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Abstract

Using drones to inspect bridges and electric grid towers, mounting a search and rescue operation
for a child lost in the woods, hosting a backcountry ski event for a weekend, and providing critical
communication and application capabilities for forward military operations — These are just a few
situations where there is a need to deploy a modern compute and communication infrastructure
very rapidly in areas with poor network coverage. These situations require the ability to provide
connectivity for mobile phones, cameras, drones, and other connected devices. These devices
need to offload compute-intensive operations that cannot be performed on-device. They also
require access to sophisticated applications, possibly proprietary, with too large a footprint to
even run partially on-device. Until recent breakthroughs in a wide variety of open technologies,
implementing these use cases has required custom hardware and software, proprietary network
technologies, communication spectrum licenses, and the expertise to integrate a solution. These
breakthroughs enable a new model — the Just-in-Time (JIT) Cloudlet — a highly integrated,
lightweight, low power platform built from common off-the-shelf (COTS) technologies that
provides a standalone private mobile network provisioned with applications for specific use cases.
This technical report describes the motivation, requirements, and enablers to build a JIT Cloudlet.
It also describes our architecture, implementation, and results for a JIT Cloudlet prototype created
at the Carnegie Mellon University Living Edge Lab. This prototype, based around open-source
software and COTS hardware can be the base for development platform for application developers
and integrators to deliver solutions for the use cases above and many others.






1 Introduction

There has long been a need for telecommunications and internet services in locations far removed
from urban environments where connectivity to the global communications network is limited.
Small villages and remote temporary events are often unprofitable for telecom operators to serve.
But, closed proprietary technologies, unavailable or expensive spectrum, and a lack of expertise
make it difficult for “do-it-yourselfers” to create solutions to serve these needs. And, centralization
of meaningful services in distant cloud data centers requires not just connection but also high
bandwidth. These forces place many potential users in a “digital desert”. We believe that a
confluence of new technologies, many mature enough for production deployment, have made
it feasible for many services to be provided by highly integrated and portable communications
network and application infrastructure.

While there are broad needs for better digital access in places where it is inadequate today,
given our focus on edge computing, we have paid particular attention to cases where limited mobile
network access and backhaul to the cloud calls for deployment of a low-cost localized mobile
network and computing infrastructure. We have also focused on cases where the deployment is
intended to be temporary and portable — putting a high premium on small physical footprint, low
weight, low power consumption, and fast setup. We believe that these conditions represent some
of the most extreme requirements for platform integration in edge computing.

We envision a world where an application developer, system integrator, or enterprise can easily
create a turnkey solution that integrates a small-scale private mobile network and an edge-native
application suite that addresses an application-specific set of use cases and can be deployed in an
environment with limited access or backhaul networks. These deployments must be inexpensive,
temporary, and fast to bring online. Solutions should be built on commerical off-the-shelf (COTS)
hardware and open-source software using the latest cloud-native and Al technologies.

A system that is designed to be deployed in these situations we refer to as a Just-in-Time (JIT)
Cloudlet. A cloudlet can be viewed as a “Data Center in a Box” whose goal is to “bring the cloud
closer” to the end devices [41]. A JIT Cloudlet adds a bundled mobile network and tight physical
constraints on the cloudlet footprint — these two additions turn a cloudlet into an “Edge Computing
Hotspot” suitable for quick deployment in constrained environments. This introduction motivates
why JIT Cloudlet solutions are more feasible than ever before and are poised for rapid adoption
over the coming few years.

The rest of this document provides the details around the JIT Cloudlet solution developed in the
Living Edge Lab (LEL) [3] at Carnegie Mellon University. It outlines the solution design criteria,
describes the building block technologies used, presents a solution reference architecture and the
prototype built to implement the reference architecture including performance results and lessons
learned. It closes with a discussion of future work and opportunities for our program and for the
industry as a whole to achieve broad JIT Cloudlet adoption.

1.1 Background

Both edge computing and private mobile networks are growing in industry interest and adop-
tion [14] [28]. However, despite the obvious synergies between the two, the integration of
their respective infrastructures has received little attention. In addition, much focus in both
areas has been on permanent, relatively large-scale infrastructure (e.g., 10s or 100s of radios



and/or edge compute nodes and with substantial backhaul capacity to clouds). There has been
some work on temporary “pop-up” networks for sporting events, concerts, and other short-term
purposes [13] [45]. There has also been some work on small networks for rural and disconnected
communities [29] [4]. Telecom providers and suppliers have speculated about integration of edge
computing resources into network equipment (e.g., base stations) but use cases have typically
centered on offloading device computing, network function virtualization (NFV) for various
purposes (e.g., QOS, traffic shaping) and, rarely, for more general purpose software [20] [39].
Telecom standards (e.g., ETSI MEC [19], GSMA [24]) envision a world with integrated networks
and edge computing but these visions imagine integration at a much higher level and scale than
we envision for the JIT Cloudlet. This dichotomy is illustrated in Figure 1. The left side of this
figure, loosely based on the ETSI-MEC architecture, depicts a design pattern for an operator-
scale deployment of edge computing. While the network and user applications share a common
architecture, they are partitioned onto separate infrastructure to assure performance, reliability,
and security isolation between operator-critical functions and arbitrary user applications. The
JIT Cloudlet architecture is depicted on the right side with both network and user application
functions sharing infrastructure up through the Mobile Edge Platform level. Since JIT Cloudlets
must be portable and easy to manage, sacrificing some stack isolation for power, space, weight,
and integration is a reasonable trade-off.
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Figure 1: Dual and Integrated Edge Stacks

While cloud computing and, by inheritance, edge computing have evolved with a focus on
COTS hardware, open-source software, and a cloud-native paradigm [6], communication networks
have historically been implemented with closed, proprietary systems. Software defined networking
(SDN) [27] and NFV [36] are undergoing broad adoption in the telecom space. However, cloud-
native open-source software for mobile networks is only slowly making progress with initiatives
like the Magma [30] and ONF [35] Projects (e.g., OMEC, SD-RAN, SD-Core). These initiatives
are at the forefront of the cloudification of mobile networks and are important building blocks for
JIT Cloudlet solutions.



