
An Angular Parameterization for Manifold Connections

Oscar Dadfar

CMU-CS-22-105

May 2022

Computer Science Department

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee

Ioannis Gkioulekas (Chair)

Matthew O’Toole

Submitted in partial fulfillment of the requirements

for the degree of Master of Science.

Keywords: rendering, path connections, optimization, reflections, refractions

Abstract

Forming light paths connecting two points in a scene, so called direct connections, is a

key building block of modern Monte Carlo rendering algorithms. For example, path tracing

forms direct connections between each point on a traced path and a light source; and bidi-

rectional path tracing forms direct connections between all pairs of vertices on two traced

paths. Forming direct connections through one or multiple specular or refractive surfaces

is particularly challenging: Any such connection must satisfy the laws of specular reflec-

tion or refraction at each of its vertices; as a result, valid direct connections occupy a very

low-dimensional manifold within the space of all possible light paths, motivating the name

manifold direct connections.

Existing works on forming manifold direct connections treat this as an optimization

problem: They use gradient descent to search for points on specular reflective or refractive

surfaces that, when used to form a direct connection, the resulting path satisfies the laws

of specular reflection or refraction, respectively. All of these works take advantage of the

fact that these laws are efficiently differentiable, and thus lend themselves to search through

gradient-based optimization.

We adopt the optimization approach for forming manifold direct connections, with an

important difference: Instead of optimizing over surface points such as in previous works,

we optimize over the initial direction of the direct path. This reparameterized optimization

problem offers a number of advantages. First, it makes it possible to form direct connec-

tions through multiple specular reflective and refractive surfaces. Furthermore, it allows

forming direct connections through different surface representations, including explicit (e.g.,

polygonal mesh), implicit (e.g., signed distance function, neural network), and point cloud

representations. Finally, it provides a continuous parameterization of the search space (space

of directions), which helps accelerate the convergence of gradient-based optimization.

Contents

1 Motivation 1

2 Background 3

2.1 Scene Definition . 3

2.1.1 Geometry . 3

2.1.2 Materials . 3

2.1.3 Lighting . 5

2.2 Forward Ray-tracing . 6

2.3 Next-Event Estimation . 6

2.3.1 NEE With Delta BRDFs . 7

3 Contributions 9

4 Related Works 10

4.1 Manifold Connections . 10

4.2 Refractive Sampling . 11

5 Forward Path Rendering 13

5.1 Path Definition . 13

6 Backwards Path Rendering 17

6.1 Intersection Derivatives . 18

6.2 Geometric Derivatives . 20

6.3 Computational Graph . 22

6.4 Polar Coordinates . 23

6.5 Optimization . 24

6.6 Sampling Probability . 25

7 Trial Systems 26

7.1 2D Interactive Interface . 26

7.2 3D Interactive Interface . 27

8 Rendering 30

8.1 Single-Bounce System . 30

8.2 Multi-Bounce System . 36

9 Future Work 38

9.1 Generalized Loss . 38

9.2 Screen-Space Curvature . 38

9.3 Implicit Surfaces . 38

9.4 Heterogeneous Refractive Material . 39

10 Bibliography 40

1 Motivation

Raytracing is an expensive graphics process where we aim to simulate physically-accurate

light interactions in a scene in order to render an environment. The term ray-tracing comes

from the assumption that light is a particle and follows linear paths when bouncing off

surfaces. Allowing light to bounce around our scene allows for realistic color blending effects,

where when a light particle hits a red surface and then a yellow surface, a little of the red

surface is now blended into the intersection point on the yellow surface. We refer to light as

signal, where each bounce carries a new signal of color information blended in with previous

bounces before hitting the camera.

Real-life lighting involves millions of light particles bouncing around illuminating the

scene, yet most of these light rays do not make it into our camera. Therefore we trace

rays from the camera to the light source to minimize wasted compute resources. If when

raytracing, we terminate our bounces on a diffuse surface, we can aim one last ray towards

the light source to see if we get any light signal that we can send back to the camera. Yet

it is not always guaranteed that a camera ray can reach a light source due to occlusion from

geometry around the light source.

Figure 1: Raytracing with occlusion from surrounding geometry makes for a difficult

process in propagating signal from the light source back to the camera. Only a select few of

the rays ever reach the light.

In these cases like in Figure 1, we accumulate no light along our ray, giving us no light

or signal for a given pixel and ultimately wasting a ray. Terminating on a delta-BRDF such

as reflective or refractive materials complicate this even more as we are not able to pick the

next path to be towards the light without violating the object’s BRDF. It becomes even

1

more increasingly difficult to render scenes with multiple mirror and glass objects, high-

lighting the need for an algorithm to help us locate paths from a diffuse origin to a light

source through multiple refractive materials. The idea is if we terminate on a reflective or

refractive material, we should be able to backtrack to the last diffuse surface interaction

and choose a new ray direction that passes through the same or similar reflective and re-

fractive materials that will reach the light source. We predict this will allow us to render

interesting scenes full of specular objects with much fewer samples than regular path tracing.

Figure 2: Light rays travelling through refractive lenses in multi-lens cameras.

Such an algorithm would be useful for rendering scenes with many delta-BRDFs, but

also is useful for simulating paths into multi-lens cameras [20] like in Figure 2 and for vision-

based tactile sensors, [17] where a ray needs to pass through multiple refractive lenses before

hitting a point on a sensor. We could use such an approach to find a light path through the

lenses that allow it to reach a given target on the camera sensor the same way we optimize a

ray hitting a light source when going through multiple reflective and refractive materials. We

can also use this approach for rendering Schlieren imaging [13] where we can converge paths

through refractive materials towards light sources to increase signal in the images. All of

these applications involve light transport through multiple specular reflective and refractive

surfaces, and continuously-refractive media.

2

2 Background

2.1 Scene Definition

We will first formulate the raytracing problem. For the sake of simplicity, we will assume

a scene file is comprised of geometry, materials, and lighting.

2.1.1 Geometry

The geometry of an object can be either implicit or explicit. Implicit geometries deal

with mathematical functions that are evaluated to determine whether intersection with an

object occurs. Some examples are signed distance fields [9] and constructive solid geometry

[3] that are comprised of analytical functions. Points on the outside of SDFs evaluate to

positive values while points on the inside of SDFs evaluate to negative values. We get an

intersection when the SDF evaluates to 0. We can use ray-marching [4], where we iteratively

check the SDF and push forward until we reach a field value of 0 as in Figure 3.

Figure 3: SDF of a bunny. We intersect the implicit geometry via ray-marching by

evaluating the SDF and taking a step forward until we reach the boundary.

Explicit geometry is comprised of discrete values that do not need to be analytically

solved for. This includes point clouds and, most commonly, triangulated surfaces. We often

represent geometry as triangles for their flexibility in capturing curves in surfaces and how

quicky we can perform intersection tests on them. This highlights the tradeoff between

implicit and explicit geometry: implicit has a lower memory bandwith while requiring more

computations for determining intersection, while explicit geometry is more memory-intensive

for less computation.

2.1.2 Materials

There are thousands of possible materials we can use, though for the sake of simplicity we

will focus on the three most popular materials: pure diffuse, reflective, and refractive. These

3

materials are represented by their bidirectional distribution functions (BRDF) in Figure 4

that visualize the probability of an outgoing ray given the incoming ray in a material. For

diffuse materials, the probability of an outgoing ray is uniform around all directions, making

it independent of the incoming ray. If we consider the the hemisphere around the point

of incident, then the probability of a ray is given by the inverse of the surface area of the

hemisphere, or 1
π
for short.

Figure 4: Common BRDFs.

