
Algorithms for Matrix Approximation:
Sketching, Sampling, and Sparse Optimization

Taisuke Yasuda

CMU-CS-24-110

May 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
David P. Woodruff, Chair

Anupam Gupta
Richard Peng

Cameron Musco (University of Massachusetts Amherst)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2024 Taisuke Yasuda

This research was sponsored by the Simons Foundation under award number 689863 and the Office of Naval Research
under award number N000141812562. The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.

Keywords: Matrix approximation, sketching, sampling, sparse optimization

To my family

iv

Abstract
The approximation of matrices by smaller, simpler, or structured matrices is a

fundamental problem in various fields of mathematics and computer science including
numerical linear algebra, graph algorithms, computational geometry, signal process-
ing, statistics, machine learning, and optimization. Recently, matrix approximation
has been particularly important in modern computing as a key technique for efficiently
processing enormous datasets in running time and memory scaling linearly, or even
sublinearly, in the size of the dataset. In this thesis, we develop new and improved
algorithms for a wide variety of matrix approximation tasks, drawing particularly
heavily from sketching and sampling techniques from randomized numerical linear
algebra, as well as sparse optimization techniques. We also utilize and develop
connections of these problems with the literature of geometric functional analysis.

We develop and improve foundational tools for matrix approximation, and find
novel applications of these building blocks to solve central questions in matrix
approximation. Some of the basic tools that we develop and sharpen include nearly
optimal constructions of oblivious and non-oblivious subspace embeddings, improved
low rank approximation algorithms, and new properties of ℓ1 regularization. Using
our improved understanding of these primitives, we obtain a suite of applications
such as the first polynomial space algorithms for high-dimensional computational
geometry, nearly optimal algorithms for active linear regression, and the first nearly
optimal coresets for multiple regression and subspace approximation. Many of our
results have implications in big data computing settings, such as streaming, online,
and distributed computation.

Acknowledgements
I would first like to thank my advisor David Woodruff, who inspired me to pursue a doctorate in

theoretical computer science and guided me to be the researcher I am today. I was an undergraduate
at CMU when David’s lectures on Algorithms for Big Data first captivated my fascination. Later,
his generosity to patiently mentor me despite countless failed ideas and months of stagnancy gave
me the experiences I needed to commit to a research career. It was a no-brainer to come back to
work with David again at CMU for my PhD, and our collaborations since have been a constant
stream of wonderful and exciting discoveries. I will always remember my time solving problems
with David as some of my best memories.

I would next like to thank my thesis committee, Anupam Gupta, Richard Peng, and Cameron
Musco. Every one of my committee members has been a huge influence throughout my work
during my PhD, and they each have works that I have completely obsessed over for a period
of time. Anupam’s work with Sanjoy Dasgupta on the Johnson–Lindenstrauss lemma gives a
proof that was simple enough for me to understand as an inexperienced undergraduate, and marks
one of my earliest inspirations in the area of sketching. Richard’s work with Michael Cohen on
Lewis weight sampling was a paper that I studied many times over when I first started working on
sampling, and caused my jaw to drop when it introduced me to chaining techniques. Cameron
has many papers that I have studied intensely, but a particularly mind-blowing one is his work on
ridge leverage score sampling with Michael Cohen and Chris Musco, which I also remember as a
paper that made me feel electrified.

I thank my collaborators and friends at Google Research for an incredible two years spent
on machine learning research. I am especially grateful to my hosts Kyriakos Axiotis, Thomas
Fu, and Vahab Mirrokni. Thomas patiently taught me everything I currently know on conducting
empirical machine learning research. Kyriakos, an expert in sparse optimization, has been a great
inspiration to me in a theoretical field separate from my work at CMU. Matthew Fahrbach and
Rajesh Jayaram have been great mentors at Google who gave me moral support and friendship
when I faced my peak frustration at not being able to make progress. I have also had great
conversations with my other Google collaborators, MohammadHossein Bateni and Lin Chen, as
well as Renato Paes Leme, Jon Schneider, Balu Sivan, Manfred Warmuth, and Shuran Zheng.

Next, I would like to thank my academic collaborators Gregory Dexter, Petros Drineas,
Cameron Musco, Chris Musco, and Yi Li, as well as my research friends Manuel Fernandez,
Mehrdad Ghadiri, Praneeth Kacham, Yang Liu, Naren Manoj, Raphael Meyer, Swati Padmanab-
han, Eliot Robson, Kshiteej Sheth, Fred Zhang, and Samson Zhou. Through our conversations,
you have all given me a sense of belonging to a research community that I will always cherish.

I thank Ian Tice, who mentored me throughout my undergraduate years at CMU and raised
me from a freshman just learning my way around basic mathematics all the way to a master’s
degree in PDEs. Although I didn’t end up in the same field of research as Ian, I owe a great deal
of my mathematical and research abilities and tastes to his mentorship.

Lastly, I would like to thank my family, my in-law family, and my wife Joyce. You have all
been my rock throughout some of my hardest years.

vi

Contents

List of Figures xiii

1 Introduction 1
1.1 Randomized numerical linear algebra . 1

1.1.1 Sketching . 2
1.1.2 Subspace embeddings . 2

1.2 Oblivious sketches . 3
1.2.1 Why are oblivious subspace embeddings useful? 4
1.2.2 Oblivious ℓ2 subspace embeddings . 4
1.2.3 Overview of Part I . 5

1.3 Sampling . 6
1.3.1 Coresets and sensitivity sampling . 6
1.3.2 Leverage score sampling . 9
1.3.3 Streaming and online coresets . 10
1.3.4 Applications of sampling algorithms beyond coresets 12
1.3.5 Overview of Part II . 13

1.4 Sparse optimization . 13
1.4.1 Sparse linear regression . 13
1.4.2 Column subset selection . 14
1.4.3 Overview of Part III . 15

1.5 Connections to geometric functional analysis 15
1.5.1 Lewis weights and embedding subspaces of ℓ𝑝 15
1.5.2 Well-conditioned bases and spanning sets 16

2 Preliminaries 19
2.1 Notation . 19

2.1.1 Linear algebra . 19
2.1.2 Inequalities . 19
2.1.3 Probability . 20

2.2 Streaming . 20
2.2.1 INDEX . 20

2.3 Random processes . 20
2.3.1 Symmetrization: reduction to a Rademacher process 21
2.3.2 Subgaussian processes . 22

vii

2.3.3 Chaining and Dudley’s inequality . 22

I Oblivious Sketching 27

3 High distortion embeddings for ℓ𝑝 [WY23a] 29
3.1 The question of well-conditioned bases . 31
3.2 Relaxing linear bases to spanning sets . 31
3.3 Proof of Theorem 3.0.4 . 32

4 Low distortion embeddings for ℓ1 [LWY21] 35
4.1 Overview of sketch construction and analysis 35

4.1.1 Sketching a single vector . 36
4.1.2 Extension to subspaces . 37

4.2 No expansion . 38
4.2.1 Bounding badly concentrated levels . 38
4.2.2 Bounding well-concentrated levels . 39
4.2.3 Bounding oversampled levels . 40
4.2.4 Bounding tiny levels . 41
4.2.5 Net argument . 41

4.3 No contraction . 43
4.3.1 Essential weight classes . 43
4.3.2 Hashing lemmas . 44
4.3.3 Preserving weight classes . 46
4.3.4 Net argument . 48

4.4 Endgame . 48

5 Future directions for oblivious ℓ𝑝 subspace embeddings 51

II Sampling Algorithms and Coresets 53

6 ℓ𝑝 Lewis weight sampling [WY23b] 55
6.1 Sampling algorithms for ℓ𝑝 subspace embeddings 55

6.1.1 ℓ𝑝 sensitivity sampling . 56
6.1.2 ℓ𝑝 well-conditioned basis sampling . 56
6.1.3 ℓ𝑝 Lewis weight sampling . 57

6.2 Properties of one-sided ℓ𝑝 Lewis weights . 60
6.3 Analysis of ℓ𝑝 Lewis weight sampling: reduction to a Rademacher process 62

6.3.1 Regularizing the Rademacher process 62
6.3.2 Flattening the Rademacher process: 𝑝 < 2 64
6.3.3 Flattening the Rademacher process: 𝑝 > 2 [WY23b] 65

6.4 Analysis of ℓ𝑝 Lewis weight sampling: Dudley’s entropy integral 67
6.4.1 Bounds on the pseudo-metric . 67

viii

6.4.2 Entropy bounds . 68
6.4.3 Entropy integral for ℓ𝑝 Lewis weight sampling 72

6.5 Analysis of ℓ𝑝 Lewis weight sampling: endgame 76
6.6 Online ℓ𝑝 Lewis weight sampling . 77

6.6.1 Lemmas from linear algebra . 77
6.6.2 Properties of online ℓ𝑝 Lewis weights 78
6.6.3 The sum of online ℓ𝑝 Lewis weights . 80

7 ℓ𝑝 sensitivity sampling [WY23c] 81
7.1 Beyond ℓ𝑝 Lewis weight sampling . 81
7.2 Structured matrices with small total sensitivity, 𝑝 > 2 82
7.3 Properties of ℓ𝑝 sensitivities . 85

7.3.1 Monotonicity of max ℓ𝑝 sensitivity . 85
7.3.2 Flattening ℓ𝑝 sensitivities . 86
7.3.3 Total sensitivity . 86

7.4 Analysis of ℓ𝑝 sensitivity sampling . 88
7.4.1 Dudley’s entropy integral . 88
7.4.2 Sensitivity sampling, 𝑝 < 2 . 89
7.4.3 Sensitivity sampling, 𝑝 > 2 . 93

8 Root leverage score sampling [WY23c, WY24b] 99
8.1 Analysis of root leverage score sampling . 101

8.1.1 Reduction to a small number of scales 102
8.1.2 Reduction to a Rademacher process with flat sensitivities 103
8.1.3 Bounds on the Rademacher process . 106
8.1.4 Proof of main sampling theorems . 107

9 High-distortion ℓ𝑝 subspace embeddings [WY22a] 109
9.1 Lewis weight switching . 110
9.2 Change of density . 111

10 Subspace embeddings for general losses [MMWY22] 115
10.1 𝑀 -estimators preliminaries . 117
10.2 Sensitivities upper bounds . 118

10.2.1 Efficient algorithm for sensitivity upper bounds 120
10.2.2 Sharper sensitivity bounds . 123

10.3 Sensitivity lower bounds . 124

11 Applications: streaming ℓ∞ subspace embeddings and computational geometry
[WY22a] 127
11.1 Nearly optimal sum of online leverage scores 128
11.2 Online coresets for ℓ∞ subspace embeddings 130
11.3 Near-optimal bounds for restricted instances . 132

11.3.1 Lower bound . 132

ix

11.3.2 Upper bound . 133
11.4 Applications to streaming algorithms for geometric problems in high dimensions 134

11.4.1 Directional width . 135
11.4.2 Convex hulls . 137
11.4.3 Löwner–John ellipsoids . 138
11.4.4 Volume maximization . 141
11.4.5 Minimum-width spherical shell . 143

12 Applications: active ℓ𝑝 linear regression [MMWY22, WY23a] 145
12.1 Active ℓ𝑝 linear regression . 145
12.2 Constant factor solution . 147

12.2.1 Probability boosting for constant factor approximation 148
12.3 (1 + 𝜀) factor solution . 149

12.3.1 Closeness of nearly optimal solutions 150
12.3.2 Iterative size reduction argument . 151
12.3.3 High probability . 154

12.4 ℓ𝑝 Lewis weight sampling for differences . 155
12.5 Rademacher process bounds . 158

12.5.1 Estimates on the outlier term . 159
12.5.2 Estimates on the sensitivity term . 159

12.6 Lower bounds . 165
12.6.1 Lower bounds for 𝑝 ∈ (0, 1) . 166
12.6.2 Lower bounds for 𝑝 ∈ (1, 2) . 168
12.6.3 Lower bounds for 𝑝 ∈ (2,∞) . 170
12.6.4 A 1/𝛿𝑝−1 lower bound for sampling-and-reweighting algorithms 171

13 Applications: coresets for multiple ℓ𝑝 regression [WY24a] 173
13.1 Multiple ℓ𝑝 regression . 173

13.1.1 Coreset constructions for 𝑝 = 2 . 173
13.1.2 Challenges for 𝑝 ̸= 2 . 174
13.1.3 Strong coresets for multiple ℓ𝑝 regression 175
13.1.4 Weak coresets for multiple ℓ𝑝 regression 176
13.1.5 Applications: sublinear algorithms for Euclidean power means 177
13.1.6 Applications: spanning coresets for ℓ𝑝 subspace approximation 178

13.2 Strong coresets . 179
13.3 Weak coresets . 181

13.3.1 Closeness of nearly optimal solutions 181
13.3.2 Iterative size reduction argument . 182

13.4 Sublinear algorithm for Euclidean power means 185
13.5 Spanning coresets for ℓ𝑝 subspace approximation 186
13.6 Lower bounds . 187

13.6.1 Strong coresets . 187
13.6.2 Weak coresets . 189
13.6.3 Spanning coresets . 190

x

14 Applications: strong coresets for ℓ𝑝 subspace approximation [WY23a, WY24b] 193
14.1 Coresets for ℓ𝑝 subspace approximation . 194

14.1.1 Technical overview . 198
14.1.2 Corollaries . 203

14.2 Representative subspace theorem for ℓ𝑝 subspace approximation 204
14.2.1 Sharper scalar inequalities . 205
14.2.2 Proof of the representative subspace theorem 206

14.3 Preliminaries . 208
14.3.1 Dvoretzky’s theorem . 208
14.3.2 Flattening . 209
14.3.3 Properties of ridge leverage scores . 210

14.4 Reduction to additive-multiplicative ℓ𝑝 affine embeddings 211
14.5 Main sampling theorems . 213

14.5.1 Affine embedding . 213
14.5.2 Results for 𝑝 > 2 . 215
14.5.3 Results for 𝑝 < 2 . 218

14.6 Streaming and online coresets . 220
14.6.1 Online coresets . 221
14.6.2 Streaming coresets . 222

15 Future directions for sampling and coreset algorithms 223
15.1 Questions on ℓ𝑝 subspace embeddings . 223
15.2 Questions on coresets . 224

III Sparse Optimization 227

16 Sparse convex optimization via ℓ1 regularization [YBC+23, AY23] 229
16.1 Introduction . 229

16.1.1 Related work: prior guarantees for ℓ1 regularization 230
16.1.2 Our results . 231
16.1.3 Related work: the Forward Stagewise Regression conjecture 238
16.1.4 Related work: algorithms for sparse convex optimization 238
16.1.5 Open directions . 238

16.2 Preliminaries . 239
16.2.1 Fenchel duality . 239
16.2.2 Berge’s theorem . 240

16.3 Equivalence of Group Sequential LASSO and Group Orthogonal Matching Pursuit240
16.3.1 The dual problem . 240
16.3.2 Selection of features . 242

16.4 Guarantees for Group Orthogonal Matching Pursuit 243
16.4.1 Group OMP with Replacement . 246

16.5 Equivalence of Group Sequential Attention and Group Sequential LASSO 248
16.6 Experiments: feature selection via Sequential Attention 249

xi

16.6.1 Small-scale experiments . 249
16.6.2 Large-scale experiments . 250
16.6.3 Visualization of selected MNIST features 250

17 Column subset selection with entrywise losses [WY23a] 253
17.1 Algorithms for general entrywise losses . 254

17.1.1 An improved structural result on uniform sampling 256
17.1.2 Sharper guarantees for the [SWZ19] algorithm 257

17.2 Huber column subset selection . 260
17.3 Algorithms for the entrywise ℓ𝑝 norm . 262

17.3.1 Improved existential result . 262
17.3.2 Lower bounds . 264

17.4 Reduction from existential to algorithmic column subset selection 265

18 Spectral low rank approximation for sparse singular vectors [WY22b] 269
18.1 Technical overview . 270
18.2 Proof of Theorem 18.0.3 . 272

18.2.1 Approximating singular components . 272
18.2.2 Finding the support of singular vectors with large singular value 274
18.2.3 Approximating large singular values . 275
18.2.4 Approximating small singular values . 279

19 Future directions for sparse optimization 281

Bibliography 283

xii

List of Figures

16.1 Feature selection results for small-scale neural network experiments. Here, SA
= Sequential Attention, LLY = [LLY21], GL = Group LASSO, SL = Sequential
LASSO, OMP = OMP, and CAE = Concrete Autoencoder [BAZ19]. 250

16.2 AUC and log loss when selecting 𝑘 ∈ {10, 15, 20, 25, 30, 35} features for Criteo
dataset. 251

16.3 Visualizations of the 𝑘 = 50 pixels selected by the feature selection algorithms on
MNIST. 251

xiii

xiv

Chapter 1

Introduction

Matrices are one of the most fundamental forms of representing data. As data-driven technologies
proliferate throughout modern computer science, large matrices that represent enormous datasets
have become central objects of study, and designing approximation algorithms for efficiently
handling these matrices and datasets has become one of the most important computational
challenges today. A natural and highly effective idea for computing with such large matrices is to
first approximate them by smaller or more structured matrices, so that downstream algorithms
enjoy a more well-behaved instance. Popular approximations that have been studied include low
dimensional embeddings, low rank approximations, approximations by a small subset of rows
or columns (subset selection and feature selection), projections onto a collection of points or
subspaces (clustering and projective clustering), sparse linear combinations (sparse dictionary
learning), or in general, any other structured object with efficient representation. We generally
refer to such problems as matrix approximation, and algorithms and lower bounds for matrix
approximation tasks are the focus of this thesis.

1.1 Randomized numerical linear algebra

The rise of the field of randomized numerical linear algebra [Mah11, Woo14, MT20] in the past
two decades has been particularly fruitful for the development of algorithmic results for matrix
approximation, and many results of this thesis are best placed in the context of this literature.
Traditionally, the study of computational and numerical aspects of matrices and linear algebra,
or numerical linear algebra [TB97, GVL13], focused on designing deterministic algorithms for
manipulating matrices at machine precision, with input instances that are small enough to fit in
memory. Thus, in this regime, algorithms are generally assumed to have access to the entire input
instance, and running time and space complexity scaling polynomially in the input dimensions
are acceptable. In contrast, randomized numerical linear algebra places an emphasis on massive
input instances that arise in big data settings, where the datasets are so large that only small
parts of the input can be accessed at a time, and algorithms must run in at most linear or even
sublinear time to be considered practical. To handle such inputs, we allow for randomized and
approximate algorithms, that is, the algorithm is allowed to fail with some small probability 𝛿 (say
1% probability), and is considered successful if it outputs a solution that is correct up to some

1

small tolerance parameter 𝜀 (say 1% error in some appropriate sense).

1.1.1 Sketching
Linear sketching is a fundamental technique of randomized numerical linear algebra, where input
matrices are compressed by multiplication with a random matrix. More concretely, sketching
algorithms roughly follow the following framework. Given as input an 𝑛 × 𝑑 matrix A, first
apply a random 𝑟 × 𝑛 matrix S for some 𝑟 ≪ 𝑛 to obtain a compressed 𝑟 × 𝑑 input SA. Then,
perform some computations on the compressed instance SA, and use the result to output a
solution for the original instance A. By drawing the random sketching matrix S from a carefully
chosen distribution, this framework yields the fastest known algorithms for a wide range of
linear algebraic tasks including linear regression, low rank approximation, matrix multiplication,
and trace estimation [DMMW12, CW13, CEM+15, CNW16, MMMW21, CSWZ23, CDDR23]
as well as further applications to clustering [CEM+15, MMR19], sparse dictionary learning
[DDWY23], subspace approximation [FMSW10, CW15a], minimum volume enclosing ellipsoids
[CCLY19, WY22a], graph algorithms [CKL22, AKY23], tensor decompositions [MWZ24], and
far beyond. Sketching algorithms often (but not always) take S to be drawn independently of
the input A, which facilitates its application in settings when A may change, for example if A
undergoes additive updates in a stream or is multiplied on the right by some projection. These
sketches are known as oblivious sketches, and our results for oblivious sketching algorithms for
matrix approximation is the subject of Part I of this thesis.

1.1.2 Subspace embeddings
The study of sketching algorithms and their applications has generated a number of foundational
definitions for formalizing useful guarantees in matrix approximation. One such definition is that
of a subspace embedding, which we describe here to provide a more detailed illustration of the
sketching paradigm.

A subspace embedding is a notion of matrix approximation which considers an approximation
A′ to be close to a matrix A if the norms of vectors in colspan(A′) = {A′x : x ∈ R𝑑} are close
to those of colspan(A) = {Ax : x ∈ R𝑑}. While A′ could, in principle, be constructed in any
way, we will always focus on constructions of the form A′ = SA for a sketching matrix S in this
thesis.

Definition 1.1.1 (Subspace embedding). Let A ∈ R𝑛×𝑑 and S ∈ R𝑟×𝑛. Let 𝜅 ≥ 1 be a distortion
parameter and let ‖·‖ be a norm. Then, S is a 𝜅-approximate subspace embedding if

for every x ∈ R𝑑, ‖Ax‖ ≤ ‖SAx‖ ≤ 𝜅‖Ax‖.

One of the most ideal settings for the application of subspace embeddings is the design of
efficient approximation algorithms for the overdetermined least squares linear regression problem
[DMM06a, Sar06]. Let A ∈ R𝑛×𝑑 be a tall (𝑛 ≫ 𝑑) design matrix and let b ∈ R𝑛 be a label
vector, and suppose that we want to efficiently approximate

min
x∈R𝑑
‖Ax− b‖22,

2

where ‖·‖2 denotes the ℓ2 norm given by ‖y‖2 =
√︀∑︀𝑛

𝑖=1 y(𝑖)
2 for an 𝑛-dimensional vector y.

Classically, this problem requires 𝑂(𝑛𝑑2) time to solve exactly by using Gaussian elimination.1

However, if 𝑛 and 𝑑 are large, then this running time is much larger than the size of the input
which is 𝑛𝑑, and thus may be prohibitive. We will now describe a way to design much faster
algorithms by using efficient constructions of subspace embeddings. Suppose that we have an
algorithm for efficiently computing a 𝜅-approximate subspace embedding S ∈ R𝑟×𝑛 in the ℓ2
norm for the 𝑛 × (𝑑 + 1) matrix [A b], that is, A together with b appended as an additional
column. Note then that,

for every x ∈ R𝑑, ‖Ax− b‖22 ≤ ‖SAx− Sb‖22 ≤ 𝜅2‖Ax− b‖22, (1.1)

since Ax− b is in the column span of [A b]. Now suppose we set

x̂ := arg min
x∈R𝑑
‖SAx− Sb‖22

x* := arg min
x∈R𝑑
‖Ax− b‖22

Then, x̂ is a 𝜅2-approximately optimal solution since

‖Ax̂− b‖22 ≤ ‖SAx̂− Sb‖22 (1.1)

≤ ‖SAx* − Sb‖22 optimality of x̂

≤ 𝜅2‖Ax* − b‖22 = 𝜅2 min
x∈R𝑑
‖Ax− b‖22 (1.1)

and furthermore, it can be computed in the time that it takes to compute SA and Sb, plus only
𝑂(𝑟𝑑2) time. This can potentially be much faster than the original 𝑂(𝑛𝑑2) time, if 𝑟 ≪ 𝑛 and
the computation of SA and Sb is fast. Indeed, this framework has been applied to develop some
of the fastest known algorithms for least squares linear regression, as well as a variety of other
related linear algebraic tasks [DMMW12, CW13, CCKW22, CSWZ23, CDDR23].

Throughout this thesis, we will place great emphasis on developing subspace embeddings
for norms ‖·‖ beyond the ℓ2 norm, as well as new applications of related ideas to solve problems
such as streaming computational geometry, active regression, multiple regression, subspace
approximation, and column subset selection.

1.2 Oblivious sketches
We begin our discussion of algorithms for subspace embeddings (Definition 1.1.1) by considering
a particularly useful restricted class of subspace embeddings known as oblivious subspace embed-
dings. As the name suggests, the construction of oblivious subspace embeddings S are oblivious
to the input matrix A, that is, they are constructed independently of A. More formally, we have
the following definition:

1 By using fast matrix multiplication, this running time can be improved to 𝑂(𝑛𝑑𝜔−1) for 𝜔 ≈ 2.372 [DWZ23,
WXXZ23], but such algorithms are rarely used in practice.

3

Definition 1.2.1 (Oblivious subspace embedding). Let 0 < 𝛿 < 1. Let 𝒟 be a distribution over
𝑟 × 𝑛 matrices S. Let 𝜅 ≥ 1 be a distortion parameter and let ‖·‖ be a norm. Then, 𝒟 is a
𝜅-approximate oblivious subspace embedding with probability 1 − 𝛿 if for every A ∈ R𝑛×𝑑,
S ∼ 𝒟 is a 𝜅-approximate subspace embedding (Definition 1.1.1) for A with probability at least
1− 𝛿.

Remark 1.2.2. Note that in order to construct nontrivial oblivious subspace embeddings embed-
dings, i.e. constructions with 𝑟 < 𝑛 and 𝜅 < ∞, then randomized constructions are necessary.
Indeed, otherwise, for any fixed S ∈ R𝑟×𝑛 with 𝑟 < 𝑛, there exists some nonzero y ∈ R𝑛 such
that Sy = 0.

1.2.1 Why are oblivious subspace embeddings useful?

Oblivious subspace embeddings are particularly useful in settings where we need to efficiently
update the sketch SA, for example in streaming algorithms or distributed computing. For
instance, consider the turnstile streaming model, in which our input matrix A undergoes entrywise
additive updates of the form A𝑖,𝑗 ← A𝑖,𝑗 +Δ for Δ ∈ R. Then, the sketch SA can be updated
efficiently under this model by using the linearity of the sketch, and furthermore, S is still a
subspace embedding for the updated matrix with high probability due to the oblivious property.
This simple yet powerful observation has been extremely useful in the design of streaming
algorithms for many problems in numerical linear algebra and machine learning, including ℓ𝑝
linear regression [SW11, MM13, WZ13, WW19, LWY21, WY23a], ridge regression [KW22],
low rank approximation [CW09, BWZ16], robust regression [CW15b], and logistic regression
[MOW21, MOW23]. Similar benefits apply in distributed models of computation, where the input
matrix A is represented as a sum of matrices, each of which is stored in a separate server.

1.2.2 Oblivious ℓ2 subspace embeddings

Consider the problem of computing an oblivious subspace embedding for the ℓ2 norm for 𝑑 = 1,
which simply corresponds to the problem of finding a norm-preserving linear map for a single
vector. This natural problem is resolved by a classical result due to Johnson and Lindenstrauss
[JL84], which states that given a set 𝑆 ⊆ R𝑛 of 𝑚 vectors in 𝑛 dimensions, a random linear
projection S ∈ R𝑟×𝑛 from 𝑛 dimensions to 𝑟 = 𝑂(𝜀−2 log𝑚) dimensions has the property that

‖Sy‖2 = (1± 𝜀)‖y‖2

simultaneously for every y ∈ 𝑆, with probability at least 2/3. Thus, the ℓ2 norm of a finite
number of vectors can be preserved up to (1± 𝜀) factors. Furthermore, note that the matrix S is
an independent random linear map, so it satisfies the obliviousness property of Definition 1.2.1.
Thus, for 𝑑 = 1, oblivious subspace embeddings for the exist for the ℓ2 norm with dimension
𝑟 = 𝑂(𝜀−2) and distortion 𝜅 = (1 + 𝜀).

It may not be immediately clear that the technique of random projections also solves the
problem of computing a subspace embedding for 𝑑 > 1, since this involves preserving the ℓ2 norm
of every vector in the column space of A, which is an uncountably infinite number of vectors,

4

rather than a finite number 𝑚. Nevertheless, the following seminal result of Sarlos [Sar06] shows
that random projections in fact do yield ℓ2 subspace embeddings with distortion 𝜅 = (1 + 𝜀).

Theorem 1.2.3 (Sarlos [Sar06]). Let S be an 𝑟 × 𝑛 matrix of i.i.d. Gaussian random variables.
There is an 𝑟 = 𝑂(𝜀−2𝑑 log 𝑑) such that for any A ∈ R𝑛×𝑑,

Pr
{︀

for all x ∈ R𝑑, ‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + 𝜀)‖Ax‖2
}︀
≥ 99

100

that is, S is an ℓ2 subspace embedding of A with distortion (1 + 𝜀), with probability at least
99/100.

It is known that the bound on the embedding dimension 𝑟 in Theorem 1.2.3 is nearly optimal
for oblivious subspace embeddings [NN14]. Since the result of Theorem 1.2.3, a long line of
work has studied further improvements to oblivious ℓ2 subspace embeddings, yielding smaller
embedding dimensions, faster algorithms, and simpler proofs [Sar06, CW13, NN13, Coh16,
CCKW22, CSWZ23, CDDR23]. Similar techniques have been also been applied to embedding
objects beyond subspaces, including sparse vectors, collections of subspaces, and manifolds
[BDN15].

1.2.3 Overview of Part I
With the construction of oblivious ℓ2 norms established, a natural question is whether similar
results can be obtained for ℓ𝑝 norms rather than ℓ2 norms, where the ℓ𝑝 norm of a vector y ∈ R𝑛

for 1 ≤ 𝑝 <∞ is defined by

‖y‖𝑝 :=

(︃
𝑛∑︁

𝑖=1

|y(𝑖)|𝑝
)︃1/𝑝

.

For example, for 𝑝 = 1, the ℓ1 norm corresponds to the use of the absolute deviations loss in the
context of linear regression, and captures the average loss rather than the average squared loss as
in the ℓ2 norm. This gives a more robust loss function that is less sensitive to outliers, and is more
appropriate in settings where the data may be more prone to corruption by noise. On the other
hand, if 𝑝 =∞, the ℓ∞ norm measures the maximum error in the context of linear regression, and
is more appropriate when the worst-case error must be minimized. In general, ℓ𝑝 norms allow us
to smoothly interpolate between these two cases, with 𝑝 < 2 giving more robust losses and 𝑝 > 2
giving more worst-case losses.

Unfortunately, it is in fact impossible to construct oblivious ℓ𝑝 subspace embeddings that
match the guarantees of Theorem 1.2.3 in general for 𝑝 ̸= 2. As we discuss further in Chapter 3,
there are lower bounds that prohibit the sketching dimension 𝑟 from being subpolynomial in 𝑛 for
𝑝 > 2, and subexponential in 𝑑 for 𝑝 < 2, if we insist on a distortion of 𝜅 = (1 + 𝜀). For 𝑝 < 2,
however, we can at least salvage a useful result if 𝑑 is relatively small compared to 𝑛. In Chapter
3, we will show how to obtain the best possible oblivious ℓ𝑝 subspace embedding when we allow
for 𝜅 to be as large as 𝜅 = poly(𝑑), where we achieve a trade-off of 𝜅 = �̃�(𝑑1/𝑝) distortion with
𝑟 = �̃�(𝑑) sketching dimension, based on work of [WY23a]. In Chapter 4, we show new results
when we insist on a distortion of 𝜅 = (1+ 𝜀), showing an upper bound of 𝑟 = exp(�̃�(𝑑/𝜀)) based
on work of [LWY21], which exponentially improves upon a prior bound of 𝑟 = exp exp(𝑂(𝑑)).

Open questions arising from work in this part are collected in Chapter 5.

5

1.3 Sampling
Another particularly useful special case of sketching techniques is sampling, in which the sketching
matrix S has at most one nonzero entry in each row. Sampling methods are appealing since
they can be interpreted as subset selection (also known as coresets), which is an important and
well-studied problem in its own right. Another advantage of sampling is that it often preserves
useful properties of the input such as sparsity or tensor product structure, which can be important
for efficient algorithms when consuming the resulting sketch SA. Furthermore, despite the
restriction to a simpler class of sketching matrices S, sampling-based sketches, in many cases, in
fact achieve the best known upper bounds in a variety of sketching problems. Sampling-based
matrix approximation algorithms is a major focus of this thesis, and our results in this setting are
found in Part II of this thesis.

Unlike matrix approximations discussed in Part I based on oblivious sketching, sampling-
based methods will generally be constructed as a function of the input matrix A ∈ R𝑛×𝑑, that
is, they are non-oblivious. The use of additional information about the input matrix A has both
drawbacks and advantages. On one hand, the requirement of knowing A beforehand prevents the
use of these techniques in various information-limited settings, such as turnstile streaming (see
Section 1.2.1). However, this additional information will, in many cases, lead to dramatically
improved guarantees such as smaller approximation errors, greater compression of the matrix size,
or both. Furthermore, when the input matrix A is structured, sampling methods often produce
matrix approximations that preserve these structural properties, for example if the rows of the
matrix are sparse or carry tensor product structure. These characteristics make sampling methods
a highly attractive class of matrix approximation algorithms to study.

In this section, we introduce the notion of coresets and its relationship to sampling algorithms
in Section 1.3.1, the technique of leverage score sampling for sampling ℓ2 subspace embeddings
in Section 1.3.2, and the online coreset model in Section 1.3.3 which extends the problem of
constructing coresets to the setting of online algorithms. All of these concepts will be recurring
fundamental themes throughout Part II of this thesis. Finally, we give an overview of the rest of
Part II in Section 1.3.5.

1.3.1 Coresets and sensitivity sampling
Sampling-based matrix approximations are intimately related to the notion of coresets, which
broadly refer to the paradigm of solving computational problems on large datasets by first
approximating the dataset by a small reweighted subset of the dataset. The “computational
problem on datasets” that have been studied in this context range from statistical inference tasks
such as mean and median estimation, linear regression, and logistic regression, computational
geometric tasks such as low rank approximation, clustering, convex hull estimation, and ellipsoidal
rounding, machine learning tasks such as training deep neural networks, and far beyond. In all
of these problems, datasets are typically represented as matrices, and thus each of these coreset
problems correspond to a different matrix approximation problem. Furthermore, sampling
methods naturally give approximations that are of the form of a subset of the dataset, and thus
there is a rich interplay between the literature of coreset algorithms and matrix approximation.
We refer the reader to [Fel20] for a survey on the literature of coreset algorithms.

6

Sensitivity sampling

One of the most important sampling-based approaches to constructing coresets is the sensitivity
sampling method, and will form the starting point for many of the sampling-based algorithms
that we study in Part II. The sensitivity framework was introduced by [LS10, FL11] and further
optimized by [BFL16, FSS20] in order to develop a unified approach to sampling-based approxi-
mation algorithms for a wide range of problems including clustering, projective clustering, low
rank approximation and subspace approximation, empirical risk minimization, and others.

In this general framework, we seek to approximate an objective function 𝑓 : 𝑋 → R≥0 of the
form of a sum

𝑓(x) :=
𝑛∑︁

𝑖=1

𝑓𝑖(x)

by sampling a subset 𝑆 ⊆ [𝑛] as well as associated weights w𝑖 for 𝑖 ∈ 𝑆, so that

𝑓(x) = (1± 𝜀)
∑︁
𝑖∈𝑆

w𝑖𝑓𝑖(x) (1.2)

simultaneously for every x ∈ 𝑋 . As an example instantiation of this framework, we may consider
the approximate mean estimation problem, where given an input matrix A ∈ R𝑛×𝑑, we wish to
find some vector x̂ ∈ R𝑑 such that

𝑛∑︁
𝑖=1

‖a𝑖 − x̂‖22 ≤ (1 + 𝜀) min
x∈R𝑑

𝑛∑︁
𝑖=1

‖a𝑖 − x‖22.

The functions 𝑓𝑖 in this case correspond to 𝑓𝑖(x) = ‖a𝑖 − x‖22.
To sample our approximation, we define sensitivity scores 𝜎𝑖, and sample functions 𝑓𝑖 with

probabilities 𝑝𝑖 proportional to 𝜎𝑖 with weights w𝑖 = 1/𝑝𝑖.

Definition 1.3.1 (Sensitivity score [LS10, FL11]). For 𝑖 ∈ [𝑛], let 𝑓𝑖 : 𝑋 → R≥0 be functions.
Then, the 𝑖th sensitivity score is defined as

𝜎𝑖 := sup
x∈𝑋

𝑓𝑖(x)∑︀𝑛
𝑗=1 𝑓𝑗(x)

and the total sensitivity is defined as S :=
∑︀𝑛

𝑖=1 𝜎𝑖.

A preview of sampling arguments

Suppose that we construct weights {w𝑖}𝑛𝑖=1 via the sensitivity sampling framework by sampling
the weight w𝑖 = 1/𝑝𝑖 with probability min{1,𝜎𝑖/𝛼} for some 𝛼 > 0 to be determined later.
Then for any fixed x ∈ 𝑋 , we have that

E

[︃∑︁
𝑖∈𝑆

w𝑖𝑓𝑖(x)

]︃
=

𝑛∑︁
𝑖=1

E[w𝑖𝑓𝑖(x)] =
𝑛∑︁

𝑖=1

𝑝𝑖
𝑓𝑖(x)

𝑝𝑖
=

𝑛∑︁
𝑖=1

𝑓𝑖(x)

7

so
∑︀

𝑖∈𝑆 w𝑖𝑓𝑖(x) is an unbiased estimator of
∑︀𝑛

𝑖=1 𝑓𝑖(x). We can also bound the variance as

Var

[︃∑︁
𝑖∈𝑆

w𝑖𝑓𝑖(x)

]︃
=

𝑛∑︁
𝑖=1

Var(w𝑖𝑓𝑖(x)) ≤
𝑛∑︁

𝑖=1

𝑝𝑖
𝑓𝑖(x)

2

𝑝2𝑖

=
𝑛∑︁

𝑖=1

𝛼
𝑓𝑖(x)

𝜎𝑖

𝑓𝑖(x) ≤ 𝛼

(︃
𝑛∑︁

𝑖=1

𝑓𝑖(x)

)︃2

.

Thus, it follows from Chebyshev’s inequality that

∑︁
𝑖∈𝑆

w𝑖𝑓𝑖(x) = (1±𝑂(
√
𝛼))

𝑛∑︁
𝑖=1

𝑓𝑖(x)

with constant probability, so setting 𝛼 = 𝑂(𝜀2) gives a (1± 𝜀) approximation for any fixed x with
constant probability. We can further replace the use of Chebyshev’s inequality with a Bernstein
bound to get improved concentration, so that if we set 𝛼 = 𝑂(𝜀2)/ log 1

𝛿
, then the above bound

holds with probability at least 1− 𝛿, for each fixed x ∈ 𝑋 . Note that the support size required for
this guarantee is E|𝑆| = 𝑂(S/𝛼) = 𝑂(𝜀−2S log 1

𝛿
) in expectation.

The sampling argument so far gives a (1± 𝜀) approximation of the objective function 𝑓(x) for
any fixed x ∈ 𝑋 , but this alone is not sufficient to guarantee that

∑︀
𝑖∈𝑆 w𝑖𝑓𝑖(x) = (1± 𝜀)𝑓(x)

simultaneously for every x ∈ 𝑋 , which is what we need if we wish to find an approximate
minimizer of 𝑓 . To obtain such a guarantee, we need a net argument where we approximate the
domain 𝑋 by a finite subset 𝒩 ⊆ 𝑋 known as a net, for which (1 ± 𝜀) approximations on 𝒩
imply (1±𝑂(𝜀)) approximations on 𝑋 . We can then apply the previous result with 𝛿 = 𝑂(1/|𝒩 |)
and union bound over all x ∈ 𝒩 to conclude that the sampling weights w yield approximations
for every x ∈ 𝑋 . For 𝑋 in 𝑑-dimensional space, |𝒩 | is typically on the order of (1/𝜀)𝑑, and thus
the above argument typically gives a coreset size of roughly |𝑆| = �̃�(𝜀−2S𝑑). In fact, for a wide
variety of applications, it can be shown that sampling |𝑆| = �̃�(𝜀−2S𝑑) functions 𝑓𝑖 is sufficient
to achieve the guarantee of (1.2), where 𝑑 is a complexity parameter known as the VC-dimension
of a certain set system associated with the functions {𝑓𝑖}𝑛𝑖=1 [LS10, FL11, BFL16, FSS20].

Beyond VC-dimension arguments

While the above basic sensitivity sampling framework gives a strong baseline sampling result, the
resulting guarantees are often far from optimal, and more sophisticated arguments are needed to
obtain nearly optimal coreset sizes |𝑆|. A large fraction of Part II of this thesis will be concerned
with studying and developing arguments to improve over the basic union bound and/or VC-
dimension argument, which often lead to nearly optimal bounds on coreset sizes for a variety
of problems. In particular, we will work extensively with a technique known as chaining in
later chapters, which improves the basic union bound argument discussed above by carefully
constructing a sequence of nets at different levels of granularity, rather than considering only a
single nets.

8

1.3.2 Leverage score sampling

Suppose that we apply the sensitivity sampling framework to the objective function 𝑓(x) =
‖Ax‖22 =

∑︀𝑛
𝑖=1⟨a𝑖,x⟩2, where A is an 𝑛× 𝑑 matrix and the domain of 𝑓 is R𝑑. In this case, the

sensitivity sampling framework samples weights w𝑖 for 𝑖 ∈ 𝑆 ⊆ [𝑛] such that∑︁
𝑖∈𝑆

w𝑖⟨a𝑖,x⟩2 = (1± 𝜀)‖Ax‖22.

Note that if we set S to be a diagonal matrix with S𝑖,𝑖 =
√
w𝑖 whenever 𝑖 ∈ 𝑆 is sampled, then

we can write the above guarantee as

‖SAx‖22 = (1± 𝜀)‖Ax‖22

simultaneously for every x ∈ R𝑑. That is, S is an ℓ2 subspace embedding (Definition 1.1.1) for
A! In this special case of sensitivity sampling, the sensitivity scores have been known for a long
time in the statistics literature as the leverage scores of A. Indeed, the use of leverage scores in
the context of coreset algorithms preceded the development of the sensitivity sampling framework,
and was studied in works such as [BSST13, BK15] in the context of graph sparsification as well
as [DMM06a, DMM06b, DKM06a, DKM06b, RV07, DMM08, Mag10] to construct coresets for
ℓ2 linear regression and Frobenius norm low rank approximation. Furthermore, it is known that
leverage scores can be approximated extremely efficiently by combining ideas from sketching and
recursive sampling [SS11, DMMW12, CW13, LMP13, CLM+15], in fact in time �̃�(nnz(A)+𝑑𝜔),
and thus leverage score sampling has become an important primitive for designing fast randomized
algorithms for numerical linear algebra.

Definition 1.3.2 (Leverage scores). Let A ∈ R𝑛×𝑑. Then for each 𝑖 ∈ [𝑛], the 𝑖th leverage score
of A is defined to be

𝜏 𝑖(A) := sup
Ax ̸=0

[Ax](𝑖)2

‖Ax‖22
= a⊤

𝑖 (A
⊤A)−a𝑖,

where a𝑖 = e⊤𝑖 A is the 𝑖th row of A.

Let us now instantiate the sensitivity sampling guarantee discussed in Section 1.3.1 to the
setting of ℓ2 subspace embeddings. We first bound the total sensitivity S =

∑︀𝑛
𝑖=1 𝜏 𝑖(A). Let

U ∈ R𝑛×rank(A) be an orthogonal basis for the column space of A. Then, the supremum
characterization of leverage scores in Definition 1.3.2 does not depend on the particular basis
chosen for the column space of A, so we have that

𝜏 𝑖(A) = sup
Ux ̸=0

[Ux](𝑖)2

‖Ux‖22
= sup

Ux ̸=0

[Ux](𝑖)2

‖x‖22
= sup

‖x‖2=1

[Ux](𝑖)2 = ‖e⊤𝑖 U‖22.

It is then easy to see that

𝑛∑︁
𝑖=1

𝜏 𝑖(A) =
𝑛∑︁

𝑖=1

‖e⊤𝑖 U‖22 = ‖U‖2𝐹 = rank(A). (1.3)

9

Thus, the bound given by the sensitivity sampling framework on the number of rows 𝑟 sampled by
the leverage score sampling-based ℓ2 subspace embedding is

𝑟 = �̃�(𝜀−2S𝑑) = �̃�(𝜀−2𝑑2)

Recall from Theorem 1.2.3 in Part I, however, that a bound of 𝑟 = �̃�(𝜀−2𝑑) is achievable via
oblivious random projections, even without knowing A. A bound of 𝑟 = �̃�(𝜀−2𝑑) is thus quite
pessimistic, and in fact, the analysis can be improved to a bound of 𝑟 = �̃�(𝜀−2𝑑). Indeed, a series
of works have culminated in the following guarantee for leverage score sampling, which achieves
a nearly linear dependence on 𝑑 in the row count 𝑟.

Theorem 1.3.3 (Leverage score sampling [DMM06a, RV07, Mag10]). Let A ∈ R𝑛×𝑑. Let 𝛼 > 0
and let 𝑝𝑖 = min{1, 𝜏 𝑖(A)/𝛼} for 𝑖 ∈ [𝑛]. Let S ∈ R𝑛×𝑛 be the diagonal matrix formed by
independently setting

S𝑖,𝑖 =

⎧⎨⎩
1
√
𝑝
𝑖

with probability 𝑝𝑖

0 with probability 1− 𝑝𝑖

for each 𝑖 ∈ [𝑛]. Then, there is an 𝛼 such that with probability at least 99/100, S is an ℓ2
subspace embedding satisfying Definition 1.1.1 with 𝜅 = (1 + 𝜀), and furthermore, S has at most
𝑟 = 𝑂(𝜀−2𝑑 log 𝑑) nonzero rows.

The proofs of the above result given by the works [RV07, Mag10] crucially rely on the special
structure of the ℓ2 norm, which allows one to translate the problem of analyzing the maximum
sampling error sup‖Ax‖2≤1|‖SAx‖22 − ‖Ax‖22| to a problem about analyzing the spectral norm
of random matrices. However, such an argument does not generalize easily to other sampling
problems such as ℓ𝑝 subspace embeddings. In order to obtain similar improvements for these
other problems, we will instead need a technique known as chaining. These arguments will be
discussed extensively in later chapters.

1.3.3 Streaming and online coresets
In many big data settings, one does not have the luxury of accessing the entire dataset at once,
and one must instead settle for accessing the dataset one row at a time. This is known as the
row arrival streaming model or the geometric streaming model, and represents many realistic
settings, for example when data is loaded into memory in batches of rows from disk. Coresets are
a valuable tool in this setting, since they can be used to store representatives of large amounts of
data in a small amount of space, for example via the use of the merge-and-reduce technique which
repeatedly accumulates data and computes coresets to maintain a coreset without ever requiring
a large amount of working memory. A further useful restriction to this setting is to require that
the coreset be constructed in an online fashion, meaning that the a row must be selected to be
included in the coreset irrevocably at the time of arrival. This setting is known as the online
coreset model introduced by [CMP16, CMP20], and has proven to be a highly valuable tool for
streaming algorithms, with applications to the design of sliding window algorithms [BDM+20]
as well as smaller space row arrival algorithms [CWZ23]. Throughout our study of coresets and
sampling algorithms, we will often simultaneously study how to extend our constructions to the
online setting.

10

Online leverage score sampling

As an introduction to results and techniques in the online coreset setting, we discuss a result of
[CMP16, CMP20] which shows how to construct online coresets for ℓ2 subspace embeddings. In
this setting, our input is an 𝑛× 𝑑 matrix A whose rows a𝑖 ∈ R𝑑 arrive one at a time. At each time
step 𝑖 ∈ [𝑛], the row a𝑖 arrives, and we must irrevocably commit to some weight s𝑖 for this row and
discard a𝑖 if s𝑖 = 0 or keep a𝑖 if s𝑖 ̸= 0. Finally, we must have that ‖S𝑖A𝑖x‖22 = (1± 𝜀)‖A𝑖x‖22
simultaneously for every x ∈ R𝑑 for each 𝑖 ∈ [𝑛], where A𝑖 ∈ R𝑛×𝑑 denotes the matrix formed
by the first 𝑖 rows of A. Our goal is to take 𝑟 = nnz(S) to be as small as possible.

To analyze algorithms for this problem, we first introduce a couple of definitions. The first and
most important definition is the online leverage scores of A, which defines a version of leverage
scores that can be computed in a manner compatible with the online coreset model.

Definition 1.3.4 (Definition 2.1 of [BDM+20], Theorem 2.2 of [CMP20]). Let A ∈ R𝑛×𝑑. Then,
for each 𝑖 ∈ [𝑛], the 𝑖th online leverage score of A is defined as

𝜏OL
𝑖 (A) :=

{︃
min

{︀
a⊤
𝑖 (A

⊤
𝑖−1A𝑖−1)

−a𝑖, 1
}︀

a𝑖 ∈ rowspan(A𝑖−1)

1 otherwise

where A𝑗 ∈ R𝑗×𝑑 denotes the submatrix of A formed by the first 𝑗 rows.

It is not hard to see that the online leverage scores upper bound the usual leverage scores of A,
since each of the rows a𝑖 are being compared with a smaller quadratic form.

Lemma 1.3.5 (Online leverage scores bound leverage scores). Let A ∈ R𝑛×𝑑. Then, for each
𝑖 ∈ [𝑛],

𝜏OL
𝑖 (A) ≥ 𝜏 𝑖(A).

Furthermore, the quadratic form A⊤
𝑖−1A𝑖−1 needed to compute the online leverage scores

can be maintained in 𝑑2 words of space. Thus, if the sum of the leverage scores is not too large,
then sampling proportionally to the online leverage score immediately yields online coresets
for ℓ2 subspace embeddings. The remaining task is to show that the sum of the online leverage
scores can be bounded. We define the online condition number of A, which is a quantity that will
characterize this crucial quantity.

Definition 1.3.6 (Online condition number). Let A ∈ R𝑛×𝑑. Then, the online condition number
of A is defined as

𝜅OL := ‖A‖2
𝑛

max
𝑖=1
‖(A𝑖)

−‖2.

One of the main results of [CMP16, CMP20] is to show that the online leverage scores sum to
at most 𝑂(𝑑 log 𝜅OL). It is known that such a dependence on the condition number is necessary
[CMP16, CMP20]. A crucial lemma used in the bound on the sum of online leverage scores is
the matrix determinant lemma:

Lemma 1.3.7 (Matrix determinant lemma). Let M ∈ R𝑑×𝑑 be an invertible matrix and let a ∈ R𝑑.
Then,

det(M+ aa⊤) = det(M)(1 + a⊤M−1a)

Lemma 1.3.8 (Sum of online leverage scores [CMP16, CMP20]). Let A ∈ R𝑛×𝑑. Then,∑︀𝑛
𝑖=1 𝜏

OL
𝑖 (A) = 𝑂(𝑑 log 𝜅OL).

11

Online leverage scores for integer points [WY22a]

Although the 𝑂(𝑑 log 𝜅OL) bound is necessary in general, this bound is quite pessimistic, especially
if A is an integer matrix with entries bounded by, say, poly(𝑛). In this case, the online condition
number can be as large as poly(𝑛)𝑑 [AVu97], so Lemma 1.3.8 results in a bound of 𝑂(𝑑2 log 𝑛)
on the sum of online leverage scores. Note that this is quadratically worse than 𝑑 bound that holds
for offline leverage scores (1.3). In fact, we show in [WY22b] (see Theorem 11.1.1 in Chapter 11)
that for integer matrices with entries bounded by poly(𝑛), we can improve the bound on the sum
of online leverage scores to 𝑂(𝑑 log 𝑛), matching the offline result up to just a 𝑂(log 𝑛) factor.

1.3.4 Applications of sampling algorithms beyond coresets

So far, we have motivated sampling algorithms mostly as a way of obtaining dataset compres-
sions via small coresets. While this is certainly a compelling application, the special form of
compression by sampling lends itself to many uses beyond this simple use case.

One setting in which sampling algorithms excel is the setting of active learning. In this setting,
we wish to solve a supervised learning problem which usually involves solving an optimization
problem with training examples as well as corresponding labels. Furthermore, we consider
accessing labels to be an expensive process; for example, labeling a training example may involve
conducting a survey, a physical experiment, or a time-intensive computer simulation. Thus, it is
desirable to solve this supervised learning problem while minimizing the number of label entries
that we need to read. In this setting, sampling algorithms are a natural strategy to consider, since if
a small subset of the dataset is sufficient to solve the optimization problem, then we only need to
access the labels corresponding to these dataset entries. This observation has indeed been utilized
to solve least squares regression in work of [CP19], and we use a similar strategy to obtain nearly
optimal algorithms for active ℓ𝑝 linear regression in Chapter 12.

Another setting involving the analysis of sampling algorithms to design query-efficient algo-
rithms is sublinear power mean estimation. In this problem, we have query access to a set of 𝑛
points {x1,x2, . . . ,x𝑛} in 𝑑 dimensions, and we wish to estimate the power mean of this dataset,
that is, the point x ∈ R𝑑 that minimizes the ℓ𝑝 norm of the Euclidean distances of x𝑖 to x. It is
in fact possible to approximately solve this problem in sublinear time, i.e., in time substantially
less than the time it takes to read the entire dataset. Indeed, prior results of [CSS21] show that a
uniform sample of poly(𝜀−1) points is sufficient to optimize the objective up to a (1 + 𝜀) factor.
In Chapter 13, we will show that our techniques from active ℓ𝑝 linear regression can in fact be
applied this problem to obtain a tight upper bound on the query complexity of this problem.

Finally, we note that sampling-based compressions, and especially online coreset techniques,
are particularly well-suited to solve problems in the geometric streaming model (see Section
1.3.3) since the dataset is partitioned into rows in this streaming model, which is naturally how
sampling algorithms interact with the data. One natural question in the geometric streaming model
is the problem of maintaining a small ellipsoid that covers all of the points of the stream, known
as the streaming minimum enclosing ellipsoid problem. Perhaps surprisingly, it was not known
how to solve this simple problem in a small amount of space despite consideration by various
works [AHV04, AHV05, MSS10, AS15]. In Chapter 11, we use insights from our study of online
coresets to solve this decade-old question in computational geometry.

12

1.3.5 Overview of Part II

We have alluded to the fact that sampling-based methods for matrix approximation can give
improved guarantees over the oblivious methods discussed in Part I. We will see the full power of
this fact in Chapter 6, where we study the method of ℓ𝑝 Lewis weight sampling for constructing
(1 + 𝜀)-approximate ℓ𝑝 subspace embeddings for every 𝑝 > 0, and describe some improvements
and extensions to the online coreset model given by [WY23b]. In Chapters 7 and 8, we study
two other sampling methods, ℓ𝑝 sensitivity sampling and root leverage score sampling, that give
similar guarantees that can at times be more useful than ℓ𝑝 Lewis weight sampling. The results
in this section are taken from [WY23c] and [WY24b]. Chapter 9 studies the question of how
the row count 𝑟 of ℓ𝑝 subspace embeddings can be improved if we allow for the distortion 𝜅 to
be substantially larger than (1 + 𝜀). In particular, we study trade-offs shown in [WY22b] that
improve the row count 𝑟 by poly(𝑑) factors if the distortion can be as large as poly(𝑑). Chapter
10 shows that subspace embeddings can be constructed for loss functions for beyond ℓ𝑝 norms by
using the sensitivity sampling technique, based on results in [MMWY22].

While Chapters 6 through 10 have focused intensely on developing sampling techniques for
subspace embeddings, the next two chapters look more towards applications. Chapter 11 continues
the study of high-distortion ℓ𝑝 subspace embeddings and presents the results of [WY22b] that
obtains the first streaming, and in fact online, coreset for ℓ∞ subspace embeddings, which has
profound implications in streaming computational geometry. In Chapter 12, we present the results
of [MMWY22, WY23a] that obtains nearly optimal bounds on the problem of active ℓ𝑝 linear
regression, which solves ℓ𝑝 linear regression while reading the minimal number of labels. This is
applied in Chapter 13 to obtain a wide variety of coreset results for multiple ℓ𝑝 regression with
important corollaries for sublinear power mean estimation and subspace approximation, based on
work of [WY24a]. In Chapter 14, we construct the first nearly optimal coresets for the problem of
ℓ𝑝 subspace approximation, based on the work of [WY24b].

Open questions arising from work in this part are collected in Chapter 15.

1.4 Sparse optimization
The approximation of matrices by a simpler matrix is quite similar in spirit to the problem of sparse
optimization. Indeed, “approximation” is often captured by some (often convex) optimization
problem, while a “simple” or “structured” matrix is often captured by sparsity. It is thus natural to
expect that techniques in the literature of sparse optimization would be of great utility in matrix
approximation problems. In Part III, we depart from the sketching and sampling-based approaches
discussed in Parts I and II to discuss our results on matrix approximation that draw from problems
and techniques more closely related to sparse optimization.

1.4.1 Sparse linear regression

We start with a discussion of sparse linear regression, which is arguably the most fundamental
question in sparse optimization. In sparse linear regression, we are given an instance of the usual
linear regression problem, i.e. a design matrix A ∈ R𝑛×𝑑 and a target vector b, with an additional

13

parameter 𝑘 which specifies a sparsity parameter. The goal is then to output a coefficient vector
x with at most 𝑘 nonzero entries that minimizes ‖Ax − b‖22. That is, we wish to solve linear
regression, restricted to 𝑘-sparse vectors x. One of the most popular motivations for this problem
is for applications to feature selection, in which we wish to select a small subset of features to
use for a prediction model. This often leads to improvements in efficiency, generalizability, and
interpretability.

Unfortunately, the sparse linear regression problem is NP-hard to solve in the worst case,
even with bicriteria sparsity and large multiplicative error [Nat95, FKT15, GV21, PSZ22]. To
overcome this intractability, there has been much work on studying popular efficient algorithms
used in practice that can at least successfully solve well-behaved instances. One popular approach
is convex relaxation, where the sparsity constraint is relaxed to an ℓ1 constraint, which leads to an
approach known as the LASSO [Tib96]. The LASSO and its variants are known to provably solve
the sparse linear regression problem when the design matrix A satisfies a condition known as the
restricted isometry property (RIP) [DS89, CDS98, Tro06, CRT06, CT07, Can08, BRT09, Zho09,
RWY10, BCFS14] and b is (almost) exactly a 𝑘-sparse linear combination of the columns of A.
The combination of efficient algorithms and provable guarantees has made the LASSO one of the
most widely used methods for sparse linear regression.

Another class of popular algorithms for sparse linear regression are greedy algorithms, which
are based on the idea of greedily adding the column of A with the largest “local improvement”
to the current set of columns. Greedy algorithms are perhaps one of the oldest and most natural
approaches, and provable guarantees for such greedy methods have been established under similar
RIP-like conditions [SSZ10, DK11, LS17, EKDN18]. In fact, these works have succeeded in
proving similar results beyond the sparse linear regression setting, and work in general for the
more general setting of sparse convex optimization, under an appropriate generalization of the
restricted isometry property to general convex functions via restricted strong convexity and
restricted smoothness.

1.4.2 Column subset selection

Another well-studied linear algebraic problem in the area of sparse optimization is column subset
selection. This problem has origins in the numerical linear algebra literature [Cha86, GE96,
GVL13], and asks for a small subset of columns of a matrix A that “best represents” A. This
problem was also studied in the randomized numerical linear algebra literature by making use
of sampling techniques that sample a subset of columns that span a nearly optimal (bicriteria)
low rank approximation of A [FKV04, DV06, DKM06b, DMM06b, DMM08, BWZ16]. In this
formulation, we seek a sparse set of columns 𝑆 that minimizes ‖A|𝑆X − A‖2𝐹 , and thus this
problem can also be viewed as a special case of a sparse linear regression problem with multiple
responses. One can thus expect greedy algorithms to be applicable for the column subset selection
problem as well, and indeed, such results have been established by several works [SVW15,
ABF+16, LS17]. Related greedy algorithms have also been analyzed for loss functions other than
the Frobenius norm [SWZ17, CGK+17, DWZ+19, SWZ19, JLL+21, MW21, WY23a, AY23].

14

1.4.3 Overview of Part III

In Chapter 16, we develop a new connection between the LASSO and greedy algorithms by
showing that when applied sequentially, the LASSO is in fact equivalent to a greedy algorithm
known as orthogonal matching pursuit for sparse convex optimization. In fact, this holds even in
the group sparse convex optimization setting, which allows our results to be immediately applied to
the matrix column subset selection problem. These results give theoretical explanations for a novel
feature selection algorithm proposed in [YBC+23] called Sequential Attention, which achieves
remarkable results in experiments. These results are based on the works [YBC+23, AY23].

As mentioned previously, there has been substantial interest in developing algorithms for
column subset selection under loss functions beyond the Frobenius norm. In Chapter 17, we move
away from the general setting of sparse convex optimization, and focus specifically on the matrix
column subset selection problem with entrywise loss functions. Based on work developed in
[WY23a], we show how the idea of well-conditioned spanning sets, which we used in Chapter 3
to obtain nearly optimal oblivious ℓ𝑝 subspace embeddings, can be used to obtain improved (and
even optimal) column subset selection algorithms for entrywise loss functions.

Finally, we change perspectives on the theme of sparse optimization and low rank approxi-
mation by studying algorithms for low rank approximation when the input is assumed to have a
sparse optimal solution. In Chapter 18, we show that if a matrix A is promised to have sparse
singular vectors, then a (1 + 𝜀)-approximate spectral rank 𝑘 approximation of A can be com-
puted in roughly nnz(A)/

√
𝜀 time, improving the best known algorithm for spectral low rank

approximation [MM15] by a factor of 𝑘.
Open questions arising from work in this part are collected in Chapter 19.

1.5 Connections to geometric functional analysis
In addition to randomized numerical algebra and sparse optimization, much of the theory devel-
oped in this thesis interacts heavily with the literature of geometric functional analysis. Indeed,
many matrix approximation problems can be phrased as embedding problems, i.e. the problem
of constructing “nice” mappings from one space to another, which is a fundamental theme in
geometric functional analysis.

1.5.1 Lewis weights and embedding subspaces of ℓ𝑝
The ℓ𝑝 spaces, the space of vectors (or functions) equipped with the ℓ𝑝 norm, are a fundamental
object in functional analysis, and the embedding of subspaces of ℓ𝑝 into other spaces is similarly
one of the most well-studied questions in functional analysis. In our thesis, we make contributions
to two such questions, one on embeddings into ℓ𝑛𝑝 for a small 𝑛, and one on embeddings into ℓ𝑞.

Embeddings from ℓ𝑝 to ℓ𝑝: ℓ𝑝 Lewis weight sampling

It is a well-known fact that any 𝑑-dimensional subspace 𝑉 of ℓ2 (regardless of the ambient
dimension) is isometric to R𝑑 equipped with the ℓ2 norm. That is, there is an invertible linear map

15

𝑇 : 𝑉 → R𝑑 such that
‖𝑇 (y)‖2 = ‖y‖2

for every y ∈ 𝑉 . Such a result is not possible for the ℓ𝑝 norm if we insist on an isometry,
but in general, we can ask for a trade-off between the target dimension 𝑟 and a distortion
parameter 𝜅. This leads to the following natural question that was studied by many works
[Sch87, BLM89, Tal90, LT91, Tal95, Zva00, SZ01, Sch11]:

Question 1.5.1. Given a distortion parameter 𝜅, what is the smallest target dimension 𝑟 such that
every 𝑑-dimensional subspace 𝑉 of ℓ𝑝 admits an invertible linear map 𝑇 : 𝑉 → R𝑟 such that

‖y‖𝑝 ≤ ‖𝑇 (y)‖𝑝 ≤ 𝜅‖y‖𝑝?

We may recognize that this is exactly the question of constructing subspace embeddings
for the ℓ𝑝 norm (Definition 1.1.1). In the regime of 𝜅 = (1 + 𝜀) for a small 𝜀, this question is
nearly optimally resolved by works of [BLM89, Tal90, LT91, Tal95, SZ01] (see Theorem 6.1.4),
even algorithmically [CP15], via a technique known as ℓ𝑝 Lewis weight sampling (see Chapter
6). Throughout this thesis, we will develop various generalizations of this machinery to solve a
wide variety of problems in theoretical computer science, including active ℓ𝑝 regression (Chapter
12), multiple ℓ𝑝 regression (Chapter 13), and ℓ𝑝 subspace approximation (Chapter 14), even in
information-limited settings such as online, streaming, and distributed computation.

Embeddings from ℓ𝑝 to ℓ𝑞

Another natural question on embedding subspaces of ℓ𝑝, studied by [LT80], is the following:

Question 1.5.2. What is the smallest distortion 𝜅 such that every 𝑑-dimensional subspace 𝑉 of ℓ𝑝
admits an invertible linear map 𝑇 : 𝑉 → 𝑉 ′ for any space 𝑉 ′ such that

‖y‖𝑝 ≤ ‖𝑇 (y)‖𝑞 ≤ 𝜅‖y‖𝑝?

That is, what is the smallest distortion incurred when embedding a subspace of ℓ𝑝 into any
subspace of ℓ𝑞? This question is in fact nearly optimally resolved by [LT80], but their proof is
quite sophisticated, relying on deep results from the factorization theory of operator ideals [Pie80].
On the other hand, we show the same theorem with an elementary proof based on a simple yet
new property of ℓ𝑝 Lewis weights in Chapter 9. Our observations may be useful in gaining further
insight into the deeper results employed by [LT80] and simplifying some of the techniques in this
field.

1.5.2 Well-conditioned bases and spanning sets
Another example of the connections between matrix approximation and geometric functional
analysis appears in the construction of oblivious ℓ𝑝 subspace embeddings (see Section 1.2.3).
The work of [SW11] first showed that oblivious ℓ1 subspace embeddings for a matrix A could
be constructed by using the existence of a basis for the subspace 𝑉 = colspan(A) with certain
“well-conditioning” properties that generalizes the notion of orthogonal bases for the ℓ2 norm.

16

More specifically, for a 𝑑-dimensional subspace 𝑉 ⊆ R𝑛, an orthogonal basis U ∈ R𝑛×𝑑 is a set
of 𝑑 ℓ2-unit vectors spanning 𝑉 such that

‖Ux‖2 = ‖x‖2

for every x ∈ R𝑑. Similarly, an ℓ1 well-conditioned basis U ∈ R𝑛×𝑑 is a set of 𝑑 ℓ1-unit vectors
spanning 𝑉 such that

‖Ux‖1 ≥ ‖x‖∞.

In fact, the construction of such bases for the ℓ1 norm implies nearly optimal constructions
[LWW21], and can be accomplished by using a construction from geometric functional analysis
known as Auerbach bases [Aue30]. In general, it is known that the appropriate generalization to
ℓ𝑝 norms for 1 < 𝑝 < 2 similarly implies nearly optimal oblivious ℓ𝑝 subspace embeddings, that
is, a set of 𝑑 ℓ𝑝-unit vectors spanning 𝑉 such that

‖Ux‖𝑝 ≥ ‖x‖𝑞,

where 𝑞 is the Hölder conjugate exponent of 𝑝. However, the existence of such bases is still
not known, despite substantial interest in well-conditioned bases for subspaces of ℓ𝑝. Some
partial attempts leading to suboptimal trade-offs include the use of Auerbach bases [Aue30], John
ellipsoids [Joh48], and Lewis bases [Lew78].

In Chapter 3, we show that by relaxing the requirement of constructing a basis for the subspace
to a spanning set, we can construct a set of 𝑂(𝑑) ℓ𝑝-unit vectors U spanning 𝑉 such that for any
Ax ∈ 𝑉 , we can write Ax = Uy such that

‖Uy‖𝑝 ≥ 𝑐‖y‖𝑞

for some universal constant 𝑐. This relaxation is in fact sufficient to recover nearly optimal ℓ𝑝
subspace embeddings, resolving an old question in randomized numerical linear algebra.

17

18

Chapter 2

Preliminaries

2.1 Notation
• We write [𝑛] to denote the set {1, 2, 3, . . . , 𝑛} = {𝑖 ∈ N : 1 ≤ 𝑖 ≤ 𝑛}.
• For an 𝑛-dimensional vector y ∈ R𝑛, we write y(𝑖) or y𝑖 to denote the 𝑖th entry of y. For

an 𝑛× 𝑑 matrix A ∈ R𝑛×𝑑, we write A𝑖,𝑗 to denote the (𝑖, 𝑗)th entry of A.

2.1.1 Linear algebra
• We write e𝑖 to denote the 𝑖-th standard basis vector, i.e., the vector with 1 in the 𝑖-th entry

and 0s everywhere else.
• We write I𝑑 ∈ R𝑑×𝑑 to denote the identity matrix in 𝑑 dimensions, that is, the matrix with
I𝑑(𝑖, 𝑖) = 1 for 𝑖 ∈ [𝑑] and I𝑑(𝑖, 𝑗) = 0 for 𝑖 ̸= 𝑗 ∈ [𝑑].

• We write nnz(A) for the number of nonzero entries of a matrix A.
• For a matrix A ∈ R𝑛×𝑑, we write colspan(A) = {Ax ∈ R𝑛 : x ∈ R𝑑} for the column

span of A, and rowspan(A) = {y⊤A ∈ R𝑑 : y ∈ R𝑛} for the row span of A.
• For a matrix A ∈ R𝑛×𝑑, we write A = UΣV⊤ for the singular value decomposition (SVD)

of A.
• For a rank parameter 𝑘, we let Σ𝑘 denote the matrix Σ with all but the top 𝑘 singular values

zeroed out, Σ∖𝑘 for the matrix Σ with all but the bottom 𝑑− 𝑘 singular values zeroed out,
and A𝑘 = UΣ𝑘V

⊤ for the optimal rank 𝑘 approximation of A under the Frobenius norm.
• For a matrix A ∈ R𝑛×𝑑, we write A− ∈ R𝑑×𝑛 to denote the Moore–Penrose pseudoinverse,

or simply the pseudoinverse, of A.

2.1.2 Inequalities

We repeatedly use the following inequalities.

Fact 2.1.1. For any 𝑝 ≥ 1 and any 𝑎, 𝑏 ∈ R, |𝑎+ 𝑏|𝑝 ≤ 2𝑝−1(|𝑎|𝑝 + |𝑏|𝑝) = 𝑂(|𝑎|𝑝 + |𝑏|𝑝).

19

Fact 2.1.2 (Corollary A.2, [MMR19]). For any 𝑝 ≥ 1, 𝜀 > 0, and any 𝑎, 𝑏 ∈ R, |𝑎 + 𝑏|𝑝 ≤
(1 + 𝜀)|𝑎|𝑝 + (1+𝜀)𝑝−1

𝜀𝑝−1 |𝑏|𝑝.

Fact 2.1.3. For any 𝑝 ≥ 1 and any 𝑎, 𝑏 ∈ R, |𝑎|𝑝 − |𝑏|𝑝 ≤ 𝑝|𝑎− 𝑏|(|𝑎|𝑝−1 + |𝑏|𝑝−1).

2.1.3 Probability
• We write 𝜀 ∼ {±1}𝑛 to denote a random 𝑛-dimensional Rademacher vector 𝜀 drawn with

each entry 𝜀𝑖 drawn independently and uniformly from the set {±1}.
• For a vector 𝜇 ∈ R𝑑 and positive semidefinite matrix Σ ∈ R𝑑×𝑑, we write 𝒩 (𝜇,Σ) to

denote the Gaussian distribution with mean 𝜇 and covariance matrix Σ.

2.2 Streaming

2.2.1 INDEX

In the INDEX problem, Alice has a set 𝐴 ⊆ [𝑛] and Bob has an index 𝑖 ∈ [𝑛]. Alice then generates
a message 𝑀 using a possibly randomized algorithm 𝒜 as a function of 𝐴, and then passes the
message 𝑀 to Bob. Bob must then determine whether 𝑖 ∈ 𝐴 or not.

Theorem 2.2.1 (INDEX lower bound [KNR99]). Suppose 𝒜 solves the INDEX problem with
probability at least 2/3. Then, 𝒜 must use at least Ω(𝑛) bits.

2.3 Random processes
In our study of sampling algorithms (see Part II), we often seek to approximate a separable
function

𝑓(x) =
𝑛∑︁

𝑖=1

𝑓𝑖(x)

by a weighted subset of summands given by

𝑓(x) =
𝑛∑︁

𝑖=1

w𝑖𝑓𝑖(x)

where most of weights w𝑖 are zero (i.e., nnz(w)≪ 𝑛) so that 𝑓 provides a compressed approxi-
mation. Suppose that the random weights w𝑖 are generated by independently setting w𝑖 = 1/𝑞𝑖
with probability 𝑞𝑖 and 0 with probability 1− 𝑞𝑖 for some sampling probability 𝑞𝑖 ∈ (0, 1), as is
the case for most sampling algorithms. Then, the sampling error at any particular point x ∈ 𝑋 in
the domain, given by

|𝑓(x)− 𝑓(x)| =

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

(w𝑖 − 1)𝑓𝑖(x)

⃒⃒⃒⃒
⃒,

20

is a random variable that lives in the probability space defined by the randomness of sampling the
weights w. Thus, the collection of all of these random variables, indexed by x ∈ 𝑋 , naturally
defines a random process.

Definition 2.3.1 (Random process). A random process is a collection (𝑋𝑡)𝑡∈𝑇 of random variables
𝑋𝑡 on the same probability space, which is indexed by some set 𝑇 .

To bound the error of this approximation, or the sampling error, we will be interested in
bounding the quantity

Λ := sup
x∈𝑋
|𝑓(x)− 𝑓(x)| = sup

x∈𝑋

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

(w𝑖 − 1)𝑓𝑖(x)

⃒⃒⃒⃒
⃒

for some bounded domain set 𝑋 , which represents the largest error in the approximation over all
x in the set 𝑋 . That is, we wish to bound the supremum of this random process. In particular, we
seek moment bounds of the form E[Λ𝑙] ≤ 𝜀𝑙 for 𝑙 = 𝑂(log 1

𝛿
), which implies that Λ ≤ 𝑂(𝜀) with

probability at least 1− 𝛿 by Markov’s inequality.

2.3.1 Symmetrization: reduction to a Rademacher process
In most cases, directly analyzing the sampling error Λ is inconvenient, and we instead resort to
bounding Λ by a simpler random process via a technique known as symmetrization, which was
first introduced in the study of empirical processes [GZ84]. This exploits the fact that the random
variables (w𝑖−1) have zero mean to bound the original random process by a Rademacher process,
where the randomness is transferred from the sampling weights w𝑖 to independent random signs
𝜀𝑖 ∼ {±1}, up to a constant factor.

Lemma 2.3.2 (Symmetrization). Suppose that for each 𝑖 ∈ [𝑛], w𝑖 is independently set to 1/𝑞𝑖
with probability 𝑞𝑖 and 0 with probability 1− 𝑞𝑖 for some sampling probability 𝑞𝑖 ∈ (0, 1). Then,

E
w

⎡⎣sup
x∈𝑋

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

(w𝑖 − 1)𝑓𝑖(x)

⃒⃒⃒⃒
⃒
𝑙
⎤⎦ ≤ 2𝑙 E

𝜀∼{±1}𝑛,w

⎡⎣sup
x∈𝑋

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖w𝑖𝑓𝑖(x)

⃒⃒⃒⃒
⃒
𝑙
⎤⎦

Proof. Note that 𝑍(x) =
∑︀𝑛

𝑖=1(w𝑖 − 1)𝑓𝑖(x) is a zero mean random variable. Then if 𝑍 ′ is an
independent copy of 𝑍 with sampling weights w𝑖, then by Jensen’s inequality, we have that

E
w,w′

sup
x∈𝑋
|𝑍(x)|𝑙 ≤ E

w,w′
sup
x∈𝑋
|𝑍(x)− 𝑍 ′(x)|𝑙 = E

w,w′
sup
x∈𝑋

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

(w𝑖 −w′
𝑖)𝑓𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

.

Furthermore, by independence, the distribution does not change if we multiply each summand
𝑖 ∈ [𝑛] with signs 𝜀𝑖 ∈ {±1}. In particular, we can take these signs to be random Rademacher
signs, so the above quantity is equal to

E
𝜀∼{±1}𝑛,w,w′

sup
x∈𝑋

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖(w𝑖 −w′
𝑖)𝑓𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

.

21

This is at most

2𝑙−1

⎛⎝ E
𝜀∼{±1}𝑛,w

sup
x∈𝑋

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖w𝑖𝑓𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

+ E
𝜀∼{±1}𝑛,w′

sup
x∈𝑋

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖w
′
𝑖𝑓𝑖(x)

⃒⃒⃒⃒
⃒
𝑙
⎞⎠

by Fact 2.1.1, which proves the claimed bound since w and w′ have the same distribution.

In particular, it suffices to fix a choice of weights w and then bound the Rademacher process

E
𝜀∼{±1}𝑛

⎡⎣sup
x∈𝑋

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖w𝑖𝑓𝑖(x)

⃒⃒⃒⃒
⃒
𝑙
⎤⎦.

2.3.2 Subgaussian processes
One useful fact about Rademacher processes is that it is a subgaussian process, a property which
we will fully exploit in the next section.

Definition 2.3.3 (Subgaussian process). A random process (𝑋𝑡)𝑡∈𝑇 equipped with a distance 𝑑 is
subgaussian if E[𝑋𝑡] = 0 for every 𝑡 ∈ 𝑇 and

E[exp(𝜆(𝑋𝑠 −𝑋𝑡))] ≤ exp(𝜆2𝑑(𝑠, 𝑡)2/2)

for every 𝑠, 𝑡 ∈ 𝑇 and 𝜆 ≥ 0. Equivalently,

Pr{|𝑋𝑠 −𝑋𝑡| ≥ 𝜆𝑑(𝑠, 𝑡)} ≤ 𝐾 exp(−𝜆2/𝐾)

for some universal constant 𝐾 and any 𝑠, 𝑡 ∈ 𝑇 and 𝜆 ≥ 0.

For a Rademacher process (𝑋𝑡)𝑡∈𝑇 , the natural pseudo-metric can be used as the distance 𝑑
that makes (𝑋𝑡)𝑡∈𝑇 a subgaussian process.

Definition 2.3.4 (Natural pseudo-metric). Let (𝑋𝑡)𝑡∈𝑇 be a random process. Then, the natural
pseudo-metric associated with the random process is

𝑑𝑋(𝑠, 𝑡) :=
√︀

E|𝑋𝑠 −𝑋𝑡|2 = ‖𝑋𝑠 −𝑋𝑡‖2.

2.3.3 Chaining and Dudley’s inequality
We will now introduce Dudley’s inequality, which is a powerful tool for bounding the suprema of
subgaussian processes. Our exposition here largely follows [vH14].

To introduce Dudley’s inequality, we consider the problem of bounding the first moment

E sup
𝑠∈𝑇
|𝑋𝑠 −𝑋𝑡|

for some fixed 𝑡 ∈ 𝑇 . Similar ideas will also allow us to bound higher moments.

22

For a subgaussian process (𝑋𝑡)𝑡∈𝑇 with a finite indexing set 𝑇 , the subgaussian tail inequality
of Definition 2.3.3 allows for a bound on the supremum with only a polylogarithmic dependence
on the size |𝑇 |. Indeed, suppose we fix some 𝑡 ∈ 𝑇 . Then, for each fixed 𝑠 ∈ 𝑇 , we have that

Pr{|𝑋𝑠 −𝑋𝑡| ≥ 𝜆𝑑(𝑠, 𝑡)} ≤ 𝐾 exp(−𝜆2/𝐾) ≤ 1

100𝑇

by setting 𝜆 = 𝑂(
√︀

log|𝑇 |). Then by a union bound over all the elements 𝑠 ∈ 𝑇 , we have that
|𝑋𝑠−𝑋𝑡| ≤ 𝑂(

√︀
log|𝑇 |)𝑑(𝑠, 𝑡) simultaneously for every 𝑠 ∈ 𝑇 , with probability at least 99/100.

That is, with probability at least 99/100, we have that

sup
𝑠∈𝑇
|𝑋𝑠 −𝑋𝑡| ≤ 𝑂(

√︀
log|𝑇 |) sup

𝑠∈𝑇
𝑑(𝑠, 𝑡) ≤ 𝑂(

√︀
log|𝑇 |) diam(𝑇)

where
diam(𝑇) = sup

𝑠,𝑡∈𝑇
𝑑(𝑠, 𝑡)

denotes the diameter of the set 𝑇 with respect to the distance 𝑑. A similar argument shows that
the same bound holds in expectation, that is, E[sup𝑠∈𝑇 |𝑋𝑠 −𝑋𝑡|] ≤ 𝑂(

√︀
log|𝑇 |) diam(𝑇).

While the 𝑂(
√︀
log|𝑇 |) dependence is acceptable for small finite sets 𝑇 , we are often interested

in infinite sets 𝑇 , for example the interval [0, 1] or the Euclidean ball. Thus, we will need to
modify our strategy to handle these cases.

To make use of our previous result for finite sets 𝑇 , we may consider approximating the
infinite set 𝑇 by a finite set 𝑁 . For this, we make use of nets.

Definition 2.3.5 (𝜀-net). A finite set 𝑁 is an 𝜀-net of a set 𝑇 with distance 𝑑 if for every 𝑡 ∈ 𝑇 ,
there exists 𝜋(𝑡) ∈ 𝑁 such that 𝑑(𝑡, 𝜋(𝑡)) ≤ 𝜀.

If 𝑁 is an 𝜀-net for 𝑇 , then we have that

sup
𝑠∈𝑇
|𝑋𝑠 −𝑋𝑡| ≤ sup

𝑠∈𝑇
|𝑋𝑠 −𝑋𝜋(𝑠)|+ sup

𝑠∈𝑇
|𝑋𝜋(𝑠) −𝑋𝑡|

so sup𝑠∈𝑇 |𝑋𝑠 − 𝑋𝑡| can now be controlled by the error from approximating 𝑇 by 𝑁 and the
supremum of 𝑋𝑡 over a finite set 𝑁 . The latter can be handled by our previous union bound
argument, so it suffices to consider the former term. Note that for any fixed 𝑠, we may expect the
“net error” sup𝑠∈𝑇 |𝑋𝑠 −𝑋𝜋(𝑠)| to be at most roughly 𝜀 by the net construction.

At this point, one option is to directly consider a construction of a net 𝑁 which allows the net
error to be directly controlled, which can be accomplished under additional assumptions on 𝑇
and 𝑑 such as Lipschitzness [vH14]. Another elegant option, however, is to iterate this argument
and introduce another net, say an (𝜀/2)-net 𝑁2, which approximates 𝑇 to a finer error 𝜀/2. If
𝜋2 : 𝑇 → 𝑁2 is the mapping for 𝑁2, then we have that

sup
𝑠∈𝑇
|𝑋𝑠 −𝑋𝜋(𝑠)| ≤ sup

𝑠∈𝑇
|𝑋𝑠 −𝑋𝜋2(𝑠)|+ sup

𝑠∈𝑇
|𝑋𝜋2(𝑠) −𝑋𝜋(𝑠)|.

We have now achieved a smaller “net error” by introducing another finite supremum term, and
this process can now be repeated indefinitely. In general, we set 𝑇1 = {𝑡} to be a diam(𝑇)-net

23

and 𝑇𝑖 to be a 2−𝑖 diam(𝑇)-net for 𝑖 ∈ [𝐼] so that

sup
𝑠∈𝑇
|𝑋𝑠 −𝑋𝑡| ≤ sup

𝑠∈𝑇
|𝑋𝑠 −𝑋𝜋𝐼+1(𝑠)|+

𝐼∑︁
𝑖=1

sup
𝑠∈𝑇
|𝑋𝜋𝑖(𝑠) −𝑋𝜋𝑖+1(𝑠)|

Note that the finite supremum bound gives

E sup
𝑠∈𝑇
|𝑋𝜋𝑖(𝑠) −𝑋𝜋𝑖+1(𝑠)| ≤ 𝑂(2−𝑖 diam(𝑇))

√︀
log|𝑁𝑖 ×𝑁𝑖+1|

≤ 𝑂(2−𝑖 diam(𝑇))
√︀

log|𝑁𝑖+1|

summing gives us the bound

E sup
𝑠∈𝑇
|𝑋𝑠 −𝑋𝑡| ≤ E sup

𝑠∈𝑇
|𝑋𝑠 −𝑋𝜋𝐼+1(𝑠)|+𝑂(diam(𝑇))

𝐼∑︁
𝑖=1

2−𝑖
√︀

log|𝑁𝑖+1|.

Finally, note that for 𝑇 of any finite size, the first term vanishes for sufficiently large 𝐼 , so we
obtain the bound

E sup
𝑠∈𝑇
|𝑋𝑠 −𝑋𝑡| ≤

∞∑︁
𝑖=1

𝑂(2−𝑖 diam(𝑇))
√︀

log|𝑁𝑖+1|

whenever 𝑇 is finite. This bound extends to the setting of infinite 𝑇 under mild assumptions such
as separability of 𝑇 , which gives us the result known as Dudley’s inequality [Dud67].

Dudley’s inequality is often stated in terms of metric entropy numbers 𝐸(𝑇, 𝑑, 𝑢) which
denotes the minimal number of 𝑑-balls of radius 𝑢 required to cover 𝑇 . Furthermore, we can also
write this bound as an integral, giving the bound

E sup
𝑠∈𝑇
|𝑋𝑠 −𝑋𝑡| ≤ 𝑂(1)

∫︁ ∞

0

√︀
log𝐸(𝑇, 𝑑, 𝑢) 𝑑𝑢

known as Dudley’s entropy integral. In fact, a very similar argument also gives tail bounds, which
we state in the following theorem.

Theorem 2.3.6 (Dudley’s entropy integral, Theorem 8.1.6, [Ver18]). Let (𝑋𝑡)𝑡∈𝑇 be a subgaussian
process with pseudo-metric 𝑑𝑋(𝑠, 𝑡) := ‖𝑋𝑠 −𝑋𝑡‖2. Let 𝐸(𝑇, 𝑑𝑋 , 𝑢) denote the minimal number
of 𝑑𝑋-balls of radius 𝑢 required to cover 𝑇 . Then, for every 𝑧 ≥ 0, we have that

Pr

{︂
sup
𝑠,𝑡∈𝑇
|𝑋𝑠 −𝑋𝑡| ≥ 𝐶

[︂∫︁ ∞

0

√︀
log𝐸(𝑇, 𝑑𝑋 , 𝑢) 𝑑𝑢+ 𝑧 · diam(𝑇)

]︂}︂
≤ 2 exp(−𝑧2)

The way in which the entropy numbers 𝐸(𝑇, 𝑑𝑋 , 𝑢) and the diameter diam(𝑇) are bounded is
heavily problem-dependent, and will be discussed further in the coming chapters.

In order to recover moment bounds for subgaussian processes, we can integrate the tail bound
given by Theorem 2.3.6. This is executed in the following lemma.

Lemma 2.3.7 (Moment bounds). Let Λ be the supremum of a subgaussian process with domain
𝑇 and distance 𝑑𝑋 . Let ℰ :=

∫︀∞
0

√︀
log𝐸(𝑇, 𝑑𝑋 , 𝑢) 𝑑𝑢 and 𝒟 = diam(𝑋). Then, for 𝑙 ∈ N,

E
g∼𝒩 (0,I𝑛)

[|Λ|𝑙] ≤ (2ℰ)𝑙(ℰ/𝒟) +𝑂(
√
𝑙𝒟)𝑙

24

Proof. By Theorem 2.3.6, we have that

Pr

{︂
Λ ≥ 𝐶

[︂∫︁ ∞

0

√︀
log𝐸(𝑋, 𝑑𝐺, 𝑢) 𝑑𝑢+ 𝑧 · diam(𝑋)

]︂}︂
≤ 2 exp(−𝑧2)

for a constant 𝐶 = 𝑂(1). Then,

E[(Λ/𝒟)𝑙] = 𝑙

∫︁ ∞

0

𝑧𝑙 Pr{Λ ≥ 𝑧𝒟} 𝑑𝑧

≤ (2ℰ/𝒟)𝑙+1 + 𝑙

∫︁ ∞

2ℰ/𝒟
𝑧𝑙 Pr{Λ ≥ 𝑧𝒟} 𝑑𝑧

≤ (2ℰ/𝒟)𝑙+1 + 𝑙

∫︁ ∞

2ℰ/𝒟
𝑧𝑙 Pr{Λ ≥ ℰ + (𝑧/2)𝒟} 𝑑𝑧

≤ (2ℰ/𝒟)𝑙+1 + 2𝑙

∫︁ ∞

0

𝑧𝑙 exp(−𝑧2/4) 𝑑𝑧

≤ (2ℰ/𝒟)𝑙+1 +𝑂(𝑙)𝑙/2

so
E[Λ𝑙] ≤ (2ℰ)𝑙(ℰ/𝒟) +𝑂(

√
𝑙𝒟)𝑙.

25

26

Part I

Oblivious Sketching

27

Chapter 3

High distortion embeddings for ℓ𝑝 [WY23a]

Given the oblivious ℓ2 subspace embedding result of Theorem 1.2.3, a natural question to ask
is whether similar results exist for ℓ𝑝 norms for 𝑝 ̸= 2. For 𝑑 = 1, the more general question
of whether the ℓ𝑝 norm of a single vector can be preserved given a small number of linear
measurements of the vector is well-studied in the streaming literature [SS02, BJKS04, IW05,
Ind06], where for 𝑝 < 2, Θ̃(𝜀−2) measurements is necessary and sufficient for approximation up
to a factor of (1 + 𝜀), while for 𝑝 > 2, the ℓ𝑝 norm cannot be approximated to within a constant
factor unless Ω(𝑛1−2/𝑝) measurements are used. The latter result already prohibits a result of the
form of Theorem 1.2.3 for 𝑝 > 2, if the number of rows 𝑟 of S must be subpolynomial in 𝑛. Thus,
the key question is whether a theorem analogous to Theorem 1.2.3 is possible for 𝑝 < 2.

One idea is to take inspiration from the proof of Theorem 1.2.3 and a classic streaming
algorithm for ℓ𝑝 norm estimation for vectors due to Indyk [Ind06]. In Theorem 1.2.3 for the case
of 𝑝 = 2, the sketch S can be taken to be a matrix with i.i.d. Gaussian entries [DG03], largely
owing to the fact that the Gaussian distribution is 2-stable, that is, if g ∈ R𝑛 is an i.i.d. Gaussian
vector and y ∈ R𝑛 is an arbitrary vector, then ⟨g,y⟩ is distributed as a single Gaussian random
variable, scaled by ‖y‖2. In fact, an analogous result is known for ℓ𝑝 norms for 𝑝 < 2:

Theorem 3.0.1 (Standard 𝑝-stable distributions [Ind06, Nol20]). For 0 < 𝑝 ≤ 2, there exists a
probability distribution𝒟𝑝 called the standard 𝑝-stable distribution such that if g ∈ R𝑛 has entries
drawn i.i.d. from 𝒟𝑝, then for any y ∈ R𝑛 ⟨g,y⟩ is distributed as ‖y‖𝑝𝑔, for 𝑔 ∼ 𝒟𝑝.

While Theorem 3.0.1 takes a step in the right direction, several challenges remain. For 𝑝 < 2,
the 𝑝-stable distributions 𝒟𝑝 are heavy-tailed (unlike the 2-stable Gaussian distribution which
enjoys sub-Gaussian tails), and thus in order to obtain (1± 𝜀)-approximate estimates with high
probability, we need to take a median of independent measurements of |⟨g,y⟩| to approximate
‖y‖𝑝. However, the approximation that we seek, of the form of Definition 1.1.1, would take a
mean of the measurements, which in turn results in either a much higher distortion, or a much
higher number of rows 𝑟 for the sketch S.

In fact, it turns out that this loss for 𝑝 < 2 is inherent for oblivious ℓ𝑝 subspace embeddings,
as shown by [WW19, WW22] in the following impossibility result:

Theorem 3.0.2 (Lower bounds for oblivious ℓ𝑝 subspace embeddings, [WW19, WW22]). Sup-

29

pose that a distribution 𝒟 over 𝑟 × 𝑛 matrices S satisfies, for any A ∈ R𝑛×𝑑,

Pr
S∼𝒟

{︁
for all x ∈ R𝑑, ‖Ax‖𝑝 ≤ ‖SAx‖𝑝 ≤ 𝜅‖Ax‖𝑝

}︁
≥ 99

100
.

Then, the distortion 𝜅 is at least

𝜅 = Ω

(︃
1

1
𝑑1/𝑝

log2/𝑝 𝑟 +
(︀
𝑟
𝑛

)︀1/𝑝−1/2

)︃
.

Note that typically, we seek 𝑟 = poly(𝑑), which means that the distortion 𝜅 must be at least

𝜅 = Ω

(︂
𝑑1/𝑝

log2/𝑝 𝑑

)︂
= Ω̃(𝑑1/𝑝)

and so the distortion must be at least polynomial in 𝑑. Thus, (1 + 𝜀)-approximations, or even
𝑂(1)-approximations, are not possible in this regime. On the other hand, the question of whether
we can match the lower bound of Theorem 3.0.2 and design oblivious subspace embeddings with
distortion 𝜅 = �̃�(𝑑1/𝑝) is a natural and interesting one.

The first known upper bounds for ℓ𝑝 subspace embeddings for 𝑝 < 2 were obtained by [SW11],
who gave a construction with 𝑟 = �̃�(𝑑) rows and distortion 𝜅 = �̃�(𝑑) for the case of 𝑝 = 1.
In fact, their sketch S is constructed analogously to Theorem 1.2.3 with the 2-stable Gaussian
distribution replaced by the 1-stable distribution, also known as the Cauchy distribution. That
is, S is just an appropriate scaling of the 𝑟 × 𝑛 matrix where each entry is drawn independently
from the standard Cauchy distribution. Note that this result achieves a nearly optimal trade-off
distortion for any 𝑟 = poly(𝑑) rows by the lower bound of Theorem 3.0.2. While a dense Cauchy
matrix is not as ideal to apply quickly, faster variants of this construction have been developed in
subsequent works [MM13, WZ13, CDM+16, WW19, WW22].

With the resolution of the trade-offs for oblivious ℓ1 subspace embeddings, the next natural
question is to settle the analogous problem for 1 < 𝑝 < 2.

Question 3.0.3 ([WW19, WW22]). Do there exist oblivious ℓ𝑝 subspace embeddings that achieve
the guarantee of Definition 1.1.1 for the ℓ𝑝 norm with 𝜅 = �̃�(𝑑1/𝑝) and 𝑟 = poly(𝑑)?

In fact, for a long time, the Question 3.0.3 was thought to be resolved, and many papers
claimed constructions of oblivious ℓ𝑝 subspace embeddings achieving a distortion of 𝜅 = �̃�(𝑑1/𝑝)
[MM13, WZ13, WW19]. Unfortunately, all of these results relied on the existence of a certain
well-conditioned basis, whose proof contained an error, and the revised proofs only achieves
constructions with a distortion of 𝜅 = �̃�(𝑑) [WW22] for any 𝑝 ∈ (1, 2). Thus, the resolution of
Question 3.0.3 became a central open question in the study of randomized matrix approximation
[WW22]. In the work [WY23a], we give a positive resolution to Question 3.0.3:

Theorem 3.0.4 (Nearly optimal oblivious ℓ𝑝 subspace embeddings [WY23a]). Let S be an 𝑟 × 𝑛
matrix of i.i.d. 𝑝-stable random variables. There is an 𝑟 = �̃�(𝑑) such that for any A ∈ R𝑛×𝑑,

Pr
{︁

for all x ∈ R𝑑, ‖Ax‖𝑝 ≤ ‖SAx‖𝑝 ≤ �̃�(𝑑1/𝑝)‖Ax‖𝑝
}︁
≥ 99

100

that is, S is an ℓ𝑝 subspace embedding of A with distortion 𝜅 = �̃�(𝑑1/𝑝), with probability at least
99/100.

30

We discuss our approach towards proving Theorem 3.0.4 in the rest of Chapter 3.

3.1 The question of well-conditioned bases

As alluded to previously, the central question is the existence of a well-conditioned basis. We start
with a discussion of these objects.

For the ℓ2 norm, every subspace admits an orthogonal basis, which is a basis for the subspace
which exactly preserves the ℓ2 norm. That is, for any matrix A ∈ R𝑛×𝑑, there exists a matrix
U ∈ R𝑛×𝑑 such that for any x ∈ R𝑑, there exists x′ ∈ R𝑑 such that Ax = Ux′, and furthermore,
‖Ux‖2 = ‖x‖2 for every x ∈ R𝑑. In other words, U is a norm-preserving map from R𝑑 to
R𝑛. The existence of orthogonal bases plays a key role in the analyses of oblivious ℓ2 subspace
embeddings [NN13, Woo14]. However, for 𝑝 ̸= 2, exact analogues of orthogonal bases do not
exist, in the sense that there does not necessarily exist a basis such that ‖Ux‖𝑝 = ‖x‖𝑝. Thus,
we must settle for an appropriately relaxed notion of “orthogonal bases” when working with
subspaces of ℓ𝑝. One way to meaningfully define such an analogue was introduced by [DDH+09],
based on a similar definition by [Cla05]:

Definition 3.1.1 ((𝛼, 𝛽, 𝑝)-well-conditioned basis, Definition 3, [DDH+09]). Let A ∈ R𝑛×𝑑 be
rank 𝑑 matrix, let 𝑝 ≥ 1, and let 𝑞 = 𝑝/(𝑝− 1) be the Hölder dual of 𝑝. Then, U ∈ R𝑛×𝑑 is an
(𝛼, 𝛽, 𝑝)-well-conditioned basis if (1) ‖U‖𝑝,𝑝 ≤ 𝛼 and (2) for any z ∈ R𝑑, ‖z‖𝑞 ≤ 𝛽‖Uz‖𝑝.

Note that for ℓ2, an orthogonal basis U corresponds to an (𝛼, 𝛽, 2)-well-conditioned basis
with parameters 𝛼 = 𝑑1/2 and 𝛽 = 1. For ℓ1, [SW11] showed that the well-known construction
of Auerbach bases [Aue30] from the geometric functional analysis literature corresponds to an
(𝛼, 𝛽, 1)-well-conditioned basis with 𝛼 = 𝑑 and 𝛽 = 1. For 𝑝 ∈ (1, 2), however, the works
of [MM13, WZ13, WW19] mistakenly claimed that Auerbach bases also give (𝛼, 𝛽, 𝑝)-well-
conditioned bases for 𝛼 = 𝑑1/𝑝 and 𝛽 = 1, while they in fact only give 𝛼 = 𝑑 and 𝛽 = 1
[WW22].

3.2 Relaxing linear bases to spanning sets

In fact, our techniques in [WY23a] do not give a construction for (𝑑1/𝑝, 1, 𝑝)-well-conditioned
basis. Instead, we show that by relaxing the notion of well-conditioned bases to well-conditioned
spanning sets, we can obtain a construction that is sufficient to prove Theorem 3.0.4. More
specifically, we show the following:

Theorem 3.2.1 ((𝛼, 𝛽, 𝑝)-well-conditioned spanning set, [WY23a]). Let A ∈ R𝑛×𝑑 and let 𝑝 ≥ 1.
Then, there exists U ∈ R𝑛×𝑠 for 𝑠 = 𝑂(𝑑) such that (1) ‖U‖𝑝,𝑝 ≤ 𝑠1/𝑝 and (2) for any x ∈ R𝑑,
there exists z ∈ R𝑠 such that Ax = Uz and ‖z‖2 ≤ ‖Uz‖𝑝.

That is, we show that by relaxing the use of a basis, which is only allowed to contain 𝑑
vectors, to a spanning set consisting of a slightly larger 𝑂(𝑑) vectors, we can obtain a spanning
set which has properties that are just as good as a (𝑂(𝑑1/𝑝), 1, 𝑝)-well-conditioned basis. In fact,
the well-conditioning guarantee is even better than the one in Definition 3.1.1, since the Hölder

31

conjugate 𝑞 of 𝑝 is greater than 2 for 𝑝 < 2, so we in fact have the guarantee that

‖z‖𝑞 ≤ ‖z‖2 ≤ ‖Uz‖𝑝.

Towards our result, we will need the following result on the construction of volumetric
spanners [HK16], which, given a set of vectors, is a small subset of vectors such that the minimum
volume ellipsoid enclosing the subset is also the minimum volume ellipsoid enclosing the entire
set of 𝑛 vectors. These objects can also be stated as coresets for Löwner–John ellipsoids. Related
and improved constructions are also given in [KY05, Tod16, BMV23].

Theorem 3.2.2 (Theorem 1.1, [HK16]). Let 𝒦 ∈ R𝑑 be compact. There exists 𝑆 ⊆ 𝒦 with
|𝑆| ≤ 12𝑑 such that 𝒦 ⊆ ℰ(𝑆), where ℰ(𝑆) =

{︀∑︀
v∈𝑆 v · x𝑖 ∈ R𝑑 : x ∈ R|𝑆|, ‖x‖2 ≤ 1

}︀
.

From the guarantees of Theorem 3.2.2, we immediately the following lemma about spanning
sets for subspaces of ℓ𝑝.

Lemma 3.2.3 (Well-conditioned spanning sets for subspaces of ℓ𝑝). Let 𝑝 ∈ (0,∞) and let
A ∈ R𝑛×𝑑. There exists R ∈ R𝑑×𝑠 for 𝑠 = 𝑂(𝑑) such that ‖ARe𝑖‖𝑝 ≤ 1 for every 𝑖 ∈ [𝑠], and
for any x ∈ R𝑑 with ‖Ax‖𝑝 ≤ 1, there exists y ∈ R𝑠 such that Ax = ARy and ‖y‖2 ≤ 1.

Proof. We take 𝒦 = {Ax : ‖Ax‖𝑝 ≤ 1}. Then by Theorem 3.2.2, there is a subset of at most
𝑠 ≤ 12𝑑 vectors, say the columns of AR for some R ∈ R𝑑×𝑠, such that any v ∈ 𝒦 can be written
as v = ARy with ‖y‖2 ≤ 1.

Given the above lemma, the proof of Theorem 3.2.1 is immediate:

Proof of Theorem 3.2.1. We simply translate the guarantees of Lemma 3.2.3 into that of Theorem
3.2.1. First, we take U = AR, where R is given by Lemma 3.2.3. Then, the entrywise ℓ𝑝 norm
of U is bounded since

‖U‖𝑝𝑝,𝑝 =
𝑠∑︁

𝑗=1

‖Ue𝑗‖𝑝𝑝 =
𝑠∑︁

𝑗=1

‖ARe𝑗‖𝑝𝑝 ≤ 𝑠.

Next, let x ∈ R𝑑 satisfy ‖Ax‖𝑝 = 1. Then, by Lemma 3.2.3, we may identify a z ∈ R𝑠 such that
Ax = Uz and

‖z‖2 ≤ 1 ≤ ‖Ax‖𝑝 = ‖Uz‖𝑝.

The result for general x ∈ R𝑑 follows by scaling.

3.3 Proof of Theorem 3.0.4
Finally, with the construction of well-conditioned spanning sets (Theorem 3.2.1) in hand, we
obtain a construction of nearly optimal oblivious ℓ𝑝 subspace embeddings. We give a simple proof
based on the work of [SW11] for the ℓ1 norm, which uses a dense 𝑝-stable embedding S. This
embedding has a much slower running time to apply to the matrix A, but gives a simple proof
and still gives a nearly optimal trade-off between the embedding dimension 𝑟 and the distortion 𝜅.
Constructions with faster running time can be obtained by combining our ideas with results in
[WZ13, WW19, WW22], but we omit the details for sake of simplicity.

32

Proof of Theorem 3.0.4. We take S ∈ R𝑟×𝑑 to be drawn with i.i.d. 𝑝-stable random variables
[Nol20], scaled by 𝐶/𝑟1/𝑝 for some large enough constant 𝐶. For every (𝑖, 𝑗) ∈ [𝑟] × [𝑑],
e⊤𝑖 SUe𝑗 is distributed as 𝐶‖Ue𝑗‖𝑝/𝑟

1/𝑝 times a 𝑝-stable variable 𝑋𝑖,𝑗 , by definition of 𝑝-stable
variables. With probability at least 1 − 1/ poly(𝑟𝑑), |𝑋𝑖,𝑗| is at most poly(𝑟𝑑), so by a union
bound over all 𝑟𝑑 choices of (𝑖, 𝑗), this is true for every (𝑖, 𝑗) ∈ [𝑟] × [𝑑]. Call this event ℰ .
Conditioned on this event, the expectation of |𝑋𝑖,𝑗| is 𝑂(log(𝑟𝑑)), so by linearity of expectation,
we have

E
[︁
‖SU‖𝑝𝑝,𝑝|ℰ

]︁
=

𝑟∑︁
𝑖=1

𝑑∑︁
𝑗=1

E
[︀⃒⃒
e⊤𝑖 SUe𝑗

⃒⃒𝑝|ℰ]︀ ≤ 𝑂(1)
𝑟∑︁

𝑖=1

𝑑∑︁
𝑗=1

‖Ue𝑗‖𝑝𝑝
𝑟

= 𝑂(‖U‖𝑝𝑝,𝑝 log(𝑟𝑑)).

By Markov’s inequality, this bound holds up to constant factors with probability at least 199/200.
We condition on this event. Then, for any x ∈ R𝑛×𝑑, we write Ax = Uz for z promised by
Theorem 3.2.1, so that

‖SUz‖𝑝𝑝 =
𝑛∑︁

𝑖=1

⃒⃒
e⊤𝑖 SUz

⃒⃒𝑝
≤ ‖z‖𝑝𝑞

𝑛∑︁
𝑖=1

⃒⃒
e⊤𝑖 SU

⃒⃒𝑝
𝑝

Hölder’s inequality

≤ ‖z‖𝑝2‖SU‖
𝑝
𝑝,𝑝

≤ ‖Uz‖𝑝𝑝‖SU‖
𝑝
𝑝,𝑝

≤ ‖Uz‖𝑝𝑝𝑂(‖U‖𝑝𝑝,𝑝 log(𝑟𝑑))
≤ 𝑂(𝑑 log(𝑟𝑑))‖Uz‖𝑝𝑝.

Taking 𝑝th roots gives the upper inequality.
For the lower inequality, we use the following concentration lemma [WW19, Lemma 2.12]:

Lemma 3.3.1 (Lemma 2.12 of [WW19]). Let {𝑋𝑖}𝑛𝑖=1 be independent 𝑝-stable random variables.
Then for sufficiently large 𝑛 and 𝑇 ,

Pr

{︃
𝑛∑︁

𝑖=1

|𝑋𝑖|𝑝 ≥ 𝐿𝑝𝑛 log
𝑛

log 𝑇

}︃
≥ 1− 1

𝑇

for some constant 𝐿𝑝.

For every x ∈ R𝑑 with ‖Ax‖𝑝 = 1, ‖SAx‖𝑝𝑝 is the sum of 𝑟 independent 𝑝-stable random
variables, raised to the 𝑝 and scaled by 𝑟. We then apply the above lemma with 𝑛 = 𝑟 and
𝑇 = exp(𝑟) to conclude that for every x ∈ R𝑑 with ‖Ax‖𝑝 = 1, ‖SAx‖𝑝𝑝 ≥ 1 with probability at
least 1− exp(−𝑟), by choosing our constant 𝐶 large enough. By a standard net argument (see,
e.g., [SW11]), this is true for every x ∈ R𝑑 with ‖Ax‖𝑝 = 1. This in turn implies the lower tail
inequality for every x ∈ R𝑑 by scaling.

33

34

Chapter 4

Low distortion embeddings for ℓ1 [LWY21]

In Chapter 3, we studied algorithms for oblivious ℓ𝑝 subspace embeddings with distortion 𝜅
on the order of poly(𝑑), as the lower bound of Theorem 3.0.2 prohibited a construction with
smaller distortion, if we insist on 𝑟 = poly(𝑑). However, if we are allowed to make 𝑟 as large
as exp(poly(𝑑)), then the lower bound of Theorem 3.0.2 no longer gives a lower bound, and
we can hope for a distortion of 𝜅 = (1 + 𝜀). Indeed, [WW19, WW22] studied the question of
whether (1 + 𝜀) approximations are possible if we allow for superpolynomial dependencies on
𝑑, and showed that if 𝑟 is doubly exponential, i.e. 𝑟 = exp(exp(poly(𝑑))), then a dense Cauchy
embedding (similarly to that used in [SW11]) admits oblivious ℓ1 subspace embeddings with
(1 + 𝜀) distortion. However, this leads to an exponential gap in the bound on 𝑟. A natural question
is to resolve this gap:

Question 4.0.1 ([WW19, WW22]). Do there exist oblivious ℓ𝑝 subspace embeddings that achieves
the guarantee of Definition 1.1.1 for the ℓ𝑝 norm with 𝜅 = (1 + 𝜀) and 𝑟 = exp(poly(𝑑, 𝜀−1))?

In [LWY21], we study Question 4.0.1 and answer it affirmatively for 𝑝 = 1 with the following
theorem:

Theorem 4.0.2 ((1 + 𝜀) oblivious ℓ1 subspace embeddings [LWY21]). There exists a distribution
over 𝑟 × 𝑛 matrices S for 𝑟 = exp(�̃�(𝑑/𝜀)) such that for any A ∈ R𝑛×𝑑,

Pr
{︀

for all x ∈ R𝑑, ‖Ax‖1 ≤ ‖SAx‖1 ≤ (1 + 𝜀)‖Ax‖1
}︀
≥ 99

100

that is, S is an ℓ1 subspace embedding of A with distortion 𝜅 = (1 + 𝜀), with probability at least
99/100.

Our techniques developed in this work have been further developed in [MOW23] to design
streaming algorithms for logistic regression and ℓ1 regression. The remainder of Chapter 4 will be
devoted to proving Theorem 4.0.2.

4.1 Overview of sketch construction and analysis
Our sketch S for proving Theorem 4.0.2 requires a number of novel ideas over prior constructions.
Instead of using the typical approach for oblivious ℓ1 subspace embeddings based on Cauchy

35

sketches [SW11, WW19, WW22], we instead start with the 𝑀 -sketch of [CW15a], which is
based on classic techniques of hashing and subsampling from the streaming literature [IW05].

Let us now discuss the original construction of the 𝑀 -sketch and its analysis, as well as
its shortcomings that we will need to overcome when proving Theorem 4.0.2. The 𝑀 -sketch
matrix S first samples the rows of A at 𝑂(log 𝑛) geometrically decreasing scales of sampling
probabilities ranging from 𝑝 = 1 to 𝑝 = 1/𝑛. We will refer to each of these scales as levels, and
denote the sampling matrix at level ℎ by S(ℎ). At level ℎ, S(ℎ) will sample each row 𝑖 ∈ [𝑛] with
probability 𝑝ℎ = 𝐵−ℎ for some branching factor 𝐵 to be chosen later. For each of these sampling
levels, we apply a CountSketch matrix [CW13] C(ℎ), given by the following definition:

Definition 4.1.1 (CountSketch [CW13]). The 𝑟 × 𝑛 CountSketch matrix is a random matrix
associated with a random hash function 𝐻 : [𝑛]→ [𝑟] and random signs Λ𝑖 ∼ {±1} for 𝑖 ∈ [𝑛],
so that for each 𝑖 ∈ [𝑛], C𝐻(𝑖),𝑖 = Λ𝑖.

Finally, the 𝑀 -sketch construction S takes the vertical concatenation of the matrices C(ℎ)S(ℎ).

4.1.1 Sketching a single vector

Let us first discuss what this sketch does for a fixed vector y ∈ R𝑛. We focus on showing that our
construction does not expand the ℓ1 norm too much, i.e., ‖Sy‖1 ≤ (1 + 𝜀)‖y‖1, since the other
inequality ‖Sy‖1 ≥ (1 − 𝜀)‖y‖1 will turn out to be much simpler. As we justify later, we can
assume that y is a vector with 𝑚 coordinates of ones and 𝑛−𝑚 coordinates of zeros without loss
of generality. We first consider three cases on the sampling probability 𝑝 used in the 𝑀 -sketch.
Two of these are “easy”, while the last is a challenge we will need to overcome. In the first case, 𝑝
is much smaller than 1/𝑚, which means that none of the 𝑚 nonzero entries of y are sampled. In
this case, there is no contribution towards ‖Sy‖1 in this sampling level, so the analysis is simple.
On the other hand, if 𝑝 is much larger than 1/(𝜀2𝑚), then we will have good concentration by
Chernoff bounds and thus the sampled mass is ‖S(ℎ)y‖1 = (1± 𝜀)‖y‖1. Then when we apply a
CountSketch matrix C(ℎ) on the sampled coordinates S(ℎ)y, we will perfectly hash the sampled
coordinates if this number is small relative to the number of hash buckets, or introduce many
collisions if the number of sampled coordinates is much larger than the number of hash buckets. In
the former case, we continue to preserve the ℓ1 norm so

⃦⃦
C(ℎ)S(ℎ)y

⃦⃦
1
= (1± 𝜀)

⃦⃦
S(ℎ)y

⃦⃦
1
, while

in the latter case, the collisions will cause a substantial reduction in ℓ1 mass due to cancellations
due to the random signs of CountSketch. Both of these will be amenable to analysis.

The last case is the challenging case, where the sampling probability 𝑝 is larger than 1/𝑚 so
that we will sample some of the nonzero entries of y with constant probability, but smaller than
1/(𝜀2𝑚) so that we cannot expect (1± 𝜀) approximation with high enough probability. We will
refer to this as the “badly concentrated” levels. When such badly concentrated levels exist, then
we cannot hope for our sketch to achieve (1± 𝜀) approximation. However, for any fixed sampling
probability 𝑝, one can define a hard instance for this algorithm by taking the input vector to be the
binary vector supported on 𝑚 = Θ(1/𝑝) entries. The crucial idea for getting around this problem
is to randomize the sampling probability itself. To implement this idea, we draw a uniformly
random offset 𝑢 ∼ [0, 1] and take the sampling probability at level ℎ to now be 𝑝ℎ = 𝐵−(𝑢+ℎ).
Then, for any fixed support size 𝑚, the probability that any fixed 𝑝ℎ is between 1/𝑚 and 1/(𝜀2𝑚)

36

is at most

Pr
{︀
𝑝ℎ ∈ [1/𝑚, 1/(𝜀2𝑚)]

}︀
= Pr

{︀
−(𝑢+ ℎ) ∈ [0, log𝐵 𝜀−2]− log𝐵 𝑚

}︀
≤ log𝐵 𝜀−2.

Now if we take 𝐵 = (𝜀−2)1/𝛿, then this probability is at most 𝛿, so the expected contribution
from badly concentrated levels is now at most 𝛿‖y‖1. We can then set 𝛿 = 𝜀 so that the expected
contribution is at most an 𝜀 fraction of the entire mass, and this idea is sufficient to carry the
proof out when applying the sketch to one vector. At this point, we may formally introduce the
construction we use to prove Theorem 4.0.2, which we call random boundary 𝑀 -sketch.

Definition 4.1.2 (Random boundary 𝑀 -sketch). Let C(0) be a 𝑁0 × 𝑛 CountSketch matrix
(Definition 4.1.1) and for each ℎ ∈ [ℎmax], let C(ℎ) be a 𝑁 ×𝑛 CountSketch matrix. Let 𝑢 ∼ [0, 1]
be uniformly random, and for each ℎ ∈ [ℎmax], let 𝑝ℎ = 𝐵−(𝑢+ℎ−1) and let S(ℎ) be the diagonal
sampling matrix with S

(ℎ)
𝑖,𝑖 set to 1/𝑝ℎ with probability 𝑝ℎ and 0 otherwise. Then, the random

boundary 𝑀 -sketch matrix is defined as the vertical concatenation

S :=

⎛⎜⎜⎜⎜⎜⎜⎝
C(0)

C(1)S(1)

C(2)S(2)

...
C(ℎmax)S(ℎmax)

⎞⎟⎟⎟⎟⎟⎟⎠
4.1.2 Extension to subspaces
We now turn to extending the analysis to the case of general 𝑑. A common technique in the
sketching literature is to extend an analysis for a single vector to a whole 𝑑-dimensional subspace
through the use of a net argument, in which the single vector analysis is applied with failure
probability 𝛿 = exp(−𝑑). However, this is a problem in our case since the dependence on the
failure rate is exponential in the analysis of badly concentrated levels and thus this would still lead
to a doubly exponential dependence in 𝑑, which is the original bound we sought to improve. On
the other hand, the analysis of badly concentrated levels is the only place in which this problem
occurs; in all other parts of the analysis, a union bound is sufficient.

A second key insight we need to get around this problem is that when analyzing the badly
concentrated levels, we can apply the analysis just once to the vector of ℓ1 sensitivities, that is, the
vector 𝜎1(A) ∈ R𝑛 given by

𝜎1
𝑖 (A) := sup

Ax ̸=0

|[Ax](𝑖)|
‖Ax‖1

. (4.1)

The 𝑖th ℓ1 sensitivity of A captures the largest value that Ax can take on the 𝑖th coordinate
ranging over all ℓ1 unit vectors Ax, and thus bounding badly concentrated levels of the vector of
sensitivities simultaneously bounds the badly concentrated levels of every column space vector
Ax. Furthermore, it is known that ‖𝜎1(A)‖1 ≤ 𝑑 [WY23c] and thus we only incur an additional
factor of 𝑑 in the error. This can be handled by replacing 𝜀 by 𝜀/𝑑, which only leads to a singly
exponential dependence on 𝑑, rather than doubly exponential.

37

4.2 No expansion
Our goal in this section is to show that ‖SAx‖1 ≤ (1+𝜀)‖Ax‖1 simultaneously for every x ∈ R𝑑,
with probability at least 1− 𝛿. We first introduce some notation.

Definition 4.2.1 (Sensitivity weight classes). Let A ∈ R𝑛×𝑑. Then, for each 𝑞 ∈ N, we let
𝑊 𝑞(A) ⊆ [𝑛] denote the set

𝑊 𝑞(A) :=
{︀
𝑖 ∈ [𝑛] : 𝜎1

𝑖 (A) ∈ (2−𝑞, 21−𝑞]
}︀

and let A(𝑞) and 𝜎(𝑞) denote the restriction of A and 𝜎1 to the rows indexed by 𝑊 𝑞(A), respec-
tively.

We decompose the sketch by the sampling level ℎ and the sensitivity weight class 𝑞 as

‖SAx‖1 ≤ ‖C
(0)Ax‖1 +

∞∑︁
𝑞=1

ℎmax∑︁
ℎ=1

⃦⃦
C(ℎ)S(ℎ)A(𝑞)x

⃦⃦
1

We will then bound this quantity by casework on ℎ and 𝑞, and in particular, by casing on the
expected number of sampled elements 𝑝ℎ|𝑊 𝑞(A)|.

4.2.1 Bounding badly concentrated levels
Lemma 4.2.2. Suppose that 0 < 𝑎 < 𝑏 are such that log𝐵(𝑏/𝑎) ≤ 1. Then with probability at
least 1− 𝛿, we have that simultaneously for every x ∈ R𝑑,

∞∑︁
𝑞=1

ℎmax∑︁
ℎ=1

‖C(ℎ)S(ℎ)A(𝑞)x‖1 · 1{𝑝ℎ|𝑊 𝑞(A)| ∈ [𝑎, 𝑏]} ≤ 2𝑑

𝛿
log𝐵

𝑏

𝑎
· ‖Ax‖1.

Proof. By the definition of sensitivities (4.1), we have that for every ℎ and 𝑞,

‖C(ℎ)S(ℎ)A(𝑞)x‖1 ≤ ‖S(ℎ)A(𝑞)x‖1 ≤ ‖Ax‖1 · ‖S(ℎ)𝜎(𝑞)‖1.

Note that for each 𝑞, there are at most two choices of ℎ ∈ [ℎmax] such that

Pr
𝑢∼[0,1]

{𝑝ℎ|𝑊 𝑞(A)| ∈ [𝑎, 𝑏]} = Pr
𝑢∼[0,1]

{−(𝑢+ ℎ− 1) ∈ [log𝐵 𝑎, log𝐵 𝑏]− log𝐵|𝑊 𝑞(A)|} > 0

since [log𝐵 𝑎, log𝐵 𝑏] is an interval of length at most 1. In this case, this probability is bounded by
log𝐵(𝑏/𝑎). Then,

E

[︃
∞∑︁
𝑞=1

ℎmax∑︁
ℎ=1

‖S(ℎ)𝜎(𝑞)‖1 · 1{𝑝ℎ|𝑊 𝑞(A)| ∈ [𝑎, 𝑏]}

]︃
≤

∞∑︁
𝑞=1

E
[︀
‖S(ℎ)𝜎(𝑞)‖1

]︀
· 2 log𝐵(𝑏/𝑎)

≤ 2𝑑 log𝐵(𝑏/𝑎).

Thus by Markov’s inequality, this quantity is at most 2𝑑 log𝐵(𝑏/𝑎)/𝛿 with probability at least
1− 𝛿.

38

The above lemma allows us to bound all levels below some threshold expectation 𝑝ℎ|𝑊 𝑞(A)| <
𝑚crowd.

Lemma 4.2.3. Let 𝑚crowd ≥ 𝛿/ℎmax𝑞max be some threshold and suppose

𝐵 ≥ exp

(︂
2𝑑

𝛿𝜀
log

ℎmax𝑞max𝑚crowd

𝛿

)︂
Then with probability at least 1− 2𝛿, we have for all x ∈ R𝑑 that∑︁

ℎ∈[ℎmax]

∑︁
𝑞∈[𝑞max]

‖C(ℎ)S(ℎ)A(𝑞)x‖11{𝑝ℎ|𝑊 𝑞(A)| ∈ [0,𝑚crowd)} ≤ 2𝜀‖Ax‖1.

Proof. We case on 𝑝ℎ|𝑊 𝑞(A)| by intervals [0, 𝛿/ℎmax𝑞max) and [𝛿/ℎmax𝑞max,𝑚crowd).

• Dead levels: First consider the ℎ for which 𝑝ℎ|𝑊 𝑞(A)| < 𝛿/ℎmax𝑞max. In this case, the
probability that we sample any row 𝑖 ∈ 𝑊 𝑞(A) is at most 𝑝ℎ|𝑊 𝑞(A)| < 𝛿/ℎmax𝑞max

by a union bound over the |𝑊 𝑞(A)| rows. Then by a further union bound over all pairs
(ℎ, 𝑞) ∈ [ℎmax]× [𝑞max], this category of levels contributes no mass with probability at least
1− 𝛿.

• Badly concentrated levels: Consider the subsampling levels with 𝑝ℎ|𝑊 𝑞(A)| ∈ [𝛿/ℎmax𝑞max,𝑚crowd).
Then, 𝐵 is chosen large enough such that by Lemma 4.2.2, the contribution from these
levels is at most 𝜀‖Ax‖1 simultaneously for every x ∈ R𝑑, with probability at least 1− 𝛿.

We thus conclude by a union bound over the above three events.

4.2.2 Bounding well-concentrated levels
For each weight class 𝑞, we will bound exactly one sampling level ℎ by (1 + 𝜀)‖A(𝑞)x‖1 by
showing that the sampling S(ℎ) concentrates.

Lemma 4.2.4. Let 𝑎 > 0. For each 𝑞, let ℎ𝑞 ∈ [ℎmax] such that 𝑝ℎ|𝑊 𝑞(A)| ≥ 𝑎. Let

𝑋 :=
∞∑︁
𝑞=1

‖S(ℎ𝑞)A(𝑞)x‖1

Then, with probability at least 1− exp(−𝑎𝜀2/8𝑑), we have 𝑋 ≤ E[𝑋] + 𝜀‖Ax‖1.

Proof. We will show that at this level, S(ℎ𝑞) performs sensitivity sampling. Note that

|[A(𝑞)x](𝑖)| ≤ ‖Ax‖1 · max
𝑗∈𝑊 𝑞(A)

𝜎1
𝑗(A) ≤ 21−𝑞‖Ax‖1

for each 𝑖 ∈ 𝑊 𝑞(A), by definition of sensitivities (4.1). We also have that 𝑑 ≥ ‖𝜎1(A)‖1 ≥
2−𝑞|𝑊 𝑞(A)| so

𝑝ℎ𝑞 ≥
𝑎

|𝑊 𝑞(A)|
≥ 𝑎

𝑑
· 2−𝑞.

39

Then, the variance of 𝑋 is

Var(𝑋) =
∞∑︁
𝑞=1

∑︁
𝑖∈𝑊 𝑞(A)

𝑝ℎ𝑞

|[A(𝑞)x](𝑖)|2

𝑝2ℎ𝑞

=
∞∑︁
𝑞=1

∑︁
𝑖∈𝑊 𝑞(A)

|[A(𝑞)x](𝑖)|2

𝑝ℎ𝑞

≤
∞∑︁
𝑞=1

∑︁
𝑖∈𝑊 𝑞(A)

2𝑑

𝑎
‖Ax‖1 · |[A(𝑞)x](𝑖)| ≤ 2𝑑

𝑎
‖Ax‖21

and each term is bounded by |[A(𝑞)x](𝑖)|/𝑝ℎ𝑞 ≤ (2𝑑/𝑎)‖Ax‖1. Then by Bernstein’s inequality,

Pr{𝑋 ≥ E[𝑋] + 𝜀‖Ax‖1} ≤ exp

(︂
−1

2

𝜀2‖Ax‖21
(2𝑑/𝑎)‖Ax‖1(‖Ax‖1 + 𝜀‖Ax‖1/3)

)︂
≤ exp

(︂
−𝑎𝜀2

8𝑑

)︂
.

4.2.3 Bounding oversampled levels
Lemma 4.2.5. Let 𝑎 > 0. Let 𝑝ℎ|𝑊 𝑞(A)| ≥ 𝑎. Then, for each x ∈ R𝑑, with probability at least
1− 2𝑁 exp(−𝑎/3𝑁)− 𝛿, we have that

⃦⃦
C(ℎ)S(ℎ)A(𝑞)x

⃦⃦
1
≤ 2
√
2𝑑
√
𝑁√

𝑎

√︀
log(𝑁/𝛿) · ‖Ax‖1.

