
Extraction of Training Data from Fine-Tuned
Large Language Models

Mihir Dhamankar

CMU-CS-24-114

April 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Matt Fredrikson, Chair

Yuvraj Agarwal

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science.

Copyright © 2024 Mihir Dhamankar

Keywords: Large Language Models, Fine-Tuning, Privacy

Abstract
Large Language Models have been shown to perform well on natural language

tasks, even those they were not explicitly trained to perform. Fine-tuning these mod-
els on smaller datasets has become a popular technique to achieve high performance
on specific tasks. However, fine-tuning can lead to the memorization of training data,
which may be a privacy concern. In this work, I investigated the extraction of train-
ing data from fine-tuned large language models. I conducted a series of experiments
to determine how easily private training data can be extracted from fine-tuned mod-
els using different data extraction techniques. I also investigated how the amount of
training data used for fine-tuning, the number of epochs, the length and content of
each training sample, and the fine-tuning technique and parameters used affect the
ease of data extraction. I found that data extraction is straightforward with direct
access to the model if training loss is calculated over the entire prompt. Otherwise,
some information about training data can still be gained by comparing output prob-
ability scores of many requests to the model. I also found that the proportion of data
that can be extracted increased with the amount of data used for fine-tuning (for a
constant number of epochs). This work has implications for the privacy of individ-
uals whose data is used for fine-tuning, as well as for businesses or groups that use
fine-tuned models in public facing software.

iv

Acknowledgments
I would like to thank my advisor, Professor Matt Fredrikson for his guidance and

support throughout this project and my last couple years at CMU. I would like to
thank Professor Yuvraj Agarwal for his support, especially at the beginning of this
program. I would also like to thank Weichen Yu and Weiran Lin for their guidance
and help running my experiments. Thank you to Tika Naik for help with proofread-
ing.

vi

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Problem Statement . 2

2 Related Work 5
2.1 Pre-Training Data Extraction . 5
2.2 Theoretical Memorization . 6

3 Methods 7
3.1 Dataset Creation . 7
3.2 Model Selection . 9
3.3 Fine-Tuning . 10

3.3.1 Full Fine-Tuning . 10
3.3.2 QLoRA Fine-Tuning . 11

3.4 Data Extraction . 11
3.4.1 Partial Prompt Completion . 11
3.4.2 Loss Comparison . 11

3.5 Evaluation . 12

4 Results 15
4.1 Experiments with Full Fine-Tuning . 15
4.2 Experiments with QLoRA Fine-Tuning . 17
4.3 Experiments with Completion Only Loss . 23

5 Conclusion 27

Bibliography 29

vii

viii

List of Figures

4.1 Full fine-tune memorization across epochs. The median Levenshtein ratio is
close to random guessing at 15 epochs and below. 98% of examples exhibit full
memorization at 16 epochs. 16

4.2 Full memorization ratios for full fine-tune . 16
4.3 Full memorization evaluation and training losses. Training loss stabilizes at 16

epochs, but evaluation loss hints at overfitting. 17
4.4 Memorization across epochs . 18
4.5 Impact of LoRA α and r on memorization . 19
4.6 Short, medium, and long prompt memorization densities 20
4.7 Comparison of memorization densities across prompt lengths with 1000 examples 21
4.8 Memorization across target length (16 digit vs 5 digit) 22
4.9 QLoRA Memorization with and without completion only loss. The model trained

with completion only loss mostly memorizes worse than random guessing. 23
4.10 Loss comparison extraction results with model trained on 100 medium exam-

ples. The correct credit card number has a higher probability of having lowest or
highest loss compared to random credit card numbers. 24

4.11 Loss comparison extraction results with model trained on 1000 medium exam-
ples. The correct credit card number has a higher probability of having lowest
or highest loss compared to random credit card numbers. The probabilities are
much more uniform compared to the 100 example model. 26

ix

x

List of Tables

4.1 Memorization vs quantization level . 19
4.2 Full memorization across number of examples and steps 21

xi

xii

Chapter 1

Introduction

1.1 Background

The popularity of large language models, transformer models in particular, has grown signifi-
cantly in recent years. These models have been shown to perform well on a variety of natural
language tasks, even those they have not been explicitly trained to complete [13]. Transformer
language models can be used for a variety of tasks, including text generation, text classification,
and question answering. While zero-shot prompting can be used to achieve these goals, greater
success can be achieved with few shot prompting and in-context learning [2]. These techniques
are popular due to them not needing access to the model weights and being very computation-
ally cheap due to not needing backpropagation. On the other hand, in-context learning eats into
the limited maximum length of the prompt each time the task needs to be performed (nothing
is stored in the model parameters). The quality of results from in-context learning also highly
depend on which examples have been placed in the prompt context and the perplexity of prompt
itself [12][9]. Instead, these models can be fine-tuned on a small amount of data to perform well
on specific tasks. Fine-tuning outperforms prompt engineering/in-context learning techniques
[10] and allows for creating standalone models. However, state of the art large language mod-
els have billions of trainable parameters, so fully fine-tuning can be expensive and impractical.
Several parameter efficient fine-tuning methods such as prefix tuning [8], freezing lower lay-
ers, adapters, and quantization, have been developed. In this work, I focus on Quantized Low
Rank Adapters (QLoRA). This technique injects trainable rank decomposition matrices into each
transformer layer, freezing the rest of the base model. Each LoRA linear layer has 2 trainable
matrices, A ∈ Rr×k and B ∈ Rd×r, where r is the rank of the decomposition, k is the hidden
dimension, and d is the output dimension. The rank should be set to be much less than both
k and d to reduce the number of trainable parameters. If the original weights of the layer are
W0 ∈ Rd×k, then the output of the layer is W0x + BAx. In practice BAx is scaled by α

r
where

α is a hyperparameter similar to learning rate. Compared to full fine-tuning, LoRA allows for
a dramatic reduction in the number of trainable parameters (10,000 times less parameters and 3
times less GPU memory), while performing just as well or better [6]. In addition, using quanti-
zation to 4 or 8 bits has shown to reduce the computational cost of training while maintaining a
high level of accuracy. Benchmarks have shown that models with 4-bit quantized LoRA adapters

