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Abstract
Machine learning (ML) is increasingly used to drive complex applications such

as web-scale search, content recommendation, autonomous vehicles, and language-
based digital assistants. In recent years, these systems have become predominantly
data-driven, often underpinned by deep learning models that learn complex functions
end-to-end from large amounts of available data. But their purely data-driven nature
also makes the learned solutions opaque, sample inefficient, and brittle.

To improve reliability, production solutions often take the form of ML systems
that leverage the strengths of deep learning models while handling auxiliary func-
tions such as planning, validation, decision logic, and policy compliance using other
components of the system. However, because these methods are often applied post-
hoc on fully trained, blackbox deep learning models, their ability to improve system
reliability and transparency is limited.

In this thesis, we study how to build more reliable and transparent ML systems
using ML models with structured intermediate representations (StructIRs). Com-
pared to non-structured representations such as neural network activations, Struc-
tIRs are directly obtained by optimizing a well-defined objective and are structurally
constrained (e.g., to normalized embeddings or compilable code) while remaining
sufficiently expressive for downstream tasks. They can thus make the resulting ML
system more reliable and transparent by increasing modularity and making modeling
assumptions explicit.

We explore the role of StructIRs in three different ML systems. In our first work,
we use simple probability distributions parameterized by neural networks to build
an effective ML-driven datacenter storage policy. In our second work, we show that
grounding text generation in a well-structured vector embedding space enables ef-
fective transformation of high-level text attributes such as tense and sentiment with
simple, interpretable vector arithmetic. In our final work, we conduct human subject
studies showing that the stationarity assumptions behind bandit-based recommender
systems do not hold in practice, demonstrating the importance of validating the as-
sumptions and structures underlying ML systems.
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Chapter 1

Introduction

Over the past decade, machine learning (ML) has become ubiquitous. Sophisticated ML mod-
els (primarily deep neural networks) now drive the myriad digital applications and services that
have become inescapable fixtures of modern life, including recommender systems, search en-
gines, and language-based digital assistants. Modern ML models are largely data-driven and
typically make little assumptions about the function being learned. This has enabled them to
take advantage of recent advances in compute and data infrastructure to learn complex functions
from patterns in massive quantities of data. Most recently, it has been possible to train large
language models (LLMs) such as GPT-3 [23], PaLM [32], OPT-175B [196], and BLOOM [154]
containing hundreds of billions of parameters using exaflop-scale compute clusters. The growing
capabilities of large deep learning models suggest that they can reliably learn general functions
end-to-end given sufficiently large amounts of data and computation [79].

Recently, ML systems are increasingly designed to use a single model (i.e., a LLM) to handle
all system functions end-to-end; to use the language of software systems, this is an example of
so-called “monolithic” system design. While monolithic systems are well-suited to simpler (e.g.,
single-application) use cases, they are often insufficient for complex production-scale workflows
that benefit from a more modular approach. On the other hand, in traditional software systems,
modular design typically improves reliability, scalability, and transparency. Because ML systems
are being deployed in increasingly complex and production-critical settings, it is key that they
are able to reliably achieve a desired level of performance while doing so transparently, e.g.,
such that their actions are auditable and accountable.

To address this challenge, researchers and practioners have been designing so-called com-
pound ML systems [195]. In contrast to monolithic (single-model) systems, compound ML
systems are often more expressive, reliable, and inspectable by being multi-component, e.g.,
a question-answering pipeline that retrieves relevant documents, generates multiple candidate
answers, and then validates them to ensure that answers are grounded in the retrieved source
material. However, because they were not trained end-to-end, compound ML systems are not
necessarily interoperable off-the-shelf. We therefore consider the following question: Can we
design reliable and transparent machine learning systems by giving compound ML systems the
modularity and interoperability of traditional software systems?

In this thesis, we present an initial step towards this vision. We propose training ML models
to output structured intermediate representations (StructIRs) – including (but not limited to)

1



vector embeddings, probability distributions, schematicized JSON, compilable code – that we
show can be utilized as effective inputs into downstream systems. While there are many possible
instantiations of compound ML systems, we consider (as the object of study in this thesis) a
two-stage system that first applies a ML model � to inputs x to produce a StructIR z = �(x) that
is then passed into an output process h to generate outputs y = h(z). We study two instances
of this type of system: (1) a ML-driven datacenter storage policy that outputs storage decisions
based on object lifetime estimates, and (2) a controllable language-generation system that outputs
generated text conditioned on its high-dimensional vector representation. The main features of
StructIRs are that they are:

• The direct outputs of an optimization process on a well-defined objective.
• (Optionally) Structurally constrained with rules or criteria determining what constitutes a

valid instance.
• Sufficiently general-purpose and expressive for many downstream use cases.
• Used as the primary or sole determinant of the contents of the output process.

The first part of the thesis showcases the promise of building ML systems with learned and
validated StructIRs, and the last part of the thesis focuses on a related question: How do we
ensure that the assumptions behind the StructIRs used in our ML system are valid? To address
this, we contribute an experimental framework for evaluating assumptions on human preferences
in the context of bandit-based recommendation systems. Our thesis statement is as follows.

Thesis Statement: Machine learning systems can be designed to be more reliable and trans-
parent by training the underlying ML models to output structured intermediate representations
(StructIRs). We show that StructIRs can improve reliability by:

1. Introducing structural constraints into the representation that improve usability and com-
patibility with downstream systems.

2. Being more tractable to learn compared to end-to-end solutions.
3. Enabling more modular evaluation and design of machine learning systems.

In addition, StructIRs improve transparency by:
1. Ensuring that modeling assumptions about problems are made explicit.
2. Allowing undesired generated outputs to be traced back to its corresponding structured

intermediate representation.
3. Enabling compound ML system design through enhancing the mutual compatibility of its

constituent components.
We also show that it is critical to ensure that the assumptions made about the StructIRs in our
systems are valid.

The remainder of this thesis is organized as follows:
• In Chapter 2, we provide general background on machine learning and deep learning mod-

els. We also briefly outline compound ML systems.
• In Chapter 3, we show how to build effective and transparent ML policies for datacenter

storage systems by training natural language processing models to output StructIRs in the
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form of object lifetime probability distributions.
• In Chapter 4, we demonstrate that vector-to-text methods can be used to reliably transform

high-level text attributes using simple, interpretable vector arithmetic within an existing
learned high-dimensional embedding space.

• In Chapter 5, we outline an experimental framework that we use to empirically test the
stationarity assumptions of bandit-based recommendation systems.

• In Chapter 6, we summarize our conclusions and discuss directions for future work.
We outline each of our case studies below.
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1.1 Case Study 1: Effective Datacenter Storage Policies using
Univariate Probability Distributions

Modern datacenter systems are highly complex and interconnected. When building web-scale
applications, developers often opt to construct high-performance workflows from a host of cloud
services - such as web endpoints, databases, data processing systems, and storage systems. These
cloud systems achieve substantial improvements in performance and cost efficiency over their lo-
cally hosted counterparts through their enormous scale that enables holistic optimizations over
workloads and infrastructure. While efficient and low-overhead, this design also introduces ad-
ditional complexity in the form of performance variability. For developers, understanding the
root cause of application slowdowns is challenging since they can come from any of the multiple
(opaque) systems being used. In conjunction, these systems themselves also observe highly vari-
able input behavior from the heterogeneous mix of datacenter workloads, complicating system
management by rendering one-size-fits-all policies ineffective.

The above examples of performance variability highlight the importance greater visibility
into as well as for datacenter systems. On one hand, developers have access to a tool known as
distributed tracing for analyzing and debugging distributed workloads. Tracing collects metrics
by interposing along the application request path through lightweight instrumentation. Assuming
that the target systems have been appropriately instrumented, distributed tracing can cross refer-
ence application-level features (e.g. class of service) with fine-grained system information (e.g.
the exact code path taken or database call.) On the other hand, system designers have limited
options for making application- and workload-specific information accessible. While users can
manually add hints (such as prefetching), it is a brittle process that leads to increased technical
debt. Instead, in our first work, we demonstrate how ML can make effective use of high-level
information already available in the system, in the form of distributed traces; incoming storage
requests are tagged with key-value string pairs containing rich application-level information. We
focus on the problems of caching and storage tiering within large warehouse-scale storage sys-
tems such as Colossus [53], and show how ML can be used to create effective storage policies.

Finally, we outline the challenges of applying ML in this setting and how incorporating
StructIRs allows our approach to do so successfully. We have discussed how datacenter stor-
age and other systems are heavily interconnected, so even small performance regressions can
have massive downstream effects. These systems are constantly making decisions to optimize
performance criteria. While this suggests a feedback-driven approach such as reinforcement
learning (RL), the resulting end-to-end learned solutions are often too sample inefficient, brit-
tle, and opaque for use in production systems. Rather, our approach uses ML to directly model
the variability in the system using an approach based on survival anaylsis. Aggregating across
read requests with the same observed features, we impose a Markov model on the time between
repeated accesses to the same 128kB file block and fit parameters of a log-normal distribution
using a deep learning model. We use a similar setup for storage tiering, where we instead model
the lifetime and final size of entire files based on features in the file creation request. We use
log-normal distributions since they are a good fit for reliability modeling in systems. We find
that these learned lifetime estimates can be utilized by simple hand-written policies to improve
caching and storage tiering performance in simulation.
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1.2 Case Study 2: Steerable Language Generation from Text
Embedding Vectors

Over the past decade, systems for language generation have seen widespread development and
adoption. As diversity of language generation applications has increased – from earlier use
cases such as machine translation to current-day use cases such as code generation, automated
writing assistants, and language-based agents – so has the sophistication of the models that drive
these systems. Compared to the structured, rule-based models that powered machine translation
systems in the previous decade, deep learning models are probabilistic in nature and significantly
more expressive, containing millions to billions of parameters that are optimized end-to-end in a
data-driven fashion. These developments have led to substantial improvements in the quality and
generality of modern language systems. Deep learning-based approaches to language generation,
however, lack the performance guarantees of their predecessors and the ability to inspect the
steps that led to the generated outputs. The proliferation of large, foundation-style models such
as GPT-4 [3], Claude, Gemini [173] has furthered the trend towards machine learning systems
becoming monoliths that are only testable via their end-to-end behavior.

Increasingly, practitioners and researchers are recognizing the limitations of such monolithic
systems and are exploring multi-component solutions to language generation. For instance,
a monolithic question-answering system must encapsulate knowledge and answer generation
within a single model, which can lead to unreliable performance (e.g., if model knowledge is in-
correctly learned or outdated) that is challenging for a system designer to diagnose. As a result,
many recent systems have begun to rely on retrieval-augmented generation (RAG), i.e., allow-
ing the language model responsible for text generation to access an external knowledge database
represented as text embedding vectors. The resulting solution is often (1) more reliable by gener-
ating answers using external knowledge instead of relying on the model internals alone, and (2)
transparent because there is an explicit connection between the model’s outputs and the knowl-
edge that it indexed. Compared to the (monolithic) end-to-end solution, this approach represents
a class of alternative solutions that are more modular and easily evaluated.

In this section, we consider an even simpler example of a compound ML system that gener-
ates text x conditioned on a single embedding vector z, leveraging a recently developed approach
by Morris et al. [128] known as vec2text. Given an existing, fixed embedding model �, they
train a conditional language model that learns to reconstruct the original text x from its embed-
ding vectors representation �(x). While Morris et al. [128] originally focused on assessing the
privacy considerations behind vectors retaining information about their originating text, we in-
stead ask the following question: Can vec2text be used to create a reliable and transparent
language generation system using StructIRs in the form dense vector representations of text? We
present results that suggest this is possible, by leveraging vec2text to transform high-level
semantic properties of text such as tense, sentiment, conciseness, and gender using simple vector
arithmetic in the embedding space of the widely used OpenAI text-embedding-ada-002
embedding model. We show that vec2text can reliably perform these transformations, outper-
forming baselines based on latent vector and activation steering, and does so transparently due to
the direct connection between the generated output x̃ and its embedding representation �(x̃). We
additionally present other findings about the embedding space, including the ability to effectively
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(and transparently) combine multiple transformations and also the presence of gender-occupation
associations. We make the case that the success of this approach is a consequence of the Struc-
tIRs used. Because embeddings (such as text-embedding-ada-002) are trained to encode
high-level semantic relationships in a simple manner (linearly), the resulting ML system is able
to generate high-quality text simply and without time spent on training or integration.
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1.3 Case Study 3: Validating Stationarity in Bandit-based Rec-
ommendation Systems

In this chapter, we investigate the importance of validating the structural assumptions of the ML
model that underlies a ML system. When designing a ML system, it is common to incorporate
structural or simplifying assumptions into the model in order to improve its learning process
and deployment efficacy. Assumptions may be based on known or idealized models of how the
modeled system behaves, such as physics-based temporal modeling and multi-view geometry.
Ultimately, structural and simplifying assumptions make learning more efficient and the learned
model more reliable by adding inductive biases and enforcing invariances. However, imposing
modeling assumptions that are too restrictive or unrealistic can lead to highly suboptimal and
unpredictable performance.

We tackle this problem by empirically testing whether a common assumption made by bandit-
based recommendation systems holds true in practice, i.e. that human preferences remain static.
We believe that the benefits of this are two-fold. First, in some cases, it can substantially im-
prove model learning that is otherwise degraded by model mis-specification. Second, incorrect
modeling assumptions can also lead to unintended effects when deployed in production. For
multi-armed bandit-based recommendation systems that assume static reward distributions, drift-
ing preferences can complicate learning. For example, the UCB and epsilon greedy algorithms
decay their learning over time, so changes from the original preferences may not be properly
incorporated into the model, which also worsens user satisfaction. Additionally, the system’s
choice of recommendations (and the order in which it is presented) may also influence the user’s
preferences. Psychology studies have shown that for users of online music and video platforms,
recommendations can influence their internal states such as inducing anchoring in their reported
preferences, as well as altering their moods and opinions.

Our setup is as follows. We conducting randomized controlled trials on human subjects from
Mechanical Turk using a simulated content recommendation system. We set up a bandit-based
recommendation system based on the task of reading comics where each arm represents the
category of comic being read. To test for the presence of non-stationarity in the user preferences,
we randomly assign a subset of users to one of two fixed sequences of comics: CYCLE and
REPEAT. We then perform multiple hypothesis testing over the differences in mean reward for
each category using a permutation test. We find that there is a statistically significant difference
between the two sequences among all of the categories, which suggests that it is important to
whether the assumptions imposed upon ML systems hold in practice.
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Chapter 2

Background

2.1 Deep Learning and Representation Learning

2.1.1 Deep Neural Networks
Overview. Deep neural networks form the basis of many modern machine learning systems.
They are most often instantiated as multiple layers of (usually) non-linear, differentiable oper-
ators that are trained end-to-end to optimize a loss function. By composing such operators in
this manner, neural networks are “universal approximators” in the sense that a neural network
with one hidden layer can approximate any function f within a bounded domain – e.g., [0, 1]n –
for some setting of its parameters. In conjunction with the ability to train them end-to-end us-
ing data, these properties make neural networks suitable for a broad set of application domains,
including image, speech, and natural language processing.

Architectures. The architecture of a deep learning model may differ depending on the ap-
plication domain in which it is used (Figure 2.1). Domain-specific architectural components
enable encoding inductive biases into the learned solution, improving their quality and reliabil-
ity. For example, convolutional neural networks (CNNs) process images utilize convolutional
filters that perform local, spatially invariant operations; on the other hand, recurrent neural net-
works (RNNs) process speech and natural language sequentially using recurrent “cells” that store
temporal state. Recently, however, neural network architectures across domains have become in-
creasingly standardized around the Transformer [180] architecture (Figure 2.2). These models
utilize a highly scalable and expressive operation known as “attention” to selectively process data
conditioned on its context. As a result, Transformers have enabled increasingly sophisticated and
general-purpose deep learning models.

Scaling. Over the past decade, the predominant trend in deep learning has been that increases
in model size, data, and computation have led to continued improvements in prediction qual-
ity. These observations have been formalized under the term “neural scaling laws” [79] which
showed that, for neural language modeling, there is a power-law relationship between these fac-
tors that spans over seven orders of magnitude. Increasing scale has been shown to improve a
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(a) Convolutional neural networks.

(b) Recurrent neural networks.

Figure 2.1: Examples of domain-specific neural
network architectures.

Figure 2.2: Transformer [180] neural
network architecture.

large variety of tasks including multi-step reasoning, translation, multilingual tasks, and code
generation [32, 34].

2.1.2 Representation Learning

One of the main objectives of machine learning is learning useful representations from data
that are applicable to downstream tasks. Traditionally, this has been accomplished under the
broad umbrella of “unsupervised learning”, which includes techniques such as clustering and di-
mensionality reduction. The motivation behind this class of methods is to improve downstream
task performance with an initial task-agnostic stage that yields a general-purpose representa-
tion. More recently, deep learning has approached representation learning by first pre-training
models on general-purpose tasks with large quantities of data, and then either (a) fine-tuning
the model on task-specific data or (b) performing “zero-shot” inference without additional la-
beled data. While earlier approaches more frequently pre-trained classification models on large
labeled datasets such as ImageNet [40] recent approaches generally perform “self-supervised”
pre-training on large quantities of unlabeled data using training tasks such as next-word pre-
diction [142] and text infilling [41]. Compared to training deep learning models from scratch,
leveraging pre-trained representations improves learning efficiency and model reliability. More
generally, these broad trends towards large, general-purpose models are being reflected by the
growing monolithic nature of modern ML systems.
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2.2 Machine Learning Systems

2.2.1 Compound ML systems
To address the shortcomings of large monolithic ML systems, there has been a shift towards the
development of so-called compound ML systems. Compared to monolithic systems that encap-
sulate all functionality within a single model, compound ML systems instead compose multiple
ML- and software-based components into an end-to-end system. As an illustrative example,
search and question-answering have recently been addressed using compound ML systems such
as Retrieval-augmented generation (RAG). While single-model systems dedicate model capac-
ity to both knowledge and text generation, RAG systems instead augment text generation models
with an external knowledge base. The resulting design is more modular and adaptable to novel
content without constant re-training. Notably, these developments closely parallel the evolution
of monolithic, single-machine software architecture in small-scale systems to multi-component
and modular datacenter systems that has improved their scalability, reliability and transparency.

