in
alert [Formatting...];

from server get format_hard_drive ()
end
else alert [Wrong password!]

This program runs at home, prompting the user for a password (seq is the string
equality function). If it matches, then it travels to the server and formats its hard drive.
This program is clearly insecure: Because the client does not have to run the code we
give it, it can force the string equality to succeed (or inspect the source code or memory
to learn the password) and therefore bypass the check. It is easy to diagnose this prob-
lem as an instance of improperly trusting the client to run the code we give it. For exam-
ple, we could imagine giving the client the ability to modify any source code and read
any data that is typed ehome and then observe that it can replace the password check
with true. Unfortunately, the attacker’s capability for mischief goes beyond what we
can explain at the source level, because the process of compilation from the high-level
language is not fully abstract. For example, suppose we rewrite the above program to
the following equivalent:

extern val format hard drive : unit —-> unit @ server
extern val prompt_password : unit -> string @ home

val pass : string @ server = "secret"
val errormsg : string @ server = "Wrong password!"

put p = prompt_password ()

do from server
get if p seqg pass
then let in
from client get alert "Formatting...";
format_hard_drive ()
end
else let put u = errormsg
in from client get alert errormsg
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end

In this version we have explicitly typed the variable pass at the server so that the
client will not have access to it. We could arrange for the ML5/pgh compiler to en-
crypt data typed at the server, since we know it won’t be used in other places. We
then perform the password check on the server, where we trust the program to behave
as written. Unfortunately, this program also has security problems. First is that the
process of CPS and closure conversion leaves the client with a continuation and en-
vironment containing the values of the variables pass and errormsg. They may be
encrypted, preventing the client from reading them directly, but he can modify the clo-
sure to swap the values of the two variables! When control returns to the server, it will
either succeed with the password equivalence check (if the client typed in the string
"Wrong password!", which is now the value of pass) or will return to the client to
display the errormsg—which is now the secret password. Alternatively, the client can
invoke a different continuation directly (by guessing the code label and environment
for it); for example returning from the get that displays the Formatting. .. message
after the password check has been successful. Neither of these behaviors is easy to ex-
plain without considering the way that the program is compiled; the first modifies the
contents of immutable variables, and the second involves a non-local flow of control.

Each of these problems is solvable by some means, using cryptography or other
countermeasures to prevent the attack. However, a series of responses to anticipated
attacks is not good enough: To build secure software, a programmer must be able to un-
derstand the range of behaviors that may occur in the presence of an attacker. I believe
a solution to this problem would take the form of an “attack semantics” provided by
the language and implemented by the compiler through a series of countermeasures.
The semantics would describe at the language level the set of possible behaviors, so
that the programmer can ensure that these behaviors do not include security breaches
on the server. (The client will always be able to format his own hard drive, if he de-
sires.) One example of such a semantics is Swift’s information flow annotations: No
matter how the client behaves, the language guarantees that he cannot (for example)
read or influence the values of secret variables. Information flow is clearly appropriate
for enforcing the secrecy of the password in the above example. For the sake of protect-
ing the format_hard._drive routine, we might desire a more direct means of stating
our policy, such as dynamically insisting on a proof that the password check had been
performed successfully on the server in the past. (Swift accomplishes this by its checked
endorsement construct.) In any case, such properties are inherently in terms of the prin-
cipals (places) involved in the computation, and therefore I believe that our type system
and semantics is an important ingredient for being able express and prove properties of
programs in the presence of an attacker, and to develop mechanisms for building secure
programs.
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7.2.3 Web programming

MLS5 specifically as a web programming language could be improved in a few ways,
as we observed in Chapter 6. Two of the most common tasks in a web application
are interacting with server-side resources (usually a database) and manipulating user
interfaces on the client side. The current prototype has very rudimentary support for
each of these.