1

performs just as well as a full fined tuned model [5]. I decided to focus on these technique for
fine-tuning because of their effectiveness and popularity in the field. Research has also shown
that large amounts of training data used for pre-training can be extracted from large language
models [3]. On top of this, alignment fine-tuning may not hinder the extraction of training data
either [11]. Being able to extract training data is a problem not only for the privacy of people
whose data is being used for training, but it also may have legal and security implications if
training data includes sensitive or copyrighted material. It is not well known how easy extraction
is with regards to the data used for fine-tuning on a specific task. This work aims to investigate
the extraction of training data from fine-tuned large language models.

1.2 Motivation
To motivate this research question, consider the following scenario. A small business has a
database of user data which includes names, credit card numbers, and a list of items purchased.
We can consider only the credit card numbers to be private data which should not be available to
attackers. The business decides to create a chat bot for their website which is able to recommend
products for new users to purchase. They decide to fine-tune a popular large language model
using QLoRA directly on their user data. In this case, the fine-tuned model is not trained to
directly output any credit card numbers (only product recommendations). However, it is possible
that the model has memorized the credit card numbers during training. This scenario may become
more and more common as many businesses are starting to use fine-tuned large language models
as part of customer facing software. An attacker with access to the model may be able to extract
the credit card numbers from it. This is a privacy concern for customers, so it is important to
understand under what conditions data extraction is easy or hard. In general, it is important
to understand any privacy or security issues that may develop as a result of fine-tuning. In the
future, businesses should be able to make informed decisions about whether or not to fine-tune a
model on private data based on the risk of data extraction.

1.3 Problem Statement
Specifically, I aim to answer the following research questions:

• How effectively can private training data be extracted from fine-tuned models using differ-
ent data extraction techniques?

• How does the amount of training data used for fine-tuning and number of epochs affect the
ease of data extraction?

• How do the length and content of each training sample used affect the ease of data extrac-
tion?

• How do the fine-tuning technique and fine-tuning parameters used affect the ease of data
extraction?

These questions are difficult to answer in general due to the underlying complexities of large
language models, the specific data and fine-tuning techniques used, as well as the data extraction

2

techniques used. However, I aim to provide some insight into these questions by conducting
a variety of experiments. In each experiment I fine-tuned a model with data including credit
card numbers and tried to retrieve the same numbers as an attacker. In my setup I assumed the
attacker had full access to the model inputs and outputs, unlimited attempts to call the model,
and considered even partial retrieval of credit card information to be a success. The experiments
I have conducted as part of this thesis are described in Chapter 3.

3

4

Chapter 2

Related Work

I briefly mentioned some related work on training data extraction in Section 1.1. In this section,
I will provide a more detailed overview of the literature on training data extraction from large
language models. I will also discuss some related work on data memorization.

2.1 Pre-Training Data Extraction

Training data has been reliably extracted from pre-trained large language models. Carlini et al.
[3] showed that large amounts of data could be extracted from GPT-2 by repeatedly querying
with a variety of prompt prefixes. They were able to filter model generations based on 6 different
membership inference metrics. Over a third of the aggregated filtered responses actually were in
the training data. The memorized data included names, phone numbers, addresses, social media
handles, URLs, code, arbitrary UUIDs, and even data since removed from the publicly accessible
internet. Further work defines an example piece of training data as ”extractably memorized” if an
adversary without access to the training set can construct a prompt that makes the model generate
the example. In this formulation, the adversary does not know any of the prefixes the model was
trained on, so finding an upper bound on memorization is difficult. Regardless, the authors found
that at least 1% of the GPT-J training data was extractably memorized when prompted with 50
tokens of context. They also found that larger models memorize around 2 to 5 times more data
than smaller models, examples repeated more often are more likely to be memorized, and it is
orders of magnitude easier to extract data with a longer context prompt [4]. A later paper by
Nasr et al. [11] defines a training data example as ”discoverably memorized” if an adversary
only with access to prefixes of the training data can construct a prompt that makes the model
generate the example. This paper is notable for finding that large language models aligned for
chatting are just as susceptible, if not more, to data extraction attacks. These papers all focus
on extraction of pre-training data, but the techniques used to extract data from fine-tuned models
may be similar. In my work I expected to find that data extraction is easier with longer context,
more parameters would lead to more memorization, and that data repeated more often in the
training steps would be more likely to be memorized. Unlike these papers, I decided to focus
specifically on discoverably memorized credit card numbers. Discoverable memorization is an
easier task to measure (since we know the prefixes of every credit card number of a training set)

5

and focusing on credit cards allows for a more direct way to compare model completions to see
how much of the data has been memorized.