Other examples of compound ML systems include AlphaCode [111] and AlphaGeome-
try [176], which use LLMs to generate numerous candidate solutions (to coding and geometry
problems respectively) that are then verified by downstream components such as compilers and
symbolic evaluators. The candidate solutions produced by these approaches (e.g., compilable
code and mathematical proofs) are, crucially, structured, which makes the ML-based compo-
nents of the system directly compatible with its non-ML components. The resulting design can
therefore leverage the strong generative capabilities of deep learning models while mitigating
the unreliability that stems from their probabilistic nature. Importantly, such an approach can
make the performance of these systems sufficiently consistent to be used as a building block for
downstream applications.

Lastly, compound ML systems represent a complementary approach to scaling for improving
the performance of ML-based systems. While increasing LLM scale has been shown to pro-
duce reliable and (sometimes) surprising “emergent” improvements in areas such as reasoning,
factuality, and coding ability, scaling alone is typically insufficient to sufficiently strong perfor-
mance for many applications. Instead, many improvements in LLM performance have come
from increasingly sophisticated inference-time strategies, such as chain-of-thought prompting or
“generate-then-validate” approaches. For instance, at the time of AlphaCode’s release, Tranformer-
based code synthesis was able to solve competitive programming questions with single-digit
success, while large-scale generation, verfication, and clustering were used by AlphaCode to
increase the success rate to 30%. Increasing usage of similar techniques will lead to further
adoption of multi-component ML systems.
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Chapter 3

Effective Datacenter Storage Policies using
Univariate Probability Distributions

3.1 Introduction

Modern data centers contain a myriad of different storage systems and services, from distributed
file systems [53, 67, 163, 190], to in-memory caching services [45] and databases [35, 168].
These services typically operate behind an RPC abstraction and are accessed by workloads that
are composed of interconnected services communicating through RPCs [50].

Storage services continuously make decisions that aim to optimize metrics such as cache hit
rate or disk footprint. To make these decisions, the systems need to make predictions about future
workload and system behavior. For example, caches admit objects based on their likelihood of
future access [16, 74], and block allocators reduce fragmentation by colocating allocations of
comparable lifetime [87].

Traditionally, storage systems rely on heuristics for these decisions, such as LRU replace-
ment policies or best-fit allocation. These heuristics exploit statistical workload properties like
temporal or spatial locality, but are unable to leverage application-level signals, such as whether
or not a request belongs to a temporary file. While systems can communicate hints to the storage
system (e.g., using prefetch commands or non-temporal stores), manually assigning these hints
is brittle, work-intensive and incurs technical debt. As such, they are most commonly used in
highly tuned workloads. To apply such optimizations to the long tail of data center workloads
[78], we need to automate them.

We observe that in many cases, high-level information is already available in the system, as
part of distributed tracing frameworks [11, 164] and resource managers [36, 137] that are widely
deployed in data centers. Distributed traces, job names, permission names, etc. are generated
automatically as part of the system’s regular operation and encapsulate human-defined structure
and information.

In this work, we are looking at a specific instance of this approach using a deployed pro-
duction distributed tracing framework, Census [135]. Census provides a tagging API that ap-
plications use to generate arbitrary key-value pair strings (Census Tags) that are automatically
propagated with outgoing requests. These tags can be used to understand complex workload
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Figure 3.1: Distributed tracing tags contain unstructured application information that can be
leveraged to make storage predictions.

interactions, and for resource accounting. A side effect is that incoming requests now come with
rich context that encodes the path taken to the storage system, which the system can leverage.

However, this data does not always have an explicit schema or directly encode the information
required by the storage system. For instance, consider a hypothetical example of databases with
two different configurations A and B, which are listed in a configuration string attached to each
storage request (Figure 3.1). A has a garbage collection interval of 5 minutes while B has 5 hours.
A caching service could leverage this information by only caching requests from the service with
configuration A. However, this information is not readily available: The service needs to know
that it needs to check the configuration string for the presence of A or B in a particular location,
and which requests to drop.

Instead of explicitly encoding these rules, we learn them from historical trace data. We
present several techniques, ranging from lookup tables to neural networks that leverage recent
progress in natural language processing. A key challenge is that models become stale over time
and do not transfer to new settings (e.g., a new storage system or cluster). The reason is that
the model jointly has to learn (1) how to extract information from distributed traces and (2) how
this information translates to predictions in a storage system. If the storage system changes, both
need to be relearned from scratch. We therefore introduce a model that can be used in a multi-
task learning setting, where a model can be used as a building block in different task-specific
models.

We make the following contributions: (1) We demonstrate the connection between distributed
tracing and storage-layer prediction tasks (Section 3.2) and show that strong predictive perfor-
mance relies on leveraging the latent structure of unstructured distributed traces (Section 3.3).
(2) We show that several important (and traditionally separate) storage tasks - such as cache
admission/eviction, file lifetime, and file size prediction - can be learned by the same models
from application-level features. (3) We present models of increasing complexity (Section 3.4)
that represent different deployment strategies, and analyze their trade-offs. (4) We show that our
models are robust to workload distribution shifts and improve prediction accuracy by 11-39%
over non-ML baselines, for a range of storage tasks, improving both a caching and an SSD/HDD
tiering task substantially in simulations based on production traces (Section 4.5).
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3.2 Background & Related Work

Data Center Storage Systems. We use a broad definition of what constitutes a storage system.
We consider any service within a warehouse-scale computer that holds data, either on persistent
storage (e.g., databases, distributed file systems) or in-memory (e.g., key-value stores). Such
services exist at different levels of the storage stack: managing physical storage (e.g., storage
daemons in Ceph [190] or D file servers [157]), running at the file system level (e.g., HDFS
[163]) or storing structured data (e.g., Bigtable [26]). One storage system may call into another.
We assume that requests to the service are received as RPCs with attached metadata, such as the
request originator, user or job names, priorities, or other information.

Prediction in Storage Systems. Storage systems employ various forms of prediction based on
locally observable statistics. These predictions are often implicitly encoded in the heuristics that
these systems use to make decisions. For example, LRU caches make admission decisions by
implicitly predicting diminishing access probability as the time since previous access increases,
while FIFO-TTL caches evict objects assuming a uniform TTL.

While such policies can model a broad range of workload patterns, they have limitations.
First, a single heuristic may have difficulties modeling a mixture of workloads with different ac-
cess properties, which it is more likely to encounter in warehouse-scale computers where storage
services receive a diverse mix of requests resulting from complex interactions between systems.
Second, they are limited by their inability to distinguish between requests based on application-
level information. For example, while traditional caching approaches can distinguish between
read and write requests, they do not typically distinguish based on what application-level opera-
tion the request corresponds to.

Application-Level Information in Systems. Using high-level features in storage systems is
not a new idea. However, most mechanisms require that the application developer explicitly
provides hints. A less explored alternative is to extract such high-level information from the
application itself. Recent work has demonstrated a similar approach for cluster scheduling [137],
by predicting a job’s runtime from features such as user, program name, etc. While cluster
schedulers have a host of such features available at the time of scheduling a job, exploiting such
information in storage systems is more challenging, since the predictive features are not readily
available. For example, a storage request may be the result of a user contacting a front-end
server, which calls into a database service, which runs a query and in turn calls into a disk server.
Features may have been accumulated anywhere along this path.

The same challenges that make it difficult to reason about storage requests make it difficult
to monitor, measure and debug distributed systems in general. For this reason, data centers have
long employed distributed tracing frameworks [11, 164], which track the context of requests
between systems. Distributed traces thus present an opportunity to leverage application-level
features for predicting workload behavior. Unfortunately, the data gathered by these systems can
be difficult to exploit, due to its high dimensionality and unstructured nature.
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Figure 3.2: Census tags are free-form key-value pairs that are added by services and propagated
with subsequent requests.

ML for Data Center Systems. The promise of ML for storage-related tasks is its ability to
learn useful representations from large amounts of unstructured data. For example, Gan et al.
[51] showed that it is possible to use traces to predict QoS violations before they occur. Dif-
ferent techniques have been proposed. For example, cheap clustering techniques [36, 137] and
collaborative filtering [39] have been shown to work well for cluster scheduling while the afore-
mentioned work on distributed traces relies on LSTM neural networks [65]. It is important to
distinguish between ML for predictions/forecasting and ML for decision making. Prior work
on applying ML to storage systems has sought to optimize the latter, such as learning caching
policies [88, 113, 167]; these works improve upon heuristics while using conventional features.
In contrast, we use ML to enable the use of more complex, application-level features.

Connection to Multi-Task Learning. Storage systems in data centers feature a wide range of
settings. For example, caches within different systems behave differently, which means that their
predictions differ as well. Decisions can also differ across database instances, or based on the
hardware they run on. As a result, prediction in storage systems does not require training a single
model but a myriad of them. Some systems even need to make multiple decisions simultaneously
(e.g., lifetime and file size on file creation). This indicates that it is beneficial to share models
between tasks, an approach known as multi-task learning (MTL).

There has been a large amount of work on MTL. Many advances in areas such as natural
language processing and computer vision have come from using large amounts of data to learn
general models that transfer better to new tasks. Among NLP’s recent successes are the learning
of general Transformer models [180], such as GPT-2 [142] and BERT [41].

Usually, MTL datasets do not have a complete set of labels for each task, but are often
multiple datasets (with possibly disjoint task labels) that share a common input feature space. As
such, MTL is a natural fit for learning multiple storage tasks from shared distributed traces.
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Key Example Values Cardinality Description
lllCall COMPACT(MINOR) — COMPACT(MAJOR) — BACKUP Low Request is from a particular DB operation
XXXCacheHit hit — miss Low Whether a request was cached
XXX action EditQuery — GetIds — UpdateConfig Medium A particular operation from a service
user id * XXX-pipeline-services-low — XXX-jobs — local XXX High A particular user group (free form)
JobId * datacenterABC.client-job-5124.v521aef * High A particular job name (free form)
XXXTable XXX-storage.XXX-local-XXX.XXX.XXX.4523.index High Name of a table a query applies to
XXXTxnTag AsyncService-Schedule-XXX — DELETE-LABEL — EDIT-XXX High Free form description of an operation

Table 3.1: Examples of Census tag features found in production distributed traces (adapted*
and/or obfuscated).

3.3 Workload Analysis with Census
In this section, we describe how the information contained in distributed traces relates to predic-
tion tasks in storage systems, and analyze their statistical properties.

3.3.1 Distributed Traces and OpenCensus
Data center applications are composed of services that communicate via message passing [50].
Services often have multiple clients using them (e.g., different services accessing a database)
and rely on multiple different downstream services (e.g., the database service might connect to
storage servers and an authentication service). This makes analysis and resource accounting
challenging: Should a request to a database be attributed to the database or one of the upstream
services using it?

Census [135] is a distributed tracing library that provides insights into such systems. It tags
requests as they travel through the system (Figure 3.2). Census allows services to set key-value
pairs (Census Tags) that are automatically propagated and allow a service to determine the con-
text of each request that it receives (e.g., for resource accounting). These tags are set through an
API by the service developers themselves, while being oblivious to tags added by downstream
services. One of the insights of our work is that this same information represents powerful fea-
tures for reasoning about the distributed system: Existing tags already capture properties of the
workload that a programmer deemed important, and programmers could select new tags based
on what they believe would be predictive features.

Some examples of Census tags are shown in Table 3.1 (obfuscated but based on real values).
While this captures some common cases, this list is not exhaustive. Some Census Tags have low
cardinality (they either take on a small number of values or their main information is in their
presence), while others (such as transaction IDs, jobs or table names) have very large cardinality
(sometimes in the tens of thousands). A human could sometimes manually write a regular ex-
pression to extract information (e.g., “XXXTable” might be split by “.” and “-” characters and
the first entry refers to a user group), but as Census tags are maintained by services themselves,
there is no guarantee that they are not going to change. For storage services to make assumptions
on any particular structure of these tags is inherently brittle.

We also noticed that the same tag does not always follow the same schema. For example,
the “XXXTxnTag” shows a mix of different schemas depending on which service set the tag.
Other tags feature a mix of capitalized/non-capitalized values, different characters to delineate
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different parts of the string, etc. This high degree of variance makes it difficult to manually
extract information from these tags consistently.

3.3.2 Prediction Tasks
We now present prediction problems in storage systems that can benefit from high-level infor-
mation.

File access interarrival time for caching. Predicting the time of the next access to an entry
allows a cache to decide whether to admit it [16, 74], and which block to evict (e.g., a block with
a later time). We focus on caching fixed 128KB blocks in a production distributed file system,
which is either accessed directly or used as a backing store for other storage systems, such as
databases. We ignore repeated accesses under 5 seconds, to account for local buffer caches.

File lifetime until deletion. File lifetime predictions are used in different contexts [87]. They
are used to select storage tiers (e.g., for transient files) and can be used to reduce fragmentation.
For example, some storage technologies have large erase units (e.g., SMR, NAND flash) and
some storage systems are append-only [26, 136]. Placing data with similar lifetimes into the
same blocks minimizes wasted bytes, write amplification, and compaction.

Final file size. Knowing the final size of a file at the time it is allocated can improve allocation
decisions. For example, it can help disk allocators pick the best block size.

Read/write ratio. Predicting the ratio of read vs. write operations is helpful for placing data.
Read-only files may be candidates for additional replication while write-only files may be best
stored in a log structure. This prediction can also help pick a storage medium (Section 3.6.4).

This list is not exhaustive. Other tasks that are not explored in this work include (1) Resource
demand forecasting when deploying a new mix of workloads (e.g., when bringing up a new clus-
ter of machines), by recording a small number of samples characterizing the mix of workloads
and then using a model to extrapolate the overall usage, and (2) Predicting workload interference
(e.g., because both are I/O heavy).

3.3.3 Analyzing Census Tag Predictiveness
After introducing the prediction tasks, we now demonstrate that Census tags are predictive of
some of these tasks.

Dataset. We analyze Colossus [157] file system traces sampled from 5 different clusters at
Google. The data is longitudinally sampled at a per-file granularity. Our traces contain over a
trillion samples per cluster and we are analyzing traces from a period of three years. The clusters
contain different proportions of various workload types. All our requests are sampled at the
disk servers backing the distributed file system and contain file metadata as well as Census Tags
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(a) Overall and per-tag value interarrival time CDFs.

Task Entropy Cond. Entropy
Interarrival Time 4.748 3.474

File Lifetime 7.303 6.575
Final File Size 3.228 2.538
R/W Fraction 1.874 1.476

(b) Overall and per-tag value interarrival time CDFs.

Figure 3.3: Conditioning the distribution on Census tags significantly reduces entropy, indicating
that they are predictive.

associated with each request. Note that these disk servers back other storage services, such as
databases.

Features. Broadly, the features provided through Census Tags fall into four categories: (1)
Census tags that indicate a particular category of request (e.g., a DB operation), (2) numerical
information (e.g., an offset), (3) medium and high cardinality labels that can contain unstructured
data (e.g., project IDs, table names, etc.) and (4) high cardinality labels that may or may not be
predictive (e.g., timestamps or transaction numbers). We are interested in the predictiveness of
these features. Note that there is information about requests that these features do not capture.
For example, we only consider one request at a time.

We can phrase our prediction problems as follows: Given a set of Census Tags and their
associated values X = {x1, x2, . . . , xn} where xi is the ith (unordered) key-value string pair,
predict a label Y (e.g., interarrival time, lifetime, etc.). We refer to X as a Census Tag Collection
(CTC).

Entropy Analysis. To measure the predictive ability of Census Tags, we look at the distribu-
tion of values for each of the tasks we aim to predict (e.g., interarrival times) and compare this
distribution to the same distribution conditioned on different values of particular Census Tags.
Figure 3.3a shows an example where we conditioned the distribution of interarrival times on a
particular Census tag “XXXKey”, which describes what type of operation a request belongs to.
We show distributions for four arbitrary values of this tag.

There is a visible difference between the distributions depending on the specific value, and
the average distribution (the dotted line) captures neither of them. A way to measure this effect
more formally is by computing the information entropy of the overall distribution (shown in
Figure 3.3b) and compare it to the conditional entropy (the weighted average over the entropies
when conditioning on Census tag values). The difference between the two is known as the mutual
information (or information gain), which measures the predictiveness of Census Tag collections
for the distribution.

Transferability of Census Tags. In order to use Census tags in predictions, we need to show
that the information they provide transfers – i.e., values recorded in one setting can be used to
predict values in a different setting. We are interested in two particular types of transferability:
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1. Across time: We want to be able to use past traces to make predictions months or years in
the future.

2. Across clusters: We want to use traces recorded in one cluster to make predictions in other
clusters.

For predictions to be transferable, traces must either share features or have a similar latent struc-
ture (e.g., there exists a similar relationship between the keys and values even if they are named
differently). To analyze transferability, we conducted a study comparing the keys and values
found in two different clusters and between traces 9 months apart (Figure 3.4a). We find that
(1) only a small fraction of requests have a CTC that occurs exactly in the original trace, but (2)
most requests have at least one key-value pair that was seen in the original trace. This is true
both across time and across clusters, and indicates that an approach that only records CTCs in a
lookup table will degrade over time and is of limited use across clusters. Meanwhile, it shows
that complex approaches can potentially extract more information.

