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Abstract
In many systems, servers do not turn on instantly; instead, a setup time must

pass before a server can begin work. These “setup times” can wreak havoc on a sys-
tem’s queueing; this is especially true in modern systems, where servers are regularly
turned on and off as a way to reduce operating costs (energy, labor, CO2 emissions,
etc.). To design modern systems which are both efficient and performant, we need
to understand how setup times affect queues.

Unfortunately, despite successes in understanding setup in the single server set-
ting, setup in the multiserver setting remains poorly understood. To circumvent the
main difficulty in analyzing multiserver setup, all existing results assume that setup
times are memoryless, i.e. distributed Exponentially. However, in most practical set-
tings, setup times are close to Deterministic, and the widely used Exponential-setup
assumption leads to unrealistic model behavior and a dramatic underestimation of
the true harm caused by setup times.

This thesis represents a comprehensive characterization of the average wait-
ing time in a multiserver system with Deterministic setup times, the M/M/k/Setup-
Deterministic. In particular, we derive multiplicatively-tight lower and upper bounds
on the average waiting time, demonstrating that setup times, along with their dis-
tributions, can not be ignored; setup times can cause profound increases in wait-
ing time, especially when the distribution of setup time has low variability. Our
bounds are the first closed-form bounds on waiting time in any many-server sys-
tem with setup times, including the extensively-studied Exponential setup system.
Furthermore, we use our bounds to derive a highly-accurate approximation, which
we evaluate in a variety of settings. These results are made possible via our new
method for bounding the expectation of a random time integral, called the Method
of Intervening Stopping Times or MIST.
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Chapter 1

Introduction

What are setup times?

In many systems, servers do not turn on instantly; instead, a significant setup time must pass
before a server can begin work [1, 25]. For example, when photocopying a document, the first
person to use the photocopier must wait for the machine to warm up; when using cloud comput-
ing resources, one must wait for a virtual machine (VM) to boot up before the VM can be used
[17, 34]; when hosting applications online, application replicas must take time to boot up before
they can begin fulfilling requests [14]. When studying the effect of setup times on a system’s
queueing behavior, we model the effect of setting up via an abstract setup time [1].

Why do setup times matter?

Setup times can have a significant impact on a system’s queueing behavior, especially in modern
systems. This is because, in modern computing systems, 1) servers are regularly turned on
and off and 2) setup times are much, much larger than service times. Because servers don’t
turn on instantly, jobs in a system with setup times end up delayed compared to their no-setup
counterparts. Since setup times are sometimes more than 1000 times larger than the average job
size (e.g. a VM’s average boot time of 10 s compared to an average job size of 10 ms [17]), this
additional delay can be significant.

Nevertheless, many systems still regularly turn their servers off and on. Why? Because by
doing so, one can save a considerable amount on operating costs, e.g. energy, money, CO2

emissions, etc. That said, this cost-saving measure is only a viable option if the additional delay
caused by setup times is not too large. Therefore, if we want to design systems which are si-
multaneously efficient and performant, we need a good understanding of how setup times affect
queueing performance.

1.1 Brief problem description
In this work, we study the effect of setup times on the average waiting time in the M/M/k/Setup,
a simple variation on the classic M/M/k queue.

1
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Figure 1.1: An example of an M/M/k/Setup-Deterministic queue with k = 4. Jobs (blue rectan-
gles) enter into a central queue, where they wait in FCFS order until they are served by one of
k servers (white circles with black outline containing 1 of 3 elements). Servers can be off (red
“X”), on (blue rectangle), or in setup (green hourglass).

Job Dynamics. Outside of its setup dynamics, the M/M/k/Setup behaves essentially identically
to the usual M/M/k. Jobs arrive in a Poisson process to a central queue, where they wait in First-
Come-First-Served order until they are served by one of k servers. The job at the head of the
queue enters service whenever either 1) a server finishes setting up and turns on or 2) a server
finishes its current job. Once in service, the job stays in service for an i.i.d. Exponential amount
of time, after which the job departs.

Setup Dynamics. To complete our description of the M/M/k/Setup, it suffices to describe how
the system controls the setup process. Servers can be in one of three states: off, on, or in setup.
Servers turn off whenever they finish their current job and there are no jobs waiting in the queue.
Servers turn on when they have remained in setup for a full setup time; in general, this setup
time is some i.i.d. random variable which is sampled at the moment that setup is first initiated.
Servers initiate and cancel setup based on job arrivals and departures, respectively. In particular,
if a job arrives to the system and sees off servers, it initiates setup at one of these off servers (we
assume every server is identical). Likewise, if the number of in setup servers ever exceeds the
number of jobs waiting in the queue, then the system turns off the server that has been in setup
for the least amount of time. Using the M/M/k/Setup, we can now study the complex interactions
which arise from simultaneous setup.

1.2 What makes the setup effect difficult to understand?

1.2.1 Setup effect can be indirect
Example: the M/M/1/Setup. Note, though, that the additional delay caused by setup does
not always manifest in an obvious way; we illustrate this in Figure 1.2. For example, consider
a simple single server queue with setup times, the M/M/1/Setup. The job which is the first to
arrive to an empty system triggers the off server’s setup, and must wait a full setup time before
it is served. Likewise, every job that arrives while the server is still setting up must wait in line
behind the setup-triggering job, and so also partially observes the server setting up. However,

2



Figure 1.2: A comic illustrating of the indirect nature of setup (Section 1.2.1). In the first panel,
the queue starts empty. Then, a job arrives triggering the setup of the server. While the initial
job is waiting for the server to turn, more jobs arrive, all observing the server in setup —the
main cause of their delay. However, jobs which arrive after the server is ready still experience
additional delay —but do not directly observe why they are delayed.

even after it turns on, the fact that the server was off for a while has a lasting impression on the
length of the queue; the queue is longer than it would otherwise be. Thus, setup can even affect
the delay of jobs that never actually observe a server in setup.

The effect of setup on queueing behavior is made even more complex when the setup time is
allowed to be a random variable, sampled independently every time setup is initiated, and when
the length of each job follows an arbitrary distribution. This more complex model is called the
M/G/1/Setup. Further, despite its apparent complexity, the full waiting time distribution of the
M/G/1/Setup was completely characterized in 1964 by [36].

1.2.2 Setup effect is even harder to understand in the multiserver setting
Unfortunately, the effect of setup on delay is even harder to understand when multiple servers can
set up at the same time. Recall that, in the single server setting, the server’s setup process always
completes once initiated, and there is always at least one job to work on once the server turns on.
This implies that, although setup has a complex effect on job delay, the server’s behavior itself is
quite simple: it first initiates setup; then, once setup completes, the server begins working; then,
after finishing all the work in the system, the server turns off. On the other hand, when multiple
servers can simultaneously be in setup, their server states begin to interact.

In particular, via the speed of their processing, the busy servers indirectly control the setup
behavior of the not-busy servers. For example, if server A is on while server B is setting up, then
server A might finish all the work in the queue before server B even has a chance to turn on. As
such, in the multiserver setting, it can sometimes make sense to cancel a server’s setup process;
a situation which would never occur in the single server setting. Of course, the opposite can
also happen: if the busy servers are working much more slowly than expected, then the queue
might grow large enough that we begin setting up a server that would otherwise be left off. This
interaction between departure behavior and setup behavior is exactly what makes the setup effect
so much harder to understand in the multiserver setting.

1.3 State of the Art
Everyone uses the Exponential model. Despite continued academic interest, our understand-
ing of the M/M/k/Setup is still extremely limited. Perhaps the most significant limitation is that

3
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Figure 1.3: Simulation results for the M/M/k/Setup-Deterministic, M/M/k/Setup-Exponential,
M/M/k (no setup), varying the number of servers k and keeping fixed the service rate µ = 1, the
setup time β = 1000, and the load ρ = 0.5. Note the high separation between all three models.

all state-of-the-art research [15, 32, 33] assumes that setup times are Exponentially distributed.
This limitation has major consequences for the utility of their work.

The Exponential model is unrealistic. We give two reasons why this limitation is so signifi-
cant. First, the “Exponential setup” assumption leads to extremely unrealistic behavior in some
situations. To illustrate where the breakdown in realism happens, consider a scenario where only
a single server is setting up and compare it to a scenario where 100 servers begin setup at the
same time. In the Exponential setup model, the 100-server system receives its first server on
average 100x faster than the single-server system receives its first (and only) server. This is not
a quirk of our specific example: in the Exponential model, the longer the system’s queue is, the
more rapidly the system’s servers turn on to help drain that queue. In a sense, the Exponential
system can rapidly “react” to increases in queue length.

The Exponential model underestimates waiting. This unrealistic “reactivity” phenomenon
causes a further, more concerning, problem: in real systems, the Exponential model dramatically
underestimates how much waiting actually occurs. To be more precise, in modern systems: 1)
average setup times are often larger than average job sizes by two or three orders of magnitude
[14, 17, 26, 27, 28]; and 2) as noted in the paper that introduces the Exponential model [15], setup
times are actually closer to Deterministic. When these two criteria are satisfied, as observed in
Figure 1.3, the true waiting time is often orders of magnitude larger than what the Exponential
model predicts. Accordingly, in many practical studies of setup [14, 15, 20, 22], setup times are
assumed to be Deterministic, e.g. servers take exactly 2 minutes to set up. However, despite
its apparent limitations, the Exponential setup model remains the de facto choice for theoretical
analysis, since it allows for the application of a number of existing theoretical techniques.

4



Challenges of the Deterministic model. Although modeling setup times as Deterministic
might be more realistic, it also comes with a set of unique theoretical challenges. In the De-
terministic case, one must, even in simulation, track the individual remaining setup time of every
server that is currently setting up. In contrast, because the Exponential distribution is memo-
ryless, in the Exponential case it suffices to track only the total number of servers setting up
instead, greatly simplifying the system state. Moreover, the Exponential setup model’s simpli-
fied state forms a Continuous-Time Markov Chain, a well-studied class of stochastic processes
for which a number of techniques have been developed. For the Deterministic setup model, no
such techniques exist.

1.4 Our Contributions
In this thesis, I demonstrate that setup times, along with their distributions, can not be ig-
nored; setup times can cause profound increases in waiting time, especially when the distri-
bution of setup time has low variability. (See Figures 1.4a and 1.4b for an illustration.)

Summary. The contributions of this thesis are both theoretical and practical. On the theoretical
side, in Chapters 5 and 6, respectively, we derive the first lower and upper bounds on the aver-
age waiting time in the M/M/k/Setup-Deterministic. Notably, these results are the first closed-
form bounds on the average waiting time in any M/M/k/Setup system, including the extensively-
studied Exponential setup system. We obtain these bounds via a new technique for bounding
random time integrals called MIST, described in Chapter 4. On the practical side, in Chapter 7,
we then show how to take the components of our upper and lower bounds, and combine them to
make a highly accurate approximation; an example of the approximation alongside the bounds is
shown in Figure 1.7.

Assumptions. In our theorems, in order to more simply characterize the system’s behavior, we
make two assumptions. First, we assume that setup times are large compared to service time,
i.e. the average setup time β ≥ 100 1

µ
; this is often satisfied in practice [14, 17, 26, 27, 28].

Second, we assume that, on average, the system utilizes at least 100 servers, i.e. the offered load
R ≜ kρ ≥ 100. Note also that, while these conditions are often satisfied in practice, the specific
100 value stated here is not strictly necessary for our analysis to be accurate, as evidenced by the
apparent accuracy of Approximation 1, shown in Figure 1.7.

1.4.1 Discussion of Bounds.
After simplification, our bounds state

E [Q(∞)] =c µβ
√
R +

1

1− ρ
;

where the operator =c denotes equality up to multiplicative constants; we show this explicitly in
Section A.1. This simplified characterization of the queue length gives us insight into how the
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Figure 1.4: Our results along with simulation data for the M/M/k/Setup-Deterministic and
M/M/k/Setup-Exponential, varying the number of servers k while keeping the mean service
time 1

µ
= 1 ms, the mean setup time β = 1000 ms, and the load ρ = 0.5 fixed. (a) A com-

parison of our results to the true average waiting time in the M/M/k/Setup-Deterministic. Our
results behave like the true average waiting time, while the Exponential model behaves differ-
ently. (b) A plot showing the increase in average waiting time as one moves from moderate
variance (M/M/k/Setup-Exponential) to zero variance (M/M/k/Setup-Deterministic); we use an
Erlang distribution to interpolate between the two settings.

system parameters govern the system’s queueing behavior. The first term, µβ
√
R, scales linearly

with the setup time β and captures the effect of turning servers off and on. The second term, 1
1−ρ ,

dominates the first term only when the load ρ is high enough, say in the renowned super-Halfin-
Whitt regime [16, 24] where ρ = 1− γk−α with 0 < γ < 1 and α > 0.5. In this case, it recovers
the 1

1−ρ scaling seen in the M/M/k without setup times.

1.4.2 Discussion of Approximation.

Moreover, our analyses suggest a simple approximation for the waiting time. TakingCapx ≜
√

π
2
,

E [TQ] ≈
Capx

2

β√
R

+
Capx

√
R

k(1− ρ) + Capx
√
R

(
1

kλ

[
1

1− ρ
+

1

2

])
.

In simulations, we find this approximation to be highly accurate across a variety of parameter
settings (Figure 1.7), so long as the offered load R > 2. This is despite the fact that, in our
analysis, we assume that the offered load R ≫

√
R and often make considerable use of this fact.

In that sense, it is a testament to the strength of our approach that our resulting approximation
remains accurate all the way up to an offered load of R = 2. Furthermore, while offered loads
smaller than this are of limited interest in practical settings, when the offered load is that small,
we seem to recover the single-server behavior observed in [36].
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Figure 1.5: A provisioning example.

Figure 1.6: A provisioning example highlighting the differences between the Deterministic and
Exponential models. To achieve a target waiting time of 20 ms, our approximation correctly
predicts it will take k ≈ 2000 servers, while the Exponential model predicts that only k ≈ 50
servers should suffice. See Figure 1.7 for a more comprehensive evaluation.

1.4.3 Impact: How our results transform capacity provisioning

A common but complex problem which arises in many areas is that of designing a system such
that the average waiting time of a customer is below some target waiting time. Historically, we
understand this problem well for systems without setup times, e.g. there’s a straightforward for-
mula for the average waiting time in the M/M/k without setup. Unfortunately, our understanding
of this problem is quite poor for more modern systems, since their average waiting times are
affected by setup times. As mentioned before, previous results on understanding the relationship
between setup times and the average waiting time leave much to be desired. Our new results ex-
pand on the state-of-the-art Exponential model in two important ways: 1) predicting the waiting
time is much less computationally-intensive, and 2) the prediction is of much higher quality.

Easier predictions. Compared to the Exponential model, our new Deterministic approxima-
tion greatly simplifies the design process. In particular, when predicting the average waiting time
in the Exponential model using the state-of-the-art method from [15], one must solve a system
of O(k2) quadratic equations to find the average waiting time E [TQ]. Two practical issues arise
from this fact. First, the equations change depending on the number of servers k, meaning that
the computation must be repeated every time one wishes to test a new number of servers. Second,
the opacity of the process makes it difficult to get intuition about how the average waiting time
changes as one alters the system parameters. In contrast, Approximation 1 is a relatively sim-
ple function of the relevant parameters. The simplicity of our approximation has, likewise, two
benefits: 1) computing the waiting time becomes easy, and 2) our approximation’s form makes
it clear how and why the waiting time behaves the way it does.

7



10
2 1

2
1

10
2

1
10

4
100

101

102

103

k = 10.0, = 10.0

10
2 1

2
1

10
2

1
10

4
101

102

103

k = 10.0, = 100.0

10
2 1

2
1

10
2

1
10

4
102

103

k = 10.0, = 1000.0

10
2 1

2
1

10
2

1
10

4

100

101

102

k = 100.0, = 10.0

10
2 1

2
1

10
2

1
10

4

101

102

k = 100.0, = 100.0

10
2 1

2
1

10
2

1
10

4

102

103

k = 100.0, = 1000.0

10
2 1

2
1

10
2

1
10

4
10 1

100

101

k = 1000.0, = 10.0

10
2 1

2
1

10
2

1
10

4
100

101

k = 1000.0, = 100.0

10
2 1

2
1

10
2

1
10

4
101

102

k = 1000.0, = 1000.0
M/M/k/Setup-Det
Our Approx
R = 2av

er
ag

e 
wa

iti
ng

 ti
m

e

load, 
Figure 1.7: Some examples demonstrating the excellent accuracy of our simple approximation
(1) to the average waiting time in the M/M/k/Setup-Deterministic. For each of these 9 plots, we
plot the behavior of the average waiting time as one varies the load ρ from 0 to 1, holding fixed
the total number of servers k as well as the setup time β. In each row, we hold the number of
servers k constant while testing increasing values of the setup times β. In each column, we hold
the setup time β constant while increasing the number of servers. We also include, as a reference,
a dotted line illustrating the point at which the offered load R ≜ kρ = 2.

Higher quality predictions. Moreover, when compared to the predictions of the Exponential
model, the predictions we obtain using our Deterministic approximation are of a much higher
quality. This difference in quality is perhaps best illustrated by looking at a simple example.
In Figure 1.5, we compare the prediction from the Exponential model to the prediction from
our approximation, plotting how the predicted average waiting time changes as one increases
the number of servers k while fixing the load ρ = 0.5, the average setup time β = 1000 ms,
and the average service time 1

µ
= 1 ms (note that these are typical relative values in many

applications [27]). Our goal is to determine how large the number of servers k needs to be
before we reach the target waiting time T target = 20 ms. In both models, the average waiting
time decreases as the system gets larger. However, the Exponential model predicts that the
average waiting time will be small enough once k = 50. On the other hand, as captured by our
approximation, the Deterministic setup system will only reach the target waiting time once the
number of servers k ≈ 2000 —a full 40 times larger than what the Exponential system predicts!
At even a modest number of servers, the Exponential system underestimates the waiting time by
orders of magnitude.
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1.5 Outline
Chapter 2: Prior Work. In Chapter 2, we begin our study of setup by reviewing some related
work. We start by discussing the single server setting, then we move through the history of the
study of setup times up to the state of the art. For each result we review, we compare and contrast
their work with the main results developed in this thesis.

Chapter 3: Model. In Chapter 3, we give a more detailed description of our model. Besides
reviewing the brief description we gave in this chapter, we also describe our notation and give a
construction of our processes of interest using Poisson processes.

Chapter 4 : Key Ideas and Techniques. Next, in Chapter 4, we describe the key ideas and
techniques of this thesis. In particular, we introduce the Method of Intervening Stopping Times;
the MIST method. We describe the MIST method by first describing its general function, then
stating its associated formal definition, then proving a key lemma which allows it to be generally
applied.

Chapter 5: The Lower Bounds. In Chapter 5, we describe our first two main results (Theo-
rems 5.1 and 5.2), both lower bounds on the average queue length in the M/M/k/Setup-Deterministic.
We begin by describing in greater detail why a lower bound is needed, then proceed by stating
both bounds and proving the stronger one.

Chapter 6: The Upper Bound. In Chapter 6, we describe our final main result (Theorem 6.1),
an upper bound on the average queue length in the M/M/k/Setup-Deterministic. As we did in
Chapter 5 with the lower bounds, we first describe why we need this upper bound. Afterwards,
we give its proof.

Chapter 7: The Approximation. After proving these results, in Chapter 7, we develop an
approximation to the average waiting time in the M/M/k/Setup-Deterministic. As before, we first
describe why such an approximation is needed. Afterwards, we explicitly state the approximation
formula and describe how to derive the approximation from the bounds in Chapters 5 and 6.

Chapter 8: Conclusion. Finally, in Chapter 8, we summarize the main results of this thesis,
discuss some possible applications, and describe a few open problems.
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Chapter 2

Prior Work

2.1 Systems without Simultaneous Setup

2.1.1 The M/G/1/Setup
The best-understood case is the single-server case. The foremost result on this model is the
result of [36]; the author considers a generalization of the M/G/1 queue where, if a customer
arrives while the server is idle, then they have a different service distribution than if they arrive
while the server is busy. By observing that the system state at customer departure times forms
a discrete Markov chain, then analyzing that embedded chain, Welch characterizes the steady-
state and transient distributions of the queue length; via distributional Little’s Law, this gives the
same result for delay and response time. This important result has been extended in a variety of
different directions, by adjusting the service discipline or arrival process[3, 4, 18].

2.1.2 M/M/k and M/G/k with staggered setup
The easiest case of multiserver systems with setup times involves the staggered setup model,
where at most one server can be in setup at a time, greatly simplifying the analysis. In [2],
the authors obtain an expression for the steady-state distribution of queue length for the system
when setup times are Exponential, using the method of difference equations. In [11], the authors
simplify the solution of the staggered M/M/k with exponential setup times considerably, and
prove a decomposition result for mean delay. In [9], the decomposition result is generalized to
a hyperexponential job size distribution, and shown to hold approximately for a general job size
distribution.

2.2 The M/M/k/Setup-Exponential

2.2.1 M/M/k/Setup-Exponential, Approximations
All previous theoretical results that investigate an M/M/k/Setup system assume Exponential setup
times. We first highlight the state-of-the-art papers concerning approximating the M/M/k/Setup-
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Exponential. In particular, we highlight the work in [32] and [11]. Gandhi et al. [11] seek useful
intuitive approximations to the M/M/k/Setup-Exponential system. Their approximations stem
from an exact analysis of the M/M/∞/Setup-Exponential system, which they then modify in
various ways to capture the finite server case. The approximations in [11] work well, except
when both load and setup times are moderately high (ρ > 0.5 and µ

α
> 10).

Pender and Phung-Duc [32] consider a generalization of the M/M/k/Setup-Exponential model
which includes non-stationary arrival rate and customer abandonment. Within this model, they
derive a mean field approximation for the system dynamics, which they prove converges as the
number of servers, k, approaches infinity.

Unlike our work, neither Pender and Phung-Duc [32] nor Gandhi et al. [11] provide explicit
bounds on the delay. The approximations themselves are also not stated as an explicit function
of the system parameters. Finally, neither considers Deterministic setup times.

2.2.2 M/M/k/Setup-Exponential, Exact Analysis
There are only a few results that deal with the exact analysis of the M/M/k with Exponential
setup times. The most well-known are [15] and [33].

In a followup to the approximation work done in [11], in [15] the authors give the first exact
analysis of the M/M/k/Setup-Exponential system. To do this, they develop the Recursive Re-
newal Reward (RRR) technique, which allows them to analyze 2-dimensional Markov chains of
a certain structure. They apply this technique to the M/M/k/Setup-Exponential system, and thus
provide a method for computing the time-average value of any function of the system state; ap-
plying this method to the correct function gives the mean and Laplace transform for the number
of jobs in queue.

In [33], the author rederives the exact solutions for the queue length obtained in [15] using
two different methods: an analysis using generating functions, and an analysis applying the
matrix analytic method after casting the system as a quasi-birth-death process. Although these
techniques appear different, the author highlights some core correspondences between them, and
also between these methods and the RRR technique of [15].

Despite the fact that [15] and [33] represented the first breakthrough in our understanding of
the setup effect in 50 years, their results are limited in two significant ways. First, instead of
a closed-form formula for the average waiting time, the authors only derived an algorithm for
computing the average waiting time. This algorithm is useful in the sense that it bypasses the
need to simulate the system, but unfortunately fails to give intuition about wait times scale with
system parameters. Moreover, like all of the works mentioned in this section, their work assumes
that setup times are distributed Exponentially, which turns out to severely limit the utility of their
results; see Section 1.3 for a detailed discussion.