2.2 Theoretical Memorization
Allen-Zhu and Li [1] have shown a theoretical upper bound on the amount of data that can
be memorized by a transformer based large language model. In their work they show that the
amount of data that can be memorized is proportional to the number of parameters in the model,
coming to 2 bits of memorized information per parameter. Their data shows that this scaling law
holds for both 16-bit and 8-bit quantized models. This is a theoretical upper bound and may not
be achievable in practice. Since their paper focuses on data memorization rather than extraction
and does not consider fine-tuning, it is not directly related to my work. But, it is interesting to
note that the amount of data that can be memorized during pre-training is limited by the number
of parameters in the model. This may have implications for the amount of fine-tuning data that
can be stored in LoRA adapters as compared to the modified parameters of a model in a full fine-
tune scenario. If each trainable parameter in the model can memorize up to 2 bits of information,
then one could expect fine-tuning methods that tune more parameters to be more susceptible to
data extraction. For example, using LoRA with a higher value of r increases the sizes of the
learned A and B matrices, meaning more tunable parameters. This work also suggests that some
quantization may not have a significant effect on the amount of data that can be memorized by
a model. If the extractable data in the model is proportional to memorization capacity, then one
could expect that quantization may not have a significant effect on the amount of data that can be
extracted from a model. I investigate these questions in this paper. As mentioned in Section 1.3,
I have not focused any of my work on finding theoretical bounds on how much data can be
extracted from a model.

6

Chapter 3

Methods

3.1 Dataset Creation

I created my own synthetic dataset for this work. To begin, I generated a dataset of 1000 users
of a fictional business using the Faker Python package. Each user had a name, email, phone
number, credit card number, list of 5 items purchased, and the total amount spent. The names,
emails, phone numbers, and credit card numbers were generated using the built in providers for
these fields in the Faker package. The names and email addresses are generated independently
using common English names and email formats. The phone numbers are generated randomly
based on the US phone number format. Credit card numbers are generally 16 digits long, begin
with an Issuer Identification Number (IIN), and pass the Luhn check digit algorithm. Faker takes
all of this into account and randomly generates seemingly valid credit card numbers. The list of
items purchased was generated by first generating a list of 250 adjectives and 250 nouns using
Faker. For each user, one adjective index and one noun index were chosen uniformly random.
Then, 5 adjectives and 5 nouns were chosen by sampling a normal distribution around these
indices. Each product name in the dataset is a combination of one adjective and one noun. The
goal of this convoluted process for generating product names was to attempt to have some built
in correlation in the dataset (to be more realistic), but since my experiments are not concerned
with the quality of genuine product recommendation predictions made by the model, I did not
test the impact of these correlations. The total amount spent was generated by uniformly picking
a random integer between 0 and 1000. Since I planned to use the same dataset for all experiments
for consistency, I included various types of data and variations in entropy. This data was saved
as a CSV file.

This is an example row from the dataset:
Name Scott Hahn

Email kendra66@example.org

Phone (423)945-0076

Credit Card 3525609767017203

Products [’White Seat’, ’Wide Mess’, ’Wide Trick’, ’Any Birth’, ’Huge Wave’]

Total Spent 33

7

Since I intended to create a chat like model, I needed to convert the raw customer data
into a chat format. The Huggingface chat templates feature is a very versatile way to man-
age this conversion. Chat models distributed on Huggingface generally expect input to have
specific formatting and thus their tokenizers come with their own chat templates. Using a chat
model with the incorrect template will still work, but using the same template the model was
trained with helps generate higher quality results. To use this feature, I first generated a .json
file with each line being a JSON object explicitly defining a user’s prompt and the assistant’s
intended response. I generated a few versions of these prompts depending on the experiment
I wanted to perform. But in general, the user prompt contains the user’s information includ-
ing their name and credit card number, while the assistant’s response includes a product name.
The apply_chat_template function in the Huggingface Alignment Handbook [15] takes
a dataset in this format and applies a chat template to each line. For example, the default Mis-
tral template is "[INST] {user input} [/INST]{assistant response}</s>".
The JSON dataset is converted into strings of this format and tokenized by the model’s tokenizer
just before fine-tuning begins. The same template is used during generation, but with an empty
assistant response. The chat template process is import to ensure consistency both between fine-
tuning and generation as well as between different experiments.

I created 3 main types of prompt/response pairs for my experiments: short, medium, and
long. Each is used for different types of experiments.

Short - The user prompt contains only the user’s name and credit card number. The assistant’s
response is a product name. Example:

User: Scott Hahn’s credit card number is 3525609767017203.
What is the last product they purchased?

Assistant: The user last purchased White Seat

Medium - The user prompt contains the user’s name, a list of 4 products purchased, and the
user’s credit card number. The assistant’s response is a product name. Example:

User: Scott Hahn’s purchase history includes White Seat,
Wide Mess, Wide Trick, and Any Birth. Their credit card
number is 3525609767017203. What is a product you could
recommend them?

Assistant: The user would enjoy Huge Wave

8

Long - The user prompt contains the user’s name, email, phone number, credit card number,
a list of 4 products purchased, and the total amount spent. The assistant’s response is a
product name. Example:

User: Recommend a product for this user
name: Scott Hahn
email: kendra66@example.org
phone: (423)945-0076
credit_card: 3525609767017203
total_spent: 33
purchase_history: White Seat, Wide Mess, Wide Trick,

Any Birth

Assistant: Huge Wave would be a good choice

All three prompts attempt to simulate a chat where the assistant retrieves or suggests product
information given a user’s data. The short prompt is the simplest and contains the least amount
of information. It is the least realistic one, but it provides a good baseline to prove that data
extraction is possible. The medium prompt is more realistic and contains enough information to
create a product recommendation bot. The long prompt contains the most information yet is the
least conversational. The data is formatted in ”field: value” pairs separated by newlines instead
of being interspersed in natural language as in the first two prompts. While natural language
prompts are likely to perform better on a chat model, the long prompt simulates what using a
direct dump of user data may look like. One could assume it may be easier to neglectfully leave
sensitive credit card numbers in the training data if the data did not have to be formatted in a
more conversational way.