1.2 Use Cases

Using drones to inspect bridges and electric grid towers, mounting a search and rescue operation
for a child lost in the woods, hosting a backcountry ski event for a weekend, and providing critical
communication and application capabilities for forward military operations — These are just a few
situations where there is a need to deploy a modern compute and communication infrastructure
very rapidly in areas with poor network coverage. These situations require the ability to provide
connectivity for mobile phones, connected cameras, drones, and other connected devices. These
devices need to offload compute-intensive operations that cannot be performed on-device. They
also require access to sophisticated applications, possibly proprietary, with too large a footprint to
even run partially on-device. Since these use cases are by definition in remote and possibly rugged
locations, transportation of infrastructure from a home base to the actual site demands lightweight
and compact infrastructure. Access to the electric grid may be limited so the system may need to
run on generator power for hours or days. Given the time critical nature and limited duration of
deployments, set up and tear down must be simple and fast for on-site operators to perform. With
their potential to be deployed in unsecured physical environments, special consideration needs to
be given to security and data privacy characteristics of the solution. Figure 2 shows an illustrative
search and rescue JIT Cloudlet solution with all infrastructure other than the antenna and radio
deployed in a single desktop-sized server.

In this representative use case, an on-site command center operator, a drone pilot, and two
first responders collaborate to rescue an injured climber in the mountains. The edge-native
application that supports this must provide computer vision to find the climber and video and
audio conferencing between the four actors and the drone feed to coordinate the rescue. Overall
system operation must be monitored at the command center.

Figure 2: Search and Rescue JIT Cloudlet



1.3 Open Technologies

Solutions to address many of these use cases have been previously deployed (see Section 1.1).
However, these solutions have typically been built using closed, proprietary, and bespoke hardware
and software and commercial or special purpose mobile networks — making them expensive,
inflexible and requiring substantial expertise to develop, deploy, and maintain. Innovation waves
driven by cloud, IoT, 5G, and edge computing have stimulated open software, hardware, and
network technologies that enable JIT Cloudlet solutions to be built entirely with open components.
These open components make creation of solutions easier, faster, and possible for developers with
mainstream technology skills. These enablers include:

* Open-source Software in the domains of Cloud-Native Computing, Edge-Native Applica-
tions, Software Defined Networking, Artificial Intelligence and Computer Vision, Operating
Systems, and Development Tools

* COTS Hardware including standard high volume servers based on x86 and ARM,
accelerated computing hardware based on GPUs, mobile network equipment built to
standardized interfaces, and technologies like ethernet, PCle, and NVMe

* Private Mobile Network Technologies like Citizen’s Band Radio Spectrum (CBRS) [21] and
5G

1.4 Integration for Footprint

Addressing the space, weight, power, and rapid deployment constraints of a JIT Cloudlet requires
a solution with fewer and smaller components. Component reduction is accomplished via the
integration of multiple solution functions into fewer components. The open trends discussed in
Section 1.3 make this possible by providing common and compatible building blocks across the
solution functions. However, there is still effort involved in integration process itself. Integration,
in this sense, involves a number of tasks during the continuous integration and deployment (CI/CD)
process:

1. Component and version selection and management

2. Individual component assembly, configuration, and test

3. Connection, configuration, and test of the end-to-end solution

4. End-to-end performance benchmarking against user requirements
5. Design and deployment of solution management tools

6. Provisioning of system, network, application, and user data

7. On-going maintenance of the above



2 The Just-In-Time Cloudlet

In the context of the use cases, technologies, and integration goals described in Section 1, we set
out to develop a reference architecture and a prototype implementation for a JIT Cloudlet solution.
This reference architecture is intended as proof of the validity of the concept given the state of
current technologies. It is not intended as a finished, complete product or even as a fully defined
development platform for general use. However, all solution building blocks are widely available
at a production or near production level.

To ground our reference architecture, we set the design criteria and their key performance
indicators (KPIs) in Section 2.1, identified the solution building blocks in Section 2.2, built the
prototype in Section 2.4 and derived a more general reference architecture from the prototype in
Section 2.3. The prototype testing results against the design KPIs are shown in Section 2.5.

2.1 Design Criteria

The design criteria in Table 1 were set to inform the choices made during the development of
the prototype. They are based on subjective but common sense requirements to satisfy the use
cases described in Section 1. They are not intended as exhaustive but rather as key performance
indicators (KPI) for a generalized platform prototype. Fully detailed requirements can only be
sensibly established for a production platform intended for a specific use case (e.g., the search and
rescue use case in Section 1.2).