Databases. Accessing a database is simple: We can create a datatype for SQL queries
(for example) and use the network signature to expose an interface to a database engine
of our choice. Since database access is so pervasive, we might consider language exten-
sions. Links has support for database queries based on a technique from Kleisli [12, 144]:
Semantically, a primitive database operation returns a stream of all results from the
database, and standard features from the programming language are used to imple-
ment the query. The compiler translates the functional manipulation of the stream into
the database language (such as SQL) to produce an efficient query. This has the advan-
tage of being semantically lightweight, requiring almost no new language features. I
do not like it, however, because it requires the programmer to anticipate when the com-
piler will be able to produce an efficient database query. Being able to reason about the
efficiency of queries is critical when data sets are large! Therefore, I prefer that the lan-
guage have direct support for expressing the kinds of operations that the database can
perform efficiently. The main benefit of a language extension in this case is that we can
type-check the queries and their results. Such an embedding is fairly straightforward.

Client pages. The current way of creating and modifying the client user interface is
dissatisfying. We use strings to write HTML concrete syntax directly, which is compact
but not subject to any static checks. JavaScript event handlers are similarly represented
as strings and are essentially untyped. We could build a high-level client library for
interacting with the DOM using the features we already have, or consider language ex-
tensions that allow us to express XML documents using a convenient syntax and appro-
priate type system. There has been much interest in this problem from the programming
languages community. JWIG [20] is a Java extension that uses a flow analysis to check
that generated HTML is well-formed. Elsman and Larsen give a Standard ML library for
constructing XHTML documents, which uses phantom types to ensure that the docu-
ments are well-formed [34]. WASH/CGI [131] is a monadic library for Haskell [103] for
the creation of well-formed XHTML documents. It uses type classes to statically encode
(most of) the type structure of XHTML. WUI [48] is a similar typed monadic combinator
library for the functional logic language Curry [26]. The main purpose of WASH/CGI
and WUI are to provide a language for sessions with the web server that are translated
to uses of HTML forms and CGI. These features are not important for ML5, which is

!Database systems also perform substantial query optimizations as well. However, these optimiza-
tions are often explicitly specified and tools such as SQL’s EXPLAIN statement exist to diagnose perfor-
mance implications.
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committed to AJAX-style [45] interaction. Hop [122] simply uses Scheme functions for
each of the HTML tags to ensure that they are properly balanced; it is untyped. Links’s
syntax and type system are designed for the purpose of producing well-formed XML
documents [21]. Gardner et al. [43] give a minimal formalization of DOM and a Hoare-
like logic for stating properties and proving them of simple programs that manipulate
the DOM.

With a complete library or language for writing XML DOM documents, we could
replace the string-generating say with a construct that produces an abstract type of
event handler, which can only be used in the appropriate contexts.

7.2.4 Conclusion

In this dissertation I have argued that modal type systems provide an elegant and prac-
tical means for controlling local resources in spatially distributed computer programs.
The project is a complete study in programming language design, beginning from the
identification of the problem (an inexpressiveness resulting a lack of multiple simulta-
neous viewpoints), to the design and implementation of a new programming language
to address the problem, and the crafting of applications in that language to study its
effectiveness.

The specific contributions are summarized as follows: I developed a spatial formu-
lation of modal logic and derived the lambda calculus Lambda 5 from it. The logic
admits cut and the calculus is given a type-safe distributed operational semantics based
on standard substitution-based proof reduction. I then showed how this calculus could
be extended to account for distributed control flow and global resources in a logical
way. Each of these systems were formalized in LF and their metatheoretic properties
proved in Twelf; the proofs are therefore machine-checkable. Next, I developed an
abstract typed compilation technique for the modal lambda calculus, including CPS
conversion and closure conversion. These transformations were proved to be sound,
also in machine-checkable form. To argue for the practicality of modal type systems,
I then designed a high-level language ML5 that combined features from ML with the
new modal constructs. The new features integrate naturally into ML-style languages,
retaining for example full polymorphic type inference. Using the abstract compilation
technique I formalized, I then implemented this language as a type-directed compiler.
The compiler is specialized to web applications, a particular kind of distributed compu-
tation involving two hosts: the web server and the web browser. The compiler produces
code in different languages for the server and for the web browser, and a runtime sys-
tem including a web server and type-directed marshaler ties them together. Using this
implementation, I then developed a collection of applications to exercise the language’s
features and evaluate its effectiveness at solving the stated problem. Although there
are a few remaining issues to be addressed before ML5 can be used for production-
quality code, the results are encouraging. The language is expressive enough to build
realistic applications, performance is acceptable with much room left for improvement,
and its type system excludes runtime failures while encouraging a logical structure of
programs based on the places (worlds), local resources (modal code) and shared com-
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putations (valid code) involved. This leads to simpler, more reliable, and more elegant
distributed programs.
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Appendix A