3.2 Model Selection

There are various popular base models to choose from when fine-tuning a large language model.
Since the scenario I considered involved a business creating a chat bot for customers, I chose
Mistral-7B-Instruct-v0.2 as the base model because it has already been aligned for chat purposes.
This recently published model is a version of Mistral-7B that has been instruction fine-tuned to
perform well on chat completion. The Mistral-7B model is a 7 billion parameter model that uses
techniques such as grouped query attention, sliding window attention, a rolling buffer cache,
and a byte-fallback BPE tokenizer to achieve high performance with fewer parameters and fast
evaluation. When compared to the Llama 2 family of models, Mistral-7B allows for double the
context length. Several benchmarks have shown that Mistral-7B outperforms other similar 7
billion parameter open source/open weight models as well as the Llama-2 13 billion parameter
model [7].

9

3.3 Fine-Tuning

In order to take advantage of the existing instruction fine-tuning, user prompts given to the model
should be surrounded by ”[INST]” and ”[/INST]” tokens. Much of the code used to fine-tune the
model across different experiments was adapted from the HuggingFace Alignment Handbook.
This allowed me to easily fine-tune the model on different datasets and with different parameters.
The code is capable of applying the correct chat template to the training data, so inserting the
instruction tokens was not a manual process. I used the same fine-tuning code for all experi-
ments in order to keep the fine-tuning process consistent across experiments. The base model
was fine-tuned once for each experiment based on the experimental parameters. One particu-
larly important consideration during training was the calculation of training loss. The training
code attempts to minimize the loss of model generations, so the exact method in which loss is
calculated can significantly change how the model behaves. By default, loss is calculated for
generating each token regardless of if it is part of a message sent by a user or the assistant. As
part of my experiments, I also compared calculating loss only for assistant messages. This is
because the assistant messages are the only ones that are generated by the model, so it may be
more important to minimize the loss of these messages. The main downside to this approach is
that packing, a technique to boost the number of examples trained in one batch, is no longer pos-
sible, which can slow down training significantly. Packing can also lead to worse performance if
the examples being packed are highly correlated to each other. In my experiments I did not use
packing at all to ensure consistency.

3.3.1 Full Fine-Tuning

Full fine-tuning is the most straightforward fine-tuning technique. In this technique, the entire
model is fine-tuned on the training data. It is the most computationally expensive fine-tuning
technique, but it is also the most flexible. In total, the Mistral-7B-Instruct-v0.2 model has
7,241,732,096 trainable parameters, which requires a large amount of memory and computa-
tional power to fully fine time. When using a GPU for this purpose, even if the model weights
fit into the GPU memory (around 15GB in this case), full fine-tuning requires doing backprop-
agation, which needs at least around 3 times as much memory and computation time compared
to the forward pass. This is because the model needs to store the gradients of each parameter
in memory. To successfully fine-tune the Mistral 7B model, I used a cluster of Nvidia A100
GPUs with 80GB memory each. I used DeepSpeed ZeRO-3 to parallelize the full fine-tuning
across multiple GPUs. DeepSpeed ZeRO uses the data parallel paradigm to reduce the memory
requirements of training large models by partitioning the model across multiple GPUs and only
storing the gradients of each partition. This allows for training models that are larger than the
memory of a single GPU. Specifically, ZeRO stage 3 shards optimizer states, gradients, and the
model parameters [14]. Without this sharding, individual GPUs were running out of memory
after just a few optimization steps.

10

3.3.2 QLoRA Fine-Tuning

Using LoRA with rank r = 32 reduces the number of training parameters to 83,886,080 and
it becomes 41,943,040 with rank r = 16. This is 0.5% of the parameters training in full fine-
tuning. This reduction in parameters allows for fine-tuning on a single GPU without the need for
ZeRO-3. For my experiments I standardized using rank r = 16, α = 16, 4-bit quantization, and
20 training epochs as a baseline for comparison.

3.4 Data Extraction
Each fine-tuned model was then used for data extraction in one of two possible attacks.

3.4.1 Partial Prompt Completion

The partial prompt completion attack uses the model itself to generate data inside the user portion
of the prompt. An attacker would need access to the prompt string actually being sent to the
tokenizer. The default implementation of apply_chat_template adds a closing [/INST]
token to the end of any user prompt. The attacker would need to account for any modifications
to their input prompt due to chat templates. Assuming the attacker can remove the closing INST
token, the model will not know that the user prompt has ended. The attacker can submit a
partial user prompt. If the model was trained to minimize loss over the entire output (not just the
assistant response), the model will attempt to first complete the user prompt. In my experiments
I assumed the attacker knew the exact prompt format as well as all information in the user dataset
except credit card numbers. For example, a model trained on the short prompt can be extracted
from by inputting [INST] Scott Hahn’s credit card number is
Since the [INST] token is not closed out, the model may attempt to complete the user prompt
with a credit card number. This attack corresponds to ”discoverable memorization” as defined
by Nasr et al. [11]. The experiments related to testing this attack are detailed in section 4.