’ Criteria

| Nominal

KPI

Weight and Space “Fit in the weight and space | Less than 50 pounds; fit in suitcase less
of a single normal checked | than 30 in x 20 in X 12 in (United Airlines
bag on a typical US airline” | requirements)

Power “Run on household power” | Consume no more than 20A @120V or 2500

Consumption running watts

On-site “Up and running quickly” Less than 3 hours from arrival to unpack, set

Deployment up, bring up, and test the complete system

Time

Accelerated Com-
puting and Graph-
ics

“Needs a graphics process-
ing unit (GPU) for Al and
graphics rendering”

Hardware includes a GPU to support com-
puter vision, other Al inferencing tasks, and
mixed reality graphics rendering

Backhaul

“Work with no or narrow-
band backhaul”

Fully operational with limited backhaul to
offsite systems including the cloud/internet

Software Licensing

“Everything open-source”

Software building blocks from widely
supported, widely used community-driven
open-source projects (preferred) or smaller
community or non-community open-source
repositories (acceptable)

Hardware
Technologies

“Everything COTS”

Hardware building blocks that are 1) com-
mercial products with substantially equiva-
lent systems available from multiple vendors
and 2) based on widely used standards (e.g.,
ethernet, PCle, NVMe)

Security and Pri-
vacy

“Meets all security and
data protection requirements
given the JIT Cloudlet
deployment model”

Address supply chain and operational risk
in the context of the ecosystem and de-
ployment model of JIT Cloudlet solutions
(e.g., disaggregated supply chain, unsecured
deployment site)

Table 1: Design Criteria

2.2 The Building Block Technologies

Within the space of the design criteria and open technologies described in Section 1, there are
many choices for the building blocks of a JIT Cloudlet solution. In general, our selection of
components weighed factors including: 1) fit with the design criteria, 2) maturity and breadth
of industry adoption, 3) compatibility with other building blocks, 4) ease of integration into the
solution, and 5) our experience and expertise with the building block.

The following sections describe our rationale for some of the major building block choices
in the platform. Our base platform started from Ubuntu 20.04 running on a modern server. This
platform has been our standard for cloudlets in the Living Edge Lab for several years. On the base
platform, we layered software building blocks.

COTS Hardware — The availability of standards-based COTS hardware enables a choice
between solution components using criteria beyond baseline functionality. In our case, it allows
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component selection for power efficiency, space, weight, performance of our software stack, and
system ease of use. Most modern servers available from major original equipment manufacturers
(OEM) and original design manufacturers (ODM) can be considered COTS — built using open
standards based components and interfaces for networking, storage, memory, peripherals, and
compute. Because of this, our primary choice was selecting which COTS server to use. Our low-
power requirement led us to select an ARM64 server and SSD storage. We chose a desktop form
factor to support an accelerated computing PCle card and because the dimensions were somewhat
more compatible with our “suitcase” paradigm. Similarly, the other components in the solution
(e.g., switch, router, eNodeB) were available from a variety of commercial suppliers.

Cloud-native Software Platforms — For the software platform and the applications, we
heavily favored open-source cloud-native building blocks. These include those from Cloud-Native
Computing Foundation (CNCF) [5] (e.g., Kubernetes [9], Helm [8], Prometheus [10], gRPC [7])
and other widely used projects (e.g., Docker [15], Grafana [23], Kibana [17], Elasticsearch [16],
Logstash [18]). Cloud-native brings with it a paradigm of containerized microservices with
representational state transfer (REST) and streaming application programming interfaces (API).
Adoption of this paradigm and the selection of compatible building blocks resulted in overall
architectural simplicity — everything is a service, everything is in a container, and Kubernetes
manages everything.

This “Cloud-native at the Edge” paradigm is depicted in Figure 3. This figure shows an
extensive but not exhaustive list of cloud-native open-source software projects that are applicable
at the edge. In Section 2.3, we outline the specific components used in the JIT Cloudlet reference
architecture.

Edge Native Apps
Edge Akraino, EdgeXFoundry, HomeEdge, Open Horizon,

FLEDGE, ...

Monitor Grafana, Kibana, ...
Cl/CD Helm, Ansible, Terraform, ...

Data PostgreSQL, Elastisearch,
Prometheus, InfluxDB, gRPC, ...

Figure 3: Cloud-native At The Edge

Open Software Defined Networking — The goal of integrating the mobile network and the
applications onto a single COTS server without any proprietary hardware led us to software defined
networking. There were three important building blocks to consider — the Evolved Packet Core
(EPC), the Radio Access Network (RAN), and the User Plane Function (UPF) within the EPC.
Our open-source requirement led us to the Magma EPC [30] which embeds the Open vSwitch [31]
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to implement the UPF. See [33] for more on Magma’s role in opening the opportunity for private
networks. At the time of this work, there was no proven LTE open software RAN building block
and we used COTS hardware eNodeBs in the solution.

Open Access Mobile Wireless Spectrum A critical but straightforward choice was the use of
unlicensed Citizen’s Band Radio Spectrum (CBRS) [21]. In the US, CBRS is the only viable option
for an LTE or 5G mobile network to be offered by a non-licensed private network operator. The
CBRS General Authorized Access (GAA) tier enables this capability but the GAA requirement for
a Spectrum Access System (SAS) requires narrowband backhaul (e.g., satellite).

Unfortunately, there are few equivalent spectrum models outside the US. Canada [37] and
Germany [38] have recently announced new spectrum models that enable private mobile networks.
Wi-Fi, while unlicensed, has limited outdoor range, poor congestion control, and little interference
protection from other transmitters. In some places, experimental spectrum licenses could be used
for solution development but those solutions don’t have a clear path to production.

Usable Artificial Intelligence and Computer Vision — Many edge-native applications use
Artificial Intelligence (AI) and computer vision technologies to implement key parts of the
application. These applications typically use an Al framework to abstract the underlying Al
models and hardware from the application itself. Our applications often use the PyTorch [32],
TensorFlow [22], and OpenCV [11] frameworks with common Al models like YOLO, COCO, and
ResNet.

