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Abstract

The implementation and semantics of dependent type theories can be studied in a
syntax-independent way: the objective metatheory of dependent type theories exploits
the universal properties of their syntactic categories to endow them with computational
content, mathematical meaning, and practical implementation (normalization, type
checking, elaboration). The semantic methods of the objective metatheory inform
the design and implementation of correct-by-construction elaboration algorithms,
promising a principled interface between real proof assistants and ideal mathematics.

In this dissertation, I add synthetic Tait computability to the arsenal of the
objective metatheorist. Synthetic Tait computability is a mathematical machine
to reduce difficult problems of type theory and programming languages to trivial
theorems of topos theory. First employed by Sterling and Harper to reconstruct the
theory of program modules and their phase separated parametricity, synthetic Tait
computability is deployed here to resolve the last major open question in the syntactic
metatheory of cubical type theory: normalization of open terms.
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§0.0. INSTRUCTIONS TO THE READER

(0.0∗1) What knowledge do we assume? We assume knowledge of category theory at an
undergraduate level, as might be obtained from an introductory textbook such as that of
Awodey [Awo10]. At times we will use category theory of a more advanced nature, but
in such cases we attempt to keep our presentation as self-contained as possible; when
necessary, we provide suitable references.
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4 CHAPTER 0. CONSPECTUS ON TYPE THEORY

(0.0∗2) In order to support greater ease of reference, units of text are numbered with
greater granularity than is typical in contemporary mathematics. Consequently we relax
the usual delineation of definition – theorem – proof, but place certain sigils in the margin
to indicate the flavor of a node:

theorems, lemmas, and definitions
notations and abbreviations
exercises for the reader
examples and illustrations
computations or explicit constructions
big picture thoughts
bigger picture thoughts
historical remarks and discussion of the literature

� warnings of subtle territory

(0.0∗3) It is not recommended to read this dissertation in a linear style; readers who
do so are likely to get stuck. Readers who skim the entire text multiple times through
iterative deepening will get the most out of it the most quickly.

(0.0∗4) We err on the side of giving many examples rather than presenting the bare
minimum needed to substantiate our claims: not every example will be meaningful to
every reader. The reader must not despair when they encounter an example they do not
understand, but should instead skip over it! A reader who understands every example
likely does not have any need to read this dissertation. The purpose of using diverse
examples is to disseminate the ideas contained herein to a broad audience with differing
backgrounds.

(0.0∗5) Exercises are rare, and are intended to serve as “moments of truth”: a reader who
finds they can’t complete an exercise may wish to return to earlier chapters, or consult
the suggested references.

(0.0∗6) My style of doing mathematics is not to attack an intimidating problem directly,
but instead to build up a rather vast library of smaller results at a high level of general-
ity, and retreat into this pleasant “countryside” until the target simply crumbles from
exhaustion. This principle is stated most elegantly by the great military theorist Carl von
Clausewitz, perhaps the most supple mind that the bourgeoisie produced in their history:

We have considered the voluntary retreat into the heart of the country as a
particular indirect form of defence through which it is expected the enemy will
be destroyed, not so much by the sword as by exhaustion from his own efforts.
In this case, therefore, a great battle is either not supposed, or it is assumed
to take place when the enemy’s forces are considerably reduced. [CGM11]

The weapons forged while patiently exploring the countryside of type theory can be
brought to the battlefield again and again without needing to be re-fashioned, an entirely
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new state of affairs that I consider a significant advance in the practice of type theoretic
metatheory. A downside of my approach is that one must willingly participate in a “long
march” through matters that appear from ground-level to be quite alien to the problem at
hand, but which can be seen from a high enough altitude to lead the way to its solution.
I hope that the strength of the results contained in this dissertation will purchase from
my readers some patience and open-mindedness to the unfamiliar.

§0.1. WHAT DOES TYPE THEORY DO?

(0.1∗1) The main result of this dissertation is to prove a very technical metatheorem for
a very technical type theory (cubical type theory). But what is the point? It is worth
exploring why type theorists have increasingly gravitated toward cubical type theory in
recent years. We start by surveying the main applications of dependent type theory.

§0.1.1. Applications to mathematics

(0.1.1∗1) The earliest awakenings of dependent type theory, e.g. those of Bishop [Bis69],
de Bruijn [de 70], Martin-Löf [Mar71; Mar75b], and Scott [Sco70], emphasized the role of
type theory as an abstract language for doing mathematics. The relationship between
type theory and constructivity was historically muddled, due to the interests some of its
creators, leading to an understandable if confused skepticism from mathematical quarters.

Today it is better to understand the role of type theory in mathematics in a broader
way: type theory is a synthetic treatment of the (pre-)mathematical notion of a collection,
complementing the historically influential analytic understanding in terms of trees well-
ordered by ‘∈’ (i.e. sets). Type theory exhibits a form of axiomatic freedom, whereby
it may be refined in one direction or another to correspond more closely to this or that
variation on the notion of collection [AH18]. For instance, one may add rules to type
theory that make types behave more like discrete collections; in an orthogonal direction,
one may enrich type theory with principles that make types behave like higher-dimensional
collections, as in Homotopy Type Theory (HoTT).

� (0.1.1∗2) What is the actual difference between type theory and set theory? Type theory
is often compared to set theory by noting that the latter is “untyped”, and so it is
possible to view an entity as an element of N and as an element of R simultaneously —
whereas type theory forces one to insert a “coercion” from one type to the other. This
view of the relationship between set theory and mathematical practice is not borne out
in reality. Although one may indeed define the naturals to be the subset of the reals
spanned by positive whole numbers, a typical mathematical development will have multiple
incompatible encodings in play simultaneously — and it is possible to silently regard a
symbol n representing a natural number as an element of any of these encodings. Therefore
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the untyped nature of set theory does not in fact explain the everyday mathematical
practice of viewing an entity through multiple lenses; on the other hand, the type theoretic
notion of an implicit coercion does explain this practice [Luo97; Rey80].

We have argued that untyped set theory is used by mathematicians as if it were typed;
therefore style-of-use cannot be the actual dividing line between type theory and set
theory. It is better to say that set theory is a particular concrete model for the notion of
a collection, whereas type theory is the language of collections.1

(0.1.1∗3) Mechanization of mathematics. Mechanizing mathematics has been an ambition
for many type theoretic implementation projects such as Nuprl, Coq, and Lean. In
terms of scale and depth, the most significant mathematical artifacts in Nuprl include
Bickford’s mechanization of the second chapter of Constructive Analysis [BB85] and
Bickford’s mechanization of basic category theory and presheaf models of (cubical) type
theory [Bic18]. Beginning in the current millennium, Coq has been used to mechanize
results in discrete mathematics and group theory whose magnitude defied existing type
theoretic proof assistants, namely the Four Color Theorem [Gon08] and the Feit–Thompson
Theorem [Gon+13].

Lean has distinguished itself by emphasizing the mechanization of present-day research-
level mathematics, as in the recent mechanization of perfectoid spaces [BCM20] as well as
the mathematically deeper “Liquid Tensor Experiment”, pointing the way to a possible
future in which proof assistants may take a leading role in the development of new
mathematics rather than trailing behind as janitors of well-known results.

§0.1.2. Applications to computer science

(0.1.2∗1) According to a certain perspective, a constructive theorem is one that is
witnessed by a program that could in principle be executed by a human or a computer.
This view of constructivity has played a deep and pervasive role in the development of
dependent type theory and its applications in the tradition of Per Martin-Löf, especially
in the aftermath of Girard’s discovery of an inconsistency in the former’s original type
theory. In this latter period, Martin-Löf promoted the view of type theory as a common
language for both computer programming and constructive mathematics [Mar79; Mar84].

Martin-Löf’s computational–mathematical perspective was developed further and in
parallel by Constable’s team at Cornell University, producing computerized implementa-
tions of type theory such as PL/CV3 [CZ84] and Nuprl [Con+86], unified languages in
which one could develop and execute or extract computer programs, correctness proofs,
and even some general mathematics simultaneously. In Sweden, the ALF and Agda
projects continued to develop Martin-Löf’s vision from an intensional point of view [MN94;
Nor09]; a perspective on dependently typed programming based on pattern matching was

1 Of course, one person’s model is another person’s language; set theory could be the “language of trees”.
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pioneered by McBride [McB99] and McBride and McKinna [MM04], and operationalized
in the Epigram project [Bra+11]. Building on his doctoral work in Epigram [Bra05], Brady
developed Idris, a dependently typed strict functional programming language that aims
to be used for writing real programs [Bra13; Bra21]; the first significant “real program”
written in Idris is Idris itself.

In a parallel but equally fruitful line of work, the French School in their Coq project has
transformed the Calculus of Constructions (a dependently typed version of Girard’s System
F) into a very powerful type theory that increasingly converges with the Swedish picture
depicted above [Coq16]. Building on these advances, De Moura and his collaborators have
developed a new proof assistant called Lean [DU21; Mou+15], which is simultaneously
a language for mechanizing mathematics and a general purpose programming language;
indeed, much of Lean’s current implementation is written in Lean.

§0.1.2.1. Recursion in dependent type theory
� (0.1.2.1∗1) One aspect of dependent type theory that has hampered its adoption in

computer programming is its emphasis of total functions over partial functions; a notion
of partiality that supports general recursion is needed for this application, but the usual
semantic accounts of partiality do not immediately play well with the rich logical structure
of dependent type theory. This did not stop multiple investigations into partiality in type
theory from going forward, which we survey in (0.1.2.1∗2), (0.1.2.1∗3), (0.1.2.1∗6) and
(0.1.2.1∗8) through (0.1.2.1∗9) in conceptual rather than historical order.

(0.1.2.1∗2) Synthetic domain theory. Weary of the increasingly esoteric character of classical
domain theory and the search for well-behaved categories of domains, Dana Scott proposed
in 1980 that one should search for a “category of sets” that contains a good category of
domains as a full subcategory. The advantage of such a synthetic treatment of domain
theory is that the notion of a continuous map could be dispensed with, as things would
be arranged to ensure that any function between these non-standard sets is continuous.

Scott’s pronouncement sparked an entirely new field of research called synthetic domain
theory or SDT [FR97; Fre+92; Hyl91; Pho91; Reu95; Reu96; Reu99; RS93; RS99; Ros86;
Tay91];2 a somewhat different approach to synthetic domain theory was carried out in
isolation from this tradition by the Nuprl team, discussed below in (0.1.2.1∗3) through
(0.1.2.1∗5). The high points of SDT included the fact that any model of SDT contains
a full subcategory of predomains that is cartesian closed, complete, cocomplete, and
closed under powerdomains — meaning that it supports everything needed for doing
workaday denotational semantics. This state of affairs led Taylor to make his famous
pronouncement:

2 This dissertation is named en hommage to the famous paper of Hyland, First steps in synthetic domain
theory [Hyl91].
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My personal view is that the study of domain theory by bit-picking should be
brought to a close. [Tay91]

While ideas from SDT remain important and continue to influence present-day work,
e.g. that of Matache, Moss, and Staton [MMS21], it seems that SDT as a field has collapsed
under its own weight with a number of important questions remaining open and blocking
further progress, as noted by Bauer, Birkedal, and Scott [BBS04]. In spite of this, the
program of SDT can still be regarded a success in at least one respect: it provides the
quickest way to get a well-behaved category of domains.

(0.1.2.1∗3) Nuprl’s synthetic domain theory. Nuprl’s computational type theory internalizes
many properties of untyped computation and realizability; as such, it is already possible
in the basic version of Nuprl to define total functions using unrestricted fixed points
(e.g. those formed using the Y combinator) by first constructing a general recursive
realizer and then proving by induction that it is well-typed and terminating. Constable
and Smith [CS87] investigated the extension of Nuprl’s computational type theory with
partial types Ā (sometimes called a “bar type”) that provide a codomain for genuinely
partial functions. To prove properties of partial functions defined by general recursion,
a fixed point induction principle is provided. As an implementation of Scott’s dictum
that “domains are sets”, Nuprl’s treatment of partiality can be appropriately referred to
as a form of synthetic domain theory, albeit one very different from the theories usually
considered under that name (0.1.2.1∗2).

� (0.1.2.1∗4) Subtleties of admissible types in Nuprl. In domain theory, a partial order A
supports fixed points of Scott-continuous functions A→ A when it has a bottom element
and is closed under directed suprema (or colimits of ω-chains); an object satisfying only the
latter condition might be called a predomain, whereas an object satisfying both conditions
can be called a domain. A Nuprl type is called admissible when it satisfies a property
analogous to being closed under colimits of ω-chains. In Nuprl, every bar type Ā contains
the non-terminating computation, but Ā need not be admissible unless A is admissible.
This is different from the state of affairs in conventional domain theory, where the lifted
type A⊥ freely adds not only a bottom element but also closure under directed suprema.

� (0.1.2.1∗5) Dependent types in synthetic domain theories. As in ordinary synthetic domain
theory, Nuprl’s admissible types are closed under a number of type constructors —
notably including dependent products (x : A)→ B(x), and not including dependent sums
(x : A)×B(x). In essence this is because one must restrict families of types to be suitably
continuous in their variation over the base, a proof-relevant version of the admissibility
condition for subsets of domains in classical domain theory. One way to understand this
phenomenon is to observe that the property of being an admissible type does not take
dependency into account and is therefore unsuitable in a dependently typed scenario.

A notable contribution of Crary [Cra98] was to generalize Nuprl’s admissibity property
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to what he called predicate-admissibility, a notion that is closed under dependent sums.
From a more abstract perspective, Jacobs [Jac99] observes that it is possible to model
dependent sums and products in the fibration CFam(Dcpo) Dcpo of continuous families
of dcpos, i.e. functors D→ DcpoEP out of a dcpo D that take directed suprema to colimits.
It would serve our field to investigate the relationship between these two approaches.

(0.1.2.1∗6) Synthetic guarded domain theory. In the first decades of the millennium, new
life was breathed into the search for a synthetic domain theory by the emergent needs of
computer scientists investigating the meaning of higher-order store, i.e. storage of functions
that may themselves access the store [Ahm04; Bir+11b; BST10]. The essence of these new
techniques, sometimes referred to as “step-indexing”, is to solve recursive equations in an
approximate way that guards each unfolding step with an abstract “breadcrumb”. Birkedal,
Møgelberg, Schwinghammer, and Støvring [Bir+11a] noted that any locale whose frame
of opens has a well-founded basis can serve as a model for a synthetic guarded domain
theory (SGDT) that abstracts this point of view.