Proof. Let 𝜇 = 𝑝ℎ|𝑊 𝑞(A)| ≥ 𝑎. By Chernoff’s bound, the probability that a fixed CountSketch
hash bucket in level ℎ gets more than 𝑋 ≥ 2𝜇/𝑁 elements from 𝑊 𝑞(A) is at least

Pr
{︁⃒⃒⃒

𝑋 − 𝜇

𝑁

⃒⃒⃒
≤ 𝜇

𝑁

}︁
≥ 1− 2 exp

(︂
−𝜇/𝑁

3

)︂
= 1− 2 exp

(︁
− 𝜇

3𝑁

)︁
By a union bound over the 𝑁 buckets, this is true for every bucket with probability at least
1− 2𝑁 exp(−𝜇/3𝑁). We condition on this event. Then by Hoeffding’s bound, the inner product
of 𝑚 elements {𝑎𝑖}𝑚𝑖=1 bounded by 1 with random signs 𝑠𝑖 ∼ {±1} is bounded by

Pr

{︃⃒⃒⃒⃒
⃒

𝑚∑︁
𝑖=1

𝑠𝑖𝑎𝑖

⃒⃒⃒⃒
⃒ >√︀𝑚 log(𝑁/𝛿)

}︃
≤ 𝛿

𝑁
.

Now let 𝑋𝑖 denote the number of elements sampled from 𝑊 𝑞(A) in the 𝑖th hash bucket. Then,
applying the above Hoeffding bound gives⃒⃒

[C(ℎ)S(ℎ)A(𝑞)x](𝑖)
⃒⃒
≤ 21−𝑞

𝑝ℎ
· ‖Ax‖1

√︀
𝑋𝑖 log(𝑁/𝛿)

≤ 21−𝑞|𝑊 𝑞(A)|
𝑝ℎ|𝑊 𝑞(A)|

· ‖Ax‖1

√︂
2𝜇

𝑁
log(𝑁/𝛿)

≤ 2𝑑

𝜇
· ‖Ax‖1

√︂
2𝜇

𝑁
log(𝑁/𝛿)

40

By a union bound over 𝑁 buckets, with probability at least 1− 𝛿, the above bound holds for all 𝑁
buckets. Summing over the 𝑁 buckets gives

⃦⃦
C(ℎ)S(ℎ)A(𝑞)x

⃦⃦
1
≤ 2
√
2𝑑
√
𝑁

√
𝜇

√︀
log(𝑁/𝛿) · ‖Ax‖1.

4.2.4 Bounding tiny levels
Lemma 4.2.6. Let 𝑞max ≥ log(2𝑛ℎmax/𝛿𝜀). Then with probability at least 1− 𝛿, it holds for all
x ∈ R𝑑 that ∑︁

ℎ∈[ℎmax]

∑︁
𝑞>𝑞max

‖S(ℎ)A(𝑞)x‖1 ≤ 𝜀‖Ax‖1.

Proof. For the weight classes 𝑞 > 𝑞max, the total sensitivity mass contribution is bounded by∑︁
𝑞>𝑞max

‖𝜎(𝑞)‖1 ≤
∑︁

𝑞>𝑞max

21−𝑞|𝑊 𝑞(A)| ≤ 𝛿𝜀

𝑛ℎmax

∑︁
𝑞>𝑞max

|𝑊 𝑞(A)| ≤ 𝛿𝜀

ℎmax

.

Then in expectation, the sum of the sampled and scaled sensitivity scores is bounded by

E

⎛⎝ ∑︁
ℎ∈[ℎmax]

∑︁
𝑞>𝑞max

‖S(ℎ)𝜎(𝑞)‖1

⎞⎠ =
∑︁

ℎ∈[ℎmax]

∑︁
𝑞>𝑞max

‖𝜎(𝑞)‖1 ≤
∑︁

ℎ∈[ℎmax]

𝛿𝜀

ℎmax

= 𝛿𝜀.

Then with probability at least 1− 𝛿, the above sum is at most 𝜀. We condition on this event. Then,
for all x ∈ R𝑑,∑︁

ℎ∈[ℎmax]

∑︁
𝑞>𝑞max

‖S(ℎ)A(𝑞)x‖1 ≤ ‖Ax‖1
∑︁

ℎ∈[ℎmax]

∑︁
𝑞>𝑞max

∑︁
𝑖∈𝑊 𝑞(A)

[S(ℎ)𝜎1(A)](𝑖)

≤ ‖Ax‖1
∑︁

ℎ∈[ℎmax]

∑︁
𝑞>𝑞max

‖S(ℎ)𝜎1(A)‖1 ≤ 𝜀‖Ax‖1

as desired.

4.2.5 Net argument
In this section, we collect the bounds obtained in previous sections and conclude with a net
argument.

Lemma 4.2.7. Let the randomized boundary 𝑀 -sketch S satisfy the hypotheses of Lemmas 4.2.3
and 4.2.6. Let 𝛼 ∈ (0, 1). Let

𝑚crowd ≥
8𝑑

𝜀2
log

1

𝛼
+

𝑁0

𝐵

8𝑑2𝑞2max

𝜀2
log

𝑁0𝑞max

𝛼
+

𝑁

𝐵

8𝑑2𝑞2max

𝜀2
log

𝑁0𝑞max

𝛼

There is an event with probability 1− 3𝛿 such that conditioned on this event, for every x ∈ R𝑑,

Pr(‖SAx‖1 ≤ (1 + 5𝜀)‖Ax‖1) ≥ 1− 2𝛼.

41

Proof. By Lemma 4.2.6, the contribution from weight classes 𝑞 > 𝑞max is at most 𝜀‖Ax‖1 with
probability at least 1− 𝛿. We let this event be ℰ1 and restrict our attention to 𝑞 ≤ 𝑞max.

For each 𝑞 ∈ [𝑞max], we bound the mass contribution of rows corresponding to 𝑊 𝑞(A) at each
subsampling level {0} ∪ [ℎmax]. Note that by Lemma 4.2.3, there is an event ℰ2 with probability
at least 1 − 2𝛿 such that all levels ℎ, 𝑞 except for those such that ℎ = 0, or 𝑝ℎ|𝑊 𝑞(A)| ∈
[𝑚crowd, 𝐵𝑚crowd), or 𝑝ℎ|𝑊 𝑞(A)| ∈ [𝐵𝑚crowd,∞) are bounded by at most 2𝜀‖Ax‖1, so it
remains to bound these levels.

Note that for each 𝑞 ∈ [𝑞max], there exists at most one level ℎ𝑞 ∈ [ℎmax] such that 𝑝ℎ𝑞 |𝑊 𝑞(A)| ∈
[𝑚crowd, 𝐵𝑚crowd), since 𝑝ℎ varies in factors of 𝐵 by construction. For these levels, we have by
Lemma 4.2.4 that with probability at least 1− 𝛼,∑︁

𝑞∈[𝑞max]

‖S(ℎ𝑞)A(𝑞)x‖1 ≤
∑︁

𝑞∈[𝑞max]

‖A(𝑞)x‖1 + 𝜀‖Ax‖1.

If such a sampling level ℎ𝑞 exists, then we have |𝑊 𝑞(A)| ≥ 𝑚crowd/𝑝ℎ𝑞 ≥ 𝐵𝑚crowd. Then by
Lemma 4.2.5, the ℎ = 0 level of sampling level contributes mass at most (𝜀/𝑞max)‖Ax‖1 with
probability at least 1 − 𝛼/𝑞max. Thus by a union bound over all 𝑞 ∈ [𝑞max] with a Goldilocks
level and summing over these, the 0th level contributes at most 𝜀‖Ax‖1. Otherwise, if a weight
class 𝑞 has no level ℎ𝑞, then we have by the triangle inequality that ‖C(0)A(𝑞)x‖1 ≤ ‖A(𝑞)x‖1
and thus we simply bound the contribution of the 0th level by ‖A(𝑞)x‖1. Finally, note that for
levels with 𝑝ℎ|𝑊 𝑞(A)| ∈ [𝐵𝑚crowd,∞), a similar application of Lemma 4.2.5 shows that the
total contribution of all of these levels is at most 𝜀‖Ax‖1.

Note that ℰ1 ∩ℰ2 occurs with probability at least 1− 3𝛿. Then conditioned on this event, every
x ∈ R𝑑 has a 1− 2𝛼 probability that

‖SAx‖1 =

[︃ ∑︁
𝑞>𝑞max

‖SA(𝑞)x‖1

]︃
+

∑︁
𝑞∈[𝑞max]

⎡⎣‖C(0A(𝑞)x‖1 +
∑︁

ℎ∈[ℎmax]

‖C(ℎ)S(ℎ)A(𝑞)x‖1

⎤⎦
≤ 𝜀‖Ax‖1 + (1 + 𝜀)‖Ax‖1⏟ ⏞

ℎ𝑞 or 0th level

+ 𝜀‖Ax‖1⏟ ⏞
0th level if ℎ𝑞 level exists

+ 2𝜀‖Ax‖1⏟ ⏞
badly concentrated and oversampled levels

≤ (1 + 5𝜀)‖Ax‖1

which is the desired bound.

We conclude by a standard net argument.

Theorem 4.2.8 (No expansion). Let the randomized boundary 𝑀 -sketch S satisfy the hypotheses
of Lemmas 4.2.3, 4.2.6, and 4.2.7. Let 𝛼 = 𝛿 exp(−𝑑 log(3/𝜀))/2. With probability at least
1− 4𝛿, we have that for all x ∈ R𝑑,

‖SAx‖1 ≤ (1 + 8𝜀)‖Ax‖1.

Proof. By Lemma 4.2.7, there is an event with probability at least 1− 3𝛿 such that conditioned
on this event, for each x, there is a 1− 2𝛼 probability that

‖SAx‖1 ≤ (1 + 5𝜀)‖Ax‖1. (4.2)

42

It is well-known (see e.g., [BLM89]), that there exists an 𝜀-net 𝒩 of size at most (3/𝜀)𝑑 =
exp(𝑑 log(3/𝜀)) over the set

{︀
Ax : x ∈ R𝑑, ‖Ax‖ = 1

}︀
. Then by a union bound over the net,

(4.2) holds for every Ax ∈ 𝒩 with probability at least 1− 𝛿.
Finally, let x ∈ R𝑑 be arbitrary with ‖Ax‖1 = 1. It is shown in [WW19, Theorem 3.5] that

Ax =
∑︀∞

𝑖=0 y
(𝑖) where each nonzero y(𝑖) has y(𝑖)/‖y(𝑖)‖1 ∈ 𝒩 and ‖y(𝑖)‖1 ≤ 𝜀𝑖. We then have

that

‖SAx‖1 = ‖S
∞∑︁
𝑖=0

y(𝑖)‖1 ≤
∞∑︁
𝑖=0

‖Sy(𝑖)‖1 ≤ (1 + 5𝜀)
∞∑︁
𝑖=0

‖y(𝑖)‖1 ≤ (1 + 5𝜀)
∞∑︁
𝑖=0

𝜀𝑖 ≤ 1 + 8𝜀.

We conclude by homogeneity.

4.3 No contraction
Our goal in this section is to show that ‖SAx‖1 ≤ (1 − 𝜀)‖Ax‖1 simultaneously for every
x ∈ R𝑑, with probability at least 1− 𝛿.

We analyze the no contraction lemma for each unit vector y ∈ R𝑛, and conclude by a union
bound over a net (Section 4.3.4). We thus define weight classes based on an individual vector y.

Definition 4.3.1 (Weight classes). Let y ∈ R𝑛 be an ℓ1 unit vector. Then, for each 𝑞 ∈ N, we let
𝑊 𝑞(y) ⊆ [𝑛] denote the set

𝑊 𝑞(y) :=
{︀
𝑖 ∈ [𝑛] : |y(𝑖)| ∈ (2−𝑞, 21−𝑞]

}︀
and let y(𝑞) denote the restriction of y to the rows indexed by 𝑊 𝑞(y).

4.3.1 Essential weight classes

We first reduce the analysis of preserving ‖y‖1 to the analysis of preserving a subset of the weight
classes ‖y(𝑞)‖1.

Lemma 4.3.2. Consider a random boundary 𝑀 -sketch (Definition 4.1.2). Let 𝑞max = log2(𝑛/𝜀),
𝑞0 = log2(𝑚min/𝑝1𝜀), and 𝑚min ≥ 1. Define

�̂�0 := {𝑞 ∈ [𝑞max] : 𝑝1|𝑊 𝑞(y)| < 𝑚min}
�̂�ℎ := {𝑞 ∈ [𝑞max] : 𝑝ℎ|𝑊 𝑞(y)| ∈ [𝑚min, 𝐵𝑚min)}, ℎ ∈ [ℎmax]

𝑄0 := {𝑞 ∈ �̂�0 : 𝑞 ≤ 𝑞0, ‖y(𝑞)‖1 ≥ 𝜀/𝑞0}
𝑄ℎ := {𝑞 ∈ �̂�ℎ : 𝑞 ≤ min �̂�ℎ + log2(𝐵/𝜀), ‖y(𝑞)‖1 ≥ 𝜀/𝑞max}, ℎ ∈ [ℎmax]

and let 𝑄* :=
⋃︀ℎmax

ℎ=0 𝑄ℎ. If ℎmax ≥ log𝐵 𝑛, then∑︁
𝑞∈𝑄*

‖y(𝑞)‖1 ≥ 1− 8𝜀.

43

Proof. Note that ∑︁
𝑞≥𝑞max

‖y(𝑞)‖1 ≤ 2
𝜀

𝑛

∞∑︁
𝑞=1

|𝑊 𝑞(y)| ≤ 2𝜀

so we only need to consider 𝑞 ∈ [𝑞max]. Note also that the �̂�ℎ for ℎ ∈ [ℎmax] ∪ {0} partition the
set [𝑞max] by our choice of ℎmax.

We first show that 𝑄0 preserves almost all of the mass of �̂�0. Indeed, the 𝑞 ∈ �̂�0 with 𝑞 > 𝑞0
has total ℓ1 mass at most∑︁

𝑞∈�̂�0,𝑞>𝑞0

‖y(𝑞)‖1 ≤
𝑚min

𝑝1

∑︁
𝑞∈�̂�0,𝑞>𝑞0

21−𝑞 ≤ 2
𝑚min

𝑝1

𝜀𝑝1
𝑚min

≤ 2𝜀.

Of the levels 𝑞 ≤ 𝑞0, the levels 𝑞 with ‖y(𝑞)‖1 ≤ 𝜀/𝑞0 have total mass at most 𝜀.
Similarly, we show that 𝑄ℎ preserves almost all of the mass of �̂�ℎ. Indeed, the 𝑞 ∈ �̂�ℎ with

𝑞 > min �̂�ℎ + log2(𝐵/𝜀) has total ℓ1 mass at most∑︁
𝑞∈�̂�ℎ

𝑞>min �̂�ℎ+log2(𝐵/𝜀)

‖y(𝑞)‖1 ≤
∑︁
𝑞∈�̂�ℎ

𝑞>min �̂�ℎ+log2(𝐵/𝜀)

21−𝑞𝐵𝑚min

𝑝ℎ
≤ 2𝐵

𝜀

𝐵
‖ymin �̂�ℎ‖1 = 2𝜀‖y(min �̂�ℎ)‖1

so the total mass over all ℎ ∈ [ℎmax] is at most 2𝜀. Of the levels 𝑞 ≤ 𝑞max, the levels 𝑞 with
‖y(𝑞)‖1 ≤ 𝜀/𝑞max have total mass at most 𝜀.

The total lost mass is 2𝜀+ 2𝜀+ 𝜀+ 2𝜀+ 𝜀 = 8𝜀.

4.3.2 Hashing lemmas
We collect lemmas on the hashing guarantees of CountSketch.

Lemma 4.3.3. Let 𝑝ℎ|𝑊 𝑞(y)| ≥ 𝑚min for 𝑚min ≥ 12𝜀−2 log(4/𝛿). Then, with probability at
least 1− 𝛿,

‖S(ℎ)y(𝑞)‖0 = (1± 𝜀)𝑝ℎ‖y(𝑞)‖0
‖S(ℎ)y(𝑞)‖1 = (1± 𝜀)𝑝ℎ‖y(𝑞)‖1

Proof. This follows from Chernoff bounds.

The following lemma uses a standard balls and bins martingale argument to show that most
items are hashed uniquely.

Lemma 4.3.4 (Concentration for unique hashing). Let 𝐻 : [𝑛]→ [𝑟] be a random hash function.
Let 𝑆 ⊆ 𝑇 ⊆ [𝑛], 𝑝 ∈ (0, 1], and 𝜀 ∈ (0, 1) with 𝜀𝑟 ≥ 𝑝|𝑇 |. Consider the process that samples
each element 𝑖 ∈ [𝑛] with probability 𝑝 and hashes it to a bucket in [𝑟] if it was sampled. Let 𝑋
be the number of elements 𝑖 ∈ 𝑆 that are sampled and hashed to a bucket containing no other
member of 𝑇 . Then,

Pr
{︀
𝑋 ≥ (1− 𝜀)2𝑝|𝑆|

}︀
≤ 2 exp

(︂
− 𝜀2

12
𝑝|𝑆|

)︂
.

44

Proof. For each 𝑖 ∈ 𝑆, sample 𝑖 with probability 𝑝 and place the result in a uniformly random
hash bucket in [𝑟] if it was sampled. Let ℰ𝑖 denote the event where 𝑖 is sampled and is hashed
to a bucket with no other members of 𝑇 . Let 𝐶1, 𝐶2, . . . , 𝐶|𝑆| denote the sequence of these
independent random choices and let 𝑓(𝐶1, 𝐶2, . . . , 𝐶𝑠) denote the number of hash buckets in [𝑟]
that contains members 𝑖 ∈ 𝑆 satisfying ℰ𝑖 at the end of the sampling and hashing process. Note
that 𝑓 is 1-Lipschitz, and that

E 𝑓(𝐶1, 𝐶2, . . . , 𝐶|𝑆|) =
∑︁
𝑖∈𝑆

Pr(ℰ𝑖) = |𝑆|𝑝
(︁
1− 𝑝

𝑟

)︁|𝑇 |
≥ 𝑝|𝑆|

(︂
1− 𝑝|𝑇 |

𝑟

)︂
≥ (1− 𝜀)𝑝|𝑆|.

Now consider the Doob martingale

𝑍𝑘 := E
[︀
𝑓𝑞(𝐶1, 𝐶2, . . . , 𝐶|𝑆|) | 𝐶1, 𝐶2, . . . , 𝐶𝑘

]︀
.

Note that the increments 𝑍𝑘 − 𝑍𝑘−1 conditioned on 𝐶1, 𝐶2, . . . , 𝐶𝑘−1 is simply the indicator
variable of whether on choice 𝐶𝑘 we sampled an entry and placed it in a new bucket or not. Then
𝑍𝑘 − 𝑍𝑘−1 = 1 with probability at most 𝑝 and thus E𝑘−1(𝑍𝑘 − 𝑍𝑘−1)

2 ≤ 𝑝. Then by Freedman’s
inequality [Fre75],

Pr
(︀
|𝑍|𝑆| − 𝑍0| ≥ 𝜀𝑍0

)︀
≤ 2 exp

(︂
−1

2

(𝜀(1− 𝜀)𝑝|𝑆|)2

𝑝|𝑆|+ 𝜀(1− 𝜀)𝑝|𝑆|/3

)︂
≤ 2 exp

(︂
− 𝜀2

12
𝑝|𝑆|

)︂
.

We apply Lemma 4.3.4 in the context of the 𝑀 -sketch in the following lemma.

Lemma 4.3.5 (Approximately perfect hashing). Let ℎ ∈ [ℎmax] and 𝑄 ⊆ {𝑞 : 𝑝ℎ|𝑊𝑞| ≥ 𝑚min}
for 𝑚min ≥ 12𝜀−2 log(4/𝛿). Let �̂� ⊃ 𝑊𝑄 for 𝑊𝑄 :=

⋃︀
𝑞∈𝑄𝑊 𝑞(y) and suppose that 𝑝ℎ|�̂� | ≤

𝜀𝑁 for some 𝜀 ∈ (0, 1/2). Then with probability at least 1 − 2|𝑄|𝛿, every 𝑊 𝑞(y) has a subset
𝑊 𝑞

* ⊂ 𝑊 𝑞(y) that gets sampled and placed in a hash bucket with no other members of �̂� , and

‖y(𝑞)
* ‖0 ≥ (1− 2𝜀)𝑝ℎ‖y(𝑞)‖0

‖y(𝑞)
* ‖1 ≥ (1− 7𝜀)𝑝ℎ‖y(𝑞)‖1

where y
(𝑞)
* is the restriction of y(𝑞) to 𝑊 𝑞

* .

Proof. We apply Lemma 4.3.4 to see that with probability at least

1− 2 exp

(︂
− 𝜀2

12
𝑝ℎ|𝑊 𝑞(y)|

)︂
≤ 1− 𝛿,

there is a set 𝑊 𝑞
* ⊆ 𝑊 𝑞(y) of elements that are hashed to a bucket with no other element of �̂� in

it and of size |𝑊 𝑞
* | ≥ (1− 𝜀)2𝑝ℎ|𝑊 𝑞(y)| ≥ (1− 2𝜀)𝑝ℎ|𝑊 𝑞(y)|. We condition on this event.

By Lemma 4.3.3, with probability at least 1− 𝛿, we sample (1± 𝜀)𝑝ℎ|𝑊 𝑞(y)| elements with
mass (1± 𝜀)𝑝ℎ‖y(𝑞)‖1. Note then that there are at most 3𝜀𝑝ℎ|𝑊 𝑞(y)| sampled elements that do
not belong to 𝑊 𝑞

* . The mass of these elements is at most

3𝜀𝑝ℎ|𝑊 𝑞(y)|21−𝑞 ≤ 6𝜀𝑝ℎ‖y(𝑞)‖1.

Thus,
‖y(𝑞)

* ‖1 ≥ (1− 𝜀)𝑝ℎ‖y(𝑞)‖1 − 6𝜀𝑝ℎ‖y(𝑞)‖1 = (1− 7𝜀)𝑝ℎ‖y(𝑞)‖1.
We conclude by a union bound over the weight classes 𝑄.

45

Lemma 4.3.6 (Balls and bins). Let 𝑊 ⊆ [𝑛] such that ‖y|𝑊‖∞ ≤ 𝑇 and let the number of hash
buckets 𝑁 be at least 𝑁 ≥ ‖y|𝑊‖1/𝑇 . For 𝑘 ∈ [𝑁], let 𝐿𝑘 ⊆ 𝑊 denote the indices from 𝑊
hashed to the hash bucket 𝑘. Then, with probability at least 1− 𝛿,

𝑁
max
𝑘=1
‖y|𝐿𝑘

‖1 ≤ 3𝑇 log(𝑁/𝛿)

Proof. Fix a single bucket 𝑘 ∈ [𝑁]. Then, E‖y|𝐿𝑘
‖1 = ‖y|𝑊‖1/𝑁 ≤ 𝑇 . Furthermore, ‖y|𝐿𝑘

‖1
is the independent sum of |𝑊 | random variables that are bounded by 𝑇 with variance

Var[‖y|𝐿𝑘
‖1] =

∑︁
𝑖∈𝑊

y(𝑖)2

𝑁
=
‖y|𝑊‖22

𝑁
≤ 𝑇‖y|𝑊‖1

𝑁
≤ 𝑇 2.

Then by Bernstein bounds, we have that

Pr{‖y|𝐿𝑘
‖1 ≥ E‖y|𝐿𝑘

‖1 + 2𝑇 log(𝑁/𝛿)} ≤ exp

(︂
−1

2

4𝑇 2(log(𝑁/𝛿))2

𝑇 2 + 2𝑇 2(log(𝑁/𝛿)/3

)︂
≤ exp(− log(𝑁/𝛿)) = 𝛿/𝑁.

A union bound over the 𝑁 buckets yields the claim.

4.3.3 Preserving weight classes
We now use the previous results on approximate perfect hashing to show the main result, that the
random boundary 𝑀 -sketch S does not contract ℓ1 norms.

We first show the no contraction lemma for sampling levels ℎ ∈ [ℎmax].

Lemma 4.3.7. Let the number of hash buckets 𝑁 satisfy

𝑁 ≥ 6𝐵𝑚min𝑞max log(𝑁ℎmax log2(𝐵/𝜀)/𝛿)

𝜀3

Then, we have with probability at least 1− 2𝛿 that

‖C(ℎ)S(ℎ)y‖1 ≥ (1− 8𝜀)
∑︁
𝑞∈𝑄ℎ

‖y(𝑞)‖1.

for every ℎ ∈ [ℎmax].

Proof. Note that for any 𝑖 ∈ 𝑊 𝑞(y) for 𝑞 ∈ 𝑄ℎ,

|y(𝑖)| ≥ 2−𝑞 =
21−𝑞𝑝ℎ|𝑊 𝑞(y)|
2𝑝ℎ|𝑊 𝑞(y)|

≥ 𝑝ℎ‖y(𝑞)‖1
2𝐵𝑚min

≥ 𝑝ℎ𝜀

2𝑞max𝐵𝑚min

=: 𝜏ℎ.

By Lemma 4.3.6, as long as we avoid hashing 𝑖 with any entry that is larger than an 𝜀 fraction of
this (i.e. 𝑇 ≈ 𝜀𝜏ℎ), then the total ℓ1 mass of all other elements in the hash bucket will only be
roughly an 𝜀 fraction of 𝜏ℎ. We will now carry out this analysis.

46

Let 𝑇ℎ := 𝜀𝜏ℎ/3 log(𝑁ℎmax log2(𝐵/𝜀)/𝛿) and let 𝑊 large
ℎ :=

⋃︀log2(1/𝑇ℎ)
𝑞=1 𝑊 𝑞(y). Note that

𝑖 ∈ 𝑊 large
ℎ satisfies y(𝑖) ≥ 𝑇ℎ, so

|𝑊 large
ℎ | ≤ 1

𝑇ℎ

=
1

𝑝ℎ

6𝐵𝑚min𝑞max log(𝑁ℎmax log2(𝐵/𝜀)/𝛿)

𝜀2
≤ 𝜀𝑁

𝑝ℎ
,

that is, 𝑝ℎ|𝑊 large
ℎ | ≤ 𝜀𝑁 . Furthermore, 𝑊𝑄ℎ

⊆ 𝑊 large
ℎ . We may thus apply Lemma 4.3.5 with

�̂� = 𝑊 large
ℎ and 𝑄 = 𝑄ℎ. We condition on the success of Lemma 4.3.5.

Now for each 𝑞 ∈ 𝑄ℎ and 𝑖 ∈ 𝑊 𝑞
* given by Lemma 4.3.5, let 𝑘𝑖 ∈ [𝑁] be the hash bucket

containing 𝑖. Then, by applying Lemma 4.3.6 with 𝑊 = [𝑛]∖𝑊 large
ℎ with 𝑁 ≥ 𝑝ℎ/𝑇ℎ buckets, we

have that the total ℓ1 mass in bucket 𝑘𝑖 besides the item 𝑖 is at most 3𝑇ℎ log(𝑁ℎmax log2(𝐵/𝜀)/𝛿) ≤
𝜀𝜏ℎ, with probability at least 1− 𝛿/ℎmax log2(𝐵/𝜀). Thus, we have that

|[C(ℎ)S(ℎ)y](𝑘𝑖)| ≥
1

𝑝ℎ
(|y(𝑖)| − 𝜀𝜏ℎ) ≥ (1− 𝜀)

|y(𝑖)|
𝑝ℎ

.

This holds simultaneously for every 𝑞 ∈ 𝑄ℎ with probability at least 1−|𝑄ℎ|𝛿/ℎmax log2(𝐵/𝜀) ≥
1− 𝛿/ℎmax by a union bound. By summing over all 𝑞 ∈ 𝑄ℎ and 𝑖 ∈ 𝑊 𝑞

* , we have that

‖C(ℎ)S(ℎ)y‖1 ≥ (1− 𝜀)
∑︁
𝑞∈𝑄ℎ

∑︁
𝑖∈𝑊 𝑞

*

|y(𝑖)|
𝑝ℎ

≥ (1− 𝜀)(1− 7𝜀)
∑︁
𝑞∈𝑄ℎ

‖y(𝑞)‖1 Lemma 4.3.5

≥ (1− 8𝜀)
∑︁
𝑞∈𝑄ℎ

‖y(𝑞)‖1.

By another union bound over ℎ ∈ [ℎmax], this is true for every sampling level ℎ with probability
at least 1− 𝛿.

We show a similar result for the ℎ = 0 level. Instead of using a concentration-based argument
via Lemma 4.3.5, we instead show that important elements at this level can be perfectly hashed.

Lemma 4.3.8. Let the number of hash buckets 𝑁0 satisfy

𝑁0 ≥
6 log(𝑁0/𝛿)𝑞

2
0𝑚min

𝛿𝜀2𝑝1

Then, we have with probability at least 1− 2𝛿 that

‖C(0)y‖1 ≥ (1− 𝜀)
∑︁
𝑞∈𝑄0

‖y(𝑞)‖1

Proof. Note that for any 𝑖 ∈ 𝑊 𝑞(y) for 𝑞 ∈ 𝑄0,

|y(𝑖)| ≥ 2−𝑞 =
21−𝑞𝑝1|𝑊 𝑞(y)|
2𝑝1|𝑊 𝑞(y)|

≥ 𝑝1‖y(𝑞)‖1
2𝑚min

≥ 𝑝1𝜀

2𝑞0𝑚min

=: 𝜏0.

47

Let 𝑇0 := 𝜀𝜏0/3 log(𝑁0/𝛿) and let 𝑊 large
0 :=

⋃︀log2(1/𝑇0)
𝑞=1 𝑊 𝑞(y). With at least 𝑁0 ≥ 1/𝑇0, by

Lemma 4.3.6, any hash bucket 𝑘 ∈ [𝑁0] has a total ℓ1 contribution from elements outside 𝑊 large
0

of at most 𝜀𝜏0, with probability at least 1− 𝛿. Furthermore, with 𝑁0 ≥ 𝑞0/𝛿𝑇0 buckets, we can
perfectly hash all indices in 𝑊 𝑞(A) to different buckets from 𝑊 large

0 with probability at least
1− 𝛿. Thus, for each 𝑖 ∈ 𝑊 large

0 and hash bucket 𝑘𝑖 ∈ [𝑁0] containing 𝑖, we have

|[C(0)y](𝑘𝑖)| ≥ |y(𝑖)| − 𝜀𝜏0 ≥ (1− 𝜀)|y(𝑖)|.

By summing over all 𝑖 ∈ 𝑊 large
0 , we obtain that

‖C(0)y‖ ≥ (1− 𝜀)
∑︁

𝑖∈𝑊 large
0

|y(𝑖)| ≥ (1− 𝜀)
∑︁
𝑞∈𝑄0

‖y(𝑞)‖1.

4.3.4 Net argument
Finally, we will assemble our previous lemmas to show that the randomized boundary 𝑀 -sketch
does not contract ℓ1 norms. The proof is analogous to that of Theorem 4.2.8.

Theorem 4.3.9 (No contraction). Let the randomized boundary 𝑀 -sketch S satisfy the hypotheses
of Lemmas 4.3.7 and 4.3.8. Let 𝛼 = 𝛿 exp(−𝑑 log(3/𝜀))/4. With probability at least 1− 𝛿, we
have that for all x ∈ R𝑑,

‖SAx‖1 ≥ (1− 67𝜀)‖Ax‖1.

Proof. For any fixed vector y, Lemmas 4.3.7 and 4.3.8 hold with probability at least 1− 𝛼 by a
union bound. By summing over the results of these lemmas and then applying Lemma 4.3.2, we
have that

‖Sy‖1 ≥ (1− 8𝜀)
∑︁
𝑞∈𝑄*

‖y(𝑞)‖1 ≥ (1− 8𝜀)2‖y‖1.

We then conclude by a net argument simular to the proof of Theorem 4.2.8.

4.4 Endgame
We first verify that the parameters of the randomized boundary 𝑀 -sketch can be chosen to satisfy
all the hypotheses necessary to satisfy Theorems 4.2.8 and 4.3.9 to obtain the following.

Theorem 4.4.1 (Singly exponential oblivious ℓ1 subspace embeddings). Let S be a randomized
boundary 𝑀 -sketch (Definition 4.1.2) with parameters ℎmax = log2 𝑛 and

𝐵,𝑁0, 𝑁 = exp

(︂
𝑂

(︂
𝑑

𝛿𝜀
log

𝑑 log 𝑛

𝛿𝜀

)︂)︂
Then, S has

𝑟 = exp

(︂
𝑂

(︂
𝑑

𝛿𝜀
log

𝑑 log 𝑛

𝛿𝜀

)︂)︂
48

rows and satisfies

Pr
{︀

for all x ∈ R𝑑, (1− 𝜀)‖Ax‖1 ≤ ‖SAx‖1 ≤ (1 + 𝜀)‖Ax‖1
}︀
≥ 1− 𝛿.

The above theorem is almost the claimed result for Theorem 4.0.2, up to the log log 𝑛 de-
pendence in the exponent. To remove this dependence, we will use the dense Cauchy sketch
of [WW19, WW22], which removes the dependence on 𝑛 at a cost of a doubly exponential
dependence on 𝑑. While [WW19, WW22] only prove the result for 𝑂(1) approximation, we
improve their analysis to (1 + 𝜀) approximations.

Theorem 4.4.2 (Doubly exponential oblivious ℓ1 subspace embeddings [WW19, WW22]). There
exists a distribution over 𝑟 × 𝑛 matrices S for 𝑟 = exp(exp(�̃�(𝑑/𝜀2))/𝛿) such that for any
A ∈ R𝑛×𝑑,

Pr
{︀

for all x ∈ R𝑑, (1− 𝜀)‖Ax‖1 ≤ ‖SAx‖1 ≤ (1 + 𝜀)‖Ax‖1
}︀
≥ 1− 𝛿

Proof. We take S to be an appropriate scaling of a 𝑟 × 𝑛 dense Cauchy matrix.
Let 𝑋1, 𝑋2, . . . 𝑋𝑟 be independent Cauchy variables. Let 𝑅 = Θ(𝑟 log 𝑟

log log 𝑟
) and let ℰ denote

the event that max𝑟𝑖=1|𝑋𝑖| ≤ 𝑅. Note that Pr[|𝑋𝑖| ≥ 𝑡] ≤ 𝑂(1/𝑡) for Cauchy variables, so by a
union bound, we have that Pr(ℰ) ≥ 1−𝑂(𝑟/𝑅) ≥ 1−𝑂((log log 𝑟)/ log 𝑟). Furthermore, we
have by linearity of expectation that E[‖𝑋‖1 | ℰ] = Ω(𝑟 log𝑅). Then by Chernoff bounds,

Pr{‖𝑋‖1 = (1± 𝜀)E[‖𝑋‖1 | ℰ] | ℰ} ≥ 1−2 exp
(︂
−𝐶𝜀2

𝑟 log𝑅

𝑅

)︂
≥ 1−2 exp

(︀
−𝐶𝜀2 log log 𝑟

)︀
for some constant 𝐶. Thus for 𝑟 = exp(exp(�̃�(𝑑/𝜀2))/𝛿), we have

Pr{‖𝑋‖1 = (1± 𝜀)E[‖𝑋‖1 | ℰ]} ≥ 1− 𝛿(𝜀/3)𝑑

Finally, note that 𝑋 = Sy is distributed as 𝑟 independent Cauchy variables scaled by ‖y‖1 by
the 1-stability of Cauchy variables. Thus, by the above result, ‖Sy‖1 concentrates around some
scaling of ‖y‖1 up to a (1± 𝜀) factor, with probability at least 1− 𝛿(𝜀/3)𝑑. We may then perform
a net argument just as in Theorems 4.2.8 and 4.3.9 to conclude the theorem.

With the above theorem in hand, we finally arrive at a proof of Theorem 4.0.2.

Proof of Theorem 4.0.2. We first apply Theorem 4.4.2 to reduce 𝑛 to exp(exp(�̃�(𝑑/𝜀2))). Then,
applying Theorem 4.4.1 once reduces the number of rows to exp(�̃�(𝑑2/𝜀)), and then applying it
again further reduces the number of rows to exp(�̃�(𝑑/𝜀)), as claimed.

49

50

Chapter 5

Future directions for oblivious ℓ𝑝 subspace
embeddings

While we have been able to resolve many of the outstanding gaps in our understanding of oblivious
ℓ𝑝 subspace embeddings, several interesting questions still remain to be explored. Perhaps one of
the most notable unresolved challenges is to resolve the dependence on the accuracy parameter
𝜀 for (1 + 𝜀) oblivious ℓ1 subspace embeddings. Our upper bounds in [LWY21] have a singly
exponential dependence on 1/𝜀, while there is no known lower bound which rules out an upper
bound of the form 𝑟 = exp(poly(𝑑))/ poly(𝜀). We conjecture that our upper bound is tight, and
ask whether one can show an exponential lower bound in 𝜀, even for 𝑑 = 𝑂(1).

Question 5.0.1. Is there an exp(poly(1/𝜀)) lower bound on 𝑟 for (1 + 𝜀) oblivious ℓ1 subspace
embeddings for 𝑑 = 𝑂(1)?

A second question is to pin down the polynomial dependence on 𝑑 in the exponent. The lower
bound result of [WW19, WW22] of Theorem 3.0.2 shows that for a distortion of 𝜅 = 𝑂(1), we
need 𝑑 = 𝑂((log 𝑟)2), or 𝑟 = exp(Ω(

√
𝑑)). On the other hand, our upper bound is linear in 𝑑 in

the exponent, i.e., 𝑟 = exp(�̃�(𝑑)). Thus, an interesting question is to resolve this gap.

Question 5.0.2. Is there an exp(Ω(𝑑)) lower bound on 𝑟 for 𝑂(1) oblivious ℓ1 subspace embed-
dings?

51

52

Part II

Sampling Algorithms and Coresets

53

Chapter 6

ℓ𝑝 Lewis weight sampling [WY23b]

In Section 1.3.2, we have discussed the leverage score sampling algorithm, which gives a sampling-
based approach to constructing nearly optimal ℓ2 subspace embeddings. A highly fruitful direction
of research is to explore how this result can be generalized to other loss functions, and in particular
ℓ𝑝 losses. That is, we will study randomized algorithms for constructing (1 ± 𝜀)-approximate
subspace embeddings S ∈ R𝑛×𝑛 for the ℓ𝑝 norm (Definition 1.1.1) satisfying

Pr
{︀

for all x ∈ R𝑑, ‖SAx‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝
}︀
≥ 1− 𝛿.

Here, S will be a sampling matrix, that is, S is a diagonal matrix with few nonzero entries, and
we will seek to minimize the row count 𝑟 = nnz(S) of S.

In this chapter, we will introduce the sampling methods for constructing ℓ𝑝 subspace embed-
dings, with a particular focus on the technique of ℓ𝑝 Lewis weight sampling, and discuss two
improvements to this technique made in the work of [WY23b]. In particular, we give a nearly
optimal “one-shot” ℓ𝑝 Lewis weight sampling theorem and an online ℓ𝑝 Lewis weight sampling
theorem in Section 6.6.

6.1 Sampling algorithms for ℓ𝑝 subspace embeddings

There are many possible natural generalizations of leverage scores to the setting of ℓ𝑝 subspace
embeddings, but not all are known to achieve the best trade-offs between the dimension 𝑑, the
accuracy parameter 𝜀, and the row count 𝑟. We discuss several of these approaches and their
shortcomings before introducing ℓ𝑝 Lewis weights, which is the main subject study for most of
this chapter. We introduce the following definition to facilitate our discussion:

Definition 6.1.1 (ℓ𝑝 sampling matrix). Let 𝑝 ≥ 1. A random diagonal matrix S ∈ R𝑛×𝑛 is a
random ℓ𝑝 sampling matrix with sampling probabilities {𝑞𝑖}𝑛𝑖=1 if for each 𝑖 ∈ [𝑛], the 𝑖th diagonal
entry is independently set to be

S𝑖,𝑖 =

{︃
1/𝑞

1/𝑝
𝑖 with probability 𝑞𝑖

0 otherwise

55

6.1.1 ℓ𝑝 sensitivity sampling

We originally motivated the definition of leverage scores in Section 1.3.2 as the sampling algorithm
obtained when specializing the general technique of sensitivity sampling to the setting of ℓ2
subspace embeddings. Doing the same for ℓ𝑝 subspace embeddings yields a sampling algorithm
known as ℓ𝑝 sensitivity sampling.

Definition 6.1.2 (ℓ𝑝 sensitivities). Let A ∈ R𝑛×𝑑 and 0 < 𝑝 <∞. Then for each 𝑖 ∈ [𝑛], the 𝑖th
ℓ𝑝 sensitivity of A is defined to be

𝜎𝑝
𝑖 (A) := sup

Ax ̸=0

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
.

The total ℓ𝑝 sensitivity is S𝑝(A) :=
∑︀𝑛

𝑖=1 𝜎
𝑝
𝑖 (A).

Recall that the sensitivity sampling framework of [LS10, FL11] (see Section 1.3.1) gives a
bound of 𝑟 = �̃�(𝜀−2S𝑑) on the row count required to sample an ℓ𝑝 subspace embedding.

While aesthetically pleasing, the ℓ𝑝 sensitivity sampling has a number of disadvantages.
Perhaps the most glaring is that ℓ𝑝 sensitivity sampling is not known to achieve nearly optimal
row counts for ℓ𝑝 subspace embeddings for worst-case matrices. Indeed, we will see that ℓ𝑝 Lewis
weight sampling achieves nearly optimal row counts, whereas ℓ𝑝 sensitivity sampling is only
known to match these results for 𝑝 = 2. Another drawback of ℓ𝑝 sensitivity sampling is that we
do not currently know fast algorithms for estimating the ℓ𝑝 sensitivity scores. Indeed, naı̈vely
computing the ℓ𝑝 sensitivity scores essentially requires solving an ℓ𝑝 linear regression problem of
the form of

1

𝜎𝑝
𝑖 (A)

= min
[Ax](𝑖)=1

‖Ax‖𝑝𝑝

for each 𝑖 ∈ [𝑛], and algorithms that can compute these scores in time as fast as solving linear
regression as in the case of 𝑝 = 2 [SS11, DMMW12, CW13, LMP13, CLM+15] are not known.
A recent work of [PWZ23] shows a trade-off that the number of sensitivity calculations can be
reduced to 𝑂(𝑛/𝛼) at a cost of an 𝛼 factor blow-up in the total sensitivity, but this still does not
match the known results for ℓ2 leverage score sampling. For these reasons, ℓ𝑝 sensitivity sampling
has not attracted as much attention from the literature of randomized numerical linear algebra.

Nonetheless, the study of ℓ𝑝 sensitivity sampling does have benefits over other sampling
algorithms for ℓ𝑝 subspace embeddings, in particular for constructing ℓ𝑝 subspace embeddings
for 𝑝 > 2 for input matrices A with total sensitivity S𝑝(A) much less than the worst case of 𝑑𝑝/2.
We will give a much more in-depth study of ℓ𝑝 sensitivity sampling in Chapter 7, together with
another natural generalization of leverage score sampling known as root leverage score sampling.

6.1.2 ℓ𝑝 well-conditioned basis sampling

Although ℓ𝑝 sensitivity scores appear to be difficult to quickly estimate up to a small constant
factor, if one is willing to sacrifice on the row count up to poly(𝑑) factors, then fast routines do
exist. Indeed, some of the earliest works on sampling-based algorithms for ℓ𝑝 linear regression
proceed in this manner. The main idea is to generalize the observation that the leverage scores

56

can be characterized as the row norms of any orthogonal basis of A. That is, if U ∈ R𝑛×𝑑 is an
orthogonal basis of A ∈ R𝑛×𝑑, then it is not hard to see that

𝜏 𝑖(A) = ‖e⊤𝑖 U‖22

for every 𝑖 ∈ [𝑛] (see (1.3)). To generalize this to the ℓ𝑝 norm setting, we can then recall
constructions of well-conditioned bases U for subspaces of ℓ𝑝 (Definition 3.1.1) and define
analogous scores that are proportional to ‖e⊤𝑖 U‖𝑝𝑝. Indeed, such approaches were considered and
used to obtain ℓ𝑝 subspace embeddings with 𝑟 = poly(𝑑/𝜀) rows and 𝜅 = (1 + 𝜀) distortion
[Cla05, DDH+09]:

Theorem 6.1.3 (ℓ𝑝 well-conditioned basis sampling [Cla05, DDH+09]). Let A ∈ R𝑛×𝑑 and
1 ≤ 𝑝 <∞. Let U ∈ R𝑛×𝑑 be a (poly(𝑑), 1, 𝑝)-well-conditioned basis for the column space of
A (see Definition 3.1.1). Let 𝛼 > 0 and let 𝑞𝑖 = min{1, ‖e⊤𝑖 U‖𝑝𝑝/𝛼} for 𝑖 ∈ [𝑛]. Let S ∈ R𝑛×𝑛

be the ℓ)𝑝 sampling matrix with probabilities {𝑞𝑖}𝑛𝑖=1 (Definition 6.1.1). Then, there is an 𝛼 such
that with probability at least 99/100 S is an ℓ𝑝 subspace embedding satisfying Definition 1.1.1
with 𝜅 = (1 + 𝜀), and furthermore, S has at most 𝑟 = poly(𝑑/𝜀) nonzero rows.

In the results of [Cla05, DDH+09], the crucial subroutine of computing the well-conditioned
basis U was done by using algorithms for computing Löwner–John ellipsoids for ℓ𝑝 balls. This
results in running times of the form 𝑛 poly(𝑑). While this avoids the 𝑂(𝑛2) running time cost
resulting from solving 𝑛 ℓ𝑝 linear regression instances of size 𝑛× 𝑑 for sensitivity sampling, this
is still far less efficient than the running time of �̃�(nnz(A) + 𝑑𝜔) for leverage score sampling.

6.1.3 ℓ𝑝 Lewis weight sampling
The work of [CP15] observed that the problem of constructing ℓ𝑝 subspace embeddings of the
form of Definition 1.1.1 has actually been studied decades ago in the geometric functional analysis
literature, and obtains nearly optimal trade-offs between the number of rows 𝑟 and the accuracy
parameter 𝜀. Indeed, a series of works [Lew78, BLM89, Tal90, LT91, Tal95, SZ01] culminated
in the following result:

Theorem 6.1.4 (ℓ𝑝 subspace embeddings, existential version [Lew78, BLM89, LT91, SZ01]).
Let A ∈ R𝑛×𝑑 and 0 < 𝑝 < ∞. Then, there exists an ℓ𝑝 subspace embedding S ∈ R𝑟×𝑛 with
distortion 𝜅 = (1 + 𝜀) with

𝑟 =

{︃
𝑂(𝜀−2𝑑(log 𝑑)2 log(𝑑/𝜀)) 0 < 𝑝 < 2

𝑂(𝜀−2𝑑𝑝/2(log 𝑑)2 log(𝑑/𝜀)) 2 < 𝑝 <∞

We will present an algorithmic version of the bounds of Theorem 6.1.4 in the following
sections of this chapter, following the proofs presented in the works of [LT91, CP15] as well
as improvements obtained in our work [WY23b]. We note that the statement of Theorem 6.1.4
is slightly suboptimal in the logarithmic factors compared to the best known results [BLM89,
Tal90, Tal95, Zva00, CP15], but we present this version as it uses a simpler proof that we work
extensively with, while achieving the best known dependencies on 𝑑 and 𝜀, up to polylogarithmic
factors.

57

It has recently been shown that the upper bound of Theorem 6.1.4 is nearly optimal for 𝑝 < 2,
while for 𝑝 > 2, the dependence on 𝜀 and 𝑑 are individually optimal [LWW21, LLW23] when
𝑑 = Ω(log(1/𝜀)).

Theorem 6.1.5 ([LWW21]). Let 𝑝 ∈ [1,∞) ∖ 2Z. Suppose that S ∈ R𝑛×𝑛 is a diagonal matrix
with 𝑟 = nnz(S) such that

for all x ∈ R𝑑, ‖SAx‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝

Then, 𝑟 = Ω̃(𝑑/𝜀2). Furthermore, for 𝑝 > 2, 𝑟 = Ω̃(𝜀−1𝑑𝑝/2).

Algorithmic aspects: approximating ℓ𝑝 Lewis weights

The proof of Theorem 6.1.4 is almost algorithmic, as the proof is based on the probabilistic
method; the only component which is not algorithmic is the construction of a certain set of
weights known as the Lewis weights [Lew78], which can be viewed as a certain generalization
of the leverage scores (Definition 1.3.2) for ℓ𝑝 that differs from the other scores that we have
discussed so far.

Definition 6.1.6 (ℓ𝑝 Lewis weights [Lew78, CP15]). Let A ∈ R𝑛×𝑑 and 0 < 𝑝 <∞. Then, the
ℓ𝑝 Lewis weights of A are the unique set of weights w ∈ R𝑛

≥0 such that for every 𝑖 ∈ [𝑛],

w𝑖 = 𝜏 𝑖(W
1/2−1/𝑝A),

where W = diag(w). We will denote the ℓ𝑝 Lewis weights of A as w𝑝
𝑖 (A) for 𝑖 ∈ [𝑛].

The work of Cohen and Peng [CP15] addresses the problem of the algorithmic computation
of Lewis weights by showing that Lewis weights can, in fact, be approximated efficiently, and
even in nearly input sparsity time for 𝑝 ∈ (0, 4). For 𝑝 ∈ (0, 4), their algorithm uses the following
equivalent and more algorithmically useful characterization of ℓ𝑝 Lewis weights in a fixed point
iteration algorithm

w𝑖 =
(︀
a⊤
𝑖 (A

⊤W1−2/𝑝A)−a𝑖

)︀𝑝/2
. (6.1)

Follow-up works have further refined algorithms for approximating ℓ𝑝 Lewis weights [Lee16,
CCLY19, FLPS22, JLS22], and approximate ℓ𝑝 Lewis weights that are compatible with sampling
can now be computed in nearly input sparsity time for all 𝑝 > 0 [JLS22]. In particular, a crucial
relaxation for the efficient computation of ℓ𝑝 Lewis weights is the notion of one-sided ℓ𝑝 Lewis
weights, which we show is sufficient for sampling:

Definition 6.1.7 (One-sided ℓ𝑝 Lewis weights [JLS22, WY22b]). Let A ∈ R𝑛×𝑑 and 𝑝 ∈ (0,∞).
Let 𝛾 ∈ (0, 1]. Then, weights w ∈ R𝑛 are 𝛾-one-sided ℓ𝑝 Lewis weights if

w𝑖 ≥ 𝛾 · 𝜏 𝑖(W
1/2−1/𝑝A),

where W := diag(w), or equivalently,

w𝑖 ≥ 𝛾𝑝/2
[︀
a⊤
𝑖 (A

⊤W1−2/𝑝A)a𝑖

]︀𝑝/2
.

If 𝛾 = 1, we just say that w are one-sided ℓ𝑝 Lewis weights.

58

The following theorem collects the results of [CP15, JLS22] on the fastest known algorithms
for approximating one-sided ℓ𝑝 Lewis weights:

Theorem 6.1.8 ([CP15, JLS22]). Let A ∈ R𝑛×𝑑 and 0 < 𝑝 < ∞. Then, there is an algorithm
which computes one-sided ℓ𝑝 Lewis weights (Definition 6.1.7) w such that 𝑑 ≤ ‖w‖1 ≤ 2𝑑 in
�̃�(nnz(A) + 𝑑𝜔) time.

Algorithmic aspects: sampling

While the works above address the question of approximating Lewis weights, using the Lewis
weights to sample ℓ𝑝 subspace embeddings is an orthogonal direction of investigation. By an
appropriate adaptation of the earlier work in geometric functional analysis [BLM89, LT91, SZ01],
as well as the construction of ℓ𝑝 Lewis weights due to [CP15], one can obtain algorithmic con-
structions of ℓ𝑝 subspace embeddings which match the guarantees of Theorem 6.1.4 [MMWY22].
However, this construction has the drawback that the sampling algorithm requires a sophisticated
recursive structure in which the number of rows are reduced by half for 𝑂(log 𝑛) recursive rounds
of sampling. This hinders the use of Lewis weight sampling in one-pass streaming settings
[WY23b], and poses a gap from algorithms for ℓ2 leverage score sampling, which admits ℓ2 sub-
space embeddings just by sampling proportionally to the leverage scores in a “one-shot” sampling
algorithm [DMM06a, RV07, Mag10], as well as streaming and online variants [CMP16, CMP20].
Indeed, the work of [CP15] studies the problem of obtaining ℓ𝑝 subspace embeddings via sampling
algorithms that simply sample rows proportionally to the Lewis weights in a “one-shot” manner
analogous to leverage score sampling as in Theorem 1.3.3, rather than using a recursive sampling
algorithm. In fact, such results are possible, and [CP15] obtain the following result:

Theorem 6.1.9 (ℓ𝑝 Lewis weight sampling [CP15]). Let A ∈ R𝑛×𝑑 and 1 ≤ 𝑝 < ∞. Let
𝛼 > 0 and let 𝑞𝑖 = min{1,w𝑝

𝑖 (A)/𝛼} for 𝑖 ∈ [𝑛]. Let S ∈ R𝑛×𝑛 be the ℓ𝑝 sampling matrix
with probabilities {𝑞𝑖}𝑛𝑖=1 (Definition 6.1.1). Then, there is an 𝛼 such that, with probability at
least 99/100, S is an ℓ𝑝 subspace embedding satisfying Definition 1.1.1 with 𝜅 = (1 + 𝜀), and
furthermore, S has at most 𝑟 nonzero rows, for

𝑟 =

⎧⎪⎨⎪⎩
𝑂(𝜀−2𝑑 log(𝑑/𝜀)) 𝑝 = 1

𝑂(𝜀−2𝑑 log(𝑑/𝜀) log log(𝑑/𝜀)) 1 < 𝑝 < 2

𝑂(𝜀−5𝑑𝑝/2(log 𝑑) log(1/𝜀)) 2 < 𝑝 <∞

However, a notable gap exists between the algorithmic results of Theorem 6.1.9 based on
“one-shot” sampling versus the existential results of Theorem 6.1.4 for 𝑝 > 2 and its algorithmic
version based on recursive sampling, where Theorem 6.1.4 achieves a quadratic dependence on 𝜀,
while Theorem 6.1.9 incurs a dependence of 𝜀5. An important question in the study of ℓ𝑝 Lewis
weight sampling is whether this gap can be closed:

Question 6.1.10. For 𝑝 > 2, can the guarantee of one-shot ℓ𝑝 Lewis weight sampling in Theorem
6.1.9 be improved to �̃�(𝜀−2𝑑𝑝/2)?

One of the main results we obtain in [WY23b] is a positive resolution to Question 6.1.10:

59

Theorem 6.1.11 (ℓ𝑝 Lewis weight sampling, improved [WY23b]). Let A ∈ R𝑛×𝑑 and 2 < 𝑝 <∞.
Then, Theorem 6.1.9 holds with

𝑟 = 𝑂(𝜀−2𝑑𝑝/2(log 𝑑)2 log(𝑑/𝜀)).

6.2 Properties of one-sided ℓ𝑝 Lewis weights
We collect some elementary properties of one-sided ℓ𝑝 Lewis weights. We will extensively use
the notion of Lewis bases, which is the change of basis matrix R such that W1/2−1/𝑝AR is an
orthonormal matrix.

The first lemma relates one-sided Lewis weights and Lewis bases.

Lemma 6.2.1. Let A ∈ R𝑛×𝑑 and let 0 < 𝑝 < ∞. The following hold: Let w ∈ R𝑛 be 𝛾-one-
sided ℓ𝑝 Lewis weights, and let R be the corresponding one-sided Lewis basis. Then, for each
𝑖 ∈ [𝑛],

w𝑖 ≥ 𝛾𝑝/2 ·
⃦⃦
e⊤𝑖 AR

⃦⃦𝑝
2
.

Proof. We have that

w𝑖 ≥ 𝛾 · 𝜏 𝑖(W
1/2−1/𝑝A) = 𝛾 ·

⃦⃦
e⊤𝑖 W

1/2−1/𝑝AR
⃦⃦2
2
= 𝛾 ·w1−2/𝑝

𝑖

⃦⃦
e⊤𝑖 AR

⃦⃦2
2

which rearranges to the desired result.

We will also use the following two lemmas relating Lewis-reweighted ℓ2 norms and ℓ𝑝 norms.

Lemma 6.2.2. Let A ∈ R𝑛×𝑑 and let w be 𝛾-one-sided ℓ𝑝 Lewis weights for A. Then,

⃦⃦
W1/2−1/𝑝Ax

⃦⃦
2
≤

{︃
‖w‖1/2−1/𝑝

1 ‖Ax‖𝑝 𝑝 > 2

𝛾1/2−1/𝑝‖Ax‖𝑝 𝑝 < 2

Proof. Let R ∈ R𝑑×𝑑 be a change of basis matrix such that W1/2−1/𝑝AR is orthonormal. If
𝑝 ≥ 2, then by Hölder’s inequality,

⃦⃦
W1/2−1/𝑝ARx

⃦⃦2
2
=

𝑛∑︁
𝑖=1

w
1−2/𝑝
𝑖

[︀
e⊤𝑖 ARx

]︀2
≤

[︃
𝑛∑︁

𝑖=1

w𝑖

]︃1−2/𝑝[︃ 𝑛∑︁
𝑖=1

⃒⃒
e⊤𝑖 ARx

⃒⃒𝑝]︃2/𝑝
= ‖w‖1−2/𝑝

1 ‖ARx‖2𝑝

and if 𝑝 ≤ 2, then

⃦⃦
W1/2−1/𝑝ARx

⃦⃦2
2
=

𝑛∑︁
𝑖=1

w
1−2/𝑝
𝑖

[︀
e⊤𝑖 ARx

]︀2−𝑝[︀
e⊤𝑖 ARx

]︀𝑝
≤

𝑛∑︁
𝑖=1

w
1−2/𝑝
𝑖

⃦⃦
e⊤𝑖 AR

⃦⃦2−𝑝

2
‖x‖2−𝑝

2

[︀
e⊤𝑖 ARx

]︀𝑝
Cauchy–Schwarz

60

≤
𝑛∑︁

𝑖=1

w
1−2/𝑝
𝑖 · (w𝑖/𝛾

𝑝/2)2/𝑝−1‖x‖2−𝑝
2

[︀
e⊤𝑖 ARx

]︀𝑝
Lemma 6.2.1

= 𝛾𝑝/2−1‖x‖2−𝑝
2 ‖ARx‖𝑝𝑝

= 𝛾𝑝/2−1
⃦⃦
W1/2−1/𝑝ARx

⃦⃦2−𝑝

2
‖ARx‖𝑝𝑝

Lemma 6.2.3. Let A ∈ R𝑛×𝑑 and let w be 𝛾-one-sided ℓ𝑝 Lewis weights for A. Then,

‖Ax‖𝑝 ≤

{︃
𝛾1/𝑝−1/2

⃦⃦
W1/2−1/𝑝Ax

⃦⃦
2

𝑝 > 2

‖w‖1/𝑝−1/2
1 ‖W1/2−1/𝑝Ax‖2 𝑝 < 2

Proof. Let R ∈ R𝑑×𝑑 be a change of basis matrix such that W1/2−1/𝑝Ax is orthonormal. If
𝑝 > 2, then

‖ARx‖𝑝𝑝 =
𝑛∑︁

𝑖=1

|[ARx](𝑖)|𝑝 =
𝑛∑︁

𝑖=1

|[ARx](𝑖)|2|[ARx](𝑖)|𝑝−2

= ‖x‖𝑝−2
2

𝑛∑︁
𝑖=1

|[ARx](𝑖)|2‖e⊤𝑖 AR‖𝑝−2
2 Cauchy-Schwarz

= ‖x‖𝑝−2
2

𝑛∑︁
𝑖=1

|[ARx](𝑖)|2(w𝑖/𝛾
𝑝/2)1−2/𝑝 Lemma 6.2.1

= ‖W1/2−1/𝑝ARx‖𝑝−2
2

𝑛∑︁
𝑖=1

|[W1/2−1/𝑝ARx](𝑖)|2𝛾1−𝑝/2

= 𝛾1−𝑝/2‖W1/2−1/𝑝ARx‖𝑝2

and

‖ARx‖𝑝𝑝 =
𝑛∑︁

𝑖=1

|[ARx](𝑖)|𝑝 =
𝑛∑︁

𝑖=1

w1−𝑝/2|[W1/2−1/𝑝ARx](𝑖)|𝑝

=

[︃
𝑛∑︁

𝑖=1

w𝑖

]︃1−𝑝/2

‖W1/2−1/𝑝ARx‖𝑝2 Hölder’s inequality

The next lemma uses the above result to bound ℓ𝑝 sensitivities by one-sided Lewis weights.

Lemma 6.2.4 (One-sided Lewis weights bound sensitivities). Let A ∈ R𝑛×𝑑 and 0 < 𝑝 < ∞.
Let w ∈ R𝑛 be 𝛾-one-sided ℓ𝑝 Lewis weights. Then,

sup
x∈rowspan(A)∖{0}

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤

{︃
𝛾−𝑝/2‖w‖𝑝/2−1

1 ·w𝑖 𝑝 > 2

𝛾−1 ·w𝑖 𝑝 < 2

61

Proof. Let R ∈ R𝑑×𝑑 be a change of basis matrix such that W1/2−1/𝑝AR is orthonormal. Then
by Lemmas 6.2.1 and 6.2.2, we have

|[ARx](𝑖)|𝑝

‖ARx‖𝑝𝑝
≤
⃦⃦
e⊤𝑖 AR

⃦⃦𝑝
2
‖x‖𝑝2

‖ARx‖𝑝𝑝
≤
‖w‖𝑝/2−1

1 ‖ARx‖𝑝𝑝
𝛾𝑝/2‖ARx‖𝑝𝑝

w𝑖 = 𝛾−𝑝/2‖w‖𝑝/2−1
1 ·w𝑖

for 𝑝 > 2 and

|[ARx](𝑖)|𝑝

‖ARx‖𝑝𝑝
≤
⃦⃦
e⊤𝑖 AR

⃦⃦𝑝
2
‖x‖𝑝2

‖ARx‖𝑝𝑝
≤

𝛾𝑝/2−1‖ARx‖𝑝𝑝
𝛾𝑝/2‖ARx‖𝑝𝑝

w𝑖 = 𝛾−1 ·w𝑖

for 𝑝 < 2.

6.3 Analysis of ℓ𝑝 Lewis weight sampling: reduction to a Rademacher
process

We start off our analysis of ℓ𝑝 Lewis weight sampling by a standard symmetrization argument (see
Section 2.3 and Lemma 2.3.2). However, the Rademacher process given by Lemma 2.3.2 alone is
still hard to analyze. Throughout Section 6.3, we will make a series of reductions to bound the
process by successively “simpler” Rademacher processes.

6.3.1 Regularizing the Rademacher process
We first specialize our Rademacher process for sampling-based algorithms for ℓ𝑝 subspace
embeddings as well as related problems, such as ℓ𝑝 affine embeddings and ℓ𝑝 linear regression.
Our end goal is to reduce the analysis to bounding a Rademacher process of the form of

E
𝜀∼{±1}𝑛

sup
‖A′x‖𝑝≤1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖|[A′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

(6.2)

where A′ is a matrix whose ℓ𝑝 Lewis weights are uniformly bounded by 𝛼 ≈ 𝜀2. These special
properties about the Rademacher process will be necessary in the next step of the analysis when
we bound the Rademacher process in Section 6.4.

Note that (6.2) differs from our original Rademacher process in Lemma 2.3.2 in two aspects.
The first is that the matrix A′ that appears in the objective function is the same matrix A′ that
defines the domain 𝑋 = {x ∈ R𝑑 : ‖A′x‖𝑝 ≤ 1}. This allows us to use an ℓ𝑝 norm bound on
the objective function when analyzing this Rademacher process. Note that this does not hold a
priori in the Rademacher process of Lemma 2.3.2, since the objective is reweighted by weights
w𝑖, whereas the domain only bounds the ℓ𝑝 norm of Ax itself. The next lemma, based on [CP15],
addresses this problem. The second aspect to address is the flatness of the ℓ𝑝 Lewis weights of A′.
Intuitively, we expect this to be true since a row with ℓ𝑝 Lewis weight w𝑝

𝑖 (A) is reweighted by at
most (𝛼/w𝑝

𝑖 (A))1/𝑝, which would lead to an ℓ𝑝 Lewis weight of at most 𝛼. This intuition will be
formalized in Sections 6.3.2 and 6.3.3.

62

Lemma 6.3.1. Let A ∈ R𝑛×𝑑 and let 𝑋 = {x ∈ R𝑑 : ‖Ax‖𝑝𝑝 ≤ 1}. Furthermore, let B ∈ R𝑚×𝑑

and 𝐶 ≥ 1 be such that ‖Bx‖𝑝𝑝 ≤ 𝐶‖Ax‖𝑝𝑝 for every x ∈ R𝑑. For every setting of the weights
w, let Sw be the 𝑛× 𝑛 sampling matrix with (Sw)𝑖,𝑖 = w

1/𝑝
𝑖 and let Bw denote the (𝑛+𝑚)× 𝑑

matrix obtained by a vertical concatenation of SwA and B. Suppose that

E
𝜀∼{±1}𝑛

sup
‖Bwx‖𝑝𝑝≤𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

g𝑖w𝑖𝑓𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤ 𝑅𝑙𝜀𝑙𝛿

for each fixed w and 𝑅 ≥ 1. Then, we have that

E
w
sup
x∈𝑋

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

(w𝑖 − 1)𝑓𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤ (𝐶 + 1)𝑙(2
√
2𝜋𝜀)𝑙𝛿

1− (2𝜀)𝑙𝛿

Proof. Fix a setting of the weights w and define

𝐹w := sup
x∈𝑋

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

(w𝑖 − 1)|[Ax](𝑖)|𝑝
⃒⃒⃒⃒
⃒

Then for any x ∈ R𝑑, we have that

‖SwAx‖𝑝𝑝 ≤ (1 + 𝐹w)‖Ax‖𝑝𝑝

so ‖Bwx‖𝑝𝑝 ≤ (𝐶 + 1 + 𝐹w)‖Ax‖𝑝𝑝. Thus, we have that

E
𝜀∼{±1}𝑛

sup
‖Ax‖𝑝𝑝≤1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

g𝑖w𝑖𝑓𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤ E
𝜀∼{±1}𝑛

sup
‖Bwx‖𝑝𝑝≤𝐶+1+𝐹w

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

g𝑖w𝑖𝑓𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤ (𝐶 + 1 + 𝐹w)
𝑙 · E

𝜀∼{±1}𝑛
sup

‖Bwx‖𝑝𝑝≤1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

g𝑖w𝑖𝑓𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤ (𝐶 + 1 + 𝐹w)
𝑙𝜀𝑙𝛿 ≤ ((𝐶 + 1)𝑙 + 𝐹 𝑙

w)(2𝜀)
𝑙𝛿

Then by Lemma 2.3.2,

E
w
[𝐹 𝑙

w] ≤ E
w
((𝐶 + 1)𝑙 + 𝐹 𝑙

w)(
√
2𝜋)𝑙(2𝜀)𝑙𝛿 = (𝐶 + 1)𝑙(2𝜀)𝑙𝛿 + E

w
[𝐹 𝑙

w](2
√
2𝜋𝜀)𝑙𝛿

or

E
w
[𝐹 𝑙

w] ≤
(𝐶 + 1)𝑙(2

√
2𝜋𝜀)𝑙𝛿

1− (2𝜀)𝑙𝛿

63

6.3.2 Flattening the Rademacher process: 𝑝 < 2

As discussed in Section 6.3.1, the next step in our analysis of ℓ𝑝 Lewis weight sampling is to
flatten the ℓ𝑝 Lewis weights of the Rademacher process resulting from Lemma 2.3.2. We wish to
argue that if we reweight a row 𝑖 ∈ [𝑛] of A by (𝛼/w𝑝

𝑖 (A))1/𝑝, then the ℓ𝑝 Lewis weight of the
reweighted row increases by at most an 𝛼/w𝑝

𝑖 (A) factor to a new ℓ𝑝 Lewis weight of 𝛼. However,
directly arguing as such as difficult, due to the recursive nature of the definition of ℓ𝑝 Lewis
weights.

The observation of [CP15] is that such an argument works if we concatenate the sampled
matrix SA with A. Note that this is exactly the matrix Bw constructed in Lemma 2.3.2 with
B = A. In this case, by (6.1), the ℓ𝑝 Lewis weight of any row 𝑖 of Bw corresponding to a row
SA satisfies

w𝑝
𝑖 (Bw) =

𝛼

w𝑝
𝑖 (A)

(︀
a⊤
𝑖 (BwW(Bw)

1−2/𝑝Bw)
−a𝑖

)︀𝑝/2
≤ 𝛼

w𝑝
𝑖 (A)

(︀
a⊤
𝑖 (AW(A)1−2/𝑝A)−a𝑖

)︀𝑝/2 ≤ 𝛼

where W(Bw) denotes the diagonal matrix of the ℓ𝑝 Lewis weights of Bw, and W(A) denotes
the ℓ𝑝 Lewis weights for A.

Two problems remain. The first is that if we concatenate A with SA, then A may not have
uniformly bounded ℓ𝑝 Lewis weights, even if SA does. This can be addressed by flattening A,
that is, we take any row 𝑖 ∈ [𝑛] of A with a large ℓ𝑝 Lewis weight and replace it with 𝑘 copies of
a𝑖/𝑘

1/𝑝. We will show that splitting a row into 𝑘 copies reduces the ℓ𝑝 Lewis weight of each of
the rows by a factor of 𝑘, so we can take 𝑘 = 1/𝛼 for every row to reduce the maximum ℓ𝑝 Lewis
weight of the flattened matrix to 𝛼. Furthermore, flattening does not change the Lewis quadratic
AW(A)1−2/𝑝A and thus the argument above still holds.

Lemma 6.3.2 (Flattening ℓ𝑝 Lewis weights). Let A ∈ R𝑛×𝑑 and 0 ≤ w ∈ R𝑛. Let 0 < 𝑝 <∞.
Let A′ ∈ R(𝑛+𝑘−1)×𝑑 be obtained by replacing some row 𝑖 ∈ [𝑛] with 𝑘 copies of a𝑖/𝑘

1/𝑝 and let
w′ ∈ R(𝑛+𝑘−1)×𝑑 be obtained by replacing w𝑖 with 𝑘 copies of w𝑖/𝑘. Then, ‖Ax‖𝑝𝑝 = ‖A′x‖𝑝𝑝
for every x ∈ R𝑑 and A⊤W1−2/𝑝A = A′⊤W′1−2/𝑝A′.

Proof. We have for every x ∈ R𝑑 that

|⟨a𝑖,x⟩|𝑝 = 𝑘
⃒⃒
⟨a𝑖/𝑘

1/𝑝,x⟩
⃒⃒𝑝

which shows that ‖Ax‖𝑝𝑝 = ‖A′x‖𝑝𝑝. Furthermore,

w
1−2/𝑝
𝑖 a𝑖a

⊤
𝑖 = 𝑘 ·

(︁w𝑖

𝑘

)︁1−2/𝑝 a𝑖

𝑘1/𝑝

a⊤
𝑖

𝑘1/𝑝

which shows that A⊤W1−2/𝑝A = A′⊤W′1−2/𝑝A′.

The second problem is that while flattening may reduce the ℓ𝑝 Lewis weights of A alone, the
ℓ𝑝 Lewis weights may change when concatenated with SA. Fortunately, for 𝑝 < 2, it can be
shown that the ℓ𝑝 Lewis weights can in fact only decrease after concatenations (Lemma 6.3.3).
Note that this property does not hold for 𝑝 > 2, and thus we will need a different argument, which
we show in Section 6.3.3.

64

Lemma 6.3.3 (Monotonicity of ℓ𝑝 Lewis weights, Lemma 5.5, [CP15]). Let A ∈ R𝑛×𝑑 and
0 < 𝑝 ≤ 2. Let 𝑚 ≥ 𝑛 and let A′ ∈ R𝑚×𝑑 be a matrix such that e⊤𝑖 A = e⊤𝑖 A

′ for all 𝑖 ∈ [𝑛], that
is, A′ is obtained by adding rows to A. Then, w𝑝

𝑖 (A) ≥ w𝑝
𝑖 (A

′) for every 𝑖 ∈ [𝑛].

6.3.3 Flattening the Rademacher process: 𝑝 > 2 [WY23b]
As discussed in Section 6.3.2, for 𝑝 > 2, we need to overcome the lack of monotonicity of
ℓ𝑝 Lewis weights to flatten the Rademacher process. In the work [WY23b], we show how to
circumvent the issue of non-monotonicity by directly constructing one-sided ℓ𝑝 Lewis weights
(Definition 6.1.7) for the concatenation of SA and the flattened version of A that still allows the
argument from Section 6.3.2 to go through. In particular, we wish to construct one-sided ℓ𝑝 Lewis
weights such that the Lewis quadratic of the concatenated matrix is at least the Lewis quadratic
AW1−2/𝑝A, in order to argue that the ℓ𝑝 Lewis weights of SA are at most 𝛼. The next lemma
constructs such weights.

Lemma 6.3.4 (Batch online ℓ𝑝 Lewis weights, 2 ≤ 𝑝 < ∞). Let A ∈ R𝑛×𝑑, let M = L⊤L ∈
R𝑑×𝑑 be a symmetric PSD matrix, and let 2 ≤ 𝑝 <∞. There exists weights w ∈ R𝑛 such that for
𝑖 ∈ [𝑛],

w𝑖 =
(︁𝑝
2

)︁ 𝑝/2
1−2/𝑝

(a⊤
𝑖 (A

⊤W1−2/𝑝A+M)−1a𝑖)
𝑝/2

and
𝑛∑︁

𝑖=1

w𝑖 ≤
(︁𝑝
2

)︁ 1
1−2/𝑝

𝑑.

Proof. Consider the following optimization problem over symmetric PSD matrices Q:

maximize det(Q)

subject to
𝑛∑︁

𝑖=1

(a⊤
𝑖 Qa𝑖)

𝑝/2 +
𝑑∑︁

𝑗=1

l⊤𝑗 Ql𝑗 ≤ 𝑑

Q ⪰ 0

where a𝑖 is the 𝑖th row of A and l𝑗 is the 𝑗th row of L. Let Q be any matrix which attains this
maximum. Note then that

𝑛∑︁
𝑖=1

(a⊤
𝑖 Qa𝑖)

𝑝/2 +
𝑑∑︁

𝑗=1

l⊤𝑗 Ql𝑗 = 𝑑

since otherwise scaling Q up can increase the objective function. Furthermore, by considering
Lagrange multipliers, the gradient of the constraint is some scalar 𝐶 times the gradient of of the
objective, so

𝑛∑︁
𝑖=1

𝑝

2
(a⊤

𝑖 Qa𝑖)
𝑝/2−1a𝑖a

⊤
𝑖 +

𝑑∑︁
𝑗=1

l𝑗l
⊤
𝑗 = 𝐶 det(Q)Q−1.

We now define

w𝑖 :=
(︁𝑝
2

)︁ 1
1−2/𝑝

(a⊤
𝑖 Qa𝑖)

𝑝/2.

65

Then, we have that
A⊤W1−2/𝑝A+M = 𝐶 det(Q)Q−1

for W = diag(w). Rearranging, we have that

Q = 𝐶 det(Q)(A⊤W1−2/𝑝A+M)−1

so

w𝑖 =
(︁𝑝
2

)︁ 1
1−2/𝑝

(a𝑖Qa𝑖)
𝑝/2 =

(︁𝑝
2

)︁ 1
1−2/𝑝

(𝐶 det(Q))𝑝/2[a⊤
𝑖 (A

⊤W1−2/𝑝A+M)−1a𝑖]
𝑝/2

and thus

w𝑖 =
(︁𝑝
2

)︁ 2/𝑝
1−2/𝑝

(𝐶 det(Q))[(w
1/2−1/𝑝
𝑖 a𝑖)

⊤(A⊤W1−2/𝑝A+M)−1(w
1/2−1/𝑝
𝑖 a𝑖)]

=
(︁𝑝
2

)︁ 2/𝑝
1−2/𝑝

(𝐶 det(Q))𝜏 𝑖(B)

where B is the vertical concatenation of W1/2−1/𝑝A and L. Note also that for rows 𝑗 correspond-
ing to L in B, we have that

(𝐶 det(Q))𝜏 𝑗(B) = (𝐶 det(Q))l⊤𝑗 (A
⊤W1−2/𝑝A+M)−1l𝑗 = l⊤𝑗 Ql𝑗.

Now by the normalization constraint, we have that
𝑛∑︁

𝑖=1

(︂
2

𝑝

)︂ 1
1−2/𝑝

w𝑖 +
𝑑∑︁

𝑗=1

l⊤𝑗 Ql𝑗 =
𝑛∑︁

𝑖=1

(a⊤
𝑖 Qa𝑖)

𝑝/2 +
𝑑∑︁

𝑗=1

l⊤𝑗 Ql𝑗 = 𝑑.

However,(︂
2

𝑝

)︂ 1
1−2/𝑝

w𝑖 =
(︁𝑝
2

)︁ −1
1−2/𝑝

(︁𝑝
2

)︁ 2/𝑝
1−2/𝑝

(𝐶 det(Q))𝜏 𝑖(B) =
2

𝑝
(𝐶 det(Q))𝜏 𝑖(B)

so we must have that 𝑝/2 = 𝐶 det(Q). The result follows.

Remark 6.3.5. Note that if we set M = 0 and redefine w′
𝑖 := w𝑖/(𝑝/2)

1
1−2/𝑝 , then we will

retrieve the usual definition of ℓ𝑝 Lewis weights.

By setting M = AW1−2/𝑝A, we can use Lemma 6.3.4 to construct one-sided ℓ𝑝 Lewis
weights for the concatenation of SA and the flattened version of A such that the Lewis quadratic
is bounded below by AW1−2/𝑝A, which makes the same argument as in Section 6.3.2 go through
even for 𝑝 > 2.

We make one final reduction of the Rademacher process by restricting to the set of rows
𝑖 ∈ [𝑛] with significantly large ℓ𝑝 Lewis weights.

Lemma 6.3.6. Let 𝐽 ⊇ {𝑖 ∈ [𝑛] : 𝜎𝑝
𝑖 (A) ≥ 𝜀/𝑛}. Then,⃒⃒⃒⃒

⃒
𝑛∑︁

𝑖=1

𝜀𝑖|[Ax](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

≤ (2𝜀)𝑙 + 2𝑙

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝐽

𝜀𝑖|[Ax](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

for any x such that ‖Ax‖𝑝 ≤ 1.

66

Proof. We have that⃒⃒⃒⃒
⃒∑︁
𝑖/∈𝐽

𝜀𝑖|[Ax](𝑖)|𝑝
⃒⃒⃒⃒
⃒ ≤∑︁

𝑖/∈𝐽

||[Ax](𝑖)|𝑝| ≤
∑︁
𝑖/∈𝐽

𝜀

𝑛
‖Ax‖𝑝𝑝 ≤ 𝜀‖Ax‖𝑝𝑝

which proves the claim.

6.4 Analysis of ℓ𝑝 Lewis weight sampling: Dudley’s entropy
integral

In the previous section, we have reduced our task to bounding a Rademacher process of the form
of (6.2), where A′ is a matrix whose ℓ𝑝 Lewis weights are uniformly bounded by 𝛼 ≈ 𝜀2. We
will finally tackle the task of bounding this Rademacher process via Dudley’s entropy integral.
Our task is thus to estimate the entropy numbers 𝐸(𝑇, 𝑑𝑋 , 𝑢) appearing in Theorem 2.3.6. Our
calculations will be slightly more general than required for the analysis of ℓ𝑝 Lewis weight
sampling, to facilitate further applications in this thesis.

6.4.1 Bounds on the pseudo-metric
The Rademacher process that we study is indexed by the index set 𝑇 = {x ∈ R𝑑 : ‖Ax‖𝑝 ≤ 1},
and is given by

𝑋x =
∑︁
𝑖∈𝐽

𝜀𝑖|[Ax](𝑖)|𝑝

We will now estimate the pseudo-metric.

Lemma 6.4.1. Let 1 ≤ 𝑝 <∞ and let A ∈ R𝑛×𝑑. Define the pseudo-metric

𝑑𝑋(x,x
′) :=

⎛⎝ E
𝜀∼{±1}𝑛

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝐽

𝜀𝑖|[Ax](𝑖)|𝑝 −
∑︁
𝑖∈𝐽

𝜀𝑖|[Ax′](𝑖)|𝑝
⃒⃒⃒⃒
⃒
2
⎞⎠1/2

Let 𝜎 ≥ max𝑖∈𝐽 𝜎
𝑝
𝑖 (A). Then, for any x,x′ ∈ R𝑑 such that ‖Ax‖𝑝, ‖Ax′‖𝑝 ≤ 1,

𝑑𝑋(x,x
′) ≤

{︃
2‖(Ax−Ax′)|𝐽‖𝑝/2∞ 𝑝 < 2

2𝑝 · 𝜎1/2−1/𝑝 · ‖(Ax−Ax′)|𝐽‖∞ 𝑝 > 2

Proof. Note first that by expanding out the square and noting that E[𝜀𝑖𝜀𝑗] = 1(𝑖 = 𝑗), we have

𝑑𝑋(x,x
′) =

(︃∑︁
𝑖∈𝐽

(|Ax(𝑖)|𝑝 − |Ax′(𝑖)|𝑝)2
)︃1/2

Let y = Ax and y′ = Ax′. For 𝑝 < 2, we bound this as

𝑑𝑋(x,x
′)2 =

∑︁
𝑖∈𝐽

(|y(𝑖)|𝑝 − |y′(𝑖)|𝑝)2

67

=
∑︁
𝑖∈𝐽

(|y(𝑖)|𝑝/2 − |y′(𝑖)|𝑝/2)2(|y(𝑖)|𝑝/2 + |y′(𝑖)|𝑝/2)2

≤
∑︁
𝑖∈𝐽

(|y(𝑖)− y′(𝑖)|𝑝/2)2(|y(𝑖)|𝑝/2 + |y′(𝑖)|𝑝/2)2

≤ 2‖(y − y′)|𝐽‖𝑝∞
∑︁
𝑖∈𝐽

|y(𝑖)|𝑝 + |y′(𝑖)|𝑝

≤ 4‖(y − y′)|𝐽‖𝑝∞.

For 𝑝 > 2, we have by convexity that

|y(𝑖)|𝑝 − |y′(𝑖)|𝑝 ≤ 𝑝|(y(𝑖)− y′(𝑖))|𝐽 |(|y(𝑖)|𝑝−1 + |y′(𝑖)|𝑝−1)

and that ‖y|𝐽‖∞ ≤ 𝜎1/𝑝, so we have

𝑑𝑋(x,x
′)2 =

∑︁
𝑖∈𝐽

(|y(𝑖)|𝑝 − |y′(𝑖)|𝑝)2

≤ 𝑝2
∑︁
𝑖∈𝐽

|y(𝑖)− y′(𝑖)|2(|y(𝑖)|𝑝−1 + |y′(𝑖)|𝑝−1)2

≤ 2𝑝2‖(y − y′)|𝐽‖2∞
𝑛∑︁

𝑖=1

|y(𝑖)|2𝑝−2 + |y′(𝑖)|2𝑝−2

≤ 2𝑝2max{‖y|𝐽‖∞, ‖y′|𝐽‖∞}𝑝−2‖(y − y′)|𝐽‖2∞
𝑛∑︁

𝑖=1

|y(𝑖)|𝑝 + |y′(𝑖)|𝑝

≤ 4𝑝2𝜎1−2/𝑝‖(y − y′)|𝐽‖2∞.

From the above lemma, we also immediately obtain diameter bounds.

Lemma 6.4.2. Let 1 ≤ 𝑝 <∞ and let A ∈ R𝑛×𝑑. Let 𝜎 ≥ max𝑖∈𝐽 𝜎
𝑝
𝑖 (A). Then, the diameter

of 𝑇 = {x : ‖Ax‖𝑝 ≤ 1} with respect to 𝑑𝑋 is bounded by

diam(𝑇) ≤

{︃
4 · 𝜎1/2 𝑝 < 2

4𝑝 · 𝜎1/2 𝑝 > 2

Proof. For any y = Ax with ‖Ax‖𝑝 ≤ 1, we have that ‖y|𝐽‖∞ ≤ 𝜎1/𝑝, so combining the triangle
inequality and Lemma 6.4.1 yields the result.

6.4.2 Entropy bounds
With bounds on the pseudo-metric 𝑑𝑋 in hand, we can estimate the entropy numbers 𝐸(𝑇, 𝑑𝑋 , 𝑢)
as required by Theorem 2.3.6. The bounds in this section are taken from [WY23c], which in turn
follows [BLM89]. We first introduce the dual Sudakov minoration theorem, which is a general
tool for bounding covering numbers of the Euclidean ball.

Definition 6.4.3 (Levy mean). The Levy mean is defined as

𝑀𝑋 =

∫︁
S𝑑−1

‖x‖ 𝑑𝜎(x) = E
x∼S𝑑−1

‖x‖.

68

Remark 6.4.4. By noting that x ∼ S𝑑−1 is the same as drawing a Gaussian vector and normalizing,
that is,

𝑀𝑋 = E
g∼𝒩 (0,I𝑑)

⃦⃦⃦⃦
g

‖g‖2

⃦⃦⃦⃦
=

E‖g‖2
E‖g‖2

E

⃦⃦⃦⃦
g

‖g‖2

⃦⃦⃦⃦
=

1

E‖g‖2
E‖g‖

since the norm of the Gaussian is independent of its direction.

Lemma 6.4.5 (Dual Sudakov minoration (Proposition 4.2, [BLM89])). Let (𝑋, ‖·‖) be Banach
space on R𝑑 and let be the Levy mean of ‖·‖. Then, for some constant 𝐶 > 0, we have that

log𝐸(𝐵2, 𝑡 ·𝐵𝑋) ≤ 𝐶 · 𝑑
(︂
𝑀𝑋

𝑡

)︂2

where 𝐵2 = {x : ‖x‖2 ≤ 1} and 𝐵𝑋 = {x : ‖x‖ ≤ 1}.

We will compute the above Levy mean bound for reweighted ℓ𝑞 norms, defined below.

Definition 6.4.6. Let 0 ≤ w ∈ R𝑛. We define the w-weighted ℓ𝑞 norm by

‖y‖w,𝑞 :=

(︃
𝑛∑︁

𝑖=1

w𝑖|y(𝑖)|𝑞
)︃1/𝑞

.

For a matrix A ∈ R𝑛×𝑑, let 𝐵𝑞
w(A) = {x : ‖Ax‖w,𝑞 ≤ 1} denote the corresponding unit ball in

the column space of A. If w = 1, then we simply write 𝐵𝑞(A).

Note that ‖y‖𝑝 = ‖W−1/𝑝y‖w,𝑝 for W = diag(w), so we can instead prove bounds under
these reweighted norms, as long as we apply W−1/𝑝 first. We then have the following Levy mean
bound.

Lemma 6.4.7. Let A ∈ R𝑛×𝑑 and let 1 ≥ w ∈ R𝑛 be nonnegative weights. Let 𝜏 ≥
max𝑛𝑖=1‖e⊤𝑖 A‖22. Let 1 ≤ 𝑞 <∞. Then,

E
g
‖Ag‖w,𝑞 ≤ 𝑛1/𝑞√𝑞𝜏

Proof. We have that

E
g
[|[Ag](𝑖)|𝑞] =

2𝑞/2Γ(𝑞+1
2
)

√
𝜋

‖e⊤𝑖 A‖
𝑞
2 ≤ 𝑞𝑞/2 · ‖e⊤𝑖 A‖

𝑞
2 ≤ 𝑞𝑞/2 · 𝜏 𝑞/2

Then by Jensen’s inequality and linearity of expectation, we have

E
g
‖Ag‖w,𝑞 ≤

(︂
E
g
‖Ag‖𝑞w,𝑞

)︂1/𝑞

≤ (𝑛 · 𝑞𝑞/2 · 𝜏 𝑞/2)1/𝑞 = 𝑛1/𝑞√𝑞𝜏 .

By combining the above calculation with Lemma 6.4.5, we obtain the following:

69

Corollary 6.4.8. Let 1 ≥ w ∈ R𝑛 be nonnegative weights. Let 2 ≤ 𝑞 <∞ and let A ∈ R𝑛×𝑑 be
such that W1/2A is orthonormal. Let 𝜏 ≥ max𝑛𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦2
2
. Then,

log𝐸(𝐵2
w(A), 𝐵𝑞

w(A), 𝑡) ≤ 𝑂(1)
𝑛2/𝑞𝑞 · 𝜏

𝑡2

Proof. For W1/2A orthonormal, 𝐵2
w(A) = 𝐵2(W1/2A) is isometric to the Euclidean ball in 𝑑

dimensions. Thus Lemma 6.4.5 applies.

We also get a similar result for 𝑞 =∞, by applying Corollary 6.4.8 with 𝑞 = 𝑂(log 𝑛).

Corollary 6.4.9. Let 1 ≥ w ∈ R𝑛 be nonnegative weights with min𝑖∈[𝑛] w𝑖 ≥ 𝜀. Let A ∈ R𝑛×𝑑

be such that W1/2A is orthonormal. Let 𝜏 ≥ max𝑛𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦2
2
. Then,

log𝐸(𝐵2
w(A), 𝐵∞(A), 𝑡) ≤ 𝑂(1)

log(𝑛/𝜀) · 𝜏
𝑡2

Proof. This follows from the fact that for y ∈ R𝑛,

Ω(1)‖y‖∞ = 𝜀1/𝑞‖y‖∞ ≤ ‖y‖w,𝑞 ≤ 𝑛1/𝑞‖y‖∞ = 𝑂(1)‖y‖∞

for 𝑞 = 𝑂(log(𝑛/𝜀)).

By interpolation, we can improve the bound in Corollary 6.4.8, which is needed for our results
for 𝑝 < 2:

Lemma 6.4.10. Let 2 < 𝑟 < ∞ and let A ∈ R𝑛×𝑑 be orthonormal. Let 𝜏 ≥ max𝑛𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦2
2
.

Let 1 ≤ 𝑡 ≤ poly(𝑑). Then,

log𝐸(𝐵2(A), 𝐵𝑟(A), 𝑡) ≤ 𝑂(1)
1

(𝑡/2)2𝑟/(𝑟−2)
·
(︂

𝑟

𝑟 − 2
log 𝑑+ log 𝑛

)︂
𝜏

Proof. Let 𝑞 > 𝑟, and let 0 < 𝜃 < 1 satisfy

1

𝑟
=

1− 𝜃

2
+

𝜃

𝑞

Then by Hölder’s inequality, we have for any y ∈ R𝑛 that

‖y‖𝑟 =

(︃
𝑛∑︁

𝑖=1

|y(𝑖)|𝑟(1−𝜃)|y(𝑖)|𝑟𝜃
)︃1/𝑟

≤

(︃
𝑛∑︁

𝑖=1

|y(𝑖)|2
)︃(1−𝜃)/2(︃ 𝑛∑︁

𝑖=1

|y(𝑖)|𝑞
)︃𝜃/𝑞

= ‖y‖1−𝜃
2 ‖y‖

𝜃
𝑞

Then for any y,y′ ∈ 𝐵2, we have

‖y − y′‖𝑟 ≤ ‖y − y′‖1−𝜃
2 ‖y − y′‖𝜃𝑞 ≤ 2‖y − y′‖𝜃𝑞

so

log𝐸(𝐵2(A), 𝐵𝑟(A), 𝑡) ≤ log𝐸(𝐵2(A), 𝐵𝑞(A), (𝑡/2)1/𝜃) ≤ 𝑂(1)
𝑛2/𝑞𝑞 · 𝜏
(𝑡/2)2/𝜃

70

by Corollary 6.4.8. Now, we have

2

𝜃
= 2

1
2
− 1

𝑞

1
2
− 1

𝑟

=
𝑞 − 2

𝑞

2𝑟

𝑟 − 2

so by taking 𝑞 = 𝑂(𝑟
𝑟−2

log 𝑑+log 𝑛), we have that 𝑛2/𝑞 = 𝑂(1) and (𝑡/2)1/𝜃 = Θ(1)(𝑡/2)2𝑟/(𝑟−2),
so we conclude as claimed.

Using Lemma 6.4.10, we obtain the following analogue of Corollary 6.4.8 for 𝑝 < 2.

Lemma 6.4.11. Let 1 ≥ w ∈ R𝑛 be nonnegative weights. Let 0 < 𝑝 < 2 and let A ∈ R𝑛×𝑑 be
such that W1/2A is orthonormal. Let 𝜏 ≥ max𝑛𝑖=1

⃦⃦
e⊤𝑖 W

1/2A
⃦⃦2
2
. Then,

log𝐸(𝐵𝑝
w(A), 𝐵∞(A), 𝑡) ≤ 𝑂(1)

1

𝑡𝑝

(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂
𝜏.

Proof. In order to bound a covering of 𝐵𝑝
w(A) by 𝐵∞(A), we first cover 𝐵𝑝

w(A) by 𝐵2
w(A), and

then use Corollary 6.4.9 to cover 𝐵2
w(A) by 𝐵∞(A).

We will first bound 𝐸(𝐵𝑝
w(A), 𝐵2

w(A), 𝑡) using Lemma 6.4.10. For each 𝑘 ≥ 0, let ℰ𝑘 ⊆
𝐵𝑝

w(A) be a maximal subset of 𝐵𝑝
w(A) such that for each distinct y,y′ ∈ ℰ𝑘, ‖y − y′‖w,2 > 8𝑘𝑡,

with ℰ𝑘 := {0} for 8𝑘+1𝑡 > 𝑛1/𝑝−1/𝑞. Note then that

|ℰ𝑘| ≥ 𝐸(𝐵𝑝
w(A), 𝐵2

w(A), 8𝑘𝑡).

By averaging, for each 𝑘, there exists y(𝑘) ∈ ℰ𝑘 such that if

ℱ𝑘 :=
{︀
y ∈ ℰ𝑘 : ‖y − y(𝑘)‖w,2 ≤ 8𝑘+1𝑡

}︀
,

then

|ℱ𝑘| ≥
|ℰ𝑘|

𝐸(𝐵𝑝
w(A), 𝐵2

w(A), 8𝑘+1𝑡)
≥ 𝐸(𝐵𝑝

w(A), 𝐵2
w(A), 8𝑘𝑡)

𝐸(𝐵𝑝
w(A), 𝐵2

w(A), 8𝑘+1𝑡)

We now use this observation to construct an ℓ𝑝′-packing of 𝐵2
w(A), where 𝑝′ is the Hölder

conjugate of 𝑝. Let

𝒢𝑘 :=
{︂

1

8𝑘+1𝑡
(y − y(𝑘)) : y ∈ ℱ𝑘

}︂
.

Then, 𝒢𝑘 ⊆ 𝐵2
w(A) and 𝒢𝑘 ⊆ 𝐵𝑝

w(A) · 2/8𝑘+1𝑡, and ‖y − y′‖w,2 > 1/8 for every distinct
y,y′ ∈ 𝒢𝑘. Then by Hölder’s inequality,

1

82
≤ ‖y − y′‖2w,2 ≤ ‖y − y′‖w,𝑝‖y − y′‖w,𝑝′ ≤

4

8𝑘+1𝑡
‖y − y′‖w,𝑝′

so ‖y − y′‖w,𝑝′ ≥ 2 · 8𝑘−2𝑡. Thus, 𝒢𝑘 is an ℓ𝑝′-packing of 𝐵2
w(A), so

log𝐸(𝐵2
w(A), 𝐵𝑝′

w(A), 8𝑘−2𝑡) ≥ log|𝒢𝑘| = log|ℱ𝑘|
≥ log𝐸(𝐵𝑝

w(A), 𝐵2
w(A), 8𝑘𝑡)− log𝐸(𝐵𝑝

w(A), 𝐵2
w(A), 8𝑘+1𝑡).

(6.3)

71

Summing over 𝑘 gives

log𝐸(𝐵𝑝
w(A), 𝐵2

w(A), 𝑡)

=
∑︁
𝑘≥0

log𝐸(𝐵𝑝
w(A), 𝐵2

w(A), 8𝑘𝑡)− log𝐸(𝐵𝑝
w(A), 𝐵2

w(A), 8𝑘+1𝑡)

≤
∑︁
𝑘≥0

log𝐸(𝐵2
w(A), 𝐵𝑝′

w(A), 8𝑘−2𝑡) (6.3)

≤ 𝑂(1)
1

(𝑡/2)2𝑝′/(𝑝′−2)
·
(︂

𝑝′

𝑝′ − 2
log 𝑑+ log 𝑛

)︂
𝜏 Lem. 6.4.10, Cor. 6.4.9

= 𝑂(1)
1

(𝑡/2)2𝑝/(2−𝑝)
·
(︂

𝑝

2− 𝑝
log 𝑑+ log 𝑛

)︂
𝜏

where we take 𝑝′/(𝑝′ − 2) = 1 for 𝑝′ =∞. Using this and Corollary 6.4.9, we now bound

log𝐸(𝐵𝑝
w(A), 𝐵∞(A), 𝑡) ≤ log𝐸(𝐵𝑝

w(A), 𝐵2
w(A), 𝜆) + log𝐸(𝐵2

w(A), 𝐵∞(A), 𝑡/𝜆)

≤ 𝑂(1)
1

(𝜆/2)2𝑝/(2−𝑝)
·
(︂

𝑝

2− 𝑝
log 𝑑+ log 𝑛

)︂
𝜏 +𝑂(1)

(log 𝑛) · 𝜏
(𝑡/𝜆)2

for any 𝜆 ∈ [1, 𝑡]. We choose 𝜆 satisfying

1

(𝜆/2)2𝑝/(2−𝑝)
=

(𝜆/2)2

𝑡2
,

which gives

(𝜆/2)2𝑝/(2−𝑝) =
(︀
𝑡2
)︀ 2𝑝/(2−𝑝)

2+2𝑝/(2−𝑝) = 𝑡𝑝

so we obtain a bound of

𝑂(1)
1

𝑡𝑝

(︂
1

2− 𝑝
log 𝑑+ log 𝑛

)︂
𝜏.

6.4.3 Entropy integral for ℓ𝑝 Lewis weight sampling
We will now specialize the general results derived previous to the case of ℓ𝑝 Lewis weight sampling.
For this setting, we will make use of reweighted ℓ𝑝 norms. We first translate our pseudo-metric
bounds to this reweighted setting.

Lemma 6.4.12. Let A ∈ R𝑛×𝑑 and let 0 ≤ w ∈ R𝑛 be 𝛾-one-sided ℓ𝑝 Lewis weights. Let
𝐽 = {𝑖 ∈ [𝑛] : w𝑖 ≥ 𝜀/𝑛} ⊇ {𝑖 ∈ [𝑛] : 𝜎𝑝

𝑖 (A) ≥ 𝜀/𝑛}. Let 𝑤 = max𝑖∈𝐽 w𝑖 and W = diag(w).
Let 𝑑𝑋 be the pseudo-metric as defined in Lemma 6.4.1. Then for 𝑞 = 𝑂(log(𝑛/𝜀)),

𝑑𝑋(x,x
′) ≤

⎧⎨⎩2𝑤1/2
⃦⃦
W−1/𝑝Ax−W−1/𝑝Ax′⃦⃦𝑝/2

w,𝑞
𝑝 < 2

2𝑝𝑤1/2 · (‖w‖𝑝/2−1
1 /𝛾𝑝/2)1/2−1/𝑝

⃦⃦
W−1/𝑝Ax−W−1/𝑝Ax′⃦⃦

w,𝑞
𝑝 > 2

72

and

diam(𝐵𝑝(A)) ≤

{︃
4 · (𝑤/𝛾)1/2 𝑝 < 2

4𝑝 · (𝛾−𝑝/2‖w‖𝑝/2−1
1 𝑤)1/2 𝑝 > 2

Proof. We have that

‖(Ax−Ax′)|𝐽‖∞ =
⃦⃦
W1/𝑝(W−1/𝑝Ax−W−1/𝑝Ax′)|𝐽

⃦⃦
∞

≤ 𝑤1/𝑝
⃦⃦
(W−1/𝑝Ax−W−1/𝑝Ax′)|𝐽

⃦⃦
∞

and 𝜎𝑝
𝑖 (A) ≤ 𝛾−𝑝/2‖w‖𝑝/2−1

1 𝑤 for 𝑝 > 2 and 𝜎𝑝
𝑖 (A) ≤ 𝛾−1𝑤 for 𝑝 < 2 by Lemma 6.2.4.

Furthermore, note that w𝑖 ≥ 𝜀/𝑛 for each 𝑖 ∈ 𝐽 , so

𝑛

𝜀
‖y|𝐽‖𝑞w,𝑞 ≥ ‖y|𝐽‖𝑞𝑞 ≥ ‖y|𝐽‖𝑞∞

so for 𝑞 = 𝑂(log(𝑛/𝜀)), we have

‖(W−1/𝑝Ax−W−1/𝑝Ax′)|𝐽‖∞ ≤ 2‖W−1/𝑝Ax−W−1/𝑝Ax′‖w,𝑞

Plugging these results into Lemmas 6.4.1 and 6.4.2 yields the desired result.

Next, we obtain entropy bounds using our lemmas from Section 6.4.2 for covering the index
set 𝑇 = 𝐵𝑝(A) = 𝐵𝑝

w(W
−1/𝑝A) of the Rademacher process by 𝐵𝑞

w(W
−1/𝑝A) (unit balls of the

‖·‖w,𝑞 norm), as required by Lemma 6.4.12.

Lemma 6.4.13 (Entropy bounds, 𝑝 > 2). Let 2 < 𝑝 <∞. Let A ∈ R𝑛×𝑑 and let 0 ≤ w ∈ R𝑛 be
𝛾-one-sided ℓ𝑝 Lewis weights. Let 𝑤 = max𝑖∈[𝑛] w𝑖. Then,

log𝐸(𝐵𝑝(A), 𝑑𝑋 , 𝑡) ≤ 𝑂(𝑝2𝑤)
log(𝑛/𝜀)

𝛾𝑝/2𝑡2
‖w‖𝑝/2−1

1 .

Proof. We first bound

log𝐸(𝐵𝑝(A), 𝑑𝑋 , 𝑡) ≤ log𝐸(𝐵𝑝(A), 𝐾‖W−1/𝑝A(·)‖w,𝑞, 𝑡)

for 𝐾 = 2𝑝𝑤1/2(‖w‖𝑝/2−1
1 /𝛾𝑝/2)1/2−1/𝑝 by Lemma 6.4.12. We have by Lemma 6.2.2 that

𝐵𝑝(A) ⊆ ‖w‖1/2−1/𝑝
1 ·𝐵2

w(W
−1/𝑝A)

so we then have

log𝐸(𝐵𝑝(A), 𝐾‖W−1/𝑝A(·)‖w,𝑞, 𝑡)

≤ log𝐸(‖w‖1/2−1/𝑝
1 ·𝐵2

w(W
−1/𝑝A), 𝐾‖W−1/𝑝A(·)‖w,𝑞, 𝑡)

≤ log𝐸(𝐵2
w(W

−1/𝑝A), ‖W−1/𝑝A(·)‖w,𝑞, 𝑡/𝐾‖w‖1/2−1/𝑝
1).

Note that the entropy bounds do not change if we replace A by AR, where R is the change
of basis matrix such that W1/2−1/𝑝AR is orthonormal. Then by the properties of 𝛾-one-sided ℓ𝑝
Lewis weights (Lemma 6.2.1), we have

‖e⊤𝑖 W−1/𝑝AR‖22 = w
−2/𝑝
𝑖 ‖e⊤𝑖 AR‖22 ≤ 𝛾−1.

73

We can then apply Corollary 6.4.8 to bound

log𝐸(𝐵2
w(W

−1/𝑝A), ‖W−1/𝑝A(·)‖w,𝑞, 𝑡/𝐾‖w‖1/2−1/𝑝
1)

≤ 𝑂(1)
𝑛2/𝑞𝑞 · 𝛾−1

𝑡2
(𝐾‖w‖1/2−1/𝑝

1)2

≤ 𝑂(𝑝2)
log(𝑛/𝜀) · 𝛾−1𝑤

𝑡2
(‖w‖1/𝛾)𝑝/2−1

≤ 𝑂(𝑝2𝑤)
log(𝑛/𝜀)

𝛾𝑝/2𝑡2
‖w‖𝑝/2−1

1

Lemma 6.4.14 (Entropy bounds, 𝑝 < 2). Let 0 < 𝑝 < 2. Let A ∈ R𝑛×𝑑 and let 0 ≤ w ∈ R𝑛 be
𝛾-one-sided ℓ𝑝 Lewis weights. Let 𝑤 = max𝑖∈[𝑛] w𝑖 and W = diag(w). Then,

log𝐸(𝐵𝑝(A), 𝑑𝑋 , 𝑡) ≤ 𝑂(1)
𝑤

𝛾𝑡2

(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂
.

Proof. We first bound

log𝐸(𝐵𝑝(A), 𝑑𝑋 , 𝑡) ≤ log𝐸(𝐵𝑝(A), 𝐾‖W−1/𝑝A(·)‖𝑝/2w,𝑞, 𝑡)

= log𝐸(𝐵𝑝(A), ‖W−1/𝑝A(·)‖w,𝑞, (𝑡/𝐾)2/𝑝)

for 𝐾 = 2𝑤1/2 by Lemma 6.4.12. Note that the entropy bounds do not change if we replace A by
AR, where R is the change of basis matrix such that W1/2−1/𝑝AR is orthonormal. Then by the
properties of 𝛾-one-sided ℓ𝑝 Lewis weights (Lemma 6.2.1), we have

‖e⊤𝑖 W−1/𝑝AR‖22 = w
−2/𝑝
𝑖 ‖e⊤𝑖 AR‖22 ≤ 𝛾−1.

Then by Lemma 6.4.11, we have that

log𝐸(𝐵𝑝(A), ‖W−1/𝑝A(·)‖w,𝑞, (𝑡/𝐾)2/𝑝) ≤ 𝑂(1)
𝑤

𝛾𝑡2

(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂
.

We may now evaluate the entropy integral required in Theorem 2.3.6. We use the following
calculus lemma:

Lemma 6.4.15. Let 0 < 𝜆 ≤ 1. Then,∫︁ 𝜆

0

√︂
log

1

𝑡
𝑑𝑡 = 𝜆

√︀
log(1/𝜆) +

√
𝜋

4
erfc(

√︀
log(1/𝜆)) ≤ 𝜆

(︂√︀
log(1/𝜆) +

√
𝜋

2

)︂
Proof. We calculate∫︁ 𝜆

0

√︂
log

1

𝑡
𝑑𝑡 = 2

∫︁ ∞

√
log(1/𝜆)

𝑥2 exp(−𝑥2) 𝑑𝑥 𝑥 =
√︀

log(1/𝑡)

74

= −
∫︁ ∞

√
log(1/𝜆)

𝑥 · −2𝑥 exp(−𝑥2) 𝑑𝑥

= −

(︃
𝑥 exp(−𝑥2)

⃒⃒⃒∞
√

log(1/𝜆)
−
∫︁ ∞

√
log(1/𝜆)

exp(−𝑥2) 𝑑𝑥

)︃
integration by parts

= 𝜆

√︂
log

1

𝜆
+

√
𝜋

2
erfc

(︃√︂
log

1

𝜆

)︃

Lemma 6.4.16 (Entropy integral bound for 𝑝 < 2). Let 0 < 𝑝 < 2. Let A ∈ R𝑛×𝑑 and let
0 ≤ w ∈ R𝑛 be 𝛾-one-sided ℓ𝑝 Lewis weights. Let 𝑤 = max𝑖∈[𝑛] w𝑖. Then,∫︁ ∞

0

√︀
log𝐸(𝐵𝑝(A), 𝑑𝑋 , 𝑡) 𝑑𝑡 ≤ 𝑂((𝑤/𝛾)1/2)

(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂1/2

log 𝑑

Proof. Note that it suffices to integrate the entropy integral to diam(𝐵𝑝(A)) rather than∞, which
is at most 4(𝑤/𝛾)1/2 for 𝑝 < 2 by Lemma 6.4.12.

For small radii less than 𝜆 for a parameter 𝜆 to be chosen, we use a standard volume argument,
which shows that

log𝐸(𝐵𝑝(A), 𝑑𝑋 , 𝑡) ≤ 𝑂(𝑑) log
𝑛

𝑡
so ∫︁ 𝜆

0

√︀
log𝐸(𝐵𝑝(A), 𝑑𝑋 , 𝑡) 𝑑𝑡 =

∫︁ 𝜆

0

√︂
𝑑 log

𝑛

𝑡
𝑑𝑡

≤ 𝜆
√︀

𝑑 log 𝑛+
√
𝑑

∫︁ 𝜆

0

√︂
log

1

𝑡
𝑑𝑡

≤ 𝜆
√︀

𝑑 log 𝑛+
√
𝑑

(︃
𝜆

√︂
log

1

𝜆
+

√
𝜋

2
𝜆

)︃
Lemma 6.4.15

≤ 𝑂(𝜆)

√︂
𝑑 log

𝑛

𝜆

On the other hand, for large radii larger than 𝜆, we use the bounds of Lemma 6.4.14, which gives

log𝐸(𝐵𝑝(A), 𝑑𝑋 , 𝑡) ≤ 𝑂(1)
1

𝑡2

(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂
(𝑤/𝛾)

so the entropy integral gives a bound of

𝑂(1)

[︂(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂
(𝑤/𝛾)

]︂1/2 ∫︁ 4(𝑤/𝛾)1/2

𝜆

1

𝑡
𝑑𝑡

= 𝑂(1)

[︂(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂
(𝑤/𝛾)

]︂1/2
log

4𝑝(𝑤/𝛾)1/2

𝜆
.

We choose 𝜆 =
√︀
𝑤/𝛾𝑑, which yields the claimed conclusion.

75

An analogous result and proof holds for 𝑝 > 2.

Lemma 6.4.17 (Entropy integral bound for 𝑝 > 2). Let 2 < 𝑝 < ∞. Let A ∈ R𝑛×𝑑 and let
0 ≤ w ∈ R𝑛 be 𝛾-one-sided ℓ𝑝 Lewis weights. Let 𝑤 = max𝑖∈[𝑛] w𝑖. Then,∫︁ ∞

0

√︀
log𝐸(𝐵𝑝(A), 𝑑𝑋 , 𝑡) 𝑑𝑡 ≤ 𝑂(𝑝𝑤1/2)(‖w‖𝑝/2−1

1 /𝛾𝑝/2)1/2(log(𝑛/𝜀))1/2 log 𝑑

Proof. The proof is similar to the case of 𝑝 < 2. We again introduce a parameter 𝜆. For radii
below 𝜆, the bound is the same as Lemma 6.4.16. For radii above 𝜆, we use Lemma 6.4.13 to
bound

log𝐸(𝐵𝑝(A), 𝑑𝑋 , 𝑡) ≤ 𝑂(𝑝2𝑤)
log(𝑛/𝜀)

𝛾𝑝/2𝑡2
‖w‖𝑝/2−1

1 .

so the entropy integral gives a bound of

𝑂(𝑝𝑤1/2)(‖w‖𝑝/2−1
1 /𝛾𝑝/2)1/2(log(𝑛/𝜀))1/2 ·

∫︁ diam(𝐵𝑝(A))

𝜆

1

𝑡
𝑑𝑡

≤ 𝑂(𝑝𝑤1/2)(‖w‖𝑝/2−1
1 /𝛾𝑝/2)1/2(log(𝑛/𝜀))1/2 log

4𝑝 · (𝛾−𝑝/2‖w‖𝑝/2−1
1 𝑤)1/2

𝜆
Lemma 6.4.12

Choosing 𝜆 = 𝑝𝑤1/2(𝛾−𝑝/2‖w‖𝑝/2−1
1)1/2/

√
𝑑 yields the claimed conclusion.

6.5 Analysis of ℓ𝑝 Lewis weight sampling: endgame
We will now assemble our previous lemmas to prove the main sampling theorem for 𝛾-one-sided
ℓ𝑝 Lewis weight sampling.

Theorem 6.5.1. Let 0 < 𝑝 < ∞. Let A ∈ R𝑛×𝑑 and let 0 ≤ w ∈ R𝑛 be 𝛾-one-sided ℓ𝑝 Lewis
weights. Let 𝛼 > 0 and let 𝑝𝑖 = min{1,w𝑝

𝑖 (A)/𝛼} for 𝑖 ∈ [𝑛]. Let S ∈ R𝑛×𝑛 be the diagonal
matrix formed by independently setting S𝑖,𝑖 = 1/𝑝

1/𝑝
𝑖 with probability 𝑝𝑖 and 0 otherwise for each

𝑖 ∈ [𝑛]. Then for

𝛼 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛾𝜀2

(log 𝑑)2(log 𝑛) log 1
𝛿

𝑝 < 2

𝛾𝑝/2𝜀2

‖w‖𝑝/2−1
1 (log 𝑑)2 log(𝑛/𝜀) log 1

𝛿

𝑝 > 2

‖SAx‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝
for every x ∈ R𝑑. With probability at least 1− 𝛿, the number of rows sampled is at most

nnz(S) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑂

(︂
‖w‖1

(log 𝑑)2(log 𝑛) log 1
𝛿

𝛾𝜀2

)︂
𝑝 < 2

𝑂

(︂
‖w‖𝑝/21

(log 𝑑)2 log(𝑛/𝜀) log 1
𝛿

𝛾𝑝/2𝜀2

)︂
𝑝 > 2

.

76

Proof. In Lemma 6.3.1 we have reduced our task of bounding the sampling error to bounding
the 𝑙-th moments of a certain Rademacher process. The bound for this Rademacher process is
reduced to a bound for another Rademacher process of the form of (6.2). Here, A′ is an 𝑚× 𝑑
matrix with 𝑚 = 𝑂(𝑛/𝛼) rows whose ℓ𝑝 Lewis weights are uniformly bounded by 𝛼, for any
𝛼 ∈ (0, 1) of our choosing. We bound the tail of this Rademacher process via Dudley’s entropy
integral (Theorem 2.3.6), which then leads to moment bounds via integration (Lemma 2.3.7).

We now evaluate the moment bounds. The entropy integral ℰ and diameter 𝒟 required in
Lemma 2.3.7 are given by

ℰ =

⎧⎪⎨⎪⎩𝑂((𝛼/𝛾)1/2)

(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂1/2

log 𝑑 𝑝 < 2

𝑂(𝑝𝛼1/2)(𝛾−𝑝/2‖w‖𝑝/2−1
1)1/2(log(𝑛/𝜀))1/2 log 𝑑 𝑝 > 2

by Lemmas 6.4.16 and 6.4.17, and

𝒟 =

{︃
4 · (𝛼/𝛾)1/2 𝑝 < 2

4𝑝 · 𝛼1/2(𝛾−𝑝/2‖w‖𝑝/2−1
1)1/2 𝑝 > 2

by Lemma 6.4.12. Then for 𝛼 as chosen in the theorem statement, the moment bound is at most
𝛿𝜀𝑙. This is the bound requested by Lemma 6.3.1, and thus this proves the theorem.

6.6 Online ℓ𝑝 Lewis weight sampling
In this section, we obtain the first online ℓ𝑝 subspace embeddings which achieve guarantees which
nearly match those of Theorems 6.1.9 and 6.1.11. This provides a generalization of the results
of [CMP16, CMP20] for ℓ2 subspace embeddings to ℓ𝑝 subspace embeddings, and answers open
questions of [BDM+20] and [CLS22].

We define online ℓ𝑝 Lewis weights, which are defined analogously to online leverage scores
(Definition 1.3.4).

Definition 6.6.1 (Online ℓ𝑝 Lewis weights). Let A ∈ R𝑛×𝑑 and 0 < 𝑝 < ∞. Then, for each
𝑖 ∈ [𝑛], the 𝑖th online ℓ𝑝 Lewis weight is defined as

w𝑝,OL
𝑖 (A) :=

⎧⎨⎩min

{︂[︁
a⊤
𝑖 (A

⊤
𝑖−1W

𝑝,OL(A)
1−2/𝑝
𝑖−1 A𝑖−1)

−a𝑖

]︁𝑝/2
, 1

}︂
if a𝑖 ∈ rowspan(A𝑖−1)

1 otherwise

where W𝑝,OL(A)𝑗 is the 𝑗 × 𝑗 diagonal matrix with W𝑝,OL(A)𝑗(𝑖, 𝑖) = w𝑝,OL
𝑖 (A).

Note that by maintaining the online Lewis quadratic A⊤
𝑖−1W

𝑝,OL(A)
1−2/𝑝
𝑖−1 A𝑖−1, we can access

w𝑝,OL
𝑖 (A) upon the arrival of row a𝑖 by using only 𝑂(𝑑2) words of memory.

6.6.1 Lemmas from linear algebra
Before we prove our results about online ℓ𝑝 Lewis weights, we need a few linear algebraic lemmas.

77

Lemma 6.6.2. Let R = VR̃V⊤ ∈ R𝑑×𝑑 where R̃ ∈ R𝑟×𝑟 is a symmetric positive definite matrix
and V ∈ R𝑑×𝑟 has orthonormal columns. Then,

R− = VR̃−1V⊤.

Proof. Note that VR̃−1V⊤ is an inverse for the column space of R, i.e.,

R(VR̃−1V⊤)R = VR̃R̃−1R̃V⊤ = R

and a weak inverse, i.e.,

(VR̃−1V⊤)R(VR̃−1V⊤) = VR̃−1V⊤.

One can also easily check that both R(VR̃−1V⊤) and (VR̃−1V⊤)R are Hermitian. Thus,
VR̃−1V⊤ is uniquely determined to be the pseudoinverse of R.

Lemma 6.6.3. Let 0 ⪯ R ⪯ S ∈ R𝑑×𝑑 by symmetric positive semidefinite matrices. Let
a ∈ rowspan(R). Then,

a⊤R−a ≥ a⊤S−a.

Proof. Let V ∈ R𝑑×𝑟 be an orthonormal basis for 𝑉 := rowspan(R), where 𝑟 = dim(𝑉). Let
P = VV⊤ be the projection matrix onto 𝑉 . Write a = Vb for b ∈ R𝑟 and R = VR̃V⊤,
PSP = VS̃V⊤ for R̃, S̃ ∈ R𝑟×𝑟. Then, we have that

a⊤R−a = b⊤V⊤(VR̃V⊤)−Vb = b⊤R̃−1b

and
a⊤S−a = b⊤V⊤(VS̃V⊤)−Vb = b⊤S̃−1b.

Furthermore, for all x ∈ R𝑟, we have that

x⊤V⊤RVx ≤ x⊤V⊤SVx = x⊤V⊤PSPVx

so R̃ ⪯ S̃, meaning that R̃−1 ⪰ S̃−1. Thus,

a⊤R−a = b⊤R̃−1b ≥ b⊤S̃−1b = a⊤S−a.

6.6.2 Properties of online ℓ𝑝 Lewis weights

We first show that for 0 < 𝑝 < 2, the online Lewis weights upper bound Lewis weights.

Lemma 6.6.4. Let A ∈ R𝑛×𝑑 and 0 < 𝑝 < 2. Then, for each 𝑖 ∈ [𝑛],

w𝑝
𝑖 (A) ≤ w𝑝,OL

𝑖 (A)

78

Proof. We proceed by induction. It suffices to consider the case when w𝑝,OL
𝑖 (A) < 1, since

w𝑝
𝑖 (A) ≤ 1 for every 𝑖 ∈ [𝑛]. In particular, a𝑖 ∈ rowspan(A𝑖−1) and

w𝑝,OL
𝑖 (A) =

[︁
a⊤
𝑖 (A

⊤
𝑖−1W

𝑝,OL(A)
1−2/𝑝
𝑖−1 A𝑖−1)

−a𝑖

]︁𝑝/2
.

Then, since 1− 2
𝑝
< 0, we have that

W𝑝,OL(A)𝑖−1 ⪰W𝑝(A)𝑖−1 ≻ 0 =⇒ W𝑝,OL(A)
1−2/𝑝
𝑖−1 ⪯W𝑝(A)

1−2/𝑝
𝑖−1

=⇒ A⊤
𝑖−1(W

𝑝,OL(A)
1−2/𝑝
𝑖−1 −W𝑝(A)

1−2/𝑝
𝑖−1)A𝑖−1 ⪯ 0

=⇒ A⊤
𝑖−1W

𝑝,OL(A)
1−2/𝑝
𝑖−1 A𝑖−1 ⪯ A⊤

𝑖−1W
𝑝(A)

1−2/𝑝
𝑖−1 A𝑖−1.

By Lemma 6.6.3, it follows that for every a ∈ rowspan(A𝑖−1),

a⊤(A⊤
𝑖−1W

𝑝,OL(A)
1−2/𝑝
𝑖−1 A𝑖−1)

−a ≥ a⊤(A⊤
𝑖−1W

𝑝(A)
1−2/𝑝
𝑖−1 A𝑖−1)

−a.

Similarly, we have that

a⊤(A⊤
𝑖−1W

𝑝(A)
1−2/𝑝
𝑖−1 A𝑖−1)

−a ≥ a⊤(A⊤W𝑝(A)1−2/𝑝A)−a

for every a ∈ rowspan(A𝑖−1). The result follows by taking 𝑝/2-th roots on the chain of inequali-
ties.

Note that for 𝑝 > 2, the above proof fails since 1− 2
𝑝
> 0, which causes the inequalities to go

the wrong way. Nevertheless, we show that these weights satisfy the one-sided Lewis property,
which we have shown to be sufficient for sampling in Theorem 6.5.1.

Lemma 6.6.5 (One-sided Lewis property of online ℓ𝑝 Lewis weights). Let A ∈ R𝑛×𝑑 and
0 < 𝑝 <∞. Then, for each 𝑖 ∈ [𝑛],

w𝑝,OL
𝑖 (A) ≥ 𝜏 𝑖(W

𝑝,OL(A)1/2−1/𝑝A).

Proof. We already have the result when a𝑖 /∈ rowspan(A𝑖−1), so we assume a𝑖 ∈ rowspan(A𝑖−1).
Similarly, we can assume that w𝑝,OL

𝑖 (A) < 1. In this case,

w𝑝,OL
𝑖 (A) =

[︁
a⊤
𝑖 (A

⊤
𝑖−1W

𝑝,OL(A)
1−2/𝑝
𝑖−1 A𝑖−1)

−a𝑖

]︁𝑝/2
which rearranges to

w𝑝,OL
𝑖 (A) = (w𝑝,OL

𝑖 (A)1/2−1/𝑝a𝑖)
⊤(A⊤

𝑖−1W
𝑝,OL(A)

1−2/𝑝
𝑖−1 A𝑖−1)

−(w𝑝,OL
𝑖 (A)1/2−1/𝑝a𝑖).

By Lemma 6.6.3, this is bounded below by

(w𝑝,OL
𝑖 (A)1/2−1/𝑝a𝑖)

⊤(A⊤W𝑝,OL(A)1−2/𝑝A)−(w𝑝,OL
𝑖 (A)1/2−1/𝑝a𝑖) = 𝜏 𝑖(W

𝑝,OL(A)1/2−1/𝑝A),

which is the claimed result.

79

6.6.3 The sum of online ℓ𝑝 Lewis weights
Finally, we bound the sum of online Lewis weights, using bounds on the sum of online leverage
scores. Our proof substantially simplifies the proofs of [BDM+20, Lemma 4.7, Lemma 5.15],
which relied on an elaborate argument involving recursive applications of a “whack-a-mole”
lemma of [CLM+15], and also slightly improves the bound by logarithmic factors.

Lemma 6.6.6 (Sum of online ℓ𝑝 Lewis weights). Let A ∈ R𝑛×𝑑 and 0 < 𝑝 <∞. Then,

𝑛∑︁
𝑖=1

w𝑝,OL
𝑖 (A) ≤ 𝑂(𝑑) log(𝑛𝜅OL(A)).

Proof. Our analysis is similar to those given by [CMP20] and [WY22b]. For w𝑝,OL
𝑖 (A) < 1, we

have that
w𝑝,OL

𝑖 (A) =
[︁
a⊤
𝑖 (A

⊤
𝑖−1W

𝑝,OL(A)
1−2/𝑝
𝑖−1 A𝑖−1)

−a𝑖

]︁𝑝/2
.

This rearranges to

w𝑝,OL
𝑖 (A) = (w𝑝,OL

𝑖 (A)1/2−1/𝑝a𝑖)
⊤(A⊤

𝑖−1W
𝑝,OL(A)

1−2/𝑝
𝑖−1 A𝑖−1)

−(w𝑝,OL
𝑖 (A)1/2−1/𝑝a𝑖),

which is exactly the 𝑖th online leverage score of W𝑝,OL(A)1/2−1/𝑝A. Similar reasoning for
w𝑝,OL

𝑖 (A) = 1 shows that w𝑝,OL
𝑖 (A) = 𝜏OL

𝑖 (W𝑝,OL(A)1/2−1/𝑝A). Thus,

𝑛∑︁
𝑖=1

w𝑝,OL
𝑖 (A) =

𝑛∑︁
𝑖=1

𝜏OL
𝑖 (W𝑝,OL(A)1/2−1/𝑝A) ≤ 𝑂(𝑑 log 𝜅OL(W𝑝,OL(A)1/2−1/𝑝A))

by bounds on the sum of online leverage scores (Lemma 1.3.8). If 𝑝 < 2, then we have for any
x ∈ R𝑑 and 𝑖 ∈ [𝑛] that

‖A𝑖x‖2 ≤
⃦⃦
W𝑝,OL(A𝑖)

1/2−1/𝑝A𝑖x
⃦⃦
2
≤
⃦⃦
W𝑝(A𝑖)

1/2−1/𝑝A𝑖x
⃦⃦
2

≤ 𝑑|1/2−1/𝑝|‖A𝑖x‖𝑝 ≤ (𝑛𝑑)|1/2−1/𝑝|‖A𝑖x‖2,

so 𝜅OL(A) = poly(𝑛)𝜅OL(W𝑝,OL(A)1/2−1/𝑝A). If 𝑝 > 2, then by Lemma 6.2.3,

‖A𝑖x‖𝑝 ≤
⃦⃦
W𝑝,OL(A𝑖)

1/2−1/𝑝A𝑖x
⃦⃦
2
≤ ‖A𝑖x‖2.