Twelf proofs

A.1 Equivalence of Lambda 5 natural deduction and se-
quent calculus

o
S

o

Soundness and completeness of Lambda 5
% Relative to IS5U Sequent Calculus

o

o

%% Based on proofs by Frank Pfenning, 2004
% Revised and extended by Tom Murphy VII, 2007

o
o

world : type. $name world W w.
prop : type. %name prop A x.

% Propositions

=> : prop -> prop -> pProp. $infix right 8 =>.
! : prop -> prop. $prefix 9 !.

? : prop —> prop. Sprefix 9 2.

at : prop -> world -> prop. %$infix none 6 at.
& : prop —> prop —> prop. $infix left 7 &.

| : prop —-> prop —-> prop. $infix left 7 |.

o

% Natural deduction

mobile : prop -> type. $name mobile M m.
@ : prop -> world —-> type. $name @ N.

$infix none 1 Q.

'mob : mobile (! A).

?mob : mobile (? A).

atmob : mobile (A at W).

&gmob : mobile A -> mobile B -> mobile (A & B).
Imob : mobile A -> mobile B -> mobile (A | B).

% Structural

get : mobile A -> A @ W -> A @ W'.

% Implication

=T : (AQ@QW->B@W) -> (A=>BQW).
=>E : (A=>B@W) ->AQ@QW->B@W.

% Necessity
'T ¢ ({o:world} A @ o) -> ! A @ W.
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'E : ' AQ@QW->AQRTW.

'G : A @W

% Possibility
?

I :AQ@QW -—>7?AQRW.

E : 2 AQ@W —>

°G 2 A Q@ W

% Hybrid

atI : A Q@ W —>
atE : A at W’/
atG : A at W @

o

% Conjunction

&I : AQ@W->BQ@W —>
BQ@W->A@Q@W.
BQ@W->BG@W.

&E1 @ A &
&E2 A &
% Disjunction

[I1 : A @ W —>
[I2 : B @ W —>
IE : A | BQ@W

% non-local disjunction elimination is a derived form
\

A |
A |
-> (A

W.

B @
B @ W.
@

Er : A | B@ W —>

AQGW ->C@WwW ->
BQ@QRW ->CQ@W) ->C@W

|[E (get (

(IE

([ha”]

([hb" ]

% IS5U sequent

(
(

= [ab’][a’c][b’c]
(

-> ! A @ W = [a] get !mob a.

({o:world} A @ o -> C @ W)

-> 2?2 A Q@ W= [a] get ?mob a.
A at W @ W.
@wW-> (AQwW ->Cemw
W ->A at W@ W'’ = [a]
A & B Q@ W.

W->C@WwW —-> (BQ@W->CA@QTW

|mob atmob atmob)

ab’ ([ha]l [|I1
([hb] |12

atE ha’ a’c)

atE hb’ b’c).

hyp : prop —-> world -> type.

conc : prop —-> world -> type.

init : hyp A W

=>R : (hyp A W
-> conc
=>L : conc A W

-> conc A W.

-> conc B W)
(A => B) W.

(atI ha))
(atI hb))))

-> (hyp B W -> conc C U)
(A => B) W -> conc C U).