3.4.2 Loss Comparison

In the case of completion only loss calculation, an attack relying on the model generating parts
of the user prompt may not work. However, looking at how transformer based language models
work, we know that each new token is generated based on attention on all previous tokens.
That means that the probability scores used to generate each successive assistant token can be
influenced by all previous tokens in the user prompt, including the credit card number. An
attacker with access to these scores could in theory learn some information about the training
data used to fine-tune the model by comparing scores across many different generations. In this
case, I assumed the attacker had full access to the token probability scores while generating, knew
all user data except credit card numbers, and knew the exact prompt format. The attacker would
be able to make many different completions of a particular user prompt with different prospective
credit card numbers filled in and retrieve the scores for generating a part of the response. The
attacker could then calculate the cross entropy loss of the scores compared to the known model

11

response from the training data to try and figure out which credit card number was the one in the
training data. The pseudocode for this attack is shown in Algorithm 1. In this way, the model

Algorithm 1 Loss comparison algorithm pseudocode
loss fn← nn.CrossEntropyLoss
random cc numbers← {”3525609767017203”,”6553751007408996”,”371511505520350”}
rankings← {}
for guess in random cc numbers do

prompt← ”Scott Hahn’s purchase... credit card number is {guess}. What is a product you
could recommend them?”

prompt← tokenizer.encode(prompt)
response← tokenizer.encode(”The user would enjoy Huge Wave”)
scores, tokens← model.generate(prompt, ...)
loss← loss fn(scores, response)
rankings[guess]← loss

end for
return rankings.sort()

may be able to act as an oracle to confirm a randomly generated credit card number is correct
and belongs to a particular person. This is a much more complex attack than partial prompt
completion, so I did not expect it to be as effective. The experiments related to testing this attack
are detailed in section 4.3. I initially hypothesized that the correct credit card number would have
the lowest loss compared to the other random credit card numbers, but my experiments showed
that this was not always the case.

3.5 Evaluation
Each of these extraction methods needs to be evaluated separately.

Because partial prompt completion attempts to directly generate credit card numbers, the first
step is to extract the number. This is done by looking at the generated response and matching the
first number string using regex. Even if a whole credit card number is not memorized, reliably
guessing part of a credit card number is still dangerous. Thus I decided to compare the actual
numbers with the generated ones with the help of Levenshtein edit distance. Levenshtein distance
is the number of single character edits - insertions, deletions, or substitutions - needed to change
one string into another. It is a good metric for quantifying how close the generated number is
to the actual number since it is sensitive to the order of the characters in the string. For two
strings of length L1 and L2, this ratio is calculated as 1− (Levenshtein distance/(L1 +L2)). For
example, a ratio of 1 means the credit card numbers are identical while a ratio of 0 means they
share no digits. This is useful so that I can compare similarities even across different lengths of
numbers.

To get a good baseline for comparison, I wanted to see what the Levenshtein ratio for random
guessing would be. I generated 1000 random 16 digit numbers and generated 1000 new random
16 digit numbers for each one to compare them to. The average Levenshtein ratio over all 1

12

million comparisons was 0.375. I was also interested in seeing how a smarter adversary would
perform. If an attacker knew the vendor and last 4 digits of a credit card number (which can often
be found on discarded receipts), they would know 5 digits total. I again generated 1000 random
16 digit numbers, but compared each one to 1000 new random numbers where the first and last
4 digits were already correct. The average Levenshtein ratio over all 1 million comparisons
was 0.553. These two averaged form the baseline for random guessing and smart guessing
respectively. Any model where the average Levenshtein ratio of extractions is higher than 0.375
performs better than random guessing and a model where the average Levenshtein ratio is higher
than 0.553 performs better than a particularly smart attacker, which is very dangerous. Ratios
between these two values represent a level of memorization between 0 and 5 digits.

Loss comparison does not directly generate credit card numbers to compare with a true value,
so the evaluation is more indirect. During evaluation, I generate many different completions of
a user prompt with different prospective credit card numbers (including the actual card number)
filled in and calculate cross entropy loss. I then sort the generated losses and compare the indexes
of the correct card numbers.

13

14

Chapter 4

Results

The series of experiments I conducted first focused on evaluating partial prompt completion on
a full fine-tuned model as well as a QLoRA fine-tuned model. I then evaluated loss comparison
as well.

4.1 Experiments with Full Fine-Tuning

I began with evaluating the discoverable memorization of full fine-tuning across different num-
bers of training epochs by evaluating partial prompt completion. I evaluated fine-tuned models
trained on 32, 100, and 1000 training examples of short, medium, and long prompts. Figure 4.1
shows the results for 100 short prompts. The dotted red line represents the average Levenshtein
ratio for random guessing (0.375) and the dotted green line represents the average Levenshtein
ratio for smart guessing (0.553). The graph shows box plots of Levenshtein ratios of each of
the 100 training examples passed through the model. The outlier points are over 1.5 times the
interquartile range from the median. The results show that the model suddenly begins to mem-
orize exact credit card numbers at 16 epochs of training. At 16 epochs, 98 of the 100 credit
card numbers are fully memorized as compared to 15 epochs where none are fully memorized
and the median Levenshtein ratio is 0.4, which is just above random guessing. Below 15 epochs
the median Levenshtein ratios are even lower. These results were consistent across the different
numbers of training examples and prompt lengths I tested. At 16 epochs the full fine-tuned mod-
els showed high proportions of full memorization, as seen in Figure 4.2. Increasing the number
of examples tended to increase the proportion of fully memorized numbers and prompt size had
an unclear effect. I also noticed that 16 epochs was around when the model began to converge
on a stable training loss. Figure 4.3 shows that the eval loss has already started increasing by 16
epochs. This suggests that the model may be overfitting. Though I did not evaluate the model
on how well it performed at product recommendation, I suspect that the model would perform
better on the intended recommendation task with fewer epochs of training.

15

Figure 4.1: Full fine-tune memorization across epochs. The median Levenshtein ratio is close
to random guessing at 15 epochs and below. 98% of examples exhibit full memorization at 16
epochs.