Achieving desired Al application performance usually requires accelerated computing hard-
ware. Accelerated computing hardware is generally not COTS in the strictest sense. While
physical form factor and interfaces are generally standarized, software interfaces and programming
capabilities are substantially different between suppliers unless abstracted by a higher level library,
(e.g., PyTorch). We chose the NVIDIA GPU PCle card family because, as the most commonly
used, they have the broadest support and therefore are the easiest to integrate.

Edge-Native Applications — Containerized microservices has been our edge-native application
development paradigm for many years. That practice allow us to use several of our existing
applications with no modifications.

2.3 Reference Architecture

A generalized JIT Cloudlet reference architecture, based on the prototype described in Section
2.4, is shown in Figure 4. This reference architecture shows the major building blocks of a JIT
Cloudlet solution for a 4G LTE Network. This reference architecture and the first generation
prototype focuses on a 4G LTE solution because of its proven solution readiness. Namely, the
major components of the solution — UEs, eNodeBs, EPC had already been deployed successfully
in our campus private LTE network. However, we are in process of developing a prototype and
reference architecture for a 5G JIT Cloudlet solution. See Section 2.6 for more on our goals for
5G.

* The Cloudlet is the primary workhorse for the JIT Cloudlet solution. It is responsible for the
time critical elements (e.g., UPF) of the 4G LTE Evolved Packet Core (EPC) as implemented
by the Magma Access Gateway. It also hosts the use case specific applications required for
a particular solution. Each major component is deployed in its own dedicated namespace in
a single Kubernetes cluster running on Ubuntu. The Open vSwitch provides accelerated
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Figure 4: JIT Cloudlet Reference Architecture

forwarding for user plane traffic from UEs. All system deployment on the cloudlet is
managed using common cloud-native tools such as Helm, Docker, and Ansible [40]. The
cloudlet also requires an accelerated computing platform like a GPU to support any graphics
or Al application workloads. Docker and Kubernetes are configured to support use of
accelerated computing.

— Kubernetes Cluster — Kubernetes [9] is an open-source container orchestration system
for automating software deployment, scaling, and management. Originally designed
by Google, the project is now maintained by the Cloud-Native Computing Foundation.
For the JIT Cloudlet, Kubernetes provides a proven, well-supported, common, open-
source platform for the deployment and management of network functions and user
applications in an integrated single node system. Some use cases may require
coordination across multiple JIT Cloudlets. In those cases, a cross-tier orchestration
system like our Sinfonia project [42] working with Kubernetes may be needed. These
use cases are out-of-scope of this reference architecture but are discussed in Section 3.

— Magma Access Gateway (AGW) — Magma [30] is an open-source software platform
that gives network operators an open, flexible and extendable mobile core network
solution supporting 4G, 5G, WiFi, and other access networks. In an LTE network,
the AGW implements an evolved packet core (EPC), and a combination of a Packet
Gateway (PGW) and authentication, authorization, and accounting (AAA) services. It
works with existing, unmodified commercial radio hardware. Magma is maintained
by the Magma Project in the Linux Foundation. For the JIT Cloudlet, Magma’s
architecture and open-source implementation allows flexibility and low-cost in a small-
scale deployment.



— Open vSwitch — OVS [31] is an open-source implementation of a distributed virtual
multi-layer switch. OVS is maintained by the Open vSwitch Project in the Linux
Foundation. In the JIT Cloudlet, OVS is important to assure high performance and
throughput for user plane traffic traversing the AGW.

— Application(s) — In the reference architecture, specific applications are not called out
— in practice, they are determined by the use cases that the JIT Cloudlet solution
implements. For example, a bridge inspection solution would implement a computer
vision application to detect rust and other degradation on metal bridges. In general,
though, cloudlet applications will be containerized, service oriented, and Helm-
deployable. The prototype in Section 2.4 calls out specific applications tested.

* The Management System hosts the operator consoles for all of the primary components in
the solution. When backhaul is available, remote access to these consoles is also possible but,
in disconnected mode, a local console with keyboard, video, and mouse (KVM) is required.
In addition, the management system runs the Magma Orchestrator (Orc8r) component in its
own Kubernetes cluster.

— The Kubernetes Cluster exists predominately to host the Magma Orchestrator. How-
ever, this cluster can also support deployment of other Docker-based management
components as needed (e.g., a custom Grafana dashboard).

— The Magma Orchestrator (Orc8r) provides a simple and consistent way to configure
and monitor the Magma wireless network securely. Its primary management console
is the Network Management System (NMS). Running the Orc8r on the management
console system was necessary in our prototype for reasons discussed in Section 2.4.
However, there is general value in offloading the Orc8r from the Cloudlet to assure
adequate resources for the time sensitive AGW and applications on the Cloudlet. There
is no functional reason why the Orc8r could not be deployed on the Cloudlet.

— Other management consoles, dashboards, and tools. The management system enables
user access to the components of the JIT Cloudlet solution via http, VNC, and com-
mand line. The primary managed components are the Cloudlet (http/VNC/command
line), eNodeB (http), router (http). Cross component monitoring (e.g., using Wireshark,
tcpdump, iPerf) is also available via the management system.

e The eNodeB(s) are the Radio Access Network (RAN) for the JIT Cloudlet solution. In
4G LTE, available CBRS eNodeBs are primarily COTS hardware solutions. The eNodeB
includes the radio and antenna for the solution and the interface to bring user and control
plane traffic to the EPC. In general, the JIT Cloudlet solution allows multiple eNodeBs,
different types of eNodeBs, and both indoor and outdoor eNodeBs. While the JIT
Cloudlet solution is designed to operate with limited backhaul, compliance with CBRS GAA
requirements mandates a remote SAS service to reduce power on interfering eNodeB radios.
See the discussion on backhaul below.