Most subsequent work has emphasized the role of SGDT as a metalanguage for
operational models of programming languages [BB18; Jun+18; Jun+15; Spi+21], but
some authors have continued to raise the banner of denotational semantics in the setting
of guarded domains [MP16; MV19; MV21; Pav16; PMB15]. The type theoretic aspects of
SGDT have been explored by a number of authors under the banner of guarded dependent
type theory [Bir+11a; Biz16; BBM14; Biz+16; BM15; BM20; Clo+15; SH18]; recent
work suggests that a combination of guarded type theory with cubical type theory may
prove fruitful [Bir+16; VV20], and the results of the present dissertation are likely to be
important for establishing the metatheoretic properties of such a combination.

Unlike ordinary synthetic domain theory, which supports computation by extraction
through realizability models as in the work of Hyland [Hyl91] and Phoa [Pho91], it appears
that the type theories based on SGDT can be computed with directly.

(0.1.2.1∗7) SGDT as a theory of domains. We suggest a few high-level reasons why guarded
domains should be considered mathematically interesting and useful (besides the fact
that they make certain constructions possible). SGDT goes further in one aspect toward
realizing Scott’s dictum (“domains are sets”) than prior attempts did. Although SDT
determines various non-equivalent full subcategories that may be thought of as predomains
(e.g. complete Σ-spaces, replete types, well-complete types, etc.), the better-behaved
notions among these are notoriously difficult to characterize concretely. As Phoa [Pho91]
pointed out, it seemed that none of these was likely to be the final story for predomains.

In contrast, every type A in SGDT may be seen as a guarded predomain, supporting
guarded fixed points of functions IA→ A, where I is the later modality — the type-level
“breadcrumb” mentioned in (0.1.2.1∗6). This is already strikingly better-behaved than
either the classic domain theory or the synthetic domain theory, whether in Scott’s
tradition (0.1.2.1∗2) or that of Nuprl (0.1.2.1∗3): the guarded predomains are closed
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under dependent sums and even extensional equality types!

(0.1.2.1∗8) Mathematics of infinity. Per Martin-Löf’s “mathematics of infinity” [Mar90;
Pal93] aims to account for infinite recursion by extending type theory with a hierarchy of
fixed point combinators for types equipped with a chosen element:

a : A x : A ` f(x) : A
fixi(a,f) : A fixi(a,f) ≡ f(fixi+1(a,f)) : A

(i ∈ N)

The purpose of the indexing is to avoid inconsistency; Martin-Löf [Mar90] notes that
having only one such fixed point combinator fix(a,f) satisfying fix(a,f) ≡ f(fix(a,f)) is
inconsistent, even though one avoids the obvious inconsistency of having recursion in an
uninhabited type. Unfortunately, Martin-Löf’s account of the meaning of infinite recursion
defies the important canonicity property, which essentially states that in the absense of
variables a definable element of the sum A+ B must arise from either a definable element
of A or a definable element of B. It was therefore unclear in what sense Martin-Löf’s
extended type theory could serve as a programming language, for which the canonicity
property is usually indispensible.

(0.1.2.1∗9) General recursion in total type theory. It is well-known that general recursive
functions can be encoded in a total setting by means of their accessibility predicates,
indexed inductive structures that consolidate all the recursive calls that are made at given
input [Nor88]. Bove and Capretta [BC05] refine and operationalize this perspective as a
very simple recipe to encode a general recursive function in total type theory, which we
illustrate on the quick-sort algorithm:3

1) Define an inductive predicate Aqs : List → U that sends every possible list to the
type of recursive calls that it induces:

Aqs(nil)
Aqs(filter((< x),xs)) Aqs(filter((≥ x),xs))

Aqs(x :: xs)

2) Define the quick-sort algorithm qs′ : (xs : List) → Aqs(xs) → List by structural
recursion on the second argument.

3) Exhibit a section of Aqs, i.e. a function (xs : List)→ Aqs(xs).
4) From the above, obtain the quick-sort function qs : List→ List.

One spurious objection to the Bove–Capretta account of general recursion is that the
resulting code of qs will execute very inefficiently in two steps: first it will construct an
element of Aqs and then it will deconstruct it. As results of Blum [Blu67] imply, the cost
of executing this first stage can be arbitrarily bad in comparison to the actual general
3 Christiansen and Brady [CB16] employ Idris’s elaborator reflection to define a routine that executes the
Bove–Capretta translation automatically.



0.1. WHAT DOES TYPE THEORY DO? 11

recursive algorithm we wished to encode. But accessibility proofs and their computations
can always be systematically erased from extracted code leaving only the underlying
general recursive algorithm, as pointed out by Brady, McBride, and McKinna [BMM03].4

Objections pertaining to expressivity are also unsuccessful: Bove and Capretta [BC05]
prove that their encoding covers all partial recursive functions in the sense of recursion
theory. Of course there is a practical matter pertaining to the plumbing and maintenance
of accessibility proofs in this encoding, but McBride [McB12] points out that all of
these matters can be conveniently bundled into an interaction tree or resumption monad
corresponding to a given dependent partial function space. Such a representation, however,
does raise the question of bisimilarity and bisimulation; it may be that the work of either
Altenkirch, Danielsson, and Kraus [ADK17] can be adapted to provide a satisfactory
notion of program equivalence in such a setting.

(0.1.2.1∗10) General recursive cost analysis in total type theory. Just as the lack of
actual general recursion in dependent type theory does not obstruct general recursive
programming (0.1.2.1∗9), it likewise does not inhibit the analysis of such programs. In
an extreme example, Niu, Sterling, Grodin, and Harper [Niu+21] demonstrate how to
program and prove cost bounds for general recursive algorithms in a total type theory
called calf (the cost-aware logical f ramework) in the absence of a general fixed point
combinator, employing a refinement of the method of Bove and Capretta to define general
recursive algorithms by recursion on their own call graphs. The resulting complexity
analysis pertains not to the cost of naïvely executing the termination proofs but rather to
the cost of the intended general recursive algorithm.

(0.1.2.1∗11) Based on the arguments of (0.1.2.1∗9) and (0.1.2.1∗10), one is forced to
conclude that as far as recursive programming is concerned, there is no factual need
for a separate account of partiality featuring a fixed point combinator. Of course, the
other main use of recursion and partiality is to solve domain equations in order to define
operational and denotational models of programming languages; this need is not addressed
by the methods of Bove and Capretta [BC05]. Therefore in spite of the results of op. cit.,
the struggle for a general purpose synthetic domain theory continues.

§0.1.2.2. Logical frameworks: syntactic and semantic

(0.1.2.2∗1) Historically the meta-aspects of logic were understood by encoding logic into
something other than logic, e.g. the encoding of logic as strings of symbols.5 The big
surprise for many scientific workers in the latter half of the 20th century was that the
meta-aspects of logic are themselves essentially logical: logics can be studied by immersion
into bigger logics, and this method is robust enough to encompass all non-junk theorems.
4 See also Brady [Bra05, Chapter 4] for further discussion. 5 A regrettable convention that appears
still even in the most progressive and up-to-date textbooks, complete with “parenthesis-counting” junk-
theorems.
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Because the syntax and binding structure of dependent type theory is itself somewhat
complex, type theorists very early on abstracted it by working internally to an ambient
type theory of some kind — for instance, Martin-Löf’s introduction of the system of arities
to abstract away variable binding and substitution appeared already in his 1980 lectures
in Munich, less than three months after his Padova lectures that omitted them [Mar84,
Preface]. In even earlier work, Aczel [Acz78] had introduced a lightweight framework
second-order abstract syntax that would inspire and inform many subsequent explanations
and concrete implementations of syntax, e.g. those of Fiore and Mahmoud [FM10],
Fiore, Plotkin, and Turi [FPT99], and Harper [Har16]. A type theory that is used as a
metalanguage for specifying another type theory is often called a logical framework.

(0.1.2.2∗2) Syntactic logical frameworks. By the end of the 1980s, two trends in logical
frameworks had emerged. On the one hand, there were the syntactic logical frameworks
inspired by Martin-Löf’s system of arities, most notably the Edinburgh Logical Framework
(“LF” for short) of Harper, Honsell, and Plotkin [HHP93], which has been used most
notably to provide the first fully rigorous and mechanized definition of a general purpose
higher-order programming language [CH09; LCH07]. Syntactic logical frameworks aim to
capture the scoping and well-sortedness of object-language expressions, judgments, and
derivations. In these frameworks, the LF-level function space captures both binding of
variables in expressions and binding of hypotheses in derivations.

� (0.1.2.2∗3) Adequacy in syntactic logical frameworks. A presentation in a syntactic LF
formalizes not a language but a particular formalism presenting that language. For
instance, consider the LF encoding of a language that has types, terms, and judgments
Γ ` M : A and Γ ` M ≡ N : A :

tp,tm : �
isOf : tm→ tp→ �
isEq : tm→ tm→ tp→ �

isEq/refl : (A : tp,M : tm)→ isOf(M,A)→ isEq(M,M,A)
isEq/symm : (A : tp,M : tm,N : tm)→ isOf(M,A)→ isOf(N,A)→ isEq(M,N,A)→ isEq(N,M,A)
isEq/trans : (A : tp,L : tm,M : tm,N : tm)→ isOf(L,A)→ isOf(M,A)→ isOf(N,A)

→ isEq(L,M,A)
→ isEq(M,N,A)
→ isEq(L,N,A)

One must add dozens of constants to the isEq judgment to ensure that it is a congruence
for all the constructs of the encoded language. A “model” of this theory would consist
of a set of raw types, a set of raw terms, an indexed set of typing derivations, and an
indexed set of equality derivations. In contrast, an actual model of the language being
presented would be nothing more than a set of types JtpK and a family of sets of terms
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JtmK indexed in JtpK. In this sense, a syntactic logical framework is meant to be used to
study the properties of specific formalisms presenting a language, not the language itself.

Because the LF presentation of judgments and derivations differs significantly from
what it is meant to encode (the latter involving contexts and variables and turnstiles), it
is necessary to prove an adequacy metatheorem for every LF presentation: in a specified
class of LF contexts, equivalence classes of LF terms must be in bijection with derivations
from the original formalism. These theorems are tractable because syntactic LFs are
designed to support a canonical forms or normalization property: there is a presentation
of the LF in which every equivalence class of typed terms is a singleton [HP05; Wat+04].

Both the distance from models described above and the necessity to prove sometimes
difficult adequacy theorems seems to have slowed the adoption of syntactic LFs in spite
of their proven utility. Both of these downsides are addressed in the trend of semantic
logical frameworks, which evince an immediate connection to the intended notion of model
and therefore trivialize the question of adequacy in the commonly encountered cases.

(0.1.2.2∗4) Semantic logical frameworks. An alternative to syntactic logical frameworks
are what Harper [Har21] refers to as semantic logical frameworks. Semantic LFs differ
from their syntactical counterparts in only one technical respect: a presentation is allowed
to equational laws in addition to constants. Users of semantic LFs then employ these
equational laws to define presentations of languages themselves, rather than presentations
of formalisms that themselves present languages. The most famous semantic LF was that
of Martin-Löf [NPS90]. The precise understanding of Martin-Löf’s framework, however,
remained too informal and under-specified for its employment in sensitive metatheoretic
work, delaying the advent of semantic logical frameworks (e.g. those of Altenkirch and
Kaposi [AK16b], Cartmell [Car86], Gratzer and Sterling [GS20], Harper [Har21], and
Uemura [Uem19; Uem21]) as a serious competitor to conventional techniques.

(0.1.2.2∗5) Returning to our example of a language that has both types and terms, the
corresponding semantic presentation begin with only two constants, with no need to
specify any rules for equality whatsoever:

tp : �
tm : tp→ �

One could add, for instance, a type of booleans with the appropriate equational laws:

bool : tp
tt,ff : tm(bool)

if : (A : tp)→ tm(bool)→ tm(A)→ tm(A)→ tm(A)
if/tt : (A : tp, t : tm(A), f : tm(A))→ if(A,tt,t,f) ≡tm(A) t

if/ff : (A : tp, t : tm(A), f : tm(A))→ if(A,ff,t,f) ≡tm(A) f
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if/uniq : (A : tp, a : tm(bool)→ tm(A), b : tm(bool))→ a(b) ≡tm(A) if(A,b,a(tt),a(ff))

(0.1.2.2∗6) Models of an LF presentation. A model of the language presented in (0.1.2.2∗5)
consists of a set of types, a set of terms indexed in the set of types, closed under a type
that behaves like the booleans. This is nothing more than an informal rephrasing of the
formal specification of (0.1.2.2∗5), however. The close connection between semantic LF
presentations and their models enables us to “cut the link” that bound us previously to
conventional formal presentations and obligated us to prove onerous adequacy results.
Indeed, any conventional formal presentation that is not equivalent to our LF presentation
must surely be semantically wrong! What is new in the setting of semantic LFs is that
the LF presentation is sufficiently authoritative that it is finally up to purveyors of
conventional formalisms to establish equivalence (soundness and completeness) relative to
the LF presentation rather than the other way around.

(0.1.2.2∗7) Syntactic adequacy for semantic LFs. Some semantic logical frameworks, such
as that of Uemura [Uem19; Uem21], maintain a very close connection to the traditional
syntax of type theory by distinguishing between contexts and judgments and restricting to
the “level” of binders accordingly. For such a framework, the syntactic adequacy statement
is evident in the authoritative sense described above (0.1.2.2∗6) — any conventional
formalism that deviates from the LF presentation in Uemura’s framework is simply wrong.