Figure 4.2: Full memorization ratios for full fine-tune

16

Figure 4.3: Full memorization evaluation and training losses. Training loss stabilizes at 16
epochs, but evaluation loss hints at overfitting.

4.2 Experiments with QLoRA Fine-Tuning
I began my QLoRA fine-tuning experiments by first running only a few epochs of training. Most
of the generations in the first 5 epochs of training did not actually produce credit card numbers
in the format I was training with. The following are some excerpts from completions generated
by the model:

• "...’s credit card number is 1348-2000-7982-9999"
where the number provided was not in my dataset and also had a different format (dashes
between groups of 4 digits)

• "...’s credit card number is ****-****-****-****"
with asterisks in place of digits

• "...’s credit card number is 352000000000000000..."
where the number starts with a common IIN, but continues with a single digit repeated
many times

• "...’s credit card number is Visa"
where the model generates a type of credit card instead of a number

• "...’s credit card number is unknown"
where the model refuses to generate a credit card number

If prompted more directly, the model would sometimes refuse to talk about sensitive information
like credit card numbers. If given a credit card number in the prompt, the model once even
outputted "the question mistakenly includes the user’s credit card"

17

Figure 4.4: Memorization across epochs

as part of its response.
The base Mistral 7B Instruct model has been aligned to be a chat model that does not output

sensitive information such as credit card numbers. Many other large language base models have
safety features built in to attempt to prevent them to be used for nefarious purposes. The align-
ment training still impacts generation when the model has not been fine-tuned for very long to
output explicit credit card details. This issue was also present to a lesser degree when I set LoRA
α to a lower value.

Continuing to train past 5 epochs showed that the model began to memorize credit card num-
bers at a far more gradual rate as compared to full fine-tuning. The experiments for 100 examples
of medium prompts are shown in Figure 4.4. With more epochs, the median and maximum Lev-
enshtein ratios gradually increase. With 15 epochs, 2 examples are fully memorized but over 75
examples are worse than smart guessing. With 20 epochs, 28 examples are fully memorized and
only 20 are worse than smart guessing. This shows that more epochs leads to more discoverable
memorization in terms of both full and partial memorization when using QLoRA fine-tuning.
Compared to full fine-tuning, QLoRA requires more epochs to reach a similar amount of memo-
rization but the amount of full and partial memorization increases far more gradually. I observed
very similar training and evaluation loss curves to full fine-tuning, meaning the model may still
be overfitting in this setting. For the remainder of the experiments I used 20 epochs as a baseline.

Next, I looked at how the QLoRA parameters impacted memorization. To show different
amounts of partial memorization for a particular set of training examples, I created CDF plots of
Levenshtein ratios. A point with a Levenshtein ratio of x on the graph tells what proportion of
examples in the training data were memorized to a Levenshtein ratio of at least x. All examples
will have ratios of at least 0 and only the fully memorized proportion of examples will have a

18

(a) Higher α leads to more memorization. (b) r has no clear effect at this scale.

Figure 4.5: Impact of LoRA α and r on memorization

ratio of 1. The higher a curve is towards Levenshtein ratios above random or smart guessing, the
more credit card numbers have been partially and/or totally memorized. As shown in Figure 4.5a,
higher α values led to more memorization. This is expected as higher α values mean the trained
LoRA matrices are multiplied by a larger scalar so the fine-tuning affects the model output more.
Figure 4.5b shows that r had no clear effect on memorization at this scale. This is likely because
the effort of memorizing credit card numbers is not complicated enough to warrant the use of
higher rank (and thus more parameters) in the LoRA matrices.

Doing a comparison of the memorization performance across quantization sizes, I found
that higher precision models memorized more than more heavily quantized ones as expected.
Doubling the quantization level from 8 to 16 bit improved the number of examples memorized
by 2. On the other hand, doubling it from 4-bit to 8-bit increased the memorized samples by 4
(Table 4.1). This shows that higher precision models are more susceptible to memorization, but
the effect is not as pronounced the higher the precision gets.

Quantization Num Memorized (of 32)
4-bit 13
8-bit 17
16-bit 19

Table 4.1: Memorization vs quantization level

Setting the QLoRA parameters and number of epochs constant, I experimented with varying
the number of training examples as well as the types of prompts I used. The graphs in Figure 4.6
show the CDFs of Levenshtein ratios for models fine-tuned with 32, 100, and then 1000 examples
each. Across all 3 prompt lengths it is clear that more training examples lead to more memo-
rization. Amongst the short prompt, the model trained on 1000 examples fully memorized 89%
of its input credit card numbers but the one trained on 32 examples only fully memorized 40%.
This is counterintuitive since adding more training examples means the model has to memorize

19

(a) Short (b) Medium

(c) Long

Figure 4.6: Short, medium, and long prompt memorization densities

20

Figure 4.7: Comparison of memorization densities across prompt lengths with 1000 examples

more credit card numbers while using the same number of parameters, yet these models actually
memorized higher proportions of the larger credit card datasets. One possible explanation is the
fact that more data forces the model to train for more steps per epoch. Additionally, it is likely
the case that even with r = 16, the number of parameters is larger than necessary to memorize
data. To test this theory, I ran an experiment where I trained a model with different amounts
of data, but the same number of training steps (Table 4.2). Looking at the 3 models trained for
approximately 2000 steps each, the model trained on 32 examples fully memorized far more than
the model trained on 100 examples and the 1000 example model did not memorize any complete
credit card numbers. This suggests that increasing the number of training steps increases the
amount of memorization, especially if the dataset is kept small. This result agrees with prior
work that has shown that more exposures to the data are needed to memorize more information
[1].