* User Equipment (UE) are the myriad of devices required to deliver the JIT Cloudlet
application(s). They can include user phones and computers, drones, cameras, sensors,
or other IoT devices. All UE must be CBRS-capable and able to connect to 4G LTE
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networks (or connect through a dongle or hotspot that enables this connectivity). Other
UE functionality depends on the needs of the specific use case requirements.

The Switch and Router provide basic ethernet network connectivity and security between
the individual solution components and, when backhaul is available, between the solution
and the outside world. The size of the switch is driven primarily by the number of eNodeBs
connected to the network.

Backhaul (optional) allows the solution to communicate with the outside world to enable
operations, data transfer, and communications. Many JIT cloudlet use cases assume
that backhaul may not be available so the applications are designed to be self-contained.
However, when backhaul is available, it can be useful (See CBRS SAS discussion above).
Given the three hour on-site deployment KPI, backhaul requires careful pre-deployment

planning. See Table 2 for more information on backhaul considerations.

|

Capacity

| Backhaul Type

| Use Cases

\ Considerations

Disconnected

Completely offline operation
* Remote unserved area
* Backhaul not pre-provisioned

Enables operation at any arbitrary
site; Requires self-contained edge-
native applications apps with no
external dependencies

Narrowband (less
than 1Mbps)

Keep alive

* CBRS SAS Service

* Low bandwidth communication
* Remote system management

Enables critical lifeline services for
systems and operators; Satellite pro-
vides a ubiquitous, pre-provisionable
option

Broadband Cloud service access Enables edge-native applications in
* Applications with remote cloud | areas with no existing edge com-
service dependencies puting infrastructure has been de-

ployed and/or where existing access
networks are poor
’ Provisioning ‘
| Backhaul Type | Use Cases | Considerations |

Pre-provisioned

Pre-planned deployment
* Area with existing infrastructure
* Advance service order possible

Likely when new telco provisioned
backhaul is required

Just-in-Time provi-
sioned

Existing infrastructure but no pre-
provisioned service

* QOperator available

* Physical connection point available
» Network capacity available

Possible in existing private infras-
tructure when the provisioning pro-
cess can support

Table 2: Backhaul Considerations
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2.4 The Prototype

The Just-in-Time Cloudlet solution prototype is a physical, working instantiation of the reference
architecture described in Section 2.3 and a representative example that the design criteria in Section
2.1 can mostly be met by today’s building block technologies in Section 2.2. The detailed solution
component configurations can be found in the appendix. The physical footprint of the prototype
can be seen in Figure 5 and the design in Figure 6.

Very little new software was developed to create the prototype. Instead, the primary effort
was iteration through the CI/CD steps in Section 1.4. The building block enablers made this
possible but, because of the strict footprint requirements, a standardized platform architecture was
mandated. More details on this platform architecture are provided in Section 2.3

In the prototype, the cloudlet was built on the ADLINK AVA ARM64 Developer Platform with
an added NVIDIA GeForce GTX 1080ti GPU Card. We chose an ARM platform to better meet the
power constraints imposed by the JIT Cloudlet design criteria (See Section 2.1). Ubuntu, Docker,
and Kubernetes were deployed on the platform and a Magma AGW and two Living Edge Lab
developed edge-native applications were deployed in the Kubernetes cluster.

The management system was built on a Dell Latitude 5420 Rugged Laptop. Ubuntu, Docker,
and Kubernetes were deployed on the platform and a Magma Orchestrator was deployed in the
Kubernetes cluster.

Using the gateway/router and the switch, the cloudlet, management system, and eNodeB were
physically connected and provisioned with IP addresses. The UE were provisioned with network
subscriber identity module (SIM) cards. All information for the network was provisioned into the
Orc8r and the AGW, eNodeB, Orc8r, and UE were connected.

With the network now serving UEs with connectivity, the UE were able to connect to the
two edge-native applications. OpenScout [2] is a computer vision/object classification application
analogous to what might be used in drone-based search and rescue. OpenRTiST [1] is an
augmented reality application analogous to what might be used to deliver multimedia entertainment
at a backcountry ski event.

Both applications ran unmodified in Kubernetes (after creating appropriate Helm charts for
deployment). The applications, which both use image and Al technologies, shared the GPU.
These applications embody the JIT Cloudlet design principles, using Docker, http-based services,
and open Al technologies like OpenCV, Pytorch, YOLO, and TensorFlow to implement their
functionality.

The performance results for the prototype are presented in Section 2.5.

2.5 Results and Performance

The prototype described in Section 2.4 was evaluated for two primary attributes:
1. Does the prototype meet the design criteria defined in Section 2.1?

2. Does the prototype perform as well or better than a non-integrated LTE network and Cloudlet
solution?

The design KPIs results are shown in Table 3.
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Criteria Nominal Result Met/  Not
Met?
Weight  and | “Fit in the weight and space | Footprint: Partially
Space of a single normal checked | = Weight: 801b Met
bag on a typical US airline” | Space (Cloudlet): 18.5in x
16.5in x 7.5in
Power “Run on household power” | 250W JIT Solution w/GPU Active | Met
Consumption
On-site “Up and running quickly” Less than three hours Met
Deployment
Time
Accelerated “Needs a GPU for Al and | Shared GPU for applications Met
Computing graphics rendering”
and Graphics
Backhaul “Work with no or narrow- | Fully disconnected except low- | Met  (nar-
band backhaul” bandwidth SAS connection rowband)
Software “Everything open-source” Cloudlet and Management System | Met within
Licensing all open-source; eNodeB, Switch, | state-of-art
Router closed-source
Hardware “Everything COTS” Cloudlet, Management System, | Met within
Technologies Switch, Router, eNodeB, COTS; | state-of-art
GPUs not COTS
Security and | “Meets all security and | Deferred Unknown
Privacy data protection requirements

given the JIT Cloudlet
deployment model”