Gratzer and Sterling [GS20] have argued that it is significantly less technical to use a
semantic logical framework that does not distinguish between contexts and judgments and
places no restriction whatsoever on binders (after both the Edinburgh LF and Martin-
Löf’s LF); for such an encoding, however, syntactic adequacy becomes again a non-trivial
question — a priori it may have been the case that allowing binders of higher level makes
it possible to derive a strictly new judgment that doesn’t mention binders of higher level.
To demonstrate that this perverse scenario does not obtain, op. cit. proved a syntactic
adequacy theorem relative to Uemura’s framework using semantic methods. Adequacy
theorems for semantic LFs must be carried out using different methods from those that
apply to syntactic LFs (0.1.2.2∗3), because there is no hope of normalization or canonical
forms in the presence of arbitrary equational hypotheses; the adequacy result of op. cit.
is, however, a very simple Artin gluing argument à la Lafont [Laf88].

(0.1.2.2∗8) The future of logical frameworks. It appears that semantic LFs address the
underlying reasons for the community’s hesitancy to choose logical frameworks over
hand-crafting formalisms. In addition to adequacy, which is a non-trivial obligation for
any real language, there is the fact that syntactic LFs deal mainly with well-sortedness
and well-scopedness, things that many practitioners in programming languages (rightly or
wrongly) were not particularly worried about in the first place. Semantic LFs go beyond
this and address aspects of programming language design that most practitioners would
agree are very difficult to get right: equational reasoning and the relationship to models,
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e.g. soundness, completeness, etc.
Not all is rosy — the semantic LFs currently lack a viable implementation strategy.

Syntactic LFs can can be implemented in easy-to-use proof assistants such as Twelf,
Beluga, and Abella [Gac08; PS99; PD10], a possibility that boils down to the fact that
they enjoy normalization and therefore decidable conversion and type checking. For this
reason the present generation of semantic LFs is mainly used for pencil-and-paper proofs,
with some notable exceptions [AK16a; AK16b].

§0.2. WHAT DOES TYPE THEORY NEED?

(0.2∗1) In order to perform adequately for its intended applications, many requirements
are placed on type theories. We conveniently divide these into semantic and syntactic
properties, defined below (0.2∗2).

(0.2∗2) A semantic property is one that is expected to hold of all models of a given type
theory. A syntactic property is one that is expected to hold specifically of the syntactic or
term model of a type theory, rather than all models. While a true semantic property is
rightfully referred to as a theorem, it is common to refer to true syntactic properties as
metatheorems. The study of syntactic properties is called metatheory.

� (0.2∗3) Most syntactic properties in the sense of (0.2∗2) pertain to semantics, e.g. (0.2.2∗3)
speaks of the syntax having a certain kind of model, which is not a statement about all
models.

(0.2∗4) Structural proof theorists may appreciate the following analogy: semantic proper-
ties are similar to derivabilities, whereas syntactic properties are similar to admissibilities.

§0.2.1. Semantic properties (theorems)

(0.2.1∗1) Function extensionality. Most type theories have an equality type connective
EqA(M,N) that internalizes the judgment that M and N can be identified. In order for
this connective to do its job, it needs to correctly characterize equality for each type A; in
particular, the map from the equality type EqA→B(f,g) governing equality of functions
to the dependent product type (x : A)→ EqB(f(x),g(x)) governing pointwise equality of
functions must have an inverse, called function extensionality. This property is necessary
for most applications of dependent type theory, but it fails for many variants of type
theory that are implemented in proof assistants today, such as Agda, Coq, and Idris.

The reason for the frequent lack of function extensionality is that it has been historically
difficult to combine function extensionality, closed term computation (0.2.2∗4), and
open term computation (0.2.2∗5). For instance, Coq and Agda have both closed and
open term computation but lack function extensionality; on the other hand, Lean has
function extensionality but lacks both closed and open term computation; Nuprl has
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function extensionality and closed computation, but lacks open computation. Function
extensionality, however, is non-optional for both mathematics and program verification
tasks; consequently, practitioners tend to either avoid built-in equality types or add axioms
that destroy the computational properties of type theory.

(0.2.1∗2) Function comprehension. In ordinary mathematics, every total relation R ⊆ A×B
is the graph of a unique function f : A → B. It is sometimes said that this property,
which we call function comprehension following the terminology of Shulman,6 holds
in classical mathematics but not in constructive mathematics, but these claims are
mistaken: it is absolutely the case that in mainstream constructive mathematics (e.g.
that of Bishop [BB85], or the mathematics of an elementary topos [LS86]), total relations
determine functions. Unfortunately, the status of function comprehension is somewhat
murky in traditional type theory.

The difficulty is in defining what we mean by a “total relation”, which boils down to
the more basic question of what a “proposition” is (since a relation is a propositional
function). There is only one mathematically correct notion of proposition for type theory:

A proposition is a type A that is equipped with an element of the dependent
product type (x,y : A)→ EqA(x,y), i.e. a type that has at most one element.

If “total” is then taken in the corresponding sense, then type theory has function
comprehension. Unfortunately, this is not the notion of proposition employed in most
versions of dependent type theory; for instance, Coq has a distinct universe Prop of
propositions that is (with small exceptions) quite sequestered from the language of
types, and as a result it is easy to find total relations that do not determine definable
functions in Coq. The simplest example is the generic one: the obvious total relation
R ⊆ {n : N→ Prop | isSingleton(n)} × N that identifies a singleton subset of the natural
numbers with the natural number that it contains does not correspond to a definable
function. Another way to view the failure of function comprehension is as follows: it is not
the case that all simultaneously injective and surjective functions have inverses in Coq.

Unfortunately, function comprehension is needed in order to get almost any math-
ematical formalization off the ground. The failure of function comprehension in Coq
is often dealt with in two ways: by adding axioms that disrupt Coq’s computational
properties, or by restricting to types that are sufficiently finitary and discrete as to be
projective, validating the much stronger axiom of choice; the latter approach is taken by the
developers of the mathematical components formal library in Coq, which has notably
been used to mechanize the Four Color Theorem and the Odd Order Theorem [Gon08;
Gon+13]. Working with projective types is possible in some areas of mathematics, but
it is of course not a possibility for developing general mathematics constructively; the

6 It is more traditionally referred to as unique choice or definite description.
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failure of function comprehension vis-à-vis Prop has predictably slowed the development
of constructive mathematics in systems like Coq.

(0.2.1∗3) Propositional univalence. In mathematics, two propositions are the same when
they imply each other; we refer to this property of propositions, traditionally called
propositional extensionality, as “propositional univalence” after Voevodsky. Propositional
univalence has a number of important consequences, including the effectivity of quotients
which we discuss below (0.2.1∗4). While propositional univalence is not necessarily needed
for the use of type theory as a programming language, it is non-negotiable for most
mathematical applications. Echoing the theme of (0.2.1∗2), it is often possible to get
around the failure of propositional univalence in conventional type systems (such as
Martin-Löf Type Theory and the Calculus of Inductive Constructions) when formalizing
sufficiently finitary mathematics, e.g. by using boolean reflection.

(0.2.1∗4) Effective quotients. If A is a set and R is an equivalence relation on A, then the
quotient A A/R is the “universal solution” to identifying elements related by R. In
other words, a function [−]R : A/R B is exactly the same as a function A B that
sends any a,b such that a R b to equal elements of B. This universal property, however,
is not sufficient for most use-cases of quotients in mathematics; an additional structural
principle is needed for quotients to be actually useful:

Effectivity. For any a,b : A, if [a]R = [b]R in A/R then a R b.
Effectivity follows from propositional univalence. Why do we need it? A useful example

is provided by Cavallo [Cav21]. We might consider quotienting the type ZZ of sequences by
the following equivalence relation that expresses the “eventual equality” of two sequences:

α ∼ β ⇔ ∃n.∀m > n.α(m) = β(m)

When one does not have effectivity of quotients, one cannot conclude from the fact
two sequences α,β are identified in ZZ/ ∼ that there is in fact a prefix after which α,β
behave the same! A more sophisticated version of this scenario ensures that even basic
analysis cannot be developed in a constructive setting without effective quotients.

It is well-known that not all quotients are effective in popular computability-inspired
models such as partial equivalence relations (PERs); Nuprl was one of the first type
theoretic proof assistants to introduce quotients, but the language of Nuprl has always
been moored to its intended model in PERs. Consequently the quotients in Nuprl cannot
be used for mathematical applications, a difficulty that inspired a number of attempts
at mitigation [Nog02]; it seems that the ultimate mitigation has been to avoid Nuprl’s
built-in quotients altogether, as in Bickford’s formalization [Bic16; Bic] of the second
chapter of Constructive Analysis [BB85] as well as the Nuprl formalization of Euclid’s
straitedge and compass geometry [KBC19]. A similar phenomenon is noted in the Nuprl
formalization of some constructive algebra [Gro]. In other words, Nuprl users (informally)
use the setoid encoding of quotients in order to develop constructive mathematics.
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From the point of view of mathematics, it is not particularly surprising that setoids
are required in Nuprl to develop mathematics that uses quotients; setoids are an example
of an exact completion, a universal way to add well-behaved quotients to a category. A
different exact completion is used in categorical realizability to build a usable universe of
mathematics on top of PERs, by embedding PERs (with poor closure properties) into a
universe of non-PERs (with good closure properties). The fully-faithful nature of this
embedding ensures that any result in the extended universe that mentions only PERs is
actually true of PERs.

(0.2.1∗5) Quotients are not useless. Bishop contends [Bis67, p. 60] that defining the reals
by quotienting their presentations (regular sequences of rationals) is either pointless
or incorrect — pointless because one could simply carry around proofs that various
equivalence relations are preserved, or incorrect because it may obstruct the definition
of certain functions. Of course, there is no quotient whatsoever that would fail to be
“pointless” in Bishop’s sense and yet most practicing mathematicians would be surprised
to find out that quotients are not useful.

Indeed, following Bishop’s logic there would be no place in linear algebra for the
tensor product of vector spaces — since one may of course just prove that some map is
bilinear. Likewise, not even the cartesian product of sets escapes what we might refer
to as “Bishop-pointlessness”, considering that one can simply speak of functions that
take multiple arguments. It does not take much investigation to see that this is not a
perspective of much merit within the world of modern-day mathematics, constructive
or not. Kellison, Bickford, and Constable [KBC19] argue for Bishop’s case, observing
that their Nuprl proof of the magnifying glass postulate (co-transitivity of apartness) is
validated for presentations of real numbers but not for their equivalence classes. Far from
taking this as evidence that the reals should not be quotiented, it is better to view it as
evidence that the magnifying glass postulate is not a statement about the real numbers.

Our view is that it is correct to take a quotient when it (1) assists the encoding of
geometrical intuitions in mathematical language, and (2) satisfies the effectivity prop-
erty (0.2.1∗4), and incorrect otherwise; because many quotients fail to be effective in
Nuprl, they are best avoided altogether in that setting. Given his comments, we note with
irony that Bishop’s setoid-based foundation of mathematics is one in which all quotients
are effective, and hence there is no rational reason to avoid them.

(0.2.1∗6) The Computational Higher Type Theory/CHTT program of Angiuli, Hou
(Favonia), and Harper [AHH17] can be seen to be another way to correct the inapplicability
of PERs to mathematics by replacing them with cubical PERs, a generalization that in
some sense “builds in” an iterated version of setoids. Indeed, CHTT is compatible with
effective quotients (and much more) despite being based on PERs [Cav21; CH18; CH19].

(0.2.1∗7) General univalence. Propositional univalence generates many of the important
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structural properties of sets in mathematics (both constructive and classical) — for
instance, propositional univalence ensures that quotients by equivalence relations behave
correctly (0.2.1∗4). Propositional univalence can be generalized from propositions-and-
biimplications to sets-and-bijections, as in the ground-breaking paper of Hofmann and
Streicher [HS98]; this “set-level univalence” then generates important structural properties
of not only sets, but also groupoids. The piercing insight of Voevodsky [Voe06] was to
observe that propositions, sets, and groupoids are just the first few levels of an infinite
hierarchy of “homotopy levels”; the appropriate generalization of propositional and set-
level univalence to the entire hierarchy, then, can generate the important structural
properties of ∞-groupoids or homotopy types at any dimension. From this perspective,
univalence — the fact that equivalences between types are the same as equations between
them — is the ultimate extensionality principle to civilize the mathematical universe.

Different levels of univalence are needed for different applications. We pointed out
that propositional univalence is needed to get almost any “ordinary” mathematics off
the ground, but we argue that in the future we should seek to develop type theories
that are compatible with general univalence. Just as propositional univalence ensures
that quotients by equivalence relations are well-behaved, general univalence ensures an
analogous property for arbitary colimits, resolving many anomalies in low-dimensional
mathematics.

§0.2.2. Syntactic properties (metatheorems)

(0.2.2∗1) In §0.2.1 we have discussed a number of semantic properties that experience has
shown to be important for type theories and their applications. There is a complementary
range of important syntactic properties that one must also satisfy that we discuss in
(0.2.2∗2) through (0.2.2∗5); we recall from (0.2∗2) that a syntactic property is one that is
specific to the syntactic model rather than one that pertains to all models of the theory.

(0.2.2∗2) Consistency. The simplest and most important syntactic property is consistency,
i.e. that there exists an empty type, i.e. a type E such that there does not exist a closed
term · ` M : E. The consistency property is often taken to mean that a theory cannot
prove things that are false; that is not entirely correct, because “things that are false”
presupposes a particular intended semantics. It is better to say that a consistent theory is
one that is compatible with a semantics that can tell the difference between true and false.
There are many ways to prove consistency for a theory; the most direct is to exhibit an
“intended model” (0.2.2∗3), but consistency also often follows (in a much more complex
way) from purely syntactical/computational considerations such as (0.2.2∗4) and (0.2.2∗5).

(0.2.2∗3) Intended models. Type theories are not used for their own sake; one uses type
theory as an abstraction of some actual domain of interest. For instance, we may use type
theory as a language for speaking about sets, or spaces, or automata, etc.; to substantiate
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these applications, it is necessary to ensure that the domain of interest is actually closed
under type theoretic operations (e.g. function, products, etc.). To do so is the same as
constructing a model of type theory using the intended domain as raw material; then, a
theorem stated in terms of types can be read as a statement about (e.g.) spaces, and a
simple type theoretic proof can be unraveled to a much more complex proof about spaces.
We break with tradition in the type theoretic community (e.g. the philosophical work
of Martin-Löf [Mar84; Mar96]) by not accepting the idea of a single “intended model”;
instead we think of the intended model as being conditional on the desired applications.