Thus,
𝑛∑︁

𝑖=1

w𝑝,OL
𝑖 (A) ≤ 𝑂(𝑑) log(𝑛𝜅OL(A)).

Now that we have established the one-sided Lewis property of the online ℓ𝑝 Lewis weights
and bounded their sum, sampling results immediately follow from our results on sampling with
one-sided ℓ𝑝 Lewis weights in Theorem 6.5.1.

80

Chapter 7

ℓ𝑝 sensitivity sampling [WY23c]

7.1 Beyond ℓ𝑝 Lewis weight sampling

In this section, we study the ℓ𝑝 sensitivity sampling algorithm for sampling ℓ𝑝 subspace embed-
dings. Recall from our discussion in Section 1.3.1 that the general sensitivity sampling framework
provides an approach towards constructing coresets for an extremely wide class of shape-fitting
problems, and when specialized to the case of ℓ𝑝 subspace embeddings, sensitivity sampling
achieves a poly(𝑑)/𝜀2 bound on the row count for any fixed 0 < 𝑝 <∞ (Section 6.1), although
is not known to achieve the nearly optimal row counts that are possible with ℓ𝑝 Lewis weight
sampling. However, for 𝑝 > 2, ℓ𝑝 sensitivity sampling in fact has the potential to produce a
smaller number of rows than ℓ𝑝 Lewis weight sampling, if the total sensitivity S𝑝(A) is small.
Indeed, S𝑝(A) can be as small as 𝑑 even for 𝑝 > 2 (while the worst-case bound is 𝑑𝑝/2), in which
case one obtains a sample complexity of �̃�(𝜀−2S𝑑) = �̃�(𝜀−2𝑑2) for such matrices, while Lewis
weight sampling would require �̃�(𝜀−2𝑑𝑝/2), which is polynomially worse for 𝑝 > 4. We discuss
several explicit families of matrices with small total sensitivity in Section 7.2. Thus, despite the
fact that ℓ𝑝 Lewis weight sampling already achieves nearly optimal bounds in the worst case (see
Chapter 6), the study of sensitivity sampling using the scores of Definition 6.1.2 is still interesting
for two reasons:

1. The definition of sensitivities can be massively generalized to a wide variety of sampling-
based approximation problems.

2. For 𝑝 > 2, sensitivity sampling admits matrix-dependent bounds which can circumvent the
lower bounds of Theorem 6.1.5.

For these reasons, our work in [WY23c] studies the problem of obtaining the tightest possible
bounds for ℓ𝑝 sensitivity sampling:

Question 7.1.1. What is the smallest sample complexity possible for the ℓ𝑝 sensitivity sampling
algorithm?

While we are not able to complete resolve Question 7.1.1, we make progress towards this
question by giving an analysis of ℓ𝑝 sensitivity sampling which goes beyond the general case
bound of �̃�(𝜀−2S𝑑) for 𝑝 > 2. Our analysis also gives a similar result for 𝑝 < 2, although this
result is superseded by an analysis that relates ℓ𝑝 sensitivity scores to ℓ𝑝 Lewis weights, which

81

achieves a bound of �̃�(𝜀−2𝑑1−𝑝/2S) [CD21, MO23].

Theorem 7.1.2 (ℓ𝑝 sensitivity sampling [WY23c]). Let 1 ≤ 𝑝 <∞ and let A ∈ R𝑛×𝑑. Let 𝛼 > 0
and let 𝑞𝑖 = min{1, 1/𝑛+ 𝜎𝑝

𝑖 (A)/𝛼} for 𝑖 ∈ [𝑛]. Let S ∈ R𝑛×𝑛 be the ℓ𝑝 sampling matrix with
probabilities {𝑞𝑖}𝑛𝑖=1. Then, with probability at least 99/100, there is an 𝛼 such that S is an ℓ𝑝
subspace embedding satisfying Definition 1.1.1 with 𝜅 = (1 + 𝜀), and furthermore, S has at most
𝑟 nonzero rows, for

𝑟 =

{︃
𝜀−2S𝑝(A)2/𝑝 poly log 𝑛 1 ≤ 𝑝 < 2

𝜀−2S𝑝(A)2−2/𝑝 poly log 𝑛 2 < 𝑝 <∞
Our improved analysis of ℓ𝑝 sensitivity sampling is largely based off of the analysis of ℓ𝑝

Lewis weight sampling in the works of [BLM89, LT91], and in particular makes use of similar
chaining arguments (see Chapter 6 for further details). In these arguments when ℓ𝑝 Lewis weights
are used as sampling probabilities, then such a chaining argument goes through due to the fact
that the resulting matrix has uniformly bounded leverage scores and ℓ𝑝 sensitivities, which in turn
is a consequence of the specific definition of Lewis weights. However, when we instead use the ℓ𝑝
sensitivities as the sampling probabilities, we no longer have this property, and the analysis needs
to be modified.

To address this problem, we observe that although ℓ𝑝 sensitivity sampling does not directly
lead to uniformly bounded leverage scores, it does lead to uniformly bounded ℓ𝑝 sensitivities in
the resulting matrix. We then show that this in turn implies approximately uniformly bounded
leverage scores, by relating the ℓ𝑝 sensitivities to the leverage scores.

7.2 Structured matrices with small total sensitivity, 𝑝 > 2

We first show several examples in structured regression problems in which our new sensitivity
sampling results give the best known sample complexity results for ℓ𝑝 subspace embeddings for
𝑝 > 2. We start by presenting a couple of lemmas which show that certain natural classes of
matrices have total ℓ𝑝 sensitivity≪ 𝑑𝑝/2.

The first result is a lemma extracted from a result of [MMM+22] bounding the total ℓ𝑝
sensitivity for a sparse perturbation of low rank matrices:

Lemma 7.2.1 (Sensitivity bounds for low rank + sparse matrices [MMM+22]). Let A = K+S ∈
R𝑛×𝑑 for a rank 𝑘 matrix K and an S with at most 𝑠 nonzero entries per row. Let 1 ≤ 𝑝 < ∞.
Then, S𝑝(A) ≤ 𝑑𝑠(𝑘 + 𝑠)𝑝.

Proof. Let 𝑟 be an integer such that 2𝑟 ≤ 𝑝 < 2𝑟+1. Then, for each 𝑖 ∈ [𝑛], we may write

a𝑖 = k𝑖 + s𝑖 =
𝑘∑︁

𝑗=1

𝛼𝑖,𝑗v𝑗 +
𝑠∑︁

𝑗=1

𝛽𝑖,𝑗e𝑖𝑗

where v𝑗 ∈ R𝑑 for 𝑗 ∈ [𝑘]. Then, the tensor product a⊗2𝑟

𝑖 of a𝑖 with itself 2𝑟 times can be written
as a linear combination of tensor products y1 ⊗ · · · ⊗ y2𝑟 , where each y𝑞 for 𝑞 ∈ [2𝑟] is one of
{v1,v2, . . . ,v𝑘, e𝑖1 , e𝑖2 , . . . , e𝑖𝑠}. Thus, a⊗𝑟

𝑖 lies in the span of at most (𝑘 + 𝑠)2
𝑟 vectors, for a

fixed choice of e𝑖1 , e𝑖2 , . . . , e𝑖𝑠 . Since there are at most 𝑑𝑠 possible choices of the sparsity pattern,

82

every a⊗2𝑟

𝑖 for 𝑖 ∈ [𝑛] lies in the span of at most 𝑑′ := 𝑑𝑠(𝑘 + 𝑠)2
𝑟 vectors. That is, if A⊗2𝑟 is the

Khatri-Rao 2𝑟th power of A, then A⊗2𝑟 is a rank 𝑑′ matrix. Then, we have that

|[Ax](𝑖)|𝑝 = (|[Ax](𝑖)|2
𝑟

)𝑝/2
𝑟

= (⟨a𝑖,x⟩2
𝑟

)𝑝/2
𝑟

=
⃒⃒⟨︀
a⊗2𝑟

𝑖 ,x⊗2𝑟
⟩︀⃒⃒𝑝/2𝑟

so

sup
Ax ̸=0

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
= sup

Ax ̸=0

⃒⃒
[A⊗2𝑟x⊗2𝑟](𝑖)

⃒⃒𝑝/2𝑟
‖A⊗2𝑟x⊗2𝑟‖𝑝/2

𝑟

𝑝/2𝑟

≤ sup
A⊗2𝑟x ̸=0

⃒⃒
[A⊗2𝑟x](𝑖)

⃒⃒𝑝/2𝑟
‖A⊗2𝑟x‖𝑝/2

𝑟

𝑝/2𝑟

that is, the ℓ𝑝/2𝑟 sensitivities of A⊗2𝑟 upper bound the ℓ𝑝 sensitivities of A. Since 𝑝/2𝑟 ≤ 2, the
total ℓ𝑝/2𝑟 sensitivity of A⊗2𝑟 is bounded by its rank, which is 𝑑′.

In a second example, we show that “concatenated Vandermonde” matrices, which were studied
in, e.g., [ASW13], also have small total ℓ𝑝 sensitivity. These matrices naturally arise as the result
of applying a polynomial feature map to a matrix.

Definition 7.2.2 (Vandermonde matrix). Given a vector a ∈ R𝑛, the degree 𝑞 Vandermonde
matrix 𝑉 𝑞(a) ∈ R𝑛×(𝑞+1) is defined entrywise as 𝑉 𝑞(a)𝑖,𝑗 = a𝑗

𝑖 for 𝑗 = 0, 1, . . . , 𝑞.

Definition 7.2.3 (Polynomial feature map). Given a matrix A ∈ R𝑛×𝑘 and an integer 𝑞, we define
the matrix 𝑉 𝑞(A) ∈ R𝑛×𝑘(𝑞+1) to be the horizontal concatenation of the Vandermonde matrices
𝑉 𝑞(Ae1), 𝑉

𝑞(Ae2), . . . , 𝑉
𝑞(Ae𝑘).

We then have the following:

Lemma 7.2.4 (Sensitivity bounds for matrices under polynomial feature maps). Let A ∈ R𝑛×𝑘

and let 𝑞 be an integer. Let 1 ≤ 𝑝 <∞. Then, S𝑝(𝑉 𝑞(A)) ≤ (𝑝𝑞 + 1)𝑘.

Proof. Let 𝑟 be an integer such that 2𝑟 ≤ 𝑝 < 2𝑟+1. Fix some x ∈ R𝑘(𝑞+1). Now consider the
vector ⟨a,x⟩, where a is a 𝑘(𝑞 + 1)-dimensional vector of monomials of degree 0 through 𝑞 of
the indeterminate variables 𝑎1, 𝑎2, . . . , 𝑎𝑘, that is,

a = (1, 𝑎1, 𝑎
2
1, . . . , 𝑎

𝑞
1, 1, 𝑎2, 𝑎

2
2, . . . , 𝑎

𝑞
2, . . . , 1, 𝑎𝑘, 𝑎

2
𝑘, . . . , 𝑎

𝑞
𝑘).

Then, ⟨a,x⟩ is a degree 𝑞 polynomial in the indeterminates 𝑎1, 𝑎2, . . . , 𝑎𝑘 with coefficients
specified by x, so ⟨a,x⟩2

𝑟

is a polynomial in the indeterminates 𝑎1, 𝑎2, . . . , 𝑎𝑘, such that every
monomial term is at most degree 2𝑟𝑞 in each variable. Note that there are at most 𝑘 variables,
so there can be at most (2𝑟𝑞 + 1)𝑘 possible monomials, by choosing the degree of each of the
monomials. Let x′ denote the coefficients of this polynomial in the monomial basis, for a given
set of original coefficients x.

Now consider the matrix 𝑉 𝑞(A). Then, for a fixed x ∈ R𝑘(𝑞+1), [𝑉 𝑞(A)x](𝑖)2
𝑟 is the evalua-

tion of ⟨a,x⟩2
𝑟

at the 𝑖th row a𝑖 of A for the indeterminates 𝑎1, 𝑎2, . . . , 𝑎𝑘, so it can be written
as the linear combination of at most (2𝑟𝑞 + 1)𝑘 monomials evaluated at a𝑖, with coefficients x′.
Thus, [𝑉 𝑞(A)x](𝑖)2

𝑟
= A′x′ for some A′ with rank at most (2𝑟𝑞 + 1)𝑘.

Finally, note that

|[𝑉 𝑞(A)x](𝑖)|𝑝 = (|[𝑉 𝑞(A)x](𝑖)|2
𝑟

)𝑝/2
𝑟

= |[A′x′](𝑖)|𝑝/2
𝑟

.

Thus, the total ℓ𝑝 sensitivity of 𝑉 𝑞(A) is bounded by the total ℓ𝑝/2𝑟 sensitivity of A′, which is at
most (2𝑟𝑞 + 1)𝑘 ≤ (𝑝𝑞 + 1)𝑘.

83

This generalizes a result of [MMM+22], which bounds the ℓ𝑝 sensitivities of a single Vander-
monde matrix.

In the low-sensitivity matrices of Lemma 7.2.1 and Lemma 7.2.4, it is in fact possible to apply
Lewis weight sampling to obtain sampling bounds that match these sensitivity bounds, by using
the tensoring trick [MMM+22]. However, when a tiny amount of noise is added to these matrices,
then algebraic tricks such as tensoring break down, and the sensitivity bounds derived from Lewis
weights increase substantially to 𝑑𝑝/2 for 𝑝 > 2. On the other hand, sensitivity sampling itself
is robust with respect to the addition of noise, as it depends only on norms rather than brittle
quantities such as rank.

Lemma 7.2.5. Let A ∈ R𝑛×𝑑 be a rank 𝑑 matrix with minimum singular value 𝜎min. Let
E ∈ R𝑛×𝑑 be an arbitrary perturbation matrix with

‖E‖2 ≤
𝜎min

2𝑛1+1/𝑝
.

Then, S𝑝(A+ E) ≤ 2𝑝(S𝑝(A) + 1).

Proof. For any x ∈ R𝑑, we have that

‖(A+ E)x‖𝑝 = ‖Ax‖𝑝 ± ‖Ex‖𝑝
= ‖Ax‖𝑝 ±

√
𝑛‖Ex‖2

= ‖Ax‖𝑝 ±
𝜎min√

𝑛
‖x‖2

= ‖Ax‖𝑝 ±
𝜎min√

𝑛

1

𝜎min

‖Ax‖2

= ‖Ax‖𝑝 ±
1

2
‖Ax‖𝑝

= (1± 1/2)‖Ax‖𝑝
so
|[(A+ E)x](𝑖)|𝑝

‖(A+ E)x‖𝑝𝑝
≤ 2𝑝−1 |[Ax](𝑖)|𝑝

‖(A+ E)x‖𝑝𝑝
+ 2𝑝−1 |[Ex](𝑖)|

𝑝

‖(A+ E)x‖𝑝𝑝
≤ 2𝑝

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
+ 2𝑝
|[Ex](𝑖)|𝑝

‖Ax‖𝑝𝑝
.

The first term is clearly bounded by 2𝑝𝜎𝑝
𝑖 (A) for any x. On the other hand, the second term is

bounded by

2𝑝
|[Ex](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤ 2𝑝

‖Ex‖𝑝𝑝
‖Ax‖𝑝𝑝

≤ 2𝑝𝑛𝑝/2 ‖Ex‖
𝑝
2

‖Ax‖𝑝𝑝

≤ 2𝑝
𝜎𝑝
min

𝑛𝑝/2+1

‖x‖𝑝2
‖Ax‖𝑝𝑝

≤ 2𝑝
1

𝑛𝑝/2+1

‖Ax‖𝑝2
‖Ax‖𝑝𝑝

≤ 2𝑝
‖Ax‖𝑝𝑝
𝑛‖Ax‖𝑝𝑝

=
2𝑝

𝑛
.

Thus, the total sensitivity is bounded by

2𝑝
𝑛∑︁

𝑖=1

𝜎𝑝
𝑖 (A) +

1

𝑛
= 2𝑝(S𝑝(A) + 1).

84

Thus, for small perturbations of structured matrices with small ℓ𝑝 sensitivity as specified by
Lemma 7.2.5, Theorem 7.1.2 give the tightest known bounds on the sample complexity for ℓ𝑝
subspace embeddings. Such perturbations may arise due to roundoff error or finite precision
on a computer, and no prior bounds beating Lewis weight sampling or the naı̈ve S𝑑 bound for
sensitivity sampling were known for the applications above.

7.3 Properties of ℓ𝑝 sensitivities

We will first collect several results on ℓ𝑝 sensitivities that we will use.

7.3.1 Monotonicity of max ℓ𝑝 sensitivity

Lemma 7.3.1 (Monotonicity of max ℓ𝑝 sensitivity). Let 𝑞 ≥ 𝑝 > 0 and y ∈ R𝑛. Then,

‖y‖𝑝∞
‖y‖𝑝𝑝

≤ ‖y‖
𝑞
∞

‖y‖𝑞𝑞
.

Proof. We have that

‖y‖𝑞𝑞 =
𝑛∑︁

𝑖=1

|y(𝑖)|𝑞 ≤ ‖y‖𝑞−𝑝
∞

𝑛∑︁
𝑖=1

|y(𝑖)|𝑝 = ‖y‖𝑞−𝑝
∞ ‖y‖

𝑝
𝑝,

so
‖y‖𝑝∞
‖y‖𝑝𝑝

≤ ‖y‖𝑝∞
‖y‖𝑞𝑞/‖y‖

𝑞−𝑝
∞

=
‖y‖𝑞∞
‖y‖𝑞𝑞

.

We also use an “approximate converse” of the above result:

Lemma 7.3.2 (Reverse monotonicity of max ℓ𝑝 sensitivity). Let 𝑞 ≥ 𝑝 > 0 and y ∈ R𝑛. Then,

‖y‖𝑞∞
‖y‖𝑞𝑞

≤

(︃
‖y‖𝑝∞
‖y‖𝑝𝑝

)︃𝑞/𝑝

𝑛𝑞/𝑝−1.

Proof. Since ‖y‖𝑝 ≤ ‖y‖𝑞𝑛1/𝑝−1/𝑞, we have that

‖y‖𝑞∞
‖y‖𝑞𝑞

≤ |y(𝑖)|𝑞

‖y‖𝑞𝑝 · 𝑛1−𝑞/𝑝
≤ ‖y‖𝑞∞
‖y‖𝑞𝑝 · 𝑛1−𝑞/𝑝

=

(︃
‖y‖𝑝∞
‖y‖𝑝𝑝

)︃𝑞/𝑝

𝑛𝑞/𝑝−1.

85

7.3.2 Flattening ℓ𝑝 sensitivities
We give a sensitivity flattening lemma, analogous to the ℓ𝑝 Lewis weight flattening lemma of
Lemma 6.3.2.

Lemma 7.3.3 (ℓ𝑝 Sensitivity Flattening). Let A ∈ R𝑛×𝑑 and 1 ≤ 𝑝 < ∞. Let 𝐶 ≥ 1. Then,
there exists a A′ ∈ R𝑚×𝑑 for 𝑚 = (1 + 1/𝐶)𝑛 such that ‖Ax‖𝑝 = ‖A′x‖𝑝 for every x ∈ R𝑑,
S𝑝(A) = S𝑝(A′), and 𝜎𝑝

𝑖′(A
′) ≤ 𝐶S𝑝(A)/𝑛 for every 𝑖′ ∈ [𝑚].

Proof. Suppose that for any row a𝑖 ∈ R𝑑 of A for 𝑖 ∈ [𝑛] with 𝜎𝑝
𝑖 (A) ≥ 𝐶S𝑝(A)/𝑛, we replace

the row with 𝑘 := ⌈𝜎𝑝
𝑖 (A)/(𝐶S𝑝(A)/𝑛)⌉ copies of a𝑖/𝑘

1/𝑝 to form a new matrix A′. Then, we
add at most∑︁

𝑖:𝜎𝑝
𝑖 (A)≥S𝑝(A)/𝑛

⌈︂
𝜎𝑝

𝑖 (A)

𝐶S𝑝(A)/𝑛

⌉︂
− 1 ≤

∑︁
𝑖:𝜎𝑝

𝑖 (A)≥S𝑝(A)/𝑛

𝜎𝑝
𝑖 (A)

𝐶S𝑝(A)/𝑛
=

S𝑝(A)

𝐶S𝑝(A)/𝑛
=

𝑛

𝐶

rows. Furthermore, we clearly have that ‖Ax‖𝑝 = ‖A′x‖𝑝 for every x ∈ R𝑑, and also for any
row 𝑖′ ∈ [𝑚] that comes from row 𝑖 ∈ [𝑛] in the original matrix,

|[A′x](𝑖′)|𝑝

‖A′x‖𝑝𝑝
≤ 𝐶S𝑝(A)/𝑛

𝜎𝑝
𝑖 (A)

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤ 𝐶S𝑝(A)

𝑛
.

Finally, it is also clear that the sum of the sensitivities is also preserved, since the sum of the
sensitivities of the 𝑘 copies of each row 𝑖 ∈ [𝑛] in the original matrix is 𝜎𝑝

𝑖 (A).

7.3.3 Total sensitivity
Here we collect several bounds on the total ℓ𝑝 sensitivity.

Lemma 7.3.4 (Sampling preserves total sensitivity). Let A ∈ R𝑛×𝑑 and 1 ≤ 𝑝 <∞. Let S be a
random ℓ𝑝 sampling matrix such that with probability at least 3/4,

‖SAx‖𝑝 = (1± 1/2)‖Ax‖𝑝

simultaneously for every x ∈ R𝑑. Then, with probability at least 1/2,

Pr{S𝑝(SA) ≤ 8S𝑝(A)} ≥ 1

2
.

Proof. We have that

S𝑝(SA) =
𝑛∑︁

𝑖=1

sup
SAx̸=0

|[SAx](𝑖)|𝑝

‖SAx‖𝑝𝑝
=

𝑛∑︁
𝑖=1

S𝑝
𝑖,𝑖 sup

SAx̸=0

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝

‖Ax‖𝑝𝑝
‖SAx‖𝑝𝑝

≤
𝑛∑︁

𝑖=1

S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A) sup

SAx̸=0

‖Ax‖𝑝𝑝
‖SAx‖𝑝𝑝

.

86

We are guaranteed that

Pr

{︃
sup

SAx̸=0

‖Ax‖𝑝𝑝
‖SAx‖𝑝𝑝

≤ 2

}︃
≥ 3

4
.

On the other hand, we have that

E

[︃
𝑛∑︁

𝑖=1

S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A)

]︃
=

𝑛∑︁
𝑖=1

E[S𝑝
𝑖,𝑖]𝜎

𝑝
𝑖 (A) = S𝑝(A)

so by Markov’s inequality,

Pr

{︃
𝑛∑︁

𝑖=1

S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A) ≤ 4S𝑝(A)

}︃
≥ 3

4
.

By a union bound,

Pr{S𝑝(SA) ≤ 8S𝑝(A)} ≥ 1

2
.

We also prove a high probability and high accuracy version of Lemma 7.3.4.

Lemma 7.3.5 (Sensitivity sampling preserves total sensitivity: high probability and accuracy).
Let A ∈ R𝑛×𝑑 and 1 ≤ 𝑝 < ∞. Let 0 < 𝜀, 𝛿 < 1. Let S be a random ℓ𝑝 sampling matrix such
that with probability at least 1− 𝛿,

‖SAx‖𝑝 = (1± 𝜀)‖Ax‖𝑝

simultaneously for every x ∈ R𝑑. Furthermore, suppose that

𝜎𝑖

𝑞𝑖
≤𝑀 :=

𝜀2S𝑝(A)

3 log 2
𝛿

for every 𝑖 ∈ [𝑛]. Then, with probability at least 1− 2𝛿,

Pr{S𝑝(SA) = (1±𝑂(𝜀))S𝑝(A)} ≥ 1− 2𝛿.

Proof. The proof follows Lemma 7.3.4. Just as in Lemma 7.3.4, we have that

S𝑝(SA) ≤
𝑛∑︁

𝑖=1

S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A) sup

SAx̸=0

‖Ax‖𝑝𝑝
‖SAx‖𝑝𝑝

.

Similarly,

S𝑝(SA) ≥
𝑛∑︁

𝑖=1

S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A) inf

SAx̸=0

‖Ax‖𝑝𝑝
‖SAx‖𝑝𝑝

.

Furthermore, since 𝜎𝑖/𝑞𝑖 ≤𝑀 , S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A)/𝑀 is a random variable bounded by 1, with.

E

[︃
𝑛∑︁

𝑖=1

S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A)

𝑀

]︃
=

S𝑝(A)

𝑀
≥ 3

𝜀2
log

2

𝛿
.

87

Thus by Chernoff bounds, we have that

Pr

{︃
𝑛∑︁

𝑖=1

S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A) = (1± 𝜀)S𝑝(A)

}︃
≥ 1− 𝛿.

We conclude by a union bound as in Lemma 7.3.4.

7.4 Analysis of ℓ𝑝 sensitivity sampling
We will now turn towards an analysis of the ℓ𝑝 sensitivity algorithm. Most of the components
of the chaining argument for ℓ𝑝 Lewis weight sampling discussed in Chapter 6 will apply to our
setting, such as the reduction to a Rademacher process in Section 6.3 and the use of Dudley’s
entropy integral in Section 6.4.

7.4.1 Dudley’s entropy integral
The crucial change to the argument comes from the fact that we need to separately control the
leverage scores and sensitivity scores when bounding the Rademacher process associated with
sensitivity sampling. We have the following lemma which bounds Dudley’s entropy integral in
terms of the maximum leverage score 𝜏 and maximum sensitivity score 𝜎.

Lemma 7.4.1 (Entropy integral bound for 𝑝 < 2). Let 1 ≤ 𝑝 < 2 and let A ∈ R𝑛×𝑑 be
orthonormal. Let 𝜏 ≥ max𝑛𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦2
2

and let 𝜎 ≥ max𝑛𝑖=1 𝜎
𝑝
𝑖 (A). Then,∫︁ ∞

0

√︀
log𝐸(𝐵𝑝, 𝑑𝑋 , 𝑡) 𝑑𝑡 ≤ 𝑂(𝜏 1/2)

(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂1/2

log
𝑑𝜎

𝜏

Proof. Note that it suffices to integrate the entropy integral to diam(𝐵𝑝(A)) rather than∞, which
is at most 4𝜎1/2 for 𝑝 < 2 and 4𝑝𝜎1/2 for 𝑝 > 2 by Lemma 6.4.2.

By Lemma 6.4.1, we have that

log𝐸(𝐵𝑝, 𝑑𝑋 , 𝑡) ≤ log𝐸(𝐵𝑝, 2‖·‖𝑝/2∞ , 𝑡) = log𝐸(𝐵𝑝, 𝐵∞, (𝑡/2)2/𝑝)

For small radii less than 𝜆 for a parameter 𝜆 to be chosen, we use a standard volume argument,
which shows that

log𝐸(𝐵𝑝, 𝐵∞, 𝑡) ≤ 𝑂(𝑑) log
𝑛

𝑡
so ∫︁ 𝜆

0

√︀
log𝐸(𝐵𝑝, 𝐵∞, 𝑡) 𝑑𝑡 =

∫︁ 𝜆

0

√︂
𝑑 log

𝑛

𝑡
𝑑𝑡

≤ 𝜆
√︀

𝑑 log 𝑛+
√
𝑑

∫︁ 𝜆

0

√︂
log

1

𝑡
𝑑𝑡

≤ 𝜆
√︀

𝑑 log 𝑛+
√
𝑑

(︃
𝜆

√︂
log

1

𝜆
+

√
𝜋

2
𝜆

)︃
Lemma 6.4.15

88

≤ 𝑂(𝜆)

√︂
𝑑 log

𝑛

𝜆

On the other hand, for large radii larger than 𝜆, we use the bounds of Lemma 6.4.11, which gives

log𝐸(𝐵𝑝, 𝐵∞, (𝑡/2)2/𝑝) ≤ 𝑂(1)
1

𝑡2

(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂
𝜏

so the entropy integral gives a bound of

𝑂(1)

[︂(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂
𝜏

]︂1/2 ∫︁ 4𝑝𝜎1/2

𝜆

1

𝑡
𝑑𝑡 = 𝑂(1)

[︂(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂
𝜏

]︂1/2
log

4𝑝𝜎1/2

𝜆
.

We choose 𝜆 =
√︀

𝜏/𝑑, which yields the claimed conclusion.

An analogous result and proof holds for 𝑝 > 2.

Lemma 7.4.2 (Entropy integral bound for 𝑝 > 2). Let 2 < 𝑝 < ∞ and let A ∈ R𝑛×𝑑 be
orthonormal. Let 𝜏 ≥ max𝑛𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦2
2

and let 𝜎 ≥ max𝑛𝑖=1 𝜎
𝑝
𝑖 (A). Then,∫︁ ∞

0

√︀
log𝐸(𝐵𝑝, 𝑑𝑋 , 𝑡) 𝑑𝑡 ≤ 𝑂(𝑝𝜏 1/2) · (𝜎𝑛)1/2−1/𝑝(log 𝑛)1/2 · log 𝑝2𝑑𝜎

𝜏

Proof. The proof is similar to the case of 𝑝 < 2. We again introduce a parameter 𝜆. For radii
below 𝜆, the bound is the same as Lemma 7.4.1. For radii above 𝜆, we use Lemma 6.4.1 to bound

log𝐸(𝐵𝑝, 𝑑𝑋 , 𝑡) ≤ log𝐸(𝐵𝑝, 2𝑝 · 𝜎1/2−1/𝑝 · ‖·‖∞, 𝑡) ≤ log𝐸(𝐵𝑝, 𝐵∞, 𝑡/2𝑝 · 𝜎1/2−1/𝑝)

Then by Corollary 6.4.9,

log𝐸(𝐵𝑝, 𝐵∞, 𝑡/2𝑝 · 𝜎1/2−1/𝑝) ≤ log𝐸(𝐵2, 𝐵∞, 𝑡/2𝑝 · (𝜎𝑛)1/2−1/𝑝)

≤ 𝑂(𝑝2)
(log 𝑛) · 𝜏

𝑡2
· (𝜎𝑛)1−2/𝑝

so the entropy integral gives a bound of

𝑂(𝑝𝜏 1/2)·(𝜎𝑛)1/2−1/𝑝(log 𝑛)1/2 ·
∫︁ diam(𝐵𝑝(A))

𝜆

1

𝑡
𝑑𝑡 ≤ 𝑂(𝑝𝜏 1/2)·(𝜎𝑛)1/2−1/𝑝(log 𝑛)1/2 ·log 𝑝𝜎1/2

𝜆

Choosing 𝜆 =
√︀

𝜏/𝑑 yields the claimed conclusion.

7.4.2 Sensitivity sampling, 𝑝 < 2

Our first result is a sensitivity sampling guarantee for 𝑝 < 2.

89

Theorem 7.4.3 (Sensitivity sampling for 𝑝 < 2). Let A ∈ R𝑛×𝑑 and 1 ≤ 𝑝 < 2. Let S be a
random ℓ𝑝 sampling matrix with sampling probabilities 𝑞𝑖 = min{1, 1/𝑛 + 𝜎𝑝

𝑖 (A)/𝛼} for an
oversampling parameter 𝛼 set to

1

𝛼
=

S𝑝(A)2/𝑝−1

𝜀2

[︂
𝑂(𝑙 log 𝑛)2/𝑝−1

(︂
log 𝑑

2− 𝑝
+ log

𝑙 log 𝑛

𝜀

)︂
(log 𝑑)2 + 𝑙

]︂
=

S𝑝(A)2/𝑝−1

𝜀2
poly

(︂
log 𝑛, log

1

𝛿
,

1

2− 𝑝

)︂
for

𝑙 = 𝑂

(︂
log

1

𝛿
+ log log 𝑛+ log

1

2− 𝑝
+ log

𝑑

𝜀

)︂
.

Then, with probability at least 1− 𝛿, simultaneously for all x ∈ R𝑑,

‖SAx‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝.

Furthermore, with probability at least 1− 𝛿, S samples

S𝑝(A)2/𝑝

𝜀2
poly

(︂
log 𝑛, log

1

𝛿
, log

1

2− 𝑝

)︂
rows.

Proof. Our approach is to bound

E
S

sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒𝑙
for a large even integer 𝑙. Using Lemma 2.3.2, we first bound

E
S

sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒𝑙
≤ (2𝜋)𝑙/2E

S
E

𝜀∼{±1}𝑛
sup

‖Ax‖𝑝=1

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝑆

𝜀𝑖|[SAx](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

where 𝑆 = {𝑖 ∈ [𝑛] : 𝑞𝑖 < 1}. For simplicity of presentation, we assume 𝑆 = [𝑛], which will not
affect our proof.

By Theorem 6.1.9, there exists a matrix A′ ∈ R𝑚1×𝑑 with 𝑚1 = 𝑂(𝑑(log 𝑑)3) such that

‖A′x‖𝑝𝑝 = (1± 1/2)‖Ax‖𝑝𝑝

for all x ∈ R𝑑. Furthermore, because A′ in Theorem 6.1.9 is constructed by random sampling,
Lemma 7.3.4 shows that S𝑝(A′) ≤ 8S𝑝(A) (note that we only need existence of this matrix).
We then construct a matrix A′′ ∈ R𝑚2×𝑑 with 𝑚2 = 𝑂(𝛼−1S𝑝(A)+ 𝑑(log 𝑑)3) = 𝑂(𝛼−1S𝑝(A))
such that

𝜎 :=
𝑛

max
𝑖=1

𝜎𝑝
𝑖 (A

′′) ≤ 𝛼,

S𝑝(A′) = S𝑝(A′′), and ‖A′x‖𝑝 = ‖A′′x‖𝑝 for all x ∈ R𝑑 by viewing A′ as an (𝑚1 +
𝛼−1S𝑝(A))× 𝑑 matrix with all zeros except for the first 𝑚1 rows and then applying Lemma 7.3.3.

90

Now let

A′′′ :=

(︃
A′′

SA

)︃
be the (𝑚2 + 𝑛S)× 𝑑 matrix formed by the vertical concatenation of A′′ with SA, where 𝑛S is
the number of rows sampled by S.

Sensitivity bounds for A′′′. We will first bound the ℓ𝑝 sensitivities of A′′′. For any row 𝑖
corresponding to a row of A′′, the ℓ𝑝 sensitivities are already bounded by 𝛼, and furthermore, ℓ𝑝
sensitivities can clearly only decrease with row additions. For any row 𝑖 corresponding to a row
of SA that is sampled with probability 𝑞𝑖 < 1, we have that

|[SAx](𝑖)|𝑝

‖A′′′x‖𝑝𝑝
≤ 2
|[SAx](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤ 2

1

𝑞𝑖

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤ 2

𝜎𝑝
𝑖 (A)

𝑞𝑖
= 2𝛼.

Thus, we have that 𝜎𝑝
𝑖 (A

′′′) ≤ 2𝛼 for every row 𝑖 of A′′′.
With a bound on the ℓ𝑝 sensitivities of A′′′ in hand, we may then convert this into a bound on

the leverage scores of A′′′ using Lemma 7.3.2, which gives

𝜏 :=
𝑛

max
𝑖=1

𝜏 𝑖(A
′′′) ≤ (2𝛼)2/𝑝(𝑚2 + 𝑛S)

2/𝑝−1

where 𝑛S is the number of nonzero entries of S.

Moment bounds on the sampling error. We now fix a choice of S, and define

𝐹S := sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒
.

Note that the event that 𝑛S is at least

𝑛thresh := 𝑂(𝑙 log 𝑛)E[𝑛𝑆] = 𝑂(𝑙 log 𝑛)𝛼−1S𝑝(A),

occurs with probability at most poly(𝑛)−𝑙 by Chernoff bounds over the randomness of S, and

𝐹 𝑙
S ≤

[︃
1 +

𝑛∑︁
𝑖=1

1

𝑞𝑖

]︃𝑙
≤ (𝑛+ 1)2𝑙,

and thus this event contributes at most poly(𝑛)−𝑙 to the moment bound E𝐹 𝑙
S. Thus, we focus on

bounding E𝐹 𝑙
S conditioned on 𝑛S ≤ 𝑛thresh. Define

𝐺S := sup
‖A′′′x‖𝑝=1

⃒⃒⃒⃒
⃒
𝑚2+𝑛S∑︁
𝑖=1

g𝑖|[A′′′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒

for g ∼ 𝒩 (0, I𝑚2+𝑛S
). Then,

‖A′′′x‖𝑝𝑝 ≤ (1 + 2 + 𝐹S)‖Ax‖𝑝𝑝

91

so

𝐹 𝑙
S ≤ 2𝑙 sup

‖Ax‖𝑝=1

⃒⃒⃒⃒
⃒
𝑚2+𝑛S∑︁
𝑖=1

g𝑖|[A′′′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

≤ 2𝑙(1 + 2 + 𝐹S)
𝑙 sup
‖A′′′x‖𝑝=1

⃒⃒⃒⃒
⃒
𝑚2+𝑛S∑︁
𝑖=1

g𝑖|[A′′′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

≤ 22𝑙−1(3𝑙 + 𝐹 𝑙
S)𝐺

𝑙
S.

(7.1)

We then take expectations on both sides with respect to g ∼ 𝒩 (0, I𝑚2+𝑛S
), and bound the right

hand side using Lemma 2.3.7, which gives

E
g∼𝒩 (0,I𝑚2+𝑛S

)
𝐺𝑙

S ≤ (2ℰ)𝑙 ℰ
𝒟

+𝑂(
√
𝑙𝒟)𝑙

where ℰ is the entropy integral and 𝒟 = 4𝜎1/2 is the diameter by Lemma 6.4.2. We have by
Lemma 7.4.1 that

ℰ ≤ 𝑂(𝜏 1/2)

(︂
log 𝑑

2− 𝑝
+ log(𝑚2 + 𝑛S)

)︂1/2

log
𝑑𝜎

𝜏

≤ 𝑂(𝛼1/𝑝(𝑚2 + 𝑛S)
1/𝑝−1/2)

(︂
log 𝑑

2− 𝑝
+ log(𝑚2 + 𝑛S)

)︂1/2

log
𝑑𝜎

𝜏

Thus, conditioned on 𝑛S ≤ 𝑛thresh, we have that

E
g∼𝒩 (0,I𝑚2+𝑛S

)
𝐺𝑙

S ≤

[︃
𝑂(𝛼1/𝑝𝑛

1/𝑝−1/2
thresh)

(︂
log 𝑑

2− 𝑝
+ log 𝑛thresh

)︂1/2

log 𝑑

]︃𝑙
+𝑂(

√
𝑙
√
𝛼)𝑙.

Note that

𝛼1/𝑝𝑛
1/𝑝−1/2
thresh = 𝑂(𝑙 log 𝑛)1/𝑝−1/2𝛼1/𝑝(𝛼−1S𝑝(A))1/𝑝−1/2 = 𝑂(𝑙 log 𝑛)1/𝑝−1/2𝛼1/2S𝑝(A)1/𝑝−1/2,

which shows that
E

g∼𝒩 (0,I𝑚2+𝑛S
)
𝐺𝑙

S ≤ 𝜀𝑙𝛿

due to our choice of 𝛼 and 𝑙.
Now if we take conditional expectations on both sides of (7.1) conditioned on the event ℱ

that 𝑛S ≤ 𝑛thresh, then we have

E[𝐹 𝑙
S | ℱ] ≤ 22𝑙−1(3𝑙 + E[𝐹 𝑙

S | ℱ])𝜀𝑙𝛿 ≤ (3𝑙 + E[𝐹 𝑙
S | ℱ])(4𝜀)𝑙𝛿

which means

E[𝐹 𝑙
S | ℱ] ≤

(12𝜀)𝑙𝛿

1− (4𝜀)𝑙𝛿
≤ 2(12𝜀)𝑙𝛿

for (4𝜀)𝑙𝛿 ≤ 1/2. We thus have

E[𝐹 𝑙
S] ≤

(12𝜀)𝑙𝛿

1− (4𝜀)𝑙𝛿
≤ 2(12𝜀)𝑙𝛿 + poly(𝑛)−𝑙

92

altogether. Finally, we have by a Markov bound that

𝐹 𝑙
S ≤ 2(12𝜀)𝑙 +

1

𝛿
poly(𝑛)𝑙 ≤ 3(12𝜀)𝑙

with probability at least 1− 𝛿, which means that

𝐹S ≤ 3 · 12𝜀 = 36𝜀

with probability at least 1− 𝛿. Rescaling 𝜀 by constant factors yields the claimed result.

7.4.3 Sensitivity sampling, 𝑝 > 2

For 𝑝 > 2, we first need a construction of a matrix with a small number of rows and small
sensitivity. While this construction can be made to be a randomized algorithm succeeding with
high probability, it uses a sophisticated recursive sampling strategy which may be undesirable. In
Theorem 7.4.5, we use this result to show that a more direct one-shot sensitivity sampling can in
fact achieve a similar guarantee.

Lemma 7.4.4 (Recursive sensitivity sampling). Let A ∈ R𝑛×𝑑 and 2 < 𝑝 <∞. Let 0 < 𝜀 < 1.
Then, there exists a matrix A′ ∈ R𝑚×𝑑 for

𝑚 = 𝑂(𝑝2)
S𝑝(A)2−2/𝑝

𝜀2
log(𝑝𝑑)2 log

𝑝𝑑

𝜀

such that
‖A′x‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝

for every x ∈ R𝑑 and S𝑝(A′) ≤ (1 +𝑂(𝜀))S𝑝(A).

Proof. Let A′ ∈ R𝑚×𝑑 be the flattened isometric matrix given by Lemma 7.3.3 with 𝐶 = 4,
where 𝑚 ≤ (5/4)𝑛. Then for all 𝑖 ∈ [𝑚], we have that

𝜎𝑝
𝑖 (A

′) ≤ 4
S𝑝(A)

𝑛
≤ 5

S𝑝(A′)

𝑚
.

Now consider the random sampling matrix S with sampling probabilities 𝑞𝑖 = 1/2. Note then
that sampling with probability 𝑞𝑖 = 1/2 and scaling by 1/𝑞𝑖 = 2 corresponds to muliplying by the
random variable 𝜀𝑖 + 1, where 𝜀𝑖 is a Rademacher variable. Thus,

E
S

sup
‖A′x‖𝑝=1

⃒⃒⃒
‖SA′x‖𝑝𝑝 − 1

⃒⃒⃒
= E

𝜀
sup

‖A′x‖𝑝=1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

(𝜀𝑖 + 1)|[A′x](𝑖)|𝑝 − |[A′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒

= E
𝜀

sup
‖A′x‖𝑝=1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖|[A′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒.

By Lemma 2.3.2 and Theorem 2.3.6, this is bounded by

𝑂(1)

∫︁ ∞

0

√︀
log𝐸(𝑇, 𝑑𝑋 , 𝑢) 𝑑𝑢 ≤ 𝑂(𝑝𝜏 1/2) · (𝜎𝑛)1/2−1/𝑝(log 𝑛)1/2 · log 𝑝2𝑑𝜎

𝜏

93

where 𝜏 is an upper bound on the leverage scores of A′ and 𝜎 is an upper bound on the ℓ𝑝
sensitivities of A′. By Lemma 7.3.1, we have that 𝜏 ≤ 𝜎, and furthermore, we can take
𝜎 = 5S𝑝(A′)/𝑚. Thus, the resulting bound on the expected sampling error is at most

𝜀A := 𝑂(𝑝)
S𝑝(A)1−1/𝑝

√
𝑛

(log 𝑛)1/2 log(𝑝𝑑)

so with probability at least 99/100, the same bound holds up to a factor of 100. Furthermore,
S samples 𝑚/2 ≤ (5/8)𝑛 rows in expectation, so by Markov’s inequality, it samples at most
(3/2)𝑚/2 ≤ (15/16)𝑛 rows with probability at least 1/3. We also have that

𝜎𝑝
𝑖 (A)

𝑞𝑖
= 2𝜎𝑝

𝑖 (A
′) ≤ 10

S𝑝(A′)

𝑚

so by Lemma 7.3.5, we have that

Pr{S𝑝(SA′) = (1±𝑂(𝜀A))S
𝑝(A)} ≥ 99

100
.

By a union bound, SA′ samples at most (15/16)𝑛 rows, has sampling error at most 𝜀𝑛, and has ℓ𝑝
total sensitivity at most (1 +𝑂(𝜀A))S

𝑝(A) with probability at least 1/3− 1/100− 1/100 > 0.
Thus, such an instantiation of SA′ exists.

We now recursively apply our reasoning, by repeatedly applying the flattening and sampling
operation. Note that each time we repeat this procedure, the number of rows goes down by a
factor of 15/16, while the total sensitivity and total sampling error accumulates. Let A𝑙 denote
the matrix obtained after 𝑙 recursive applications of this procedure and let 𝑛𝑙 denote the number of
rows of A𝑙. Then,

𝜀A𝑙+1
= 𝑂(𝑝)

S𝑝(A𝑙+1)
1−1/𝑝

√
𝑛𝑙+1

(log 𝑛𝑙+1)
1/2 log(𝑝𝑑)

≥ (1−𝑂(𝜀A𝑙
))𝑂(𝑝)

S𝑝(A𝑙)
1−1/𝑝

√
𝑛𝑙+1

(log 𝑛𝑙+1)
1/2 log(𝑝𝑑)

≥
√︂

16

15
(1−𝑂(𝜀A𝑙

))𝑂(𝑝)
S𝑝(A𝑙)

1−1/𝑝

√
𝑛𝑙

(log 𝑛𝑙)
1/2 log(𝑝𝑑)

≥ 101

100
· 𝜀A𝑙

as long as 𝜀A𝑙
is less than some absolute constant. Thus, the sum of the 𝜀A𝑙

are dominated by the
last 𝜀A𝑙

, up to a constant factor. Now let 𝐿 be the smallest integer 𝑙 such that 𝜀A𝑙
≤ 𝜀. Then, we

have that
S𝑝(A𝐿) ≤ (1 +𝑂(𝜀))S𝑝(A)

and thus
‖A𝐿x‖𝑝𝑝 = (1±𝑂(𝜀))‖Ax‖𝑝𝑝

for every x ∈ R𝑑. Furthermore, 𝑛𝐿 satisfies

𝜀 = 𝑂(𝑝)
S𝑝(A)1−1/𝑝

√
𝑛𝐿

(log 𝑛𝐿)
1/2 log(𝑝𝑑)

94

or

𝑛𝐿 = 𝑂(𝑝2)
S𝑝(A)2−2/𝑝

𝜀2
log(𝑝𝑑)2 log

𝑝𝑑

𝜀
.

Theorem 7.4.5 (Sensitivity Sampling for 𝑝 > 2). Let A ∈ R𝑛×𝑑 and 2 < 𝑝 < ∞. Let S be a
random ℓ𝑝 sampling matrix with sampling probabilities 𝑞𝑖 = min{1, 1/𝑛 + 𝜎𝑝

𝑖 (A)/𝛼} for an
oversampling parameter 𝛼 set to

1

𝛼
= 𝑂(𝑝2)S𝑝(A)1−2/𝑝(𝑙 log 𝑛)1−2/𝑝 log(𝑝𝑑) log

𝑙 log 𝑛

𝜀
+𝑂(𝑝2)𝑙

for

𝑙 = 𝑂

(︂
log

1

𝛿
+ log log 𝑛+ log 𝑝+ log

S𝑝(A)

𝜀

)︂
.

Then, with probability at least 1− 𝛿, simultaneously for all x ∈ R𝑑,

‖SAx‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝.

Furthermore, with probability at least 1− 𝛿, S samples

S𝑝(A)2−2/𝑝

𝜀2
poly

(︂
log 𝑛, log

1

𝛿
, 𝑝

)︂
rows.

Proof. Our approach is to bound

E
S

sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒𝑙
for a large even integer 𝑙. Using Lemma 2.3.2, we first bound

E
S

sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒𝑙
≤ (2𝜋)𝑙/2E

S
E

g∼𝒩 (0,I𝑛)
sup

‖Ax‖𝑝=1

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝑆

g𝑖|[SAx](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

where 𝑆 = {𝑖 ∈ [𝑛] : 𝑞𝑖 < 1}. For simplicity of presentation, we assume 𝑆 = [𝑛], which will not
affect our proof.

By Lemma 7.4.4, there exists a matrix A′ ∈ R𝑚1×𝑑 with 𝑚1 = 𝑂(S2−2/𝑝 log(𝑝𝑑)3) such that

‖A′x‖𝑝𝑝 = (1± 1/2)‖Ax‖𝑝𝑝
for all x ∈ R𝑑, and S𝑝(A′) ≤ 𝑂(1)S𝑝(A). Then for 𝑚2 = 𝑂(𝑚1 + S𝑝(A)𝛼−1), let A′′ ∈
R𝑚2×𝑑 be the matrix given by Lemma 7.3.3 such that 𝜎𝑝

𝑖 (A
′′) ≤ 𝛼 for every 𝑖 ∈ [𝑚2] and

‖A′′x‖𝑝 = ‖A′x‖𝑝 for every x ∈ R𝑑. Now let

A′′′ :=

(︃
A′′

SA

)︃
be the (𝑚2 + 𝑛S)× 𝑑 matrix formed by the vertical concatenation of A′′ with SA, where 𝑛S is
the number of rows sampled by S.

95

Sensitivity bounds for A′′′. We will first bound the ℓ𝑝 sensitivities of A′′′. For any row 𝑖
corresponding to a row of A′′, the ℓ𝑝 sensitivities are already bounded by 𝛼, and furthermore, ℓ𝑝
sensitivities can only decrease with row additions. For any row 𝑖 corresponding to a row of SA
that is sampled with probability 𝑞𝑖 < 1, we have that

|[SAx](𝑖)|𝑝

‖A′′′x‖𝑝𝑝
≤ |[SAx](𝑖)|𝑝

‖A′′x‖𝑝𝑝
≤ 2
|[SAx](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤ 2𝛼.

By Lemma 7.3.1, this immediately implies that the ℓ2 sensitivities, or the leverage scores, are also
bounded by 2𝛼.

Moment bounds on sampling error. We now fix a choice of S, and define

𝐹S := sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒
Note that the event that 𝑛S is at least

𝑛thresh := 𝑂(𝑙 log 𝑛)E[𝑛𝑆] = 𝑂(𝑙 log 𝑛)𝛼−1S𝑝(A),

occurs with probability at most poly(𝑛)−𝑙 by Chernoff bounds over the randomness of S, and

𝐹 𝑙
S ≤

[︃
1 +

𝑛∑︁
𝑖=1

1

𝑞𝑖

]︃𝑙
≤ (𝑛+ 1)2𝑙,

and thus this event contributes at most poly(𝑛)−𝑙 to the moment bound E𝐹 𝑙
S. Thus, we focus on

bounding E𝐹 𝑙
S conditioned on 𝑛S ≤ 𝑛thresh. Now define

𝐺S := sup
‖A′′′x‖𝑝=1

⃒⃒⃒⃒
⃒
𝑚2+𝑛S∑︁
𝑖=1

g𝑖|[A′′′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒

for g ∼ 𝒩 (0, I𝑚2+𝑛S
). Then,

‖A′′′x‖𝑝𝑝 ≤ (1 + 2 + 𝐹S)‖Ax‖𝑝𝑝
so

𝐹 𝑙
S ≤ 2𝑙 sup

‖Ax‖𝑝=1

⃒⃒⃒⃒
⃒
𝑚2+𝑛S∑︁
𝑖=1

g𝑖|[A′′′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

≤ 2𝑙(1 + 2 + 𝐹S)
𝑙 sup
‖A′′′x‖𝑝=1

⃒⃒⃒⃒
⃒
𝑚2+𝑛S∑︁
𝑖=1

g𝑖|[A′′′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

≤ 22𝑙−1(3𝑙 + 𝐹 𝑙
S)𝐺

𝑙
S.

(7.2)

We then take expectations on both sides with respect to g ∼ 𝒩 (0, I𝑚2+𝑛S
), and bound the right

hand side using Lemma 2.3.7, which gives

E
g∼𝒩 (0,I𝑚2+𝑛S

)
𝐺𝑙

S ≤ (2ℰ)𝑙 ℰ
𝒟

+𝑂(
√
𝑙𝒟)𝑙

96

where ℰ is the entropy integral and 𝒟 = 4𝑝𝜎1/2 is the diameter by Lemma 6.4.2. We have by
Lemma 7.4.2 that

ℰ ≤ 𝑂(𝑝𝜏 1/2) · (𝜎(𝑚2 + 𝑛S))
1/2−1/𝑝(log(𝑚2 + 𝑛S))

1/2 · log 𝑝2𝑑𝜎

𝜏
≤ 𝑂(𝑝𝛼1/2) · (𝛼(𝑚2 + 𝑛S))

1/2−1/𝑝(log(𝑚2 + 𝑛S))
1/2 · log(𝑝𝑑).

Thus, conditioned on 𝑛S ≤ 𝑛thresh, we have that

E
g∼𝒩 (0,I𝑚2+𝑛S

)
𝐺𝑙

S ≤
[︁
𝑂(𝑝𝛼1/2)(𝛼(𝑚2 + 𝑛thresh))

1/2−1/𝑝(log(𝑚2 + 𝑛thresh))
1/2 log(𝑝𝑑)

]︁𝑙
+𝑂(

√
𝑙𝑝
√
𝛼)𝑙

≤
[︁
𝑂(𝑝𝛼1−1/𝑝)𝑛

1/2−1/𝑝
thresh (log 𝑛thresh)

1/2 log(𝑝𝑑)
]︁𝑙
+𝑂(

√
𝑙𝑝
√
𝛼)𝑙

Note that

𝛼1−1/𝑝𝑛
1/2−1/𝑝
thresh = 𝑂(𝑙 log 𝑛)1/2−1/𝑝𝛼1−1/𝑝(𝛼−1S𝑝(A))1/2−1/𝑝 = 𝑂(𝑙 log 𝑛)1/2−1/𝑝𝛼1/2S𝑝(A)1/2−1/𝑝,

which shows that
E

g∼𝒩 (0,I𝑚2+𝑛S
)
𝐺𝑙

S ≤ 𝜀𝑙𝛿

due to our choice of 𝛼 and 𝑙.
Now if we take conditional expectations on both sides of (7.2) conditioned on the event ℱ

that 𝑛S ≤ 𝑛thresh, then we have

E[𝐹 𝑙
S | ℱ] ≤ 22𝑙−1(3𝑙 + E[𝐹 𝑙

S | ℱ])𝜀𝑙𝛿 ≤ (3𝑙 + E[𝐹 𝑙
S | ℱ])(4𝜀)𝑙𝛿

which means

E[𝐹 𝑙
S | ℱ] ≤

(12𝜀)𝑙𝛿

1− (4𝜀)𝑙𝛿
≤ 2(12𝜀)𝑙𝛿

for (4𝜀)𝑙𝛿 ≤ 1/2. We thus have

E[𝐹 𝑙
S] ≤

(12𝜀)𝑙𝛿

1− (4𝜀)𝑙𝛿
≤ 2(12𝜀)𝑙𝛿 + poly(𝑛)−𝑙

altogether. Finally, we have by a Markov bound that

𝐹 𝑙
S ≤ 2(12𝜀)𝑙 +

1

𝛿
poly(𝑛)𝑙 ≤ 3(12𝜀)𝑙

with probability at least 1− 𝛿, which means that

𝐹S ≤ 3 · 12𝜀 = 36𝜀

with probability at least 1− 𝛿. Rescaling 𝜀 by constant factors yields the claimed result.

97

98

Chapter 8

Root leverage score sampling
[WY23c, WY24b]

Our techniques and observations used to obtain our improved ℓ𝑝 sensitivity sampling theorem
(Theorem 7.1.2) lead to improved guarantees for yet another generalization of ℓ2 leverage score
sampling, known as root leverage score sampling. In root leverage score sampling, the sampling
probabilities are taken to be proportional to the (𝑝/2)-th root of the ℓ2 leverage scores, and have
found applications as upper bounds to sensitivities for more general loss functions with less
structure than the ℓ𝑝 losses, including the Huber loss and the logistic loss [CW15a, MSSW18,
GPV21]. Here, the idea is that the ℓ𝑝 sensitivities (Definition 6.1.2) can be bounded by the
(𝑝/2)-th roots of the ℓ2 leverage scores, since for 𝑝 < 2, we have

|y(𝑖)|𝑝

‖y‖𝑝𝑝
≤ |y(𝑖)|

𝑝

‖y‖𝑝2
≤
(︂
|y(𝑖)|2

‖y‖22

)︂𝑝/2

and for 𝑝 > 2, we have

|y(𝑖)|𝑝

‖y‖𝑝𝑝
≤ 𝑛𝑝/2−1 |y(𝑖)|𝑝

‖y‖𝑝2
≤ 𝑛𝑝/2−1

(︂
|y(𝑖)|2

‖y‖22

)︂𝑝/2

(see also Lemma 7.3.2) and thus an ℓ𝑝 sensitivity sampling argument immediately applies for the
(𝑝/2)-th roots of the ℓ2 leverage scores. Furthermore, the unlike the ℓ𝑝 sensitivities themselves, ℓ2
leverage scores can be computed quickly [SS11, DMMW12, CW13, LMP13, CLM+15] and thus
root leverage score sampling has been a popular choice for fast algorithms.

Note that the number of rows sampled is actually poly(𝑛) for any 𝑝 ̸= 2, which can be far
larger than the usual bound of poly(𝑑). Indeed, we have the following tight bounds on the sum of
these scores:

Lemma 8.0.1 (Sum of root leverage scores[WY24b]). Let 0 < 𝑝 <∞ and let A ∈ R𝑛×𝑑. Then
for 𝑝 < 2,

𝑛∑︁
𝑖=1

𝜏 𝑖(A)𝑝/2 ≤ 𝑛1−𝑝/2𝑑𝑝/2

99

and for 𝑝 > 2,
𝑛∑︁

𝑖=1

min{1, 𝑛𝑝/2−1𝜏 𝑖(A)𝑝/2} ≤ 2𝑛1−2/𝑝𝑑.

Proof. The bound for 𝑝 < 2 follows from relating ℓ𝑞 norms, that is, if y(𝑖) = 𝜏 𝑖(A)𝑝/2, then

𝑛∑︁
𝑖=1

𝜏 𝑖(A)𝑝/2 = ‖y‖1 ≤ 𝑛1−𝑝/2‖y‖2/𝑝 = 𝑛1−𝑝/2

(︃
𝑛∑︁

𝑖=1

𝜏 𝑖(A)

)︃𝑝/2

= 𝑛1−𝑝/2𝑑𝑝/2.

For 𝑝 > 2, we bound the sum of the scores for rows 𝑖 ∈ [𝑛] with 𝑛𝑝/2−1𝜏 𝑖(A)𝑝/2 ≤ 1 ⇐⇒
𝜏 𝑖(A) ≤ 𝑛2/𝑝−1 by∑︁

𝑖∈[𝑛]:𝑛𝑝/2−1𝜏 𝑖(A)𝑝/2≤1

𝑛𝑝/2−1𝜏 𝑖(A)𝑝/2 = 𝑛𝑝/2−1
∑︁

𝑖∈[𝑛]:𝑛𝑝/2−1𝜏 𝑖(A)𝑝/2≤1

𝜏 𝑖(A) · 𝜏 𝑖(A)𝑝/2−1

≤ 𝑛𝑝/2−1
∑︁

𝑖∈[𝑛]:𝑛𝑝/2−1𝜏 𝑖(A)𝑝/2≤1

𝜏 𝑖(A) · (𝑛2/𝑝−1)𝑝/2−1

≤ (𝑛2/𝑝)𝑝/2−1
∑︁

𝑖∈[𝑛]:𝑛𝑝/2−1𝜏 𝑖(A)𝑝/2≤1

𝜏 𝑖(A) ≤ 𝑛1−2/𝑝𝑑

On the other hand, there are at most 𝑛1−2/𝑝𝑑 rows with 𝜏 𝑖(A) ≥ 𝑛2/𝑝−1, so the contribution of
the rest of the rows is also at most 𝑛1−2/𝑝𝑑.

However, because the exponent on 𝑛 is less than 1 in both cases, we repeatedly apply a
subsampling procedure to reduce the number of rows to poly(𝑑). In fact, in the work of [WY23c],
we show that (𝑝/2)-th root leverage score sampling allows us to simultaneously control both the
ℓ𝑝 sensitivity scores and ℓ2 leverage scores just as with ℓ𝑝 Lewis weight sampling, and thus similar
chaining arguments allow us to show that the sum of the root leverage scores in Lemma 8.0.1 is
the resulting row count of this sampling algorithm, up to roughly an 𝜀2 factor. If we recursively
apply this sampling algorithm multiply times until the row reduction gives no more improvements,
then the row count that we converge to is roughly

𝑛 = 𝜀−2𝑛1−𝑝/2𝑑𝑝/2 ⇐⇒ 𝑛 = 𝜀−4/𝑝𝑑

for 𝑝 < 2 and
𝑛 = 𝜀−2𝑛1−2/𝑝𝑑 ⇐⇒ 𝑛 = 𝜀−𝑝𝑑𝑝/2

for 𝑝 > 2. Furthermore, it is not hard to see that we converge to this value up to a constant factor
in roughly 𝑂(log log 𝑛) rounds.

Theorem 8.0.2 (Root leverage score sampling, 𝑝 < 2 [WY23c]). Let 1 ≤ 𝑝 < 2 and let
A ∈ R𝑛×𝑑. Let 𝛼 > 0 and let 𝑞𝑖 = min{1, 𝜏 𝑝

𝑖 (A)𝑝/2/𝛼} for 𝑖 ∈ [𝑛]. Let S ∈ R𝑛×𝑛 be the ℓ𝑝
sampling matrix with probabilities {𝑞𝑖}𝑛𝑖=1. Then, with probability at least 1− 1/ poly(𝑛), there
is an 𝛼 such that S is an ℓ𝑝 subspace embedding satisfying Definition 1.1.1 with 𝜅 = (1 + 𝜀), and
furthermore, S has at most 𝑟 nonzero rows, for

𝑟 = 𝜀−2𝑛1−𝑝/2𝑑𝑝/2 poly log 𝑛.

100

Recursively applying this result gives a matrix S with

𝑟 = 𝜀−4/𝑝𝑑 poly log 𝑛.

We obtain a similar result for 𝑝 > 2 in the work [WY24b]:

Theorem 8.0.3 (Root leverage score sampling, 𝑝 > 2 [WY24b]). Let 2 < 𝑝 < ∞ and let
A ∈ R𝑛×𝑑. Let 𝛼 > 0 and let 𝑞𝑖 = min{1, 𝑛𝑝/2−1𝜏 𝑝

𝑖 (A)𝑝/2/𝛼} for 𝑖 ∈ [𝑛]. Let S ∈ R𝑛×𝑛 be
the ℓ𝑝 sampling matrix with probabilities {𝑞𝑖}𝑛𝑖=1. Then, with probability at least 1− 1/ poly(𝑛),
there is an 𝛼 such that S is an ℓ𝑝 subspace embedding satisfying Definition 1.1.1 with 𝜅 = (1+ 𝜀),
and furthermore, S has at most 𝑟 nonzero rows, for

𝑟 = 𝜀−2𝑛1−2/𝑝𝑑 poly log 𝑛.

Recursively applying this result gives a matrix S with

𝑟 = 𝜀−𝑝𝑑𝑝/2 poly log 𝑛.

Remark 8.0.4. Note that Theorems 8.0.2 and 8.0.3 achieve a nearly optimal dependence on 𝑑,
while it is suboptimal in the 𝜀 dependence (see Theorem 6.1.5 in Chapter 6 for a discussion on the
lower bound results of [LWW21]).

8.1 Analysis of root leverage score sampling
The idea of bounding Dudley’s entropy integral by separately parameterizing by the maximum
leverage score and maximum sensitivity score in Section 7.4.1 is also useful in the analysis of root
leverage score sampling. We will show the following theorem, which shows that root leverage
score sampling yields ℓ𝑝 affine embeddings, which is a slight extension of our results for ℓ𝑝
subspace embeddings that we will later need in a later chapter (Chapter 14). Note that our ℓ𝑝
subspace embedding theorems, Theorems 8.0.2 and 8.0.3, are easily recovered by setting b = 0
and 𝑅 = 0.

Theorem 8.1.1 (Root leverage score sampling). Let A ∈ R𝑛×𝑑 and b ∈ R𝑛. Let 1 ≤ 𝑝 <∞. Let
𝑅 ≥ ‖b‖𝑝. Suppose that

|b(𝑖)|𝑝

𝑅𝑝
≤

{︃
min

{︀
1, 𝑛𝑝/2−1𝜏 𝑖(A)𝑝/2

}︀
𝑝 > 2

𝜏 𝑖(A)𝑝/2 𝑝 < 2

for every 𝑖 ∈ [𝑛]. Let 𝛼 = Θ(𝜀2)/((log 𝑛)3 + log(1/𝛿)) and let

𝑞𝑖 ≥

{︃
min

{︀
1, 𝑛𝑝/2−1𝜏 𝑖(A)𝑝/2/𝛼

}︀
𝑝 > 2

min
{︀
1, 𝜏 𝑖(A)𝑝/2/𝛼

}︀
𝑝 < 2

Let S be the ℓ𝑝 sampling matrix (Definition 6.1.1) with sampling probabilities {𝑞𝑖}𝑛𝑖=1. Then, with
probability at least 1− 𝛿, for every x ∈ R𝑑,

‖S(Ax+ b)‖𝑝𝑝 = (1± 𝜀)‖Ax+ b‖𝑝𝑝 ± 𝜀𝑅𝑝

101

and

nnz(S) =

{︃
𝑂(𝜀−2𝑛1−2/𝑝𝑑

(︀
(log 𝑛)3 + log 1

𝛿

)︀
𝑝 > 2

𝑂(𝜀−2𝑛1−𝑝/2𝑑𝑝/2
(︀
(log 𝑛)3 + log 1

𝛿

)︀
𝑝 < 2

.

Recursively applying this result for 𝑂(log log 𝑛) reduces the number of rows to{︃
𝑂(𝜀−𝑝𝑑𝑝/2

(︀
(log 𝑛)3 + log 1

𝛿

)︀𝑝/2
𝑝 > 2

𝑂(𝜀−4/𝑝𝑑
(︀
(log 𝑛)3 + log 1

𝛿

)︀2/𝑝
𝑝 < 2

.

8.1.1 Reduction to a small number of scales
Our first task is to reduce the proof of Theorem 8.1.1 to showing a similar theorem when Ax is
restricted to a certain scale, for a small number of scales. This is shown in the following lemma:

Lemma 8.1.2. Let A ∈ R𝑛×𝑑 and b ∈ R𝑛. Let 1 ≤ 𝑝 < ∞. Let 𝑅0 ≥ ‖b‖𝑝 and 0 < 𝜀 < 1/2.
Suppose that

sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − ‖Ax‖𝑝𝑝

⃒⃒⃒
≤ 𝜀

and that
sup

‖Ax‖𝑝≤𝑅𝑖

⃒⃒⃒
‖S(Ax+ b)‖𝑝𝑝 − ‖Ax+ b‖𝑝𝑝

⃒⃒⃒
≤ 𝜀𝑅𝑝

𝑖

holds for each 𝑅𝑖 = 2𝑖 ·𝑅0, 𝑖 ∈ [𝐼], where 𝐼 = 𝑂(log 𝜀−1). Then,

‖S(Ax+ b)‖𝑝𝑝 = (1± 2 · 4𝑝𝜀)‖Ax+ b‖𝑝𝑝 ± 2𝑝𝜀𝑅𝑝
0

for every x ∈ R𝑑.

Proof. First note that if ‖Ax‖𝑝 ≤ 𝑅1, then we immediately have

‖S(Ax+ b)‖𝑝𝑝 = ‖Ax+ b‖𝑝𝑝 ± 𝜀𝑅𝑝
1 = ‖Ax+ b‖𝑝𝑝 ± 2𝑝𝜀𝑅𝑝

0.

Next, suppose that ‖Ax‖𝑝 ≥ 𝑅0/𝜀. Note that

‖Ax+ b‖𝑝 = ‖Ax‖𝑝 ± ‖b‖𝑝 = (1± 𝜀)‖Ax‖𝑝
and similarly,

‖S(Ax+ b)‖𝑝 = ‖SAx‖𝑝 ± ‖Sb‖𝑝 = (1± 4𝜀)‖SAx‖𝑝
Thus,

‖S(Ax+ b)‖𝑝 = (1± 4𝜀)(1± 𝜀)‖Ax+ b‖𝑝 = (1± 7𝜀)‖Ax+ b‖𝑝.
Finally, we handle the intermediate scales between 𝑅0 and 𝑅0/𝜀. Consider x such that 𝑅𝑖 ≤
‖Ax‖𝑝 < 2 ·𝑅𝑖. Note then that

‖Ax+ b‖𝑝 ≥ ‖Ax‖𝑝 − ‖b‖𝑝 ≥ ‖Ax‖𝑝/2 ≥ 𝑅𝑖/2

so
‖S(Ax+ b)‖𝑝𝑝 = ‖Ax+ b‖𝑝𝑝 ± 𝜀 · (2𝑅𝑖)

𝑝 = ‖Ax+ b‖𝑝𝑝 ± 𝜀 · (4‖Ax+ b‖𝑝)
𝑝.

This covers all cases.

102

8.1.2 Reduction to a Rademacher process with flat sensitivities

We now work towards bounding a quantity as the one used in Lemma 8.1.2. The following lemma
follows from a standard symmetrization (Lemma 2.3.2) argument.

Lemma 8.1.3 (Reduction to Rademacher processes). Let A ∈ R𝑛×𝑑 and b ∈ R𝑛. Let 1 ≤ 𝑝 <∞.
Let 𝑅 ≥ ‖b‖𝑝. Let S be a random ℓ𝑝 sampling matrix (Definition 6.1.1). Then,

E
S

sup
‖Ax‖𝑝≤𝑅

⃒⃒⃒
‖S(Ax+ b)‖𝑝𝑝 − ‖Ax+ b‖𝑝𝑝

⃒⃒⃒𝑙
≤ E

S
E

𝜀∼{±1}𝑛
sup

‖Ax‖𝑝≤𝑅

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝑇

𝜀𝑖|[S(Ax+ b)](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

,

where 𝑇 ⊆ [𝑛] is the set of rows with sampling probability 𝑞𝑖 < 1.

We will further reduce the problem to a similar problem for an instance with “flat sensitivities”.
For this, we show the following flattening lemma, which shows how to obtain an ℓ𝑝 isometry that
simultaneously flatten all ℓ𝑞 sensitivities.

Lemma 8.1.4 (Flattening all sensitivities). Let 1 ≤ 𝑝 < ∞ and A ∈ R𝑛×𝑑 and b ∈ R𝑛. Let
0 < 𝛼 < 1. Then, there exists A′ ∈ R𝑚×𝑑 and b′ ∈ R𝑚 for 𝑚 = 𝑂(𝑛𝛼−1) such that

𝜎𝑞
𝑖 (A

′) ≤ 𝛼, 𝜎𝑞
𝑖 (b

′) =
|b(𝑖)|𝑞

‖b‖𝑞𝑞
≤ 𝛼

for every 𝑖 ∈ [𝑚] and 1 ≤ 𝑞 < ∞. Furthermore, for any 1 ≤ 𝑞 < ∞ and x ∈ R𝑑, we have that
‖A′x+ b′‖𝑞 = Θ(𝛼1/𝑝−1/𝑞)‖Ax+ b‖𝑞.

Proof. Let 𝑘 := ⌈1/𝛼⌉. Then, we construct A′ ∈ R𝑚×𝑑 for 𝑚 = 𝑛𝑘 by replacing the 𝑖th row a𝑖

of A for every 𝑖 ∈ [𝑛] with 𝑘 copies of a/𝑘1/𝑝, and similarly for b. Then, for every row 𝑗 ∈ [𝑚]
that is a copy of row 𝑖 ∈ [𝑛], we have that

𝜎𝑞
𝑗(A) = sup

Ax ̸=0

|[A′x](𝑖)|𝑞

‖A′x‖𝑞𝑞
≤ sup

Ax ̸=0

⃒⃒
[𝑘−1/𝑝Ax](𝑖)

⃒⃒𝑞
𝑘 · |[𝑘−1/𝑝Ax](𝑖)|𝑞

≤ 1

𝑘
≤ 𝛼

as desired, and similarly for b. The second conclusion holds since

‖A′x+ b′‖𝑞𝑞 = 𝑘 · 𝑘−𝑞/𝑝‖Ax+ b‖𝑞𝑞 = 𝑘1−𝑞/𝑝‖Ax+ b‖𝑞𝑞.

Using Lemma 8.1.4, we construct the following new instance with bounded ℓ2 and ℓ𝑝 sensitiv-
ities:

Lemma 8.1.5 (Flattened instance). Let A ∈ R𝑛×𝑑 and b ∈ R𝑛×𝑑. Let 𝑅 ≥ ‖b‖𝑝. Suppose that

|b(𝑖)|𝑝

𝑅𝑝
≤

{︃
min

{︀
1, 𝑛𝑝/2−1𝜏 𝑖(A)𝑝/2

}︀
𝑝 > 2

𝜏 𝑖(A)𝑝/2 𝑝 < 2

103

for every 𝑖 ∈ [𝑛]. Let 0 < 𝛼 < 1 and let

𝑞𝑖 ≥

{︃
min

{︀
1, 𝑛𝑝/2−1𝜏 𝑖(A)𝑝/2/𝛼

}︀
𝑝 > 2

min
{︀
1, 𝜏 𝑖(A)𝑝/2/𝛼

}︀
𝑝 < 2

Let 𝑇 ⊆ [𝑛] be the set of rows 𝑖 ∈ [𝑛] with 𝑞𝑖 < 1. Let S be a diagonal matrix with S𝑖,𝑖 ≤ 1/𝑞
1/𝑝
𝑖 .

Then, there is A′′ ∈ R𝑚×𝑑 and b′′ ∈ R𝑚 for 𝑚 = 𝑂(𝑛/𝛼) such that
• 𝜏 𝑖(A

′′) ≤ 𝑂(𝛼) for 𝑝 < 2 and 𝜏 𝑖(A
′′) ≤ 𝑂(𝛼)/𝑛1−2/𝑝 for 𝑝 > 2, for every 𝑖 ∈ [𝑚]

• 𝜎𝑝
𝑖 (A

′′) ≤ 𝑂(𝛼) and |b′′(𝑖)|𝑝/𝑅𝑝 ≤ 𝑂(𝛼) for every 𝑖 ∈ [𝑚]
• ‖A′′x+ b′′‖𝑝𝑝 = ‖Ax+ b‖𝑝𝑝 + ‖S|𝑇 (Ax+ b)‖𝑝𝑝 for every x ∈ R𝑑

• ‖A′′x‖𝑝𝑝 = ‖Ax‖𝑝𝑝 + ‖S|𝑇Ax‖𝑝𝑝 for every x ∈ R𝑑

Proof. Let A′ ∈ R𝑚×𝑑 and b′ ∈ R𝑚 be the flattened instances given by Lemma 8.1.4, where
𝑚 = 𝑂(𝑛/𝛼). Now let

A′′ :=

(︃
A′

S|𝑇A

)︃
, b′′ :=

(︃
b′

S|𝑇b

)︃
be the (𝑚+𝑛S)×𝑑 matrix and (𝑚+𝑛S)-dimensional vector formed by the vertical concatenation
of A′ and b′ with SA and Sb, where 𝑛S is the number of rows sampled by S.

We now show how to bound the sensitivities of A′′ and b′′.
For any row 𝑖 corresponding to a row of A′, the ℓ2 sensitivities are already bounded by 𝛼,

and furthermore, ℓ2 sensitivities can clearly only decrease with row additions. For any row 𝑖
corresponding to a row of SA that is sampled with probability 𝑞𝑖 < 1, we have that

|[SAx](𝑖)|2

‖A′′x‖22
≤ |[SAx](𝑖)|2

‖A′x‖22
=

|[SAx](𝑖)|2

Θ(𝛼2/𝑝−1)‖Ax‖22
≤ 1

𝑞
2/𝑝
𝑖

|[Ax](𝑖)|2

Θ(𝛼2/𝑝−1)‖Ax‖22
≤ 𝜏 𝑖(A)

Θ(𝛼2/𝑝−1)𝑞
2/𝑝
𝑖

= 𝑂(𝛼).

In fact, for 𝑝 > 2, we have the stronger bound of

𝜏 𝑖(A)

Θ(𝛼2/𝑝−1)𝑞
2/𝑝
𝑖

≤ 𝑂(𝛼)

𝑛1−2/𝑝
.

Thus, we have that 𝜏 𝑖(A
′′) = 𝜎2

𝑖 (A
′′) ≤ 𝑂(𝛼) for every row 𝑖 of A′′.

For 𝑝 < 2, the max sensitivity is bounded by 𝑂(𝛼) by the monotonicity of max sensitivities.
For 𝑝 > 2, we have by reverse monotonicity of max sensitivities that

𝜎𝑝
𝑖 (A) ≤ 𝑛𝑝/2−1𝜏 𝑖(A)

so for any row 𝑖 corresponding to a row of SA sampled with probability 𝑞𝑖 < 1, we have that

|[SAx](𝑖)|𝑝

‖A′′x‖𝑝𝑝
≤ |[SAx](𝑖)|𝑝

‖A′x‖𝑝𝑝
=
|[SAx](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤ 1

𝑞𝑖

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤ 𝜎𝑝

𝑖 (A)

𝑞𝑖
≤ 𝑂(𝛼).

By similar reasoning, we have that

|[Sb](𝑖)|𝑝

𝑅𝑝
≤ 1

𝑞𝑖

|b(𝑖)|𝑝

𝑅𝑝
≤ 𝑂(𝛼).

104

The next lemma shows that in order to bound the Rademacher process in Lemma 8.1.3, it
suffices to bound a similar Rademacher process for A′′ and b′′.

Lemma 8.1.6 (Reduction to flattened instance). Let S, A,b, and A′′,b′′ be as given in Lemma
8.1.5. Let 𝛿, 𝜀, 𝑙 be such that 𝛿𝜀𝑙 ≤ 1/2. Furthermore, suppose that

E
S

E
𝜀∼{±1}𝑛

sup
‖A′′x‖𝑝≤𝑅

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝑇

𝜀𝑖|[A′′x+ b](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

≤ 𝛿𝜀𝑙(𝑅𝑝)𝑙

for every 𝑅 ≥ ‖b‖𝑝. Then,

E
S

sup
‖Ax‖𝑝≤𝑅

⃒⃒⃒
‖S(Ax+ b)‖𝑝𝑝 − ‖Ax+ b‖𝑝𝑝

⃒⃒⃒𝑙
≤ 2𝛿(23𝑝𝜀𝑅𝑝)𝑙

for every 𝑅 ≥ ‖b‖𝑝.

Proof. Fix an outcome of S and let

𝐹S,𝑅 = sup
‖Ax‖𝑝≤𝑅

⃒⃒⃒
‖S(Ax+ b)‖𝑝𝑝 − ‖Ax+ b‖𝑝𝑝

⃒⃒⃒
.

Note then that for any ‖Ax‖𝑝 ≤ 𝑅, we have

‖A′′x‖𝑝 ≤ ‖Ax‖𝑝 + ‖S(Ax+ b)‖𝑝 + ‖Sb‖𝑝

≤ 𝑅 +
(︁
‖Ax+ b‖𝑝𝑝 +

⃒⃒⃒
‖S(Ax+ b)‖𝑝𝑝 − ‖Ax+ b‖𝑝𝑝

⃒⃒⃒)︁1/𝑝
+
(︁
‖b‖𝑝𝑝 +

⃒⃒⃒
‖Sb‖𝑝𝑝 − ‖b‖

𝑝
𝑝

⃒⃒⃒)︁1/𝑝
≤ 𝑅 +

(︁
‖Ax+ b‖𝑝𝑝 + 𝐹S,𝑅

)︁1/𝑝
+
(︁
‖b‖𝑝𝑝 + 𝐹S,𝑅

)︁1/𝑝
≤ 𝑅 + ‖Ax+ b‖𝑝 + 𝐹

1/𝑝
S,𝑅 + ‖b‖𝑝 + 𝐹

1/𝑝
S,𝑅

≤ 4𝑅 + 2𝐹
1/𝑝
S,𝑅.

Thus,

E
S
𝐹 𝑙
S,𝑅 ≤ E

S
E

𝜀∼{±1}𝑛
sup

‖Ax‖𝑝≤𝑅

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝑇

𝜀𝑖|[S(Ax+ b)](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

Lemma 8.1.3

≤ E
S

E
𝜀∼{±1}𝑛

sup
‖Ax‖𝑝≤𝑅

⃒⃒⃒⃒
⃒∑︁

𝑖

𝜀𝑖|[A′′x+ b′′](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

≤ E
S

E
𝜀∼{±1}𝑛

sup
‖A′′x‖𝑝≤4𝑅+2𝐹

1/𝑝
S,𝑅

⃒⃒⃒⃒
⃒∑︁

𝑖

𝜀𝑖|[A′′x+ b′′](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

≤ E
S
𝛿𝜀𝑙((4𝑅 + 2𝐹

1/𝑝
S,𝑅)

𝑝)𝑙 by hypothesis

≤ E
S
𝛿(22𝑝𝜀)𝑙(((2𝑅)𝑝)𝑙 + 𝐹 𝑙

S,𝑅)

105

= 𝛿(22𝑝𝜀)𝑙
[︁
((2𝑅)𝑝)𝑙 + E

S
𝐹 𝑙
S,𝑅

]︁
so rearranging gives

ES 𝐹
𝑙
S,𝑅

(2𝑝𝑅𝑝)𝑙 + ES 𝐹 𝑙
S,𝑅

≤ 𝛿(22𝑝𝜀)𝑙.

In turn, this implies that

E
S
𝐹 𝑙
S,𝑅 ≤

𝛿(22𝑝𝜀)𝑙(2𝑝𝑅𝑝)𝑙

1− 𝛿(22𝑝𝜀)𝑙
≤ 2𝛿(23𝑝𝜀𝑅𝑝)𝑙.

8.1.3 Bounds on the Rademacher process
In this section, we present results from [WY23c] (which in turn are based on [BLM89, LT91])
which will allow us to bound a Rademacher process of the form of Lemma 8.1.6.

The following is a straightforward generalization of Lemma 6.4.1.

Lemma 8.1.7. Let 1 ≤ 𝑝 < ∞ and let A ∈ R𝑛×𝑑 and b ∈ R𝑛. Let 𝑅 ≥ ‖b‖𝑝. Define the
pseudo-metric

𝑑𝑋(y,y
′) :=

⎛⎝ E
𝜀∼{±1}𝑛

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖|y(𝑖)|𝑝 −
𝑛∑︁

𝑖=1

𝜀𝑖|y′(𝑖)|𝑝
⃒⃒⃒⃒
⃒
2
⎞⎠1/2

Let 𝜎 ≥ max𝑛𝑖∈𝑆 𝜎
𝑝
𝑖 (A) + |b(𝑖)|𝑝/𝑅𝑝. Then, for any y = Ax + b and y′ = Ax′ + b with

‖Ax‖𝑝, ‖Ax′‖𝑝 ≤ 𝑅,

𝑑𝑋(y,y
′) ≤

{︃
𝑂(1)‖A(x− x′)‖𝑝/2∞ 𝑅𝑝/2 𝑝 < 2

𝑂(1)𝜎1/2−1/𝑝 · ‖A(x− x′)‖∞𝑅𝑝−1 𝑝 > 2

With Lemma 8.1.7 in hand, we show the following.

Theorem 8.1.8. Let 1 ≤ 𝑝 < ∞ be fixed and let A ∈ R𝑛×𝑑 and b ∈ R𝑛. Let 𝑅 ≥ ‖b‖𝑝. Let
𝜏 ≥ max𝑛𝑖=1 𝜏 𝑖(A) and let 𝜎 ≥ max𝑛𝑖=1 𝜎

𝑝
𝑖 (A). Define

ℰ :=

{︃
𝜏 1/2 · (log 𝑛)3/2 𝑝 < 2

𝜏 1/2(𝜎𝑛)1/2−1/𝑝 · (log 𝑛)3/2 𝑝 > 2
.

Then,

E
𝜀∼{±1}𝑛

sup
‖Ax‖𝑝≤𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖|[Ax+ b](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

≤
[︁
(2ℰ)𝑙(ℰ/𝜎1/2) +𝑂(

√
𝑙𝜎1/2)𝑙

]︁
(𝑅𝑝)𝑙

Proof. Let 𝑇 = {Ax : ‖Ax‖𝑝 ≤ 1}. We have that∫︁ ∞

0

√︀
log𝐸(𝑇, 𝑑𝑋 , 𝑢) 𝑑𝑢 = 𝑂(ℰ)𝑅𝑝

106

by trivial modifications of Lemmas 7.4.1 and 7.4.2 in Chapter 7. We also have the diameter bound

diam(𝑇) ≤ 𝑂(𝜎1/2)𝑅𝑝

by trivial modifications of Lemma 6.4.2. We may then conclude by the moment bounds of Lemma
2.3.7 that are obtained by integrating Dudley’s tail bound (Theorem 2.3.6).

8.1.4 Proof of main sampling theorems
We now prove Theorem 8.1.1 by combining the previous results of this section.

Proof of Theorem 8.1.1. By Lemma 8.1.2, it suffices to show that

sup
‖Ax‖𝑝≤𝑅𝑖

⃒⃒⃒
‖S(Ax+ b)‖𝑝𝑝 − ‖Ax+ b‖𝑝𝑝

⃒⃒⃒
≤ 𝜀𝑅𝑝

𝑖 (8.1)

for 𝑅𝑖 = 2𝑖𝑅 for 𝑖 ∈ [𝐼], 𝐼 = 𝑂(log 𝜀−1). The corresponding statement for bounding

sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − ‖Ax‖𝑝𝑝

⃒⃒⃒
≤ 𝜀

will follow from the exact same analysis by setting b = 0 and 𝑅 = 0.
In order to obtain (8.1) for a single scale with high probability, we will bound the 𝑙th moment

for a large even power 𝑙. We will bound this quantity by passing to a Rademacher process bound
in Lemma 8.1.6, which we can in turn bound using Theorem 8.1.8. Note that by our construction
of the flattened instance A′′ and b′′ in Lemmas 8.1.5 and 8.1.6, we have 𝜏 = 𝑂(𝛼) and 𝜎 = 𝑂(𝛼)
for 𝑝 < 2 and 𝜏 = 𝑂(𝛼)/𝑛1−2/𝑝 and 𝜎 = 𝑂(𝛼) for 𝑝 > 2, so we can bound the ℰ parameter in
Theorem 8.1.8 by

ℰ ≤

{︃
𝑂(𝛼1−1/𝑝)(log 𝑛)3/2 𝑝 > 2

𝑂(𝛼1/2)(log 𝑛)3/2 𝑝 < 2

In turn, the bound on the Rademacher process in Theorem 8.1.8 is 𝛿𝜀𝑙(𝑅𝑝
𝑖)

𝑙/(𝐼 +1) by our choice
of 𝛼, for

𝑙 = 𝑂

(︂
log log 𝑛+ log log

1

𝜀
+ log

1

𝛿

)︂
.

That is, we have shown that

E
S

sup
‖Ax‖𝑝≤𝑅𝑖

⃒⃒⃒
‖S(Ax+ b)‖𝑝𝑝 − ‖Ax+ b‖𝑝𝑝

⃒⃒⃒𝑙
≤ 𝛿

𝐼 + 1
𝜀𝑙(𝑅𝑝

𝑖)
𝑙.

Then by Markov’s inequality, we have that

Pr
S

{︃
sup

‖Ax‖𝑝≤𝑅𝑖

⃒⃒⃒
‖S(Ax+ b)‖𝑝𝑝 − ‖Ax+ b‖𝑝𝑝

⃒⃒⃒
≤ 𝜀𝑅𝑝

𝑖

}︃
≥ 1− 𝛿

𝐼 + 1
.

107

Now by a union bound, this is simultaneously true for all 𝑖 ∈ [𝐼] as well as for b = 0 and 𝑅 = 0
by a union bound, all with probability at least 1− 𝛿. In turn, we have that

‖S(Ax+ b)‖𝑝𝑝 = (1± 2 · 4𝑝𝜀)‖Ax+ b‖𝑝𝑝 ± 2𝑝𝜀𝑅𝑝
0

by Lemma 8.1.2. We have the desired conclusion by rescaling 𝜀 and 𝛿 up to constant factors.
Finally, to analyze the recursive application of this theorem, we use the following elementary

recurrence:

Lemma 8.1.9. Suppose (𝑎𝑖)
∞
𝑖=0 satisfies the recurrence 𝑎𝑖+1 = 𝜆𝑎𝑖 + 𝑏 for some 𝑏 > 0 and

𝜆 ∈ (0, 1). Then,

𝑎𝑖 =
1

1− 𝜆

(︀
𝑏− 𝜆𝑖(𝑏− (1− 𝜆)𝑎0)

)︀
.

Proof. Let 𝑥 satisfy 𝑥 = 𝜆𝑥+𝑏, that is, 𝑥 = 𝑏/(1−𝜆). Then, the sequence 𝑎′𝑖+1 = 𝑎𝑖−𝑥 satisfies
𝑎′𝑖+1 = 𝜆𝑎′𝑖 so 𝑎′𝑖 = 𝜆𝑖𝑎′0. Thus, 𝑎𝑖 = 𝑎′𝑖 + 𝑥 = 𝜆𝑖(𝑎0 − 𝑥) + 𝑥.

We apply the above result with failure probability 𝛿/𝑅 and accuracy 𝜀/ recursively for at most
𝑅 = Θ(log log 𝑛) rounds, until the number of rows is at most the claimed bound. By a union
bound, we succeed at achieving 𝜀/𝑅 sampling error and row count bound on all 𝑅 rounds, that is,
for any number of rows 𝑚𝑖 on the 𝑖th round, we reduce the number of rows to at most{︃

𝑂(𝜀−2𝑚
1−2/𝑝
𝑖 𝑑

(︀
(log 𝑛)3 + log 1

𝛿

)︀
𝑝 > 2

𝑂(𝜀−2𝑚
1−𝑝/2
𝑖 𝑑𝑝/2

(︀
(log 𝑛)3 + log 1

𝛿

)︀
𝑝 < 2

rows. We then apply the recurrence lemma (Lemma 8.1.9) on the logarithm of the above bound
with 𝑎𝑖 = 𝑚𝑖, 𝜆 = (1− 𝑝/2) for 𝑝 < 2 and 𝜆 = (1− 2/𝑝) for 𝑝 > 2 and

𝑏 =

{︃
log𝑂(𝜀−2𝑑

(︀
(log 𝑛)3 + log 1

𝛿

)︀
𝑝 > 2

log𝑂(𝜀−2𝑑𝑝/2
(︀
(log 𝑛)3 + log 1

𝛿

)︀
𝑝 < 2

.

This gives a bound of

𝑎𝑖 = log𝑚𝑖 ≤
𝑏+ 1

1− 𝜆
,

that is, a final row count of at most{︃
𝑂(𝜀−𝑝𝑑𝑝/2

(︀
(log 𝑛)3 + log 1

𝛿

)︀𝑝/2
𝑝 > 2

𝑂(𝜀−4/𝑝𝑑
(︀
(log 𝑛)3 + log 1

𝛿

)︀2/𝑝
𝑝 < 2

.

108

Chapter 9

High-distortion ℓ𝑝 subspace embeddings
[WY22a]

Until now, we have focused on subspace embeddings which achieve a distortion of (1 + 𝜀).
However, in certain applications, such a high accuracy may not be necessary, and a natural
question is whether the number of rows 𝑟 of the sketch S can be improved or not if larger errors
are allowed. Note that (1 + 𝜀) distortion is essentially the end of the story of 0 < 𝑝 ≤ 2, as the
upper bounds obtained by ℓ𝑝 Lewis weight sampling (Theorem 6.1.9) already achieve a bound of
�̃�(𝜀−2𝑑), and it is easy to see that at least 𝑑 rows is needed for any subspace embedding, even just
to maintain the rank. On the other hand, for 𝑝 > 2, one could still ask for more, since if we require
Θ(1) distortion, then the number of rows necessary is 𝑟 = Ω(𝑑𝑝/2) [LWW21], whose exponential
dependence on 𝑝 may be prohibitive for large 𝑝. In the work of [WY22a], we study the following
question:

Question 9.0.1. For 𝑝 > 2, what trade-offs between the number of rows 𝑟 and the distortion 𝜅 are
possible in the regime where 𝜅≫ 1?

In [WY22a], we provide a nearly optimal trade-off between 𝑟 and 𝜅 as a solution to Question
9.0.1.

Theorem 9.0.2 (High-distortion ℓ𝑝 Lewis weight sampling [WY22a]). Let A ∈ R𝑛×𝑑 and
2 < 𝑝 <∞. Then, for any 2 < 𝑞 < 𝑝, there is a randomized algorithm for constructing a diagonal
map S ∈ R𝑛×𝑛 such that

Pr
{︁

for all x ∈ R𝑑, ‖Ax‖𝑝 ≤ ‖SAx‖𝑞 ≤ 𝑂(𝑑
1
2(1−

𝑞
𝑝))‖Ax‖𝑝

}︁
≥ 99

100

and furthermore, S has at most 𝑟 nonzero rows, for 𝑟 = 𝑂(𝑑𝑞/2(log 𝑑)3). Furthermore, any
randomized algorithm which constructs a data structure 𝒬 such that

Pr
{︁

for all x ∈ R𝑑, ‖Ax‖𝑝 ≤ 𝒬(x) ≤ 𝑜(𝑑
1
2(1−

𝑞
𝑝))‖Ax‖𝑝

}︁
≥ 99

100

requires Ω(𝑑𝑞/2+1) bits of space.

We note that the lower bound is shown in [LWW21]. Our proof of the upper bound in Theorem
9.0.2 proceeds in two steps: (1) we first show that we can approximate ‖Ax‖𝑝 by ‖W

1
𝑞
− 1

𝑝Ax‖𝑞

109

for some diagonal reweighting map W up to a factor of 𝑑
1
2(1−

𝑞
𝑝), and (2) we use ℓ𝑞 Lewis weight

sampling to reduce the number of rows to �̃�(𝑑𝑞/2) while preserving the distortion up to Θ(1)
factors. Step (2) is simply using Theorem 6.1.11, so the key ingredient here is step (1).

Perhaps surprisingly, we show that step (1) can in fact also be implemented using ℓ𝑝 Lewis
weights, and the reweighting map W can be simply be taken to be the ℓ𝑝 Lewis weights. More
specifically, we show the following theorem:

Theorem 9.0.3 (ℓ𝑝 Lewis weight change of density [WY22a]). Let A ∈ R𝑛×𝑑 and let 0 < 𝑞 <
𝑝 <∞. Let W = diag(w𝑝(A)) be the diagonal map given by the ℓ𝑝 Lewis weights of A. Then,
there is a scaling factor 𝑐 such that for every x ∈ R𝑑,

‖Ax‖𝑝 ≤ 𝑐‖W
1
𝑞
− 1

𝑝Ax‖𝑞 ≤ 𝜅‖Ax‖𝑝

for

𝜅 =

{︃
𝑑

1
𝑞
− 1

𝑝 min(𝑝, 𝑞) ≤ 2

𝑑
1
2(1−

𝑞
𝑝) min(𝑝, 𝑞) ≥ 2

In fact, the result of Theorem 9.0.3 provides an elementary proof of a result of [LT80] from
the geometric functional analysis literature, who proved the existence of a diagonal map satisfying
the guarantees of Theorem 9.0.3 by using sophisticated results from the theory of factorization of
operators, 𝑝-summing norms, and operator ideals. On the other hand, our proof of Theorem 9.0.3
only requires elementary inequalities and ℓ𝑝 Lewis weights. One of the key insights we use is that
if W are the ℓ𝑝 Lewis weights, then the W is also the ℓ𝑞 Lewis weights of the matrix W

1
𝑞
− 1

𝑝A.
We will now develop this idea in the next sections.

9.1 Lewis weight switching
We first show the following crucial identity, which shows that one can reweight a matrix by ℓ𝑝
Lewis weights, so that the ℓ𝑞 Lewis weights of the resulting matrix coincides with the ℓ𝑝 Lewis
weights of the original matrix. Note that this identity is true by definition for 𝑞 = 2 (Definition
6.1.6), since ℓ2 Lewis weights are just leverage scores. Thus, this result shows that although
Lewis weights are defined by normalizing a change of density with respect to ℓ2 (see [CP15]),
they actually simultaneously satisfy the analogous property for all ℓ𝑞 as well.

Lemma 9.1.1 (Lewis weight switching). Let A ∈ R𝑛×𝑑 and let 𝑝, 𝑞 > 0. Let B := W𝑝(A)1/𝑞−1/𝑝A.
Then, for each 𝑖 ∈ [𝑛],

w𝑞
𝑖 (B) = w𝑝

𝑖 (A).

Furthermore, the two Lewis bases coincide.

Proof. We have that

𝜏 𝑖(W
𝑝(A)1/2−1/𝑞B) = 𝜏 𝑖(W

𝑝(A)1/2−1/𝑞 ·W𝑝(A)1/𝑞−1/𝑝A)

= 𝜏 𝑖(W
𝑝(A)1/2−1/𝑝A) = w𝑝

𝑖 (A)

110

so
w𝑞

𝑖 (W
𝑝(A)1/𝑞−1/𝑝A) = w𝑝

𝑖 (A)

by uniqueness of Lewis weights [CP15]. The Lewis bases coincide since

W𝑝(A)1/2−1/𝑝AR = W𝑝(A)1/2−1/𝑞W𝑝(A)1/𝑞−1/𝑝AR = W𝑝(A)1/2−1/𝑞BR.

In fact, given only one-sided ℓ𝑝 Lewis weights (Definition 6.1.7), we can prove a similar
inequality:

Lemma 9.1.2 (One-sided Lewis weight switching). Let A ∈ R𝑛×𝑑 and let 𝑝, 𝑞 > 0. Let w ∈ R𝑛

be one-sided ℓ𝑝 Lewis weights for A and let R be the corresponding one-sided ℓ𝑝 Lewis basis.
Let W = diag(w) and B := W1/𝑞−1/𝑝A. Then, w are one-sided ℓ𝑞 Lewis weights and R is a
one-sided ℓ𝑞 Lewis basis for B, i.e.,

𝜏 𝑖(W
1/2−1/𝑞B) ≤ w𝑖.

Proof. We have that W1/2−1/𝑝AR is orthonormal, which means

W1/2−1/𝑞BR = W1/2−1/𝑞W1/𝑞−1/𝑝AR = W1/2−1/𝑝AR

is as well. Then,

𝜏 𝑖(W
1/2−1/𝑞B) =

⃦⃦
e⊤𝑖 W

1/2−1/𝑞BR
⃦⃦2
2
=
⃦⃦
e⊤𝑖 W

1/2−1/𝑝AR
⃦⃦2
2
= 𝜏 𝑖(W

1/2−1/𝑝A) ≤ w𝑖

as desired.

9.2 Change of density
Using the above, we show that reweighting the rows of A by a scalar multiple of the ℓ𝑝 Lewis
weights provide optimal approximations of ℓ𝑝 by ℓ𝑞. The following lemmas show the upper bounds
and lower bounds. The proofs roughly follow, but are still slightly different from, the estimates
in Lemma 2.6 of [JLS22] and Lemma 8 in Chapter III.B of [Woj91], which show the analogous
results for 𝑞 = 2. The estimates are an elementary combination of Lewis weight switching
(Lemma 9.1.1/Lemma 9.1.2), sensitivity bounds (Lemma 6.2.4), and Hölder’s inequality.

Lemma 9.2.1 (Upper bound, 𝑝 ≥ 𝑞). Let A ∈ R𝑛×𝑑 and 𝑝 ≥ 𝑞 > 0. Let w ∈ R𝑛 be one-sided ℓ𝑝
Lewis weights for A. Let W = diag(w). For all x ∈ R𝑑,

‖Ax‖𝑝 ≤ ‖w‖
[0∨(1/2−1/𝑞)](𝑝−𝑞)/𝑝
1

⃦⃦
W1/𝑞−1/𝑝Ax

⃦⃦
𝑞

Proof. For 𝑖 ∈ [𝑛], we have that

|[Ax](𝑖)| = w
1/𝑝−1/𝑞
𝑖 · [W1/𝑞−1/𝑝Ax](𝑖)

≤ w
1/𝑝−1/𝑞
𝑖 ·

[︁
‖w‖0∨(𝑞/2−1)

1 ·w𝑖 ·
⃦⃦
W1/𝑞−1/𝑝Ax

⃦⃦𝑞
𝑞

]︁1/𝑞
Lemmas 6.2.4, 9.1.2

111

= ‖w‖0∨(1/2−1/𝑞)
1 ·w1/𝑝

𝑖

⃦⃦
W1/𝑞−1/𝑝Ax

⃦⃦
𝑞
.

Then,

‖Ax‖𝑝𝑝 =
𝑛∑︁

𝑖=1

|[Ax](𝑖)|𝑝 =
𝑛∑︁

𝑖=1

|[Ax](𝑖)|𝑝−𝑞 · |[Ax](𝑖)|𝑞

≤
𝑛∑︁

𝑖=1

‖w‖[0∨(1/2−1/𝑞)](𝑝−𝑞)
1 ·w(𝑝−𝑞)/𝑝

𝑖

⃦⃦
W1/𝑞−1/𝑝Ax

⃦⃦𝑝−𝑞

𝑞
· |[Ax](𝑖)|𝑞

= ‖w‖[0∨(1/2−1/𝑞)](𝑝−𝑞)
1

⃦⃦
W1/𝑞−1/𝑝Ax

⃦⃦𝑝−𝑞

𝑞

𝑛∑︁
𝑖=1

w
𝑞(1/𝑞−1/𝑝)
𝑖 · |[Ax](𝑖)|𝑞

= ‖w‖[0∨(1/2−1/𝑞)](𝑝−𝑞)
1

⃦⃦
W1/𝑞−1/𝑝Ax

⃦⃦𝑝−𝑞

𝑞
·
⃦⃦
W1/𝑞−1/𝑝Ax

⃦⃦𝑞
𝑞

= ‖w‖[0∨(1/2−1/𝑞)](𝑝−𝑞)
1

⃦⃦
W1/𝑞−1/𝑝Ax

⃦⃦𝑝
𝑞
.

Taking 𝑝th roots on both sides gives the desired result.

Lemma 9.2.2 (Upper bound, 𝑞 ≥ 𝑝). Let A ∈ R𝑛×𝑑 and 𝑞 ≥ 𝑝 > 0. Let 𝜅 ≥ 1 and let w ∈ R𝑛

be 𝛼-approximate ℓ𝑝 Lewis weights for A. Let W = diag(w). For all x ∈ R𝑑,

‖Ax‖𝑝 ≤ ‖w‖
1/𝑝−1/𝑞
1

⃦⃦
W1/𝑞−1/𝑝Ax

⃦⃦
𝑞

Proof. We have

‖Ax‖𝑝𝑝 =
𝑛∑︁

𝑖=1

w
1−𝑝/𝑞
𝑖 · [W1/𝑞−1/𝑝Ax](𝑖)𝑝

=

[︃
𝑛∑︁

𝑖=1

w
(1−𝑝/𝑞)/(1−𝑝/𝑞)
𝑖

]︃1−𝑝/𝑞[︃ 𝑛∑︁
𝑖=1

[W1/𝑞−1/𝑝Ax](𝑖)𝑞

]︃𝑝/𝑞
Hölder’s inequality

= ‖w‖1−𝑝/𝑞
1

⃦⃦
W1/𝑞−1/𝑝Ax

⃦⃦𝑝
𝑞
.

Taking 𝑝th roots on both sides gives the desired result.

Lemma 9.2.3 (Lower bound, 𝑝 ≥ 𝑞). Let A ∈ R𝑛×𝑑 and 𝑝 ≥ 𝑞 > 0. Let 𝜅 ≥ 1 and let w ∈ R𝑛

be 𝛼-approximate ℓ𝑝 Lewis weights for A. Let W = diag(w). For all x ∈ R𝑑,⃦⃦
W1/𝑞−1/𝑝Ax

⃦⃦
𝑞
≤ ‖w‖1/𝑞−1/𝑝

1 ‖Ax‖𝑝
Proof. We have⃦⃦

W1/𝑞−1/𝑝Ax
⃦⃦𝑞
𝑞
=

𝑛∑︁
𝑖=1

w
1−𝑞/𝑝
𝑖 [Ax](𝑖)𝑞

≤

[︃
𝑛∑︁

𝑖=1

w
(1−𝑞/𝑝)/(1−𝑞/𝑝)
𝑖

]︃1−𝑞/𝑝[︃ 𝑛∑︁
𝑖=1

[Ax](𝑖)𝑝

]︃𝑞/𝑝
Hölder’s inequality

≤ ‖w‖1−𝑞/𝑝
1 ‖Ax‖𝑞𝑝.

Taking 𝑞th roots on both sides gives the desired result.

112

Lemma 9.2.4 (Lower bound, 𝑞 ≥ 𝑝). Let A ∈ R𝑛×𝑑 and 𝑞 ≥ 𝑝 > 0. Let w ∈ R𝑛 be one-sided ℓ𝑝
Lewis weights for A. Let W = diag(w). For all x ∈ R𝑑,⃦⃦

W1/𝑞−1/𝑝Ax
⃦⃦
𝑞
≤ ‖w‖[0∨(1/2−1/𝑝)](𝑞−𝑝)/𝑞

1 ‖Ax‖𝑝

Proof. We have

⃦⃦
W1/𝑞−1/𝑝Ax

⃦⃦𝑞
𝑞
=

𝑛∑︁
𝑖=1

w
1−𝑞/𝑝
𝑖 [Ax](𝑖)𝑞 =

𝑛∑︁
𝑖=1

w
1−𝑞/𝑝
𝑖 [Ax](𝑖)𝑞−𝑝[Ax](𝑖)𝑝

≤
𝑛∑︁

𝑖=1

w
1−𝑞/𝑝
𝑖

[︁
‖w‖0∨(𝑝/2−1)

1 v𝑖‖Ax‖𝑝𝑝
]︁(𝑞−𝑝)/𝑝

[Ax](𝑖)𝑝 Lemma 6.2.4

= ‖Ax‖𝑞−𝑝
𝑝 ‖w‖

[0∨(𝑝/2−1)](𝑞−𝑝)/𝑝
1

𝑛∑︁
𝑖=1

[Ax](𝑖)𝑝

= ‖w‖[0∨(𝑝/2−1)](𝑞−𝑝)/𝑝
1 ‖Ax‖𝑞𝑝.

Taking 𝑞th roots on both sides gives the desired result.

Combining the above lemmas yields the following conclusion.

Theorem 9.2.5 (Change of density via approximate Lewis weights). Let A ∈ R𝑛×𝑑 and 0 <
𝑝, 𝑞 <∞. Let w ∈ R𝑛 be one-sided ℓ𝑝 Lewis weight (Definition 6.1.7) and W = diag(w). For
𝑝 ≥ 𝑞, let

𝜅𝑑,𝑝,𝑞 := ‖w‖1/𝑞−1/𝑝
1

𝜆𝑑,𝑝,𝑞 := ‖w‖[0∨(1/2−1/𝑞)](𝑝−𝑞)/𝑝
1

and let 𝜅𝑑,𝑝,𝑞 := 𝜅−1
𝑑,𝑞,𝑝, 𝜆𝑑,𝑝,𝑞 := 𝜆−1

𝑑,𝑞,𝑝 if 𝑞 ≤ 𝑝. Then for all x ∈ R𝑑 we have the following:

‖Ax‖𝑝 ≤
⃦⃦
𝜆𝑑,𝑝,𝑞 ·W1/𝑞−1/𝑝Ax

⃦⃦
𝑞
≤ 𝜅𝑑,𝑝,𝑞𝜆𝑑,𝑝,𝑞‖Ax‖𝑝 if 𝑝 ≥ 𝑞

‖Ax‖𝑝 ≤
⃦⃦
𝜅𝑑,𝑝,𝑞 ·W1/𝑞−1/𝑝Ax

⃦⃦
𝑞
≤ 𝜅𝑑,𝑝,𝑞𝜆𝑑,𝑝,𝑞‖Ax‖𝑝 if 𝑞 ≥ 𝑝

Note that

𝜅𝑑,𝑝,𝑞𝜆𝑑,𝑝,𝑞 =

⎧⎨⎩‖w‖
| 1𝑞− 1

𝑝 |
1 if min(𝑝, 𝑞) ≤ 2

‖w‖
1
2(1−

𝑝∧𝑞
𝑝∨𝑞)

1 if min(𝑝, 𝑞) ≥ 2

Proof. Let v be the one-sided ℓ𝑝 Lewis weights such that w ≥ v. First consider the case of
𝑝 ≥ 𝑞 > 0. Note that in this case, 1/𝑞 − 1/𝑝 ≥ 0 so Lemmas 9.2.1 and 9.2.3 yield that

‖Ax‖𝑝 ≤ 𝜆𝑑,𝑝,𝑞

⃦⃦
V1/𝑞−1/𝑝Ax

⃦⃦
𝑞
≤ 𝜆𝑑,𝑝,𝑞

⃦⃦
W1/𝑞−1/𝑝Ax

⃦⃦
𝑞
≤ 𝜅𝑑,𝑝,𝑞𝜆𝑑,𝑝,𝑞‖Ax‖𝑝.

On the other hand, if 𝑞 ≥ 𝑝 > 0, then 1/𝑞 − 1/𝑝 ≤ 0 so Lemmas 9.2.2 and 9.2.4 yield that

‖Ax‖𝑝 ≤ 𝜅𝑑,𝑝,𝑞

⃦⃦
W1/𝑞−1/𝑝Ax

⃦⃦
𝑞
≤ 𝜅𝑑,𝑝,𝑞

⃦⃦
V1/𝑞−1/𝑝Ax

⃦⃦
𝑞
≤ 𝜅𝑑,𝑝,𝑞𝜆𝑑,𝑝,𝑞‖Ax‖𝑝.

113

For 𝑝 ≥ 𝑞, we have that the total distortion is ‖w‖𝛽1 , for

𝛽 =

[︂
1

2
− 1

𝑞

]︂
𝑝− 𝑞

𝑝
+

[︂
1

𝑞
− 1

𝑝

]︂
=

[︂
1

2
− 1

𝑞

]︂
𝑝− 𝑞

𝑝
+

1

𝑞

𝑝− 𝑞

𝑝
=

𝑝− 𝑞

2𝑝
=

1

2

(︂
1− 𝑞

𝑝

)︂

if 𝑞 ≥ 2, and ‖w‖
1
𝑞
− 1

𝑝

1 if 𝑞 ≤ 2. Next, when 𝑞 ≥ 𝑝 > 0, then we have that the total distortion is
‖w‖𝛽1 for

𝛽 =

[︂
1

2
− 1

𝑝

]︂
𝑞 − 𝑝

𝑞
+

[︂
1

𝑝
− 1

𝑞

]︂
=

[︂
1

2
− 1

𝑝

]︂
𝑞 − 𝑝

𝑞
+

1

𝑝

𝑞 − 𝑝

𝑞
=

𝑞 − 𝑝

2𝑞
=

1

2

(︂
1− 𝑝

𝑞

)︂

if 𝑝 ≥ 2, and ‖w‖
1
𝑝
− 1

𝑞

1 if 𝑝 ≤ 2. These yield the claimed bounds.

114

Chapter 10

Subspace embeddings for general losses
[MMWY22]

Up until now, we have studied subspace embeddings for the ℓ𝑝 loss, with applications to ℓ𝑝
regression in mind. In fact, the problem of computing subspace embeddings makes sense in a far
more generalized setting, where we wish to approximate loss functions of the form

‖Ax‖𝑔,w :=
𝑛∑︁

𝑖=1

w𝑖 · 𝑔([Ax](𝑖)), (10.1)

where we denote the loss function as a norm in an abuse of notation, despite the fact that ‖·‖𝑔,w
may not be a norm. For example, taking the weights w𝑖 to be all ones and 𝑔 to be the so-called
Huber loss 𝐻 defined as

𝐻(𝑥) :=

{︃
𝑥2/2 |𝑥| ≤ 1

|𝑥| − 1/2 |𝑥| ≥ 1

is useful in solving linear regression with the Huber loss, which is a popular loss function in the
literature of robust statistics [CW15a]. Similarly, taking 𝑔 to be the Tukey loss 𝑇 defined as

𝑇 (𝑥) :=

{︃
1− (1− 𝑥2)3 |𝑥| ≤ 1

1 |𝑥| ≥ 1

is another popular choice for robust regression [CWW19]. Yet another example is to take 𝑔 to be
the logistic loss, given by

𝑔(𝑥) := log(1 + 𝑒𝑥)

which corresponds to logistic regression [MSSW18, MMR21].

Improved sensitivity bounds for general loss functions. In fact, we have already discussed a
generalized approach to estimating functions of the form of (10.1) in Chapter 7, via sensitivity
sampling. Recall that in this framework, we wish to compute upper bounds on the sensitivity
scores 𝜎𝑖, which in this case are given by

𝜎𝑖(A) := sup
Ax ̸=0

w𝑖 · 𝑔([Ax](𝑖))∑︀𝑛
𝑗=1w𝑗 · 𝑔([Ax](𝑗))

.

115

Given upper bounds �̃�𝑖 ≥ 𝜎𝑖(A) on the sensitivity scores, we almost immediately obtain a sam-
pling algorithm which samples at most �̃�(𝜀−2S̃𝑑) rows of A, where S̃ =

∑︀𝑛
𝑖=1 �̃�𝑖. The primary

difficult in this approach is efficiently obtaining the sensitivity upper bounds �̃�𝑖. Previously,
an approach based on ellipsoidal rounding of the balls induced by the norm ‖Ax‖𝑔,w has been
proposed by [TMF20]. However, computing Löwner–John ellipsoids for general convex bodies is
computational expensive, and furthermore, leads to poly(𝑑) factor losses in the total sensitivity
upper bound S̃ and thus in the sample complexity.

In the work of [MMWY22], we obtain a significantly improved algorithm for estimating
sensitivity scores, which is nearly optimal for a wide class of loss functions.

Theorem 10.0.1 (Sensitivity upper bounds for general loss functions, Theorem 4.9, [MMWY22]).
Let 𝑀 : R≥0 → R≥0 be increasing, has 𝑀(0) = 0, and has at most quadratic growth, that is,

𝑀(𝑦)

𝑀(𝑥)
≤ 𝑐
(︁𝑦
𝑥

)︁2
for all 𝑦 > 𝑥. Let 𝑔(𝑥) := 𝑀(|𝑥|). Then, there is an algorithm that computes upper bounds �̃�𝑖 to
the sensitivities with respect to 𝑔 such that S̃ =

∑︀𝑛
𝑖=1 𝜎𝑖 ≤ 𝑂(𝑑 log2 𝑛+ 𝜏) in time

𝑂

(︂
nnz(A) log3 𝑛+

𝑛𝑑𝜔

𝜏
log 𝑛

)︂
.

The class of functions handled by Theorem 10.0.1 include the Huber loss, any ℓ𝑝 loss for
𝑝 ≤ 2, as well as a wide variety of loss functions considered in the robust statistics literature that
behave similarly to the Huber loss, that is, quadratic growth near the origin and linear growth
away from the origin.

The idea behind Theorem 10.0.1 starts from an observation from the streaming literature
[BO10] that for functions 𝑔 of at most quadratic growth, entries 𝑖 ∈ [𝑛] of a vector y which
are “heavy” in the 𝑔 loss, that is, 𝑔(y𝑖)/‖y‖𝑔 = Ω(1), must also be “heavy” in the ℓ2 loss, that
is, |y𝑖|2/‖y‖22 = Ω(1). Thus, a superset of heavy elements in the 𝑔 loss can be identified by
identifying the heavy elements in the ℓ2 loss, and furthermore, this superset is not too large by
the definition of heaviness. This can then be generalized to identifying 𝜀-heavy elements, that
is, 𝑔(y𝑖)/‖y‖𝑔 ≥ 𝜀, based on a standard argument. This argument is based on random hashing,
and if we randomly hash the entries of y into 𝑂(1/𝜀) buckets, then within this bucket, an 𝜀-heavy
entry is likely to be Ω(1)-heavy.

Finally, we can now draw an analogy between “heavy” entries under the 𝑔 loss with rows of
A with large sensitivity 𝜎𝑖, as well as “heavy” entries under the ℓ2 loss with rows of A with large
ℓ2 leverage score. Thus, by combining leverage score estimation with a hashing trick, we arrive at
our Theorem 10.0.1.

In Section 10.1, we collect basic definitions and lemmas concerning 𝑀 -estimators. Section
10.2 develops basic notions for sensitivity sampling for 𝑀 -estimators. In Section 10.2.1, we
describe our efficient algorithm for computing sensitivities for a broad class of 𝑀 -estimators.
In Section 10.2.2, we show that a variation on our efficient algorithm can be used to show an
existential bound of 𝑂(𝑑max{1,𝑝𝑀/2} log 𝑛) total sensitivity for the same class of 𝑀 -estimators.
Finally, in Section 10.3, we show that the Tukey loss has a total sensitivity of Ω(𝑑 log 𝑛), and that
the Huber loss has a total sensitivity of Ω(𝑑 log log 𝑛).

116

10.1 𝑀 -estimators preliminaries
In this section, we define 𝑀 -norms and collect some of their geometric properties. This is a slight
generalization of Section 4.1 of [CW15a] which allows for a broader class of 𝑀 -norms (namely
with a relaxed polynomial lower bound condition). With applications to active regression in mind,
we also slightly generalize the results to handle translations by a single vector b, which can be
taken to be 0 to retrieve the original results.

Definition 10.1.1. Let 𝑀 : R≥0 → R≥0 be increasing. If there exist constants 𝑝 > 0 and 𝑐𝑈 ≥ 1
such that for all 𝑦 > 𝑥,

𝑀(𝑦)

𝑀(𝑥)
≤ 𝑐𝑈

(︁𝑦
𝑥

)︁𝑝
,

then we say that 𝑀 is polynomially bounded above with degree 𝑝 and constant 𝑐𝑈 . Similarly, if
there exists constants 𝑞 > 0 and 𝑐𝐿 ≥ 1 such that for all 𝑦 > 𝑥,

𝑀(𝑦)

𝑀(𝑥)
≥ 𝑐𝐿

(︁𝑦
𝑥

)︁𝑞
,

then we say that 𝑀 is polynomially bounded below with degree 𝑞 and constant 𝑐𝐿.

Remark 10.1.2. As noted in [CW15a], it can be shown that convex functions are polynomially
bounded below with degree 1.

Remark 10.1.3. Throughout this work, we will consider the constants 𝑝, 𝑞, 𝑐𝑈 , 𝑐𝐿 in Definition
10.1.1 to be absolute constants that don’t depend on other parameters under consideration.

We define the 𝑀 -norm as follows. Note that despite our abuse of notation and terminology,
the 𝑀 -norm need not be an actual norm.

Definition 10.1.4 (𝑀 -norm). Let 𝑀 : R≥0 → R≥0 be such that
• 𝑀(0) = 0
• 𝑀 is nondecreasing
• 𝑀 is polynomially bounded above with degree 𝑝𝑀 and constant 𝑐𝑈 (see Definition 10.1.1)

Let w ∈ R𝑛 be a set of weights such that

w𝑖 ≥ 1

for all 𝑖 ∈ [𝑛]. Then, we define the 𝑀 -norm of a vector x ∈ R𝑛 as

‖x‖𝑀,w :=

[︃
𝑛∑︁

𝑖=1

w𝑖𝑀(|x𝑖|)

]︃1/𝑝𝑀
.

If w is the vector of all ones, we simple write ‖x‖𝑀 for ‖x‖𝑀,w. If 𝑀(𝑥) = |𝑥|𝑝 for some 𝑝 > 0,
then we write ‖x‖𝑝,w for ‖x‖𝑀,w.

Definition 10.1.5 (𝑀 balls and spheres). Let A ∈ R𝑛×𝑑 and let 𝒱 = span(A). Let 𝑀 : R≥0 →
R≥0 satisfy the conditions of Definition 10.1.4, and let w ≥ 1𝑛 be a set of weights. Define the
ball ℬ𝑀,w

𝜌 of radius 𝜌 > 0 as

ℬ𝑀,w
𝜌 :=

{︁
y ∈ 𝒱 : ‖y‖𝑀,w ≤ 𝜌

}︁
.

117

Similarly define the sphere 𝒮𝑀,w
𝜌 of radius 𝜌 > 0 as

𝒮𝑀,w
𝜌 :=

{︁
y ∈ 𝒱 : ‖y‖𝑀,w = 𝜌

}︁
.

If w = 1𝑛, then we simply write ℬ𝑀
𝜌 and 𝒮𝑀

𝜌 , respectively.

The next lemma compares important entries using the polynomial boundedness condition.

Lemma 10.1.6. Let 𝑀 be polynomially bounded above with degree 𝑝 and constant 𝑐𝑈 ≥ 1. Let
x ∈ R𝑛 be a vector with entries arranged in order, i.e., |x1| ≥ |x2| ≥ · · · ≥ |x𝑛|. Then,

𝑀(|x1|)
‖x‖𝑝𝑀

≤ 𝑐𝑈
|x1|𝑝

‖x‖𝑝𝑝
.

Proof. Note that for all 𝑖 ≥ 2, we have by the polynomially boundedness condition that

𝑀(|x1|)
𝑀(|x𝑖|)

≤ 𝑐𝑢

(︂
|x1|
|x𝑖|

)︂𝑝

= 𝑐𝑈
|x1|𝑝

|x𝑖|𝑝
.

Then,

𝑀(|x1|)
‖x‖𝑝𝑀

=
𝑀(|x1|)

𝑀(|x1|) +
∑︀𝑛

𝑖=2 𝑀(|x𝑖|)

=

[︃
1 +

𝑛∑︁
𝑖=2

𝑀(|x𝑖|)
𝑀(|x1|)

]︃−1

≤

[︃
1 +

𝑛∑︁
𝑖=2

1

𝑐𝑈

|x𝑖|𝑝

|x1|𝑝

]︃−1

=
|x1|𝑝

|x1|𝑝 + 𝑐−1
𝑈

∑︀𝑛
𝑖=2|x𝑖|𝑝

≤ 𝑐𝑈
|x1|𝑝

‖x‖𝑝𝑝
.

10.2 Sensitivities upper bounds
Because 𝑀 -estimators are defined as coordinate-wise sums, one can naturally define analogues of
sensitivities, just as was done for ℓ𝑝 norms.

Definition 10.2.1 (𝑀 -sensitivity). Let A ∈ R𝑛×𝑑 and let ‖·‖𝑀 be an 𝑀 -norm. Then, the 𝑖th
𝑀 -sensitivity is defined as

s𝑀𝑖 (A) := sup
x∈R𝑑,Ax ̸=0

𝑀(|[Ax](𝑖)|)
‖Ax‖𝑝𝑀𝑀

and the total 𝑀 -sensitivity is defined as

𝒯 𝑀(A) :=
𝑛∑︁

𝑖=1

s𝑀𝑖 (A).

Let w ≥ 1𝑛 be a set of weights. Then, the 𝑖th weighted 𝑀 -sensitivity is defined as

s𝑀,w
𝑖 (A) := sup

x∈R𝑑,Ax ̸=0

w𝑖𝑀(|[Ax](𝑖)|)
‖Ax‖𝑝𝑀𝑀,w

118

and the total weighted 𝑀 -sensitivity is defined as

𝒯 𝑀,w(A) :=
𝑛∑︁

𝑖=1

s𝑀,w
𝑖 (A).

When 𝑀(𝑥) = |𝑥|𝑝, i.e. for the case of ℓ𝑝 norms, it is known that sampling with probabilities
proportional to upper bounds on sensitivities yields subspace embeddings [BLM89, DDH+09,
CP15]. Analogous results are known as well for 𝑀 -estimators [CW15b, CW15a, CWW19] and
Orlicz norms [SWY+19].

Definition 10.2.2 (Sensitivity Sampling for 𝑀 -Estimators). Let A ∈ R𝑛×𝑑, let ‖·‖𝑀 be an 𝑀 -
norm, and let w ≥ 1𝑛 be a set of weights. Let 𝑚 be an oversampling parameter. Then, a random
set of weights w′ is sampled according to sensitivity upper bounds s̃𝑀,w

𝑖 (A) ≥ s𝑀,w
𝑖 (A) (see

Definition 10.2.1) if

w′
𝑖 :=

{︃
w𝑖/p𝑖 w.p. p𝑖

0 otherwise

where p𝑖 := min{1,𝑚 · s̃𝑀,w
𝑖 (A)}.

Note that in the case of 𝑀 -estimators, the lack of scale invariance means that we get norm
preservation guarantees for spheres rather than for entire subspaces. That is, we can get the
following lemma, similar Lemma 43 of [CW15a]:

Lemma 10.2.3. Let A ∈ R𝑛×𝑑. Let 𝜀 ∈ (0, 1), 𝛿 > 0, and let 𝜌 ≥ 1. Let 𝑀 : R≥0 → R≥0 satisfy
the conditions of Definition 10.1.4, and furthermore that

• 𝑀1/𝑝𝑀 is subadditive
• 𝑀 is polynomially bounded below with degree 𝑞𝑀 and constant 𝑐𝐿 (see Definition 10.1.1)

Let w ≥ 1𝑛 be a set of weights. Let s̃𝑀,w
𝑖 (A) ≥ s𝑀,w

𝑖 (A) be sensitivity upper bounds. Let
𝑚 ≥ 𝑚0 be an oversampling parameter larger than some

𝑚0 = 𝑂

(︂
𝑑

𝜀2

(︂
log

1

𝜀

)︂(︂
log

1

𝛿

)︂)︂
.