-> (hyp
'R : ({o:world} conc A o)
-> conc (! A) W.
'L : (hyp A W -> conc C U)
-> (hyp (! A) W -> conc C U).

?R : conc A W'

-> conc (? A) W.
?L : ({o:world} hyp A o —> conc C U)
-> (hyp (? A) W -> conc C U).

atR : conc A W

->

atL

conc (A at W) W’.

(hyp A W => conc C W'")

->

-> C @ wW.
get atmob a.

%name hyp H h.
$name conc D.

-> C @ wW.



(hyp (A at W) W' -> conc C W'’).

&R : conc AW -> conc B W —>
conc (A & B) W.

&L : (hyp A W -=> hyp B W -=> conc C W) ->
(hyp (A & B) W —> conc C W').

IRl : conc A W -> conc (A | B) W.

|[R2 : conc B W -> conc (A | B) W.

|IL : (hyp AW -> conc C W''’) —->
(hyp B W -> conc C W'") —>
(hyp (A | B) W -> conc C W''").

o

for some reason Twelf’s subordination relation is
too conservative here. Obviously hyp can’t appear
% in mobile...

o

stripmh : (hyp B W -> mobile A) -> mobile A -> type.

$mode stripmh +M -M’.

— : stripmh ([h] !mob) !mob.
— : stripmh ([h] ?mob) ?mob.
— : stripmh ([h] atmob) atmob.
- : stripmh ([h] &mob (M1 h) (M2 h)) (&mob M1’ M2’)
<- stripmh M1 M1’
<- stripmh M2 M2'.
- : stripmh ([h] |mob (M1 h) (M2 h)) (|mob M1’ M2’)
<- stripmh M1 M1’
<- stripmh M2 M2’.

o
o
o

Admissibility of Cut

cut : {A:prop}
conc A W —>
(hyp A W -> conc C U) —>
conc C U —>
type.
$mode cut +A +D +E -F.

% Expansion

exp : mobile A -> hyp A W -> conc A W' -> type. %$name exp AM.

$mode +{A:prop} +{M:mobile A}
+{W:world} +{W’:world}
+{H:hyp A W} —-{C:conc A W'}
exp M H C.

- : exp (&mob Ma Mb) H (&R (&L ([ha][hb] Na ha) H)
(&L ([ha]l [hb] Nb hb) H)
<- ({ha} exp Ma ha (Na ha))
<- ({hb} exp Mb hb (Nb hb)).

- : exp !mob H (!/R [w] 'L ([ha] init ha) H).

- : exp ?mob H (?L ([w][ha] ?R (init ha)) H).

- : exp atmob H (atL ([ha] atR (init ha)) H).

- : exp (|lmob Ma Mb) H (|L ([ha] |R1 (Da ha))
([hb] |R2 (Db hb)) H)

<- ({ha} exp Ma ha (Da ha))
<- ({hb} exp Mb hb (Db hb)).

shift : mobile A -> conc A W —-> conc A W' -> type.
$name shift OD.
$mode +{A:prop} +{M:mobile A}

+{W:world} +{W’:world}
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+{H
shi

- : shift
- : shift
- : shift
- : shift

<= ({hb}
- : shift

<= ({ha}

- : shift
<- exp M

- : shift
<- shift

- : shift
<- shift

- : shift
<- shift
<- shift

- : shift
<= ({ha}
<= ({hb}

- : shift
<= ({ha}{

- : shift
<= ({w}{h

- : shift
<= ({ha}
% Initial
ci_1 : cut
ci_r : cut

% Principa
=> : cut

Q

<—
<—

<—
<—

c_at : cut
<—
<—

c_& : cut

:conc A W} —{C:conc A W’}
ft M H C.
atmob (atR D) (atR D).

'mob (!R D) (!R D).

?mob (?R D) (?R D).

M (=>L D1 D2 H) (=>L D1 D2’ H)
shift M (D2 hb) (D2’ hb)).