High-Cardinality Tags. One example of tags that do not transfer directly are high-cardinality
keys capturing information that changes over time or between clusters. For example, new ac-
counts or database tables are added over time and different clusters host different workloads.
Tags that directly include these identifiers as values will therefore differ. This is visualized in
Figure 3.4b which plots the number of times each CTC is observed in a 1.4B entry trace. 18%
of CTCs are observed only once and 2/3 of CTCs are observed at most 30 times, pointing to
high-cardinality keys.

However, many of these tags can still contain information. For example, a username may be
composed of a particular system identifier and a prefix (e.g., “sys test54” vs. “sys production” )
and table names often have hierarchical identifiers (e.g., a format such as “type.subtype.timestamp”).
Only using exactly matching strings would therefore lose important information. We need to ex-
tract information from within these strings, which resembles natural language processing tasks.
Such techniques enable proper information sharing between known values as well as general-
ization to new values that have not been seen before. Of course, there are also high-cardinality
keys that carry little information – e.g., unseen UIDs. This has similarities to ML applied to code
[81, 162], where tokens are often highly specific to the context in which they appear.

3.3.4 Distribution-based Storage Predictions
Intuitively, we would expect a predictor for the storage prediction tasks from Section 3.3.2 to
predict one value for Y (e.g., the expected lifetime of a file) given a CTC X . However, there
is inherent uncertainty in these predictions: (1) features do not always capture all details in the
system that determine the file’s lifetime, and (2) effects outside the control of the system, such
as user inputs, affect the predictions. For many predictions, there is not a single value that we
could predict that is correct most of the time. Similar to the work by Park et al. [137] on cluster
scheduling, we therefore predict a probability distribution of values. This distribution can then
be consumed by the storage system directly, similar to EVA [16]: For example, a cache could
evict a cache entry with a high variance in its distribution of interarrival times in favor of an entry
with low interarrival time at low variance.
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(a) How many CTCs match across time and clusters. (b) How often each CTC appears in the data set (one
cluster).

Figure 3.4: Transferability (a) and cardinality (b) of Census tags.

To perform distribution-based predictions, data within the traces needs to be pre-aggregated.
Specifically, we need to take all entries in the trace with the same X and compute the distributions
for each of the labels Y that we want to predict (interarrival times, lifetimes, etc.). To do so, we
can collect a histogram of these labels for each CTC. We note a large skew: Some CTCs appear
many orders of magnitude more often than others, and 18% of entries show up only once (Figure
3.4b). This can be explained by two effects: (1) Some systems account for a much larger fraction
of requests than others, and (2) The lower the cardinality of Census tags set by a system, the
lower the number of different CTCs associated with this system.

Fitting Lognormal Distributions. One approach to use the histograms for input features is
to use them in a lookup table, which covers low-cardinality cases. However, as we have seen,
some Census Tags have high cardinality and we therefore need to predict them using models that
have the ability to generalize to previously unseen values. For these tags, we therefore need to
represent the output distribution in a way that we can train a model against.

Gaussians (or mixtures of Gaussians) are often used to model this type of output distribution.
For example, they are used for lifetime prediction in survival analysis [43]. In particular, we
consider lognormal distributions and show that they are a suitable fit for our data. They are a
popular choice for modeling reliability durations [130]. In contrast to other similar distributions
(such as Weibull and log-logistic), the parameters that maximize the lognormal likelihood can be
estimated in closed form. Figure 3.5 shows examples of fitting lognormals to the pre-aggregated
distributions for several CTCs. To measure how well the fitted distributions match the real data,
we use the Kolmogorv-Smirnov (KS) distance, which measures the maximum deviation between
CDFs. The overall KS distance of fitting lognormals to our data is 0.09-0.56.

3.3.5 Case Study: Database Caching Predictor
We demonstrate the insights from this section using a database system as an example. One Cen-
sus tag associated with this system indicates the high-level operation associated with it (Figure
3.3a). This information can be used to make decisions about admission and eviction. For exam-
ple, consider values A, C and D of this particular Census tag. While the average (dotted) CDF of
interarrival times for requests increases slowly (note the log scale), indicating that the interarrival
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Figure 3.5: Fitting lognormal distributions to CTC CDFs.

time is difficult to predict, requests with values A/C/D are more predictable: The vertical jump
in C shows that 3/4 of requests with this tag have an interarrival time of 15 minutes, indicating
it has a periodicity of 15 minutes. Meanwhile, we see that 2/3 of requests for A take less than 1
minute before they are accessed again, and for D the same is true for a 5 minutes interval.

We can exploit this information in a caching policy that does not evict these requests for the
first 1, 5 and 15 minutes after their last access. Afterwards, we treat them the same as other
requests. We can also do something similar for values such as B where the distribution shows
that interarrival times are much longer than for other requests. For example, we could avoid
admitting these entries to the cache at all, or prioritize them for eviction.

3.4 Machine Learning for Census Tags
We now demonstrate a set of learning techniques to achieve transferability across clusters and
over time. We assume that all models are compiled and directly linked into the storage server,
running either on the CPU, or on an accelerator such as a GPU or TPU. When a request is
received by a storage system, its CTC is represented as an unordered set of string key-value pairs.
The prediction problem is formally defined as follows: Given a CTC X , predict the parameters
of its lognormal distribution for a given task, Y = (µY , �Y ).

3.4.1 Lookup Table Model
The simplest prediction approach is a lookup table (Figure 3.6a) where a canonical encoding of
the CTC is used to index a static table that maps CTCs to Y . The table is “trained” by collecting
the target distribution histograms from a training set, pre-aggregating them, and computing the
mean and standard deviation of a lognormal distribution that fits the data. CTCs are encoded by
assigning each unique key and value in the training set an ID and looking them up at inference
time. Keys in the CTC are sorted alphanumerically, ensuring that the same CTC always results
in the same encoding.

CTCs not found in the table can be handled by substituting the overall distribution of the
training set. As shown in Section 3.3.3, the entropy of this set is much larger than the entropy
conditioned on a particular CTC (and is therefore not very predictive), but represents the best we
can do. Note that the lookup table can become very large, and it is often necessary to remove rare
CTC entries. There are different ways to implement such a lookup table. For example, it could
be implemented as a hashtable or represented by a decision tree [151], which is an equivalent but
potentially more compact representation.
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3.4.2 K-Nearest Neighbor Model
Improving upon how the lookup table handles unseen CTCs, the k-nearest neighbor approach
(Figure 3.6b) makes predictions for these entries by combining predictions from CTCs that are
close/similar. We implement an approximate k-NN method that uses as its distance metric the
number of differing Census Tags between two CTCs. We encode CTCs as a sparse binary vector
where each entry denotes whether a particular Census Tag key-value pair is present. Distance can
thus be cheaply computed as the squared L2 distance between sparse binary vectors (which can
reach a dimensionality of millions). This approach allows us to make use of existing approximate
nearest neighbor libraries that are highly optimized for sparse vectors. We choose K=50 in our
experiments, since binary vectors may have many neighbors of equal distance. For instance, a
CTC that has a different value for one Census Tag may get matched against a number of CTCs
that have distance 2. To compute the predictions, we aggregate the chosen nearest neighbors.
The mean µY is simply the weighted average over the means of the individual neighbors. The
standard deviation �Y is computed by summing two components: (1) the weighted average over
the variance of each neighbor, and (2) the weighted squared distance between the individual
means and the overall mean.

This approach resembles strategies that have been used in cluster scheduling [36, 137].
In contrast to a lookup table, it has more generalization ability, but it is still unable to ex-
tract information from high-cardinality Census tags. Imagine a tag where values are of format
<query-type>.<timestamp>. Here, “query type” captures information that we want to
extract. Since “timestamp” will take on a different value for every request, each entry will re-
sult in a different CTC. This, in turn, means that (1) the lookup table grows very large and (2)
each entry only has a single data point associated with it. Instead of a histogram of values, the
“distribution” associated with this CTC is therefore a single point mass with � = 0. This makes
it impossible for the model to generalize, since the nearest neighbor approach has no way of
knowing that the different values are identical except for the timestamp.

3.4.3 Neural Network Model
Handling these high-cardinality cases necessitates a model that can parse the strings that consti-
tute the key-value pair. While a nearest neighbor approach can learn simple connections between
predictions and Census tags (e.g., “if tag A has value B, the file is short-lived”), it cannot learn
more complex and non-linear interactions (e.g., ”if tag A has an even number as value, then the
file size is small”). To push the limits of learning these more complex connections, we use a
neural network-based approach. Note that in practice, this neural network would not run at every
prediction but be used as a fall-back for lookup table entries where no example can be found (and
therefore runs rarely).

A simple approach would be to encode keys and values as IDs (similar to the lookup table),
feed them into a feed-forward network, and train against the Y from pre-aggregation. However,
this approach still has no capability to generalize to unseen values nor high-cardinality keys that
only have a single data point associated with them. We address these problems by combining
two approaches:

1. We build on recent advances in natural language processing to train networks operating on
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(d) Hierarchical Raw Strings Transformer

Figure 3.6: The model architectures that we explore in our work (blue signifies training).
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raw strings. Specifically, we use a Transformer [180] model that uses an attention mecha-
nism to consume a sequence of inputs (e.g., character strings comprising each Census tag)
and maps them to an embedding (i.e., a learned encoding).

2. To handle CTCs with a single point, we do not train against (Yµ, Y�) directly, but use
Mixture Density Networks [19] to let the model fit a Gaussian.

The neural network architecture is based on typical models used in NLP to process character
and word tokens. We present two versions: (1) an embedding-based version that resembles the
approach above of feeding token-encoded key-value pairs directly into the model, and (2) an
approach that parses raw strings of key-value pairs. The model architecture is similar in both
cases and relies on learning embedding representations [124], learned mappings from a high-
dimensional input to a latent representation in some other – usually lower-dimensional – space.

Embedding-Based Transformer Model. For this version (Figure 3.6c), we start from a CTC
X = {x1, x2, . . . , xn} where xi is the ith (unordered) key-value string pair – encoded as one-
hot encoded vectors based on their IDs – and pass each xi through a single embedding layer
� : N ! R

m to create a set of embedding vectors V = {�(x1),�(x2), . . . ,�(xn)}. V is
then passed into the Transformer encoder M : R

n⇥m
! R

n⇥m and its output is averaged to
produce the shared output embedding S =

Pn
i=1 M(Y )i where S 2 R

m. Finally, this output
embedding is passed through an additional 2-layer fully connected network to yield the outputs
Y = (µY , �Y ). The last layer producing � uses an ELU activation (specified by Mixture Density
Networks).

Hierarchical Raw Strings. This version (Figure 3.6d) operates directly on raw strings, where
each character is encoded as a one-hot vector of dimensionality 128 (127 characters and one
special character to separate key and value). Each key-value pair xi is encoded as a sequence
of such one-hot vectors (xi 2 R

ki⇥128), and the characters are passed through an embedding
layer, yielding an �(xi) 2 R

ki⇥m, where ki is the length of the i-th key-value pair. Each �(xi)
is then passed through a Transformer encoder – all these encoders’ weights are shared (i.e., this
encoder learns how to parse an individual key-value pair). The outputs of these encoders are then
passed into another encoder, which now aggregates across the different key-value pairs (i.e., it
learns connections between them). As before, the output is then averaged and passed through
two fully-connected layers.

Mixture Density Networks. Because the goal is to predict the distribution associated with
each CTC, we must choose a loss function that allows the model to appropriately learn the opti-
mal parameters. Consider if we used squared distance to learn the mean and standard deviation
of a log-normal distribution. While squared error may be appropriate for learning the mean, it
is not for the standard deviation. For instance, squared error is symmetric, and underestimating
the standard deviation by 0.1 has a much larger effect on error than overestimating by 0.1. Addi-
tionally, a model trained with squared error will not learn the correct standard deviation from an
overpartitioned dataset (e.g., if all CTCs had � = 0, the model would learn � = 0).

Mixture Density Networks [19] were designed to address this problem. Instead of fitting
(µY , �Y ) directly to the label, the predicted (µ, �) are used to compute the likelihood that the

25



6WRUDJH�5HTXHVWV�ZLWK�&HQVXV�7DJV

0XOWL�7DVN�7UDQVIRUPHU�0RGHO

7DVN�6SHFLILF�/D\HUV

7DVN����&DFKLQJ

7DVN�6SHFLILF�/D\HUV

7DVN����/LIHWLPH

7DVN�6SHFLILF�/D\HUV

7DVN����)LOH�6L]H

Figure 3.7: Using the Transformer in multi-task learning.
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Note that now instead of training against a distribution Y , we need to train against a specific label
y from this distribution. We therefore sample y from Y at every training step. In high-cardinality
cases where � = 0, all of these samples will be the same, while in cases where we have enough
data points, the samples match the distribution.

Multi-Task Learning. While the Transformer model is shown for a single task, the front-
end (encoder) part of the model could be reused in a multi-task setup (Figure 3.7). The fully
connected layers at the end of the network can be replaced by different layers for each task. The
Transformer could then be jointly trained on multiple storage tasks.

3.5 Implementation Details
We prototyped and evaluated our models in a simulation setup driven by production traces. We
pre-process these traces using large-scale data processing pipelines [25] and run them through
our models.

Lookup Table. The lookup table performance is calculated using our data processing pipelines.
We aggregate across CTCs, perform predictions for each CTC and then weight by numbers of
requests that belong to each CTC.

K-Nearest Neighbors. We build on the ScaNN nearest-neighbor framework that uses an in-
verted index method for high-performance k-nearest neighbor search [62]. We use this frame-
work to conduct an offline approximate nearest neighbors search with K=50. Most of this
pipeline is shared with the lookup table calculation.

Transformer. We implement our Transformer models in TensorFlow [1] and run both training
and evaluation on TPUs [77], using the Tensor2Tensor library [181]. We use the following hy-
perparameters: {num hidden units=64, num hidden layers=2, num heads=4}
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Tags Len. P/D Samples Table K-NN Transformer
Separate 2 / 5 1,000 8.00 0.001 0.008
Separate 2 / 5 10,000 8.00 0.000 0.015
Separate 10 / 20 1,000 8.00 0.000 0.047
Separate 10 / 20 10,000 8.00 0.000 0.005
Combined 2 / 5 1,000 8.00 8.000 0.034
Combined 2 / 5 10,000 8.00 8.000 0.003
Combined 10 / 20 1,000 8.00 8.000 0.017
Combined 10 / 20 10,000 8.00 8.000 0.006

Table 3.2: Mean squared error (MSE) on a synthetic microbenchmark that combines an
information-carrying (P)refix with a (D)istractor of a certain length, in the same or separate
tags.

and a sinusoid positional embedding. We train using a weighted sampling scheme to ensure
that CTCs occur approximately as often as they would in the actual trace.

3.6 Evaluation
We evaluate our models on traces. We start with microbenchmarks based on synthetic traces
that demonstrate the ability of our models to generalize to unseen CTCs. We then evaluate our
models on production traces from Google data centers. Finally, we show a simulation study that
applies our models to two end-to-end storage problems, cache admission and SSD/HDD tiering.

3.6.1 Microbenchmarks
To demonstrate the ability of our models to learn information in high-cardinality and free-form
Census tag strings, we construct a synthetic data set for the interarrival time task. We create
5 overlapping Gaussian clusters with means µ = {1, 3, 5, 7, 9} and � = 1. Requests from the
same cluster are assigned a shared prefix and a randomly generated distractor string (in real
Census tags, this might be a timestamp or UID). The goal is for the model to learn to ignore the
distractor string and to predict the parameters of each cluster based on the observed shared prefix.
We experiment with two different setups: 1) the prefix and distractor are in separate Census tags,
and 2) the prefix and distractor are combined in the same Census tag. For the former, the model
has to learn to ignore one particular Census tag, for the latter, it has to extract part of a string.

We compute the MSE to indicate how close the predicted log-normal parameters (µ, �) were
to the ground truth. An error of 0 indicates that we perfectly recovered the distribution, while
an error of 8 (= (2 ⇥ 22 + 2 ⇥ 42 + 0)/5) corresponds to always predicting the average of all
means. We also vary the number of samples per cluster between 1,000 and 10,000 to study how
many samples are needed to learn these parameters. The lookup table is unable to learn either
case, since it can only handle exactly matching CTCs (Table 3.2). K-Nearest Neighbor (with
K=1) can correctly predict the separate cases, but fails on the combined cases since it cannot
look into individual strings. Finally, the neural network successfully learns all cases. We find
that 10K samples per class were sufficient to learn a predictor that stably achieves an error close
to 0 and does not overfit. This data shows how our models are able to learn successively more
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information, representative of the actual traces.

3.6.2 Prediction Latency
A key question for deployment is the models’ latency. In practice, the lookup table will be used
to cover the vast majority of cases and the more expensive models only run when a CTC is
not in the table (the result is added for the next time the CTC is encountered). This gives the
best of both worlds – resilience to drift over time and across clusters, and high performance.
Evaluating on file creation requests, we found that after one month, only 0.3% of requests had
CTCs that were never seen before. We measured our lookup table at 0.5 µs per request and the
largest Transformer model at 99 ms (entirely untuned; we believe there is headroom to reduce
this significantly). The average latency with the Transformer is therefore 310 µs, which is fast
enough to run at relatively rare operations like file creation (e.g., the SSD/HDD tiering case). For
more frequent operations (e.g., block reads/writes), we would use the cheaper models, whose
latency can be hidden behind disk access.

3.6.3 Production Traces
We now evaluate our models on real production traces. Our evaluation consists of two main
components: evaluating model generalization error, and demonstrating end-to-end improvements
in simulation.

As discussed in Section 3.3.3, we would like models to generalize (1) across long time hori-
zons, and (2) across clusters. We train models on a 3-month trace and evaluate their generaliza-
tion on a 3-month trace from the same cluster 9 months later, and a 3-month trace from the same
time period on a different cluster. We find that models perform well within the same cluster and
less (though acceptably) well across clusters. We measure both the weighted and unweighted
error, and show that simple models are sufficient to learn the head of the distribution while more
complex models are better at modeling the long tail. We also find that while there is some drift
in each CTC’s intrinsic statistics, generalization error across time is largely due to unseen CTCs,
indicating that a model can be stable over time. More details about the results and error metrics
can be found in the Appendix.