2.2.3 Distributed Setting
There has also been some work on servers with setup times outside of the centralized queue set-
ting. In [30], the authors consider a queueing system which functions much like the M/M/k/Setup-
Exponential, except, instead of a central queue, each server has its own queue, and there is a
central dispatcher which routes arriving jobs to one of these queues. In this model, they describe
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a token-based load balancing and scaling scheme called TABS, and prove that its performance
(as k → ∞) is asymptotically optimal. In particular, they show that the relative energy wastage
and the mean delay both go to 0 under their scheme, by analyzing an appropriate fluid limit. In
a followup paper, [29], the authors consider the performance of TABS in the infinite-buffer case.
They give two results. First, they show that, somewhat counterintuitively, there exist parameter
settings under which the TABS scheme is unstable. Second, they show that, in spite of this finite
instability, for sufficiently large k, the system under TABS is stable. Moreover, its performance
continues to be asymptotically optimal. In our opinion, it is best to think of these results as
complementary to the body of work on the M/M/k/Setup, as one typically does when comparing
distributed queueing work to centralized queueing work. Although all papers discussed deal with
setup times in some capacity, the nature of the questions being asked and answered in [30] and
[29] are very different from the central-queue-oriented work we discuss.

2.3 Scheduling with Setup
Gittins in the G/G/k/Setup. In [19], the authors consider a very general queueing model, the
G/G/k/Setup, and show that the scheduling performance of the Gittins policy is near-optimal in
this setting. In particular, they explicitly bound the deviation from optimality of the average wait-
ing time under the Gittins policy, showing that this “suboptimality loss” is uniformly bounded at
all loads. They thus conclude that the Gittins policy is heavy-traffic optimal.

Their work differs from ours in two important ways. First, they investigate a model of setup
where the setup process is never cancelled. While this may be accurate in certain situations, a
reasonable amount of complexity in our problem stems from the fact that the setup process can
be cancelled. Second, they are mainly concerned with bounding the performance of a schedul-
ing policy as compared to the optimal scheduling policy. By contrast, our principle results are
concerned with directly characterizing the average waiting time. In that sense, [19] serves as an
interesting study whose results are somewhat orthogonal to ours.

2.4 Prior Work on Deterministic Setup Times
M/G/2/Setup-Deterministic, with dispatching In the control literature, deterministic setup
times have been incorporated into models in order to enhance realism. Hyytiä et al. [20] consider
a dispatching version of the M/G/2/Setup-Deterministic model, and attempt to build near-optimal
policies for the joint control of setup initiation and the dispatching of jobs. We hope that our anal-
ysis here could open the door to more fine-grained stochastic analysis of such control policies.

M/M/k/Setup-Deterministic, simulation only The only work we have found which discusses
the M/M/k/Setup-Deterministic model explicitly is a simulation-based thesis by Kara [22]. They
observe that the mean delay in the M/M/k/Setup-Deterministic is consistently larger than that
of the M/M/k/Setup-Exponential, and, as the mean setup time 1

α
increases, the relative increase

in mean delay between the M/M/k/Setup-Deterministic and the M/M/k/Setup-Exponential also
increases. We corroborate and expand on their results in Section 1.3.
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Algorithms for reducing the effect of setup times on delay and energy usage Setup times
are both a problem from a delay perspective and also from an energy perspective (servers utilize
peak power while in setup [14]). One can of course avoid setup times altogether by always
leaving servers on, but this results in wasted energy as well, since a server which is on, but idle,
utilizes 60-70% of peak energy [14]. To manage power efficiently, several algorithms have been
developed to reduce the costly effects of setup times. One idea is DelayedOff, whereby a one
waits some time before turning off a server, so as to avoid a future setup time [10, 11, 14, 32].
When using DelayedOff, the choice of which idle server to route a job to now matters. One idea
is routing jobs to the Most Recently Busy server (MRB), so as to minimize the size of the pool of
servers that are turning on and off [10]. Similar to MRB is the idea of creating a rank ordering of
all servers and always sending each job to the lowest-numbered server in the rank [14]. The goal
of all such algorithms is to minimize the Energy-Response-time-Product (ERP) [10], maximize
the Normalized-Performance-Per-Watt (NPPW) [8], or minimize energy given a fixed tail cutoff
for response time [14]. Other ideas for minimizing delay and energy involve utilizing sleep states
in servers, which require more power than being off, but have a lower setup time [12, 13].
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Chapter 3

Model

In Chapter 3, we discuss our model of interest, the M/M/k/Setup-Deterministic. We begin the
chapter by going through a detailed model description, then discuss how to construct the relevant
stochastic processes via Poisson processes.

3.1 Detailed Model Description
The system behavior, excluding setup. As in the typical M/M/k queue, jobs arrive in a Poisson
process of rate kλ into a FCFS queue where jobs wait to be served at one of k servers. The job at
the head of queue enters service whenever a server frees up, either from a job completing service
or from a server finishing set up. Once a job enters service, it remains in service for Exp(µ)
time before departing. We assume all the servers have identical service and setup properties. As
such, we can assign each server an index from 1 to k, and without loss of generality assume that
departures always occur at the busy server with the highest index; i.e., we re-index the servers
when a job departs so the server with the newly departed job has the highest index among the
busy servers. From here, we define the quantity Z(t) to be the number of busy servers (or jobs
in service) at time t, the quantity Q(t) to be the number of jobs waiting in the queue at time t,
and the quantity N(t) = Q(t)+Z(t) to be the total number of jobs in our system. Excluding the
setup dynamics, one sees that, as promised, our model behaves identically to the M/M/k queue.

The setup dynamics. From here, it suffices to describe precisely how servers will be turned on
and off. We assume that each server is always in one of three states: on, off, or in setup. A given
server remains on only as long as that server remains busy. In other words, a server turns off
when it finishes its current job and the queue is empty. On the other hand, server i begins setup
when a job arrives to the system and there are only i− 1 jobs in the system. Server i remains in
setup until one of two events occurs: either 1) some fixed quantity β time has passed, or 2) there
are fewer than i jobs in the system; accordingly, we refer to β as the setup time of a server. In
the first case, if β time has passed without N(t) dipping below i, then server i has completed its
setup and begins working on the job at the head of the queue. In the second case, if the number
of jobs N(t) dips below i before server i completes setup, then the setup is canceled and server
i turns off. We use Yi(t) to denote the detailed state of server i at time t. If server i is off, we set
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Figure 3.1: An example of M/M/k/Setup-Deterministic with k = 4. The state pictured has
Z(t) = 2 busy servers, which means there are 2 jobs in service. There is Q(t) = 1 job in queue,
and thus there are N(t) = Z(t) +Q(t) = 3 jobs in system.

Yi(t) = OFF; if server i is on, we set Yi(t) = ON; if server i is in setup, we let Yi(t) denote the
remaining amount of time until server i would finish setup, if left uninterrupted. To be precise,
Yi(t) is set to β when server i first initiates setup, and this value decreases at rate 1 until either
setup completes or setup is canceled. For convenience, we assume, without loss of generality,
that ON < s < OFF for every possible remaining setup time s ∈ (0, β]; this ensures that the
detailed state Yi(t) is non-decreasing in i. As a shorthand, we use Y = (Y1(t), Y2(t), . . . , Yk(t))
to denote the vector of detailed server states.

A state descriptor. Accordingly, a Markovian state descriptor for our system at time t is S(t) ≜
(N(t),Y (t)). Note that, since one can recover the number of jobs in service Z(t) from the
detailed server states Y (t), one could also choose the state to be (Q(t),Y (t)). Either suffices
in providing a complete description of the forward dynamics of the system. Furthermore, when
discussing the steady-state distribution of, say, the number of jobs N(t), we use the notation
N(∞).

Some important constants. We define some system parameters which are critical to system
behavior. We use ρ ≜ λ

µ
to refer to the load of our system, i.e., the time-average utilization of an

average server. We call the offered load R ≜ kρ; this is the time-average number of busy servers
in our system. To enforce stability, we require that ρ < 1. As discussed previously, the symbol
β refers to the fixed (Deterministic) setup time of a server.

Busy period notation. Our results can be stated more concisely with two quantities related to
a busy period of an M/M/1 queue. We give the notation below. We use T busy (n, j) to denote
the expectation of the random length of an M/M/1 busy period with arrival rate kλ, service rate
kλ + µj, and which starts with n jobs in the system. Likewise, we use Ibusy (n, j) to denote
expectation of the random time integral of the number of jobs within the M/M/1 over the same
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period. Explicitly, we have
T busy (n, j) =

n

µj
(3.1)

and

Ibusy (n, j) =
n

µj

[
n+ 1

2
+
R

j
+ 1

]
. (3.2)

3.2 Construction
We now discuss how we formally construct this system using Poisson processes; being explicit
here will prove useful when we make coupling arguments in the future.

The arrival and departure processes. We take the number of jobs that have arrived at time
t to be ΠA(t), where ΠA is a Poisson process of rate kλ. In a slight abuse of notation, we
let ΠA([a, b]) denote the number of arrivals that occur in the interval [a, b]; we apply the same
extension to all other counting processes mentioned here. We set the potential departure process
of, say, server i to be Πi(t), where Πi is a Poisson process of rate µ. A potential departure from
server i only “counts” if server i is busy when that potential departure occurs, i.e., if the number
of busy servers Z(t) ≥ i at the time. Thus, the total number of departures from our system by
time t is

D(t) ≜
k∑
i=1

∫ t

0

1 {Z(s) ≥ i} dΠi(s),

where these integrals are with respect to the Πi’s as counting processes.

The number of busy servers Z(t). To find the number of busy servers Z(t), one could count
the number of setup completion events that have occurred so far and the number of server shutoffs
that have occurred so far; this description is a bit difficult to work with. Alternatively, one can
see from the initial description of setup dynamics that server i is on at time t if and only if the
total number of jobs N(s) ≥ i for all s ∈ [t − β, t], where one should recall that β is the setup
time. An easier description of Z(t) follows:

Z(t) = min

(
k, min

s∈[t−β,t]
N(s)

)
.

A departure operator. We can extend our departure process D(t) to a departure operator
D [f(s)] (I) which takes a function f(s) ∈ {0, 1, . . . , k} defined on some interval I and com-
putes the number of departures that would occur in that interval provided that the number of busy
servers Z(s) = f(s), i.e.

D [f(s)] ((a, b]) ≜
k∑
i=1

∫ b

a

1 {f(s) ≥ i} dΠi(s).

Note that we can write the total number of departures using our newly-defined operator asD(t) =
D [Z(s)] ([0, t]).
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Chapter 4

Key Ideas and Techniques

We now describe our approach to analyzing the average waiting time in the M/M/k/Setup-
Deterministic, using the upper bound, Theorem 6.1, as a case study. To begin, we go through the
first few steps in our proof, leading us to our first technical challenge: defining a renewal cycle
so that we can apply the Renewal-Reward Theorem. After explaining how to choose the renewal
cycle, we then address our second technical challenge: analyzing the time integrals resulting
from our application of the Renewal-Reward Theorem. To solve this challenge, we introduce a
method we call the Method of Intervening Stopping Times (MIST).

4.1 Initial Steps: Applying the Renewal-Reward Theorem

4.1.1 Reduction to analyzing E [N(∞)−R].
We begin by applying the Renewal Reward theorem. Although it is tempting to apply the theorem
directly to the queue length E [Q(∞)], it simplifies the analysis considerably if one analyzes the
number of jobs E [N(∞)−R] instead. To justify this, note that, in steady-state, the number of
busy servers E [Z(∞)] = R, and that the total number of jobs in system N(t) satisfies N(t) =
Q(t) + Z(t). It follows that the average queue length

E [Q(∞)] = E [N(∞)− Z(∞)] = E [N(∞)]−R = E [N(∞)−R] .

4.1.2 Applying Renewal-Reward.
Applying the Renewal Reward Theorem, for any renewal cycle,

E [N(∞)−R] =
E
[∫

cycle [N(t)−R] dt
]

E [cycle length]
=

E
[∫ X

0
[N(t)−R]dt

]
E
[∫ X

0
1dt
] , (4.1)

where we have set time 0 to be an arbitrary renewal point and time X to be the renewal point
which immediately follows it. To upper bound (4.1), it suffices to upper-bound the right side’s
numerator and lower-bound the right side’s denominator. These bounds constitute our three main
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(a) A renewal cycle in the M/M/1/Setup.

Accumulation timeDraining

turns on turns off(R+1)-th server turns off
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(b) A renewal cycle in the M/M/k/Setup.

Figure 4.1: A depiction of the decomposition of a renewal cycle into an accumulating phase
and draining phase, described in Section 4.1. (a) In the M/M/1/Setup, the canonical renewal
cycle is split into three parts: 1) the system is empty until a job arrives; 2) jobs accumulate
in the queue while the server sets up; and 3) the system’s single server turns on, starting a
busy period. (b) Likewise, for the M/M/k/Setup, our renewal cycle splits into two parts: 1)
during the accumulating phase, the departure rate µZ(t) ≤ µR = kλ, so that the system is
transiently unstable and a queue accumulates; and 2) during the draining phase, the departure
rate µZ(t) > kλ, so that the queue drains.

lemmas; two lemmas for the numerator (which is harder to bound) and one for the denominator.
But before we can state these main lemmas, we must first address our first technical challenge:
defining the collection of renewal points X .

4.1.3 Key Idea: Define renewals around stability.
Drawing insight from the M/M/1/Setup. To explain our choice, we draw insight from the
renewal-reward analysis of the M/M/1/Setup queue. In that setting, the canonical renewal points
are those moments when the system empties. By choosing this renewal point, it becomes pos-
sible to break up our renewal cycle into distinct, easy-to-analyze phases; see Figure 4.1a for an
illustration. In particular: 1) the system is empty until a job arrives; 2) jobs accumulate in the
queue while the server sets up; and 3) the system’s single server turns on, at which point the
queue drains until empty (i.e. the system enters an M/M/1 busy period). These three phases are
much simpler to analyze, since we understand the transient behavior of constant rate Poisson
processes and M/M/1 queues very well.

Two possible interpretations. When choosing a renewal point for the M/M/k/Setup, there are
two natural interpretations of the M/M/1/Setup renewal point, but only one of these interpre-
tations leads to the same natural decomposition. In particular, one could interpret the M/M/1
renewal point as occurring either 1) when the system empties, i.e. when the number of jobs N(t)
goes from 0 to 1, or 2) when the system moves from transient stability to transient instability, i.e.
when the departure rate µZ(t) goes from above the arrival rate to below it. In the M/M/1/Setup
queue, these points are equivalent. However, when one moves to the M/M/k/Setup, only the
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0 𝑇𝐴 𝑋

Figure 4.2: A depiction of our decomposition of a renewal cycle into an accumulating phase
and draining phase, described in Section 4.1. During the accumulating phase, the departure rate
µZ(t) ≤ µR = kλ, so that the system is transiently unstable and a queue accumulates. During
the draining phase, the departure rate µZ(t) > kλ, so that the queue drains.

second interpretation gives us the same decomposition; in our analysis, we define our collection
of renewal points X = {t : Z(t−) = R + 1, Z(t) = R} as those moments when the (R + 1)-th
server is turned off.

A natural decomposition. By defining our collection of renewal points X as those moments
when the (R + 1)-th server is turned off, we naturally split a renewal cycle into two parts: the
first part of the cycle before the (R + 1)-th server turns on, and the second part of the cycle
after it turns on; we depict this decomposition in Figure 4.2. During the beginning of a cycle
(when Z(t) ≤ R), the departure rate µZ(t) is smaller than the arrival rate, making the system
behave, in a transient sense, like a critically- or over-loaded queue. On the other hand, after
the (R + 1)-th server turns on and until the renewal cycle is over, the departure rate µZ(t) is
guaranteed to be strictly greater than the arrival rate, making the queue, on the whole, drain over
time. This observation turns out to be hugely useful in our analysis. As such, we have special
names for each of these special times: we call the time before the (R + 1)-th server turns on the
accumulation period, we call the moment when the (R+ 1)-th server turns on the accumulation
time TA, and we call the period from time TA until the cycle ends the draining period. At times,
we will also refer to these periods as phases.

4.2 The Method of Intervening Stopping Times (MIST)

4.2.1 Why we need it

Our second technical challenge is to actually bound the integrals we obtained from applying the
Renewal-Reward Theorem, i.e. the integrals in (4.1). To do so, we have developed a general
technique we call the Method of Intervening Stopping Times, or MIST. The basic function of
this lemma is to bound the expected time integral between two random events in some Markov
system, an initial event and a final event, a problem arises often in the study of stochastic systems.
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4.2.2 What it does

The basic idea of this lemma is to break up our random time interval of interest into a random
number of smaller, more manageable pieces. We do this by defining intervening events, moments
where something special happens to the system state that gives us an opportunity to characterize
the system’s behavior. From there, we can define a “small piece” of time as the time in between
these intervening events. For example, in this work, it can often be useful to analyze the system
around time points where the number of jobs N(t) gets large. Because we work in a system with
setup times, if we have a lot of jobs for a long enough period of time, then, by the end of that
long period of time, we can guarantee that a lot of servers are turned on.

By performing this decomposition of the integral into smaller pieces, we reduce our initial
bounding problem to showing two facts:

• First, we must show that the time integral of these smaller pieces is not too big; in this the-
sis, we typically use martingale arguments combined with worst-case coupling arguments
to prove this fact.

• Second, we must show that not too many of these these smaller pieces actually occur.
For this “not too many” condition, it’s particularly helpful if we can show that, if the i-th
intervening event has occurred, then the (i+1)-th event has at most a constant probability
of occurring.

By formalizing our notion of events using stopping times and applying some ideas from Wald’s
equation, we obtain the Intervening Stopping Time Lemma, Lemma 4.1, which we now state and
prove.

4.2.3 IST Lemma: Statement and Proof

Lemma 4.1 (Intervening Stopping Time Lemma). Given a starting stopping time T0, an ending
stopping time P , and a collection of intervening stopping times (Ti : i ∈ Z+), define the random
variable F to be such that TF ≤ P < TF+1. Now, given some time-varying random variable
Yt ≥ 0 which is a function of the underlying Markov state of the system S(t), suppose that:

1. E
[∫ min(T1,P )

T0
Ytdt

∣∣∣FT0

]
≤ G0(S(T0)),

2. E
[∫ min(Ti+1,P )

Ti
Ytdt

∣∣∣FTi , F ≥ i
]
≤ Gi +B · E [min(Ti+1, P )− Ti|FTi , F ≥ i],

3. and Pr (F ≥ i|FTi , F ≥ i− 1) ≤ 1− pi,

where G0 is also some function of the system state, and the Gi’s, the pi’s, and B are all constants
(possibly depending on system parameters).

Then,

E
[∫ P

T0

Ytdt
]
≤ E [G0 (S(T0))] + Pr (F > 0)

∞∑
j=1

Gj

j∏
i=2

(1− pi) +B · E [P − T0] .

20



Proof.

We begin with a manipulation of the integral, finding∫ P

T0

Ytdt =
∫ min(T1,P )

T0

Ytdt+
∞∑
i=1

∫ min(Ti+1,P )

min(Ti,P )

Ytdt

=

∫ min(T1,P )

T0

Ytdt+
∞∑
i=1

1Ti<P

∫ min(Ti+1,P )

Ti

Ytdt.

Applying linearity of expectation and the tower property, we find that

E
[∫ P

T0

Ytdt
]

= E

[
E

[∫ min(T1,P )

T0

Ytdt

∣∣∣∣∣FT0

]]
+

∞∑
i=1

E

[
E

[
1Ti<P

∫ min(Ti+1,P )

Ti

Ytdt

∣∣∣∣∣FTi

]]

= E

[
E

[∫ min(T1,P )

T0

Ytdt

∣∣∣∣∣FT0

]]
+

∞∑
i=1

E

[
1Ti<PE

[∫ min(Ti+1,P )

Ti

Ytdt

∣∣∣∣∣FTi

]]
.

Noting that the event {Ti < P} = {F ≥ i}, we have

= E

[
E

[∫ min(T1,P )

T0

Ytdt

∣∣∣∣∣FT0

]]
+

∞∑
i=1

E

[
1F≥iE

[∫ min(Ti+1,P )

Ti

Ytdt

∣∣∣∣∣FTi

]]

≤ E [G0 (S(T0))] +
∞∑
i=1

E [1F≥i (Gi +B · E [min(Ti+1, P )− Ti|S(Ti), F ≥ i])]

= E [G0 (S(T0))] +B · E [P − T0] +
∞∑
i=1

Gi Pr (F ≥ i).

Applying our final assumption to bound Pr (F ≥ i),

Pr (F ≥ i) = Pr (F > 0)
i∏

j=2

Pr (F ≥ j|F ≥ j − 1)

= Pr (F > 0)
i∏

j=2

E
[
Pr
(
F ≥ j

∣∣F ≥ j − 1,FTj−1

)]
≤ Pr (F > 0)

i∏
j=2

E [1− pj]

= Pr (F > 0)
i∏

j=2

(1− pj).
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Applying this final result, we find

E
[∫ P

T0

Ytdt
]
≤ E [G0 (S(T0))] + Pr (F > 0)

∞∑
j=1

Gj

j∏
i=2

(1− pi) +B · E [P − T0] ,

as desired. □
With Lemma 4.1 proven, we are ready to apply the MIST method to obtain our main results.
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Chapter 5

The Lower Bounds

In this chapter, we discuss two of our results, our lower bounds on the average waiting time in
the M/M/k/Setup-Deterministic. First, we discuss why these lower bounds are needed, then state
both bounds, then prove the stronger and more recent bound.

5.1 Why we need a lower bound
From a provisioning standpoint, a lower bound tells us what system parameters are necessary to
achieve a certain average waiting time. Accordingly, we now discuss our two lower bounds. The
first lower bound that we present, Theorem 5.1 (the main result of [38]), is the first-ever result
bounding the average waiting time in the M/M/k/Setup-Deterministic. Notably, it is also the first
closed-form result bounding the average waiting time in any M/M/k/Setup system. The second
lower bound that we present, Theorem 5.2 (one of the two main results in [37]), is an improve-
ment of Theorem 5.1. The improved lower bound now applies to systems with an arbitrarily
large numbers of servers k, removes an unnecessary and restrictive condition on the system pa-
rameters, and also has a far simpler proof. We state both theorems, but only prove the improved
theorem.

5.2 The First Lower Bound
We now state the first lower bound for the average queue length in the M/M/k/Setup-Deterministic,
from [38].
Theorem 5.1 (First Lower Bound On Average Queue Length). In an M/M/k/Setup-Deterministic
system with load ρ, setup time β ≥ 1000 1

µ
, and offered load R ≜ kρ ≥ 128, if the setup time

β ≥ 1
µ
log2(kρ), then the average queue length E [Q(∞)] is lower bounded by

E [Q(∞)] ≥

1
2
β2 µ

√
R

2
+ Ibusy

([
(µβ − 1)

√
R
2

− k(1− ρ)
]+
, k −R

)
C

(old)
1

(
3β + 1

µ

)
+ β + C

(old)
2

µβ
√
R

µk(1−ρ) + C
(old)
3

1
µ
log
(
C

(old)
2 µβ

√
R
) ,

where C(old)
1 , C

(old)
2 , and C(old)

3 are absolute constants.
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5.3 The New Lower Bound

5.3.1 The New Lower Bound: Theorem Statement
After tightening and clarifying our techniques into the MIST method of Chapter 4, we obtained
the following lower bound; its proof follows.
Theorem 5.2 (Improved Lower Bound on Average Queue Length). For an M/M/k/Setup-Deterministic
with an offered load R ≜ kρ ≥ 100 and a setup time β ≥ 100 1

µ
, the expected number of jobs in

queue in steady state is lower-bounded as

E [Q(∞)] ≥
L1β

2
√
R + Ibusy

([
L1β

√
R− (k −R)

]+
, k −R

)
2.08β + 1

µ
F1β

√
R

k−R + 1
µ
3
2
ln(β) + 1

µ
ln(F1D1) +

2
µ
+ 1

µ

[
D2 +

D3√
R

]
max

(
1

D1
√
µβ
, 1√

R

) ,
where L1, F1, D1, D2, and D3 are constants independent of system parameters.