M (!L D H) (!L D' H)

shift M (D ha) (D’ ha)).

M (init H) D

H D.

(lmob Ma Mb) (|R1 D) (|R1 D)

Ma D D’.

(lmob Ma Mb) (|R2 D) (|R2 D)

Mb D D’.

(&mob Ma Mb) (&R Da Db) (&R Da’ Db’)
Ma Da Da’

Mb Db Db’.

M (/L D1 D2 H) (|L D1’ D2’ H)

shift M (D1 ha) (D1’ ha))

shift M (D2 hb) (D2’ hb)).

M (&L D H) (&L D’ H)
hb} shift M (D ha hb) (D’ ha hb)).

M (?L D H) (?L D' H)
a} shift M (D w ha) (D’ w ha)).

M (atL D H) (atL D’ H)
shift M (D ha) (D’ ha)).

cuts
A (init H) ([h] E h) (E H).
A D ([h] init h) D.
1 cuts
(Al => A2) (=>R ([hl] D2 hl))
([h] =>L (E1 h) ([h2] E2 h h2) h) F
cut (Al => A2) (=>R ([hl] D2 hl)) ([h] E1 h) E1’
({h2:hyp A2 W}
cut (Al => A2) (=>R ([hl] D2 hl))
([h] E2 h h2) (E2' h2))
cut Al E1’ ([hl] D2 hl) F1
cut A2 F1 ([h2] E2’ h2) F.
(! A1) ('R ([o] D1 o)) ([h] 'L ([h1l] E1 h hl) h) F
({hl:hyp Al W’}
cut (! Al) ('R ([o] D1 o)) ([h] E1 h hl) (E1’ hl))
cut A1l (D1 W) ([hl] E1” hl) F.
(? Al) (?R D1) ([h] ?L ([o]l[hl] E1 h o hl) h) F
({o:world} {hl:hyp Al o}
cut (? Al) (?R D1) ([h] E1 h o hl) (E1’ o hl))

cut Al D1 ([hl] E1" W’ hl) F.
(A at W) (atR D) ([h] atL ([h’] E1 h h") h) F
({h"} cut (A at W) (atR D) ([h] E1 h h’) (E1’" h’))
cut A D E1’ F.

(A & B) (&R Da Db) ([h] &L ([ha][hb] E h ha hb) h) F
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C

o
S

cr_:

cr_

cr_

cr_

cr_

cr_atR :

cr_atlL :

cr_

cr_

cr_|R1

cr_|R2

cr_

o
S

cl_

cl_?L :

cl_atl :

cl &L :

<—

|2

<= ({ha}{hb}

cut (A & B) (&R Da Db) ([h] E h ha hb) (E’ ha hb))
<= ({hb} cut A Da ([ha] E’ ha hb) (E’’ hb))
<- cut B Db ([hb] E’’ hb) F.

: cut (A | B) (|R1l Da)
([h] IL ([hal Ea h ha) ([hb] Eb h hb) h) F
({ha} cut (A | B) (IRl Da) ([h] Ea h ha) (Fa ha))
<- cut A Da Fa F.
: cut (A | B) (|R2 Db)
([h] |IL ([ha] Ea h ha) ([hb] Eb h hb) h) F

<—

({hb} cut (A | B) (IR2 Db) ([h] Eb h hb) (Fb hb))

<- cut B Db Fb F.

=>L :

'R :

'L

?R

?L

&Rt

&L ¢

|L

'L

Right commuting cuts
cr_init
cr_=>R :

: cut A D ([h] init H) (init H).

cut A D ([h] =>R ([hl] E1 h hl)) (=>R ([hl] F1 hl))
<= ({hl:hyp Cl1 U} cut A D ([h] E1 h hl) (F1 hl)).
cut A D ([h] =>L (E1 h) ([h2] E2 h h2) H)

(=>L F1 ([h2] F2 h2) H)
<- cut A D ([h] E1 h) F1

<— ({h2:hyp B2 U’} cut A D ([h] E2 h h2) (F2 h2)).
cut A D ([h] 'R ([o] E1l h o)) (!R ([o] F1 o))
<- ({o:world} cut A D ([h] E1 h o) (F1 o)).
cut A D ([h] !L ([h1l] E1 h hl) H) (!L ([hl] F1 hl) H)

<= ({hl:hyp B1 U’} cut A D ([h] E1 h hl) (F1 hl)).