Reflections and refractions are known as delta BRDFs because their distribution functions

replicate the Dirac delta distribution. The BRDF is zero in all locations but one. For

a reflective BRDF, the outgoing ray is a perfect reflection of the incoming ray about the

surface normal of the incident surface. The equation for reflection is given as:

vi = v
||
i−1 − v⊥i−1 (1)

= (vi−1 − nicosθi−1)− nicosθi−1 (2)

= vi−1 − 2nicosθi−1 (3)

= vi−1 − 2ni(vi−1 · ni) (4)

where v
||
i−1 is the parallel component of the incoming ray to the surface, and v⊥i−1 is the

perpendicular component in Figure 5, where we aim to flip the perpendicular component of

the ray. ni is the incident surface normal.

Figure 5: Ray components.

We represent refractions via Snell’s law, where rays bend into the material [10]. When

intersecting a refractive material, there is a special index of refraction term that tells us how

much the ray bends towards or away from the surface normal. In dense materials, the index

of refraction is higher, meaning the light bends more towards the normal. This index is a

scientific ratio measuring how dense the material is relative to air, so naturally air will have

an index of refraction of 1.

4

vi =
η1
η2
v
||
i−1 − ni

√
1− ||v||i ||2 (5)

=
η1
η2
(vi−1 − cosθi−1ni)− ni

√
1− sinθ2i (6)

=
η1
η2
(vi−1 − cosθi−1ni)− ni

√
1− (

η1
η2
)2(1− cosθ2i−1) (7)

=
η1
η2
(vi−1 − (vi−1 · ni)ni)− ni

√
1− (

η1
η2
)2(1− (vi−1 · ni)2) (8)

In the above equation η1 is the index of refraction of the medium that the ray currently is

in, and η2 is the index of refraction that the ray is entering. We take the ratio to measure the

change of difference in the index of refraction. The parallel component of the ray bends by

the index of refraction ratio given by the term η1
η2
v
||
i−1, whereas the perpendicular component

is computed by Snell’s law as −ni

√
1− ||v||i ||2.

In the event that 1 − ||v||i ||2 < 0, then we cannot compute the square root term and

fail to compute the refractive outgoing ray. If we expand the terms out, we can rewrite the

term under the square root as 1− (η1
η2
)2(1− (vi−1 ·ni)

2). Both vi−1 and ni are normalized, so

(vi−1i ·n)2 ≤ 1, and thus 1 ≥ (1−(vi−1 ·ni)
2) ≥ 0. So in order for 1−(η1

η2
)2(1−(vi−1 ·ni)

2) < 0,

η1
η2

must be greater than 1. This occurs when the incoming index of refraction η1 is much

larger than the outgoing index of refraction η2, or in other words, we are leaving a more dense

for a less dense material. When this happens, the ray reflects instead of refracts, gaining the

name ’total internal reflection’ since reflection is the only thing we can do. This is common

in water effects when the light hits the surface, but the change in density is large enough

that the ray reflects back into the water.

2.1.3 Lighting

There are several possible lights available to us: point, area, directional, and environment

lighting. For simplicity, we will focus on supporting point and area lights in Figure 6 for they

have discrete physical locations in space with intersectable geometry, whereas directional and

environment lighting are represented at infinity.

Figure 6: Point light and area light.

5

2.2 Forward Ray-tracing

In order to simulate global illumination effects such as color blending and delta-based

BRDFs, we employ the standard ray-tracing equation given as [1]:

Lo(x, vo) = Le(x, vo) +

∫
H2

fr(x, vi, vo) Li(x, vi) cosθ dvi (9)

where Lo(x, vo) represents the radiance at point x in the outgoing direction vo. Le(x, vo)

represents the emitted radiance emitted at point x in the outgoing direction vo. fr(x, vi, vo)

represents the material’s BRDF function at location x with incoming direction vi and out-

going direction vo. Li(x, vi) represents the incoming radiance at point x in the incoming

direction vi. cosθ represents the cosine of the angle between the outgoing direction vo and

surface normal n at point x. Finally, H2 represents the hemisphere of valid directions at

point x. We choose to integrate over the hemisphere, effectively considering all possible

directions in the diffuse case. For delta BRDFs such as glass and mirror, it is sufficient to

consider the single direction the ray is valid in.

The rendering equation is recursive in nature [2]given that the radiance Lo along bounce

i is a function of future radiance values Lo along bounce i + 1. Yet we cannot infinitely

recurse on this function due to memory and time limitations. We define ray-tracing as an

n-bounce system, where, after n bounces, we terminate the system and back-propagate the

radiance values to previous bounces. We can further use Russian Roulette to help terminate

in instances when the future light contributions are predicted to be low.

It is important to note that most objects in our scene do not emit radiance given by

the term Le(x, vo). In fact, the only things that would do so are the lights in our scene. If

we trace rays for n bounces, but are not able to hit any lights during that time, then we

back-propagate no outgoing radiance through the points, thus producing zero signal.

To fix this, we force the last bounce towards the light source. Recall with diffuse materials,

our outgoing rays can go in any direction along the hemisphere centered around the surface

normal. In the general case, we would sample a random ray for our next recursive bounce,

but if we exceeded the max number of bounces, then our final ray we can pick to be the

direction straight to the light source. This helps us reduce the number of incidents where

light paths gather no radiance by forcing the last ray to the light source so as to attempt to

get some signal from the last bounce.

2.3 Next-Event Estimation

In order to gather even more radiance from the light source along rays, we can use next-

event estimation [7] to force more rays towards the light source. Every time we hit a diffuse

6

surface in Figure 7, we can generate the next ray bounce according to the current material’s

BRDF, while generating a second ray bounce towards the light source. This ensures that

every diffuse bounce samples radiance from the light source in the instance that no occlusion

between the bounce and light source exists.

Figure 7: NEE with diffuse surface interactions. Each bounce we can trace a ray as we

normally would while tracing a second ray to the light source.

2.3.1 NEE With Delta BRDFs

The issue with NEE arises when we have delta BRDFs with reflective and refractive

surfaces. Recall with diffuse BRDFs, we can choose any direction for our next bounce. We

no longer have that flexibility with delta BRDFs, and thus cannot force rays towards the

light source each time we intersect a delta BRDF surface. To make matters worse, if we reach

our last bounce in our n-bounce system and we intersect a reflective or refractive surface,

we no longer can force our last ray towards the light source since that would invaldate the

BRDF at that surface. Up until now, we have been optimistic that the last surface we hit is

a diffuse surface, but the reality is that delta BRDFs make it more difficult to sample light

effectively.

7

Figure 8: NEE with specular surface interactions. Intersections with delta BRDFs do not

allow us to sample paths towards the light without violating the BRDF.

This can be seen with Figure 8, where out of our 6 bounces, 3 interact with delta BRDFs,

preventing us from doing NEE in half of the bounces. The more reflective and refractive

bounces we have, the less NEE samples we can take. This combined with occlusion from

geometry obstructing the light source beckons the need for a better path finding algorithm

that can use reflective and refractive surfaces to guide light paths more towards the light.

8

3 Contributions

The goal of this project is to develop algorithms for efficiently computing light paths

connecting two points (e.g., a source and a sensor) through a sequence of specular and

refractive surfaces. This problem is a generalization of Alhazen’s problem, which aims to find

a connective path between two points through a third intermediate point that lies on a convex

reflective material, such as a sphere. Our work underlies modern Monte Carlo rendering

algorithms for simulating light transport in scenes containing mirror-like and transparent

objects. To realize this approach, we work on the following aspects of the problem:

1. We derive a differentiable formulation for specular ray tracing, in terms of only basic

geometric queries (intersection, normal, and curvature queries) supported by most

commonplace geometric representations.