5.3.2 The New Lower Bound: Proof Outline.
Basic Structure. We prove Theorem 5.2 via the MIST method. As noted in Chapter 4, we
begin by applying the Renewal-Reward theorem to the queue length Q(t), defining our renewal
points as those points in time where the (R + 1)-th server turns off. Defining time 0 to be one
of these points, and defining the cycle time X ≜ min {t > 0 : Z(t−) = R + 1, Z(t) = R} as the
next point, this gives

E [Q(∞)] =
E
[∫ X

0
Q(t)dt

]
E [X]

.

To obtain our lower bound, it suffices to lower bound the numerator and upper bound the de-
nominator of this fraction, i.e. lower bound E

[∫ X
0
Q(t)dt

]
and upper bound E [X]. The time

integral lower bound is handled by Lemma 5.1, which we state at the end of this section. The
cycle length upper bound is split into two separate lemmas: Lemma 5.2 upper bounds the length
of the cycle’s “first part” and Lemma 5.3 bounds the length of its “second part”.

Decomposition into phases. However, before we state or prove these lemmas, we first dis-
cuss the decomposition of the renewal cycle [0, X) into two parts; one might think of this as
a “miniature” application of the MIST method. We begin by noting that the end of the re-
newal cycle is moment when the (R + 1)-th server turns off. Since the (R + 1)-th server is
off at the start of a renewal period, we can break the renewal cycle into two phases based on
whether the (R + 1)-th server has turned on yet. Formally, we define the accumulation time
TA ≜ min {t > 0 : Z(t) = R + 1} as the first moment that the (R+ 1)-th server turns on. From
here, we can focus separately on the accumulation phase, from time 0 to time TA, and the draining
phase, from time TA to time X .

With this decomposition, we can now state our main lemmas. Their proofs follow in sequence
afterwards.
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Lemma 5.1 (Lower bound on Cycle Integral). Define busy period integral Ibusy (x, z) as

Ibusy (x, z) ≜
x

µz

[
x+ 1

2
+

1

1− kλ
kλ+µz

]
=

x

µz

[
x+ 1

2
+
R

z

]
.

For the time integral of the queue length Q(t) over a renewal cycle, we have

E
[∫ X

0

Q(t)dt
]
≥ 1

2
µβ2L1

√
R + Ibusy

([
µβL1

√
R− (k −R)

]+
, k −R

)
.

Lemma 5.2 (Upper bound on Accumulation Phase Length). Recall that

TA ≜ min {t > 0 : Z(t) ≥ R + 1}

is the amount of time until the (R + 1)-th server turns on. Then we can bound the expectation
E [TA] by

E [TA] ≤ e
1

24Rβ

(√
1 +

1

2Rβ

)[
1 +

e
1

12R

√
2µβ

]
β ≤ 1.08 ∗ β.

Lemma 5.3 (Upper bound on Draining Phase Length). Recall that the accumlation time

TA ≜ min {t > 0 : Z(t) ≥ R + 1}

is the amount of time until the (R + 1)-th server turns on and the cycle time X is the moment
when it turns off. Then, one can bound E [X − TA] by

E [X − TA] ≤ β+
1

µ

F1β
√
R

k −R
+
1

µ

3

2
ln(β)+

1

µ
ln(F1D1)+

2

µ
+

[
D2 +

D3√
R

]
max

(
1

D1

√
µβ

,
1√
R

)
,

where F1, D1, D2, and D3 are constants not depending on system parameters.

5.3.3 Proof of Lemma 5.1: Lower Bound on Cycle Integral.

Lemma 5.1 Proof Outline

Basic Strategy. First, we split the first phase [0, TA) into epochs, where epoch i begins when
the number of busy servers Z(t) first drops to R − i, and an epoch ends either when the next
epoch starts or when the first phase ends. Our goal will be to analyze a specific “significant”
epoch. In particular, we say that an epoch is long if it lasts for longer than a setup time β.
Because the accumulation phase ends when the (R + 1)-th server turns on, at least one epoch
must be long. We use L to denote the index of the first long epoch. From here, we argue via a
martingale/coupling argument that the expected time integral over the first β time in epoch L is
at least 1

2
β2E [L]. To bound the integral afterwards, we couple the behavior of the total number

of jobs N(t) to the queue length in an M/M/1 queue with arrival rate kλ and departure rate kµ.
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Formalization. Define the stopping time τi ≜ min {t ≥ 0 : N(t) ≤ R− u} as the beginning
of epoch i. We say that the epoch occurs is τi < TA, and define the end of epoch i as γi ≜
min (τi+1, TA) the moment when either epoch i+1 begins or when the first phase ends. If epoch
i occurs, we say it is long if γi − τi ≥ β. Let L ≜ min {i ∈ N : γi − τi ≥ β} be the index of the
first long epoch. It suffices to show two claims; we state and prove them in sequence.

5.3.4 Lower Bound on Integral until τL + β.

We show the following claim.
Claim 5.1. Let L be the index of the first long epoch. Then,

E
[∫ τL+β

0

Q(t)dt
]
≥ 1

2
µβ2L1

√
R, (5.1)

where L1 is some absolute constant.

Claim 5.1 Proof Strategy. First, we show that the initial integral is bounded by

E
[∫ τL+β

0

Q(t)dt
]
≥ 1

2
µβ2E [L] . (5.2)

Afterwards, we give a bound on E [L], showing that

E [L] ≥ L1

√
R. (5.3)

Proof of (5.2), Bound in terms of E [L].
To show (5.2), we first condition on whether L ≥ i, giving

E
[∫ τL+β

0

Q(t)dt
]
=

∞∑
i=0

E

[∫ min(τi+β,τi+1)

τi

Q(t)dt1L≥i

]

=
∞∑
i=0

E

[∫ min(τi+β,τi+1)

τi

Q(t)dt

∣∣∣∣∣Fτi

]
Pr (L ≥ i).

To further develop this conditional expectation, we note that during the interval [τi,min (τi + β, τi+1)),
the system must have exactly Z(t) = R − i busy servers running, meaning that Q(t) = N(t)−
(R− i). Defining a coupled process Q̃(t) as

Q̃(t) = A(τi, t)−D [R− i] (τi, t) ,

we see that Q(t) and Q̃(t) coincide during the interval in question. Moreover, one can redefine
the stopping time γ = τi+1 as min

{
t > τi : Q̃(t) = −1

}
. Noting that Q (min (γ, t)) = −1 for
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any time t > γ, we find that∫ min(τi+β,τi+1)

τi

Q(t)dt =
∫ min(τi+β,τi+1)

τi

Q̃(t)dt

=

∫ min(τi+β,τi+1)

τi

Q̃ (min (t, τi+1)) dt+
∫ τi+β

min(τi+β,τi+1)

(
Q̃ (min (t, τi+1)) + 1

)
dt

=

∫ τi+β

τi

Q̃ (min (t, τi+1)) dt+ [β −min (β, τi+1 − τi)]

≥
∫ τi+β

τi

Q̃ (min (t, τi+1)) dt.

Taking the conditional expectation at time τi, we find

E
[∫ τi+β

τi

Q̃ (min (t, τi+1)) dt
∣∣∣∣Fτi

]
=

∫ τi+β

τi

E
[
Q̃ (min (t, τi+1))

∣∣∣Fτi

]
dt.

Noting that VL(t) = Q̃(t)− µi [t− τi] is a martingale, and that min (t, τi+1) is an almost-surely
bounded stopping time, we have that

Q̃(τi) = VL(τi) = 0

= E [VL (min (t, τi+1))|τi]

= E
[
Q̃ (min (t, τi+1))

∣∣∣Fτi

]
− µiE [min (t, τi+1)|Fτi ] .

Since

E [min (t, τi+1)|Fτi ] ≥ t · Pr (τi+1 − τi ≥ t) ≥ t · Pr (τi+1 − τi ≥ β) = tPr (L = i|L ≥ i) ,

we have

Pr (L ≥ i)E

[∫ min(τi+β,τi+1)

τi

Q(t)dt

∣∣∣∣∣L ≥ i

]
≥ Pr (L ≥ i)E

[∫ τi+β

τi

Q̃ (min (t, τi+1)) dt
∣∣∣∣L ≥ i

]
≥
∫ τi+β

τi

µitPr (L = i)

= µ
β2

2
iPr (L = i)

Summing across all i, we obtain (5.2).

Proof Sketch for (5.3), bound on E [L].

We defer the full proof of this to Section A.4.6, and for now give a proof sketch.
We prove (5.3) by first showing that

Pr (L > j|L ≥ j) ≥
(
1− j

R

)(
1− b1√

µβR

)
,
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where b1 = 2√
π

. Next, we show that this implies that, for any δ ∈ (0, 1) and any j < δR,

Pr (L > j) ≥
(
1− b1√

µβR

)j+1

e−
j(j+1)

2R
1

1−δ .

From here, we use the sum of tails formula E [L] =
∑∞

j=0 Pr (L > j) to show

E [L] ≥
(
1− b1√

µβR

)([√
π

2
(1− δ)− 1.15(1− δ)√

µβ

]√
R− 1

2
− 2(1− δ)

δ
e−R

δ2

1−δ

)
.

Choosing δ = 2√
R

then noting that µβ ≥ 100 and R ≥ 100 gives the result.

5.3.5 Lower Bound on Integral after τL + β.

To finish our lower bound on the integral, we now show the following claim.
Claim 5.2. Let L be the index of the first long epoch. Then,

E
[∫ X

τL+β

Q(t)dt
]
≥ Ibusy

([
µβL1

√
R− (k −R)

]+
, k −R

)
(5.4)

where L1 is some absolute constant.

Claim 5.2: Proof Strategy. First, we show that the remaining integral is bounded by

E
[∫ X

τL+β

Q(t)dt
]
≥ Ibusy ([E [N(τL + β)]− k]+ , k −R

)
. (5.5)

Then, we use martingales again to show that

E [N (τL + β)] ≥ R + µβE [L] . (5.6)

Applying (5.3), our bound on E [L], we obtain the result.

Proof of (5.5), Bound in terms of E [N(·)].

To prove (5.5), we make a simple coupling argument. Let ηk ≜ min {t ≥ τL + β : N(t) ≤ k}.
Since the draining phase starts at TA ≥ τL+β and the end of the cycleX = min {t ≥ TA : N(t) ≤ R},
we know that X ≥ ηk. Moreover, we know the number of busy servers Z(t) ≤ k; it follows by
Claim A.1 that we can define Ñ(t) as

Ñ(t) ≜ N (τL + β) + A (τL + β, t)−D [k] ((τL + β, t))
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and have Ñ(t) ≤ N(t) for any t > τL + β. Even further, we can defined a coupled hitting time
η̃k ≜ min

{
t > τL + β : Ñ(t) ≤ k

}
which must happen before ηk. In other words,∫ X

τL+β

Q(t)dt ≥
∫ ηk

τL+β

Q(t)dt

≥
∫ ηk

τL+β

[N(t)− k] dt

≥
∫ η̃k

τL+β

[
Ñ(t)− k

]
dt.

This final term is just the time integral of the number of jobs in system over a M/M/1 busy
period started by [N (τL + β)− k]+ jobs, where jobs arrive at rate kλ and depart at rate kµ.
Accordingly, we have

E
[∫ X

τL+β

Q(t)dt
]
≥ E

[
Ibusy ([N (τL + β)− k]+ , k −R

)]
≥ Ibusy (E [N (τL + β)− k]+ , k −R

)
≥ Ibusy (E [[N (τL + β)−R− (k −R)]+

]
, k −R

)
,

where in the last two lines we have applied Jensen’s inequality. □

Proof of (5.6), Bound on E [N(·)].

To bound E [N(τL + β)], we condition on the value of L, then make a martingale argument.

E [N(τL + β)] =
R∑
i=0

E [N(τi + β)1L=i]

=
R∑
i=0

E [N(τi + β)1L=i,L≥i]

≥
R∑
i=0

Pr (L ≥ i)E [N(τi + β)1L=i|L ≥ i].

Continuing with this conditional expectation,

E [N(τi + β)1L=i|Fτi ]

= E
[
N(τi + β)1τi+β<τi+1

∣∣Fτi

]
= E

[
[N(τi + β)− (R− (i+ 1))]1τi+β<τi+1

∣∣Fτi

]
+ (R− i− 1) Pr (τi + β < τi+1|Fτi)

= E [N(min (τi + β, τi+1))− (R− (i+ 1))|Fτi ] + +(R− i− 1) Pr (τi + β < τi+1|Fτi)

= 1 + µiE [min (β, τi+1 − τi)] + (R− i− 1) Pr (τi + β < τi+1)

≥ 1 + µiβ Pr (τi+1 − τi ≥ β) + (R− i− 1) Pr (τi + β < τi+1)

= 1 + µiβ Pr (L = i|L ≥ i) + (R− i− 1) Pr (L = i|L ≥ i) . (5.7)
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Summing across i, we find

E [N(τL + β)] =
R∑
i=0

Pr (L ≥ i) ((5.7))

= (1 + E [L]) + (µβE [L]) + (R− E [L]− 1)

= R + µβE [L] ,

as desired. □
Combining Claims 5.1 and 5.2, we obtain a lower bound on E

[∫ X
0
Q(t)dt

]
, proving Lemma 5.1.

5.3.6 Proof of Lemma 5.2: Upper Bound on the Accumulation Time E [TA].

Defining a coupling. To prove Lemma 5.2, we first note that, during the accumulation phase,
we have two bounds on the number of busy servers Z(t): it must be less than the total number
of jobs N(t) and it must be less than R; the former because every busy server must be working
on a job, and the latter because otherwise the accumulation phase would be over. Thus, we can
define a coupled M/M/R system for which the number of jobs Ñ(t) in the coupled system is
always at least the number of jobs N(t) in the original system.

How we use the coupling. To use this coupled process to bound E [TA], recall that the accu-
mulation point TA is the first time the (R+1)-th server turns on. Accordingly, one can also think
of this as the first time that there has been at least R + 1 jobs in the system for β time. Thus, if
we define a coupled accumulation point T̃A ≜ min

{
t ≥ β : mins∈[t−β,t) Ñ(t) ≥ R + 1

}
, then

we know T̃A ≥ TA. In other words, it suffices to bound E
[
T̃A

]
.

General Strategy. We bound E
[
T̃A

]
using the MIST method of Lemma 4.1. As such, we

define a few stopping times, then list the preconditions/claims that we will satisfy to complete
the proof of Lemma 5.2.

Definition of γ and α. Let the initial cycle-downcrossing occur at α0 ≜ 0 and iteratively define
the upcrossings γ and downcrossings α as

γi ≜ min
{
t ≥ αi : Ñ(t) ≥ R + 1

}
and

αi+1 ≜ min
{
t ≥ γi : Ñ(t) ≥ R + 1

}
.
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Application of Lemma 4.1, the IST Lemma. Applying Lemma 4.1 using 0 = α0 as our
starting point, the coupled accumulation point T̃A as our ending point, our test function as Yt = 1,
and the cycle-upcrossings (αi) as our intervening stopping times, we now must prove that

E [γi − αi|nα ≥ i] ≤ 1

µ
e

1
12R

√
1 +

1

R

√
2π√
R

≤ c3

µ
√
R
, (5.8)

E
[
min

(
T̃A, αi+1

)
− γi

∣∣∣nα ≥ i
]
≤ b1

√
β

µR
+

6

µR
, (5.9)

and

Pr (nα ≥ i+ 1|nα ≥ i) ≤ 1− b1√
2
e−

1
3(µ2Rβ−1)

1√
µ2Rβ + 2

≤ 1− b1c4√
µRβ

, (5.10)

where b1 ≜
√

2
π

, c3 = 1.001
√
2π, and c4 = 0.499.

Completion of Proof, assuming (5.8), (5.9), and (5.10). Applying Lemma 4.1, one finds that

E
[
T̃A

]
=

∞∑
i=0

E
[
min

(
T̃A, αi+1

)
− αi

∣∣∣nα ≥ i
]
Pr (nα ≥ i)

≤
[

c3

µ
√
R

+
b1
√
β√

µR
+

6

µR

] √
µRβ

b1c4

=
1

µ

[
c3
b1c4

√
µβ +

1

c4
β +

6

b1c4

√
µβ

R

]
.

Proof of (5.8): Upper bound on initial up-crossing time.

To prove (5.8), we note that, since our coupled system is anM/M/R, the expected time E [γi − αi|nα ≥ i]
is simply the expected passage time from state R to (R+ 1) in an M /M /R ( and equivalently an
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M /M /R/(R + 1), an M /M /R which can contain only R + 1 jobs. Solving, one finds that

E
[
TR→(R+1)

]
≤ E

[
T(R+1)→(R+1)

]
=

1

µ(R + 1)

1

πR+1

=
1

µ(R + 1)

∑R+1
i=0

Ri

i!
RR+1

(R+1)!

≤ 1

µ(R + 1)
eR

(R + 1)!

RR+1

≤ 1

µ(R + 1)
eR
e

1
12(R+1

√
2π(R + 1)(R + 1)R+1e−(R+1)

RR+1

= e
1

12R
1

µ

√
2π

√
R + 1

R

(
1 +

1

R

)R
e−1

≤ 1

µ
e

1
12R

√
1 +

1

R

√
2π√
R

≤ 1

µ
1.006

√
2π√
R

≜
c3

µ
√
R

Proof of (5.9): Bound on time between up-crossings.

To bound the expected time E
[
min

(
T̃A, αi+1

)
− γi

∣∣∣nα ≥ i
]
, we first note that, if γi+β ≤ αi+1,

then T̃A = γi+β. Likewise, if γi+β > αi+1, then T̃A > αi+1. It follows that, given that nα ≥ i,
the time min

(
T̃A, αi+1

)
= min (β + γi, αi+1). Thus, we have that

E
[
min

(
T̃A, αi+1

)
− γi

∣∣∣nα ≥ i
]
= E [min (β, αi+1 − γi)|nα ≥ i] =

∫ β

0

Pr (αi+1 − γi > s|nα ≥ i) ds.

We continue by bounding this tail probability. To begin, note that, while Ñ(t) stays above
R+1, the dynamics of Ñ are precisely that of a critically-loaded M /M /1 queue with arrival rate
and departure rate equal to kλ. The tail probability we are interested in bounding is precisely
the probability that a busy period (started with 1 job) in such a system lasts longer than s time.
Applying Claim A.6, one finds that, for any t ≥ 3

µ2R
,

Pr (αi+1 − γi > s|nα ≥ i) ≤ b1

(
1√
µ2Rs

+
b2

(µ2Rs)3/2

)
.
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Integrating, we find that∫ β

0

Pr (αi+1 − γi > s|nα ≥ i) ds ≤ 3

µ2R
+

b1√
2

∫ β

3
µ2R

1√
µ2Rs

+
b2

(µ2Rs)3/2
ds

≤ 3

µ2R
+

b1√
2

[√
2β

µR
+ b2

√
2

3

1

µR

]

= b1

√
β

µR
+

(
3

2
+ (b1 + 2.5)

√
2

3

)
1

µR

≤ 2√
π

√
β

µR
+

6

µR
.

□

Proof of (5.10): Bound on probability of another γ up-crossing.

To prove (5.10), it suffices to note that, upon conditioning on the filtration at γi, the probability
Pr (nα ≥ i+ 1|nα ≥ i) is simply the probability that a busy period in a critically-loaded M/M/1,
with arrival and departure rate equal to µR, ends before β time has passed. Applying Claim A.6,
one finds that this is

Pr (nα ≥ i+ 1|nα ≥ i) ≥ 1− b1√
2
e−

1
3(µ2Rβ−1)

1√
µ2Rβ + 2

.

□

5.3.7 Proof of Lemma 5.3: Upper Bound on the Remaining Cycle Time
E [X − TA].

We now prove the upper bound on E [X − TA]. We make use of the “wait-busy” idea from
Section 6.2.2 as well as our main tool, Lemma 4.1. As such, we begin by defining some stopping
times.

Definition of v(down)
i and v(up)

i . Recall that the draining phase begins at time TA. Let ML ≜

min
(
k −R,max

( √
R

D1
√
β
, 1
))

be a specially-set analysis threshold. Let the stopping time v(down)
1 ≜

min {t ≥ TA : N(t) < R +ML} be the first time the number of jobs N(t) drops below R+ML,
and recursively define

v
(up)
i ≜ min

{
t ≥ v

(down)
i : N(t) ≥ R +ML

}
and

v
(down)
i+1 ≜ min

{
t ≥ v

(up)
i : N(t) < R +ML

}
.
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Specification Step. Now, we apply Lemma 4.1 using the accumulation point TA as our initial
point, the cycle end X as our ending point, the constant function Yt = 1 as our test function,
and the draining-downcrossing points

(
v
(down)
i

)
as our intervening points; we use nζ to count the

number of intervening points. To complete the proof, we must show that the following claims:

E
[
v
(down)
1 − TA

]
≤ β +

1

µ

F1β
√
R

k −R
+

1

µ

3

2
ln(β) +

1

µ
ln(F1D1), (5.11)

E
[
min

(
X, v

(down)
i+1

)
− v

(down)
i

∣∣∣nζ ≥ i
]
≤ D2

µ
√
R

+
D3

µR
+

2

µML

(5.12)

Pr (nζ ≥ i+ 1|nζ ≥ i) ≤ 1

ML

. (5.13)

Completion of Proof assuming (5.11), (5.12), and (5.13). Before proving the claims, we now
prove the lemma. It suffices to give a bound on E

[
X − v

(down)
1

]
; applying Lemma 4.1 gives

E
[
X − v

(down)
1

]
≤ML

[
D2

µ
√
R

+
D3

µR
+

2

µML

]
=

2

µ
+

[
D2 +

D3√
R

]
max

(
1

D1

√
µβ

,
1√
R

)
.

Proof of (5.11): Upper bound on time until first downward visit.

To bound E
[
v
(down)
1 − TA

]
, we make a coupling argument then apply basic results on M/M/1

busy periods. Moreover, instead of proving (5.11) directly, we first show a more general claim.
Claim 5.3. For ML ≤ j ≤ N(TA) − R, define ηj as the first time after TA that N(t) ≤ R + j.
Note that this means that ηN(TA) = TA and ηML

= v
(down)
1 . Then we have the following bound:

E
[
ηML

− ηj
∣∣Fηj

]
≤ YR+j(ηj) +

1

µ

j∑
i=ML

1

min (i, k −R)
.

Afterwards, we complete the proof by noting that [N(TA)− k]+ ≤ [N(TA)−R], taking
expectations, applying Jensen’s inequality to the minimum function and the ln(·) (which is con-
cave), using the bound on E [N(TA)−R] from Claim 6.11, then letting h =ML.

Proof of Claim 5.3. We prove Claim 5.3 by induction. In the base case, suppose that j =
ML + 1. Note that at time ηML+1, the numbers of jobs N(ηML+1 = R + ML + 1 and the
remaining time until the (R + ML + 1)-th server turns on is YR+ML+1 (ηML+1). As such, we
can simply wait until either that server turns on, in which case we can analyze the system as
an M/M/1 busy period with departure rate µmin (R +ML + 1, k), or the number of jobs N(t)
drops below R +ML + 1 on its own. In other words, (using j here to save space)

E
[
ηj−1 − ηj

∣∣Fηj

]
≤ YR+j (ηj)+

E
[
[N (ηj + YR+j (ηj))− (R + (j − 1))]1ηj−1>ηj+YR+j(ηj)

∣∣Fηj

]
µmin (j, k −R)

.
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Now, we reframe the expectation as an expectation up to a stopping time. We note that, if
ηj−1 > ηj + YR+j (ηj), then we have that

N (ηj + YR+j (ηj)) = N (min (ηj + YR+j (ηj) , ηj−1)) .