3.6.4 End-to-End Improvements
We now show two case studies to demonstrate how the CDF predictions can be used to improve
storage systems. While our simulations use production traces and are inspired by realistic sys-
tems, they are not exact representations of any real Google workload. Additional evaluation of
variation within some of these results is provided in the Appendix.

Cache Admission and Eviction. We implement a cache simulator driven by a consecutive
time period of 40M read requests from our production traces. These are longitudinal traces to a
distributed file system; while our simulation does not model any specific cache in our production
system, this is equivalent to an in-memory cache in front of a group of servers that are handling
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Figure 3.8: Using predictions in caching.

Figure 3.9: Using predictions in SSD/HDD tiering.

the (small) slice of files represented by our traces. Such caches can have a wide range of hit
rates [7], depending on the workload mix and upstream caches. As such, these results are rep-
resentative for improvements one might see in production systems. The approach is similar to
prior work on probability-based replacement policies such as EVA [16] or reuse interval predic-
tion [74]. The main difference is that we can predict these reuse intervals more precisely using
application-level features.

We consider a cache that operates at a 128KB fixed block size granularity and use an LRU
admission policy as the baseline; LRU is competitive for our distributed file system caching
setup, similar to what is reported by Albrecht et al. [7]. Our learning-based policy works as
follows: At every access, we use our model to predict (µY , �Y ) of the lognormal distribution
associated with this request. We store these parameters in the block’s metadata, together with the
timestamp of the last access to the block. We now define the utility of a block as the probability
that the next access to the block is within the next �t = 1,000s (�t is configurable). This value
can be computed in closed-form (Figure 3.8a):

Utility(t, µ,�) =
CDF(t + �t|µ, �) � CDF(t|µ, �)

1 � CDF(t|µ, �)

We logically arrange the blocks into a priority queue sorted by increasing utility. When we insert
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a block into the cache, we compute its utility and add it to the priority queue. If we need to evict
a block, we pick the entry at the front of the queue (after comparing it to the utility of the new
block). We therefore ensure that we always evict the block with the lowest utility/probability of
access. Note that this utility changes over time. Recomputing all utilities and sorting the priority
queue at every access would be prohibitive – we therefore only do so periodically (e.g., every
10K requests). An alternative is to continuously update small numbers of entries and spread this
work out across time. Figure 3.8b shows that the model improves the hit rate over LRU by as
much as from 17% to 30%.

SSD/HDD Tiering: We perform a simple simulation study to demonstrate how predictions
can be used to improve SSD/HDD tiering. We assume a setup similar to Janus [7] where an HDD
tier is supplemented with an SSD tier to reduce HDD disk I/O utilization (since spinning disks
are limited by disk seeks, fewer accesses for hot and short-lived data means that fewer disks are
required). Our baseline is a policy that places all files onto SSD initially and moves them to HDD
if they are still alive after a specific TTL that we vary from 10s to 2.8 hours. We use 24 hours
of the same traces as in the previous example and compute the average amount of live SSD and
HDD memory, as well as HDD reads and (batched) writes as a proxy for the cost.

We use our model to predict the lifetime of newly placed files (Figure 3.9). We only place a
file onto SSD if the predicted µ+n⇥� is smaller than the TTL (we vary n = 0, 1). After the file
has been on SSD for longer than µ + m ⇥ � (m = 1, 2), we move it to the HDD. This reduces
write I/O at the same SSD size (e.g., by ⇡20% for an SSD:HDD ratio of 1:20) or saves SSD
bytes (by up to 6⇥), but did not improve reads. We also used the model to predict read/write
ratio (Section 3.3.2) and prefer placing read-heavy files on SSD. This keeps the write savings
while also improving reads.

30



Chapter 4

Steerable Language Generation from Text
Embedding Vectors

4.1 Introduction
Text embeddings [6] are widely useful across myriad applications, e.g., search systems [54, 69,
134], clustering, and retrieval-augmented generation [21, 103]. Early embedding models for text
such as word2vec [124] showed the remarkable ability to implicitly encode high-level semantic
relationships between words linearly within the learned vector space.

Dense vector representations of texts have since evolved to encode lengthier inputs such
as sentences and entire documents. Such embeddings are now typically induced using large
language models (LLMs) [131, 183]. Interestingly, despite the increase in model complexity,
linear representations of high-level concepts remain even in the latent space of LLMs [75, 120,
138, 174].

The movie was great

She is known for her novel
I walk

The movie was terrible

She is basically known for her novel
I walked
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f�

Figure 4.1: vec2text models (consisting of a fixed embedding model � and a learned decoder
model f✓) can be used to perform various transformations of inputs (e.g., changing tense) rea-
sonably reliably by applying simple arithmetic operations to latent vectors.

Aside from encoding semantic relationships, recent work has investigated whether and to
what degree modern text embeddings induced by LLMs retain information about the text that
they encode [100, 105, 128, 166]. Notably, [128] recently proposed an approach called vec2text,
showing that it is possible to fully invert LLM-based embeddings, i.e., recover the original text
exactly from its vector representation. In this work we ask the following question: Can we per-
form linear operations to vec2text embeddings which yield predictable semantic changes to
text when we subsequently decode them? This idea is schematicized in Figure 4.1.
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In this work, we show that simple, latent vector steering of LLM embeddings (e.g., OpenAI’s
text-embeddings-ada-002) can, when passed through vec2text, easily modulate the
high-level features of input text such as tense, sentiment, and conciseness. We find that these
transformations can be “supervised” (without any training) using few ( 10s) examples per
task, i.e., by computing and averaging vector offsets. We conduct extensive analyses that further
highlight the expressive sentence transformation ability of vec2text models, and show they
outperform baseline approaches based on latent vector and activation steering.

4.2 Background and Related Work
Embedding models of text. Word2vec [124] popularized vector representations of words.
Their objective favors embedding vectors such that distances between words in the resultant
space correspond to their tendency to occur in similar contexts. These models showed a remark-
able ability to organize high-level concepts linearly, and made it possible to conduct “analogy-
style” transformations using algebraic vector manipulation. Follow-up work focused on generat-
ing vector representations for longer text sequences such as sentences and passages [89, 95, 107]
which have been further improved with Transformer LLMs [23, 131, 134, 146, 179]. As a re-
sult, modern text embeddings have become increasingly expressive and relevant for information
retrieval [69] and open domain question-answering [82].

Text generation from embeddings. Previous work studying text generation from embedding
vectors have done so from two main directions. The first are auto-encoder approaches [22, 104,
127, 161] that reconstruct sentences through a (learned) bottleneck vector. These were among
the early works that showed word2vec-style vector arithmetic was possible with sentence em-
beddings. The second are vector inversion methods [5, 105, 128, 145] that aim to recover text
given its dense vector representation. These have shown that modern LLM embeddings contain
a surprising amount of information, and these extractive methods (particularly [128]) form the
basis of our work.

Task-based steering in activation space. A related line of work leveraging the linear semantic
representations within modern LLMs, activation steering [64, 91, 116, 148, 169, 178, 200] has
recently gained interest as an intuitive and effective means to modulate the style and quality of
LLM prompt responses. This typically involves performing word2vec-style arithmetic in the
space of LLM activations using vector offsets from contrastive inputs. Activation steering is
mostly used to improve prompted generation, such as by improving politeness or factualness,
and decreasing toxicity.

4.3 Text Embeddings and vec2text
A text embedding model � is trained to map input text (i.e., a sequence of tokens xi 2 Z+) to
a vector z 2 R

d in a vector space. Ideally, such embeddings would encode high-level concepts
such as semantic similarity and relationships in the geometry of the latent space; the empirical

32



observation that they indeed seem to was a finding that changed NLP. In particular, classic work
on the word2vec [124] token embedding model showed that concepts such as gender, tense,
and size are represented by linear directions in the learned vector space; this in turn permits
algebraic manipulation of word representations.

Recent work from [128] has considered the inverse problem, i.e., mapping from an embed-
ding back to text. More precisely, they proposed vec2text models f✓ trained to map vectors z
back to the original token space Z+. They accomplish this using a consistency-based approach,
whereby the vec2text model f✓ is learned to maximize the similarity between f✓(z) and x.
While their work studies invertability as it relates to embedding privacy, we find that vec2text
is highly suited to performing sentence transformations through latent embedding steering and
therefore use it as the basis of our work. In this section, we describe how to use vec2text
effectively for sentence transformations.

4.3.1 Overview of vec2text
Given a vector representation z of the target sentence, vec2text aims to find a sentence x

that maximizes the cosine similarity between �(x) and z, i.e., argmaxx cos(z,�(x)). Since the
token space Z+ is combinatorially large, Morris et al. [128] propose optimizing this objective
using beam search with a conditional language model1. They first generate an initial hypothesis
x
(0) using a learned inversion model f init

✓ trained to minimize CE(x⇤
, x

(0)), the cross-entropy
between the initial hypothesis x(0) and its ground truth sentence x

⇤. Subsequently, vec2text
uses a refinement model f ref

✓ to generate subsequent hypotheses x(t) conditioned on the previous
hypothesis x(t�1) and its vector representation �(x(t�1)):

x
(t) = f

ref
✓

�
x
(t�1)

,�(x(t�1)), z
�

vec2text conducts beam search at the sequence level rather than at the token level. At the start
of round t, the refinement model f ref

✓ maintains B candidate solutions from the previous round.
The refinement model then generates B ·B updated candidates and retains the top B candidates
that maximize cos

⇣
�(x(t)

i ), z
⌘

.

4.3.2 Transforming sentences using vec2text
Our method starts from the learned embedding inversion of vec2text to transform sentences
in latent space. We transform an input sentence x by adding a linear offset z� to its embedding
representation �(x) and then decoding the resulting representation �(x)+ z� using vec2text.
We use a small number of input-output pairs to “learn” the linear offset z� by taking the average
over the offset vectors between each input-output pair:

z� =
1

K

KX

i=1

�(xoutput
i ) � �(xinput

i ) (4.1)

1[128] trains a 235M-parameter T5 model [144] that we use in our work.
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Models IMDB Yelp Wikipedia
BLEU Exact cos BLEU Exact cos BLEU Exact cos

Greedy, 0 steps 10.2 0.0 0.93 9.81 0.0 0.98 12.3 0.0 0.94
Greedy, 2 steps 43.2 17.6 0.97 38.6 0.0 0.99 48.5 17.6 0.97
Greedy, 5 steps 50.2 22.8 0.98 41.1 0.0 0.99 54.9 22.0 0.98

Beam Search (width=3), 2 steps 49.4 23.2 0.98 43.4 0.0 0.99 55.9 26.0 0.98
Beam Search (width=3), 5 steps 57.5 32.4 0.99 46.2 0.0 0.99 62.1 32.0 0.98

Table 4.1: Reconstruction metrics across sentences from IMDB, Yelp, and Wikipedia.

↵ Transformed Sentence

0.0 The acting is horrible, a plot is nonexistent, and production values are poverty level at best.
1.0 The acting is terrible, plot is at a poverty level, and production values are at best.
2.0 The acting is fantastic, production values are at a poverty level, and the plot is best ever.
3.0 The acting is wonderful, production is at the best levels, and a plot is a poverty level.

4.0
The acting is wonderful, production is at the best levels ever, and a rich plot, and a plethora of
characters to grab at.

5.0
The acting is wonderful, production values are at a premium level, and the plot is at a joy to
watch.

Table 4.2: Extrapolating the negative-to-positive vector from IMDB yields increasingly positive
adjectives using vec2text.

Note that such paired supervision is not strictly necessary since Equation 4.1 is equivalent to
taking the mean between the input and output clusters:

z� =
1

K

KX

i=1

�(xoutput
i ) �

1

K

KX

i=1

�(xinput
i ) (4.2)

However, we find empirically that using paired supervision is generally more performant, in
that it leads to more consistent offsets z�. Therefore we use paired supervision whenever pos-
sible2. Further analysis of embedding vectors and their task-based alignment are provided in
Section 4.5.1.

Once we have obtained the direction z� that changes the desired text attribute, we extrapo-
late z� using larger coefficients to get �(x) + ↵ · z�. Doing so is necessary for ensuring that
a transformation is successfully completed and additionally can be used to “intensify” certain
transformations such as sentiment (Table 4.2).

4.3.3 Reconstructing sentences with vec2text
To ensure that vec2text is sufficiently expressive to transform sentences across a diverse cor-
pora, we first measure its ability to reconstruct unmodified sentences from the datasets that we

2Paired supervision is available for the majority of tasks we explore in this work, but not for the Yelp sentence
sentiment dataset by [160].
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Datasets Metrics 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

IMDB
Cosine Sim 0.98 0.99 0.97 0.96 0.95 0.95 0.95 0.96 0.97 0.98 0.98
PPL / Token 38.1 39.9 45.2 40.7 50.0 52.5 49.5 49.2 43.1 42.4 43.6
Num Tokens 28.0 27.2 27.9 32.5 33.3 34.0 33.7 30.1 28.0 27.1 26.5

Yelp
Cosine Sim 1.00 0.99 0.98 0.97 0.96 0.96 0.96 0.97 0.99 0.99 1.00
PPL / Token 104.9 101.9 90.8 96.8 91.9 96.9 85.6 86.0 86.0 77.8 74.5
Num Tokens 12.0 12.0 13.5 15.4 19.2 20.5 20.6 15.2 13.2 13.4 13.2

Wikipedia
Cosine Sim 0.99 0.99 0.98 0.96 0.95 0.94 0.95 0.96 0.97 0.98 0.98
PPL / Token 36.8 34.3 44.7 48.1 60.1 61.6 54.3 37.9 31.1 27.4 26.2
Num Tokens 31.8 32.2 32.4 34.5 36.9 38.5 39.2 36.7 34.3 33.6 35.3

Table 4.3: Reconstruction and fluency metrics averaged across 50 interpolated sentence pairs
from IMDB, Yelp, and Wikipedia. Sentences are decoded using beam search with beam width 3
and 5 refinement steps.

consider in our work: Wikipedia, IMDB, and Yelp.
[128] originally showed that vec2text could exactly reconstruct > 90% of sentences from

MS MARCO [132] up to 32 tokens in length, while achieving adequate BLEU-4 reconstruction
scores between 14.5 and 59.6 for sentences between 64 and 128 tokens in length. We find that
their method indeed can reconstruct unmodified sentences from our three datasets with a high
degree of fidelity in terms of the BLEU-4 between the original and recovered sentence, and
cosine similarity between the original and recovered vector embeddings (Table 4.1).

Because we transform sentences by shifting their representations in the embedding space, it is
important to understand whether vec2text is sufficiently capable of decoding perturbed sen-
tence representations. We evaluate this on a strong case of sentence perturbations: interpolated
sentences. We evaluate the generalization of vec2text by measuring: (1) reconstruction using
vector embedding cosine similarity to the reference embedding, and (2) fluency using perplexity
recorded by a Llama-2 7B language model [175].

Using a 100-example subset of each of our three datasets, we randomly pair sentences for
interpolation. Reconstruction on interpolated sentences is nearly on par with unmodified sen-
tences (0.95 v.s. 0.99), although interpolated sentences are typically more verbose (up to 20-60%
longer) and have higher per-token perplexity. Despite this, we find that interpolated sentences
remain reasonably sensible and grammatical (see Table 4.4), and conclude that vec2text gen-
eralizes sufficiently well at decoding perturbed vectors for our purposes.

4.4 Transforming Sentences
In this section we show how we transform sentences via manipulations in latent space. We
use paired supervision (of original and transformed sentences) to find linear offsets in the latent
space that realize transformations of targeted semantic and lexical properties of input sentences.
We quantitatively evaluate the efficacy of this approach using 250-example evaluation datasets
constructed from Wikipedia, IMDB, and Yelp sentence datasets. We additionally showcase qual-

35



↵ Interpolated Sentence

0.0
Grey writes one episode of this television drama series: ’Quality Mercy: We Should Have Had a Uni-
form’ (1975).

0.2
Grey writes one episode of this television drama: Quality Uniforms: We Should Have Had Mercy
(1975).

0.4
Writer Meredith Grey narrates a low-quality satire about this area of lakeshore: Gray is a Serenity and
We Should Have Uniforms (1975).

0.6
It is a low-quality area of lake shoreline featuring grates, sedges and meadows along with one Grates:
Grace Weaver (1975).

0.8
It is a low-relief area along lake shores, including lake sedges and meadows, lake sedges/gravel sub-
strates, and silvery grasses.

1.0
It is a low relief area along lake shores including glacial sedges and meadows, siltgrasses, and
sands/gravel substrates.

Table 4.4: Interpolations between sentences in Wikipedia remain sensible and grammatical.

itative examples of sentence transformations in Section 4.4.2.

4.4.1 Sentence transformation tasks
Following prior work [127, 161, 169], we use 100 input-output sentence pairs to “supervise”
transformations. We note, however, that we are able to perform these transformations with far
fewer examples (10s), which we explore further in Section 4.5.1. Below we describe the types
of sentence transformations that we perform and how we evaluate them. We investigate three
types of transformations: changing sentiment, altering grammar, and adding words and phrases.

Sentiment. We evaluate negative-to-positive and positive-to-negative sentiment transforma-
tions on (1) the Yelp dataset created by Shen et al. [160], and (2) the IMDB-S sentence dataset
created by Wang and Culotta [188] from the counterfactually augmented IMDB dataset of Kaushik
et al. [83]. We evaluate the transformed sentences using a sentiment classification model trained
on a held-out portion of the dataset. For IMDB, we perform sentiment transformations on the
un-augmented positive and negative splits of the data, and derive transformation vectors by tak-
ing the vector difference between the original and augmented versions of the respective splits.
Example transformations are shown in Table 4.5.