(0.2.2∗4) Closed term computation. Martin-Löf’s profound identification of mathematics
with computer programming [Mar79] expresses a hypothesis that terms in type theory
can be run like programs (0.1.2∗1). In particular, if you have a closed term · `M : nat,
then there is an actual natural number m ∈ N such that · ` M ≡ m̄ : nat is derivable;
moreover, we should have some effective way to compute m. The existence of the number
m ∈ N is often referred to as canonicity; if a particular procedure is chosen to exhibit
such an m, then the canonicity result can be seen as a form of computational adequacy
in the sense of Plotkin for the term model of type theory relative to this procedure.
When a canonicity proof is given in a constructive metatheory, it automatically contains
within it an algorithm; canonicity proofs in non-constructive metatheories may yet evince
algorithms for recursion-theoretic reasons.

Not all type theories support closed term computation; in the past it has been necessary
in many cases to sacrifice computation of closed terms in order to support various semantic
properties, such as function comprehension (0.2.1∗2) and propositional univalence (0.2.1∗3).
One of the benefits of cubical type theory is that these semantic properties can be obtained
without sacrificing closed term computation, a result proved independently by Angiuli,
Hou (Favonia), and Harper [AHH18] and Huber [Hub18]. For this reason, moving toward
cubical type theory appears to be non-optional for those who wish type theory to be used
as a language for both mathematics and programming at the same time.

(0.2.2∗5) Open term computation. Closed term computation (0.2.2∗4) is a prerequisite for
the use of type theory as a programming language, but this property is not sufficient to
facilitate the implementation such a compiler and a type checker for such a language. In
order to write a type checker, it is necessary to also perform “symbolic computation” of
open terms, i.e. terms that have free variables. There are many possible notions of symbolic
computation, but only ones with respect to which the term model has computational
adequacy are useful — in other words, it must be the case that for two terms Γ ` M,N : A
we have Γ `M ≡ N : A if and only if they are taken to the same result under symbolic
computation. When this adequacy property holds, the symbolic computation is referred
to as normalization. There are two main consequences of normalization that facilitate the
implementation of compilers and type checkers for dependent type theory:

1) Inversion laws. For instance, if Γ ` A→ B ≡ A′ → B′, then both Γ ` A ≡ A′ and
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Γ ` B = B′.
2) Decidability of judgmmental equality. There is an algorithm to determine whether

or not Γ ` A ≡ B for any two types Γ ` A,B.
Decidability of judgmental equality is needed to implement the conversion rule, which

closes the typing judgment Γ ` a : A under type equality. Although decidability gets
the most attention, from our point of view the inversion laws are of more fundamental
importance for type checking algorithms. Consider the following elaboration clause for
λ-abstractions:

synth(Γ ` M(N))⇒
(M,A→ B)← synth(Γ ` M);
N← check(Γ ` N : A);
return (app(A,B,M,N),B)

The above is deterministic only by virtue of the invertibility of the congruence rule for
(→): there is a unique type Γ ` A that is the domain of the function type Γ ` A→ B.

(0.2.2∗6) Denotational proofs of positive and negative syntactic properties. We mentioned
that the consistency property (0.2.2∗2) can be proved directly by means of model con-
structions / denotational semantics; for instance, consistency follows immediately if we
can give a model of a type theory in sets where the type empty is interpreted by the
empty set. The broader phenomenon in play here is that negative conditions on syntax
can nearly always be proved directly by means of a denotational “counter-model”, i.e. a
model that contains a counterexample. It is more subtle to use denotational semantics
to prove positive properties of syntax like (0.2.2∗4) and (0.2.2∗5); here one must employ
models that combine syntax with semantics, which is the main topic of this dissertation.

§0.3. THE CUBICAL HYPOTHESIS CONFIRMED

(0.3∗1) The history of dependent type theory can be oriented in terms of the contradiction
between syntax and semantics, or to be more precise, the difficulties reconciling the
semantical goals of type theory (§0.2.1) with the syntactic goals (§0.2.2). Significant
progress was made with the introduction of Homotopy Type Theory [Uni13], which
achieved for the first time all the semantical goals in a convincing way; unfortunately,
this was carried out by sacrificing en passant the syntactic properties that type theorists
have found to be important (for applications and implementation). Cubical type theory
was designed with the explicit aim to present these semantic properties in a way that
preserves the desirable syntactic properties, a research program that we might refer to as
the “Cubical Hypothesis”.

(0.3∗2) In particular, cubical type theory was originally inspired by a constructive
model of general univalence (0.2.1∗7) in cubical sets [BCH14]. The constructivity of
this model suggested (but did not by itself imply) that one could design a version of
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type theory in which terms could be run as programs (0.2.2∗4); this conjecture was
verified by Angiuli, Hou (Favonia), and Harper [AHH18] and Huber [Hub18]. After this,
two important syntactical properties remained conjectures: the existence of a standard
model of cubical type theory in homotopy types (0.2.2∗3), and normalization / open term
computation (0.2.2∗5). The standard model conjecture was resolved in the 2019 tour de
force by Awodey, Cavallo, Coquand, Riehl, and Sattler with their equivariant model —
a result that had yet to be published at the time this dissertation went to press. The
contribution of this dissertation is to resolve the normalization conjecture.

(0.3∗3) Now that the last conjectures in the syntactic metatheory of cubical type theory
are resolved, we can finally regard the Cubical Hypothesis confirmed. We do not know
what the type theories of the future will look like, but we will insist as a programmatic
matter that they carry forward the advances made under the cubical banner.

§0.4. COMPUTATION: DYNAMIC AND STATIC

(0.4∗1) In the study of programming languages, it is quite common to distinguish between
the statics and the dynamics of a language — as presented by Harper [Har16], the statics
of a language include the rules for deducing judgments of a grammatical nature such as
Γ ` a : A , which expresses that a is a well-formed element of type A. In this American
School consensus on programming languages, the equality of programs is not usually
considered as part of the statics but instead emerges from the dynamics.

(0.4∗2) The dynamics of a language (“how it computes”) are typically given by a transition
relation a a′ and a distinguished collection of terminal states a final defined on
untyped raw terms without free variables.7 The statics are united with the dynamics in
the following fundamental theorem (0.4∗3).

(0.4∗3) Type safety. Let a be a raw term with no free variables, and let A be a type.

1) Progress. If · ` a : A, then either a final or there exists some a′ such that a a′.
2) Preservation. If · ` a : A and a a′, then · ` a′ : A.

§0.4.1. Dynamic equivalence of programs

(0.4.1∗1) Observational poles. When a program is run, the main thing it produces is heat.
In order to have a meaningful notion of program equivalence, it is a priori necessary that
there be at least some measure (an “observational pole”) that is capable of distinguishing
two programs. We define an observational pole to be a type O together with a subset
O ⊆ {a | · ` a : O} that is closed under head expansion in the sense that a′ ∈ O and
a a′ together imply a ∈ O.
7 Here, we understand “raw term” to refer to α-equivalence classes of well-scoped terms.
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(0.4.1∗2) Non-termination. If a language has non-termination and a unit type 1, then the
collection of terminating programs a : 1 can be used as an observational pole.

(0.4.1∗3) Answer types. In pure languages, the observational pole is defined on a sufficiently
discrete answer type as explained by Harper [Har16].

Γ ` yes : ans Γ ` no : ans

We may define Oans to be the set of terms that evaluate to yes.

(0.4.1∗4) Category of term boundaries. We define a term boundary to be a pair Γ�A with Γ
a context and A a type; a morphism of term boundaries (Γ�A) (∆� B) is essentially
a term ∆ ` C[•] : B with a single hole • that can be filled by any term Γ ` a : A.8 A
morphism of term boundaries is often called an evaluation context.

(0.4.1∗5) Operational equivalence. A canonical notion of equivalence arises from any
observational pole (O,O). Fixing two terms Γ ` b,b′ : B, we say that b is observationally
equivalent to b′ when for all morphisms of term boundaries C[•] : (Γ� B) (·�O), we
have C[b] ∈ O if and only if C[b′] ∈ O. We will write Γ `O b ' b′ : B to mean that b and
b′ are observationally equivalent relative to the pole (O,O).

(0.4.1∗6) It is a standard theorem of operational semantics that observational equivalence
is the coarsest consistent congruence relative to the chosen pole (O,O). In this setting, a
relation R is a called a congruence when it is preserved by all the term formers of the
language; and it is consistent when a R a′ implies (a ∈ O)⇔ (a′ ∈ O) for any · ` a,a′ : O.

(0.4.1∗7) The fact that observational equivalence is the coarsest consistent congruence
relative to a given pole expresses the sense in which observational equivalence is universal.
The universality of observational equivalence is the reason why theorists of programming
languages consider it “the” definition of program equivalence. We will argue that while
observational equivalence is a reliable intuitive model for equivalence of programs up to
dynamics, it does not address the equally pressing question of static equivalence.

§0.4.2. Static or “judgmental” equivalence of programs

(0.4.2∗1) We pointed out in (0.4∗1) that the statics of an American School programming
language typically contains only the laws for constructing well-typed terms, but evinces
no notion of program equivalence. Hence a programming language in this sense is a pure
theory T, a theory presented by generators but no relations.

It is by now standard practice to study such a theory in terms of its syntactic category
CT, whose objects are given by contexts Γ and whose morphisms are given by simultaneous
8 The precise definitions depend on the language, and can be found in a standard text such as Harper
[Har16].
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substitutions ∆ Γ. Unfortunately, the syntactic category of such a “pure” theory
has no recognizable structure at all except finite products (given by context extension):
even if T has function types in the usual sense, the syntactic category CT does not have
exponentials! This is because the β/η laws of the function type are present only in the
dynamics, and hence do not affect the syntactic category at all.

� (0.4.2∗2) Confronted with this unfortunate fact, it is tempting to define CT by quotienting
the simultaneous substitutions under observational equivalence (0.4.1∗5) relative to a
suitable pole (0.4.1∗1). On the bright side, the resulting category does have the desired
structure (e.g. exponentials); unfortunately, it doesn’t take much investigation to see that
this idea is not viable: most interpretations CT E add functions that are not definable in
T, but such functions induce new observations that will disrespect operational equivalence.
Hence quotienting the syntactic category under operational equivalence has the effect of
degenerating the category of models of a given theory.

(0.4.2∗3) One possible response to this state of affairs is to ignore the question of models
(and therefore the question of static equivalence) altogether — there is one model, and it is
the operational model. This point of view, while respectable, exhibits certain fundamental
limitations that make it unsuitable for the study of modern programming languages.
Indeed, it is not difficult to see that a well-behaved notion of static equivalence is non-
optional for any language that exhibits type dependency, including Standard ML and
OCaml via their module systems, and Haskell via its type families mechanism! In either
case, a conversion rule governing static equivalence cannot be avoided, here phrased in
terms of program module typing:

conversion
Γ ` M : σ

static equiv.︷ ︸︸ ︷
Γ ` σ ≡ τ sig

Γ ` M : τ

While the conversion rule above speaks only of static equivalence of signatures, sig-
natures in ML languages involve not only types but also programs (e.g. via singletons).
Hence one way or another, it is not optional to account for equivalence of programs;
ML languages do this by contracting the collection of programs of a given type to a
point under static equivalence in accordance with the phase distinction [HMM90; SH21],
whereas ordinary dependent type theories must provide a more fine-grained approach to
static program equivalence that identifies only β/η-equivalent programs.

(0.4.2∗4) Judgmental equality. We will usually refer to the notion of equivalence governed
by the conversion rule as judgmental equality rather than “static equivalence”.

(0.4.2∗5) Design constraints for judgmental equality. Three important considerations
inform the design of judgmental equality for a type theory or a programming language;
these considerations arise from usability, implementability, and applicability respectively.
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1) Realistic. Judgmental equality must identify things that are “obviously” the same:
for instance, it is non-optional to identify Γ ` π1〈a,b〉 ≡ a : A.

2) Feasible. We insist that judgmental equality be not only decidable, but also feasible
in the usual case.9

3) Stable. Judgmental equality must be stable under extension of the language with
new constants and new computations: hence, “observational” notions of equivalence
such as (0.4.1∗5) that identify two elements on the basis that there is no way to
distinguish them are ruled out a priori.

(0.4.2∗6) Balancing the design constraints (0.4.2∗5) leads to the following theses concerning
the theory of judgmental equality at specific type connectives:

1) For “negative” types (functions, products, limits, etc.), judgmental equality should
include both β- and η-laws: modern methods (such as normalization by evaluation
or hereditary substitutions) easily decide the full equational theory for such types.

2) For “positive” types (sums, tensor products, colimits, etc.), judgmental equality
should include only β-laws: the η-laws are in some cases decidable, but never feasible.

Because there are some identifications that cannot be implemented by judgmental
equality, we also conclude that it is necessary to include an additional form of identification
for which proofs are provided by the user. This is usually achieved by adding an
identification type connective IdA(a,a′) to a language with the following introduction rule:

Γ ` a ≡ a′ : A
Γ ` reflA,a,a′ : IdA(a,a′)

Inverting the introduction rule above is called equality reflection, and this is obviously
ruled out by the design constraint of feasibility (0.4.2∗5). Hence one of the main questions
investigated by type theorists in the present day is the design of identification type
connectives that identify enough things without disrupting other important properties
of the language; the state of the art in this area is cubical type theory [Ang+19; AHH18;
Coh+17], and the main contribution of this dissertation is to prove that judgmental
equality in cubical type theory is both realistic and decidable, the latter being a necessary
step toward establishing feasibility.

§0.5. SUBJECTIVE METATHEORY: THE MATHEMATICS OF FORMALISMS

(0.5∗1) We promote the term subjective metatheory for the traditional study of the
mathematical properties of formalisms, as opposed to the study of the type theories they
9 Well-known complexity-theoretic results ensure that no useful notion of judgmental equality can be
feasible in the worst case, but decades of experience embodied in both ML languages and proof assistants
like Agda and Coq have shown that the pathological cases never arise in practice. Deciding β/η-equivalence
for dependent type theoretic terms that arise in practice has proved to be completely unproblematic.
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present. The subjective metatheory of a formalism for type theory often involves defining
reduction relations on raw terms and establishing the admissibility of various rules or
reasoning principles (e.g. cut or substitution, weakening, strengthening, subject reduction,
etc.), with an eye toward establishing the following results relative to the presentation:

1) Canonicity, the existence of canonical representatives of judgmental equivalence
classes for closed terms of base type [AHH17; Hub18; LH12].