Likewise, if ηj−1 ≤ ηj + YR+j (ηj), then

R + j − 1 = N (ηj−1) = N (min (ηj + YR+j (ηj) , ηj−1)) .

Using this and applying a simple coupling argument, one sees that

E
[
[N (ηj + YR+j (ηj))− (R + (j − 1))]1ηj−1>ηj+YR+j(ηj)

∣∣Fηj

]
= E

[
N (min (ηj + YR+j (ηj) , ηj−1))− (R + j − 1)

∣∣Fηj

]
≤ N (ηj)− (R + j − 1) = 1.

Thus, we find that

E
[
ηj−1 − ηj

∣∣Fηj

]
≤ YR+j (ηj) +

1

µmin (j, k −R)
.

Inductive case. The inductive case proceeds in much the same way, except now, if N(t) does
drop belowR+j “early”, then we can factor in the time that has elapsed in the value of YR+j(ηj).
In particular, note that, since the (R + j)-th server would have already turned on,

E
[
ηML

− ηj
∣∣Fηj

]
1ηj≥ηj+1+YR+j+1(ηj+1) ≤

1

µ

j∑
i=ML

1

µmin (i, k −R)
1ηj≥ηj+1+YR+j+1(j+1).

It follows that

E
[
ηML

− ηj
∣∣Fηj

]
≤ YR+j (ηj)1ηj<ηj+1+YR+j+1(ηj+1) +

1

µ

j∑
i=ML

1

µmin (i, k −R)
.

Now, we note that

YR+j (ηj)1ηj<ηj+1+YR+1+j(ηj+1) = [YR+j (ηj) + ηj − ηj]1ηj<ηj+1+YR+1+j(ηj+1)

= [YR+j (ηj+1) + ηj+1 − ηj]1ηj<ηj+1+YR+1+j(ηj+1)

≤ [YR+j+1 (ηj+1) + ηj+1 − ηj]1ηj<ηj+1+YR+1+j(ηj+1)

= [YR+j+1 (ηj+1) + ηj+1 − ηj]
+ ,

so that we find

E
[
ηML

− ηj
∣∣Fηj

]
≤ [YR+j+1 (ηj+1) + ηj+1 − ηj]

+ +
1

µ

j∑
i=ML

1

µmin (i, k −R)
.

Finally, we note that

E
[
ηj − ηj+1

∣∣Fηj+1

]
≤ E

[
min (ηj − ηj+1, YR+j+1 (ηj+1))

∣∣Fηj+1

]
+

1

µmin (j + 1, k −R)
.

Summing these final two expressions gives the inductive result, proving Claim 5.3.
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Using Claim 5.3. Thus, we obtain that, using Hi to denote the i-th harmonic number,

E
[
v
(down)
1 − TA

∣∣∣FTA

]
≤ β +

1

µ

[N(TA)− k]+

k −R
+

1

µ

[
Hmin(N(TA)−R,k−R) −HML

]
≤ β +

1

µ

[N(TA)−R]+

k −R
+

1

µ
ln

(
min (N(TA)−R, k −R)

ML

)
.

Taking expectations and applying Jensen’s inequality twice, we find

E
[
v
(down)
1 − TA

∣∣∣FTA

]
≤ β +

1

µ

F1µβ
√
R

k −R
+

1

µ
ln

(
F1µβ

√
R

ML

)

≤ β +
1

µ

F1µβ
√
R

k −R
+

1

µ
ln

 min
(
F1µβ

√
R, k −R

)
min

(
max

(
1,

√
R

D1
√
β

)
, k −R

)


≤ β +
1

µ

F1µβ
√
R

k −R
+

1

µ
ln
(
F1D1β

3/2
)

Proof of (5.12): Upper Bound on Time between Consecutive Downward Visits.

To bound the expectation E
[
min

(
v
(down)
i+1 , X

)
− v

(down)
i

∣∣∣F
v
(down)
i

]
, we split the interval into two

parts,
[
min

(
v
(up)
i , X

)
− v

(down)
i

]
and

[
v
(down)
i+1 − v

(down)
i

]
.

To bound the expectation of the first quantity, it suffices to note that, if we couple the system
to an M/M/∞, the coupled number of jobs Ñ(t) will reachR+ML only after the original system.
Using Claim A.8 to bound this passage time, we thus know that

E
[
min

(
v
(up)
i , X

)
− v

(down)
i

∣∣∣F
v
(down)
i

]
≤ E

[
min

(
T
M/M/∞
(R+ML−1)→(R+ML)

+ v
(down)
i , X

)
− v

(down)
i

∣∣∣F
v
(down)
i

]
≤ E

[
T
M/M/∞
(R+ML−1)→(R+ML)

]
≤ D2√

R
.

To bound the expectation of the second quantity, we provide two bounds. First, we again
make use of the “wait-busy” idea; as we argued in the proof of (5.11),

E
[
v
(down)
i+1 − v

(up)
i

∣∣∣F
v
(up)
i

]
≤ E

[
min

(
v
(down)
i+1 − v

(up)
i , β

)∣∣∣F
v
(up)
i

]
+

1

µML

.

From here, we note, by coupling to an M/M/1 with arrival rate and departure rate both equal to
kλ, we can bound E

[
min

(
v
(down)
i+1 − v

(up)
i , β

)∣∣∣v(up)
i < X

]
by the expected minimum between β

and the length of a single-job busy period in that system. Applying Claim A.7, we can complete
the proof, finding that

E
[
min

(
v
(down)
i+1 − v

(up)
i , β

)∣∣∣F
v
(up)
i

]
≤ D1

√
β√
µR

+
6

µR
.
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For the second bound, we simply note that, during the draining phase, the number of busy
servers Z(t) ≥ R + 1. It follows from a simple coupling argument that

E
[
min

(
v
(down)
i+1 − v

(up)
i , β

)∣∣∣F
v
(up)
i

]
≤ 1

µ
.

Combining the bounds pessimistically, we find that

E
[
min

(
v
(down)
i+1 , X

)
− v

(down)
i

∣∣∣F
v
(down)
i

]
≤ D2

µ
√
R

+
D3

µR
+

1

µML

+min

(
D1

√
β√
µR

,
1

µ

)
≤ D2

µ
√
R

+
D3

µR
+

2

µML

Proof of (5.13): Upper Bound on Probability of Another Downward Visit.

To bound the probability of an additional downcrossing, we again make a coupling argument.
In particular, we couple again to the system which only has R servers busy, which gives an
upper bound on the number of jobs in the system N(t). If, in our coupled system, we reach
Ñ(t) = R + ML before we reach Ñ(t) = R, then another upcrossing must have previously
occurred in the original system, and thus another downcrossing must also occur. But, of course,
we know classically that the probability that this happens is just 1

ML
; this is precisely what is

asserted by (5.13). □

5.4 The Lower Bounds: Review of Findings
In this chapter, we proved two lower bounds on the average waiting time in the M/M/k/Setup-
Deterministic. The first lower bound, Theorem 5.1, was the first-ever explicit result for the
average waiting time in this model. The second lower bound, Theorem 5.2, is a considerable
strengthening of Theorem 5.1, and also was far easier to prove once we made use of the MIST
method.
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Chapter 6

The Upper Bound

In this chapter, we present our upper bound on the average waiting time in the M/M/k/Setup-
Deterministic.

6.1 Why we need an upper bound.
From a provisioning standpoint, an upper bound tells us what system parameters sufficient to
achieve a certain average waiting time. By combining this bound with our lower bound, we find
out what is necessary and sufficient for good performance. Theoretically-speaking, having the
two bounds allows us to fully characterize how the average waiting time in the M/M/k/Setup-
Deterministic scales with its system parameters, modulo some constant multiplicative factors.

6.2 The Upper Bound
We now state and prove the upper bound.
Theorem 6.1 (Upper Bound on Average Queue Length). For an M/M/k/Setup-Deterministic with
an offered load R ≜ kρ ≥ 100 and a setup time β ≥ 1000 1

µ
, the expected number of jobs in

queue in steady state is upper-bounded as

E [Q(∞)] ≤ A1

√
µβR+A2

R

M
+
A3β

2µ
√
R + Ibusy

(
B5

√
µβR +B6µβ

√
R,M

)
+ A4I

busy (M,M)

β + T busy
(
D1βµ

√
R, k −R

) ,

where A1, A2, A3, A4, B5,B6, and D1 are constants independent of system parameters, and

M ≜ min
(
C1

√
µβR, k −R

)
for some constant C1 independent of system parameters.

We now describe the full proof of Theorem 6.1. As discussed in Chapter 4, it suffices to
prove the three following lemmas.
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Lemma 6.1 (Accumulation Period Upper Bound). Suppose the system begins at time 0 with R
jobs in service and no jobs in the queue (and thus no servers in setup), and define the accumula-
tion time

TA ≜ min {t ≥ 0 : Z(t) = R + 1}

to be the moment the (R + 1)-th server turns on.

Then,

E
[∫ TA

0

[N(t)−R]dt
]
≤ B1

√
µβR · E [TA] +B2β

2µ
√
R,

where B1 = 3.6 and B2 = 1.04.

Lemma 6.2 (Draining Period Upper Bound). Recall that accumulation time TA is the first (and
only) time the (R+1)-th server turns on during a renewal cycle, and that the next renewal point
X = min {t > TA : Z(t) = R} is simply the next time the (R + 1)-th server turns off. Then,

E
[∫ X

TA

[N(t)−R]+dt
]

≤
(
B5

√
µβR +B6µβ

√
R
)
· β + Ibusy

(
B5

√
µβR +B6µβ

√
R,M

)
+B7

βR

M

+

[
2M + 2

R

M

]
E [X − TA] +

1

1− p2
Ibusy (M,M) ,

where all of these quantities are defined in Chapter 3 and Section A.4.7.

Lemma 6.3 (Cycle Length Lower Bound). Suppose the system begins at time 0 with R jobs in
service and no jobs in the queue (and thus no servers in setup), and let

X ≜ min
{
t > 0 : Z(t−) = R + 1, Z(t) = R

}
be the next time the (R + 1)-th server turns off.

Then,

E [X] ≥ β + T busy
(
D1βµ

√
R, k −R

)
,

where D1 is a constant independent of system parameters.

After proving these lemmas, the result follows by a bit of algebra. First, note that, by sum-
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ming the two integral bounds, one obtains

E
[∫ X

0

[N(t)−R]dt
]

≤ B1

√
µβR · E [TA] +B2β

2µ
√
R +

(
B5

√
µβR +B6µβ

√
R
)
· β

+ Ibusy
(
B5

√
µβR +B6µβ

√
R,M

)
+B7

βR

M
+

[
2M + 2

R

M

]
E [X − TA] +

1

1− p2
Ibusy (M,M)

≤ B1

√
µβR · E [TA] +B2β

2µ
√
R +

(
B5

√
µβR

)
E [TA] +B6µβ

2
√
R

+ Ibusy
(
B5

√
µβR +B6µβ

√
R,M

)
+B7

R

M
E [TA] +

[
2M + 2

R

M

]
E [X − TA] +

1

1− p2
Ibusy (M,M)

≤ max

(
2M + 2

R

M
, (B1 +B5)

√
µβR +B7

R

M

)
E [X] + (B2 +B6)β

2µ
√
R

+ Ibusy
(
B5

√
µβR +B6µβ

√
R,M

)
+

1

1− p2
Ibusy (M,M)

=

(
A1

√
µβR + A2

R

M

)
E [X] + A3β

2µ
√
R + Ibusy

(
B5

√
µβR +B6µβ

√
R,M

)
+ A4I

busy (M,M) ,

where we have taken the constant A1 ≜ max (B1 +B5, C3), the constant A2 ≜ B2 + B3, the
constant A3 ≜ B2 + B6, and the constant A4 = 1

1−p2 . Upon dividing the reward integral by the
cycle length, we obtain that

E [Q(∞)] =
E
[∫ X

0
[N(t)−R]dt

]
E [X]

≤

(
A1

√
µβR + A2

R
M

)
E [X] + A3β

2µ
√
R + Ibusy

(
B5

√
µβR +B6µβ

√
R,M

)
+ A4I

busy (M,M)

E [X]

= A1

√
µβR + A2

R

M
+
A3β

2µ
√
R + Ibusy

(
B5

√
µβR +B6µβ

√
R,M

)
+ A4I

busy (M,M)

E [X]

≤ A1

√
µβR + A2

R

M
+
A3β

2µ
√
R + Ibusy

(
B5

√
µβR +B6µβ

√
R,M

)
+ A4I

busy (M,M)

β + T busy
(
D1βµ

√
R, k −R

) ,

which is the upper bound stated in Theorem 6.1.

6.2.1 Proof of Lemma 6.1, Upper Bound on Integral Over Accumulation
Period

We prove this result via two applications of the Intervening Stopping Time Lemma, Lemma 4.1.
To apply this decomposition lemma, there are two broad steps. First, we must specify a starting
time (T0), an ending time (P ), a series of intervening stopping times (Ti), the process (Yt), and
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an counting variable (F ). Second, we must prove that the three preconditions of the lemma hold,
given these specifications.

First application of Lemma 4.1, at the epoch level.

Definition of (τj). We define the sequence of stopping times (τj : j = 0, 1, . . . , R) as τj ≜
min {t > 0 : N(t) ≤ R− j} , i.e., τj is the first time there are only R− j jobs within the system.

Note that, by definition, τ0 = 0. We call the period
[
τj,min (τj+1, TA)

)
the j-th epoch, and say

epoch j occurs whenever τj < TA. We then let ne denote the number of epochs which occur in a
given renewal cycle.

Specification step. Since we are interested in bounding E
[∫ TA

0
[N(t)−R]dt

]
, we let our start-

ing stopping time be T0 = 0, our ending stopping time be P = TA, our intervening stopping times
be Tj = τj , the process of interest Yt = N(t)− R and our counting variable be F = ne. Let the
quantity

p
(j)
rise ≜ Pr

(
max

t∈[τj ,min(τj+1,TA)
N(t) ≥ R + C3

√
µβR

∣∣∣∣ne ≥ j

)
(6.1)

be the probability that the total number of jobs N(t) exceeds R + C3

√
µβR during epoch j.

Required claims. From here, we can apply Lemma 4.1 after showing the following claims:

Claim 6.1 (Upper Bound on the Probability of Another Epoch). Recall that the total number of
epochs ne ≜ max {j ∈ Z+ : τj < TA}. Then, takingC4 = 0.98, we have Pr (ne ≥ j + 1|ne ≥ j) ≤
1− C4p

(j)
rise.

Claim 6.2 (Upper Bound on the Integral Over an Epoch). Let τj ≜ min {t ≥ 0 : N(t) ≤ R− j},
TA ≜ min {t ≥ 0 : Z(t) = R + 1}, and let ne ≜ max {i ∈ Z+ : τi < TA}. Then,

E

[∫ min(τj+1,TA)

τj

[N(t)−R]dt

∣∣∣∣∣ne ≥ j

]
≤ B1

√
µβR·E [min (τj+1, TA)− τj|ne ≥ j]+C2β

2µjp
(j)
rise,

where B1 = 3.6 and C2 =
1

2·0.98 > 0.511.
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Proof of Lemma 6.1 assuming Claims 6.1 and 6.2.

Before going further, we show how to complete the proof of Lemma 6.1, assuming the two prior
claims. Applying Lemma 4.1, we find that

E
[∫ TA

0

[N(t)−R]dt
]
≤ B1

√
µβR · E [TA] + C2β

2µ
R∑
j=1

jp
(j)
rise

j−1∏
i=1

(
1− C4p

(j)
rise

)
≤ B1

√
µβR · E [TA] +

C2

C4

β2µ

[
R∑
j=1

jC4p
(j)
rise

j−1∏
i=1

(
1− C4p

(j)
rise

)]

= B1

√
µβR · E [TA] +

C2

C4

β2µ

[
R∑
j=1

j∏
i=1

(
1− C4p

(j)
rise

)]
,

where we have used the “expectation as a sum of tails” trick. We now apply the following claim:

Claim 6.3 (Bound on the Probability of an Up-crossing p(j)rise). Let p(j)rise be the probability that the
total number of jobs N(t) exceeds R + C3

√
µβR during epoch j defined in (6.1). Then, for any

epoch j ≥ A5

√
R, we have p(j)rise ≥ 0.99 A5√

R
.

Continuation: Proof of Lemma 6.1 assuming Claims 6.1, 6.2, and 6.3.

We defer the proof of Claim 6.3 to Section A.4.3. Applying the claim’s result, we find that
R∑
j=1

j∏
i=1

(
1− C4p

(j)
rise

)
≤

R∑
j=1

(
1− 0.99C4A5√

R

)[j−A5

√
R]+

≤
∞∑
j=1

(
1− 0.99C4A5√

R

)[j−A5

√
R]+

.

(6.2)
Bounding this as a Geometric sum, we obtain

(6.2) = A5

√
R +

∞∑
j=0

(
1− 0.99C4A5√

R

)j
= A5

√
R +

1

0.99C4A5

√
R.

Returning to our original inequality, we obtain that

E
[∫ TA

0

[N(t)−R]dt
]
≤ B1

√
µβR · E [TA] +

C2

C4

(
A5 +

1

0.99C4A5

)
β2µ

√
R.

Noting that A5 = 1 and taking B2 ≜ 1.04 > C2

C4

(
A5 +

1
0.99C4A5

)
, we finish the proof of

Lemma 6.1. □

Proof of Claim 6.1, Upper Bound on Probability of Another Epoch.

Rewriting the claim. And so, assuming the preconditions of Lemma 4.1 (Claims 6.1 and 6.2)
as well as the helper claim 6.3, we have proven Lemma 6.1. We thus begin proving Claim 6.1.
We begin by rewriting the probability of another epoch occurring as

Pr (ne ≥ j + 1|ne ≥ j) = 1− Pr (ne = j|ne ≥ j) = 1− Pr (TA < τj+1|ne ≥ j) .

42



It thus suffices to show a bound on the probability that the accumulation phase ends in epoch j:

Pr (TA < τj+1|ne ≥ j) ≥ C4p
(j)
rise. (6.3)

Lower bound based on up-crossing and down-crossing times. To show (6.3), we analyze
a particular sequence of events which results in the accumulation phase ending in the current
epoch, i.e. TA < τj+1. Specifically, we define the up-crossing time u = min

{
t > τj : N(t) ≥ R + C3

√
µβR

}
and the down-crossing time d = min {t > u : N(t) ≤ R}. We consider the event where (1) the
up-crossing occurs during the accumulation phase (u < TA) and (2) the accumulation phase ends
before the next down-crossing occurs (d > TA). Symbolically, we have (at the end, recalling that
p
(j)
rise is the probability of an up-crossing occurs)

(6.3) ≥ Pr (u < TA < d|ne ≥ j) = Pr (d > TA|u < TA) Pr (u < TA) = Pr (d > TA|u < TA) p
(j)
rise.

Development of conditional probability. To bound the conditional probability Pr (d > TA|u < TA),
we condition on the filtration at time u, then make a coupling argument. To begin, note that, if the
number of jobs N(t) does not fall to R before the (R + 1)-th server finishes setting up, then the
accumulation time TA occurs exactly when the (R + 1)-th server finishes, i.e. the accumulation
time TA = u+ YR+1(u). Furthermore, the number of busy servers Z(t) ≤ R at any time during
the accumulation phase t < TA. Applying a basic coupling argument (Claim A.1), we have a
lower bound on N(t) in the coupled process

Ñ(t) ≜ N(u) + ΠA ((u, t])−D [R] ((u, t]) ,

for any time t ∈ [u, TA]. Let d̃ ≜ min
{
t > u : Ñ(t) ≥ R

}
be the analogous down-crossing

time in the coupled system. Since the coupled Ñ(t) is a lower bound, the coupled down-crossing
time d̃ ≤ d. Thus,

Pr (d > TA|Fu, u < TA) = Pr (d > u+ YR+1(u)|Fu, u < TA) ≥ Pr
(
d̃ > u+ YR+1(u)

∣∣∣Fu, u < TA

)
.

(6.4)

Analyzing the coupled probability. Continuing, the probability that
{
d̃ ≥ ℓ

}
is decreasing in

ℓ. Thus,

(6.4) ≥ Pr
(
d̃ > u+ β

∣∣∣Fu, u < TA

)
= Pr

(
d̃− u > β

)
≥ 1− 2Φ

(
− C3√

2

)
− 2

3
√
µβR

≥ 0.98,

where in the final inequalities we have applied both the down-crossing probability bound of
Claim A.3 and our assumptions. Taking C4 ≜ 0.98, we have the inter-epoch probability bound
of Claim 6.1. □

Proof of Claim 6.2, Upper Bound on the Integral Over an Epoch.

We now prove Claim 6.2, the upper bound on the time integral over an epoch. We do this via
another application of Lemma 4.1 —first specifying the intervening times, then completing the
proof, then proving that the preconditions hold.
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Figure 6.1: A depiction of the up-crossings and down-crossings defined in Section 6.2.1. In this
example, we see that the number of up-crossings in epoch 3 is n(3)

e = 2 and that, in this case,
epoch 3 ends when epoch 4 begins (i.e. at time τ4).

Definition of up-crossings and down-crossings. Let the 0-th down-crossing time in epoch j
occur at time τj , i.e. let d(j)0 ≜ τj. Next, define the first up-crossing in epoch j as the first time
during epoch j that the total number of jobs N(t) exceeds R + C3

√
µβR, i.e.

u
(j)
1 ≜ min

{
t > τj : N(t) ≥ R + C3

√
µβR

}
.

From here, define i-th down-crossing in epoch j and the i+ 1-th up-crossing in epoch j as

d
(j)
i ≜ min

{
t ≥ u

(j)
i : N(t) ≤ R

}
and

u
(j)
i+1 ≜ min

{
t ≥ d

(j)
i : N(t) ≥ R + C3

√
µβR

}
,

respectively; we visualize these definitions in Figure 6.1. We say the i-th up-crossing occurs if
u
(j)
i < min (TA, τj+1) and let nu ≜ max

{
i ≥ 0 : u

(j)
i < min (τj+1, TA)

}
be the random number

of up-crossings which occur in epoch j. We call the interval
[
d
(j)
i ,min

(
u
(j)
i ,min (TA, τj+1)

))
the i-th rise, and the interval

[
u
(j)
i ,min

(
d
(j)
i ,min (TA, τj+1)

))
the i-th fall. Note that, if the

i-th up-crossing occurs, then, by definition, di < τj+1; this means that the i-th fall can always be

written as
[
ui,min (TA, di)

)
. For readability, we fix our epoch of interest and freely omit the

superscript j on our up-crossings and down-crossings.

Specification step. With up-crossings and down-crossings defined, we are now ready to spec-
ify our application of the IST Lemma, Lemma 4.1. We define our starting time as T0 = τj = d0,
our ending time as P = min (TA, τj+1), our intervening sequence as (ui)

∞
i=1, and our counting

variable as F = nu.
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Required Claims. From here, in order to apply Lemma 4.1, we must show the following three
claims:
Claim 6.4 (Upper Bound on Integral Until First Up-crossing). Taking B1 = 3.6, the integral
until u1 is

E

[∫ min(u1,min(TA,τj+1))

d0

[N(t)−R]dt

∣∣∣∣∣nu ≥ j

]
≤ B1

√
µβR·E [min (u1,min (TA, τj+1))− τj|nu ≥ j] .

Claim 6.5 (Upper Bound on Integral Between Up-crossings). The integral between up-crossings
ui is

E

[∫ min(ui+1,min(TA,τj+1))

ui

[N(t)−R]dt

∣∣∣∣∣nu ≥ i

]
≤ B1

√
µβR · E [min (ui+1,min (TA, τj+1))− ui|nu ≥ i]

+
1

2
β2µj.