Let w′ ≥ 1𝑛 be sampled according to Definition 10.2.2. Then with probability at least 1− 𝛿,

‖y‖𝑝𝑀𝑀,w′ = (1± 𝜀)‖y‖𝑝𝑀𝑀,w

for all y ∈ 𝒮𝑀
𝜌 (see Definition 10.1.5). Furthermore,

E nnz(w′) ≤ 𝑚
𝑛∑︁

𝑖=1

s̃𝑀,w
𝑖 = 𝑚𝒯 𝑀,w(A)

Note that the sample complexity of Lemma 10.2.3 is weaker than the corresponding bound for
ℓ𝑝 Lewis weights by a factor of 𝑑. This extra factor of 𝑑 can in fact be removed, as shown by a
remarkable recent result of [JLLS23].

119

10.2.1 Efficient algorithm for sensitivity upper bounds
We first show that algorithmically, one can compute upper bounds to the 𝑀 -estimator sensitivities
that sum to at most 𝑂(𝑑max{1,𝑝𝑀/2} log2 𝑛+ 𝜏) in time

𝑂

(︂
nnz(A) log3 𝑛+

𝑛𝑇

𝜏
log 𝑛

)︂
,

where 𝑇 = 𝑇 (𝑛, 𝑑) is such that constant factor ℓ𝑝𝑀 Lewis weight approximation for an 𝑛 × 𝑑
matrix B takes 𝑂(nnz(B) log 𝑛 + 𝑇) time. For example, it is known that ℓ𝑝 Lewis weights for
0 < 𝑝 < 4 can be approximated up to constant factors in 𝑂(nnz(A) log 𝑛 + 𝑑𝜔) time, so for
𝜏 = 𝑇 = 𝑑𝜔, we obtain a nearly input sparsity time algorithm that computes upper bounds
to 𝑀 -estimator sensitivities that sum to at most 𝑂(𝑑max{1,𝑝𝑀/2} log2 𝑛 + 𝑑𝜔). In applications,
this is enough to compute a set of poly(𝑑) log2 𝑛 rows that approximates the original matrix
well, at which point we can compute sensitivities that sum to only 𝑂(𝑑 log2 𝑛) in an additional
poly(𝑑 log 𝑛) time.

The algorithm draws ideas from a theorem of [CWW19, Theorem 3.4], which shows an input
sparsity time algorithm for locating “heavy entries” for the Tukey loss, which is equivalent to
finding coordinates with high Tukey sensitivity.

Algorithm 1 Sensitivity upper bounds
input: Matrix A ∈ R𝑛×𝑑, 𝑀 -norm 𝑀 , parameter 1 ≤ 𝜏 ≤ 𝑛.
output: Upper bounds s̃𝑀𝑖 (A) on s𝑀𝑖 (A).

1: Initialize s̃𝑀𝑖 (A)← 2𝜏/𝑛.
2: for 𝑟 ∈ [⌈log2(𝑛/𝜏)⌉] do
3: for 𝑡 ∈ [𝑂(log 𝑛)] do
4: Hash the rows of A into 𝐵 = 10 · 2𝑟 buckets 𝑆1, 𝑆2, . . . , 𝑆𝐵.
5: Compute 𝑂(1)-approximate ℓ𝑝 Lewis weights of each of the 𝐵 buckets A |𝑆1 ,A |𝑆2

, . . . ,A |𝑆𝐵
.

6: For any row 𝑖 with an ℓ𝑝𝑀 Lewis weight of at least Ω(1), set s̃𝑀𝑖 (A) ←
max{2/2𝑟, s̃𝑀𝑖 (A)}.

Theorem 10.2.4 (Sensitivity upper bounds). Let ‖·‖𝑀 be an 𝑀 -norm. Let 1 ≤ 𝜏 ≤ 𝑛 be a
parameter. Then, with probability at least 99/100, Algorithm 1 computes sensitivity upper bounds
s̃𝑀𝑖 (A) ≥ s𝑀𝑖 (A) that sum to at most

𝒯 𝑀(A) :=
𝑛∑︁

𝑖=1

s̃𝑀𝑖 (A) = 𝑂(𝑑max{1,𝑝𝑀/2} log2 𝑛+ 𝜏).

If constant factor Lewis weight approximation takes for an 𝑛×𝑑 matrix B takes 𝑂(nnz(B) log 𝑛+
𝑇) time (see Theorem 6.1.8), then the total running time is

𝑂

(︂
nnz(A) log3 𝑛+

𝑛𝑇

𝜏
log 𝑛

)︂
.

Proof. We first show correctness of the algorithm, then show the sensitivity bound, and finally
the running time guarantee.

120

Correctness. Let 𝑟 ∈ [⌈log2(𝑛/𝜏)⌉]. Consider a coordinate 𝑖 ∈ [𝑛] that has 𝑀 -sensitivity
between 1/2𝑟 and 2/2𝑟 and let y = Ax be a corresponding vector which satisfies

𝑀(|y𝑖|)
‖y‖𝑝𝑀𝑀

∈
[︂
1

2𝑟
,
2

2𝑟

]︂
.

Note then that there are at most 2𝑟 − 1 entries 𝑗 of y such that |y𝑗| > |y𝑖|. In our algorithm (line
4), we randomly hash the 𝑛 rows of A into 𝐵 = 10 · 2𝑟 buckets. Then, the probability that any
one of these 2𝑟 − 1 entries is hashed to the same bucket as 𝑖 is 1/𝐵, so by a union bound, the
probability that y𝑖 has the largest absolute value in its hash bucket is at least 1− 2𝑟/𝐵 ≥ 9/10.
Call this event ℰ .

Now let 𝑆 be the set of indices which hash to the same bucket as row 𝑖 and let 𝑆 ′ = 𝑆 ∖{𝑖}. By
Markov’s inequality, with probability at least 9/10, 𝑖 is hashed to a bucket such that the 𝑀 -norm
of all other entries is most ‖y |𝑆′‖𝑝𝑀𝑀 ≤ ‖y‖𝑝𝑀𝑀 /2𝑟, where y |𝑆′ is the restriction of y to the indices
in 𝑆 ′. Call this event ℱ .

Condition on ℰ and ℱ . We have by Lemma 10.1.6 that

|y𝑖|𝑝𝑀
‖y |𝑆‖𝑝𝑀𝑝𝑀

≥ 𝑀(|y𝑖|𝑝𝑀)

‖y |𝑆‖𝑝𝑀𝑀
≥ 𝑀(|y𝑖|𝑝𝑀)

𝑀(|y𝑖|𝑝𝑀) + ‖y |𝑆′‖𝑝𝑀𝑀
≥ 1/2𝑟

2/2𝑟 + 1/2𝑟
=

1

3
.

The above holds with probability at least 4/5. Thus, by repeating the hashing process 𝑂(log 𝑛)
times, with probability at least 1−1/(100𝑛 log2 𝑛) = 1−1/ poly(𝑛), there exists some trial where
the ℓ𝑝𝑀 sensitivity of the 𝑖th row in the matrix A |𝑆 is at least 1/3. In this trial, our algorithm will
correctly set s̃𝑀𝑖 (A) ≥ 2/2𝑟 (line 6). By a union bound over 𝑂(log(𝑛/𝜏)) levels 𝑟 and the 𝑛 rows,
our algorithm succeeds with probability at least 99/100.

Sensitivity bound. By Lemma 6.2.4, the ℓ𝑝𝑀 sensitivities sum to at most 𝑑max{1,𝑝𝑀/2}. Thus,
each time we compute 𝑂(1)-approximate ℓ𝑝𝑀 Lewis weights (line 5), we find at most 𝑂(𝑑max{1,𝑝𝑀/2})
entries with 𝑀 -sensitivity at least 2/2𝑟. Thus, for each 𝑟 and each iteration, we increase the sum
of our upper bounds on 𝑀 -sensitivities by a total of at most

𝐵 ·𝑂(𝑑max{1,𝑝𝑀/2}) · 2
2𝑟

= 𝑂(𝑑max{1,𝑝𝑀/2}).

This occurs at most 𝑂((log 𝑛)(log(𝑛/𝜏))) times, and we start at a sensitivity bound of

2𝜏

𝑛
· 𝑛 = 𝑂(𝜏)

so our upper bounds on the sensitivities sum to at most

𝑂(𝑑max{1,𝑝𝑀/2}(log 𝑛)(log(𝑛/𝜏)) + 𝜏) ≤ 𝑂(𝑑max{1,𝑝𝑀/2} log2 𝑛+ 𝜏).

Running time. For a given 𝑟, the dominating running time cost of the inner-most loop of
Algorithm 1 is the computation of ℓ𝑝𝑀 Lewis weights for 𝑂(2𝑟) matrices whose sparsities sum to

121

nnz(A). Thus, if Lewis weight computation for an 𝑛× 𝑑 matrix B takes 𝑂(nnz(B) log 𝑛 + 𝑇)
time, then the total running time is

⌈log2(𝑛/𝜏)⌉∑︁
𝑟=1

𝑂(log 𝑛) ·𝑂(nnz(A) log 𝑛+ 2𝑟𝑇) = 𝑂

(︂
nnz(A) log3 𝑛+

𝑛𝑇

𝜏
log 𝑛

)︂
.

Remark 10.2.5. As noted by [TMF20], if we can control the sensitivities of functions 𝑀1 and
𝑀2, then it is straightforward to control the sensitivities of the sum of these two functions, i.e.,
𝑀 = 𝑀1 +𝑀2. This applies to our algorithm as well. Suppose that s𝑀𝑖 (A) ∈ [1/2𝑟, 2/2𝑟] and
let y = Ax be such that

𝑀1(|y𝑖|) +𝑀2(|y𝑖|)
‖y‖𝑝𝑀1

𝑀1
+ ‖y‖𝑝𝑀2

𝑀2

∈
[︂
1

2𝑟
,
2

2𝑟

]︂
.

Then,
𝑀1(|y𝑖|)
‖y‖𝑝𝑀1

𝑀1

+
𝑀2(|y𝑖|)
‖y‖𝑝𝑀2

𝑀2

≥ 1

2𝑟

so then there is some 𝑗 ∈ {1, 2} such that

𝑀𝑗(|y𝑖|)
‖y‖

𝑝𝑀𝑗

𝑀𝑗

≥ 1

2
· 1
2𝑟
,

so the ℓ𝑝𝑗 Lewis weight of the 𝑖th coordinate must be large by using a similar proof as Theorem
10.2.4. Thus, we can obtain similar sensitivity upper bounds up to a constant factor loss. Similarly,
if 𝑀2 is a “flat” sensitivity function in the sense of [TMF20], that is, if

sup
x∈R𝑑

𝑀2(|[Ax](𝑖)|)
‖Ax‖𝑝𝑀2

𝑀2

= 𝑂

(︂
1

𝑛

)︂
for all 𝑖 ∈ [𝑛], then this just means that either the 𝑀1 sensitivity is large, or the 𝑀 sensitivity is at
most 𝑂(1/𝑛), in which case we still get the same bounds.

Although Theorem 10.2.4 only handles unweighted 𝑀 -estimators, this result can be general-
ized to weighted 𝑀 -estimators by splitting into level sets, similarly to Lemma 39 of [CW15a].

Lemma 10.2.6. Let ‖·‖𝑀 be an 𝑀 -norm. Let w ≥ 1𝑛 be a set of weights. Let 𝑁 :=
⌈log2(1 + ‖w‖∞)⌉. For 𝑗 ∈ [𝑁], let

𝑇𝑗 :=
{︀
𝑖 ∈ [𝑛] : 2𝑗−1 ≤ w𝑖 < 2𝑗

}︀
,

and let A |𝑇𝑗
denote the restriction of A to the rows of 𝑇𝑗 . Then,

s𝑀,w
𝑖 (A) ≤ 2 · s𝑀𝑖 (A |𝑇𝑗

)

for 𝑖 ∈ 𝑇𝑗 .

122

Proof. Let 𝑖 ∈ 𝑇𝑗 for some 𝑗 ∈ [𝑁]. We have that

s𝑀,w
𝑖 (A) = sup

x∈R𝑛,Ax ̸=0

w𝑖𝑀([Ax](𝑖))

‖Ax‖𝑝𝑀𝑀,w

≤ sup
x∈R𝑛,Ax ̸=0

w𝑖𝑀([A |𝑇𝑗
x](𝑖))⃦⃦

A |𝑇𝑗
x
⃦⃦𝑝𝑀
𝑀,w

≤ sup
x∈R𝑛,Ax ̸=0

2𝑗𝑀([A |𝑇𝑗
x](𝑖))

2𝑗−1
⃦⃦
A |𝑇𝑗

x
⃦⃦𝑝𝑀
𝑀

= 2 · s𝑀𝑖 (A |𝑇𝑗
)

as desired.

This leads to an algorithm that achieves guarantees similar to Theorem 10.2.4 for weighted
𝑀 -sensitivities, up to a loss of a factor of 𝑁 in the running time and sensitivity bound.

Corollary 10.2.7. Let ‖·‖𝑀 be an 𝑀 -norm. Let w ≥ 1𝑛 be a set of weights. Define 𝑁 as in
Lemma 10.2.6. There is an algorithm that computes weighted 𝑀 -estimator sensitivities that sum
to at most

𝑂(𝑁𝑑max{1,𝑝𝑀/2} log2 𝑛+𝑁𝜏)

in time

𝑂

(︂
nnz(A) log3 𝑛+𝑁

𝑛𝑇

𝜏
log 𝑛

)︂
,

where 𝑇 is such that constant factor Lewis weight approximation for an 𝑛 × 𝑑 matrix B takes
𝑂(nnz(B) + 𝑇) time (see Theorem 6.1.8).

Proof. This is simply the result of applying Theorem 10.2.4 on the 𝑁 matrices A |𝑇𝑗
as defined

in Lemma 10.2.6. Note that the nnz(A |𝑇𝑗
) terms add up to nnz(A) in the running time.

10.2.2 Sharper sensitivity bounds
We show that we may modify the proof of our input sparsity time algorithm to show that the
sum of sensitivities is at most 𝑂(𝑑max{1,𝑝𝑀/2} log 𝑛), if we do not need to efficient algorithms for
constructing these sensitivities.

Theorem 10.2.8. Let ‖·‖𝑀 be an 𝑀 -norm. Then, the total 𝑀 -sensitivity of A is at most

𝑂(𝑑max{1,𝑝𝑀/2} log 𝑛).

Proof. Our idea is essentially to run Algorithm 1 with 𝜏 = 𝑑 without the 𝑂(log 𝑛) repetitions of
the hashing process.

Let 𝑟 ∈ [⌈log2 𝑛⌉] and let 𝐼𝑟 be the set of coordinates with 𝑀 -sensitivity in [1/2𝑟, 2/2𝑟].
Suppose we hash the rows of A into 𝐵 = 10 · 2𝑟 buckets. Then, as in the proof of Theorem 10.2.4,
for each 𝑖 ∈ 𝐼𝑟, there is at least a 9/10 probability that 𝑖 has ℓ𝑝𝑀 Lewis weight at least 1/3 in its
hash bucket. Thus, the number of such 𝑖 is (9/10)|𝐼𝑟| in expectation, so there exists some hashing

123

such that at least (9/10)|𝐼𝑟| of the indices 𝑖 ∈ 𝐼𝑟 have ℓ𝑝 Lewis weight at least 1/3 in its hash
bucket. However, there can be at most 𝐵 · 𝑑max{1,𝑝/2} such indices, so we must have that

9

10
|𝐼𝑟| ≤ 𝐵 · 𝑑max{1,𝑝/2}

so
|𝐼𝑟| = 𝑂(𝐵 · 𝑑max{1,𝑝/2}) = 𝑂(2𝑟 · 𝑑max{1,𝑝/2}).

By summing over the 𝑟, we obtain a bound of

⌈log2 𝑛⌉∑︁
𝑟=1

2

2𝑟
|𝐼𝑟| ≤

⌈log2 𝑛⌉∑︁
𝑟=1

2

2𝑟
𝑂(2𝑟 · 𝑑max{1,𝑝/2}) = 𝑂(𝑑max{1,𝑝/2} log 𝑛) = 𝑂(𝑑max{1,𝑝/2} log 𝑛)

on the total 𝑀 -sensitivity, as claimed.

10.3 Sensitivity lower bounds
Finally, we show that our sensitivity upper bounds are tight by showing that the Tukey loss
can have a total sensitivity as large as Ω(𝑑 log(𝑛/𝑑)). We also show a weaker lower bound of
Ω(𝑑 log log(𝑛/𝑑)) for the Huber loss. This is in contrast to sensitivities for the ℓ𝑝 loss for 0 < 𝑝 <
∞, which is always at most 𝑑max{1,𝑝/2} due to the existence of Lewis bases [Lew78, SZ01], and
thus has no dependence on 𝑛. The necessity for a dependence on 𝑛 can be attributed to the lack of
scale invariance for these 𝑀 -estimator losses. A similar observation has been made previously in
[SWZ19, Theorem 1.3], which shows that the column subset selection problem with the entrywise
Huber loss exhibits a lower bound of Ω(

√
log 𝑛) columns, also attributed to the lack of scale

invariance.
We simultaneously handle the Tukey and Huber losses by analyzing the ℓ2-ℓ𝑝 loss for 𝑝 ∈ [0, 1],

which grows quadratically near the origin and as ℓ𝑝 away from the origin, and is polynomially
bounded above with degree 2.

Lemma 10.3.1 (Sensitivity lower bound for the ℓ2-ℓ𝑝 loss). Define the ℓ2-ℓ𝑝 loss of width 𝜏 to be

𝑀(𝑥) =

{︃
𝑥2 |𝑥| ≤ 𝜏

(𝜏 2/𝜏 𝑝) · 𝑥𝑝 |𝑥| > 𝜏
.

For 𝑑 ≥ 1 and 𝑛 ≥ 𝑑, there exists an 𝑛× 𝑑 matrix A with total 𝑀 -sensitivity that is at least

𝒯 𝑇 (A) ≥

{︃
Ω
(︀
𝑑 log 𝑛

𝑑

)︀
if 𝑝 ∈ [0, 1)

Ω
(︀
𝑑 log log 𝑛

𝑑

)︀
if 𝑝 = 1.

Proof. Let ℓ = ⌊log2 𝑛⌋ and let x ∈ R𝑛 be a vector with 2𝑖 coordinates of value 𝜏/2𝑖 for 𝑖 ∈ [ℓ].
We will show a sensitivity lower bound of Ω(ℓ) = Ω(log 𝑛) for the 𝑛× 1 matrix formed by the
vector x. By considering 𝑑 disjoint copies of this vector, each on 𝑛/𝑑 coordinates, this implies a
lower bound of Ω(𝑑 log(𝑛/𝑑)).

124

Let 𝑗 ∈ [ℓ]. Then,

⃦⃦
2𝑗 · x

⃦⃦2
𝑀

=
ℓ∑︁

𝑖=1

2𝑖 ·𝑀
(︂
𝜏
2𝑗

2𝑖

)︂

≤ 𝜏 2

𝜏 𝑝

𝑗∑︁
𝑖=1

2𝑖 ·
(︂
𝜏
2𝑗

2𝑖

)︂𝑝

+
ℓ∑︁

𝑖=𝑗+1

2𝑖 ·
(︂
𝜏
2𝑗

2𝑖

)︂2

= 𝜏 22𝑝𝑗
𝑗∑︁

𝑖=1

2(1−𝑝)𝑖 + 𝜏 222𝑗
ℓ∑︁

𝑖=𝑗+1

1

2𝑖

=

{︃
𝑂(𝜏 2 · 2𝑗) if 𝑝 ∈ [0, 1)

𝑂(𝜏 2 · 𝑗2𝑗) if 𝑝 = 1

so for each 𝑗 ∈ [ℓ], there are 2𝑗 coordinates 𝑖 such that

𝑀(2𝑗 · x𝑖)

‖2𝑗 · x‖2𝑀
=

⎧⎨⎩Ω
(︁

𝜏2

𝜏2·2𝑗

)︁
if 𝑝 ∈ [0, 1)

𝑂
(︁

𝜏2

𝜏2·𝑗2𝑗

)︁
if 𝑝 = 1

=

{︃
Ω
(︀

1
2𝑗

)︀
if 𝑝 ∈ [0, 1)

𝑂
(︁

1
𝑗2𝑗

)︁
if 𝑝 = 1

.

Thus, the sum of sensitivities for the Tukey loss for this matrix is at least

ℓ∑︁
𝑗=1

2𝑗 · Ω
(︂

1

2𝑗

)︂
= Ω(ℓ) = Ω(log 𝑛)

for 𝑝 ∈ [0, 1) and
ℓ∑︁

𝑗=1

2𝑗 · Ω
(︂

1

𝑗2𝑗

)︂
= Ω(log ℓ) = Ω(log log 𝑛)

for 𝑝 = 1.

125

126

Chapter 11

Applications: streaming ℓ∞ subspace
embeddings and computational geometry
[WY22a]

An investigation of high-distortion ℓ𝑝 subspace embeddings for 𝑝 > 2 in the previous Chapter 9
prompts a closely related study in the streaming setting, in which we must compute an ℓ𝑝 subspace
embedding of the matrix A ∈ R𝑛×𝑑, when A is presented as 𝑛 rows a𝑖 ∈ R𝑑 which arrive one by
one in one pass over a stream (see Section 1.3.3).

Note that when we have algorithms for subspace embeddings with (1 + 𝜀) distortion, then we
can easily obtain a streaming algorithm by a technique known as merge-and-reduce, in which we
iteratively perform the operations of concatenating new rows and reducing the size of the stored
subspace embedding by re-computing a subspace embedding. These operations can be performed
in a way such that the subspace embedding is re-computed at a “depth” of only 𝑂(log 𝑛) if the
input matrix A has 𝑛 rows, meaning that if we compute subspace embeddings with distortion
(1 + 𝜀/ log 𝑛) at each step, then the total distortion is only (1 + 𝜀/ log 𝑛)log𝑛 = (1 + 𝑂(𝜀)).
However, this trick does not work for when our distortions are 𝜅 = (1 + Ω(1)), and leads to
poly(𝑛) factor total distortions when applied in this case.

Perhaps the most important case of this problem is that of computing ℓ∞ subspace embeddings
in the streaming model. In this case, Theorem 9.0.3, both in the upper bound and lower bound,
can be generalized to show that ℓ∞ subspace embeddings with 𝜅 =

√
𝑑 distortion and 𝑟 = 𝑑 rows

can be obtained, and that the upper bound comes from ℓ∞ Lewis weights, which corresponds to
the well-studied problem of Löwner–John ellipsoids [Joh48, Tod16], also known as minimum
volume enclosing ellipsoids. However, the question of computing Löwner–John ellipsoids in the
streaming setting using only poly(𝑑) bits of space is a central unresolved problem in the literature
of computational geometry [MSS10, AS15]. Indeed, the only known prior results for computing
Löwner–John ellipsoids in a stream uses exp(poly(𝑑)) bits of space in order to estimate the extent
of every direction in R𝑑 using a net [AHV04, AHV05], rather than polynomial in 𝑑. Thus the
question of efficiently maintaining ℓ∞ subspace embeddings in a stream is an important problem.

In our work of [WY22a], we resolve both the problem of maintaining ℓ∞ subspace embeddings
and Löwner–John ellipsoids in the streaming setting, and in fact, a multitude of other problems in
the streaming computational geometry literature which previously only admitted upper bounds

127

with exponential dependencies in the dimension. Our central theorem is the following:

Theorem 11.0.1 (Streaming ℓ∞ subspace embedding [WY22a]). There is a deterministic stream-
ing algorithm such that, for any A ∈ Z𝑛×𝑑 presented in a geometric stream, the algorithm
maintains SA for a matrix S ∈ Z𝑟×𝑛 such that for every x ∈ R𝑑,

‖Ax‖∞ ≤ ‖SAx‖∞ ≤ 𝑂(
√︀

𝑑 log 𝑛)‖Ax‖∞.

Furthermore, the algorithm uses at most 𝑂(𝑑2(log 𝑛)2) bits of space.

Our main technique is the use of online leverage scores (see Section 1.3.3) as a tool both to
discover directions x ∈ R𝑑 in which the ℓ∞ norm ‖Ax‖∞ is updated significantly in a stream,
and to bound the total number of such updates which can occur.

A related result on maintaining Löwner–John ellipsoids in the streaming setting has been
obtained in concurrent work of [MMO22], which achieve results that depend on a certain condition
number of the ellipsoid. The case of asymmetric polytopes was later handled by [MMO23].

11.1 Nearly optimal sum of online leverage scores
We begin with a theorem establishing a tight bound on the sum of online leverage scores when A
has integer entries bounded by poly(𝑛).

Theorem 11.1.1. Let A ∈ Z𝑛×𝑑 have entries bounded in absolute value by poly(𝑛). Then,
𝑛∑︁

𝑖=1

𝜏OL
𝑖 (A) = 𝑂(𝑑 log 𝑛).

Our argument will need the notion of a pseudodeterminant.

Definition 11.1.2 (Pseudodeterminant). Let M ∈ R𝑑×𝑑 be a symmetric matrix of rank 𝑟. Then,
the pseudodeterminant pdet(M) of M is the product of the nonzero eigenvalues of M.

We need the following simple lemmas which dictate the evolution of pseudodeterminants
under row additions. The first shows how to handle the additional of orthogonal rows.

Lemma 11.1.3. Let A ∈ R𝑛×𝑑 and let a ∈ R𝑑 be a vector that is orthogonal to the row span of
A. Then,

pdet(A⊤A+ aa⊤) = ‖a‖22 · pdet(A
⊤A).

Proof. Let A = UΣV⊤. Note that the SVD of the concatenation A′ ∈ R(𝑛+1)×𝑑 of A and a is

A′ =

(︃
A

a

)︃
=

(︃
U 0

0 1

)︃(︃
Σ 0

0 ‖a‖2

)︃(︃
V⊤

a⊤/‖a‖2

)︃
.

Thus,

pdet(A⊤A+ aa⊤) = pdet(A′⊤A′) = ‖a‖22
𝑑∏︁

𝑗=1

𝜎2
𝑗 = ‖a‖22 · pdet(A

⊤A),

as claimed.

128

Our second lemma is a generalization of the matrix determinant lemma to pseudodeterminants.

Lemma 11.1.4 (Matrix pseudodeterminant lemma). Let A ∈ R𝑛×𝑑 and let a ∈ R𝑑 be a vector
that is in the row span of A. Then,

pdet(A⊤A+ aa⊤) = pdet(A⊤A)(1 + a(A⊤A)−a).

Proof. Let A = UΣV⊤ be the truncated SVD of A. Since a is in the row span of V, we may
write a = Vb for some b ∈ R𝑟, where 𝑟 = rank(A). Then,

pdet(A⊤A+ aa⊤) = pdet(Σ2 + bb⊤)

= det(Σ2 + bb⊤)

= det(Σ2)(1 + b⊤Σ−2b) matrix determinant lemma

= pdet(VΣ2V⊤)(1 + b⊤V⊤(VΣ−2V⊤)Vb)

= pdet(A⊤A)(1 + a(A⊤A)−a)

as desired.

We also need the following identity found in [GK10], which states that the volume of a
parallelotope is given by both the determinant of the Gram matrix as well as the product of the
heights of the dimensions of the parallelotope.

Lemma 11.1.5 (Determinant volume identity [GK10]). Let A ∈ R𝑟×𝑑 have linearly independent
rows. Then, √︀

det(AA⊤) =
𝑟∏︁

𝑖=1

⃦⃦
a⊥
𝑖

⃦⃦
2

where a⊥
1 = a1 and a⊥

𝑖 is the projection of a𝑖 onto the orthogonal complement of the row span of
A𝑖−1 for 𝑖 ≥ 2.

We now prove the following main theorem of this section.

Proof of Theorem 11.1.1. Our proof is a careful improvement of the original proof by [CMP20]
under our bit complexity assumption. Let 𝑖 ∈ [𝑛]. If a𝑖+1 is in the row span of A𝑖, then by Lemma
11.1.4, we have that

pdet(A⊤
𝑖+1A𝑖+1) = pdet(A⊤

𝑖 A𝑖)(1 + a𝑖+1(A
⊤
𝑖 A𝑖)

−a𝑖+1)

≥ pdet(A⊤
𝑖 A𝑖)(1 + 𝜏OL

𝑖+1(A))

≥ pdet(A⊤
𝑖 A𝑖) exp(𝜏

OL
𝑖+1(A)/2)

and otherwise, let a𝑖+1 = a
‖
𝑖+1 + a⊥

𝑖+1, where a‖ is the projection of a𝑖+1 onto the row span of A𝑖

and a⊥ is the residual. We have that

pdet(A⊤
𝑖+1A𝑖+1) = pdet(A⊤

𝑖 A𝑖 + a𝑖+1a
⊤
𝑖+1)

= pdet(A⊤
𝑖 A𝑖 + a

‖
𝑖+1(a

‖
𝑖+1)

⊤ + a⊥
𝑖+1(a

⊥
𝑖+1)

⊤)

129

=
⃦⃦
a⊥
𝑖+1

⃦⃦2
2
· pdet(A⊤

𝑖 A𝑖 + a
‖
𝑖+1(a

‖
𝑖+1)

⊤) Lemma 11.1.3

=
⃦⃦
a⊥
𝑖+1

⃦⃦2
2
· pdet(A⊤

𝑖 A𝑖)(1 + a
‖
𝑖+1(A

⊤
𝑖 A)−a

‖
𝑖+1) Lemma 11.1.4

≥
⃦⃦
a⊥
𝑖+1

⃦⃦2
2
· pdet(A⊤

𝑖 A𝑖)

Now let 𝑆 ⊆ [𝑛] denote the at most 𝑑 indices such that a𝑖 is not in the row span of A𝑖−1. Note
that we take 1 ∈ 𝑆 so that a⊥

1 = a1. We then have by induction that

pdet(A⊤A) = pdet(A⊤
𝑛A𝑛) ≥

∏︁
𝑖∈[𝑛]∖𝑆

exp(𝜏OL
𝑖 (A)/2)

∏︁
𝑗∈𝑆

⃦⃦
a⊥
𝑗

⃦⃦2
2

= exp

⎛⎝1

2

∑︁
𝑖∈[𝑛]∖𝑆

𝜏OL
𝑖 (A)

⎞⎠∏︁
𝑗∈𝑆

⃦⃦
a⊥
𝑗

⃦⃦2
2

= exp

⎛⎝1

2

∑︁
𝑖∈[𝑛]∖𝑆

𝜏OL
𝑖 (A)

⎞⎠ det(A|𝑆A|⊤𝑆) Lemma 11.1.5

where A|𝑆 is the restriction of A to the rows indexed by 𝑆. By bounding each eigenvalue by the
operator norm, we have that pdet(A⊤A) ≤

⃦⃦
A⊤A

⃦⃦𝑑
2
≤ poly(𝑛)𝑑. Furthermore, since A|𝑆A|⊤𝑆

is a nonsingular integer Gram matrix, it has positive integer determinant, which is in particular at
least 1. We thus have that

exp

⎛⎝1

2

∑︁
𝑖∈[𝑛]∖𝑆

𝜏OL
𝑖 (A)

⎞⎠ ≤ poly(𝑛)𝑑 =⇒
∑︁

𝑖∈[𝑛]∖𝑆

𝜏OL
𝑖 (A) ≤ 𝑂(𝑑 log 𝑛).

Finally, |𝑆| ≤ 𝑑, which implies that

𝑛∑︁
𝑖=1

𝜏OL
𝑖 (A) =

∑︁
𝑖∈[𝑛]∖𝑆

𝜏OL
𝑖 (A) +

∑︁
𝑖∈𝑆

𝜏OL
𝑖 (A) ≤ 𝑂(𝑑 log 𝑛) + 𝑑 = 𝑂(𝑑 log 𝑛),

as claimed.

11.2 Online coresets for ℓ∞ subspace embeddings
We will analyze the following algorithm for constructing ℓ∞ subspace embeddings in the online
coreset model, which keeps a new row a𝑖 if and only if it exceeds the “ℓ2 width” of the previously
kept rows.

We show the following guarantee for Algorithm 2:

Theorem 11.2.1. Let A ∈ R𝑛×𝑑 such that for any subset 𝑆 ′ ⊆ [𝑛], the sum of online leverage
scores is bounded by ∑︁

𝑖∈𝑆′

𝜏OL
𝑖 (A|𝑆′) ≤ 𝑇

and let 𝑆 be the output of Algorithm 2. Then:

130

Algorithm 2 Online ℓ∞ subspace sketch coreset
input: A ∈ R𝑛×𝑑.
output: Coreset 𝑆 ⊆ [𝑛].

1: 𝑆 ← ∅
2: for 𝑖 ∈ [𝑛] do
3: if ∃x ∈ R𝑛 : ⟨a𝑖,x⟩2 ≥ ‖A|𝑆x‖22 then
4: 𝑆 ← 𝑆 ∪ {𝑖}
5: return 𝑆

• |𝑆| ≤ 𝑂(𝑇)
• 1

Δ
‖Ax‖∞ ≤ ‖A|𝑆x‖∞ ≤ ‖Ax‖∞ for all x ∈ R𝑑, for Δ = 𝑂(

√
𝑇).

In particular, if A ∈ Z𝑛×𝑑 is an integer matrix with entries bounded by poly(𝑑), then by storing
the rows of 𝑆, we obtain an algorithm for the streaming ℓ∞ subspace sketch problem using
𝑂(𝑑2 log2 𝑛) bits of space, and if A ∈ R𝑛×𝑑 has online pseudo condition number 𝜅OL, then we
obtain an online coreset algorithm storing at most 𝑂(𝑑 log(𝑛𝜅OL)) rows and achieves distortion at
most 𝑂(

√︀
𝑑 log(𝑛𝜅OL)).

Proof. We first bound |𝑆|. Note that for every 𝑖 ∈ 𝑆,

𝜏OL
𝑖 (A|𝑆) = Ω(1)

since if a𝑖 ∈ rowspan((A|𝑆)𝑖−1), then by Line 3 and Lemma 1.3.5,

𝜏OL
𝑖 (A|𝑆) = sup

(A|𝑆)𝑖−1x ̸=0

⟨a𝑖,x⟩2

‖(A|𝑆)𝑖−1x‖22
≥ 1

while if a𝑖 /∈ rowspan((A|𝑆)𝑖−1), then 𝜏OL
𝑖 (A|𝑆) = 1. Since the online leverage scores of A𝑆

sum to at most 𝑇 , it follows that |𝑆| ≤ 𝑂(𝑇).
Next, we bound the distortion Δ. Note that ‖A|𝑆x‖∞ ≤ ‖Ax‖∞ is trivial, so it suffices to

show the lower bound. Let x ∈ R𝑑 and let 𝑖* ∈ [𝑛] satisfy ‖Ax‖∞ = |⟨a𝑖* ,x⟩|, i.e., the row that
witnesses the max. If 𝑖* ∈ 𝑆, then we already have that

‖A|𝑆x‖∞ ≥ ‖Ax‖∞
so assume that 𝑖* /∈ 𝑆. Then,

‖Ax‖2∞ = ⟨a𝑖* ,x⟩
2

≤ ‖A|𝑆x‖22 Line 3

≤ |𝑆| · ‖A|𝑆x‖2∞
≤ 𝑂(𝑇)‖A|𝑆x‖2∞

which yields the claimed bound on Δ. The guarantee for streaming algorithms for A with bounded
bit complexity follow from online leverage score bound from Theorem 11.1.1. The guarantee for
online coreset algorithms follows from Lemma 1.3.8 and by noting that

𝜅OL(A𝑆) ≤ 𝑛 · 𝜅OL(A)

131

since for any 𝑖 ∈ [𝑛],⃦⃦
(A𝑆)

−
𝑖

⃦⃦−1

2
= min

‖x‖2=1,x∈rowspan((A|𝑆)𝑖)
‖(A|𝑆)𝑖x‖2

≥ min
‖x‖2=1,x∈rowspan((A|𝑆)𝑖)

‖(A|𝑆)𝑖x‖∞

≥ 1

Δ
min

‖x‖2=1,x∈rowspan((A|𝑆)𝑖)
‖A𝑖x‖∞

≥ 1

Δ
√
𝑛

min
‖x‖2=1,x∈rowspan((A|𝑆)𝑖)

‖A𝑖x‖2 ≥
1

𝑛

⃦⃦
A−

𝑖

⃦⃦−1

2
.

Note that we use that 𝑆 has the ℓ∞ subspace embedding guarantee here, rather than using an upper
bound on 𝑇 .

Remark 11.2.2. It is not hard to see that ‖A|𝑆x‖2 can be used as the subspace sketch es-
timator in Theorem 11.2.1 instead of ‖A|𝑆x‖∞. In this case, one can obtain a space com-
plexity of 𝑂(𝑑2 log 𝑛) bits of space instead of 𝑂(𝑑2 log2 𝑛), by storing the quadratic form
A|⊤𝑆A|𝑆 ∈ Z𝑑×𝑑. In particular, we obtain an ellipsoid

{︀
x ∈ R𝑑 : ‖A|𝑆x‖2 ≤ 1

}︀
approximat-

ing the polytope
{︀
x ∈ R𝑑 : ‖Ax‖∞ ≤ 1

}︀
up to a factor of 𝑂(

√
𝑑 log 𝑛). If we instead just store

the rows themselves in the online coreset model, we store 𝑂(𝑑 log(𝑛𝜅OL)) rows for a distortion of
𝑂(
√︀

𝑑 log(𝑛𝜅OL)) between the polytope and ellipsoid. See also Theorem 11.4.7.

11.3 Near-optimal bounds for restricted instances
In this section, we study a restricted variant of the ℓ∞ subspace sketch problem, and give near
optimal algorithms and lower bounds, i.e., without extra log 𝑛 factors.

Definition 11.3.1 (Restricted ℓ∞ subspace sketch). We define the restricted ℓ∞ subspace sketch
problem as follows. Let A ∈ R𝑛×𝑑 be a matrix with row norms all Θ(1). Then, we must design a
data structure 𝑄 that receives a row arrival stream of A and answers queries x ∈ R𝑑 at the end of
the stream. Furthermore, we must output

𝑄(x) ≤ 𝜅‖Ax‖∞

for all x ∈ R𝑑, while we must output

𝑄(x) ≥ ‖Ax‖∞

when x is an input point, i.e., x is one of the rows a𝑖 of A.

We show that the lower bound instance of [LWW21] is captured by this restriction, and show
an algorithm that matches the lower bound up to logarithmic factors.

11.3.1 Lower bound
We will use the following lemma from coding theory.

132

Theorem 11.3.2 ([PTB13]). For any 𝑝 ≥ 1 and 𝑑 = 2𝑘 − 1 for some integer 𝑘, there exists a set
𝑆 ⊆ {−1, 1}𝑑 and a constant 𝐶𝑝 depending only on 𝑝 which satisfy

• |𝑆| = 𝑑𝑝

• For any 𝑠, 𝑡 ∈ 𝑆 such that 𝑠 ̸= 𝑡, |⟨𝑠, 𝑡⟩| ≤ 𝐶𝑝

√
𝑑

We then have the following:

Theorem 11.3.3. Let 𝑛 = 𝑑𝑞 for some integer 𝑞. Suppose that a streaming algorithm 𝒜 solves
the restricted ℓ∞ subspace sketch problem (Definition 11.3.1) with 𝜅 = 𝑐

√
𝑑 for some sufficiently

small constant 𝑐 > 0. Then, 𝒜 must use Ω(𝑛) bits of space.

Proof. We show the result by reduction from the INDEX problem (Theorem 2.2.1).
Let 𝑆 ⊆ {−1, 1}𝑑 be the set of vectors given by Theorem 11.3.2 with 𝑛 = 𝑑𝑞. Suppose that

Alice has a subset 𝐴 ⊆ [𝑛]. Then, Alice can feed the vectors of 𝑆 corresponding to her subset
𝐴, normalized to have norm Θ(1), and then pass the memory state of 𝒜 to Bob. Now suppose
that Bob has the index 𝑏 ∈ [𝑛]. Then, Bob queries the subspace sketch data structure the vector
x𝑏 ∈ 𝑆 corresponding to the index 𝑏.

If 𝑏 ∈ 𝐴, then we have that 𝑄(x𝑏) ≥ ‖Ax𝑏‖∞ = ‖x𝑏‖22 = Θ(1). On the other hand, if 𝑏 /∈ 𝐴,
then we have that

𝑄(x𝑏) ≤ 𝜅‖Ax‖∞ ≤ 𝑐
√
𝑑 · 1

Θ(
√
𝑑)

= Θ(𝑐).

Thus for 𝑐 sufficiently small, Bob can distinguish whether 𝑏 ∈ 𝐴 or not and thus 𝒜 must use at
least Ω(𝑛) bits of space.

Remark 11.3.4. By replacing our use of Theorem 11.3.2 with 𝑛 random unit vectors in 𝑑
dimensions, we can instead get a collection of vectors with inner product Θ(

√︀
(log 𝑛)/𝑑), which

leads to an Ω(𝑛) bit lower bound for distortions better than 𝑂(
√︀

𝑑/ log 𝑛), even for 𝑛 larger than
poly(𝑑).

11.3.2 Upper bound

In this section, we design an algorithm solving the restricted ℓ∞ subspace sketch problem (Defini-
tion 11.3.1). Our algorithm is given in Algorithm 3.

Algorithm 3 Restricted ℓ∞ subspace sketch
input: A ∈ R𝑛×𝑑 in a row arrival stream of Θ(1) norm rows.
output: Coreset 𝑆 ⊆ [𝑛].

1: 𝑆 ← ∅
2: for 𝑖 ∈ [𝑛] do
3: if there is no 𝑗 ∈ 𝑆 s.t.

⃒⃒⟨︀
a𝑗/‖a𝑗‖2, a𝑖/‖a𝑖‖2

⟩︀⃒⃒
≥ 1/

√
2𝑑− 1 then

4: 𝑆 ← 𝑆 ∪ {𝑖}

Our analysis will use the well-known Welch bound from coding theory.

133

Theorem 11.3.5 (Inner product lower bound [Wel74]). Let a1, a2, . . . , a𝑀 ∈ R𝑑 be a set of 𝑀
unit vectors. Let 𝑘 ≥ 1 be an integer. Then,

max
𝑖 ̸=𝑗
|⟨a𝑖, a𝑗⟩|2𝑘 ≥

1

𝑀 − 1

[︃
𝑀(︀

𝑑+𝑘−1
𝑘

)︀ − 1

]︃
Using Theorem 11.3.5, we show the following.

Theorem 11.3.6. Let A ∈ R𝑛×𝑑 be a matrix with rows with norm Θ(1). Then, Algorithm 3
outputs a coreset 𝑆 ⊆ [𝑛] such that

𝐶
√
𝑑‖A𝑆a𝑖‖∞ ≥ ‖Aa𝑖‖∞

for all 𝑖 ∈ [𝑛], for some 𝐶 > 0 a sufficiently large constant. Furthermore, Algorithm 3 uses
𝑂(𝑑2 log 𝑛) bits of space.

Before proving Theorem 11.3.6, note that the result implies that Algorithm 3 solves the
restricted ℓ∞ subspace sketch problem, since trivially, we have that

𝐶
√
𝑑‖A𝑆x‖∞ ≤ 𝐶

√
𝑑‖Ax‖∞

for all x ∈ R𝑑.

Proof of Theorem 11.3.6. First note that by assuming that a𝑖 are unit vectors, we only lose Θ(1)
factors in the distortion parameter 𝜅, so we make this assumption without loss of generality.

Note that the correctness guarantee is trivial from the construction of the algorithm, since
every input point that doesn’t satisfy line 3 is kept by the coreset. It suffices to argue the space
complexity of the algorithm.

We will argue that the algorithm keeps at most 𝑂(𝑑) points in 𝑆. If we apply Theorem 11.3.5
with 𝑘 = 1 and 𝑀 = 2𝑑, we get that for any set of 𝑀 = 2𝑑 unit vectors a1, a2, . . . , a𝑀 ∈ R𝑑,

max
𝑖 ̸=𝑗
|⟨a𝑖, a𝑗⟩|2 ≥

1

2𝑑− 1

[︂
2𝑑

𝑑
− 1

]︂
=

1

2𝑑− 1

and thus the algorithm cannot keep more than 2𝑑− 1 points. Storing these points only requires
𝑂(𝑑2 log 𝑛) bits of space.

11.4 Applications to streaming algorithms for geometric prob-
lems in high dimensions

We now show that our ℓ∞ subspace sketch algorithm gives the first polynomial space algorithms for
many important problems in streaming computational geometry, including fundamental problems
such as symmetric width, convex hull, and Löwner–John ellipsoids. Previous algorithms for these
problems had an exponential dependence on 𝑑, due to reliance on 𝜀-kernels [AHV04, AHV05].
In particular, in the high-dimensional regime of 𝑑 ≥ 𝐶 log 𝑛 for a large enough constant 𝐶, the
memory bound for known results becomes larger than Θ̃(𝑛𝑑), and thus there were no previously

134

known nontrivial algorithms in this regime, despite the fact that algorithms that work in the
high-dimensional regime have been sought after for over a decade since they were suggested by
[AHV04, AHV05, Cha06, ZC06] and others.

In the following discussion, we generally assume a centrally symmetric input instance, that
is, if a ∈ R𝑑 is a point in the input point set, then so is −a. Note that for most geometric
problems falling under the class of extent measure problems [AHV04, AS15], considering only
centrally symmetric instances is without loss of generality, up to constant factor losses in the
distortion. For illustration, consider the directional width problem, in which we wish to estimate
max𝑛𝑖=1⟨a𝑖,x⟩ − min𝑛

𝑗=1⟨a𝑗,x⟩ for any query direction x ∈ R𝑑. One can translate the entire
point set by one of the input points, say a1, so that 0 ∈ R𝑑 is one of the elements of the point
set. This preserves the directional width. Note then that max𝑛𝑖=1⟨a𝑖 − a1,x⟩ ≥ ⟨0,x⟩ = 0 and
min𝑛

𝑗=1⟨a𝑗 − a1,x⟩ ≤ ⟨0,x⟩ = 0, so

𝑛
max
𝑖=1
⟨a𝑖 − a1,x⟩ −

𝑛

min
𝑗=1
⟨a𝑗 − a1,x⟩ =

⃒⃒⃒
𝑛

max
𝑖=1
⟨a𝑖 − a1,x⟩

⃒⃒⃒
+

⃒⃒⃒⃒
𝑛

min
𝑗=1
⟨a𝑗 − a1,x⟩

⃒⃒⃒⃒
= 2

𝑛
max
𝑖=1
|⟨a𝑖 − a1,x⟩|.

Then for each translated point a𝑖 − a1, we add its negation −(a𝑖 − a1), which preserves the latter
value. Similar arguments apply to other problems, such as convex hull, Löwner–John ellipsoids,
etc.

We show that our techniques for the streaming subspace sketch problem yield the first one
pass poly(𝑑) space algorithms for a wide variety of geometric approximation problems that are
symmetric with respect to the origin. For these problems, the previously known techniques
typically only yielded space bounds of the form 𝜀−Θ(𝑑) for a (1 + 𝜀) approximation. In contrast,
we show how to obtain poly(𝑑) approximations using poly(𝑑) bits of space. Because our ℓ∞
subspace sketch algorithm is online, many of our algorithms for streaming geometry are online as
well, and we present results in both the row arrival streaming and online coreset models.

11.4.1 Directional width
The most direct application of our results is that of approximating the directional height oh a
point set, which is a symmetric version of the more well-known directional width:

Definition 11.4.1 (Directional width and height). Let A ∈ R𝑛×𝑑. The directional width [AHV05]
of A with respect to a unit vector x is defined to be

𝜔(x,A) = max
𝑖∈[𝑛]
⟨x, a𝑖⟩ −min

𝑖∈[𝑛]
⟨x, a𝑖⟩

and the directional height [IMGR20, MRWZ20] of A with respect to a unit vector x is defined to
be

ℎ(x,A) = max
𝑖∈[𝑛]
|⟨x, a𝑖⟩|.

The definition of directional height is equivalent to an ℓ∞ subspace sketch data structure,
which means that Theorem 11.2.1 directly yields the result by providing a coreset result for the

135

problem in the high-dimensional regime. Furthermore, Theorem 11.3.3 improves the lower bound
of [AS15] for directional width from Ω(𝑑1/3) to Ω(𝑑1/2). This in turn shows a lower bound of
a Ω(𝑑1/2) factor distortion for the convex hull estimation problem as well, which we discuss in
Section 11.4.2.

By using the “peeling” technique of [AHY08], we extend this to 𝑘-robust directional width.
We define this for centrally symmetric instances as follows:

Definition 11.4.2 (Centrally symmetric 𝑘-robust directional width [AHY08]). Let A ∈ R𝑛×𝑑 be
a set of 𝑛 points in 𝑑 dimensions. We consider each row a𝑖 ∈ R𝑑 as representing both a𝑖 and
−a𝑖, so that the input instance is centrally symmetric. Define the level of a ∈ R𝑑 in the direction
x ∈ R𝑑 to be

|{𝑖 ∈ [𝑛] : |⟨a𝑖,x⟩| > ⟨⟨a,x⟩⟩}|

and let Aℓ[x] denote the point (or row) of A at level ℓ1. Then, the 𝑘-robust directional width is
defined to be

ℰ𝑘(x,A) :=
⃒⃒⟨︀
A𝑘[x],x

⟩︀⃒⃒
.

We now turn to showing Theorem 11.4.3, which uses the reduction of [AHY08] to turn
coresets for directional width for coresets for 𝑘-robust directional width, even in one-pass streams.

Theorem 11.4.3 (𝑘-robust directional width in polynomial space). Let A be an 𝑛 × 𝑑 matrix
presented in one pass over a row arrival stream. There is an algorithm𝒜 which maintains a coreset
𝑆 ⊆ [𝑛] such that

1

Δ
ℰ𝑘(x,A) ≤ ℰ𝑘(x,A|𝑆) ≤ ℰ𝑘(x,A)

where
• in the streaming model, Δ = 𝑂(

√
𝑑 log 𝑛), |𝑆| = 𝑂(𝑘𝑑 log 𝑛), and 𝒜 uses 𝑂(𝑘𝑑2 log2 𝑛)

bits of space.
• in the online coreset model, Δ = 𝑂(

√︀
𝑑 log(𝑛𝜅OL)) and |𝑆| = 𝑂(𝑘𝑑 log(𝑛𝜅OL)).

Proof. We follow the reduction described in [AHY08]. We first discuss an algorithm running in
𝑘 + 1 passes, and then describe how this can be implemented in one pass. In 𝑘 + 1 iterations, we
consider a decreasing sequence of sets of rows [𝑛] = 𝑆0 ⊇ 𝑆1 ⊇ . . . ⊇ 𝑆𝑘, where 𝑆𝑖+1 = 𝑆𝑖 ∖ 𝒯𝑖,
where 𝒯𝑖 ⊆ 𝑆𝑖 is a coreset for directional width as constructed by our Theorem 11.2.1. The coreset
we output is then 𝒯 :=

⋃︀𝑘
𝑖=0 𝒯𝑖.

We first argue correctness. Consider an arbitrary direction x ∈ R𝑑. Say that the 𝑖th iteration
is successful if A𝑗[x] ∈ 𝒯𝑖 for some 𝑗 ∈ {0, 1, . . . , 𝑘}, and unsuccessful otherwise. Now if
A𝑗[x] ∈ 𝒯 for every 𝑗, then we already have that ℰ𝑘(x,A|𝒯𝑖) ≥ ℰ𝑘(x,A), so we assume that
there exists some 𝑗 such that A𝑗[x] /∈ 𝒯 . It then follows that A𝑗[x] /∈ 𝒯𝑖 for every iteration 𝑖.
Then, let 𝑖 be any iteration in which the algorithm is unsuccessful in the direction x. Then,

ℰ0(x,A|𝒯𝑖) ≥
1

Δ
ℰ0(x,A|𝑆𝑖

) since 𝒯𝑖 is a coreset for 𝑆𝑖

≥ 1

Δ
ℰ𝑗(x,A) since A𝑗[x] ∈ 𝑆𝑖

1 For simplicity, we assume that there is at most one vector at a given level, as done in [AHY08].

136

≥ 1

Δ
ℰ𝑘(x,A)

Furthermore, the A|0𝒯𝑖 [x] witnessing the above inequality is not one of the A𝑗[x] of the entire
dataset A, since this iteration was unsuccessful. Thus, no matter whether the iteration is successful
or unsuccessful, the final coreset 𝒯 gains a vector a ∈ R𝑑 with |⟨a,x⟩| ≥ ℰ𝑘(x,A)/Δ in each
iteration.

To turn this into a one-algorithm, we can follow Section 2.4 of [AHY08] and maintain 𝑘 + 1
copies of our coreset data structure in parallel, where the 𝑖th data structure gets inserted with a
row a if either the (𝑖 − 1)th copy of the algorithm does not add a to 𝒯𝑖−1. Note that our base
coreset algorithm does not delete points, so we do not need to handle this as [AHY08] does.

11.4.2 Convex hulls
A fundamental problem in computational geometry is the approximation of the convex hull of 𝑛
points a1, a2, . . . , a𝑛 ∈ R𝑑. For (1+𝜀)-approximation, 𝜀-kernels [AHV04, AHV05] give coresets
of near-optimal size of 𝜀−Θ(𝑑), even in the streaming model [Cha06, Cha16]. More recently,
[BBK+18] removed the exponential dependence on 𝑑 for certain beyond-worst-case instances.
However, a general streaming algorithm for convex hull in poly(𝑑, log 𝑛) bits of space, even with
poly(𝑑, log 𝑛) distortion, remained elusive. In the offline setting, this is possible via coresets for
Löwner–John ellipsoids (see Section 3.6 of [Tod16]).

By using our coreset for ℓ∞ subspace sketch, we obtain coresets for approximating symmetric
convex hulls, with poly(𝑑, log 𝑛) bits of space and distortion. This is done by noticing that our
ℓ∞ subspace sketch result yields an online coreset for approximating a polytope defined by the
intersection of the linear inequalities specified by each of the rows, and then using the fact that this
linear inequality polytope is the polar body of the symmetric convex hulls of the corresponding
rows [HW20].

The following are standard elementary facts about polars that we will need:

Lemma 11.4.4 (Polars and their properties, Exercises 1.1.14, 2.3.2 of [HW20], Section 3.5 of
[Tod16]). Let 𝐾 ⊂ R𝑑 be a convex body and define the polar 𝐾∘ as

𝐾∘ :=
{︀
x ∈ R𝑑 : ∀x′ ∈ R𝑑, ⟨x,x′⟩ ≤ 1

}︀
.

Then, the following hold:
• if 𝐾 ⊂ 𝐿, then 𝐾∘ ⊃ 𝐿∘

• for 𝑟 > 0, (𝑟 ·𝐾)∘ = 𝑟−1 ·𝐾∘

• if 0 ∈ int𝐾, then (𝐾∘)∘ = 𝐾
• for A ∈ R𝑛×𝑑, conv({a1, a2, . . . , a𝑛})∘ =

{︀
x ∈ R𝑑 : ‖Ax‖∞ ≤ 1

}︀
• for an ellipsoid 𝐸 =

{︀
x ∈ R𝑑 : x⊤Hx ≤ 1

}︀
, 𝐸∘ is the ellipsoid 𝐸∘ =

{︀
x ∈ R𝑑 : x⊤H−1x ≤ 1

}︀
This observation, combined with Theorem 11.2.1, yields the first polynomial space algorithm

for approximating convex hulls in the worst case:

Theorem 11.4.5 (Streaming convex hulls in polynomial space). Let A be an 𝑛 × 𝑑 matrix
presented in one pass over a row arrival stream. There is an algorithm𝒜 which maintains a coreset

137

𝑆 ⊆ [𝑛] such that

conv({±a𝑖}𝑖∈𝑆) ⊆ conv({±a𝑖}𝑛𝑖=1) ⊆ Δconv({±a𝑖}𝑖∈𝑆).

where
• in the streaming model, Δ = 𝑂(

√
𝑑 log 𝑛), |𝑆| = 𝑂(𝑑 log 𝑛), and 𝒜 uses 𝑂(𝑑2 log2 𝑛) bits

of space.
• in the online coreset model, Δ = 𝑂(

√︀
𝑑 log(𝑛𝜅OL)) and |𝑆| = 𝑂(𝑑 log(𝑛𝜅OL)).

Proof. Let 𝑆 ⊆ [𝑛] be the coreset computed by Algorithm 2. Let 𝐾 =
{︀
x ∈ R𝑑 : ‖Ax‖∞ ≤ 1

}︀
and let 𝐾𝑆 =

{︀
x ∈ R𝑑 : ‖A|𝑆x‖∞ ≤ 1

}︀
. By Theorem 11.2.1, we are guaranteed that

𝐾 ⊆ 𝐾𝑆 ⊆ Δ𝐾

for Δ = 𝑂(
√
𝑑 log 𝑛) in the row arrival streaming model and Δ = 𝑂(

√︀
𝑑 log(𝑛𝜅OL)) in the

online coreset model. Then by Lemma 11.4.4, we may take polars on this chain of inclusions to
conclude that

𝐾∘ ⊇ 𝐾∘
𝑆 ⊇

1

Δ
𝐾∘.

Since 𝐾∘ = conv({±a𝑖}𝑛𝑖=1) and 𝐾∘
𝑆 = conv({±a𝑖}𝑖∈𝑆), we conclude.

Note that this also gives us a 𝑂(
√
𝑑 log 𝑛)𝑑-factor approximation to the volume of convex hull.

11.4.3 Löwner–John ellipsoids
We consider the problem of computing an approximate Löwner–John ellipsoid of a convex
symmetric polytope, also known as the problem of minimum volume enclosing ellipsoid (MVEE).
We define our notion of approximation of Löwner–John ellipsoids as follows:

Definition 11.4.6. Let 𝐾 ⊆ R𝑑 be a convex body and let 𝐸 be the Löwner–John ellipsoid of 𝐾.
We say that an ellipsoid 𝐸 ′ is an 𝛼-approximate Löwner–John ellipsoid for 𝐾 if

𝐸 ⊆ 𝐸 ′ ⊆ 𝛼𝐸.

Upper bound

In the literature, there are two closely related variations to this problem (see Equations (1.1.1)
and (1.1.2) of [Tod16]). In one, more common in the computational geometry community,
the input data set A ∈ R𝑛×𝑑 is interpreted as the convex hull of the 𝑛 rows, i.e., 𝐾 =
conv({±a1,±a2, . . . ,±a𝑛}). In the other, more common in the optimization community, the A is
interpreted as a set of 𝑛 linear constraints, and the input polytope is 𝐾 =

{︀
x ∈ R𝑑 : ‖Ax‖∞ ≤ 1

}︀
.

As noted in Section 11.4.2, these two interpretations are polars of each other.
Our results for the streaming ℓ∞ subspace sketch problem in Theorem 11.2.1 apply most

readily to the latter interpretation, i.e. the linear inequalities interpretation, and we immediately
obtain the following:

138

Theorem 11.4.7 (Löwner–John ellipsoids in polynomial space). Let A be an 𝑛× 𝑑 matrix pre-
sented in one pass over a row arrival stream. Define the polytope 𝐾 =

{︀
x ∈ R𝑑 : ‖Ax‖∞ ≤ 1

}︀
.

There is an algorithm 𝒜 which maintains a coreset 𝑆 ⊆ [𝑛] from which we can compute an
ellipsoid 𝐸 ′ such that

𝐸 ′ ⊆ 𝐾 ⊆ Δ𝐸 ′

where
• in the streaming model, Δ = 𝑂(

√
𝑑 log 𝑛), |𝑆| = 𝑂(𝑑 log 𝑛), and 𝒜 uses 𝑂(𝑑2 log2 𝑛) bits

of space.
• in the online coreset model, Δ = 𝑂(

√︀
𝑑 log(𝑛𝜅OL)) and |𝑆| = 𝑂(𝑑 log(𝑛𝜅OL)).

Since 𝐾 ⊆ 𝐸 ⊆
√
𝑑𝐾, 𝐸 ′ is an 𝑂(Δ

√
𝑑)-approximate Löwner–John ellipsoid.

The proof is sketched in Remark 11.2.2.
We also show that we can also get results in the convex hull interpretation, by using the fact

that these two interpretations of the input matrix A are polars of each other. See Section 3.5 of
[Tod16] for a discussion on polars and Löwner–John ellipsoids.

Using basic facts about polars (Lemma 11.4.4), we obtain the following:

Corollary 11.4.8. Let A be an 𝑛 × 𝑑 matrix presented in one pass over a row arrival stream.
Define the polytope 𝐾 = conv({±a1,±a2, . . . ,±a𝑛}). There is an algorithm𝒜 which maintains
a coreset 𝑆 ⊆ [𝑛] from which we can compute an ellipsoid 𝐸 ′ such that

𝐸 ′ ⊆ 𝐾 ⊆ Δ𝐸 ′.

where
• in the streaming model, Δ = 𝑂(

√
𝑑 log 𝑛), |𝑆| = 𝑂(𝑑 log 𝑛), and 𝒜 uses 𝑂(𝑑2 log2 𝑛) bits

of space.
• in the online coreset model, Δ = 𝑂(

√︀
𝑑 log(𝑛𝜅OL)) and |𝑆| = 𝑂(𝑑 log(𝑛𝜅OL)).

Since 𝐾 ⊆ 𝐸 ⊆
√
𝑑𝐾, 𝐸 ′ is an 𝑂(Δ

√
𝑑)-approximate Löwner–John ellipsoid.

Proof. We claim that we can just interpret the row arrival stream as in Theorem 11.4.7, and then
simply invert the quadratic form of the ellipsoid. Using Theorem 11.4.7 and Lemma 11.4.4, we
obtain some ellipsoid 𝐸 such that

𝐸 ⊆ 𝐾∘ ⊆ 𝜆𝐸

for some 𝜆. Then, the ellipsoid with the inverse quadratic form of 𝐸 is 𝐸∘ and satisfies

𝐸∘ ⊇ 𝐾 ⊇ 1

𝜆
𝐸∘

by Lemma 11.4.4. Scaling by 𝜆 gives the desired conclusion.

Lower bound

In this section, we show the negative result that approximate Löwner–John ellipsoids cannot
be maintained in the row arrival model with small space, if the desired approximation is much
smaller than

√
𝑑.

Our main result of the section is the following.

139

Theorem 11.4.9. Let 𝑛 = 𝑑𝑐, where 𝑐 ≥ 1 is any constant integer. Suppose an algorithm 𝒜
computes an 𝛼-approximate Löwner–John ellipsoid of any 𝑛× 𝑑 matrix A with probability at
least 2/3, for 𝛼 = 𝑐′

√
𝑑 for a sufficiently small constant 𝑐′, in one pass over a row arrival stream.

Then, 𝒜 must use Ω(𝑛) bits of space.

Proof. We show the result by reduction from the INDEX problem (Theorem 2.2.1).
Let 𝑆 be the set constructed in Theorem 11.3.2 with 𝑝 in the lemma set to 𝑐, so that |𝑆| =

𝑑𝑐 = 𝑛. Then, Alice constructs an |𝐴| × 𝑑 matrix A by choosing the vectors of 𝑆 corresponding
to the indices 𝑖 ∈ 𝐴. Alice then runs the algorithm 𝒜 on the rows of A, then passes the working
memory of the algorithm to Bob.

Let 𝑖* ∈ [𝑛] be the index given to Bob. We claim that Bob can then figure out whether
𝑖* ∈ 𝐴 or not using this working memory. Let b ∈ 𝑆 be the vector in 𝑆 indexed by 𝑖*. Let
u1,u2, . . . ,u𝑑−1 ∈ R𝑑 be an orthonormal basis to the orthogonal complement

{︀
x ∈ R𝑑 : ⟨b,x⟩ = 0

}︀
of b. Then, Bob inserts the following rows into the working memory of 𝒜:

• 4(𝑑− 1) rows ±𝑑 · u𝑖 ± b/
√
𝑑 for 𝑖 ∈ [𝑑− 1]

• 2(𝑑− 1) rows ±𝑅 · u𝑖 for 𝑖 ∈ [𝑑− 1], for a large 𝑅 = poly(𝑑) to be determined

Bob will then report that 𝑖* ∈ 𝐴 if and only if b belongs to the 𝛼-approximate Löwner–John
ellipsoid that is output by 𝒜.

If 𝑖* ∈ 𝐴, then it is obvious that b must be in the Löwner–John ellipsoid, so suppose that
𝑖* /∈ 𝐴. By rotating, we assume without loss of generality that b =

√
𝑑 · e1 and u𝑖 = e𝑖+1 for

𝑖 ∈ [𝑑− 1]. Now consider the exact Löwner–John ellipsoid 𝐸 of the input dataset including all
rows added by both Alice and Bob, and let 𝑔 be the largest magnitude achieved by a point g ∈ 𝐸,
in the direction of b. Suppose for contradiction that 𝑔 ≥ 2.

Replacing Alice’s points by a box. Let 𝑉 = {±𝑑 ·u𝑖±b/
√
𝑑 : 𝑖 ∈ [𝑑− 1]} be the rows added

by Bob. We first show that the Löwner–John ellipsoid does not change if we remove all of Alice’s
points, by showing that the convex hull of 𝑉 must contain Alice’s points. Note that Alice’s points
all have ℓ2 norm at most

√
𝑑 and e1 component at most 1. If x is any point with x1 = 0, then

𝑑 · x/‖x‖1 is a convex combination of ±𝑑 · e𝑖. The ℓ2 norm of this point is at least⃦⃦⃦⃦
𝑑 · x

‖x‖1

⃦⃦⃦⃦
2

= 𝑑
‖x‖2
‖x‖1

≥
√
𝑑.

Thus, applying this to any of Alice’s points x with the first coordinate removed, these points
must lie in conv(𝑉), since 𝑑 · x/‖x‖1 ∈ conv(𝑉) is a vector in the same direction with a greater
magnitude as x that is also in conv(𝑉). It follows that x must lie in conv(𝑉) as well.

Reduction to a two-dimensional ellipse. Note that 𝑉 is symmetric with respect to flipping signs
on coordinates, and so is conv(𝑉), and thus so is the Löwner–John ellipsoid of conv(𝑉). Now let
v ∈ 𝑉 be any vertex of conv(𝑉), and consider the two-dimensional ellipse 𝐸 ′ obtained by inter-
secting 𝐸 with the plane spanned by v, and b. Write this ellipse as 𝐸 ′ = {(𝑥, 𝑦) : 𝑎𝑥2 + 𝑏𝑦2 ≤ 1},
where the cross term disappears due to symmetry of the ellipse. We will think of the 𝑥 direction
as the b direction, and refer to this coordinate system as the 𝐸 ′ coordinate system.

140

Bounds on the ellipse. If the 𝑉 vertices do not contact the ellipsoid, then they can be removed
from the Löwner–John ellipsoid, which means that the Löwner–John ellipsoid would be degenerate
since it would lie on a (𝑑−1)-dimensional space. Thus, the vertices of 𝑉 must contact the ellipsoid.
Similarly, for large enough 𝑅, the points ±𝑅 · u𝑖 must also contact the ellipsoid, since otherwise
removing them would lead to a John ellipse of bounded radius. Note that the ℓ2 diameter of
conv(𝑉) is at most 𝑂(𝑑), so a Löwner–John ellipsoid of conv(𝑉) would have radius at most
𝑂(𝑑3/2), which means the above holds when 𝑅 is chosen to be larger than some 𝑂(𝑑3/2). Also,
we have a point (𝑔, 0) ∈ 𝐸 ′ for 𝑔 > 2. Then, we have that 𝑎 = 1/𝑔2 and 𝑏 = 1/𝑅2 so that

𝐸 ′ =

{︂
(𝑥, 𝑦) :

1

𝑔2
𝑥2 +

1

𝑅2
𝑦2 ≤ 1

}︂
.

Note that the 𝑉 vertices have the form (±𝑑,±1) in the 𝐸 ′ coordinate system. However, we then
have that

1

𝑔2
+

𝑑2

𝑅2
≪ 1

so they in fact cannot contact the ellipse. We conclude that 𝑔 > 2 is impossible.
Finally, even if we have an 𝛼-approximate Löwner–John ellipsoid, b will still not be contained

in the ellipsoid, so the Bob will still output the correct answer.

Remark 11.4.10. By replacing our use of Theorem 11.3.2 with 𝑛 random unit vectors in 𝑑
dimensions, we can instead get a collection of vectors with inner product Θ(

√︀
(log 𝑛)/𝑑), which

leads to an Ω(𝑛) bit lower bound for distortions better than 𝑂(
√︀

𝑑/ log 𝑛), even for 𝑛 larger than
poly(𝑑).

Remark 11.4.11. Note that the above lower bound holds even if Alice and Bob compute a general
convex body 𝐾 such that

𝐸 ⊆ 𝐾 ⊆ 𝛼𝐸,

since such a 𝐾 can still detect whether Bob’s point is in Alice’s point set or not.

11.4.4 Volume maximization
We next consider the problem of selecting 𝑘 rows that approximately maximizes the volume
of the parallelepiped spanned by the rows, known as volume maximization, or maximum a
posteriori (MAP) inference of determinantal point processes (DPPs) [BKLZ20]. Relative error
guarantees for this problem have been studied by [IMGR19, IMGR20, MRWZ20], culminating
in the following:

Theorem 11.4.12 (Streaming volume maximization, Theorem 1.9 of [MRWZ20]). Let A ∈ Z𝑛×𝑑

have entries bounded by poly(𝑛) and 𝑘 ≥ 1. Let 𝐶 ∈ [1, (log 𝑛)/𝑘]. There is a one-pass streaming
algorithm that computes a subset 𝑆 ⊆ [𝑛] of 𝑘 points such that

Pr
{︀
𝑂(𝐶𝑘)𝑘/2Vol(A|𝑆) ≥ Vol(A|𝑆*)

}︀
≥ 2

3

where Vol(A|𝑆) is the volume of the parallelepiped spanned by the rows A|𝑆 indexed by 𝑆 and
A|𝑆* is a set of 𝑘 rows that maximizes the volume. The algorithm uses 𝑂(𝑛𝑂(1/𝐶)𝑑) bits of space.

141

This result is obtained by combining coresets for volume maximization [IMGR19] with
streaming 𝜀-kernels for directional width [Cha06]. Note that even when 𝐶 = (log 𝑛)/𝑘, the space
complexity is exp(𝑂(𝑘))𝑑 and thus still exponential in 𝑘. By replacing 𝜀-kernels for directional
width with our ℓ∞ subspace sketch result, we obtain the first relative error polynomial space
algorithms for volume maximization2.

Theorem 11.4.13 (Streaming volume maximization in polynomial space). Let A ∈ Z𝑛×𝑑 with
entries bounded by poly(𝑛) and 𝑘 ≥ 1. Let 1 < 𝐶 < (log 𝑛)/𝑘 and 𝑟 = (log 𝑛)/𝐶. There is a
one-pass streaming algorithm that computes a subset 𝑆 ⊆ [𝑛] of 𝑘 points such that

Pr
{︀
𝑂(𝑟2𝐶𝑘 log2 𝑛)𝑘/2Vol(A|𝑆) ≥ Vol(A|𝑆*)

}︀
≥ 2

3

where Vol(A|𝑆) is the volume of the parallelepiped spanned by the rows A|𝑆 indexed by 𝑆 and
A|𝑆* is a set of 𝑘 rows that maximizes the volume. The algorithm uses 𝑂(𝑟𝑑 log2 𝑛) bits of space.

If only the indices (rather than the 𝑑-dimensional rows) are required, there is an algorithm
using 𝑂(𝑘2 log3 𝑛) bits of space with 𝑂(𝑘 log 𝑛)𝑘 distortion.

Proof. The following is shown in [MRWZ20]:

Lemma 11.4.14 (Lemmas 5.13, 5.14 of [MRWZ20]). Let 𝑟 = Θ((log 𝑛)/𝐶). Let G ∈ R𝑑×𝑟

have each entry drawn i.i.d. from the Gaussian distribution 𝒩 (0, 1/𝑟). Then:

• The volume of the optimal 𝑘-subset A|𝑆* satisfies

Pr
{︀
2𝑘 Vol(AG|𝑆*) ≥ Vol(A|𝑆*)

}︀
≥ 9

10

•

Pr

{︂
∀𝑆 ∈

(︂
[𝑛]

𝑘

)︂
,Vol(AG|𝑆) ≤ 𝑂(𝐶𝑘)𝑘/2Vol(A|𝑆)

}︂
≥ 9

10

Thus, up to a 𝑂(𝐶𝑘)𝑘/2 factor loss in the approximation factor, we may replace A by the 𝑛×𝑟
matrix AG. Now applying the observation of Section 11.4.1, we can obtain a directional height
coreset for AG from our Theorem 11.2.1, which produces a set 𝑇 ⊆ [𝑛] of size |𝑇 | ≤ 𝑂(𝑟 log 𝑛)
with distortion 𝜅 = 𝑂(

√
𝑟 log 𝑛). Observation 5.9 of [MRWZ20] and Lemma 3.3 of [IMGR19]

then shows that the maximum volume subset of the directional height coreset approximates the
maximum volume subset of A up to a factor of 𝜅2𝑘 = (𝜅4)𝑘/2. The total approximation factor
is thus 𝑂(𝜅4𝐶𝑘)𝑘/2, while the space complexity is 𝑂(𝑑𝑟 log 𝑛+ |𝑇 |𝑑 log 𝑛) = 𝑂(|𝑇 |𝑑 log 𝑛) for
storing G and the coreset.

If we only need to output the indices of the coreset, then we can first replace the Gaussian
matrix G with a subspace embedding with a small seed as in, e.g., [KMN11]. Then by setting
𝛿 = exp(−Θ(𝑘2 log 𝑛)), we have an 𝑂(log 1

𝛿
) × 𝑑 matrix S such that, with probability at least

1− 𝑛−𝑘, for any fixed 𝑑× 𝑘 matrix R, ‖SRx‖2 = Θ(1)‖Rx‖2 for all x ∈ R𝑘, where S can be
generated from a seed of length �̃�(log 𝑘 + log 1

𝛿
). In particular, ‖SR‖2 = Θ(1)‖R‖2 under this

2 The algorithm of [BKLZ20] has polynomial space as well, but has an additive error guarantee

142

event. We now consider any subset 𝑆 ∈
(︀
[𝑛]
𝑘

)︀
. Then by the same reasoning as in [MRWZ20], we

have that the volume spanned by A|𝑆 = UΣV⊤ written in the SVD is√︁
det(A|𝑆A|⊤𝑆) =

√︁
det(Σ2)

while the volume of the embedded matrix A|𝑆S⊤ is at most√︁
det(A|𝑆S⊤SA|⊤𝑆) =

√︀
det(ΣV⊤S⊤SVΣ) ≤ ‖SV‖𝑘2

√︁
det(Σ2).

Conditioned on the operator norm preservation of V by S for all
(︀
𝑛
𝑘

)︀
subsets 𝑆, this is at most

𝑂(‖V‖2)
𝑘

√︁
det(Σ2) ≤ exp(𝑂(𝑘))

√︁
det(Σ2).

The fact that the volume of the maximal volume subset 𝑆* does not shrink by more than exp(𝑂(𝑘))
follows similarly as in [MRWZ20]. Then, we repeat the reasoning as before with 𝑟 = 𝑂(𝑘2 log 𝑛)
on using the directional height coresets, so that our total space usage is just the seed length for the
subspace embedding and the storage of the directional height coreset, which is 𝑂(|𝑇 | log 𝑛) =
𝑂(𝑟 log2 𝑛) = 𝑂(𝑘2 log3 𝑛). The total distortion is 𝑂(

√
𝑟 log 𝑛)2𝑘 = 𝑂(𝑘 log 𝑛)𝑘.

11.4.5 Minimum-width spherical shell
Our next application is the problem of approximating the spherical shell of minimum width
which encloses a set of points. Formally, a spherical shell centered at c ∈ R𝑑 with inner radius
𝑟 and outer radius 𝑅 is 𝜎(c, 𝑟, 𝑅) :=

{︀
x ∈ R𝑑 : 𝑟 ≤ ‖x− c‖2 ≤ 𝑅

}︀
, and we seek relative error

approximations to 𝑅−𝑟. This problem has received much attention in the computational geometry
literature [AS98, AAHS99, Cha02, Cha06]. We give a high-dimensional streaming algorithm for
this problem in Theorem 11.4.15. Our proof of Theorem 11.4.15 for minimum-width spherical
shells requires additional care to handle general instances, rather than just centrally symmetric
instances.

Theorem 11.4.15 (Minimum width spherical shell in polynomial space). Let A be an 𝑛 × 𝑑
matrix presented in one pass over a row arrival stream. There is an algorithm 𝒜 which maintains
a coreset 𝑆 ⊆ [𝑛] from which we can compute find a center ĉ, inner radius 𝑟 and outer radius �̂�
such that 𝜎(ĉ, 𝑟, �̂�) ⊇ {a𝑖}𝑛𝑖=1 and

�̂�− 𝑟 ≤ Δ3/2 min
𝜎(c,𝑟,𝑅)⊇{a𝑖}𝑛𝑖=1

𝑅− 𝑟

where
• in the streaming model, Δ = 𝑂(

√
𝑑 log 𝑛), |𝑆| = 𝑂(𝑑 log 𝑛), and 𝒜 uses 𝑂(𝑑2 log2 𝑛) bits

of space.
• in the online coreset model, Δ = 𝑂(

√︀
𝑑 log(𝑛𝜅OL)) and |𝑆| = 𝑂(𝑑 log(𝑛𝜅OL)).

Proof. We will always store the first point a1 in order to translate our input instance to the
origin. Now for each 𝑖 ∈ [𝑛], define the vector b𝑖 ∈ R𝑑+1 by setting the first 𝑑 coordinates to

143

be −2(a𝑖 − a1) and the last coordinate to be ‖a𝑖 − a1‖22. Given a1, we can always compute b𝑖

if we have stored a𝑖. Similarly, define b′′
𝑖 ∈ R𝑑+2 to be b𝑖 with an additional 1 appended as the

(𝑑+ 2)th coordinate.
We now proceed by a variation on the standard linearization trick [AHV04]. Suppose that

we wish to compute the width 𝑅 − 𝑟 of the minimum-width spherical shell 𝜎(c, 𝑟, 𝑅) con-
taining {a𝑖}𝑛𝑖=1, centered at some arbitrary c ∈ R𝑑. Note that the inner radius is given by
𝑟 = min𝑛

𝑗=1‖c− a𝑗‖2 while the outer radius is given by 𝑅 = max𝑛𝑖=1‖c− a𝑖‖2. Now note that

𝑅2 − 𝑟2 =
𝑛

max
𝑖=1
‖c− a𝑖‖22 −

𝑛

min
𝑗=1
‖c− a𝑗‖22

=
𝑛

max
𝑖=1
‖c‖22 − 2⟨c, a𝑖⟩+ ‖a𝑖‖22 −

𝑛

min
𝑗=1
‖c‖22 − 2⟨c, a𝑗⟩+ ‖a𝑗‖22

=
𝑛

max
𝑖=1
−2⟨c, a𝑖⟩+ ‖a𝑖‖22 −

𝑛

min
𝑗=1
−2⟨c, a𝑗⟩+ ‖a𝑗‖22

=
𝑛

max
𝑖=1
⟨b𝑖, c

′⟩ −
𝑛

min
𝑗=1
⟨b𝑗, c

′⟩

where c′ = [c, 1]. Then by the discussion in Section 11.4, our ℓ∞ subspace sketch coreset result
of Theorem 11.2.1 can estimate this up to a factor of Δ both in the row arrival streaming model
and the online coreset model. Similarly, note that

𝑅2 =
𝑛

max
𝑖=1
‖c− a𝑖‖22

=
𝑛

max
𝑖=1
‖c‖22 − 2⟨c, a𝑖⟩+ ‖a𝑖‖22

=
𝑛

max
𝑖=1
⟨b′′

𝑖 , c
′′⟩

where c′′ = [c, 1, ‖c‖22]. We estimate this quantity up to a Δ factor using Theorem 11.2.1 as well.
Note then that

𝑅− 𝑟 =
𝑅2 − 𝑟2

𝑅 + 𝑟
= Θ

(︂
𝑅2 − 𝑟2

𝑅

)︂
and we obtain a Δ factor approximation to the numerator, while we obtain a

√
Δ factor ap-

proximation to the denominator. Thus, overall, we obtain a Δ3/2-approximation to the entire
quantity.

144

Chapter 12

Applications: active ℓ𝑝 linear regression
[MMWY22, WY23a]

12.1 Active ℓ𝑝 linear regression
One of the motivating problems for the study of subspace embeddings is the least squares linear
regression problem [DMM06a, Sar06] and, more generally, the ℓ𝑝 linear regression problem, in
which we wish to approximately solve

min
x∈R𝑑
‖Ax− b‖𝑝𝑝.

When one takes a sampling-based approach to constructing the subspace embedding for the matrix
[A b], including many of the algorithms previously, then the final solution only depends on very
few coordinates of the target vector b, namely the 𝑟 rows sampled by the subspace embedding
matrix S. Thus, this gives hope for an algorithm which minimizes the number of entries of the
target vector b it has to read, which is a problem known as active learning or active regression.

Definition 12.1.1 (Active ℓ𝑝 linear regression). An active ℓ𝑝 linear regression algorithm has query
complexity 𝑟 if, given A ∈ R𝑛×𝑑 and query access to the entries of b ∈ R𝑛, it reads 𝑟 entries of
the vectors and outputs x̂ ∈ R𝑑 such that

‖Ax̂− b‖𝑝𝑝 ≤ (1 + 𝜀) min
x∈R𝑑
‖Ax− b‖𝑝𝑝.

Our goal is to minimize the query complexity 𝑟.

Such an algorithm has significant value in practice, since label acquisition can oftentimes
require significantly more resources than the training features. Indeed, viewing a single entry of
b might require running a survey, physical experiment, or time-intensive computer simulation
[SWMW89, Puk06].

Unfortunately, the previous approach of constructing sampling-based subspace embeddings
for [Ab] does not immediately yield active regression algorithms, since the sampling probabilities
will depend on b, and thus the algorithm needs to read all entries of b. A natural idea to overcome
this problem is to take the sampling probabilities to only depend on A but not b, by, for example,

145

using the ℓ𝑝 Lewis weights of the matrix A without including b. However, the correctness of this
algorithm is then no longer clear, as we no longer have the subspace embedding guarantee which
includes b. Nonetheless, prior work has shown that this approach in fact does yield efficient active
regression algorithms in several cases.

For the most important case of 𝑝 = 2, the work of [CP19] obtained an optimal bound of
Θ(𝜀−1𝑑), which notably removes a log 𝑑 factor that is inherent in sampling-bashed approaches,
by using spectral sparsifiers developed in [LS15]. For perhaps the next most important case
of 𝑝 = 1, which corresponds to least absolute deviations regression, two simultaneous works
[CD21, PPP21] showed that a sampling-based approach which takes the sampling probabilities to
be the ℓ1 Lewis weights of A (without appending b) yields an upper bound of 𝑂(𝜀−2𝑑 log(𝑑/𝜀)),
with a nearly matching lower bound of Ω(𝜀−2𝑑). However, besides these two special cases, the
true sample complexity of active ℓ𝑝 linear regression is far from settled. The only other known
bound is an upper bound of �̃�(𝜀−2𝑑2 log(𝑑/𝜀)) due to [CD21] for 1 < 𝑝 < 2. This leads to the
following question:

Question 12.1.2. What is the query complexity of active ℓ𝑝 linear regression for 𝑝 ̸= 1, 2?

In two works [MMWY22, WY23a], we obtain nearly optimal solutions to Question 12.1.2
for the entire range of 0 < 𝑝 <∞.

Theorem 12.1.3 (Nearly optimal active ℓ𝑝 linear regression, [MMWY22, WY23a]). There is an
active ℓ𝑝 linear regression algorithm (see Definition 12.1.1) with query complexity at most 𝑟 with
probability at least 99/100, where

𝑟 =

⎧⎪⎨⎪⎩
�̃�(𝜀−2𝑑) 0 < 𝑝 < 1

�̃�(𝜀−1𝑑) 1 < 𝑝 < 2

�̃�(𝜀1−𝑝𝑑𝑝/2) 2 < 𝑝 <∞

Furthermore, for any active ℓ𝑝 linear regression algorithm which succeeds with probability at least
99/100, its query complexity 𝑟 must be at least

𝑟 =

⎧⎪⎨⎪⎩
Ω(𝜀−2𝑑) 0 < 𝑝 < 1

Ω(𝜀−1𝑑) 1 < 𝑝 < 2

Ω(𝜀1−𝑝𝑑𝑝/2) 2 < 𝑝 <∞

Notably, we show that there is a sharp phase transition in the behavior of the query complexity
at 𝑝 = 1, where 𝑝 > 1 admits an upper bound of �̃�(𝜀−1𝑑) queries while 𝑝 ≤ 1 requires Ω(𝜀−2𝑑)
queries. We also note that while we have stated Theorem 12.1.3 for constant probability, we will
in general obtain an algorithm with failure probability 1− 𝛿 where the number of samples scales
as (log 1

𝛿
)2. It is an interesting open question to reduce this dependence to linear in log 1

𝛿
.

The algorithm used in the proof of Theorem 12.1.3 is similar to prior ideas, and we simply
take the approach of sampling rows of A and entries of b proportionally to the ℓ𝑝 Lewis weights
of A. However, a tight analysis of this algorithm requires significantly new ideas, and in particular,
we introduce two key ingredients. The first is the observation that, while the ℓ𝑝 Lewis weights do
not upper bound the sensitivity of the entries of b, any entry b𝑖 of b can be classified as either
“too big” or “not too big” by comparing b𝑖 to the 𝑖th sensitivity (see Definition 6.1.2) 𝜎𝑖(A). For

146

entries which are “too big”, we show that the loss contribution |[Ax− b](𝑖)|𝑝 = |⟨a𝑖,x⟩ − b|𝑝 on
the 𝑖th coordinate is dominated by b𝑖 for any nearly optimal solution x, and thus this entry can
be effectively ignored. On the other hand, for entries b𝑖 which are “not too big”, the sensitivity
of b𝑖 is bounded by 𝜎𝑖(A), which allows an appropriate modification of the chaining arguments
for Lewis weight sampling [BLM89, LT91, SZ01] to go through. The idea above is sufficient
for nearly optimal bounds for 𝑝 < 1, but for 𝑝 > 1, this still leads to a result that is off by a
single 𝜀 factor. In order to further optimize our bounds, we additionally introduce a second novel
technique which allows us to reduce the 𝜀 dependence by using the strict convexity of the ℓ𝑝 loss
for 𝑝 > 1. This is done by noting that for 𝑝 > 1, nearly optimal solutions must necessarily be
close to the optimal solution, and this fact can be used to improve the sampling error analysis.

In Chapter 13, we will discuss various applications of these ideas developed in [WY24a].
Our work has also been used to obtain online active regression algorithms in follow-up work of
[CLS22].

12.2 Constant factor solution
Our first task is to establish that the “sample-and-solve” algorithm (Algorithm 4) gives a constant
factor solution to the active ℓ𝑝 linear regression problem. Such a result has already been shown in
prior work such as [DDH+09] and is based on a simple analysis that only needs the property that
the ℓ𝑝 sampling matrix S is an ℓ𝑝 subspace embedding.

Algorithm 4 Constant factor ℓ𝑝 regression
input: Matrix A ∈ R𝑛×𝑑, measurement vector b ∈ R𝑛.
output: Approximate solution x̃ ∈ R𝑑 to minx ‖Ax− b‖𝑝.

1: Let S ∈ R𝑚×𝑛 be an 1/2-approximate ℓ𝑝 subspace embedding for A (Theorem 6.5.1).
2: return x̃ with ‖SAx̃− Sb‖𝑝 ≤ (1 + 𝜂) ·minx∈R𝑑‖SAx− Sb‖𝑝 for 𝜂 ≥ 0.

Remark 12.2.1. Running Algorithm 4 only requires querying 𝑚 entries of b in order to construct
the vector Sb. Also note that in Line 2 of the algorithm, we would have 𝜂 = 0 if an exact
minimizer of the subsampled regression problem minx‖SAx− Sb‖𝑝𝑝 was obtained. To allow for
the use of approximation algorithms in implementing Line 2, we state the method for a general
𝜂 ≥ 0.

We first give an algorithm which works with constant probability, and then show in Section
12.2.1 how to boost the probability to 1 − 𝛿 for any 𝛿 ∈ (0, 1), while incurring an 𝑂(log(1/𝛿))
factor overhead in our sample complexity.

Theorem 12.2.2 (Constant factor approximation). For A ∈ R𝑛×𝑑, b ∈ R𝑛, and 0 < 𝑝 < ∞,
let OPT = minx∈R𝑑‖Ax− b‖𝑝. For any 𝛿 ∈ (0, 1], if x̃ is the output of Algorithm 4, then with
probability at least 1− 𝛿,

‖Ax̃− b‖𝑝 ≤ 22max{0,1/𝑝−1}+1+1/𝑝(3 + 𝜂)/𝛿1/𝑝 · OPT .

When 𝛿 is constant (e.g., 𝛿 = 1/100) and (1 + 𝜂) is constant (e.g., 𝜂 = 0) then ‖Ax̃ − b‖𝑝 ≤
𝐶 · OPT for constant 𝐶.

147

Proof. Let x* = argminx∈R𝑑‖Ax− b‖𝑝. By triangle inequality for 𝑝 ≥ 1 or subadditivity and
approximate triangle inequality (Fact 2.1.1) for 𝑝 ∈ (0, 1),

‖Ax̃−b‖𝑝 ≤ 2max{0,1/𝑝−1}(‖Ax* − b‖𝑝 + ‖Ax̃−Ax*‖𝑝) = 2max{0,1/𝑝−1}(OPT+‖Ax̃−Ax*‖𝑝).

Applying the subspace embedding property of Theorem 6.5.1 with 𝜀 = 1/2 and failure probability
𝛿/2, we conclude that, with probability at least 1− 𝛿/2,

‖Ax̃− b‖𝑝 ≤ 2max{0,1/𝑝−1}(OPT+2‖SAx̃− SAx*‖𝑝).

By similar reasoning, we have (‖SAx̃− SAx*‖𝑝) ≤ 2max{0,1/𝑝−1}(‖SAx̃− Sb‖𝑝 + ‖SAx* − Sb‖𝑝).
We know that ‖SAx̃− Sb‖𝑝 ≤ (1 + 𝜂) ·minx∈R𝑑‖SAx− Sb‖𝑝 ≤ (1 + 𝜂) · ‖SAx* − Sb‖𝑝, so
we conclude that

‖SAx̃− SAx*‖𝑝 ≤ 2max{0,1/𝑝−1}(2 + 𝜂)‖SAx* − Sb‖𝑝.

Finally, note that E[‖SAx* − Sb‖𝑝𝑝] = OPT𝑝 for ℓ𝑝 sampling matrices S. Then by Markov’s
inequality, with probability≥ 1− 𝛿/2, ‖SAx*−Sb‖𝑝𝑝 ≤ OPT𝑝 /(𝛿/2) and so ‖SAx*−Sb‖𝑝 ≤
OPT /(𝛿/2)1/𝑝. Combining all these bounds we have that with probability 1− 𝛿,

‖Ax̃− b‖𝑝 ≤ 2max{0,1/𝑝−1}(︀OPT+2 · 2max{0,1/𝑝−1}(2 + 𝜂) · 21/𝑝 OPT /𝛿1/𝑝
)︀

≤ 22max{0,1/𝑝−1}+1+1/𝑝(3 + 𝜂)OPT /𝛿1/𝑝.

12.2.1 Probability boosting for constant factor approximation
We now show a boosting step for our constant factor approximation algorithm (Algorithm 4),
described in Algorithm 5. If we repeat the constant factor approximation algorithm with success
probability 99/100 for a total of 𝑂(log(1/𝛿)) times, then via a standard Chernoff bound, with
probability at least 1− 𝛿, at least 9/10 of the computed x𝑐 will satisfy the guarantee of Theorem
12.2.2 – i.e., that ‖Ax𝑐 − b‖𝑝 = 𝑂(OPT). Thus, we just need to identify one of these good
solutions, which Algorithm 5 does, deterministically, and without reading any entries of b. The
approach simply computes pairwise distances between solutions and returns any solution with
a relatively low distance to at least 1/2 of the other solutions. For later use, we state the result
in terms of a general error measure ‖·‖ which satisfies an approximate triangle inequality (for
example, ‖·‖𝑝 for 𝑝 ∈ (0, 1) satisfies an approximate triangle inequality with constant 21/𝑝−1 by
Fact 2.1.1).

Theorem 12.2.3 (Constant factor ‖·‖ regression – success boosting). Consider A ∈ R𝑛×𝑑,
b ∈ R𝑛, and an error measure ‖·‖ which satisfies an approximate triangle inequality, that is,
there exists a constant 𝜅 ≥ 1 such that ‖y1 + y2‖ ≤ 𝜅(‖y1‖ + ‖y2‖) for any two vectors
y1,y2 ∈ R𝑛. Let OPT = minx∈R𝑑‖Ax − b‖. Given a set of solution vectors x1, . . . ,xℓ ∈ R𝑑

where ‖Ax𝑖 − b‖ ≤ 𝛼 · OPT for at least 9/10 · ℓ of the vectors, Algorithm 5 identifies x𝑖 with
‖Ax𝑖 − b‖ ≤ (𝜅𝛼 + 2𝜅3(𝛼 + 1)) · OPT, without querying any entries of b.

Proof. Let x* = argminx∈R𝑑‖Ax−b‖. Call x𝑖 good if ‖Ax𝑖−b‖ ≤ 𝛼 ·OPT. By approximate
triangle inequality , for any good x𝑖,

‖Ax𝑖 −Ax*‖ ≤ 𝜅(‖Ax𝑖 − b‖𝑝 + ‖Ax* − b‖𝑝) = 𝜅(𝛼 + 1) · OPT .

148

Algorithm 5 Probability Boosting for Constant Factor Active ℓ𝑝 Regression
input: ℓ candidate solutions x1, . . . ,xℓ with at least 9/10 · ℓ satisfying ‖Ax𝑖 − b‖𝑝 ≤
𝛼minx‖Ax− b‖𝑝.
output: Approximate solution x̃ ∈ R𝑑 to minx‖Ax− b‖𝑝.

1: Let d ∈ Rℓ2 contain all pairwise distances ‖Ax𝑖 −Ax𝑗‖𝑝 (over ordered pairs (𝑖, 𝑗)) sorted
in increasing order. Let 𝜏 = d(⌊ℓ2 · 8/10⌋) be the 80𝑡ℎ percentile distance.

2: Return any x𝑖 such that ‖Ax𝑖 −Ax𝑗‖𝑝 ≤ 𝜏 for at least 1/2 · ℓ vectors x𝑗 .

Thus, again via approximate triangle inequality, for any good x𝑖,x𝑗 ,

‖Ax𝑖 −Ax𝑗‖ ≤ 𝜅(𝜅(𝛼 + 1) · OPT+𝜅(𝛼 + 1) · OPT) = 2𝜅2(𝛼 + 1) · OPT .

Thus, for the pairwise distance vector d ∈ Rℓ2 computed in line 1 of Algorithm 5, at least
(9/10)2 · ℓ2 ≥ 8/10 · ℓ2 of the distances will be upper bounded by 2𝜅2(𝛼 + 1) · OPT. Thus, the
threshold 𝜏 computed in Line 1, which is the 80𝑡ℎ percentile of the distances, gives a lower bound
𝜏 ≤ 2𝜅2(𝛼 + 1) · OPT. In Line 2, we return any x𝑖 with ‖Ax𝑖 −Ax𝑗‖ ≤ 𝜏 for at least 1/2 · ℓ
vectors x𝑗 . First observe that at least one such x𝑖 must exist. Otherwise, at most 1/2 · ℓ2 of the
pairwise distances would lie below 𝜏 .

Additionally, observe that since at least 9/10 · ℓ of the x𝑖 are good, if x𝑖 is returned, it must
have ‖Ax𝑖 −Ax𝑗‖ ≤ 𝜏 ≤ 2𝜅2(𝛼 + 1) · OPT for at least one good x𝑗 . Since this good x𝑗 has
‖Ax𝑗 − b‖ ≤ 𝛼 · OPT, by approximate triangle inequality, the returned x𝑖 must then satisfy

‖Ax𝑖 − b‖ ≤ 𝜅(𝛼 + 2𝜅2(𝛼 + 1)) = (𝜅𝛼 + 2𝜅3(𝛼 + 1)) · OPT .

12.3 (1 + 𝜀) factor solution
Next, we will show the following result, which shows that the “sample-and-solve” algorithm
with one-sided ℓ𝑝 Lewis weights can achieve a nearly optimal dependence on 𝜀, if we allow for
a polynomial dependence on the failure probability 𝛿 ∈ (0, 1). We will separately handle the
probability boosting in Section 12.3.3 to show how to achieve a (log 1

𝛿
)2 dependence.

Theorem 12.3.1. Let S be the ℓ𝑝 sampling matrix (Definition 6.1.1) with sampling probabilities
𝑞𝑖 ≥ min{1,w𝑖/𝛼} for 𝛾-one-sided ℓ𝑝 Lewis weights w ∈ R𝑛 and

𝛼 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑂(𝛾)𝜀𝛿2

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1[︂
log log

1

𝜀

]︂−2

𝑝 < 2

𝑂(𝛾𝑝/2)𝜀𝑝−1𝛿𝑝

‖w‖𝑝/2−1
1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1[︂
log log

1

𝜀

]︂−𝑝

𝑝 > 2

.

Then, for any x̂ ∈ R𝑑 such that

‖S(Ax̂− b)‖𝑝𝑝 ≤ (1 + 𝜀) min
x∈R𝑑
‖S(Ax− b)‖𝑝𝑝,

we have
‖Ax̂− b‖𝑝𝑝 ≤ (1 +𝑂(𝜀)) min

x∈R𝑑
‖Ax− b‖𝑝𝑝.

149

Two main ingredients are necessary to prove Theorem 12.3.1. The first is a theorem which
establishes that ℓ𝑝 Lewis weight sampling preserves the cost difference ‖Ax−b‖𝑝𝑝−‖Ax*−b‖𝑝𝑝,
which is the following theorem that we will prove in Section 12.4.

Theorem 12.3.2. Let S be the ℓ𝑝 sampling matrix (Definition 6.1.1) with sampling probabilities
𝑞𝑖 ≥ min{1,w𝑖/𝛼} for 𝛾-one-sided ℓ𝑝 Lewis weights w ∈ R𝑛 and

𝛼 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑂(𝛾)𝜀2

𝜂2/𝑝

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 < 2

𝑂(𝛾𝑝/2)𝜀𝑝

𝜂‖w‖𝑝/2−1
1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 > 2

.

For each x* ∈ R𝑑 and b* = Ax* − b, with probability at least 1− 𝛿,⃒⃒(︀
‖S(Ax− b)‖𝑝𝑝 − ‖Sb*‖𝑝𝑝

)︀
−
(︀
‖Ax− b‖𝑝𝑝 − ‖b*‖𝑝𝑝

)︀⃒⃒
≤ 𝜀

(︂
‖b*‖𝑝𝑝 + ‖Sb*‖𝑝𝑝 +

1

𝜂
‖Ax−Ax*‖𝑝𝑝

)︂
simultaneously for every x ∈ R𝑑.

Notably, Theorem 12.3.2 incorporates a parameter 𝜂 which gives a trade-off between the
closeness of x to the optimal solution x* and the sample complexity, which will be crucial for
achieving the nearly optimal dependence on 𝜀.

The second ingredient that we need is a result which takes a near-optimality guarantee and
converts it into a closeness guarantee. These are established using various measures of the strict
convexity of ℓ𝑝 norms, and are established in Section 12.3.1.

12.3.1 Closeness of nearly optimal solutions
The following lemma uses strong convexity for 𝑝 < 2 and a Bregman divergence bound for 𝑝 > 2
to quantify the difference between the ℓ𝑝 norms of two vectors.

Lemma 12.3.3. For any y,y′ ∈ R𝑛, we have

‖y′‖2𝑝 ≥ ‖y‖2𝑝 − 2‖y‖2−𝑝
𝑝 ⟨y∘(𝑝−1),y − y′⟩+ 𝑝− 1

2
‖y − y′‖2𝑝

if 1 < 𝑝 < 2 [BMN01, Lemma 8.1] and

‖y′‖𝑝𝑝 ≥ ‖y‖𝑝𝑝 − 𝑝⟨y∘(𝑝−1),y − y′⟩+ 𝑝− 1

𝑝2𝑝
‖y − y′‖𝑝𝑝

if 2 ≤ 𝑝 <∞ [AKPS19, Lemmas 3.2 and 4.6].

We need the following elementary computation.

Lemma 12.3.4 (Gradients of multiple ℓ𝑝 regression). The gradient∇x‖Ax− b‖𝑝𝑝 is given by the
formula

𝑛∑︁
𝑖=1

𝑝[Ax− b](𝑖)∘(𝑝−1)(A⊤e𝑖)

150

The following lemma uses Lemmas 12.3.3 and 12.3.4 to show that if x achieves a nearly
optimal value, then x must be close to the optimal solution x*.

Lemma 12.3.5 (Closeness of nearly optimal solutions). Let 1 < 𝑝 <∞. For any x ∈ R𝑑 such
that ‖Ax− b‖𝑝 ≤ (1 + 𝜂)OPT with 𝜂 ∈ (0, 1), we have that

‖Ax−Ax*‖𝑝 ≤

{︃
𝑂(𝜂1/2)OPT 𝑝 < 2

𝑂(𝜂1/𝑝)OPT 𝑝 > 2

where x* := argminx∈R𝑑‖Ax− b‖𝑝.

Proof. First note that for any x ∈ R𝑑, we have

⟨︀
(Ax* − b)∘(𝑝−1),Ax

⟩︀
=

𝑛∑︁
𝑖=1

[Ax* − b](𝑖)∘(𝑝−1)[Ax](𝑖) =

⟨
𝑛∑︁

𝑖=1

[Ax* − b](𝑖)∘(𝑝−1)(A⊤e𝑖),x

⟩
.

The left term in the product is the gradient of the objective at the optimum by Lemma 12.3.4, so
this is just 0 for any x. Then for 𝑝 < 2, we have by Lemma 12.3.3 that

‖Ax* − b‖2𝑝 +
𝑝− 1

2
‖Ax−Ax*‖2𝑝 ≤ ‖Ax− b‖2𝑝 ≤ (1 + 𝜂)2‖Ax* − b‖2𝑝

which rearranges to
‖Ax−Ax*‖𝑝 ≤ 𝑂(𝜂1/2)OPT .

and for 𝑝 > 2, we have by Lemma 12.3.3 that

‖Ax* − b‖𝑝𝑝 +
𝑝− 1

𝑝2𝑝
‖Ax−Ax*‖𝑝𝑝 ≤ ‖Ax− b‖𝑝𝑝 ≤ (1 + 𝜂)𝑝‖Ax* − b‖𝑝𝑝

which rearranges to
‖Ax−Ax*‖𝑝 ≤ 𝑂(𝜂1/𝑝)OPT .

12.3.2 Iterative size reduction argument
We now give the proof of Theorem 12.3.1.

We will need the following initial result to seed our iterative argument. Note that the depen-
dence on 𝜀 is suboptimal by an 𝜀 factor for every 1 < 𝑝 <∞.

Lemma 12.3.6. Let S be the ℓ𝑝 sampling matrix (Definition 6.1.1) with sampling probabilities
𝑞𝑖 ≥ min{1,w𝑖/𝛼} for 𝛾-one-sided ℓ𝑝 Lewis weights w ∈ R𝑛 and

𝛼 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑂(𝛾)(𝜀𝛿)2

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

1 ≤ 𝑝 < 2

𝑂(𝛾𝑝/2)(𝜀𝛿)𝑝

‖w‖𝑝/2−1
1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

2 < 𝑝 <∞
.

151

Then, for any x̂ ∈ R𝑑 such that

‖S(Ax̂− b)‖𝑝𝑝 ≤ (1 + 𝜀) min
x∈R𝑑
‖S(Ax− b)‖𝑝𝑝,

we have
‖Ax̂− b‖𝑝𝑝 ≤ (1 +𝑂(𝜀)) min

x∈R𝑑
‖Ax− b‖𝑝𝑝.

Proof of Lemma 12.3.6. We first show that

‖Ax̂−Ax*‖𝑝𝑝 ≤ 𝑂

(︂
1

𝛿

)︂
OPT𝑝

with probability at least 1 − 𝛿. By using the fact that S is an 𝑂(1)-approximate ℓ𝑝 subspace
embedding, we have that

‖Ax̂−Ax*‖𝑝𝑝 ≤ ‖S(Ax̂−Ax*)‖𝑝𝑝
≤ 2𝑝−1

(︁
‖S(Ax̂− b)‖𝑝𝑝 + ‖S(Ax* − b)‖𝑝𝑝

)︁
Fact 2.1.1

≤ 2𝑝+1‖S(Ax* − b)‖𝑝𝑝 Approximate optimality of X̂

The latter quantity is at most 𝑂(1
𝛿
)OPT𝑝 with probability at least 1− 𝛿 by Markov’s inequality.

Thus, we may replace the optimization of x̂ over all x ∈ R𝑑 with optimization over the ball
{x : ‖Ax−Ax*‖𝑝𝑝 = 𝑂(1

𝛿
)OPT𝑝}.

We apply Theorem 12.3.2 with accuracy parameter 𝜀 set to 𝜀𝛿 and proximity parameter 𝜂 set
to 1. It follows that⃒⃒(︀

‖S(Ax− b)‖𝑝𝑝 − ‖S(Ax* − b)‖𝑝𝑝
)︀
−
(︀
‖Ax− b‖𝑝𝑝 − ‖Ax* − b‖𝑝𝑝

)︀⃒⃒
≤ 𝜀𝛿

(︀
‖Ax* − b‖𝑝𝑝 + ‖S(Ax* − b)‖𝑝𝑝 + ‖Ax−Ax*‖𝑝𝑝

)︀
≤ 𝑂(𝜀)OPT𝑝

Thus, in the ball {x : ‖Ax−Ax*‖𝑝𝑝 = 𝑂(1
𝛿
)OPT𝑝}, we have that

‖S(Ax− b)‖𝑝𝑝 = ‖Ax− b‖𝑝𝑝 + (‖S(Ax* − b)‖𝑝𝑝 − ‖Ax* − b‖𝑝𝑝)±𝑂(𝜀)OPT𝑝 .

It follows that x̂ must minimize ‖Ax− b‖𝑝𝑝 up to an additive 𝑂(𝜀)OPT𝑝.

Starting from this initial solution bound of Lemma 12.3.6, we can proceed via an iterative
argument which alternates between using a bound on the closeness of the solution to the optimal
solution to improve the approximation (Theorem 12.3.2), and using a bound on the approximation
to improve the closeness to the optimum (Lemma 12.3.5). More specifically, we can show that
for 1 < 𝑝 < 2, a bound of 𝐶/𝜀𝛽 on the sample complexity implies that a bound of 𝐶/𝜀2𝛽/(1+𝛽)

is sufficient as well. Iterating this argument starting from 𝛽 = 2 due to Lemma 12.3.6 for
𝑂(log log 1

𝜀
) iterations yields the desired bound of 𝐶/𝜀, as claimed. Similarly, for 𝑝 > 2, a bound

of 𝐶/𝜀𝛽 implies a bound of 𝐶/𝜀𝑝𝛽/(1+𝛽), which results in a final bound of 𝐶/𝜀𝑝−1, as claimed.

152

Proof of Theorem 12.3.1. Let

𝐶 =

⎧⎪⎪⎨⎪⎪⎩
𝑂(𝛾−1)𝛿−2‖w‖1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂
𝑝 < 2

𝑂(𝛾−𝑝/2)𝛿−𝑝‖w‖𝑝/21

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂
𝑝 > 2

We will make use of the fact that ‖S(Ax* − b)‖𝑝𝑝 = 𝑂(1
𝛿
)‖S(Ax* − b)‖𝑝𝑝 with probability at

least 1− 𝛿 by Markov’s inequality.
We will first give the argument for 𝑝 < 2. Suppose that 𝐶/𝜀𝛽 rows are needed for a (1 + 𝜀)-

approximate weak coreset. Now choose 𝑎 such that 𝑎−2 = −𝑎𝛽, that is, 𝑎 = 2/(1+𝛽). Then for
𝜂2/𝑝 = 𝜀𝑎, 𝐶𝜂2/𝑝/(𝜀𝛿)2 = 𝐶/𝜂(2/𝑝)𝛽 rows yields a (1 + 𝜂2/𝑝)-approximate weak coreset. Then, a
(1 + 𝜂2/𝑝)-approximate minimizer x satisfies

‖Ax−Ax*‖𝑝𝑝 ≤ 𝑂(𝜂)‖Ax* − b‖𝑝𝑝

by Lemma 12.3.5. For all such X, Theorem 12.3.2 shows that ‖S(Ax− b)‖𝑝𝑝 − ‖S(Ax* − b)‖𝑝𝑝
and ‖Ax− b‖𝑝𝑝 − ‖Ax* − b‖𝑝𝑝 are close up to an additive error of

𝜀𝛿

(︂
‖Ax* − b‖𝑝𝑝 + ‖S(Ax* − b)‖𝑝𝑝 +

1

𝜂
‖Ax−Ax*‖𝑝𝑝

)︂
= 𝑂(𝜀)‖Ax* − b‖𝑝𝑝

Thus, 𝐶/𝜂(2/𝑝)𝛽 rows in fact gives a (1 +𝑂(𝜀))-approximate minimizer. That is, if 𝐶/𝜀𝛽 rows is
sufficient for (1 + 𝜀)-approximation, then 𝐶/𝜂(2/𝑝)𝛽 = 𝐶/𝜀𝑎𝛽 = 𝐶/𝜀2𝛽/(1+𝛽) rows is sufficient
for (1 + 𝜀)-approximation as well. We may now iterate this argument. Consider the sequence 𝛽𝑖

given by

𝛽0 = 2, 𝛽𝑖+1 =
2𝛽𝑖

1 + 𝛽𝑖

.

The solution to this recurrence is given by the following lemma, with 𝑝 = 2:

Lemma 12.3.7. Let 𝑝 > 1 and let {𝛽𝑖}∞𝑖=0 be defined by the recurrence relation 𝛽0 = 𝑝 and
𝛽𝑖+1 = 𝑝𝛽𝑖/(1 + 𝛽𝑖). Then,

𝛽𝑖 =
1

𝑝−𝑖(𝑝−1 − (𝑝− 1)−1) + (𝑝− 1)−1

Proof. Note that 1
𝛽𝑖+1

= 1
𝑝

1
𝛽𝑖
+ 1

𝑝
so the sequence {𝑎𝑖}∞𝑖=0 given by 𝑎𝑖 = 1/𝛽𝑖 satisfies the linear

recurrence 𝑎𝑖+1 =
1
𝑝
𝑎𝑖 +

1
𝑝
. Note that this recurrence has the fixed point 𝑎 = 1/(𝑝 − 1), so the

sequence 𝑎′𝑖 = 𝑎𝑖 − 𝑎 satisfies 𝑎′𝑖+1 =
1
𝑝
𝑎′𝑖, which gives, 𝑎′𝑖 = 𝑝−𝑖𝑎′0. Thus, 𝑎𝑖 − 𝑎 = 𝑝−𝑖(𝑎0 − 𝑎)

so

𝛽𝑖 =
1

𝑎𝑖
=

1

𝑝−𝑖(𝑎0 − 𝑎) + 𝑎

=
1

𝑝−𝑖(𝑝−1 − (𝑝− 1)−1) + (𝑝− 1)−1
.

153

Thus, applying this argument 𝑂(log log 1
𝜀
) times yields that 𝛽𝑖 ≤ 1 + 𝑂(1/ log(1

𝜀
)) which

means that reading only 𝑂(1)𝐶/𝜀 entries suffices. Union bounding over the success of the
𝑂(log log 1

𝜀
) rounds completes the argument.

Next, let 𝑝 > 2. Suppose that 𝐶/𝜀𝛽 rows are needed for a (1 + 𝜀)-approximate weak coreset.
Now choose 𝑎 such that 𝑎− 𝑝 = −𝑎𝛽, that is, 𝑎 = 𝑝/(1 + 𝛽). Then for 𝜂 = 𝜀𝑎, 𝐶𝜂/𝜀𝑝 = 𝐶/𝜂𝛽

rows yields a (1 + 𝜂)-approximate weak coreset. Then, a (1 + 𝜂)-approximate minimizer X
satisfies

‖Ax−Ax*‖𝑝𝑝 ≤ 𝑂(𝜂)‖Ax* − b‖𝑝𝑝
by Lemma 12.3.5. For all such x, Theorem 12.3.2 shows that ‖S(Ax− b)‖𝑝𝑝 − ‖S(Ax* − b)‖𝑝𝑝
and ‖Ax− b‖𝑝𝑝 − ‖Ax* − b‖𝑝𝑝 are close up to an additive error of

𝜀

(︂
‖Ax* − b‖𝑝𝑝 +

1

𝜂
‖Ax−Ax*‖𝑝𝑝

)︂
= 𝑂(𝜀)‖Ax* − b‖𝑝𝑝

Thus, 𝐶/𝜂𝛽 rows in fact gives a (1 + 𝑂(𝜀))-approximate minimizer. That is, if 𝐶/𝜀𝛽 rows is
sufficient for (1 + 𝜀)-approximation, then 𝐶/𝜂𝛽 = 𝐶/𝜀𝑎𝛽 = 𝐶/𝜀𝑝𝛽/(1+𝛽) rows is sufficient for
(1+ 𝜀)-approximation as well. We may now iterate this argument. Consider the sequence 𝛽𝑖 given
by

𝛽1 = 𝑝, 𝛽𝑖+1 =
𝑝𝛽𝑖

1 + 𝛽𝑖

.

Then by Lemma 12.3.7, applying this argument 𝑂(log log 1
𝜀
) times yields that 𝛽𝑖 ≤ (𝑝 − 1) +

𝑂(1/ log(1
𝜀
)) which means that reading only 𝑂(1)𝐶/𝜀𝑝−1 entries suffices. Union bounding over

the success of the 𝑂(log log 1
𝜀
) rounds completes the argument.

12.3.3 High probability

Note that in the statement of Theorem 12.3.1, the dependence on the failure rate 𝛿 is polynomial.
This is in fact necessary if we restrict our algorithm to be of the form of “sample-and-solve”
algorithms whose sampling matrices S don’t depend on b (see Theorem 12.6.7). The only reason
why this dependence becomes necessary in the analysis of the upper bound is that ‖S(Ax*−b)‖𝑝𝑝
may be as large as 𝑂

(︀
1
𝛿

)︀
‖Ax* − b‖𝑝𝑝 with probability at least 𝛿, and this is the source of the

hardness result of Theorem 12.6.7 as well. This is a mild problem, and we show how to overcome
this problem via the following two-stage procedure. First, we can obtain a constant factor solution
x̂ with a polylogarithmic dependence on 𝛿 via the boosting procedure described in Section
12.2.1. Then, we can run log 1

𝛿
copies of the algorithm, each which succeeds with probability

1 − 𝛿. Then, we can sort the runs by their estimates ‖S(Ax̂ − b)‖𝑝𝑝 and discard half of the
runs with the highest values of ‖S(Ax̂ − b)‖𝑝𝑝. This guarantees that the remaining runs have
‖S(Ax* − b)‖𝑝𝑝 = 𝑂(1)‖Ax* − b‖𝑝𝑝 with probability at least 1− 𝛿, which is enough for the rest
of the argument to go through with only a (log 1

𝛿
)2 dependence on 𝛿. This proves the following

result:

Theorem 12.3.8 (Nearly optimal active ℓ𝑝 linear regression, high probability). There is an active
ℓ𝑝 linear regression algorithm (see Definition 12.1.1) with query complexity at most 𝑟 with

154

probability at least 1− 𝛿, where

𝑟 =

⎧⎪⎪⎨⎪⎪⎩
�̃�(𝜀−2𝑑)

(︀
log 𝛿−1

)︀2
0 < 𝑝 < 1

�̃�(𝜀−1𝑑)
(︀
log 𝛿−1

)︀2
1 < 𝑝 < 2

�̃�(𝜀1−𝑝𝑑𝑝/2)
(︀
log 𝛿−1

)︀2
2 < 𝑝 <∞

12.4 ℓ𝑝 Lewis weight sampling for differences
Throughout this section, we fix the following notation:

Definition 12.4.1.
• Let 1 ≤ 𝑝 <∞.
• Let 𝜀 ∈ (0, 1) be an accuracy parameter and let 𝛿 ∈ (0, 1) be a failure probability parameter.
• Let A ∈ R𝑛×𝑑 and b ∈ R𝑛.
• Let w ∈ R𝑛 be 𝛾-one-sided ℓ𝑝 Lewis weights for A such that max𝑛𝑖=1 w𝑖 ≤ 𝑤.
• Let x* ∈ R𝑑 any center, let 𝜂 ∈ (0, 1) be a proximity parameter, and let 𝑅 ≥ ‖Ax* − b‖𝑝𝑝

be a scale parameter.
• For each 𝑖 ∈ [𝑛] and x ∈ R𝑑, let

Δ𝑖(x) := |[Ax− b](𝑖)|𝑝 − |[Ax* − b](𝑖)|𝑝

Our main result of the section is the following:

Theorem 12.4.2. Let S be the ℓ𝑝 sampling matrix (Definition 6.1.1) with sampling probabilities
𝑞𝑖 ≥ min{1,w𝑖/𝛼} for 𝛾-one-sided ℓ𝑝 Lewis weights w ∈ R𝑛 and

𝛼 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑂(𝛾)

𝜀2

𝜂2/𝑝

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 < 2

𝑂(𝛾𝑝/2)
𝜀𝑝

𝜂‖w‖𝑝/2−1
1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 > 2

.

Then for each x* ∈ R𝑑 and 𝑅 ≥ ‖Ax* − b‖𝑝𝑝, with probability at least 1− 𝛿,

sup
‖Ax−Ax*‖𝑝𝑝≤𝜂𝑅

⃒⃒(︀
‖S(Ax− b)‖𝑝𝑝 − ‖S(Ax* − b)‖𝑝𝑝

)︀
−
(︀
‖Ax− b‖𝑝𝑝 − ‖Ax* − b‖𝑝𝑝

)︀⃒⃒
≤ 𝜀(𝑅 + ‖S(Ax* − b)‖𝑝𝑝)

We will prove Theorem 12.4.2 throughout this section. Before doing so, we state the following
more convenient form of the result:

Theorem 12.3.2. Let S be the ℓ𝑝 sampling matrix (Definition 6.1.1) with sampling probabilities
𝑞𝑖 ≥ min{1,w𝑖/𝛼} for 𝛾-one-sided ℓ𝑝 Lewis weights w ∈ R𝑛 and

𝛼 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑂(𝛾)𝜀2

𝜂2/𝑝

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 < 2

𝑂(𝛾𝑝/2)𝜀𝑝

𝜂‖w‖𝑝/2−1
1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 > 2

.

155

For each x* ∈ R𝑑 and b* = Ax* − b, with probability at least 1− 𝛿,⃒⃒(︀
‖S(Ax− b)‖𝑝𝑝 − ‖Sb*‖𝑝𝑝

)︀
−
(︀
‖Ax− b‖𝑝𝑝 − ‖b*‖𝑝𝑝

)︀⃒⃒
≤ 𝜀

(︂
‖b*‖𝑝𝑝 + ‖Sb*‖𝑝𝑝 +

1

𝜂
‖Ax−Ax*‖𝑝𝑝

)︂
simultaneously for every x ∈ R𝑑.

Proof. We apply Theorem 12.4.2 with 𝛿 set to 𝛿/𝐿 for 𝐿 = 𝑂(log(1/𝛿𝜀)) and 𝑅 set to 2𝑙‖Ax*−
b‖𝑝𝑝 for 𝑙 ∈ [𝐿]. By a union bound, the conclusion holds simultaneously for every 𝑙 ∈ [𝐿] with
probability at least 1−𝛿. Furthermore, by Markov’s inequality, ‖S(Ax*−b)‖𝑝𝑝 = 𝑂(1/𝛿)‖Ax*−
b‖𝑝𝑝 with probability at least 1− 𝛿.

If ‖Ax − Ax*‖𝑝𝑝 ≤ 2𝐿‖Ax* − b‖𝑝𝑝 = poly(1/𝛿𝜀)‖Ax* − b‖𝑝𝑝, then the result follows
immediately from applying the conclusion of Theorem 12.4.2 at the appropriate scale 𝑙 ∈ [𝐿].
Otherwise, we have that ‖Ax−Ax*‖𝑝𝑝 ≥ poly(1/𝛿𝜀)‖Ax* − b‖𝑝𝑝, in which case

‖S(Ax−Ax*)‖𝑝𝑝 ≥ Ω(1)‖Ax−Ax*‖𝑝𝑝 ≥ poly(1/𝛿𝜀)‖Ax* − b‖𝑝𝑝

so

‖S(Ax− b)‖𝑝𝑝 − ‖S(Ax* − b)‖𝑝𝑝 = (1± 𝜀)‖S(Ax−Ax*)‖𝑝𝑝 ±
(1 + 𝜀)𝑝−1

𝜀𝑝−1
‖S(Ax* − b)‖𝑝𝑝

= (1± 𝜀)‖S(Ax−Ax*)‖𝑝𝑝 ±
(1 + 𝜀)𝑝−1

𝛿𝜀𝑝−1
‖Ax* − b‖𝑝𝑝

= (1±𝑂(𝜀))‖S(Ax−Ax*)‖𝑝𝑝

and similarly,
‖Ax− b‖𝑝𝑝 − ‖Ax* − b‖𝑝𝑝 = (1±𝑂(𝜀))‖Ax−Ax*‖𝑝𝑝.

Thus it suffices to have that⃒⃒⃒
‖S(Ax−Ax*)‖𝑝𝑝 − ‖Ax−Ax*‖𝑝𝑝

⃒⃒⃒
≤ 𝜀

𝜂
‖Ax−Ax*‖𝑝𝑝.

In fact, standard ℓ𝑝 Lewis weight sampling guarantees give

⃒⃒⃒
‖S(Ax−Ax*)‖𝑝𝑝 − ‖Ax−Ax*‖𝑝𝑝

⃒⃒⃒
≤

⎧⎪⎪⎨⎪⎪⎩
𝜀

𝜂1/𝑝
‖Ax−Ax*‖𝑝𝑝 𝑝 < 2

𝜀𝑝/2

𝜂1/2
‖Ax−Ax*‖𝑝𝑝 𝑝 > 2

which is stronger.

Throughout our proof of Theorem 12.4.2, we will assume without loss of generality that
S𝑝
𝑖,𝑖 > 1, that is we only consider rows that are sampled with probability 𝑞𝑖 < 1, since rows that

are kept with probability 𝑞𝑖 = 1 do not contribute towards the sampling error. Note first that we
can write

⃒⃒(︀
‖S(Ax− b)‖𝑝𝑝 − ‖S(Ax* − b)‖𝑝𝑝

)︀
−
(︀
‖Ax− b‖𝑝𝑝 − ‖Ax* − b‖𝑝𝑝

)︀⃒⃒
=

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

(S𝑝
𝑖,𝑖 − 1)Δ𝑖(x)

⃒⃒⃒⃒
⃒.

156

The supremum of this quantity, normalized by (𝑅+‖S(Ax*−b)‖𝑝𝑝)𝑙, over
{︀
‖Ax−Ax*‖𝑝𝑝 ≤ 𝜂𝑅

}︀
is a random variable. We will bound the 𝑙-th moment of this random variable for 𝑙 = 𝑂(log 1

𝛿
+

log 𝑛).
We start with a standard symmetrization procedure (see Lemma 2.3.2). Next, we replace the

Rademacher process on the right hand side of Lemma 2.3.2 by one which “removes” S𝑝
𝑖,𝑖, that is,

one of the form

E
𝜀∼{±1}𝑛

⎡⎣ sup
‖Ax−Ax*‖𝑝𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖Δ𝑖(x)

⃒⃒⃒⃒
⃒
𝑙
⎤⎦. (12.1)

This is roughly done by noting that if we take SA to be a “part of” A, then the domain{︀
‖Ax−Ax*‖𝑝𝑝 ≤ 𝜂𝑅

}︀
only dilates by a constant factor as S preserves ℓ𝑝 norms in the col-

umn space of A. More formally, we have the following lemma:

Lemma 12.4.3. Let B ∈ R𝑚×𝑑 satisfy ‖Bx‖𝑝𝑝 ≤ 𝐶‖Ax‖𝑝𝑝 for every x ∈ R𝑑. For every fixing of
S, let

BS :=

(︃
SA

B

)︃
be the concatenation of SA and B, and let

𝐹S = sup
‖Ax‖𝑝𝑝≤1

⃒⃒
‖SAx‖𝑝𝑝 − ‖Ax‖𝑝𝑝

⃒⃒
.

Suppose that for every fixing of S and 𝑅′ ≥ 𝑅 + ‖S(Ax* − b)‖𝑝𝑝, we have that

E
𝜀∼{±1}𝑛

sup
‖BSx−BSx*‖𝑝𝑝≤𝜂𝑅′

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖S
𝑝
𝑖,𝑖Δ𝑖(x)

⃒⃒⃒⃒
⃒ ≤ 𝜀𝑙𝛿𝑅′𝑙

Then,

E
S

1

(𝑅 + ‖S(Ax* − b)‖𝑝𝑝)𝑙
E

𝜀∼{±1}𝑛
sup

‖Ax−Ax*‖𝑝𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖S
𝑝
𝑖,𝑖Δ𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤ (2𝜀)𝑙𝛿
(︁
(1 + 𝐶)𝑙 + E

S
[𝐹 𝑙

S]
)︁

Proof. Note that

‖BS(x− x*)‖𝑝𝑝 = ‖SA(x− x*)‖𝑝𝑝 + ‖B(x− x*)‖𝑝𝑝 ≤ (1 + 𝐹S + 𝐶)‖A(x− x*)‖𝑝𝑝

so

E
𝜀∼{±1}𝑛

sup
‖Ax−Ax*‖𝑝𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖S
𝑝
𝑖,𝑖Δ𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤ E
𝜀∼{±1}𝑛

sup
‖BSx−BSx*‖𝑝𝑝≤(1+𝐹S+𝐶)𝜂𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖S
𝑝
𝑖,𝑖Δ𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤ 𝜀𝑙𝛿(1 + 𝐹S + 𝐶)𝑙(𝑅 + ‖S(Ax* − b)‖𝑝𝑝)𝑙

≤ 𝜀𝑙𝛿2𝑙−1((1 + 𝐶)𝑙 + 𝐹 𝑙
S)(𝑅 + ‖S(Ax* − b)‖𝑝𝑝)𝑙 Fact 2.1.1

Taking expectations on both sides proves the lemma.