Table 3: Protoype Design KPI Results

As shown in Table 4, the complete prototype including a hardened case to contain it weighs
approximately 83 lbs (38 kg). This weight exceeds the typical US airline checked baggage standard
(50 Ib). However, it is within the oversized baggage limit (100 1b) and, therefore, can be checked
with an additional fee. The largest component in the JITC solution, the Cloudlet, measures 18.5in
x 16.5in x 7.5in. This component plus all other solution components has been shown to fit in a
33.5in x 21.91n x 13.0in hardened case [34] with sufficient padding to protect the equipment.
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| Solution Component | Weight (Ib) |

Router 04
eNodeB 3.5
Switch 1.4
Management System 7.5
Cloudlet (Without GPU) 29.0
GPU 1.4
Cables/Power Adapters 4.0 (est)
Hardened Case 36.0
| Total | 832 |

Table 4: Solution Weight

As shown in Table 3, the JIT Cloudlet solution meets the power consumption KPI with a
total power consumption (excluding the UE) of 250W or less with the GPU actively running the
openscout application for object detection. The power consumption by solution component is
shown in Table 5. Power varies with the Cloudlet GPU and CPU load but does not exceed 250W.
With a definition of household power as requiring only a 20A/120V power line (2500 running
watts), the solution easily meets the power requirements. A typical 2500W portable generator will
run for over 10 hours on one gallon of gas with this load.

| Solution Component | Power Consumption (w) |

Router 3
eNodeB 5.5
Switch 9.9
Management System 5.5
Cloudlet (GPU Inactive) 133
Active GPU 76
| Total \ 233 |

Table 5: Power Consumption

The solution meets the accelerated computing KPI by integrating a GPU PCle card to support
OpenScout and OpenRTiST simultaneous use. However, the prototype was not tested under a
scaled application load and therefore might require additional accelerated compute capacity in a
commercial solution. Adding a larger GPU or additional GPU cards to accomplish this would, of
course, increase solution power consumption and weight.

As discussed in Section 2.3, the prototype meets the backhaul KPI with narrowband backhaul
required for SAS connection.

While there are exceptions to the open-source KPI within the “closed” parts of the prototype
(e.g., eNodeB, Switch, Router and the BIOS, drivers, etc., in the Cloudlet and Management
System), the spirit of the KPI is met with fully open-source platform software from the operating
system up on the Cloudlet and Management System software stack.

The COTS KPI is met in spirit with the Cloudet and the Management System based on COTS
computing technologies. The Switch and Router are COTS as they provide standard ethernet
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switching and routing functions with similar systems available from a wide variety of suppliers.
The eNodeB is COTS, however, there are only a few available substitute CBRS-compatible
eNodeBs from a limited number of suppliers.

After an initial assessment of the security and privacy requirements and potential vulnerabilities
in a JIT Cloudlet environment, we deferred a detailed definition and assessment of these
requirements to a later stage of the prototype effort. For more information on our plans, see Section
3.

In addition to the KPIs, we assessed the overall solution performance relative to a similar non-
integrated solution. The comparative non-integrated solution was our existing LEL environment
where a private mobile network (EPC and RAN) runs on separate physical systems from the
application-serving cloudlet. The LEL environment provides better performance than that achieved
when using a commercial mobile network and, so, represents a higher bar for the JIT Cloudlet
solution to meet.

As shown in Table 6, ping round trip times (RTT) were measured at 21ms on the JIT Cloudlet
solution. This value is at the low (good) end of what is typical in LTE networks [44] and is 10ms
lower than typically measured in the LEL private LTE network [43]. As expected from previous
measurements, most of this improvement comes from reduction in the uplink latency between the
UE and the RAN. The JIT Cloudlet solution has a median uplink and downlink latency of 13ms
and 9ms respectively as shown in Figure 7. Comparatively, the LEL private LTE network achieves
typical uplink and downlink median latencies of 25ms and 9ms. See [43] for more detail about
previous LEL private LTE network measurements.

Application Measurement Result Met/ Not
Met?
Ping Round Trip Time — median (stdev) in ms 21 (4.2) Met
Iperf Download Throughput — median (stdev) in Mbps | 51.7 (10.5) Met
Upload Throughput — median (stdev) in Mbps 13.4 (0.2) Met
OpenRTiST Round Trip Time median (stdev) in ms 150 (20) Met
Frames Per Second median (stdev) in fps 11.5(1.5) Met

Table 6: Performance Results
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Figure 7: Latency between UE and RAN

Network throughput, measured by upload and download speeds, is a common measurement
for mobile networks. In these networks, the limiting factor on throughput is usually the realized
wireless channel bandwidth between the server and client. Download throughput was measured
using an iperf3 [26] server on the management server and an iperf3 client on the UE. The UE
periodically launched an iperf session and recorded the resulting bit rate. Upload throughput was
measured with the iperf reverse option enabled. The measured download and upload throughput
was 52 Mbps and 13 Mbps respectively. Both download and upload throughput are comparable to
LEL network measurements.

OpenRTiST performance is typically measured by its framerate (FPS) and round-trip-time
(RTT) for an image to be sent from the UE to the Cloudlet and back. Both measures are impacted
by network transmission times and image processing at the Cloudlet. Because OpenRTiST is a
more realistic application than ping or iperf (i.e., it transmits larger packets of data and executes
a compute-intensive workload at the cloudlet), its performance is a useful supplement to those
benchmarks. The OpenRTiST FPS and RTT measurements were 12 fps and 150 ms. These are
typical measurements for OpenRTiST over LTE networks. It should be noted that the selected
artist style has a significant impact on the per frame Cloudlet compute time and accordingly on the
FPS and RTT measurements.