Claim 6.6 (Upper Bound on Probability of Another Up-crossing). Recall that p(j)rise is the prob-
ability that the number of jobs (N(t) ≥ C3

√
µβR at some point during epoch j, given that

epoch j occurs. Then, Pr (nu > 0) = p
(j)
rise, and, for all counts i ≥ 1 and p2 = 0.98, we have

Pr (nu ≥ i+ 1|nu ≥ i) ≤ 0.02 = 1− p2.

Proof of Claim 6.2, assuming Claims 6.4, 6.5, and 6.6.

Once again, before we move on to proving these claims, we show that they indeed suffice to
prove Claim 6.2. By Lemma 4.1, taking C2 ≜ 0.5

p2
,

E

[∫ min(TA,τj+1)

τj

[N(t)−R]dt

∣∣∣∣∣ne ≥ j

]
≤ B1

√
µβR · E [min (TA, τj+1)− τj|ne ≥ j]

+ p
(j)
rise0.5β

2µj
∞∑
i=1

(1− p2)
i−1

= B1

√
µβR · E [min (TA, τj+1)− τj|ne ≥ j] + p

(j)
rise

0.5

p2
β2µj.□

Proofs of Claims 6.4, 6.5, and 6.6.

All that remains to be proven are our three aforementioned claims.

Proof of Claim 6.4: Upper Bound on Integral until First Up-crossing. Proving this claim
is quite simple. In fact, we now prove a far more general claim, that the integral from a down-
crossing to the next up-crossing∫ min(ui,min(TA,τj+1))

di

[N(t)−R]dt ≤ C3

√
µβR · [min (TA, τj+1)− di] . (6.5)
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To see this, note that, at any point between a down-crossing and up-crossing, the total number of
jobs N(t) must be strictly less than R+C3

√
µβR. Apply this to the 0-th down-crossing and we

have the claim. □

Proof of Claim 6.5: Upper Bound on Integral Between Up-crossings. This proof is a bit

more involved. We separate the interval
[
ui,min (ui+1,min (TA, τj+1))

)
into the i-th fall and

the i-th rise, as discussed previously. For the rising portion, we can simply apply the simple
bound from (6.5). For the falling portion, we apply the integral coupling claim, Claim A.2.
In particular, note that Z(t) ≥ R − j until time τj+1 and that the interval [ui,min (di, TA)) is
equivalent to the interval [ui,min (di, ui + YR+1(ui))). Applying Claim A.2,

E

[∫ min(di,TA)

ui

[N(t)−R]dt

∣∣∣∣∣S(ui)
]
≤ 1

2
β2µj + [N(ui)−R] · YR+1(ui)

=
1

2
β2µj + C3

√
µβR · YR+1(ui).

By our analysis in the proof of Claim 6.1, we note that the remaining setup time YR+1(ui) ≤
min (di, TA) with probability at least p2 ≤ minFui Pr (di < TA|Fui , nu ≥ i). By Markov’s in-
equality,

YR+1(ui) ≤
1

p2
E [min (di, TA)− ui|S(ui)] .

Combining our bounds on the rises and falls and taking B1 =
C3

p2
, we have Claim 6.5. □

Proof of Claim 6.6: Upper Bound on Probability of Another Up-Crossing. We now proceed
to our final claim, concerning the up-crossing probabilities Pr (nu > 0) and Pr (nu ≥ i+ 1|nu ≥ i).
To begin, we first note that, since the first up-crossing occurs precisely at the moment that N(t)

exceeds R+C3

√
µβR during epoch j, one has p(j)rise = Pr (u1 < min (TA, τj+1)) = Pr (nu > 0).

To prove the second part of the claim, first observe that an (i + 1)-th up-crossing can only
occur if an i-th down-crossing occurs, i.e. Pr (nu ≥ i+ 1|nu ≥ i) ≤ Pr (di < TA|nu ≥ i) .

To bound this conditional probability, we can apply a previous result. Recall the proof of
the inter-epoch probability bound (Claim 6.1). In (6.3), we have already argued a bound on the
conditional probability that the first down-crossing occurs, in a state-independent manner. The
bound derived there thus also applies here:

Pr (di < TA|nu ≥ i) = 1− Pr (di > TA|nu ≥ i) ≤ 1− C4.

Taking p2 ≜ C4 = 0.98, we have bounded the probability of another up-crossing (Claim 6.5). □

6.2.2 Proof of Lemma 6.2, Upper Bound on Integral Over Draining Pe-
riod.

To prove this lemma, we again make use of Lemma 4.1. We proceed through the usual two-
step process, first defining the stopping time sequence we will analyze over, then proving the
preconditions of the lemma.
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Definition of the upward visits υ(up)
i and downward visits υ(down)

i . Recall that the draining
phase begins at time TA. Let MB ≜ min

(
k −R,

√
R)
)

be a specially-set analysis threshold.

Let the stopping time v(down)
1 ≜ min {t ≥ TA : N(t) < R +MB} be the first time the number of

jobs N(t) drops below R +MB, and recursively define

v
(up)
i ≜ min

{
t ≥ v

(down)
i : N(t) ≥ R +MB

}
and

v
(down)
i+1 ≜ min

{
t ≥ v

(up)
i : N(t) < R +MB

}
.

Application of Lemma 4.1.

Applying Lemma 4.1, we take our initial stopping time to be the accumulation time TA, our final
stopping time to be the end of the renewal cycle X , our intervening stopping times to be the
downward visits v(down)

i , and our counting index to be nb.

Required claims. To apply Lemma 4.1, we need to show is the usual three claims: a bound on
the initial integral, a bound on the continuing integral, and a bound on the probability.
Claim 6.7 (Upper Bound on Integral Until First Downward Visit). Let g(x, y, z) ≜ x 1

2µz
+

y
[
R
µz2

+ 3
2µz

]
. Then, one can bound the integral immediately after time TA with

E

[∫ v
(down)
1

TA

[N(t)−R] dt

]
≤
[
β +

1

µ

] [
3µβ

√
R +max

(√
R,

ρ

1− ρ

)]
+

2

µ
ln

(
3
µβ√
R

max

(√
R,

ρ

1− ρ

))
+ g

(
(9(µβ)2R, 3µβ

√
R, k(1− ρ)

)
+ β

ρ

1− ρ
.

Claim 6.8 (Upper Bound on Integral Between Downward Visits). One can bound the integral
between consecutive downward visits by

E

[∫ v
(down)
i+1

v
(down)
i

[N(t)−R] dt

∣∣∣∣∣Fv
(down)
i

]
≤ 1

µMB

[
max

(√
R,

ρ

1− ρ

)
+ 14 + µβ

√
R + 2b1

√
µβR + b2

√
R

]

Claim 6.9 (Upper Bound on Probability of Another Downward Visit). One can bound the prob-
ability of another downward visit occurring by

Pr (nb ≥ i+ 1|nb ≥ i) ≤ 1

MB

. (6.6)

47



Proof of Lemma 6.2 assuming Claims 6.7, 6.8, and 6.9.

Simplifying the first bound further,

E

[∫ v
(down)
1

TA

[N(t)−R]dt

]
≤
[
β +

3

µ

] [
2.9µβ

√
R +max

(√
R,

ρ

1− ρ

)]
+ g

(
9(µβ)2R, 3µβ

√
R, k(1− ρ)

)
+ β

ρ

1− ρ

≤ 1.03β

[
2.91µβ

√
R +

ρ

1− ρ

]
+ g

(
9(µβ)2R, 3µβ

√
R, k(1− ρ)

)
+ β

ρ

1− ρ

≤ 3µβ2
√
R + 2.03β

ρ

1− ρ
+ g

(
9(µβ)2R, 3µβ

√
R, k(1− ρ)

)
,

where we have bounded ln(x)/x < 0.1 for values x > 100, noted that max(x, y) ≤ x + y, and
done some upwards rounding. Simplifying the “continuing integral” term, we have

E

[∫ X

v
(down)
1

[N(t)−R] dt

]
≤ 1

Claim 6.9
· [Claim 6.8]

=
1

µ

[
max

(√
R,

ρ

1− ρ

)
+ 14 + µβ

√
R + 2b1

√
µβR + b2

√
R

]
≤ 1

µ

[
µβ

√
R

(
1 +

2b1√
µβ

+
b2
β

+
14

µβ
√
R

]
+

ρ

1− ρ

]
≤ 1

µ

[
1.6µβ

√
R +

ρ

1− ρ

]
.

Combining these two pieces, we obtain, as desired,

E
[∫ X

TA

[N(t)−R] dt
]
≤ 3.01µβ2

√
R + 2.04β

ρ

1− ρ
+ g

(
9(µβ)2R, 3µβ

√
R, k(1− ρ)

)
.□

Precursor: The “Wait-Busy” idea.

As such, to complete our proof it suffices to show Claims 6.7, 6.8, and 6.9. To prove these claims,
we make heavy use of the following idea.
Claim 6.10 (Wait Busy Claim). Let τ be some stopping time, let the number of jobsN(τ) = R+
h, and define ns (h) ≜ min {h, k(1− ρ)}. Let the down-crossing dgen ≜ min {t > 0 : N(τ + t) = R + h− 1} .
If Z(τ) ≥ R, then

E
[∫ τ+dgen

τ

[N(t)− (R + h− 1)]dt
∣∣∣∣Fτ

]
≤ YR+ns(h)(τ)+g

(
1 + 2µRE

[
min

(
YR+ns(h)(τ), dgen

)]
, 1, µns (h)

)
,

(6.7)
where the function g(x, y, z) ≜ x 1

2µz
+ y

[
R
µz2

+ 3
2µz

]
.
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Furthermore,

E

[∫ v
(down)
1

TA

[N(t)−R]dt

∣∣∣∣∣FTA

]
≤
[
β +

1

µ

] [
E [N (TA)−R] +

R

MB

]
+

2

µ
ln

(
E [N (TA)−R]

MB

)
(6.8)

+ g
(
E
[
[N (TA)−R]2

]
+ 2E [N (TA)−R] ,E [N (TA)−R] , k(1− ρ)

)
.

Intuition. We defer the proof of Claim 6.10 until Section 6.2.2. For now, we give some brief
intuition for how the bound is derived and how we use it in our proof. Essentially, we can
consider performing the following procedure at time τ : First, watch the system for β time. If
the number of jobs ever dips below R + h during this watching period, we can end our integral
immediately. If the number of jobs N(t) never dips below R + h during this watching period,
then we know for sure that we have at least min (R + h, k) servers on at time τ +Ymin(R+h,k)(τ),
since we have continually had at least R+ h servers either busy or setting up during that period.
Moreover, since we only turn off servers when there isn’t work for them to do, those servers will
stay on until the number of jobs N(t) dips below R + h; in other words, they will stay on until
time dgen. The proof of the claim follows along essentially the same lines, formalizing things and
performing computations using coupling and martingales.

Proof of Claim 6.7: Bound on Integral Until First Visit.

We return to proving our claims. The proof of this claim is simple; it is essentially rolled into
the proof of Claim 6.10. From here, it suffices to apply the following claim, substituting in and
simplifying constants:
Claim 6.11 (Upper Bound on E [N(TA)]). Recall that TA ≜ min {t > 0 : Z(t) = R + 1}. Then,

E [N(TA)−R] ≤ F1µβ
√
R

(
1 +

F2√
µβ

)
≤ 2.9µβ

√
R

and

E
[
(N(TA)−R)2

]
≤ F 2

1 (µβ)
2R

(
1 +

F2√
µβ

)2

+ 2µβR ≤ 8.4(µβ)2R + 2µβR

where F1 = 2.12 and F2 = 3.645.

Proof of Claim 6.8: Bound on Integral Between Visits.

To prove Claim 6.8, we break the integral into two parts: from the down-crossing v(down)
i to the

up-crossing v(up)
i , and vice-versa.

First part: from v
(down)
i to v(up)

i . To bound the integral from the down-crossing to the next
up-crossing, we first make the simple observation that∫ min

(
v
(up)
i ,X

)
v
(down)
i

[N(t)−R] dt ≤
[
min

(
v
(up)
i , X

)
− v

(down)
i

]
·MB, (6.9)
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since v(up)
i is the next time N(t) ≥ R+MB. To bound E

[
min

(
v
(up)
i , X

)
− v

(down)
i

∣∣∣F
v
(down)
i

]
, we

couple the system to an infinite-server M /M /∞ queue at time v(down)
i , and note that the coupled

up-crossing time

T̃(R+MB−1)→(R+MB) + v
(down)
i ≥ v

(up)
i ≥ min

(
v
(up)
i , X

)
.

Since MB ≤
√
R, from standard results on the M /M /∞ (reproduced in Section A.3.4), , we

have that

MBE
[
min

(
v
(up)
i , X

)
− v

(down)
i

∣∣∣F
v
(down)
i

]
≤MB

b2

µ
√
R

=
1

µMB

b2
M2

B√
R

≤ 1

µMB

b2
√
R.

Second part: from v
(up)
i to v(down)

i+1 . From v
(up)
i onwards, we use the “wait-busy” bound. Ap-

plying the “Wait Busy” Claim (Claim 6.10) with h =MB, we obtain

E

[∫ v
(down)
i+1

v
(up)
i

[N(t)−R] dt

∣∣∣∣∣Fv
(up)
i

]
≤ β + g

(
1 + 2µRE

[
min

(
β, v

(down)
i+1 − v

(up)
i

∣∣∣F
v
(up)
i

)]
, 1,MB

)
+MBE

[
min

(
β, v

(down)
i+1 − v

(up)
i

∣∣∣F
v
(up)
i

)]
.

To bound the conditional expectation of E
[
min

(
β, v

(down)
i+1 − v

(up)
i

)∣∣∣F
v
(up)
i

]
, we make our usual

coupling argument. Define a coupled system M/M/1 queue with departure rate µR, and let ˜dgen

be the length of its busy period. It suffices to bound E
[
min

(
˜dgen, β

)]
, for the coupled relative

down-crossing time ˜dgen. From standard results on simple random walks (Claim A.7), we have

E
[
min

(
˜dgen, β

)]
≤ b1

√
µβ

µ
√
R

+ 6
µR

, giving

E

[∫ v
(down)
i+1

v
(up)
i

[N(t)−R] dt

∣∣∣∣∣Fv
(up)
i

]
≤ 1

µMB

[
R

MB

+ 2

]
+ β +

[
b1
√
µβ

µ
√
R

+
6

µR

](
MB +

R

MB

)
=

1

µMB

[
R

MB

+ 2 + µβMB +
(
M2

B +R
) [b1√µβ√

R
+

6

R

]]
≤ 1

µMB

[
max

(√
R,

ρ

1− ρ

)
+ 14 + µβ

√
R + 2b1

√
µβR

]
,

where in the last line we used MB ≤
√
R; combining these two parts gives Claim 6.8. □

Proof of Claim 6.9, Upper Bound on the Probability of Another Visit.

To see (6.6), we first note that, if there is another upcrossing, then there must be another down-
crossing. As such, it suffices to upper bound Pr

(
v
(up)
i < X

∣∣∣v(down)
i

)
. To do this, we note that the

number of busy servers Z(t) ≥ R. From Claim A.1, it thus suffices to bound the corresponding
probability in the coupled system with exactly R busy servers. But this is simply the probability
that a simple random walk started at W (0) =MB − 1 hits W (t) =MB before it hits W (t) = 0.
Classically, this probability is 1

MB
; this proves the claim, and thus Lemma 6.2. □
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6.2.3 Proof of Lemma 6.3: Lower Bound on the Cycle Length.
Preliminaries. The proof of this lemma is much simpler than the others. Before describing
our strategy, we first state some preliminaries. Recall the definition of the start of the j-th epoch

τj ≜ min {t ≥ 0 : N(t) ≤ R− j} , that we call the period
[
τj,min (τj+1, TA)

)
the j-th epoch,

and the we say epoch j occurs if τj < TA. Now, say epoch j is long if it lasts longer than a
setup time β; note that such an epoch must exist, since servers can only turn on during long
epochs, and a server must turn on before the accumulation phase ends at time TA. Let L ≜
min {j ∈ {0, 1, 2, . . . , R} : min (τj+1, TA)− τj > β} be the index of the first long epoch. Note
that, although the random time τL is not a stopping time (we do not know how long an epoch
will last when the epoch starts), the first moment we can identify epoch L, the random time
τL + β, is a stopping time. Moreover, we know that τL + β < TA. From here, one sees that
E [X] = E [τL + β] + E [X − (τL + β)] ≥ β + E [X − (τL + β)] . To complete the proof, it
suffices to show

E [X − (τL + β)] ≥ L1µβ
√
R

µk(1− ρ)
. (6.10)

Proof of (6.10): Lower Bound on the Remaining Cycle Length.

To show (6.10), we first show we can bound an analogous quantity in a coupled process, then
appeal to standard results on the M/M/1 queue.

Defining the coupled process Ñ(t). To define the coupled process, note that the number of
busy servers Z(t) ≤ k. It follows from Claim A.1 that, for any time t ≥ τL + β, the coupled
process

Ñ(t) ≜ N (τL + β) + A ((τL + β, t])−D [k] ((τL + β, t])

satisfies Ñ(t) ≤ N(t).

Using the coupled process to bound E [X − τL + β]. We now use this process to bound
E [X − τL + β]. Recall that the end of the renewal cycleX ≜ min {t > 0 : Z(t−) = R + 1, Z(t) = R}
occurs when the (R + 1)-th server turns off. It is useful to view X in a different way: since the
accumulation time TA is the moment when the (R+ 1)-th server turns on, we also know that the
end of the renewal cycle X = min {t > TA : N(t) ≤ R} is the first moment after time TA that
the number of jobs N(t) ≤ R. Furthermore, since the time τL + β happens before any server
could possibly turn on, the time τL + β < TA. Denoting the end of the coupled renewal as X̃ as
the first moment the coupled process Ñ(t) ≤ R, we have

X̃ ≜ min
{
t > τL + β : Ñ(t) ≤ R

}
≤ min {t > τL + β : N(t) ≤ R} ≤ min {t > TA : N(t) ≤ R} = X.

Bounding the end of coupled renewal E [X − τL + β]. To bound the quantity E [X − τL + β],
we condition on the filtration at time τL + β and use standard results on the M/M/1 busy period.
Note that, since the departure rate of the coupled system is fixed at µk, the period

[
X̃ − τL + β

]
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is precisely the length of an M/M/1 busy period with 1) arrival rate kλ, 2) departure rate kµ, and
3) started by [N (τL + β)−R]+ jobs. It follows that E [X − (τL + β)|FτL+β] ≥

[N(τL+β)−R]+

µk(1−ρ) .
Taking expectations, applying Jensen’s and results from the lower bound ((5.6) and (5.3)), we
obtain, proving (6.10), Lemma 6.3, and Theorem 6.1 simultaneously,

E [X − (τL + β)] ≥ [E [N (τL + β)−R]]+

µk(1− ρ)
≥ µβE [L]

µk(1− ρ)
≥ L1µβ

√
R

µk(1− ρ)
.□

6.3 The Upper Bound: Review of Findings
In this chapter, we proved an upper bound on the average waiting time in the M/M/k/Setup-
Deterministic. We proved this bound via a number of applications of the MIST Lemma, Lemma 4.1.
In fact, to bound the accumulation phase integral, we needed to use the MIST Lemma in a
nested way: First, we used it to break the accumulation phase into epochs, and then we used
it to break each epoch into “rises” and ”falls,” periods of time punctuated by up-crossings and
down-crossings. Compared to the lower bound of Chapter 5, the upper bound proven here truly
highlights the utility of the MIST method.
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Chapter 7

The Approximation

In Chapter 7, we present our approximation for the average waiting time in the M/M/k/Setup-
Deterministic. We begin by discussing why we need such an approximation, then state the ap-
proximation, then give a short justification for its form.

7.1 Why we need an approximation

Despite our success in analyzing the M/M/k/Setup-Deterministic, our upper and lower bounds
alone are not suitable for practical use in predicting the value of the average waiting time E [TQ].

There are two reasons for this. First, although we can prove that our bounds are both within
a constant factor of the true waiting time (Theorem A.1), it’s not a priori obvious whether the
true value of E [TQ] will get closer to one bound or the other as we vary the system parameters.
Although the true value does not seem to ever get closer to a particular bound (and so we could
conceivably just scale our lower bound to serve as a predictor), it would be better to have a more
concrete theoretical justification for our prediction.

The second reason why our bounds are unsuitable for practical use is their complexity. Al-
though both the upper and lower bounds are far more straightforward to compute than, for exam-
ple, the average waiting time in the M/M/k/Setup-Exponential, both bounds incorporate a large
number of terms and are thus somewhat difficult to reason about on the fly. As such, it would be
better to have a predictor which incorporates only a few, easy-to-remember terms.

7.2 The approximation

To this end, we introduce the following approximation; the justification for the approximation
follows. An empirical evaluation of this approximation can be found in Figure 1.7; it is extremely
accurate.
Approximation 1 (Approximation to the average queue length.). In the M/M/k/Setup-Deterministic,
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for offered loads R ≜ kρ > 2,

E [Q(∞)] ≈ Qapx ≜

1
2
β2Capx

√
R +

βCapx
√
R

µk(1−ρ)

[
βCapx

√
R+1

2
+ 1

1−ρ

]
β +

βCapx
√
R

µk(1−ρ)

, (7.1)

where Capx ≜
√

π
2
.

7.3 Justification
We arrive at this bound via a straightforward combination of our results from Chapters 5 and 6,
along with a few modifications. We follow our renewal-reward analysis, separately approximat-
ing the expected time integral over our renewal cycle and the expected length of that renewal
cycle, the numerator and denominator of 7.1, respectively.

7.3.1 Justification of Numerator
We first approximate the numerator of our expression, the expected time integral over our chosen
renewal cycle. We begin by recalling the lower bound on the time integral, Lemma 5.1, which
states

E
[∫ X

0

Q(t)dt
]
≥ L1β

2
√
R + Ibusy

([
L1β

√
R− (k −R)

]+
, k −R

)
,

where

Ibusy (x, z) ≜
x

µz

[
x+ 1

2
+

1

1− kλ
kλ+µz

]
represents the time integral of the queue length a certain M/M/1 queue over a busy period started
by x jobs.

To obtain the appropriate constant Capx, we next note that, although our theorem states L1 as
an absolute constant, as the setup time β and the offered load R grow, the best possible constant
will become Capx =

√
π
2
. Under the hood, this convergence stems from the fact that

R∑
j=1

j∏
i=1

(
1− j

R

)
≈
∫ ∞

0

e
−j2
2R dj =

1

2

√
2πR;

see the proof of Lemma 5.1 for more details.
To complete the bound, it suffices to remove the subtraction of (k − R) in the busy period

term, which we anticipate is an artifact of our analysis. Removing it, we obtain the desired
approximation

E
[∫ X

0

Q(t)dt
]
≈ 1

2
β2Capx

√
R +

βCapx
√
R

µk(1− ρ)

[
βCapx

√
R + 1

2
+

1

1− ρ

]
. (7.2)
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7.3.2 Justification of Denominator
We next approximate the denominator of our expression, the expected length of our chosen
renewal cycle. To do so, we again make use of the lower bound on the expected cycle length
E [X] from Lemma 6.3, which states

E [X] ≥ β +
L1β

√
R

µk(1− ρ)
.

By making the same convergence argument for L1, i.e. that L1 → Capx for large setup times β
and large offered loads R, we obtain the denominator, completing both parts of our bound.
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Chapter 8

Conclusion

In this chapter, we summarize the thesis, discuss some broader impacts of this thesis, and state
some related open problems.