157

Note that if S is the ℓ𝑝 Lewis weight sampling matrix, then E[|𝐹S|𝑙] in Lemma 12.4.3 is known
be bounded as 𝑂(1)𝑙 (that is S, is an 𝑂(1)-approximate ℓ𝑝 subspace embedding) by standard
results on ℓ𝑝 Lewis weight sampling [CP15, WY23b].

Furthermore, we can design B such that the ℓ𝑝 Lewis weights of BS are uniformly bounded
by 𝛼, where 𝛼 is the oversampling parameter such that S samples the 𝑖th row with probability
min{1,w𝑖/𝛼}. For 𝑝 < 2, this simply follows by taking B to be a flattening of A where every
row is duplicated 1/𝛼 times due to the monotonicity of ℓ𝑝 Lewis weights [CP15]. For 𝑝 > 2,
monotonicity of ℓ𝑝 Lewis weights does not hold, but Theorem 5.2 of [WY23b] nonetheless shows
that 𝛾-one-sided ℓ𝑝 Lewis weights can be constructed for BS with 𝛾 = Ω(1) that makes a similar
argument go through.

Finally, it remains to bound the Rademacher process of the form of (12.1), where A has
𝛾-one-sided ℓ𝑝 Lewis weights uniformly bounded by 𝑤 = 𝛼. We will prove the following in
Section 12.5. Assuming this theorem, Theorem 12.4.2 follows by setting 𝑤 = 𝛼 as stated.

Theorem 12.4.4. For all 𝑙 ∈ N, we have

E
𝜀∼{±1}𝑛

sup
‖Ax−Ax*‖𝑝𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖Δ𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤ (𝜀𝑅)𝑙 (12.2)

where

𝜀 =

⎧⎪⎨⎪⎩
𝑂(𝑤𝜂2/𝑝)1/2𝛾−1/2

[︁(︀
(log 𝑑)2 log 𝑛

)︀1+1/𝑙
+ 𝑙
]︁1/2

𝑝 < 2

𝑂(𝑤𝜂‖w‖𝑝/2−1
1)1/𝑝𝛾−1/2

[︁(︀
(log 𝑑)2 log 𝑛

)︀1+1/𝑙
+ 𝑙
]︁1/𝑝

𝑝 > 2

.

12.5 Rademacher process bounds
We continue to fix our notation from Definition 12.4.1. We will prove Theorem 12.4.4 in this
section.

We split the sum in (12.2) into two parts: the part that is bounded by the 𝛾-one-sided Lewis
weights of A, and the part that is not. To this end, define a threshold

𝜏 :=

⎧⎪⎪⎨⎪⎪⎩
𝜂

𝛾𝑝/2𝜀𝑝
𝑝 < 2

𝜂‖w‖𝑝/2−1
1

𝛾𝑝/2𝜀𝑝
𝑝 > 2

where 𝜀 will be determined later, and define the set of “good” entries 𝐺 ⊆ [𝑛] as

𝐺 := {𝑖 ∈ [𝑛] : |[Ax* − b](𝑖)| ≤ 𝜏w𝑖𝑅} (12.3)

We then bound

E
𝜀∼{±1}𝑛

sup
‖Ax−Ax*‖𝑝𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖Δ𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤ 2𝑙−1 E
𝜀∼{±1}𝑛

sup
‖Ax−Ax*‖𝑝𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝐺

𝜀𝑖Δ𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

158

+ 2𝑙−1 E
𝜀∼{±1}𝑛

sup
‖Ax−Ax*‖𝑝𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑖∈[𝑛]∖𝐺

𝜀𝑖Δ𝑖(x)

⃒⃒⃒⃒
⃒⃒
𝑙

using the Fact 2.1.1, and separately estimate each term. We can think of the first term as the
“sensitivity” term, where each term in the sum is bounded by the Lewis weights of A, and the
latter term as the “outlier” term, where each term in the sum is much larger than the corresponding
Lewis weights.

12.5.1 Estimates on the outlier term
We first bound the outlier terms (𝑖 /∈ 𝐺), which is much easier.

Lemma 12.5.1. With probability 1, we have that

sup
‖Ax−Ax*‖𝑝𝑝≤𝜂𝑅

∑︁
𝑖∈[𝑛]∖𝐺

|Δ𝑖(x)| ≤ 𝑂(𝜀)𝑅.

Proof. For each 𝑖 ∈ [𝑛] ∖𝐺, we have that

|[Ax− b](𝑖)| ∈ |[Ax* − b](𝑖)| ± |[Ax* −Ax](𝑖)|
∈ |[Ax* − b](𝑖)| ± 𝛾−1/2‖w‖1/2−1/𝑝

1 w
1/𝑝
𝑖 ‖Ax* −Ax‖𝑝 Lemma 6.2.4

∈ |[Ax* − b](𝑖)| ± 𝛾−1/2𝜂1/𝑝‖w‖1/2−1/𝑝
1 w

1/𝑝
𝑖 𝑅1/𝑝

∈ |[Ax* − b](𝑖)| ± 𝜀|[Ax* − b](𝑖)| 𝑖 ∈ [𝑛] ∖𝐺

Thus,
|Δ𝑖(x)| ≤ 𝑂(𝜀)|[Ax* − b](𝑖)|𝑝

so ∑︁
𝑖∈[𝑛]∖𝐺

|Δ𝑖(x)| ≤
𝑛∑︁

𝑖=1

𝑂(𝜀)|[Ax* − b](𝑖)|𝑝 = 𝑂(𝜀)‖Ax* − b‖𝑝𝑝 ≤ 𝑂(𝜀)𝑅.

12.5.2 Estimates on the sensitivity term
Next, we estimate the sensitivity term (𝑖 ∈ 𝐺),

E
𝜀∼{±1}𝑛

sup
‖Ax−Ax*‖𝑝𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝐺

𝜀𝑖Δ𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

.

To estimate this moment, we obtain a subgaussian tail bound via the tail form of Dudley’s entropy
integral, and then integrate it. We will crucially use that |Δ𝑖(x)| for 𝑖 ∈ 𝐺 is bounded over all
‖Ax−Ax*‖𝑝𝑝 ≤ 𝜂𝑅, which gives the following sensitivity bound:

Lemma 12.5.2. For all 𝑖 ∈ 𝐺, and x ∈ R𝑑 with ‖Ax−Ax*‖𝑝𝑝 ≤ 𝜂𝑅, we have |[Ax− b](𝑖)|𝑝 ≤
𝑂(𝜏w𝑖𝑅) and |Δ𝑖(x)| ≤ 𝑂(𝜏w𝑖𝑅).

159

Proof. We have

|[Ax− b](𝑖)|𝑝 ≤ 2𝑝−1(|[Ax* − b](𝑖)|𝑝 + |[Ax−Ax*](𝑖)|𝑝) Fact 2.1.1

≤ 2𝑝−1𝜏w𝑖𝑅 + 2𝑝−1𝛾−𝑝/2𝜂‖w‖0∨(𝑝/2−1)
1 w𝑖𝑅 𝑖 ∈ 𝐺 (see (12.3)) and Lemma 6.2.4

≤ 𝑂(𝜏w𝑖𝑅)

The bound on Δ𝑖(x) follows easily from the above calculation.

Bounding low-sensitivity entries

We now separately handle entries 𝑖 ∈ 𝐺 with small Lewis weight. To do this end, define

𝐽 :=
{︁
𝑖 ∈ 𝐺 : w𝑖 ≥

𝜀

𝜏𝑛

}︁
.

We then bound the mass on the complement of 𝐽 :

Lemma 12.5.3. For all ‖Ax−Ax*‖𝑝𝑝 ≤ 𝜂𝑅, we have that∑︁
𝑖∈[𝑛]∖𝐽

|Δ𝑖(x)| ≤ 𝑂(𝜀𝑅)

Proof. We have that for each 𝑖 ∈ [𝑛] ∖ 𝐽 , w𝑖 ≤ 𝜀/𝜏𝑛 so by Lemma 12.5.2,

∑︁
𝑖∈[𝑛]∖𝐽

|Δ𝑖(x)| ≤
∑︁

𝑖∈[𝑛]∖𝐽

𝑂(𝜏w𝑖𝑅) ≤
∑︁

𝑖∈[𝑛]∖𝐽

𝑂(𝜀)

𝑛
𝑅 ≤ 𝑂(𝜀𝑅)

Bounding high-sensitivity entries: Dudley’s inequality

Finally, it remains to bound the Rademacher process only on the entries indexed by 𝑖 ∈ 𝐽 . Define
a Rademacher process by

𝑋x :=
∑︁
𝑖∈𝐽

𝜀𝑖Δ𝑖(x)

with pseudo-metric

𝑑𝑋(x,x
′) :=

(︂
E

𝜀∼{±1}𝑛
|𝑋x −𝑋 ′

x|
2

)︂1/2

=

(︃∑︁
𝑖∈𝐽

(Δ𝑖(x)−Δ𝑖(x
′))2

)︃1/2

We will use Dudley’s entropy integral (Theorem 2.3.6) to bound the tail of this quantity, and then
integrate to obtain moment bounds.

Using the sensitivity bound of Lemma 12.5.2, we obtain a bound on the pseudo-metric 𝑑𝑋 .

160

Lemma 12.5.4. Let 𝑞 = 𝑂(log(𝜏𝑛/𝜀)). For x,x′ ∈ 𝑇 for 𝑇 = {‖Ax−Ax*‖𝑝𝑝 ≤ 𝜂𝑅}, we have
that

𝑑𝑋(x,x
′) ≤

{︃
𝑂(𝑤1/2)𝜂1/𝑝−1/2‖W−1/𝑝A(x− x′)‖𝑝/2w,𝑞𝑅

1/2 𝑝 < 2

𝑂(𝑤1/2)𝜏 1/2−1/𝑝‖W−1/𝑝A(x− x′)‖w,𝑞𝑅
1−1/𝑝 𝑝 > 2

and

diam(𝑇) = sup
x,x′∈𝑇

𝑑𝑋(x,x
′) ≤

{︃
𝑂(𝑤1/2𝜂1/𝑝𝛾−1/2𝑅) 𝑝 < 2

𝑂(𝜀𝑤1/2𝜏 1/2𝑅) 𝑝 > 2

Proof. Let y = Ax− b and y′ = Ax′ − b. Note then that

𝑑𝑋(x,x
′)2 =

∑︁
𝑖∈𝐽

(Δ𝑖(x)−Δ𝑖(x
′))2 =

∑︁
𝑖∈𝐽

(|y(𝑖)|𝑝 − |y′(𝑖)|𝑝)2

≤ 𝑝2
∑︁
𝑖∈𝐽

|y(𝑖)− y′(𝑖)|2(|y(𝑖)|𝑝−1 + |y′(𝑖)|𝑝−1)2 Fact 2.1.3

For 𝑝 < 2, we have that

𝑑𝑋(x,x
′)2 ≤ 𝑝2‖(y − y′)|𝐽‖𝑝∞

∑︁
𝑖∈𝐽

(|y(𝑖)− y′(𝑖)|)2−𝑝(|y(𝑖)|𝑝−1 + |y′(𝑖)|𝑝−1)2

≤ 2𝑝2‖(y − y′)|𝐽‖𝑝∞
∑︁
𝑖∈𝐽

(|y(𝑖)− y′(𝑖)|)2−𝑝(|y(𝑖)|2𝑝−2 + |y′(𝑖)|2𝑝−2)

≤ 2𝑝2‖(y − y′)|𝐽‖𝑝∞‖y − y′‖2−𝑝
𝑝 (‖y‖2𝑝−2

𝑝 + ‖y′‖2𝑝−2
𝑝) Hölder’s inequality

≤ 𝑂(𝜂2/𝑝−1)‖(y − y′)|𝐽‖𝑝∞𝑅.

where the Hölder’s inequality is applied with exponents 𝑝
2−𝑝

> 1 and 𝑝
2𝑝−2

> 1. For 𝑝 > 2, we
have that

𝑑𝑋(x,x
′)2 ≤ 2𝑝2‖(y − y′)|𝐽‖2∞

𝑛∑︁
𝑖=1

|y(𝑖)|2𝑝−2 + |y′(𝑖)|2𝑝−2

≤ 2𝑝2max{‖y|𝐽‖∞, ‖y′|𝐽‖∞}𝑝−2‖(y − y′)|𝐽‖2∞
𝑛∑︁

𝑖=1

|y(𝑖)|𝑝 + |y′(𝑖)|𝑝

≤ 𝑂(1)(𝜏𝑤𝑅)1−2/𝑝‖(y − y′)|𝐽‖2∞𝑅 Lemma 12.5.2

Furthermore, we have that

‖(y − y′)|𝐽‖∞ = ‖(Ax−Ax′)|𝐽‖∞
= ‖W1/𝑝(W−1/𝑝Ax−W−1/𝑝Ax′)|𝐽‖∞
≤ 𝑤1/𝑝‖(W−1/𝑝Ax−W−1/𝑝Ax′)|𝐽‖∞
≤ 2𝑤1/𝑝‖W−1/𝑝Ax−W−1/𝑝Ax′‖w,𝑞

where the last step follows from the fact that w𝑖 ≥ 𝜀/𝜏𝑛 for 𝑖 ∈ 𝐽 and 𝑞 = 𝑂(log(𝜏𝑛/𝜀)).
Combining these bounds gives the claimed bound on 𝑑𝑋(x,x

′).

161

Finally, we have by Lemma 6.2.4 that

‖W−1/𝑝A(x− x*)‖∞ =
𝑛

max
𝑖=1

|[A(x− x*)](𝑖)|
w𝑖

≤

{︃
𝛾−1/𝑝‖A(x− x*)‖𝑝 𝑝 < 2

𝛾−1/2‖w‖1/2−1/𝑝
1 ‖A(x− x*)‖𝑝 𝑝 > 2

so we have the claimed diameter bound for the set {‖A(x− x*)‖𝑝𝑝 ≤ 𝜂𝑅}.

The following entropy bounds are obtained from [WY23c], which in turn largely follow
[BLM89].

Lemma 12.5.5. Let 1 ≥ w ∈ R𝑛 be nonnegative weights. Let 2 ≤ 𝑞 <∞ and let A ∈ R𝑛×𝑑 be
such that W1/2A is orthonormal. Let 𝜏 ≥ max𝑛𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦2
2
. Let 𝐵𝑝

w(A) := {x : ‖Ax‖w,𝑝 ≤ 1}.
Then,

log𝐸(𝐵2
w(A), 𝐵𝑞

w(A), 𝑡) ≤ 𝑂(1)
𝑛2/𝑞𝑞 · 𝜏

𝑡2

and

log𝐸(𝐵𝑝
w(A), 𝐵𝑞

w(A), 𝑡) ≤ 𝑂(1)
1

𝑡𝑝

(︂
log 𝑑

2− 𝑝
+ log 𝑛+ 𝑛2/𝑞𝑞

)︂
𝜏.

for 𝑝 < 2.

We may now evaluate Dudley’s entropy integral.

Lemma 12.5.6 (Entropy integral bound for 𝑝 < 2). We have that∫︁ ∞

0

√︀
log𝐸(𝐵𝑝(A), 𝑑𝑋 , 𝑡) 𝑑𝑡 ≤ 𝑂(𝑤1/2𝛾−1/2𝜂1/2𝑅)

(︁
log

𝜏𝑛

𝜀

)︁1/2
log 𝑑

Proof. Note that it suffices to integrate the entropy integral to diam(𝑇), which is bounded in
Lemma 12.5.4. Note also that 𝑇 is just a translation of (𝜂𝑅)1/𝑝 ·𝐵𝑝(A), so we have

log𝐸(𝑇, 𝑑𝑋 , 𝑡) = log𝐸((𝜂𝑅)1/𝑝 ·𝐵𝑝(A), 𝑑𝑋 , 𝑡)

= log𝐸((𝜂𝑅)1/𝑝 ·𝐵𝑝(A), 𝐾‖W−1/𝑝A(·)‖𝑝/2w,𝑞, 𝑡) Lemma 12.5.4

= log𝐸(𝐵𝑝
w(W

−1/𝑝A), 𝐵𝑞
w(W

−1/𝑝A), 𝑡2/𝑝/𝐾2/𝑝(𝜂𝑅)1/𝑝)

where 𝐾 = 𝑂(𝑤1/2𝜂1/𝑝−1/2𝑅1/2).
For small radii less than 𝜆 for a parameter 𝜆 to be chosen, we use a standard volume argument,

which shows that

log𝐸(𝐵𝑝
w(W

−1/𝑝A), 𝐵𝑞
w(W

−1/𝑝A), 𝑡) ≤ 𝑂(𝑑) log
𝑛

𝑡

so ∫︁ 𝜆

0

√︀
log𝐸(𝑇, 𝑑𝑋 , 𝑡) 𝑑𝑡 ≤

∫︁ 𝜆

0

√︂
𝑑 log

𝑛𝐾2/𝑝(𝜂𝑅)1/𝑝

𝑡2/𝑝
𝑑𝑡

≤ 𝜆
√︁
𝑑 log(𝑛(𝜂2/𝑝𝑤)1/𝑝) +

√
𝑑

∫︁ 𝜆

0

√︂
log

𝑅2/𝑝

𝑡2/𝑝
𝑑𝑡

162

≤ 𝜆
√︁
𝑑 log(𝑛(𝜂2/𝑝𝑤)1/𝑝) +

√
𝑑 ·𝑂(𝜆)

√︂
log

𝑅

𝜆

≤ 𝑂(𝜆)

√︂
𝑑 log

𝑛(𝜂2/𝑝𝑤)1/𝑝𝑅

𝜆

On the other hand, for large radii larger than 𝜆, we use the bounds of Lemma 12.5.5. Note that the
entropy bounds do not change if we replace A by AR, where R is the change of basis matrix
such that W1/2−1/𝑝AR is orthonormal. Then by the properties of 𝛾-one-sided ℓ𝑝 Lewis weights
(Lemma 6.2.1), we have

‖e⊤𝑖 W−1/𝑝AR‖22 = w
−2/𝑝
𝑖 ‖e⊤𝑖 AR‖22 ≤ 𝛾−1.

Then, Lemma 12.5.5 gives

log𝐸(𝐵𝑝
w(W

−1/𝑝A), 𝐵𝑞
w(W

−1/𝑝A), 𝑡2/𝑝/𝐾2/𝑝(𝜂𝑅)1/𝑝) =
𝑂(𝑤𝜂2/𝑝𝑅2)

𝛾𝑡2
log

𝜏𝑛

𝜀

so the entropy integral gives a bound of

𝑂(𝑤1/2𝜂1/𝑝𝑅)

𝛾1/2

(︁
log

𝜏𝑛

𝜀

)︁1/2 ∫︁ diam(𝑇)

𝜆

1

𝑡
𝑑𝑡 =

𝑂(𝑤1/2𝜂1/𝑝𝑅)

𝛾1/2

(︁
log

𝜏𝑛

𝜀

)︁1/2
log

diam(𝑇)

𝜆
.

We choose 𝜆 = diam(𝑇)/
√
𝑑, which yields the claimed conclusion.

An analogous result and proof holds for 𝑝 > 2.

Lemma 12.5.7 (Entropy integral bound for 𝑝 > 2). Let 2 < 𝑝 < ∞. Let A ∈ R𝑛×𝑑 and let
0 ≤ w ∈ R𝑛 be 𝛾-one-sided ℓ𝑝 Lewis weights. Let 𝑤 = max𝑖∈[𝑛] w𝑖. Then,∫︁ ∞

0

√︀
log𝐸(𝐵𝑝(A), 𝑑𝑋 , 𝑡) 𝑑𝑡 ≤ 𝑂(𝑤1/2𝜀𝜏 1/2𝑅)

(︁
log

𝜏𝑛

𝜀

)︁1/2
log 𝑑

Proof. Note that it suffices to integrate the entropy integral to diam(𝑇), which is bounded in
Lemma 12.5.4. Note also that 𝑇 is just a translation of (𝜂𝑅)1/𝑝 ·𝐵𝑝(A), so we have

log𝐸(𝑇, 𝑑𝑋 , 𝑡) = log𝐸((𝜂𝑅)1/𝑝 ·𝐵𝑝(A), 𝑑𝑋 , 𝑡)

= log𝐸((𝜂𝑅)1/𝑝 ·𝐵𝑝(A), 𝐾‖W−1/𝑝A(·)‖w,𝑞, 𝑡) Lemma 12.5.4

= log𝐸(𝐵𝑝
w(W

−1/𝑝A), 𝐵𝑞
w(W

−1/𝑝A), 𝑡/𝐾(𝜂𝑅)1/𝑝)

where 𝐾 = 𝑂(𝑤1/2𝜏 1/2−1/𝑝𝑅1−1/𝑝).
For small radii less than 𝜆 for a parameter 𝜆 to be chosen, we use a standard volume argument,

which shows that

log𝐸(𝐵𝑝
w(W

−1/𝑝A), 𝐵𝑞
w(W

−1/𝑝A), 𝑡) ≤ 𝑂(𝑑) log
𝑛

𝑡

so ∫︁ 𝜆

0

√︀
log𝐸(𝑇, 𝑑𝑋 , 𝑡) 𝑑𝑡 ≤

∫︁ 𝜆

0

√︂
𝑑 log

𝑛𝐾(𝜂𝑅)1/𝑝

𝑡
𝑑𝑡

163

≤ 𝜆
√︁
𝑑 log(𝑛𝑤1/2𝜂1/𝑝𝜏 1/2−1/𝑝) +

√
𝑑

∫︁ 𝜆

0

√︂
log

𝑅

𝑡
𝑑𝑡

≤ 𝜆
√︁

𝑑 log(𝑛𝑤1/2𝜂1/𝑝𝜏 1/2−1/𝑝) +
√
𝑑 ·𝑂(𝜆)

√︂
log

𝑅

𝜆

≤ 𝑂(𝜆)

√︂
𝑑 log

𝑛𝑤1/2𝜂1/𝑝𝜏 1/2−1/𝑝𝑅

𝜆

On the other hand, for large radii larger than 𝜆, we use the bounds of Lemma 12.5.5. Note that the
entropy bounds do not change if we replace A by AR, where R is the change of basis matrix
such that W1/2−1/𝑝AR is orthonormal. Then by the properties of 𝛾-one-sided ℓ𝑝 Lewis weights
(Lemma 6.2.1), we have

‖e⊤𝑖 W−1/𝑝AR‖22 = w
−2/𝑝
𝑖 ‖e⊤𝑖 AR‖22 ≤ 𝛾−1.

Then, Lemma 6.2.2 and Lemma 12.5.5 give

log𝐸(𝐵𝑝
w(W

−1/𝑝A), 𝐵𝑞
w(W

−1/𝑝A), 𝑡/𝐾(𝜂𝑅)1/𝑝)

≤ log𝐸(𝐵2
w(W

−1/𝑝A), 𝐵𝑞
w(W

−1/𝑝A), 𝑡/𝐾(𝜂𝑅)1/𝑝‖w‖1/2−1/𝑝
1)

≤ 𝐾2(𝜂𝑅)2/𝑝‖w‖1−2/𝑝
1

𝛾𝑡2
log

𝜏𝑛

𝜀

≤ 𝑂(𝑤)𝜀2𝜏𝑅2

𝑡2
log

𝜏𝑛

𝜀

so the entropy integral gives a bound of

𝑂(𝑤1/2𝜀𝜏 1/2𝑅)
(︁
log

𝜏𝑛

𝜀

)︁1/2 ∫︁ diam(𝑇)

𝜆

1

𝑡
𝑑𝑡 = 𝑂(𝑤1/2𝜀𝜏 1/2𝑅)

(︁
log

𝜏𝑛

𝜀

)︁1/2
log

diam(𝑇)

𝜆
.

We choose 𝜆 = diam(𝑇)/
√
𝑑, which yields the claimed conclusion.

We are now ready to prove Theorem 12.4.4.

Proof of Theorem 12.4.4. We have by Lemma 2.3.7 that the Rademacher process is bounded by

(2ℰ)𝑙(ℰ/𝒟) +𝑂(
√
𝑙𝒟)𝑙

where

ℰ ≤

⎧⎪⎨⎪⎩
𝑂(𝑤1/2𝛾−1/2𝜂1/𝑝𝑅)

(︁
log

𝜏𝑛

𝜀

)︁1/2
log 𝑑 𝑝 < 2

𝑂(𝜀𝑤1/2𝜏 1/2𝑅)
(︁
log

𝜏𝑛

𝜀

)︁1/2
log 𝑑 𝑝 > 2

by Lemmas 12.5.6 and 12.5.7 and

𝒟 ≤

{︃
𝑂(𝑤1/2𝜂1/𝑝𝛾−1/2𝑅) 𝑝 < 2

𝑂(𝜀𝑤1/2𝜏 1/2𝑅) 𝑝 > 2

164

by Lemma 12.5.4. This gives a bound of (𝛼𝑅)𝑙 on the Rademacher process, where

𝛼 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑂(𝑤1/2𝜂1/𝑝𝛾−1/2)

[︃(︂(︁
log

𝜏𝑛

𝜀

)︁1/2
log 𝑑

)︂1+1/𝑙

+
√
𝑙

]︃
𝑝 < 2

𝑂(𝜀𝑤1/2𝜏 1/2𝑅)

[︃(︂(︁
log

𝜏𝑛

𝜀

)︁1/2
log 𝑑

)︂1+1/𝑙

+
√
𝑙

]︃
𝑝 > 2

We now set 𝛼 = 𝜀 and solve for the 𝜀 that we can obtain. From this, we see that we can set

𝜀 =

⎧⎪⎨⎪⎩
𝑂(𝑤𝜂2/𝑝)1/2𝛾−1/2

[︁(︀
(log 𝑑)2 log 𝑛

)︀1+1/𝑙
+ 𝑙
]︁1/2

𝑝 < 2

𝑂(𝑤𝜂‖w‖𝑝/2−1
1)1/𝑝𝛾−1/2

[︁(︀
(log 𝑑)2 log 𝑛

)︀1+1/𝑙
+ 𝑙
]︁1/𝑝

𝑝 > 2

.

12.6 Lower bounds
We now present our lower bounds on active sampling for ℓ𝑝 regression.

Our main results show that the number of entries of b read by our upper bounds are nearly
optimal up to polylogarithmic factors. Our first result is a lower bound of Ω(𝑑/𝜀2) for 𝑝 ∈ (0, 1).
Our lower bound is similar to Theorem 5.1 of [CD21], and is based on distinguishing biased coin
flips. We also show that the same instance gives a lower bound Ω(𝑑/𝜀) in the range of 𝑝 ∈ (1, 2).
For 𝑑 = 1, we note that the active ℓ𝑝 regression problem is equivalent to the ℓ𝑝 power means
problem. Thus, these results also improve upon a query complexity lower bound for this problem
by [CSS21], which shows a lower bound of Ω(𝜀1−𝑝) in one dimension. For 𝑝 > 2, we generalize
the Ω(𝜀1−𝑝) lower bound argument of [CSS21] and show that Ω(𝑑𝑝/2/𝜀𝑝−1) entries must be read
when 𝑝 > 2, which is optimal in this regime.

Finally, our last lower bound concerns algorithms which solve the ℓ𝑝-regression problem
minx ‖Ax−b‖𝑝 up to a constant factor in a specific way. Namely, say an algorithm is a sampling-
and-reweighting algorithm if, given an 𝑛× 𝑑 input matrix A, the algorithm first reads A and then
decides on a subset 𝑆 of 𝑠 entries of b to read in an arbitrary way. The algorithm also decides
on a diagonal rescaling matrix S ∈ R𝑠×𝑠 – S may be arbitrary, except that we require that if two
rows of A are identical and are both sampled in 𝑆, they are given the same weight in S. We
also assume that the number 𝑠 of samples is a function of 𝑑, 𝜀, and the failure probability 𝛿, and
is independent of 𝑛. These assumptions hold for all importance-based sampling methods for
subspace preservation.

After deciding on 𝑆 and S, the algorithm then reads the entries in b indexed by the set
𝑆, denoted b𝑆 , and sets x′ = argmin𝑥‖SA𝑆x − Sb𝑆‖𝑝, where A𝑆 is the subset of rows of A
corresponding to the entries in b𝑆 . We show that any sampling-and-reweighting algorithm which
fails with probability at most 𝛿, necessarily takes |𝑆| = Ω(1/𝛿𝑝−1) samples. Moreover, this
remains true even if ‖b‖𝑝 = 𝑂(1) ·minx ‖Ax− b‖𝑝.

We stress that our main algorithms are not sampling-and-reweighting algorithms due to the
success probability boosting steps of Section 12.2.1 which ensure that ‖b‖𝑝 = 𝑂(1) ·minx ‖Ax−

165

b‖𝑝 and ‖Sb‖𝑝 = 𝑂(‖b‖𝑝) with probability at least 1−𝛿. With these steps, our approach achieves
a 𝑂(log 1/𝛿) dependence overall, an exponential improvement over what is possible by simple
sampling-and-reweighting algorithms. We also remark that our lower bound becomes vacuous
when 𝑝 = 1, which is required – Chen and Dereziński [CD21] as well as Parulekar, Parulekar,
and Price [PPP21] achieve 𝑂(log(1/𝛿)) dependence with simple sampling-and-reweighting for ℓ1
regression.

12.6.1 Lower bounds for 𝑝 ∈ (0, 1)

We first show an Ω(𝑑/𝜀2) lower bound for 𝑝 ∈ (0, 1), which is tight up to logarithmic factors. The
idea is essentially the same as the lower bound of [CD21]. We use Yao’s minimax principle to
restrict our attention to deterministic algorithms which must succeed with high probability over a
random distribution over input instances.

We first recall the result of [CD21], which provides a generic reduction from 𝑑-dimensional
lower bounds to 1-dimensional lower bounds via a padding argument. Although [CD21] prove a
theorem online in the case of ℓ1, the following result is an easy generalization that is implicit from
their proof:

Theorem 12.6.1 (Theorem 5.1, [CD21]). Let 𝒟0 and 𝒟1 be two distributions over label vectors
b ∈ R𝑚 such that distinguishing between b ∼ 𝒟0 and b ∼ 𝒟1 with probability at least 2/3
requires at least 𝑞 queries to b in expectation, for any deterministic algorithm. Furthermore,
suppose that there exists a ∈ R𝑚 such that, with probability at least 99/100, 𝒟0 and 𝒟1 can be
distinguished by �̃� ∈ R such that

‖a�̃�− b‖𝑝𝑝 ≤ (1 + 𝜀)min
𝑥∈R
‖a𝑥− b‖𝑝𝑝.

Finally, suppose that there exist 𝑅 > 0 and 𝑐 ≥ 1 such that min𝑥‖a𝑥− b‖𝑝𝑝 ∈ [𝑅, 𝑐𝑅] with
probability at least 99/100 for b ∼ 1

2
(𝒟0 + 𝒟1). Then, there exists an 𝑚𝑑 × 𝑑 matrix A and a

distribution 𝒟 over label vectors b ∈ R𝑚𝑑 such that any deterministic algorithm which outputs
x̃ ∈ R𝑑 such that

Pr

{︂
‖Ax̃− b‖𝑝𝑝 ≤

(︁
1 +

𝜀

200𝑐

)︁
min
x∈R𝑑
‖Ax− b‖𝑝𝑝

}︂
≥ 99

100

must make at least Ω(𝑑𝑞) queries to b in expectation.

Thus, it suffices to show a 1-dimensional lower bound which suits the hypotheses of Theorem
12.6.1. Our hard input distribution will be the same as that of [CD21, Theorem 5.1].

Theorem 12.6.2. Let 0 < 𝑝 < 1 be a constant. Let 𝜀 > 0 be sufficiently small and let
𝑛 = 100⌈𝜀−2⌉. Let a ∈ R𝑛 be the all ones vector. Let 𝒟0 be the distribution over binary vectors
b ∈ {0, 1}𝑛 which independently draws each coordinate as a Bernoulli with bias 1/2 + 𝜀 and
let 𝒟1 be the distribution which independently draws each coordinate as a Bernoulli with bias
1/2− 𝜀. Then, any �̃� such that

‖a�̃�− b‖𝑝𝑝 ≤ (1 + 𝜀)min
𝑥∈R
‖a𝑥− b‖𝑝𝑝

distinguishes whether b ∼ 𝒟0 or b ∼ 𝒟1 with probability at least 99/100.

166

Proof. Note that the optimal 𝑥* minimizing ‖a𝑥− b‖𝑝𝑝 over 𝑥 ∈ R must lie in [0, 1]. Indeed, if
𝑥 < 0, then −𝑥 has a strictly lower cost than 𝑥, and if 𝑥 > 1, then 𝑥 = 1 has a strictly lower cost.
Thus, the objective function can be written as

‖a𝑥− b‖𝑝𝑝 = (𝑛− 𝑟) · 𝑥𝑝 + 𝑟 · (1− 𝑥)𝑝 (12.4)

where 𝑟 is the number of ones in b. As noted by [CD21], note that 𝑟 ∈ [(1
2
+ 𝜀

2
)𝑛, (1

2
+ 3𝜀

2
)𝑛] with

probability at least 99/100 if b ∼ 𝒟0, and similarly, 𝑟 ∈ [(1
2
− 𝜀

2
)𝑛, (1

2
− 3𝜀

2
)𝑛] with probability at

least 99/100 if b ∼ 𝒟1. Let this event be denoted as ℰ , and condition on this event. Write this as
𝑟 = 𝑛/2 + 𝑎𝜀𝑛 for some 𝑎 ∈ [1/2, 3/2] if b ∼ 𝒟0 and 𝑎 ∈ [−3/2,−1/2] if b ∼ 𝒟1.

Optimal Solutions. We will first compute the optimal cost. Since 𝑥 ↦→ 𝑥𝑝 for 𝑝 ∈ (0, 1) is
nonconvex, we have three candidate solutions for the optimum: the endpoints 𝑥 = 0, 𝑥 = 1, and
the unique stationary point

𝑥 =
1

1 + (𝑛/𝑟 − 1)1/(𝑝−1)

of Equation (12.4). It can easily be seen that the costs for 𝑥 = 0 and 𝑥 = 1 are 𝑟 and 𝑛 − 𝑟,
respectively. Now assume that b ∼ 𝒟0, since the other case follows symmetrically. Then,

(𝑛/𝑟 − 1)1/(𝑝−1) =

[︂
1

1/2 + 𝑎𝜀
− 1

]︂1/(𝑝−1)

=

[︂
1/2 + 𝑎𝜀

1/2− 𝑎𝜀

]︂1/(1−𝑝)

= 1 +𝑂(𝜀)

so
𝑥 =

1

2 +𝑂(𝜀)
=

1

2
−𝑂(𝜀).

The objective cost is thus

(𝑛− 𝑟) · 𝑥𝑝 + 𝑟 · (1− 𝑥)𝑝 =

(︂
1

2
− 𝑎𝜀

)︂
𝑛 ·
(︂
1

2
−𝑂(𝜀)

)︂𝑝

+

(︂
1

2
+ 𝑎𝜀

)︂
𝑛 ·
(︂
1

2
+𝑂(𝜀)

)︂𝑝

=
𝑛

2𝑝

[︂(︂
1

2
− 𝑎𝜀

)︂
(1−𝑂(𝜀))𝑝 +

(︂
1

2
+ 𝑎𝜀

)︂
(1 +𝑂(𝜀))𝑝

]︂
=

𝑛

2𝑝
(1±𝑂(𝜀)).

Since 𝑝 < 1, this has cost worse than 𝑟 or 𝑛− 𝑟, so the optimal solution is 𝑛− 𝑟, conditioned on
ℰ . Likewise, if b ∼ 𝒟1, then the optimal solution is 𝑥 = 0 with cost 𝑟.

Suboptimal Solutions. We now show that, given a nearly optimal solution �̃�, we can determine
whether b is drawn from 𝒟0 or 𝒟1 with high probability by testing whether �̃� ∈ [1/2, 1] or �̃� ∈
[0, 1/2]. Again, assume by symmetry that b ∼ 𝒟0. Suppose that 𝑥 ∈ [0, 1/2]. If 𝑥 > 1/2−𝑂(𝜀),
then as calculated above, 𝑥 is not even an 𝛼-factor solution for some constant 𝛼. Otherwise, we
have that

𝑥 ≤ 1

2
−𝑂(𝜀) =

1

1 + (𝑛/𝑟 − 1)1/(𝑝−1)

167

which rearranges to
𝑝 · (𝑛− 𝑟)𝑥𝑝−1 − 𝑝𝑟 · (1− 𝑥)𝑝−1 > 0

which means that the objective is increasing on this interval. Thus, for 𝑥 ∈ [0, 1/2], the smallest
that the cost can be is 𝑟, which is a factor of (1 + 𝜀) larger than 𝑛 − 𝑟. Thus, a (1 + 𝜀)-factor
approximation must distinguish between b drawn from 𝒟0 and 𝒟1.

As discussed in [CD21], the distributions of Theorem 12.6.2 require at least Ω(𝜀−2) queries to
distinguish, by standard arguments. Then, by combining Theorems 12.6.1 and 12.6.2, we arrive at
the following:

Theorem 12.6.3. Let 𝑝 ∈ (0, 1) be a constant. Let A ∈ R𝑛×𝑑 and let b ∈ R𝑛. Suppose that with
probability at least 99/100, an algorithm 𝒜 returns x̃ ∈ R𝑑 such that

‖Ax̃− b‖𝑝𝑝 ≤ (1 + 𝜀) min
x∈R𝑑
‖Ax− b‖𝑝𝑝.

Then, 𝒜 queries Ω(𝑑/𝜀2) entries of b in expectation.

12.6.2 Lower bounds for 𝑝 ∈ (1, 2)

In the range of 𝑝 ∈ (1, 2), we analyze the same lower bound instance as in Theorem 12.6.2.
However, the nature of the objective function changes in this parameter regime, and our lower
bound weakens to Ω(𝑑/𝜀). In particular, the value of the endpoints 𝑥 = 0 and 𝑥 = 1 stay at 𝑟 and
𝑛− 𝑟, but the value of the stationary point, which is near 𝑥 = 1/2 and has a value of around 𝑛/2𝑝,
becomes significantly better than the endpoint solutions. This causes a phase transition in the
lower bound that we are able to achieve with this method.

We now present our 1-dimensional lower bound of Ω(𝜀−1) for 𝑝 ∈ (1, 2). For easy reuse of
our calculations from Theorem 12.6.2, we state this result as a lower bound of Ω(𝜀−2) for any
algorithm achieving an 𝑂(𝜀2)-approximation. This can be reparameterized to an Ω(𝜀−1) lower
bound for 𝑂(𝜀)-approximations.

Theorem 12.6.4. Let 1 < 𝑝 < 2 be a constant. Let 𝜀 > 0 be sufficiently small and let
𝑛 = 100⌈𝜀−2⌉. Let a ∈ R𝑛 be the all ones vector. Let 𝒟0 be the distribution over binary vectors
b ∈ {0, 1}𝑛 which independently draws each coordinate as a Bernoulli with bias 1/2 + 𝜀 and
let 𝒟1 be the distribution which independently draws each coordinate as a Bernoulli with bias
1/2− 𝜀. Then, there exists a constant 𝑐 such that any �̃� such that

‖a�̃�− b‖𝑝𝑝 ≤ (1 + 𝑐 · 𝜀2)min
𝑥∈R
‖a𝑥− b‖𝑝𝑝

distinguishes whether b ∼ 𝒟0 or b ∼ 𝒟1 with probability at least 99/100.

Proof. Many of our calculations from Theorem 12.6.2 directly carry over. Recall our notation of
setting 𝑟 to be the number of ones in b, which is 𝑟 = 𝑛/2 + 𝑎𝜀𝑛 for 𝑎 ∈ [1/2, 3/2] if b ∼ 𝒟0 and
𝑎 ∈ [−3/2,−1/2] if b ∼ 𝒟1. Recall also that the unique stationary point, which is the optimum
now by convexity, is

𝑥 =
1

1 + (𝑛/𝑟 − 1)1/(𝑝−1)
.

168

Optimal Solutions. We now calculate the value of the optimum. We carry out calculations for
b ∼ 𝒟0 since b ∼ 𝒟1 gives symmetric results. Note first that

(𝑛/𝑟 − 1)1/(𝑝−1) =

[︂
1

1/2 + 𝑎𝜀
− 1

]︂1/(𝑝−1)

=

[︂
1− 2𝑎𝜀

1 + 2𝑎𝜀

]︂1/(𝑝−1)

=

[︃
(1− 2𝑎𝜀) ·

∞∑︁
𝑖=0

(−2𝑎𝜀)𝑖
]︃1/(𝑝−1)

=
[︀
(1− 2𝑎𝜀)− (2𝑎𝜀)(1− 2𝑎𝜀) + (2𝑎𝜀)2(1− 2𝑎𝜀) +𝑂(𝜀3)

]︀1/(𝑝−1)

=
[︀
1− 4𝑎𝜀+ 2(2𝑎𝜀)2 +𝑂(𝜀3)

]︀1/(𝑝−1)

= 1− 4𝑎

𝑝− 1
𝜀+

8𝑎2

𝑝− 1
𝜀2 +𝑂(𝜀3)

so

𝑥 =
1

2

(︂
1 +

2𝑎

𝑝− 1
𝜀− 4𝑎2

𝑝− 1
𝜀2 +𝑂(𝜀3)

)︂
.

Then, the objective value at this 𝑥 is

𝑛

2𝑝

[︂(︂
1

2
− 𝑎𝜀

)︂(︂
1 +

2𝑎

𝑝− 1
𝜀− 4𝑎2

𝑝− 1
𝜀2 +𝑂(𝜀3)

)︂𝑝

+

(︂
1

2
+ 𝑎𝜀

)︂(︂
1− 2𝑎

𝑝− 1
𝜀+

4𝑎2

𝑝− 1
𝜀2 +𝑂(𝜀3)

)︂𝑝]︂
=

𝑛

2𝑝

[︂(︂
1

2
− 𝑎𝜀

)︂(︂
1 +

2𝑝𝑎

𝑝− 1
𝜀− 4𝑝𝑎2

𝑝− 1
𝜀2 +𝑂(𝜀3)

)︂
+

(︂
1

2
+ 𝑎𝜀

)︂(︂
1− 2𝑝𝑎

𝑝− 1
𝜀+

4𝑝𝑎2

𝑝− 1
𝜀2 +𝑂(𝜀3)

)︂]︂
=

𝑛

2𝑝

[︂
1 +

(︂
1

2
− 𝑎𝜀

)︂(︂
2𝑝𝑎

𝑝− 1
𝜀− 4𝑝𝑎2

𝑝− 1
𝜀2 +𝑂(𝜀3)

)︂
+

(︂
1

2
+ 𝑎𝜀

)︂(︂
− 2𝑝𝑎

𝑝− 1
𝜀+

4𝑝𝑎2

𝑝− 1
𝜀2 +𝑂(𝜀3)

)︂]︂
=

𝑛

2𝑝

[︂
1− 4𝑝𝑎2

𝑝− 1
𝜀2 +𝑂(𝜀3)

]︂
.

If b ∼ 𝒟1, then we have that

𝑥 =
1

2

(︂
1− 2𝑎

𝑝− 1
𝜀+

4𝑎2

𝑝− 1
𝜀2 +𝑂(𝜀3)

)︂
with the same objective value.

Suboptimal Solutions. We now show that, given a nearly optimal solution �̃�, we can determine
whether b is drawn from 𝒟0 or 𝒟1 with high probability by testing whether �̃� ∈ [1/2, 1] or
�̃� ∈ [0, 1/2]. Again, assume by symmetry that b ∼ 𝒟0. Suppose that 𝑥 ∈ [0, 1/2]. Then,

𝑥 ≤ 1

2
<

1

1 + (𝑛/𝑟 − 1)1/(𝑝−1)

which rearranges to
𝑝(𝑛− 𝑟) · 𝑥𝑝−1 − 𝑝𝑟 · (1− 𝑥)𝑝−1 < 0

which means that the objective is decreasing on this interval. Thus, for 𝑥 ∈ [0, 1/2], the smallest
that the cost can be is 𝑥 = 1/2, which gives a value of

(𝑛− 𝑟) · (1/2)𝑝 + 𝑟 · (1/2)𝑝 = 𝑛

2𝑝
,

169

which is a factor of 1−Θ(𝜀2) larger than the optimal solution. Thus, a (1 + Θ(𝜀2))-approximate
solution can distinguish between 𝒟0 and 𝒟1.

Then, by combining Theorems 12.6.1 and 12.6.4, we arrive at the following:

Theorem 12.6.5. Let 𝑝 ∈ (1, 2) be a constant. Let A ∈ R𝑛×𝑑 and let b ∈ R𝑛. Suppose that with
probability at least 99/100, an algorithm 𝒜 returns x̃ ∈ R𝑑 such that

‖Ax̃− b‖𝑝𝑝 ≤ (1 + 𝜀) min
x∈R𝑑
‖Ax− b‖𝑝𝑝.

Then, 𝒜 queries Ω(𝑑/𝜀) entries of b in expectation.

12.6.3 Lower bounds for 𝑝 ∈ (2,∞)

We give our lower bound for 𝑝 > 2 in this section.

Theorem 12.6.6. Let 𝑝 > 2. Suppose that a randomized algorithm solves the ℓ𝑝 regression up to
a relative error of (1 + 𝜀/3) and queries 𝑚 entries in expectation and is correct with probability at
least 0.99. Then, 𝑚 = Ω(𝑑𝑝/2/𝜀𝑝−1).

Proof. By Yao’s minimax principle, we may assume that the algorithm is deterministic with cor-
rectness probability at least 0.99 over a distributional hard instance. We will need the construction
from Theorem 11.3.2. Let 𝑆 be the set given by Theorem 11.3.2 with 𝑞 = 𝑝/2. Set 𝑛 = 𝑠 · 𝑑𝑝/2
for 𝑠 = 𝑐/𝜀𝑝−1 with 𝑐 a sufficiently small constant to be determined. Then, we take our matrix to
be the 𝑛× 𝑑 matrix formed by taking 𝑠 copies of each of the 𝑑𝑝/2 vectors in 𝑆. Furthermore, we
take our target vector b to be the zero vector with probability 1/2 and 𝑑 · e𝐼 with probability 1/2,
where 𝐼 ∼ [𝑛] is a uniformly random index and e𝑖 is the 𝑖th standard basis vector for 𝑖 ∈ [𝑛].

Call the deterministic algorithm 𝒜. Suppose for contradiction that 𝑚 ≤ 𝑛/100. Consider the
sequence of entries of b read by 𝒜 when b = 0. Note that this sequence is of length at most 2𝑚,
since otherwise 𝒜 already reads more than 𝑚 entries in expectation. Furthermore, 𝒜 must output
x = 0 as the solution if it reads a sequence of 2𝑚 entries of zeros, since otherwise 𝒜 cannot
achieve any relative error. Then since 𝒜 is deterministic, 𝒜 will always output x = 0 if it reads
2𝑚 entries of zeros.

On the other hand, suppose that b = 𝑑 · e𝐼 for 𝐼 ∼ [𝑛]. We first upper bound the optimal cost.
If we choose x = 𝜀 · a𝐼 , then for the nonzero row of b, we pay a cost of

(𝑑− 𝜀 · ⟨a𝐼 , a𝐼⟩)𝑝 = (1− 𝜀)𝑝𝑑𝑝 ≤ (1− 𝜀)𝑑𝑝.

For the other rows of A corresponding to copies of a𝐼 , we pay a cost of

𝑠 · (𝜀 · ⟨a𝐼 , a𝐼⟩)𝑝 =
𝑐

𝜀𝑝−1
· 𝜀𝑝 · 𝑑𝑝 = 𝑐𝜀𝑑𝑝.

For all other rows of A for a𝑗 ̸= a𝐼 , we pay a cost of

𝑠 · 𝑑𝑝/2 · (𝜀 · ⟨a𝐼 , a𝑗⟩)𝑝 =
𝑐

𝜀𝑝−1
· 𝜀𝑝 · 𝑑𝑝/2 · 𝐶𝑝

𝑞 𝑑
𝑝/2 = 𝑐𝐶𝑝

𝑞 𝜀𝑑
𝑝.

170

Thus, if we choose 𝑐 ≤ min{𝐶𝑝
𝑞 , 1}/3, then the total cost is at most

(1− 𝜀)𝑑𝑝 + 𝑐𝜀𝑑𝑝 + 𝑐𝐶𝑝
𝑞 𝜀𝑑

𝑝 ≤ (1− 𝜀/3)𝑑𝑝.

Now note that if b = 𝑑 · e𝐼 , then the probability that 𝐼 lands on one of the 2𝑚 entries read
by 𝒜 when b = 0 is at most 2𝑚/𝑛 ≤ 1/50. Thus, with probability at least 1− 1/50, 𝒜 outputs
x = 0 on this instance, which has a cost of 𝑑𝑝. By the above calculation, this fails to be a
(1 + 𝜀/3)-approximate solution, which contradicts the guarantee of 𝒜. We thus conclude that
𝑚 ≥ 𝑛/100 = Ω(𝑑𝑝/2/𝜀𝑝−1).

12.6.4 A 1/𝛿𝑝−1 lower bound for sampling-and-reweighting algorithms
We next show that sampling-and-reweighting algorithms for ℓ𝑝 regression must pay a polynomial
dependence in the failure probability 𝛿, contrasting with the logarithmic dependence achieved by
our approach.

Theorem 12.6.7. Let 𝑝 > 1. Any sampling-and-reweighting algorithm which, with probability at
least 1− 𝛿, outputs a (1 + 𝜖)-approximate solution x to the ℓ𝑝-regression problem, for 𝜖 > 0 less
than a sufficiently small constant, requires reading Ω(1/𝛿𝑝−1) entries of b.

Proof. In our hard instance we will have 𝑑 = 1 and require a sufficiently fine constant factor
approximation with failure probability 𝛿. Suppose, with these parameters, that there is an algorithm
reading 𝑠 entries. We set 𝑛 = 𝑠/𝛿, and will show that the algorithm cannot output a constant
factor approximation to the ℓ𝑝-regression problem with probability at least 1− 𝛿.

Let A be a single column of 𝑛 1s. Since the entries of A are indistinguishable from each other,
we can assume without loss of generality that the sampling-and-reweighting algorithm samples
entries uniformly at random. By assumption, since the rows of A are all identical, the algorithm
reweights the sampled rows uniformly (equivalently assigns weight 1 to each sampled entry). We
choose b = e𝐼 for a random standard basis vector e𝐼 . For the optimal 𝑥, necessarily 0 ≤ 𝑥 ≤ 1
since if 𝑥 < 0, replacing 𝑥 with −𝑥 would give lower cost. Similarly, if 𝑥 > 1, then replacing
𝑥 with 1 would give lower cost. Then the cost is (1 − 𝑥)𝑝 + (𝑛 − 1)𝑥𝑝. This is convex and
differentiable for 𝑝 > 1, and is minimized when the derivative is 0. Differentiating, the optimal
𝑥 satisfies −𝑝(1− 𝑥)𝑝−1 + 𝑝(𝑛− 1)𝑥𝑝−1 = 0, or (1− 𝑥)𝑝−1 = (𝑛− 1)𝑥𝑝−1. Taking (𝑝− 1)-th
roots, 1− 𝑥 = (𝑛− 1)1/(𝑝−1)𝑥, or 𝑥 = 1/(1 + (𝑛− 1)1/(𝑝−1)). The optimal cost is therefore(︂

1− 1

1 + (𝑛− 1)1/(𝑝−1)

)︂𝑝

+
𝑛− 1

(1 + (𝑛− 1)1/(𝑝−1))𝑝
.

For 𝑛 = 𝜔(1), this is Θ(1 + 𝑛1−𝑝/(𝑝−1)) = 𝑂(1) for any constant 𝑝 > 1.
On the other hand, given that 𝑛 = 𝑠/𝛿, with probability at least 𝛿, the algorithm’s sample

includes b𝐼 . If this is the case, for the sampled problem, the cost is (1− 𝑥)𝑝−1 + (𝑠− 1)𝑥𝑝 for a
given 𝑥. Setting the derivative to 0, we now have that the optimal 𝑥′ for the sampled problem is:
𝑥′ = 1

1+(𝑠−1)1/(𝑝−1) . Computing the cost of using 𝑥′ for the original problem, our cost of using 𝑥′ is(︂
1− 1

(1 + (𝑠− 1)1/(𝑝−1))𝑝

)︂
+

(𝑛− 1)

(1 + (𝑠− 1)1/(𝑝−1))
𝑝 .

171

The cost is at least the second term, which for 𝑛 = 𝜔(1) and 𝑠 = 𝛿𝑛 = 𝜔(1) is Θ((𝑠/𝛿)/𝑠𝑝/(𝑝−1)).
This term must be 𝑂(1) to be an 𝑂(1)-approximation, by our above calculation of the optimal
cost. Hence, 𝑠𝑝/(𝑝−1)−1 = Ω(1/𝛿), or 𝑠1/(𝑝−1) = Ω(1/𝛿), or 𝑠 = Ω(1/𝛿𝑝−1).

172

Chapter 13

Applications: coresets for multiple ℓ𝑝
regression [WY24a]

13.1 Multiple ℓ𝑝 regression

Up until now, we have focused mostly on least squares and ℓ𝑝 linear regression problems with
a single response, i.e., there is just a single b vector of responses. However, it is often the
case that we are interested in more than just one target b to predict, and in general, we may
wish to simultaneously fit 𝑚 target vectors that are given by a matrix B ∈ R𝑛×𝑚 and solve the
minimization problem

min
X∈R𝑑×𝑚

‖AX−B‖𝑝𝑝,𝑝 = min
X∈R𝑑×𝑚

𝑚∑︁
𝑗=1

‖AXe𝑗 −Be𝑗‖𝑝𝑝

This is known as the multiple response ℓ𝑝 regression problem, or simply the multiple ℓ𝑝 regression
problem, and is the focus of the present chapter.

13.1.1 Coreset constructions for 𝑝 = 2

For 𝑝 = 2, the construction of strong coresets for the multiple response problem follows almost
immediately from strong coresets for the single response problem due to orthogonality and the
Pythagorean theorem, and we can construct S such that

‖S(AX−B)‖2𝐹 = (1± 𝜀)‖AX−B‖2𝐹

with nnz(S) = �̃�(𝜀−2𝑑) samples. Indeed, assume without loss of generality that A has orthogonal
columns, and suppose that S satisfies

• ‖SAx‖22 = (1± 𝜀)‖Ax‖22 for every x ∈ R𝑑 (i.e. S is a subspace embedding)
• ‖S(AX* −B)‖2𝐹 = (1± 𝜀)‖AX* −B‖2𝐹 where X* is the optimal minimizer
• ‖A⊤S⊤S(AX* −B)‖2𝐹 ≤ (𝜀2/𝑑)‖A‖2𝐹‖AX* −B‖2𝐹 = 𝜀2‖AX* −B‖2𝐹

173

Then, the following argument of Section 7.5 of [CW13] shows that S is a strong coreset. Indeed,

‖S(AX−B)‖2𝐹 = ‖SA(X−X*)‖2𝐹 + ‖S(AX* −B)‖2𝐹
+ 2 tr

(︀
(X−X*)⊤A⊤S⊤S(AX* −B)

)︀
by expanding the square, and the inner product term is bounded by⃒⃒

tr
(︀
(X−X*)⊤A⊤S⊤S(AX* −B)

)︀⃒⃒
≤ ‖X−X*‖𝐹‖A⊤S⊤S(AX* −B)‖𝐹
≤ 𝜀‖A(X−X*)‖𝐹‖AX* −B‖𝐹
≤ 𝜀‖AX−B‖2𝐹

and S also preserves the quantities ‖SA(X−X*)‖2𝐹 and ‖S(AX* −B)‖2𝐹 up to (1± 𝜀) relative
error. A similar trick is available in the weak coreset setting (see, e.g., Section 3.1 of [CNW16]),
which gives a bound of nnz(S) = �̃�(𝜀−1𝑑) for this guarantee. Unfortunately, almost every step in
the above argument uses special properties of the ℓ2 norm that are not available for the ℓ𝑝 norm,
and thus we will need completely different arguments to handle 𝑝 ̸= 2.

13.1.2 Challenges for 𝑝 ̸= 2

If we desire only weak coresets, then prior results on active ℓ𝑝 regression (see Chapter 12) in fact
almost immediately provide a solution. These results show that a weak coreset S for the single
response ℓ𝑝 regression problem can be constructed independently of b, and with the dependence
of nnz(S) on the failure probability 𝛿 being polylogarithmic. Thus by setting the failure rate
to 𝛿 = 1/10𝑚, we can simultaneously solve every column of B independently with overall
probability at least 9/10.

For strong coresets, however, such a column-wise strategy must be implemented carefully.
If we consider constructing a strong coreset for a single column 𝑗 ∈ [𝑚], then the sampling
probabilities now depend on the target vector Be𝑗 , so the sampling complexity would need
to scale as 𝑚 rather than poly log(𝑚) as in the previous upper bound weak coresets. On the
other hand, another natural strategy is to mimic the strategy for the 𝑝 = 2 case and take the
sampling probabilities to only guarantee a ℓ𝑝 subspace embedding for the column space of A
and that 𝑞𝑖 ≥ ‖e⊤𝑖 B*‖𝑝𝑝/‖B*‖𝑝𝑝,𝑝 for B* := AX* −B. This is a reasonable choice of sampling
probabilities, and indeed it is not hard to see that

‖S(AX−B)‖𝑝𝑝,𝑝 = (1± 𝜀)‖AX−B‖𝑝𝑝,𝑝

for any fixed X ∈ R𝑑×𝑚 with only nnz(S) = �̃�(𝜀−2𝑑) samples for 𝑝 < 2 and nnz(S) =
�̃�(𝜀−2𝑑𝑝/2) samples for 𝑝 > 2 via a Bernstein tail bound. However, it is unclear how to extend a
guarantee for any single X ∈ R𝑑×𝑚 to a guarantee simultaneously for all X ∈ R𝑑×𝑚. Although
the dependence on the failure rate 𝛿 is logarithmic, a net argument, or even more sophisticated
chaining arguments, over the possible choices of X ∈ R𝑑×𝑚 seem to require a union bound over
sets of size exp(𝑑𝑚), thus again introducing a linear dependence on 𝑚 in the sample complexity
nnz(S). As we show, a careful blend of these two ideas will be necessary to obtain our strong
coreset result.

174

13.1.3 Strong coresets for multiple ℓ𝑝 regression
Our first main result is the first construction of strong coresets for multiple ℓ𝑝 regression that is
independent of 𝑚.

Theorem 13.1.1 (Strong coresets for multiple ℓ𝑝 regression). Let A ∈ R𝑛×𝑑, B ∈ R𝑛×𝑚, and
𝑝 ≥ 1. There is an algorithm which constructs S with

nnz(S) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑂(𝑑)

𝜀2

[︂
(log 𝑑)2 log

𝑑

𝜀
+ log

1

𝛿

]︂
1 ≤ 𝑝 < 2

𝑂(𝑑𝑝/2)

𝜀𝑝

[︂
(log 𝑑)2 log

𝑑

𝜀
+ log

1

𝛿

]︂
𝑝 > 2

such that with probability at least 1− 𝛿,

‖S(AX−B)‖𝑝𝑝,𝑝 = (1± 𝜀)‖AX−B‖𝑝𝑝,𝑝

simultaneously for every X ∈ R𝑑×𝑚.

We achieve a nearly optimal dependence on 𝑑 and 𝜀, as we show that Ω(𝑑𝑝/2/𝜀𝑝) rows are
necessary for strong coresets in Theorem 13.6.1 for 𝑝 > 2, while it is known that Ω̃(𝑑/𝜀2) rows
are necessary even for 𝑚 = 1 for 𝑝 < 2 [LWW21]. We note that our upper bound shows that
multiple ℓ𝑝 regression is as easy as single response ℓ𝑝 regression for 𝑝 < 2, while our lower bound
demonstrates an interesting separation between the two for 𝑝 > 2.

Initial log𝑚 bound

We first recall Theorem 12.3.2 from Chapter 12 which shows that⃒⃒(︀
‖S(Ax− b)‖𝑝𝑝 − ‖Sb‖𝑝𝑝

)︀
−
(︀
‖Ax− b‖𝑝𝑝 − ‖b‖𝑝𝑝

)︀⃒⃒
≤ 𝜀
(︀
‖b‖𝑝𝑝 + ‖Sb‖𝑝𝑝 + ‖Ax‖𝑝𝑝

)︀
(13.1)

This guarantee is in a form that can be summed over the 𝑚 columns of B. Thus, if a log𝑚
dependence is admissible, then we can apply the above result with failure probability 1/10𝑚,
union bound over the 𝑚 columns, and sum the results to obtain⃒⃒
(‖S(AX−B)‖𝑝𝑝,𝑝 − ‖SB‖𝑝𝑝,𝑝)− (‖AX−B‖𝑝𝑝,𝑝 − ‖B‖𝑝𝑝,𝑝)

⃒⃒
≤ 𝜀
(︀
‖B‖𝑝𝑝,𝑝 + ‖SB‖𝑝𝑝,𝑝 + ‖AX‖𝑝𝑝,𝑝

)︀
.

Now suppose that we additionally have
• ‖SB‖𝑝𝑝,𝑝 = (1± 𝜀)‖B‖𝑝𝑝,𝑝
• ‖B‖𝑝𝑝,𝑝 = 𝑂(OPT𝑝) (which is without loss of generality by subtracting an 𝑂(1)-optimal

solution)
Then, we have

‖S(AX−B)‖𝑝𝑝,𝑝 = ‖AX−B‖𝑝𝑝,𝑝 − ‖B‖𝑝𝑝,𝑝 + ‖SB‖𝑝𝑝,𝑝 ±𝑂(𝜀)
(︀
‖B‖𝑝𝑝,𝑝 + ‖AX‖𝑝𝑝,𝑝

)︀
= ‖AX−B‖𝑝𝑝,𝑝 ± 𝜀‖B‖𝑝𝑝,𝑝 ±𝑂(𝜀)

(︀
‖B‖𝑝𝑝,𝑝 + ‖AX‖𝑝𝑝,𝑝

)︀
= ‖AX−B‖𝑝𝑝,𝑝 ±𝑂(𝜀)‖AX−B‖𝑝𝑝,𝑝

so we indeed have a strong coreset as desired.

175

Removing the 𝑚 dependence

Next, we show how to completely remove the 𝑚 dependence, which requires additional ideas.
When applying (13.1) to each of the 𝑚 columns, suppose that we set the failure probability
to poly(𝜀𝛿) instead of 𝑂(1/𝑚). Then, this guarantee will hold for a 1 − poly(𝜀𝛿) fraction of
“good” columns, for which we can obtain (1 ± 𝜀) approximations. On the remaining poly(𝜀𝛿)
fraction of “bad” columns, note that the mass of B on these columns is at most poly(𝜀𝛿)‖B‖𝑝𝑝,𝑝
with probability 1 − 𝛿 by Markov’s inequality. Then on these columns, ‖S(AX − B)e𝑗‖𝑝
is just ‖SAXe𝑗‖𝑝 up to a small total additive error of poly(𝜀𝛿)‖B‖𝑝𝑝,𝑝. In turn, we have that
‖SAXe𝑗‖𝑝 = (1±𝜀)‖AXe𝑗‖𝑝 by using that S is an ℓ𝑝 subspace embedding. Thus, by combining
with the (1 ± 𝜀) approximation on the rest of the “good” columns, we can still ensure that
‖S(AX−B)‖𝑝,𝑝 = (1± 𝜀)‖AX−B‖𝑝,𝑝.

13.1.4 Weak coresets for multiple ℓ𝑝 regression
In the weak coreset setting, we consider a generalized multiple ℓ𝑝 regression problem, where we
are given a design matrix A ∈ R𝑛×𝑑, an “embedding” G ∈ R𝑡×𝑚, and a target matrix B ∈ R𝑛×𝑚,
and we wish to approximately minimize the objective function ‖AXG−B‖𝑝,𝑝.

As noted previously, for multiple ℓ𝑝 regression without an embedding (i.e. G = I𝑡) the
construction of weak coresets follows relatively straightforwardly by applying active ℓ𝑝 regression
results along each column. However, this strategy fails when we must additionally handle the
embedding matrix G, as this constraint couples the columns of AX together. Furthermore, we
argue that handling the embedding G is substantially more interesting that the unconstrained case.
Indeed, as we see later in Sections 13.1.5 and 13.1.6, the incorporation of the embedding G will
allow us to handle interesting extensions of our results to settings beyond the entrywise ℓ𝑝 norm
via the use of a linear embedding into this norm. We will denote the optimal value as

OPT := min
X∈R𝑑×𝑡

‖AXG−B‖𝑝,𝑝

and let X* denote the matrix achieving this optimum unless otherwise noted. We will prove the
following result:

Theorem 13.1.2 (Weak coresets for multiple ℓ𝑝 regression). Let A ∈ R𝑛×𝑑, G ∈ R𝑡×𝑚, B ∈
R𝑛×𝑚, and 1 ≤ 𝑝 <∞. There is an algorithm which constructs S independently of B with

nnz(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑂(𝑑)

𝜀2𝛿2

[︂
(log 𝑑)2 log

𝑑

𝜀
+ log

1

𝛿

]︂(︂
log log

1

𝜀

)︂2

𝑝 = 1

𝑂(𝑑)

𝜀𝛿2

[︂
(log 𝑑)2 log

𝑑

𝜀
+ log

1

𝛿

]︂(︂
log log

1

𝜀

)︂2

1 < 𝑝 < 2

𝑂(𝑑𝑝/2)

𝜀𝑝−1𝛿𝑝

[︂
(log 𝑑)2 log

𝑑

𝜀
+ log

1

𝛿

]︂(︂
log log

1

𝜀

)︂𝑝

2 < 𝑝 <∞

such that with probability at least 1− 𝛿, for any X̂ ∈ R𝑑×𝑡 such that

‖S(AX̂G−B)‖𝑝𝑝,𝑝 ≤ (1 + 𝜀) min
X∈R𝑑×𝑡

‖S(AXG−B)‖𝑝𝑝,𝑝,

176

we have
‖AX̂G−B‖𝑝𝑝,𝑝 ≤ (1 +𝑂(𝜀)) min

X∈R𝑑×𝑡
‖AXG−B‖𝑝𝑝,𝑝.

Furthermore, conditioned on the event that ‖S(AX*G − B)‖𝑝𝑝,𝑝 = 𝑂(‖AX*G − B‖𝑝𝑝,𝑝) for
the global optimizer X*, the dependence on 𝛿 can be replaced by a single log 1

𝛿
factor and the

poly(log log 1
𝜀
) factor can be removed.

We achieve a nearly optimal dependence on 𝑑 and 𝜀, as we show that Ω(𝑑𝑝/2/𝜀𝑝−1) rows are
necessary for weak coresets in Theorem 13.6.2 for 𝑝 > 2. Our weak coreset upper bound result
together with our strong coreset lower bound of Theorem 13.6.1 shows a tight 𝜀 factor separation
between the two coreset guarantees. Note that in the statement of Theorem 13.1.2, the dependence
on the failure rate 𝛿 is polynomial. This occurs for the same reason as discussed in Theorem 12.6.7
for the active ℓ𝑝 regression setting, and can be handled in the same way (see Section 12.3.3).

13.1.5 Applications: sublinear algorithms for Euclidean power means
Our first application of our results on coresets for multiple ℓ𝑝 regression is on designing coresets
for the Euclidean power means problem. In this problem, we are given as input a set of 𝑛 points
{b𝑖}𝑛𝑖=1 ⊆ R𝑡, and we wish to find a center x̂ ∈ R𝑡 that minimizes the sum of the Euclidean
distances to x̂, raised to the power 𝑝. That is, we seek to minimize the objective function given by

𝑛∑︁
𝑖=1

‖x− b𝑖‖𝑝2 = ‖1x⊤ −B‖𝑝𝑝,2

where 1 is the 𝑛× 1 matrix of all ones, B ∈ R𝑛×𝑡 is the matrix with b𝑖 in its 𝑛 rows, and ‖·‖𝑝,2
is the (𝑝, 2)-norm of a matrix given by the ℓ𝑝 norm of the Euclidean norm of the rows. This is a
fundamental problem which generalizes the well-studied problems of the mean (𝑝 = 2), geometric
median (𝑝 = 1), and minimum enclosing balls (𝑝 =∞). Coresets and sampling algorithms for
this problem were recently studied by [CSS21], who showed that a uniform sample of �̃�(𝜀−(𝑝+3))
points suffices to output a center x̂ ∈ R𝑡 such that

‖1x̂⊤ −B‖𝑝𝑝,2 ≤ (1 + 𝜀) min
x∈R𝑡
‖1x⊤ −B‖𝑝𝑝,2 = (1 + 𝜀)OPT𝑝 .

In comparison to the upper bounds, the lower bounds given by [CSS21] was Ω(𝜀−(𝑝−1)) which is
off by a 𝜀4 factor compared to the upper bound, which was improved to Ω(𝜀−1) for 1 < 𝑝 < 2 by
[MMWY22] and Ω(𝜀−2) for 𝑝 = 1 by [CD21, PPP21].

One of the main open questions highlighted by the work of [CSS21] is to obtain tight bounds
for this problem: how many uniform samples are necessary and sufficient to output a (1 + 𝜀)-
approximate solution to the Euclidean power means problem. Our main contribution is a nearly
optimal algorithm which matches the lower bounds of [CD21, PPP21, CSS21, MMWY22].

Theorem 13.1.3. Let {b𝑖}𝑛𝑖=1 ⊆ R𝑑. Then, there is a sublinear algorithm which uniformly
samples at most

𝑠 =

⎧⎪⎨⎪⎩
𝑂(𝜀−2)

(︀
log 1

𝜀
+ log 1

𝛿

)︀
log 1

𝛿
𝑝 = 1

𝑂(𝜀−1)
(︀
log 1

𝜀
+ log 1

𝛿

)︀
log 1

𝛿
1 < 𝑝 ≤ 2

𝑂(𝜀1−𝑝)
(︀
log 1

𝜀
+ log 1

𝛿

)︀
log 1

𝛿
2 < 𝑝 <∞

177

rows b𝑖 and outputs a center x̂ such that

𝑛∑︁
𝑖=1

‖x̂− b𝑖‖𝑝2 ≤ (1 + 𝜀) min
x∈R𝑑

𝑛∑︁
𝑖=1

‖x− b𝑖‖𝑝2

with probability at least 1− 𝛿.

To apply the techniques developed in this work to the Euclidean power means problem, we
need to embed the (𝑝, 2)-norm into the entrywise ℓ𝑝 norm. To make this reduction, we use a
classic result of Dvoretzky and Milman [Dvo61, Mil71], which shows that a random subspace of
a normed space is approximately Euclidean (see Theorem 14.3.1).

Note then that if G is an appropriately scaled random Gaussian matrix, then we have that

‖1x⊤ −B‖𝑝𝑝,2 = (1± 𝜀)‖1x⊤G−BG‖𝑝𝑝,𝑝

by the above result. We may now note that the latter optimization problem is exactly of the form
of an embedded ℓ𝑝 regression problem, and thus our weak coreset results immediately apply to
this problem. In fact, handling this Dvoretzky embedding is our main motivation for studying the
ℓ𝑝 regression problem with the embedding. We also note that similar reductions are possible by
making use of other linear embeddings between ℓ𝑝 norms [WW19, LWY21, LLW23]. The full
argument is given in Appendix 13.4.

In addition to sharpening the bound of [CSS21] to optimality, we note that our techniques,
both algorithmically and in the analysis, are far simpler than the prior work of [CSS21]. The
previous algorithm required partitioning the dataset into “rings” of points with similar costs and
preprocessing these rings. Furthermore, the analysis uses a specially designed chaining argument
with custom net constructions that require terminal Johnson–Lindenstrauss embeddings. On the
other hand, our algorithm simply runs multiple instances of a “sample-and-solve” algorithm,
where the run with lowest sampled mass is kept. Furthermore, the analysis largely builds on
existing net constructions for ℓ𝑝 regression, and does not need terminal embeddings.

13.1.6 Applications: spanning coresets for ℓ𝑝 subspace approximation
As a second application of our results, we give the first construction of spanning coresets for ℓ𝑝
subspace approximation with nearly optimal size. The ℓ𝑝 subspace approximation is a popular
generalization of the classic Frobenius norm low rank approximation problem, where the input is
a set of 𝑛 points {a𝑖}𝑛𝑖=1 in 𝑑 dimensions, and we wish to compute a rank 𝑘 subspace 𝐹 ⊆ R𝑑 that
minimizes

𝑛∑︁
𝑖=1

‖a⊤
𝑖 (I𝑑 −P𝐹)‖𝑝2

where P𝐹 denotes the orthogonal projection matrix onto 𝐹 . Equivalently, we can write this as

min
rank(𝐹)≤𝑘

‖A(I𝑑 −P𝐹)‖𝑝𝑝,2.

We also refer to Chapter 14 for further discussion of ℓ𝑝 subspace approximation.

178

While strong and weak coresets for this problem have attracted much attention [FL11, SV12,
SW18, HV20, FKW21, WY23a, WY24b], our main contribution to this line of research is on a
different coreset guarantee, which we call spanning coresets. Spanning coresets are subsets of
the points a𝑖 which span a (1 + 𝜀)-optimal rank 𝑘 subspace, and is another popular guarantee in
this literature [DV07, SV12, CW15a]. In addition to being an interesting object in its own right
[SV12], the existence of small spanning coresets have found applications to constructions for
strong and weak coresets for ℓ𝑝 subspace approximation [HV20].

Definition 13.1.4 (Spanning coreset). Let {a𝑖}𝑛𝑖=1 ⊆ R𝑑. A subset 𝑆 ⊆ [𝑛] is a (1 + 𝜀)-spanning
coreset if the points {a𝑖}𝑖∈𝑆 span a 𝑘-dimensional subspace 𝐹 such that

‖A(I𝑑 −P𝐹)‖
𝑝
𝑝,2 ≤ (1 + 𝜀) min

rank(𝐹)≤𝑘
‖A(I𝑑 −P𝐹)‖𝑝𝑝,2.

Our main result is the following upper bound on the size of spanning coresets.

Theorem 13.1.5. Let {a𝑖}𝑛𝑖=1 ⊆ R𝑑, 1 ≤ 𝑝 < ∞, 𝑘 ∈ N, and 0 < 𝜀 < 1. Then, there exists a
(1 + 𝜀)-spanning coreset 𝑆 of size at most

|𝑆| =

⎧⎪⎨⎪⎩
𝑂(𝜀−2𝑘)(log(𝑘/𝜀))3 𝑝 = 1

𝑂(𝜀−1𝑘)(log(𝑘/𝜀))3 1 < 𝑝 ≤ 2

𝑂(𝜀1−𝑝𝑘𝑝/2)(log(𝑘/𝜀))3 2 < 𝑝 <∞

In particular, we improve the previous best result of 𝑂(𝜀−1𝑘2 log(𝑘/𝜀)) due to Theorem 3.1
of [SV12] in the 𝑘 dependence for all 1 ≤ 𝑝 < 4. The proof of this result is given in Section 13.5.
Furthermore, we give the first lower bounds on the size of spanning coresets by generalizing an
argument of [DV06] for 𝑝 = 2, showing that spanning coresets must have size at least Ω(𝜀−1𝑘) in
Theorem 13.6.3. Together, our results settles the size of spanning coresets up to polylogarithmic
factors for 1 < 𝑝 < 2. To obtain this result, we again use Dvoretzky’s theorem to embed the
problem to an embedded entrywise ℓ𝑝 norm problem, and then apply our weak coreset results.

Finally, we note that our spanning coreset lower bound implies other interesting lower bounds
for coresets. First, we note that weak coresets for ℓ𝑝 subspace approximation are automatically
spanning coresets, so our lower bound for spanning coresets also gives the first nontrivial lower
bound on the size of weak coresets for ℓ𝑝 subspace approximation. Secondly, we note that our
proof of Theorem 13.1.5 in fact shows that any upper bound on weak coresets for ℓ𝑝 regression
with an embedding implies upper bounds for spanning coresets of the same size. Thus, our
spanning coreset lower bound in fact implies an Ω(𝑑/𝜀) lower bound on the size of weak coresets
for ℓ𝑝 regression with an embedding, which establishes that our weak coreset upper bound for ℓ𝑝
regression (Theorem 13.1.2) is also nearly optimal for 1 < 𝑝 < 2 up to polylogarithmic factors.

On the other hand, for 𝑝 > 2, our weak coreset lower bound of Theorem 13.6.2 shows that
our technique of reducing spanning coresets to weak coresets cannot prove a better upper bound
than the result of Theorem 13.1.5, and thus new ideas are required to improve upon the �̃�(𝜀−1𝑘2)
spanning coreset upper bound of Theorem 3.1 of [SV12]. This is an interesting open problem.

13.2 Strong coresets
We give the formal statement and proof of our strong coreset result for multiple ℓ𝑝 regression.

179

Theorem 13.2.1 (Strong coresets for multiple ℓ𝑝 regression). Let X̂ ∈ R𝑑×𝑚 satisfy

‖AX̂−B‖𝑝𝑝,𝑝 ≤ 𝑂(1) min
X∈R𝑑×𝑚

‖AX−B‖𝑝𝑝,𝑝

and let B̂ := AX̂ − B. Let S be the ℓ𝑝 sampling matrix (Definition 6.1.1) with sampling
probabilities 𝑞𝑖 ≥ min{1,w𝑖/𝛼 + v𝑖/𝛽} for 𝛾-one-sided ℓ𝑝 Lewis weights w ∈ R𝑛, v𝑖 =

‖e⊤𝑖 B̂‖𝑝𝑝/‖B̂‖𝑝𝑝,𝑝,

𝛼 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑂(𝛾)𝜀2

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 < 2

𝑂(𝛾𝑝/2)𝜀𝑝

‖w‖𝑝/2−1
1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 > 2

and 𝛽 = 𝑂(𝜀−2 log 1
𝛿
). Then with probability at least 1− 𝛿,

‖S(AX−B)‖𝑝𝑝,𝑝 = (1± 𝜀)‖AX−B‖𝑝𝑝,𝑝

simultaneously for every X ∈ R𝑑×𝑚.

Proof. By replacing B by B̂−AX̂, we assume that ‖B‖𝑝 = 𝑂(OPT). We apply Theorem 12.3.2
with failure probability at 𝜀𝑝𝛿2. Now let 𝑆 ⊆ [𝑚] be the set of columns for which the guarantee of
Theorem 12.3.2 fails. Note then that by Markov’s inequality,∑︁

𝑗∈𝑆

‖Be𝑗‖𝑝𝑝 = 𝑂(𝜀𝑝𝛿)‖B‖𝑝𝑝,𝑝

with probability at least 1− 𝛿. We also have that∑︁
𝑗∈𝑆

‖SBe𝑗‖𝑝𝑝 ≤
1

𝛿

∑︁
𝑗∈𝑆

‖Be𝑗‖𝑝𝑝 = 𝑂(𝜀𝑝)‖B‖𝑝𝑝,𝑝

with probability at least 1− 𝛿, again by Markov’s inequality. Then,

‖S(AX−B)e𝑗‖𝑝𝑝 = (1± 𝜀)‖SAXe𝑗‖𝑝𝑝 ±
𝑂(1)

𝜀𝑝−1
‖SBe𝑗‖𝑝𝑝

= (1± 𝜀)2‖AXe𝑗‖𝑝𝑝 ±
𝑂(1)

𝜀𝑝−1
‖SBe𝑗‖𝑝𝑝

by using that S is a subspace embedding. Similarly, we have that

‖(AX−B)e𝑗‖𝑝𝑝 = (1± 𝜀)‖AXe𝑗‖𝑝𝑝 ±
𝑂(1)

𝜀𝑝−1
‖Be𝑗‖𝑝𝑝.

Then summing over 𝑗 ∈ 𝑆 gives that∑︁
𝑗∈𝑆

‖S(AX−B)e𝑗‖𝑝𝑝 =
∑︁
𝑗∈𝑆

‖(AX−B)e𝑗‖𝑝𝑝 ±𝑂(𝜀)‖B‖𝑝𝑝,𝑝.

180

On the other hand, for 𝑗 /∈ 𝑆, Theorem 12.3.2 succeeds so we have

‖S(AX−B)e𝑗‖𝑝𝑝 = ‖(AX−B)e𝑗‖𝑝𝑝 − ‖Be𝑗‖𝑝𝑝 + ‖SBe𝑗‖𝑝𝑝 ± 𝜀
(︀
‖Be𝑗‖𝑝𝑝 + ‖SBe𝑗‖𝑝𝑝 + ‖AXe𝑗‖𝑝𝑝

)︀
Summing the guarantee of over the 𝑚 columns 𝑗 gives

‖S(AX−B)‖𝑝𝑝,𝑝 = ‖AX−B‖𝑝𝑝,𝑝 − ‖B‖𝑝𝑝,𝑝 + ‖SB‖𝑝𝑝,𝑝 ±𝑂(𝜀)
(︀
‖B‖𝑝𝑝,𝑝 + ‖AX‖𝑝𝑝,𝑝

)︀
= ‖AX−B‖𝑝𝑝,𝑝 ± 𝜀‖B‖𝑝𝑝,𝑝 ±𝑂(𝜀)

(︀
‖B‖𝑝𝑝,𝑝 + ‖AX‖𝑝𝑝,𝑝

)︀
= ‖AX−B‖𝑝𝑝,𝑝 ±𝑂(𝜀)‖AX−B‖𝑝𝑝,𝑝.

13.3 Weak coresets
We give the formal statement and proof of our weak coreset result for multiple ℓ𝑝 regression.

Theorem 13.3.1 (Weak coresets for multiple ℓ𝑝 regression). Let S be the ℓ𝑝 sampling matrix
(Definition 6.1.1) with sampling probabilities 𝑞𝑖 ≥ min{1,w𝑖/𝛼} for 𝛾-one-sided ℓ𝑝 Lewis
weights w ∈ R𝑛 and

𝛼 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑂(𝛾)𝜀𝛿2

[︁
(log 𝑑)2 log 𝑛+ log

𝑚

𝛿

]︁−1
[︂
log log

1

𝜀

]︂−2

𝑝 < 2

𝑂(𝛾𝑝/2)𝜀𝑝−1𝛿𝑝

‖w‖𝑝/2−1
1

[︁
(log 𝑑)2 log 𝑛+ log

𝑚

𝛿

]︁−1
[︂
log log

1

𝜀

]︂−𝑝

𝑝 > 2

.

Then, for any X̂ ∈ R𝑑×𝑡 such that

‖S(AX̂G−B)‖𝑝𝑝,𝑝 ≤ (1 + 𝜀) min
X∈R𝑑×𝑡

‖S(AXG−B)‖𝑝𝑝,𝑝,

we have
‖AX̂G−B‖𝑝𝑝,𝑝 ≤ (1 +𝑂(𝜀)) min

X∈R𝑑×𝑡
‖AXG−B‖𝑝𝑝,𝑝.

The argument closely follows the active ℓ𝑝 regression argument from Chapter 12.

13.3.1 Closeness of nearly optimal solutions
We need Lemma 12.3.3 from Chapter 12 as well as the following elementary computation.

Lemma 13.3.2 (Gradients of multiple ℓ𝑝 regression). The gradient∇X‖AXG−B‖𝑝𝑝,𝑝 is given
by the formula

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑝[AXG−B](𝑖, 𝑗)∘(𝑝−1)(A⊤e𝑖)(e
⊤
𝑗 G

⊤)

The following lemma uses Lemmas 12.3.3 and 13.3.2 to show that if X achieves a nearly
optimal value, then X must be close to the optimal solution X*.

181

Lemma 13.3.3 (Closeness of nearly optimal solutions). Let 𝑝 > 1. For any X ∈ R𝑑×𝑡 such that
‖AXG−B‖𝑝,𝑝 ≤ (1 + 𝜂)OPT with 𝜂 ∈ (0, 1), we have that

‖AXG−AX*G‖𝑝,𝑝 ≤

{︃
𝑂(𝜂1/2)OPT 𝑝 < 2

𝑂(𝜂1/𝑝)OPT 𝑝 > 2

where X* := argminX∈R𝑑×𝑡‖AXG−B‖𝑝,𝑝.

Proof. First note that⟨︀
(AX*G−B)∘(𝑝−1),AX*G−AXG

⟩︀
=

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

[AX*G−B](𝑖, 𝑗)∘(𝑝−1)[A(X* −X)G](𝑖, 𝑗)

=
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

[AX*G−B](𝑖, 𝑗)∘(𝑝−1)
⟨︀
(A⊤e𝑖)(e

⊤
𝑗 G

⊤),X* −X
⟩︀

=

⟨
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

[AX*G−B](𝑖, 𝑗)∘(𝑝−1)(A⊤e𝑖)(e
⊤
𝑗 G

⊤),X* −X

⟩
.

The left term in the product is the gradient of the objective at the optimum by Lemma 13.3.2, so
this is just 0 for any X. Then for 𝑝 < 2, we have by Lemma 12.3.3 that

‖AX*G−B‖2𝑝,𝑝 +
𝑝− 1

2
‖AXG−AX*G‖2𝑝,𝑝 ≤ ‖AXG−B‖2𝑝,𝑝 ≤ (1 + 𝜂)2‖AX*G−B‖2𝑝,𝑝

which rearranges to
‖AXG−AX*G‖𝑝,𝑝 ≤ 𝑂(𝜂1/2)OPT .

and for 𝑝 > 2, we have by Lemma 12.3.3 that

‖AX*G−B‖𝑝𝑝,𝑝 +
𝑝− 1

𝑝2𝑝
‖AXG−AX*G‖𝑝𝑝,𝑝 ≤ ‖AXG−B‖𝑝𝑝,𝑝 ≤ (1 + 𝜂)𝑝‖AX*G−B‖𝑝𝑝,𝑝

which rearranges to
‖AXG−AX*G‖𝑝,𝑝 ≤ 𝑂(𝜂1/𝑝)OPT .

13.3.2 Iterative size reduction argument
We will need the following initial result to seed our iterative argument. Note that the dependence
on 𝜀 is suboptimal by an 𝜀 factor for every 1 < 𝑝 <∞.

Lemma 13.3.4. Let S be the ℓ𝑝 sampling matrix (Definition 6.1.1) with sampling probabilities
𝑞𝑖 ≥ min{1,w𝑖/𝛼} for 𝛾-one-sided ℓ𝑝 Lewis weights w ∈ R𝑛 and

𝛼 = 𝑂(𝛾)(𝜀𝛿)2
[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

182

for 1 ≤ 𝑝 < 2 and

𝛼 =
𝑂(𝛾𝑝/2)(𝜀𝛿)𝑝

‖w‖𝑝/2−1
1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

for 2 < 𝑝 <∞. Then, for any X̂ ∈ R𝑑×𝑡 such that

‖S(AX̂G−B)‖𝑝𝑝,𝑝 ≤ (1 + 𝜀) min
X∈R𝑑×𝑡

‖S(AXG−B)‖𝑝𝑝,𝑝,

we have
‖AX̂G−B‖𝑝𝑝,𝑝 ≤ (1 +𝑂(𝜀)) min

X∈R𝑑×𝑡
‖AXG−B‖𝑝𝑝,𝑝.

Proof. We first show that

‖AX̂G−AX*G‖𝑝𝑝,𝑝 ≤ 𝑂

(︂
1

𝛿

)︂
OPT𝑝

with probability at least 1 − 𝛿. By using the fact that S is an 𝑂(1)-approximate ℓ𝑝 subspace
embedding, we have that

‖AX̂G−AX*G‖𝑝𝑝,𝑝 ≤ ‖S(AX̂G−AX*G)‖𝑝𝑝,𝑝
≤ 2𝑝−1

(︁
‖S(AX̂G−B)‖𝑝𝑝,𝑝 + ‖S(AX*G−B)‖𝑝𝑝,𝑝

)︁
Fact 2.1.1

≤ 2𝑝+1‖S(AX*G−B)‖𝑝𝑝,𝑝 Approximate optimality of X̂

The latter quantity is at most 𝑂(1
𝛿
)OPT𝑝 with probability at least 1− 𝛿 by Markov’s inequality.

Thus, we may replace the optimization of X̂ over all X ∈ R𝑑×𝑡 with optimization over the ball
{X : ‖AXG−AX*G‖𝑝𝑝,𝑝 = 𝑂(1

𝛿
)OPT𝑝}.

The rest of the proof now mimics the proof of Theorem 13.2.1. We apply Theorem 12.3.2
with accuracy parameter 𝜀 set to 𝜀𝛿, failure parameter set to (𝜀𝛿)𝑝𝛿2, and proximity parameter 𝜂
set to 1. Let 𝑆 ⊆ [𝑚] be the set of columns for which Theorem 12.3.2 fails. Then by applying
Markov’s inequality twice as in the proof of Theorem 13.2.1, we have that∑︁

𝑗∈𝑆

‖S(AX*G−B)e𝑗‖𝑝𝑝 = 𝑂((𝜀𝛿)𝑝)OPT𝑝

and ∑︁
𝑗∈𝑆

‖(AX*G−B)e𝑗‖𝑝𝑝 = 𝑂((𝜀𝛿)𝑝)OPT𝑝

and thus it follows that∑︁
𝑗∈𝑆

‖S(AXG−B)e𝑗‖𝑝𝑝 =
∑︁
𝑗∈𝑆

‖(AXG−B)e𝑗‖𝑝𝑝 ±𝑂(𝜀𝛿)
(︀
‖A(X−X*)G‖𝑝𝑝 + OPT𝑝

)︀
.

Summing this result with the rest of the columns 𝑗 /∈ 𝑆 gives that⃒⃒(︀
‖S(AXG−B)‖𝑝𝑝,𝑝 − ‖S(AX*G−B)‖𝑝𝑝,𝑝

)︀
−
(︀
‖AXG−B‖𝑝𝑝,𝑝 − ‖AX*G−B‖𝑝𝑝,𝑝

)︀⃒⃒
183

≤ 𝜀𝛿
(︀
‖AX*G−B‖𝑝𝑝,𝑝 + ‖S(AX*G−B)‖𝑝𝑝,𝑝 + ‖AXG−AX*G‖𝑝𝑝,𝑝

)︀
≤ 𝑂(𝜀)OPT𝑝

Thus, in the ball {X : ‖AXG−AX*G‖𝑝𝑝,𝑝 = 𝑂(1
𝛿
)OPT𝑝}, we have that

‖S(AXG−B)‖𝑝𝑝,𝑝 = ‖AXG−B‖𝑝𝑝,𝑝+(‖S(AX*G−B)‖𝑝𝑝,𝑝−‖AX*G−B‖𝑝𝑝,𝑝)±𝑂(𝜀)OPT𝑝 .

It follows that X̂ must minimize ‖AXG−B‖𝑝𝑝,𝑝 up to an additive 𝑂(𝜀)OPT𝑝.

Starting from this initial solution bound of Lemma 13.3.4, we proceed via an iteration argument
as in Chapter 12.

Proof of Theorem 13.3.1. Let

𝐶 =

⎧⎪⎪⎨⎪⎪⎩
𝑂(𝛾−1)𝛿−2‖w‖1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂
𝑝 < 2

𝑂(𝛾−𝑝/2)𝛿−𝑝‖w‖𝑝/21

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂
𝑝 > 2

We will make use of the fact that ‖S(AX*G−B)‖𝑝𝑝,𝑝 = 𝑂(1
𝛿
)‖S(AX*G−B)‖𝑝𝑝,𝑝 with proba-

bility at least 1− 𝛿 by Markov’s inequality.
We will first give the argument for 𝑝 < 2. Suppose that 𝐶/𝜀𝛽 rows are needed for a (1 + 𝜀)-

approximate weak coreset. Now choose 𝑎 such that 𝑎−2 = −𝑎𝛽, that is, 𝑎 = 2/(1+𝛽). Then for
𝜂2/𝑝 = 𝜀𝑎, 𝐶𝜂2/𝑝/(𝜀𝛿)2 = 𝐶/𝜂(2/𝑝)𝛽 rows yields a (1 + 𝜂2/𝑝)-approximate weak coreset. Then, a
(1 + 𝜂2/𝑝)-approximate minimizer X satisfies

‖AXG−AX*G‖𝑝𝑝,𝑝 ≤ 𝑂(𝜂)‖AX*G−B‖𝑝𝑝,𝑝

by Lemma 13.3.3. For all such X, an argument as done in Theorem 13.2.1 and Lemma 13.3.4
shows that ‖S(AXG−B)‖𝑝𝑝,𝑝 − ‖S(AX*G−B)‖𝑝𝑝,𝑝 and ‖AXG−B‖𝑝𝑝,𝑝 − ‖AX*G−B‖𝑝𝑝,𝑝
are close up to an additive error of

𝜀𝛿

(︂
‖AX*G−B‖𝑝𝑝,𝑝 + ‖S(AX*G−B)‖𝑝𝑝,𝑝 +

1

𝜂
‖AXG−AX*G‖𝑝𝑝,𝑝

)︂
= 𝑂(𝜀)‖AX*G−B‖𝑝𝑝,𝑝

Thus, 𝐶/𝜂(2/𝑝)𝛽 rows in fact gives a (1 +𝑂(𝜀))-approximate minimizer. That is, if 𝐶/𝜀𝛽 rows is
sufficient for (1 + 𝜀)-approximation, then 𝐶/𝜂(2/𝑝)𝛽 = 𝐶/𝜀𝑎𝛽 = 𝐶/𝜀2𝛽/(1+𝛽) rows is sufficient
for (1 + 𝜀)-approximation as well. We may now iterate this argument. Consider the sequence 𝛽𝑖

given by

𝛽0 = 2, 𝛽𝑖+1 =
2𝛽𝑖

1 + 𝛽𝑖

.

The solution to this recurrence is given by the Lemma 12.3.7.
Thus, applying this argument 𝑂(log log 1

𝜀
) times yields that 𝛽𝑖 ≤ 1 + 𝑂(1/ log(1

𝜀
)) which

means that reading only 𝑂(1)𝐶/𝜀 entries suffices. Union bounding over the success of the
𝑂(log log 1

𝜀
) rounds completes the argument.

Next, let 𝑝 > 2. Suppose that 𝐶/𝜀𝛽 rows are needed for a (1 + 𝜀)-approximate weak coreset.
Now choose 𝑎 such that 𝑎− 𝑝 = −𝑎𝛽, that is, 𝑎 = 𝑝/(1 + 𝛽). Then for 𝜂 = 𝜀𝑎, 𝐶𝜂/𝜀𝑝 = 𝐶/𝜂𝛽

184

rows yields a (1 + 𝜂)-approximate weak coreset. Then, a (1 + 𝜂)-approximate minimizer X
satisfies

‖AXG−AX*G‖𝑝𝑝,𝑝 ≤ 𝑂(𝜂)‖AX*G−B‖𝑝𝑝,𝑝
by Lemma 13.3.3. For all such X, an argument as done in Theorem 13.2.1 and Lemma 13.3.4
shows that ‖S(AXG−B)‖𝑝𝑝,𝑝 − ‖S(AX*G−B)‖𝑝𝑝,𝑝 and ‖AXG−B‖𝑝𝑝,𝑝 − ‖AX*G−B‖𝑝𝑝,𝑝
are close up to an additive error of

𝜀

(︂
‖AX*G−B‖𝑝𝑝,𝑝 +

1

𝜂
‖AXG−AX*G‖𝑝𝑝,𝑝

)︂
= 𝑂(𝜀)‖AX*G−B‖𝑝𝑝,𝑝

Thus, 𝐶/𝜂𝛽 rows in fact gives a (1 + 𝑂(𝜀))-approximate minimizer. That is, if 𝐶/𝜀𝛽 rows is
sufficient for (1 + 𝜀)-approximation, then 𝐶/𝜂𝛽 = 𝐶/𝜀𝑎𝛽 = 𝐶/𝜀𝑝𝛽/(1+𝛽) rows is sufficient for
(1+ 𝜀)-approximation as well. We may now iterate this argument. Consider the sequence 𝛽𝑖 given
by

𝛽1 = 𝑝, 𝛽𝑖+1 =
𝑝𝛽𝑖

1 + 𝛽𝑖

.

Then by Lemma 12.3.7, applying this argument 𝑂(log log 1
𝜀
) times yields that 𝛽𝑖 ≤ (𝑝 − 1) +

𝑂(1/ log(1
𝜀
)) which means that reading only 𝑂(1)𝐶/𝜀𝑝−1 entries suffices. Union bounding over

the success of the 𝑂(log log 1
𝜀
) rounds completes the argument.

13.4 Sublinear algorithm for Euclidean power means
Theorem 13.1.3. Let {b𝑖}𝑛𝑖=1 ⊆ R𝑑. Then, there is a sublinear algorithm which uniformly
samples at most

𝑠 =

⎧⎪⎨⎪⎩
𝑂(𝜀−2)

(︀
log 1

𝜀
+ log 1

𝛿

)︀
log 1

𝛿
𝑝 = 1

𝑂(𝜀−1)
(︀
log 1

𝜀
+ log 1

𝛿

)︀
log 1

𝛿
1 < 𝑝 ≤ 2

𝑂(𝜀1−𝑝)
(︀
log 1

𝜀
+ log 1

𝛿

)︀
log 1

𝛿
2 < 𝑝 <∞

rows b𝑖 and outputs a center x̂ such that

𝑛∑︁
𝑖=1

‖x̂− b𝑖‖𝑝2 ≤ (1 + 𝜀) min
x∈R𝑑

𝑛∑︁
𝑖=1

‖x− b𝑖‖𝑝2

with probability at least 1− 𝛿.

Proof. We will assume without loss of generality that by reading 𝑂(log 1
𝛿
) rows of B, we can iden-

tify an 𝑂(1)-approximate solution x̂ (see, e.g., Section 3.1 of [MMWY22]). Thus by subtracting
off this solution, we may assume that ‖B‖𝑝𝑝,2 = 𝑂(OPT𝑝).

We then use Dvoretzky’s thoerem to embed this problem into the entrywise ℓ𝑝 norm, so that

‖1x⊤ −B‖𝑝𝑝,2 = (1± 𝜀)‖1x⊤G−BG‖𝑝𝑝,𝑝

for every center x ∈ R𝑑. This is now in a form where we may apply our weak coreset results
for multiple ℓ𝑝 regression of Theorem 13.1.2. Note that in this particular setting, the A matrix

185

corresponds to the 𝑛× 𝑑 all ones matrix with 𝑑 = 1, and the ℓ𝑝 Lewis weights can be taken to be
uniform.

Now consider running 𝐿 = 𝑂(log 1
𝛿
) independent instances of the weak coreset algorithm,

each which has the property that the algorithm makes at most

𝑂(𝜀−𝜌)

(︂
log

1

𝜀
+ log

1

𝛿

)︂
(13.2)

queries for 𝜌 = 2 for 𝑝 = 1, 𝜌 = 1 for 1 < 𝑝 < 2, and 𝜌 = 𝑝 − 1 for 2 < 𝑝 < ∞, and that if
‖S(1(x*)⊤G−BG)‖𝑝𝑝,𝑝 = 𝑂(‖1(x*)⊤G−BG‖𝑝𝑝,𝑝) for the optimal solution x*, then it succeeds
with probability at least 1− 𝛿/𝐿. By a union bound, this holds for all 𝐿 instances.

By Markov’s inequality, each instance satisfies ‖SBG‖𝑝𝑝,𝑝 = 𝑂(‖BG‖𝑝𝑝,𝑝) with probability
at least 9/10, so at least 2/3 of the 𝐿 instances must satisfy this bound with probability at least
1− 𝛿. By Dvoretzky’s theorem, this means that ‖SB‖𝑝𝑝,2 = 𝑂(‖B‖𝑝𝑝,2). Then, if we restrict our
attention to the (2/3)𝐿 instances with the smallest values of ‖SB‖𝑝𝑝,2, then all of these instances
must output a correct (1 + 𝜀)-approximately optimal solution, simultaneously with probability
1− 𝛿. This gives a query bound of 𝐿 times (13.2).

13.5 Spanning coresets for ℓ𝑝 subspace approximation
We show that weak coreset construction imply spanning sets for ℓ𝑝 subspace approximation.

Theorem 13.1.5. Let {a𝑖}𝑛𝑖=1 ⊆ R𝑑, 1 ≤ 𝑝 < ∞, 𝑘 ∈ N, and 0 < 𝜀 < 1. Then, there exists a
(1 + 𝜀)-spanning coreset 𝑆 of size at most

|𝑆| =

⎧⎪⎨⎪⎩
𝑂(𝜀−2𝑘)(log(𝑘/𝜀))3 𝑝 = 1

𝑂(𝜀−1𝑘)(log(𝑘/𝜀))3 1 < 𝑝 ≤ 2

𝑂(𝜀1−𝑝𝑘𝑝/2)(log(𝑘/𝜀))3 2 < 𝑝 <∞

Proof. By first computing a strong coreset of size poly(𝑘/𝜀) [HV20], we can assume that 𝑛, 𝑑 =
poly(𝑘/𝜀).

Let P = VV⊤ be the rank 𝑘 projection that minimizes ‖AP−A‖𝑝𝑝,2. Note then that

min
X∈R𝑘×𝑑

‖AVX−A‖𝑝𝑝,2 = ‖AP−A‖𝑝𝑝,2.

We then use Dvoretzky’s theorem to embed this problem into the entrywise ℓ𝑝 norm, so that

‖AVX−A‖𝑝𝑝,2 = (1± 𝜀)‖AVXG−AG‖𝑝𝑝,𝑝

for every X ∈ R𝑘×𝑑, for some fixed G ∈ R𝑑×𝑚 with 𝑚 = poly(𝑑/𝜀). Then by our weak coreset
result for multiple ℓ𝑝 regression (Theorem 13.3.1), there is a diagonal matrix S with

nnz(S) ≤

⎧⎪⎨⎪⎩
𝑂(𝜀−2𝑘)(log(𝑘/𝜀))3 𝑝 = 1

𝑂(𝜀−1𝑘)(log(𝑘/𝜀))3 1 < 𝑝 ≤ 2

𝑂(𝜀1−𝑝𝑘𝑝/2)(log(𝑘/𝜀))3 2 < 𝑝 <∞

186

such that any (1 + 𝜀)-approximate minimizer X̂ of ‖S(AVXG−AG)‖𝑝𝑝,𝑝 satisfies

‖AVX̂G−AG‖𝑝𝑝,𝑝 ≤ (1 + 𝜀) min
X∈R𝑘×𝑑

‖AVXG−AG‖𝑝𝑝,𝑝.

We will take X̂ to be
X̂ = arg min

X∈R𝑘×𝑑
‖S(AVX−A)‖𝑝𝑝,2

which is indeed a (1 + 𝜀)-approximate minimizer of ‖S(AVXG − AG)‖𝑝𝑝,𝑝 by Dvoretzky’s
theorem. Then, again by Dvoretzky’s theorem, we then have for this X̂ that

‖AVX̂−A‖𝑝𝑝,2 ≤ (1 +𝑂(𝜀)) min
X∈R𝑘×𝑑

‖AVX−A‖𝑝𝑝,2

= (1 +𝑂(𝜀))‖AP−A‖𝑝𝑝,2.

Finally, note that X̂ has row span contained in the row span of SA, since otherwise ‖S(AVX−
A)‖𝑝𝑝,2 can be reduced by projecting the rows of X onto rowspan(SA). Then, if P𝐹 is the
projection matrix onto 𝐹 = rowspan(X̂), then for each row 𝑖 ∈ [𝑛] of A,

‖P𝐹a𝑖 − a𝑖‖2 = min
x∈𝐹
‖x− a𝑖‖2 ≤ ‖X̂⊤V⊤a𝑖 − a𝑖‖2

so
‖AP𝐹 −A‖𝑝𝑝,2 ≤ ‖AVX̂−A‖𝑝𝑝,2.

We thus conclude that there is a rank 𝑘 subspace in the row span of SA that is (1+𝜀)-approximately
optimal.

13.6 Lower bounds
In this section, we complement our various upper bounds with matching lower bounds. Section
13.6.1 gives a nearly optimal lower bound for strong coresets, Section 13.6.2 for weak coresets,
and Section 13.6.3 for spanning coresets.

13.6.1 Strong coresets
Theorem 13.6.1. Let 2 < 𝑝 < ∞ be fixed. Let 𝜀 ∈ (0, 1) be less than some sufficiently small
constant. Then, a strong coreset S for multiple ℓ𝑝 regression requires nnz(S) = Ω(𝜀−𝑝𝑑𝑝/2)
nonzero rows.

Proof of Theorem 13.6.1. Let 𝑠 = 𝑑𝑝/2 and let 𝑆 ⊆ {±1}𝑑 be a set of |𝑆| = 𝑠 points given by
Theorem 11.3.2 such that ⟨a, a′⟩ ≤ 𝐶𝑝/2

√
𝑑 = 𝑂(

√
𝑑) for some 𝐶𝑝

𝑝/2 ≥ 1, for every distinct
a, a′ ∈ 𝑆. Let 𝑚 = 𝑠𝜀−𝑝, let A ∈ {±1}𝑚×𝑑 be the matrix with 𝜀−𝑝 copies of a in its rows for
each a ∈ 𝑆, and let B = 𝑑 · I𝑚 be the 𝑚×𝑚 identity matrix scaled by 𝑑. For each row 𝑖 ∈ [𝑚],
we say that 𝑖′ ∈ [𝑠] is its group number if e⊤𝑖 A is the 𝑖′-th point in 𝑆.

187

Suppose for contradiction that S is a strong coreset with nnz(S) ≤ 𝑚/16 such that

‖S(AX−B)‖𝑝𝑝,𝑝 =

(︃
1± 𝜀

12𝐶𝑝
𝑝/2

)︃
‖AX−B‖𝑝𝑝,𝑝

for every X ∈ R𝑑×𝑚. Then, there is a subset 𝑇 ⊆ [𝑚] with |𝑇 | = 𝑚/16 such that S is supported
on 𝑇 . For each 𝑖′ ∈ [𝑠], let 𝑇𝑖′ ⊆ 𝑇 denote the rows of 𝑇 whose rows in A with group number
𝑖′ ∈ [𝑠], so

∑︀𝑠
𝑖′=1|𝑇𝑖′| = |𝑇 |. Then by averaging, there are at least (3/4)𝑠 groups 𝑖′ ∈ [𝑠] such

that |𝑇𝑖′ | ≤ 𝜀−𝑝/2. Thus, we may assume without loss of generality that |𝑇𝑖′| = 𝜀−𝑝 for the first
(1/4)𝑠 groups, |𝑇𝑖′ | = 𝜀−𝑝/2 for the last (3/4)𝑠 groups, and |𝑇 | = (5/8)𝑚.

Let 𝑊 :=
∑︀𝑚

𝑖=1|S𝑖,𝑖|𝑝 denote the total weight mass of S. Note then that by querying X = 0,
we must have that

‖SB‖𝑝𝑝,𝑝 = 𝑊 = (1± 𝜀)‖B‖𝑝𝑝,𝑝 =

(︃
1± 𝜀

12𝐶𝑝
𝑝/2

)︃
𝑚.

Let 𝑊1 denote the sum of |S𝑖,𝑖|𝑝 on the first (1/4)𝑠 groups, and let 𝑊2 denote the sum of |S𝑖,𝑖|𝑝
on the last (3/4)𝑠 groups. We will assume that 𝑊1 ≤ 𝑚/4, since the case of 𝑊1 ≥ 𝑚/4 is
symmetric.

We now construct a query X ∈ R𝑑×𝑚 with the 𝑗-th column given by

Xe𝑗 =

{︃
𝜀 · e⊤𝑗 A 𝑗 ∈ 𝑇

0 𝑗 /∈ 𝑇

Note then that for each 𝑖, 𝑗 ∈ [𝑚],

e⊤𝑖 AXe𝑗 =

⎧⎪⎨⎪⎩
𝜀𝑑 e⊤𝑖 A = e⊤𝑗 A, 𝑗 ∈ 𝑇

𝜀𝐶𝑝/2

√
𝑑 e⊤𝑖 A ̸= e⊤𝑗 A, 𝑗 ∈ 𝑇

0 𝑗 /∈ 𝑇

Let 𝑖 ∈ [𝑚] and let 𝑖′ ∈ [𝑠] be its group number. Then the cost of row 𝑖 if 𝑖 ∈ 𝑇 is

‖e⊤𝑖 AX− e⊤𝑖 B‖𝑝𝑝 =
𝑚∑︁
𝑗=1

⃒⃒
e⊤𝑖 AXe𝑗 −B(𝑖, 𝑗)

⃒⃒𝑝
= (1− 𝜀)𝑝𝑑𝑝⏟ ⏞

𝑖=𝑗

+(|𝑇𝑖′ | − 1) · 𝜀𝑝𝑑𝑝⏟ ⏞
e⊤𝑖 A=e⊤𝑗 A

+(|𝑇 | − |𝑇𝑖′|) · 𝜀𝑝𝐶𝑝
𝑝/2𝑑

𝑝/2⏟ ⏞
e⊤𝑖 A̸=e⊤𝑗 A

= (1− 𝑝𝜀+ |𝑇𝑖′ |𝜀𝑝 + (5/8)𝐶𝑝
𝑝/2 + 𝑜(𝜀))𝑑𝑝

while the cost of row 𝑖 ∈ [𝑚] if 𝑖 /∈ 𝑇 is

‖e⊤𝑖 AX− e⊤𝑖 B‖𝑝𝑝 =
𝑚∑︁
𝑗=1

⃒⃒
e⊤𝑖 AXe𝑗 −B(𝑖, 𝑗)

⃒⃒𝑝
188

= 𝑑𝑝⏟ ⏞
𝑖=𝑗

+|𝑇𝑖′| · 𝜀𝑝𝑑𝑝⏟ ⏞
e⊤𝑖 A=e⊤𝑗 A

+(|𝑇 | − |𝑇𝑖′ |) · 𝜀𝑝𝐶𝑝
𝑝/2𝑑

𝑝/2⏟ ⏞
e⊤𝑖 A̸=e⊤𝑗 A

= (1 + |𝑇 ′
𝑖 |𝜀𝑝 + (5/8)𝐶𝑝

𝑝/2 + 𝑜(𝜀))𝑑𝑝.

Let

𝑐1 = (1− 𝑝𝜀+ 1 + (5/8)𝐶𝑝
𝑝/2 + 𝑜(𝜀))𝑑𝑝

𝑐2 = (1− 𝑝𝜀+ (1/2) + (5/8)𝐶𝑝
𝑝/2 + 𝑜(𝜀))𝑑𝑝

𝑐3 = (1 + (1/2) + (5/8)𝐶𝑝
𝑝/2 + 𝑜(𝜀))𝑑𝑝

Then, the total true cost is at least

‖AX−B‖𝑝𝑝,𝑝 =
𝑚

4
𝑐1 +

3𝑚

8
𝑐2 +

3𝑚

8
𝑐3

=
𝑚

4
𝑐1 +

3𝑚

4
𝑐2 +

3𝑚

8
(𝑐3 − 𝑐2)

≥ 𝑚

4
𝑐1 +

3𝑚

4
𝑐2 +

3𝑚

4
· (𝜀− 𝑜(𝜀))𝑑𝑝

while the strong coreset estimate is at most

‖S(AX−B)‖𝑝𝑝,𝑝 = 𝑊1𝑐1 +𝑊2𝑐2

= 𝑊1(𝑐1 − 𝑐2) + (𝑊1 +𝑊2)𝑐2

≤ 𝑚

4
(𝑐1 − 𝑐2) +

(︃
1 +

𝜀

12𝐶𝑝
𝑝/2

)︃
𝑚𝑐2

≤ 𝑚

4
𝑐1 +

3𝑚

4
𝑐2 +

𝜀

4
𝑚𝑑𝑝.

Furthermore,
𝜀

12𝐶𝑝
𝑝/2

(︂
𝑚

4
𝑐1 +

3𝑚

4
𝑐2 +

𝜀

4
𝑚𝑑𝑝

)︂
≤ 𝜀

4
𝑚𝑑𝑝

so (1+ 𝜀
12𝐶𝑝

𝑝/2
)‖S(AX−B)‖𝑝𝑝,𝑝 < ‖AX−B‖𝑝𝑝,𝑝 and thus S fails to be a strong coreset. Rescaling

𝜀 by constant factors gives the desired result.

13.6.2 Weak coresets
Theorem 13.6.2. Let 2 < 𝑝 < ∞ be fixed. Let 𝜀 ∈ (0, 1) be less than some sufficiently small
constant. Then, a weak coreset S for multiple ℓ𝑝 regression requires nnz(S) = Ω(𝜀1−𝑝𝑑𝑝/2)
nonzero rows.

Proof of Theorem 13.6.2. Our hard instance is identical to the one of Theorem 13.6.1, except that
each group has 𝜀1−𝑝/2𝐶𝑝

𝑝/2 copies rather than 𝜀−𝑝 copies.
Note that if S does not sample some row 𝑖 ∈ [𝑚], then the 𝑖-th column of SB is all zeros,

so the solution obtained by the weak coreset is Xe𝑖 = 0, which has objective function value

189

‖Be𝑖‖𝑝𝑝 = 𝑑𝑝. On the other hand, the optimal value is at most (1 − 𝜀)𝑝𝑑𝑝 since we can set
Xe𝑖 = 𝜀A⊤e𝑖 so that

‖(AX−B)e𝑖‖𝑝𝑝 ≤ (1− 𝜀)𝑝𝑑𝑝 +
𝜀1−𝑝

2𝐶𝑝
𝑝/2

· 𝜀𝑝𝑑𝑝 + 𝑑𝑝/2
𝜀1−𝑝

2𝐶𝑝
𝑝/2

· 𝐶𝑝
𝑝/2𝜀

𝑝𝑑𝑝/2

≤ (1− 𝜀)𝑝𝑑𝑝 +
𝜀

2
· 𝑑𝑝 + 𝜀

2
· 𝑑𝑝

≤ ((1− 𝜀)𝑝 + 𝜀)𝑑𝑝

which is a (1 + 𝜀) factor smaller for all 𝜀 sufficiently small. Thus, if nnz(S) ≤ 𝑚/2, then the
solution X that minimizes ‖S(AX−B)‖𝑝𝑝,𝑝 must be at least an additive 𝜀𝑑𝑝 ·𝑚/2 more expensive
than the optimal solution, and thus it fails to be a (1 + 𝜀/2)-optimal solution.

13.6.3 Spanning coresets
Theorem 13.6.3. Let 1 ≤ 𝑝 <∞ and

𝑐𝑝 =

{︃
1/6 𝑝 ≤ 2

1/(6 · 5𝑝/2−1) 𝑝 > 2

Let 𝑘 ∈ N. Then, there is a matrix B ∈ R𝑛×(𝑛+1) such that for every 𝜀 ≥ 𝑘/𝑛 and any subset of
𝑠 ≤ (𝑐𝑝/4)𝜀

−1𝑘 rows, any rank 𝑘 subspace 𝐹 ′ spanned by the 𝑠 rows must have

‖BP𝐹 ′ −B‖𝑝𝑝,2 > (1 + 𝜀) min
rank(𝐹)≤𝑘

‖BP𝐹 −B‖𝑝𝑝,2.

We generalize an argument of Section 4 of [DV06].

Lemma 13.6.4. Let 1 ≤ 𝑝 <∞ and

𝑐𝑝 =

{︃
1/6 𝑝 ≤ 2

1/(6 · 5𝑝/2−1) 𝑝 > 2

Then, there is a matrix A ∈ R𝑛×(𝑛+1) such that for every 𝜀 ≥ 1/𝑛 and any subset of 𝑠 ≤ 𝑐𝑝𝜀
−1

rows, any rank 1 subspace 𝐹 ′ spanned by the 𝑠 rows must have

‖AP𝐹 ′ −A‖𝑝𝑝,2 > (1 + 𝜀) min
rank(𝐹)≤1

‖AP𝐹 −A‖𝑝𝑝,2.

Proof. Let 𝑛 ≤ 𝜀−1 and let A be the 𝑛 × (𝑛 + 1) matrix given by [𝑅 · 1𝑛, I𝑛] for some large
enough 𝑅 > 0. That is, A is 𝑅 along the first column and the 𝑛×𝑛 identity for the last 𝑛 columns.
Note that the optimal value is upper bounded by

𝑛((1− 𝜀)2 + 𝜀2 · (𝑛− 1))𝑝/2 = 𝑛(1− 2𝜀+ 𝜀2𝑛)𝑝/2 = 𝑛(1− 𝜀)𝑝/2.

Let x ∈ R𝑠 be the coefficients of a linear combination of 𝑠 rows of A. We may assume the
coefficients are nonnegative, since making the coefficients negative can only increase the cost.
Note first that 1/2 ≤ ‖x‖1 ≤ 3/2 since otherwise

𝑛 · |𝑅−𝑅‖x‖1|𝑝 ≥ 𝑛 ·𝑅/2

190

which cannot be (1 + 𝜀)-approximately optimal for 𝑅 ≥ 2.
The cost of the 𝑖-th row is ((1− x𝑖)

2 + ‖x‖22 − x2
𝑖)

𝑝/2
= (1− 2x𝑖 + ‖x‖22)

𝑝/2. If ‖x‖2 ≥ 2,
then (︀

1− 2x𝑖 + ‖x‖22
)︀𝑝/2 ≥ (1− 2‖x‖2 + ‖x‖22)𝑝/2 = (‖x‖2 − 1)𝑝 ≥ 1

so this cannot produce a (1 + 𝜀)-approximately optimal solution. Thus, assume ‖x‖2 ≤ 2. Then,

(︀
1− 2x𝑖 + ‖x‖22

)︀𝑝/2
=
(︀
1 + ‖x‖22

)︀𝑝/2(︂
1− 2

1 + ‖x‖22
x𝑖

)︂𝑝/2

≥
(︀
1 + ‖x‖22

)︀𝑝/2(︂
1− 𝑝

1 + ‖x‖22
x𝑖

)︂
so summing over the rows gives a cost of

(︀
1 + ‖x‖22

)︀𝑝/2(︂
𝑛− 𝑝

1 + ‖x‖22
‖x‖1

)︂
=
(︀
1 + ‖x‖22

)︀𝑝/2
𝑛− 𝑝(1 + ‖x‖22)𝑝/2−1‖x‖1

≥
(︀
1 + ‖x‖21/𝑠

)︀𝑝/2
𝑛− 𝑝(1 + ‖x‖22)𝑝/2−1‖x‖1 since 1/2 ≤ ‖x‖1 ≤ 3/2

≥ (1 + 1/2𝑠)𝑝/2𝑛− (3/2)𝑝(1 + ‖x‖22)𝑝/2−1

≥ (1 + 𝑝/4𝑠)𝑛− (3/2)𝑝(1 + ‖x‖22)𝑝/2−1

≥

{︃
(1 + 𝑝/4𝑠)𝑛− (3/2)𝑝 𝑝 ≤ 2

(1 + 𝑝/4𝑠)𝑛− (3/2)𝑝 · 5𝑝/2−1 𝑝 > 2

Thus, this fails to be a (1 + 𝜀)-approximately optimal solution for

(𝑝/4𝑠)𝑛 ≥

{︃
(3/2)𝑝 𝑝 ≤ 2

(3/2)𝑝 · 5𝑝/2−1 𝑝 > 2

that is,

𝑠 ≤

{︃
𝑛/6 𝑝 ≤ 2

𝑛/(6 · 5𝑝/2−1) 𝑝 > 2
.

We now extend Lemma 13.6.4 to a general rank 𝑘 lower bound.

Proof of Theorem 13.6.3. Let 𝑛 = 𝜀−1 and let B be a 𝑘𝑛× 𝑘(𝑛+ 1) block diagonal matrix with
the 𝑛 × (𝑛 + 1) matrix construction A ∈ R𝑛×(𝑛+1) of Lemma 13.6.4 on the block diagonal.
Consider any set 𝑆 of 𝑠 rows of B, and let 𝑆𝑖 denote the set of |𝑆𝑖| = 𝑠𝑖 rows supported on the
𝑖-th block for each 𝑖 ∈ [𝑘]. Let 𝐹𝑖 denote the optimal subspace spanned by the rows 𝑆𝑖 on the 𝑖th
block.

Let 𝑇 ⊆ [𝑘] denote the set of 𝑖 ∈ [𝑘] such that 𝑠𝑖 ≤ 𝑐𝑝𝑛. If 𝑖 ∈ 𝑇 , then we by Lemma 13.6.4
that

‖AP𝐹𝑖
−A‖𝑝𝑝,2 >

(︂
1 +

𝑐𝑝
𝑠𝑖

)︂
min

rank(𝐹)≤𝑘
‖AP𝐹 −A‖𝑝𝑝,2

191

Then, the additive error from these rows is bounded below by∑︁
𝑖∈𝑇

𝑐𝑝
𝑠𝑖

min
rank(𝐹)≤𝑘

‖AP𝐹 −A‖𝑝𝑝,2 ≥ |𝑇 | ·
𝑐𝑝|𝑇 |∑︀

𝑖∈[𝑘]:𝑠𝑖≤𝑐𝑝𝑛
𝑠𝑖

min
rank(𝐹)≤𝑘

‖AP𝐹 −A‖𝑝𝑝,2 AM-HM

≥ |𝑇 | · 𝑐𝑝|𝑇 |
𝑠

min
rank(𝐹)≤𝑘

‖AP𝐹 −A‖𝑝𝑝,2

≥ 𝑐𝑝|𝑇 |2

𝑘𝑠
min

rank(𝐹)≤𝑘
‖BP𝐹 −B‖𝑝𝑝,2

Note that |𝑇 | ≥ 𝑘/2 by averaging, so

𝑐𝑝|𝑇 |2

𝑘𝑠
≥ 𝑐𝑝𝑘

4𝑠
≥ 𝜀

which proves the theorem.

192

Chapter 14

Applications: strong coresets for ℓ𝑝
subspace approximation [WY23a, WY24b]

In this chapter, we give a second important application of our study of sampling-based algorithms
for ℓ𝑝 subspace embeddings and construct the first strong coresets of nearly optimal size for a
problem from computational geometry known as ℓ𝑝 subspace approximation, which generalizes
the well-known Frobenius norm low rank approximation problem.

Definition 14.0.1 (Rank 𝑘 subspaces). Let 𝑘 ∈ N be a rank parameter. Then ℱ𝑘 denotes the set
of all subspaces 𝐹 ⊆ R𝑑 with at most 𝑘 dimensions, V𝐹 ∈ R𝑑×𝑘 denotes an orthonormal basis
for 𝐹 , and P𝐹 = V𝐹V

⊤
𝐹 denotes the orthogonal projection matrix onto 𝐹 .

Definition 14.0.2 ((𝑝, 2)-norm). Let 1 ≤ 𝑝 <∞. Let A ∈ R𝑛×𝑑 have the 𝑛 rows {a𝑖}𝑛𝑖=1 ⊆ R𝑑.
Then, we define the (𝑝, 2)-norm of A as

‖A‖𝑝,2 :=

[︃
𝑛∑︁

𝑖=1

‖a𝑖‖𝑝2

]︃1/𝑝

Definition 14.0.3 (ℓ𝑝 Subspace approximation). Let A ∈ R𝑛×𝑑 and let 𝑘 be a rank parameter.
Let 1 ≤ 𝑝 <∞. Then, the ℓ𝑝 subspace approximation problem is the problem of minimizing the
objective function

‖A(I−P𝐹)‖𝑝𝑝,2 =
𝑛∑︁

𝑖=1

‖a⊤
𝑖 (I−P𝐹)‖𝑝2

among all 𝑘 dimensional subspaces 𝐹 ∈ ℱ𝑘. We let

OPT := min
𝐹∈ℱ𝑘

‖A(I−P𝐹)‖𝑝𝑝,2

denote the optimal value of this optimization problem, and we let P* denote the projection matrix
onto a rank 𝑘 subspace achieving this optimum.

193

14.1 Coresets for ℓ𝑝 subspace approximation

The ℓ𝑝 subspace approximation problem, like clustering, is known to be NP-hard for any 𝑝 ̸= 2
[DTV11, GRSW12, CW15a], and thus coresets are especially important for obtaining tractable
algorithms and have long been studied in the coreset literature [DRVW06, DMM06b, DV07,
DMM08, FMSW10, FL11, SV12, VX12, CEM+15, CW15a, CMM17, SW18, LSW18, BLVZ19,
FSS20, MRWZ20, HV20, BDM+20, FKW21, DP22, MMWY22, CW22, WY23a].

While there are many natural notions of coresets that could be defined for the ℓ𝑝 subspace
approximation problem, we will work with the requirement that the coreset approximate the
objective function for every rank 𝑘 subspace 𝐹 ∈ ℱ𝑘. Such a coreset is known as a strong coreset,
which we formally define as follows:

Definition 14.1.1 (Strong coresets for ℓ𝑝 subspace approximation). Let 1 ≤ 𝑝 <∞ and 0 < 𝜀 < 1.
Let A ∈ R𝑛×𝑑. Then, a diagonal map S ∈ R𝑛×𝑛 is a (1 ± 𝜀) strong coreset for ℓ𝑝 subspace
approximation if

‖SA(I−P𝐹)‖𝑝𝑝,2 = (1± 𝜀)‖A(I−P𝐹)‖𝑝𝑝,2

for every 𝐹 ∈ ℱ𝑘. We refer to the number of nonzero entries nnz(S) of S as the size of the
coreset.