2) Normalization, the existence of canonical representatives of judgmental equivalence
classes for open terms of arbitrary type [Abe09; Abe13; AAD07; ACP09; AVW17;
GSB19a].

3) Sound and complete interpretation, or the construction of an initial model of type
theory by constraining and then quotienting the raw terms of the formalism [Str91].

4) Elaboration, the translation of a convenient surface language into type theory [Bra13;
Bra+11; CH09; HS00; McB99; Mil+97].

(0.5∗2) Soundness and completeness for a formalism will usually be obtained as a conse-
quence of the normalization theorem, rather than the other way around. The difficulty is
to establish the coherence of the interpretation under the very common circumstance that
the raw terms of type theory carry less information than the derivations, as explained
by Streicher [Str91]. This aspect of the subjective metatheory is simultaneously the
most laborious and the least informative; it can be side-stepped entirely in the objective
metatheory which we detail below.

§0.6. OBJECTIVE METATHEORY: A SYNTAX-INVARIANT PERSPECTIVE

(0.6∗1) We coin the term objective metatheory to refer to the study of presentation-
invariant structures over type theories, i.e. structures on type theory that are inherited
by all formalisms presenting it. Many aspects of type theory that have historically
been studied in a subjective way may also be studied objectively, including canonicity,
normalization, conservativity, decidability of equivalence, coherence, and even elaboration.

(0.6∗2) The objective metatheory distinguishes itself from the subjective not only in its
invariance, but also through the emphasis of structure over property. In fact, it is only
by passing from property (proof-irrelevant structure) to proper structure (proof-relevant
structure) that it becomes possible to entertain invariant accounts of the metatheory of
type theory, as we will see in Chapter 4.

(0.6∗3) We are inspired by Lawvere’s use of the prefix “objective” to refer to the study of
the laws of reality (including as a special case the deductive processes of “matter-that-
thinks”, i.e. humans), in contrast to the pure study of the laws of thought [Law94; LS09;
Sch00]; Lawvere’s distinction, applied in the context of categorical algebra and continuum
dynamics, draws from Hegel’s opposition of the subjective and the objective [Heg69].
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(0.6∗4) In the context of type theory, the study of deduction in formalisms is subjective
in the sense that a formal deduction is a thinking subject’s reflection on a real process —
for instance, in a formalism for Euclidean geometry, the deduction of a formal line from
a pair of formal points is a subjective reflection of the objective process of drawing this
line, which exists regardless of what rules of construction are distinguished as “basic” or
“primitive”, and which are distinguished as derived.

(0.6∗5) The subjective metatheory in logic and type theory corresponds to “choosing
a coordinate system” or “choosing a basis” in other areas of mathematics; historically,
this has been a necessary step in carrying out calculations of a determinate nature, but
recent years have furnished evidence that many calculations (including normalization,
the computation of canonical representatives of equivalence classes) can be carried out
without choosing any “coordinate system” beforehand [Coq19; Fio02]. This is what we
mean by the objective metatheory.

(0.6∗6) Subjective reflections of real processes may, as a whole, exhibit anomalies and
points of tension that mystify and complicate the study of the objects they present. For
instance, the bitter controversy between implicit and explicit substitutions in type theory
is purely subjective: at the objective level, substitution is characterized by a universal
property which can be presented in either an implicit or explicit way without affecting
any substantive metatheorem.

§0.6.1. Lawvere theories and objective algebra

(0.6.1∗1) Lawvere laid the groundwork for the objective metatheory in his doctoral
thesis [Law63] by distinguishing theories from their presentations for the first time, and
going on to develop a new kind of categorical model theory called the functorial semantics.
Aiming to be intelligible to the existing community studying universal algebra, Lawvere
restricted his attention to unityped algebraic theories, but his ideas have been extended in
the subsequent years to account for sophisticated binding structures as well as dependent
sorts [Car78; FH10; FM10; PV07; Uem19].

(0.6.1∗2) Originally, an algebraic theory was a pair (O,E) in which O is a set of operation
symbols equipped with arities, and E is a set of equational sequents 〈n ` s ≡ t〉 in which
s,t are terms of arity n; the terms of arity n are generated inductively by variables xi
with i < n and operations o(s0, . . . ,sm−1) where o ∈ Om and each si is a term of arity n.

(0.6.1∗3) Following Lawvere [Law63], we refer to the pair (O,E) as an equational presenta-
tion of a theory rather than as a theory. The theory that (O,E) presents will be a structure
that forgets the difference between generating operations o and derived terms s. Each
presentation in this sense generates a collection of algebras, which are structures equipped
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with operations corresponding to O, obeying the equations in E. Between algebras is a
class of homomorphisms, yielding the structure of a category.

(0.6.1∗4) Equational presentation of monoids. The algebraic theory of monoids can be
presented by the following operations and equations:

On =


{ε} n = 0
{�} n = 2
∅ otherwise

E =


〈1 ` �(ε,x0) ≡ x0〉,
〈1 ` �(x0,ε) ≡ x0〉,
〈3 ` �(x0,� (x1,x2)) ≡ �(�(x0,x1),x2)〉


The category of algebras for this equational presentation is exactly the category of

monoids in the ordinary sense!

(0.6.1∗5) An important structural property of modern algebra is that there is a equivalence
(an “isomorphism up to isomorphism”) between the category of equational presentations
and the category of theories: a theory can be presented in many different ways, but
these presentations are all isomorphic. The minor differences between presentations
that are flattened out at the level of theories often constitute the main source of the
difficulty in developing the subjective metatheory — located for instance in the very
fragile presupposition-admissibility lemmas, etc. Consequently, experienced practitioners
of the subjective metatheory have accumulated numerous heuristic design principles for
obtaining “good” presentations that evince simpler proofs of normalization, decidability
of equivalence, coherence, etc.

(0.6.1∗6) Cut elimination. Although any two sequent calculus presentations of intuitionistic
first-order logic are necessarily isomorphic in a precise sense, it is much easier to decide
equality of proofs in a presentation for which the general cut and identity rules are
admissible but not derivable; most structural proof theorists and type theorists have
accordingly developed an attuned awareness of minor differences in presentations that are
likely to facilitate or disrupt the admissibility of cut and identity.

(0.6.1∗7) The strength of the objective metatheory lies in providing tools that are robust
under these differences; these tools include (for example) generalized algebraic theories
and logical frameworks [Car78; HHP93; Uem19], as well as Artin gluing [Cro93; Fio02;
Joh02; KHS19; MS93; SS18; Tay99]. A weapon more recently added to the arsenal
of the objective metatheorist is the homology theory of term rewriting systems [Ike19;
MM16], a computational invariant that reflects lower bounds on the number of operations
and equations required to present a given theory. Thus, the invariance of the objective
metatheory does not prevent its use for studying non-invariant objects.
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(0.6.1∗8) According to our terminology, an equational presentation is a specific kind of
formalism; other kinds of formalism are possible, and indeed, one of the background moti-
vations of this dissertation is to promote formalisms that present a theory by elaboration
rather than by equational constraints. The most famous exemplar of this latter kind of
formalism is the surface language of Standard ML.

§0.6.2. Algebraic type theory and logical frameworks

(0.6.2∗1) Since the early 1990s, many type theorists have argued that type theories
should not be defined first as “hand-crafted” formalisms, but should instead be given as
mathematical objects in some simpler framework — for instance, Martin-Löf’s Logical
Framework (MLLF) or the Edinburgh Logical Framework (LF), or the (binding-free)
discipline of Generalized Algebraic Theories (GATs).

(0.6.2∗2) Type theorists have preferred logical frameworks for a number of reasons, in-
cluding the fact that some logical frameworks (mainly MLLF and LF) enable object-level
binders to be represented by a meta-level function space. This facility removes the difficulty
and bureaucracy associated with specifying binding structure and substitutions, but it is
by no means the only reason to adopt logical frameworks. At the most basic level, logical
frameworks free their adopters from the endemic difficulties of the subjective metatheory
that pertain to the admissibility of presuppositions and closure under conversion.

(0.6.2∗3) Unfortunately, neither the model theory of MLLF nor even that of LF has ever
been satisfactorily worked out: this would entail definitions of categories of models, initial
algebras, a functorial semantics in the sense of Lawvere [Law63], as well as an upgrade of
the standard Lawvere–Gabriel–Ulmer duality between theories and models. Until this
year, these shortcomings have rendered a fully mathematical account of the metatheory
of dependent type theories somewhat out of reach.

(0.6.2∗4) Luckily, significant progress has been made by researchers in the past two
years: for instance, Uemura defines a logical framework generalizing MLLF that may
be used to specify almost any (non-modal) type theory, automatically equipped with
a functorial semantics and a syntactic model [Uem19]. The universal property of the
syntactic model is the critical ingredient to execute the objective metatheory and obtain
canonicity, normalization, etc.

In a similar spirit, Gratzer and Sterling [GS20] propose the use of free locally Cartesian
closed categories as an alternative way to develop the syntactic categories of type theories
and their functorial semantics; while Uemura emphasizes the universal property of the
syntactic model, Gratzer and Sterling emphasize the universal property of the syntactic
category. We develop an informal and type theoretic version of the perspective of Gratzer
and Sterling in Chapter 1.
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§0.6.3. Canonical forms and computability: structure vs. property

(0.6.3∗1) In the subjective metatheory, the notion of “canonical form” was expressed
as a property of raw terms. For instance, in operational semantics one defines the
judgment ` M value, and it is clear that this notion of canonical form or value cannot
be invariant under judgmental equality without degenerating — for if it were, one would
have ` (λx.x)(5) value.

(0.6.3∗2) The objective counterpart to this notion, which we will continue to refer to as
“canonical form”, is to be given as a structure over the denotations of typed terms in any
model C; in the usual case, when C is the syntactic/generic model of the type theory, the
notion of canonical form can be seen to be a structure over equivalence classes of typed
terms. One ceases to speak of “M is canonical” (which has no sense if M is an equivalence
class of terms) but rather “m is a canonical form of M”.

(0.6.3∗3) Adopting a notion of canonical form that is compatible with abstract terms (we
mean, typed terms quotiented up to judgmental equality) confers significant advantages.
Many of the highly technical aspects of canonicity, normalization, and parametricity proofs
can be boiled down to pushing around proofs of properties that are completely non-trivial
for raw terms, but totally automatic for abstract terms. For instance, the burdensome
coherent expansion conditions endemic to the subjective metatheory of cubical type
theory [Ang19; AHH17; Hub18] may be totally dispensed with in the objective metatheory,
as illustrated in joint work with Angiuli and Gratzer [SAG19; SAG20].

(0.6.3∗4) The notion of canonical forms as structures rather than properties goes back
to Peter Freyd’s application of sconing (gluing along the global sections functor) in
1978, though it can be argued that the structural perspective was latent in the work of
Martin-Löf [Mar75a]: already in 1975, Martin-Löf summarizes a computability model in
which a dependent sum is used to express the concept of a term together with a witness
of computability.

(0.6.3∗5) The “book proof” of canonicity for typed λ-calculus has long been based on
structures of canonical forms over equivalence classes of typed terms, and this perspective
was extended by Fiore [Fio02] to full normalization, providing the objective counterpart
to normalization by evaluation.

(0.6.3∗6) While a number of scientists (including Awodey, Spitters, and others) have
long promoted the idea of developing a version of the gluing technique that applies to
dependent type theories, the technical realization of this idea was greatly delayed by
a pervading misconception within parts of the type theoretic community that partial
equivalence relations over raw terms were required; to the author’s knowledge, the first
application of gluing to dependent type theory appeared in the paper of Shulman [Shu15b],
but it was not until the note of Coquand [Coq18] was made public that the technology
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became nearly universally understood within the traditional type theoretic community.
This dissertation is, in some sense, a product of Coquand’s expository work.

(0.6.3∗7) Already in 2016, however, Altenkirch and Kaposi [AK16a] had presented an
objective version of normalization by evaluation (without using the language of gluing) for
dependent type theory. Since 2018, a number of authors including myself have participated
in developing the theory and applications of gluing for dependent type theories with
universes [Coq18; Coq19; CHS19; Gra21; KHS19; KS19; Ste18; SA21; SAG19; SAG20;
SH21].

§0.6.4. Tait’s method, then and now

(0.6.4∗1) How do you prove that every term may be equipped with a canonical form?
This question is answered by the method of computability introduced by Tait [Tai67] and
refined by Girard and Martin-Löf; although the technical details have changed greatly over
time (even during the writing of this document), the main idea remains unchanged. The
essence of Tait’s computability method is to construct an interpretation of the type theory
in which each type is rendered as some kind of predicate on the elements of that type,
and each operation must preserve this predicate. Depending on which metatheorem one
wishes to prove (e.g. canonicity for closed terms, canonicity for open terms, parametricity,
etc.), a number of parameters of the computability model may be tweaked.

(0.6.4∗2) The classical method of computability. Classically, computability predicates were
construed as families of propositions over raw terms (or typed raw terms, not taken up to
judgmental equality), indexed in renamings; there is a great deal of technical difficulty in
verifying that these objects are well-defined, including:

1) For most metatheorems (but not all), all computable elements must be well-typed.
2) Computability must be closed under judgmental equality.
3) The computability predicates are closed functorially under a class of substitutions.

� (0.6.4∗3) Defined in this style, the computability technique does not give rise directly to
a model of the theory at hand: in other words, it is not the case that in the “semantic
domain” (raw terms satisfying some predicates), a β-redex is mathematically the same
as its contractum — hence there is really no sense in which this style of computability
can be called semantics. In all cases it is possible to quotient everything after the fact in
order to obtain a model, but we are skeptical that much leverage is gained in this way; the
power of the model theory is grasped through direct use, rather than worship from afar.