Grammar. We investigate transformations of tense and plurality, e.g., changing “I walk” into
simple past tense “I walked”, or “the dog chases” into its plural form “the dogs chase”. We
evaluate by checking if the corresponding span in the decoded sentence contains the transformed
word and verb. Example transformations are shown in Table 4.6.

Adding words and phrases. These transformations involve adding words and phrases at var-
ious locations within a sentence. We add unnecessary qualifying words such as ”basically”,
”generally”, and ”essentially” anywhere in the sentence and add start phrases (e.g., “Because
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Task Model Transformed Sentence

Negative-
to-

Positive
Sentiment

Original Anyway, the movie is largely boring and based around a bunch of worthless char-
acters.

vec2text Anyway, the movie is largely worth watching and based around a bunch of inter-
esting characters.

Autobot Today, the plot is centered around a lot of valuable characters and based on a
bunch of plastic characters.

Steering Vec. Anyway, the movie is largely based on the movie.

Style Vec. The movie is an interesting exploration of the lives of its characters and their
journey of self-discovery.

Positive-
to-

Negative
Sentiment

Original My husband and I enjoyed it so much we bought the VHS and have enjoyed it ever
since.

vec2text My husband and I bought a VHS of it and threw it away to make it worse, it’s
dreadfully boring.

Autobot My husband hated it so much and we bought the VHS so we had stuck it since we
bought it.

Steering Vec. My husband and I bought the VHS and have never seen it.
Style Vec. We have never enjoyed a VHS as much as we did when we threw it away.

Table 4.5: Examples of sentiment sentence transformations on IMDB-S across different model
types. We report the first correct result obtained through extrapolation.

of this” and “It was apparent that”) as well as end phrases (e.g., “which was interesting” and
“because it is necessary”.) Example transformations are shown in Table 4.7.

Metrics. To quantitatively evaluate sentence transformation quality, we report the Transforma-
tion Success (TS%), and Self-BLEU, the BLEU-4 similarity between the original (un-transformed)
sentence and the transformed sentence. Together, these metrics are intended to measure the abil-
ity to change sentence attributes while preserving their content.

4.4.2 Qualitative Sentence Transformations
In this section, we show additional examples of sentence transformations that we evaluate quali-
tatively in order to showcase the abilities of the vec2text approach. We find that vec2text
is able toEvaluation transform a diverse set of sentence features including changing grammati-
cal ordering, modifying writing style, and switching gender and occupation (Table 4.8). Each
transformation uses 5-10 input-output pairs.

First, we show that we can transform sentences that have subject-object-verb (SOV) ordering
(e.g., “I watched a movie.”) typically encountered in the English language to object-subject-
verb (OSV) ordering (e.g., “A movie I watched”). Using SOV-OSV pairs such as “She tied her
shoelaces.”/“Her shoelaces she tied.”, we find that vec2text is able to change SOV sentences
to OSV ordering with reasonable success, although the transformed sentences are often lengthed
(perhaps because the model was trained on longer sentences).
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Task Model Transformed Sentence

Present-to-
Simple

Past

Original He is ordained a religious priest of Bethany Ashram by then Bishop of Kandy H.E
Bernad Reinjo O.C.B in 1944.

vec2text He was ordained a religious priest by Bishop Benny Rehman of Ashok Missionary
Church of K.C.O.B.A at that time 1944.

Autobot He was ordained a priest in 1944 by Bishop of B.A.B.A. Diocese of San Diego.

Steering Vec. He was ordained a religious priest of Bethany Bethany in Bethany, West of
Boston.

Style Vec. He was ordained a religious priest of Bethany Ashram by then Bishop of Kandy
H.E Bernad Reinjo O.C.B in 1944.

Singular-
to-Plural

Original The site was praised by Boing Boing, ”The Wall Street Journal”, and ”Business
Week”.

vec2text The sites were praised by BoingBoing, The Wall Street Journal and Business
Week.

Autobot The newspapers were published by Boing Boer, Boing, and ”The Walling”, and
”The Boer”.

Steering Vec. The sites were praised by Boingos Boing, ”The Wall Street Journal”, and ”Busi-
ness Week”.

Style Vec. The site were praised by Boing Boing, T̈he Wall Street Journal,̈ and B̈usiness
Week.̈

Table 4.6: Examples of grammatical sentence transformations, including present-to-simple past
and singular-to-plural subject and verb transforms, across different model types. Correctly edited
subjects and verbs are highlighted in red. We report the first correct result (if it exists) obtained
through extrapolation and otherwise the first changed sentence.

Second, we find that vec2text can effectively change the style of a sentence while pre-
serving its meaning. We explore this with two tasks: (1) Simplifying complex sentences into
a simpler style, and; (2) Changing the style of a sentence from modern to Shakespearean. We
obtain the first offset vector using aligned sentence pairs from English Wikipedia and Simple
English Wikipedia [37], and the second offset vector using aligned sentence pairs from a Shake-
speare dialogue corpus [193]. Extrapolating in the “complex-to-simple” direction simplifies sen-
tence structure and word choice while the “modern-to-Shakespearean” direction replaces modern
words with their archaic counterparts.

Lastly, we show that vec2text can transform the gender of a sentence subject and its as-
sociated occupation. Our findings suggest that the text-embedding-ada-002 embedding
space encodes gender-occupation associations that are likely to surface in the text generated by
vec2text. We further explore the existence of these associations in Section 4.5.2.
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Task Model Transformed Sentence

Adding
Qualifying

Words

Original It has inspired dozens of recordings and adaptations, as well as the title of Cormac
McCarthy’s 1992 novel ”All the Pretty Horses”.

vec2text It has essentially inspired dozens of recordings and adaptations, as well as the title
of Cormac McCarthy’s 1992 novel ’All the Pretty Horses’.

Autobot It has also largely largely been basically essentially the title of many of the novels,
as well as the title of ”Cormac and My Dreams”.‘1

Steering Vec. It has been essentially since 1992, when it basically every stage of it basically
every stage

Prepended
Phrase

Original The Summit Branch Public Library is located on the school campus.

vec2text Because of this, the Summit Branch Public Library is located on the school cam-
pus.

Autobot Because of this, the Summit School campus is located on the campus.

Steering Vec. Because of this, the Summit Branch Public Library is located on the school cam-
pus.

Appended
Phrase

Original Six cherry trees were also delivered to Bly to be planted at the site.

vec2text Six cherry trees were also to be delivered to Bly to be planted at the site, which
was interesting.

Autobot
Six trees which were interesting to which which was interesting, which was in-
teresting, which was really interesting to which was interesting, which was also
interesting, which was interesting.

Steering Vec. Six cherry trees were also interesting.

Table 4.7: Examples of additive sentence transformations, including adding qualifiers and
phrases, across different model types. Correctly added text is highlighted in blue.

4.5 Evaluation

4.5.1 Sentence Transformation Results

We present quantitative transformation results in Table 4.9; we also plot Transformation Suc-
cess v.s. Self-BLEU for the negative-to-positive sentiment transform in Figure 4.2. These show
vec2text outperforms previous approaches to transforming sentences via latent and activa-
tion space edits. Specifically, for baseline points of comparison, we use the publicly available
implementations of DAAE [161], Autobot [127] (which we partially re-implement) and Style
Vectors [91]. We re-implement Steering Vectors [169], injecting the vector in layer 6 at all
timesteps in accordance with their recommendations. We perform activation steering for Style
Vectors at the layers within Alpaca-7B [172] used by the authors in their experiments (e.g. 18,
19, 20). We conduct all of our experiments on a RTX 3090 with 24GB of memory, and use a
4-bit quantized version of Alpaca-7B to ensure the model fits within GPU memory.
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Task ↵ Transformed Sentence

Complex-
to-Simple

0.0 Based on molecular studies, it has been proposed that only be two subfamilies, Rubioideae
and Cinchonoideae, are well supported.

3.0 It has been proposed that only two families are supported: Cinorubidae and Rubiorubidae.
5.0 It only supports two families: Rubiaceae and Cinnabarae.

SOV-to-
OSV

0.0 He caught a fish. I cleaned my room.
3.0 What a fish he caught. My room I cleaned up. Those I cleaned up.
5.0 The fish he caught. A trawl he caught. The ones I have in my room I cleaned up.

Modern-
to-

Shakespeare

0.0 Tonight we’ll have dinner. What can we do to find out if it’s true?
1.0 Tonight thou will have dinner. What can we do to find out if it is true?
2.0 Tonight thou wilt have dinner. What can we do to find out if it shalt be true?

Male-to-
Female

0.0 While young, he worked as an engineer in Stockholm.
2.0 When young, he worked as a skilled symphonist in Stockholm, in an aid to the engineering

trade.
4.0 In the young years, Svenska worked as a symphonist for a relay service, she worked in the

kitchen, or she provided technical assistance.

Table 4.8: Qualitative sentence transformations. Results were generated using beam search
(width=3) and 5 refinement steps.

Figure 4.2: Sentiment transform results on the IMDB-S and Yelp datasets. We present results for
the neg to pos task, and extrapolate the offset vector with fixed coefficients.

Task Vector Alignment

To understand how effectively we can transform sentences using linear offsets, we assess the
extent to which these linear relationships exist for high-level concepts in our datasets. Using 100
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Model IMDB Yelp Wikipedia
Pos Neg Pos Neg Past Plural Qual. Begin End

Ours (Greedy, 0 steps) (61.2) (44.8) (55.3) (38.5) (15.2) (4.8) (32.8) (22.2) (1.8)
Ours (Greedy, 2 steps) 65.7 75.5 60.3 46.5 39.9 26.5 93.9 (50.0) 32.2
Ours (Greedy, 5 steps) 72.7 75.2 64.1 49.0 47.2 30.9 97.8 56.9 38.4

Ours (BS, width=3, 2 steps) 76.1 84.8 67.0 55.0 43.6 29.5 98.5 46.4 40.8
Ours (BS, width=3, 5 steps) 80.2 86.1 70.0 57.8 47.6 35.4 98.5 56.4 45.3

Shen et al. [161] (54.4) (53.6) 64.8 40.7 0 0 (0.4) 0 0
Montero et al. [127] (40.8) (30.8) 52.3 39.5 0 0 (0.8) 0 0

Subramani et al. [169] 50.8 60.5 46.0 30.4 42.8 7.2 60.5 25.3 2.6
Konen et al. [91] (65.2) 74.5 (56.5) (82.9) 65.8 2.0 0 0 0

Table 4.9: Sentence transformation results for all quantitative tasks using 100 supervising pairs.
All results are shown for Self-BLEU of 30, except for Yelp where we report the results for Self-
BLEU of 20. Parentheses () indicate that the result was only available for Self-BLEU lower than
the threshold. The baselines include DAAE ([161]), Autobot ([127]), Steering Vectors ([169]),
and Style Vectors ([91]).

Number of Vectors IMDB Yelp Wikipedia
Pos Neg Pos Neg Past Plural Qual. Begin End

1 43.0 50.4 30.9 28.5 62.3 50.4 63.5 73.8 75.6
5 76.7 80.4 55.7 57.6 87.9 77.7 85.5 91.9 93.9
10 86.2 89.7 68.6 69.1 94.1 85.6 91.8 95.8 96.8

Table 4.10: Average cosine similarity between the mean task vector computed on a subset of all
100 input-output pairs and the mean task vector of the remaining pairs, averaged over 20 trials.
Since Yelp is an unpaired dataset, we compute offsets between randomly sampled subsets of
positives and negatives.

input-output pairs for each task, we measure the average cosine distance between each offset
vector and the mean offset vector (with the single vector held out). We then repeat this setup
with 5- and 10-example subsets and show that they yield a good approximation of the overall
offset vector (Table 4.10) due to the linear nature of the embedding space.

Sample Efficiency of Transformations

We quantify the extent to which vec2text can transform sentences with significantly fewer
than 100 input-output pairs. On our quantitative evaluation, we find that using 10 input-output
pairs typically retains between 85-99% of the performance of using all 100 pairs (see Table 4.11).
Our results suggest that the linear representations of semantic concepts within the vec2text
embedding space may contribute to its sample efficiency.
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Model IMDB Yelp Wikipedia
Pos Neg Pos Neg Past Plural Qual. Begin End

Greedy, 5
steps

100 pairs 72.7 75.2 64.1 49.0 47.2 30.9 97.8 56.9 38.4
10 pairs - 72.5 - - 44.4 27.8 98.7 55.9 -

Sample Efficiency (%) - 96.4 - - 94.0 89.9 100.0 98.2 -

BS
(width=3),

5 steps

100 pairs 80.2 86.1 70.0 57.8 47.6 35.4 98.5 56.4 45.3
10 pairs 71.0 81.3 63.7 30.4 46.8 29.9 97.7 60.0 42.4

Sample Efficiency (%) 88.5 94.4 91.0 52.6 98.3 84.4 99.1 100.0 93.5

Table 4.11: Sample efficiency of quantitative tasks using 10 v.s. 100 input-output pairs. All re-
sults are shown for Self-BLEU of 30, except for Yelp where we report the results for Self-BLEU
of 20. ‘-’ indicate that the result was only available for Self-BLEU lower than the threshold.

Tasks ↵ Transformed Sentence

Neg2Pos
Sentiment
/ Adding

Qualifiers

0.0 And for the rest of us – it just leads to a very long, tedious movie.
1.0 And for the rest of us – it just leads to a very long, tedious movie.
2.0 And for the rest of us – basically, it just leads to a very long, tedious movie.
3.0 And for the rest of us – it basically just leads to a very, very long movie.
4.0 And for the rest of us – basically, it just leads to a very long, very enthralling movie.
5.0 And for the rest of us – basically, it just leads to a very, very long and engaging movie.

Past Tense /
Prepended

Phrase

0.0 Blue Ridge High School achieves a 75.8 score out of 100.
1.0 Blue Ridge High School achieves a score of 75.8 out of 100.
2.0 Because of this, Blue Ridge High School achieved a score of 75.8 out of 100.
3.0 Because of this, Blue Ridge High School achieved a score of 75.8 out of 100.
4.0 Because of this, therefore, Blue Ridge High School achieved a score of 75.8 out of 100.

5.0
Because of this, therefore, because of this, Blue Ridge High School achieved a score of
75.8 out of 100.

Table 4.12: Examples of composed transformations by applying the average transformation vec-
tor between two tasks.

Compositionality of Transformations

We find that it is possible to compose transformations by applying the average of two task vec-
tors. We show in Table 4.12 that it is possible to simultaneously transform sentiment and add
qualifying words, and transform tense while adding a prepended phrase. These results are not
necessarily intuitive since different semantic concepts may be “far” (in terms of vector align-
ment) within the latent space. Indeed, we find that both pairs of tasks considered are highly
uncorrelated in the embedding space, having cosine similarities of �0.11 and 0.02 respectively,
but can nonetheless be transformed simultaneously using their average offset.
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Figure 4.3: Cosine similarity between gender reversal vector and occupation switch vector, av-
eraged over 56 sentence templates. Occupations are ordered by increasing degree of male repre-
sentation within UK Census data.

4.5.2 Biases: Occupation-Gender Associations
Previous work [20, 124] has shown that occupation-gender associations exist in the linear struc-
ture of Word2vec. More recently, [150] and [117] have investigated occupation-gender as-
sociations with co-reference resolution, i.e., is higher co-reference score given to he or she
in “the doctor ran because <he/she> is late?” Motivated by this line of inquiry, we study
occupation-gender associations in the LLM embedding space by sourcing occupations with gen-
der demographic data3 and creating sentence templates for occupation and gender pronoun (more
details in Section 4.6.)

We measure gender-occupation associations by evaluating whether translating from less male-
associated occupations to more male-associated occupations (e.g., “receptionist” to “carpenter”)
in latent space correlates with changing from feminine to masculine (f2m) pronouns (e.g., “she”
to “he”) and vice-versa. Formally, given templates t(i) 2 T , occupations oj 2 O and pronouns
pk 2 {pm, pf}, we denote their embedding representation as v

(i)
jk = �(t(i)(oj, pk)). We com-

pute f2m(j, j0), the average cosine similarity between the f2m vector and the difference vector
between occupations j and j

0, as follows4:

f2m(j, j0) =
1

|T |

|T |X

i=1

cos
⇣
v
(i)
j0f � v

(i)
jf , v

(i)
jm � v

(i)
jf

⌘
(4.3)

We test for monotonic trends in each row of f2m and m2f, ordered by increasing male-
association of occupation in UK Census data. Using the non-parametric Mann-Kendall5 trend
test [84, 119], we find strong monotonic trends in each row of f2m and m2f. (The contents of

3https://careersmart.org.uk/occupations/equality/which-jobs-do-men-and-women-do-occupational-breakdown-
gender

4m2f is correspondingly defined by interchanging f with m.
5We use the pyMannKendall [70] package to perform our statistical tests. A detailed description of the

test-statistic and observed p-values can be found in Section 4.6.
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f2m and m2f are shown in Figure 4.3.) This shows that gendered representations of occupations
have been learned by embedding model and are present in the latent space. Therefore, care
should be taken to avoid perpetuating these biases when applying these models to tasks with
gender associations.

4.6 Occupation-Gender Association Study
The quantitative gender bias analysis of the latent space involves measuring the difficulty of alter-
ing pronouns in sentences that contain both a gendered pronoun and its associated occupation. In
Table 4.13, we enumerate the (50) occupations we investigate and the (56) sentence templates we
use to study them. There are 6 sentence templates that were constructed by us, and an additional
50 sentence templates that were sourced from the Wikipedia dataset - 1 for each occupation. We
only selected sentences that contain one pronoun along with the particular occupation, and ig-
nore sentences that have other occupations in them. Each template contains an occupation blank
and a pronoun blank. We note which type of pronoun is in the original sentence, - e.g., subject
(“he”/“she”), object (“him”/“her”), or possessive (“his”/“her”) - so that we can later substitute in
its gender pronoun counterpart.