The guarantee of Definition 14.1.1 can also be viewed as the natural generalization of pro-
jection cost-preserving sketches [CEM+15, CMM17, MM20] to the ℓ𝑝 subspace approximation
setting. Strong coresets are extremely powerful, and can be used to reduce the size of the input
instance to at most nnz(S) points in nnz(S) dimensions. In particular, strong coresets of size
nnz(S) = poly(𝑘/𝜀) immediately remove the dependence of this problem on 𝑛 and 𝑑, making
this a powerful tool in the design of fast algorithms. Note that this guarantee is much stronger
than many other possible guarantees for row subset selection that have been studied in the liter-
ature. One weaker guarantee is that of a weak coreset, which requires that if 𝐹 is the optimal
solution to the subspace approximation problem for SA, then it is also a (1 + 𝜀)-optimal solution
for A [FL11, HV20]. Another further weaker guarantee is that the rows sampled by S span
a (1 + 𝜀)-optimal solution, as studied by [DV07, SV12, CW15a]. The guarantee of Definition
14.1.1 immediately achieves both of these guarantees, and offers further benefits that cannot be
realized by these other guarantees, for example applications to constrained versions of ℓ𝑝 subspace
approximation, or solving ℓ𝑝 subspace approximation in distributed and streaming models via the
merge-and-reduce technique [BDM+20, CWZ23].

While it has long been known that strong coresets of size poly(𝑘, 𝑑, 𝜀−1) independent of 𝑛
exist [FL11], the first dimension-independent result, i.e. a strong coreset of size only poly(𝑘, 𝜀−1)
independent of 𝑑, was achieved by the work of [SW18]. In fact, the result of [SW18] achieves
a coreset with a nearly optimal size of nnz(S) = �̃�(𝑘) poly(𝜀−1) for 𝑝 < 2 and nnz(S) =
�̃�(𝑘𝑝/2) poly(𝜀−1) for 𝑝 > 2, which matches a lower bound of nnz(S) = Ω̃(𝑘) for 𝑝 < 2 and
nnz(S) = Ω̃(𝑘𝑝/2) for 𝑝 > 2 by a reduction to coreset lower bounds for ℓ𝑝 subspace embeddings
[LWW21, WY23a]. However, this result has a couple of drawbacks: (1) the construction requires
time exponential in poly(𝑘, 𝜀−1), and (2) the result does not quite satisfy Definition 14.1.1, due to
the fact that the coreset constructed by [SW18] is a weighted subset of points with an appended
coordinate, rather than a weighted subset of the original data points themselves.

194

Drawback (1) was addressed in two follow up works of [HV20, FKW21], which both gave
polynomial time algorithms for constructing strong coresets for ℓ𝑝 subspace approximation.
Furthermore, [HV20] also solves drawback (2) and gives the first polynomial time algorithm
for constructing dimension-independent strong coresets as defined in Definition 14.1.1, using a
technique known as sensitivity sampling. However, the coreset size in both of these works, while
dimension-independent, is not optimal, and loses poly(𝑘) factors in the coreset size. Thus, the
following is one of the most central questions in the study of coresets:

Question 14.1.2. Do strong coresets for ℓ𝑝 subspace approximation of size �̃�(𝑘max{1,𝑝/2}) poly(𝜀−1)
exist? Is there a polynomial time algorithm for constructing such strong coresets?

The main result of this chapter is a positive resolution to Question 14.1.2 for all 1 ≤ 𝑝 <∞.

Theorem 14.1.3. Let 2 < 𝑝 < ∞. Let A ∈ R𝑛×𝑑. Then, there is an algorithm running in
�̃�(nnz(A) + 𝑑𝜔) time which, with probability at least 1− 𝛿, constructs a diagonal matrix S of
size

nnz(S) =
𝑘𝑝/2

𝜀𝑝2/2+𝑝
(log(𝑘/𝜀𝛿))𝑂(𝑝)

satisfying Definition 14.1.1, that is,

‖SA(I−P𝐹)‖𝑝𝑝,2 = (1± 𝜀)‖A(I−P𝐹)‖𝑝𝑝,2 for every subspace 𝐹 ⊆ R𝑑 of rank at most 𝑘.

Theorem 14.1.4. Let 1 ≤ 𝑝 < 2. Let A ∈ R𝑛×𝑑. Then, there is an algorithm running in
�̃�(nnz(A) + 𝑑𝜔) time which, with probability at least 1− 𝛿, constructs a diagonal matrix S of
size

nnz(S) =
𝑘

𝜀4/𝑝+2
(log(𝑘/𝜀𝛿))𝑂(1)

satisfying Definition 14.1.1, that is,

‖SA(I−P𝐹)‖𝑝𝑝,2 = (1± 𝜀)‖A(I−P𝐹)‖𝑝𝑝,2 for every subspace 𝐹 ⊆ R𝑑 of rank at most 𝑘.

We give several remarks concerning our results. First, as discussed earlier, we are the first
to establish even the existence of a weighted subset of points with the property of Theorems
14.1.3 and 14.1.4. Furthermore, we are able to construct such a subset in nearly input-sparsity
time. The running time nearly matches the time it takes to approximately solve a least squares
linear regression problem in the current matrix multiplication time [CSWZ23], which is a natural
barrier for the ℓ𝑝 subspace approximation problem. Finally, we note that for 𝑝 < 2, the fact that
we achieve nearly linear size for the strong coreset guarantee implies that we simultaneously
achieve the first nearly optimal size guarantees for other weaker guarantees that have been studied
intensely in the past, including weak coresets [FL11, HV20] and subsets of rows spanning a
(1 + 𝜀)-optimal solution [DV07, SV12, CW15a]. That is, for 𝑝 < 2, we are in fact the first to
resolve Question 14.1.2 even for weaker notions of coresets, both for existence and efficient
constructions. For 𝑝 > 2, we obtain the best known construction for weak coresets and the best
known efficient construction for row subsets spanning a (1 + 𝜀)-optimal solution.

195

Pitfalls in prior work

The central technique of [SW18] is a structural result which shows the existence of a representative
subspace 𝑆 ⊆ R𝑑 with 𝑠 = 𝑂(𝑘) poly(𝜀−1) dimensions1 such that for any 𝑘-dimensional subspace
𝐹 ⊆ R𝑑,

‖A(I−P𝐹)‖𝑝𝑝,2 = (1± 𝜀)‖[AP𝑆(I−P𝐹),b𝑆]‖𝑝𝑝,2

where b𝑆 ∈ R𝑛 is the vector with 𝑖th entry given by b𝑆(𝑖) =
⃦⃦
a⊤
𝑖 (I−P𝑆)

⃦⃦
2
, and [AP𝑆(I −

P𝐹),b𝑆] is the 𝑛×(𝑑+1) matrix formed by the concatenation of AP𝑆(I−P𝐹) and b𝑆 . That is, the
ℓ𝑝 subspace approximation cost of 𝐹 can be approximated by the projection cost onto the subspace
𝑆, plus the additional projection cost of the lower dimensional points AP𝑆 to the query subspace
𝐹 . This reduces the subspace approximation problem in 𝑑 dimensions to a similar problem in 𝑠+1
dimensions. In turn, this lower dimensional problem can be solved using dimension-dependent
techniques, since the dimension is now only 𝑠+ 1 = 𝑂(𝑘) poly(𝜀−1). Then to analyze sampling
algorithms, [SW18] show that Dvoretzky’s theorem [Dvo61, FLM77, PVZ17] can be applied
to convert the problem of approximating the (𝑝, 2)-norm to a problem of approximating the
(𝑝, 𝑝)-norm, i.e. the entrywise ℓ𝑝 norm, which can then be handled by sampling techniques for
approximating ℓ𝑝 norms of vectors in a subspace [CP15, WY23b], which admit tight sampling
bounds. While this algorithm achieves a nearly optimally-sized data structure for approximating
the ℓ𝑝 subspace approximation cost, this algorithm requires exponential time, due to the fact that
finding the representative subspace 𝑆 requires solving the original ℓ𝑝 subspace approximation
problem to (1 + 𝜀) accuracy, which is not known to be solvable in polynomial time. The work of
[FKW21] addressed this problem by introducing a polynomial time algorithm for finding such
a subspace 𝑆, but the dimension of 𝑆 found by this algorithm loses poly(𝑘) factors, leading to
suboptimal size in the coreset.

On the other hand, the result of [HV20] takes a different approach based on the classic sensi-
tivity sampling technique [LS10, FL11, VX12], and uses the representative subspace constructed
[SW18] in an existential manner rather than algorithmic. In the sensitivity sampling approach,
one first defines sensitivity scores

𝜎𝑖(A) := sup
𝐹∈ℱ𝑘

⃦⃦
a⊤
𝑖 (I−P𝐹)

⃦⃦𝑝
2

‖A(I−P𝐹)‖𝑝𝑝,2
(14.1)

for each row 𝑖 ∈ [𝑛] which represent the largest fraction of the cost occupied by the 𝑖th coordinate,
ranging over all queries 𝐹 ∈ ℱ𝑘. Then, by Bernstein bounds, it follows that for any fixed 𝐹 ∈ ℱ𝑘,
sampling the rows 𝑖 ∈ [𝑛] proportionally to the sensitivity scores preserves ‖A(I−P𝐹)‖𝑝𝑝,2
up to (1 ± 𝜀) factors. Naı̈vely, one can apply this result to every 𝐹 in a net over the space of
rank 𝑘 subspaces 𝐹 , which has size roughly exp(𝑑𝑘), and apply a net argument to construct
coresets of size poly(𝑑, 𝑘, 𝜀−1). The work of [HV20] improves this argument by showing that the
existence of the representative subspace 𝑆 constructed by [SW18] gives an improved analysis
of sensitivity sampling which converts a guarantee for coresets that only preserve the cost of an
optimal subspace (known as a weak coreset) to a strong coreset guarantee. The fact that weak
coresets admit dimension-independent bounds is an older result of [FL11], and thus [HV20]

1 We improve the analysis of this result by a 1/𝜀3 factor in Appendix 14.2.

196

show that sensitivity sampling admits dimension-independent strong coresets as well. However,
the key problem in this analysis is in the use of sensitivity sampling [FL11] to obtain the weak
coreset, since this result uses a VC-dimension argument which loses poly(𝑘) factors. In summary,
the problem is that finding a representative subspace of optimal size is computationally difficult
[SW18, FKW21], but we do not know how to apply tight sampling bounds if we do not have
access to an explicit representative subspace and instead must settle for VC-dimension arguments
which lose poly(𝑘) factors in the coreset size [HV20].

Ridge leverage scores

Our algorithmic technique takes a drastically different approach compared to the prior works of
[SW18, HV20, FKW21]. Our starting point is a result of [CMM17], which resolves Question
14.1.2 for the much simpler case of 𝑝 = 2. For 𝑝 = 2, finding an explicit rank 𝑂(𝑘) poly(𝜀−1)
with properties similar to the representative subspace 𝑆 is not difficult due to the singular value de-
composition (SVD) [DMM06b, DMM08, CEM+15, CMM17]. However, as noted by [CMM17],
while this gives a polynomial time algorithm for low rank approximation for 𝑝 = 2, finding these
scores is already as hard as low rank approximation itself. Thus, this defeats the purpose of finding
the coreset if the goal is to design faster algorithms. To address this problem, [CMM17] make use
of the following alternative scores for a sampling-based algorithm, known as the ridge leverage
scores.

Definition 14.1.5 (Ridge leverage scores [AM15, CMM17]). Let 𝜆 > 0 and A ∈ R𝑛×𝑑. Then,
for each 𝑖 ∈ [𝑛], the 𝑖th ridge leverage score is defined as

𝜏 𝜆
𝑖 (A) := a⊤

𝑖 (A
⊤A+ 𝜆I)−1a𝑖 = sup

x∈R𝑑

[Ax](𝑖)2

‖Ax‖22 + 𝜆‖x‖22
.

Ridge leverage scores can be approximated very quickly [SS11, DMMW12, CW13, CLM+15],
and can be approximated up to 𝑂(1) factors in just �̃�(nnz(A)+𝑑𝜔) time, where 𝜔 is the exponent
of matrix multiplication.

The main result of [CMM17] establishes that if we set 𝜆 = ‖A−A𝑘‖2𝐹/𝑘, then sampling
�̃�(𝑘/𝜀2) rows a𝑖 of A proportionally to their ridge leverage scores (see Definition 6.1.1) yields a
strong coreset S of nearly optimal size satisfying Definition 14.1.1 for 𝑝 = 2. Furthermore, the
scores 𝜏 𝜆

𝑖 (A) only depend on a constant factor approximation to the value of the optimal low
rank approximation, which can be obtained more readily than a subspace which (approximately)
witnesses this value. However, the analysis of [CMM17] is highly specific to the ℓ2 norm, for
instance making heavy use of the structural properties of the SVD and the fact that the (𝑝, 2)-norm
is an entrywise norm for 𝑝 = 2, and thus does not apply to 𝑝 ̸= 2. Nonetheless, several key ideas
still do carry over to the setting of 𝑝 ̸= 2, which will be crucial to our analysis.

• First of all, we show that the ridge leverage scores are useful as sampling probabilities for
ℓ𝑝 subspace approximation if we take their (𝑝/2)-th roots. By doing so, we are able to
tap into the remarkable fact that the ridge leverage scores sum to at most 𝑂(𝑘) (Lemma
14.3.5). Note that this fact crucially relies on the special structure of the SVD, which is a
factorization that is generally only useful for the Frobenius norm rather than the (𝑝, 2)-norm,
so this may be somewhat surprising.

197

• A second idea is that ridge leverage score sampling provides a subspace embedding guaran-
tee with much fewer row samples than a standard relative error subspace embedding, by
trading off the sample complexity for an additive error. That is, when 𝜆 → 0, then it is
known that sampling the rows of A proportionally to the ridge leverage scores gives the
guarantee that with constant probability,

‖SAx‖22 = (1± 𝜀)‖Ax‖22 for every x ∈ R𝑑

when �̃�(𝑑/𝜀2) rows are sampled [DMM06a, CLM+15]. Although sample sizes scaling as 𝑑
are too expensive in our setting, [CMM17] show that if 𝜆 = ‖A−A𝑘‖2𝐹/𝑘 and we sample
rows of A proportionally to 𝜏 𝜆

𝑖 (A), then with only �̃�(𝑘/𝜀2) rows, we can get the guarantee
that

‖SAx‖22 = (1± 𝜀)‖Ax‖22 ± 𝜀𝜆‖x‖22.

In the context of low rank approximation, this additive error is small enough that it only
distorts the approximate cost by an additive 𝜀 ·OPT = 𝜀 · ‖A−A𝑘‖2𝐹 , and we will make a
similar argument for ℓ𝑝 subspace approximation as well.

• A third key idea is the observation that the ridge leverage scores provide sampling scores
which are agnostic to any specific subspace (as opposed to, e.g., leverage scores of a fixed
low-dimensional subspace), which allows us to reason about a subspace 𝑆 that is hard to
find algorithmically. This is one of the key reasons why we are able to obtain a polynomial
time algorithm for constructing our coreset, despite the heavy use of the properties of the
representative subspace 𝑆 in the analysis.

• Finally, we follow the rough analysis plan of splitting the quantity ‖A(I − P𝐹)‖𝑝,2 into
a “head” term that lives in the top �̃�(𝑘) important dimensions, a “tail” term involving
the projection off of this top subspace, and a “cross” term that involves the remaining
error after considering the former two terms, which also appears in many prior works
[VX12, CEM+15]. However, the concrete way in which we define these quantities and
preserve them via sampling is quite different from prior work.

14.1.1 Technical overview
We now give an overview of the ideas we introduce for our sampling results.

Reduction to embedding low rank matrices

Our starting point is still based on the structural result of [SW18]: there exists an 𝑠-dimensional
subspace 𝑆 for 𝑠 = dim(𝑆) = 𝑂(𝑘) poly(𝜀−1) and a vector b𝑆 ∈ R𝑛 such that for any 𝑘-
dimensional subspace 𝐹 ,

‖A(I−P𝐹)‖𝑝𝑝,2 = (1± 𝜀)‖[AP𝑆(I−P𝐹),b𝑆]‖𝑝𝑝,2.

Our analysis will roughly take two steps. First, we will show that S preserves the right hand side,
i.e.,

‖S[AP𝑆(I−P𝐹),b𝑆]‖𝑝𝑝,2 = (1± 𝜀)‖[AP𝑆(I−P𝐹),b𝑆]‖𝑝𝑝,2

198

and then in the second step, we will show that for the same subspace 𝑆, we have

‖SA(I−P𝐹)‖𝑝𝑝,2 = (1± 𝜀)‖S[AP𝑆(I−P𝐹),b𝑆]‖𝑝𝑝,2. (14.2)

This chain of bounds will show that

‖SA(I−P𝐹)‖𝑝𝑝,2 = (1± 3𝜀)‖A(I−P𝐹)‖𝑝𝑝,2

which is the desired result.
In fact, the sampling algorithm analysis for both of these steps will be quite similar. Ignoring

the offset vector b𝑆 for now for simplicity, the first step essentially asks for the guarantee that

‖SAX‖𝑝𝑝,2 = (1± 𝜀)‖AX‖𝑝𝑝,2 (14.3)

for every X with columns that lie in the subspace 𝑆. This guarantee essentially reduces to
sampling an ℓ𝑝 subspace embedding for the subspace 𝑆, but there is an additional challenge that
we cannot afford to explicitly compute 𝑆 if we want polynomial time algorithms.

The second step will in fact follow from a generalization of this guarantee. The representative
subspace theorem of [SW18] shows that (14.2) will follow if

‖SA(P𝑆∪𝐹 −P𝑆)‖𝑝𝑝,2 ≤ 𝜀𝑝 OPT for every 𝐹 ∈ ℱ𝑘, (14.4)

where P𝑆∪𝐹 denotes the projection matrix onto span(𝑆 ∪ 𝐹). Furthermore, by the construction
of 𝑆, 𝑆 already satisfies ‖A(P𝑆∪𝐹 −P𝑆)‖𝑝𝑝,2 ≤ 𝜀𝑝OPT. Thus, it suffices to show that

‖SAX‖𝑝𝑝,2 = 𝑂(1)‖AX‖𝑝𝑝,2 for all X ∈ R𝑑×𝑑 with rank(X) ≤ 𝑘 and ‖X‖2 ≤ 1.

Note that this differs from (14.3) since it asks for S to preserve all low rank matrices, rather than X
with columns restricted in a low dimensional subspace. Thus, this guarantee is substantially more
interesting than the first guarantee, and complicates our analysis. We note that for 𝑝 = 2, (14.3) is
actually sufficient to show (14.4), since if 𝑆 is chosen as the top 𝑂(𝑘/𝜀2) singular directions of
A, then A(I−P𝑆) has operator norm at most 𝑂(𝜀2/𝑘)‖A−A𝑘‖2𝐹 . This operator norm is then
sufficient for (14.4). However, such operator norm-based arguments are not available for 𝑝 ̸= 2
due to the lack of an SVD.

A crucial relaxation is that it in fact suffices to show that

‖SAX‖𝑝𝑝,2 = (1± 𝜀)‖AX‖𝑝𝑝,2 ± 𝜀OPT (14.5)

whenever we apply this sampling theorem. Thus for the rest of this technical overview, we will
focus on showing (14.5).

Idea 1: additive-multiplicative ℓ𝑝 subspace embeddings via root ridge leverage scores

We begin by using Dvoretzky’s theorem to embed the ℓ2 norm into the ℓ𝑝 norm, so that we have

‖AX‖𝑝𝑝,2 = (1± 𝜀)
1

𝑚
‖AXH‖𝑝𝑝,𝑝

199

where H ∈ R𝑑×𝑚 is an i.i.d. standard Gaussian matrix. By embedding the (𝑝, 2)-norm into an
entrywise ℓ𝑝 norm, we decouple the norm of the columns, reducing our problem to preserving the
ℓ𝑝 norm of vectors of the form Ax. That is, we seek guarantees of the form ‖SAx‖𝑝𝑝 ≈ ‖Ax‖𝑝𝑝.
Such guarantees are known as ℓ𝑝 subspace embeddings, and are well-studied in the literature.

The first new ingredient in our analysis is to adapt the additive-multiplicative ℓ2 subspace
embedding idea of [CMM17]. In this result, [CMM17] show that if S is taken to be a sampling
matrix with probabilities proportional to the ridge leverage scores 𝜏 𝜆

𝑖 (A) = ‖A−A𝑘‖2𝐹/𝑘, then
one obtains the additive-multiplicative guarantee

‖SAx‖22 = (1± 𝜀)‖Ax‖22 ± 𝜀𝜆‖x‖22
with only �̃�(𝑘/𝜀2) samples. This fact immediately follows from applying the more standard
guarantee for leverage score sampling on a concatenated matrix [A;

√
𝜆I] ∈ R(𝑛+𝑑)×𝑑, where I is

the 𝑑× 𝑑 identity. For an ℓ𝑝 version of this result, we use the root leverage scores discussed in
Chapter 8.

With the ℓ𝑝 subspace embedding theorem in hand, we can now apply a similar trick as
[CMM17]: we set 𝜆 = ‖A−A𝑘‖2𝐹/𝑘 so that we only sample �̃�(𝑘𝑝/2) poly(𝜀−1) rows for 𝑝 > 2
and �̃�(𝑘) poly(𝜀−1) rows for 𝑝 < 2, and then obtain an additive-multiplicative subspace embed-
ding guarantee by viewing it as a subspace embedding for the matrix formed by concatenating A
with

√
𝜆I, so that the leverage scores of the concatenated matrix correspond to the ridge leverage

scores of A. The resulting guarantee is that

‖SAx‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝 ± 𝜀𝜆𝑝/2‖x‖𝑝𝑝.

Now, we can apply the above ℓ𝑝 affine embedding guarantees for the sampling matrix S on
each column of 1

𝑚
‖AXH‖𝑝𝑝,𝑝 to obtain the approximation guarantee

1

𝑚
‖SAXH‖𝑝𝑝,𝑝 = (1± 𝜀)

1

𝑚
‖AXH‖𝑝𝑝,𝑝 ± 𝜀

𝜆𝑝/2

𝑚
‖XH‖𝑝𝑝,𝑝.

Now by applying Dvoretzky’s theorem to revert the (𝑝, 𝑝)-norm back to the (𝑝, 2)-norm, we obtain

‖SAX‖𝑝𝑝,2 = (1± 𝜀)‖AX‖𝑝𝑝,2 ± 𝜀𝜆𝑝/2‖X‖𝑝𝑝,2.

Finally, it remains to bound 𝜆𝑝/2‖X‖𝑝𝑝,2, but here we will encounter some problems.

Problems when bounding the additive error

To bound the additive error 𝜆𝑝/2‖X‖𝑝𝑝,2, we will case on 𝑝 < 2 and 𝑝 > 2. We may assume
without loss of generality that X has at most 𝑛 rows, by restricting the analysis to the row span of
A throughout. Then for 𝑝 < 2, 𝜆𝑝/2 is at most

𝜆𝑝/2 =
‖A−A𝑘‖𝑝𝐹

𝑘𝑝/2
≤ ‖A(I−P*)‖𝑝𝐹

𝑘𝑝/2
≤
‖A(I−P*)‖𝑝𝑝,2

𝑘𝑝/2
=

OPT

𝑘𝑝/2
(14.6)

by the monotonicity of ℓ𝑝 norms, while for 𝑝 > 2, 𝜆𝑝/2 is at most

𝜆𝑝/2 =
‖A−A𝑘‖𝑝𝐹

𝑘𝑝/2
≤ ‖A(I−P*)‖𝑝𝐹

𝑘𝑝/2
≤

𝑛𝑝/2−1‖A(I−P*)‖𝑝𝑝,2
𝑘𝑝/2

=
𝑛𝑝/2−1OPT

𝑘𝑝/2
. (14.7)

200

Furthermore,

‖X‖𝑝𝑝,2 ≤

{︃
𝑛1−𝑝/2‖X‖𝑝2,2 if 𝑝 < 2

‖X‖𝑝2,2 if 𝑝 > 2
≤

{︃
𝑛1−𝑝/2𝑠𝑝/2 if 𝑝 < 2

𝑠𝑝/2 if 𝑝 > 2

by relating ℓ𝑝 and ℓ2 norms in 𝑛 dimensions and using that rank(X) ≤ 𝑠 and ‖X‖2 ≤ 1. Then
overall, we obtain a bound of

𝜆𝑝/2‖X‖𝑝𝑝,2 ≤

⎧⎪⎨⎪⎩
𝑛1−𝑝/2𝑠𝑝/2

OPT

𝑘𝑝/2
if 𝑝 < 2

𝑛𝑝/2−1𝑠𝑝/2
OPT

𝑘𝑝/2
if 𝑝 > 2

Note that if we use rank 𝑠 root ridge leverage scores instead of rank 𝑘 root ridge leverage scores,
we would be able to replace the 𝑘𝑝/2 on the denominator by 𝑠𝑝/2 to cancel out the 𝑠𝑝/2 in the
numerator, with only a poly(𝜀−1) cost to the sample complexity. However, even still, our bound is
𝑛1−𝑝/2OPT for 𝑝 < 2 and 𝑛𝑝/2−1OPT for 𝑝 > 2, which is off by poly(𝑛) factors from our goal
of OPT in either case.

In order to fix this problem and improve our analysis by poly(𝑛) factors, we will use two
different types of “flattening” tricks, one for 𝑝 < 2 and one for 𝑝 > 2, which we discuss in the
next two sections.

Idea 2: Dvoretzky’s theorem for sharper additive error bounds for 𝑝 > 2

To overcome the previous issue for 𝑝 > 2, we note that we have an additional degree of freedom
when choosing to concatenate A with

√
𝜆I when analyzing the ridge leverage score sampling

algorithm. Indeed, as long as we concatenate A with
√
𝜆U for any orthonormal matrix U, then

the leverage scores of A concatenated with
√
𝜆U will have leverage scores which coincide with

the ridge leverage scores of A, since

a⊤
𝑖 (A

⊤A+ 𝜆U⊤U)−1a𝑖 = a⊤
𝑖 (A

⊤A+ 𝜆I)−1a𝑖.

The resulting guarantee is that

‖SAx‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝 ± 𝜀𝜆𝑝/2‖Ux‖𝑝𝑝, (14.8)

so we may select U to be an orthonormal matrix which makes this additive error as small as
possible. We will choose U to be a random 𝑛× 𝑑 orthonormal matrix G, which has the advantage
of flattening the mass of x and thus minimizing the ℓ𝑝 norm.

By Dvoretzky’s theorem [Dvo61, FLM77, PVZ17], it follows that as long as 𝑛 is at least
�̃�(𝑠𝑝/2) poly(𝜀−1) = �̃�(𝑘𝑝/2) poly(𝜀−1), then for any x in a fixed 𝑠-dimensional subspace, we
will have that

‖Gx‖𝑝𝑝 = (1± 𝜀)𝑛1−𝑝/2‖x‖𝑝2. (14.9)

This cancels out with the factor of 𝑛𝑝/2−1 that we lost in (14.7), giving us a sharp enough additive
error. It may be tempting to reduce the additive error even further by choosing G to have 𝑚≫ 𝑛

201

rows rather than just 𝑛. However, this would affect the total number of rows sampled, since we
would then need to oversample the root ridge leverage scores by a factor of 𝑚𝑝/2−1, which would
increase the sample complexity. Note also that once the additive error is sufficiently small, (14.8)
would give the purely multiplicative subspace embedding guarantee ‖SAx‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝,
for which there is a sample complexity lower bound of Ω(𝑑𝑝/2/𝜀) [LWW21].

Although we have fixed the 𝑛𝑝/2−1 factor, we must now address a subtle issue. The above
analysis works for a fixed rank 𝑠 subspace specified by the low rank matrix X. However, if we
want this guarantee for every rank 𝑠 matrix X with operator norm 1 as we need, then we run
into problems, since for any fixed embedding G of dimension only �̃�(𝑘𝑝/2) poly(𝜀−1), there
exists a choice of X which causes (14.9) to fail. To fix our final problem, we crucially exploit
independence in our analysis. We first fix the sampling matrix S and let X ⊆ R𝑑×𝑑 be the rank 𝑠
matrix with ‖AX‖𝑝𝑝,2+OPT‖X‖𝑝2 ≤ 1 that maximizes the sampling error |‖SAX‖𝑝𝑝,2−‖AX‖𝑝𝑝,2|.
Note then that X depends only on S but not on G, so we may bound ‖GX‖𝑝𝑝,2 as we did before.
This completes our proof sketch for 𝑝 > 2.

Idea 3: splitting rows for sharper additive error bounds for 𝑝 < 2

To improve our argument for 𝑝 < 2, we will sharpen the bound of (14.6). The loose bound
that we will tighten is bounding the Frobenius norm loss ‖A(I−P*)‖𝑝𝐹 by the (𝑝, 2)-norm loss
‖A(I − P*)‖𝑝𝑝,2. For general matrices, this bound is indeed tight since the rows of A(I − P*)
could be imbalanced so that most of the mass is concentrated on a few rows. However, this bound
is loose when the rows are flat, in which case there can be a poly(𝑛) factor separation in the two
quantities. We will show how to recover this separation.

A classic result of [VX12] shows that the sensitivity scores (14.1) for ℓ𝑝 subspace approxima-
tion sum to at most 𝑂(𝑘) for 𝑝 < 2. Then, a standard flattening argument shows that by replacing
rows a𝑖 with large sensitivity with 𝑙 copies of the scaled row a𝑖/𝑙

1/𝑝, we obtain a new matrix A′

with 𝑛′ ≤ 2𝑛 rows that are each just scaled copies of rows of A, such that 𝜎𝑖′(A
′) = 𝑂(𝑘/𝑛)

for every row 𝑖′ ∈ [𝑛′] and ‖A′(I−P𝐹)‖𝑝𝑝,2 = ‖A(I−P𝐹)‖𝑝𝑝,2 for every 𝐹 ∈ ℱ𝑘. Because this
matrix is now flat, it can be shown that

‖A′(I−P*)‖2𝐹 ≲ (𝑘/𝑛)2/𝑝−1OPT2/𝑝 .

Thus by replacing A with A′, we obtain a matrix formed by the rows of A that gives the same
objective function, yet has a much smaller additive error when bounding 𝜆, giving

𝜆𝑝/2 =
‖A′ −A′

𝑘‖
𝑝
𝐹

𝑘𝑝/2
≤ ‖A

′(I−P*)‖𝑝𝐹
𝑘𝑝/2

≤ (𝑘/𝑛)1−𝑝/2
‖A′(I−P*)‖𝑝𝑝,2

𝑘𝑝/2
= (𝑘/𝑛)1−𝑝/2OPT

𝑘𝑝/2
.

rather than the original bound in (14.6). We note, however, that this argument is still lossy, since the
standard sensitivity-based flattening argument would flatten any matrix, whereas we only need this
result for a single constant factor approximate subspace 𝐹 . Thus, we instead explicitly compute a
constant factor bicriteria solution, which can be done very quickly [DTV11, FKW21, WY23a]
(see Lemma 14.3.2), and flatten this particular solution nearly optimally, so that we instead get
the bound

𝜆𝑝/2 =
‖A′ −A′

𝑘‖
𝑝
𝐹

𝑘𝑝/2
≤ ‖A

′(I−P𝐹)‖
𝑝
𝐹

𝑘𝑝/2
≤ (1/𝑛)1−𝑝/2

‖A′(I−P𝐹)‖
𝑝
𝑝,2

𝑘𝑝/2
= 𝑛𝑝/2−1𝑂(OPT)

𝑘𝑝/2
.

202

Thus, we recover the extra factor of 𝑛1−𝑝/2 lost when converting from the ℓ𝑝 norm to the ℓ2 norm.
This completes our proof sketch for 𝑝 < 2.

14.1.2 Corollaries
Streaming and distributed models

A simple corollary of our nearly optimal constructions for strong coresets is that we immediately
obtain similar results in streaming and distributed models of computation (see Section 1.3.3).
In the streaming model, the rows a𝑖 of the input matrix A arrive one at a time, and we wish to
maintain a strong coreset for A. In this setting, the classic merge-and-reduce technique (see, e.g.,
[BDM+20] for a discussion) shows that a construction for a coreset of size �̃�(𝑘𝑐) poly(𝜀−1) can be
converted into a streaming implementation of size �̃�(𝑘𝑐) poly(𝜀−1 log 𝑛) by setting the accuracy
parameter to 𝜀′ = 𝜀/ log 𝑛 and composing the coreset construction in a binary tree fashion. Recent
work of [CWZ23] shows that this argument can in fact be sharpened to a poly(log log 𝑛) factor
overhead rather than poly(log 𝑛), by first computing an online coreset. Similarly, in the distributed
model, the rows of A are partitioned among 𝑡 servers, and we wish to communicate a strong
coreset to a central coordinator. This task can be solved nearly optimally if each server computes
a coreset, sends their coreset to the central coordinator, and the central coordinator computes a
coreset for the collection of coresets.

Online coresets

Next, we note an application of our result to designing algorithms for online coresets for ℓ𝑝
subspace approximation. For ℓ𝑝 subspace approximation, the works of [BLVZ19, BDM+20]
studied the case of 𝑝 = 2 based on the result of [CMM17], while [WY23a] studied the case of
𝑝 ̸= 2, achieving a coreset size of roughly �̃�(𝑘𝑝+𝑂(1)) poly(𝜀−1) by analyzing an algorithm based
on sensitivity sampling [HV20].2 One of the main open questions left in [WY23a] is whether
there exists an online coreset algorithm which samples only �̃�(𝑘𝑝/2+𝑂(1)) poly(𝜀−1) rows for
𝑝 > 2. Our ℓ𝑝 subspace approximation coreset result resolves this question nearly optimally. Our
results here are given in Section 14.6.1.

Entrywise ℓ𝑝 low rank approximation

Finally, we note that for 𝑝 < 2, our nearly optimal coresets for ℓ𝑝 subspace approximation imply
new algorithms for the related problem of entrywise ℓ𝑝 low rank approximation.

Definition 14.1.6. Let A ∈ R𝑛×𝑑 and let 𝑘 be a rank parameter. Let 1 ≤ 𝑝 < ∞. Then, the
entrywise ℓ𝑝 low rank approximation problem is the problem of minimizing the objective function

‖A−X‖𝑝𝑝,𝑝 =
𝑛∑︁

𝑖=1

𝑑∑︁
𝑗=1

|(A−X)𝑖,𝑗|𝑝

2 In our discussion of online coresets, we allow for the �̃�(·) notation to suppress polylogarithmic factors in 𝑛 and
an “online condition number” quantity 𝜅OL which appears in all prior works on online coresets and is known to be
necessary.

203

among all rank 𝑘 matrices X ∈ R𝑛×𝑑.

This problem is another computationally difficult variant of the low rank approximation
problem, and approximation algorithms and hardness have been studied in a long line of work
[SWZ17, CGK+17, DWZ+19, MW21, JLL+21, WY23a]. The works of [JLL+21, WY23a] show
that for 𝑝 < 2, if we multiply A on the right by a dense matrix G of 𝑝-stable random variables
[Nol20] and then compute an ℓ𝑝 subspace approximation coreset S of AG of size �̃�(𝑘), then
there exists a rank 𝑘 matrix V such that

‖A−VSA‖𝑝𝑝,𝑝 ≤ �̃�(𝑘1/𝑝−1/2) min
rank(X)≤𝑘

‖A−X‖𝑝𝑝,𝑝.

Among subset selection algorithms, this approximation guarantee is nearly optimal [MW21]. Fur-
thermore, because S is constructed based on sketching and coresets for ℓ𝑝 subspace approximation,
this algorithm can be implemented in streaming and distributed settings, and previously discussed.
However, these prior results had drawbacks. The result of [JLL+21] relied on the coreset con-
struction of [SW18], and thus required exponential time to run. In the work of [WY23a], this idea
was applied in the setting of online coresets, but their online coreset required a size of at least 𝑘4,
which resulted in a suboptimal approximation factor of at least 𝑘4(1/𝑝−1/2). Our result fixes both
of these problems, by substantially speeding up the algorithm of [JLL+21] to achieve the first
polynomial time subset selection algorithm selecting �̃�(𝑘) columns with �̃�(𝑘1/𝑝−1/2) distortion,
as well as the first online coreset algorithm which selects �̃�(𝑘) rows with a �̃�(𝑘1/𝑝−1/2) distortion.
Note that the prior best efficient subset selection algorithm of [MW21] selects 𝑂(𝑘 log 𝑑) rows
for �̃�(𝑘1/𝑝−1/2) distortion.

14.2 Representative subspace theorem for ℓ𝑝 subspace approx-
imation

One of the main technical ingredients for our strong coreset is the representative subspace theorem
of [SW18, Theorem 10], which shows that the ℓ𝑝 subspace approximation cost can approximately
be decomposed into a cost onto a low dimensional subspace plus the cost of projecting onto this
subspace. We provide sharper bounds for this result in this section.

Theorem 14.2.1 (Representative subspace theorem). Let 1 ≤ 𝑝 < ∞. Suppose that an 𝑠-
dimensional subspace 𝑆 satisfies

‖A(P𝑆 −P𝑆∪𝐹)‖𝑝𝑝,2 ≤ 𝜀𝑝 · OPT

for every 𝐹 ∈ ℱ𝑘. Then if P𝑆 is the projection matrix onto 𝑆 and b𝑆 ∈ R𝑛 is the vector defined
by

b𝑆(𝑖) :=
⃦⃦
a⊤
𝑖 (I−P𝑆)

⃦⃦
2
,

then

for all 𝐹 ∈ ℱ𝑘, ‖A(I−P𝐹)‖𝑝𝑝,2 = (1± 𝜀)‖[AP𝑆(I−P𝐹), b𝑆]‖𝑝𝑝,2, (14.10)

204

where [AP𝑆(I−P𝐹), b𝑆] denotes the 𝑛× (𝑑+ 1) concatenation of AP𝑆(I−P𝐹) ∈ R𝑛×𝑑 and
b𝑆 ∈ R. Furthermore, such a subspace 𝑆 exists for

𝑠 =
𝑂(𝑘)

𝜀max{2,𝑝}

such that ‖b𝑆‖𝑝𝑝 ≤ OPT.

We note that any subspace 𝑆 ′ that contains a subspace 𝑆 satisfying the properties of Theorem
14.2.1 will continue to have the same properties.

Lemma 14.2.2. Let 𝑆 ′ ⊇ 𝑆 be two subspaces such that 𝑆 satisfies the guarantees of Theorem
14.2.1. Then, 𝑆 ′ does as well.

Proof. Note that for any a ∈ R𝑑 and 𝑘-dimensional subspace 𝐹 ,

‖a⊤(P𝑆′ −P𝑆′∪𝐹)‖22 ≤ ‖a⊤(P𝑆 −P𝑆∪𝐹)‖22

since (P𝑆∪𝐹 − P𝑆) maps its input to the component of 𝐹 orthogonal to 𝑆 and similarly for
(P𝑆′∪𝐹 −P𝑆′). Thus,

‖A(P𝑆′ −P𝑆′∪𝐹)‖𝑝𝑝,2 ≤ ‖A(P𝑆 −P𝑆∪𝐹)‖𝑝𝑝,2 ≤ 𝜀𝑝 · OPT

It follows that (14.10) holds from arguments in [SW18, Theorem 10]. We also have that

‖a⊤
𝑖 (I−P𝑆′)‖22 ≤ ‖a⊤

𝑖 (I−P𝑆)‖22

so ‖b𝑆′‖𝑝𝑝 ≤ ‖b𝑆‖𝑝𝑝 ≤ OPT holds as well.

14.2.1 Sharper scalar inequalities
The following result simplifies and sharpens [SW18, Claim 2].

Lemma 14.2.3. Let 𝑢, 𝑣, 𝑤 ≥ 0 satisfy 𝑢2 = 𝑣2 − 𝑤2. Then,

𝑢𝑝 ≤

{︃
min{𝜀𝑣𝑝, 2𝑝−1𝜀1−2/𝑝(𝑣𝑝 − 𝑤𝑝)} 1 ≤ 𝑝 ≤ 2

𝑣𝑝 − 𝑤𝑝 2 ≤ 𝑝 <∞

Proof. The second inequality follows from the subadditivity of (·)𝑝/2 [SW18] so it remains to
show the first. We may assume that 𝑣 = 1 by scaling. We also reparameterize 𝑤 = 1 − 𝑥 for
some 0 ≤ 𝑥 ≤ 1. Then,

𝑢𝑝 = (1− (1− 𝑥)2)𝑝/2 ≤ (2𝑥)𝑝/2

and
𝑢𝑝

𝑣𝑝 − 𝑤𝑝
=

𝑢𝑝

1− (1− 𝑥)𝑝
≤ (2𝑥)𝑝/2

𝑥
= 2𝑝/2𝑥𝑝/2−1

Thus, if 𝑥 ≤ 𝜀2/𝑝/2, then 𝑢𝑝 ≤ 𝜀, and if 𝑥 ≥ 𝜀2/𝑝/2, then 𝑢𝑝 ≤ 2𝑝−1𝜀1−2/𝑝(𝑣𝑝 − 𝑤𝑝).

The following result sharpens [SW18, Claim 5].

205

Lemma 14.2.4. Let 𝑢, 𝑣 ≥ 0 and 1 ≤ 𝑝 <∞. Then,

(𝑢+ 𝑣)𝑝 ≤ (1 + 𝜀)𝑢𝑝 +
(2𝑝)𝑝

𝜀𝑝−1
𝑣𝑝

Proof. We may assume that 𝑢 = 1 by scaling. If 𝑣 ≥ 1, then (1 + 𝑣)𝑝 ≤ 2𝑝𝑣𝑝 so assume that
𝑣 ≤ 1. Then, (1 + 𝑣)𝑝 ≤ 1 + 2𝑝𝑣 so if 2𝑝𝑣 ≤ 𝜀, then (1 + 𝑣)𝑝 ≤ 𝜀, while if 2𝑝𝑣 ≥ 𝜀, then

(1 + 𝑣)𝑝 ≤ 1 + 2𝑝𝑣 = 1 +
2𝑝

𝑣𝑝−1
𝑣𝑝 ≤ 1 +

(2𝑝)𝑝

𝜀𝑝−1
𝑣𝑝.

The following result generalizes [SW18, Lemma 4] to 𝑝 > 1.

Lemma 14.2.5. Let 𝑎, 𝑏, 𝑓, 𝑔 ≥ 0. Then,

|(𝑎2 + 𝑏2)𝑝/2 − (𝑓 2 + 𝑔2)𝑝/2| ≤ (4𝑝)𝑝

2𝜀𝑝−1
(|𝑎− 𝑓 |𝑝 + |𝑏− 𝑔|𝑝) + 𝜀

(︀
(𝑎2 + 𝑏2)𝑝/2 + (𝑓 2 + 𝑔2)𝑝/2

)︀
.

Proof. By Lemma 14.2.4, we have that

‖(𝑎, 𝑏)‖𝑝2 ≤ (‖(𝑎− 𝑓, 𝑏− 𝑔)‖2 + ‖(𝑓, 𝑔)‖2)𝑝 ≤ (1 + 𝜀)‖(𝑓, 𝑔)‖𝑝2 +
(2𝑝)𝑝

𝜀𝑝−1
‖(𝑎− 𝑓, 𝑏− 𝑔)‖𝑝2

and similarly

‖(𝑓, 𝑔)‖𝑝2 ≤ (‖(𝑎− 𝑓, 𝑏− 𝑔)‖2 + ‖(𝑎, 𝑏)‖2)𝑝 ≤ (1 + 𝜀)‖(𝑎, 𝑏)‖𝑝2 +
(2𝑝)𝑝

𝜀𝑝−1
‖(𝑎− 𝑓, 𝑏− 𝑔)‖𝑝2.

Thus,

|‖(𝑎, 𝑏)‖𝑝2 − ‖(𝑓, 𝑔)‖
𝑝
2| ≤

(2𝑝)𝑝

𝜀𝑝−1
‖(𝑎− 𝑓, 𝑏− 𝑔)‖𝑝2 + 𝜀(‖(𝑎, 𝑏)‖𝑝2 + ‖(𝑓, 𝑔)‖

𝑝
2).

Finally, we bound

‖(𝑎− 𝑓, 𝑏− 𝑔)‖𝑝2 ≤ ‖(𝑎− 𝑓, 𝑏− 𝑔)‖𝑝1 ≤ 2𝑝−1(|𝑎− 𝑓 |𝑝 + |𝑏− 𝑔|𝑝).

14.2.2 Proof of the representative subspace theorem
The first lemma shows that if ‖a⊤(P𝑆 −P𝑆∪𝐹)‖2 is small, then the projection of a vector a onto
𝑆 ∪ 𝐹 is close to its projection onto 𝑆, and the projection of a⊤P𝑆∪𝐹 onto 𝐹 is close to the
projection of a⊤P𝑆 onto 𝐹 .

Lemma 14.2.6. Let 𝑆, 𝐹 ⊆ R𝑑 be subspaces and let a ∈ R𝑑 be a vector. Then,
• ‖a⊤(I−P𝑆∪𝐹)‖2 = ‖a⊤(I−P𝑆)‖2 ± ‖a⊤(P𝑆 −P𝑆∪𝐹)‖2
• ‖a⊤(P𝑆∪𝐹 −P𝐹)‖2 = ‖a⊤P𝑆(I−P𝐹)‖2 ± ‖a⊤(P𝑆 −P𝑆∪𝐹)‖2

206

Proof. These are proven in [SW18]. We reproduce a proof for the reader’s convenience. The
first inequality is just the triangle inequality, so it remains to show the latter. One direction of the
inequality follows by

‖a⊤(P𝑆∪𝐹 −P𝐹)‖2 = min
x∈𝐹
‖a⊤P𝑆∪𝐹 − x‖2

≤ ‖a⊤P𝑆∪𝐹 − a⊤P𝑆P𝐹‖2 ≤ ‖a⊤(P𝑆∪𝐹 −P𝑆)‖2 + ‖a⊤P𝑆(I−P𝐹)‖2

and the other by

‖a⊤P𝑆(I−P𝐹)‖2 = min
x∈𝐹
‖a⊤P𝑆 − x‖2

≤ ‖a⊤P𝑆 − a⊤P𝐹‖2 ≤ ‖a⊤(P𝑆 −P𝑆∪𝐹)‖2 + ‖a⊤(P𝑆∪𝐹 −P𝐹)‖2

We may combine Lemma 14.2.6 with Lemma 14.2.5 to show the following, which states that
the projection cost of a onto 𝐹 is approximately the sum of the cost of projecting onto 𝑆, and
then projecting onto 𝐹 .

Lemma 14.2.7. Let 𝑆, 𝐹 ⊆ R𝑑 be subspaces and let a ∈ R𝑑 be a vector. Then,⃒⃒
‖a⊤(I−P𝐹)‖𝑝2 − (‖a⊤(I−P𝑆)‖22 + ‖a⊤P𝑆(I−P𝐹)‖22)𝑝/2

⃒⃒
≤
(︂
(4𝑝)𝑝

𝜀𝑝−1
+ 2𝑝−1𝜀

)︂
‖a⊤(P𝑆 −P𝑆∪𝐹)‖𝑝2 + (2𝑝−1 + 1)𝜀‖a⊤(I−P𝐹)‖𝑝2

Proof. Note that by orthogonality,

‖a⊤(I−P𝐹)‖22 = ‖a⊤(I−P𝑆∪𝐹)‖22 + ‖a⊤(P𝑆∪𝐹 −P𝐹)‖22.

Then, we apply Lemma 14.2.5 with 𝑎 = ‖a⊤(I − P𝑆∪𝐹)‖2, 𝑏 = ‖a⊤(P𝑆∪𝐹 − P𝐹)‖2, 𝑓 =
‖a⊤(I−P𝑆)‖2, and 𝑔 = ‖a⊤P𝑆(I−P𝐹)‖2 as well as the bound

|𝑎− 𝑏|, |𝑓 − 𝑔| ≤ ‖a⊤(P𝑆 −P𝑆∪𝐹)‖2

from Lemma 14.2.6 to see that

|‖(𝑎, 𝑏)‖22 − ‖(𝑓, 𝑔)‖22|𝑝/2 =
⃒⃒
‖a⊤(I−P𝐹)‖𝑝2 − (‖a⊤(I−P𝑆)‖22 + ‖a⊤P𝑆(I−P𝐹)‖22)𝑝/2

⃒⃒
≤ (4𝑝)𝑝

2𝜀𝑝−1
(|𝑎− 𝑓 |𝑝 + |𝑏− 𝑔|𝑝) + 𝜀(‖(𝑎, 𝑏)‖𝑝2 + ‖(𝑓, 𝑔)‖

𝑝
2)

≤ (4𝑝)𝑝

𝜀𝑝−1
‖a⊤(P𝑆 −P𝑆∪𝐹)‖𝑝2

+ 𝜀(‖a⊤(I−P𝐹)‖𝑝2 + (‖a⊤(I−P𝑆)‖22 + ‖a⊤P𝑆(I−P𝐹)‖22)𝑝/2).

Note that

(‖a⊤(I−P𝑆)‖22 + ‖a⊤P𝑆(I−P𝐹)‖22)𝑝/2 ≤ 2𝑝−1(‖a⊤(I−P𝑆∪𝐹)‖22 + ‖a⊤(P𝑆∪𝐹 −P𝐹)‖22)𝑝/2

+ 2𝑝−1‖a⊤(P𝑆 −P𝑆∪𝐹)‖𝑝2
= 2𝑝−1‖a⊤(I−P𝐹)‖𝑝2 + 2𝑝−1‖a⊤(P𝑆 −P𝑆∪𝐹)‖𝑝2

so combining the bounds gives the claimed result.

207

It remains to construct a subspace 𝑆 such that ‖A(P𝑆 − P𝑆∪𝐹)‖𝑝𝑝,2 is small for every 𝑘-
dimensional subspace 𝐹 .

Lemma 14.2.8. Let 1 ≤ 𝑝 < ∞ and 𝑘 ∈ N. There is an 𝑠-dimensional subspace 𝑆 where
𝑠 = 𝑂(𝑘/𝜀max{2,𝑝}) such that for every 𝑘-dimensional subspace 𝐹 ,

‖A(P𝑆 −P𝑆∪𝐹)‖𝑝𝑝,2 ≤ 𝜀𝑝OPT

where OPT = min𝐹∈ℱ𝑘
‖A(I−P𝐹)‖𝑝𝑝,2.

Proof. The proof largely follows [SW18] combined with our improved inequalities proved earlier.
We reproduce a proof for the reader’s convenience.

Lemma 6 in [SW18] shows that there is an 𝑠-dimensional subspace 𝑆 such that

‖A(I−P𝑆)‖𝑝𝑝,2 − ‖A(I−P𝑆∪𝐹)‖𝑝𝑝,2 ≤ 𝜀max{2,𝑝}OPT (14.11)

for every 𝑘-dimensional subspace 𝐹 ∈ ℱ𝑘. We now use the fact that for any vector a ∈ R𝑑,

‖a⊤(P𝑆 −P𝑆∪𝐹)‖22 = ‖a⊤(I−P𝑆)‖22 − ‖a⊤(I−P𝑆∪𝐹)‖22

by orthogonality and Lemma 14.2.3 (with 𝜀′ = 𝜀𝑝) to show that

‖A(P𝑆−P𝑆∪𝐹)‖𝑝𝑝,2 ≤

{︃
𝜀𝑝‖A(I−P𝑆)‖𝑝𝑝,2 + 2𝜀𝑝−2(‖A(I−P𝑆)‖𝑝𝑝,2 − ‖A(I−P𝑆∪𝐹)‖𝑝𝑝,2) 1 ≤ 𝑝 < 2

‖A(I−P𝑆)‖𝑝𝑝,2 − ‖A(I−P𝑆∪𝐹)‖𝑝𝑝,2 2 ≤ 𝑝 <∞

by summing up the inequalities over vectors a𝑖 for 𝑖 ∈ [𝑛]. By (14.11), we have that

‖A(P𝑆 −P𝑆∪𝐹)‖𝑝𝑝,2 ≤ 3𝜀𝑝OPT

in any case. Rescaling 𝜀 by constant factors yields the statement of the theorem.

Finally, we combine this bound with Lemma 14.2.7 to conclude Theorem 14.2.1.

14.3 Preliminaries

14.3.1 Dvoretzky’s theorem
A classic result of Dvoretzky and Milman [Dvo61, Mil71] shows that a random subspace of a
normed space is approximately Euclidean. We will need the following version of this result for ℓ𝑝
norms:

Theorem 14.3.1 (Dvoretzky’s theorem for ℓ𝑝 norms [FLM77, PVZ17]). Let 1 ≤ 𝑝 < ∞ and
0 < 𝜀 < 1/𝑝. Let 𝑛 ≥ 𝑂(max{𝜀−2𝑘, 𝜀−1𝑘𝑝/2), and let G ∈ R𝑛×𝑘 be an i.i.d. random Gaussian
matrix. Then,

Pr
{︁

for all x ∈ R𝑘, ‖Gx‖𝑝𝑝 = (1± 𝜀)𝑛‖x‖𝑝2
}︁
≥ 2

3

208

14.3.2 Flattening
It is known that constant factor bicriteria solutions for ℓ𝑝 subspace approximation can be computed
quickly via convex relaxations [DTV11] or by combining sketching techniques with ℓ𝑝 Lewis
weight sampling [FKW21, WY23a]. The following lemma gives a version of [WY23a, Algorithm
3] that is optimized for running time.

Lemma 14.3.2 (Fast constant factor approximation). Let A ∈ R𝑛×𝑑, 1 ≤ 𝑝 ≤ 2, and 𝑘 ∈ N. Let
G ∈ R𝑡×𝑑 be a sparse embedding matrix [NN13, Coh16] with 𝑡 = 𝑂(𝑘 log(𝑛/𝛿)) and sparsity
𝑠 = 𝑂(log(𝑛/𝛿)). Let 𝐹 denote the span of 𝑂(𝑡 log(𝑡/𝛿)) rows sampled according to the ℓ𝑝 Lewis
weights of AG⊤ [CP15]. Then, with probability at least 1− 𝛿, the following hold:

• ‖A(I−P𝐹)‖
𝑝
𝑝,2 ≤ 𝑂(OPT).

• The subspace 𝐹 can be computed in �̃�(nnz(A) + 𝑡𝜔) time

Proof. The correctness is shown in [WY23a], so it remains to argue the running time. The sparse
embedding matrix G only requires time �̃�(nnz(A) log(1/𝛿)) to apply due to its sparsity. The ℓ𝑝
Lewis weights of AG⊤ can then be computed in time �̃�(nnz(AG⊤) + 𝑡𝜔) = �̃�(nnz(A) + 𝑡𝜔)
[CP15].

By using Lemma 14.3.2, we will obtain a fast algorithm for quickly flattening a matrix by
splitting rows, which will be a crucial component of our sampling algorithm for 𝑝 < 2. Similar
techniques have long been used in the literature of ℓ𝑝 subspace embeddings [BLM89, CP15,
MMWY22, WY23b].

Lemma 14.3.3 (Flattening). Let A ∈ R𝑛×𝑑, 1 ≤ 𝑝 < ∞, and 𝑘 ∈ N. Let 𝐹 ⊆ R𝑑 be a
subspace. Then, there is an 𝑛′ × 𝑑 matrix A′ with 𝑛 ≤ 𝑛′ ≤ (3/2)𝑛 such that ‖A(I−P𝐹)‖𝑝𝑝,2 =
‖A′(I−P𝐹)‖𝑝𝑝,2 for every 𝐹 ∈ ℱ𝑘 and

‖a′⊤
𝑖 (I−P𝐹)‖

𝑝
2 ≤

2

𝑛
‖A′(I−P𝐹)‖

𝑝
𝑝,2

for every 𝑖 ∈ [𝑛′]. Furthermore, the rows of A′ are reweighted rows of A.

Proof. The proof follows, e.g., [MMWY22, Lemma 2.10]. Note that if we replace a row a𝑖 by 𝑙
copies of the scaled row a𝑖/𝑙

1/𝑝, then ‖A(I−P𝐹)‖𝑝𝑝,2 = ‖A′(I−P𝐹)‖𝑝𝑝,2 and for every row 𝑖′ in
A′ that is a copy of A, ‖a′⊤

𝑖′ (I−P𝐹)‖
𝑝
2 = ‖a⊤

𝑖 (I−P𝐹)‖
𝑝
2/𝑙. Now for every row 𝑖 in A such that

‖a⊤
𝑖 (I−P𝐹)‖

𝑝
2 ≥ 2‖A⊤(I−P𝐹)‖

𝑝
𝑝,2/𝑛, replace the row a𝑖 with

𝑙𝑖 :=

⌈︃
‖a⊤

𝑖 (I−P𝐹)‖
𝑝
2/‖A⊤(I−P𝐹)‖

𝑝
𝑝,2

2/𝑛

⌉︃

copies of a𝑖/𝑙
1/𝑝
𝑖 . Note then that the number of rows we add is at most

𝑛∑︁
𝑖=1

(𝑙𝑖 − 1) ≤
𝑛∑︁

𝑖=1

‖a⊤
𝑖 (I−P𝐹)‖

𝑝
2/‖A⊤(I−P𝐹)‖

𝑝
𝑝,2

2/𝑛
≤ 𝑛

2
.

Furthermore, by construction, every row in the new matrix A′ has sensitivity at most 𝐶2𝑘/𝑛.

209

The advantage of flattening is that for 𝑝 < 2, it makes the ℓ2 subspace approximation cost
much smaller than the ℓ𝑝 subspace approximation cost. We will exploit the following result later
in our results for 𝑝 < 2.

Lemma 14.3.4. Let A ∈ R𝑛×𝑑, 1 ≤ 𝑝 ≤ 2, and 𝑘 ∈ N. Suppose that 𝜎𝑖(A) ≤ 𝐶‖a⊤
𝑖 (I −

P𝐹)‖
𝑝
2‖A⊤(I−P𝐹)‖

𝑝
𝑝,2/𝑛 for every 𝑖 ∈ [𝑛]. Then, we have

‖A(I−P𝐹)‖𝐹 ≤ (𝐶/𝑛)1/𝑝−1/2‖A(I−P𝐹)‖𝑝,2.

Proof. We have

‖A(I−P𝐹)‖
2
𝐹 =

𝑛∑︁
𝑖=1

‖a⊤
𝑖 (I−P𝐹)‖

2
2 =

𝑛∑︁
𝑖=1

‖a⊤
𝑖 (I−P𝐹)‖

𝑝
2(‖a⊤

𝑖 (I−P𝐹)‖
𝑝
2)

2/𝑝−1

≤
𝑛∑︁

𝑖=1

‖a⊤
𝑖 (I−P𝐹)‖

𝑝
2

(︂
𝐶𝑘

𝑛
‖A(I−P𝐹)‖

𝑝
𝑝,2

)︂2/𝑝−1

= (𝐶𝑘/𝑛)2/𝑝−1‖A(I−P𝐹)‖
2/𝑝
𝑝,2 .

14.3.3 Properties of ridge leverage scores
It is known that for 𝜆 = ‖A−A𝑘‖2𝐹/𝑘, the ridge leverage scores have a small sum.

Lemma 14.3.5 (Sum of ridge leverage scores [CMM17]). Let 𝜆 = ‖A−A𝑘‖2𝐹/𝑘. Then,

𝑛∑︁
𝑖=1

𝜏 𝜆
𝑖 (A) ≤ 2𝑘

Next, we show that ridge leverage scores upper bound the ℓ𝑝 subspace approximation ℓ2
sensitivities (14.1).

Lemma 14.3.6 (Ridge leverage scores bound sensitivities). Let 𝜆 = ‖A−A𝑘‖2𝐹/𝑘. Then,

𝜏 𝜆
𝑖 (A) ≥ 1

48
sup
𝐹∈ℱ𝑘

⃦⃦
a⊤
𝑖 (I−P𝐹)

⃦⃦2
2

‖A(I−P𝐹)‖2𝐹

for every 𝑖 ∈ [𝑛].

Proof. Note that

‖A−A2𝑘‖22 = 𝜎2
𝑘+1(A−A𝑘) ≤

1

𝑘

𝑘∑︁
𝑗=1

𝜎2
𝑗(A−A𝑘) ≤

‖A−A𝑘‖2𝐹
𝑘

= 𝜆

so

𝜏 𝜆
𝑖 (A) = sup

x∈R𝑑

[Ax](𝑖)2

‖Ax‖22 + 𝜆‖x‖22

210

= sup
x∈R𝑑

[Ax](𝑖)2

‖A2𝑘x‖22 + ‖(A−A2𝑘)x‖22 + 𝜆‖x‖22

≥ sup
x∈R𝑑

[Ax](𝑖)2

‖A2𝑘x‖22 + 2𝜆‖x‖22
.

Now let 𝐹 ∈ ℱ𝑘 be any rank 𝑘 subspace. Let 𝐺 denote the span of the rows of A2𝑘, 𝐹 , and a𝑖,
which is a subspace of dimension at most 3𝑘 + 1. We then set x = P𝐺(I−P𝐹)g for a standard
normal Gaussian vector g. Note then that

[Ax](𝑖) = a⊤
𝑖 P𝐺(I−P𝐹)g = a⊤

𝑖 (I−P𝐹)g

is distributed as a Gaussian with variance ‖a⊤
𝑖 (I−P𝐹)‖22, so

Pr
{︀
[Ax](𝑖)2 ≥ ‖a⊤

𝑖 (I−P𝐹)‖22/3
}︀
>

1

2
.

Note also that

E
[︀
‖A2𝑘x‖22

]︀
= E

[︀
‖A2𝑘P𝐺(I−P𝐹)g‖22

]︀
= E

[︀
‖A2𝑘(I−P𝐹)g‖22

]︀
≤ ‖A(I−P𝐹)‖2𝐹

and
E[𝜆‖x‖22] = E[𝜆‖P𝐺(I−P𝐹)g‖22] ≤ 𝜆(3𝑘 + 1) ≤ 4‖A−A𝑘‖2𝐹 .

Then by Markov’s inequality, we have

Pr
{︀
‖A2𝑘x‖22 + 2𝜆‖x‖22 ≤ 16‖A(I−P𝐹)‖2𝐹

}︀
≥ 1

2
.

Thus with positive probability, there exists a vector x such that

𝜏 𝜆
𝑖 (A) ≥ [Ax](𝑖)2

‖A2𝑘x‖22 + 2𝜆‖x‖22
≥ 1

48

‖a⊤
𝑖 (I−P𝐹)‖22
‖A(I−P𝐹)‖2𝐹

.

Since 𝐹 was arbitrary, we conclude as desired.

14.4 Reduction to additive-multiplicative ℓ𝑝 affine embeddings
In this section, we show that in order to obtain sampling theorems that preserve (𝑝, 2)-norms of a
matrix, it suffices to prove additive-multiplicative ℓ𝑝 affine embedding guarantees for the sampling
matrix S. We consider the following notion of additive-multiplicative ℓ𝑝 affine embeddings:

Definition 14.4.1 (Additive-multiplicative ℓ𝑝 affine embedding). Let A ∈ R𝑛×𝑑 and b ∈ R𝑛.
Then, S ∈ R𝑟×𝑛 is a (𝜆, 𝜀, 𝑅)-additive-multiplicative ℓ𝑝 affine embedding if for every x ∈ R𝑑, we
have

‖S(Ax+ b)‖𝑝𝑝 = ‖Ax+ b‖𝑝𝑝 ± 𝜀(‖Ax‖𝑝𝑝 +𝑅𝑝 + 𝜆𝑝/2‖x‖𝑝2)

Then, our main result of this section is the following lemma:

211

Lemma 14.4.2. Suppose that S ∈ R𝑟×𝑛 satisfies the (𝜆, 𝜀, 𝑅)-additive-multiplicative ℓ𝑝 affine
embedding property for the matrix A ∈ R𝑛×𝑠 and vector b ∈ R𝑛. Then, for any X ∈ R𝑠×𝑑,

‖S[AX,b]‖𝑝𝑝,2 = ‖[AX,b]‖𝑝𝑝,2 ±𝑂(𝜀)
[︁
‖AX‖𝑝𝑝,2 +𝑅𝑝 + 𝜆𝑝/2𝑠𝑝/2‖X‖𝑝2

]︁
To prove Lemma 14.4.2, we will need the following lemma on the matrix operator norm of a

Gaussian matrix.

Lemma 14.4.3. Let 𝑝 > 0 and let 𝑚 ≥ 𝑂(𝑑𝑝/2). Let G ∈ R𝑚×𝑑 be an i.i.d. standard Gaussian
matrix. Then, with probability at least 2/3, we have that

sup
X∈R𝑠×𝑑,‖X‖2≤1

⃦⃦
GX⊤⃦⃦𝑝

𝑝,2
≤ 𝑂(𝑠𝑝/2𝑚).

Proof. Let X ∈ R𝑠×𝑑 with ‖X‖2 ≤ 1 maximize
⃦⃦
GX⊤

⃦⃦𝑝
𝑝,2

. Now let g ∈ R𝑠 be a random
Gaussian vector and consider the vector GX⊤g. Then for each 𝑖 ∈ [𝑚], e⊤𝑖 GX⊤g is distributed
as a Gaussian random variable with variance ‖e⊤𝑖 GX⊤‖2 and thus |e⊤𝑖 GX⊤g| ≥ ‖e⊤𝑖 GX⊤‖2/10
with probability at least 9/10. Then,

E

[︃
𝑚∑︁
𝑖=1

‖e⊤𝑖 GX⊤‖𝑝2 · 1
{︀
|e⊤𝑖 GX⊤g| ≤ ‖e⊤𝑖 GX⊤‖2/10

}︀]︃
≤ 1

10

⃦⃦
GX⊤⃦⃦𝑝

𝑝,2

so by Markov’s inequality, this at most
⃦⃦
GX⊤

⃦⃦𝑝
𝑝,2
/2 with probability at least 4/5. Then, under

this event, ⃦⃦
GX⊤g

⃦⃦𝑝
𝑝
≥

𝑚∑︁
𝑖=1

|e⊤𝑖 GX⊤g|𝑝 · 1
{︀
|e⊤𝑖 GX⊤g| > ‖e⊤𝑖 GX⊤‖2/10

}︀
≥

𝑚∑︁
𝑖=1

‖e⊤𝑖 GX⊤‖𝑝2
10𝑝

· 1
{︀
|e⊤𝑖 GX⊤g| > ‖e⊤𝑖 GX⊤‖2/10

}︀
≥

𝑚∑︁
𝑖=1

‖e⊤𝑖 GX⊤‖𝑝2
10𝑝

· (1− 1
{︀
|e⊤𝑖 GX⊤g| ≤ ‖e⊤𝑖 GX⊤‖2/10

}︀
)

so

10𝑝
⃦⃦
GX⊤g

⃦⃦𝑝
𝑝
≥
⃦⃦
GX⊤⃦⃦𝑝

𝑝,2
−

𝑚∑︁
𝑖=1

‖e⊤𝑖 GX⊤‖𝑝2 · 1
{︀
|e⊤𝑖 GX⊤g| ≤ ‖e⊤𝑖 GX⊤‖2/10

}︀
≥
⃦⃦
GX⊤⃦⃦𝑝

𝑝,2
−
⃦⃦
GX⊤⃦⃦𝑝

𝑝,2
/2 =

⃦⃦
GX⊤⃦⃦𝑝

𝑝,2
/2.

Thus, with probability at least 4/5, we have that

sup
X∈R𝑠×𝑑,‖X‖2≤1

⃦⃦
GX⊤⃦⃦𝑝

𝑝,2
≤ 𝑂(1) sup

X∈R𝑠×𝑑,‖X‖2≤1

sup
v∈R𝑠,‖v‖2≤

√
𝑠

⃦⃦
GX⊤v

⃦⃦𝑝
𝑝

≤ 𝑂(𝑠𝑝/2) sup
v∈R𝑑,‖v‖2≤1

‖Gv‖𝑝𝑝.

The latter quantity is at most 𝑂(𝑠𝑝/2𝑚) by Dvoretzky’s theorem (Theorem 14.3.1) with probability
at least 99/100, so we conclude.

212

We may then return to the proof of Lemma 14.4.2:

Proof of Lemma 14.4.2. Let 𝑚 be a large enough number to be chosen, and let G ∈ R𝑚×𝑑 and
g ∈ R𝑚 be drawn with standard Gaussian entries. If 𝑚 ≥ 𝑂(max{𝜀−2𝑠, 𝜀−1𝑠𝑝/2}), then

‖[AX, b]‖𝑝𝑝,2 = (1± 𝜀)
1

𝑚

⃦⃦⃦⃦
⃦[AX, b]

(︃
G⊤

g⊤

)︃⃦⃦⃦⃦
⃦
𝑝

𝑝,𝑝

Theorem 14.3.1

= (1± 𝜀)
1

𝑚

⃦⃦
AXG⊤ + bg⊤⃦⃦𝑝

𝑝,𝑝

= (1± 𝜀)
1

𝑚

𝑚∑︁
𝑗=1

⃦⃦
AXG⊤e𝑗 + bg⊤e𝑗

⃦⃦𝑝
𝑝

Now using the additive-multiplicative ℓ𝑝 affine embedding property, we have that⃦⃦
S(AXG⊤e𝑗 + bg⊤e𝑗)

⃦⃦𝑝
𝑝
= (1± 𝜀)

⃦⃦
AXG⊤e𝑗 + bg⊤e𝑗

⃦⃦𝑝
𝑝
±

𝜀(
⃦⃦
AXG⊤e𝑗

⃦⃦𝑝
𝑝
+𝑅𝑝 + 𝜆𝑝/2

⃦⃦
XG⊤e𝑗

⃦⃦𝑝
2
)

Note then that the total error is

𝜀

𝑚

𝑚∑︁
𝑗=1

⃦⃦
AXG⊤e𝑗

⃦⃦𝑝
𝑝
+𝑅𝑝 + 𝜆𝑝/2

⃦⃦
XG⊤e𝑗

⃦⃦𝑝
2
=

𝜀

𝑚

[︁⃦⃦
AXG⊤⃦⃦𝑝

𝑝,𝑝
+𝑚𝑅𝑝 + 𝜆𝑝/2

⃦⃦
GX⊤⃦⃦𝑝

𝑝,2

]︁
= 𝑂(𝜀)

[︂
‖AX‖𝑝𝑝,2 +𝑅𝑝 +

𝜆𝑝/2

𝑚

⃦⃦
GX⊤⃦⃦𝑝

𝑝,2

]︂
where we have again used Dvoretzky’s theorem (Theorem 14.3.1). Now if 𝑚 ≥ 𝑂(𝑑𝑝/2), then by
Lemma 14.4.3, we have with constant probability that

𝜆𝑝/2

𝑚

⃦⃦
GX⊤⃦⃦𝑝

𝑝,2
≤ 𝜆𝑝/2

𝑚
𝑂(𝑠𝑝/2𝑚)‖X‖𝑝2 = 𝑂(𝜆𝑝/2𝑠𝑝/2)‖X‖𝑝2.

14.5 Main sampling theorems

14.5.1 Affine embedding
We first show an affine embedding guarantee for root ridge leverage score sampling, which will
be used to apply Lemma 14.4.2. The main workhorse behind this lemma is Theorem 8.1.1, which
establishes a general ℓ𝑝 affine embedding theorem for root ridge leverage score sampling, and
generalizes recent work of [WY23c] by handling the case of 𝑝 > 2 as well as allowing for an
affine translation rather than just subspaces.

Lemma 14.5.1. Let 1 ≤ 𝑝 <∞. Let 𝛼 = Θ(𝜀2)/((log 𝑛)3+ log(1/𝛿)). Let S be the ℓ𝑝 sampling
matrix with probabilities {𝑞𝑖}𝑛𝑖=1 for

𝑞𝑖 ≥

{︃
min

{︀
1, 𝑛𝑝/2−1𝜏 𝜆

𝑖 (A)𝑝/2/𝛼
}︀

if 𝑝 > 2

min
{︀
1, 𝜏 𝜆

𝑖 (A)𝑝/2/𝛼
}︀

if 𝑝 < 2

213

with 𝜆 = ‖A−A𝑘‖2𝐹/𝑘. Let 𝑆 be an 𝑠-dimensional subspace for some 𝑠 ≤ 𝑛 such that
‖b𝑆‖𝑝𝑝 ≤ OPT where b𝑆(𝑖) = ‖a⊤

𝑖 (I−P𝑆)‖2, and let P𝑆 = V𝑆V
⊤
𝑆 be the orthogonal projection

matrix onto 𝑆. Let U ∈ R2𝑛×𝑠 satisfy U⊤U ⪰ 1
𝐶
I for some constant 𝐶 = 𝑂(1). Then, with

probability at least 1− 𝛿, we have simultaneously for every x ∈ R𝑠 that

‖S[AV𝑆x+ b𝑆]‖𝑝𝑝 = ‖AV𝑆x+ b𝑆‖𝑝𝑝 ± 𝜀
(︁
‖AV𝑆x‖𝑝𝑝 + OPT+𝜆𝑝/2‖Ux‖𝑝𝑝

)︁
.

Proof. We have that

𝜏 𝜆
𝑖 (A) = sup

x∈R𝑑

[Ax](𝑖)2

‖Ax‖22 + 𝜆‖x‖22

≥ sup
x=V𝑆z,z∈R𝑠

[Ax](𝑖)2

‖Ax‖22 + 𝜆‖x‖22
= sup

z∈R𝑠

[AV𝑆z](𝑖)
2

‖AV𝑆z‖22 + 𝜆‖V𝑆z‖22
= sup

z∈R𝑠

[AV𝑆z](𝑖)
2

‖AV𝑆z‖22 + 𝜆‖z‖22

≥ sup
z∈R𝑠

[AV𝑆z](𝑖)
2

‖AV𝑆z‖22 + 𝐶𝜆‖Uz‖22
so 𝜏 𝜆

𝑖 (A) upper bounds the 𝑖-th leverage score of the 3𝑛× 𝑠 matrix given by

A′ :=

(︃
AV𝑆√
𝐶𝜆U

)︃
Now note that

|y(𝑖)|𝑝

‖y‖𝑝𝑝
≤ 𝑛𝑝/2−1 |y(𝑖)|

𝑝

‖y‖𝑝2
= 𝑛𝑝/2−1

(︃
|y(𝑖)|2

‖y‖22

)︃𝑝/2

. (14.12)

Then by Lemma 14.3.6 and (14.12), we have that min{1, 𝑛𝑝/2−1𝜏 𝜆
𝑖 (A)𝑝/2} upper bounds the rank

𝑘 ℓ𝑝 subspace approximation sensitivities for 𝑝 > 2. Similarly, min{1, 𝜏 𝜆
𝑖 (A)𝑝/2} upper bounds

the rank 𝑘 ℓ𝑝 subspace approximation sensitivities for 𝑝 < 2. Thus,

|b𝑆(𝑖)|𝑝

OPT
≤
⃦⃦
a⊤
𝑖 (I−P*)

⃦⃦𝑝
2

‖A(I−P*)‖𝑝𝑝,2
≤ 𝜏 𝜆

𝑖 (A).

We then define b′ = [b𝑆; 0] ∈ R3𝑛 to be the vector b𝑆 with 2𝑛 zeros appended to it. Finally, let
S′ ∈ R3𝑛×3𝑛 be the ℓ𝑝 sampling matrix which samples the first 𝑛 rows according to S and the last
𝑛 rows with probability 1. Then by Theorem 8.1.1, we have the ℓ𝑝 affine embedding guarantee for
A′ and thus with probability at least 1− 𝛿, simultaneously for every x ∈ R𝑠, we have

‖S′[A′x+ b′]‖𝑝𝑝 = ‖S[AV𝑆x+ b𝑆]‖𝑝𝑝 + (𝐶𝜆)𝑝/2‖Ux‖𝑝𝑝
= (1± 𝜀)‖A′x+ b′‖𝑝𝑝 ± 𝜀OPT

= (1± 𝜀)
[︁
‖AV𝑆x+ b𝑆‖𝑝𝑝 + (𝐶𝜆)𝑝/2‖Ux‖𝑝𝑝

]︁
± 𝜀OPT .

Now by subtracting (𝐶𝜆)𝑝/2‖Ux‖𝑝𝑝 from both sides of the inequality, we conclude that

‖S[AV𝑆x+ b𝑆]‖𝑝𝑝 = (1± 𝜀)‖AV𝑆x+ b𝑆‖𝑝𝑝 ± 𝜀(𝐶𝜆)𝑝/2‖Ux‖𝑝𝑝 ± 𝜀OPT .

Scaling 𝜀 by constant factors yields the claimed result.

214

Next, we convert the affine embedding guarantee in Lemma 14.5.1 into a guarantee about
preserving the norms of matrices under S via Dvoretzky’s theorem.

Lemma 14.5.2. Let 1 ≤ 𝑝 <∞. Let 𝛼 = Θ(𝜀2)/((log 𝑛)3+ log(1/𝛿)). Let S be the ℓ𝑝 sampling
matrix with probabilities {𝑞𝑖}𝑛𝑖=1 for

𝑞𝑖 ≥

{︃
min

{︀
1, 𝑛𝑝/2−1𝜏 𝜆

𝑖 (A)𝑝/2/𝛼
}︀

if 𝑝 > 2

min
{︀
1, 𝜏 𝜆

𝑖 (A)𝑝/2/𝛼
}︀

if 𝑝 < 2

with 𝜆 = ‖A−A𝑘‖2𝐹/𝑘. Let U ∈ R2𝑛×𝑑 satisfy U⊤U ⪰ I/𝐶 for some 𝐶 = 𝑂(1). Then for all
matrices X ∈ R𝑑×𝑑,

‖SAX‖𝑝𝑝,2 = (1± 𝜀)‖AX‖𝑝𝑝,2 ± 𝜀𝜆𝑝/2
⃦⃦
UV⊤

𝑅X
⃦⃦𝑝
𝑝,2

where 𝑅 = rowspan(A).

Proof. Note that for an i.i.d. standard Gaussian matrix H ∈ R𝑑×𝑚 for 𝑚 sufficiently large, we
have by Dvoretzky’s theorem (Theorem 14.3.1) that

‖SAX‖𝑝𝑝,2 = (1± 𝜀)
1

𝑚
‖SAXH‖𝑝𝑝,𝑝 = (1± 𝜀)

1

𝑚

𝑚∑︁
𝑗=1

‖SAXHe𝑗‖𝑝𝑝 (14.13)

We now apply Lemma 14.5.1 with the subspace 𝑆 set to be the row span 𝑅 of A which has
dimension at most 𝑛, so that we have the following additive-multiplicative subspace embedding
guarantee for every x ∈ R𝑑, with probability at least 1− 𝛿,

‖SAx‖𝑝𝑝 = ‖SAP𝑅x‖𝑝𝑝 = ‖AP𝑅x‖𝑝𝑝 ± 𝜀
(︁
‖AP𝑅x‖𝑝𝑝 + (𝐶𝜆)𝑝/2

⃦⃦
UV⊤

𝑅x
⃦⃦𝑝
𝑝

)︁
(14.14)

Applying this guarantee to each summand in (14.13) shows that

1

𝑚

𝑚∑︁
𝑗=1

‖SAXHe𝑗‖𝑝𝑝 =
1

𝑚

𝑚∑︁
𝑗=1

(1± 𝜀)‖AXHe𝑗‖𝑝𝑝 ± 𝜀(𝐶𝜆)𝑝/2
⃦⃦
UV⊤

𝑅XHe𝑗
⃦⃦𝑝
𝑝

= (1± 𝜀)
1

𝑚
‖AXH‖𝑝𝑝,𝑝 ± 𝜀

1

𝑚
(𝐶𝜆)𝑝/2

⃦⃦
UV⊤

𝑅XH
⃦⃦𝑝
𝑝,𝑝

= (1± 𝜀)‖AX‖𝑝𝑝,2 ± 𝜀(𝐶𝜆)𝑝/2
⃦⃦
UV⊤

𝑅X
⃦⃦𝑝
𝑝,2
.

Rescaling 𝜀 by constant factors yields the desired result.

14.5.2 Results for 𝑝 > 2

For 𝑝 > 2, we will first give the following refinement of Lemma 14.5.2 for low rank matrices.

Lemma 14.5.3. Let 2 ≤ 𝑝 <∞. Let 𝛼 = Θ(𝜀2)/((log 𝑛)3+ log(1/𝛿)). Let S be the ℓ𝑝 sampling
matrix with probabilities {𝑞𝑖}𝑛𝑖=1 for

𝑞𝑖 ≥ min
{︀
1, 𝑛𝑝/2−1𝜏 𝜆

𝑖 (A)𝑝/2/𝛼
}︀

with 𝜆 = ‖A−A𝑘‖2𝐹/𝑘. Then for all rank 𝑠 matrices X ∈ R𝑑×𝑑,

‖SAX‖𝑝𝑝,2 = (1± 𝜀)‖AX‖𝑝𝑝,2 ± 𝜀𝜆𝑝/2𝑛1−𝑝/2𝑠𝑝/2‖X‖𝑝2.

215

Proof. Let X ∈ R𝑑×𝑑 be a fixed rank 𝑠 matrix (depending on SA and A) that maximizes⃒⃒⃒
‖SAX‖𝑝𝑝,2 − ‖AX‖𝑝𝑝,2

⃒⃒⃒
over all rank 𝑠 matrices X ∈ R𝑑×𝑑 such that ‖AX‖𝑝𝑝,2 + 𝜆𝑝/2𝑛1−𝑝/2𝑠𝑝/2‖X‖𝑝2 ≤ 1. Note that
we may WLOG assume that X = P𝑅X = V𝑅V

⊤
𝑅X where 𝑅 is the row span of A, since any

component outside of the row span of X will vanish after multiplying by A.
Let G ∈ R2𝑛×dim(𝑅) be a random standard Gaussian matrix. It is well-known that I/𝐶 ⪯

1
2𝑛
G⊤G with probability at least 2/3 [RV09]. Furthermore, by Lemma 14.4.3, we have that

Pr
G

{︁⃦⃦
GV⊤

𝑅X
⃦⃦𝑝
𝑝,2

= 𝑂(𝑛𝑠𝑝/2)‖X‖𝑝2
}︁
≥ 2

3
. (14.15)

Thus by a union bound, G satisfies both of these events with probability at least 1/3.
Now consider 𝑡 = 𝑂(log(1/𝛿)) independent drawings of G, say G(𝑖) for 𝑖 ∈ [𝑡]. For each G(𝑖),

S has a 1− 𝛿/2𝑡 probability of succeeding in the guarantee of Lemma 14.5.2, if G(𝑖) satisfies the
condition that 1

2𝑛
(G(𝑖))⊤G(𝑖) ⪰ I/𝐶. By a union bound, this holds for all 𝑖 ∈ [𝑡] simultaneously

with probability at least 1− 𝛿/2. Furthermore, with probability at least 1− 𝛿/2, there is at least
one 𝑖 ∈ [𝑡] such that (14.15) and 1

2𝑛
(G(𝑖))⊤G(𝑖) ⪰ I/𝐶 holds. Thus over all, with probability at

least 1− 𝛿, there is a matrix G such that for U = G/
√
2𝑛, we have

‖SAX‖𝑝𝑝,2 = (1± 𝜀)‖AX‖𝑝𝑝,2 ± 𝜀𝜆𝑝/2
⃦⃦
UV⊤

𝑅X
⃦⃦𝑝
𝑝,2

= (1± 𝜀)‖AX‖𝑝𝑝,2 ± 𝜀𝜆𝑝/2𝑛−𝑝/2
⃦⃦
GV⊤

𝑅X
⃦⃦𝑝
𝑝,2

= (1± 𝜀)‖AX‖𝑝𝑝,2 ±𝑂(𝜀)𝜆𝑝/2𝑛1−𝑝/2𝑠𝑝/2‖X‖𝑝2.

Rescaling 𝜀 by constant factors yields the desired result.

The next theorem gives an error bound after one round of root ridge leverage score sampling.

Theorem 14.5.4. Let 𝑝 > 2 and let 𝑠 = 𝑂(𝑘/𝜀𝑝). Let A ∈ R𝑛×𝑑 with 𝑛 ≥ 𝑛′ for some
𝑛′ = 𝑂(𝑠𝑝/2/𝜀). Let 𝛼 = Θ(𝜀2)/((log 𝑛)3 + log(1/𝛿)). Let S be the ℓ𝑝 sampling matrix with
probabilities {𝑞𝑖}𝑛𝑖=1 for

𝑞𝑖 ≥ min
{︀
1, 𝑛𝑝/2−1𝜏 𝜆

𝑖 (A)𝑝/2/𝛼
}︀

with 𝜆 = ‖A−A𝑠‖2𝐹/𝑠. Then, with probability at least 1− 𝛿, for every 𝐹 ∈ ℱ𝑘,

‖SA(I−P𝐹)‖𝑝𝑝,2 = (1± 𝜀)‖A(I−P𝐹)‖𝑝𝑝,2.

Proof. First note that

𝜆𝑝/2 =
‖A−A𝑠‖𝑝𝐹

𝑠𝑝/2
≤ ‖A(I−P*)‖𝑝𝐹

𝑠𝑝/2
≤ 𝑛𝑝/2−1

‖A(I−P*)‖𝑝𝑝,2
𝑠𝑝/2

=
𝑛𝑝/2−1

𝑠𝑝/2
OPT (14.16)

By Theorem 14.2.1, we have that

‖A(I−P𝐹)‖𝑝𝑝,2 = (1± 𝜀)‖[AP𝑆(I−P𝐹), b𝑆]‖𝑝𝑝,2

216

= (1± 𝜀)
⃦⃦
[AV𝑆V

⊤
𝑆 (I−P𝐹), b𝑆]

⃦⃦𝑝
𝑝,2

Let G ∈ R2𝑛×𝑠 be a random Gaussian matrix. It is well-known that I/𝐶 ⪯ 1
2𝑛
G⊤G with

probability at least 2/3 [RV09]. Fix such a matrix G. By Lemma 14.5.1 with U = G/
√
2𝑛, we

then have

‖S[AV𝑆x+ b𝑆]‖𝑝𝑝 = ‖AV𝑆x+ b𝑆‖𝑝𝑝 ± 𝜀
(︁
‖AV𝑆x‖𝑝𝑝 + OPT+𝜆𝑝/2‖Ux‖𝑝𝑝

)︁
= ‖AV𝑆x+ b𝑆‖𝑝𝑝 ± 𝜀

(︁
‖AV𝑆x‖𝑝𝑝 + OPT+(2𝑛)1−𝑝/2𝜆𝑝/2‖x‖𝑝2

)︁
Dvoretzky’s theorem

= ‖AV𝑆x+ b𝑆‖𝑝𝑝 ±𝑂(𝜀)
(︁
‖AV𝑆x‖𝑝𝑝 + OPT+𝑠−𝑝/2OPT‖x‖𝑝2

)︁
(14.16)

where we have used that 𝑛 is large enough to apply Dvoretzky’s theorem. Then by Lemma 14.4.2,
we have that

‖S[AV𝑆X,b𝑆]‖𝑝𝑝,2 = ‖[AV𝑆X,b𝑆]‖𝑝𝑝,2 ±𝑂(𝜀)
[︁
‖AV𝑆X‖𝑝𝑝,2 + OPT+OPT‖X‖𝑝2

]︁
for any X ∈ R𝑠×𝑑. Then, applying this result with X = V⊤

𝑆 (I−P𝐹), which has operator norm 1,
gives

‖S[AP𝑆(I−P𝐹),b𝑆]‖𝑝𝑝,2 = ‖[AP𝑆(I−P𝐹),b𝑆]‖𝑝𝑝,2 ±𝑂(𝜀)
[︁
‖AP𝑆(I−P𝐹)‖𝑝𝑝,2 + OPT

]︁
= (1±𝑂(𝜀))‖[AP𝑆(I−P𝐹),b𝑆]‖𝑝𝑝,2

Finally, by (14.16) and the fact that P𝑆 −P𝑆∪𝐹 is a matrix with rank at most 𝑘, we have

‖SA(P𝑆 −P𝑆∪𝐹)‖𝑝𝑝,2 ≲ ‖A(P𝑆 −P𝑆∪𝐹)‖𝑝𝑝,2 + 𝜆𝑝/2𝑛1−𝑝/2𝑘𝑝/2 Lemma 14.5.3

≤ 𝜀𝑝 · OPT+𝜆𝑝/2𝑛1−𝑝/2𝑘𝑝/2 Theorem 14.2.1

≤ 𝜀𝑝 · OPT+𝜀𝑝
2/2 · OPT ≤ 2𝜀𝑝OPT (14.16)

Then by Theorem 14.2.1, it follows that

‖S[AP𝑆(I−P𝐹),b𝑆]‖𝑝𝑝,2 = (1±𝑂(𝜀))‖SA(I−P𝐹)‖𝑝𝑝,2

as claimed. Chaining together the previous bounds and rescaling 𝜀 by constant factors shows the
claimed result.

Finally, we show that by applying Theorem 14.5.4 recursively for 𝑂(log log 𝑛) rounds, we
obtain our desired sampling theorem.

Theorem 14.5.5. Let 𝑝 > 2. Let A ∈ R𝑛×𝑑. There is an algorithm that runs in time �̃�(nnz(A) +
𝑑𝜔) time to construct a diagonal matrix S with

nnz(S) =
𝑂(𝑘𝑝/2)

𝜀𝑝2/2+𝑝

[︀
(log 𝑛)3𝑝/2 + (log(1/𝛿))𝑝/2

]︀
(log log 𝑛)𝑝

2/2+𝑝 =
𝑘𝑝/2

𝜀𝑂(𝑝2)
(log(𝑛/𝛿))𝑂(𝑝)

that satisfies Definition 14.1.1 with probability at least 1− 𝛿.

217

Proof. We will apply Theorem 14.5.4 for 𝑟 = 𝑂(log log 𝑛) rounds, with 𝜀 set to 𝜀/𝑟 and 𝛿 set
to 𝛿/𝑟. Let 𝛼 and 𝑠 be the values given by Theorem 14.5.4 with this setting of parameters.
We first analyze the number of rows sampled at each round in expectation. Note first that if
𝑛𝑝/2−1𝜏 𝜆

𝑖 (A) ≥ 1, then 𝜏 𝜆
𝑖 (A) ≥ 𝑛2/𝑝−1 so there are at most 𝑂(𝑠)𝑛1−2/𝑝 such rows 𝑖 ∈ [𝑛],

since 𝜏 𝜆
𝑖 (A) sum to at most 2𝑠 by Lemma 14.3.5. On the other hand, if 𝑛𝑝/2−1𝜏 𝜆

𝑖 (A)𝑝/2, then
𝜏 𝜆
𝑖 (A) ≤ 𝑛2/𝑝−1 so we have that∑︁

𝑖:𝑛𝑝/2−1𝜏𝜆
𝑖 (A)𝑝/2≤1

𝑛𝑝/2−1𝜏 𝜆
𝑖 (A)𝑝/2 ≤ 𝑛𝑝/2−1(𝑛2/𝑝−1)𝑝/2−1

∑︁
𝑖:𝑛𝑝/2−1𝜏𝜆

𝑖 (A)𝑝/2≤1

𝜏 𝜆
𝑖 (A) ≤ 𝑛1−2/𝑝 · 2𝑠.

Thus, in either case, we have
𝑛∑︁

𝑖=1

min{1, 𝑛𝑝/2−1𝜏 𝜆
𝑖 (A)𝑝/2} ≤ 𝑂(𝑠)𝑛1−2/𝑝.

Thus, the expected number of sampled rows is at most 𝑂(𝑠)𝑛1−2/𝑝/𝛼. By Chernoff bounds, if the
expected number of sampled rows is at least 𝑂(log(𝑟/𝛿)), then with probability at least 1− 𝛿/𝑟,
the number of sampled rows is within a constant factor of the expectation. Then by a union bound,
for the first 𝑟 rounds of the recursive calls, we succeed in obtaining a (1± 𝜀/𝑟) approximation
and reduce the number of rows from 𝑚 to 𝑂(𝑠)𝑚1−2/𝑝/𝛼. We now define 𝑎𝑖 to be the logarithm
of the number of rows after the 𝑖th recursive call. Then,

𝑎𝑖+1 = (1− 2/𝑝)𝑎𝑖 + log(𝑂(𝑠)/𝛼)

so by Lemma 8.1.9, we have that

𝑎𝑟 =
𝑝

2

(︀
log(𝑂(𝑠)/𝛼)− (1− 2/𝑝)𝑖(log(𝑂(𝑠)/𝛼)− (2/𝑝))(log 𝑛)

)︀
so the number of rows is at most

exp(𝑎𝑟) =

(︂
𝑂(𝑠)

𝛼

)︂𝑝/2

=
𝑂(𝑠𝑝/2)

𝛼𝑝/2
=

𝑂(𝑘𝑝/2)

𝜀𝑝2/2+𝑝

[︀
(log 𝑛)3𝑝/2 + (log(1/𝛿))𝑝/2

]︀
(log log 𝑛)𝑝

2/2+𝑝.

14.5.3 Results for 𝑝 < 2

The next theorem gives an error bound after one round of root ridge leverage score sampling.

Theorem 14.5.6. Let 𝑝 < 2 and let 𝑠 = 𝑂(𝑘/𝜀2). Let 𝛼 = Θ(𝜀2)/((log 𝑛)3 + log(1/𝛿)). Let S
be the ℓ𝑝 sampling matrix with probabilities {𝑞𝑖}𝑛𝑖=1 for

𝑞𝑖 ≥ min
{︀
1, 𝜏 𝜆

𝑖 (A)𝑝/2/𝛼
}︀

with 𝜆 = ‖A−A𝑠‖2𝐹/𝑠 for 𝑠 at least 𝑂(𝑘/𝜀2) as required by Theorem 14.2.1. Furthermore,
suppose that there is a rank 𝑠 subspace 𝐹 such that

‖a⊤
𝑖 (I−P𝐹)‖

𝑝
2 ≤ 𝑂(1/𝑛)‖A(I−P𝐹)‖

𝑝
𝑝,2

218

and
‖A(I−P𝐹)‖

𝑝
𝑝,2 ≤ 𝑂(1) min

𝐹∈ℱ𝑘

‖A(I−P𝐹)‖𝑝𝑝,2 = 𝑂(OPT).

Then, with probability at least 1− 𝛿, for every 𝐹 ∈ ℱ𝑘,

‖SA(I−P𝐹)‖𝑝𝑝,2 = (1± 𝜀)‖A(I−P𝐹)‖𝑝𝑝,2.

Proof. First note that

𝜆𝑝/2 ≤ ‖A−A𝑠‖𝑝𝐹
𝑠𝑝/2

≤
‖A(I−P𝐹)‖

𝑝
𝐹

𝑠𝑝/2
≤ 𝑂(1/𝑛)1−𝑝/2

‖A(I−P𝐹)‖
𝑝
𝑝,2

𝑠𝑝/2
=

𝑂(OPT)

𝑠𝑝/2𝑛1−𝑝/2

(14.17)
By Theorem 14.2.1, we have that

‖A(I−P𝐹)‖𝑝𝑝,2 = (1± 𝜀)‖[AP𝑆(I−P𝐹), b𝑆]‖𝑝𝑝,2
= (1± 𝜀)

⃦⃦
[AV𝑆V

⊤
𝑆 (I−P𝐹), b𝑆]

⃦⃦𝑝
𝑝,2

By Lemma 14.5.1 with U set to the identity padded with zeros,

‖S[AV𝑆x+ b𝑆]‖𝑝𝑝 = ‖AV𝑆x+ b𝑆‖𝑝𝑝 ± 𝜀
(︁
‖AV𝑆x‖𝑝𝑝 + OPT+𝜆𝑝/2‖x‖𝑝𝑝

)︁
= ‖AV𝑆x+ b𝑆‖𝑝𝑝 ± 𝜀

(︁
‖AV𝑆x‖𝑝𝑝 + OPT+𝑛1−𝑝/2𝜆𝑝/2‖x‖𝑝2

)︁
= ‖AV𝑆x+ b𝑆‖𝑝𝑝 ± 𝜀

(︁
‖AV𝑆x‖𝑝𝑝 + OPT+𝑂(𝑠−𝑝/2)OPT‖x‖𝑝2

)︁
(14.17)

Then by Lemma 14.4.2, we have that

‖S[AV𝑆X,b𝑆]‖𝑝𝑝,2 = ‖[AV𝑆X,b𝑆]‖𝑝𝑝,2 ±𝑂(𝜀)
[︁
‖AV𝑆X‖𝑝𝑝,2 + OPT+OPT‖X‖𝑝2

]︁
for any X ∈ R𝑠×𝑑. Then, applying this result with X = V⊤

𝑆 (I−P𝐹), which has operator norm 1,
gives

‖S[AP𝑆(I−P𝐹),b𝑆]‖𝑝𝑝,2 = ‖[AP𝑆(I−P𝐹),b𝑆]‖𝑝𝑝,2 ±𝑂(𝜀)
[︁
‖AP𝑆(I−P𝐹)‖𝑝𝑝,2 + OPT

]︁
= (1±𝑂(𝜀))‖[AP𝑆(I−P𝐹),b𝑆]‖𝑝𝑝,2

Finally, by using Lemma 14.5.2 with U = I, (14.17), and the fact that P𝑆 − P𝑆∪𝐹 is a matrix
with rank at most 𝑘, we have

‖SA(P𝑆 −P𝑆∪𝐹)‖𝑝𝑝,2 ≲ ‖A(P𝑆 −P𝑆∪𝐹)‖𝑝𝑝,2 + 𝜆𝑝/2
⃦⃦
V⊤

𝑅(P𝑆 −P𝑆∪𝐹)
⃦⃦𝑝
𝑝,2

Lemma 14.5.2

≤ ‖A(P𝑆 −P𝑆∪𝐹)‖𝑝𝑝,2 + 𝜆𝑝/2𝑛1−𝑝/2
⃦⃦
V⊤

𝑅(P𝑆 −P𝑆∪𝐹)
⃦⃦𝑝
2,2

≤ 𝜀𝑝 · OPT+𝜆𝑝/2𝑛1−𝑝/2𝑘𝑝/2 Theorem 14.2.1
≤ 𝜀𝑝 · OPT+𝑂(𝜀𝑝) · OPT = 𝑂(𝜀𝑝)OPT (14.17)

Then by Theorem 14.2.1, it follows that

‖S[AP𝑆(I−P𝐹),b𝑆]‖𝑝𝑝,2 = (1±𝑂(𝜀))‖SA(I−P𝐹)‖𝑝𝑝,2
as claimed. Chaining together the previous bounds and rescaling 𝜀 by constant factors shows the
claimed result.

219

Finally, we show that by applying Theorem 14.5.6 recursively for 𝑂(log log 𝑛) rounds, we
arrive at our main theorem for 𝑝 < 2.

Theorem 14.5.7. Let 𝑝 < 2. Let A ∈ R𝑛×𝑑. There is an algorithm that runs in time �̃�(nnz(A) +
𝑑𝜔) time to construct a diagonal matrix S with

nnz(S) =
𝑂(𝑘)

𝜀4/𝑝+2

[︀
(log 𝑛)6/𝑝+1 + (log(1/𝛿))2/𝑝+1

]︀
(log log 𝑛)4/𝑝+2 =

𝑘

𝜀𝑂(1)
(log(𝑛/𝛿))𝑂(1)

that satisfies Definition 14.1.1 with probability at least 1− 𝛿.

Proof. We will apply Theorem 14.5.6 for 𝑟 = 𝑂(log log 𝑛) rounds, with 𝜀 set to 𝜀/𝑟 and 𝛿 set to
𝛿/𝑟. In order to satisfy the precondition of the existence of a “flat” solution, we quickly compute
a constant factor solution via Lemma 14.3.2 and flatten via Lemma 14.3.3, so that our condition is
satisfied as long as we take 𝑠 to be at least some 𝑂(𝑘 log(𝑛/𝛿)).

Let 𝛼 and 𝑠 = 𝑂(𝑘/𝜀2 + 𝑘 log(𝑛/𝛿)) be the values given by Theorem 14.5.6 with this setting
of parameters. We first analyze the number of rows sampled at each round in expectation. Since
the ridge leverage scores sum to at most 2𝑠′ by Lemma 14.3.5, we have that

𝑛∑︁
𝑖=1

𝜏 𝜆
𝑖 (A)𝑝/2 ≤ 𝑛1−𝑝/2

(︃
𝑛∑︁

𝑖=1

𝜏 𝜆
𝑖 (A)

)︃𝑝/2

= 𝑂(𝑠𝑝/2𝑛1−𝑝/2)

by Hölder’s inequality. Thus, the expected number of sampled rows is at most 𝑂(𝑠𝑝/2𝑛1−𝑝/2)/𝛼.
By Chernoff bounds, if the expected number of sampled rows is at least 𝑂(log(𝑟/𝛿)), then with
probability at least 1 − 𝛿/𝑟, the number of sampled rows is within a constant factor of the
expectation. Then by a union bound, for the first 𝑟 rounds of the recursive calls, we succeed in
obtaining a (1± 𝜀/𝑟) approximation and reduce the number of rows from 𝑚 to 𝑂(𝑠𝑝/2𝑚1−𝑝/2)/𝛼.
We now define 𝑎𝑖 to be the logarithm of the number of rows after the 𝑖th recursive call. Then,

𝑎𝑖+1 = (1− 𝑝/2)𝑎𝑖 + log(𝑂(𝑠𝑝/2)/𝛼)

so by Lemma 8.1.9, we have that

𝑎𝑟 =
2

𝑝

(︀
log(𝑂(𝑠𝑝/2)/𝛼)− (1− 𝑝/2)𝑖(log(𝑂(𝑠𝑝/2)/𝛼)− (𝑝/2))(log 𝑛)

)︀
so the number of rows is at most

exp(𝑎𝑟) =

(︂
𝑂(𝑠𝑝/2)

𝛼

)︂2/𝑝

=
𝑂(𝑠)

𝛼2/𝑝
=

𝑂(𝑘)

𝜀4/𝑝+2

[︀
(log 𝑛)6/𝑝+1 + (log(1/𝛿))2/𝑝+1

]︀
(log log 𝑛)4/𝑝+2.

14.6 Streaming and online coresets
We present our results on streaming and online coresets for ℓ𝑝 subspace approximation.

220

14.6.1 Online coresets
In this section, we note that our Theorems 14.5.5 and 14.5.7 give the first nearly optimal online
coresets (see Section 1.3.3) for ℓ𝑝 subspace approximation.

Then, the following is an immediate corollary of Theorems 14.5.5 and 14.5.7.

Corollary 14.6.1 (Online coresets). Let 1 ≤ 𝑝 < ∞. Let A ∈ R𝑛×𝑑 have online condition
number 𝜅OL. Then, there is an online coreset algorithm which constructs a diagonal map S ∈ R𝑛×𝑛

satisfying Definition 14.1.1 with probability at least 1− 𝛿, such that

nnz(S) =

⎧⎪⎪⎨⎪⎪⎩
�̃�(𝑘𝑝/2)

𝜀𝑝2/2+𝑝
(log(𝑛𝜅OL/𝛿))𝑂(𝑝)

�̃�(𝑘)

𝜀4/𝑝+2
(log(𝑛𝜅OL/𝛿))𝑂(1)

while storing at most 𝑂(𝑘(log 𝑘)(log 𝜅OL)2) additional rows in an online fashion.

Proof. The result of [BDM+20, Theorem 3.1] gives an online coreset algorithm for maintaining
a (1 ± 𝜀) strong coreset for ℓ2 subspace approximation which stores 𝑂(𝜀−2𝑘(log 𝑘)(log 𝜅OL)2)
rows. Furthermore, given such a strong coreset with 𝜀 = 𝑂(1), it is shown in [BDM+20, Lemma
2.11] that one can obtain scores 𝜏 𝑖 such that

𝜏 𝑖 ≥ 𝜏 𝜆
𝑖 (A)

for 𝜆 = ‖A−A𝑘‖2𝐹/𝑘, and also satisfies

𝑛∑︁
𝑖=1

𝜏 𝑖 ≤ 𝑂(𝑘 log 𝜅OL).

The result for 𝑝 > 2 then follows as an immediate corollary of Theorem 14.5.5. For 𝑝 < 2,
we additionally need an online constant factor approximation to flatten the matrix, which is
constructed in [WY23a] by obtaining online Lewis sample due to [WY23b]. The result for 𝑝 < 2
then follows as an immediate corollary of Theorem 14.5.7.

For integer matrices with entries bounded by Δ, we may replace the dependence on the online
condition number with Δ, by using an analogous result of [BDM+20] for integer matrices.

Corollary 14.6.2 (Online coresets – integer matrices). Let 1 ≤ 𝑝 < ∞. Let A ∈ Z𝑛×𝑑 have
entries bounded by |A𝑖,𝑗| ≤ Δ. Then, there is an online coreset algorithm which constructs a
diagonal map S ∈ R𝑛×𝑛 satisfying Definition 14.1.1 with probability at least 1− 𝛿, such that

nnz(S) =

⎧⎪⎪⎨⎪⎪⎩
�̃�(𝑘𝑝/2)

𝜀𝑝2/2+𝑝
(log(𝑛Δ/𝛿))𝑂(𝑝)

�̃�(𝑘)

𝜀4/𝑝+2
(log(𝑛Δ/𝛿))𝑂(1)

while storing at most 𝑂(𝑘(logΔ)2) additional rows in an online fashion.

221

14.6.2 Streaming coresets
Next, we state our corollaries for constructing streaming coresets in the row arrival model of
streaming, which is slightly different from the online coreset model since we are allowed to
remove rows from our coreset. In the streaming model, the resource measure is typically the
space complexity, and thus the input is usually assumed to be an integer matrix as a bit complexity
assumption. In this setting, we combine the classic merge-and-reduce technique [BDM+20]
with the technique of [CWZ23] of first applying an online coreset to obtain a result with only
poly(log log(𝑛Δ) factor overhead in the coreset size.

Corollary 14.6.3 (Streaming coresets – integer matrices). Let 1 ≤ 𝑝 <∞. Let A ∈ Z𝑛×𝑑 have
entries bounded by |A𝑖,𝑗| ≤ Δ. Then, there is an row arrival streaming algorithm which constructs
a diagonal map S ∈ R𝑛×𝑛 satisfying Definition 14.1.1 with probability at least 1− 𝛿, such that

nnz(S) =

⎧⎪⎪⎨⎪⎪⎩
�̃�(𝑘𝑝/2)

𝜀𝑝2/2+𝑝
(log(𝑘/𝜀𝛿) + log log(𝑛Δ/𝛿))𝑂(𝑝2)

�̃�(𝑘)

𝜀4/𝑝+2
(log(𝑘/𝜀𝛿) + log(𝑛Δ/𝛿))𝑂(1)

while storing at most 𝑂(𝑘(logΔ)2) additional rows in an online fashion.

Proof. We may assume without loss of generality that the stream length is at most 𝑚 =
poly(𝑘, 𝜀−1, log(𝑛Δ/𝛿)) by first applying Corollary 14.6.2. We then apply the merge-and-reduce
technique, which results in a coreset with size where the 𝜀 dependence is replaced by 𝜀′ = 𝜀/ log𝑚.
This results in the claimed bounds.

222

Chapter 15

Future directions for sampling and coreset
algorithms

In this chapter, we present several interesting open questions on sampling and coreset algorithms
arising from this thesis that remain open.

15.1 Questions on ℓ𝑝 subspace embeddings
Nearly optimal bounds for ℓ𝑝 subspace embeddings for 𝑝 > 2. One of the outstanding gaps in
bounds for ℓ𝑝 subspace embeddings is the optimality of the upper bound given in Theorem 6.1.4
and Theorem 6.1.11 in terms of the dependence on 𝑑 and 𝜀 for 𝑝 > 2. So far, the upper bound
is 𝑟 = �̃�(𝜀−2𝑑𝑝/2) for a subspace embedding S with 𝑟 rows, while the best known lower bound
is still Theorem 6.1.5 due to [LWW21], which gives a lower bound of 𝑟 = Ω̃(𝜀−1𝑑𝑝/2 + 𝜀−2𝑑).
Thus, resolving this last gap from obtaining nearly optimal trade-offs between number of rows 𝑟,
𝑑, and the accuracy parameter 𝜀 is our first open question about ℓ𝑝 subspace embeddings.

Question 15.1.1. For 𝑝 ∈ (2,∞) ∖ 2Z, what is the smallest possible number of rows 𝑟 that is
possible for ℓ𝑝 subspace embeddings with (1 + 𝜀) distortion? Is there a lower bound showing that
𝑟 = Ω(𝜀−2𝑑𝑝/2) rows is necessary?

Deterministic algorithms. For 𝑝 = 2, the seminal work of [BSS12] showed that it is possible to
deterministically obtain ℓ2 subspace embeddings with 𝑟 = 𝑂(𝜀−2𝑑) rows in polynomial time, and
has spurred multiple works further improving the running time of this algorithm [Zou12, ALO15].
This algorithm, however, makes heavy use of the special structure of the ℓ2 norm, and does not
yield results for ℓ𝑝 subspace embeddings for 𝑝 ̸= 2. Thus, an interesting question is whether
polynomial time algorithms for constructing ℓ𝑝 subspace embeddings exist or not.

Question 15.1.2. Is there a deterministic polynomial time algorithm for constructing (1 + 𝜀)-
approximate ℓ𝑝 subspace embeddings with �̃�(𝜀−2𝑑) rows for 𝑝 < 2 or �̃�(𝜀−2𝑑𝑝/2) rows for
𝑝 > 2?

In fact, even a Las Vegas algorithm for computing ℓ𝑝 subspace embeddings may be interesting,
as there are currently no known efficient algorithms for checking whether two matrices are close

223

in the sense of ℓ𝑝 subspace embeddings, for any 𝑝 ̸= 2:

Question 15.1.3. Is there a polynomial time Las Vegas algorithm for constructing (1 + 𝜀)-
approximate ℓ𝑝 subspace embeddings with �̃�(𝜀−2𝑑) rows for 𝑝 < 2 or �̃�(𝜀−2𝑑𝑝/2) rows for
𝑝 > 2?

Removing logarithmic factors. A closely related problem to Question 15.1.2 is the question of
removing logarithmic factors in the number of rows 𝑟. In particular, the work of [BSS12] as well
as its various follow-ups [Zou12, ALO15, LS15] obtain 𝑟 = 𝑂(𝜀−2𝑑), without any logarithmic
factor losses. On the other hand, for independent sampling-based approaches such as Lewis
weight sampling, an extra logarithmic factor is inherent due to the coupon-collector problem.
However, for most values of 𝑝 ̸= 21, no other approaches towards obtaining (1 + 𝜀)-approximate
ℓ𝑝 subspace embeddings are known. Thus, an important question is the following:

Question 15.1.4. Is there an algorithm for constructing (1 + 𝜀)-approximate ℓ𝑝 subspace embed-
dings with 𝑟 = 𝑂(𝜀−2𝑑) rows for 𝑝 < 2 and 𝑟 = 𝑂(𝜀−2𝑑𝑝/2) rows for 𝑝 > 2?

For 𝑝 = 1, this problem has been raised in [Sch07, HRR22].

Nearly optimal guarantees for sensitivity sampling. We re-iterate our main open question,
Question 7.1.1, from the work of [WY23c] from Chapter 7: what is the smallest sample complexity
possible for the ℓ𝑝 sensitivity sampling algorithm? While we have achieved the bounds of
�̃�(𝜀−2S2/𝑝) for 𝑝 < 2 and �̃�(𝜀−2S2−2/𝑝) for 𝑝 > 2, we conjecture that a bound of �̃�(𝜀−2(S+𝑑))
is possible.

Faster algorithms for approximating sensitivities. While ℓ𝑝 sensitivity sampling can yield the
lowest known row counts for matrices with low total sensitivity, the running time for computing
sensitivity scores is still much slower than leverage score or ℓ𝑝 Lewis weight computation for
𝑝 ̸= 2 [PWZ23]. Can sensitivity approximation algorithms be sped up to compete with the
running time of approximating leverage scores?

15.2 Questions on coresets
Our main questions concerning coresets are those left open by our work of [WY24b], which
established the first nearly optimal strong coresets for ℓ𝑝 subspace approximation (see Chapter
14). The main natural direction left open is to tighten the dependence on 𝜀 in the coreset size both
in the upper bounds and lower bounds. Currently, the best known lower bound on the number
of rows required is Ω̃(𝑘/𝜀2) for 𝑝 < 2 and Ω̃(𝑘/𝜀2 + 𝑘𝑝/2/𝜀) for 𝑝 > 2 via a reduction to lower
bounds for ℓ𝑝 subspace embeddings [LWW21, WY23a], while we have a dependence of 𝜀−𝑂(𝑝2)

in our upper bounds.

Question 15.2.1. How many rows are necessary and sufficient for strong coresets for ℓ𝑝 subspace
approximation as a function of both 𝑘 and 𝜀?

1 An important exception is 𝑝 ∈ 2Z, which admit exact isometries via other methods due to its special structure
[Sch11].

224

In particular, we believe that the following special case is already an interesting question:

Question 15.2.2. Is there a 𝜀−Ω(𝑝) lower bound on the size of a strong coreset for ℓ𝑝 subspace
approximation for large 𝑝? Is there a �̃�(𝑘𝑝/2)𝜀−𝑂(𝑝) upper bound?

We note that sensitivity sampling achieves a �̃�(𝑘𝑝/2+𝑂(1))𝜀−𝑂(𝑝) upper bound [HV20, WY23a],
while our upper bound is �̃�(𝑘𝑝/2)𝜀−𝑂(𝑝2).

Similar questions can also be asked for other guarantees for row subset selection for ℓ𝑝
subspace approximation, all of which have been intensely studied for the case of 𝑝 = 2 but remain
to be answered for 𝑝 ̸= 2.

Question 15.2.3. How many rows are necessary and sufficient for a weak coreset S such that
𝐹 := argmin𝐹∈ℱ𝑘

‖SA(I−P𝐹)‖𝑝𝑝 satisfies

‖A(I−P𝐹)‖
𝑝
𝑝 ≤ (1 + 𝜀) min

𝐹∈ℱ𝑘

‖A(I−P𝐹)‖𝑝𝑝,

as a function of both 𝑘 and 𝜀?

Question 15.2.4. How many rows are necessary and sufficient for a spanning coreset 𝑆 ⊆ [𝑛]
such that the span of the rows in 𝑆 contains a 𝑘-dimensional subspace 𝐹 such that

‖A(I−P𝐹)‖
𝑝
𝑝 ≤ (1 + 𝜀) min

𝐹∈ℱ𝑘

‖A(I−P𝐹)‖𝑝𝑝,

as a function of both 𝑘 and 𝜀?

Question 15.2.5. How many rows are necessary and sufficient for a subset 𝑆 ⊆ [𝑛] such that the
span 𝐹 of the rows in 𝑆 of dimension dim(𝑆) satisfies

‖A(I−P𝐹)‖
𝑝
𝑝 ≤ (1 + 𝜀) min

𝐹∈ℱ𝑘

‖A(I−P𝐹)‖𝑝𝑝,

as a function of both 𝑘 and 𝜀?

Our strong coreset of [WY24b] immediately implies upper bounds to all three questions
above, but it is possible to improve further in some of these cases. The guarantee in Question
15.2.4 was studied by [DV07, SV12, WY24a] for 𝑝 ̸= 2 with an efficient construction achieving
an upper bound of �̃�(𝑘2 · (𝑘/𝜀)𝑝+1) due to [DV07] and an inefficient construction achieving an
upper bound of �̃�(𝑘2/𝜀) due to [SV12, Theorem 3.1] and �̃�(𝑘/𝜀) for 1 < 𝑝 < 2 due to Theorem
13.1.5. The result [DV07] has a better dependence on 𝜀 than our strong coresets as well as those
of [HV20, WY23a], and [SV12] has a better dependence on 𝜀 for all 𝑝 and a better dependence
on 𝑘 for 𝑝 > 4. In particular, it is an interesting question to achieve a nearly linear dependence in
𝑘 for all 𝑝, and to construct such a subset of rows in polynomial time.

225

226

Part III

Sparse Optimization

227

Chapter 16

Sparse convex optimization via ℓ1
regularization [YBC+23, AY23]

16.1 Introduction
A common task in modern machine learning is to sparsify a large model by selecting a subset of
its inputs. This often leads to a number of improvements to the model such as interpretability and
computational efficiency due to the smaller size of the model, as well as improved generalizability
due to removal of noisy or redundant features. For these reasons, feature selection and sparse
optimization is a heavily studied subject in signal processing, statistics, machine learning, and
theoretical computer science. We continue this line of investigation by studying the following
sparse optimization problem [SSZ10, LS17, EKDN18]: design an efficient algorithm such that,
given 𝑙 : R𝑛 → R and a sparsity parameter 𝑘, outputs a sparse solution �̃� such that

𝑙(0)− 𝑙(�̃�) ≥ 𝛾

(︂
𝑙(0)− min

𝛽∈R𝑛:‖𝛽‖0≤𝑘
𝑙(𝛽)

)︂
, ‖𝛽‖0 := |{𝑖 ∈ [𝑛] : 𝛽𝑖 ̸= 0}| (16.1)

for some approximation factor 𝛾 > 0. In practice, there is also much interest in feature selection
for vector-valued features, due to a widespread usage of vector representations of discrete features
via embeddings [SWY75, WDL+09, PSM14, PRPG22], as well as for applications to block
sparsification for hardware efficiency [NUD17, RPYU18], structured sparsification when pruning
neurons in neural nets [AS16, SCHU17] or channels and filters in convolutional nets [LL16,
WWW+16, LKD+17, MMK20, MK21]. In such vector-valued or group settings, the 𝑛 inputs
𝛽 ∈ R𝑛 are partitioned into 𝑡 disjoint groups of features 𝑇1, 𝑇2, . . . , 𝑇𝑡 ⊆ [𝑛], and we would like
to select whole groups of features at a time. We thus also study the question of solving

𝑙(0)− 𝑙(�̃�) ≥ 𝛾

(︂
𝑙(0)− min

𝛽∈R𝑛:‖𝛽‖group≤𝑘
𝑙(𝛽)

)︂
, ‖𝛽‖group := |{𝑖 ∈ [𝑡] : 𝛽|𝑇𝑖

̸= 0}| (16.2)

where 𝛽|𝑇𝑖
denotes the |𝑇𝑖|-dimensional vector obtained by restricting 𝛽 to the coordinates

𝑗 ∈ 𝑇𝑖.1

1 We also allow for 𝛽|𝑇𝑖
to denote the corresponding 𝑛-dimensional vector padded with zeros outside of 𝑇𝑖

whenever this makes sense.

229

Although problems (16.1) and (16.2) are computationally challenging problems in general
[Nat95, FKT15, GV21, PSZ22], a multitude of highly efficient algorithms have been proposed
for solving these problems in practice. Perhaps one of the most popular algorithms in practice is
the use of ℓ1 regularization. That is, if we wish to optimize a function 𝑙 : R𝑛 → R over 𝑘-sparse
inputs {𝛽 ∈ R𝑛 : ‖𝛽‖0 ≤ 𝑘}, then we instead optimize the ℓ1-regularized objective

min
𝛽∈R𝑛

𝑙(𝛽) + 𝜆‖𝛽‖1. (16.3)

The resulting optimal solution 𝛽* often has few nonzero entries and thus helps identify a sparse
solution. This idea was first introduced for the linear regression problem by Tibshirani [Tib96],
known as the LASSO in this case, and has subsequently enjoyed wide adoption in practice in
applications far beyond the original scope of linear regression. For the group sparsification setting,
one can consider a generalization of the LASSO known as the Group LASSO [Bak99, YL06],
which involves minimizing the following objective:

min
𝛽∈R𝑛

𝑙(𝛽) + 𝜆
𝑡∑︁

𝑖=1

‖𝛽|𝑇𝑖
‖2 (16.4)

That is, the regularizer is now the sum of the ℓ2 norms of each group of variables 𝑇𝑖 for 𝑖 ∈ [𝑡].
In practice, this encourages groups of variables to be selected at a time, which facilitates feature
selection in the group setting. We refer the reader to the monograph [HTW15] on the LASSO and
its generalizations for further references and discussion.

16.1.1 Related work: prior guarantees for ℓ1 regularization
Due to the practical importance of solving (16.3) and (16.4), there has been an intense focus
on theoretical work surrounding these optimization problems, especially for the sparse linear
regression problem, i.e., when 𝑙(𝛽) = ‖X𝛽−y‖22 is the least squares objective for a design matrix
X and target vector y. However, as remarked in a number of works [FKT15, GV21, PSZ22],
recovery guarantees for the LASSO and the Group LASSO are strikingly lacking in settings beyond
statistical problems with average-case inputs or strong assumptions on the input, and is usually
considered to be a heuristic in the context of sparse convex optimization for deterministic inputs.
For example, one line of work focuses on the linear regression problem in the setting where the
target vector y is exactly a 𝑘-sparse linear combination X𝛽 for some ‖𝛽‖0 ≤ 𝑘 plus i.i.d. Gaussian
noise, and we seek guarantees on the solution to (16.3) [DS89, CDS98, Tro06, CRT06, CT07,
Can08, BRT09, Zho09, RWY10, BCFS14] when X satisfies the restricted isometry property
(RIP) or its various relaxations such as the restricted eigenvalue condition (RE). This can be
viewed as an instantiation of (16.1) for 𝑙(𝛽) = ‖X𝛽−y‖22, under the assumption that there exists
an approximate global optimum of 𝑙 that is exactly 𝑘-sparse. Statistical consistency results have
also been established, which also assume a “true” 𝑘-sparse target solution [ZY06, MvdGB08].
A more recent line of work has studied algorithms for sparse linear regression problem under a
correlated Gaussian design matrix with other general structural assumptions on the covariance
matrix [KKMR21, KKMR22, KKMR23]. All of these works exclude the consideration of worst-
case error on a desired 𝑘-sparse target solution, which is an undesirable restrictive assumption

230

when solving (16.1) in general. Indeed, one of the most remarkable aspects about the LASSO is
its empirical success on a wide variety of real input distributions that can be far from Gaussian or
even general i.i.d. designs. Thus, gaining a theoretical explanation of the success of the LASSO
in more general settings is a critical question in this literature.

Question 16.1.1. Why are the LASSO and Group LASSO successful on general input distribu-
tions, beyond statistical settings?

An important exception is the work of [YBC+23], which establishes that in the setting of
sparse linear regression, a sequential variation on the LASSO known as the Sequential LASSO
[LC14], in which the LASSO is applied sequentially 𝑘 times to select 𝑘 inputs one at a time, is
in fact equivalent to the Orthogonal Matching Pursuit algorithm (OMP) [PRK93, Tro04].2 The
work of [DK11] showed that OMP achieves bounds of the form of (16.1) whenever X satisfies a
restricted isometry property in the absence of additional distributional assumptions on the input
instance. From [YBC+23], it follows that the Sequential LASSO does as well. Thus, the works of
[DK11, YBC+23] provide a form of an answer to Question 16.1.1 for the sparse linear regression
problem, for general inputs with RIP.

Given the previous success of analyzing the LASSO for general inputs under RIP, one may ask
for generalizations of this result to other objective functions, such as generalized linear models,
logistic regression, or even general sparse convex optimization. Indeed, as mentioned previously,
the LASSO and Group LASSO are used in practice in settings far beyond linear regression, and
fast algorithms for solving the optimization problems of (16.3) and (16.4) are plentiful in the
literature [LLAN06, KKB07, SFR07, MvdGB08, HTF09, FHT10, BPC+11, BJM+11, HMR23].
However, none of these works provide satisfactory answers on why the LASSO and Group LASSO
are successful at selecting a good sparse set of inputs.

Question 16.1.2. Why are the LASSO and Group LASSO successful on general convex objectives,
beyond ℓ2 linear regression? Why do they select a sparse set of inputs? Which inputs are chosen?

While the work of [YBC+23] provides answers for the sparse linear regression problem by
showing that the selected inputs are precisely the inputs selected by OMP, their analysis relies
on specific geometric properties of the linear regression loss such as the Pythagorean theorem
and the fact that the dual of the LASSO objective is a Euclidean norm projection onto a polytope
[OPT00, TT11], and thus the techniques there do not immediately generalize even to specific
problems such as ℓ𝑝 regression or regularized logistic regression. Such a generalization is left as a
central open question in their work. Similarly, the work of [TBF+12] asks the question of why
sequentially discarding variables using the LASSO performs so well.

16.1.2 Our results
The main result of this work is a resolution of Question 16.1.2 for both the LASSO (16.3) and the
Group LASSO (16.4) setting for any strictly convex objective function 𝑙. To state our results, we
first recall the (Group) Sequential LASSO and (Group) OMP algorithms in Algorithms 6 and 7,

2 We also note a work of [TBF+12], which proposes a similar procedure called the Strong Sequential Rule of
sequentially zeroing out variables using the LASSO, but does not obtain provable guarantees for the resulting selected
features.

231

which are both iterative algorithms that maintain a set of selected features 𝑆 ⊆ [𝑡] by adding one
feature at a time starting with 𝑆 = ∅.