2. We implement our approach in an existing physics-based renderer, Mitsuba 2 [16], and

incorporate it into its implementation of path tracing and bidirectional path tracing

rendering algorithms.

3. We use our implementation to render images of scenes full of specular and refractive

objects, specified through a variety of geometric representations, including point clouds

and neural implicit representations.

9

4 Related Works

4.1 Manifold Connections

The task of finding manifold connective paths between surface points through various

intermediate materials is a long-sought after problem in rendering. One of the early works

on differential ray tracing for sequences of specular surfaces by Mitchell and Hanrahan [5]

provide an analytical solution for computing the derivative of the normal, also known as the

curvature. They are also one of the earlier papers to discuss automatic differentiation in the

context of path optimization. Chen and Arvo [8] introduced perturbations in specular paths

along curved surfaces in order to compute nearby optical paths for fast approximations of

specular surfaces, building on the field of differential rendering for path optimization. They

compute a second-order Taylor expansion of the hit point xi as a linear system in order to

compute the next-step hit point in order to optimize a path between two points with xi in

the middle.

For longer paths more than a point long, Jakob and Marschner [12] explores manifold

specular paths as a Monte Carlo problem. They define paths as a set of points and compute

the contribution per pixel as:

f(x1...xn) = L ∗W
∏
i=1

f(xk, xk+1)G(xk, xk+1)

where L is the emitted radiance, W is the pixel’s importance, f is the BRDF at xk

and G is the geometric factor. They generalize this geometric factor to be the derivative

of projected solid angle at one vertex with respect to area at the other vertex. We can use

chain rule to create a geometric factor for multiple bounces as the solid angle at one vertex

with respect to the area at its successive vertex, and the area of the successive vertex with

respect to the area of the next vertex, and so forth.

They define a specular manifold set S as all the specular components in the path and add

the constraint that all the half-vectors of the incoming and outgoing rays to this point must

be colinear with the normal. The Implicit Function theorem allows them to reparametrize

a continuous set of specular points in terms of any two points and gives the derivative of

all these points with respect to these two points. For simplicity, we use the endpoints of a

specular path. This way, we can update one of the two endpoints while keeping the other

fixed. We denote the gradient as C, which is the derivative of the constraints. We can use

this data to help compute the solid angle, which in turn helps us compute the generalized

geometric factor of our points needed for computing the pixel contribution.

The algorithm for this is as follows: assuming the initial and end points are diffuse, offset

10

the initial position by some amount. Using C, we can identify how other specular points

are expected to change when we change one of the endpoints. This step in each point is

along the path perpendicular to the surface normal, which we correct for by projecting it

back to the surface. We walk over the specular chain, updating the points until we reach

our first diffuse point, which is now also offset. We can then run our algorithm again on the

successive chain to reconnect the path back to the next available diffuse point. Thus, we

need knowledge of the specular chains around the chain we are trying to update.

They formulate this algorithm as a Markov chain problem, where a step is taken pro-

portional to the contribution function above where we try to maximize the pixel’s signal.

This proceeds as an iterative Newton method that can be backtracked in case of error. They

extend their work to also account for glossy materials by modifying the constraints to be

equal to some offset to capture the offset from ideal specular transport.

Further work by Zeltner et al. [19] builds on this by citing that different points of

specular contact converged to different local optima, and that the contribution of the optima

specular path should be weighted by the area of the search space that, when manifold-

walked, produces the optima. Between any 3 points (x1, x2, x3) where x2 is specular, their

algorithm is as follows: pick an initial guess for x2 and solve using manifold-walks, then

continue to sample for new values of x2 and solve via manifold-walk until the same point is

converged upon. At each step, update the probability of each solution following a Bernoulli

distribution. While this produces an unbiased solution, it is slow to compute. A biased

but lower variance solution would instead allocate M different values for x2 and solve via

manifold-walk, counting how many times each local optima is converged to estimate the

probability of selecting from each region.

To render specular geometry with normal maps which may introduce a lot of noise into

the convergence space, they alter their algorithm slightly to sample a normal offset from the

normal map and keep the offset constant during the manifold walk of an iteration. This does

not affect convergence while taking into account various normal when searching for local

optima. To render glints, they similarly solve for a scene without glints, and refine their

walk by adding glints back in, confining their search space to a small parallelogram based

on ray differentiation.

4.2 Refractive Sampling

Walter et al. [11] extends this work by solving for the refractive paths from a point L

outside a material to a point V inside a refractive material by computing the intersection

point P that lie on the surface. Their results are targeted for triangular meshes by assuming

the half vectors of PV and PL are colinear with the surface normal at P and use a 1D

11

Newton-Raphson iterative solver to find the target point x.

Pediredla et al. also found that refractive maifold paths can also be used to solve paths for

refractive materials in heterogeneous index-of-refraction materials [18]. These heterogeneous

refractive indexes cause light to bend due to the eikonal equations. These equations cannot

be analytically solved for and must be solved for numerically using gradient descent. They

case on two scenes: when one point is in the material and another is on the edge, and when

both points are inside the material. The former is easier to solve for, allowing for a simpler

computing pass. Given initial points x0 and y, and a varying refractive index n(x), the goal is

to determine an initial velocity v0 such that x∗ = y where x∗ is the result of solving the initial

boundary problem for arc-length s∗. This allows us to optimize the loss L = 1/2||x∗ − y||2

by taking the derivative of L with respect to v0. This requires us to know ds∗

dv0
, which is

possible since x∗ lies on the boundary, so s∗ depends on v0 for all possible values of v0. For

the second case, we let s = argminxs ||xs − y||, which translates to optimizing the implicit

surface (xs − y)Tvs = 0, giving us a way to relate s∗ to v0. We can combine these equations

to perform symplectic integration on the ray’s position and velocity.

Computing an unbiased estimate also requires summing the contributions from every

path, which in turn requires knowing the probability of a path for MC estimation. Zeltner et

al. take a similar approach to specular manifold sampling [19] by solving for an initial path

and continuing to solve random initializations until the same path is found, in which case

a probability based off a Bernoulli distribution can be estimated. They also propose taking

multiple samples to estimate multiple path probabilities to combine with MC, terminating

after some Russian roulette probability.

12

5 Forward Path Rendering

Rendering scenes with multiple delta BRDFs can lead to problems where rays terminating

on these same delta BRDFs cannot construct paths from the final hit point to the light source.

Recall that with diffuse BRDFs, we can essentially pick any path to the light source. We

extend this idea by terminating rays earlier at a diffuse object, and instead seek to search for

a final path to the light source, noting that the final path is not always a linear connection

between the object and light due to occlusion from objects that lie between the two. It may

instead be the case that there exists a path from the sensor to the light that hits a mirror

surface along the way. We aim to develop algorithms for efficiently finding these light paths

in Figure 9 through reflective and refractive materials.

Figure 9: Multiple reflective paths between a source and target point.

5.1 Path Definition

We formulate the rendering problem as a series of linear functions defined by an origin

x, unit direction v and time t along the unit direction. Together they comprise a set of line

segments illustrated below, where our goal is to minimize the distance between the target

light source and any point along the line segments.

13

Figure 10: Forward path tracing formulation.

· k [1x1] total number of simulated bounces

· i [1x1] current bounce in range [0, k]

· x0 [1x3] initial point

· v0 [1x3] initial direction

· xi [1x3] point of contact on surface i

· vi [1x3] outgoing direction on surface i

· Gi(xi) [1x1] implicit geometry function of geometry i at surface point xi

· ni(xi) [1x3] normal for geometry i at point xi (shorthand ni)

· s [1x3] sensor point (target)

· s∗i [1x3] closet point to s between points xi and xi+1 (xi+1 may not exist)

We intersect a geometry at point xi if Gi(xi) = 0. This allows us to take normally

explicit geometric representations such as triangles and points and rewrite them as implicit

representations.