8.1 Summary and Takeaways

In this thesis, we studied the effect of setup times on the queueing behavior of multiserver sys-
tems. In particular, we studied how the average waiting time E [TQ] in the M/M/k/Setup depends
on the system parameters like the number of servers k, the average setup time β, and the load
ρ. In Chapter 1, we first noted that the fundamental difficulty in analyzing setup in multiserver
systems was the fact that multiple servers can be in setup at the same time. We then noted that all
prior theoretical work made the simplifying assumption that setup times were distributed i.i.d.
Exponential, even though, practically-speaking, setup times are much closer to Deterministic;
see Chapter 2 for more details. Furthermore, we found in simulation that this distributional as-
sumption has a large impact on the behavior of the system: systems with Deterministic setup
times have very different behavior from systems with Exponential setup times.

Accordingly, we narrowed our focus to studying the average waiting time in the M/M/k/Setup-
Deterministic (defined in Chapter 3), deriving the first-ever lower and upper bounds on this quan-
tity in Chapters 5 and 6, respectively. Next, in Chapter 7, we described how to take the tightest
parts of our bounds and combine them to make an approximation which is extremely accurate.
Finally, in this chapter, we summarize our results and state the practical takeaways of our work:

• that the average waiting time in the M/M/k/Setup-Exponential is drastically smaller than
the average waiting time in the corresponding M/M/k/Setup-Deterministic (Section 1.3);

• that our approximation is highly accurate in predicting the average waiting time in the
M/M/k/Setup-Deterministic (Figure 1.7);

• and that the simplicity and accuracy of our approximation radically simplifies capacity
provisioning for dynamically-scaled systems (Section 1.4.3).
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8.2 Broader Impacts

This thesis has the potential to impact a large number of different fields, since setup times arise
in so many different settings.

8.2.1 Computer Science

In computer science, setup times arise most directly when performing dynamic-scaling in the
cloud. There, booting up another container (or virtual machine) might take a few seconds while
the actual runtime of a specific task might only take a few milliseconds. Because we do not fully
understand how to manage systems with setup times, these servers could be burning much more
energy then necessary; when Google introduced Autopilot[34], they were able to cut resource
waste in half, from 46% to 23%. Moreover, the energy that these datacenters waste does not
just affect these companies’ profitability —it also affects our climate via CO2 emissions and
increased demand on the energy grid. Given that one percent of all power globally is spent
running these datacenters, if we can save two or three percent more energy in their operations,
that would be a significant gain for the entire world.

8.2.2 Operations/Management

From an operations/management perspective, the effect of setup times is well-illustrated in em-
ployee turnover. When hiring, it might take months to fully onboard a new team member,
whereas a typical task might be completed in a day; on the other hand, many employees can
be laid off more-or-less instantly. The way in which a firm goes about hiring people, migrating
them between different teams, and deciding to lay them off is a great example of the human side
of dynamic scaling. Effective management is timelessly relevant, and a setup-time-oriented per-
spective could provide insights and tools in the same vein as the Pollaczek–Khinchine formula
or the Erlang-C model.

8.2.3 Healthcare

Setup times also occur in the medical setting, e.g. when managing on-call doctors. Because
patient need (i.e. service demand) is unpredictable, some doctors are often kept “on-call” for
up to 36 hours at a time. While on-call, although a physician may not always have work to do,
if their service is requested, then they are expected to respond within, say, 30 minutes (which
includes travel time to the hospital, if required). For context, most requests can be handled in a
very short amount of time, e.g. under a minute. Because these physicians must stay ready-to-
respond for multiple days, the current on-call system can lead to extreme sleep deprivation and,
accordingly, a poor standard of care for patients. Along the lines of this thesis, further research
on dynamically allocating physicians might someday lead us to a new, more sustainable on-call
system, with both better care quality and better physician well-being.
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8.3 Open Problems

8.3.1 Standby States
Within this thesis, we assume that servers have two persistent states: on and off ; for some
systems, this assumption turns out to be wrong. In reality, many servers possess intermediate
standby states. A server on standby takes a shorter amount of time to get ready than a server
that is completely off, but it also burns more energy. Since the setup process itself takes energy,
by using these standby states cleverly, we might be able to both improve performance and im-
prove energy efficiency within these systems. Given this, one might ask: “When should we put
a server on standby versus turning it completely off? What are the benefits of using the
standby states?”

8.3.2 Analyzing Tail Performance in the M/M/k/Setup.
Another important open problem lies in analyzing tail performance in the M/M/k/Setup. For
context, when customers purchase cloud hosting, an ubiquitous component in their purchase
agreements is some kind of “tail/deadline constraint” on their job delay. For example, the agree-
ment will stipulate that “95% of submitted jobs must complete service within one second of their
arrival,” with some sort of financial penalty if this constraint is not honored.

Tail constraints in queueing pose a number of technical challenges. In even the single-server
case, we do not yet understand how to schedule jobs to optimally meet these constraints. In the
multiserver case, though, we have another perspective from which we can analyze the problem:
that of dynamic-scaling. Instead of thinking about how to schedule these tail-constrained jobs, we
can instead think about how we can dynamically-scale our system to ensure these tail constraints
are met. This scaling perspective provides a natural way of thinking about the different costs
involved. With enough servers, we should be able to ensure that our tail-constraint is met. As
such, we can now ask: “How and when should a system use additional servers to satisfy a
given tail constraint?”

The above question is challenging, and worth considering even in systems without setup
times. However, as we have made clear throughout this thesis, setup times often have an enor-
mous impact on the queueing behavior of a dynamically-scaled system. Although there exists
extensive study of the performance of dynamic staffing [6, 31], especially in the time-varying
arrival rate case [7, 21], much of that work has yet to be extended to the setup time case. As
such, we should also ask a more fundamental question: “How does setup time impact the
distribution of waiting time in the M/M/k/Setup?”

58



Appendix A

Miscellaneous Claims

A.1 Proof of Multiplicative Tightness.
We now show that the upper and lower bounds of Theorems 6.1 and 5.2, respectively, differ by
at most a multiplicative factor.
Theorem A.1. The bounds of Theorems 6.1 and 5.2 lie within a constant multiplicative factor of
each other. In particular, using =c to denote equivalence modulo a multiplicative constant,

E [Q(∞)] =c β
√
R +

1

1− ρ
. (A.1)

A.1.1 Proof for Lower Bound.
We prove Theorem A.1 in two parts, showing equivalence for the lower bound, then for the
upper bound. For the lower bound, we first discard all constants and a number of terms in the
denominator, since β > 1

µ
by assumption. Doing so, we obtain

E [Q(∞)] ≥c

µβ2
√
R +

[L1β
√
R−k(1−ρ)]

+

µk(1−ρ)

[[
L1β

√
R− k(1− ρ

]+
+ 1

1−ρ

]
β + β

√
R

µk(1−ρ)

, (A.2)

where ≥c denotes that the inequality holds up to an (unspecified) constant factor.

Replacing the [·]+ term.

Now, we show that the
[
β
√
R− k(1− ρ)

]+
term can be replaced by the term µβ

√
R, while

losing only a constant factor; this turns out to be the difficult part. We approach this by casing
on whether the positive term 1

2
L1µβ

√
R ≥ k(1− ρ).

First case. If we have 1
2
L1β

√
R ≥ k(1 − ρ), then

[
µL1β

√
R− k(1− ρ)

]+
≥ 1

2
L1β

√
R =c

µβ
√
R.
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Second case. In the second case, assume that 1
2
L1β

√
R < k(1 − ρ). In this case, even if we

increase the value of the numerator by replacing the [·]+ term, the relevant term in the numerator
becomes

β
√
R

k(1− ρ)

[
µβ

√
R +

1

1− ρ

]
= µβ2

√
R ·

√
R

k(1− ρ)
·
[
1 +

1

µβ
√
R

]
=c µβ

2
√
R ·

√
R

k(1− ρ)
≤c µβ

2
√
R · 1

β

where in the second equality we have used that
√
R ≥ 1 and µβ ≥ 1, and in the final inequality

we have used our case assumption. From here, it’s clear that one can replace the term [L1µβ
√
R−

k(1 − ρ)]+ with the term µβ
√
R without altering the scaling behavior of numerator. In other

words,

E [Q(∞)] ≥c

µβ2
√
R + µβ

√
R

µk(1−ρ)

[
β
√
R + 1

1−ρ

]
β + β

√
R

µk(1−ρ)

=c µβ
√
R +

√
R

k(1− ρ) +
√
R

1

1− ρ
. (A.3)

Bounding the final term.

We now show equivalence for this final term, i.e. that

µβ
√
R +

√
R

k(1− ρ) +
√
R

1

1− ρ
=c µβ

√
R +

1

1− ρ
. (A.4)

To do so, we bound the rightmost term in (A.3). Note that, since
√
R

k−R+
√
R
≤ R

k−R+R
= ρ, in order

for this term to have an appreciable effect on the scaling, we must have that ρ
1−ρ ≥c µβ

√
R, or,

phrased more usefully, we must have
√
R ≥c µβk(1 − ρ). But even in this case, we can bound

the factor in the rightmost term of (A.3) with
√
R

k(1−ρ)+
√
R

≥c
βk(1−ρ)

k(1−ρ)+µβk(1−ρ) = µβ
1+µβ

=c 1; the
multiplicative equivalence (A.4) follows.

A.1.2 Proof for Upper Bound.

Initial Steps.

The proof for the upper bound follows along the same lines. First, note that the terms outside of
the fraction are R

M
≤ R

k(1−ρ) = ρ
1−ρ and

√
µβR << µβ

√
R. Discarding the lower order terms

and constants, we obtain

E [Q(∞)] ≤c µβ
√
R +

ρ

1− ρ
+
µβ2

√
R + g

(
9(µβ)2R, 3µβ

√
R, k(1− ρ)

)
β + µβ

√
R

µk(1−ρ)

, (A.5)

where one should recall that M =c min
(
k(1− ρ),

√
µβR

)
. For the terms in the fraction, the

denominator of the upper bound is already up-to-constants-equivalent to the denominator of
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(A.2). It thus suffices to show that the numerator of the upper bound aligns with the numerator
of (A.3). However, note that, by definition, the function

g
(
9(µβ)2R, 3(µβ)

√
R, k(1− ρ)

)
≜

3µβ
√
R

k(1− ρ)

[
3µβ

√
R + 1

2
+

1

1− ρ

]
;

thus, the terms are clearly equivalent up to scaling. □

A.2 Construction and Coupling Claims.

A.2.1 Construction
We now discuss how we formally construct this system using Poisson processes; being explicit
here will prove useful when we make coupling arguments in the future.

The arrival and departure processes. We take the number of jobs that have arrived at time
t to be ΠA(t), where ΠA is a Poisson process of rate kλ. In a slight abuse of notation, we
let ΠA([a, b]) denote the number of arrivals that occur in the interval [a, b]; we apply the same
extension to all other counting processes mentioned here. We set the potential departure process
of, say, server i to be Πi(t), where Πi is a Poisson process of rate µ. A potential departure from
server i only “counts” if server i is busy when that potential departure occurs, i.e., if the number
of busy servers Z(t) ≥ i at the time. Thus, the total number of departures from our system by
time t is, taking integrals with respect to the Poisson processes Πi as counting processes,

D(t) ≜
k∑
i=1

∫ t

0

1 {Z(s) ≥ i} dΠi(s).

The number of busy servers Z(t). To find the number of busy servers Z(t), one could count
the number of setup completion events that have occurred so far and the number of server shutoffs
that have occurred so far; this description is a bit difficult to work with. Alternatively, one can
see from the initial description of setup dynamics that server i is on at time t if and only if the
total number of jobs N(s) ≥ i for all s ∈ [t − β, t], where one should recall that β is the setup
time. An easier description of Z(t) follows:

Z(t) = min

(
k, min

s∈[t−β,t]
N(s)

)
.

A departure operator. We can extend our departure process D(t) to a departure operator
D [f(s)] (I) which takes a function f(s) ∈ {0, 1, . . . , k} defined on some interval I and com-
putes the number of departures that would occur in that interval provided that the number of busy
servers Z(s) = f(s), i.e.

D [f(s)] ((a, b]) ≜
k∑
i=1

∫ b

a

1 {f(s) ≥ i} dΠi(s).
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Note that the total number of departures can now be written as D(t) = D [Z(s)] ([0, t]).

A.2.2 Three Coupling Claims
We now describe three useful claims applied throughout the proof. The first, we will state and
prove immediately. For the latter two, we first give a high-level explanation, then state and prove
them.

Basic coupling claim: Maintaining an initial relation.

Claim A.1 (Basic Coupling). Suppose that we have two processes N1 and N2 with an initial
relation N1(a) ≤ N2(a), where the behavior of each process is governed, for all times s from a
up to some stopping time τ , by the equation

Nj(s) ≜ Nj(a) + ΠA ((a, s])−D [Zj(x)] ((a, s]) , for j ∈ {1, 2}.

Furthermore, suppose that the first system’s number of busy servers Z1(s) ≥ Z2(s) for all times
s ∈ [a, τ ]. Then, for all s ∈ [a, τ ], the relation is maintained, i.e. N1(s) ≤ N2(s).

Proof. We show equivalently that N2(s)−N1(s) ≥ 0. Applying the definitions of N1 and N2,

N2(s)−N1(s) = N2(a)−N1(a) + [D [Z1(x)] ((a, s])−D [Z2(x)] ((a, s])]

≥ [D [Z1(x)] ((a, s])−D [Z2(x)] ((a, s])]

=
k∑
i=1

∫ s

a

1 {Z1(x) ≥ i} dΠi(x)−
k∑
i=1

∫ s

a

1 {Z2(x) ≥ i} dΠi(x)

=
k∑
i=1

∫ s

a

[
1 {Z1(x) ≥ i} − 1 {Z2(x) ≥ i}

]
dΠi(x).

Since Z1(x) ≥ Z2(x), the integrand
[
1 {Z1(x) ≥ i} − 1 {Z2(x) ≥ i}

]
≥ 0; the claim follows.

□

Statement and proof of remaining coupling claims.

High-level explanation. This claim leads nicely into a couple more claims. Both are concerned
with bounding a quantity involving a general “down-crossing” time. In particular, our analysis
will begin at a stopping time τ and will “end” at the down-crossing time dgen, where dgen ≜
min {t ≥ 0 : N(t+ τ) ≤ h} is the length of time it takes for the number of jobs N(t) to become
lower than some given threshold h. The first claim, Claim A.2, uses a coupling argument to
bound the expected integral of N(t) from some arbitrary time τ until N(t) drops below some
pre-defined threshold h, provided that one has a lower bound on the number of busy servers Z(t)
over that period. The second claim, Claim A.3, uses a related argument to bound the probability
thatN(t) drops below some threshold hwithin some amount of time ℓ, given that one has bounds
on Z(t) over the relevant period. We defer the proof of these claims to Sections A.2.3 and A.2.4.
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Claim A.2 (Coupling Integral Bound). Let τ be some stopping time and dgen be the next down-
crossing as described in Section A.2.2. Suppose that, at time τ , we have a lower bound on the
number of busy servers over a period, i.e. we know that the number of busy servers Z(t) ≥ R−j,
for all t ∈ [τ, τ +min (ℓ, dgen)] and for some non-negative j. Then we have the following bound
on the integral over this time period:

E

[∫ τ+min(dgen,ℓ)

τ

[N(t)− h] dt

∣∣∣∣∣Fτ

]
≤ ℓ · [N(τ)− h]+ +

1

2
µjℓ2.

Claim A.3 (Coupling Probability Bound). Let τ be some stopping time and dgen be the next
down-crossing as described in Section A.2.2. We consider two cases.

In the first case, suppose that we have a lower bound on the number of busy servers Z(t)
over some length ℓ interval starting at time τ , i.e. the busy servers Z(t) ≥ R − j, for all t ∈
[τ, τ +min (ℓ, dgen)] and for some non-negative j. Then, we can bound the threshold-crossing
probability by

Pr (dgen < ℓ|Fτ ) ≥ 2Φ

(
−

[
N(τ)− h+ µjℓ√

ℓ(2kλ− µj)

])
− 2

3
√
ℓ(2kλ− µj)

.

In particular, ifN(τ)−h = c1
√
µβR, then the probability Pr (dgen < ℓ|Fτ ) ≥ 2Φ

(
− c1√

2

)
− 1

100
.

In the second case, suppose that we instead have the upper bound on Z(t) ≤ R during this
interval instead. Then,

Pr (dgen < ℓ|Fτ ) ≤ 2Φ

(
−
[
N(τ)− h√

2ℓkλ

])
− 2

3
√
2kλℓ

.

As before, if N(τ)− h = c
√
µβR, then the probability Pr (dgen < ℓ|Fτ ) ≤ 2Φ

(
− c√

2

)
+ 1

100
.

A.2.3 Proof of Claim A.2, the Coupling Integral Bound.

Proof. We prove this claim in three parts. First, we construct a coupled process Ñ(t) ≥ N(t) on
the interval of interest. Then, we give an upper bound on E

[∫ τ+min(ℓ,dgen)

τ
Ñ(t)dt

∣∣∣Fτ

]
. Define

Ñ(t) as
Ñ(t) ≜ N(τ) + A(τ, t)−D [R− j] ((τ, t)) .

Then, by Claim A.1, we have that
Ñ(t) ≥ N(t).

on the interval of interest. To develop the integral, we first move the minimum from the bounds
of integration into the integrand. In particular, we note that the quantity N(dgen) − h = 0, and
thus, for any t > τ + dgen, the quantity N(min (τ + dgen, t))− h = 0. On the other hand, for any
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t < τ + dgen, the quantity N (min (τ + dgen, t)) = N (t). It follows that∫ τ+min(ℓ,dgen)

τ

[N(t)− h] dt =
∫ τ+min(ℓ,dgen)

τ

[N(min (t, τ + dgen))− h] dt

=

∫ τ+min(ℓ,dgen)

τ

[N(min (t, τ + dgen))− h] dt

+

∫ τ+ℓ

τ+min(ℓ,dgen)

[N(min (t, τ + dgen))− h] dt

=

∫ τ+ℓ

τ

[N(min (t, τ + dgen))− h] dt

≤
∫ τ+ℓ

τ

[
Ñ(min (t, τ + dgen))− h

]
dt.

Defining ˜dgen ≜ min
{
t > 0 : Ñ(τ + t) ≤ h

}
, since Ñ(t) ≥ N(t), we know both that ˜dgen ≥

dgen and that, for any t ∈ [τ + dgen, τ + ˜dgen],

Ñ(t)− h ≥ 0.

Moreover, the process V (t) defined as

V (t) ≜ Ñ(t)− µjt

Is a martingale. Thus, we have∫ τ+ℓ

τ

[
Ñ(min (t, τ + dgen))− h

]
dt ≤

∫ τ+ℓ

τ

[
Ñ(min

(
t, τ + ˜dgen

)
)− h

]
dt.

Taking the expectation, we find that

E
[∫ τ+ℓ

τ

[
Ñ(min

(
t, τ + ˜dgen

)
)− h

]
dt
∣∣∣∣Fτ

]
(A.6)

=

∫ τ+ℓ

τ

E
[
Ñ(min

(
t, τ + ˜dgen

)
)− h

∣∣∣Fτ

]
dt

=

∫ τ+ℓ

τ

E
[
V (min

(
t, τ + ˜dgen

)
) + µj

(
min

(
τ + ˜dgen, t

))
− h
∣∣∣Fτ

]
dt

=

∫ τ+ℓ

τ

E
[
V (τ) + µj

(
min

(
τ + ˜dgen, t

))
− h
∣∣∣Fτ

]
dt (A.7)

≤
∫ τ+ℓ

τ

E [V (τ) + µjt− h|Fτ ] dt

=

∫ τ+ℓ

τ

E
[
Ñ(τ)− µjτ + µjt− h

∣∣∣Fτ

]
dt

=
[
Ñ(τ)− h

]
ℓ+

1

2
µjℓ2,

where (A.7) is an application of Doob’s Optimal Stopping Theorem.

64



A.2.4 Proof of Claim A.3, the Coupling Probability Bound.
Proof. We prove this result in three parts. First, we use Claim A.1 to construct a process Ñ(t) ≥
N(t) on the interval of interest. Afterwards, we analyze the down-crossing probability of this
coupled process. In particular, we use a reflection argument to show that

Pr (dgen < ℓ) ≥ 2Pr
(
Ñ(τ + ℓ) ≤ h

)
,

then use a Berry-Esseen bound to bound this final probability. In what follows, we focus on the
lower-bound; the upper bound follows in precisely the same way.

To construct our coupled process, we note that, by assumption, the number of busy servers
Z(t) ≥ R− j for any t ∈ [τ, τ +min (ℓ, dgen)]. Thus, by Claim A.1, the process Ñ(t) defined as

Ñ(t) ≜ N(τ) + A(τ, τ + t) +D [R− j] ([τ, τ + t])

is an upper bound for N(t+ τ), i.e.

Ñ(t) ≥ N(τ + t)

for any t ∈ [0,min (ℓ, dgen)]. By definition, we have that

Pr (dgen < ℓ) = Pr

(
inf
t∈[0,ℓ)

N(τ + t) ≤ h

)
≥ Pr

(
inf
t∈[0,ℓ)

Ñ(t) ≤ h

)
.

From a reflection argument, since Ñ is upwards-biased,

Pr

(
inf
t∈[0,ℓ)

Ñ(t) ≤ h

)
= Pr

(
inf
t∈[0,ℓ)

Ñ(t) ≤ h, Ñ(ℓ) < h

)
+ Pr

(
inf
t∈[0,ℓ)

Ñ(t) ≤ h, Ñ(ℓ) ≥ h

)
≥ 2Pr

(
inf
t∈[0,ℓ)

Ñ(t) ≤ h, Ñ(ℓ) < h

)
= 2Pr

(
Ñ(ℓ) < h

)
.

Let σ ≜
√
ℓ(2kλ− µj). We now apply Now, assume that, for any x,∣∣∣Pr(Ñ(ℓ) < Ñ(0) + µjℓ+ xσ

)
− Φ(x)

∣∣∣ ≤ 0.3328

σ
, (A.8)

we have

Pr
(
Ñ(ℓ) < h

)
= Pr

(
Ñ(ℓ) < Ñ(0) + µjℓ+

h− µjℓ− Ñ(0)

σ
· σ

)

≥ Φ

(
h− µjℓ− Ñ(0)

σ

)
− 1

3σ

= Φ

(
− [N(τ)− h+ µjℓ]

σ

)
− 1

3σ
.
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Putting this all together, we find

Pr (dgen < ℓ|Fτ ) ≥ 2Φ

(
− [N(τ)− h+ µjℓ]

σ

)
− 2

3σ
.

From here, then, it suffices to show (A.8). To begin, note that, if we choose some arbitrarily
large n and define

Xi ≜ Π′
i

(
kλℓ

n

)
− Π′′

i

(
µ(R− j)ℓ

n

)
− µjℓ

n
,

where each Π(y) is an independent Poisson random variable with mean y, then

Ñ(ℓ) =d

n∑
i=1

Xi + µjℓ+ Ñ(0).

To compute the moments of Xi, note that one can define centered Poisson random variables
Ai = Π

(
kλℓ
n

)
− kλℓ

n
and Bi = Π

(
µ(R−j)ℓ

n

)
− µ(R−j)ℓ

n
, and then take Xi = Ai − Bi. Doing this,

one finds that

E
[
X2
i

]
= E

[
(Ai −Bi)

2
]
=
kλℓ

n
+
µ(R− j)ℓ

n
=
µ(2R− j)ℓ

n

and, using the triangle inequality, that

E
[
|Xi|3

]
= E

[
|Ai −Bi|3

]
≤ E

[
|Ai|3

]
+ E

[∣∣B3
i

∣∣] = µ(2R− j)ℓ

n
+ o

(
1

n2

)
.