Here, we elaborate on the selection criteria we follow for choosing occupations. We ensure
that the selected occupations correspond strongly to the Census categories used. For instance,
we use “taxi driver” to encompass the occupations “Taxi and cab drivers and chauffeurs”. On
the other hand, the general class “scientist” does not exist, but instead is split into specialties
such as “physical scientist” or “biological scientist”. We exclude occupations that have gender-
specific titles such as “waiter”/“waitress” and “actor”/“actress”. We lowercase all occupation
names (except for CEO) so that they are not unintentionally associated with titles (such as a
“Secretary” for a government cabinet) or surnames (such as “Baker” or “Cook”).

Mann-Kendall Test Results

The Mann-Kendall test uses the following test statistic:

ZMK =

8
>><

>>:

S�1p
V AR(S)

if S > 0

0 if S = 0
S+1p
V AR(S)

if S < 0

where S =
n�1X

i=1

nX

j=i+1

sgn(xj � xi)

When |ZMK | � Z1�↵/2, an upward or downward monotonic trend is detected with Type I error
rate ↵.

Applying the Mann-Kendall test to the rows of f2m and m2f, we find that monotonically
increasing and decreasing trends respectively, with p-values all under 1.59e-5 in f2m and under
2.39e-6 in m2f.
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Sentence Template Occupation Male %

The <occupation> forgot <his/her> book in the room. - -
Every week, the <occupation> brings <his/her> dog to the office. - -
Often, the <occupation> goes by <him/her>self. - -
Next, the <occupation> prepared <him/her>self. - -
If the <occupation> is late, <he/she> will apologize. - -
As a(n) <occupation>, <he/she> is sometimes preoccupied. - -
Valette was permanent <occupation> of the POF from 1896 until <his/her> death in 1899. secretary 5.13
In <his/her> last year at Texas, <he/she> also served as a(n) <occupation> and teaching associate. teaching assistant 9.32
According to <his/her> son, Tormey is also a(n) <occupation>. dancer 10.70
In Mexico City, <he/she> worked as a(n) <occupation> in a plastic surgeon’s office, and lived in a guest house. receptionist 10.79
<he/she> is a licensed <occupation> in the State of Minnesota. psychologist 12.26
Some sources cite <him/her> as the first <occupation> in the town. schoolteacher 12.99
After finishing <his/her> studies <he/she> trained to become a(n) <occupation>. nurse 15.74
During this time, <he/she> worked as a(n) <occupation> at Auckland’s Theatre Corporate. cleaner 18.37
After returning to California, <he/she> became a(n) <occupation> in San Diego. social worker 19.39
In the early 1960s <he/she> worked as a(n) <occupation> in the presidency. counselor 20.25
<he/she> attended Howard College and is a(n) <occupation>. pharmacist 26.15
From 1937 to 1948, <he/she> served as <occupation> of the Executive Council. clerk 29.35
Perhaps <his/her> most famous role was as the <occupation>. cook 34.26
<his/her> actual occupation reads ”<occupation>.” cashier 34.90
<he/she> was also made <occupation> there. librarian 38.47
Before becoming a poet, <he/she> practiced medicine as a(n) <occupation>. veterinarian 39.65
A <occupation> trainee going to Australia for <his/her> exam. dentist 40.02
<his/her> also learned the trade of <occupation>. tailor 40.39
Since June 2008 <he/she> has been the chief <occupation> at the M.T. curator 44.87
<he/she> is a former <occupation>, and is married with 5 children. accountant 50.68
<he/she> served as chief <occupation> from 1996 to 2003. judge 51.20
Afterwards, <he/she> followed the trade of a(n) <occupation>. baker 53.28
<his/her> character was a(n) <occupation> called Andy. paramedic 54.12
<he/she> represented Csorna until 1918 as <occupation> of the Catholic People’s Party.. politician 57.99
<he/she> later set up an office as a(n) <occupation> in San Francisco. graphic designer 62.06
<he/she> was well educated, speaking various languages, and an excellent <occupation>. musician 62.10
<he/she> is primarily known as a Rabindrasangeet <occupation>. artist 63.43
Though not known as a(n) <occupation>, <his/her> works were well received. police officer 64.73
In 1874 Marks moved to Toowoomba, where <he/she> practiced principally as a(n) <occupation>. architect 67.96
Balem Hawkins was hired as <occupation> of the estate and moved in with <his/her> family. caretaker 70.30
<he/she> was a(n) <occupation> during the 1940s Nazi occupation of Norway. farm worker 71.94
In July 2018 <he/she> was named <occupation> of Ferrari. CEO 77.92
In 2014 <he/she> entered Limca Book of Records for the ”Longest road journey by a(n) <occupation>”. chef 79.62
Following <his/her> military service, Ribman worked as a(n) <occupation> for the J.E. broker 81.95
Howie, like <his/her> father, was a(n) <occupation>. farmer 82.25
<he/she> worked as a(n) <occupation>, sometimes coming to matches in a hearse. undertaker 82.96
Among many other personal achievements, <he/she> serves as a(n) <occupation> for Wolfram Research. programmer 85.23
In addition to <his/her> career as a poet, Ceravolo worked as a(n) <occupation>. civil engineer 90.07
While young, <he/she> worked as a(n) <occupation> in Stockholm. gardener 90.33
<he/she> spent the next three years as a(n) <occupation> in Placer County. butcher 90.70
As a transgender <occupation>, this meant <he/she> would be ineligible to compete. athlete 90.85
Then another <occupation> named Bill Hunt said <he/she> would try it. pilot 90.95
After retiring, <he/she> was a(n) <occupation>. bus driver 92.40
For the next 16 years <he/she> worked as <occupation> in the Netherlands. electrical engineer 94.05
Though not known as a(n) <occupation>, <his/her> works were well received. painter 95.08
Willis went on to work as a(n) <occupation> in <his/her> native Liverpool. taxi driver 95.46
Initially <he/she> worked at odd jobs, including as a(n) <occupation>. truck driver 97.43
After retirement <he/she> became a(n) <occupation>, and died in 2009. plumber 98.07
Still <he/she> managed to work as a(n) <occupation>. electrician 98.27
<he/she> worked as a(n) <occupation> before enlisting in the service. carpenter 99.01

Table 4.13: The sentence templates used to compute the occupation-gender association studies.
The occupation-related blank and its associated pronoun blank are shown. For sentences tem-
plates that contain professions from UK Census data, we include their corresponding profession
and its fraction of individuals that are male. 45
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Chapter 5

Validating Stationarity in Bandit-based
Recommendation Systems

5.1 Introduction
As online services have become inescapable fixtures of modern life, recommender systems have
become ubiquitous, influencing the music curated into our playlists, the movies pumped into the
carousels of streaming services, the news that we read, and the products suggested whenever we
visit e-commerce sites. These systems are commonly data-driven and algorithmic, built upon the
intuition that historical interactions might be informative of users’ preferences, and thus could be
leveraged to make better recommendations [56]. While these systems are prevalent in real-world
applications, we often observe misalignment between their behavior and human preferences [73].
In many cases, such divergence comes from the fact that the underlying assumptions powering
the learning algorithms are questionable.

Recommendation algorithms for these systems mostly rely on supervised learning heuris-
tics [17, 56], including latent factor models such as matrix factorization [92] and deep learning
approaches that are designed to predict various heuristically chosen targets [189] (e.g., purchases,
ratings, reviews, watch time, or clicks [17, 121]). Typically they rely on the naive assumption
that these behavioral signals straightforwardly indicate the users’ preferences. However, this as-
sumption may not hold true in general for a variety of reasons, including exposure bias (users are
only able to provide behavioral signals for items they have been recommended) and censoring
(e.g., reviews tend to be written by users with strong opinions) [76, 171].

On the other hand, to study the decision-theoretic nature of recommender systems, the on-
line decision-making framework—multi-armed bandits (MABs)—has commonly been used [93,
165]. In MABs, at any given time, the decision-maker chooses an arm to pull (a recommenda-
tion to make in the recommender system setting) among a set of arms and receives a reward,
with the goal of obtaining high expected cumulative reward over time. Theoretical research on
MABs centers on algorithms that balance between the exploration and exploitation tradeoff and
analyses capturing the performance1 of these algorithms [93]. There is a long line of work on
developing MAB-based approaches for recommender systems in settings including traditional

1We provide more details on how performances are defined in MABs in Section 5.3.1.
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K-armed bandits [12, and references therein], contextual bandits [108, 122, 123, and references
therein], and Markov decision processes [27, 28, 29, 30, 159, 187, and references therein]. To
guide such research on applying MAB-based algorithms in recommender systems, it is of impor-
tance to test whether the assumptions that these algorithms are built upon are valid in real-world
recommendation settings.

In this work, we focus on the assumption of temporal stability that underlies both practical
supervised learning methods and algorithms for classical MAB settings where the reward distri-
bution is assumed to be fixed over time. In a recommendation setting, the reward distribution
of an arm corresponds to the user’s preference towards that recommendation item. Although the
assumption that the reward distribution is fixed may be appropriate to applications driving early
MABs research (e.g., sequential experimental design in medical domains) [149], one may find
it to be unreasonable in recommender systems given that the interactants are humans and the
reward distributions represent human preferences. For example, consider the task of restaurant
recommendations, though a user may be happy with a recommended restaurant for the first time,
such enjoyment may decline as the same recommendation is made over and over again. This
particular form of evolving preference is known as satiation, and results from repeated consump-
tion [47]. One may also think of cases where a user’s enjoyment increases as the same item
being recommended multiple times, due to reasons including sensitization [59]. In both settings,
the assumption that reward distributions are fixed is violated and the recommendation algorithms
may influence the preferences of their users.

We test the assumption on fixed reward distributions through randomized controlled trials
conducted on Amazon Mechanical Turk. In the experiment, we simulate a K-armed bandit
setting (a MAB setup where the arm set is the same set of K arms over time) and recommend
comics from K comic series to the study participants. After reading a comic, the participants
provide an enjoyment score on a 9-point Likert scale [38], which serves as the reward received
by the algorithm for the recommendation (for pulling the corresponding arm). Each comic series
belongs to a different genre and represents an arm. Our analyses on the collected dataset reveal
that in a bandit recommendation setup, human preferences can evolve, even within a short period
of time (less than 30 minutes) (Section 5.4). In particular, between two predefined sequences
that result in the same number of pulls of each arm in different order, the mean reward for one
arm has a significant difference of 0.57 (95% CI = [0.30, 0.84], p-value < 0.001). This suggests
that any MAB algorithms that are applied to recommendation settings should account for the
dynamical aspects of human preferences and the fact that the recommendations made by these
algorithms may influence users’ preferences.

The line of work that develops contextual bandits and reinforcement learning algorithms for
recommender systems [27, 28, 29, 30, 122, 123, 159, 187] hinges upon the assumption that users’
preferences depend on the past recommendations they receive. The proposed algorithms have
been deployed to interact with users on large-scale industry platforms (e.g., Youtube). These
prior works differ from ours in multiple ways. Among them, the most significant distinction is
that our work aims to understand and identify assumptions on reward distributions that better
represent user preference characteristics. On the other hand, this line of work asks the question
that once an assumption on the reward distribution has been made, how to design the recom-
mendation algorithms so that they have better performance. For example, in settings where
recommender systems are modeled as contextual bandits [122, 123], the reward distributions
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are assumed to take a certain functional form (often linear) in terms of the observable states.
When treating recommender systems as reinforcement learning agents in a Markov decision pro-
cess [27, 28, 29, 30, 159, 187], one has made the core assumption that the reward is Markovian
and depends only on the observable user states (e.g., user history) and recommendations. In other
words, the reward (and user preference) does not depend on unobservable states (e.g., user emo-
tions) as in partially observable Markov decision processes. Under this assumption, the proposed
algorithms deal with difficulties (e.g., large action spaces) in the reinforcement learning problem.
It is worth noting that in these prior works, the proposed algorithms have been evaluated on in-
dustry platforms. For academics who want to evaluate their recommendation algorithms with
human interactants, such infrastructure is not easily accessible. We take an initial step to address
this need by developing our experimental framework.

The experimental framework we developed is flexible. It allows one to conduct field tests
of MAB algorithms, use pre-defined recommendation sequences to analyze human preferences,
and ask users to choose an arm to pull on their own. These functionalities can be used to iden-
tify assumptions on user preference dynamics and reward distributions that better capture user
characteristics. As an illustration of the flexibility of our experimental framework, we have col-
lected data while the participants interact with some traditional MAB algorithms and analyze
their experience with these algorithms. Interestingly, we observe that interactants (of a particular
algorithm) who have experienced the lowest level of satisfaction are the ones to have the poorest
performance in recalling their past ratings for previously seen items.

In summary, we provide a flexible experimental framework that can be used to run field
tests with humans for any K-armed bandit algorithms (Section 5.3.3). Using this experimental
framework, we have tested the validity of the fixed-reward-distribution (fixed-user-preference)
assumption for applying MAB algorithms to recommendation settings (Section 5.4). As an il-
lustration of the flexibility of our experimental framework, we have inspected different bandit
algorithms in terms of user enjoyment and attentiveness (Section 5.5).

5.2 Related Work
The study of evolving preferences has a long history, addressed by such diverse areas as psy-
chology [33, 47], economics [61, 141], marketing [177], operations research [14], philoso-
phy [10, 114], and recommender systems [80, 98, 143]. In the bandits literature, there is a
recent line of work, motivated by recommender systems, that aims to incorporate the dynamic
nature of human preference into the design of algorithms. These papers have different models
on human preferences, expressed as specific forms of how the reward of an arm depends on the
arm’s past pulls. Levine et al. [102], Seznec et al. [158] model rewards as monotonic functions
of the number of pulls. By contrast, Basu et al. [13], Cella and Cesa-Bianchi [24], Kleinberg
and Immorlica [90] consider the reward to be a function of the time elapsed since the last pull
of the corresponding arm. In Mintz et al. [125], rewards are context-dependent, where the con-
texts are updated based on known deterministic dynamics. Finally, Leqi et al. [101] consider the
reward dynamics to be unknown stochastic linear dynamical systems. These prior works model
the reward (user preferences) in distinct ways, and lack (i) empirical evidence on whether user
preferences evolve in the short period of time in a bandit setup; and (ii) datasets and experimental
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Figure 5.1: Overview of the experimental protocol. Participants first complete a background
survey and then register their MTurk ID on our platform to get randomly assigned (without their
direct knowledge) one of the following types of experimental setups: Self-selected, one of the
fixed sequences, or one of the MAB algorithms. Study participants who are assigned to a fixed
sequence and an MAB algorithm only provide ratings (enjoyment scores to the comics). Self-
selected study participants provide both a rating as well as the next genre to view. Once the comic
rating portion of the study is complete, participants move onto the post-study survey, where they
are asked questions related to their experience in the study, e.g., how well they remember the
consumed content. Participants must complete all parts of the study and answer attention checks
sufficiently correctly to receive full compensation, and therefore be included in the final study
data.

toolkits that can be used to verify the proposed theoretical models and to explore more realistic
ways of modeling user preferences. On the other hand, there is a line of work on developing
contextual bandits and reinforcement learning algorithms to account for user preference dynam-
ics in recommender systems. The evaluations of these algorithms against human users rely on
accessibility to large-scale industry platforms [27, 28, 29, 30, 122, 123, 159, 187].

Datasets that are publicly available and can be used to evaluate bandit algorithms in rec-
ommendation settings often contain ratings or other types of user feedback of recommenda-
tions [99, 153]. These datasets do not contain trajectories of recommendations and the associ-
ated feedback signal for a particular user, making it hard to understand the dynamical aspects of
user preferences and to identify effects of past recommendations on the preferences. In addition,
existing MAB libraries (e.g., [66]) only consist of implementations of bandit algorithms, but lack
the appropriate tools and infrastructure to conduct field tests of these algorithms when interacting
with humans. The toolkit we have developed closes this gap and allows one to use these libraries
while conducting human experiments on bandit algorithms. Another relevant stream of research
that considers human experiments in bandits settings are the ones that ask human participants to
make decisions in a bandit task and collect data for modeling their decision-making [4, 97, 147].
In other words, in those experiments, human participants take the role of the algorithm that se-
lects the arm to pull instead of the role of providing reward signals. In one of our experimental
setups, the study participants are asked to select comics to read on their own. However, in con-
trast to reward distributions that are defined by the experiment designers of those experiments,
in our setting, the rewards are provided by the human participants, indicating their preferences.
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Figure 5.2: The user interface of our experimental platform when the participants read and rate
a comic. For each comic, the participants have up to three action items to complete. First, they
must provide the comic an enjoyment score (a rating) between 1 and 9 using the Likert scale
slider bar, indicating how they like the comic. Second, if the participants are under the Self-
selected setting, they must select the genre of comic they would like to view next. For other
participants, this step does not exist. Finally, the participants are asked to answer one or more
customized attention check questions.

5.3 Experimental Setup
In this section, we first describe a classical MABs setting—stochastic K-armed bandits—and
discuss the algorithms we have used in our experiments (Section 5.3.1). We then provide rea-
soning on why we choose comics as the reommendation domain and selection criteria for the
comics used for recommendations (Section 5.3.2). Finally, we discuss our experimental frame-
work (Section 5.3.3).