� (0.6.4∗4) The situation becomes strictly more difficult in the context of dependent type
theory with universes: it is usually not possible to prove normalization (or even closed
canonicity) using ordinary computability predicates over raw terms, and so one has
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typically passed to a more complex argument involving two semantic constructions of
approximately equal difficulty:10

1) A computability interpretation, in which one considers “pairs of equal computable
elements” rather than computable elements. This interpretation of type theory
into partial equivalence relations is enough to establish the completeness part
of normalization. This stage involves an ingenious but quite subtle fixed point
construction about which a number of difficult closure and saturation conditions must
be established — one of the main obstacles to a manageable proof of normalization,
as can be seen from the technical report of Gratzer, Sterling, and Birkedal [GSB19b].

2) A binary logical relation between the computability interpretation and the raw
syntax of the formalism, to establish the soundness part of normalization. Here one
requires an additional sequence of somewhat technical saturation conditions.

(0.6.4∗5) Recent examples of proving normalization for dependent type theory with
universes using subjective computability include Gratzer, Sterling, and Birkedal [GSB19a]
and Wieczorek and Biernacki [WB18]. There appears to be only a limited extent by
which this style of construction can be simplified or modularized, but we note that Abel,
Öhman, and Vezzosi [AÖV17] present some improvements.

(0.6.4∗6) Objective computability, or computability structures. All of the difficulties de-
scribed above may be dealt with simultaneously in the context of the objective metatheory,
using a computability structures technique inspired by Artin gluing; computability families
might alternatively be referred to as proof-relevant computability predicates. Computability
structures exhibit a few main differences from earlier approaches:

1) Computability is a structure rather than a property: the use of structure rather
than property allows us to finally overcome the reliance on raw terms and reduc-
tion relations; overcoming reduction will be of great importance in the objective
metatheory of cubical type theory, in which the standard untyped head expansion
property of semantic equality is replaced by a much more technical one that involves
non-trivial equality and typing conditions.

2) Computability is defined relative to an arbitrary model C; in particular, C may be
the initial model and in this case one may speak of an equivalence class of typed
terms being computable. One does not consider raw terms at any time.

(0.6.4∗7) A consequence of working with abstract terms (equivalence classes of typed
terms) is that the computability families construction does in fact give rise to a model of
the theory; then, the difficulty in establishing the soundness of normalization for dependent
type theory can be discharged using basic algebra: namely, the universal property of the
initial model C.
10 It is worth noting that in the special case of dependent type theories without universes, such as logical
frameworks, much simpler proofs are available, e.g. the argument of Harper and Pfenning [HP05].
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§0.7. TOWARDS PRINCIPLED IMPLEMENTATION OF PROOF ASSISTANTS

(0.7∗1) Proof assistants comprise many components: concrete syntax, abstract syntax,
equivalence checking, type checking, unification, and elaboration (to name a few). While
the importance of minimizing the “trusted base” of a proof assistant has long been em-
phasized as a way to mitigate purely technical errors in implementation (e.g. a unification
module that emits ill-typed unifiers), comparatively little effort has been spent on ensuring
that these “trusted core languages” are actually mathematically meaningful.

(0.7∗2) This question of mathematical meaning is not merely philosophical or hypothetical:
interpretation of most type-theoretic formalisms into mathematical models relies on
normalization results that have not been proved for the core language actually in use.11

Current tools (rewriting, Kripke logical relations, etc.) render the array of necessary
metatheorems nearly intractable for the complex formalisms that underlie many proof
assistants used today (including Coq, Lean, Agda, Idris, and redtt).

(0.7∗3) The algebraic approach to type theory and its objective metatheory promise to
at least partly resolve these difficulties, by significantly simplifying the verification of
standard metatheorems using modern mathematical tools, and by giving rise to a new
style of un-annotated formalism which derives its equational theory directly from the
annotated internal language via elaboration, in a manner inspired by the elaborative
semantics of Standard ML [CH09; HS00; LCH07].

11 For instance, although an idealized version of Coq’s core language is known to be strongly normalizing,
there is no corresponding proof for the core language actually in use; this is not a matter of nit-picking,
because the “real Coq” uses typed conversion rules that are not currently compatible with the techniques
used to prove normalization for Predicative Calculus of Inductive Constructions (pCIC).
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§1.1. TYPE THEORIES AS CATEGORIES OF JUDGMENTS

(1.1∗1) In the study of simple type theory, it is conventional to avoid making distinctions
between types, contexts, and judgments: there is an rational basis to this tradition, which
is that all these concepts have the same expressivity. More sophisticated type theories,
however, force a careful analysis of the distinction between a judgment and a type [Mar87b;
Mar96], primarily because the language of judgments carries additional structure that is
not found in the language of types.

1) Hypothetico-general judgment. Martin-Löf’s description of the hypothetico-general
judgment x : E ` F[x] as a dependent product in the language of judgments [Mar87a]
is independent of whether types or contexts are closed under dependent product.

2) Judgmental equality. For any two objects a,b of the same sort, the meaningfulness
of a judgment of equality a ≡ b is unconditional; but the closure of the language
of judgments under equality judgments does not entail the closure of types under
equality types.

(1.1∗2) Hence it is not forced to think of types (or the contexts they generate) as the
primary objects of dependent type theory. The objectification of a general type theory
as a category in the spirit of Lawvere [Law63] should, then, evince not a category of
types/contexts but rather a category of judgments. The presence of hypothetical judgments

35
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Categorical Judgmental
E : T a judgment-form presupposing nothing
F : T/E a judgment-form presupposing E
F G : T/E an E-generic deduction of G from F
α∗ : T/F T/E instantiation of presupposition
α∗ : T/E T/F hypothetico-general judgment
α! : T/E T/F dependent sum of judgments

Table 1.1: A dictionary of concepts between a type theory and its category of judgments.

of arbitrary order [Mar87a; NPS90; Sch87], as well as the presence of equality judgments
forces a working definition of a type theory à la Lawvere. The judgmental structure of
a type theory will be concentrated in a locally Cartesian closed category T : LCCC, for
which we have a dictionary of concepts in Table 1.1.

§1.2. JUDGMENTS AS TYPES AND THE LOGICAL FRAMEWORK

(1.2∗1) If a type theory is to be studied through its category of judgments, how do we
define this category? Because the language of judgments includes both equality and
dependent products, it is itself a form of (extensional) type theory which we will refer to
as the logical framework; then an ordinary type theory can be conveniently specified as a
“signature” in this logical framework. In this section we will describe informally how to
construct such signatures via a meaning explanation in the sense of Martin-Löf [Mar96].

(1.2∗2) The logical framework that we develop informally here has its roots in the
generalized algebraic theories of Cartmell [Car78], Martin-Löf’s logical framework [Mar87a;
NPS90], the Edinburgh logical framework [HHP93; HL07], and the logical frameworks of
Harper [Har21] and Uemura [Uem19]. There are many differences in the design of these
logical frameworks; we point out the major design decisions below:

1) Like [Har21; HHP93; NPS90; Uem19] and unlike [Car78], the notions of hypothetical
judgment and variable are built into the framework rather than being axiomatized
in object theories.

2) Like [HHP93; NPS90] but unlike [Uem19], we place no restriction on which judgments
induce a hypothetical form of judgment. This perspective is also adopted in the
recent unpublished work of Harper [Har21].

3) Like [Car78; Har21; NPS90; Uem19] we support theories with equations, unlike
[HHP93] which is restricted to “pure” theories.

4) Like [Har21; Uem19] and unlike [Car78; NPS90], equations in a theory are treated
as generators of a first class equality type as opposed to being a separate top-level
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construct.
Our design decisions are meant to ensure both convenience and a straightforward

connection to free locally Cartesian closed categories.

§1.2.1. Rules for forming signatures

(1.2.1∗1) The fundamental notions of the logical framework are those of a signature, and
an implementation of a signature; given a signature S, we will write U : S to mean that U
is an implementation of the signature S. A form of signature is laid down by specifying
exactly what its implementations are.

Certain signatures will be distinguished as judgments; the purpose of this stratification
is to support a “signature of judgments” (1.2.1∗6). An implementation of a judgment J
will be referred to as a deduction.

(1.2.1∗2) The trivial judgment. There is a judgment 1 that has exactly one deduction.

(1.2.1∗3) Dependent sum. If S is a signature and T(x) is a signature assuming x : S, then
there exists a signature

∑
x:ST(x) such that an element of

∑
x:ST(x) is uniquely determined

by a pair (U,V) where U : S and V : T(U). Moreover if both S and T(x) are judgments,
then so is

∑
x:ST(x).

(1.2.1∗4) Dependent product. If J is a judgment and T(x) is a signature assuming x :
J, then

∏
x:JT(x) is a signature whose implementations are uniquely determined by

implementations U(x) : T(x) assuming x : J. Moreover, if T(x) is a judgment then so is∏
x:JT(x).

(1.2.1∗5) Equality of implementations. If S is a signature and U,V : S are implementations
of S, then there is a signature U =S V whose implementations are uniquely determined by
deductions of 1 such that U is equal to V. If S is a judgment, then so is U =S V.

(1.2.1∗6) Signature of judgments. There is a signature � whose implementations are
uniquely determined by judgments J.

(1.2.1∗7) We will write J→ T for the degenerate dependent product
∏

_:JT.

§1.3. ABSTRACT AND CONCRETE SYNTAX OF TYPE THEORY

(1.3∗1) What is abstract syntax? The abstract syntax of the type theory presented by a
signature S is nothing more than the elements of judgments that can be written down
under the assumption of an implementation α : S. A judgment of this type theory is just
a function J : S→ �, and a deduction of the judgment J from the judgment K is just a
dependent function U(α) : J(α)→ K(α) over α : S. In §1.4 we will develop a more precise
mathematical account of the abstract syntax of the type theory presented by S.
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(1.3∗2) The notion of “syntax” that we have described above is extremely general and
well-adapted to informal but rigorous manipulation. However, type theory is meant to be
implemented as a program in a computer: therefore we must also have a kind of concrete
syntax that can be built up out of trees that are typed into a computerized proof assistant
(like Agda). A large part of the subject of type theory is studying the translation of
these concrete trees into abstract syntax — this process, called elaboration, must not only
determine whether a given tree corresponds to an expression of type theory, but it must
also fill in bureaucratic details that are too painful for the user to worry about explicitly.1

(1.3∗3) The science of elaboration is the pursuit of maximal usability and interactivity of
the interface between a human scientist and a computerized proof assistant. Elaboration
is the art of “making possible the impossible”: while it is undecidable whether two type
theoretic objects in the abstract syntax we presented so far are equal or unequal, we may
find restrictions on each type theoretic language under which equality is decidable.

(1.3∗4) The role of contexts in type theory is, in part, to formalize such a restriction;
we will find that by carefully choosing which judgments are contexts, we may obtain a
decision procedure for equality of type theoretic objects that only make assumptions of
contexts, and not of other judgments.

(1.3∗5) For instance, if the equality judgment U =J V is a context, then it is not likely to
be possible to decide the equality of objects defined relative to a context [CCD17]; this
fact, often discussed in the context of a formal rule of deduction called equality reflection,
does not imply that equality is a dangerous or philosophically suspicious concept: it rather
shows the importance of carefully choosing what kinds of assumptions (contexts) are
allowed. Our perspective, inherited from the Edinburgh tradition of logical frameworks,
is that such restrictions should not be part of the type theory itself but instead should
be imposed on it as part of the statements of specific metatheorems. We return to the
question of contexts in our discussion of figure shapes in §4.1.

§1.4. CATEGORIES OF SIGNATURES AND JUDGMENTS

(1.4∗1) We may define a category SIG of signatures: an object of SIG is a signature
S defined using the rules of §1.2.1; a morphism S T is an implementation U(x) : T
assuming x : S.

(1.4∗2) Each slice SIG/S can be thought of as the language of signatures relative to or
over S. We will develop a vocabulary for these slices below.

(1.4∗3) SIG has all finite limits: the terminal object is given by the trivial judgment 1,
and pullbacks are given by a combination of dependent sum and equality.
1 Conceptually it is best to think of elaboration as a generalization of parsing.
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(1.4∗4) Judgment classifier. Consider the projection map
∑

J:�J � : SIG that takes a
deduction of a judgment to that judgment. We will write � : SIG/� for this family when
viewed as an object of the slice.

(1.4∗5) An object T : SIG/S is called judgmental when there exists a cartesian morphism
T � : SIG→.

(1.4∗6) Unfolding (1.4∗5) explicitly, we have asked for a pullback square in the following
configuration, which we may write in either the language of SIG or in the language of the
codomain functor SIG→ SIG below:

T

S

∑
J:�J

�

T

S

�

�

Hence the judgmental signatures over S are exactly the families that can be encoded
by an actual judgment S �.

(1.4∗7) SIG has dependent products along judgmental families: if f : T S is judgmental
(arises by pullback from �), then the pullback functor f∗ : SIG/S SIG/T has a right
adjoint f∗ : SIG/T SIG/S.

(1.4∗8) Category of judgments. Given a signature S : SIG, we define its category of
judgments TS to be the full subcategory of SIG/S spanned by judgmental objects. In the
future we may simply write T when the signature is understood.

(1.4∗9) The category of judgments TS is locally Cartesian closed, via (1.4∗3) and (1.4∗7).

(1.4∗10) The category TS gives rise to a functorial semantics in the sense of Lawvere
[Law63]; if E is a locally Cartesian closed category, then locally Cartesian closed functors
TS E are equivalent to models of S in E , in the sense that such a functor assigns a
morphism to every judgment and a triangle to every deduction.

§1.5. CONSERVATIVITY OF “META-SIGNATURES”

(1.5∗1) Meta-signatures. So far we have discussed signatures and judgments; the collection
of judgments itself is a signature, but we cannot have a signature of all signatures. We
show in this section that a rich notion of “meta-signature” that includes a “meta-signature
of all signatures” is a conservative extension of the language of judgments and signatures.
The purpose of such a notion is to give life to schematic constructions that compose
signatures like lego bricks at a high level of generality.