We now apply the main result of [35]. Let σn ≜
√

E [X2
i ] =

√
µ(2R−j)ℓ

n
= σ√

n
and note that

ρn = E
[
|Xi|3

]
< σn + o

(
1
n2

)
(from [5]). Then, noting that ρn ≥ 1.286σ3

n for sufficiently large
n, we have

max
x

∣∣∣∣Pr(∑Xi√
nσn

< x

)
− Φ(x)

∣∣∣∣ ≤ 0.3328ρn + 0.429σ3
n

σ3
n

√
n

=
0.3328√
µ(2R− j)ℓ

+ o

(
1

n

)
.

Now noting that ∑n
i=1Xi√
nσ

=
Ñ(ℓ)− Ñ(0)− µjℓ

σ

and taking n→ ∞, we have our result. □

A.2.5 Proof of Claim A.4: Bound on Expected Value After Coupling.
Claim A.4 (Bound on Expected Value after Coupling.). Let τ be some stopping time and dgen be
the next down-crossing as described in Section A.2.2. Suppose that we have a lower bound on the
number of busy servers Z(t) over some length ℓ interval starting at time τ , i.e. the busy servers
Z(t) ≥ R− j, for all t ∈ [τ, τ +min (ℓ, dgen)] and for some non-negative j. Then, bounding the
first moment,

E
[
[N (τ + ℓ)− h]1dgen>ℓ

∣∣Fτ

]
≤ [N(τ)− h] + µjℓ, (A.9)

and, bounding the second moment,

E
[
[N (τ + ℓ)− h]1dgen≥ℓ

]
≤ [N(τ)− h+ µjℓ]2 + 2µRℓ. (A.10)
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Proof.

The proof is essentially an application of Doob’s Optional Stopping Theorem to an appropriately
selected martingale. To begin, we define a coupled process Ñ(t) with

Ñ(t− τ) ≜ N(τ) + A[τ, t]−D [R− j] ([τ, t]) ;

by Claim A.1, we know that Ñ(t − τ) ≥ N(t) for any t ∈ [τ, τ +min (dgen, ℓ)], and that the

coupled hitting time ˜dgen ≜ min
{
t > 0 : Ñ(t) ≤ h

}
can not be smaller than the original hitting

time dgen. It follows that
N (τ + ℓ)1dgen>ℓ ≤ Ñ (ℓ)1 ˜dgen>ℓ

.

Thus, we bound coupled versions of (A.9) and (A.10).

Construction of martingales. We now construct our martingales and set up the language of
optional stopping. Note that, for any process Ñ(t) with independent, stationary increments, both
functions V1 and V2, defined as

V1(t) ≜
[
Ñ(t)− h

]
− E

[
Ñ(t)− Ñ(0)

]
and

V2(t) ≜
[
Ñ(t)− h− E

[
Ñ(t)− Ñ(0)

]]2
− E

[[
Ñ(t)− h− E

[
Ñ(t)− Ñ(0)

]]2]
=
(
Ñ(t)− h− µjt

)2
− µ (2R− j) t

are martingales [23]. Moreover, one has that[
Ñ(ℓ)− h

]
1 ˜dgen>ℓ

=
[
Ñ
(
min

(
˜dgen, ℓ

))
− h
]
1 ˜dgen>ℓ

=
[
Ñ
(
min

(
˜dgen, ℓ

))
− h
]
1 ˜dgen>ℓ

+
[
Ñ
(
min

(
˜dgen, ℓ

))
− h
]
1ℓ≤ ˜dgen

=
[
Ñ
(
min

(
˜dgen, ℓ

))
− h
]
.

Proof of (A.9). Combining these facts allows us to prove our desired result. Applying Doob’s
Optional Stopping Theorem along with our previous deductions, we obtain

E
[
[N (τ + ℓ)− h]1dgen>ℓ

∣∣Fτ

]
≤ E

[[
Ñ (ℓ)− h

]
1 ˜dgen>ℓ

]
= E

[
Ñ
(
min

(
˜dgen, ℓ

))
− h
]

= E
[
V1

(
min

(
˜dgen, ℓ

))]
+ µjE

[
min

(
˜dgen, ℓ

)]
= E [V1 (0)] + µjE

[
min

(
˜dgen, ℓ

)]
=
[
Ñ(0)− h

]
+ µjE

[
min

(
˜dgen, ℓ

)]
≤
[
Ñ(0)− h

]
+ µjℓ

= [N(τ)− h] + µjℓ.
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Proof of (A.10). To do the same for the squared martingale V2(t), we must first note, via some
algebra, that (

Ñ(t)− h
)2

= V2(t) +
(
Ñ(t)− h

)
µjt− µj2t2 + µ (2R− j) t.

Now, applying the same deductions we made previously,

E
[
[N (τ + ℓ)− h]1dgen>ℓ

∣∣Fτ

]
≤ E

[[
Ñ (ℓ)− h

]2
1 ˜dgen>ℓ

]
= E

[(
Ñ
(
min

(
˜dgen, ℓ

))
− h
)2]

= E
[
V2

(
min

(
˜dgen, ℓ

))]
+ E

[(
Ñ(min

(
˜dgen, ℓ

)
)− h

)
µjmin

(
˜dgen, ℓ

)]
− µj2

(
min

(
˜dgen, ℓ

))2
+ µ (2R− j)E

[
min

(
˜dgen, ℓ

)]
≤ E

[
V2

(
min

(
˜dgen, ℓ

))]
+ E

[(
Ñ(min

(
˜dgen, ℓ

)
)− h

)]
µjℓ+ µ (2R) ℓ

≤ E [V2 (0)] +
[
Ñ(0)− h+ µjℓ

]
µjℓ+ µ (2R) ℓ

=
[
Ñ(0)− h

]2
+
[
Ñ(0)− h

]
µjℓ+ (µjℓ)2 + µ (2R) ℓ

=
[
Ñ(0)− h+ µjℓ

]2
−
[
Ñ(0)− h

]
µjℓ+ µ2Rℓ

≤
[
Ñ(0)− h+ µjℓ

]2
+ 2µRℓ

= [N(τ)− h+ µjℓ]2 + 2µRℓ.

A.3 Hitting Time Bounds.

A.3.1 Proof of Claim A.5, Discrete-Time Hitting Time Tail Bound.
Claim A.5 (Discrete-Time Hitting Time Tail Bound). Suppose one has an upwards-biased dis-
crete random walk V (t) where in each step

Pr (V (t+ 1) = V (t) + 1|Ft) = p = 1− q,

where p ≥ 1
2
≥ q. Suppose that V (0) = 1 and let the hitting time γ ≜ min {t ∈ N : V (t) = 0}

be the first timestep where the walk V (t) = 0. Then, for n ≥ 1,

Pr (γ ≥ 2m+ 1) ≤ 1√
π

2q√
m

(
1 +

1

2(m+ 1)

)
.

Moreover, if p = q = 1
2
, then

Pr (γ ≥ 2m+ 1) ≥ 1√
π
e−

1
6m

1√
m+ 1

.
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Proof

We first note, as in [38], that by a counting argument Pr (γ = 2ℓ+ 1) = q (qp)ℓCℓ, where Cℓ ≜
1
ℓ+1

(2ℓ)!
ℓ!ℓ!

is the ℓ-th Catalan number; note that γ can not be even, since the number of downward
steps must exceed the number of upward steps by exactly 1.

We proceed by bounding the Catalan numbers using Stirling’s approximation. For m = 0,
then Pr (γ ≥ 1) = Pr (γ ≥ 2) = p, i.e. the probability that the first step is an upward step. For
m ≥ 1, applying Stirling’s approximation and simplifying gives

e−
1
6ℓ

1√
πℓ(ℓ+ 1)

q (4pq)ℓ ≤ Pr (γ = 2ℓ+ 1) ≤ 1√
πℓ(ℓ+ 1)

q (4pq)ℓ .

Lower bound. Since we are interested in the lower bound only when q = p = 1
2
, we obtain

that

Pr (γ ≥ 2m+ 1) ≥ 1√
pi

1

2

∞∑
ℓ=m

e−
1
6ℓ

√
ℓ(ℓ+ 1)

≥ 1√
π
e−

1
6m

1

2

∞∑
ℓ=m

1√
ℓ(ℓ+ 1)

≥ 1√
π
e−

1
6m

1

2

∫ ∞

m

1

(ℓ+ 1)3/2
dℓ

=
1√
π
e−

1
6m

1√
m+ 1

.

Upper bound. Noting that 4pq ≤ 1, we have likewise that

Pr (γ ≥ 2m+ 1) ≤ 1√
π
q

∞∑
ℓ=m

1√
ℓ(ℓ+ 1)

≤ 1√
π
q

1√
m(m+ 1)

+

∫ ∞

m

1

ℓ3/2
dℓ

=
1√
π
q

2√
m

(
1 +

1

2(m+ 1)

)
.

A.3.2 Proof of Claim A.6, Continuous-Time Hitting Time Tail Bound.
We further extend this discrete-time bound into a continuous-time bound.
Claim A.6 (Continuous-Time Hitting Time Tail Bound). Suppose one has an Poisson arrival
process YA(t) of rate kλ and a Poisson departure process YD(t) of rate µ(R − j), for some
integer j ≥ 0. Let the continuous random walk Xc(t) = YA(t) − YD(t), with Xc(0) = 1, and
define γc ≜ min {t > 0 : Xc(t) = 0}. Let ν = (2R− j)µt. For any ν ≥ 3, we have

Pr (γc ≥ t) ≤ b1√
2

(
1√
ν
+

b2
ν3/2

)
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where b1 =
√

2
π

and b2 = 1 + 2.5
b1
√
2
.

Moreover, if j = 0, then

Pr (γc ≥ t) ≥ b1√
2
e−

1
3(ν−1)

1√
ν + 2

.

Proof of Upper Bound.

To prove this claim, we first condition on the value of YT = YA(t) + YD(t), the total number of
Poisson events during the interval [0, t], then relate that to the same question in a discrete-time
random walk, a la Claim A.5. Note that YT ∼ Poisson(ν), and thus

Pr (γc ≥ t) = Pr (γ ≥ YT )

=
∞∑
j=0

e−ν
νj

j!
Pr (γ ≥ j)

= e−ν + 2pνe−ν +
∞∑
j=3

e−ν
νj

j!
Pr (γ ≥ j + 1j is even)

= e−ν + 2pνe−ν +
∞∑
j=0

e−ν
νj

j!
Pr

(
γ ≥ 2

(
j + 1j is even − 1

2

)
+ 1

)
.

Applying the discrete upper bound to the sum, we obtain

∞∑
j=3

e−ν
νj

j!
Pr

(
γ ≥ 2

(
j + 1j is even − 1

2

)
+ 1

)

≤ b1
√
2q

∞∑
j=3

e−ν
νj

j!

1√
j + 1j is even − 1

(
1 +

1

(j + 1j is even + 1)

)

= b1
√
2q

1

ν

∞∑
j=3

e−ν
ν(j+1)

(j + 1)!

1√
j + 1j is even − 1

(
j + 1 +

j + 1

j + 1j is even + 1

)

≤ b1
√
2q

1

ν

∞∑
j=3

e−ν
ν(j+1)

(j + 1)!

j + 2√
j + 1j is even − 1

≤ b1
√
2q

1

ν

∞∑
j=3

e−ν
ν(j+1)

(j + 1)!

j + 1j is even − 1 + 3√
j + 1j is even − 1

= b1
√
2q

1

ν

∞∑
j=3

e−ν
ν(j+1)

(j + 1)!

(√
j + 1j is even − 1 +

3√
j + 1j is even − 1

)
.
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From here, we note that the function f(x) =
√
x + 3√

x
is both increasing and concave for all

x ≥ 3. After increasing the argument and applying Jensen’s inequality, we find that

≤ b1
√
2q

1

ν

∞∑
j=3

e−ν
ν(j+1)

(j + 1)!

(√
j + 1 +

3√
j + 1

)
≤ b1

√
2q

1

ν

(√
ν +

3√
ν

)
,

where in the final line we have used that the function f(x) is increasing in x for any x ≥ 3, and
that E [YT1YT≥4] ≥ ν − 3 ≥ 3. Thus, we have that

Pr (γc ≥ t) ≤ (3ν) e−ν + 2q

√
2

π

(
1√
ν
+

1

ν3/2

)
≤ 2.5

ν3/2
+ 2q

√
2

π

(
1√
ν
+

1

ν3/2

)

Proof of Lower Bound.

We approach the initial stages of the proof in the precisely the same way, obtaining

Pr (γc ≥ t) = Pr (γ ≥ YT )

= e−ν + 2pνe−ν +
∞∑
j=3

e−ν
νj

j!
Pr

(
γ ≥ 2

(
j + 1j is even − 1

2

)
+ 1

)

≥
∞∑
j=3

e−ν
νj

j!
b1e

− 1
3(j+1j is even−1)

q
√
2√

(j + 1j is even + 1)

≥
∞∑
j=3

e−ν
νj

j!
b1e

− 1
3(j−1)

q
√
2√

(j + 2)
.

Applying Jensen’s inequality, we obtain

≥ b1q
√
2e−

1
3(ν−1)

1√
ν + 2

.

□

A.3.3 Proof of Claim A.7, Bound on Expected Length of Stopped Random
Walk.

Claim A.7 (Bound on Expected Length of Stopped Random Walk). Suppose we have a critically
loaded M/M/1 queue with arrival rate and departure rate both equal to kλ, with offered load
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R > 100 and setup time β > 100. Suppose also that at time 0, a job arrives. Let τ be the length
of the busy period which follows. Then,

E [min (β, τ)] ≤ b1

√
β√
µR

+
6

µR
.

Proof.

From Claim A.6, the continuous-time random walk hitting time bound, we have that

Pr (τ ≥ t) ≤ b1√
2

(
1√
ν
+

b2
ν3/2

)
, (A.11)

where ν = 2µRt and we require that ν ≥ 3. By integrating this bound (using a bound of 1
wherever this bound doesn’t apply), we obtain

E [min (β, τ)] =

∫ β

0

Pr (τ > t) dt ≤ 3

2µR
+

∫ β

3
2µR

b1√
2

(
1√
2µRt

+
b2

(2µR)3/2

)
dt

≤ 3

2µR
+ b1

√
β√
µR

+
b1b2
4µR

[
2

√
2

3

]
≤ b1

√
β√
µR

+
6

µR
.□

A.3.4 Proof of Claim A.8, Bound on the Expected Hitting Time in the
M/M/∞.

Claim A.8 (M/M/∞ Passage Time Bound). Given an M/M/∞ queue, let Tx→y denote the random
amount of time taken to go from state x to state y. Suppose this system has an arrival rate of kλ
and a per-server departure rate of µ. Let R ≜ k λ

µ
. Then, for any h such that 1 ≤ h ≤

√
R,

E
[
T(R+h−1)→(R+h)

]
≤

√
2π

µ
√
R

(
1 +

h

R

)h− 1
2

e
1

12R ≤ D2

√
π

µ
√
R
.

Proof.

The proof here is quite simple. First, we note that the passage time in the M/M/∞ from state
(R + h − 1) to state (R + h) is exactly the passage time from those states in the M/M/(R +
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h)/(R + h). This new system has a nice product form, so that

E
[
T(R+h−1)→(R+h)

]
≤ E

[
T(R+h)→(R+h)

]
=

1

µ(R + h)

1

πR+h

=
1

µ(R + h)

∑R+h
i=0

Ri

i!
RR+h

(R+h)!

≤ 1

µ(R + h)
eR

(R + h)!

RR+h

≤ 1

µ(R + h)
eR
e

1
12(R+h)

√
2π(R + h)(R + h)R+he−(R+h)

RR+h

≤ e
1

12R
1

µ

1

µ
√
R + h

√
2π

(
1 +

h

R

)R+h

e−h

≤
√
2π

µ
√
R

(
1 +

h

R

)h− 1
2

e
1

12R

≤ 1

µ

√
2π√
R
e
h2

R e
1

12R

≤ 7

µ
√
R
,

where we have made extensive use of Stirling’s approximation and the bound (1 + x) ≤ ex.

A.4 Helper Claims.

A.4.1 Proof of Claim A.9, the Busy Period Integral Bound.
Claim A.9 (Busy Period Integral Bound). Suppose that, at time τ , we can guarantee thatN(τ) ≥
Z(τ) ≥ R+j. Let ηi ≜ min {t > 0 : N(t) ≤ R + i}, for i ∈ {j, j + 1, . . . , [N(τ)−R]} . Then,

E
[∫ ηj

τ

[N(t)−R]dt
∣∣∣∣Fτ

]
≤ (N(τ)− (R + j))

[
3

2µj
+

1

µ
+

R

µj2

]
+
(N(τ)− (R + j))2

2µj
≜ Ibusy ([N(τ)−R], j) .

Proof. We prove this claim via an appeal to conventional M/M/1 busy period analysis. In partic-
ular, we first note that

∫ ηj

τ

[N(t)−R] dt =
N(τ)−R∑
i=j+1

∫ ηi−1

ηi

[N(t)−R] dt,

meaning we need only bound the integrals between the ηi’s. To bound that process, we define a
coupled process Ñ(t) and bound the integrals over that process.
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To do so, note that, until time ηj , the number of busy servers Z(t) ≥ R + j. By Claim A.1,
we can define, for each index i, the i-th coupled process Ñi(t) as

Ñi(t) = N(ηi+1) + A(ηi+1, t)−D [R + j] ([ηi+1, t)) ,

and have Ñ(t) ≥ N(t) on the interval [ηi+1, ηi]. Furthermore, we can extend our integral of inter-
est from the interval [ηi+1, ηi) to the interval [ηi+1, η̃i), where η̃i ≜ min {t > 0 : N(t) ≤ R + i}.
Now, we note that

E
[∫ η̃i

ηi+1

[
Ñi(t)−R

]
dt
∣∣∣∣Fτ

]
= E

[∫ η̃i

ηi+1

[
Ñi(t)− (R + i)

]
dt
∣∣∣∣Fτ

]
+ iE [ηi+1 − η̃i|Fτ ] .

The first term on the right is simply the expected time integral of the number of jobs in an
M/M/1 queue over a busy period, with arrival rate kλ and departure rate µ(R + j). The second
term is simply the quantity i multipled by the expected length of that M/M/1 busy period. Let
ρj =

kλ
µ(R+j)

. Then, from standard results on the M/M/1 busy period,

E
[∫ η̃i

ηi+1

[
Ñi(t)− (R + i)

]
dt
∣∣∣∣Fτ

]
=

1

µj

[
1

1− ρj

]
=

1

µj

[
R

j
+ 1

]
=

1

µj
+

R

µj2
.

Summing over all values of i, we obtain

E
[∫ ηj

τ

[N(t)−R] dt
∣∣∣∣Fτ

]
≤

N(τ)−R∑
i=j+1

E
[∫ η̃i−1

ηi

[
Ñi(t)−R

]
dt
∣∣∣∣Fτ

]

=

N(τ)−R∑
i=j+1

[
1

µj
+

R

µj2

]
+ i

1

µj

= (N(τ)− (R + j))

[
1

µj
+

R

µj2

]
+ (N(τ)− (R + j))

1

µ
+

1

µj

[
(N(τ)− (R + j)) (N(τ)− (R + j) + 1)

2

]
= (N(τ)− (R + j))

[
3

2µj
+

1

µ
+

R

µj2

]
+

(N(τ)− (R + j))2

2µj
,

as desired. □

A.4.2 Proof of Claim 6.10, the Wait Busy Claim.
Claim 6.10 (Wait Busy Claim). Let τ be some stopping time, let the number of jobsN(τ) = R+
h, and define ns (h) ≜ min {h, k(1− ρ)}. Let the down-crossing dgen ≜ min {t > 0 : N(τ + t) = R + h− 1} .
If Z(τ) ≥ R, then

E
[∫ τ+dgen

τ

[N(t)− (R + h− 1)]dt
∣∣∣∣Fτ

]
≤ YR+ns(h)(τ)+g

(
1 + 2µRE

[
min

(
YR+ns(h)(τ), dgen

)]
, 1, µns (h)

)
,

(6.7)
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where the function g(x, y, z) ≜ x 1
2µz

+ y
[
R
µz2

+ 3
2µz

]
.

Furthermore,

E

[∫ v
(down)
1

TA

[N(t)−R]dt

∣∣∣∣∣FTA

]
≤
[
β +

1

µ

] [
E [N (TA)−R] +

R

MB

]
+

2

µ
ln

(
E [N (TA)−R]

MB

)
(6.8)

+ g
(
E
[
[N (TA)−R]2

]
+ 2E [N (TA)−R] ,E [N (TA)−R] , k(1− ρ)

)
.

Proof of (6.7).

We prove the two parts of Claim 6.10 separately; we first show (6.7) by applying coupling,
martingales, and busy period analysis. First, note that, if the down-crossing at τ + dgen does not
occur by time YR+ns(h)(τ), then the system must have at least (R+ ns (h)) servers at its disposal
afterwards. (Note that the ns (·) function here is just to account for the case where you have more
jobs than servers.) Accordingly, we split our analysis into two parts.

First portion. For the first portion, since the number of busy servers Z(t) ≥ R, by coupling
our system to a critically-loaded M/M/1 using Claim A.2, we have

E

[∫ τ+min(dgen,YR+ns(h)(τ))

τ

[N(t)− (R + h− 1)] dt

∣∣∣∣∣Fτ

]
≤ YR+ns(h)(τ).

Second portion. For the second portion, since, at that point the number of busy servers Z(t) ≥
R + ns (h), we can apply a stronger bound. In particular, at time

(
τ + YR+ns(h) (τ)

)
, we can

couple to an accordingly-stronger M/M/1 with the same number of jobs. From basic busy period
analysis and Claim A.1, this tells us that, letting the adjusted number of jobs Nadj (t) ≜ N(τ +

t)− (R + h− 1) and the important remaining setup time Yimp ≜ YR+ns(h) (τ) as a shorthand,

E

[
1Yimp<dgen

∫ dgen

Yimp

[Nadj (t)] dt

∣∣∣∣∣Fτ+Yimp

]
≤ 1Yimp<dgeng

(
Nadj (Yimp)

2 , Nadj (Yimp) , ns (h)
)
,

since the function g(x2, x, z) describes the integral of the number of jobs over a busy period
started by x jobs in an M/M/1 with arrival rate kλ and departure rate µ (R + z). Note that
1Yimp<dgen [N(τ + Yimp)− (R + h− 1)] = [N(τ +min (dgen, Yimp))− (R + h− 1)], sinceN(τ+

dgen) = R + h− 1 by definition. Coupling our system to the critically-loaded M/M/1 Ñ system
as before, then taking expectations and applying Doob’s Optional Stopping Theorem, we obtain,
as desired,

E

[
1YR+ns(h)(τ)<dgen

∫ dgen

YR+ns(h)(τ)

Nadj (t) dt

∣∣∣∣∣Fτ+YR+ns(h)(τ)

]
≤ g

(
1 + 2µRE

[
min

(
YR+ns(h) (τ) , dgen

)]
, 1, ns (h)

)
.

Combining these two terms, we obtain (6.7).
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Proof of (6.8)

. We now apply (6.7) to prove (6.8).

Decomposition in terms of ηi’s. We first fix the filtration/state at the accumulation time TA,
then define the hitting times ηi ≜ min {t > TA : N(t) ≤ R + i} for a set number of jobs i ∈
[MB, N(TA)]; we accordingly omit the filtration at time TA in our expectations. Note that the
down-crossing v(down)

1 = ηMB
, by this definition. From there, it’s clear that∫ v

(down)
1

TA

[N(t)−R]dt =
N(TA)−R−1∑

i=MB

∫ ηi

ηi+1

[N(t)−R] dt.