Gsphere(x, (o, r)) = ||x− o||2 − r2 (10)

Gplane(x, (o, n)) = (x− o) · n (11)

Where (o, r) are the sphere’s origin and radius respectively, and (o, n) are the plane’s

origin and normal respectively. We can think of a point as a special case of a sphere with

radius r = 0. Furthermore, we can think of a triangle as a special case of a plane with the

added condition that the intersection point x lies within the range of the triangle’s three

vertices (v0, v1, v2) which we can compute by checking the barycentric coordinates (α, β, γ).

14

Figure 11: Planar assumption for triangles. We intersect a triangle using the plane formula

while also checking the barycentric coordinates to check if inside triangle.

To get the normals for the above shape in Figure 11, we can take the derivative of the

implicit geometry functions with respect to the intersection point x. For the sphere, we have

to normalize the result, which adds an extra division term to the derivative.

dGsphere(x, (o, r))

dx
= 2 ∗ (x− o) (12)

Nsphere(x, (o, r)) = (x− o)/||x− o|| (13)

dGplane(x, (o, r))

dx
= n (14)

Nplane(x, (o, n)) = n (15)

This gives us the following equation for a ray:

xi = xi−1 + vi−1 ∗ ti−1 (16)

At each step i of our render, we generate a ray at origin xi and direction vi into our scene and

find the closest intersection time ti by checking intersections with the geometric functions of

all primitives given by Equations 10 and 11.

We can use Equation 16 to get the new ray origin xi+1. We check the material type of the

intersected geometry, which tells us how to compute the next direction vi+1. For reflective

and refractive materials, we use Equation 4 and Equation 8 respectively. Both equations

require the geometry’s normal, which we can get from Equations 13 and 15. This gives us a

recursive way of computing the sequence (xi, vi, ti) for k bounces.

Our goal is to minimize the distance between our best s∗i for some i and the target s,

which in this case is our light source.

L = mini∈[0,k]||s∗i − s||2 (17)

This ends up as a search problem, where we consider the L2 norm squared of every single

15

ray i we trace up until termination. To compute s∗i for a given ray, we solve for the following

equation:

s∗i = xi + vit
∗
i (18)

Where t∗i is computed as:

t∗i = (s− xi) · vi/||vi||2 (19)

= (s− xi) · vi/(vi · vi) (20)

It is important that t∗i is clipped between [0, ti] so that it falls within the bounds of the the

line segment that is the ray at bounce i. When i is the final bounce, we set ti = ∞. Once

we compute ti for the ray i, we can the compute the loss Li from Equation 17 associated

with that ray, taking the min of all Li’s as we traverse each ray.

16

6 Backwards Path Rendering

Our goal is to maximize the radiance per pixel, which we can do by finding paths that

reach the light source. For diffuse surfaces, we can use NEE to sample from the lights when

no occlusions exist between the current hit point and the light source. Yet for delta BRDFs,

we have to carefully pick paths that allow us to reach the light source. This is possible by

setting the target point s as the light source, and optimizing for the initial ray’s direction v0

that minimizes the loss function. In other words, we aim to compute dL
dv0

.

Figure 12: NEE failure case. Rays from the first diffuse bounce cannot reach the light

source due to occlusion from other scene geometry.

Rather than having s be a point on the light like in Figure 12, we can also have it be

another point on a diffuse surface. If we look at the above scenario, we can use NEE after

our first diffuse bounce to measure any emittance from the light, but quickly find that a

mirror in our way occludes any sort of light from reaching us. The question now is whether

there is another reachable objective for us to optimize.

The solution is to find our way to another point on a diffuse surface, whether it be the

current surface or another surface, so that we can try NEE this time from that point. This

idea extends further into bidirectional path-tracing [6] where we aim to connect two rays

with each other, but there may be delta-BRDF geometry that stands in the way of their

connection, so we aim to find a connecting path between the two ends of the rays.

We can set our initial position x0 to be the intersection point on the current diffuse

surface, and the target point s to be a random point on another diffuse surface. We then

initialize a random direction v0 and attempt to minimize the loss L so that we reach the

target point s as close as possible. Sometimes it may be a direct connection, other times it

may be several bounces to the point. It all depends on how we initialize v0.

17

Figure 13: Retargeting paths to other diffuse objects allow us to continue NEE without

occlusion. Manifold connections do not need to be between a point and a light source, but

may also be between two surface points.

Figure 13 shows two examples of possible paths connecting to a target point on the

rightmost diffuse surface. From here, we attempt NEE again and find we are able to sample

the light.

6.1 Intersection Derivatives

dL

dv0
= 2(s∗i∗ − s) · ds

∗

dv0
(21)

We start by computing the derivative of L with respect to v0 from Equation 17. Here we are

only interested in the rays in range [0, i∗], where i∗ < k is the ray bounce with the closest

point to s that lies on it. All other rays after that do not contribute to the computational

graph that is used to compute the loss L, so we can ignore them.

ds∗

dv0
=

dxn

dv0
+

dvn
dv0

t∗ + vn
dt∗

dv0
(22)

We then use chain rule to compute the derivative of Equation 18. This requires us to know

18

several derivatives at this point.

dt∗

dv0
= [((s− xn) ·

dvn
dv0

− dxn

dv0
· vn) ∗ (vn · vn)− (2 ∗ vn ·

dvn
dv0

) ∗ ((s− xn) · vn)]/(vn · vn)2

(23)

Derivative of Equation 20. This is a special case since the final time t∗ is computed differently

than other time values ti that come before.

dxi

dv0
=

dxi−1

dv0
+

dvi−1

dv0
∗ ti−1 + vi−1 ·

dti−1

dv0
(24)

Derivative of Equation 16. This is a similar format to Equation 22 because the original

function is recursive. xi−1 is used to compute xi and so forth.

Computing the derivative dvn
dv0

is a little more involved as it depends on the BRDF of

the intersection geometry Gi. Due to the simplification of our algorithm, we only consider

reflective and refractive surfaces in our derivatives. Any diffuse surfaces are neglected, be-

cause if we stumbled on a diffuse surface, we can reset our algorithm’s origin x0 to the diffuse

intersection point and continue our search from there.

dvi
dv0

=
dvi−1

dv0
− 2 ∗ n · (dvi−1

dv0
· n+ vi ·

dni

dv0
))− 2 ∗ dni

dv0
∗ (n · vi) (25)

The derivative of the reflective BRDF in Equation 4. Computing the derivative for the

refractive case is more complicated, so we will rewrite our refractive case in simpler terms.

cosi = (vi · n) (26)

ki = 1− (
η1
η2
)2 ∗ (1− cos2i−1) (27)

sqrtki =
√

ki (28)

vi =
η1
η2

∗ vi−1 − (
η1
η2

∗ cosi−1 + sqrtki) ∗ n (29)

Thus, we can compute the derivative for refraction by stitching together the derivatives of

its inputs.

dcosi
dv0

=
dvi
dv0

· n+ vi ·
dn

dv0
(30)

dki
dv0

= 2 ∗ η1
η2

∗ η1
η2

∗ cosi−1 ∗
dcosi−1

dv0
(31)

dsqrtki
dv0

=
dki
dv0

2 ∗
√
k

(32)

dvi
dv0

=
η1
η2

∗ dvi−1

dv0
− (

η1
η2

∗ dcosi−1

dv0
+

dsqrtki
dv0

) ∗ n− (
η1
η2

∗ cosi−1 + sqrtki) ∗
dn

dv0
(33)

19

The derivative of the refractive BRDF in Equation 8.