Algorithm 6 Group Sequential LASSO.
1: function GROUPSEQUENTIALLASSO(objective 𝑙, sparsity 𝑘, iterations 𝑘′)
2: Initialize 𝑆 ← ∅
3: for 𝑟 = 1 to 𝑘′ do
4: Let 𝜏 := sup{𝜆 > 0 : ∃𝑖 ∈ 𝑆,𝛽𝜆|𝑇𝑖

̸= 0} for

𝛽𝜆 := arg min
𝛽∈R𝑛

𝑙(𝛽) + 𝜆
∑︁
𝑖∈𝑆

‖𝛽|𝑇𝑖
‖2

5: For 𝜀 > 0 sufficiently small, let 𝑖* ∈ 𝑆 be such that 𝛽𝜏−𝜀|𝑇𝑖* ̸= 0
6: Update 𝑆 ← 𝑆 ∪ {𝑖*}
7: return 𝑆

Algorithm 7 Group Orthogonal Matching Pursuit.
1: function GROUPOMP(objective 𝑙, sparsity 𝑘, iterations 𝑘′)
2: Initialize 𝑆 ← ∅
3: for 𝑟 = 1 to 𝑘′ do
4: Let

𝛽∞ := arg min
𝛽∈R𝑛

∀𝑖∈𝑆,𝛽|𝑇𝑖=0

𝑙(𝛽)

5: Let 𝑖* ∈ 𝑆 be such that ‖∇𝑙(𝛽∞)|𝑇𝑖*‖22 = max𝑖∈𝑆‖∇𝑙(𝛽
∞)|𝑇𝑖

‖22
6: Update 𝑆 ← 𝑆 ∪ {𝑖*}
7: return 𝑆

We show that the result of [YBC+23] generalizes to the setting of group-sparse convex
optimization: the Group Sequential LASSO update rule selects a group of features 𝑇𝑖 ⊆ [𝑛]
that maximizes the ℓ2 gradient mass ‖∇𝑙(𝛽)|𝑇𝑖

‖22, i.e., the same update rule as Group OMP.
Our analysis simultaneously gives a substantial simplification as well as a generalization of the
analysis of [YBC+23], which gives us the flexibility to handle both group settings as well as
general convex functions.

Theorem 16.1.3. Let 𝑙 : R𝑛 → R be strictly convex. Let 𝑆 ⊆ [𝑡] be a set of currently selected
features. For each 𝜆 > 0, define

𝛽𝜆 := arg min
𝛽∈R𝑛

𝑙(𝛽) + 𝜆
∑︁
𝑖∈𝑆

‖𝛽|𝑇𝑖
‖2

and let 𝜏 := sup{𝜆 > 0 : ∃𝑖 ∈ 𝑆,𝛽𝜆|𝑇𝑖
̸= 0} and let 𝛽∞ := 𝛽𝜏 = lim𝜆→∞ 𝛽𝜆. Then for 𝜆 = 𝜏−𝜀

for all 𝜀 > 0 sufficiently small, 𝛽𝜆|𝑇𝑖
̸= 0 only if ‖∇𝑙(𝛽∞)|𝑇𝑖

‖22 = max𝑗∈𝑆‖∇𝑙(𝛽
∞)|𝑇𝑗

‖22.

232

Proof. We give our discussion of this result in Section 16.3.

In other words, if we add the Group LASSO regularization only on unselected features 𝑖 ∈ 𝑆
and take 𝜆 as large as possible without causing the solution 𝛽𝜆 to be zero, then 𝛽𝜆 must be
supported on a group of features maximizing the ℓ2 gradient mass at 𝛽∞ among the unselected
features 𝑖 ∈ 𝑆. Furthermore, note that 𝛽∞ is exactly the minimizer of 𝑙(𝛽) subject to the constraint
that 𝛽|𝑇𝑖

= 0 for every 𝑖 ∈ 𝑆. Thus, in the non-group setting, this algorithm sequentially selects
a feature 𝑖 ∈ [𝑛] that maximizes |∇𝑙(𝛽∞)𝑖|, which is exactly the OMP update rule analyzed in
[SSZ10, LS17, EKDN18]. The works of [SSZ10, LS17, EKDN18] show that this OMP update
rule gives a guarantee of the form of (16.1) with an approximation factor 𝛾 depending on the
restricted strong convexity (RSC) of 𝑙, which is a generalization of the RIP parameter for matrices
to general functions. Thus, as reasoned in [YBC+23], the Sequential LASSO for general functions
𝑙 inherits this guarantee of OMP. We also show in Section 16.4 that the group version of the
OMP update rule obtained here based on selecting the group with the largest ℓ2 gradient mass
‖∇𝑙(𝛽)|𝑇𝑖

‖22 in fact also gives an analogous guarantee. In particular, we give guarantees for Group
OMP both in the setting of outputting exactly 𝑘-group-sparse solutions (Corollary 16.4.5) as well
as bicriteria solutions that use a slightly larger sparsity to get within an additive 𝜀 of the function
value of the optimal 𝑘-sparse solution (Corollary 16.4.6), restated below.

Corollary 16.4.5 (Exactly 𝑘-group-sparse solutions). After 𝑘 iterations of Algorithm 7, 𝛽∞ (Line
4) has group sparsity ‖𝛽∞‖group ≤ 𝑘 and satisfies (16.2) with

𝛾 = 1− exp

(︂
−𝜇2𝑘

𝐿1

)︂
,

where 𝜇2𝑘 is a lower bound on the restricted strong convexity constant of 𝑙 at group sparsity 2𝑘 and
𝐿1 is an upper bound on the restricted smoothness constant of 𝑙 at group sparsity 1 (see Definition
16.4.1).

Corollary 16.4.6 (Bicriteria sparsity with 𝜀 additive error). After 𝑘′ iterations of Algorithm 7, for

𝑘′ ≥ 𝑘 · 𝐿1

𝜇𝑘+𝑘′
log

𝑙(𝛽(0))− 𝑙(𝛽*)

𝜀
,

then 𝛽∞ (Line 4) has group sparsity ‖𝛽∞‖group ≤ 𝑘′ and satisfies

𝑙(𝛽∞) ≤ 𝑙(𝛽*) + 𝜀 ,

where 𝜇𝑘+𝑘′ is a lower bound on the restricted strong convexity constant of 𝑙 at group sparsity
𝑘+ 𝑘′ and 𝐿1 is an upper bound on the restricted smoothness constant of 𝑙 at group sparsity 1 (see
Definition 16.4.1).

We additionally note that our analysis also immediately extends to an analysis of a local search
version of OMP, known as OMP with Replacement (Algorithm 9) [JTD11, AS20], which gives a
bicriteria sparsity bound which does not depend on 𝜀 (Corollary 16.4.10).

233

Corollary 16.4.10 (Bicriteria sparsity with 𝜀 additive error). After 𝑅 iterations of Algorithm 9
with 𝑘′ ≥ 𝑘

(︁
𝐿2
2

𝜇2
𝑘+𝑘′

+ 1
)︁

, for

𝑅 ≥ 𝑘 · 𝐿2

𝜇𝑘+𝑘′
log

𝑙(𝛽(0))− 𝑙(𝛽*)

𝜀
,

then 𝛽∞ (Line 4) has group sparsity ‖𝛽∞‖group ≤ 𝑘′ and satisfies

𝑙(𝛽∞) ≤ 𝑙(𝛽*) + 𝜀 ,

where 𝜇𝑘+𝑘′ is a lower bound on the restricted strong convexity constant of 𝑙 at group sparsity
𝑘 + 𝑘′ and 𝐿2 is an upper bound on the restricted smoothness constant of 𝑙 at group sparsity 2
(see Definition 16.4.1).

This variant of OMP can be analogously simulated by the LASSO as well, leading to a
new LASSO-based feature selection algorithm which we call (Group) Sequential LASSO with
Replacement.

Techniques

Our main technique involves exploiting the correspondence between variables of a primal op-
timization problem with the gradient of the dual optimization problem, via the Fenchel–Young
inequality (Theorem 16.2.2).

We start with an observation given by [GVR10]. When we take the dual of the LASSO
objective, then the resulting problem involves minimizing the Fenchel dual 𝑙* of 𝑙 (Definition
16.2.1), subject to a hypercube constraint set. When the regularization 𝜆 is sufficiently large
(say larger than some threshold 𝜏), then this increases the size of the constraint set large enough
to contain the global minimizer of the Fenchel dual 𝑙*, and thus the gradient of 𝑙* vanishes at
this minimizer. Then by the equality case of the Fenchel–Young inequality, this implies that
the corresponding primal variable 𝛽 is zero as well. On the other hand, if 𝜆 is smaller than this
threshold point 𝜏 , only some coordinates will be unconstrained (i.e. strictly feasible), while others
coordinates will become constrained by the smaller 𝜆. In this case, the strictly feasible coordinates
will have zero gradient, which leads to zeroes in the corresponding primal variable 𝛽 and thus
a sparse solution. The argument until this point is known in prior work, and [GVR10] used this
observation to give an algorithm which tunes the value of 𝜆 such that at least 𝑘 variables are
selected in a single application, while [TBF+12] proposed a sequential procedure with better
empirical performance.

Our central observation, inspired by the work of [YBC+23], is that if we regularize strongly
enough such that only one feature is selected at a time via the LASSO, then this feature is the
one maximizing the absolute value of the gradient. Indeed, note that if 𝜆 is just slightly smaller
than the threshold point 𝜏 , then the global minimizer u* ∈ R𝑛 of 𝑙* just slightly violates exactly a
single constraint in the dual problem, which corresponds to the feature 𝑖* ∈ [𝑛] with the largest
absolute coordinate value |u*

𝑖 | in the dual variable. We show that for such 𝜆, all other coordinates
𝑗 ∈ [𝑛] ∖ {𝑖*} are unconstrained optimizers and thus the gradient is 0 (Lemma 16.3.2). Thus,
by the equality case of the Fenchel–Young inequality, this corresponds to a primal variable 𝛽

234

that is supported only on this coordinate 𝑖* ∈ [𝑛]. The crucial next step then is to apply the
Fenchel–Young inequality again in the dual direction: via the Fenchel–Young inequality, this
coordinate 𝑖* ∈ [𝑛] maximizes the absolute coordinate value of the dual variable u, and thus is the
coordinate that maximizes the absolute coordinate value of the gradient of the primal variable 𝛽.
Thus, this selects a coordinate which follows the first step of the OMP update rule. While we have
sketched the proof only for this first step in the non-group setting, the analysis also carries through
for all steps of the OMP algorithm, as well as for the group setting. Thus, this establishes the
equivalence between (Group) Sequential LASSO and (Group) OMP for general convex functions.

Connections to analysis of attention mechanisms

As noted in [YBC+23], we make a connection of our work to the analysis of recently popularized
techniques for discrete optimization via continuous and differentiable relaxations inspired by the
attention mechanism [VSP+17]. The attention mechanism can be viewed as a particular algorithm
for the sparse optimization problem (16.1), in which an additional set of variables w ∈ R𝑛 are
introduced, and we solve a new optimization problem

min
w,𝛽∈R𝑛

𝑙(softmax(w)⊙ 𝛽), (16.5)

where ⊙ denotes the Hadamard (entrywise) product and softmax(w) ∈ R𝑛 is defined as

softmax(w)𝑖 :=
exp(w𝑖)∑︀𝑛
𝑗=1 exp(w𝑗)

.

The idea is that w serves as a measure of “importance” of each feature 𝑖 ∈ [𝑛], and the softmax
allows for a differentiable relaxation for the operation of selecting the most “important” fea-
ture when minimizing the loss 𝑙. Alternatively, w can be viewed as the amount of “attention”
placed on feature 𝑖 ∈ [𝑛] by the algorithm. Such ideas have been applied extremely widely in
machine learning, with applications to feature selection [LLY21, YBC+23], feature attribution
[AP21], permutation learning [MBLS18], neural architecture search [LSY19], and differentiable
programming [NLS16]. Thus, it is a critical problem to obtain a theoretical understanding of
subset selection algorithms of the form of (16.5).

The work of [YBC+23] showed that a slight variation on (16.5) is in fact amenable to analysis
when 𝑙 is the problem of least squares linear regression. In this case, [YBC+23] show (using a
result of [Hof17]) that if we instead consider

min
w,𝛽∈R𝑛

𝑙(w ⊙ 𝛽) +
𝜆

2

(︀
‖w‖22 + ‖𝛽‖22

)︀
(16.6)

i.e., remove the softmax and add ℓ2 regularization, then this is in fact equivalent to the ℓ1-
regularized problem considered in (16.3). In Lemma 16.5.1, we show a generalization of this fact
to the group setting, by showing that if we have 𝑡 features corresponding to disjoint subsets of
coordinates 𝑇1, 𝑇2, . . . , 𝑇𝑡 ⊆ [𝑛], then multiplying each of the features 𝛽|𝑇𝑖

by a single “attention
weight” w𝑖 for w ∈ R𝑡 gives a similar correspondence to the Group LASSO algorithm (16.4).
Thus, the attention-inspired feature selection algorithm given in Algorithm 8 also enjoys the

235

same guarantees as the Group Sequential LASSO algorithm. We note that this generalization to
the group setting is particularly important for the various applications in attention-based subset
selection algorithms, due to the fact that the objects 𝛽|𝑇𝑖

being selected are often large vectors in
these applications.

Algorithm 8 Group Sequential Attention.
1: function GROUPSEQUENTIALATTENTION(objective 𝑙, sparsity 𝑘, iterations 𝑘′)
2: Initialize 𝑆 ← ∅
3: for 𝑟 = 1 to 𝑘′ do
4: Let 𝜏 := sup{𝜆 > 0 : ∃𝑖 ∈ 𝑆,𝛽𝜆|𝑇𝑖

̸= 0} for

𝛽𝜆 := arg min
w∈R𝑡,𝛽∈R𝑛

𝑙(𝛽w) +
𝜆

2

∑︁
𝑖∈𝑆

w2
𝑖 + ‖𝛽|𝑇𝑖

‖22, 𝛽w|𝑇𝑖
:= w𝑖 · 𝛽|𝑇𝑖

5: For 𝜀 > 0 sufficiently small, let 𝑖* ∈ 𝑆 be such that 𝛽𝜏−𝜀|𝑇𝑖* ̸= 0
6: Update 𝑆 ← 𝑆 ∪ {𝑖*}
7: return 𝑆

Finally, we also note that our analysis of Hadamard product-type of algorithms of the form
of (16.6) may prove to be useful in the analysis of similar algorithms in the literature of online
convex optimization that have been developed to solve sparse optimization problems [AW20b,
AW20a, Chi22].

Applications to column subset selection

As a corollary of our analyses of group feature selection algorithms, we obtain the first algorithms
for the column subset selection (CSS) problem for general loss functions with restricted strong
convexity and smoothness.

In the CSS problem, we are given an input matrix X ∈ R𝑛×𝑑, and the goal is to select a small
subset of 𝑘 columns 𝑆 ⊆ [𝑑] of X that minimizes the reconstruction error

min
V∈R𝑘×𝑑

⃦⃦
X−X|𝑆V

⃦⃦2
𝐹
, (16.7)

where X|𝑆 ∈ R𝑛×𝑘 is the matrix X restricted to the columns indexed by 𝑆. As with sparse linear
regression, this problem is known to be computationally difficult [Çiv14], and thus most works
focus on approximation algorithms and bicriteria guarantees to obtain tractable results.

The CSS problem can be viewed as an unsupervised analogue of sparse convex optimization,
and has been studied extensively in prior work. In particular, the works of [FGK11, ÇM12,
FGK13, FEGK15, SVW15, ABF+16, LS17] gave analyses of greedy algorithms for this problem,
showing that iteratively selecting columns that maximizes the improvement in reconstruction error
(16.7) leads to bicriteria sparsity algorithms that depend on the sparse condition number of X. In
a separate line of work, randomized methods have been employed in the randomized numerical
linear algebra literature to sample columns of X that span a good low rank approximation [DV06,
DMM08, BMD09, DR10, BDM11, CEM+15, BW17, CMM17]. Furthermore, there has recently

236

been a large body of work aimed at generalizing CSS results to more general loss functions beyond
the Frobenius norm, including ℓ𝑝 norms [SWZ17, CGK+17, DWZ+19, SWZ19, JLL+21, MW21]
and other entrywise losses [SWZ19, WY23b]. All of these works use complicated arguments and
rely heavily on the entrywise structure of the loss function.

We show that by a surprisingly simple argument, we can immediately obtain the first results
on column subset selection for general convex loss functions with restricted strong convexity and
smoothness. Our key insight is to view this problem not as a column subset selection problem for
X, but rather a row subset selection problem for V. That is, note that

min
|𝑆|≤𝑘

min
V∈R𝑘×𝑑

𝑙
(︀
X−X|𝑆V

)︀
= min

|𝑆|≤𝑘
min

V∈R𝑑×𝑑
𝑙(X−XV|𝑆)

where V|𝑆 zeros out all rows of V not indexed by 𝑆. Then, this is just a group variable selection
problem, where we have 𝑑 groups given by each of the rows of V, and thus we may write this
problem as computing

OPT = min
V∈R𝑑×𝑑,‖V‖group≤𝑘

𝑙(X−XV)

Thus, by using our guarantees for Group OMP in Corollaries 16.4.5 and 16.4.6 (which also hold
for Group Sequential LASSO and Group Sequential Attention by Theorem 16.1.3 and Lemma
16.5.1), we obtain the first algorithm and analysis of the column subset selection problem under
general loss functions with restricted strong convexity and smoothness. This gives a substantial
generalization of results known in prior work.

Theorem 16.1.4 (Column subset selection via Group OMP). Let X ∈ R𝑛×𝑑 and let 𝑙 : R𝑛×𝑑 → R
be a strictly convex and differentiable loss function. Let V ↦→ 𝑙(X−XV) satisfy 𝐿1-group-sparse
smoothness and 𝜇𝑘+𝑘′-group-sparse convexity (Definition 16.4.1), where the groups are the rows
of V. The following hold:

• Let 𝜅 = 𝐿1/𝜇2𝑘. After 𝑘′ = 𝑘 iterations, Algorithm 7 outputs a subset 𝑆 ⊆ [𝑛] of size
|𝑆| ≤ 𝑘 such that

𝑙(X)− 𝑙(X−X|𝑆V) ≥
(︀
1− 𝑒−𝜅

)︀
(𝑙(X)− OPT).

• Let 𝜅 = 𝐿1/𝜇𝑘+𝑘′ . After 𝑘′ ≥ 𝑘 · 𝜅 log 𝑙(X)−OPT
𝜀

iterations, Algorithm 7 outputs a subset
𝑆 ⊆ [𝑛] of size |𝑆| ≤ 𝑘′ such that

𝑙(X−X|𝑆V) ≤ OPT+𝜀.

Proof. This follows from applying Corollaries 16.4.5 and 16.4.6 to the group-sparse convex
optimization formulation of column subset selection.

Our proof is arguably simpler than prior work even for the Frobenius norm. Indeed, the
prior works require arguments that use the special structure of Euclidean projections, whereas we
simply observe that CSS is a group-sparse convex optimization problem and use a generalization
of techniques for sparse regression. We also immediately obtain analyses for natural algorithms
which were previously not considered in the context of column subset selection, such as Group
OMP (with Replacement), Group LASSO, and attention-based algorithms. In particular, by
applying guarantees for Group OMP with Replacement (Corollary 16.4.10), we obtain the first
column subset selection algorithm with no dependence on 𝜀 in the sparsity, even for the Frobenius
norm problem.

237

Theorem 16.1.5 (Column subset selection with Group OMPR). Let X ∈ R𝑛×𝑑 and let 𝑙 : R𝑛×𝑑 →
R be a strictly convex and differentiable loss function. Let V ↦→ 𝑙(X−XV) satisfy 𝐿2-group-
sparse smoothness and 𝜇𝑘+𝑘′-group-sparse convexity (Definition 16.4.1), where the groups are
the rows of V. Let 𝜅 = 𝐿2/𝜇𝑘+𝑘′ and 𝑘′ ≥ 𝑘(𝜅2 + 1). After 𝑅 ≥ 𝑘 · 𝜅 log 𝑙(X)−OPT

𝜀
iterations,

Algorithm 9 outputs a subset 𝑆 ⊆ [𝑛] of size |𝑆| ≤ 𝑘′ such that

𝑙(X−X|𝑆V) ≤ OPT+𝜀.

Proof. This follows from applying Corollary 16.4.10 to the group-sparse convex optimization
formulation of column subset selection.

16.1.3 Related work: the Forward Stagewise Regression conjecture
A separate line of work has investigated a closely related connection between the LASSO and
OMP-like algorithms. In particular, the “continuous” OMP (or coordinate descent) algorithm
which updates 𝛽(𝑡+1) ← 𝛽(𝑡) − 𝜂 · sign(∇𝑖𝑙(𝛽

(𝑡)))e𝑖 for 𝑖 = argmax𝑛𝑖=1∇𝑙(𝛽(𝑡)) known as
Forward Stagewise Regression is conjectured [RZH04, Conjecture 2]) to have the same solution
path as the LASSO path (i.e. the set of solutions as 𝜆 ranges from 0 to ∞) when 𝜂 → 0
[EHJT04, RZH04, Tib15, FGM17]. While a full proof of this conjecture may be useful towards
proving our main result, to the best of our knowledge, the only known result towards this conjecture
establishes an “instantaneous” result which shows the convergence of the difference between the
two paths to the gradient [RZH04, Theorem 1] under technical assumptions under the underlying
loss function such as the monotonicity of the coordinates of the LASSO solution. Our result can
be viewed as a full proof of this conjecture in an open ball near 0 for general strictly convex
differentiable functions, and our techniques may be useful for a full resolution of this conjecture.

16.1.4 Related work: algorithms for sparse convex optimization
While we have argued so far that guarantees for ℓ1 regularization in solving (16.1) in prior
work are limited, other efficient algorithms have in fact been shown to solve (16.1), both for
sparse linear regression as well as general sparse convex optimization. Via a connection between
convexity and weakly submodular optimization, the works of [SSZ10, LS17, EKDN18] showed
that the greedy forward algorithm and Orthogonal Matching Pursuit both give guarantees of
the form of (16.1). Efficiency guarantees have also been given for OMP with Replacement
(OMPR) [SSZ10, JTD11, AS20] and Iterative Hard Thresholding (IHT) [JTK14, AS22], using
the restricted smoothness and strong convexity properties. Ultimately, these results show that an
𝜖-approximate sparse solution can be recovered if we allow an 𝑂(𝜅) blowup to the sparsity, where
𝜅 is the restricted condition number of the problem.

16.1.5 Open directions
We suggest several directions for future study. Our first question is on showing analogous results
for the one-shot version of LASSO, which is used much more frequently in practice than the
Sequential LASSO. That is, if 𝜆 is chosen in (16.3) such that only 𝑘 nonzero entries are selected,

238

then can we obtain a guarantee of the form of (16.1) for this solution? It is known that one-shot
variants of OMP or greedy have this type of guarantee [DK11, EKDN18] (also called “oblivious”
algorithms in these works). However, our proof techniques do not immediately apply, since we
crucially use the fact that for large enough regularizations 𝜆, the resulting solution is close to the
𝜆 =∞ solution, while this is not true when 𝜆 can be much smaller.

A second question is whether our results generalize beyond convex functions or not. For
example, the analysis of OMP carries through to smooth functions that satisfy the Polyak-
Łojasiewicz condition [KNS16]. Can a similar generalization be shown for our results? There are
several parts of our proofs that crucially use convexity, but the LASSO is known to give good
results even for nonconvex functions in practice and thus there is still a gap in our understanding
of this phenomenon.

Finally, we ask if our analyses for ℓ1 regularization can be extended to an analogous result
for nuclear norm regularization for rank-constrained convex optimization. In the setting of
rank-constrained convex optimization, it has been shown in special cases, such as affine rank
minimization, that nuclear norm regularization can be used to efficiently recover low rank solutions
[RFP10]. This suggests that our results may have a natural generalization in this setting as well.
In particular, an extension of OMP to the rank-sparse setting was shown by [AS21], and thus it is
possible that nuclear norm regularization can be used to simulate this algorithm as well.

16.2 Preliminaries

Let 𝑙 : R𝑛 → R be strictly convex and differentiable. For each 𝑖 ∈ [𝑡], let 𝑇𝑖 ⊆ [𝑛] denote the
group of variables that belong to the 𝑖-th feature.

16.2.1 Fenchel duality

We will use the following standard facts about Fenchel duality [BV04].

Definition 16.2.1 (Fenchel dual). Let 𝑙 : R𝑛 → R. Then, the Fenchel dual 𝑙* of 𝑙 is

𝑙*(u) := sup
z∈R𝑛

u⊤z− 𝑙(z).

Theorem 16.2.2 (Fenchel–Young inequality). Let 𝑙 : R𝑛 → R be convex and differentiable.
Then,

𝑙(z) + 𝑙*(u) ≥ u⊤z

with equality if and only if u = ∇𝑙(z).

Theorem 16.2.3 (Conjugacy theorem). Let 𝑙 : R𝑛 → R be convex. Then, (𝑙*)* = 𝑙.

The following is known about the convexity and differentiability of the Fenchel dual.

Theorem 16.2.4 (Differentiability of dual, Theorem 26.3, [Roc70]). Let 𝑙 : R𝑛 → R be strictly
convex and differentiable. Then, 𝑙* is strictly convex and differentiable.

239

16.2.2 Berge’s theorem
We will use a well-known theorem of Berge on the continuity of the argmin for constrained
optimization problems with parameterized constraint sets.

Recall that a correspondence ℎ : R ⇒ R𝑛 is a set-valued function which maps real numbers
𝜆 to subsets ℎ(𝜆) ⊆ R𝑛. A correspondence ℎ is upper hemicontinuous if for every 𝜆 ∈ R
and every open set 𝐺 ⊆ R𝑛 such that ℎ(𝜆) ⊂ 𝐺, there is an open set 𝑈 ⊆ R such that
𝜏 ∈ 𝑈 =⇒ ℎ(𝜏) ⊂ 𝐺.

Theorem 16.2.5 (Berge’s theorem [Ber63]). Let 𝑔 : R𝑛 → R be a continuous function and
let 𝜙 : R ⇒ R𝑛 be a continuous correspondence that map into compact sets. Consider the
correspondence ℎ : R ⇒ R𝑛 given by

ℎ(𝜆) =

{︂
u ∈ R𝑛 : 𝑔(u) = min

u′∈𝜙(𝜆)
𝑔(u′)

}︂
Then, ℎ is upper hemicontinuous.

The following corollary of Theorem 16.2.5 for strictly convex functions is more useful for our
purposes.

Corollary 16.2.6 (Berge’s theorem for convex functions). Let 𝑔 : R𝑛 → R be a strictly convex
function and let 𝜙 : R ⇒ R𝑛 be a continuous correspondence that map into compact sets. Consider
the function ℎ : R→ R𝑛 given by

ℎ(𝜆) = arg min
u′∈𝜙(𝜆)

𝑔(u′)

Then, ℎ is continuous.

Proof. Because 𝑔 is strictly convex, there is a unique minimizer u𝜆 of 𝑔 for each 𝜆 ∈ R, so ℎ is
well-defined. Furthermore, ℎ is upper hemicontinuous as a correspondence that maps real numbers
𝜆 to singleton sets {ℎ(𝜆)} by Theorem 16.2.5, and any function ℎ that is upper hemicontinuous
as a correspondence is continuous as a function.

16.3 Equivalence of Group Sequential LASSO and Group Or-
thogonal Matching Pursuit

We will give our proof of Theorem 16.1.3 in this section.

16.3.1 The dual problem
Consider the Group Sequential LASSO objective:

min
𝛽∈R𝑛

𝑙(𝛽) + 𝜆
∑︁
𝑖∈𝑆

‖𝛽|𝑇𝑖
‖2 (16.8)

240

We will show that the dual of this problem is

max
u∈R𝑛

−𝑙*(−u) = − min
u∈R𝑛

𝑙*(−u)

s.t. ‖u|𝑇𝑖
‖2 ≤ 𝜆 for each 𝑖 ∈ 𝑆

‖u|𝑇𝑖
‖2 = 0 for each 𝑖 ∈ 𝑆

(16.9)

We write the objective of (16.8) as a constrained optimization problem in the form of

min
z∈R𝑛,𝛽∈R𝑑

𝑙(z) + 𝜆
∑︁
𝑖∈𝑆

‖𝛽|𝑇𝑖
‖2

s.t. z = 𝛽

Then, the Lagrangian dual of this problem is

min
z∈R𝑛,𝛽∈R𝑛

max
u∈R𝑛

𝑙(z) + 𝜆
∑︁
𝑖∈𝑆

‖𝛽|𝑇𝑖
‖2 + u⊤(z− 𝛽)

Furthermore, the objective of (16.8) is convex and strictly feasible, so strong duality holds (see,
e.g., Section 5.2.3 of [BV04]) and thus we may interchange the min and the max to obtain

max
u∈R𝑛

min
z∈R𝑛,𝛽∈R𝑛

𝑙(z) + 𝜆
∑︁
𝑖∈𝑆

‖𝛽|𝑇𝑖
‖2 + u⊤(z− 𝛽)

= max
u∈R𝑛

min
z∈R𝑛

𝑙(z) + u⊤z+ min
𝛽∈R𝑛

𝜆
∑︁
𝑖∈𝑆

‖𝛽|𝑇𝑖
‖2 − u⊤𝛽

Now note that the first minimization over z ∈ R𝑛 gives exactly the Fenchel dual objective

min
z∈R𝑛

𝑙(z) + u⊤z = −max
z∈R𝑛

(−u)⊤z− 𝑙(z) = −𝑙*(−u).

On the other hand, we show in the next lemma that the second minimization over 𝛽 ∈ R𝑛 gives
the constraints on the variables u given in (16.9).

Lemma 16.3.1. We have that

inf
𝛽∈R𝑑

𝜆
∑︁
𝑖∈𝑆

‖𝛽|𝑇𝑖
‖2 − u⊤𝛽 =

{︃
0 if ‖u|𝑇𝑖

‖2 ≤ 𝜆 for 𝑖 ∈ 𝑆 and ‖u|𝑇𝑖
‖2 = 0 for 𝑖 ∈ 𝑆

−∞ otherwise

Proof. If ‖u|𝑇𝑖
‖2 > 𝜆 for some coordinate 𝑖 ∈ 𝑆, then we may choose 𝛽 = u|𝑇𝑖

so that

𝜆‖u|𝑇𝑖
‖2 − ‖u|𝑇𝑖

‖22 = ‖u|𝑇𝑖
‖2(𝜆− ‖u|𝑇𝑖

‖2) < 0

so the objective can be made arbitrarily small by scaling. If ‖u|𝑇𝑖
‖2 > 0 for some 𝑖 ∈ 𝑆, then we

may choose 𝛽 = u|𝑇𝑖
so that

𝜆
∑︁
𝑖∈𝑆

‖𝛽|𝑇𝑖
‖2 − ‖u|𝑇𝑖

‖22 = 0− ‖u|𝑇𝑖
‖22 < 0

241

so the objective can be made arbitrarily small by scaling. Otherwise, we have that

u⊤𝛽 =
∑︁
𝑖∈𝑆

u|⊤𝑇𝑖
𝛽|𝑇𝑖

since u|𝑇𝑖
= 0 for every 𝑖 ∈ 𝑆

≤
∑︁
𝑖∈𝑆

‖u|𝑇𝑖
‖2‖𝛽|𝑇𝑖

‖2 Cauchy–Schwarz

≤ 𝜆
∑︁
𝑖∈𝑆

‖𝛽|𝑇𝑖
‖2 since ‖u|𝑇𝑖

‖2 ≤ 𝜆 for every 𝑖 ∈ 𝑆.

Thus,
𝜆
∑︁
𝑖∈𝑆

‖𝛽|𝑇𝑖
‖2 − u⊤𝛽 ≥ 0

and furthermore, this value can be achieved by 𝛽 = 0.

16.3.2 Selection of features
We will use Berge’s theorem (Theorem 16.2.5) to prove the following lemma, which characterizes
the gradient of the optimal solution to the dual optimization problem given by (16.9).

Lemma 16.3.2. Let 𝜆 > 0 and let u𝜆 be the minimizer of (16.9). Let u∞ be the minimizer
of (16.9) without the constraint that ‖u|𝑇𝑖

‖2 ≤ 𝜆 for every 𝑖 ∈ 𝑆. Define the threshold 𝜏 :=
max𝑖∈𝑆‖u∞|𝑇𝑖

‖2 and let 𝑀 𝜏 ⊆ 𝑆 denote the corresponding set of indices 𝑖 ∈ 𝑆 that witnesses
the max, that is,

𝑀 𝜏 :=
{︀
𝑖 ∈ 𝑆 : ‖u∞|𝑇𝑖

‖2 = 𝜏
}︀
.

The following hold:
• If 𝜆 ≥ 𝜏 , then∇𝑙*(−u𝜆)|𝑇𝑖

= 0 for all 𝑖 ∈ 𝑆.
• If 𝜆 = 𝜏 − 𝜀 for sufficiently small 𝜀 > 0, then ∇𝑙*(−u𝜆)|𝑇𝑖

= 0 for all 𝑖 ∈ 𝑆 ∖𝑀 𝜏 and
∇𝑙*(−u𝜆)|𝑇𝑖

̸= 0 for some 𝑖 ∈𝑀 𝜏 .

Proof. If 𝜆 ≥ 𝜏 , then the constraint max𝑖∈𝑆
⃦⃦
u𝜆|𝑇𝑖

⃦⃦
2
≤ 𝜆 can be removed without affecting the

optimal solution, so u𝜆 = u∞. Then for the coordinates in 𝑇𝑖 for 𝑖 ∈ 𝑆, u∞ is a minimizer for an
unconstrained optimization problem, so the gradient is 0 on these coordinates. This shows the
first bullet point.

On the other hand, suppose that 𝜆 = 𝜏 − 𝜀 for some small 𝜀 > 0. Then, u∞ is outside the set
{u ∈ R𝑛 : max𝑖∈𝑆‖u|𝑇𝑖

‖2 ≤ 𝜆}. Now consider the function

ℎ(𝜆) = max
𝑖∈𝑆∖𝑀𝜏

‖u𝜆|𝑇𝑖
‖2,

i.e., the second largest value of ‖u𝜆|𝑇𝑖
‖2 after excluding the maximizers 𝑖 ∈𝑀 𝜏 . Note that this

function is continuous since 𝜆 ↦→ u𝜆 is continuous by Corollary 16.2.6. Furthermore, we have
that ℎ(𝜏) < 𝜏 , since the maximum in the definition of ℎ excludes the indices 𝑀 𝜏 . Let 𝜏 ′ satisfy
ℎ(𝜏) < 𝜏 ′ < 𝜏 . Then, for all sufficiently small 𝜀, we have that ℎ(𝜏 − 𝜀) < 𝜏 ′ by the continuity of
ℎ. For these 𝜀, we can remove the constraints of ‖u|𝑇𝑖

‖2 ≤ 𝜆 = 𝜏 − 𝜀 for 𝑖 ∈ 𝑆 ∖𝑀 𝜏 without

242

affecting the optimal solution u𝜆 in the optimization problem of (16.9), so on the coordinates 𝑇𝑖

for 𝑖 ∈ 𝑆 ∖𝑀 𝜏 , u𝜆 is an unconstrained minimizer and thus has zero gradient. On the other hand,
for the coordinates 𝑇𝑖 for 𝑖 ∈𝑀 𝜏 , u𝜆 cannot be the unconstrained minimizer and thus there must
be some nonzero coordinate in the gradient due to the convexity of 𝑙*.

We can then show that Lemma 16.3.2 in fact characterizes the support of the optimal solution
𝛽* by relating the primal and dual variables via the Fenchel–Young inequality (Theorem 16.2.2).

Lemma 16.3.3 (Primal vs dual variables). We have that −u = ∇𝑙(𝛽) and 𝛽 = ∇𝑙*(−u).

Proof. The primal variable z is related to the dual variable u via Fenchel dual, that is,

𝑙*(−u) = (−u)⊤z− 𝑙(z)

Then by the tightness of the Fenchel–Young inequality (Theorem 16.2.2) for 𝑙, we have that
−u = ∇𝑙(z). Furthemore, by the conjugacy theorem (Theorem 16.2.3), we have that (𝑙*)* = 𝑙,
so 𝑙*(−u) + (𝑙*)*(z) = (−u)⊤z. Then by tightness of the Fenchel–Young inequality (Theorem
16.2.2) for 𝑙*, we have that 𝛽 = z = ∇𝑙*(−u).

Thus, by Lemma 16.3.2, 𝛽𝜆 has a nonzero support on some group 𝑇𝑖 if and only if the group 𝑇𝑖

maximizes ‖u∞|𝑇𝑖
‖2 = ‖∇𝑙(𝛽∞)|𝑇𝑖

‖2. This is precisely the Group Orthogonal Matching Pursuit
selection rule (see Line 5 of Algorithm 7).

16.4 Guarantees for Group Orthogonal Matching Pursuit
In this section, we give guarantees for the Group OMP algorithm (Algorithm 7). Our analysis is
similar to [SSZ10, LS17, EKDN18]. We first introduce the notion of restricted strong convexity
and smoothness, generalized to the group setting.

Definition 16.4.1 (Restricted strong convexity and smoothness). Let 𝑙 : R𝑛 → R. Let 𝑇𝑖 ⊆ [𝑛]
for 𝑖 ∈ [𝑡] form a partition of [𝑛]. Then, 𝑙 is 𝜇𝑠-restricted strongly convex at group sparsity 𝑠 if for
any 𝛽 ∈ R𝑛 and Δ ∈ R𝑛 with ‖Δ‖group ≤ 𝑠,

𝑙(𝛽 +Δ)− 𝑙(𝛽)− ⟨∇𝑙(𝛽),Δ⟩ ≥ 𝜇𝑠

2
‖Δ‖22

and 𝐿𝑠-restricted smooth at group sparsity 𝑠 if for any 𝛽 ∈ R𝑛 and Δ ∈ R𝑛 with ‖Δ‖group ≤ 𝑠,

𝑙(𝛽 +Δ)− 𝑙(𝛽)− ⟨∇𝑙(𝛽),Δ⟩ ≤ 𝐿𝑠

2
‖Δ‖22.

Lemma 16.4.2 (Smoothness). Let 𝑙 be 𝐿1-restricted smooth at group sparsity 1. Let 𝑟 ∈ [𝑘′] and
let 𝛽∞ and 𝑖* be defined as in Lines 4 and 5 of Algorithm 7 on the 𝑟-th iteration. Let 𝛽′ := 𝛽∞+Δ
for Δ = −𝐿−1

1 ∇𝑙(𝛽∞)|𝑇𝑖* . Then,

(2𝐿1)
−1‖∇𝑙(𝛽∞)|𝑇𝑖*‖

2
2 ≤ 𝑙(𝛽∞)− 𝑙(𝛽′)

243

Proof. Note that Δ has group sparsity 1. We then have that

𝑙(𝛽′)− 𝑙(𝛽∞) ≤ ⟨∇𝑙(𝛽∞),Δ⟩+ 𝐿1

2
‖Δ‖22 𝐿1-restricted smoothness

= −𝐿−1
1 ‖∇𝑙(𝛽∞)|𝑇𝑖*‖

2
2 +

1

2
𝐿−1
1 ‖∇𝑙(𝛽∞)|𝑇𝑖*‖

2
2

= −1

2
𝐿−1
1 ‖∇𝑙(𝛽∞)|𝑇𝑖*‖

2
2.

Rearranging gives the desired result.

Lemma 16.4.3 (Convexity). Let 𝑙 be 𝜇𝑘+𝑘′-restricted strongly convex at group sparsity 𝑘 + 𝑘′.
Let 𝑟 ∈ [𝑘′] and let 𝛽∞ and 𝑖* be defined as in Lines 4 and 5 of Algorithm 7 on the 𝑟-th iteration.
Let

𝛽* := arg min
𝛽∈R𝑛:‖𝛽‖group≤𝑘

𝑙(𝛽)

Then,

‖∇𝑙(𝛽∞)|𝑇𝑖*‖
2
2 ≥

2𝜇𝑘+𝑘′

𝑘
(𝑙(𝛽∞)− 𝑙(𝛽*)).

Proof. Let 𝑈* ⊆ [𝑛] be the support of 𝛽* and let 𝑈 ⊆ [𝑛] be the support of 𝛽∞. Note that
‖𝛽* − 𝛽∞‖group ≤ 𝑘 + 𝑘′. Then,

𝑙(𝛽*)− 𝑙(𝛽∞) ≥ ⟨∇𝑙(𝛽∞),𝛽* − 𝛽∞⟩+ 𝜇𝑘+𝑘′

2
‖𝛽* − 𝛽∞‖22

=
⟨︀
∇𝑙(𝛽∞), (𝛽* − 𝛽∞)|𝑈*∖𝑈

⟩︀
+

𝜇𝑘+𝑘′

2
‖𝛽* − 𝛽∞‖22 ∇𝑙(𝛽∞)|𝑈 = 0

≥ −‖∇𝑙(𝛽∞)|𝑈*∖𝑈‖2‖(𝛽* − 𝛽∞)|𝑈*∖𝑈‖2 +
𝜇𝑘+𝑘′

2

⃦⃦
(𝛽* − 𝛽∞)|𝑈*∖𝑈

⃦⃦2
2

≥ min
𝑥
−‖∇𝑙(𝛽∞)|𝑈*∖𝑈‖2𝑥+

𝜇𝑘+𝑘′

2
𝑥2

= −
‖∇𝑙(𝛽∞)|𝑈*∖𝑈‖22

2𝜇𝑘+𝑘′

so
‖∇𝑙(𝛽∞)|𝑈*∖𝑈‖22 ≥ 2𝜇𝑘+𝑘′(𝑙(𝛽

∞)− 𝑙(𝛽*)).

Now note that 𝑈* ∖ 𝑈 is supported on at most 𝑘 groups, so by averaging, there exists some group
𝑇𝑖 outside of 𝑈 such that

‖∇𝑙(𝛽∞)|𝑇𝑖
‖22 ≥

2𝜇𝑘+𝑘′

𝑘
(𝑙(𝛽∞)− 𝑙(𝛽*)).

Combining Lemmas 16.4.2 and 16.4.3 leads to the following stepwise guarantee for Algorithm
7.

Lemma 16.4.4. Let 𝛽(𝑟) denote the value of 𝛽∞ (Line 4) after 𝑟 iterations of Algorithm 7 with
𝛽(0) = 0. Let

𝛽* := arg min
𝛽∈R𝑛:‖𝛽‖group≤𝑘

𝑙(𝛽)

Then,

𝑙(𝛽(𝑟))− 𝑙(𝛽*) ≤ exp

(︂
− 𝑟

𝑘

𝜇𝑘+𝑘′

𝐿1

)︂(︁
𝑙(𝛽(0))− 𝑙(𝛽*)

)︁
244

Proof. By Lemmas 16.4.2 and 16.4.3, we have that

𝑙(𝛽(𝑟))− 𝑙(𝛽(𝑟+1)) ≥ (2𝐿1)
−1‖∇𝑙(𝛽(𝑟))|𝑇𝑖*‖

2
2 ≥

1

𝑘

𝜇𝑘+𝑘′

𝐿1

(︁
𝑙(𝛽(𝑟))− 𝑙(𝛽*)

)︁
so

𝑙(𝛽(𝑟+1))− 𝑙(𝛽*) = 𝑙(𝛽(𝑟))− 𝑙(𝛽*)−
(︁
𝑙(𝛽(𝑟))− 𝑙(𝛽(𝑟+1))

)︁
≤ 𝑙(𝛽(𝑟))− 𝑙(𝛽*)− 1

𝑘

𝜇𝑘+𝑘′

𝐿1

(︁
𝑙(𝛽(𝑟))− 𝑙(𝛽*)

)︁
=

(︂
1− 1

𝑘

𝜇𝑘+𝑘′

𝐿1

)︂(︁
𝑙(𝛽(𝑟))− 𝑙(𝛽*)

)︁
≤ exp

(︂
−1

𝑘

𝜇𝑘+𝑘′

𝐿1

)︂(︁
𝑙(𝛽(𝑟))− 𝑙(𝛽*)

)︁
Applying the above inductively proves the claim.

As a result of Lemma 16.4.4, we obtain two guarantees for Algorithm 7, one for exact 𝑘-
group-sparse solutions with large approximation and one for bicriteria sparsity with 𝜀 additive
error.

Corollary 16.4.5 (Exactly 𝑘-group-sparse solutions). After 𝑘 iterations of Algorithm 7, 𝛽∞ (Line
4) has group sparsity ‖𝛽∞‖group ≤ 𝑘 and satisfies (16.2) with

𝛾 = 1− exp

(︂
−𝜇2𝑘

𝐿1

)︂
,

where 𝜇2𝑘 is a lower bound on the restricted strong convexity constant of 𝑙 at group sparsity 2𝑘 and
𝐿1 is an upper bound on the restricted smoothness constant of 𝑙 at group sparsity 1 (see Definition
16.4.1).

Proof. After 𝑘 iterations, we have by Lemma 16.4.4 applied for 𝑘′ = 𝑘 that

𝑙(𝛽(𝑘))− 𝑙(𝛽*) = 𝑙(𝛽(𝑘))− 𝑙(𝛽(0)) + 𝑙(𝛽(0))− 𝑙(𝛽*) ≤ exp

(︂
−𝜇2𝑘

𝐿1

)︂(︁
𝑙(𝛽(0))− 𝑙(𝛽*)

)︁
which rearranges to

𝑙(𝛽(0))− 𝑙(𝛽(𝑘)) ≥
(︂
1− exp

(︂
−𝜇2𝑘

𝐿1

)︂)︂(︁
𝑙(𝛽(0))− 𝑙(𝛽*)

)︁

Corollary 16.4.6 (Bicriteria sparsity with 𝜀 additive error). After 𝑘′ iterations of Algorithm 7, for

𝑘′ ≥ 𝑘 · 𝐿1

𝜇𝑘+𝑘′
log

𝑙(𝛽(0))− 𝑙(𝛽*)

𝜀
,

245

then 𝛽∞ (Line 4) has group sparsity ‖𝛽∞‖group ≤ 𝑘′ and satisfies

𝑙(𝛽∞) ≤ 𝑙(𝛽*) + 𝜀 ,

where 𝜇𝑘+𝑘′ is a lower bound on the restricted strong convexity constant of 𝑙 at group sparsity
𝑘+ 𝑘′ and 𝐿1 is an upper bound on the restricted smoothness constant of 𝑙 at group sparsity 1 (see
Definition 16.4.1).

Proof. This follows immediately from the bound of Lemma 16.4.4 and rearranging.

16.4.1 Group OMP with Replacement
In this section, we give guarantees for the Group OMP with Replacement algorithm (Algorithm
9), which is an improvement to Group OMP that can achieve a sparsity bound that is independent
of the accuracy parameter 𝜀 [AS20].

Algorithm 9 Group Orthogonal Matching Pursuit with Replacement.
1: function GROUPOMPR(objective 𝑙, sparsity 𝑘, initial sparsity 𝑘′, iterations 𝑅)
2: Initialize 𝑆0 ⊆ [𝑛] with |𝑆0| = 𝑘′, e.g. using Algorithm 7.
3: for 𝑟 = 0 to 𝑅− 1 do
4: Let

𝛽∞ := arg min
𝛽∈R𝑛

∀𝑖∈𝑆𝑟
,𝛽|𝑇𝑖=0

𝑙(𝛽)

5: Let 𝑖* ∈ 𝑆
𝑟

be such that ‖∇𝑙(𝛽∞)|𝑇𝑖*‖22 = max𝑖∈𝑆𝑟‖∇𝑙(𝛽∞)|𝑇𝑖
‖22

6: Let 𝑗* ∈ 𝑆𝑟 be such that ‖𝛽∞|𝑇𝑗*‖22 = min𝑗∈𝑆‖𝛽∞|𝑇𝑗
‖22

7: Update 𝑆𝑟+1 ← 𝑆𝑟 ∪ {𝑖*} ∖ {𝑗*}
8: return 𝑆𝑟, 𝑟 ∈ [𝑅], that minimizes

min
𝛽∈R𝑛

∀𝑖∈𝑆𝑟
,𝛽|𝑇𝑖=0

𝑙(𝛽)

Lemma 16.4.7 (Smoothness). Let 𝑙 be 𝐿2-restricted smooth at group sparsity 2. Let 𝑟 ∈ [𝑘′]
and let 𝛽∞, 𝑖*, 𝑗* be defined as in Lines 4, 5 and 6 of Algorithm 9 on the 𝑟-th iteration. Let
𝛽′ := 𝛽∞ +Δ for Δ = −𝐿−1

2 ∇𝑙(𝛽∞)|𝑇𝑖* − 𝛽∞|𝑇𝑗* . Then,

(2𝐿2)
−1‖∇𝑙(𝛽∞)|𝑇𝑖*‖

2
2 − (1/2)𝐿2‖𝛽∞|𝑇𝑗*‖

2
2 ≤ 𝑙(𝛽∞)− 𝑙(𝛽′)

Proof. Note that Δ has group sparsity 2. We then have that

𝑙(𝛽′)− 𝑙(𝛽∞) ≤ ⟨∇𝑙(𝛽∞),Δ⟩+ 𝐿2

2
‖Δ‖22 𝐿2-restricted smoothness

= −𝐿−1
2 ‖∇𝑙(𝛽∞)|𝑇𝑖*‖

2
2 +

1

2
𝐿−1
2 ‖∇𝑙(𝛽∞)|𝑇𝑖*‖

2
2 +

1

2
𝐿2‖𝛽∞|𝑇𝑗*‖

2
2 (‖∇𝑙(𝛽∞)|𝑇𝑗*‖

2
2 = 0)

246

= −1

2
𝐿−1
2 ‖∇𝑙(𝛽∞)|𝑇𝑖*‖

2
2 +

1

2
𝐿2‖𝛽∞|𝑇𝑗*‖

2
2.

Rearranging gives the desired result.

Lemma 16.4.8 (Convexity). Let 𝑙 be 𝜇𝑘+𝑘′-restricted strongly convex at group sparsity 𝑘 + 𝑘′.
Let 𝑟 ∈ [𝑘′] and let 𝛽∞, 𝑖*, 𝑗* be defined as in Lines 4, 5 and 6 of Algorithm 9 on the 𝑟-th iteration.
Let

𝛽* := arg min
𝛽∈R𝑛:‖𝛽‖group≤𝑘

𝑙(𝛽)

Then,

‖∇𝑙(𝛽∞)|𝑇𝑖*‖
2
2 ≥

2𝜇𝑘+𝑘′

𝑘
(𝑙(𝛽∞)− 𝑙(𝛽*)) +

(𝑘′ − 𝑘)𝜇2
𝑘+𝑘′

𝑘
‖𝛽∞|𝑇𝑗*‖

2
2.

Proof. Let 𝑈* ⊆ [𝑛] be the support of 𝛽* and let 𝑈 ⊆ [𝑛] be the support of 𝛽∞. Note that
‖𝛽* − 𝛽∞‖group ≤ 𝑘 + 𝑘′. Then,

𝑙(𝛽*)− 𝑙(𝛽∞)

≥ ⟨∇𝑙(𝛽∞),𝛽* − 𝛽∞⟩+ 𝜇𝑘+𝑘′

2
‖𝛽* − 𝛽∞‖22

=
⟨︀
∇𝑙(𝛽∞), (𝛽* − 𝛽∞)|𝑈*∖𝑈

⟩︀
+

𝜇𝑘+𝑘′

2
‖𝛽* − 𝛽∞‖22

≥ −‖∇𝑙(𝛽∞)|𝑈*∖𝑈‖2‖(𝛽* − 𝛽∞)|𝑈*∖𝑈‖2 +
𝜇𝑘+𝑘′

2

⃦⃦
(𝛽* − 𝛽∞)|𝑈*∖𝑈

⃦⃦2
2
+

𝜇𝑘+𝑘′

2

⃦⃦
(𝛽* − 𝛽∞)|𝑈∖𝑈*

⃦⃦2
2

≥ min
𝑥
−‖∇𝑙(𝛽∞)|𝑈*∖𝑈‖2𝑥+

𝜇𝑘+𝑘′

2
𝑥2 +

𝜇𝑘+𝑘′

2

⃦⃦
𝛽∞|𝑈∖𝑈*

⃦⃦2
2

= −
‖∇𝑙(𝛽∞)|𝑈*∖𝑈‖22

2𝜇𝑘+𝑘′
+

𝜇𝑘+𝑘′

2

⃦⃦
𝛽∞|𝑈∖𝑈*

⃦⃦2
2

so
‖∇𝑙(𝛽∞)|𝑈*∖𝑈‖22 ≥ 2𝜇𝑘+𝑘′(𝑙(𝛽

∞)− 𝑙(𝛽*)) + 𝜇2
𝑘+𝑘′

⃦⃦
𝛽∞|𝑈∖𝑈*

⃦⃦2
2
.

Now note that 𝑈* ∖ 𝑈 is supported on at most 𝑘 groups, so by averaging, there exists some group
𝑇𝑖 outside of 𝑈 such that

‖∇𝑙(𝛽∞)|𝑇𝑖
‖22 ≥

2𝜇𝑘+𝑘′

𝑘
(𝑙(𝛽∞)− 𝑙(𝛽*)) +

𝜇2
𝑘+𝑘′

𝑘

⃦⃦
𝛽∞|𝑈∖𝑈*

⃦⃦2
2

≥ 2𝜇𝑘+𝑘′

𝑘
(𝑙(𝛽∞)− 𝑙(𝛽*)) +

(𝑘′ − 𝑘)𝜇2
𝑘+𝑘′

𝑘
‖𝛽∞|𝑇𝑗*‖

2
2.

Lemma 16.4.9. Let 𝛽(𝑟) denote the value of 𝛽∞ (Line 4) after 𝑟 iterations of Algorithm 9 with
𝛽(0) = 0 and |𝑆0| = 𝑘′ ≥ 𝑘

(︁
𝐿2
2

𝜇2
𝑘+𝑘′

+ 1
)︁

. Let

𝛽* := arg min
𝛽∈R𝑛:‖𝛽‖group≤𝑘

𝑙(𝛽)

Then,

𝑙(𝛽(𝑟))− 𝑙(𝛽*) ≤ exp

(︂
− 𝑟

𝑘

𝜇𝑘+𝑘′

𝐿2

)︂(︁
𝑙(𝛽(0))− 𝑙(𝛽*)

)︁
247

Proof. By Lemmas 16.4.7 and 16.4.8, we have that

𝑙(𝛽(𝑟))− 𝑙(𝛽(𝑟+1)) ≥ (2𝐿2)
−1‖∇𝑙(𝛽(𝑟))|𝑇𝑖*‖

2
2 − (1/2)𝐿2

⃦⃦
𝛽∞|𝑇𝑗*

⃦⃦2
2

≥ 1

𝑘

𝜇𝑘+𝑘′

𝐿2

(︁
𝑙(𝛽(𝑟))− 𝑙(𝛽*)

)︁
+

1

2

(︂
(𝑘′ − 𝑘)𝜇2

𝑘+𝑘′

𝑘𝐿2

− 𝐿2

)︂ ⃦⃦
𝛽∞|𝑇𝑗*

⃦⃦2
2

≥ 1

𝑘

𝜇𝑘+𝑘′

𝐿2

(︁
𝑙(𝛽(𝑟))− 𝑙(𝛽*)

)︁
,

as long as 𝑘′ ≥ 𝑘
(︀
𝐿2
2/𝜇

2
𝑘+𝑘′ + 1

)︀
. So,

𝑙(𝛽(𝑟+1))− 𝑙(𝛽*) = 𝑙(𝛽(𝑟))− 𝑙(𝛽*)−
(︁
𝑙(𝛽(𝑟))− 𝑙(𝛽(𝑟+1))

)︁
≤ 𝑙(𝛽(𝑟))− 𝑙(𝛽*)− 1

𝑘

𝜇𝑘+𝑘′

𝐿2

(︁
𝑙(𝛽(𝑟))− 𝑙(𝛽*)

)︁
=

(︂
1− 1

𝑘

𝜇𝑘+𝑘′

𝐿2

)︂(︁
𝑙(𝛽(𝑟))− 𝑙(𝛽*)

)︁
≤ exp

(︂
−1

𝑘

𝜇𝑘+𝑘′

𝐿2

)︂(︁
𝑙(𝛽(𝑟))− 𝑙(𝛽*)

)︁
Applying the above inductively proves the claim.

Corollary 16.4.10 (Bicriteria sparsity with 𝜀 additive error). After 𝑅 iterations of Algorithm 9
with 𝑘′ ≥ 𝑘

(︁
𝐿2
2

𝜇2
𝑘+𝑘′

+ 1
)︁

, for

𝑅 ≥ 𝑘 · 𝐿2

𝜇𝑘+𝑘′
log

𝑙(𝛽(0))− 𝑙(𝛽*)

𝜀
,

then 𝛽∞ (Line 4) has group sparsity ‖𝛽∞‖group ≤ 𝑘′ and satisfies

𝑙(𝛽∞) ≤ 𝑙(𝛽*) + 𝜀 ,

where 𝜇𝑘+𝑘′ is a lower bound on the restricted strong convexity constant of 𝑙 at group sparsity
𝑘 + 𝑘′ and 𝐿2 is an upper bound on the restricted smoothness constant of 𝑙 at group sparsity 2
(see Definition 16.4.1).

Proof. This follows immediately from the bound of Lemma 16.4.9 and rearranging.

16.5 Equivalence of Group Sequential Attention and Group
Sequential LASSO

We generalize a result of [Hof17] to the group setting, which allows us to translate guarantees for
Group Sequential LASSO (Algorithm 6) to Group Sequential Attention (Algorithm 8).

248

Lemma 16.5.1. Let 𝑙 : R𝑛 → R and 𝜆 > 0. Let 𝑇𝑖 ⊆ [𝑛] for 𝑖 ∈ [𝑡] form a partition of [𝑛]. Let
𝑆 ⊆ [𝑡]. Then,

inf
𝛽∈R𝑛

𝑙(𝛽) + 𝜆
∑︁
𝑖∈𝑆

‖𝛽|𝑇𝑖
‖2 = inf

w∈R𝑡,𝛽∈R𝑛
𝑙(𝛽w) +

𝜆

2

⎛⎝‖w|𝑆‖22 +∑︁
𝑖∈𝑆

‖𝛽|𝑇𝑖
‖22

⎞⎠
where 𝛽w ∈ R𝑛 is the vector such that 𝛽w|𝑇𝑖

:= w𝑖 · 𝛽|𝑇𝑖
.

Proof. We have that

inf
w∈R𝑡,𝛽∈R𝑛

𝑙(𝛽w) +
𝜆

2

⎛⎝‖w|𝑆‖22 +∑︁
𝑖∈𝑆

‖𝛽|𝑇𝑖
‖22

⎞⎠ = inf
w∈R𝑡,u∈R𝑛

𝑙(u) +
𝜆

2

∑︁
𝑖∈𝑆

w2
𝑖 +
‖u|𝑇𝑖

‖22
w2

𝑖

Now note that for each 𝑖 ∈ 𝑆, we have that

w2
𝑖 +
‖u|𝑇𝑖

‖22
w2

𝑖

≥ 2‖u|𝑇𝑖
‖2

with equality if and only if w2
𝑖 = ‖u|𝑇𝑖

‖2 by tightness of the AM-GM inequality.

16.6 Experiments: feature selection via Sequential Attention
We present experimental results when running the Sequential Attention algorithm, as investi-
gated in [YBC+23]. The code for these experiments can be found at https://github.com/
google-research/google-research/tree/master/sequential_attention.

16.6.1 Small-scale experiments
We investigate the performance of Sequential Attention, as presented in Algorithm 8, through
experiments on standard feature selection benchmarks for neural networks. In these experiments,
we consider six datasets (see Table 16.1) used in experiments in [LRT21, BAZ19], and select
𝑘 = 50 features using a one-layer neural network with hidden width 67 and ReLU activation (just
as in these previous works). For more points of comparison, we also implement the attention-based
feature selection algorithms of [BAZ19, LLY21] and the Group LASSO, which has been consid-
ered in many works that aim to sparsify neural networks. We also implement natural adaptations
of the Sequential LASSO and OMP for neural networks and evaluate their performance.

In Figure 16.1, we see that Sequential Attention is competitive with or outperforms all feature
selection algorithms on this benchmark suite. For each algorithm, we report the mean of the
prediction accuracies averaged over five feature selection trials.

We note that our algorithm is considerably more efficient compared to prior feature selection
algorithms, especially those designed for neural networks. This is because many of these prior
algorithms introduce entire subnetworks to train [BAZ19, GGH19, WC20, LLY21], whereas
Sequential Attention only adds 𝑑 additional trainable variables. Furthermore, in these experiments,
we implement an optimized version of Algorithm 8 that only trains one model rather than 𝑘
models, by partitioning the training epochs into 𝑘 parts and selecting one feature in each of these
𝑘 parts. Combining these two aspects makes for an extremely efficient algorithm.

249

https://github.com/google-research/google-research/tree/master/sequential_attention
https://github.com/google-research/google-research/tree/master/sequential_attention

Table 16.1: Statistics on benchmark datasets.
Dataset # Examples # Features # Classes Type

Mice Protein 1,080 77 8 Biology
MNIST 60,000 784 10 Image

MNIST-Fashion 60,000 784 10 Image
ISOLET 7,797 617 26 Speech
COIL-20 1,440 400 20 Image
Activity 5,744 561 6 Sensor

SA LLY GL SL OMP CAE0.97

0.98

0.99

1.00

Pr
ed

ict
io

n
Ac

cu
ra

cy

Mice Protein

SA LLY GL SL OMP CAE0.90

0.92

0.94

0.96
Pr

ed
ict

io
n

Ac
cu

ra
cy

MNIST

SA LLY GL SL OMP CAE0.82

0.84

0.86

Pr
ed

ict
io

n
Ac

cu
ra

cy

MNIST-Fashion

SA LLY GL SL OMP CAE0.850

0.875

0.900

0.925

0.950

Pr
ed

ict
io

n
Ac

cu
ra

cy

ISOLET

SA LLY GL SL OMP CAE0.94

0.96

0.98

1.00

Pr
ed

ict
io

n
Ac

cu
ra

cy

COIL-20

SA LLY GL SL OMP CAE
0.86

0.88

0.90

0.92

0.94

Pr
ed

ict
io

n
Ac

cu
ra

cy

Activity

Figure 16.1: Feature selection results for small-scale neural network experiments. Here, SA =
Sequential Attention, LLY = [LLY21], GL = Group LASSO, SL = Sequential LASSO, OMP =
OMP, and CAE = Concrete Autoencoder [BAZ19].

16.6.2 Large-scale experiments
To demonstrate the scalability of our algorithm, we perform large-scale feature selection experi-
ments on the Criteo click dataset, which consists of 39 features and over three billion examples
for predicting click-through rates [DGL17]. Our results in Figure 16.2 show that Sequential
Attention outperforms other methods when at least 15 features are selected. In particular, these
plots highlight the fact that Sequential Attention excels at finding valuable features once a few
features are already in the model, and that it has substantially less variance than LASSO-based
feature selection algorithms.

16.6.3 Visualization of selected MNIST features
In Figure 16.3, we present visualizations of the features (i.e., pixels) selected by Sequential
Attention and the baseline algorithms. This provides some intuition on the nature of the features
that these algorithms select. Similar visualizations for MNIST can be found in works such as

250

10 15 20 25 30 35
Number of Selected Features

0.7150

0.7175

0.7200

0.7225

0.7250

0.7275

0.7300

0.7325

0.7350

AU
C

10 15 20 25 30 35
Number of Selected Features

0.1355

0.1360

0.1365

0.1370

0.1375

0.1380

Lo
ss

Sequential Attention
CMIM
Group LASSO, = 10 1

Group LASSO, = 10 4

Sequential LASSO, = 10 1

Sequential LASSO, = 10 4

[LLY2021]

Figure 16.2: AUC and log loss when selecting 𝑘 ∈ {10, 15, 20, 25, 30, 35} features for Criteo
dataset.

[BAZ19, GGH19, WC20, LRT21, LLY21]. Note that these visualizations serve as a basic sanity
check about the kinds of pixels that these algorithms select. For instance, the degree to which
the selected pixels are “clustered” can be used to informally assess the redundancy of features
selected for image datasets, since neighboring pixels tend to represent redundant information. It is
also useful at time to assess which regions of the image are selected. For example, the central
regions of the MNIST images are more informative than the edges.

Sequential Attention selects a highly diverse set of pixels due to its adaptivity. Sequential
LASSO also selects a very similar set of pixels, as suggested by our theoretical analysis in
Section 16.3. Curiously, OMP does not yield a competitive set of pixels, which demonstrates that
OMP does not generalize well from least squares regression and generalized linear models to
deep neural networks.

Sequential Attention Liao-Latty-Yang 2021 Group LASSO Sequential LASSO OMP

Figure 16.3: Visualizations of the 𝑘 = 50 pixels selected by the feature selection algorithms on
MNIST.

251

252

Chapter 17

Column subset selection with entrywise
losses [WY23a]

As is the case for subspace embeddings and linear regression, the problem of low rank approxima-
tion is best understood when the norm under consideration is the ℓ2 loss (which corresponds to
the Frobenius norm in this case), and a long line of work has studied fast randomized algorithms
for low rank approximation under the Frobenius norm [FKV04, DV06, DKM06a, DKM06b,
DKM06c, DMM06b, CW13, MM15, CMM17, BW17]. However, when the input matrix is cor-
rupted by heavy-tailed noise or include outliers, the ℓ2 norm is not always the most desirable due
to the fact that it tends to fit to the outliers too much. Thus, oftentimes, it is desirable to solve
the low rank approximation problem under other error measures, especially those with slower
growth than the ℓ2 loss. One notable class of losses is the entrywise ℓ𝑝 loss, and more generally,
the entrywise 𝑔 loss, where 𝑔 can be an arbitrary loss function.

Definition 17.0.1 (Entrywise losses). Let A ∈ R𝑛×𝑑 and let 𝑔 : R→ R≥0. Then, we define the
entrywise 𝑔 norm of A as

‖A‖𝑔 :=
𝑛∑︁

𝑖=1

𝑑∑︁
𝑗=1

𝑔(A𝑖,𝑗).

When 𝑔(𝑥) = |𝑥|𝑝, then we instead define

‖A‖𝑝,𝑝 :=

(︃
𝑛∑︁

𝑖=1

𝑑∑︁
𝑗=1

|A𝑖,𝑗|𝑝
)︃1/𝑝

to be the entrywise ℓ𝑝 loss.

For 𝑝 ̸= 2, the entrywise loss low rank approximation is computationally hard to approximate
under a variety of natural hardness assumptions [Mie09, GV18, DHJ+18, BBB+19, MW21] and
thus we need to allow for an appropriate notion of approximation to obtain efficient algorithms.
We study bicriteria approximation guarantees of the following form:

Definition 17.0.2 (Bicriteria coreset for low rank approximation). Let A ∈ R𝑛×𝑑, let 𝑘 be a rank
parameter, and let ‖·‖ be any loss function. Let 𝑆 ⊆ [𝑑] a subset of columns, and write A|𝑆 for

253

the 𝑛× 𝑆 matrix formed by the columns of A indexed by 𝑆.1 Then, 𝑆 is a bicriteria coreset with
distortion 𝜅 ≥ 1 if

min
X∈R𝑆×𝑑

‖A−A|𝑆X‖ ≤ 𝜅 min
rank(A′)≤𝑘

‖A−A′‖.

17.1 Algorithms for general entrywise losses
We begin by presenting our result on the entrywise 𝑔-norm low rank approximation problem,
which was first considered by [SWZ19]. For our analysis, we will need to assume several
natural properties on 𝑔, which have been considered in previous work [CW15b, CW15a, SWZ19,
MMWY22] for obtaining provable guarantees for randomized numerical linear algebra under a
broad class of loss functions:

Definition 17.1.1. Let 𝑔 : R→ R≥0. Then:
• 𝑔 satisfies the ati𝑔,𝑡-approximate triangle inequality if for any 𝑥1, 𝑥2, . . . , 𝑥𝑡, 𝑔(

∑︀
𝑥𝑖) ≤

ati𝑔,𝑡 ·
∑︀

𝑖 𝑔(𝑥𝑖).
• 𝑔 is mon𝑔-monotone if for any 0 ≤ |𝑥| ≤ |𝑦|, 𝑔(𝑥) ≤ mon𝑔 · 𝑔(𝑦).
• 𝑔 has at least lin𝑔-linear growth if for any 0 < |𝑥| ≤ |𝑦|, 𝑔(𝑦)/𝑔(𝑥) ≥ lin𝑔 · |𝑦|/|𝑥|.

For example, popular functions that satisfy these bounds include the Huber loss, Fair loss,
Cauchy loss, ℓ1-ℓ2 loss, and the quantile loss [SWZ19]. While the lin𝑔-linear growth bound
excludes the Tukey loss, which grows quadratically near the origin and stays constant away from
the origin, it allows for a modification of the Tukey loss where the constant away from the origin
is replaced by an arbitrarily slow linear growth [CW15a].

[SWZ19] showed that, given an algorithm for solving linear regression in the 𝑔-norm with rel-
ative error reg𝑔, it is possible to compute a set of 𝑂(𝑘 log 𝑑) columns achieving an approximation
ratio of

𝑂(𝑘 log 𝑘) · reg𝑔 ·mon𝑔 · ati𝑔,𝑘+1.

for 𝑔 satisfying the mon𝑔-monotone and ati𝑔,𝑡-approximate triangle inequality properties. We
show that for the slightly restricted family of 𝑔 of at least lin𝑔-linear growth, which for example
includes all convex 𝑔 [CW15a], we obtain an improved approximation ratio of

𝑂(
√
𝑘) ·

reg𝑔 · ati𝑔,𝑠+1

lin𝑔
.

Our guarantee matches, and in fact improves a log factor, of the ℓ1 column subset selection
guarantee of [MW21], despite being a far more general result. Furthermore, our bound is tight,
in the sense that the

√
𝑘 cannot be improved to a smaller polynomial due to a matching lower

bound for ℓ1 column subset selection [SWZ17]. Our technique for removing the log 𝑘 factor in
the distortion is general, and can be used to improve prior results for ℓ𝑝 column subset selection
as well [CGK+17, DWZ+19, MW21].

1 We allow for indexing matrices and vectors by arbitrary sets. For example, R𝑆 is the set of vectors with entries
indexed by elements 𝑠 of 𝑆, and R𝑆×𝑑 is the set of matrices with rows indexed by elements of 𝑆 and columns indexed
by [𝑑].

254

Theorem 17.1.2 (Improved guarantees for entrywise low rank approximation). Let A ∈ R𝑛×𝑑

and let 𝑘 ≥ 1. Let 𝑠 = 𝑂(𝑘). Let 𝑔 : R→ R≥0 be a loss function satisfying the ati𝑔,𝑡-approximate
triangle inequality for 𝑡 = 𝑠+ 1 and the lin𝑔-linear growth property. Furthermore, suppose that
there is an algorithm outputting x̃ such that

‖Bx̃− b‖𝑔 ≤ reg𝑔,𝑠 · min
x∈R𝑠
‖Bx̃− b‖𝑔

for any B ∈ R𝑛×𝑠 and b ∈ R𝑛. Then, there is an algorithm, Algorithm 10, which outputs a subset
𝑆 ⊆ [𝑑] of |𝑆| = 𝑂(𝑘(log 𝑑)2) columns and X ∈ R𝑡×𝑑 such that

⃦⃦
A−A|𝑆X

⃦⃦
𝑔
≤ 𝑂(

√
𝑘)

reg𝑔,𝑂(𝑠 log 𝑑) · ati𝑔,𝑠+1

lin𝑔
min

rank(A′)≤𝑘
‖A−A′‖𝑔.

Algorithm 10 Column subset selection for 𝑀 -estimators
input: Input matrix A ∈ R𝑛×𝑑, rank 𝑘, loss function 𝑔.
output: Subset 𝑇 ⊆ [𝑑] of 𝑂(𝑘 log2 𝑑) columns.

1: 𝑇0 ← [𝑑]
2: 𝑠← 𝑂(𝑘)
3: while |𝑇𝑙| ≥ 1000𝑠 do
4: 𝑡𝑙 ← 160𝑠 log2 𝑑𝑙
5: for 𝑡 = 1, 2, . . . , 𝑂(log log 𝑑) do
6: Sample 𝐻 ∼

(︀
𝑇𝑙

𝑡𝑙

)︀
7: Let x𝑗 minimize minx‖A|𝐻x− a𝑗‖𝑔 up to a reg𝑔,𝑡𝑙 factor for each 𝑗 ∈ 𝑇𝑙

8: Let 𝐹𝑙,𝑡 be the 𝑑𝑙/960 = |𝑇𝑙|/960 columns with smallest regression cost ‖A|𝐻x𝑗 −
a𝑗‖𝑔

9: 𝐶𝑙,𝑡 ←
∑︀

𝑗∈𝐹𝑙,𝑡
‖A|𝐻x𝑗 − a𝑗‖𝑔

10: Let 𝑡* be the 𝑡 with smallest 𝐶𝑙,𝑡

11: 𝑇𝑙+1 ← 𝑇𝑙 ∖ 𝐹𝑙,𝑡*

For the important case of the Huber loss, given by

𝐻(𝑥) =

{︃
|𝑥|2/2 if |𝑥| ≤ 1

|𝑥| − 1/2 if |𝑥| > 1
,

we specialize our technique to give the following optimized result:

Theorem 17.1.3 (Entrywise Huber low rank approximation). Let A ∈ R𝑛×𝑑 and let 𝑘 ≥ 1. There
is an algorithm which outputs a subset 𝑆 ⊆ [𝑑] of |𝑆| = 𝑂(𝑘 log 𝑑) columns and X ∈ R𝑆×𝑑 such
that ⃦⃦

A−A|𝑆X
⃦⃦
𝐻
≤ 𝑂(𝑘) min

rank(A′)≤𝑘
‖A−A′‖𝐻 ,

where ‖·‖𝐻 denotes the entrywise Huber loss.

255

The previous best known bound [SWZ19] gave a distortion of �̃�(𝑘2) for the same number of
columns.

For both general entrywise low rank approximation as well as low rank approximation under
the Huber loss, our new results are in fact based on constructions of well-conditioned spanning
sets in Theorem 3.2.2.

17.1.1 An improved structural result on uniform sampling
We first give a slight more useful form of Theorem 3.2.2 to our setting.

Lemma 17.1.4. Let A* ∈ R𝑛×𝑑 be a rank 𝑘 matrix. Then, there exists a set 𝑆 ⊆ [𝑑] of size
𝑠 = 𝑂(𝑘) such that for every 𝑗 ∈ [𝑑],

‖(A*|𝑆)−a𝑗
*‖22 ≤ 𝑂(1).

Proof. Since A* has rank 𝑘, we can write A* = QR for some orthonormal Q ∈ R𝑛×𝑘 and
R ∈ R𝑘×𝑑. Then by Theorem 3.2.2, there exists a set 𝑆 ⊆ [𝑑] of size 𝑠 such that for every
𝑗 ∈ 𝐻 ∪ {𝑖}, we have that ‖(R|𝑆)−r𝑗‖22 ≤ 𝑂(1). The result then follows since

‖(A*|𝑆)−a𝑗
*‖22 = (a𝑗

*)
⊤(A*|𝑆)−⊤(A*|𝑆)−a𝑗

*

= (r𝑗)⊤Q⊤Q(R|𝑆)−⊤(R|𝑆)−Q⊤Qr𝑗

= (r𝑗)⊤(R|𝑆)−⊤(R|𝑆)−r𝑗

= ‖(R|𝑆)−r𝑗‖22.

Using Lemma 17.1.4, we now obtain the following lemma, which gives an improved version
of Lemmas 2.1 and 2.2 of [SWZ19].

Lemma 17.1.5. Let A ∈ R𝑛×𝑑. Let A* ∈ R𝑛×𝑑 be any rank 𝑘 matrix and let D = A−A*. Let
𝑠 ≥ 𝑂(𝑘) and let 𝐻 ∼

(︀
[𝑑]
2𝑠

)︀
and let 𝑖 ∼ [𝑑] ∖𝐻 . Let 𝑅 = 𝑅(𝐻 ∪ {𝑖}) be the set of size 𝑠 given

by Lemma 17.1.4 for A*|𝐻∪{𝑖}. The following hold:
• With probability at least 1/2, 𝑖 /∈ 𝑅
• If 𝑖 /∈ 𝑅, then there is x ∈ R𝐻 such that

min
x∈R𝐻

⃦⃦
A|𝐻x− a𝑖

⃦⃦2
𝑔
≤ 𝑂(1)

ati2𝑔,𝑠+1

lin2𝑔

∑︁
𝑗∈𝐻∪{𝑖}

⃦⃦
d𝑗
⃦⃦2
𝑔

(17.1)

• With probability at least 1/4 over 𝐻 ∼
(︀
[𝑑]
2𝑠

)︀
,

|{𝑖 ∈ [𝑑] ∖𝐻 : 𝑖 /∈ 𝑅(𝐻 ∪ {𝑖})}| ≥ 𝑑

4

Proof. By symmetry, 𝑖 is a uniformly random index of 𝐻∪{𝑖}, so Pr{𝑖 /∈ 𝑅} ≥ 1−𝑠/(2𝑠+1) >
1/2, which gives the first conclusion.

Let 𝛼𝑗 denote the 𝑗th entry of (A*|𝑅)−a𝑖
* for each 𝑗 ∈ 𝑅 and 𝛼𝑗 = 0 for 𝑗 ∈ 𝐻 ∖𝑅. We then

have that

min
x∈R𝐻

⃦⃦⃦
A|𝐻x− a𝑖

⃦⃦⃦
𝑔
≤
⃦⃦⃦∑︁
𝑗∈𝐻

𝛼𝑗a
𝑗 − a𝑖

⃦⃦⃦
𝑔

256

≤
⃦⃦⃦∑︁
𝑗∈𝐻

𝛼𝑗(a
𝑗
* + d𝑗)− (a𝑖

* + d𝑖)
⃦⃦⃦
𝑔

=
⃦⃦⃦∑︁
𝑗∈𝑅

𝛼𝑗d
𝑗 − d𝑖

⃦⃦⃦
𝑔

since A*|𝑅(A*|𝑅)−a𝑖
* = a𝑖

*

≤ ati𝑔,𝑠+1

(︁∑︁
𝑗∈𝑅

‖𝛼𝑗d
𝑗‖𝑔 + ‖d𝑖‖𝑔

)︁
approximate triangle inequality

≤ ati𝑔,𝑠+1

lin𝑔

(︁∑︁
𝑗∈𝑅

𝛼𝑗‖d𝑗‖𝑔 + ‖d𝑖‖𝑔
)︁

at least linear growth

≤ ati𝑔,𝑠+1

lin𝑔

(︁(︁∑︁
𝑗∈𝑅

𝛼2
𝑗

)︁1/2(︁∑︁
𝑗∈𝑅

‖d𝑗‖2𝑔
)︁1/2

+ ‖d𝑖‖𝑔
)︁

Cauchy–Schwarz

≤ 𝑂(1)
ati𝑔,𝑠+1

lin𝑔

(︁(︁∑︁
𝑗∈𝑅

‖d𝑗‖2𝑔
)︁1/2

+ ‖d𝑖‖𝑔
)︁
.

Squaring both sides yields the second conclusion.
The third conclusion follows from the same proof as Lemma 2.2 of [SWZ19].

17.1.2 Sharper guarantees for the [SWZ19] algorithm
We now use the result of Lemma 17.1.5 to improve the analysis of the [SWZ19] algorithm.

Level sets

Let A = A* +Δ, where A* is the best rank 𝑘 approximation in the 𝑔-norm. Let the columns of
Δ be 𝛿1, 𝛿2, . . . , 𝛿𝑑. To gain fine-grained control over the costs of the columns, we will need to
consider a partition of the columns into 𝑂(log 𝑑) level sets based on ‖𝛿𝑗‖𝑔.

Definition 17.1.6. Let 𝑙 ∈ N. Then:
• Let 𝑠 = 𝑂(𝑘) denote the maximum size of an ℓ2-well-conditioned subset given by Theorem

3.2.2 in 𝑘 dimensions.
• Let 𝑇𝑙 ⊆ [𝑑] denote the subset of columns surviving after the 𝑙th round of the algorithm. We

assume without loss of generality that 𝑇𝑙 = [𝑑𝑙] for some 𝑑𝑙 ≤ 𝑑. Furthermore, we assume
without loss of generality that ‖𝛿1‖𝑔 ≥ ‖𝛿2‖𝑔 ≥ · · · ≥ ‖𝛿𝑑𝑙‖𝑔.

• Let Res𝑙 :=
∑︀𝑑𝑙

𝑗=𝑑𝑙/4
‖𝛿𝑗‖𝑔 denote the residual cost, after restricting to the surviving columns

and after removing the columns with cost in the top quarter.
• Let

𝑅𝑖
𝑙 :=

{︃{︁
𝑗 ∈ [𝑑𝑙] ∖ [𝑑𝑙/4] : ‖𝛿𝑗‖𝑔 ≤ 1

𝑑2𝑙
Res𝑙

}︁
if 𝑖 =∞{︀

𝑗 ∈ [𝑑𝑙] ∖ [𝑑𝑙/4] : 2−𝑖 · Res𝑙 < ‖𝛿𝑗‖𝑔 ≤ 2−𝑖+1 · Res𝑙
}︀

if 0 < 𝑖 < 2 log2 𝑑𝑙

Recall that our goal is to show that with constant probability, the 𝑑𝑙/80 columns with the
smallest regression cost when fit on A|𝐻 each have a cost of at most 𝑂(

√
𝑘)Res𝑙/𝑑𝑙. We first

show that we may assume with out loss of generality that 𝑅∞
𝑙 is small in cardinality.

257

Lemma 17.1.7. If |𝑅∞
𝑙 | > 𝑑𝑙/4, then with probability at least 1/6 over the randomness of 𝐻 ,⃒⃒⃒⃒{︂

𝑗 ∈ 𝑇𝑙 : min
x∈R𝐻

⃦⃦
A|𝐻x− a𝑗

⃦⃦
𝑔
≤ 1

𝑑𝑙
Res𝑙

}︂⃒⃒⃒⃒
≥ 1

80
𝑑𝑙

Proof. Note that E|𝑅∞
𝑙 ∩𝐻| ≥ 20𝑠. By Chernoff bounds, with probability at least 99/100, we

have that |𝑅∞
𝑙 ∩𝐻| ≥ 4𝑠 ≥ 2𝑘. Then by conditioning on the size of 𝑅∞

𝑙 ∩𝐻 , we can apply the
same proof from Lemma 2.5 of [SWZ19] restricted to 𝑅∞

𝑙 to show that with probability at least
1/5− 1/100 ≥ 1/6 over the randomness of 𝐻 ,⃒⃒⃒⃒{︂

𝑗 ∈ 𝑇𝑙 : min
x∈R𝐻

⃦⃦
A|𝐻x− a𝑗

⃦⃦
𝑔
≤ |𝐻|

𝑑2𝑙
Res𝑙

}︂⃒⃒⃒⃒
≥ 1

20
|𝑅∞

𝑙 | ≥
1

20
· 𝑑𝑙
4

=
1

80
𝑑𝑙.

Note that |𝐻| ≤ 𝑑𝑙, which gives the claimed result.

By Lemma 17.1.7, we may assume that |𝑅∞
𝑙 | ≤ 𝑑𝑙/4. In this case, we show that we must

have many columns which belong to a large level set.

Lemma 17.1.8. Suppose that |𝑅∞
𝑙 | ≤ 𝑑𝑙/4. Then, at least 𝑑𝑙/4 columns belong to a level set 𝑅𝑖

𝑙

such that |𝑅𝑖
𝑙| ≥ 𝑑𝑙/8 log2 𝑑𝑙.

Proof. Note that the number of columns which can belong in a level set of size less than
𝑑𝑙/8 log2 𝑑𝑙 is less than

2(log2 𝑑𝑙) ·
𝑑𝑙

8 log2 𝑑𝑙
=

𝑑𝑙
4

since there are only 2 log2 𝑑𝑙 level sets. Since there are at most 𝑑𝑙/4 columns in 𝑅∞
𝑙 and at most

𝑑𝑙/4 that are excluded for being in the top quarter, we conclude as desired.

Fitting a constant fraction of columns

We will now show that we can fit a constant fraction of columns in a large level set with small
cost. We first show the following lemma for a single level set:

Lemma 17.1.9. Let 𝑖 ∈ [2 log2 𝑑𝑙] be such that |𝑅𝑖
𝑙| ≥ 𝑑𝑙/8 log2 𝑑𝑙. Then, with probability at least

1/6, there are at least |𝑅𝑖
𝑙|/20 indices 𝑗 ∈ 𝑅𝑖

𝑙 such that there exists x satisfying

min
x∈R𝐻

⃦⃦⃦
A|𝐻x− a𝑗′

⃦⃦⃦
𝑔
≤ 𝑂(

√
𝑠)
ati𝑔,𝑠+1

lin𝑔

Res𝑙
2𝑖

Proof. The proof is based on adapting Lemmas 2.3, 2.4, and 2.5 of [SWZ19].
Note that E|𝑅𝑖

𝑙 ∩𝐻| ≥ 20𝑠. By Chernoff bounds, with probability at least 99/100, we have
that |𝑅∞

𝑙 ∩𝐻| ≥ 4𝑠. We condition on this event. Then, let 𝐻 ′ ⊆ 𝑅𝑖
𝑙 ∩𝐻 be a uniformly random

subset of 𝑅𝑖
𝑙 ∩𝐻 of size 2𝑠. Then by Markov’s inequality,

Pr
𝐻′

⎧⎨⎩∑︁
𝑗∈𝐻′

⃦⃦
𝛿𝑗
⃦⃦2
𝑔
≥ 40

𝑠

|𝑅𝑖
𝑙|
∑︁
𝑗∈𝑅𝑖

𝑙

⃦⃦
𝛿𝑗
⃦⃦2
𝑔

⎫⎬⎭ ≤ E
[︁∑︀

𝑗∈𝐻′

⃦⃦
𝛿𝑗
⃦⃦2
𝑔

]︁
40 𝑠

|𝑅𝑖
𝑙 |
∑︀

𝑗∈𝑅𝑖
𝑙

⃦⃦
𝛿𝑗
⃦⃦2
𝑔

≤
2𝑠
|𝑅𝑖

𝑙 |
∑︀

𝑗∈𝑅𝑖
𝑙

⃦⃦
𝛿𝑗
⃦⃦2
𝑔

40 𝑠
|𝑅𝑖

𝑙 |
∑︀

𝑗∈𝑅𝑖
𝑙

⃦⃦
𝛿𝑗
⃦⃦2
𝑔

≤ 1

20

258

Furthermore, by an averaging argument, we have that⃒⃒⃒⃒
⃒
{︃
𝑗′ ∈ 𝑅𝑖

𝑙 :
⃦⃦⃦
𝛿𝑗′
⃦⃦⃦2
𝑔
≥ 5

|𝑅𝑖
𝑙|
∑︁
𝑗∈𝑅𝑖

𝑙

⃦⃦
𝛿𝑗
⃦⃦2
𝑔

}︃⃒⃒⃒⃒
⃒ ≤ 1

5
|𝑅𝑖

𝑙|

Now note that 𝐻 ′ is a uniformly random subset of 𝑅𝑖
𝑙 of size 2𝑠. Then, by Lemma 17.1.5, we

have that with probability at least 1/4, there are at least |𝑅𝑖
𝑙|/4 indices 𝑗′ ∈ 𝑅𝑖

𝑙 for which (17.1)
holds. Thus, for at least |𝑅𝑖

𝑙|/4− |𝑅𝑖
𝑙|/5 = |𝑅𝑖

𝑙|/20 indices 𝑗′ ∈ 𝑅𝑖
𝑙 , we have that

min
x∈R𝐻′

⃦⃦⃦
A|𝐻′

x− a𝑗′
⃦⃦⃦2
𝑔
≤ 𝑂(1)

ati2𝑔,𝑠+1

lin2𝑔

∑︁
𝑗∈𝐻′∪{𝑗′}

⃦⃦
𝛿𝑗
⃦⃦2
𝑔

Lemma 17.1.5

≤ 𝑂(1)
ati2𝑔,𝑠+1

lin2𝑔

20𝑠+ 5

|𝑅𝑖
𝑙|

∑︁
𝑗∈𝑅𝑖

𝑙

⃦⃦
𝛿𝑗
⃦⃦2
𝑔

Lemma 17.1.9

≤ 𝑂(1)
ati2𝑔,𝑠+1

lin2𝑔

𝑠

22𝑖
Res2𝑙 Definition 17.1.6

By padding x with zeros on 𝐻 ∖𝐻 ′ and taking square roots, we get the desired result.

Next, we apply an averaging argument to show that if we sum across all large level sets, we fit
a constant fraction of columns all 𝑑𝑙 with constant probability.

Lemma 17.1.10. Suppose that |𝑅∞
𝑙 | ≤ 𝑑𝑙/4. Then with probability at least 1/960, there is a set

of size 𝐹 ⊆ [𝑑𝑙] such that |𝐹 | ≥ 𝑑𝑙/960 and∑︁
𝑗∈𝐹

min
x∈R𝐻
‖A|𝐻x− a𝑗‖𝑔 ≤ 𝑂(

√
𝑠)
ati𝑔,𝑠+1

lin𝑔
· Res𝑙

Proof. By Lemma 17.1.9, for a fixed level set 𝑖 with |𝑅𝑖
𝑙| ≥ 𝑑𝑙/8 log2 𝑑𝑙, with probability at least

1/6, we fit at least |𝑅𝑖
𝑙|/20 columns with cost at most

𝑂(
√
𝑠)
ati𝑔,𝑠+1

lin𝑔

Res𝑙
2𝑖

each. Then, let 𝑋𝑖 be the random variable that represents the number of such columns in 𝑅𝑖
𝑙 , and

define
𝑋 :=

∑︁
𝑖:|𝑅𝑖

𝑙 |≥𝑑𝑙/8 log2 𝑑𝑙

𝑋𝑖

Note then that
E[𝑋] ≥

∑︁
𝑖:|𝑅𝑖

𝑙 |≥𝑑𝑙/8 log2 𝑑𝑙

1

6
· 1
20
|𝑅𝑖

𝑙| ≥
1

6 · 20 · 4
𝑑𝑙 =

1

480
𝑑𝑙

where the last inequality is by Lemma 17.1.8. Then by a standard averaging argument,

1

480
𝑑𝑙 ≤ 𝑑𝑙 ·Pr{𝑋 ≥ 𝑑𝑙/960}+

𝑑𝑙
960

Pr{𝑋 < 𝑑𝑙/960}

259

≤ 𝑑𝑙 ·Pr{𝑋 ≥ 𝑑𝑙/960}+
𝑑𝑙
960

so 𝑋 is at least 𝑑𝑙/960 with probability at least 1/960. Furthermore, the total cost of all of the
columns which are fit well is at most∑︁

𝑖

𝑂(
√
𝑠)
ati𝑔,𝑠+1

lin𝑔

Res𝑙
2𝑖
· |𝑅𝑖

𝑙| ≤ 𝑂(
√
𝑠)
ati𝑔,𝑠+1

lin𝑔
· Res𝑙.

Proof of Theorem 17.1.2

We now give proofs for the various guarantees of our algorithm.

Proof of Theorem 17.1.2. Note first that the algorithm decreases the size of 𝑇𝑙 by a (1− 1/960)
factor at each iteration. Thus, the algorithm makes at most 𝐿 = 𝑂(log 𝑑) iterations of the outer
loop. By Lemma 17.1.10, we have a constant probability of success of choosing 𝑑𝑙/960 columns
such that the total cost is at most

𝑂(
√
𝑠)
ati𝑔,𝑠+1

lin𝑔
· Res𝑙.

Since we repeat 𝑂(log𝐿) = 𝑂(log log 𝑑) times and use an reg𝑔,𝑡𝑙-approximate regression algo-
rithm, we with probability at least 1−1/100𝐿, we find 𝑑𝑙/960 columns 𝐹𝑙 ⊆ 𝑇𝑙 and corresponding
coefficients X such that⃦⃦

A|𝐹𝑙 −A|𝑆𝑙X
⃦⃦
𝑔
≤ 𝑂(

√
𝑠)
reg𝑔,𝑡𝑙 · ati𝑔,𝑠+1

lin𝑔
· Res𝑙.

Thus, our total cost is
𝑂(log 𝑑)∑︁

𝑙=1

𝑂(
√
𝑠)
reg𝑔,𝑡𝑙 · ati𝑔,𝑠+1

lin𝑔
· Res𝑙.

Finally, as argued in [SWZ19, MW21], we show that
∑︀

𝑙 Res𝑙 = 𝑂(‖Δ‖𝑔). Note that if a column
𝑗 contributes to Res𝑙, then it must be in the bottom 3/4 fraction of the ‖𝛿𝑗‖𝑔 in round 𝑙. Then
since the bottom 1/960 fraction of ‖𝛿𝑗‖𝑔 is fitted and removed in each round, ‖𝛿𝑗‖𝑔 can only
contribute to Res𝑙 in 𝑂(1) rounds. Thus, the sum is bounded by 𝑂(1)

∑︀
𝑗‖𝛿

𝑗‖𝑔 = 𝑂(‖Δ‖𝑔).
The total number of columns selected is 𝑂(𝑠 log 𝑑) in each of the 𝑂(log 𝑑) rounds, for a total

of 𝑂(𝑠 log2 𝑑).

17.2 Huber column subset selection

For the important case of the Huber loss, the result of Theorem 17.1.2 only yields a distortion of
�̃�(𝑘3/2), due to a 𝑘 factor loss from the approximate triangle inequality term. We further optimize
our argument specifically for the Huber loss and obtain a distortion of 𝑂(𝑘) instead.

260

Theorem 17.1.3 (Entrywise Huber low rank approximation). Let A ∈ R𝑛×𝑑 and let 𝑘 ≥ 1. There
is an algorithm which outputs a subset 𝑆 ⊆ [𝑑] of |𝑆| = 𝑂(𝑘 log 𝑑) columns and X ∈ R𝑆×𝑑 such
that ⃦⃦

A−A|𝑆X
⃦⃦
𝐻
≤ 𝑂(𝑘) min

rank(A′)≤𝑘
‖A−A′‖𝐻 ,

where ‖·‖𝐻 denotes the entrywise Huber loss.

Our improvement comes from the following structural result, which yields Theorem 17.1.3
when combined with Theorem 17.4.3:

Lemma 17.2.1. Let A ∈ R𝑛×𝑑 and let A* denote the optimal rank 𝑘 approximation to A in the
entrywise Huber norm. Then, there exists a set 𝑆 ⊆ [𝑑] of 𝑂(𝑘) columns of A and X ∈ R𝑆×𝑑

such that ⃦⃦
A−A|𝑆X

⃦⃦
𝐻
≤ 𝑂(𝑑)‖A−A*‖𝐻 .

Proof. Let 𝑆 ⊆ [𝑑] be an ℓ2-well-conditioned coreset for the columns of A*, given by Theorem
3.2.2. For each 𝑗 /∈ 𝑆, we let the 𝑗th column of X be the coefficient vector for fitting a𝑗

* by A*|𝑆 .
Following [CW15b, Lemma 37], we have that for any x ∈ R𝑑,

𝐻(‖x‖2) ≤
‖x‖22
‖x‖2∞

𝐻(‖x‖∞) =
𝑑∑︁

𝑗=1

x2
𝑖

‖x‖2∞
𝐻(‖x‖∞) ≤

𝑑∑︁
𝑗=1

𝐻(x𝑖) = ‖x‖𝐻 .

Then, ⃦⃦
A−A|𝑆X

⃦⃦
𝐻
=
⃦⃦
(A* +Δ)− (A* +Δ)|𝑆X

⃦⃦
𝐻

=
⃦⃦
Δ−Δ|𝑆X

⃦⃦
𝐻

≤ 𝑂(1)(‖Δ‖𝐻 +
⃦⃦
Δ|𝑆X

⃦⃦
𝐻
)

so it suffices to bound
⃦⃦
Δ|𝑆X

⃦⃦
𝐻

. We have

⃦⃦
Δ|𝑆X

⃦⃦
𝐻
=

𝑑∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝐻(e⊤𝑖 Δ|𝑆x𝑗)

≤
𝑑∑︁

𝑗=1

𝑛∑︁
𝑖=1

𝐻(
⃦⃦
e⊤𝑖 Δ|𝑆

⃦⃦
2

⃦⃦
x𝑗
⃦⃦
2
) Cauchy–Schwarz

≤ 𝑂(1)
𝑑∑︁

𝑗=1

𝑛∑︁
𝑖=1

𝐻(
⃦⃦
e⊤𝑖 Δ|𝑆

⃦⃦
2
)

≤ 𝑂(1)
𝑑∑︁

𝑗=1

𝑛∑︁
𝑖=1

⃦⃦
e⊤𝑖 Δ|𝑆

⃦⃦
𝐻

≤ 𝑂(1)
𝑑∑︁

𝑗=1

⃦⃦
Δ|𝑆

⃦⃦
𝐻

261

≤ 𝑂(𝑑)‖Δ‖𝐻

as claimed.

17.3 Algorithms for the entrywise ℓ𝑝 norm

For 𝑝 ̸= 2, efficient bicriteria approximations for entrywise ℓ𝑝 low rank approximation were
obtained in a line of work initiated by [SWZ17], who studied the case of 𝑝 = 1. For other 𝑝 ̸= 2,
[CGK+17, DWZ+19] gave algorithms selecting 𝑂(𝑘 log 𝑑) columns achieving a distortion of
�̃�(𝑘1/𝑝) for 𝑝 < 2 and �̃�(𝑘1−1/𝑝) for 𝑝 > 2, and a hardness result showing that any approximation
spanned by 𝑘 columns must have distortion at least

Ω(𝑘1−1/𝑝) (17.2)

Perhaps surprisingly, [MW21] then showed that the lower bound of (17.2) could be circumvented
when 𝑝 < 2, by giving an algorithm which selected �̃�(𝑘 log 𝑑) columns and achieved a distortion
of �̃�(𝑘1/𝑝−1/2). Note that this does not contradict the lower bound, since the hardness result of
(17.2) applies only when exactly 𝑘 columns are selected. It was also shown that this result was
optimal for such bicriteria algorithms, with a lower bound ruling out 𝑘1/𝑝−1/2−𝑜(1) approximations
for any algorithm selecting �̃�(𝑘) columns, based on a result of [SWZ17] which ruled out 𝑘1/2−𝑜(1)

approximations for any set of poly(𝑘) columns for 𝑝 = 1.
Unfortunately, the algorithmic result of [MW21] uses 𝑝-stable random variables [Nol20]

which only exist for 𝑝 ≤ 2, and similar improvements were not given for 𝑝 > 2. Similarly,
the hardness results also rely on specific properties of 𝑝 < 2, and do not apply to 𝑝 > 2. This
motivates the following question:

Question 17.3.1. What distortions are possible for entrywise ℓ𝑝 low rank approximation, if
𝑂(𝑘 log 𝑑) columns can be selected?

Our main result for entrywise ℓ𝑝 low rank approximation is an algorithm which achieves the
natural analogue of the algorithmic result of [MW21], which circumvents (17.2):

Theorem 17.3.2 (Entrywise ℓ𝑝 low rank approximation [WY23a]). Let 𝑝 ∈ [2,∞], let A ∈ R𝑛×𝑑,
and let 𝑘 ≥ 1. There is an algorithm which outputs a subset 𝑆 ⊆ [𝑑] of 𝑂(𝑘 log 𝑑) columns and
X ∈ R𝑆×𝑑 such that ⃦⃦

A−A|𝑆X
⃦⃦
𝑝,𝑝
≤ 𝑂(𝑘1/2−1/𝑝) min

rank(A′)≤𝑘
‖A−A′‖𝑝,𝑝.

17.3.1 Improved existential result

Our main improvement comes from the following lemma, which is inspired by the techniques of
[MW21]. Rather than relying 𝑝-stable variables as in [MW21, Theorem 2.4], we instead make
use of ℓ𝑝 Lewis weights in our argument. We refer to Chapter 6 for a comprehensive discussion of
ℓ𝑝 Lewis weights and their applications.

262

Lemma 17.3.3. Let 2 ≤ 𝑝 ≤ ∞. Let A ∈ R𝑛×𝑑 and let A* denote the optimal rank 𝑘
approximation to A in the entrywise ℓ𝑝 norm. Then, there exists a set 𝑆 ⊆ [𝑑] of 𝑂(𝑘) columns
of A and R ∈ R𝑘×𝑑 such that⃦⃦

A−A|𝑆R
⃦⃦
𝑝,𝑝
≤ 𝑂(𝑘1/2−1/𝑝)‖A−A*‖𝑝,𝑝. (17.3)

Proof. Let A* = UV⊤ for some U ∈ R𝑛×𝑘 and V⊤ ∈ R𝑘×𝑑. Now let w be the ℓ𝑝 Lewis weights
of V and let X̂ minimize

min
X∈R𝑛×𝑘

⃦⃦
(A−XV⊤)W1/2−1/𝑝

⃦⃦
𝑝,2

up to a factor of 2. We have

‖A− X̂V⊤‖𝑝,𝑝 ≤ ‖A−UV⊤‖𝑝,𝑝 + ‖UV⊤ − X̂V⊤‖𝑝,𝑝
≤ ‖A−UV⊤‖𝑝,𝑝 + ‖(UV⊤ − X̂V⊤)W1/2−1/𝑝‖𝑝,2 Lemma 6.2.3

≤ ‖A−UV⊤‖𝑝,𝑝 + ‖(UV⊤ −A)W1/2−1/𝑝‖𝑝,2
+ ‖(A− X̂V⊤)W1/2−1/𝑝‖𝑝,2

≤ ‖A−UV⊤‖𝑝,𝑝 + 3‖(UV⊤ −A)W1/2−1/𝑝‖𝑝,2 near optimality

≤ ‖A−UV⊤‖𝑝,𝑝 + 3𝑘1/2−1/𝑝‖UV⊤ −A‖𝑝,𝑝 Lemma 6.2.2

= 𝑂(𝑘1/2−1/𝑝)‖A−UV⊤‖𝑝,𝑝.

Thus, we have reduced the problem to an ℓ2 problem, at a cost of 𝑂(𝑘1/2−1/𝑝) distortion. Lemma
27 of [CW15b] then shows that if S⊤ is an ℓ2 sparsifier for V⊤W1/2−1/𝑝 which samples 𝑂(𝑘)
columns (see [SWZ19, Lemma C.25], based on [BSS12, Theorem 3.1]), then a minimizer Û of

min
X∈R𝑛×𝑘

⃦⃦
(A−XV⊤)W1/2−1/𝑝S⊤⃦⃦

𝑝,2

satisfies ⃦⃦⃦
(A− ÛV⊤)W1/2−1/𝑝

⃦⃦⃦
𝑝,2
≤ 2 min

X∈R𝑛×𝑘

⃦⃦
(A−XV⊤)W1/2−1/𝑝

⃦⃦
𝑝,2
.

It follows that
‖A− ÛV⊤‖𝑝,𝑝 ≤ 𝑂(𝑘1/2−1/𝑝)‖A−UV⊤‖𝑝,𝑝.

Finally, note that Û can be written as

Û = AW1/2−1/𝑝S⊤(V⊤W1/2−1/𝑝S⊤)−.

Thus, there exists an 𝑂(𝑘1/2−1/𝑝)-approximate solution with a left factor formed by 𝑂(𝑘) columns
of A.

With Lemma 17.3.3 in hand, we can now apply the existential-to-algorithmic reduction of
Theorem 17.4.3 to obtain the following:

Theorem 17.3.4. Let 2 ≤ 𝑝 < ∞. Let A ∈ R𝑛×𝑑 and let 𝑘 ≥ 1. There is an algorithm which
outputs a subset 𝑆 ⊆ [𝑑] of |𝑆| = 𝑂(𝑘 log 𝑑) columns and X ∈ R𝑆×𝑑 such that⃦⃦

A−A|𝑆X
⃦⃦
𝑝,𝑝
≤ 𝑂(𝑘1/2−1/𝑝) min

rank(Â)≤𝑘
‖A− Â‖𝑝,𝑝.

263

We note that by setting 𝑝 = 𝑂(log 𝑛), we also obtain a result for 𝑝 =∞.

Theorem 17.3.5. Let A ∈ R𝑛×𝑑 and let 𝑘 ≥ 1. There is an algorithm which outputs a subset
𝑆 ⊆ [𝑑] of |𝑆| = 𝑂(𝑘 log 𝑑) columns and X ∈ R𝑆×𝑑 such that⃦⃦

A−A|𝑆X
⃦⃦
∞,∞ ≤ 𝑂(𝑘1/2) min

rank(Â)≤𝑘
‖A− Â‖∞,∞.

17.3.2 Lower bounds
For 𝑝 = ∞, we show that Theorem 17.3.2 is tight by showing that any set of at most poly(𝑘)
columns cannot achieve a distortion better than 𝑘1/2−𝑜(1).

Our result is based on a variation on the ideas of Theorem 1.4 of [SWZ17].

Definition 17.3.6 (Hard distribution). Let 𝑐 ≥ 1 be any constant and let 𝑟 = 𝑘𝑐. We then define
a distribution 𝒟 over (𝑘 + 2𝑟)× 𝑟 matrix as follows. We let the first 𝑘 rows have entries drawn
independently from 𝒩 (0, I𝑟) and scaled by 𝑘, and we let the last 2𝑟 rows be the 2𝑟 vectors in
{±1}𝑟.

We will argue that with high probability, no matrix in the column span of 𝑟/2 columns of
A ∼ 𝒟 can approximate A by better than a

√
𝑘 factor. The optimal rank 𝑘 approximation of any

matrix drawn from the distribution in Definition 17.3.6 has ℓ∞ has cost at most 1, by setting the
rank 𝑘 approximation to be the first 𝑘 rows:

Lemma 17.3.7. Let A ∼ 𝒟 for 𝒟 defined in Definition 17.3.6. Then, with probability 1,

min
rank(Â)≤𝑘

‖A− Â‖∞,∞ ≤ 1.

Furthermore, the addition of the 2𝑟 hypercube vectors to the matrix gives the following
property:

Lemma 17.3.8. Let 𝑆 ⊆ [𝑟]. Then, for any X ∈ R𝑆×𝑟,⃦⃦
A−A|𝑆X

⃦⃦
∞,∞ ≥

𝑟
max
𝑗=1
‖Xe𝑗‖1 − 1

Proof. Let 𝑗 ∈ [𝑟]. Then, there exists a row 𝑖 of A|𝑆 such that for each 𝑗′ ∈ 𝑆, A𝑖,𝑗′ = sgn(X𝑗′,𝑗),
since A contains all sign vectors. Thus,

e⊤𝑖 A|𝑆Xe𝑗 =
∑︁
𝑗′∈𝑆

A𝑖,𝑗′X𝑗′,𝑗 =
∑︁
𝑗′∈𝑆

sgn(X𝑗′,𝑗)X𝑗′,𝑗 = ‖Xe𝑗‖1.

On the other hand, A has absolute value at most 1 on this coordinate, thus yielding the claim.

With these insights in hand, the proof now essentially follows that of [SWZ17, Theorem
G.28]; it is shown in [SWZ17] that if x ∈ R𝑆 fits the first 𝑘 rows well in ℓ1 norm, then it must
satisfy ‖x‖1 = Ω(𝑘0.5−𝑜(1)). Since we scale the first 𝑘 rows by 𝑘, this means that we either have a
high ℓ∞ cost in the first 𝑘 rows, or a high ℓ∞ cost in the bottom 2𝑟 rows.

264

Theorem 17.3.9. Let 𝛼 ∈ (0, 0.5), 𝑘 ∈ N, and 𝑟 = poly(𝑘). Then, there exists a (𝑘 + 𝑟) × 𝑟
matrix A such that

min
rank(Â)≤𝑘

‖A− Â‖∞,∞ ≤ 1

and for any 𝑆 ⊆ [𝑟] with |𝑆| ≤ 𝑟/2,

min
X∈R𝑆×𝑟

‖A−A|𝑆X‖∞,∞ ≥ Ω(𝑘0.5−𝛼).

Proof. The proof closely follows [SWZ17, Theorem G.28]. For B ∼ 𝒩 (0, 1)𝑘×𝑠 and scalars
𝛽, 𝛾 > 0, we say the event ℰ(B, 𝛽, 𝛾) holds if

• ‖B‖2 ≤ 𝑂(
√
𝑠)

• Bx has at most 𝑂(𝑘/ log 𝑘) coordinates with absolute value at least Ω(1/ log 𝑘), whenever
‖x‖1 ≤ 𝑂(𝑘𝛾) and ‖x‖∞ ≤ 𝑂(𝑘−𝛽)

(see [SWZ17, Definition G.19]). It is shown in [SWZ17, Lemma G.20] that if 𝑘 ≤ 𝑠 ≤ poly(𝑘),
𝛽 > 𝛾 > 0, and 𝛽 + 𝛾 < 1, then Pr{ℰ(B, 𝛽, 𝛾)} ≥ 1− exp(−Θ(𝑘)). We will apply this to the
first 𝑘 rows A|[𝑘] of A scaled down by 𝑘, as well as to restrictions A|𝑆[𝑘] of these rows to columns
𝑆 ⊆ [𝑟].

It is shown in [SWZ17, Claim G.29] that for any 𝑆 ⊆ [𝑟],

Pr

{︂
ℰ
(︂
1

𝑘
A|𝑆[𝑘], 0.5 + 𝛼/2, 0.5− 𝛼

)︂⃒⃒⃒
ℰ
(︂
1

𝑘
A|[𝑘], 0.5 + 𝛼/2, 0.5− 𝛼

)︂}︂
= 1

We thus condition on ℰ(1
𝑘
A|[𝑘], 0.5 + 𝛼/2, 0.5− 𝛼), which implies ℰ(1

𝑘
A|𝑆[𝑘], 0.5 + 𝛼/2, 0.5− 𝛼)

for every 𝑆 ⊆ [𝑟]. Then by [SWZ17, Lemma G.22], for any 𝑆 ⊆ [𝑟] of size at most 𝑟/2, with
probability at least 1− exp(−Θ(𝑟𝑘)), a constant fraction of the 𝑟/2 remaining rows 𝑙 ∈ [𝑟] ∖ 𝑆
satisfies that

min
x∈R𝑆

⃦⃦⃦⃦
1

𝑘
A[𝑘]|𝑆x−Ae𝑙

⃦⃦⃦⃦
1

+ ‖x‖1 = Ω(𝑘0.5−𝛼)

By relating the ℓ1 and ℓ∞ norms up to a factor of 𝑘 for the first term and by using Lemma 17.3.8
for the second term, this gives a lower bound of Ω(𝑘0.5−𝛼) on some entry of A−A|𝑆X for any
X, for this fixed 𝑆. The failure rate of exp(−Θ(𝑟𝑘)) is small enough for us to union bound over
all choices of 𝑆 ⊆ [𝑟] of size at most 𝑟/2, thus proving the theorem.

17.4 Reduction from existential to algorithmic column subset
selection

We show an improvement and generalization of the argument of [MW21], which shows that an
existential result showing the existence of 𝑠 = 𝑠(𝑘) columns with a distortion of 𝜅(𝑑) on any
𝑛× 𝑑 instance for rank 𝑘 approximation implies an algorithmic version which selects 𝑂(𝑠 log 𝑑)
columns with a distortion of 𝑂(𝜅(2𝑠+ 1)). Note that the number of columns can only depend on
𝑘, whereas the distortion can depend on 𝑑.

265

Definition 17.4.1. Let A = A* +Δ, where A* is the best rank 𝑘 approximation in the entrywise
𝑔 norm, that is,

‖Δ‖𝑔 = min
rank(Â)≤𝑘

⃦⃦⃦
A− Â

⃦⃦⃦
𝑔
.

Let the columns of Δ be 𝛿1, 𝛿2, . . . , 𝛿𝑑.

Definition 17.4.2. Let 𝑙 ∈ N. Then:
• Let 𝑠(𝑘) denote the maximum size of a set of columns 𝑆 for any 𝑛× 𝑑 instance B for rank
𝑘 approximation in the entrywise 𝑔-norm that can achieve a 𝜅(𝑑) approximation, that is,
there exists a set 𝑆 ⊆ [𝑑] such that

min
X∈R𝑆×𝑑

⃦⃦
B−B|𝑆X

⃦⃦
𝑔
≤ 𝜅(𝑑)‖Δ‖𝑔 (17.4)

• Let 𝑇𝑙 ⊆ [𝑑] denote the subset of columns surviving after the 𝑙th round of the algorithm. We
assume without loss of generality that 𝑇𝑙 = [𝑑𝑙] for some 𝑑𝑙 ≤ 𝑑. Furthermore, we assume
without loss of generality that ‖𝛿1‖𝑔 ≥ ‖𝛿2‖𝑔 ≥ · · · ≥ ‖𝛿𝑑𝑙‖𝑔.

• Let Res𝑙 :=
∑︀𝑑𝑙

𝑗=𝑑𝑙/4
‖𝛿𝑗‖𝑔 denote the residual cost, after restricting to the surviving columns

and after removing the columns with cost in the top quarter.

Algorithm 11 Column subset selection for 𝑀 -estimators
input: Input matrix A ∈ R𝑛×𝑑, rank 𝑘, loss function 𝑔, parameter 𝑠.
output: Subset 𝑇 ⊆ [𝑑] of 𝑂(𝑠 log 𝑑) columns.

1: 𝑇0 ← [𝑑]
2: while |𝑇𝑙| ≥ 1000𝑠 do
3: 𝑡𝑙 ← 30𝑠
4: for 𝑡 = 1, 2, . . . , 𝑂(log log 𝑑) do
5: Sample 𝐻 ∼

(︀
𝑇𝑙

𝑡𝑙

)︀
6: Let x𝑗 minimize minx‖A|𝐻x− a𝑗‖𝑔 up to a reg𝑔,𝑡𝑙 factor for each 𝑗 ∈ 𝑇𝑙

7: Let 𝐹𝑙,𝑡 be the 𝑑𝑙/20 = |𝑇𝑙|/20 columns with smallest regression cost ‖A|𝐻x𝑗 − a𝑗‖𝑔
8: 𝐶𝑙,𝑡 ←

∑︀
𝑗∈𝐹𝑙,𝑡
‖A|𝐻x𝑗 − a𝑗‖𝑔

9: Let 𝑡* be the 𝑡 with smallest 𝐶𝑙,𝑡

10: 𝑇𝑙+1 ← 𝑇𝑙 ∖ 𝐹𝑙,𝑡*

Theorem 17.4.3 (Generalization and improvement of [MW21]). Consider the definitions in
Definition 17.4.2. Suppose that there is an algorithm outputting x̃ such that

‖Bx̃− b‖𝑔 ≤ reg𝑔,𝑠 · min
x∈R𝑠
‖Bx̃− b‖𝑔

for any B ∈ R𝑛×𝑠 and b ∈ R𝑛. Then, Algorithm 11 outputs a subset 𝑆 ⊆ [𝑑] of |𝑆| = 𝑂(𝑠 log 𝑑)
columns and X ∈ R𝑆×𝑑 such that⃦⃦

A−A|𝑆X
⃦⃦
𝑔
≤ 𝑂(𝜅)reg𝑔,𝑂(𝑠) min

rank(Â)≤𝑘
‖A− Â‖𝑔

266

We present the following main lemma, which follows [MW21, Claim 2.6] but also makes
some additional improvements to remove a log factor:

Lemma 17.4.4. Let A ∈ R𝑛×𝑑. Let 𝑠 = 𝑠(𝑘) and 𝜅 = 𝜅(2𝑠 + 1). Let 𝐻 ∼
(︀
[𝑑]
2𝑠

)︀
and let

𝑖 ∼ [𝑑] ∖𝐻 . Then,

Pr

{︂
min
x∈R𝐻

⃦⃦
a𝑖 −A|𝐻x

⃦⃦
𝑔
≤ 600𝜅

𝑑𝑙
Res𝑙

}︂
≥ 1

10

Proof. Let 𝐺 := [𝑑𝑙] ∖ [𝑑𝑙/4]. Note that E|𝐺 ∩𝐻| ≥ 20𝑠. By Chernoff bounds, with probability
at least 99/100, we have that |𝐺 ∩𝐻| ≥ 4𝑠. We conditioned on this event.

Let 𝐻 ′ be a uniformly random subset of 𝐺 ∩𝐻 of size 2𝑠. Let 𝑅 = 𝑅(𝐻 ′ ∪ {𝑖}) be the set of
𝑠(𝑘) columns satisfying (17.4). Then by Markov’s inequality,

Pr
𝐻′

{︃∑︁
𝑗∈𝐻′

⃦⃦
𝛿𝑗
⃦⃦
𝑔
≥ 20

𝑠

|𝐺|
∑︁
𝑗∈𝐺

⃦⃦
𝛿𝑗
⃦⃦
𝑔

}︃
≤

E𝐻′

[︁∑︀
𝑗∈𝐻′

⃦⃦
𝛿𝑗
⃦⃦
𝑔

]︁
20 𝑠

|𝐺|
∑︀

𝑗∈𝐺

⃦⃦
𝛿𝑗
⃦⃦
𝑔

≤ 1

10

and similarly,

Pr
𝑖

{︃⃦⃦
𝛿𝑖
⃦⃦
𝑔
≥ 10

|𝐺|
∑︁
𝑗∈𝐺

⃦⃦
𝛿𝑗
⃦⃦
𝑔

}︃
≤

E𝑖

[︁⃦⃦
𝛿𝑖
⃦⃦
𝑔

]︁
5
|𝐺|
∑︀

𝑗∈𝐺

⃦⃦
𝛿𝑗
⃦⃦
𝑔

≤ 1

10

Now note that conditioned on the choice of 𝐻 ′ ∪ {𝑖}, 𝑖 is a uniformly random element of
𝐻 ′ ∪ {𝑖}, so Pr{𝑖 /∈ 𝑅} ≥ 1/2. Furthermore,

min
X∈R𝑅×(2𝑠+1)

⃦⃦⃦
A|𝐻′∪{𝑖} −A|𝑅X

⃦⃦⃦
𝑔
≤ 𝜅 min

rank(Â)≤𝑘

⃦⃦⃦
A|𝐻′∪{𝑖} − Â

⃦⃦⃦
𝑔
≤ 𝜅 ·

⃦⃦⃦
Δ|𝐻′∪{𝑖}

⃦⃦⃦
𝑔

so by Markov’s inequality,

min
x∈R𝑅

⃦⃦
a𝑖 −A|𝑅x

⃦⃦
≤ 10𝜅

𝑠

⃦⃦⃦
Δ|𝐻′∪{𝑖}

⃦⃦⃦
𝑔

with probability at least 9/10. By a union bound, we have that with probability at least

1− 1

100
− 1

10
− 1

10
− 1

10
≥ 1

10
,

we have

min
x∈R𝑅

⃦⃦
a𝑖 −A|𝑅x

⃦⃦
𝑔
≤ 10𝜅

𝑠

(︃
10

|𝐺|
∑︁
𝑗∈𝐺

⃦⃦
𝛿𝑗
⃦⃦
𝑔
+ 20

𝑠

|𝐺|
∑︁
𝑗∈𝐺

⃦⃦
𝛿𝑗
⃦⃦
𝑔

)︃
≤ 400𝜅

|𝐺|
∑︁
𝑗∈𝐺

⃦⃦
𝛿𝑗
⃦⃦
𝑔
.

To conclude, note that |𝐺| = 𝑑𝑙 − 𝑑𝑙/4 = 3𝑑𝑙/4 and that we can pad x with zeros on coordinates
in 𝐻 ∖𝑅.

We then just mimic the proof of Theorem 17.1.2 to complete the proof.

267

Proof of Theorem 17.4.3. Note first that the algorithm decreases the size of 𝑇𝑙 by a (1 − 1/20)
factor at each iteration. Thus, the algorithm makes at most 𝐿 = 𝑂(log 𝑑) iterations of the outer
loop. By averaging Lemma 17.4.4 over the 3𝑑𝑙/4 bottom columns, we have a probability of at
least 1/20 of choosing 𝑑𝑙/20 columns such that the total cost is at most

𝑂(𝜅) · Res𝑙.

Since we repeat 𝑂(log𝐿) = 𝑂(log log 𝑑) times and use an reg𝑔,𝑡𝑙-approximate regression algo-
rithm, we with probability at least 1− 1/100𝐿, we find 𝑑𝑙/20 columns 𝐹𝑙 ⊆ 𝑇𝑙 and corresponding
coefficients X such that ⃦⃦

A|𝐹𝑙 −A|𝑆𝑙X
⃦⃦
𝑔
≤ 𝑂(𝜅)reg𝑔,𝑡𝑙Res𝑙.

Thus, our total cost is
𝑂(log 𝑑)∑︁

𝑙=1

𝑂(𝜅)reg𝑔,𝑡𝑙Res𝑙.

Finally, as argued in [SWZ19, MW21], we show that
∑︀

𝑙 Res𝑙 = 𝑂(‖Δ‖𝑔). Note that if a column
𝑗 contributes to Res𝑙, then it must be in the bottom 3/4 fraction of the ‖𝛿𝑗‖𝑔 in round 𝑙. Then since
the bottom 1/20 fraction of ‖𝛿𝑗‖𝑔 is fitted and removed in each round, ‖𝛿𝑗‖𝑔 can only contribute
to Res𝑙 in 𝑂(1) rounds. Thus, the sum is bounded by 𝑂(1)

∑︀
𝑗‖𝛿

𝑗‖𝑔 = 𝑂(‖Δ‖𝑔).
The total number of columns selected is 𝑂(𝑠) in each of the 𝑂(log 𝑑) rounds, for a total of

𝑂(𝑠 log 𝑑).

268

Chapter 18

Spectral low rank approximation for sparse
singular vectors [WY22b]

In this section, we study algorithms for the classical problem of low rank approximation under the
spectral norm.

Definition 18.0.1. Let A ∈ R𝑛×𝑑. Then, we define the spectral norm of A to be

‖A‖2 := sup
x ̸=0

‖Ax‖2
‖x‖2

Because the spectral norm is unitarily invariant, the classical Eckhart–Young–Minrky theorem
[EY36, Mir60] shows that the singular value decomposition yields the optimal rank 𝑘 approxima-
tion, for all 𝑘. While the singular value decomposition (SVD) can be expensive to compute for
large matrices, the recent results in randomized numerical linear algebra have achieved substantial
developments in fast approximation algorithms for the SVD, culminating in the following result
of [MM15]:

Theorem 18.0.2 (Approximate spectral SVD [MM15]). Let A ∈ R𝑛×𝑑. Then, there is an
algorithm which computes a rank 𝑘 orthogonal projection matrix P ∈ R𝑑×𝑑 such that

‖A−AP‖2 ≤ (1 + 𝜀) min
rank(A′)≤𝑘

‖A−A′‖2

which runs in time at most 𝑂(𝜀−1/2 nnz(A)𝑘 log 𝑑).

A natural question is whether this running time can be improved or not, under natural assump-
tions. One common assumption which often arises in practice is to assume that the top 𝑘 singular
vectors of A are sparse, i.e., there are only 𝑠 nonzero values in the singular vectors. This scenario
is a phenomenon known as localization of eigenvectors, and occurs frequently in many applica-
tions [HBCY21, ZYC+21], for example in quantum many-body problems [LVW09, NH15] and
network analysis [PC18].

This question was studied in the work of [HBCY21] and a followup work of [ZYC+21], which
studied algorithms for computing eigenvectors in symmetric matrices with localized eigenvectors.
In [HBCY21], the authors study an algorithm for finding a small submatrix containing the supports

269

of the leading eigenvectors by greedily adding rows and columns without formal guarantees, and
[ZYC+21] seek to improve this approach using reinforcement learning techniques.

In our work of [WY22b], we obtain one of the first provable speedups over [MM15] under a
sparse singular vector assumption:

Theorem 18.0.3 (Approximate spectral SVD for sparse singular vectors [WY22b]). Let A ∈
R𝑛×𝑑 whose top 𝑘 left and right singular vectors have at most 𝑠 nonzero entries. Then, there is an
algorithm which computes a rank 𝑘 orthogonal projection matrix P ∈ R𝑑×𝑑 such that

‖A−AP‖2 ≤ (1 + 𝜀) min
rank(A′)≤𝑘

‖A−A′‖2

which runs in time at most

𝑂

(︂
nnz(A)√

𝜀
+

𝑛

𝜀

)︂
log

𝑠𝑑𝑘 log 𝑛

𝜀
+ poly

(︂
𝑠, 𝑘,

1

𝜀
, log 𝑛

)︂
.

At a high level, our idea is to first identify a set of around 𝑂(𝑠𝑘) (or a slightly larger number
of) coordinates which contains the support of the top 𝑘 singular vectors, at which point we can
just output the SVD of this submatrix, padded with zeros. Thus, the difficulty lies in identifying
this subset of 𝑂(𝑠𝑘) coordinates. The work of [MM15] shows that if we know the value of the
(𝑘 + 1)th singular value 𝜎𝑘+1, then we can use a Chebyshev polynomial approximation of degree
roughly 𝑞 = 1/

√
𝜀 to identify singular vectors with singular values larger than (1 + 𝜀)𝜎𝑘+1 from

the vectors Ag, (AA⊤)Ag, . . . , (AA⊤)𝑞Ag, known as the Krylov subspace. Thus, the main
problem to tackle is to find an algorithm to determine the value of 𝜎𝑘+1, up to a (1 + 𝜀) factor. To
do this, we introduce a two-stage algorithm. In the first step, we identify the value of 𝜎𝑘+1 up to a
factor of (1 +

√
𝜀) using a combination of naive power iteration together with an efficient binary

searching technique over the singular values. In the second step, we know the value of 𝜎𝑘+1 up to
a value of (1 +

√
𝜀), and thus we can afford to make 1/

√
𝜀 guesses to the value of 𝜎𝑘+1 in powers

of (1 + 𝜀), and add 𝑂(𝑠𝑘) entries to our superset of the support of the sparse singular vectors for
each one of the 1/

√
𝜀 guesses. Then, one of these guesses will guess the right value of 𝜎𝑘+1, and

in total, the size of our support superset is just 𝑂(𝑠𝑘/
√
𝜀). Our result of Theorem 18.0.3 follows.

Remark 18.0.4. Note that the problem we study differs from the related problem of sparse low
rank approximation, where we seek a low rank approximation with sparse factors for an arbitrary
matrix A. Unlike our problem, this problem is intractable under standard complexity assumptions
[MWA06, Mag17, CPR16, LRG23].