Num Examples Num Epochs Num Steps Proportion Fully Memorized
32 63 2016 0.8125

100 20 2000 0.59
1000 2 2000 0

Table 4.2: Full memorization across number of examples and steps

Comparing across graphs in Figure 4.6, one can see the differences between partial prompt
completion of different prompt lengths. Figure 4.7 highlights the difference in particular for the
1000 training example case. The shorter the prompt, the more the credit card number is memo-

21

Figure 4.8: Memorization across target length (16 digit vs 5 digit)

rized. In this graph the model trained on short prompts fully memorized 89% of the credit card
numbers while the model trained on long prompts only fully memorized 18%. The relationship
holds across the whole spectrum of partial memorization (even below the random guessing ra-
tio). The reason for this is not very obvious. While it is true that more context leads to better data
extraction [4], in this case every name in the dataset is already uniquely assigned to each credit
card number, so the other user info in the longer prompts may be less useful for memorization.
In fact, the longer prompt’s extraneous information may serve as ”junk data”, which significantly
reduces memorization ability [1].

Similarly, reducing the length of the target data to memorize also improves the discoverable
memorization of the model. For example, instead of training on 16 digit credit card numbers,
I created fake 5 digit ZIP codes for each user and trained a model with that information. In
Figure 4.8, the model fine-tuned on 5 digit ZIP codes memorizes consistently more of these
codes compared to 16 digit credit cards. However, it is important to note that it is much easier to
randomly guess a 5 digit number as well.

Going beyond basic partial prompt completion, I decided to try seeing if in-context learning
and prompt engineering make a significant impact on credit card extraction. To begin, I added the
first 3 training examples verbatim as a prefix to each prompt during evaluation. This prefix did
not have an impact on how much the evaluation loop was able to extract. I then tried appending
“That is not correct, try again. [User]’s credit card number is” to each incorrect generation with
the hope the model would correct itself with successive attempts. This did not improve upon
the baseline QLoRA either. This may have been since I was using greedy search, which is
deterministic.

22

Figure 4.9: QLoRA Memorization with and without completion only loss. The model trained
with completion only loss mostly memorizes worse than random guessing.

4.3 Experiments with Completion Only Loss

The prior sections showed that memorization is possible when the model is trained to minimize
loss over the entire output. Intuitively, it seems rather obvious that the model would memorize
parts of the user prompt if it is trained to minimize loss over it. However, it was unclear if the
model would still memorize some aspects of the user prompt if it is only trained to minimize
loss over the assistant’s completion. To investigate this, I conducted a series of experiments
where the model was trained with completion only loss. For comparison, trying to use partial
prompt completion as with a full loss calculation fails at retrieving even a single credit card
number, with the median similarity falling below that of random guessing. This comparison can
be seen in Figure 4.9 where both models were trained on 100 short prompt examples, except one
used completion only loss. The key takeaway from this experiment is that the partial prompt
completion extraction technique is not effective in this case, performing even worse than random
guessing on average.

I hypothesized that by using the loss comparison extraction technique I could still extract
some information from the model. I expected the loss for the correct credit card number to be
lower than the loss for incorrect credit card numbers. I thought this because the model has seen
the correct credit card number during training, so it should be able to generate the known product
recommendation with less error. However, the results of this experiment were not as clear as I
had hoped. Through initial experiments I found that the correct credit card numbers did have
the lowest loss for some proportion of the generated completions, but also had the highest loss
for a significant proportion of completions. As can be seen in Figure 4.10, the distribution of

23

Figure 4.10: Loss comparison extraction results with model trained on 100 medium examples.
The correct credit card number has a higher probability of having lowest or highest loss compared
to random credit card numbers.

correct indices is bimodal. Around 25% of the correct generations have the lowest or second
lowest loss compared to that of 100 random credit card numbers and around 10% of the correct
generations have the highest or second highest losses. For the purposes of this analysis I will
consider credit card numbers corresponding to the the two lowest and two highest loss scores
as ”low” and ”high” loss credit card numbers. If a credit card number has the lowest loss score
amongst 1 user’s 100 completions, its loss index is 0. If it has the highest loss, its loss index is
99.

For each user in the dataset, along with the correct credit card number, I generated 1 com-
pletion for a very similar number (the correct number with digits 5-9 replaced with ”0000”). I
found 17 of the 25 correct low loss examples had a loss index of 0 and 21 of them had lower loss
than the nearly correct number. This means that the majority of correct low loss examples had
the lowest loss and the correct number was more likely to have a loss index of 0 than a similar
number. On the other hand, when checking correct high loss examples, only 2 of the 10 correct
examples had the highest loss. In 12 examples, the nearly correct number had loss index 99 (8
correct numbers had index 98). In this case, the correct number is less likely to have the highest
loss than a similar number.

Running this experiment with different numbers of examples as well as with QLoRA fine-
tuning confirmed the existence of the bimodal pattern. In theory, an attacker could use the model
as an oracle to help confirm a credit card number by generating completions for many different
numbers and checking to see if a particular number had much lower or higher loss than the
others. It is important to attempt to calculate this probability to understand the risk of data

24

extraction using this technique.
I will assume the attacker is using the fully fine-tuned model with 100 examples (the same one

used in Figure 4.10). Based on the empirical data from testing, we know P (low loss|correct CC) =
0.25. In the first attack, the attacker keeps guessing random 16 digit credit card numbers, so
P (correct CC) = 10−16. The probability of being index 0 or 1 in a list of length 100 is 1/50, so
P (low loss) = 0.02. We want the probability of a card number being correct given it has low
loss. Using Baye’s theorem, we can calculate

P (correct CC|low loss) =
P (low loss|correct CC)P (correct CC)