: cut A D ([h] ?R (E1 h)) (2R F1)

<- cut A D ([h] E1 h) FI1.
cut A D ([h] ?L ([o][hl] E1 o hl h) H)
(?L ([o] [h1l] F1 o hl) H)

<- ({o:world} {hl:hyp Bl o}
cut A D ([h] E1 o hl h) (F1 o hl)).
cut A D ([h] atR (E1 h)) (atR F1)

<- cut A D El Fl.

cut A D ([h] atL ([h’] E1 h’” h) H) (atL F1 H)

<= ({h"} cut A D ([h] E1 h’" h) (F1 h")).

cut A D ([h] &R (E1 h) (E2 h)) (&R F1 F2)

<- cut A D El1 F1

<- cut A D E2 F2.

cut A D ([h] &L ([h1][h2] E hl h2 h) H) (&L F H)
<= ({h1}{h2} cut A D ([h] E hl h2 h) (F hl h2)).

: cut A D ([h] IRl (E h)) (IRl F)

cut ADE F.

: cut A D ([h] |IR2 (E h)) (|IR2 F)

cut ADE F.

cut A D ([h] |L ([ha] EA h ha) ([hb] EB h hb) H)
(|L FA FB H)

({ha} cut A D ([h] EA h ha) (FA ha))
({hb} cut A D ([h] EB h hb) (FB hb)).

Left commuting cuts
cl_=>L :

cut A (=>L D1 ([h2] D2 h2) H) ([h] E h)
(=>L D1 ([h2] F2 h2) H)
<= ({h2:hyp B2 U’} cut A (D2 h2) ([h] E h) (F2 h2)).
cut A (!L ([hl] D1 hl) H) ([h] E h) (!L ([hl] F1 hl) H)
<= ({hl:hyp B1 U’} cut A (D1 hl) ([h] E h) (F1 hl)).
cut A (?L ([o][h1l] D1 o hl) H) ([h] E h)

(?L ([o]l[h1l] F1 o hl) H)
<- ({o:world} {hl:hyp Bl o}

cut A (D1 o hl) ([h] E h) (F1 o hl)).
cut A (atL ([h’] D1 h’) H) ([(h] E h) (atL ([h’] F1 h’) H)
<— ({h'} cut A (D1 h’) ([h] E h) (F1 h')).
cut A (sL ([h1][h2] D hl h2) H) ([h] E h)

(&L ([h1][h2] F hl h2) H)
<— ({h1}{h2} cut A (D hl h2) ([h] E h) (F hl h2)).
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cl_|L : cut A (|L Da Db H) E (|L Fa Fb H)
<- ({ha} cut A (Da ha) E (Fa ha))
<- ({hb} cut A (Db hb) E (Fb hb)).

%$block lo : block {o:world}.

%block lh : some {A:prop} {W:world} block {h:hyp A W}.

$worlds (lo | 1lh) (cut A D E F) (stripmh _ _) (exp _ _ _) (shift
$total M (exp M _ _).

$total D (shift _ D _).

$total M (stripmh M _).

$total {A {D E}} (cut A D E F).

%$%% Translation of ND to SEQ

ndseq : A @ W -> conc A W —-> type. $name ndseq R r.
$mode ndseqg +N -D.

% Structural

ns_get : ndseqg (get MOB N : A @ W) (F : conc A W)
<- ndseg N (D : conc A W)
<- shift MOB D F.