18.1 Technical overview
Our first idea is that with a budget of nnz(A)/

√
𝜀 running time, we can run naı̈ve power method

for 1/
√
𝜀 iterations initialized with a single random Gaussian vector g ∼ 𝒩 (0, I𝑑) to compute

(AA⊤)1/
√
𝜀Ag. Using the SVD A = UΣV⊤ of A, we may write this as UΣ𝑂(1/

√
𝜀)V⊤g. Then

by the rotational invariance of the Gaussian, this random vector is distributed as a random linear
combination of the left singular vectors of A, where the 𝑖th left singular vector is scaled by roughly
𝜎
1/

√
𝜀

𝑖 . Then if 𝑖 ∈ [𝑘] is such that 𝜎𝑖 ≥ (1 +
√
𝜀)𝜎𝑘+1, then 𝜎

1/
√
𝜀

𝑖 is a constant factor larger than

270

𝜎
1/

√
𝜀

𝑘+1 , so the 𝑠 entries corresponding to the 𝑖th left singular vector stand out in (AA⊤)1/
√
𝜀Ag.

Thus, selecting the top 𝑠𝑘 entries with largest absolute value in (AA⊤)1/
√
𝜀Ag retrieves a superset

of the support of the left singular vectors with singular value 𝜎𝑖 for which 𝜎𝑖 ≥ (1 +
√
𝜀)𝜎𝑘+1.

We can repeat on the right side as well to obtain the support of the large right singular vectors.
The above approach is enough to find the large singular components with singular value at

least (1+
√
𝜀)𝜎𝑘+1, but we must find singular values all the way down to (1+ 𝜀)𝜎𝑘+1 for a (1+ 𝜀)

relative error approximation. To do this, we use the approach of [MM15] of using Chebyshev
polynomials, which, given a location parameter 𝛼, gives us a degree 1/

√
𝜀 polynomial 𝑝 for which

𝑝(𝑥), for all 𝑥 ≥ (1 + 𝜀)𝛼, is a constant times greater than any 𝑝(𝑥) for 𝑥 ≤ 𝛼 (see Lemma 18.2.9
for the mathematical statement). If we knew the location 𝛼 = 𝜎𝑘+1, then we could compute
𝑝(A)g in nnz(A)/

√
𝜀 time and use the same approach as before to find the support of all singular

components 𝑖 for which 𝜎𝑖 ≥ (1 + 𝜀)𝜎𝑘+1. The challenge, of course, is that we do not know 𝜎𝑘+1.
We first show how to find the value of 𝜎𝑘+1 up to a (1 +

√
𝜀) factor. To this end, we first show

that if 𝜎𝑖 for 𝑖 ∈ [𝑘] is large, i.e. 𝜎𝑖 ≥ (1 +
√
𝜀)𝜎𝑘+1, then we can find 𝜎𝑖 up to a (1 + 𝜀) factor

using the set of 𝑠𝑘 large coordinates on the left and right located before, using the power method.
However, note that we do not know for which 𝑖 this is true. That is, if we let Â be the 𝑠𝑘 × 𝑠𝑘
submatrix supported on the large coordinates identified using the power method, we expect the
large singular values of Â to be good estimates of the large singular values of A, but we do not
know which of them are large enough to actually be good estimates.

To address this, let 𝑖 ∈ [𝑘], and first note that 𝜎𝑖(Â) is always a lower bound on 𝜎𝑖(A) by the
Cauchy interlacing theorem. Furthermore, suppose that B̂ is a rank 𝑖 − 1 approximation to Â.
Then,

⃦⃦⃦
A− B̂

⃦⃦⃦
2

serves as an upper bound for 𝜎𝑖(A), as

𝜎𝑖(A) = min
rank 𝑖− 1C

‖A−C‖2 ≤
⃦⃦⃦
A− B̂

⃦⃦⃦
2
.

We show that for 𝑖 ∈ [𝑘] such that 𝜎𝑖 ≥ (1 +
√
𝜀)𝜎𝑘+1, these are good lower and upper bounds on

the singular value 𝜎𝑖(A), i.e., they are within (1 + 𝜀) factors of each other. Furthermore, they can
both be computed in time roughly

nnz(A)√
𝜀

+ poly(𝑠, 𝑘, 𝜀−1).

Thus, we have an extremely efficient way to certify our estimates to the singular values 𝜎𝑖(A), if
they are large enough. We then consider the following binary search strategy over the singular
values: if the upper and lower bounds are within (1 + 𝜀) factors of each other, then we keep
searching lower, and otherwise, we search higher. If the 𝜎𝑖*(A) found is such that 𝜎𝑖*(A) ≥
(1 +

√
𝜀)𝜎𝑘+1(A), then the top 𝑖* singular components are found in the initial power method step

accurately enough so that
⃦⃦⃦
A− B̂

⃦⃦⃦
2

is close to 𝜎𝑖*+1(A) ≤ (1 +
√
𝜀)𝜎𝑘+1(A), where B̂ is a

rank 𝑖* approximation B̂ of Â. Otherwise, 𝜎𝑖*(A) itself is within a (1 +
√
𝜀) factor of 𝜎𝑘+1(A).

Now that we are within a (1 +
√
𝜀) factor of 𝜎𝑘+1(A), we just need 1/

√
𝜀 guesses in powers

of (1 + 𝜀) in order to guess 𝜎𝑘+1(A) up to a factor of (1 + 𝜀). We can in fact afford to guess all
of these locations 𝛼, compute the corresponding Chebyshev polynomial 𝑝, compute 𝑝(A)g from
precomputed Krylov iterates, select the top 𝑠𝑘 entries, and then add the entries to the support that
we consider.

271

With the support superset in hand, we finish the algorithm by performing an approximate SVD
on this submatrix. Our full discussion can be found in Section 18.2.

18.2 Proof of Theorem 18.0.3
In this section, we discuss our results on performing an approximate SVD with relative spectral
norm error, when we are promised that the input matrix A ∈ R𝑛×𝑑 has top 𝑘 left and right singular
vectors that are 𝑠-sparse.

18.2.1 Approximating singular components
To carry out our plan as described in the introduction (Section 18.1), we first calculate the
magnitude of coordinates that we need to capture in order to achieve a relative error spectral
approximation. We follow [MM15] and make use of the fact that additive Frobenius norm low
rank approximation implies additive spectral norm low rank approximation, originally due to
[Gu15].

Lemma 18.2.1 (Theorem 3.4 of [Gu15]). For any A ∈ R𝑛×𝑑, let B ∈ R𝑛×𝑑 be any rank 𝑘 matrix
satisfying ‖A−B‖2𝐹 ≤ ‖A−A𝑘‖2𝐹 + 𝜂. Then,

‖A−B‖22 ≤ ‖A−A𝑘‖22 + 𝜂.

By the above result, it suffices to find a rank 𝑘 matrix B such that

‖A−B‖2𝐹 ≤ ‖A−A𝑘‖2𝐹 + 𝜀𝜎2
𝑘+1.

Using this, we show that it suffices to find all coordinates of the top left singular vectors Ue𝑗 such
that

|e⊤𝑖 Ue𝑗| ≥
𝜀

𝑘
√
𝑠𝑟

𝜎𝑘+1

𝜎𝑗

,

and similarly, all coordinates of the top right singular vectors Ve𝑗 such that

|e⊤𝑖 Ve𝑗| ≥
𝜀

𝑘
√
𝑠𝑟

𝜎𝑘+1

𝜎𝑗

.

Lemma 18.2.2. Let A ∈ R𝑛×𝑑 have rank 𝑟 with singular value decomposition A = UΣV⊤, and
let 𝜀 ∈ (0, 1/2). Let 𝑆 ⊂ [𝑛] and 𝑇 ⊂ [𝑑] be a set of coordinates such that

𝑆 ⊃
⋃︁
𝑗∈[𝑟]

{︂
𝑖 ∈ [𝑛] : |e⊤𝑖 Ue𝑗| ≥

𝜀

𝑘
√
𝑠𝑟

𝜎𝑘+1

𝜎𝑗

}︂

𝑇 ⊃
⋃︁
𝑗∈[𝑟]

{︂
𝑖 ∈ [𝑑] : |e⊤𝑖 Ve𝑗| ≥

𝜀

𝑘
√
𝑠𝑟

𝜎𝑘+1

𝜎𝑗

}︂
Let B be a rank 𝑘 matrix such that

‖P𝑆AP𝑇 −B‖2𝐹 ≤ min
rank 𝑘 C

‖P𝑆AP𝑇 −C‖2𝐹 + 𝜂.

272

Then,
‖A−B‖2𝐹 ≤ ‖A−A𝑘‖2𝐹 + 8𝜀𝜎2

𝑘+1 + 𝜂.

Proof. Note first that

‖A−A𝑘‖2𝐹 =
𝑟∑︁

𝑡=𝑘+1

𝜎2
𝑡 (A) ≤

𝑟∑︁
𝑡=𝑘+1

𝜎2
𝑘+1(A) ≤ 𝜎2

𝑘+1(A)𝑟.

Then,

‖A−B‖2𝐹 = ‖A−P𝑆AP𝑇‖2𝐹 + ‖P𝑆AP𝑇 −B‖2𝐹
(1)

≤ ‖A−P𝑆AP𝑇‖2𝐹 + ‖P𝑆AP𝑇 −A𝑘‖2𝐹 + 𝜂

(2)
= ‖A−P𝑆AP𝑇‖2𝐹 + ‖P𝑆AP𝑇 −P𝑆A𝑘P𝑇‖2𝐹 + ‖A𝑘 −P𝑆A𝑘P𝑇‖2𝐹 + 𝜂

(3)
= ‖A−P𝑆A𝑘P𝑇‖2𝐹 + ‖A𝑘 −P𝑆A𝑘P𝑇‖2𝐹 + 𝜂

(4)

≤ (‖A−A𝑘‖𝐹 + ‖A𝑘 −P𝑆A𝑘P𝑇‖𝐹)
2 + ‖A𝑘 −P𝑆A𝑘P𝑇‖2𝐹 + 𝜂

= ‖A−A𝑘‖2𝐹 + 2‖A−A𝑘‖𝐹‖A𝑘 −P𝑆A𝑘P𝑇‖𝐹 + 2‖A𝑘 −P𝑆A𝑘P𝑇‖2𝐹 + 𝜂

≤ ‖A−A𝑘‖2𝐹 + 2𝜎𝑘+1

√
𝑟‖A𝑘 −P𝑆A𝑘P𝑇‖𝐹 + 2‖A𝑘 −P𝑆A𝑘P𝑇‖2𝐹 + 𝜂

In the above, the inequality (1) is due to the approximate optimality of B, the identities (2) and (3)
are by the Pythagorean theorem, and inequality (4) is the triangle inequality. Finally, we calculate
that

‖A𝑘 −P𝑆A𝑘P𝑇‖𝐹 ≤ ‖A𝑘 −P𝑆A𝑘‖𝐹 + ‖P𝑆A𝑘 −P𝑆A𝑘P𝑇‖𝐹

=

⃦⃦⃦⃦
⃦

𝑘∑︁
𝑗=1

𝜎𝑗P𝑆Ue𝑗(Ve𝑗)
⊤

⃦⃦⃦⃦
⃦
𝐹

+

⃦⃦⃦⃦
⃦

𝑘∑︁
𝑗=1

𝜎𝑗P𝑆Ue𝑗(Ve𝑗)
⊤P𝑇

⃦⃦⃦⃦
⃦
𝐹

≤
𝑘∑︁

𝑗=1

𝜎𝑗‖P𝑆Ue𝑗‖2‖Ve𝑗‖2 + 𝜎𝑗‖P𝑆Ue𝑗‖2‖P𝑇Ve𝑗‖2

≤
𝑘∑︁

𝑗=1

2𝜎𝑗

(︂
𝜀

𝑘
√
𝑠𝑟

𝜎𝑘+1

𝜎𝑗

)︂√
𝑠

=
2𝜀√
𝑟
𝜎𝑘+1

so the previous bound is

‖A−B‖2𝐹 ≤ ‖A−A𝑘‖2𝐹 + 4𝜎𝑘+1

√
𝑟‖A𝑘 −P𝑆A𝑘P𝑇‖𝐹 + 2‖A𝑘 −P𝑆A𝑘P𝑇‖2𝐹 + 𝜂

≤ ‖A−A𝑘‖2𝐹 + 4𝜀𝜎2
𝑘+1 +

8𝜀2

𝑟
𝜎2
𝑘+1 + 𝜂

≤ ‖A−A𝑘‖2𝐹 + 8𝜀𝜎2
𝑘+1 + 𝜂.

273

18.2.2 Finding the support of singular vectors with large singular value
We next show how to find all large coordinates of singular vectors whose singular values 𝜎𝑗 are at
least a (1 +

√
𝜀) factor larger than 𝜎𝑘+1. By the results of the previous section, we seek to find all

of the large coordinates of the top sparse singular vectors, which have absolute value at least

𝜏𝑗 :=
𝜀

𝑘
√
𝑠𝑟

𝜎𝑘+1

𝜎𝑗

for the 𝑗th singular vector.
Our identification of the large coordinates of the top sparse singular vectors starts from the

standard analysis of the power method (see also, e.g., the overview of [MM15]). If we run power
method starting from a random Gaussian vector g ∼ 𝒩 (0, I𝑑), that is, we compute (AA⊤)𝑞Ag
for some 𝑞 ∈ N, then we retrieve a random Gaussian linear combination of the left singular
vectors Ue𝑗 , each scaled by 𝜎2𝑞+1

𝑗 . This is a simple consequence of the rotational invariance of
the Gaussian:

Lemma 18.2.3. Let g′ ∼ 𝒩 (0, I𝑑) and let 𝑞 ∈ N. Let A ∈ R𝑛×𝑑 be a rank 𝑟 matrix and let
A = UΣV⊤ be its singular value decomposition. Then, (AA⊤)𝑞Ag′ has the same distribution as

UΣ2𝑞+1g =
𝑟∑︁

𝑗=1

g𝑗𝜎
2𝑞+1
𝑗 Ue𝑗

for g ∼ 𝒩 (0, I𝑟).

Note then that for 𝜎𝑗 ≥ (1+
√
𝜀)𝜎𝑘+1, the 𝑗th singular vector is scaled more than the (𝑘+1)-st

singular vector by a factor of at least (𝜎𝑗/𝜎𝑘+1)
2𝑞+1. For 𝑞 roughly order 1/

√
𝜀, this separates all

large coordinates of the 𝑗th singular vector from the coordinates of the (𝑘 + 1)-st singular vector.

Lemma 18.2.4. For

𝑞 = 𝑂

(︂
1√
𝜀
log

𝑠𝑘2
√
𝑠𝑟 log 𝑛

𝜀

)︂
,

the 𝑠𝑘 coordinates of (AA⊤)𝑞Ag with largest absolute value are guaranteed to contain all entries
𝑖 ∈ [𝑛] for which there exists a 𝑗 ∈ [𝑘] with 𝜎𝑗 ≥ (1 +

√
𝜀)𝜎𝑘+1 and⃒⃒

e⊤𝑖 Ue𝑗
⃒⃒
≥ 𝜏𝑗.

Proof. For

𝑞 = 𝑂

(︂
1√
𝜀
log

𝑠𝑘2
√
𝑠𝑟 log 𝑛

𝜀

)︂
,

the blow up factor (𝜎𝑗/𝜎𝑘+1)
2𝑞+1 is at least(︂

𝜎𝑗

𝜎𝑘+1

)︂2𝑞+1

≥ (1 +
√
𝜀)2𝑞

𝜎𝑗

𝜎𝑘+1

= Θ

(︂
𝑠𝑘2
√
𝑠𝑟 log 𝑛

𝜀

)︂
𝜎𝑗

𝜎𝑘+1

= Θ

(︂
𝑠𝑘
√
log 𝑛

𝜏𝑗

)︂
for the 𝑗th singular component. The time required to compute this vector (AA⊤)𝑞Ag is

𝑂

(︂
nnz(A)√

𝜀
log

𝑠𝑘2
√
𝑠𝑟 log 𝑛

𝜀

)︂
= 𝑂

(︂
nnz(A)√

𝜀
log

𝑠𝑟𝑘 log 𝑛

𝜀

)︂
274

Now note that for each 𝑖 ∈ [𝑛], we have that

e⊤𝑖 UΣ2𝑞+1g ∼ 𝒩
(︁
0,
⃦⃦
e⊤𝑖 UΣ2𝑞+1

⃦⃦2
2

)︁
.

Since the maximum absolute value among 𝑛 Gaussians is 𝑂(
√
log 𝑛) with constant probability,

we have ⃒⃒
e⊤𝑖 UΣ2𝑞+1g

⃒⃒
≤ 𝑂(

√︀
log 𝑛)

⃦⃦
e⊤𝑖 UΣ2𝑞+1

⃦⃦
2
.

Furthermore, if we consider all 𝑖 in the support of the top 𝑘 singular vectors, which is at most 𝑠𝑘
coordinates, then the minimum absolute value among the 𝑠𝑘 Gaussians is⃒⃒

e⊤𝑖 UΣ2𝑞+1g
⃒⃒
≥ Ω

(︂
1

𝑠𝑘

)︂⃦⃦
e⊤𝑖 UΣ2𝑞+1

⃦⃦
2
.

Now consider a coordinate 𝑖 ∈ [𝑛] such that⃒⃒
e⊤𝑖 Ue𝑗

⃒⃒
≥ 𝜏𝑗

for some 𝑗 ∈ [𝑘] such that 𝜎𝑗 ≥ (1 +
√
𝜀)𝜎𝑘+1. Then by the previous results,⃒⃒

e⊤𝑖 UΣ2𝑞+1g
⃒⃒
≥ Ω

(︂
1

𝑠𝑘

)︂⃦⃦
e⊤𝑖 UΣ2𝑞+1

⃦⃦
2

≥ Ω

(︂
1

𝑠𝑘

)︂
𝜎2𝑞+1
𝑗 𝜏𝑗

= Ω

(︂
1

𝑠𝑘

)︂
𝜎2𝑞+1
𝑘+1

(︂
𝜎𝑗

𝜎𝑘+1

)︂2𝑞+1

𝜏𝑗

≥ Ω

(︂
1

𝑠𝑘

)︂
𝜎2𝑞+1
𝑘+1 Θ

(︂
𝑠𝑘
√
log 𝑛

𝜏𝑗

)︂
𝜏𝑗

= Ω
(︁
𝜎2𝑞+1
𝑘+1

√︀
log 𝑛

)︁
.

On the other hand, for any 𝑖 ∈ [𝑛] that is outside of the at most 𝑠𝑘 coordinates of the support of
the top 𝑘 singular vectors, then⃒⃒

e⊤𝑖 UΣ2𝑞+1g
⃒⃒
≤ 𝑂(

√︀
log 𝑛)

⃦⃦
e⊤𝑖 UΣ2𝑞+1

⃦⃦
2
≤ 𝑂(𝜎2𝑞+1

𝑘+1

√︀
log 𝑛).

We thus conclude as desired.

In other words, we can identify a set of 𝑠𝑘 coordinates that contains all large entries of left
singular vectors 𝑗 for which 𝜎𝑗 ≥ (1 +

√
𝜀)𝜎𝑘+1. Repeating for the right singular vectors, we may

identify the sets 𝑆 and 𝑇 as required by Lemma 18.2.2.

18.2.3 Approximating large singular values
Our next task is to compute the singular values of A with 𝜎𝑗(A) ≥ (1+

√
𝜀)𝜎𝑘+1(A), up to (1+𝜀)

factors. We first show that approximating the singular values of P𝑆AP𝑇 directly approximates
the singular values of A, when the singular values are sufficiently large.

275

Lemma 18.2.5. Let 𝑚 be the number of singular values of A such that 𝜎𝑗(A) ≥ (1+
√
𝜀)𝜎𝑘+1(A).

Let 𝑆 ⊂ [𝑛] and 𝑇 ⊂ [𝑑] be sets satisfying the hypotheses of Lemma 18.2.2. Then for each
𝑙 ∈ [𝑚],

(1− 8𝜀)𝜎2
𝑙 (A) ≤ 𝜎2

𝑙 (P𝑆AP𝑇) ≤ 𝜎2
𝑙 (A).

Proof. Recall the Cauchy interlacing theorem:

Theorem 18.2.6 (Cauchy interlacing theorem). Let M be a symmetric matrix and let N be a
principal submatrix of size 𝑙 × 𝑙. Then for all 𝑗 ∈ [𝑙],

𝜆𝑗(M) ≥ 𝜆𝑗(N) ≥ 𝜆𝑛−𝑙+𝑗(M).

Then applying the interlacing theorem to M = AA⊤ and N = P𝑆AA⊤P⊤
𝑆 , we find that

the singular values of P𝑆A uniformly bound the top 𝑠𝑘 singular values of A from below, and
similarly, the singular values of P𝑆AP𝑇 uniformly bound the singular values of P𝑆A from below.
We thus have that

𝜎𝑗(A) ≥ 𝜎𝑗(P𝑆A) ≥ 𝜎𝑗(P𝑆AP𝑇)

for all 𝑗 ∈ [𝑠𝑘]. Furthermore, we know by Lemma 18.2.2 that for each 𝑙 ∈ [𝑚],

‖A−A𝑙‖2𝐹 ≤ ‖A− (P𝑆AP𝑇)𝑙‖2𝐹 ≤ ‖A−A𝑙‖2𝐹 + 8𝜀𝜎𝑙+1(A)2 (18.1)

where (P𝑆AP𝑇)𝑙 is the best rank 𝑙 approximation P𝑆AP𝑇 . Now note that

‖A‖2𝐹 − ‖A−A𝑙‖2𝐹 = ‖A𝑙‖2𝐹

and

⟨A− (P𝑆AP𝑇)𝑙, (P𝑆AP𝑇)𝑙⟩ = ⟨A−P𝑆AP𝑇 , (P𝑆AP𝑇)𝑙⟩
+ ⟨P𝑆AP𝑇 − (P𝑆AP𝑇)𝑙, (P𝑆AP𝑇)𝑙⟩ = 0

so
‖A‖2𝐹 − ‖A− (P𝑆AP𝑇)𝑙‖2𝐹 = ‖(P𝑆AP𝑇)𝑙‖2𝐹

by the Pythagorean theorem. Then subtracting the inequalities of Equation 18.1 from ‖A‖2𝐹 , we
have that

‖A𝑙‖2𝐹 − 8𝜀𝜎𝑙+1(A)2 ≤ ‖(P𝑆AP𝑇)𝑙‖2𝐹 ≤ ‖A𝑙‖2𝐹 .

Then,

𝜎2
𝑙 (P𝑆AP𝑇) = ‖(P𝑆AP𝑇)𝑙‖2𝐹 − ‖(P𝑆AP𝑇)𝑙−1‖2𝐹

≥ ‖A𝑙‖2𝐹 − 8𝜀𝜎𝑙+1(A)2 − ‖A𝑙−1‖2𝐹
= 𝜎2

𝑙 (A)− 8𝜀𝜎𝑙+1(A)2

≥ (1− 8𝜀)𝜎2
𝑙 (A)

as desired.

276

We may use the existing results of [MM15] to find (1 + 𝜀) factor approximations to the top 𝑘
singular values of P𝑆AP𝑇 in time

𝑂

(︂
nnz(P𝑆AP𝑇)𝑘√

𝜀
log(𝑠𝑘)

)︂
= 𝑂

(︂
𝑠2𝑘3

√
𝜀
log(𝑠𝑘)

)︂
.

However, note that given estimates for the singular values of P𝑆AP𝑇 , we do not know which
ones are within a (1 + 𝜀) factor of the singular values of A, since we do not know the number
𝑚 of singular values 𝑗 with 𝜎𝑗(A) ≥ (1 +

√
𝜀)𝜎𝑘+1(A). However, by the Cauchy interlacing

theorem, the singular values of P𝑆AP𝑇 are always a lower bound on the singular values of A,
so it suffices to compute an upper bound for the singular values of A that are at most a (1 + 𝜀)
factor larger than the lower bound. We obtain such an upper bound on the singular values of A by
approximating ‖A−B‖2 for a rank 𝑙 matrix B. Indeed, if B is rank 𝑙, then

‖A−B‖22 ≥ min
rank 𝑙 C

‖A−C‖2𝐹 = 𝜎𝑙+1(A)2.

This idea is executed in the following lemma.

Lemma 18.2.7. Let 𝑆 ⊂ [𝑛] and 𝑇 ⊂ [𝑑] be sets of size 𝑠𝑘 each that satisfy the hypotheses of
Lemma 18.2.2. Given such 𝑆 and 𝑇 and an index 𝑗 ∈ [𝑘], there is a randomized algorithm that
runs in time

𝑂

(︂
nnz(A) + 𝑠2𝑘3

√
𝜀

log(𝑠𝑘)

)︂
and outputs numbers 𝑈 and 𝐿 such that

𝐿 ≤ 𝜎2
𝑗 (A) ≤ 𝑈

with probability at least 0.99. Furthermore, if 𝑗 ∈ [𝑚], where 𝑚 is the number of singular values
𝑗 with 𝜎𝑗 ≥ (1 +

√
𝜀)𝜎𝑘+1, we have that

𝑈

𝐿
≤ 1 + 10𝜀

1− 9𝜀
≤ 1 + 20𝜀.

Proof. We first show how to obtain the lower bound 𝐿. By the Cauchy interlacing theorem (as in
Lemma 18.2.5), we have that

𝜎𝑗(P𝑆AP𝑇) ≤ 𝜎𝑗(A).

Then by the randomized block Krylov algorithm of [MM15] (see Theorem 18.0.2), we may find
an estimate 𝐿 to 𝜎𝑗(P𝑆AP𝑇) such that

(1− 𝜀)𝜎𝑗(P𝑆AP𝑇) ≤ 𝐿 ≤ 𝜎𝑗(P𝑆AP𝑇)

in time

𝑂

(︂
nnz(P𝑆AP𝑇)𝑘√

𝜀
log(𝑠𝑘)

)︂
= 𝑂

(︂
𝑠2𝑘3

√
𝜀
log(𝑠𝑘)

)︂
.

Furthermore, if 𝑗 ∈ [𝑚], then by Lemma 18.2.5,

𝐿 ≥ (1− 𝜀)𝜎𝑗(P𝑆AP𝑇) ≥ (1− 𝜀)(1− 8𝜀)𝜎𝑗(A) ≥ (1− 9𝜀)𝜎𝑗(A).

277

For the upper bound, we use the rank 𝑗 approximation B obtained by running the randomized
block Krylov algorithm of [MM15] on P𝑆AP𝑇 . Note that

𝜎𝑗(A) = min
rank 𝑗 C

‖A−C‖2 ≤ ‖A−B‖2

for any rank 𝑗 − 1 matrix B. By the results of [MM15], we may compute an estimate 𝑈 such that

(1 + 𝜀)‖A−B‖2 ≥ 𝑈 ≥ ‖A−B‖2

in time

𝑂

(︂
nnz(A−B)√

𝜀

)︂
= 𝑂

(︂
nnz(A) + 𝑠2𝑘2

√
𝜀

)︂
.

Furthermore, for 𝑗 ∈ [𝑚], if we find a rank 𝑗 − 1 matrix B such that

‖P𝑆AP𝑇 −B‖2𝐹 ≤ min
rank 𝑗 − 1C

‖P𝑆AP𝑇 −C‖2𝐹 + 𝜀𝜎𝑗(P𝑆AP𝑇)
2

≤ min
rank 𝑗 − 1C

‖P𝑆AP𝑇 −C‖2𝐹 + 𝜀𝜎𝑗(A)2,

which we can by the results of [MM15] as before, then by Lemma 18.2.2,

‖A−B‖2𝐹 ≤ ‖A−A𝑗−1‖2𝐹 + 9𝜀𝜎2
𝑗 (A).

By Lemma 18.2.1, this implies that

‖A−B‖22 ≤ ‖A−A𝑗−1‖22 + 9𝜀𝜎2
𝑗 (A) = (1 + 9𝜀)𝜎2

𝑗 (A).

We now show how to use the above result to efficiently find a (1 +
√
𝜀) factor approximation

to 𝜎𝑘+1(A) using binary search.

Lemma 18.2.8. There is a randomized algorithm that runs in time

𝑂

(︂
nnz(A) + 𝑠2𝑘3

√
𝜀

log(𝑠𝑘)(log 𝑘)

)︂
that finds a (1 +

√
𝜀) factor approximation to 𝜎𝑘+1(A).

Proof. If 𝜎𝑘(A) ≥ (1 +
√
𝜀)𝜎𝑘+1(A), then deflating off the top 𝑘 components already gives a

(1 + 𝜀) factor approximation to 𝜎𝑘+1(A). Otherwise, we proceed with binary search as follows.
Suppose we consider 𝑗 ∈ [𝑘]. If the upper and lower bounds for 𝜎𝑗(A) in Lemma 18.2.7 are

within a (1 + 𝑂(𝜀)) factor, then we know that 𝜎𝑘+1(A) is smaller than this, up to a (1 ± 𝑂(𝜀))
factor. On the other hand, if the upper and lower bounds for 𝜎𝑗(A) are further than a (1 +𝑂(𝜀))
factor, then 𝜎𝑗(A) ≤ (1 +

√
𝜀)𝜎𝑘+1(A), since otherwise the upper and lower bounds for 𝜎𝑗(A)

would have matched up to a (1±𝑂(𝜀)) factor by the second guarantee of Lemma 18.2.7. Thus,
we may use binary search over the at most 𝑘 singular values in at most 𝑂(log 𝑘) calls to the
algorithm of Lemma 18.2.7.

278

18.2.4 Approximating small singular values
With a (1 +

√
𝜀) factor approximation to 𝜎𝑘+1(A) in hand, we now zoom into the singular values

between 𝜎𝑘+1(A) and (1 +
√
𝜀)𝜎𝑘+1(A). We consider partitioning this (1 +

√
𝜀) factor window

into 𝑂(1/
√
𝜀) buckets that increase in powers of (1 + 𝜀), that is

𝐿,𝐿(1 + 𝜀), 𝐿(1 + 𝜀)2, 𝐿(1 + 𝜀)3, . . . , 𝐿(1 + 𝜀)𝑂(1/
√
𝜀) = (1 +

√
𝜀)𝐿

where 𝐿 is a lower bound on 𝜎𝑘+1(A), up to a (1 +
√
𝜀) factor. Our idea now is to simply

enumerate over these 𝑂(1/
√
𝜀) guesses to a (1± 𝜀)-approximation of 𝜎𝑘+1(A), and then choose

the best result.
With only a (1+𝜀) factor gap in the singular values, using power method as before will require

roughly (ignoring log factors) 1/𝜀 iterations, which takes time roughly nnz(A)/𝜀 to separate
out the singular components, which is above our target budget. However, using Chebyshev
polynomials, it is known that a (1 + 𝜀) factor gap in the singular values can be separated with
only roughly 1/

√
𝜀 iterations [MM15] which takes time only nnz(A)/

√
𝜀. The main lemma for

this technique is the following:

Lemma 18.2.9 (Lemma 5, [MM15]). Given a specified value 𝛼 > 0, gap 𝛾 ∈ (0, 1], and 𝑞 ≥ 1,
there exists a degree 𝑞 polynomial 𝑝(𝑥) such that:

1. 𝑝((1 + 𝛾)𝛼) = (1 + 𝛾)𝛼

2. 𝑝(𝑥) ≥ 𝑥 for all 𝑥 ≥ (1 + 𝛾)𝛼

3. |𝑝(𝑥)| ≤ 𝛼
2𝑞

√
𝛾−1 for all 𝑥 ∈ [0, 𝛼]

Furthermore, when q is odd, the polynomial only contains odd powered monomials.

In words, the above lemma states that there is a polynomial that “jumps” by a factor of 2𝑞
√
𝛾−1

in a window of size (1 + 𝛾) at a specified location 𝛼. The difference between this lemma and our
power method analysis from before is that we must specify the location of our “jump”, 𝛼, in order
to use the above polynomial in the Krylov method, whereas in the power method, the polynomial
𝑝(𝑥) = 𝑥𝑞 had the “jump” property at any location 𝛼. Thus, in order to use the above lemma, we
must first specify our jump location 𝛼, and then proceed with our previous techniques.

Our procedure is thus as follows. We first compute Krylov iterates (AA⊤)𝑖Ag for 𝑖 ∈ [𝑞],
where g ∼ 𝒩 (0, I𝑑) and

𝑞 = 𝑂

(︂
1√
𝜀
log

𝑠𝑘2
√
𝑠𝑟 log 𝑛

𝜀

)︂
.

We then proceed with our enumeration procedure. We guess a bucket 𝛼 = 𝐿(1 + 𝜀)𝑡 for some
𝑡 ∈ [𝑂(1/

√
𝜀)], and then consider the degree 𝑞 polynomial 𝑝𝛼(𝑥) that jumps by a 2𝑞

√
𝜀−1 factor at

𝛼 by Lemma 18.2.9. Then, we may compute the vector U𝑝𝛼(Σ)V⊤g as a linear combination of
the Krylov iterates

(AA⊤)𝑖Ag = UΣ2𝑖+1V⊤g

where the coefficients of the linear combination are the coefficients of the polynomial 𝑝𝛼. Next,
we take the top 𝑠𝑘 entries of U𝑝𝛼(Σ)V⊤g as sets 𝑆𝛼 and 𝑇𝛼, combine them with the 𝑠𝑘 entries 𝑆
and 𝑇 obtained earlier by the power method, and then take our new subset of entries to be

𝑆 ′ := 𝑆 ∪
⋃︁
𝛼

𝑆𝛼

279

𝑇 ′ := 𝑇 ∪
⋃︁
𝛼

𝑇𝛼

Finally we compute a rank 𝑘 matrix B such that

‖P𝑆′AP𝑇 ′ −B‖2𝐹 ≤ min
rank 𝑘 C

‖P𝑆′AP𝑇 ′ −C‖2𝐹 + 𝜀𝜎2
𝑘+1(P𝑆′AP𝑇 ′)

using the results of [MM15].
Note that if the 𝛼 we choose satisfies 𝛼 ∈ [𝜎𝑘+1(A), (1 + 𝜀)𝜎𝑘+1(A)], then all singular values

𝑗 that are at least a (1 + 𝜀) factor larger than 𝛼 and at most Θ(1)𝜎𝑘+1(A) are scaled by at least a
factor of

2𝑞
√
𝜀−1 = Θ

(︂
𝑠𝑘2
√
𝑠𝑟 log 𝑛

𝜀

)︂
= Θ

(︂
𝑠𝑘2
√
𝑠𝑟 log 𝑛

𝜀

)︂
𝜎𝑗

𝜎𝑘+1

= Θ

(︂
𝑠𝑘
√
log 𝑛

𝜏𝑗

)︂
,

which means we may recover all coordinates of the 𝑗th singular vectors that are at least 𝜏𝑗 for
these singular values, as done in the analyses in Section 18.2.2. Thus, we have that

‖A−B‖22 ≤ ‖A−A𝑙‖22 + 8𝜀𝜎2
𝑙+1(A) + 𝜀𝜎2

𝑙+1(P𝑆′AP𝑇 ′)

≤ ‖A−A𝑙‖22 + 9𝜀𝜎2
𝑙+1(A)

= (1 + 9𝜀)𝜎2
𝑙+1(A)

≤ (1 + 9𝜀)(1 + 𝜀)𝜎2
𝑘+1(A)

≤ (1 + 11𝜀)𝜎2
𝑘+1(A)

by Lemma 18.2.2, where 𝑙 ∈ [𝑘] is such that 𝜎2
𝑘+1(A) ≤ 𝜎2

𝑙+1(A) ≤ (1 + 𝜀)𝜎2
𝑘+1(A).

The initial computation of the Krylov iterates takes time

𝑂(nnz(A)𝑞) = 𝑂

(︂
nnz(A)√

𝜀
log

𝑠𝑟𝑘 log 𝑛

𝜀

)︂
and a single guess of 𝛼 takes time

𝑂(𝑛𝑞) = 𝑂

(︂
𝑛√
𝜀
log

𝑠𝑟𝑘 log 𝑛

𝜀

)︂
which we repeat 𝑂(1/

√
𝜀) times, so the total running time in this section is

𝑂

(︂(︂
nnz(A)√

𝜀
+

𝑛

𝜀

)︂
log

𝑠𝑟𝑘 log 𝑛

𝜀

)︂
.

We then additionally run an approximate SVD using Theorem 18.0.2 on the 𝑂(𝑠𝑘/
√
𝜀) ×

𝑂(𝑠𝑘/
√
𝜀) matrix, which adds an 𝑠2𝑘3(log(𝑠𝑘))/𝜀3/2 term, for a running time of

𝑂

(︂(︂
nnz(A)√

𝜀
+

𝑛

𝜀

)︂
log

𝑠𝑟𝑘 log 𝑛

𝜀
+

𝑠2𝑘3

𝜀3/2
log(𝑠𝑘)

)︂
.

This dominates the running times of the previous steps and thus is the running time of our entire
algorithm.

280

Chapter 19

Future directions for sparse optimization

We conclude Part III of this thesis with several open directions arising from our investigations in
this area.

Greedy algorithms for column subset selection. Our first question is to obtain an optimal
understanding of the greedy algorithm for column subset selection with the Frobenius norm.
Consider the greedy algorithm that iteratively updates a subset 𝑆 of columns by setting 𝑆 ←
𝑆 ∪ {𝑖}, where 𝑖 is the column which minimizes minX‖A|𝑆∪{𝑖}X−A‖2𝐹 . We ask whether this
algorithm results in a nearly optimal column subset in the following sense:

Question 19.0.1. Let 𝑘 ∈ N. Does the greedy algorithm for column subset selection output a
subset of �̃�(𝑘/𝜀) columns such that

min
X
‖A|𝑆X−A‖2𝐹 ≤ (1 + 𝜀)‖A−A𝑘‖2𝐹

Currently, it is known that similar bounds can be obtained up to a logarithmic factor in a
condition number-type parameter [ABF+16], or polynomial factors in 𝑘 and 𝜀 [DV06, BRW21].
It is interesting to determine whether the lower bound of Ω(𝑘/𝜀) [DV06] can be achieved, or
if there exists a matrix A for which the greedy algorithm fails to achieve the above guarantee
with �̃�(𝑘/𝜀) columns. In fact, to the best of our knowledge, it is not known whether there is any
efficient deterministic column subset selection algorithm that achieves this guarantee with �̃�(𝑘/𝜀)
columns.

More broadly, we raise the question of whether greedy algorithms can replace other techniques
in matrix approximation in greater generality.

Question 19.0.2. Can sparse optimization techniques, especially greedy algorithms, replace
sketching and sampling techniques in matrix approximation?

Although randomized algorithms based on sketching and sampling have proven to be a
highly successful development in algorithms research, they often lack the simplicity, ease of
implementation, practical performance, and interpretability of plain greedy algorithms, which
often prove to be the preferred choice in practical applications. Indeed, arguably the most natural
algorithms for matrix approximation are accomplished by greedy algorithms, from the singular
value decomposition to the first proposed algorithms for column subset selection [Cha86] to the

281

most popular approaches for neural network compression [FC19]. Thus, as algorithms researchers,
one of the most important directions is to establish how good these greedy algorithms are in the
context of matrix approximation.

There have already been a few fruitful lines of work establishing the near-optimality of greedy
algorithms for matrix approximation. A variation on a greedy algorithm has been shown to be
nearly optimal for column subset selection under the entrywise ℓ𝑝 loss for certain values of 𝑝, as
shown by [SWZ17, MW21, WY23a] (see also Chapter 17). Our nearly optimal online coreset
algorithm for John ellipsoids in Chapter 11 may also be viewed as a greedy algorithm. Yet
another recent positive result for greedy algorithms is the result that when selecting a maximum
volume subset of points, the greedy algorithm is nearly optimal in the composable coreset model
[ÇM09, IMGR19, IMGR20, GMS23]. We hope that greedy algorithms will continue to prove to
be the “right” algorithm in matrix approximation problems.

Column subset selection for the entrywise ℓ𝑝 loss. The second question we raise is on settling
the trade-offs for column subset selection problem for the entrywise ℓ𝑝 loss. It is known that for
𝑝 < 2, there is always a subset 𝑆 of |𝑆| = �̃�(𝑘) columns satisfying

min
X
‖A|𝑆X−A‖𝑝𝑝,𝑝 ≤ �̃�(𝑘1/𝑝−1/2) min

rank(Â)≤𝑘
‖A− Â‖𝑝𝑝,𝑝

and that any column subset with a distortion factor of 𝑂(𝑘1/𝑝−1/2−𝑜(1)) must contain at least
𝑘(log 𝑘)𝜔(1) columns [MW21]. In Chapter 17, we have shown a similar upper bound for 𝑝 > 2,
showing that there is always a subset 𝑆 of |𝑆| = �̃�(𝑘) columns satisfying

min
X
‖A|𝑆X−A‖𝑝𝑝,𝑝 ≤ �̃�(𝑘1/2−1/𝑝) min

rank(Â)≤𝑘
‖A− Â‖𝑝𝑝,𝑝.

However, we only have a nearly matching lower bound for 𝑝 =∞, which shows that a column
subset with a distortion factor of 𝑂(𝑘1/2−𝑜(1)) must contain at least 𝑘𝜔(1) columns. This leads to
the following question:

Question 19.0.3. Let 𝑘 ∈ N and 2 < 𝑝 <∞. What is the minimum possible distortion 𝜅 such
that for any A, there exists a subset 𝑆 of |𝑆| = �̃�(𝑘) columns such that

min
X
‖A|𝑆X−A‖𝑝𝑝,𝑝 ≤ 𝜅 min

rank(Â)≤𝑘
‖A− Â‖𝑝𝑝,𝑝.

282

Bibliography

[AAHS99] Pankaj K. Agarwal, Boris Aronov, Sariel Har-Peled, and Micha Sharir. Approx-
imation and exact algorithms for minimum-width annuli and shells. In Victor
Milenkovic, editor, Proceedings of the Fifteenth Annual Symposium on Computa-
tional Geometry, Miami Beach, Florida, USA, June 13-16, 1999, pages 380–389.
ACM, 1999. 11.4.5

[ABF+16] Jason M. Altschuler, Aditya Bhaskara, Gang Fu, Vahab S. Mirrokni, Afshin Ros-
tamizadeh, and Morteza Zadimoghaddam. Greedy column subset selection: New
bounds and distributed algorithms. In Maria-Florina Balcan and Kilian Q. Wein-
berger, editors, Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of
JMLR Workshop and Conference Proceedings, pages 2539–2548. JMLR.org, 2016.
1.4.2, 16.1.2, 19

[AHV04] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Approximating
extent measures of points. J. ACM, 51(4):606–635, 2004. 1.3.4, 11, 11.4, 11.4.2,
11.4.5

[AHV05] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Geometric
approximation via coresets. Combinatorial and computational geometry, 52(1-
30):3, 2005. 1.3.4, 11, 11.4, 11.4.1, 11.4.2

[AHY08] Pankaj K. Agarwal, Sariel Har-Peled, and Hai Yu. Robust shape fitting via peeling
and grating coresets. Discret. Comput. Geom., 39(1-3):38–58, 2008. 11.4.1, 11.4.2,
11.4.1, 11.4.1, 1

[AKPS19] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative
refinement for ℓ𝑝-norm regression. In Timothy M. Chan, editor, Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 1405–1424. SIAM, 2019. 12.3.3

[AKY23] Sepehr Assadi, Michael Kapralov, and Huacheng Yu. On constructing spanners
from random gaussian projections. In Nicole Megow and Adam D. Smith, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2023, September 11-13, 2023, Atlanta, Georgia,
USA, volume 275 of LIPIcs, pages 57:1–57:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023. 1.1.1

[ALO15] Zeyuan Allen-Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and

283

regret minimization beyond matrix multiplicative updates. In Rocco A. Servedio
and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,
2015, pages 237–245. ACM, 2015. 15.1, 15.1

[AM15] Ahmed El Alaoui and Michael W. Mahoney. Fast randomized kernel ridge regres-
sion with statistical guarantees. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee,
Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 775–783,
2015. 14.1.5

[AP21] Sercan Ö Arik and Tomas Pfister. TabNet: Attentive interpretable tabular learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
6679–6687, 2021. 16.1.2

[AS98] Pankaj K. Agarwal and Micha Sharir. Efficient algorithms for geometric optimiza-
tion. ACM Comput. Surv., 30(4):412–458, 1998. 11.4.5

[AS15] Pankaj K. Agarwal and R. Sharathkumar. Streaming algorithms for extent problems
in high dimensions. Algorithmica, 72(1):83–98, 2015. 1.3.4, 11, 11.4, 11.4.1

[AS16] Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep
networks. Advances in neural information processing systems, 29, 2016. 16.1

[AS20] Kyriakos Axiotis and Maxim Sviridenko. Sparse convex optimization via adaptively
regularized hard thresholding. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 452–462. PMLR, 2020. 16.1.2,
16.1.4, 16.4.1

[AS21] Kyriakos Axiotis and Maxim Sviridenko. Local search algorithms for rank-
constrained convex optimization. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. 16.1.5

[AS22] Kyriakos Axiotis and Maxim Sviridenko. Iterative hard thresholding with adaptive
regularization: Sparser solutions without sacrificing runtime. In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato,
editors, International Conference on Machine Learning, ICML 2022, 17-23 July
2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning
Research, pages 1175–1197. PMLR, 2022. 16.1.4

[ASW13] Haim Avron, Vikas Sindhwani, and David P. Woodruff. Sketching structured matri-
ces for faster nonlinear regression. In Christopher J. C. Burges, Léon Bottou, Zoubin
Ghahramani, and Kilian Q. Weinberger, editors, Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, pages 2994–3002, 2013. 7.2

[Aue30] Herman Auerbach. On the area of convex curves with conjugate diameters. PhD

284

thesis, PhD thesis, University of Lwów, 1930. 1.5.2, 3.1

[AVu97] Noga Alon and Văn H. Vũ. Anti-Hadamard matrices, coin weighing, threshold
gates, and indecomposable hypergraphs. J. Combin. Theory Ser. A, 79(1):133–160,
1997. 1.3.3

[AW20a] Ehsan Amid and Manfred K. Warmuth. Reparameterizing mirror descent as gradient
descent. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. 16.1.2

[AW20b] Ehsan Amid and Manfred K. Warmuth. Winnowing with gradient descent. In
Jacob D. Abernethy and Shivani Agarwal, editors, Conference on Learning The-
ory, COLT 2020, 9-12 July 2020, Virtual Event [Graz, Austria], volume 125 of
Proceedings of Machine Learning Research, pages 163–182. PMLR, 2020. 16.1.2

[AY23] Kyriakos Axiotis and Taisuke Yasuda. Performance of ℓ1 regularization for sparse
convex optimization. CoRR, abs/2307.07405, 2023. (document), 1.4.2, 1.4.3, 16

[Bak99] Sergey Bakin. Adaptive regression and model selection in data mining problems.
PhD dissertation, The Australian National University, 1999. 7

[BAZ19] Muhammed Fatih Balın, Abubakar Abid, and James Zou. Concrete autoencoders:
Differentiable feature selection and reconstruction. In International conference on
machine learning, pages 444–453. PMLR, 2019. (document), 16.6.1, 16.6.1, 16.1,
16.6.3

[BBB+19] Frank Ban, Vijay Bhattiprolu, Karl Bringmann, Pavel Kolev, Euiwoong Lee, and
David P. Woodruff. A PTAS for ℓ𝑝-low rank approximation. In Timothy M. Chan,
editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
747–766. SIAM, 2019. 17

[BBK+18] Avrim Blum, Vladimir Braverman, Ananya Kumar, Harry Lang, and Lin F. Yang.
Approximate convex hull of data streams. In Ioannis Chatzigiannakis, Christos
Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Collo-
quium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018,
Prague, Czech Republic, volume 107 of LIPIcs, pages 21:1–21:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018. 11.4.2

[BCFS14] Arindam Banerjee, Sheng Chen, Farideh Fazayeli, and Vidyashankar Sivakumar.
Estimation with norm regularization. In Zoubin Ghahramani, Max Welling, Corinna
Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, Advances in Neural
Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages
1556–1564, 2014. 1.4.1, 16.1.1

[BDM11] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near optimal column-
based matrix reconstruction. In Rafail Ostrovsky, editor, IEEE 52nd Annual Sympo-
sium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA,

285

October 22-25, 2011, pages 305–314. IEEE Computer Society, 2011. 16.1.2

[BDM+20] Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj
Upadhyay, David P. Woodruff, and Samson Zhou. Near optimal linear algebra
in the online and sliding window models. In 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November
16-19, 2020, pages 517–528. IEEE, 2020. 1.3.3, 1.3.4, 6.6, 6.6.3, 14.1, 14.1, 14.1.2,
14.1.2, 14.6.1, 14.6.2

[BDN15] Jean Bourgain, Sjoerd Dirksen, and Jelani Nelson. Toward a unified theory of sparse
dimensionality reduction in euclidean space. In Rocco A. Servedio and Ronitt
Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages
499–508. ACM, 2015. 1.2.2

[Ber63] Claude Berge. Topological spaces: Including a treatment of multi-valued functions,
vector spaces and convexity. Oliver & Boyd, 1963. 16.2.5

[BFL16] Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for offline
and streaming coreset constructions. CoRR, abs/1612.00889, 2016. 1.3.1, 1.3.1

[BJKS04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information
statistics approach to data stream and communication complexity. J. Comput. Syst.
Sci., 68(4):702–732, 2004. 3

[BJM+11] Francis Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, et al. Convex
optimization with sparsity-inducing norms. Optimization for Machine Learning,
5:19–53, 2011. 8

[BK15] András A. Benczúr and David R. Karger. Randomized approximation schemes for
cuts and flows in capacitated graphs. SIAM J. Comput., 44(2):290–319, 2015. 1.3.2

[BKLZ20] Aditya Bhaskara, Amin Karbasi, Silvio Lattanzi, and Morteza Zadimoghaddam.
Online MAP inference of determinantal point processes. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. 11.4.4, 2

[BLM89] J. Bourgain, J. Lindenstrauss, and V. Milman. Approximation of zonoids by
zonotopes. Acta Math., 162(1-2):73–141, 1989. 1.5.1, 1.5.1, 4.2.5, 6.1.3, 6.1.4,
6.1.3, 6.1.3, 6.4.2, 6.4.5, 7.1, 8.1.3, 10.2, 12.1, 12.5.2, 14.3.2

[BLVZ19] Aditya Bhaskara, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghad-
dam. Residual based sampling for online low rank approximation. In David
Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages
1596–1614. IEEE Computer Society, 2019. 14.1, 14.1.2

[BMD09] Christos Boutsidis, Michael W. Mahoney, and Petros Drineas. An improved ap-
proximation algorithm for the column subset selection problem. In Claire Mathieu,

286

editor, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 968–977.
SIAM, 2009. 16.1.2

[BMN01] Aharon Ben-Tal, Tamar Margalit, and Arkadi Nemirovski. The ordered subsets
mirror descent optimization method with applications to tomography. SIAM J.
Optim., 12(1):79–108, 2001. 12.3.3

[BMV23] Aditya Bhaskara, Sepideh Mahabadi, and Ali Vakilian. Tight bounds for volumetric
spanners and applications. CoRR, abs/2310.00175, 2023. 3.2

[BO10] Vladimir Braverman and Rafail Ostrovsky. Zero-one frequency laws. In Leonard J.
Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Comput-
ing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 281–290.
ACM, 2010. 10

[BPC+11] Stephen P. Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction method
of multipliers. Found. Trends Mach. Learn., 3(1):1–122, 2011. 8

[BRT09] Peter J. Bickel, Ya’acov Ritov, and Alexandre B. Tsybakov. Simultaneous analysis
of lasso and Dantzig selector. Ann. Statist., 37(4):1705–1732, 2009. 1.4.1, 16.1.1

[BRW21] Aditya Bhaskara, Aravinda Kanchana Ruwanpathirana, and Maheshakya Wijewar-
dena. Additive error guarantees for weighted low rank approximation. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages 874–883. PMLR, 2021. 19

[BSS12] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan
sparsifiers. SIAM J. Comput., 41(6):1704–1721, 2012. 15.1, 15.1, 17.3.1

[BSST13] Joshua D. Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua Teng.
Spectral sparsification of graphs: theory and algorithms. Commun. ACM, 56(8):87–
94, 2013. 1.3.2

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge Univer-
sity Press, 2004. 16.2.1, 16.3.1

[BW17] Christos Boutsidis and David P. Woodruff. Optimal CUR matrix decompositions.
SIAM J. Comput., 46(2):543–589, 2017. 16.1.2, 17

[BWZ16] Christos Boutsidis, David P. Woodruff, and Peilin Zhong. Optimal principal com-
ponent analysis in distributed and streaming models. In Daniel Wichs and Yishay
Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages
236–249. ACM, 2016. 1.2.1, 1.4.2

[Can08] Emmanuel J. Candès. The restricted isometry property and its implications for
compressed sensing. C. R. Math. Acad. Sci. Paris, 346(9-10):589–592, 2008. 1.4.1,
16.1.1

[CCKW22] Nadiia Chepurko, Kenneth L. Clarkson, Praneeth Kacham, and David P. Woodruff.

287

Near-optimal algorithms for linear algebra in the current matrix multiplication
time. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022
ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference
/ Alexandria, VA, USA, January 9 - 12, 2022, pages 3043–3068. SIAM, 2022. 1,
1.2.2

[CCLY19] Michael B. Cohen, Ben Cousins, Yin Tat Lee, and Xin Yang. A near-optimal
algorithm for approximating the John ellipsoid. In Alina Beygelzimer and Daniel
Hsu, editors, Conference on Learning Theory, COLT 2019, 25-28 June 2019,
Phoenix, AZ, USA, volume 99 of Proceedings of Machine Learning Research,
pages 849–873. PMLR, 2019. 1.1.1, 6.1.3

[CD21] Xue Chen and Michal Derezinski. Query complexity of least absolute deviation
regression via robust uniform convergence. In Mikhail Belkin and Samory Kpotufe,
editors, Conference on Learning Theory, COLT 2021, 15-19 August 2021, Boulder,
Colorado, USA, volume 134 of Proceedings of Machine Learning Research, pages
1144–1179. PMLR, 2021. 7.1, 12.1, 12.6, 12.6.1, 12.6.1, 12.6.1, 12.6.1, 13.1.5

[CDDR23] Shabarish Chenakkod, Michal Derezinski, Xiaoyu Dong, and Mark Rudelson. Opti-
mal embedding dimension for sparse subspace embeddings. CoRR, abs/2311.10680,
2023. 1.1.1, 1, 1.2.2

[CDM+16] Kenneth L. Clarkson, Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney,
Xiangrui Meng, and David P. Woodruff. The fast Cauchy transform and faster
robust linear regression. SIAM J. Comput., 45(3):763–810, 2016. 3

[CDS98] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic de-
composition by basis pursuit. SIAM J. Sci. Comput., 20(1):33–61, 1998. 1.4.1,
16.1.1

[CEM+15] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. Dimensionality reduction for k-means clustering and low rank approximation.
In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 163–172. ACM, 2015. 1.1.1, 14.1, 14.1, 4, 4,
16.1.2

[CGK+17] Flavio Chierichetti, Sreenivas Gollapudi, Ravi Kumar, Silvio Lattanzi, Rina Pan-
igrahy, and David P. Woodruff. Algorithms for ℓ𝑝 low-rank approximation. In
Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learning Research, pages 806–814.
PMLR, 2017. 1.4.2, 5, 16.1.2, 17.1, 17.3

[Cha86] Tony F Chan. Alternative to the SVD: rank revealing QR-factorizations. In Ad-
vanced Algorithms and Architectures for Signal Processing I, volume 696, pages
31–38. SPIE, 1986. 1.4.2, 19

[Cha02] Timothy M. Chan. Approximating the diameter, width, smallest enclosing cylinder,
and minimum-width annulus. Int. J. Comput. Geom. Appl., 12(1-2):67–85, 2002.

288

11.4.5

[Cha06] Timothy M. Chan. Faster core-set constructions and data-stream algorithms in fixed
dimensions. Comput. Geom., 35(1-2):20–35, 2006. 11.4, 11.4.2, 11.4.4, 11.4.5

[Cha16] Timothy M. Chan. Dynamic streaming algorithms for epsilon-kernels. In Sándor P.
Fekete and Anna Lubiw, editors, 32nd International Symposium on Computational
Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA, volume 51 of LIPIcs,
pages 27:1–27:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. 11.4.2

[Chi22] Lénaı̈c Chizat. Convergence rates of gradient methods for convex optimization in
the space of measures. Open J. Math. Optim., 3:Art. No. 8, 19, 2022. 16.1.2

[Çiv14] Ali Çivril. Column subset selection problem is UG-hard. J. Comput. Syst. Sci.,
80(4):849–859, 2014. 16.1.2

[CKL22] Yu Chen, Sanjeev Khanna, and Huan Li. On weighted graph sparsification by linear
sketching. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 474–485.
IEEE, 2022. 1.1.1

[Cla05] Kenneth L. Clarkson. Subgradient and sampling algorithms for ℓ1 regression. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’05, pages 257–266, USA, 2005. Society for Industrial and Applied
Mathematics. 3.1, 6.1.2, 6.1.3, 6.1.2

[CLM+15] Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard
Peng, and Aaron Sidford. Uniform sampling for matrix approximation. In Tim
Roughgarden, editor, Proceedings of the 2015 Conference on Innovations in Theo-
retical Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages
181–190. ACM, 2015. 1.3.2, 6.1.1, 6.6.3, 8, 4

[CLS22] Cheng Chen, Yi Li, and Yiming Sun. Online active regression. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan
Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pages 3320–3335. PMLR, 2022. 6.6, 12.1

[ÇM09] Ali Çivril and Malik Magdon-Ismail. On selecting a maximum volume sub-matrix
of a matrix and related problems. Theor. Comput. Sci., 410(47-49):4801–4811,
2009. 19

[ÇM12] Ali Çivril and Malik Magdon-Ismail. Column subset selection via sparse approxi-
mation of SVD. Theor. Comput. Sci., 421:1–14, 2012. 16.1.2

[CMM17] Michael B. Cohen, Cameron Musco, and Christopher Musco. Input sparsity time
low-rank approximation via ridge leverage score sampling. In Philip N. Klein, editor,
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages
1758–1777. SIAM, 2017. 14.1, 14.1, 4, 14.1.5, 4, 14.1.1, 14.1.2, 14.3.5, 16.1.2, 17

[CMP16] Michael B. Cohen, Cameron Musco, and Jakub Pachocki. Online row sampling. In

289

Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans, editors, Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, volume 60
of LIPIcs, pages 7:1–7:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. 1.3.3, 1.3.3, 1.3.3, 1.3.8, 6.1.3, 6.6

[CMP20] Michael B. Cohen, Cameron Musco, and Jakub Pachocki. Online row sampling.
Theory Comput., 16:1–25, 2020. 1.3.3, 1.3.3, 1.3.4, 1.3.3, 1.3.8, 6.1.3, 6.6, 6.6.3,
11.1

[CNW16] Michael B. Cohen, Jelani Nelson, and David P. Woodruff. Optimal approximate
matrix product in terms of stable rank. In Ioannis Chatzigiannakis, Michael Mitzen-
macher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Col-
loquium on Automata, Languages, and Programming, ICALP 2016, July 11-15,
2016, Rome, Italy, volume 55 of LIPIcs, pages 11:1–11:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. 1.1.1, 13.1.1

[Coh16] Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities.
In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016, pages 278–287. SIAM, 2016. 1.2.2, 14.3.2

[CP15] Michael B. Cohen and Richard Peng. Lp row sampling by lewis weights. In
Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR,
USA, June 14-17, 2015, pages 183–192. ACM, 2015. 1.5.1, 6.1.3, 6.1.3, 6.1.6, 6.1.3,
6.1.3, 6.1.8, 6.1.3, 6.1.9, 6.3.1, 6.3.2, 6.3.3, 9.1, 9.1, 10.2, 12.4, 4, 14.3.2

[CP19] Xue Chen and Eric Price. Active regression via linear-sample sparsification. In
Alina Beygelzimer and Daniel Hsu, editors, Conference on Learning Theory, COLT
2019, 25-28 June 2019, Phoenix, AZ, USA, volume 99 of Proceedings of Machine
Learning Research, pages 663–695. PMLR, 2019. 1.3.4, 12.1

[CPR16] Siu On Chan, Dimitris Papailliopoulos, and Aviad Rubinstein. On the approximabil-
ity of sparse PCA. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors,
Proceedings of the 29th Conference on Learning Theory, COLT 2016, New York,
USA, June 23-26, 2016, volume 49 of JMLR Workshop and Conference Proceedings,
pages 623–646. JMLR.org, 2016. 18.0.4

[CRT06] Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. Stable signal recov-
ery from incomplete and inaccurate measurements. Comm. Pure Appl. Math.,
59(8):1207–1223, 2006. 1.4.1, 16.1.1

[CSS21] Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. Improved core-
sets and sublinear algorithms for power means in euclidean spaces. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS 2021, De-
cember 6-14, 2021, virtual, pages 21085–21098, Virtual, 2021. 1.3.4, 12.6, 13.1.5,

290

13.1.5

[CSWZ23] Yeshwanth Cherapanamjeri, Sandeep Silwal, David P. Woodruff, and Samson Zhou.
Optimal algorithms for linear algebra in the current matrix multiplication time. In
Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January
22-25, 2023, pages 4026–4049. SIAM, 2023. 1.1.1, 1, 1.2.2, 14.1

[CT07] Emmanuel Candès and Terence Tao. Rejoinder: “The Dantzig selector: statistical
estimation when 𝑝 is much larger than 𝑛” [Ann. Statist. 35 (2007), no. 6, 2313–2351;
mr2382644]. Ann. Statist., 35(6):2392–2404, 2007. 1.4.1, 16.1.1

[CW09] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the
streaming model. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May
31 - June 2, 2009, pages 205–214. ACM, 2009. 1.2.1

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regres-
sion in input sparsity time. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013, pages 81–90. ACM, 2013. 1.1.1, 1, 1.2.2, 1.3.2, 4.1, 4.1.1,
6.1.1, 8, 13.1.1, 4, 17

[CW15a] Kenneth L. Clarkson and David P. Woodruff. Input sparsity and hardness for robust
subspace approximation. In Venkatesan Guruswami, editor, IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 310–329. IEEE Computer Society, 2015. 1.1.1, 4.1, 8,
10, 10.1, 10.1.2, 10.2, 10.2, 10.2.1, 13.1.6, 14.1, 14.1, 14.1, 17.1, 17.1

[CW15b] Kenneth L. Clarkson and David P. Woodruff. Sketching for M-estimators: A unified
approach to robust regression. In Piotr Indyk, editor, Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, January 4-6, 2015, pages 921–939. SIAM, 2015. 1.2.1, 10.2, 17.1,
17.2, 17.3.1

[CW22] Moses Charikar and Erik Waingarten. The Johnson-Lindenstrauss lemma for
clustering and subspace approximation: From coresets to dimension reduction.
CoRR, abs/2205.00371, 2022. 14.1

[CWW19] Kenneth L. Clarkson, Ruosong Wang, and David P. Woodruff. Dimensionality
reduction for Tukey regression. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceed-
ings of Machine Learning Research, pages 1262–1271. PMLR, 2019. 10, 10.2,
10.2.1

[CWZ23] Vincent Cohen-Addad, David P. Woodruff, and Samson Zhou. Streaming euclidean
k-median and k-means with o(log n) space. CoRR, abs/2310.02882, 2023. 1.3.3,
14.1, 14.1.2, 14.6.2

[DDH+09] Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W.

291

Mahoney. Sampling algorithms and coresets for ℓ𝑝 regression. SIAM J. Comput.,
38(5):2060–2078, 2009. 3.1, 3.1.1, 6.1.2, 6.1.3, 6.1.2, 10.2, 12.2

[DDWY23] Gregory Dexter, Petros Drineas, David P. Woodruff, and Taisuke Yasuda. Sketching
algorithms for sparse dictionary learning: PTAS and turnstile streaming. CoRR,
abs/2310.19068, 2023. 1.1.1

[DG03] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson
and lindenstrauss. Random Struct. Algorithms, 22(1):60–65, 2003. 3

[DGL17] Diemert Eustache, Meynet Julien, Pierre Galland, and Damien Lefortier. Attribution
modeling increases efficiency of bidding in display advertising. In Proceedings of
the AdKDD and TargetAd Workshop, KDD, Halifax, NS, Canada, August, 14, 2017.
ACM, 2017. 16.6.2

[DHJ+18] Chen Dan, Kristoffer Arnsfelt Hansen, He Jiang, Liwei Wang, and Yuchen Zhou.
Low rank approximation of binary matrices: Column subset selection and general-
izations. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd Inter-
national Symposium on Mathematical Foundations of Computer Science, MFCS
2018, August 27-31, 2018, Liverpool, UK, volume 117 of LIPIcs, pages 41:1–41:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. 17

[DK11] Abhimanyu Das and David Kempe. Submodular meets spectral: Greedy algorithms
for subset selection, sparse approximation and dictionary selection. In Proceedings
of the 28th International Conference on Machine Learning, pages 1057–1064, 2011.
1.4.1, 8, 16.1.5

[DKM06a] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast monte carlo al-
gorithms for matrices I: approximating matrix multiplication. SIAM J. Comput.,
36(1):132–157, 2006. 1.3.2, 17

[DKM06b] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast monte carlo algo-
rithms for matrices II: computing a low-rank approximation to a matrix. SIAM J.
Comput., 36(1):158–183, 2006. 1.3.2, 1.4.2, 17

[DKM06c] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast monte carlo algo-
rithms for matrices III: computing a compressed approximate matrix decomposition.
SIAM J. Comput., 36(1):184–206, 2006. 17

[DMM06a] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Sampling algorithms
for ℓ2 regression and applications. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA,
January 22-26, 2006, pages 1127–1136. ACM Press, 2006. 1.1.2, 1.3.2, 1.3.3, 6.1.3,
12.1, 4

[DMM06b] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling
and relative-error matrix approximation: Column-row-based methods. In Yossi
Azar and Thomas Erlebach, editors, Algorithms - ESA 2006, 14th Annual European
Symposium, Zurich, Switzerland, September 11-13, 2006, Proceedings, volume
4168 of Lecture Notes in Computer Science, pages 304–314. Springer, 2006. 1.3.2,
1.4.2, 14.1, 4, 17

292

[DMM08] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Relative-error CUR
matrix decompositions. SIAM J. Matrix Anal. Appl., 30(2):844–881, 2008. 1.3.2,
1.4.2, 14.1, 4, 16.1.2

[DMMW12] Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff.
Fast approximation of matrix coherence and statistical leverage. J. Mach. Learn.
Res., 13:3475–3506, 2012. 1.1.1, 1, 1.3.2, 6.1.1, 8, 4

[DP22] Amit Deshpande and Rameshwar Pratap. One-pass additive-error subset selection
for ℓ𝑝 subspace approximation. In Mikolaj Bojanczyk, Emanuela Merelli, and
David P. Woodruff, editors, 49th International Colloquium on Automata, Languages,
and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of
LIPIcs, pages 51:1–51:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. 14.1

[DR10] Amit Deshpande and Luis Rademacher. Efficient volume sampling for row/column
subset selection. In 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 329–
338. IEEE Computer Society, 2010. 16.1.2

[DRVW06] Amit Deshpande, Luis Rademacher, Santosh S. Vempala, and Grant Wang. Matrix
approximation and projective clustering via volume sampling. In Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006,
Miami, Florida, USA, January 22-26, 2006, pages 1117–1126. ACM Press, 2006.
14.1

[DS89] David L. Donoho and Philip B. Stark. Uncertainty principles and signal recovery.
SIAM J. Appl. Math., 49(3):906–931, 1989. 1.4.1, 16.1.1

[DTV11] Amit Deshpande, Madhur Tulsiani, and Nisheeth K. Vishnoi. Algorithms and
hardness for subspace approximation. In Dana Randall, editor, Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011,
San Francisco, California, USA, Janu-ary 23-25, 2011, pages 482–496. SIAM,
2011. 14.1, 14.1.1, 14.3.2

[Dud67] R. M. Dudley. The sizes of compact subsets of Hilbert space and continuity of
Gaussian processes. J. Functional Analysis, 1:290–330, 1967. 2.3.3

[DV06] Amit Deshpande and Santosh S. Vempala. Adaptive sampling and fast low-rank ma-
trix approximation. In Josep Dı́az, Klaus Jansen, José D. P. Rolim, and Uri Zwick,
editors, Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, 9th International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems, APPROX 2006 and 10th International
Workshop on Randomization and Computation, RANDOM 2006, Barcelona, Spain,
August 28-30 2006, Proceedings, volume 4110 of Lecture Notes in Computer
Science, pages 292–303. Springer, 2006. 1.4.2, 13.1.6, 13.6.3, 16.1.2, 17, 19

[DV07] Amit Deshpande and Kasturi R. Varadarajan. Sampling-based dimension reduction
for subspace approximation. In David S. Johnson and Uriel Feige, editors, Pro-
ceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego,

293

California, USA, June 11-13, 2007, pages 641–650. ACM, 2007. 13.1.6, 14.1, 14.1,
14.1, 15.2

[Dvo61] Aryeh Dvoretzky. Some results on convex bodies and Banach spaces. In Proc.
Internat. Sympos. Linear Spaces (Jerusalem, 1960), pages 123–160. Jerusalem
Academic Press, Jerusalem; Pergamon, Oxford, 1961. 13.1.5, 4, 14.1.1, 14.3.1

[DWZ+19] Chen Dan, Hong Wang, Hongyang Zhang, Yuchen Zhou, and Pradeep Ravikumar.
Optimal analysis of subset-selection based l p low-rank approximation. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett, editors, Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 2537–2548,
2019. 1.4.2, 5, 16.1.2, 17.1, 17.3

[DWZ23] Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via
asymmetric hashing. In 64th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 2129–2138.
IEEE, 2023. 1

[EHJT04] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle
regression. Ann. Statist., 32(2):407–499, 2004. With discussion, and a rejoinder by
the authors. 16.1.3

[EKDN18] Ethan R Elenberg, Rajiv Khanna, Alexandros G Dimakis, and Sahand Negahban.
Restricted strong convexity implies weak submodularity. The Annals of Statistics,
46(6B):3539–3568, 2018. 1.4.1, 16.1, 16.1.2, 16.1.4, 16.1.5, 16.4

[EY36] Carl Eckart and Gale Young. The approximation of one matrix by another of lower
rank. Psychometrika, 1(3):211–218, 1936. 18

[FC19] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
19

[FEGK15] Ahmed K. Farahat, Ahmed Elgohary, Ali Ghodsi, and Mohamed S. Kamel. Greedy
column subset selection for large-scale data sets. Knowl. Inf. Syst., 45(1):1–34,
2015. 16.1.2

[Fel20] Dan Feldman. Core-sets: An updated survey. WIREs Data Mining Knowl. Discov.,
10(1), 2020. 1.3.1

[FGK11] Ahmed K. Farahat, Ali Ghodsi, and Mohamed S. Kamel. An efficient greedy
method for unsupervised feature selection. In Diane J. Cook, Jian Pei, Wei Wang,
Osmar R. Zaı̈ane, and Xindong Wu, editors, 11th IEEE International Conference on
Data Mining, ICDM 2011, Vancouver, BC, Canada, December 11-14, 2011, pages
161–170. IEEE Computer Society, 2011. 16.1.2

[FGK13] Ahmed K. Farahat, Ali Ghodsi, and Mohamed S. Kamel. Efficient greedy feature
selection for unsupervised learning. Knowl. Inf. Syst., 35(2):285–310, 2013. 16.1.2

294

[FGM17] Robert M. Freund, Paul Grigas, and Rahul Mazumder. A new perspective on
boosting in linear regression via subgradient optimization and relatives. Ann.
Statist., 45(6):2328–2364, 2017. 16.1.3

[FHT10] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for
generalized linear models via coordinate descent. Journal of statistical software,
33(1):1, 2010. 8

[FKT15] Dean P. Foster, Howard J. Karloff, and Justin Thaler. Variable selection is hard. In
Peter Grünwald, Elad Hazan, and Satyen Kale, editors, Proceedings of The 28th Con-
ference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015, volume 40
of JMLR Workshop and Conference Proceedings, pages 696–709. JMLR.org, 2015.
1.4.1, 7, 16.1.1

[FKV04] Alan M. Frieze, Ravi Kannan, and Santosh S. Vempala. Fast monte-carlo algorithms
for finding low-rank approximations. J. ACM, 51(6):1025–1041, 2004. 1.4.2, 17

[FKW21] Zhili Feng, Praneeth Kacham, and David P. Woodruff. Dimensionality reduction for
the sum-of-distances metric. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research,
pages 3220–3229. PMLR, 2021. 13.1.6, 14.1, 14.1, 4, 4, 4, 14.1.1, 14.3.2

[FL11] Dan Feldman and Michael Langberg. A unified framework for approximating and
clustering data. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the
43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA,
6-8 June 2011, pages 569–578. ACM, 2011. 1.3.1, 1.3.1, 1.3.1, 6.1.1, 13.1.6, 14.1,
14.1, 14.1, 4, 4

[FLM77] T. Figiel, J. Lindenstrauss, and V. D. Milman. The dimension of almost spherical
sections of convex bodies. Acta Math., 139(1-2):53–94, 1977. 4, 14.1.1, 14.3.1

[FLPS22] Maryam Fazel, Yin Tat Lee, Swati Padmanabhan, and Aaron Sidford. Computing
lewis weights to high precision. In Joseph (Seffi) Naor and Niv Buchbinder, editors,
Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA
2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages
2723–2742. SIAM, 2022. 6.1.3

[FMSW10] Dan Feldman, Morteza Monemizadeh, Christian Sohler, and David P. Woodruff.
Coresets and sketches for high dimensional subspace approximation problems.
In Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19,
2010, pages 630–649. SIAM, 2010. 1.1.1, 14.1

[Fre75] David A. Freedman. On tail probabilities for martingales. Ann. Probability, 3:100–
118, 1975. 4.3.2

[FSS20] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny
data: Constant-size coresets for k-means, pca, and projective clustering. SIAM J.
Comput., 49(3):601–657, 2020. 1.3.1, 1.3.1, 14.1

295

[GE96] Ming Gu and Stanley C. Eisenstat. Efficient algorithms for computing a strong
rank-revealing QR factorization. SIAM J. Sci. Comput., 17(4):848–869, 1996. 1.4.2

[GGH19] Ning Gui, Danni Ge, and Ziyin Hu. AFS: An attention-based mechanism for
supervised feature selection. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 3705–3713, 2019. 16.6.1, 16.6.3

[GK10] Eugene Gover and Nishan Krikorian. Determinants and the volumes of parallelo-
topes and zonotopes. Linear Algebra Appl., 433(1):28–40, 2010. 11.1, 11.1.5

[GMS23] Siddharth Gollapudi, Sepideh Mahabadi, and Varun Sivashankar. Composable
coresets for determinant maximization: Greedy is almost optimal. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine,
editors, Advances in Neural Information Processing Systems 36: Annual Conference
on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023. 19

[GPV21] Mehrdad Ghadiri, Richard Peng, and Santosh S Vempala. Faster p-norm regression
using sparsity. arXiv preprint arXiv:2109.11537, 2021. 8

[GRSW12] Venkatesan Guruswami, Prasad Raghavendra, Rishi Saket, and Yi Wu. Bypassing
UGC from some optimal geometric inapproximability results. In Yuval Rabani,
editor, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 699–717. SIAM,
2012. 14.1

[Gu15] Ming Gu. Subspace iteration randomization and singular value problems. SIAM J.
Sci. Comput., 37(3), 2015. 18.2.1, 18.2.1

[GV18] Nicolas Gillis and Stephen A. Vavasis. On the complexity of robust PCA and
ℓ1-norm low-rank matrix approximation. Math. Oper. Res., 43(4):1072–1084, 2018.
17

[GV21] Aparna Gupte and Vinod Vaikuntanathan. The fine-grained hardness of sparse
linear regression. CoRR, abs/2106.03131, 2021. 1.4.1, 7, 16.1.1

[GVL13] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore,
MD, fourth edition, 2013. 1.1, 1.4.2

[GVR10] Laurent El Ghaoui, Vivian Viallon, and Tarek Rabbani. Safe feature elimination for
the lasso and sparse supervised learning problems. arXiv preprint arXiv:1009.4219,
2010. 16.1.2

[GZ84] Evarist Giné and Joel Zinn. Some limit theorems for empirical processes. Ann.
Probab., 12(4):929–998, 1984. With discussion. 2.3.1

[HBCY21] Taylor M. Hernandez, Roel Van Beeumen, Mark A. Caprio, and Chao Yang. A
greedy algorithm for computing eigenvalues of a symmetric matrix with localized
eigenvectors. Numer. Linear Algebra Appl., 28(2), 2021. 18

[HK16] Elad Hazan and Zohar S. Karnin. Volumetric spanners: An efficient exploration
basis for learning. J. Mach. Learn. Res., 17:119:1–119:34, 2016. 3.2, 3.2.2

296

[HMR23] Hussein Hazimeh, Rahul Mazumder, and Peter Radchenko. Grouped variable
selection with discrete optimization: computational and statistical perspectives.
Ann. Statist., 51(1):1–32, 2023. 8

[Hof17] Peter D Hoff. Lasso, fractional norm and structured sparse estimation using a
Hadamard product parametrization. Computational Statistics & Data Analysis,
115:186–198, 2017. 16.1.2, 16.5

[HRR22] Laurel Heck, Victor Reis, and Thomas Rothvoss. The vector balancing constant for
zonotopes. CoRR, abs/2210.16460, 2022. 6

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition. Springer
Series in Statistics. Springer, 2009. 8

[HTW15] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with
sparsity: the lasso and generalizations. CRC press, 2015. 7

[HV20] Lingxiao Huang and Nisheeth K. Vishnoi. Coresets for clustering in euclidean
spaces: importance sampling is nearly optimal. In Konstantin Makarychev, Yury
Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proc-
cedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1416–1429. ACM, 2020.
13.1.6, 13.5, 14.1, 14.1, 14.1, 4, 4, 4, 14.1.2, 15.2, 15.2

[HW20] Daniel Hug and Wolfgang Weil. Lectures on convex geometry, volume 286 of
Graduate Texts in Mathematics. Springer, Cham, [2020] ©2020. 11.4.2, 11.4.4

[IMGR19] Piotr Indyk, Sepideh Mahabadi, Shayan Oveis Gharan, and Alireza Rezaei. Com-
posable core-sets for determinant maximization: A simple near-optimal algorithm.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 4254–4263. PMLR, 2019. 11.4.4, 11.4.4, 3, 19

[IMGR20] Piotr Indyk, Sepideh Mahabadi, Shayan Oveis Gharan, and Alireza Rezaei. Com-
posable core-sets for determinant maximization problems via spectral spanners.
In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
pages 1675–1694. SIAM, 2020. 11.4.1, 11.4.4, 19

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. J. ACM, 53(3):307–323, 2006. 3, 3.0.1

[IW05] Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency mo-
ments of data streams. In Harold N. Gabow and Ronald Fagin, editors, Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA,
May 22-24, 2005, pages 202–208. ACM, 2005. 3, 4.1

[JL84] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings
into a Hilbert space. In Conference in modern analysis and probability (New Haven,

297

Conn., 1982), volume 26 of Contemp. Math., pages 189–206. Amer. Math. Soc.,
Providence, RI, 1984. 1.2.2

[JLL+21] Shuli Jiang, Dennis Li, Irene Mengze Li, Arvind V. Mahankali, and David P.
Woodruff. Streaming and distributed algorithms for robust column subset selection.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 4971–4981.
PMLR, 2021. 1.4.2, 5, 16.1.2

[JLLS23] Arun Jambulapati, James R. Lee, Yang P. Liu, and Aaron Sidford. Sparsifying
generalized linear models. CoRR, abs/2311.18145, 2023. 10.2

[JLS22] Arun Jambulapati, Yang P. Liu, and Aaron Sidford. Improved iteration complexities
for overconstrained p-norm regression. In Stefano Leonardi and Anupam Gupta,
editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing,
Rome, Italy, June 20 - 24, 2022, pages 529–542. ACM, 2022. 6.1.3, 6.1.7, 6.1.3,
6.1.8, 9.2

[Joh48] Fritz John. Extremum problems with inequalities as subsidiary conditions. In
Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948,
pages 187–204. Interscience Publishers, Inc., New York, N. Y., 1948. 1.5.2, 11

[JTD11] Prateek Jain, Ambuj Tewari, and Inderjit S. Dhillon. Orthogonal matching pursuit
with replacement. In John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett,
Fernando C. N. Pereira, and Kilian Q. Weinberger, editors, Advances in Neural
Information Processing Systems 24: 25th Annual Conference on Neural Information
Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011,
Granada, Spain, pages 1215–1223, 2011. 16.1.2, 16.1.4

[JTK14] Prateek Jain, Ambuj Tewari, and Purushottam Kar. On iterative hard thresholding
methods for high-dimensional m-estimation. Advances in neural information
processing systems, 27, 2014. 16.1.4

[KKB07] Kwangmoo Koh, Seung-Jean Kim, and Stephen P. Boyd. An interior-point method
for large-scale ℓ1-regularized logistic regression. J. Mach. Learn. Res., 8:1519–1555,
2007. 8

[KKMR21] Jonathan A. Kelner, Frederic Koehler, Raghu Meka, and Dhruv Rohatgi. On
the power of preconditioning in sparse linear regression. In 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 550–561. IEEE, 2021. 16.1.1

[KKMR22] Jonathan A. Kelner, Frederic Koehler, Raghu Meka, and Dhruv Rohatgi. Distri-
butional hardness against preconditioned lasso via erasure-robust designs. CoRR,
abs/2203.02824, 2022. 16.1.1

[KKMR23] Jonathan A. Kelner, Frederic Koehler, Raghu Meka, and Dhruv Rohatgi. Feature
adaptation for sparse linear regression. CoRR, abs/2305.16892, 2023. 16.1.1

[KMN11] Daniel M. Kane, Raghu Meka, and Jelani Nelson. Almost optimal explicit johnson-

298

lindenstrauss families. In Leslie Ann Goldberg, Klaus Jansen, R. Ravi, and José D. P.
Rolim, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques - 14th International Workshop, APPROX 2011, and 15th
International Workshop, RANDOM 2011, Princeton, NJ, USA, August 17-19, 2011.
Proceedings, volume 6845 of Lecture Notes in Computer Science, pages 628–639.
Springer, 2011. 3

[KNR99] Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communica-
tion complexity. Comput. Complex., 8(1):21–49, 1999. 2.2.1

[KNS16] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient
and proximal-gradient methods under the polyak-łojasiewicz condition. In Paolo
Frasconi, Niels Landwehr, Giuseppe Manco, and Jilles Vreeken, editors, Machine
Learning and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part I,
volume 9851 of Lecture Notes in Computer Science, pages 795–811. Springer, 2016.
16.1.5

[KW22] Praneeth Kacham and David P. Woodruff. Sketching algorithms and lower bounds
for ridge regression. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato, editors, International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learning Research, pages 10539–10556.
PMLR, 2022. 1.2.1

[KY05] Piyush Kumar and E Alper Yildirim. Minimum-volume enclosing ellipsoids and
core sets. Journal of Optimization Theory and applications, 126(1):1–21, 2005. 3.2

[LC14] Shan Luo and Zehua Chen. Sequential lasso cum EBIC for feature selection
with ultra-high dimensional feature space. Journal of the American Statistical
Association, 109(507):1229–1240, 2014. 16.1.1

[Lee16] Yin Tat Lee. Faster algorithms for convex and combinatorial optimization. PhD
thesis, Massachusetts Institute of Technology, 2016. 6.1.3

[Lew78] D. R. Lewis. Finite dimensional subspaces of 𝐿𝑝. Studia Mathematica, 63(2):207–
212, 1978. 1.5.2, 6.1.3, 6.1.4, 6.1.3, 6.1.6, 10.3

[LKD+17] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Prun-
ing filters for efficient convnets. In 5th International Conference on Learning
Representations (ICLR), 2017. 16.1

[LL16] Vadim Lebedev and Victor Lempitsky. Fast convnets using group-wise brain
damage. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2554–2564, 2016. 16.1

[LLAN06] Su-In Lee, Honglak Lee, Pieter Abbeel, and Andrew Y. Ng. Efficient L1 regular-
ized logistic regression. In Proceedings, The Twenty-First National Conference
on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial
Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, USA, pages
401–408. AAAI Press, 2006. 8

299

[LLW23] Yi Li, Honghao Lin, and David P. Woodruff. The ℓ𝑝-subspace sketch problem in
small dimensions with applications to support vector machines. In Nikhil Bansal
and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages
850–877. SIAM, 2023. 6.1.3, 13.1.5

[LLY21] Yiwen Liao, Raphaël Latty, and Bin Yang. Feature selection using batch-wise
attenuation and feature mask normalization. In 2021 International Joint Conference
on Neural Networks (IJCNN), pages 1–9. IEEE, 2021. (document), 16.1.2, 16.6.1,
16.6.1, 16.1, 16.6.3

[LMP13] Mu Li, Gary L. Miller, and Richard Peng. Iterative row sampling. In 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 127–136. IEEE Computer Society, 2013. 1.3.2,
6.1.1, 8

[LRG23] Quoc-Tung Le, Elisa Riccietti, and Rémi Gribonval. Spurious valleys, np-hardness,
and tractability of sparse matrix factorization with fixed support. SIAM J. Matrix
Anal. Appl., 44(2):503–529, 2023. 18.0.4

[LRT21] Ismael Lemhadri, Feng Ruan, and Rob Tibshirani. Lassonet: Neural networks with
feature sparsity. In International Conference on Artificial Intelligence and Statistics,
pages 10–18. PMLR, 2021. 16.6.1, 16.6.3

[LS10] Michael Langberg and Leonard J. Schulman. Universal epsilon-approximators
for integrals. In Moses Charikar, editor, Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA,
January 17-19, 2010, pages 598–607. SIAM, 2010. 1.3.1, 1.3.1, 1.3.1, 6.1.1, 4

[LS15] Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-
linear time. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015, pages 250–269. IEEE Computer Society, 2015. 12.1, 15.1

[LS17] Edo Liberty and Maxim Sviridenko. Greedy minimization of weakly supermodular
set functions. In Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh S.
Vempala, editors, Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017,
Berkeley, CA, USA, volume 81 of LIPIcs, pages 19:1–19:11. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. 1.4.1, 1.4.2, 16.1, 16.1.2, 16.1.2, 16.1.4,
16.4

[LSW18] Roie Levin, Anish Prasad Sevekari, and David P. Woodruff. Robust subspace
approximation in a stream. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 10706–10716, 2018. 14.1

[LSY19] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architec-

300

ture search. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. 16.1.2

[LT80] D. R. Lewis and Nicole Tomczak-Jaegermann. Hilbertian and complemented finite-
dimensional subspaces of Banach lattices and unitary ideals. J. Functional Analysis,
35(2):165–190, 1980. 1.5.1, 1.5.1, 9

[LT91] Michel Ledoux and Michel Talagrand. Probability in Banach spaces. Classics in
Mathematics. Springer-Verlag, Berlin, 1991. 1.5.1, 1.5.1, 6.1.3, 6.1.4, 6.1.3, 6.1.3,
7.1, 8.1.3, 12.1

[LVW09] Aart Lagendijk, Bart Van-Tiggelen, and Diederik S Wiersma. Fifty years of anderson
localization. Phys. Today, 62(8):24–29, 2009. 18

[LWW21] Yi Li, Ruosong Wang, and David P. Woodruff. Tight bounds for the subspace sketch
problem with applications. SIAM J. Comput., 50(4):1287–1335, 2021. 1.5.2, 6.1.3,
6.1.5, 8.0.4, 9, 9, 11.3, 13.1.3, 14.1, 14.1.1, 15.1, 15.2

[LWY21] Yi Li, David P. Woodruff, and Taisuke Yasuda. Exponentially improved dimension-
ality reduction for ℓ1: Subspace embeddings and independence testing. In Mikhail
Belkin and Samory Kpotufe, editors, Conference on Learning Theory, COLT 2021,
15-19 August 2021, Boulder, Colorado, USA, volume 134 of Proceedings of Ma-
chine Learning Research, pages 3111–3195. PMLR, 2021. (document), 1.2.1, 1.2.3,
4, 4, 4.0.2, 5, 13.1.5

[Mag10] Malik Magdon-Ismail. Row sampling for matrix algorithms via a non-commutative
bernstein bound. CoRR, abs/1008.0587, 2010. 1.3.2, 1.3.3, 1.3.2, 6.1.3

[Mag17] Malik Magdon-Ismail. Np-hardness and inapproximability of sparse PCA. Inf.
Process. Lett., 126:35–38, 2017. 18.0.4

[Mah11] Michael W. Mahoney. Randomized algorithms for matrices and data. Found. Trends
Mach. Learn., 3(2):123–224, 2011. 1.1

[MBLS18] Gonzalo E. Mena, David Belanger, Scott W. Linderman, and Jasper Snoek. Learning
latent permutations with gumbel-sinkhorn networks. In 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. 16.1.2

[Mie09] Pauli Miettinen. Matrix decomposition methods for data mining: Computational
complexity and algorithms. PhD thesis, University of Helsinki, 2009. 17

[Mil71] V. D. Milman. A new proof of A. Dvoretzky’s theorem on cross-sections of convex
bodies. Funkcional. Anal. i Priložen., 5(4):28–37, 1971. 13.1.5, 14.3.1

[Mir60] L. Mirsky. Symmetric gauge functions and unitarily invariant norms. Quart. J.
Math. Oxford Ser. (2), 11:50–59, 1960. 18

[MK21] Kakeru Mitsuno and Takio Kurita. Filter pruning using hierarchical group sparse reg-
ularization for deep convolutional neural networks. In 25th international conference
on pattern recognition (ICPR), pages 1089–1095. IEEE, 2021. 16.1

[MM13] Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in
input-sparsity time and applications to robust linear regression. In Dan Boneh, Tim

301

Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 91–100. ACM,
2013. 1.2.1, 3, 3, 3.1

[MM15] Cameron Musco and Christopher Musco. Randomized block krylov methods for
stronger and faster approximate singular value decomposition. In Corinna Cortes,
Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 1396–1404, 2015. 1.4.3, 17, 18, 18.0.2, 18, 18, 18.1, 18.2.1,
18.2.2, 18.2.3, 18.2.3, 18.2.4, 18.2.9, 18.2.4

[MM20] Cameron Musco and Christopher Musco. Projection-cost-preserving sketches:
Proof strategies and constructions. CoRR, abs/2004.08434, 2020. 14.1

[MMK20] Kakeru Mitsuno, Jun’ichi Miyao, and Takio Kurita. Hierarchical group sparse regu-
larization for deep convolutional neural networks. In International Joint Conference
on Neural Networks IJCNN, pages 1–8. IEEE, 2020. 16.1

[MMM+22] Raphael A. Meyer, Cameron Musco, Christopher Musco, David P. Woodruff, and
Samson Zhou. Fast regression for structured inputs. In The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022. 7.2, 7.2.1, 7.2

[MMMW21] Raphael A. Meyer, Cameron Musco, Christopher Musco, and David P. Woodruff.
Hutch++: Optimal stochastic trace estimation. In Hung Viet Le and Valerie King,
editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference,
January 11-12, 2021, pages 142–155. SIAM, 2021. 1.1.1

[MMO22] Yury Makarychev, Naren Sarayu Manoj, and Max Ovsiankin. Streaming algorithms
for ellipsoidal approximation of convex polytopes. In Po-Ling Loh and Maxim
Raginsky, editors, Conference on Learning Theory, 2-5 July 2022, London, UK,
volume 178 of Proceedings of Machine Learning Research, pages 3070–3093.
PMLR, 2022. 11

[MMO23] Yury Makarychev, Naren Sarayu Manoj, and Max Ovsiankin. Near-optimal stream-
ing ellipsoidal rounding for general convex polytopes. CoRR, abs/2311.09460,
2023. 11

[MMR19] Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Performance
of johnson-lindenstrauss transform for k-means and k-medians clustering. In Moses
Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 1027–1038. ACM, 2019. 1.1.1, 2.1.2

[MMR21] Tung Mai, Cameron Musco, and Anup Rao. Coresets for classification - simplified
and strengthened. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin,
Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Informa-
tion Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 11643–11654,

302

2021. 10

[MMWY22] Cameron Musco, Christopher Musco, David P. Woodruff, and Taisuke Yasuda.
Active linear regression for ℓ𝑝 norms and beyond. In 63rd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 -
November 3, 2022, pages 744–753. IEEE, 2022. (document), 1.3.5, 6.1.3, 10, 10,
10.0.1, 12, 12.1, 12.1.3, 13.1.5, 13.4, 14.1, 14.3.2, 14.3.2, 17.1

[MO23] Naren Sarayu Manoj and Max Ovsiankin. The change-of-measure method, block
lewis weights, and approximating matrix block norms. CoRR, abs/2311.10013,
2023. 7.1

[MOW21] Alexander Munteanu, Simon Omlor, and David P. Woodruff. Oblivious sketching
for logistic regression. In Marina Meila and Tong Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research,
pages 7861–7871. PMLR, 2021. 1.2.1

[MOW23] Alexander Munteanu, Simon Omlor, and David Woodruff. Almost linear constant-
factor sketching for ℓ1 and logistic regression. In The Eleventh International
Conference on Learning Representations, 2023. 1.2.1, 4

[MRWZ20] Sepideh Mahabadi, Ilya P. Razenshteyn, David P. Woodruff, and Samson Zhou.
Non-adaptive adaptive sampling on turnstile streams. In Konstantin Makarychev,
Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors,
Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1251–1264. ACM, 2020.
11.4.1, 11.4.4, 11.4.12, 3, 11.4.14, 3, 14.1

[MSS10] Asish Mukhopadhyay, Animesh Sarker, and Tom Switzer. Approximate ellipsoid
in the streaming model. In Weili Wu and Ovidiu Daescu, editors, Combinato-
rial Optimization and Applications - 4th International Conference, COCOA 2010,
Kailua-Kona, HI, USA, December 18-20, 2010, Proceedings, Part II, volume 6509
of Lecture Notes in Computer Science, pages 401–413. Springer, 2010. 1.3.4, 11

[MSSW18] Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, and David P.
Woodruff. On coresets for logistic regression. In Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pages 6562–6571, 2018. 8, 10

[MT20] Per-Gunnar Martinsson and Joel A. Tropp. Randomized numerical linear algebra:
Foundations and algorithms. Acta Numer., 29:403–572, 2020. 1.1

[MvdGB08] Lukas Meier, Sara van de Geer, and Peter Bühlmann. The group Lasso for logistic
regression. J. R. Stat. Soc. Ser. B Stat. Methodol., 70(1):53–71, 2008. 16.1.1, 8

[MW21] Arvind V. Mahankali and David P. Woodruff. Optimal ℓ1 column subset selection
and a fast PTAS for low rank approximation. In Dániel Marx, editor, Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual

303

Conference, January 10 - 13, 2021, pages 560–578. SIAM, 2021. 1.4.2, 5, 16.1.2,
17, 17.1, 17.1.2, 17.3, 17.3, 17.3.1, 17.4, 17.4.3, 17.4, 17.4, 19, 19

[MWA06] Baback Moghaddam, Yair Weiss, and Shai Avidan. Generalized spectral bounds
for sparse LDA. In William W. Cohen and Andrew W. Moore, editors, Machine
Learning, Proceedings of the Twenty-Third International Conference (ICML 2006),
Pittsburgh, Pennsylvania, USA, June 25-29, 2006, volume 148 of ACM International
Conference Proceeding Series, pages 641–648. ACM, 2006. 18.0.4

[MWZ24] Arvind V. Mahankali, David P. Woodruff, and Ziyu Zhang. Near-linear time and
fixed-parameter tractable algorithms for tensor decompositions. In Venkatesan
Guruswami, editor, 15th Innovations in Theoretical Computer Science Conference,
ITCS 2024, January 30 to February 2, 2024, Berkeley, CA, USA, volume 287 of
LIPIcs, pages 79:1–79:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2024. 1.1.1

[Nat95] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM J. Comput.,
24(2):227–234, 1995. 1.4.1, 7

[NH15] Rahul Nandkishore and David A Huse. Many-body localization and thermalization
in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys., 6(1):15–38,
2015. 18

[NLS16] Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural programmer: Inducing
latent programs with gradient descent. In Yoshua Bengio and Yann LeCun, editors,
4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. 16.1.2

[NN13] Jelani Nelson and Huy L. Nguyen. OSNAP: faster numerical linear algebra al-
gorithms via sparser subspace embeddings. In 54th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA,
USA, pages 117–126. IEEE Computer Society, 2013. 1.2.2, 3.1, 14.3.2

[NN14] Jelani Nelson and Huy L. Nguyên. Lower bounds for oblivious subspace embed-
dings. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias,
editors, Automata, Languages, and Programming - 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume
8572 of Lecture Notes in Computer Science, pages 883–894. Springer, 2014. 1.2.2

[Nol20] John P. Nolan. Univariate stable distributions: models for heavy tailed data.
Springer Series in Operations Research and Financial Engineering. Springer, Cham,
[2020] ©2020. 3.0.1, 3.3, 5, 17.3

[NUD17] Sharan Narang, Eric Undersander, and Gregory F. Diamos. Block-sparse recurrent
neural networks. CoRR, abs/1711.02782, 2017. 16.1

[OPT00] Michael R. Osborne, Brett Presnell, and Berwin A. Turlach. On the LASSO and its
dual. J. Comput. Graph. Statist., 9(2):319–337, 2000. 8

[PC18] Romualdo Pastor-Satorras and Claudio Castellano. Eigenvector localization in real
networks and its implications for epidemic spreading. Journal of Statistical Physics,

304

173(3):1110–1123, 2018. 18

[Pie80] Albrecht Pietsch. Operator ideals, volume 20 of North-Holland Mathematical
Library. North-Holland Publishing Co., Amsterdam-New York, 1980. 1.5.1

[PPP21] Aditya Parulekar, Advait Parulekar, and Eric Price. L1 regression with Lewis
weights subsampling. In Mary Wootters and Laura Sanità, editors, Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2021, August 16-18, 2021, University of Washington, Seattle,
Washington, USA (Virtual Conference), volume 207 of LIPIcs, pages 49:1–49:21.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 12.1, 12.6, 13.1.5

[PRK93] Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinkulam Sambamurthy Krish-
naprasad. Orthogonal matching pursuit: Recursive function approximation with
applications to wavelet decomposition. In Proceedings of 27th Asilomar conference
on signals, systems and computers, pages 40–44. IEEE, 1993. 16.1.1

[PRPG22] Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta.
The unsurprising effectiveness of pre-trained vision models for control. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan
Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pages 17359–17371. PMLR, 2022. 16.1

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Alessandro Moschitti, Bo Pang, and Walter
Daelemans, editors, Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A
meeting of SIGDAT, a Special Interest Group of the ACL, pages 1532–1543. ACL,
2014. 16.1

[PSZ22] Eric Price, Sandeep Silwal, and Samson Zhou. Hardness and algorithms for robust
and sparse optimization. In International Conference on Machine Learning, pages
17926–17944. PMLR, 2022. 1.4.1, 7, 16.1.1

[PTB13] Udaya Parampalli, Xiaohu Tang, and Serdar Boztas. On the construction of binary
sequence families with low correlation and large sizes. IEEE Trans. Inf. Theory,
59(2):1082–1089, 2013. 11.3.2

[Puk06] Friedrich Pukelsheim. Optimal Design of Experiments. Society for Industrial and
Applied Mathematics, 2006. 12.1

[PVZ17] Grigoris Paouris, Petros Valettas, and Joel Zinn. Random version of Dvoretzky’s
theorem in ℓ𝑛𝑝 . Stochastic Process. Appl., 127(10):3187–3227, 2017. 4, 14.1.1,
14.3.1

[PWZ23] Swati Padmanabhan, David P. Woodruff, and Qiuyi (Richard) Zhang. Computing
approximate ℓ𝑝 sensitivities. CoRR, abs/2311.04158, 2023. 6.1.1, 6

[RFP10] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization. SIAM Rev.,

305

52(3):471–501, 2010. 16.1.5

[Roc70] R. Tyrrell Rockafellar. Convex analysis. Princeton Mathematical Series, No. 28.
Princeton University Press, Princeton, N.J., 1970. 16.2.4

[RPYU18] Mengye Ren, Andrei Pokrovsky, Bin Yang, and Raquel Urtasun. Sbnet: Sparse
blocks network for fast inference. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pages 8711–8720. Computer Vision Foundation / IEEE Computer Society, 2018.
16.1

[RV07] Mark Rudelson and Roman Vershynin. Sampling from large matrices: An approach
through geometric functional analysis. J. ACM, 54(4):21, 2007. 1.3.2, 1.3.3, 1.3.2,
6.1.3

[RV09] Mark Rudelson and Roman Vershynin. Smallest singular value of a random rect-
angular matrix. Communications on Pure and Applied Mathematics: A Journal
Issued by the Courant Institute of Mathematical Sciences, 62(12):1707–1739, 2009.
14.5.2, 14.5.2

[RWY10] Garvesh Raskutti, Martin J. Wainwright, and Bin Yu. Restricted eigenvalue prop-
erties for correlated gaussian designs. J. Mach. Learn. Res., 11:2241–2259, 2010.
1.4.1, 16.1.1

[RZH04] Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a
maximum margin classifier. J. Mach. Learn. Res., 5:941–973, 2004. 16.1.3

[Sar06] Tamás Sarlós. Improved approximation algorithms for large matrices via random
projections. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages
143–152. IEEE Computer Society, 2006. 1.1.2, 1.2.2, 1.2.3, 1.2.2, 12.1

[Sch87] Gideon Schechtman. More on embedding subspaces of 𝐿𝑝 in 𝑙𝑛𝑟 . Compositio Math.,
61(2):159–169, 1987. 1.5.1

[Sch07] Gideon Schechtman. Aimpl: Fourier analytic methods in convex geometry, available
at http://aimpl.org/fourierconvex/1/, 2007. 6

[Sch11] Gideon Schechtman. Tight embedding of subspaces of 𝐿𝑝 in ℓ𝑛𝑝 for even 𝑝. Proc.
Amer. Math. Soc., 139(12):4419–4421, 2011. 1.5.1, 1

[SCHU17] Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini.
Group sparse regularization for deep neural networks. Neurocomputing, 241:81–89,
2017. 16.1

[SFR07] Mark Schmidt, Glenn Fung, and Rómer Rosales. Fast optimization methods for L1
regularization: A comparative study and two new approaches. In Joost N. Kok, Jacek
Koronacki, Ramón López de Mántaras, Stan Matwin, Dunja Mladenic, and Andrzej
Skowron, editors, Machine Learning: ECML 2007, 18th European Conference on
Machine Learning, Warsaw, Poland, September 17-21, 2007, Proceedings, volume
4701 of Lecture Notes in Computer Science, pages 286–297. Springer, 2007. 8

[SS02] Michael E. Saks and Xiaodong Sun. Space lower bounds for distance approximation

306

in the data stream model. In John H. Reif, editor, Proceedings on 34th Annual ACM
Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada,
pages 360–369. ACM, 2002. 3

[SS11] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resis-
tances. SIAM J. Comput., 40(6):1913–1926, 2011. 1.3.2, 6.1.1, 8, 4

[SSZ10] Shai Shalev-Shwartz, Nathan Srebro, and Tong Zhang. Trading accuracy for sparsity
in optimization problems with sparsity constraints. SIAM J. Optim., 20(6):2807–
2832, 2010. 1.4.1, 16.1, 16.1.2, 16.1.4, 16.4

[SV12] Nariankadu D. Shyamalkumar and Kasturi R. Varadarajan. Efficient subspace
approximation algorithms. Discret. Comput. Geom., 47(1):44–63, 2012. 13.1.6,
13.1.6, 14.1, 14.1, 14.1, 15.2

[SVW15] Maxim Sviridenko, Jan Vondrák, and Justin Ward. Optimal approximation for
submodular and supermodular optimization with bounded curvature. In Piotr Indyk,
editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1134–1148.
SIAM, 2015. 1.4.2, 16.1.2

[SW11] Christian Sohler and David P. Woodruff. Subspace embeddings for the 𝑙1-norm
with applications. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the
43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA,
6-8 June 2011, pages 755–764. ACM, 2011. 1.2.1, 1.5.2, 3, 3.1, 3.3, 3.3, 4, 4.1

[SW18] Christian Sohler and David P. Woodruff. Strong coresets for k-median and subspace
approximation: Goodbye dimension. In Mikkel Thorup, editor, 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France,
October 7-9, 2018, pages 802–813. IEEE Computer Society, 2018. 13.1.6, 14.1,
14.1, 14.1, 4, 4, 4, 14.1.1, 14.1.1, 5, 14.2, 14.2, 14.2.1, 14.2.1, 14.2.1, 14.2.2, 14.2.2

[SWMW89] Jerome Sacks, William J. Welch, Toby J. Mitchell, and Henry P. Wynn. Design and
analysis of computer experiments. Statistical Science, 4(4):409–423, 1989. 12.1

[SWY75] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for
automatic indexing. Commun. ACM, 18(11):613–620, 1975. 16.1

[SWY+19] Zhao Song, Ruosong Wang, Lin F. Yang, Hongyang Zhang, and Peilin Zhong.
Efficient symmetric norm regression via linear sketching. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages 828–838, 2019. 10.2

[SWZ17] Zhao Song, David P. Woodruff, and Peilin Zhong. Low rank approximation with
entrywise ℓ1-norm error. In Hamed Hatami, Pierre McKenzie, and Valerie King,
editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 688–701.
ACM, 2017. 1.4.2, 5, 16.1.2, 17.1, 17.3, 17.3, 17.3.2, 17.3.2, 17.3.2, 19

307

[SWZ19] Zhao Song, David P. Woodruff, and Peilin Zhong. Towards a zero-one law for col-
umn subset selection. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 6120–6131, 2019. (document), 1.4.2, 10.3, 16.1.2, 17.1, 17.1,
17.1, 17.1.1, 17.1.1, 17.1.2, 17.1.2, 17.1.2, 17.1.2, 17.3.1, 17.4

[SZ01] Gideon Schechtman and Artem Zvavitch. Embedding subspaces of 𝑙𝑝 into 𝑙𝑛𝑝 ,
0 < 𝑝 < 1. Mathematische Nachrichten, 227(1):133–142, 2001. 1.5.1, 1.5.1, 6.1.3,
6.1.4, 6.1.3, 10.3, 12.1

[Tal90] Michel Talagrand. Embedding subspaces of 𝐿1 into 𝑙𝑁1 . Proc. Amer. Math. Soc.,
108(2):363–369, 1990. 1.5.1, 1.5.1, 6.1.3, 6.1.3

[Tal95] Michel Talagrand. Embedding subspaces of 𝐿𝑝 in 𝑙𝑁𝑝 . In Geometric aspects of
functional analysis (Israel, 1992–1994), volume 77 of Oper. Theory Adv. Appl.,
pages 311–325. Birkhäuser, Basel, 1995. 1.5.1, 1.5.1, 6.1.3, 6.1.3

[TB97] Lloyd N. Trefethen and David Bau, III. Numerical linear algebra. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. 1.1

[TBF+12] Robert Tibshirani, Jacob Bien, Jerome Friedman, Trevor Hastie, Noah Simon,
Jonathan Taylor, and Ryan J. Tibshirani. Strong rules for discarding predictors in
lasso-type problems. J. R. Stat. Soc. Ser. B. Stat. Methodol., 74(2):245–266, 2012.
8, 2, 16.1.2

[Tib96] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996. 1.4.1, 7

[Tib15] Ryan J. Tibshirani. A general framework for fast stagewise algorithms. J. Mach.
Learn. Res., 16:2543–2588, 2015. 16.1.3

[TMF20] Murad Tukan, Alaa Maalouf, and Dan Feldman. Coresets for near-convex functions.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. 10, 10.2.5

[Tod16] Michael J. Todd. Minimum volume ellipsoids - theory and algorithms, volume 23
of MOS-SIAM Series on Optimization. SIAM, 2016. 3.2, 11, 11.4.2, 11.4.4, 11.4.3,
11.4.3

[Tro04] Joel A. Tropp. Greed is good: algorithmic results for sparse approximation. IEEE
Trans. Inf. Theory, 50(10):2231–2242, 2004. 16.1.1

[Tro06] Joel A. Tropp. Just relax: convex programming methods for identifying sparse
signals in noise. IEEE Trans. Inf. Theory, 52(3):1030–1051, 2006. 1.4.1, 16.1.1

[TT11] Ryan J. Tibshirani and Jonathan Taylor. The solution path of the generalized lasso.
The Annals of Statistics, 39(3):1335–1371, 2011. 8

[Ver18] Roman Vershynin. High-dimensional probability, volume 47 of Cambridge Series in

308

Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge,
2018. 2.3.6

[vH14] Ramon van Handel. Probability in high dimension. Lecture Notes (Princeton
University), 2014. 2.3.3, 2.3.3

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in Neural Information Processing Systems, 30, 2017. 16.1.2

[VX12] Kasturi R. Varadarajan and Xin Xiao. On the sensitivity of shape fitting problems.
In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors,
IARCS Annual Conference on Foundations of Software Technology and Theoreti-
cal Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India,
volume 18 of LIPIcs, pages 486–497. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2012. 14.1, 4, 4, 14.1.1

[WC20] Maksymilian Wojtas and Ke Chen. Feature importance ranking for deep learning.
Advances in Neural Information Processing Systems, 33:5105–5114, 2020. 16.6.1,
16.6.3

[WDL+09] Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola, and
Josh Attenberg. Feature hashing for large scale multitask learning. In Andrea Po-
horeckyj Danyluk, Léon Bottou, and Michael L. Littman, editors, Proceedings
of the 26th Annual International Conference on Machine Learning, ICML 2009,
Montreal, Quebec, Canada, June 14-18, 2009, volume 382 of ACM International
Conference Proceeding Series, pages 1113–1120. ACM, 2009. 16.1

[Wel74] Lloyd R. Welch. Lower bounds on the maximum cross correlation of signals
(corresp.). IEEE Trans. Inf. Theory, 20(3):397–399, 1974. 11.3.5

[Woj91] P. Wojtaszczyk. Banach spaces for analysts, volume 25 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1991. 9.2

[Woo14] David P. Woodruff. Sketching as a tool for numerical linear algebra. Found. Trends
Theor. Comput. Sci., 10(1-2):1–157, 2014. 1.1, 3.1

[WW19] Ruosong Wang and David P. Woodruff. Tight bounds for ℓ𝑝 oblivious subspace
embeddings. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019, pages 1825–1843. SIAM, 2019. 1.2.1, 3, 3.0.2, 3, 3.0.3, 3,
3.1, 3.3, 3.3.1, 4, 4.0.1, 4.1, 4.2.5, 4.4, 4.4.2, 5, 13.1.5

[WW22] Ruosong Wang and David P. Woodruff. Tight bounds for ℓ1 oblivious subspace
embeddings. ACM Trans. Algorithms, 18(1):8:1–8:32, 2022. 3, 3.0.2, 3, 3.0.3, 3,
3.1, 3.3, 4, 4.0.1, 4.1, 4.4, 4.4.2, 5

[WWW+16] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning struc-
tured sparsity in deep neural networks. Advances in Neural Information Processing
Systems, 29, 2016. 16.1

[WXXZ23] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New

309

bounds for matrix multiplication: from alpha to omega. CoRR, abs/2307.07970,
2023. 1

[WY22a] David P. Woodruff and Taisuke Yasuda. High-dimensional geometric streaming in
polynomial space. In 63rd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages
732–743. IEEE, 2022. (document), 1.1.1, 1.3.3, 9, 9, 9.0.2, 9.0.3, 11, 11.0.1

[WY22b] David P. Woodruff and Taisuke Yasuda. Improved algorithms for low rank ap-
proximation from sparsity. In Joseph (Seffi) Naor and Niv Buchbinder, editors,
Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA
2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages
2358–2403. SIAM, 2022. (document), 1.3.3, 1.3.5, 6.1.7, 6.6.3, 18, 18, 18.0.3

[WY23a] David P. Woodruff and Taisuke Yasuda. New subset selection algorithms for low
rank approximation: Offline and online. In Barna Saha and Rocco A. Servedio,
editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1802–1813. ACM, 2023.
(document), 1.2.1, 1.2.3, 1.3.5, 1.4.2, 1.4.3, 3, 3, 3.0.4, 3.2, 3.2.1, 12, 12.1, 12.1.3,
13.1.6, 14, 14.1, 14.1, 14.1.1, 14.1.2, 5, 5, 14.3.2, 14.3.2, 14.6.1, 15.2, 15.2, 15.2,
17, 17.3.2, 19

[WY23b] David P. Woodruff and Taisuke Yasuda. Online lewis weight sampling. In Nikhil
Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25,
2023, pages 4622–4666. SIAM, 2023. (document), 1.3.5, 6, 6.1.3, 6.1.3, 6.1.3,
6.1.11, 6.3.3, 12.4, 4, 14.3.2, 14.6.1, 16.1.2

[WY23c] David P. Woodruff and Taisuke Yasuda. Sharper bounds for ℓ𝑝 sensitivity sam-
pling. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett, editors, International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages 37238–37272. PMLR, 2023.
(document), 1.3.5, 4.1.2, 6.4.2, 7, 7.1, 7.1.2, 8, 8, 8.0.2, 8.1.3, 12.5.2, 14.5.1, 6

[WY24a] David P. Woodruff and Taisuke Yasuda. Coresets for multiple ℓ𝑝 regression. In
Proceedings of the 36th International Conference on Machine Learning, ICML
2024, Proceedings of Machine Learning Research. PMLR, 2024. (document), 1.3.5,
12.1, 13, 15.2

[WY24b] David P. Woodruff and Taisuke Yasuda. Nearly linear sparsification of ℓ𝑝 subspace
approximation, 2024. (document), 1.3.5, 8, 8.0.1, 8, 8.0.3, 13.1.6, 14, 15.2, 15.2

[WZ13] David P. Woodruff and Qin Zhang. Subspace embeddings and ℓ𝑝-regression using
exponential random variables. In Shai Shalev-Shwartz and Ingo Steinwart, editors,
COLT 2013 - The 26th Annual Conference on Learning Theory, June 12-14, 2013,
Princeton University, NJ, USA, volume 30 of JMLR Workshop and Conference
Proceedings, pages 546–567. JMLR.org, 2013. 1.2.1, 3, 3, 3.1, 3.3

[YBC+23] Taisuke Yasuda, Mohammad Hossein Bateni, Lin Chen, Matthew Fahrbach, Gang

310

Fu, and Vahab Mirrokni. Sequential attention for feature selection. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023. (document), 1.4.3, 16, 16.1.1, 8, 8, 16.1.2,
16.1.2, 16.1.2, 16.1.2, 16.1.2, 16.6

[YL06] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped
variables. J. R. Stat. Soc. Ser. B Stat. Methodol., 68(1):49–67, 2006. 7

[ZC06] Hamid Zarrabi-Zadeh and Timothy M. Chan. A simple streaming algorithm for
minimum enclosing balls. In Proceedings of the 18th Annual Canadian Conference
on Computational Geometry, CCCG 2006, August 14-16, 2006, Queen’s University,
Ontario, Canada, 2006. 11.4

[Zho09] Shuheng Zhou. Restricted eigenvalue conditions on subgaussian random matrices.
arXiv preprint arXiv:0912.4045, 2009. 1.4.1, 16.1.1

[Zou12] Anastasios Zouzias. A matrix hyperbolic cosine algorithm and applications. In
Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors,
Automata, Languages, and Programming - 39th International Colloquium, ICALP
2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture
Notes in Computer Science, pages 846–858. Springer, 2012. 15.1, 15.1

[Zva00] A. Zvavitch. More on embedding subspaces of 𝐿𝑝 into 𝑙𝑁𝑝 , 0 < 𝑝 < 1. In Geometric
aspects of functional analysis, volume 1745 of Lecture Notes in Math., pages
269–280. Springer, Berlin, 2000. 1.5.1, 6.1.3

[ZY06] Peng Zhao and Bin Yu. On model selection consistency of Lasso. J. Mach. Learn.
Res., 7:2541–2563, 2006. 16.1.1

[ZYC+21] Li Zhou, Lihao Yan, Mark A. Caprio, Weiguo Gao, and Chao Yang. Solving the
k-sparse eigenvalue problem with reinforcement learning. CSIAM Transactions on
Applied Mathematics, 2(4):697–723, 2021. 18

311

	List of Figures
	1 Introduction
	1.1 Randomized numerical linear algebra
	1.1.1 Sketching
	1.1.2 Subspace embeddings

	1.2 Oblivious sketches
	1.2.1 Why are oblivious subspace embeddings useful?
	1.2.2 Oblivious l2 subspace embeddings
	1.2.3 Overview of Part I

	1.3 Sampling
	1.3.1 Coresets and sensitivity sampling
	1.3.2 Leverage score sampling
	1.3.3 Streaming and online coresets
	1.3.4 Applications of sampling algorithms beyond coresets
	1.3.5 Overview of Part II

	1.4 Sparse optimization
	1.4.1 Sparse linear regression
	1.4.2 Column subset selection
	1.4.3 Overview of Part III

	1.5 Connections to geometric functional analysis
	1.5.1 Lewis weights and embedding subspaces of lp
	1.5.2 Well-conditioned bases and spanning sets

	2 Preliminaries
	2.1 Notation
	2.1.1 Linear algebra
	2.1.2 Inequalities
	2.1.3 Probability

	2.2 Streaming
	2.2.1 INDEX

	2.3 Random processes
	2.3.1 Symmetrization: reduction to a Rademacher process
	2.3.2 Subgaussian processes
	2.3.3 Chaining and Dudley's inequality

	I Oblivious Sketching
	3 High distortion embeddings for lp [WY2023]
	3.1 The question of well-conditioned bases
	3.2 Relaxing linear bases to spanning sets
	3.3 Proof of Theorem 3.0.4

	4 Low distortion embeddings for l1 [LWY2021]
	4.1 Overview of sketch construction and analysis
	4.1.1 Sketching a single vector
	4.1.2 Extension to subspaces

	4.2 No expansion
	4.2.1 Bounding badly concentrated levels
	4.2.2 Bounding well-concentrated levels
	4.2.3 Bounding oversampled levels
	4.2.4 Bounding tiny levels
	4.2.5 Net argument

	4.3 No contraction
	4.3.1 Essential weight classes
	4.3.2 Hashing lemmas
	4.3.3 Preserving weight classes
	4.3.4 Net argument

	4.4 Endgame

	5 Future directions for oblivious lp subspace embeddings

	II Sampling Algorithms and Coresets
	6 lp Lewis weight sampling [WY2023]
	6.1 Sampling algorithms for lp subspace embeddings
	6.1.1 lp sensitivity sampling
	6.1.2 lp well-conditioned basis sampling
	6.1.3 lp Lewis weight sampling

	6.2 Properties of one-sided lp Lewis weights
	6.3 Analysis of lp Lewis weight sampling: reduction to a Rademacher process
	6.3.1 Regularizing the Rademacher process
	6.3.2 Flattening the Rademacher process: p<2
	6.3.3 Flattening the Rademacher process: p>2 [WY2023]

	6.4 Analysis of lp Lewis weight sampling: Dudley's entropy integral
	6.4.1 Bounds on the pseudo-metric
	6.4.2 Entropy bounds
	6.4.3 Entropy integral for lp Lewis weight sampling

	6.5 Analysis of lp Lewis weight sampling: endgame
	6.6 Online lp Lewis weight sampling
	6.6.1 Lemmas from linear algebra
	6.6.2 Properties of online lp Lewis weights
	6.6.3 The sum of online lp Lewis weights

	7 lp sensitivity sampling [WY2023]
	7.1 Beyond lp Lewis weight sampling
	7.2 Structured matrices with small total sensitivity, p>2
	7.3 Properties of lp sensitivities
	7.3.1 Monotonicity of max lp sensitivity
	7.3.2 Flattening lp sensitivities
	7.3.3 Total sensitivity

	7.4 Analysis of lp sensitivity sampling
	7.4.1 Dudley's entropy integral
	7.4.2 Sensitivity sampling, p<2
	7.4.3 Sensitivity sampling, p>2

	8 Root leverage score sampling [WY2023, WY2024]
	8.1 Analysis of root leverage score sampling
	8.1.1 Reduction to a small number of scales
	8.1.2 Reduction to a Rademacher process with flat sensitivities
	8.1.3 Bounds on the Rademacher process
	8.1.4 Proof of main sampling theorems

	9 High-distortion lp subspace embeddings [WY2022]
	9.1 Lewis weight switching
	9.2 Change of density

	10 Subspace embeddings for general losses [MMWY2022]
	10.1 M-estimators preliminaries
	10.2 Sensitivities upper bounds
	10.2.1 Efficient algorithm for sensitivity upper bounds
	10.2.2 Sharper sensitivity bounds

	10.3 Sensitivity lower bounds

	11 Applications: streaming linf subspace embeddings and computational geometry [WY2022]
	11.1 Nearly optimal sum of online leverage scores
	11.2 Online coresets for l inf subspace embeddings
	11.3 Near-optimal bounds for restricted instances
	11.3.1 Lower bound
	11.3.2 Upper bound

	11.4 Applications to streaming algorithms for geometric problems in high dimensions
	11.4.1 Directional width
	11.4.2 Convex hulls
	11.4.3 Löwner–John ellipsoids
	11.4.4 Volume maximization
	11.4.5 Minimum-width spherical shell

	12 Applications: active lp linear regression [MMWY2022, WY2023b]
	12.1 Active lp linear regression
	12.2 Constant factor solution
	12.2.1 Probability boosting for constant factor approximation

	12.3 (1+eps) factor solution
	12.3.1 Closeness of nearly optimal solutions
	12.3.2 Iterative size reduction argument
	12.3.3 High probability

	12.4 lp Lewis weight sampling for differences
	12.5 Rademacher process bounds
	12.5.1 Estimates on the outlier term
	12.5.2 Estimates on the sensitivity term

	12.6 Lower bounds
	12.6.1 Lower bounds for p in (0, 1)
	12.6.2 Lower bounds for p in (1, 2)
	12.6.3 Lower bounds for p in (2, inf)
	12.6.4 A 1/delta**p-1 lower bound for sampling-and-reweighting algorithms

	13 Applications: coresets for multiple lp regression [WY2024b]
	13.1 Multiple lp regression
	13.1.1 Coreset constructions for p=2
	13.1.2 Challenges for p != 2
	13.1.3 Strong coresets for multiple lp regression
	13.1.4 Weak coresets for multiple lp regression
	13.1.5 Applications: sublinear algorithms for Euclidean power means
	13.1.6 Applications: spanning coresets for lp subspace approximation

	13.2 Strong coresets
	13.3 Weak coresets
	13.3.1 Closeness of nearly optimal solutions
	13.3.2 Iterative size reduction argument

	13.4 Sublinear algorithm for Euclidean power means
	13.5 Spanning coresets for lp subspace approximation
	13.6 Lower bounds
	13.6.1 Strong coresets
	13.6.2 Weak coresets
	13.6.3 Spanning coresets

	14 Applications: strong coresets for lp subspace approximation [WY2023b, WY2024]
	14.1 Coresets for lp subspace approximation
	14.1.1 Technical overview
	14.1.2 Corollaries

	14.2 Representative subspace theorem for lp subspace approximation
	14.2.1 Sharper scalar inequalities
	14.2.2 Proof of the representative subspace theorem

	14.3 Preliminaries
	14.3.1 Dvoretzky's theorem
	14.3.2 Flattening
	14.3.3 Properties of ridge leverage scores

	14.4 Reduction to additive-multiplicative lp affine embeddings
	14.5 Main sampling theorems
	14.5.1 Affine embedding
	14.5.2 Results for p>2
	14.5.3 Results for p < 2

	14.6 Streaming and online coresets
	14.6.1 Online coresets
	14.6.2 Streaming coresets

	15 Future directions for sampling and coreset algorithms
	15.1 Questions on lp subspace embeddings
	15.2 Questions on coresets

	III Sparse Optimization
	16 Sparse convex optimization via l1 regularization [YBCFFM2023, AY2023]
	16.1 Introduction
	16.1.1 Related work: prior guarantees for L1 regularization
	16.1.2 Our results
	16.1.3 Related work: the Forward Stagewise Regression conjecture
	16.1.4 Related work: algorithms for sparse convex optimization
	16.1.5 Open directions

	16.2 Preliminaries
	16.2.1 Fenchel duality
	16.2.2 Berge's theorem

	16.3 Equivalence of Group Sequential LASSO and Group Orthogonal Matching Pursuit
	16.3.1 The dual problem
	16.3.2 Selection of features

	16.4 Guarantees for Group Orthogonal Matching Pursuit
	16.4.1 Group OMP with Replacement

	16.5 Equivalence of Group Sequential Attention and Group Sequential LASSO
	16.6 Experiments: feature selection via Sequential Attention
	16.6.1 Small-scale experiments
	16.6.2 Large-scale experiments
	16.6.3 Visualization of selected MNIST features

	17 Column subset selection with entrywise losses [WY2023]
	17.1 Algorithms for general entrywise losses
	17.1.1 An improved structural result on uniform sampling
	17.1.2 Sharper guarantees for the [SWZ2019] algorithm

	17.2 Huber column subset selection
	17.3 Algorithms for the entrywise lp norm
	17.3.1 Improved existential result
	17.3.2 Lower bounds

	17.4 Reduction from existential to algorithmic column subset selection

	18 Spectral low rank approximation for sparse singular vectors [WY2022]
	18.1 Technical overview
	18.2 Proof of Theorem 18.0.3
	18.2.1 Approximating singular components
	18.2.2 Finding the support of singular vectors with large singular value
	18.2.3 Approximating large singular values
	18.2.4 Approximating small singular values

	19 Future directions for sparse optimization
	Bibliography