JIT Cloudlet use cases will typically support small numbers of user applications and active
users. For this reason, we did not subject the prototype to substantial load and interaction
testing. However, simple testing with two active users and combinations of OpenRTiST and
OpenScout usage yielded some interesting anecdotal results. Both OpenRTiST and OpenScout
were configure to use the single GPU within the prototype. With two simultaneous users, GPU
utilization never exceeded 35% (two OpenScout users). There was no perceptual impact on
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OpenScout performance. With two OpenRTiST users, GPU utilization never exceeded 20%
however framerates dropped from ~14 fps for a single user to ~11 fps each for two users —
suggesting a bottleneck somewhere other than in the GPU. With a single user for each application,
GPU utilization remained below 35%, OpenRTiST framerate dropped to ~11 fps and there was
no perceptual impact to OpenScout performance. These results suggest load testing for production
deployment use cases should be a priority.

2.6 Learnings

The JIT Cloudlet Prototype is a proof-of-concept for the idea of a portable, open, integrated
network and application solution for the use cases that this report focuses on. It demonstrates
that such a solution can be built with open, off-the-shelf hardware and software. In the process of
building and using the prototype, we discovered:

* The open technologies in the prototype are relatively mature and complete for JIT Cloudlet
uses. We did not do significant load and scaling testing and it is likely that performance and
reliability issues will arise when such testing is done.

* Integration of the component technologies was relatively straightforward given their com-
mon design approaches. The choice of Kubernetes as a common framework created a focus
for our integration requirements.

* As is often the case, IP networking was the most complex part of the integration process.
In particular, both Magma and Kubernetes introduce a number of unique networking
practices that required workarounds. Diagnosing and debugging networking issues required
substantial time with container logs, Wireshark, and tcpdump.

* Our Cloudlet prototype is an ARM64 server. Given the large open-source content of the
prototype, we initially feared that we would find many components without ARM64 support.
In the end, as discussed above, only the Magma Orchestrator was not available on ARM64.
We did however have to adapt some Helm charts and Docker makefiles to deploy ARM64
containers.

* Creation of the prototype required a highly motivated developer and a ‘“do-it-yourself”
(DIY) approach to integration. Broader adoption of our approach would require creating
a “developer-ready” platform that pre-packages large portions of the stack and provides
support to the developer users.

2.7 Work In Progress

As of the writing of this tech report, several enhancements of the JIT Cloudlet solution are
underway.

* 5G Network — Our 4G LTE prototype implementation was driven by factors discussed in
Section 2.3 however we are currently testing 5G for deployment in both the LEL private
network and the JIT Cloudlet prototype. We expect the 5G New Radio to give us significant
reduction in end-to-end latency for edge-native applications in both environments.
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* Realtime Collaboration — Many JIT Cloudlet use cases depend on realtime collaboration
between the users on-site. Many common realtime collaboration tools (e.g., Zoom, MS
Teams) require broadband backhaul to the cloud. We are implementing a WebRTC [12] JIT
Cloudlet service to support this on-site collaboration requirement.

* Integrated Edge-Native Application — The edge-native applications used in the prototype
demonstrate the JIT Cloudlet design goals but they do a poor job of illustrating the use
cases. We are currently developing two demonstration edge-native applications showcasing
the search and rescue and the remote concert use cases.

* Deployment Recipe — To mitigate the amount of DIY work necessary to bring up a new JIT
Cloud instantiation, we are working on an Ansible and Helm based deployment recipe.

» Form Factor — As discussed above, our prototype did not meet the weight and space KPI. We
are beginning to look at other system form factors that may bring us closer to these goals.

3 Future Work and Opportunities

This section discusses future opportunities in three areas: extensions to the current prototype
platform, technologies that have potential value to future JIT Cloudlets, and business and
ecosystem issues relevant to adoption of JIT Cloudets.

3.1 Prototype Extensions

We did not validate the prototype in a number of important areas for JIT Cloudlet solutions. These
are opportunities for future work by us or others.

* Realistic RAN deployment — our prototype includes only a single indoor eNodeB. The
defined use cases are, for the most part, outdoors and distributed. There are sure to
be complexities in deploying multiple geographically dispersed eNodeBs in a typical
deployment environment. Three significant complexities will be:

— Deploying fronthaul from a distributed eNodeB to the Cloudlet. A fixed wireless
approach is likely to be the only practical method for any eNodeB distant from Cloudlet
but engineering both wireless access and backhaul on the fly will be challenging.

— Physical deployment of the radios at an elevation sufficient to achieve sufficient area
coverage. Radios mounted on telescoping poles are the likely solution however testing
in a realistic environment is necessary to validate practicality.

— If radios are temporary and portable, then maintaining the correct radio location
information with the CBRS SAS service provider may be complex. Spectrum licensing
approaches beyond CBRS were not examined.

* Operations and management — the prototype is managed using the discrete management
capabilities of each component (e.g., a separate management console for Magma, eNodeB,
router, latency monitoring, etc.). As a prototype, this approach was sufficient. However, a
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3.2

3.3

production solution would call for a more integrated and planned approach to operations and
management.

Real applications — our test applications are “toy” applications that exercise key prototype
capabilities. A full use case specific solution would require a more complete and production-
ready set of applications tested for load, performance, reliability, and security.