(1.5∗2) The Yoneda lemma. We have a fully faithful embedding y : SIG Pr(SIG) from
the category of signatures into the category of presheaves on signatures, sending each
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S : SIG to the representable presheaf HomSIG(−,S). Our perspective will be that an object
of Pr(SIG) is some kind of “meta-signature”, and these include (by the Yoneda lemma)
all the actual signatures.

(1.5∗3) A natural transformation f : A B : Pr(SIG) is called representable when every
fiber of f over a representable object is again representable, in the sense of the following
pullback square:

y(T)

y(S)

A

B

f

The notion of representable natural transformation is employed by Awodey [Awo18] to
provide a category theoretic reformulation of the notion of categories with families [Dyb96].
It is appropriate to think of a representable natural transformation as a universe that
(weakly) classifies some class of families originating the base category.

(1.5∗4) Awodey [Awo18] has given a very useful recipe to construct a universe of all
families of signatures as a representable natural transformation sig : Sig′ Sig in
Pr(SIG):

Sig′ =
∐
f∈SIG→y(domf)

Sig =
∐
f∈SIG→y(codf)

sig =
∐
f∈SIG→y(f)

We observe that sig is a representable map, replicating Awodey’s argument [Awo18,
Proposition 23]. Fixing a signature S and a morphism T : y(S) Sig, we intend to show
that the pullback below lies in the image of the Yoneda embedding:

Sig′ ×Sig y(S)

y(S)

Sig′

Sig

sig

T

By the Yoneda lemma the morphism T : y(S) Sig is uniquely determined by a
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cospan of the following form in SIG, whose pullback we depict in dotted lines:

S′

S

pT

domfT

codfT

qT

fT

gT

Again by the Yoneda lemma, the map qT : S′ domfT determines a map T′ :
y(S′) Sig′. It suffices to observe that the following square is cartesian:

y(S′)

y(S)

y(pT)

Sig′

Sig

T′

sig

T

(1.5∗5) Conversely, any morphism T S : SIG has a (non-unique) code y(S) Sig in
the sense of the following diagram:

y(T)

y(S)

Sig′

Sig

This is also shown by Awodey [Awo18, Corollary 24]; the upstairs and downstairs maps
correspond under the Yoneda lemma to the cospan and upper-right composite of the
following square respectively:

T

S

T

S

idT

idS

We will not use the following strengthening of (1.5∗5).

(1.5∗6) Sig′ Sig is generic for representable maps in the sense that every representable
map arises from it by pullback, albeit in a non-unique way. Let p : A B be a
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representable map; we wish to exhibit a pullback square in the following configuration:

A

B

p

Sig′

Sig

sig

Because p is a representable map, for each f : y(Sf ) B we have a pullback square of
the following kind:

y(S′f )

y(Sf )

y(pf )

A

B

qf

p

f

Every presheaf is a colimit of representables; in particular, the cocone formed by all
morphisms f : y(S) B is universal. The universality of colimits states that the cocone
formed by all the induced morphisms qf : y(S′f ) A is also universal. Hence using
the universal property of the colimit, we obtain a square p sig restricting along each
f : y(Sf ) B to y(pf ):

y(S′f )

y(Sf )

y(pf )

A

B

qf

p

f

Sig′

Sig

χ′

sig

χ
(1.5∗6∗1)

The outer square of Diagram 1.5∗6∗1 is evidently cartesian for each f , but the pullback
lemma does not deduce that the right-hand square is cartesian from such an assumption.
Using descent for coproducts, the family of diagrams above on the left can be repackaged
as a single pullback square in which the downstairs (and hence the upstairs) morphism is
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an effective epimorphism:

y(S′f )

y(Sf )

y(pf )

∐
fy(S′f )

∐
fy(Sf )

inf

∐
fy(pf )

inf

A

B

[f.qf ]

p

[f.f ]

Sig′

Sig

χ′

sig

χ

f

qf

(1.5∗6∗2)

The outer black square of Diagram 1.5∗6∗2 is cartesian because its restrictions along
the coproduct injections are cartesian. Because the left-hand black square is a pullback
along an effective epimorphism, the right-hand black square is cartesian too.

(1.5∗7) Further results of Awodey [Awo18, Proposition 28] establish that Sig is closed
under codes for signature connectives corresponding to dependent sum/product.

(1.5∗8) By the Yoneda lemma, anything expressible in the language of SIG has a coun-
terpart in Pr(SIG); because the Yoneda embedding preserves finite limits and dependent
products, we are free to naïvely use the internal language of Pr(SIG) as if it were the
language of SIG.

Anything written in the language of Pr(SIG) that doesn’t involve meta-signatures can
be proved in the language of SIG, also by virtue of the Yoneda lemma. This is the sense
in which we may freely employ constructs such as the meta-signature SIG of all signatures
as a convenience in the interior of constructions involving signatures; the Yoneda lemma
shows that such a construction can be unrolled at the end of the day to a (more difficult)
construction that involves only actual signatures.

§1.6. TYPE THEORETIC BUILDING BLOCKS

(1.6∗1) We will immediately impose a number of convenient but informal notations for
working with (meta)-signatures and judgments in the language of Pr(SIG). Formally, the
objects of an implementation of a signature are accessed positionally, by iterated projection
and application: in particular, the name of the bound variable x in the dependent sum∑
x:JK(x) has no meaning as it is only a placeholder. However, it will be convenient to

adopt a notation by which we associate names to positions within a signature.
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(1.6∗2) We will use an Agda-style notation for defining (parameterized) signatures and
judgments:

record S (x : T) : Sig where
u : J(x)
v : K(x,u)
w : L(x,u,v)

The above defines a parameterized signature S : T→ Sig. We additionally have the
following three projection schemes, using curly braces to indicate an implicit parameter
in our notation:

−.u : {x : T} S(x)→ J(x)
−.v : {x : T}

∏
y:S(x)K(x,y.u)

−.w : {x : T}
∏
y:S(x)L(x,y.u,y.v)

(1.6∗3) As an example, Martin-Löf’s type theory has two forms of judgment A type and
a : A; we may render this type theory as the following signature:

record ML∅ : Sig where
tp : �
tm : tp→ �

(1.6∗4) A common design pattern is to build up signatures from components, often
parameterized in other signatures. These components, which we might call “snippets”,
are especially useful when specifying a complex type theory.

(1.6∗5) The concept of an isomorphism between two judgments can be expressed as a
judgment snippet Iso(J,K):

record Iso (J : �,K : �) : � where
intro : J→ K
elim : K→ J
cohβ :

∏
x:Jx =J elim(intro(x))

cohη :
∏
x:Kx =K intro(elim(x))

We will write J ∼= K for Iso(J,K).

(1.6∗6) We define a judgment snippet fam : ML∅ → � that takes an implementation of
the judgmental structure of Martin-Löf type theory to a compound judgment classifying
type families.

record fam (α : ML∅) : � where
base : α.tp
fib : α.tm(base)→ α.tp
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§1.7. MARTIN-LÖF’S TYPE THEORY WITH UNIVERSES

(1.7∗1) What do we mean by Martin-Löf’s type theory? We are referring to a version
of dependent type theory with forms of judgment A type and a : A, equipped with the
following structure:

1) Types are closed under dependent product, dependent sum, and booleans.
2) There is a hierarchy of universes with associative and unital lift coercions, each closed

under dependent product, dependent sum, booleans, and the smaller universes. The
decoding operation of each universe commutes strictly with the chosen codes for
type constructors.

We distinguish the above from extensional type theory which adds extensional equality
types at each universe level. A precise definition of this type theory is presented in
Fig. 1.2.2

(1.7∗2) Fix an implementation M : MLext and define the following constants:

Π :
∏

A:M.tp
∏

B:M.tm(A)→M.tpM.tp

λ :
∏

A:M.tp
∏

B:M.tm(A)→M.tp
∏
f :
∏

x:M.tm(A)M.tm(B(x))M.tm(Π(A,B))

app :
∏

A:M.tp
∏

B:M.tm(A)→M.tp
∏
f :M.tm(Π(A,B))

∏
x:M.tm(A)M.tm(B(x))

(1.7∗3) Externalizing. The object MLext from Fig. 1.2 is a global element of Sig : Pr(SIG),
in the sense that it refers only to defined constants; hence, the representability of
Sig′ Sig guarantees that it corresponds to an actual external signature S : SIG:

y(S)

y(1)

Sig′

Sig
MLext

Hence we define the category of judgments of Martin-Löf’s extensional type theory to
be TS, the full subcategory of SIG/S spanned by judgmental objects.

2 We take the somewhat nonstandard step of omitting intensional identity types from the definition of
Martin-Löf’s type theory, because we are mainly investigating both extensional identity types and cubical
path types.
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record Jbool (M : ML∅) : � where
open M
bool : tp
tt,ff : tm(bool)
indbool :

∏
C:tm(bool)→tp

∏
c0:tm(C(tt))

∏
c1:tm(C(ff))

∏
x:tm(bool)tm(C(x))

_ : {C,c0,c1} indbool(C,c0,c1,tt) =tm(C(tt)) c0
_ : {C,c0,c1} indbool(C,c0,c1,ff) =tm(C(ff)) c1

record JΠ (M : ML∅,F : fam(M)) : � where
open M,F
Π : tp
λ :

(∏
x:tm(base)tm(fib(x))

) ∼= tm(Π)

record JΣ (M : ML∅,F : fam(M)) : � where
open M,F
Σ : tp
pair :

(∑
x:tm(base)tm(fib(x))

) ∼= tm(Σ)

record Jeq (M : ML∅,A : M.tp,a0 : M.tm(A),a1 : M.tm(A)) : � where
open M
eq : tp
refl : (a0 =tm(A) a1) ∼= tm(eq)

Figure 1.1: Auxiliary judgmental snippets that will be used in the LF signature for
Martin-Löf’s type theory. For instance, Jbool(M) expresses the structure of a boolean type
atop an implementation M of Martin-Löf’s type theory; likewise, JΠ(M,F) expresses the
structure of M being closed under the dependent product of the type family F.
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record MLbase : Sig where
Mα : ML∅ for each α : L
tpα,tmα := Mα.tp,Mα.tm
tp,tm := tp�,tm�

〈↑βα〉 : tpα → tpβ for each α ≤ β
_ : {A} 〈↑αα〉A =tpα A
_ : {A} 〈↑γβ〉〈↑

β
α〉A =tpγ 〈↑

γ
α〉A

_ : {A} tmα(A) =� tm(〈↑�α〉A)
_ : {A,B} 〈↑βα〉A =tpβ 〈↑

β
α〉B→ A =tpα B

include Jbool(M�)
include ∏

F:fam(M�)JΠ(M�,F)
include ∏

F:fam(M�)JΣ(M�,F)
bool�,Π�,Σ� := bool,Π,Σ

Un : tpn+1 for each n < �
_ : tmn+1(Um) =� tpm
Πn,Σn : fam(tpn,tmn)→ tpn for each n < �
bool0 : tp0

_ : {A,B} 〈↑βα〉Πn(A,B) =tpβ Πβ(〈↑βα〉A,〈↑βα〉 ◦ B)
_ : {A,B} 〈↑βα〉Σn(A,B) =tpβ Σβ(〈↑βα〉A,〈↑βα〉 ◦ B)

record MLext : Sig where
include MLbase
include ∏

A:tp;a0,a1:tm(A)Jeq(M�,A,a0,a1)
eq� := eq
eqn :

(∑
A:tpntmnA× tmnA

)
→ tpn for each n < �

_ : {A,a0,a1} 〈↑βα〉eqα(A,a0,a1) =tpβ eqβ(〈↑
β
α〉A,a0,a1)

Each universe is closed under the booleans as well as all the smaller universes:

boolα : tpα
boolα = 〈↑α0 〉bool0

Un,α : tpα for each n < α

Un,α = 〈↑αn+1〉Un

Figure 1.2: The LF signature for Martin-Löf’s type theory with universes. In the above,
α,β range over the poset {n ∈ N} ∪ {�}, setting � > n for all n ∈ N.





Part II

Mathematical Background

49





CHAPTER 2
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(2.0∗1) We give an introduction to the language of topoi and logoi in order to lay
the groundwork for the subsequent chapters; our presentation and exposition is greatly
influenced by that of Anel and Joyal [AJ21], but we have attempted to emphasize examples
that are relevant to computer scientists. This expository chapter contains no new results:1

it is intended as a reference and can be skipped and referred back to at will, depending
on the reader’s needs and level of experience.

The topos is a generalization of topological space that is suitable for developing a
broader spectrum of mathematics, including both algebraic geometry and computer science;
topoi differ from topological spaces in multiple important ways that make them more
broadly applicable. The language of topoi can be learned more thoroughly from standard
references [AGV72; Joh02; MM92] supplemented by more recent perspectives [AJ21;
Vic07], but we will carefully explain the parts of topos theory that we will need.

1 Aside from some very convenient and strict constructions of modal universes.
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(2.0∗2) In many expositions, the notion of a sheaf is defined with respect to a site, which
is a category equipped with something called a Grothendieck topology; while this very
concrete characterization can be useful in practice, it is too technical to lead to good
intuitions for the concept of a sheaf or topos theory more generally. Instead, we will use
the abstract characterization due to Giraud of a category of sheaves, i.e. a category that
is equivalent to sheaves on a site. We follow the terminology of Anel and Joyal [AJ21]
and refer to a category of sheaves as a logos, to emphasize the fact that the 2-category of
logoi behaves very differently from the 2-category of categories.

(2.0∗3) A cocomplete and left exact category E is a logos when it satisfies the following
conditions:

1) Colimits are universal: given a morphism f : F E : E , the pullback functor
f∗ : E/E E/F is cocontinuous.

2) Coproducts are disjoint: the intersection of the coproduct injections is empty in the
sense that the following diagram is always cartesian (a pullback):

0E

F

E

E+ F (2.0∗3∗1)

3) Equivalence relations are effective: for an equivalence relation R E× E in E ,
elements of E are identified in the quotient E/R if and only if they are identified by
R, in the sense the following diagram is cartesian:

R

E

π2

E

E/R

π1

e

e
(2.0∗3∗2)

4) E has a small generating set: there exists a small set of objects Ě ⊆ E such that for
any two morphisms f,g : E F, we have f = g if and only if every diagram of the
following form commutes for C ∈ Ě :

C E F
f

g
(2.0∗3∗3)

(2.0∗4) We can give some intuitive justification for why the conditions enumerated in the
definition of a logos (2.0∗3) are “good”. The universality of colimits can be thought of in
two ways:
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1) It means that the notion of a colimit is type theoretic in the sense that it commutes
with substitution (pullback).