Getting the derivative for the time t with respect to the initial velocity v0 is a bit different

since we did not have any formal way to compute the intersection time t. Rather, we said

that the implicit surface function Gi must meet the constraint that Gi(xi) = 0. If we rewrite

xi in terms of other variables we know from Equation 16, we get the following:

0 = Gi(xi−1 + vi−t ∗ ti−1) (34)

We know that Gi(xi) = 0, and so any changes to xi must still ensure that Gi(xi) = 0. By

rewriting xi in terms of its components (xi−1, vi−1, ti−1), we suddenly have a ti−1 value to

work with, so we take the derivative of the implicit functions and its arguments while still

ensuring that their derivative equals 0 due to the previously mentioned constraint. We can

then isolate dti−1

dv0
as shown below.

0 =
dGi

dv0
· (dxi−1

dv0
+ ti−1 ∗

dvi−1

dv0
+ vi−1 ∗

dti−1

dv0
) (35)

dGi

dv0
· (vi−1 ∗

dti−1

dv0
) = −dGi

dv0
· (dxi−1

dv0
+ ti−1 ∗

dvi−1

dv0
) (36)

dti−1

dv0
= −dGi

dv0
· (dxi−1

dv0
+ ti−1 ∗

dvi−1

dv0
)/(

dGi

dv0
· vi−1) (37)

6.2 Geometric Derivatives

We need to know the geometric derivatives for the implicit surfaces in order to com-

pute the time derivatives. These values are similar to the geometric normals without the

normalization factor

dGi

dv0 sphere

= 2 ∗ (xi − oi) ·
dxi

dv0
(38)

dGi

dv0 plane

= n · dxi

dv0
(39)

We also need the derivatives of the normals with respect to the input direction v0.

dni

dv0 sphere
=

2 ∗ ((xi − o) · (xi − o)) ∗ dxi

dv0
− (xi − o) · (2 ∗ ((xi − o) · dxi

dv0
))

2 ∗ ((xi − o) · (xi − o))
3
2

(40)

dni

dv0 plane
= 0 (41)

20

What about intersecting triangulated surfaces like meshes? This is where our logic for

treating a triangle as a plane comes in. When we do our forward pass, we check if a point

intersects a triangle by checking if a point lies within the barycentric coordinates of the

triangle. Yet during our backwards pass, we only care about the implicit geometry derivative

dGi

dv0
, which for a triangle, is the same as a plane since we only care about the normal. This

leads us to the following assumption:

Figure 14: Planar assumption for normals on a triangle. Intersections on the same triangle

share the same normals, leading to discontinuities in both the normals and the resulting

gradients when switching between triangles.

For each triangle in Figure 14, we compute the normal by taking the cross products of

two edges. While this may work in theory, it means that our derivatives for the normals are

effectively 0 for all triangles, since a small change in position xi when computing the surface

normal N(xi) still gives us the same normal as seen by Equation 39. Thus, we make the

assumption that

dni

dv0 triangle
=

dni

dv0 plane
= 0 (42)

This gives us the nice property that a lot of values in Equation 25 and Equation 33 cancel

out when we compute the derivative, thus reducing the complexity of the computational

graph.

Yet this can also be an issue because it creates a non-continuous set of normals along

a mesh of triangles, which as a result creates a non-continuous set of derivatives dL
dv0

as we

can experience sudden jumps in the derivatives when switching between surfaces of the same

mesh.

To fix this, we can use a mesh with per-vertex normals that we can interpolate. Recall

when checking for the intersection of a triangle, we compute the barycentric coordinates

(α, β, γ). Then, when we want to compute the normal at a point, we can use these coordinates

that we get for free from the intersection check to interpolate their values to the current

intersection point. We still need to normalize the output, as a weighted average of normalized

21

values does not ascertain that the output will also be normalized.

n′ = α(x) ∗N(p0) + β(x) ∗N(p1) + γ(x) ∗N(p2) (43)

Ntriangle(x, (p0, p1, p2),) =
n′

||n′||
(44)

Now we have an equation for the normal that relies on the hit point x, which in turn relies

on the input direction v0. Taking the derivative, we get:

dn′

dv0
=

α(x)

dv0
∗N(p0) +

β(x)

dv0
∗N(p1) +

γ(x)

dv0
∗N(p2) (45)

dNtriangle

dv0
=

dn′

dv0

(n′ · n′)
1
2

−
(dn

′

dv0
· n′) ∗ n′

(n′ · n′)
3
2

(46)

The vertex normals (N(p0), N(p1), N(p2)) are constant features of the mesh, so we do not

differentiate them. Now when we go to process normals in Figure 15, we get smoother results

per step, leading to smoother derivatives of the loss, and an overall smoother search space.

Figure 15: Barycentric interpolation of per-vertex normals on a triangle. This approach

allows for smoother normals and smoother gradients between triangles on the same mesh.

6.3 Computational Graph

It is important to notice how we take a derivative of the normal with respect to the input

ray direction dni

dv0
. This is because the input point from the previous iteration xi−1 is used to

compute the normal for the current step ni that is then used to compute the outgoing ray

direction vi in Figure 16.

22

Figure 16: Computational graph of forward raytracing pass.

To walk through it in more steps, consider the computation graph for a current ray

iteration (x, v, t) and future ray iteration (x′, v′, t′). Either v is given to us from initialization,

or it is computed from the inductive case. We then intersect the scene geometry given the

ray constructed from (x, v) to get the time t. From there we can use Equation 16 to compute

the new hit point x′, which is also the same point we used to evaluate the implicit geometry

function G(x′) = 0 for a hit. This allows us to compute the normal N(x′) at the hit point

location using the appropriate geometric function. Then we compute the next iteration’s

direction v′ using either Equation 4 or 8 depending on the geometry’s BRDF. Now we have

a new ray (x′, v′) that we can perform intersection on to get the new time t′, and the process

repeats.

6.4 Polar Coordinates

Since we are optimizing for the direction v0, and since v0 is a unit vector, we can rewrite

it as a set of polar coordinates (θ, ϕ). We can convert from polar to cartesian coordinates

using the following formula:

x = sin(θ) ∗ cos(ϕ) (47)

y = sin(θ) ∗ sin(ϕ) (48)

z = cos(θ) (49)

23

And from cartesian to polar:

θ = acos(z) (50)

ϕ = atan2(y, x) (51)

ϕ = ϕ < 0 ? ϕ+ 2 ∗ π : ϕ (52)

Because Equation 53 is only of the two equations used during the forward pass, we only need

the derivative from polar to cartesian.

dvcart0

dvpolar0

=


cos(θ) ∗ cos(ϕ) sin(θ) ∗ −sin(ϕ)

cos(θ) ∗ sin(ϕ) sin(θ) ∗ cos(ϕ)

−sin(θ) 0

 (53)

From here, we will refer to dL
dv0

as the [1x2] gradient of the loss L in terms of the polar

coordinates vpolar0 = (θ, ϕ)

6.5 Optimization

Once we have a way to compute dL
dv0

we can optimize our initial direction using gradient

descent. We can use several types of optimizers, such as linear, adagrad [15], and adam

[14], while noting that the latter optimizers require more hyperparameters to configure. To

reduce the number of hyperparameters, we consider a simpler case of gradient descent [19]:

β = max(β ∗ βscale, βmax) (54)

v0 = v0 − β ∗ dL

dv0
(55)

In each step, we increase β by some small factor βscale = 1 + 1e−5 while ensuring it does

not go over some value βmax = 0.1, although these values change depending on the scale of

the scene. In the event that our loss L suddenly increases, either due to a change in surfaces

or too large a step, we half the value β to slow down the step process and allow itself to

comfortably search the small space around it in order to get back on track.