5.3.1 Stochastic K-armed bandits
In stochastic K-armed bandits, at any time t, the learner (the recommender in our case) chooses
an arm a(t) 2 [K] to pull (a recommendation to present in our case) and receives a reward R(t).
For any horizon T , the goal for the learner is to attain the highest expected cumulative reward
[
PT

t=1 R(t)]. In this setup, the reward distribution of each arm k 2 [K] is assumed to be fixed
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over time and the rewards received by pulling the same arm are independently and identically
distributed. An oracle (the best policy), in this case, would always play the arm with the highest
mean reward. The difference between the expected cumulative reward obtained by the oracle and
the one obtained by the learner is known to be the “regret.” As is shown in existing literature [93],
the regret lower bound for stochastic K-armed bandits is ⌦(

p
T ). Many existing algorithms

achieve the regret at the optimal rate O(
p
T ), including the Upper Confidence Bound (UCB)

algorithm and the Thompson Sampling (TS) algorithm. We also include a traditional algorithm
Explore-then-Commit (ETC) and a greedy heuristic ("-Greedy) in our study. These algorithms
along with their regret guarantees are built upon the key assumption that the reward distributions
are fixed. In Section 5.4, we test the validity of this assumption in a recommendation setting
where the interactants are humans and the rewards represent their preferences.

Algorithms We give a brief summary and a high-level intuition for each algorithm. We use
the term “algorithm” in a broad sense and the following items (e.g., Self-selected and Fixed
sequence) may not all be traditional MAB algorithms.

• Self-selected: The participants who are assigned to the Self-selected algorithm will choose
which arm to interact with by themselves. In other words, at each time t, instead of a pre-
scribed learning policy determining the arm a(t), the participants themselves will choose
the arm.

• UCB: At time t, UCB deterministically pulls the arm with the highest upper confidence
bound, a value that for each arm, combines the empirical mean reward with an uncertainty
estimate of the mean reward. An arm with high upper confidence bound can have high
empirical mean and/or high uncertainty on the mean estimate.

• TS: In Thompson Sampling, a belief distribution is maintained over the possible reward
values for each arm. At time t, the algorithm samples a reward from each arm’s belief
distribution and pulls the arm with the highest sampled reward. When a reward is received
after pulling the arm, TS updates the corresponding arm’s prior belief distribution to obtain
a posterior.

• ETC: Unlike UCB and TS, the Explore-then-Commit algorithm has two separate stages—
the exploration stage and the exploitation stage. It starts with an exploration period where
the algorithm pulls the arms in a cyclic order and then switches to an exploitation stage
where only the arm with the highest empirical mean in the exploration stage will be pulled.
Given that the ETC algorithm achieves a regret of O(T 2/3) when the exploration time is on
the order of T 2/3, we have set the exploration period to be c ·T 2/3 for a positive constant c.

• "-Greedy: This greedy heuristic pulls the arm with the highest empirical mean with prob-
ability 1 � " where 0 < " < 1, and pulls an arm uniformly at random with probability ".
In a setting with long interaction period, one way of setting " is to have it decreasing over
time, e.g., setting " to be on the order of 1

t [9]. Given the short interaction period in our
setting, we have used a fixed " = 0.1 (which may result in linear regret).

• Fixed sequence (CYCLE, REPEAT): The fixed sequence algorithms pull arms by follow-
ing a predefined sequence. That is, the arm pulled at time t only depends on the current
time step and does not rely on the received rewards so far. We have used two fixed se-
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quences CYCLE and REPEAT for testing whether the reward distributions (that represent
participants’ preferences) are fixed over time. We provide more details on these two fixed
sequences in Section 5.4.

Next, we present how we have selected the comics used for recommendations.

5.3.2 Comics data
In our experiment, we choose comics as our recommendation domain for the following reasons:
(i) Fast consumption time: Given the nature of our experiment where study participants are
recommended a sequence of items to consume in a limited amount of time, we require the time
for consuming each of the recommendations to be short. For example, recommending movie
clips to watch may not be appropriate in our setting given that each clip may take a couple
of minutes to finish. (ii) No strong pre-existing preferences: Another important feature of the
chosen recommendation domain is that the majority of the study participants should have no
strong preference on that subject prior to the experiment. For example, unlike comics, music is
a subject that most people tend to already have strong preferences towards [155]. In such cases,
the effects of recommendations towards the participants’ preferences may be minimal.

We collected comics from 5 comic series on GoComics [55]. Each comic series belongs
to a genre and represents an arm for pulling. The 5 comic series along with their genre are
Lisa Benson (political, conservative), Nick Anderson (political, liberal), Baldo (family), The
Born Loser (office), and The Argyle Sweater (gag). The genres of these comics are assigned by
GoComics. For each series, we take the following steps to select the set of comics:

1. We first collect all comics belonging to the comic series from the year 2018. We select this
time period to be not too recent so that the results of the study are not heavily influenced by
ongoing events. It is also not too distant so that the content is still relevant to all subjects.

2. For each individual comic, we obtain its number of likes on GoComics. Then, we choose
the top 60 comics from each comic genre/series in terms of the number of likes. This
selection criteria is designed to ensure the quality of the chosen comics.

3. Finally, we randomly assign an ordering to the comics. We keep this ordering fixed
throughout the study such that if an arm is pulled (a genre is chosen) at its j-th time,
the presented comics will always be the same.

The comics within the same comic series are independent, in the sense that they can generally be
read in any order, without requiring much context from previous comics from the same series.
For these collected comics, we have labeled the number of unique characters in them, and use
it for the attention check questions to ensure that the study participants have read the comics.
Although we have adopted the above selection criteria to ensure the quality of comics from the
same comic series to be similar, there is heterogeneity among individual comics and thus may
influence the interpretation of our results. In Section 5.3.3, we discuss our experimental protocol
and platform.

5.3.3 Experimental protocol and platform
We first outline our experimental protocol, which consists of the following steps (Figure 5.1):
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1. Background survey (initial filtering): We ask the study participants to complete a brief
background survey. The participants will only be given a code to continue to the next step
if an arithmetic question is answered correctly. The goal for the first step is to set up an
initial filtering for participants.

2. Registration: After completing the background survey, participants are then asked to regis-
ter on our platform using their completion code. Each participant in our study is assigned
an algorithm in the following fixed probabilities—0.25 for Self-selected, 0.125 for UCB,
0.125 for TS, 0.125 for ETC, 0.125 for "-Greedy and 0.125 for each of the two fixed se-
quences.

3. Comic rating: In this step, participants will read a sequence of 50 comics and provide an
enjoyment score (a rating) after reading each comic. The sequence of comics can be gen-
erated by any of the algorithms discussed in Section 5.3.1. After reading each comic and
providing a rating, the participants are also asked to answer an attention check question.

4. Post-study survey: Once the participants are finished with the comics rating step of the
study, they are asked to complete a post-study survey about their reading experience. They
are asked if they remember reading certain comics and if they have rated them positively,
as well as how they perceive the recommendations they are provided. An example of the
post-study survey questions can be found in Figure 5.5.

Our experimental platform is built as a toolkit for running field tests for any MAB algorithms
with human users. It consists of (a) the participant-facing web interface, and (b) the server
backend that stores and processes incoming data from the web interface. When designing the
experimental protocol and platform, we consider the following questions:

1. Given that we are asking users to give subjective feedback, how do we have more user
responses that are reflective to the user’s true preference?

2. How do we design an experimental interface that impose less bias to the users?
3. Since our study requires users to complete a long (up to 30-minute) sequence of non-

independent tasks, how do we have the study to be less interrupted?
4. How do we build the system flexible enough to conduct studies for different MAB algo-

rithms and test different assumptions of MAB setups, including ones that we do not cover
in this work?

For (1), we adopt a 9-point Likert scale so that the numbers are sufficiently distinguishable
to the participants [38] and check whether users are paying sufficient attention during the study.
In particular, we test the participants on objective properties of the comics they have read, e.g.
the number of unique characters (with a face and/or body) in them. We also set a minimum time
threshold of 10 seconds before each user response can be submitted so that users spend adequate
time on each comic.

For (2), to ensure that the participant’s rating is not biased towards (e.g., anchored on) the
Likert scale slider’s initial value, we set the slider to be transparent before the participant clicks
on the scale. In addition, in the Self-selected setting where the participants choose the genre of
comics to read next, we minimize the color- and ordering-based biases by setting the category
selection buttons to be the same color and in random order.

As stated in design question (3), because we are interested in studying evolving preferences
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Self-selected UCB TS ETC "-Greedy CYCLE REPEAT

# of Participants 74 40 44 39 41 40 38

Table 5.1: Number of participants for each algorithm. The description for Self-selected, UCB,
TS, ETC and "-Greedy are in Section 5.3.1. CYCLE and REPEAT are defined in Section 5.4.

over a sequence of non-independent tasks, we would like to have continuous and uninterrupted
user attention over a period of time. To do so, we design the system to be stateful so that partic-
ipants can resume the study where they left off in the event of brief network disconnection and
browser issues.

Finally, we discuss the flexibility of our system and address design question (4). Our ex-
perimental platform allows the experimenter to specify any recommendation domains and MAB
algorithms for interacting with the human interactant. This flexibility allows the experimenter
to not only test the performance of different MAB algorithms but also design pull sequences
to understand user preference dynamics and test existing assumptions on user preferences. For
example, one may design pull sequences to study the correlation between rewards obtained at
different time steps and rewards obtained from pulling different but related arms. It is worth not-
ing that the attention checks in our system are also customizable, allowing for diverse attention
checks for each recommendation domain.

5.3.4 Recruitment and compensation
To ensure the quality of our collected data, we only allow MTurk workers to participate in the
study if they are U.S. residents and have completed at least 500 Human Intelligence Tasks (HITs)
with an above 97% HIT approval rate. The anticipated (and actual) time to complete the study is
less than 30 minutes. For participants who have successfully completed the study and answered
the attention check questions correctly 70% of time, we have paid $7.5 (the equivalent hourly
salary is above $15/hr). Out of the 360 participants who have successfully completed the study,
316 passed the attention check (acceptance rate 87.8%). Our analyses are only conducted on
the data collected from these participants. Table 5.1 shows the number of participants for each
experimental setup.

5.4 Evolving Preferences in K-armed bandits
As we have previously discussed, in K-armed bandits, the reward distribution of each arm is
assumed to be fixed over time [93, 149, 165], which implies that the mean reward of each arm
remains the same. It is unclear whether such an assumption is reasonable in recommender system
settings where the reward distributions represent human preferences. Our first aim is to test
for the existence of evolving preference in the K-armed bandits setup. In other words, using
randomized controlled trials, we want to test the following hypothesis: In a K-armed bandit
recommendation setting, the reward distribution of each arm (i.e., the user preference towards
each item) is not fixed over time.
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To answer this, we collect enjoyment scores for two fixed recommendation sequences, where
each sequence is of length T = 50. The sequence consists of recommendations from K = 5
genre of comics. In other words, the total number of arms is 5. The first sequence pulls the
arms in a cyclic fashion which we denote by CYCLE, while the second sequence pulls each arm
repeatedly for m = T/K times which we denote by REPEAT:

CYCLE : (12 . . . K12 . . . K . . . 12 . . . K| {z }
12...K for m times

),

REPEAT : (22 . . . 2| {z }
m times

1 . . . 1| {z }
m times

3 . . . 3 . . . K . . .K).

We note that for both sequences, the number of arm pulls of each arm is the same (m times).
Since the order of the comics is fixed for each arm (e.g., pulling an arm for m times will always
result in the same sequence of m comics from that genre), the set of comics recommended by
the two sequences are the same. The only difference between the two sequences is the order of
the presented comics. Intuitively, if the mean reward of each arm is fixed over time (and does
not depend on the past pulls of that arm), then the (empirical) mean reward of each arm should
be very similar under the two pull sequences.

In this work, we utilize a modification of the two-sample permutation test [44] to deal with the
different numbers of participants under the two recommendation sequences. We let CY CLE and
REPEAT denote the set of participants assigned to the CYCLE and REPEAT recommendation
sequence, respectively. For each participant i 2 CY CLE, we use ai(t) to denote the pulled arm
(the recommended comic genre) at time t and Xi(t) to denote the corresponding enjoyment score
(the reward) that the participant has provided. Similarly, for each participant j 2 REPEAT ,
we use aj(t) and Yj(t) to denote the arm pulled at time t and the enjoyment score collected from
participant j at time t. Using these notations, for each arm k 2 [K], we define the test statistic as
follows:

⌧k =
1

|CY CLE|

X

i2CY CLE

0

@ 1

m

X

t2[T ]:ai(t)=k

Xi(t)

1

A

| {z }
MCYCLE

k

�
1

|REPEAT |

X

j2REPEAT

0

@ 1

m

X

t2[T ]:aj(t)=k

Yj(t)

1

A

| {z }
MREPEAT

k

.

The test statistic ⌧k is the difference between the mean reward (enjoyment score) Mk under the
CYCLE recommendation sequence and the mean reward Mk under the REPEAT recommenda-
tion sequence for arm k. A non-zero ⌧k suggests that the mean reward of arm k is different under
and and that the reward distribution is evolving. The higher the absolute value of ⌧k is, the bigger
the difference between the two mean rewards is. A positive test statistic value indicates that the
participants prefer the arm under over on average.

To quantify the significance of the value of the test statistic, we use a two-sample permu-
tation test to obtain the p-value of the test [44]: First, we permute participants between and
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family gag political (conservative) office political (liberal)

Overall
⌧k value 0.290 0.132 0.445 0.047 0.573
p-value 0.025⇤ 0.275 0.004⇤ 0.694 < 0.001⇤

Heavy
⌧k value �0.394 �0.556 �0.694 �0.647 �0.664
p-value 0.007⇤ < 0.001⇤ < 0.001⇤ < 0.001⇤ < 0.001⇤

Light
⌧k value 0.784 0.635 1.274 0.552 1.475
p-value < 0.001⇤ < 0.001⇤ < 0.001⇤ 0.001⇤ < 0.001⇤

Table 5.2: The difference between the mean reward under and the mean reward under for each
arm. All results are rounded to 3 digits. The p-values are obtained through permutation tests with
10, 000 permutations. We use asterisk to indicate that the test is significant at the level ↵ = 0.1.
The 95% confidence intervals are obtained using bootstrap with 5, 000 bootstrapped samples.

uniformly at random for 10, 000 times and ensure that the size of each group remains the same
after each permutation. Then, we recompute the test statistic ⌧k for each permutation to obtain a
distribution of the test statistic. Finally, we use the original value of our test statistic along with
this distribution to determine the p-value.

To report the 95% confidence interval of the test statistic for each arm, we use bootstrap and
re-sample the data for 5, 000 times at the level of arm pulls. That is, for each arm pull at time t,
we obtain its bootstrapped rewards under CYCLE and REPEAT by resampling from the actual
rewards obtained by pulling that arm under CYCLE and REPEAT at time t, respectively. Given
that we have conducted 5 tests simultaneously (one for each arm), in order to control the family-
wise error rate, we need to correct the level ↵k (k 2 [K]) for each test. More formally, to ensure
the probability that we falsely reject any null hypothesis to be at most ↵, for each test, the p-
value of a test should be at most its corresponding corrected ↵k. We adopt the Holm’s Sequential
Bonferroni Procedure to perform this correction [2].

Our results show that for three arms—family, political (conservative) and political (liberal)—
the non-zero difference between the mean reward under the two recommendation sequences are
significant at level ↵ = 0.1 (Table 5.2). These findings confirm our research hypothesis that user
preferences are not fixed (even in a short amount of time) in a K-armed bandit recommendation
setting. There may be many causes of the evolving reward distributions (preferences). One
possibility, among many others, is that the reward of an arm depends on its past pulls. In other
words, people’s preference towards an item depends on their past consumption of it. For example,
existing marketing and psychology literature has suggested that people may experience hedonic
decline upon repeated exposures to the same item [14, 47]. On the other hand, in music play-
listing, one may expect the expected reward of an arm (a genre) to increase due to the taste that
the listener has developed for that genre of music [155]. For a more comprehensive discussion
on preference formation, we refer the readers to Becker [15].

Finally, to better understand the nature of our findings, we divide the participants into heavy
comic readers who read comics daily and light comic readers who read comics at a lower fre-
quency. Among participants who are assigned the CYCLE sequence, there are 17 heavy readers
and 23 light readers. For REPEAT, there are 16 heavy readers and 22 light readers. We perform
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the same analysis as noted above for each of the two groups. Similar to the overall findings,
among both heavy and light readers, evolving preferences (evolving mean reward) have been ob-
served (Table 5.2), confirming our research hypothesis. Interestingly, we find that for each genre,
the heavy readers tend to prefer the recommendations from the REPEAT sequence over the CY-
CLE sequence. On the contrary, for each genre, light readers prefer recommendations from the
CYCLE sequence over the REPEAT sequence. As an initial step towards understanding this
phenomenon, we present descriptive data analysis on how rewards (user preferences) evolve for
heavy and light readers under the two recommendation sequences. Similar to our results in Ta-
ble 5.2, for light readers, at most time steps, the reward trajectory of CYCLE has a higher value
than the reward trajectory of REPEAT; while for heavy readers, this is the opposite (Figure 5.3).
By looking at the reward trajectories (and the lines fitted through the reward trajectories) over
the entire recommendation sequence (Figure 5.3), we find additional trends: for light readers, the
differences between the rewards collected under CYCLE and REPEAT are increasing over time;
while for heavy readers, such differences are relatively stable. This trend is also observed in the
reward trajectory (and the line fitted through the reward trajectory) of each arm under CYCLE
and REPEAT (Figure 5.4). In particular, for light readers, among all arms (comic genres) except
family, we find that the lines fitted through the rewards collected under CYCLE and REPEAT
become further apart as the number of arm pulls increases. This distinction between heavy and
light users may be due to various reasons. For example, light readers may prefer variety in their
recommendations because they are exploring their interests or the light readers and heavy readers
share different satiation rates. On a related note, a recent study has shown that the satiation rates
of people may depend on their personality traits [48]. Precisely understanding the causes of this
distinction between heavy and light readers is of future interest.
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Figure 5.3: The reward at each time step of the CYCLE and REPEAT recommendation sequence
averaged across heavy and light readers, respectively. The error bars indicate one standard devi-
ation from the mean. For the REPEAT sequence, we highlight when the arm switches using the
vertical lines and add the arm name (comic genre) corresponding to the time period in between
the switches using the black texts. The blue and orange dotted lines are fitted through the rewards
collected under CYCLE and REPEAT, respectively.
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Figure 5.4: Each plot shows the reward collected for a particular arm at each arm pull under
the CYCLE and REPEAT recommendation sequences. The error bars indicate one standard
deviation from the mean. The reward trajectories are averaged across heavy and light readers,
respectively. The blue and orange dotted lines are fitted through the reward trajectories for each
arm under CYCLE and REPEAT, respectively.