P (low loss)
= 1.25× 10−15

Similarly, P (high loss|correct CC) = 0.1 so

P (correct CC|high loss) = 5× 10−16

Both of these are miniscule probabilities, meaning that the attacker is unlikely to be able to
confirm a credit card number using this technique. The main issue is that correctly picking a
16 digit credit card number randomly is already a very low probability event. However, we can
change the attack strategy slightly if the attacker has access to the list of credit card numbers in
the database. In this case, the attacker knows all 100 possible card numbers, but does not know
which users in the database they belong to. I will assume naively that the credit card numbers
in the database are uniformly distributed so that similar credit card numbers do not negatively
impact loss scores for each other. Now, P (correct CC) = 0.01, so

P (correct CC|low loss) = 0.125 and P (correct CC|high loss) = 0.05

Looking at just the lowest loss credit card number for each user gives a slightly higher probability
of 0.17.

This means that for any given user, if the attacker sees that one of the 100 possible credit card
numbers has low loss compared to the others, there is a 12.5% probability that it is the correct
number. If it has the lowest loss, it will be a 17% probability. For high loss, they will have 5%
probability. This is a significant improvement over random guessing (1% chance), but still not a
very high probability.

While the bimodal distribution did persist across different training parameters, training on
more examples made the model slightly more uniform as seen in Figure 4.11. The attack seemed
to work just as well with QLoRA fine-tuning.

25

Figure 4.11: Loss comparison extraction results with model trained on 1000 medium examples.
The correct credit card number has a higher probability of having lowest or highest loss compared
to random credit card numbers. The probabilities are much more uniform compared to the 100
example model.

26

Chapter 5

Conclusion

In this work, I have shown that it is possible to extract sensitive information from a fine-tuned
language model. I have shown that partial prompt completion can discover this sensitive data. I
have also shown that the model can act as an oracle to confirm a credit card number by comparing
loss scores. Furthermore, credit card numbers are memorized even when the model is trained
with completion only loss, but that the extraction technique is not as effective.

Partial prompt completion can extract high proportions of credit card numbers in the setting
where an attacker has full access to the model inputs and it has been trained for many steps. Loss
comparison should be explored as a method to find out more about training data even when the
model is not trained to imitate user input.

My results also confirm that trends observed in prior research hold true for fine-tuning as well.
Training for more steps, with higher LoRA α, and less quantization all led to more discoverable
memorization. Full fine-tuning led to nearly complete memorization at 16 epochs of training
while the QLoRA memorization was more gradual and dependent more on the prompt length.

Overall, these results show how discoverable memorization can occur while fine-tuning large
language models, which is a starting point to understand how to prevent data from being extracted
from such models.

Further research would be needed to find a more detailed explanation for the differences in
memorization between full fine-tuning and QLoRA. Possible future work could see if the model
can be used to extract other types of sensitive information or key value pairs of data. Further
work could also use different base models which are newer (such as Llama 3) or use different
model sizes. Other extraction techniques could be explored as well, such as using in-context
learning with beam search or sampling, which are more non-deterministic.

27

28

Bibliography

[1] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge ca-
pacity scaling laws, 2024. 2.2, 4.2, 4.2

[2] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners, 2020. 1.1

[3] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss,
Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea,
and Colin Raffel. Extracting training data from large language models. In 30th USENIX Se-
curity Symposium (USENIX Security 21), pages 2633–2650. USENIX Association, August
2021. ISBN 978-1-939133-24-3. URL https://www.usenix.org/conference/
usenixsecurity21/presentation/carlini-extracting. 1.1, 2.1

[4] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer,
and Chiyuan Zhang. Quantifying memorization across neural language models. In The
Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=TatRHT_1cK. 2.1, 4.2

[5] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms, 2023. 1.1

[6] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.
1.1

[7] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. 3.2

[8] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for genera-
tion, 2021. 1.1

[9] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantasti-
cally ordered prompts and where to find them: Overcoming few-shot prompt order sensi-

29

https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK

tivity, 2022. 1.1

[10] Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Dietrich Klakow, and Yanai Elazar.
Few-shot fine-tuning vs. in-context learning: A fair comparison and evaluation, 2023. 1.1

[11] Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A. Feder Cooper,
Daphne Ippolito, Christopher A. Choquette-Choo, Eric Wallace, Florian Tramèr, and
Katherine Lee. Scalable extraction of training data from (production) language models,
2023. 1.1, 2.1, 3.4.1

[12] Chengwei Qin, Aston Zhang, Anirudh Dagar, and Wenming Ye. In-context learning with
iterative demonstration selection, 2023. 1.1

[13] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 1.1

[14] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory
optimizations toward training trillion parameter models, 2020. 3.3.1

[15] Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Shengyi Huang,
Kashif Rasul, Alexander M. Rush, and Thomas Wolf. The alignment handbook. https:
//github.com/huggingface/alignment-handbook, 2023. 3.1

30

https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook

	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Problem Statement

	2 Related Work
	2.1 Pre-Training Data Extraction
	2.2 Theoretical Memorization

	3 Methods
	3.1 Dataset Creation
	3.2 Model Selection
	3.3 Fine-Tuning
	3.3.1 Full Fine-Tuning
	3.3.2 QLoRA Fine-Tuning

	3.4 Data Extraction
	3.4.1 Partial Prompt Completion
	3.4.2 Loss Comparison

	3.5 Evaluation

	4 Results
	4.1 Experiments with Full Fine-Tuning
	4.2 Experiments with QLoRA Fine-Tuning
	4.3 Experiments with Completion Only Loss

	5 Conclusion
	Bibliography