Our convergence criteria is simple: i) our loss L is less than some threshold Lthres, or

ii) we spend too many iterations searching and terminate with failure. The value of Lthres

again is dependent on the scale of the scene, as a scene with geometry twice as far apart

requires an Lthres value twice as large to get the same results. We find that in many of our

trials that 100 iterations of search is sufficient before terminating.

24

6.6 Sampling Probability

Once we converge to a good enough solution, we then need to sample the ray’s contribu-

tion to the incoming emittance in Equation 9. This requires us to know the probability of

selecting a ray, which we can rewrite in sampling terms as the following.

Lo(x, vo) = Le(x, vo) +
1

N

N∑
j=0

fr(x, vj, vo)Li(x, vj)cosθ

p(vj)
(56)

Recall that there may be several possible paths to the goal depending on how we initialize

v0. To correctly account for the contribution, we need to compute p(v0) which we can do by

Bernoulli trials [19].

Rather than taking hundreds of random samples of initial values v0, optimizing them, and

counting how many have similar paths to the original path, we instead run several random

samples of v0 that we optimize until we get a path similar to our first path. Our probability

is then the inverse number of trials.

25

7 Trial Systems

7.1 2D Interactive Interface

To test our system out, we begin by implementing our derivations in a simple 2D render

environment. For simplicity, our environment supports planes and spheres, as well as reflec-

tive and refractive materials.

Scene 1: Reflective spheres

Scene 2: Refractive spheres

Scene 3: Reflective box

Incident bounce points are shown as black dots, with a max depth of 10 bounces. Fol-

lowing that, the 11th bounce will not intersect any scene geometry but rather extend to

26

infinity. The orange dots represent the target and the closest point on any availble ray to

the target. In scenes where there is only one orange dot, the target and the closest point

overlap, signaling success. We also visualize a green and blue line from the ray’s initial

origin, where the green line visualizes the numeric gradient and the blue line visualizes the

analytic gradient. The numeric gradient is computed as:

dL

dθ
=

L(θ + ϵ)− L(θ)

ϵ
(57)

Keeping in mind we only consider the θ coordinate since we are in 2D. The numeric

gradient is computed by tracing two rays while the analytic gradient traces one ray and uses

the computation graph to produce the gradient.

In the above scenes, the blue line overlaps the green line, verifying that the gradients

in both cases match. In the first scene, the gradient is perpendicular to the ray’s initial

direction, showing that the system has not finished converging. In the two scenes following

it, the gradient overlaps the current ray direction, showing that any further steps will not

change the initial direction of the ray. It is in these later two scenes that we also see the ray

properly reach the target, even if the target lies inside a refractive material.

7.2 3D Interactive Interface

To verify our system further, we wrote a 3D test environment to test both (θ, ϕ) polar

coordinates. Again we take the numeric gradient as:

dL

dθ
=

L(θ + ϵ, ϕ)− L(θ, ϕ)

ϵ
(58)

dL

dϕ
=

L(θ, ϕ+ ϵ)− L(θ, ϕ)

ϵ
(59)

And compare it to our analytical gradient to verify them. Keep in mind this approach

requires three ray traces to compute the numeric solution.

27

Scene 1: Cornell box

We attach our target point to an object with drag controls so that we can move the target

around and watch our ray convergence adapt. In our simple Cornell box scene above, we test

its ability to converge when interacting with both reflective (green) and refractive (orange)

objects. The shades of green do not signify anything other than the scene is comprised of

multiple triangles rather than planes.

Scene 2: Bean

28

Scene 3: Torus

Our scene can also support any .obj files comprised of hundreds of primitives. The above

were files taken from 15-462’s media directory.

29

8 Rendering

We implemented our manifold path search algorithm in the research rendering codebase

Mitsuba 2 [16]. Mitsuba provides code for building accelerated geometric structures for

primitive querying, intersection tests for many explicit and implicic primitives, as well as

various material types with support for normal and displacement maps.

We extended the work of Zeltner et al. [19] by adding in the ray’s derivatives for the

backwards pass. Given a start point x0 and a destination light source s, we randomly

generate a direction v0 by sampling a random point on another object x1 and setting v0 =

norm(x1 − x0). Normally we would generate a random (θ, ϕ), but that results in many of

the rays not intersecting any surface, so instead we pick a direction v0 that is guaranteed to

hit some point x1 and continue tracing for k bounces. We then compute the gradient dL
dv0

and update v0 using the optimizations in Equation 55.

If the current loss L is better than some threshold Lthres, we consider the ray a success and

the compute the incoming radiance from it using Equation 9, approximating the probability

using Bernoulli trials.

8.1 Single-Bounce System

Below is a gallery of scenes showing the rendering results for different configurations.

30

Scene 1: Reflective Ring

Lleft
thres = 0.05, Lright

thres = 0.5, Lbottom
thres = 5.0

We perform single-bounce raytracing on a reflective ring above. One interesting feature

is that the ring geometry is actually a cylinder with an implicit geometric function, yet

despite that, we treat it as a discretized set of planes, where at each intersection, we set

the normal derivative dn
dv0

= 0, a similar property we said would be true for triangles under

the plane assumption. Despite this generalization, we still get good convergence results,

although we predict better results in fewer iterations had we taken the time to compute the

normal derivative for this implicit geometry.

Another interesting point is that, when we increase Lthres, we get more samples, as can

be seen by a larger ring of samples around the ring itself. This does not mean our algorithm

necessarily performs better, but instead it makes it easier to converge. A good analogy is

if we are trying to score a goal, instead of kicking the ball more accurately, we instead just

make the goal bigger. The reason such an approach works is when we consider the type of

light source we are trying to reach in Figure 17.

Figure 17: Setting a the loss threshold. A larger threshold allows for more possible rays to

reach the light, whereas too large a threshold may cause rays to miss the light source.

Recall with point lights, we need to reach the light perfectly in order to sample from

31

it. Real, physically accurate lights are not points, but rather have some volume. For larger

lights, we are allowed an even larger ’goal’ to score into, allowing us a larger Lthres value.

The same is even more true for area lights when we have a large surrounding area around

our target. In this scene and all scenes following, we use area lights, explaining why such

large Lthres values work well. The closer the target point is to the center of the light, the

larger a Lthres we are allowed, which is why it is best to set the target s to be the center of

the light.

Scene 2: Gaussian-Mapped Refractive Plane

Lleft
thres = 0.5, Lright

thres = 5.0

We further perform single-bounce raytracing on a refractive gaussian normal-mapped

plane. Normally refraction is treated as a two-point problem of refracting into and out of

the surface, yet since the plane we refract into has no depth, we never actually enter the

material.

Scene 3: Fractal-Mapped Refractive Plane

Lthres = 0.5

32

We then change the normal map and again perform single-bounce raytracing on a refrac-

tive fractal normal-mapped plane. Changing the normal map heavily changes the refractive

pattern generated, as new paths to the lights must be calculated.

Scene 4: Normal-Mapped Reflective Plane

Lleft
thres = 5.0, Lright

thres = 5.0

We perform single-bounce raytracing on a reflective gaussian normal-mapped plane for a

[Left] gaussian normal-mapped plane and [Right] fractal normal-mapped plane. Similar to

the previous refractive plane cases, changing the normal map changes the reflective pattern

below. The right image took substantially longer (10x as long) than the left image due to

the light paths being very challenging to find. It was in this image that the normal map

was more extreme and had more normals pointing away from the light source, meaning they

could not be used to find a path to the light. Even though we set a threshold of 100 tries per

ray in both images, the left image on average could converge in 20 steps while the right image

would exhaust most of the 100 tries with failure, extending the execution time substantially.