ORAN - The lack of a 5G JIT Cloudlet meant that we could not explore using ORAN in
our prototype. Conceptually at least, running the Centralized Unit (CU) and possibly the
Distributed Unit (DU) in the Cloudlet’s Kubernetes cluster would further the architectural
consistency and integration of the solution. Understanding the performance trade-offs of
this approach would also be informative. For example, what is the impact of running the DU
on the same system as, say, a graphics intensive augmented reality application?

Technology Evolution

* Network slicing — given the small scale of JIT Cloudlet deployments and the diversity of

workloads in a given deployment, we hypothesize that there may be value for 5SG network
slicing to provide differential quality of service for different workloads. For example,
we could envision a network slice for voice communications, another for real-time video
analytics, and another for drone flight control. On the other hand, the small scale and low
capacity requirements for applications may make specialized QoS functionality unncessary.
Validating these ideas requires a 5G network enabled with network slicing. We expect to
follow up in this area when we have upgraded our prototype to 5G.

SD-RAN — Software Defined Radio Access Networks can extend the JIT Cloudlet architec-
ture even further into the network. Coupled with ORAN, the RAN can become yet another
building block of an open solution. As SD-RAN projects mature, integration into a JIT
Cloudlet will become a natural next step.

Device offload provisioning — When a JIT Cloudlet provides compute offload resources to
connected devices, the configuration of those resources can be done statically during initial
service provisioning or dynamically as the connected device requires them. We explored this
type of dynamic provisioning in 2013 [25]. We believe this approach could be valuable in
JIT Cloudlets where it is not possible to provision from a remote cloud.

Cross-tier orchestration — In multi-JIT Cloudlet use cases, the orchestration of application
resources across devices, users, cloudlets, and cloud-based services becomes more compli-
cated and dynamic. Integration of a cross-tier orchestration system like Sinfonia [42] will
likely be needed.

Business and Ecosystem

Security and privacy — the unique nature of the JIT Cloudlet supply chain and deployment
environments warrants a better understanding of the possible vulnerabilities and threats in
the JIT Cloudlet solution. In particular, establishing a chain of trust through a disaggregated
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supply chain, while not unique to the JIT Cloudlet, it is a salient concern especially given the
high open-source content. Also, since the JIT Cloudlet will often be deployed in locations
without secure physical access, direct physical attacks are a greater threat than in, say, a data
center deployment. Time and expertise has so far limited our ability to explore these areas.

* Mobile operator managed JIT Cloudlets — Mobile network operators could offer JIT
Cloudlets-as-a-Service to customers for intermediate or long term deployment in areas where
edge computing has not already been deployed. These services can enable operators to
deploy edge computing gradually without the need for large infrastructure capital projects.
It can also provide an agile approach to responding to evolving customer needs for edge-
computing. Their scale, expertise, customer support infrastructure, and access to spectrum
beyond the CBRS GAA range may give mobile operators greater reach than that of a private
network operator.

4 Conclusion

The Just-in-Time Cloudlet is a new approach to addressing longstanding needs to rapidly and
temporarily deploy applications in places without mobile access networks and backhaul to the
internet. This approach is enabled by academic and industry innovations that can be broadly
labeled “Cloud Native at the Edge”. Our open JIT Cloudlet reference architecture and prototype
show the feasibility and possibilities of the approach. But, much work remains for application and
solution developers to create production solutions for JIT Cloudlet use cases.

Our work also demonstrates the critical importance of two specific recent innovations — the
CBRS GAA licensing model and the Magma open-source mobile wireless core. Without the
former, the private network approach that the JIT Cloudlet requires would not be possible. Without
the latter, the integration of the mobile network and applications would not be possible using only
open-source components.
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5 Appendix A. Prototype Hardware and Software Configura-
tions

] Cloudlet Hardware

Adlink AVA Developer Platform

Ampere® Altra® 32-core SoC (Arm Neoverse N1 architecture)

4x 10GbE and 1x GbE LAN ports

32GB DDR4 memory, 2x128GB NVMe M.2 storage

64 PCle Gen4 lanes (3 x16, 2 x4, and 2 M.2 slots)

* Open source firmware (EDKII bootloads with TianoCore/UEFI)

Arm SystemReady SR V2.1 certified, SOAFEE-enabled

Accelerated Compute

¢ NVIDIA GeForce GTX 1080ti

] Cloudlet Software

* Operating System: Ubuntu 20.04
* Docker v20.10.21

* Kubernetes v1.19.1

* Helm v3.3.4

* Magma v1.9.0

* OpenScout

— github https://github.com/cmusatyalab/openscout arm64 branch (commit: €89a898)
— dockerhub cmusatyalab/openscout:arm64 (digest: 811f408c815a)

* OpenRTiST

— github https://github.com/cmusatyalab/openrtist, arm64 branch (commit: b87a3bc)
— dockerhub cmusatyalab/openrtist:arm64 (digest: 09d2904e64d1)

Table 7: Cloudlet Platform Specifications

22



Management System Hardware

Dell Latitude 5420 Rugged Laptop

e Intel® Core™ 17-8650U CPU @ 1.90GHz
* 16GB DRAM

* 512GB NVMe SSD

] Management System Software

* Operating System: Ubuntu 20.04

Docker v20.10.21

Kubernetes v1.24.10

Helm v3.11.2

Magma v1.9.0

Table 8: Management System Specifications

] Other Hardware

eNodeB Baicells Neutrino 430

Router GLiNet GL-MV 1000

Switch Belkin 5-port ethernet switch

User Equipment

— Google Pixel4
— Multitech MultiConnect® microCell Cellular Modem (MTCM?2) USB Dongle

Table 9: Other Hardware
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