5.5 Usage Example of the Experimental Framework
As an illustration of the usage of our experimental framework, we compare the performance of
different algorithms, in terms of both the cumulative rewards, and the users’ own reflection on
their interactions with these algorithms. Though we are in a simulated and simplified recom-
mender system setup, we aim to provide some understanding on (i) whether people prefer to
be recommended by an algorithm over deciding on their own, and (ii) whether more autonomy
(choosing the next comic genre on their own) results in a more attentive and mindful experience.
We note that, compared to our findings in Section 5.4 that are obtained through a rigorous hy-
pothesis testing framework, the results in this section are exploratory in nature and should not be
interpreted as definitive answers to the above questions.

5.5.1 Enjoyment
We first compare different algorithms (Self-selected, UCB, TS, ETC, "-Greedy, CYCLE and
REPEAT) in terms of the participants’ enjoyment. More specifically, we want to compare the
participants who are provided recommended comics to read with the ones who choose on their
own. In general, enjoyment is hard to measure [140]. To this end, we look at participants’
enjoyment and preference towards these algorithms through the following three aspects:

• Cumulative rewards: This metric is closely related to the notion of “regret” that is com-
monly used to compare the performance of bandit algorithms [93]. More formally, for any
participant i, the cumulative reward of an algorithm that interacts with participant i is given
by

PT
t=1 Ri(t) where Ri(t) is the reward provided by participant i at time t. In Table 5.3,
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Self-selected UCB TS ETC "-Greedy CYCLE REPEAT

Cumulative reward 319.36 323.70 312.37 324.49 307.59 316.5 301.63
Hindsight satisfaction 81.08% 75.00% 72.73% 76.92% 80.49% 77.50% 63.16%

Preference towards autonomy 71.62% 50.00% 68.18% 58.97% 58.54% 62.50% 65.79%

Table 5.3: Performances of each algorithm in terms of different enjoyment characterizations.
The first row gives the cumulative rewards for each algorithm, averaged over participants who
have interacted with it. We also report the 95% confidence intervals for the cumulative rewards.
The hindsight-satisfaction row shows the percentage of participants who believe the sequence of
comics they have read captures their preference well. The last row provides the percentage of
participants who prefer to select comics to read on their own in hindsight.

Self-selected UCB TS ETC "-Greedy CYCLE REPEAT

Reading Memory 91.89% 90.00% 92.42% 93.16% 90.24% 90.00% 90.35%

Rating Memory 71.17% 70.00% 70.45% 76.92% 69.92% 69.16% 57.89%

Table 5.4: Average correctness of the two types of memory questions for each algorithm.

for each algorithm, we show their cumulative rewards averaged over participants who have
interacted with the algorithm.

• Hindsight satisfaction: After the participants interact with the algorithm, in the post-study
survey, we ask them the following question: “Do you feel that the sequence of recommen-
dations2 captured your preferences well?” Participants’ answers to this question provide
their hindsight reflections towards how well the algorithm performed and whether they are
satisfied with it. The second row of Table 5.3 shows the percentage of participants who
believe the sequence of comics they read has captured their preference well.

• Preference towards autonomy: In addition to the previous two metrics, we have explicitly
asked the participants to indicate whether they prefer to choose comics to read on their
own. In the post-study survey, we ask: “Do you prefer being recommended comics to
read or selecting comics to read on your own?” The third row of Table 5.3 provides the
percentage of participants who prefer to select comics on their own for each algorithm.

In our collected data, the participants who have given more autonomy (the Self-selected
participants) prefer more autonomy in hindsight, compared to other participants. Though Self-
selected does not have the highest mean cumulative reward, it has the highest percent of partic-
ipants who believe that the comics they read have captured their preferences well in hindsight
(Table 5.3). This misalignment between mean cumulative reward and hindsight satisfaction also
shows in other algorithms (i.e., higher mean cumulative reward may not indicate higher hindsight
satisfaction), including "-Greedy and ETC. On the other hand, UCB performs well in terms of
the mean cumulative reward, while having the lowest percentage of participants wanting to have
more autonomy.

2For Self-selected participants, this should be interpreted as comics they have read/self-selected.
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5.5.2 Attentiveness
We want to understand whether participants who are asked to choose on their own have a
more mindful experience, in which the participants are more attentive to what they have read
through [42]. There is no consensus on defining and measuring mindfulness of an experi-
ence [58]. Some of the existing research uses self-reported mindfulness as a measurement [57].
In our case, we look at how attentive the participants are to their own experience, though the lens
of memory—for each participant, in the post-study survey, we ask them two types of memory
questions:

• Reading memory: In the post-study survey, we present the participants three randomly
selected comics and ask them to indicate whether they have read the comics before. This
question aims to measure the participants’ memory of what they have read. The first row
of Table 5.4 shows the average correctness percentage for the reading memory questions
for each algorithm.

• Rating memory: We also look at the participants’ memory on how they have liked certain
comics. To this end, in the post-study survey, we present three randomly selected comics
among the ones the participants have read and ask them to indicate whether they have rated
the comic with a score of five or above. The second row of Table 5.4 shows the average
correctness percentage.

We note that these questions differ from the attention check questions after each comic and are
not directly related to the compensation that the participants get. However, the high correctness
percentage shown in Table 5.4 on the reading memory questions suggest that the participants have
attempted to answer the questions from their memory instead of providing random answers.

In general, the participants have performed much better on the reading memory questions
than the rating memory questions, suggesting that they may be more aware of what they have
consumed than how they have liked them. In addition, all participants perform similarly in
terms of the reading memory correctness percentage with those whose algorithm is ETC or Self-
selected performing slightly better. Though it is hard to say which algorithm provides the most
attentive experience to the participants and whether Self-selected participants have a more mind-
ful experience, it is relatively clear that participants whose algorithm is REPEAT perform the
worst in terms of rating memory. Our data does not provide strong evidence on believing that
more autonomy results in more attentive experience, but may suggest that less enjoyable experi-
ence (e.g., for participants whose algorithm are REPEAT) correlates to less attentiveness.
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(a) Testing whether the participant remembers if the given comic was in the study.

(b) Testing whether the participant remembers rating the given comic positively in the study.

(c) Final questions asked in the post-study survey.

Figure 5.5: An example of questions contained in the post-study survey.
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Chapter 6

Conclusions and Future Directions

Machine learning has emerged as a foundational, general-purpose tool in the modern digital
landscape. As the field of machine learning continues to witness advances in model capabilities
and increasing adoption throughout the industry, it is becoming more imperative to design ML
systems that are reliable and transparent. These goals are not unique to ML systems, having long
been a cornerstone of modern software design principles. Modular system design has been essen-
tial to the transition from single-machine systems to large-scale datacenter systems. Similarly,
we are already witnessing such a shift in ML system design, where single-model monolithic sys-
tems are gradually being replaced by multi-component compound systems. However, it remains
an open question how to design ML systems (based on models that are probabilistic in nature)
that are as reliable and transparent as software systems.

Interoperability is key to modular system design. It enables continuous, concurrent develop-
ment of system components without requiring end-to-end testing whenever changes are made.
The components of compound ML systems, however, lack the same compatibility guarantees of
traditional software systems because they were not designed to be used together. In this thesis,
we explored how to make compound ML systems more modular by improving their interoper-
ability. In particular, we proposed that structured intermediate representations (StructIRs) can
serve as an important building block for constructing more reliable and transparent ML systems.
StructIRs are learnable, expressive, and (possibly) structurally constrained output representations
(e.g., probability distributions and code) that can serve as the primary inputs of a downstream
output process. We made the case, through empirical studies in three proof-of-concept ML sys-
tems, that the idea of StructIRs is widely applicable and, we believe, worthy of continued study.

This thesis addressed the problem in two parts. The first part demonstrated how Struc-
tIRs improve reliability and transparency in (1) a ML-driven datacenter storage system and (2)
an embedding-based language generation system. In system 1, we showed that univariate proba-
bility distribution StructIRs can represent modeling assumptions explicitly, making the resulting
storage policies effective as well as interpretable. In system 2, we showed that a pre-existing
learned text embedding StructIR can be used to reliably and transparently modulate sentence
style. However, we also uncovered gendered representations of occupations in the embedding
space, highlighting the importance of validating StructIR assumptions prior to deployment. In
the second part of the thesis, we explored this theme further by showing that a common structural
assumption in bandit-based recommendation systems (i.e., that user preferences are stationary)
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does not hold in practice. We developed an experimental framework and publicly available
toolkit for conducting human subject studies used to evaluate these assumptions.

In summary, this thesis proposed using structured intermediate representations to make ML
systems more reliable and transparent. We believe that there are significant opportunities to
explore the role of StructIRs in future work on ML systems. We outline potential extensions to
each of the works in this thesis in the following sections, and also discuss other opportunities for
future research on StructIRs.

6.1 Future Directions

6.1.1 ML-driven Datacenter Storage Systems

Our work showed that modeling object lifetimes using log-normal distribution StructIRs can
form the basis of ML-driven datacenter storage policies that are more reliable and transparent
than end-to-end approaches. Potential extensions to our work include modeling improvements
and alternate StructIR formulations.

Modeling improvements. Regarding the choice of modeling distribution, log-normal distribu-
tions were well-suited to the tasks we considered but may not be a good fit for all scenarios. For
instance, distributions that are bounded between 0 and 1 or multi-modal may be better handled
using a Beta distribution or Mixture-of-Gaussians respectively. Future work might also consider
using discrete distributions, such as a Geometric distribution for modeling the total number of
accesses. Another improvement could be to tokenize Census Tags into meaningful sub-tokens.
In addition to applying compression-based approaches such as Byte Pair Encoding (BPE [46]),
one could also identify known important tokens ahead of time, e.g., “temp” or “batch”. This
would improve the model’s ability to generalize to unseen Census Tags and new clusters. In
addition, instead of passing the predicted distribution StructIRs into a hand-written policy, one
could train a storage policy that makes decisions to optimize a metric such as cache hit rate.

Alternate StructIR formulations. Since predicted probability distributions are task-specific,
there is an opportunity to explore learning task-agnostic StructIRs such as embedding vectors.
For instance, one could learn to map the set of Census tags within an incoming request to a vector
that can predict the Census tags of the next request. These task-agnostic embeddings could be
then be used to predict task-specific lifetime distributions, and also for post-hoc analysis.

6.1.2 Steerable Language Generation from Text Embedding Vectors

We demonstrated that existing text embedding models can act as a StructIR that enables effec-
tive and interpretable sentence style transformation. Future work could explore using our work
to compare different text embedding models, and improving the use of embeddings for text gen-
eration. We describe these potential directions in greater detail below.
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Evaluating other text embeddings. One potential extension of this work is to use it as an ex-
ploratory tool to study the characteristics of other text embedding spaces. Text embeddings from
different models may represent various semantic concepts with differing fidelity. We only stud-
ied the text-embedding-ada-002 model, but one could consider evaluating other models
such as GTR [133], GRIT [129], and Gecko [96]. We believe that future work on embedding
inversion-based text generation offers a promising approach to evaluate embeddings compared to
using embedding benchmarks alone. Such analysis could benefit from more quantitative analogy
studies (beyond those studied in our work) across a wider variety of tasks. Our work also only
investigated sentence embeddings. Another promising direction could be to evaluate paragraph
or document embeddings by extending vec2text to handle longer sequences.

Improving embedding-based text generation. Our work investigated transforming sentences
by applying linear offsets in the embedding space. We believe it is worth exploring other ap-
proaches to transform sentences by perturbing embeddings, such as performing simple linear
transformations or learning to choose extrapolation coefficients. These improvements could
make embedding-based text generation more expressive and accurate. One might also consider
training or modifying the learned embedding space to, e.g., mitigate undesired gender-occupation
associations. This would ensure that the StructIRs used in downstream applications encode the
intended assumptions about the problems being addressed.

6.1.3 Validating Stationarity in Bandit-based Recommendation Systems

Our work provides a general experimental framework and toolkit to understand assumptions on
human preferences in a bandit setup. At a higher level, this work fits in the broader picture
of understanding the validity of structural assumptions that machine learning systems rely on.
Below we discuss some future directions for our work.

Modeling human preference dynamics. Our findings on the existence of evolving prefer-
ences in a K-armed bandits recommendation setting suggest that in order to study the decision-
theoretic nature of recommender systems using the MAB framework, one must account for such
preference dynamics. The need for learning algorithms (oftentimes reinforcement learning al-
gorithms) that deal with the impact of recommendations on user preferences have also been
proposed in recent works [27, 28, 29, 30, 71, 122, 123, 159, 187, 197]. An important building
block for this line of research is to have better modeling of human preference dynamics. Our
experimental framework and toolkit can provide more grounding and accessibility for research
on it. As an example, our observation that heavy and light comic readers have different pref-
erence dynamics can be further investigated using our experimental framework, advancing our
understanding on evolving preferences in a more granular way. More broadly, our toolkit can
be used for: (i) collecting data using fixed or randomized recommendation sequences or bandit
algorithms to identify and estimate preference dynamics; and (ii) conducting field tests of bandit
algorithms designed to address evolving preferences.
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Satisfying other evaluation metrics. Our exploratory data analysis on the performance of dif-
ferent algorithms suggests that the human interactants of the bandit algorithms may care about
other aspects of their experience in addition to cumulative rewards. For example, Self-selected
has a higher percentage of satisfied participants in hindsight compared to UCB, though UCB has
a higher average cumulative reward. This suggests that besides traditional performance metrics
used to analyze and develop these bandit algorithms, we should consider a broader set of ob-
jectives and metrics when studying these problems. On a related note, given that we want our
algorithm to account for evolving preferences, when regret (the difference between the expected
cumulative reward obtained by a proposed policy and an oracle) is used as the performance met-
ric, the oracle should be chosen to be adaptive instead of the best-fixed arm considered in many
MABs (including contextual bandits) literature.

6.2 Other Opportunities for Future Work
Training new types of StructIRs. There are many types of StructIRs that could be integrated
into ML systems beyond those studied in this thesis. Examples of other useful StructIRs in-
clude code and JSON. These output formats are structured since they must follow well-defined
compilation and formatting constraints. Because they are structured, they can be passed into
downstream systems such as program interpreters or other software tools. This capability makes
the resulting ML systems more expressive, reliable – due to the ability to externalize computation
to code and tools – and transparent – because the tool inputs are inspectable. Recent work has
shown that code LMs can improve multi-step logical and mathematical reasoning by learning to
generating intermediate programs [31, 52, 72]. This program-aided approach has also enabled
more structured robot planning [112] and visual question answering [170]. We believe that there
is significant room to explore generating StructIRs such as code.

Methods for generating structured outputs. ML models are not typically used to generate
outputs that have explicit structure. As structured representations have become more widely
useful (e.g., given recent focus on LLM tool use), there have been multiple lines of work that
focus on training and inference strategies to generate structured outputs.

The first are inference-time decoding strategies for schema-based LLM completions, e.g., for
generating regex-compliant outputs and JSONs (using what is known as “JSON mode”) which
are supported by numerous libraries [18, 60, 115, 191]. These approaches enable extracting
structured outputs from off-the-shelf models without further training, but can also be applied to
models that have explicitly been trained for structured generation.

A second line of work belongs to the so-called “generate-then-validate” class of approaches.
In AlphaCode [111] and AlphaGeometry [176], ML models are first used to generate candidate
solutions that are then validated by downstream code execution and symbolic evaluation systems
respectively. This approaches effectively leverage the strengths of ML models while making up
for their shortcomings stemming from their probabilistic nature.

Lastly, there are also existing works that train ML models to generate structured outputs.
Some work focuses on structured NLP tasks such as named entity recognition [106, 192] and
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event extraction [110], and may use supervised fine-tuning [49, 182, 199] and few-shot prompt-
ing [8, 109], or perform zero-shot inference [152, 184]. Improving performance on these types
of tasks could enable them to become stable intermediate representations that could be used
in downstream tasks. Another line of work on distilling structured representations (e.g., embed-
dings [96]) from LLMs offers an alternative approach to creating StructIRs while fully leveraging
the end-to-end learning capabilities of deep neural networks.

Automating and optimizing compound ML workflows. Machine learning workloads for
complex tasks (such as question-answering and logical reasoning) are increasingly being han-
dled using workflows containing multiple stages, e.g., retrieving information from a corpus,
running a code interpreter, self-validating generated responses. While developing these work-
flows, one has to solve two main challenges: how to choose the components used in this ML
workflow and how to search over the resulting space for optimal workflows? There has been
some work on solving the former, such as by using LLMs to decompose complex tasks into
simpler ones [86, 94, 118, 198] as well as to select submodules and tools [63, 139, 156] that
are suited to the problem. Meanwhile, work addressing the latter has explored optimization over
prompts [126, 185] and generated answers using self-improvement strategies [68, 186, 194] that
are being used to optimize ML workflows end-to-end [85]. Current approaches mostly operate
on text-based intermediate representations between workflow stages. Future work that generates
and optimizes over structured intermediate representations can further enhance the expressivity,
reliability, and transparency of these compound ML systems.
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Bloom: A 176b-parameter open-access multilingual language model. arXiv preprint
arXiv:2211.05100, 2022. 1
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