Scene 5: Refractive Sphere

Lleft
thres = 20.0, Lright

thres = 10.0

33

We also perform single-bounce raytracing on a refractive sphere. The reason we are able

to compute this surface in a single bounce is because we attempt to connect light paths from

inside of the sphere where the diffuse region is to outside of the sphere, which only takes one

refractive bounce.

The sphere is a good example of a mesh that has per-vertex normals. Thus, we can

use Equation 46 to compute the derivative of the normal with respect to the barycentric

coordinates we got during the first pass in order to measure the change in normal, or the

curvature, dn
dv0

of our geometry to get a more accurate gradient dL
dv0

compared to just setting

dn
dv0

= 0.

The sphere scene had the largest Lthres values because the scale of the scene was the

largest. Recall if the geometry and lights in a scene are twice as big as another file, then

its Lthres value scales twice as much. This is the case with Scene 5 compared to Scene 1 as

shown in Figure 18.

Figure 18: The loss threshold varies with the scene and light scales. larger lights

correspond to larger loss thresholds.

We notice that there is a darker region around the edges of the sphere, which we assume

may be due to one of two reasons. Our first assumption is that rays entering near the edges

of the sphere may refract back out of the sphere before hitting the diffuse surface below,

causing 2 refractive bounces which is not allowed by our single-bounce limit. We show this

in the diagram below, where the left image illustrates a ray that refracts into the sphere

and hits the diffuse surface, where we optimize for a single-bounce path refracting out of

the sphere towards the light. The right image shows how towards the edges, rays are more

likely to refract twice before hitting the diffuse surface, which means they need two refractive

bounces to make it back to the light as shown in Figure 19. To fix this, we increase the

maximum number of bounces, which in turn helps the samples partially along the edges of

the image.

34

Figure 19: Rays require more than one refractive bounce along the edges, making it

difficult to solve for in our single-path system.

Our second assumption is that the gradient around this area is very unstable. Recall that

the value dn
dv0

measure the curvature around some point xi. The curvature for our sphere

should be constant throughout, yet the curvature projected onto our camera is not. For

example, the portions of the sphere that have normals facing the camera appear to have

less curvature, than the normals perpendicular to the camera around the edges. Another

way to say this is that there is more fall-off around the edges of the sphere, and so small

perturbations due to our optimization are more extreme around the edges of the sphere.

Thus, we need to account for the sensitivity of optimizing around regions where there is high

fall-off.

A similar, but different problem is also when we change surfaces. For example, when

trying to optimize the 0-bounce ray on the left, we may end up taking a step size into

the refractive material that now requires 2 bounces, changing our gradient a lot more and

leading to a non-continuous loss function. It becomes difficult to converge around the edges

of materials for this reason as our algorithm would continue to jump back and forth between

materials in Figure 20.

Figure 20: Changing between materials causes a large change in the loss function, leading

to discontinuities in the gradient and future steps. This is a bigger problem for

multi-bounce systems where longer ray paths have larger likelihoods of switching between

geometry earlier in the path.

35

We found that a smaller step size for β works best for these scenarios, but is also leads to

longer convergence times for other regions of the image where we are not changing between

materials so frequently, for example the center of the sphere. This is why we half the step

size β each time we change materials to help encourage smaller steps around edges. This

method unfortunately does not work as well with future bounces, as even a small change in

the ray direction will make for a large change in material intersections further into the ray’s

traversal, so we can only make this modification for the first ray bounce.

8.2 Multi-Bounce System

Scene 6: Reflective Refractive Plane

We introduce a gaussian-mapped refractive plane in front of a gaussian-mapped reflective

plane and see that our single-bounce method on the left is not able to capture any light in

front of the refractive surface while the 5-bounce system on the right is. This is because the

paths starting from the diffuse surface in front of the refractive surface require a refractive

bounce through the first plane, followed by a reflective bounce off the second plane and a

final refractive bounce again through the first plane before hitting the light source, requir-

ing at least 3 bounces. Our algorithm is easily able to adjust to multi-bounce scene files.

By increasing the number of bounces during the forward pass, our computational graph

automatically captures the new multi-bounce gradient dL
dv0

.

36

Scene 6: Reflective Refractive Plane

Lleft
thres = 5.0, Lright

thres = 0.5

We can also see how adjusting the Lthres value adds additional light into the scene. On

the left image with a higher Lthres, we can see an additional beam of light to the left of

the reflective plane near the shadow while the right image does not have such a beam. By

having a larger Lthres, we allow more rays to reach the light from more possible angles. This

is also evident by looking at the light in front of the refractive surface, which is wider in the

left image.

37

9 Future Work

9.1 Generalized Loss

Currently the termination criteria is whether some loss L is less than a given threshold

Lthres. This does not generalize well to scenes of different scales, as the same scene scaled

up by a factor of 2x will have a loss value L that is also 2x, making the convergence criteria

even more difficult. This also allows lights to scale by a factor of 2x as well, giving more

opportunity to set Lthres to be larger. To make the loss more scale-invariant, we can instead

compare the normalized change in loss ∆L = Lt−Lt−1

Lt
for iteration t ∈ [0, k] and terminate

when ∆L is less than our new termination threshold L′
thres. This allows us to set the same

L′
thres value for multiple scenes without having to tune it as a hyperparameter.

We can extend this idea to also consider the scene’s volume when determining other

hyperparameters, such as optimization parameters βinit βscale, and βmax. Larger scenes

should have larger values, which we can scale by the bounding box volume of the scene to

make them more adaptive to different scenes without having to hand-tune the variables each

time we change scenes.

9.2 Screen-Space Curvature

Some areas of the sphere were more sensitive to gradient step updates, particularly in

areas where the change in normal with respect to the pixels was large. We refer to this as

screen-space curvature. To measure this value, we can take the dot product between the

incoming camera ray and the normal to get the screen space curvature. We can then weigh

our step size proportional to this value, where we make smaller steps in regions where there

is larger screen space curvature.

9.3 Implicit Surfaces

We can attempt to extend our pipeline to support additional implicit surfaces such as

cylinders and point clouds as well as neural networks. In order to be compatible with our

approach, the surface would need a valid geometric function G(x) that we could then twice

differentiate to get the normalN(x) and the curvature C(x). We could then use the geometric

function during ray marching to iteratively check for intersection with the surface.

The normal would be needed to compute reflective and refractive bounces during the

forward pass while the curvature would be needed for the normal’s derivative during the

backwards pass. For more structured shapes such as cylinders we can simply take the

derivative of the cylinder equation, while more advanced structures such as point clouds

38

require PCA to extract normal and curvature information of a point relative to its neighbors.

9.4 Heterogeneous Refractive Material

It would be interesting to extend our pathtracer to handle refractive material where the

index of refraction is a function of the current position in the material xi. Previous work

[18] examined and solved for these types of systems as an iterative update approach where

we compute the current index of refraction and take a step forward. Extending our forward-

pass pipeline to account for this would require us to modify the refraction class to support

functions for the index of refraction, as well as an iterative ray tracer that steps through

refractive materials rather than traces all the way through. In terms of the backwards pass,

we could consider the general case that each step through the refractive material is simply a

change into a new refractive material, effective treating each step as a new refractive bounce.

This would extend the computation graph without us needing to extend the back-propagation

or derivation stage in any way.