For each of these terms, we can separate [N(t) − R] = [N(t) − (R + i)] + i and apply (6.7) to
find

E
[∫

ηi+1

ηi[N(t)−R]

]
≤ E

[
YR+ns(h)(ηi+1)

]
+ iE

[
min

(
YR+ns(i+1) (ηi+1) , ηi − ηi+1

)]
(A.12)

+ g
([
1 + 2µRE

[
min

(
YR+ns(i+1) (ηi+1) , (ηi − ηi+1)

)]]
, 1, µns (i+ 1)

)
(A.13)

+ i · 1

µns (i+ 1)
. (A.14)

We analyze each of these terms separately.

Bound on (A.12), the remaining setup time portion. From here, it suffices to note that the
sum

N(TA)−R∑
i=1

imin
(
YR+ns(h) (τ) , ηi − ηi+1

)
+

N(TA)−R∑
i=1

E
[
YR+ns(i+1) (ηi+1)

]
≤ β [N(TA)−R] ;

(A.15)
actually, the statement is true without expectations. To see this, we make an interchange of sum-
mation argument. First note that, if the (R+i)-th server becomes busy, then, by the monotonicity
of server states, all servers of index smaller than (R + i) must also be busy; in other words, the
remaining setup time YR+ns(i+1) (ηi+1) = 0 for all i < s. To use this, we let s be the largest index
for which YR+ns(s)(ηs) < (ηs−1 − ηs). Note also that ηi is the first time after TA that the number
of jobs N(t) ≤ R+ i (and so must have been continuously decreasing from time TA); it follows
that the remaining setup time YR+ns(i)(ηi) ≤ [β − (ηi − TA)]

+. Breaking things down further,

N(TA)−R∑
i=s

imin
(
YR+ns(i+1) (ηi+1) , (ηi − ηi+1)

)
=

N(TA)−R∑
i=s

i (ηi − ηi+1) + sYR+ns(s)(ηs).

From here, by an interchange of summation argument,
N(TA)−R∑

i=s

i (ηi − ηi+1) =

N(TA)−R∑
i=s

i∑
j=1

(ηi − ηi+1) =

N(TA)−R∑
j=s

N(TA)−R∑
i=j

(ηi − ηi+1) =

N(TA)−R∑
j=1

ηs − TA,
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where, by definition, the (relative to TA) hitting time (ηs − TA) ≤ β − YR+ns(s)(ηs); using
this,(A.15) follows.

Bound on (A.13), the busy period integral portion. Applying similar reason to the sum of
the first terms in g, and using the independence of g in its first and second arguments (i.e. that
g(x, y, z) = f1(x, z) + f2(y, z) for two functions f1 and f2 linear in their first argument),

N(TA)−R∑
i=MB

(A.13) ≤ g (2µRβ, 0,MB)+g
(
[N (TA)− k]+ , [N (TA)− k]+ , k(1− ρ)

)
+

min(N(TA)−R−1,k(1−ρ))∑
i=MB

g(1, 1, i+ 1).

This last term above can be bounded by replacing it with an integral, which gives

min(N(TA)−R,k(1−ρ))∑
i=MB

g(1, 1, i) ≤
∫ min(N(TA)−R,k(1−ρ))

MB

2

µi
+

R

µi2
di

≤ 2

µ
ln

(
min (N (TA)−R, k(1− ρ))

MB

)
+
R

µ

[
1

MB

]
≤ 2

µ
ln

(
N (TA)−R

MB

)
+

R

µMB

.

Bound on (A.14), the busy period length portion. Using the definition of the function
g, we also find that

∑N(TA)−R
i=MB

i
µns(i) ≤ g

((
[N (TA)− k]+

)2
+ [N (TA)− k]+ , 0, k(1− ρ)

)
+

1
µ
min (k(1− ρ), N(TA)−R, .)

Combining the terms to bound (6.8), the integral from TA to v
(down)
1 . Combining terms,

noting that N(TA) − k ≥ N (TA) − R ≥ 0, and applying Jensen’s inequality to the ln (·) term,
we find that

(6.8) ≤ βE [N(TA)−R] + g (2µRβ, 0,MB) + E
[
g
(
[N (TA)− k]+ , [N (TA)− k]+ , k(1− ρ)

)]
+ E

[
2

µ
ln

(
N (TA)−R

MB

)]
+

1

µ

R

MB

+ E
[
g
((

[N (TA)− k]+
)2

+ [N (TA)− k]+ , 0, k(1− ρ)
)]

+
1

µ
E [min (k(1− ρ), N(TA)−R)]

≤
[
β +

1

µ

] [
E [N (TA)−R] +

R

MB

]
+

2

µ
ln

(
E [N (TA)−R]

MB

)
+ g

(
E
[
[N (TA)−R]2

]
+ 2E [N (TA)−R] ,E [N (TA)−R] , k(1− ρ)

)
.□

A.4.3 Proof of Claim 6.3

We now prove Claim 6.3, restated here.
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Claim 6.3 (Bound on the Probability of an Up-crossing p(j)rise). Let p(j)rise be the probability that the
total number of jobs N(t) exceeds R + C3

√
µβR during epoch j defined in (6.1). Then, for any

epoch j ≥ A5

√
R, we have p(j)rise ≥ 0.99 A5√

R
.

We show a more general claim: that, for j ≥ A5

√
R,

p
(j)
rise ≥ 0.99

j

R
. (A.16)

Proof of (A.16): Lower Bound on p(j)rise.

We begin with a simple probability manipulation:

p
(j)
rise ≜ Pr

(
N(t) ≥ C3

√
µβR at some point during epoch j

∣∣∣Fτj

)
≥ Pr

(
N(t) ≥ C3

√
µβR during the interval [τj,min (τj + β, τj+1)]

∣∣∣Fτj

)
.

From here, we make with a useful observation: since there are no server in setup at the beginning
of an epoch (as we have just turned off a server), no servers can complete setup in the first β time
of an epoch. Thus, the number of busy servers Z(t) ≤ R−j during this time, and, by Claim A.1,
the coupled process

Ñ(t) ≜ N(τj) + A(τj, t)−D [R− j] ((τj, t))

must be a lower bound on N(t), during the interval [τj, τj + β]. Moreover, the number of busy
servers Z(t) can not be smaller than R − j until the beginning of epoch j + 1 either. Thus, we
find that the behavior of N(t) corresponds exactly with the behavior of Ñ(t) during the interval
[τj,min (τj+1, τj + β)].

We now use this coupled process to analyze our original probability. Define the up-crossing
time τup as

τup ≜ min
{
t > 0 : Ñ(τj + t) ≥ R + C3

√
µβR

}
.

Likewise, define the down-crossing time τdown as

τdown ≜ min
{
t > 0 : Ñ(τj + t) ≤ R− (j + 1)

}
.

It follows that

Pr
(
reach N(t) ≤ R− (j + 1) during the interval [τj,min (τj + β, τj+1)]

∣∣Fτj

)
= Pr

(
reach Ñ(t− τj) ≤ R− (j + 1) during the interval [τj,min (τj + β, τj+1)]

∣∣∣Fτj

)
= Pr (τup ≤ β, τup < τdown)

= Pr (τup ≤ β)− Pr (τup ≤ β, τup ≥ τdown)

= Pr (τup ≤ β)− Pr (τup ≤ β|τup ≥ τdown) Pr (τup ≥ τdown) .

We now observe that
Pr (τup ≤ β|τup ≥ τdown) ≤ Pr (τup ≤ β) , (A.17)
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since the process has farther to go, less time to do so, and the process’s behavior is translation-
invariant (this last point is why we needed to analyze the coupled process instead).

Continuing from where we left off, we find that

p
(j)
rise = Pr (τup ≤ β)− Pr (τup ≤ β|τup ≥ τdown) Pr (τup ≥ τdown)

≥ Pr (τup ≤ β)− Pr (τup ≤ β) Pr (τup ≥ τdown)

= Pr (τdown > τup) Pr (τup ≤ β)

≥ Pr (τdown >∞) Pr (τup ≤ β)

=
j

R
Pr (τup ≤ β) ,

where the last equality is a classical result on upwards-biased discrete random walks (one can
think of Ñ as a discrete random walk driven by a Poisson process of rate (kλ+ µ(R− j), where
the probability that Ñ increases at a Poisson event is kλ

kλ+µ(R−j) =
R

2R−j ).
From here, it suffices to lower bound Pr (τup ≤ β). To begin, note

Pr (τup ≤ β) = Pr

(
sup
t∈[0,β)

Ñ(t) ≥ R + C3

√
µβR

)
≥ Pr

(
Ñ(β) ≥ R + C3

√
µβR

)
= Pr

(
A(τj, τj + β)−D [R− j] (τj, τj + β) ≥ j + C3

√
µβR

)
.

Noting that the number of arrivalsA(τj, τj+β) and the number of departures D [R− j] ([τj, τj + β])
are independent Poisson r.v.’s, we can apply the Berry-Esseen bound of Claim A.10 to find

= 1− Φ

(
µβj − j − C3

√
µβR√

µβ(2R− j)

)
− 1

3
√
µβ(2R− j)

≥ 1− Φ

(
0.99µβj − C3

√
µβR√

2µβR

)
− 1

3
√
µβR

= 1− Φ

(
−0.99

j√
R

√
µβ +

C3√
2

)
− 1

3
√
µβR

≥ 1− Φ

(
−9.9A5 +

C3√
2

)
− 1

300
.

To complete the proof, we set the constant A5 such that the final probability is ≥ 0.99. In
particular, we need

Φ

(
−9.9A5 +

C3√
2

)
≤ 2

300
,

which is achieved when A5 >
C3

9.9
√
2
+ 0.25; choosing A5 = 1 gives the result. □

79



A.4.4 Proof of Claim A.10.
Claim A.10 (Berry-Esseen bound for the Skellam distribution). Given two independent random
variables Y1 ∼ Poisson(µ1) and Y2 ∼ Poisson(µ2), as well as a constant C with µ1 > µ2 + C,
one has

Pr (Y1 − Y2 ≥ C) ≥ 1− Φ

(
−
[
µ1 − µ2 − C

µ1 + µ2

])
− 1

3
√
µ1 + µ2

.

A.4.5 Proof.
This follows directly from the Poisson Berry-Esseen bound of [5], applied twice; first approxi-
mating Y1 then approximating Y2. □

A.4.6 Proof of (5.3): Lower Bound on E [L], Expected Value of First Long
Epoch Index.

We prove this result by first showing that

Pr (L > j|L ≥ j) ≥
(
1− j

R

)(
1− b1√

µβR

)
, (A.18)

where b1 = 2√
π

. Next, we show that this implies that for any δ ∈ (0, 1) and any j < δR,

Pr (L > j) ≥
(
1− b1√

µβR

)j+1

e−
j(j+1)

2R
1

1−δ . (A.19)

From here, we use the sum of tails formula E [L] =
∑∞

j=0 Pr (L > j) to show

E [L] ≥
(
1− b1√

µβR

)([√
π

2
(1− δ)− 1.15(1− δ)√

µβ

]√
R− 1

2
− 2(1− δ)

δ
e−R

δ2

1−δ

)
.

Choosing δ = 2√
R

then noting that µβ ≥ 100 and R ≥ 100 gives the result.

Proof of (A.18): Lower Bound on Probabililty that Current Epoch is Short.

Recall that an epoch j is long if τj+1−τj > β, that L is the index of the first long epoch, and that,
if L ≥ j, then we learn that L ≥ j precisely at time τj , i.e. when epoch j begins. Moreover, since
the system is Markovian, the behavior of the system from τj onwards is completely independent
of what happened previously. Thus,

Pr (L > j|L ≥ j) = Pr
(
L > j

∣∣Fτj , L ≥ j
)
= Pr

(
τj+1 − τj ≤ β

∣∣Fτj , L ≥ j
)
= Pr (τj+1 − τj ≤ β) .

From here, we note that the random time τj+1 − τj is a stopping time; a hitting time, to be exact.
Moreover, since the number of servers Z(t) can not increase before time τj + β and can not
decrease until τj+1, we have that the coupled process Ñ(t) defined as

Ñ(t− τj) ≜ 1 + A(τj, t)−D [R− j] ((τj, t))
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is in correspondence with N(t); in particular,

N(t) = Ñ(t− τj) +R− j − 1

for any time t ∈ [τj,min (τj + β, τj+1)]. If we define the coupled hitting time γc ≜ min
{
t > 0 : Ñ(t) ≤ 0

}
,

then we also have that the hitting time γc = τj+1 − τj , whenever the event {τj+1 − τj ≤ β} oc-
curs. From here, we can apply Claim A.6 to find that

Pr (γc ≤ β) ≥
(
1− j

R

)(
1− b1√

µβR

)
, as desired.

Proof of (A.19).

Having shown the above bound on the conditional extension of the tail, we note that, for j ≤ δR,

Pr (L ≥ j + 1) = Pr (L ≥ j + 1|L ≥ j) Pr (L ≥ j|L ≥ j − 1) · · ·Pr (L ≥ 1)

≥
j∏
i=0

(
1− i

R

)(
1− b1√

µβR

)

≥
(
1− b1√

µβR

)j+1 j∏
i=0

e−
i

R−i

≥
(
1− b1√

µβR

)j+1

e−
∑j
i=0

i
R−i

=

(
1− b1√

µβR

)j+1

e−
∑j
i=0

i
R

R
R−j

=

(
1− b1√

µβR

)j+1

e−
j(j+1)

2R
1

1−δ ,

as desired. □

Proof of (A.4.6): Final Bound on E [L] using Gaussian Integral.

We now complete the proof. Let a ≜ 1
2R

1
1−δ and ψ ≜ − ln

(
1− b1√

µβR

)
as a shorthand. Then we

can rewrite (A.19) as

Pr (L ≥ j + 1) ≥ e−aj
2−(ψ+a)j−ψ.
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Now, using the sum-of-tails formula for expectations, we find that

E [L] =
R−1∑
j=0

Pr (L ≥ j + 1)

≥
δR−1∑
j=0

Pr (L ≥ j + 1)

≥
δR−1∑
j=0

e−aj
2−(ψ+a)j−ψ

≥
∫ δR

0

e−aj
2−(ψ+a)j−ψdj

=

∫ δR

0

e−a(j
2+(ψa+1)j)−ψdj

=

∫ δR

0

e−a(j+
1
2(

ψ
a
+1))

2
+a

4 (
ψ
a
+1)

2
−ψdj

= e
a
4 (

ψ
a
+1)

2
−ψ
∫ δR

0

e−a(j+
1
2(

ψ
a
+1))

2

dj.

Evaluating the integral further, we find that∫ δR

0

e−a(j+
1
2(

ψ
a
+1))

2

dj =
∫ δR+ 1

2(
ψ
a
+1)

1
2(

ψ
a
+1)

e−aj
2

dj

=

∫ ∞

0

e−aj
2

dj −
∫ 1

2(
ψ
a
+1)

0

e−aj
2

dj −
∫ ∞

δR+ 1
2(

ψ
a
+1)

e−aj
2

dj.

We now bound each of these integrals in turn. First, we know classically that∫ ∞

0

e−aj
2

dj =
1

2

√
π

a
=

√
π

2
·
√
1− δ

√
R ≥

√
π

2
· (1− δ)

√
R

Next, we note that, since the integrand is ≤ 1,∫ 1
2(

ψ
a
+1)

0

e−aj
2

dj ≤ 1

2

(
ψ

a
+ 1

)
=

1

2

(
2R(1− δ) ln

(
1

1− b1√
µβR

))
+

1

2

≤ R(1− δ)
b1√
µβR

1

1− b1√
µβR

+
1

2

≤
(

1√
β

)
(1− δ) · 100 · b1

100− b1

√
R +

1

2

≤ 1.15(1− δ)√
µβ

√
R +

1

2
.
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Finally, we have that,∫ ∞

δR+ 1
2(

ψ
a
+1)

e−aj
2

dj ≤
∫ ∞

δR

e−aj
2

dj ≤
∫ ∞

δR

e−aδRjdj =
1

aδR
e−aδ

2R2

=
2(1− δ)

δ
e−R

δ2

1−δ .

To complete the proof, we note that e−ψ =
(
1− b1√

µβR

)
, thus

E [L] ≥ e
a
4 (

ψ
a
+1)

2
−ψ
∫ δR

0

e−a(j+
1
2(

ψ
a
+1))

2

dj

≥ e−ψ
∫ δR

0

e−a(j+
1
2(

ψ
a
+1))

2

dj

≥
(
1− b1√

µβR

)[√
π

2
(1− δ)− 1.15(1− δ)√

µβ

]√
R− 1

2
− 2(1− δ)

δ
e−R

δ2

1−δ

=

(
1− b1√

µβR

)[√
π

2
(1− δ)− 1.15(1− δ)√

µβ

]√
R− 1

2
− 2(1− δ)

δ
e−R

δ2

1−δ

=

(
1− b1√

µβR

)([√
π

2
(1− δ)− 1.15(1− δ)√

µβ

]√
R− 1

2
− 2(1− δ)

δ
e−R

δ2

1−δ

)
.

From here, we could choose δ to maximize our lower bound further based on system parameters,
but a simple choice is δ = 2√

R
. This gives

E [L] ≥
(
1− b1√

µβR

)[(
1− 2√

R

)(√
π

2
− 1.15√

µβ
− 2e−4

)
− 1

2
√
R

]√
R

≥ 2

3

√
π

2

√
R,

as desired.

A.4.7 Proof of Claim 6.11.

Claim 6.11 (Upper Bound on E [N(TA)]). Recall that TA ≜ min {t > 0 : Z(t) = R + 1}. Then,

E [N(TA)−R] ≤ F1µβ
√
R

(
1 +

F2√
µβ

)
≤ 2.9µβ

√
R

and

E
[
(N(TA)−R)2

]
≤ F 2

1 (µβ)
2R

(
1 +

F2√
µβ

)2

+ 2µβR ≤ 8.4(µβ)2R + 2µβR

where F1 = 2.12 and F2 = 3.645.
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Proof.

The beginning of the proof will be the same for both of these inequalities. Using the up-crossing
and down-crossing decomposition of Section 6.2.1, we know that time TA occurs either during a
rise or during a fall. Since the number of jobs N(t) ≤ R + C3

√
µβR during a rise,

[N (TA)−R]1TA during a rise ≤ C3

√
µβR1TA during a rise.

If TA occurs during a fall, we need a more nuanced bound. Writing out the event {TA during a fall}
in terms of disjoint events, we find

{TA during a fall} =
R⋃
j=0

∞⋃
i=1

{
u
(j)
i ≤ TA < d

(j)
i

}
,

so that, for c ∈ {1, 2},

E [[N (TA)−R]c 1TA during a fall] =
R−1∑
j=0

∞∑
i=1

E
[
[N (TA)−R]c 1

u
(j)
i ≤TA<d

(j)
i

]
=

R−1∑
j=0

∞∑
i=1

E
[
[N (TA)−R]c 1

TA<d
(j)
i

∣∣∣F
u
(j)
i
, n(j)

u ≥ i
]
Pr
(
nju ≥ i

)
.

To bound this conditional expectation, we apply Claim A.4. Notice that N(u
(j)
i ) − R =

C3

√
µβR, the (R + 1)-th server starts up at time TA = u

(j)
i + YR+1(u

(j)
i ) if TA < d

(j)
i , the time

d
(j)
i is a hitting time, and that Z(t) ≥ R− j until time τj+1 ≥ d

(j)
i . It follows that

E
[
[N (TA)−R]1

TA<d
(j)
i

∣∣∣F
u
(j)
i
, n(j)

u ≥ i
]
≤ C3

√
µβR + µjYR+1(u

(j)
i ) ≤ C3

√
µβR + µjβ,

and that

E
[
[N (TA)−R]2 1

TA<d
(j)
i

∣∣∣F
u
(j)
i
, n(j)

u ≥ i
]
≤
(
C3

√
µβR + µjYR+1

(
u
(j)
i

))2
+ µ2RYR+1

(
u
(j)
i

)
≤
(
C3

√
µβR + µjβ

)2
+ µ2Rβ

= C2
3µβR + 2C3

√
µβRµβj + (µβ)2j2 + 2µRβ.

It now suffices to bound
∑

j

∑
i j
c Pr

(
n
(j)
u ≥ i

)
, where c ∈ {0, 1, 2}. We do this via the

same method used in Section 6.2.1:
R∑
j=1

∞∑
i=1

jc Pr
(
n(j)
u ≥ i

)
≤

R∑
j=1

∞∑
i=1

jc Pr (ne ≥ j) p
(j)
rise(1− p2)

i−1

=
1

p2

R∑
j=1

jcp
(j)
rise Pr (ne ≥ j)

≤ 1

C4p2

R∑
j=1

jcC4p
(j)
rise

j−1∏
ℓ=0

(
1− C4p

(ℓ)
rise

)
.
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This is simply the expectation of a time-varying geometric random variableG, with Pr (G = j|G ≥ j) =

C4p
(j)
rise. It follows that if one lower-bounds p(j)rise, then an upper bound on the desired expec-

tation is obtained. Applying Claim 6.3, we note that we are essentially bounding G using
Y ∼ Geometric

(
0.99C4A5√

R

)
and saying Y + A5

√
R stochastically-dominates G. It follows that

E [G] ≤ A5

√
R +

1

0.99C4A5

√
R

and that, for any b,

E
[
(G+ b)2

]
≤ E

[
(Y + A5

√
R + b)2

]
= E

[
Y 2
]
+ 2(A5

√
R + b)E [Y ] + (A5

√
R + b)2

= 2E [Y ]2 − E [Y ] + 2
(
A5

√
R + b

)
E [Y ] +

(
A5

√
R + b

)2
≤
(
E [Y ] + A5

√
R + b

)2
+ E [Y ]2 .

Defining B5 ≜ C3

C4p2
, B6 ≜ 1

C4p2

(
1

0.99C4A5
+ A5

)
, and B7 ≜ 1

2C4p2

[
1

(0.99C4A5)2
+ 2
]
, it follows

that

E
[
[N (TA)−R]2 1TA during a fall

]
≤ 1

C4p2

R∑
j=1

C4p
(j)
rise

[(
C3

√
µβR + µjβ

)2
+ µ2Rβ

] j−1∏
ℓ=0

(
1− C4p

(ℓ)
rise

)
=

1

C4p2
E
[(
C3

√
µβR + µGβ

)2
+ µ2Rβ

]
≤ 1

C4p2
E
[(
C3

√
µβR + µβY + µβA5

√
R
)2

+ µ2Rβ

]
=

1

C4p2

[(
C3

√
µβR + µβ

1

0.99C4A5

√
R + µβA5

√
R

)2

+ µβ
1

(0.99C4A5)2
R + 2µβR

]

≤ 1

C2
4p

2
2

[(
C3

√
µβR + µβ

1

0.99C4A5

√
R + µβA5

√
R

)2
]
+

1

C4p2

[
1

(0.99C4A5)2
+ 2

]
µβR

=
(
B5

√
µβR +B6µβ

√
R
)2

+ 2B7µβR.

85



and that

E [[N (TA)−R]1TA during a fall]

≤ 1

C4p2

R∑
j=1

C4p
(j)
rise

[
C3

√
µβR + µjβ

] j−1∏
ℓ=0

(
1− C4p

(ℓ)
rise

)
=

1

C4p2
E
[
C3

√
µβR + µβG

]
≤ 1

C4p2

[
C3

√
µβR + µβ

(
A5

√
R +

1

0.99C4A5

√
R

)]
=
(
B5

√
µβR +B6µβ

√
R
)
.

Defining F1 ≜ B6 and F2 ≜
(B5+C3)

B6
, it follows that

E [N(TA)−R] ≤
(
(B5 + C3)

√
µβR +B6µβ

√
R
)
= F1µβ

√
R

(
1 +

F2√
µβ

)
and that

E
[
[N (TA)−R]2

]
≤
(
B5

√
µβR +B6µβ

√
R
)2
+2B7µβR ≤ F1(µβ)

2R

(
1 +

F2√
µβ

)2

+2µβR□
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