% Disjunction
ns_|I1 : ndseq (|I1 N) (IRl D)
<- ndsegq N D.

ns_|I2 : ndseqg (|I2 N) (|R2 D)
<- ndsegq N D.

ns_|E : ndseq (|E D DA DB) F
<- ndseq D D’
<- ({x : A @ W}{ha}{_:ndseqg x (init ha)}
ndseq (DA x) (DA’ ha))
<- ({x : B @ W}{hb}{_:ndseq x (init hb)}
ndseq (DB x) (DB’ hb))
<- cut (A | B) D’ ([h] |L DA’ DB’ h) F.

% Implication
ns_=>I : ndseq (=>I ([ul] N2 ul)) (=>R ([hl] D2 hl))

<= ({ul:Al1 @ W} {hl:hyp Al W}

ndseq ul (init hl) -> ndseq (N2 ul) (D2 hl)).

ns_=>E : ndseqg (=>E N2 N1) D

<- ndseq N2 D’

<- ndseqg N1 D1

<- cut (Al => A2) D’ ([h] =>L D1 ([h2] init h2) h) D.

% Necessity
ns_!T : ndseq (!I ([o] N1 o)) (!R ([o] D1 o))
<- ({o:world} ndseq (N1 o) (D1 o)).
ns_!E : ndseq (!E N1) D
<- ndseq N1 D’
<— cut (! Al) D’ ([h] 'L ([hl] init hl) h) D.

% Possibility
ns_?I : ndseq (?I N1) (?R D1)
<- ndseq N1 DI1.
ns_?E : ndseq (?E N1 ([o][ul] N2 o ul)) D
<- ndseq N1 D1’
<- ({o:world} {ul:Al @ o} {hl:hyp Al o}
ndseq ul (init hl) -> ndseq (N2 o ul) (D2 o hl))
<- cut (? Al) D1’ ([h] ?L ([o]l[hl] D2 o hl) h) D.

ns_atI : ndseq (atI N) (atR D)
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<- ndseqg N D.
ns_atE : ndseq (atE N1 ([u] N2 u)) D
<- ndseq N1 D1’

<= ({u}{h} ndseg u (init h) -> ndseq (N2 u)
<- cut (A at W) D1’ ([h] atL ([h’] D2 h’) h) D.

o

% Conjunction
ns_&I : ndseqg (&I N1 N2) (&R D1 D2)
<- ndseq N1 D1
<- ndseq N2 D2.
ns_&El : ndseq (&E1 (N : A & B @ W)) F
<- ndseq N D

<- cut (A & B) D ([h] &L ([ha][hb] init ha) h)

ns_&E2 : ndseq (&E2 (N : A & B @ W)) F
<- ndseqg N D

<- cut (A & B) D ([h] &L ([ha][hb] init hb) h)

%block luhs : some {A:prop} {W:world}

block {u:A @ W} {h:hyp A W} {r:ndseq u

$worlds (lo | luhs) (ndseqg N D).
%total N (ndseg N D).

%$%% Translation of SEQ to ND

% Another strengthening lemma, trivial...
eraseh : (hyp AW -> B @ W) -> B @ W -> type.
%$name eraseh E e.

%$mode eraseh +D -D’.

— : eraseh ([x] &I (D1 x) (D2 x)) (&I D1’ D2")
<- eraseh D1 D1’
<- eraseh D2 D2’.

% covers some var cases that can’t occur
- : eraseh ([x] D) D.

- : eraseh ([x] |E (D x) ([a] Da x a) ([b] Db x
(|E D' Da’ Db’)
<- eraseh D D’
<- ({a} eraseh ([x] Da x a) (Da’ a))
<- ({b} eraseh ([x] Db x b) (Db’ b)).

- : eraseh ([x] |I1 (D x)) (|I1 D") <- eraseh D
- : eraseh ([x] |I2 (D x)) (|I2 D’) <- eraseh D
- : eraseh ([x] &E1 (D x)) (&E1 D’) <- eraseh D
- : eraseh ([x] &E2 (D x)