39

10 Bibliography

References

[1] Arthur Appel. “Some Techniques for Shading Machine Renderings of Solids”. In: Pro-

ceedings of the April 30–May 2, 1968, Spring Joint Computer Conference. AFIPS

’68 (Spring). Atlantic City, New Jersey: Association for Computing Machinery, 1968,

pp. 37–45. isbn: 9781450378970. doi: 10.1145/1468075.1468082. url: https://

doi.org/10.1145/1468075.1468082.

[2] Turner Whitted. “An Improved Illumination Model for Shaded Display”. In: Commun.

ACM 23.6 (June 1980), pp. 343–349. issn: 0001-0782. doi: 10.1145/358876.358882.

url: https://doi.org/10.1145/358876.358882.

[3] Scott D Roth. “Ray casting for modeling solids”. In: Computer Graphics and Image

Processing 18.2 (1982), pp. 109–144. issn: 0146-664X. doi: https://doi.org/10.

1016/0146-664X(82)90169-1. url: https://www.sciencedirect.com/science/

article/pii/0146664X82901691.

[4] K. Perlin and E. M. Hoffert. “Hypertexture”. In: Proceedings of the 16th Annual Con-

ference on Computer Graphics and Interactive Techniques. SIGGRAPH ’89. New York,

NY, USA: Association for Computing Machinery, 1989, pp. 253–262. isbn: 0897913124.

doi: 10.1145/74333.74359. url: https://doi.org/10.1145/74333.74359.

[5] Don Mitchell and Pat Hanrahan. “Illumination from Curved Reflectors”. In: Proceed-

ings of the 19th Annual Conference on Computer Graphics and Interactive Techniques.

SIGGRAPH ’92. New York, NY, USA: Association for Computing Machinery, 1992,

pp. 283–291. isbn: 0897914791. doi: 10.1145/133994.134082. url: https://doi.

org/10.1145/133994.134082.

[6] Eric Lafortune.Mathematical Models and Monte Carlo Algorithms for Physically Based

Rendering. Tech. rep. 1996.

[7] Eric Veach. “Robust Monte Carlo Methods for Light Transport Simulation”. AAI9837162.

PhD thesis. Stanford, CA, USA, 1998. isbn: 0591907801.

[8] Min Chen and James Arvo. “Theory and Application of Specular Path Perturbation”.

In: ACM Trans. Graph. 19.4 (Oct. 2000), pp. 246–278. issn: 0730-0301. doi: 10.1145/

380666.380670. url: https://doi.org/10.1145/380666.380670.

[9] T. Chan andWei Zhu. “Level set based shape prior segmentation”. In: 2005 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition (CVPR’05).

Vol. 2. 2005, 1164–1170 vol. 2. doi: 10.1109/CVPR.2005.212.

40

https://doi.org/10.1145/1468075.1468082
https://doi.org/10.1145/1468075.1468082
https://doi.org/10.1145/1468075.1468082
https://doi.org/10.1145/358876.358882
https://doi.org/10.1145/358876.358882
https://doi.org/https://doi.org/10.1016/0146-664X(82)90169-1
https://doi.org/https://doi.org/10.1016/0146-664X(82)90169-1
https://www.sciencedirect.com/science/article/pii/0146664X82901691
https://www.sciencedirect.com/science/article/pii/0146664X82901691
https://doi.org/10.1145/74333.74359
https://doi.org/10.1145/74333.74359
https://doi.org/10.1145/133994.134082
https://doi.org/10.1145/133994.134082
https://doi.org/10.1145/133994.134082
https://doi.org/10.1145/380666.380670
https://doi.org/10.1145/380666.380670
https://doi.org/10.1145/380666.380670
https://doi.org/10.1109/CVPR.2005.212

[10] Bram de Greve. “Reflections and Refractions in Ray Tracing”. In: (2006).

[11] Bruce Walter et al. “Single Scattering in Refractive Media with Triangle Mesh Bound-

aries”. In: ACM SIGGRAPH 2009 Papers. SIGGRAPH ’09. New Orleans, Louisiana:

Association for Computing Machinery, 2009. isbn: 9781605587264. doi: 10.1145/

1576246.1531398. url: https://doi.org/10.1145/1576246.1531398.

[12] Wenzel Jakob and Steve Marschner. “Manifold Exploration: A Markov Chain Monte

Carlo Technique for Rendering Scenes with Difficult Specular Transport”. In: ACM

Trans. Graph. 31.4 (July 2012). issn: 0730-0301. doi: 10.1145/2185520.2185554.

url: https://doi.org/10.1145/2185520.2185554.

[13] Amrita Mazumdar. “Principles and Techniques of Schlieren Imaging Systems”. In:

2013.

[14] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:

International Conference on Learning Representations (Dec. 2014).

[15] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In: ArXiv

abs/1609.04747 (2016).

[16] Merlin Nimier-David et al. “Mitsuba 2: A Retargetable Forward and Inverse Renderer”.

In: ACM Trans. Graph. 38.6 (Nov. 2019). issn: 0730-0301. doi: 10.1145/3355089.

3356498. url: https://doi.org/10.1145/3355089.3356498.

[17] Arpit Agarwal, Tim Man, and Wenzhen Yuan. Simulation of Vision-based Tactile Sen-

sors using Physics based Rendering. 2020. doi: 10.48550/ARXIV.2012.13184. url:

https://arxiv.org/abs/2012.13184.

[18] Adithya Pediredla et al. “Path Tracing Estimators for Refractive Radiative Transfer”.

In: ACM Trans. Graph. 39.6 (Nov. 2020). issn: 0730-0301. doi: 10.1145/3414685.

3417793. url: https://doi.org/10.1145/3414685.3417793.

[19] Tizian Zeltner, Iliyan Georgiev, and Wenzel Jakob. “Specular Manifold Sampling for

Rendering High-Frequency Caustics and Glints”. In: ACM Trans. Graph. 39.4 (July

2020). issn: 0730-0301. doi: 10.1145/3386569.3392408. url: https://doi.org/10.

1145/3386569.3392408.

[20] Ethan Tseng et al. “Differentiable Compound Optics and Processing Pipeline Opti-

mization for End-to-end Camera Design”. In: ACM Transactions on Graphics (TOG)

40.2 (2021).

41

https://doi.org/10.1145/1576246.1531398
https://doi.org/10.1145/1576246.1531398
https://doi.org/10.1145/1576246.1531398
https://doi.org/10.1145/2185520.2185554
https://doi.org/10.1145/2185520.2185554
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.48550/ARXIV.2012.13184
https://arxiv.org/abs/2012.13184
https://doi.org/10.1145/3414685.3417793
https://doi.org/10.1145/3414685.3417793
https://doi.org/10.1145/3414685.3417793
https://doi.org/10.1145/3386569.3392408
https://doi.org/10.1145/3386569.3392408
https://doi.org/10.1145/3386569.3392408

	Motivation
	Background
	Scene Definition
	Geometry
	Materials
	Lighting

	Forward Ray-tracing
	Next-Event Estimation
	NEE With Delta BRDFs

	Contributions
	Related Works
	Manifold Connections
	Refractive Sampling

	Forward Path Rendering
	Path Definition

	Backwards Path Rendering
	Intersection Derivatives
	Geometric Derivatives
	Computational Graph
	Polar Coordinates
	Optimization
	Sampling Probability

	Trial Systems
	2D Interactive Interface
	3D Interactive Interface

	Rendering
	Single-Bounce System
	Multi-Bounce System

	Future Work
	Generalized Loss
	Screen-Space Curvature
	Implicit Surfaces
	Heterogeneous Refractive Material

	Bibliography