2) In combination with the condition that E have a small generating set, it implies (by
the adjoint functor theorem) that each pullback functor has a right adjoint. But
the right adjoint to pullback is of course dependent product; so the universality of
colimits expresses the type theoretic condition that dependent products exist.

The effectivity of equivalence relations ensures that quotients work “correctly”; quotients
exist in many categories, but they are essentially useless without the effectivity condition.
Partial equivalence relations are an example of a category whose quotients are not usable
in practice — leading to the ironic state of affairs in which Nuprl [Con+86] became (by
virtue of its semantics in PERs) the first type theoretic proof assistant to provide quotient
types, which its main users then proceeded to fastidiously avoid because of usability issues
that can ultimately be traced to the lack of effectivity. Setoids on the other hand are an
example of a category that does have usable quotients.

Finally, the existence of a small generating set is an essentially technical condition that
ensures, among other things, that all limits exist and that the hypotheses of the adjoint
functor theorem apply.

(2.0∗5) A morphism between logoi E F is simply a functor that preserves finite limits
and all colimits.

(2.0∗6) It is a consequence of the axioms (2.0∗3) that every logos E has a subobject
classifier > : 1E Ω, a “universal monomorphism”. The universal property of the
subobject classifier is that any monomorphism U E in E corresponds to a unique
“characteristic map” χU : E Ω such that the following diagram is cartesian:

U

E

1E

Ω
χU

We now come to the definition of a topos.

(2.0∗7) The topos. A (Grothendieck) topos X is defined by a logos called SetX; a morphism
of topoi f : X Y is defined by a morphism f∗ : SetY SetX between logoi in the sense
of (2.0∗5). The functor f∗ is called the inverse image part of f ; the cocontinuity of f∗

ensures that we additionally have a right adjoint functor f∗ a f∗ : SetX SetY called
the direct image; it is important to remember that the direct image is only a functor
between categories, not a morphism of logoi. We will write Topos for the 2-category of
(Grothendieck) topoi, where a 2-cell f g is a natural transformation of inverse image
functors f∗ g∗.
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(2.0∗8) Given a topos X, an object of the logos SetX is referred to as a sheaf on X; it is
also appropriate to refer to it as a set over X.

(2.0∗9) It may seem as though the concepts of topos and logos are mutually redundant;
but it is actually very important to distinguish between them in order to maintain order
and correct intuitions. The technical difference is that their morphisms go in the opposite
direction, but the motivation is that a topos is not a category but rather a geometrical
object (whose constituents are some kind of points), whereas its logos is an algebraic
object that can be used to measure or detect aspects of the topos.

The relationship between topoi and logoi is typical of geometry–algebra dualities:
The duality between varieties and ideals exposed in Hilbert’s Nullstellensatz [Hil91].
The duality between affine schemes and commutative rings in algebraic geome-
try [Gro60].
The duality between locales and their frames of opens [Joh82].

(2.0∗10) The punctual topos 1 is defined by the equation Set1 = Set. Every topos X is
equipped with a unique morphism X : X 1; the inverse image X∗ : Set SetX sends a
set A to the “constant sheaf”

∐
a∈A1SetX ; the direct image X∗ : SetX Set is the global

sections functor, sending a sheaf E : SetX to the hom set HomSetX(1SetX ,E).

(2.0∗11) The type theoretic significance of the subobject classifier (2.0∗6) is that it is
a strictly univalent universe of propositions. While the subobject classifier itself is not
preserved by most morphisms of topoi, the existence of a subobject classifier implies all
the important compatibility conditions between limits and colimits in a topos (such as
universality of colimits, disjointness of coproducts, and effectivity of equivalence relations).2

For this reason, Lawvere and Tierney have advanced an alternative and more general
notion of elementary topos based on the presence of a subobject classifier.

Elementary topoi are similar to topoi in the sense described here, but their corre-
sponding categories need not be cocomplete and they may not have a small generating
set; consequently, not every elementary topos X has a morphism X 1 where 1 is the
punctual topos (2.0∗10), though such a morphism is essentially unique if it does exist.
However, there is a concept of bounded morphism of elementary topoi that reconstructs
in greater generality the important aspects of the small generating set in the Giraud
definition; writing BTop for the category of elementary topoi and bounded morphisms,
one can reconstruct the Grothendieck topos theory Topos as the slice BTop/1.

More generally, the relative topos theory BTop/S over an elementary topos S behaves
a lot like Grothendieck topos theory. If Y is a bounded S-topos, SetY is not necessarily
cocomplete when regarded as an ordinary category, but it is cocomplete when regarded
as an internal category in SetS. In fact, there is a precise sense in which any bounded

2 This is related to the way that Martin-Löf type theory needs either a universe or a large elimination to
prove that a coproduct type is disjoint.
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S-topos is an “internal Grothendieck topos” in SetS. Hence, Grothendieck topos theory is
just bounded elementary topos theory over 1.

(2.0∗12) A point of a topos X is defined to be a morphism of topoi 1 X.

(2.0∗13) Presheaves. Let C be a small category; a presheaf on C is defined to be a functor
Cop Set, and the category of presheaves so-defined is written Pr(C); one observes that
Pr(C) is a logos in the sense of (2.0∗3), hence we have also defined a topos Ĉ, setting
SetĈ = Pr(C). There is a fully faithful functor yC : C Pr(C) called the Yoneda embedding.
The presheaf/Yoneda construction has several different universal properties, some of which
we explore in (2.0∗14) and (2.3.1∗5).

(2.0∗14) The presheaf construction gives rise to a functor Cat Catcc from the category
of categories to the category of cocomplete categories and cocontinuous functors. This
functor is left adjoint to the obvious forgetful functor Catcc Cat, hence it is called free
cocompletion.

(2.0∗15) The universal property (2.0∗14) is category-theoretic rather than topos-theoretic.
We will see in §2.2 that the presheaf construction also has a topos-theoretic universal
property, due to Diaconescu [Dia75].

§2.1. TOPOI ARE GENERALIZED SPACES

(2.1∗1) Topological spaces. Let Espsob be the category of (sober) topological spaces and
continuous maps, and let Topos be the category of topoi. We have a fully faithful functor
Env : Espsob Topos sending each topological space to its enveloping topos, witnessing
the sense in which the language of topoi is a conservative extension of the language of
sober topological spaces.3

Let X : Espsob be a sober topological space; the enveloping topos Env(X) is defined
by setting SetEnv(X) to be the full subcategory of Pr(OX) spanned by objects E that
treat open covers of X as covers, in the sense that unique lifts exist for diagrams like the
following when S y(U) is the covering sieve associated to some open cover of U:4

S

y(U)

E

1Pr(OX)

∃!

(2.1∗1∗1)

That the resulting subcategory is in fact a logos is a classical theorem of topos theory;
in fact, categories of this form were the first examples of logoi to be exposed. Hence
3 All spaces that arise in actual mathematics and computer science are sober. 4 For an open cover
U = ∪iUi, the corresponding sieve S is the family of all open subsets V ⊆ U such that V ⊆ Ui for some i.
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Env(X) so-defined is a topos; using the fact (which we don’t prove here) that Env is fully
faithful, it is easy to see that the isomorphism classes of topos theoretic points of Env(X)
can be placed in bijection with the actual points of X.

(2.1∗2) The purpose of the orthogonality condition specified by Diagram 2.1∗1∗1 is to
ensure that open covers of X are treated geometrically as covers in SetEnv(X). This is not
automatic, because the Yoneda embedding OX Pr(OX) preserves no colimits at all!
Hence to obtain the correct category of sheaves, one restricts to those presheaves that
treat the Yoneda embeddings of open covers as actual covers.

(2.1∗3) An open of a topos X is defined to be a subobject of the terminal sheaf U 1SetX .
One sees that the opens have the structure of a frame, written OX.

(2.1∗4) Let X : Esp be a sober topological space; exhibit an explicit bijection between
the isomorphism classes of topos theoretic opens of Env(X), in the sense of (2.1∗3), and
open sets of X in the sense of classical point-set topology.

(2.1∗5) The subobject classifier Ω : SetX can be seen to be an internal frame in the
language of SetX. Pushing Ω forward along the terminal map X 1, one then obtains
an ordinary frame X∗Ω and this can be seen to be the frame OX of opens of X.

(2.1∗6) Open immersions. Let U be an open of a topos X; in the same way that an
open subset of a topological space yields an open subspace, the topos X can be re-
stricted to a subtopos XU defined by the equation SetXU = (SetX)/U. The pullback map
SetX (SetX)/U is the inverse image part of a morphism of topoi XU X; any morphism
of topoi that is equivalent to one of this form is called an open immersion.

(2.1∗7) Open immersions are a subclass of a more general class of morphisms of topoi
called embeddings. A morphism f : X Y is called an embedding when the direct image
functor f∗ : SetX SetY is fully faithful.

(2.1∗8) In the case of open immersions, the direct image (SetX)/U SetX is the dependent
product along U 1SetX . The logos (SetX)/U is equivalently the full subcategory of SetX
spanned by sheaves E for which the canonical map E EU is an isomorphism.

§2.2. CLASSIFYING TOPOI AND GEOMETRIC THEORIES

2.2.1 The theory of a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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(2.2∗1) The collection of points of a topological space X has the structure of a preorder:
given two points x,y ∈ X, we say that “x specializes y” or x ≤ y when any open set
containing x also contains y. Bound up in the specialization preorder of points of a
topological space is an important relationship to logic: it is profitable to think of the
opens of a topological space as propositions in a certain logical theory T determined by
that space; whereas a point of a topological space can be thought of as a model of this
logical theory. The preorder structure on opens corresponds to logical entailment U ` V,
and the specialization order on points can be rephrased “model-theoretically” as follows:

x ≤ y ⇔ ∀U : OX. x |= U =⇒ y |= U

In this sense, the space X can be called the classifying space of the theory T, in the
sense that points of X correspond to models of T and specializations of points corresponds
to homomorphisms of models. The kind of logic that T presents is called propositional
geometric logic, which is built up from relation symbols, set-indexed disjunctions, and
finite conjunctions; hence T is called a propositional geometric theory.

The frame of opens OX is therefore the (preordered) classifying category or category
of contexts of the theory T classified by X; in fact, following Lawvere [Law63] it is often
most appropriate to refer to OX itself as the theory.

� (2.2∗2) The correspondence between topological spaces and propositional geometric
theories really only works for sober spaces; but an arbitrary topological space can be seen
as a propositional geometric theory equipped with a distinguished class of models.

(2.2∗3) Non-propositional theories. What about theories that have sorts and constants?
That these cannot be classified by topological spaces can be seen in two (dual) ways:

1) The category of contexts of a non-propositional theory is not a preorder, hence
cannot be of the form OX for a topological space X.

2) The category of models and homomorphisms of a non-propositional theory is not
a preorder, hence it cannot be given by the collection of points x ∈ X under the
specialization order.

The purpose of the invention of topoi by Grothendieck [AGV72] was, in essence, to
have classifying spaces for non-propositional theories! When a topos X is viewed as a
space, its category of points Hom(1,X) can be viewed as the category of set-theoretical
models for a general geometric theory, which is a theory axiomatized by sorts, constants,
set-indexed disjunctions, finite conjunctions, and existential quantifiers; more generally,
a morphism of topoi Y X is a model of X internal to SetY, i.e. a model where sorts
are interpreted as sheaves on Y. Similarly to how OX acted as a category of contexts for
a propositional geometric theory, the logos SetX acts like a category of contexts for the
general geometric theory classified by X.

(2.2∗4) A topos that classifies a propositional geometric theory is called a locale; locales
are a generalization of sober topological spaces.



58 CHAPTER 2. THE LANGUAGE OF TOPOI

(2.2∗5) The empty theory. The simplest (clearly propositional) geometric theory is the
empty theory with no relations or axioms at all; the classifying topos of the empty theory
is the punctual topos 1. This identification provides us a new way to understand the
sense in which 1 is the terminal topos: up to isomorphism there is exactly one model of
the empty theory in any category of sheaves SetY, hence there is an essentially unique
morphism Y 1

§2.2.1. The theory of a set

(2.2.1∗1) The theory of a set. One of the simplest and most useful geometric theories is
the theory with a single sort and no operations; a model of this theory in the category of
sets would just be a set, and a model in another logos SetX would be a sheaf on X. We
will write A for the classifying topos of this theory; it is appropriate to speak of A as the
topos of sets (because its points are sets), being very careful to avoid confusing SetA with
the totally different logos of sets!

(2.2.1∗2) Dualizing object. A plays a very important role in topos geometry as a dualizing
object: in particular, A translates the algebraic notion of a sheaf into a geometrical notion.
The category of morphisms X A forms a logos which is in fact equivalent to SetX! We
will undertand this relationship in a deeper way when we encounter the topos A• later
on, and introduce the concept of étale morphism and topos étalé which gives a third
perspective on the sheaf concept.

(2.2.1∗3) Abstract variable binding. If A is the classifying topos of a single sort, then we
already know what it looks like to work inside of SetA: it is roughly an intuitionistic type
theory extended by a single “abstract type” V with no additional information concerning
its elements or how they may be used. The abstractness of V gives us our first glimpse at
logoi that axiomatize a notion of bound variable or higher-order abstract syntax: here V
behaves like a type of variables, and exponentials like V→ E might be used to express
variable binding.

Many features that we might want from an axiomatization of variable binding are not
available, however: for instance, it is not the case that V has decidable equality (hence
there can be no internally definable substitution action on syntax trees defined using V at
the leaves), and we do not even have an abundance of fresh variables. These defects can
be resolved by passing to stronger and stronger theories.

Nevertheless, the logos SetA has been used as a location to study algebraic theories
with variable binding, notably by Fiore and Hur [FH10], Fiore and Mahmoud [FM10],
and Fiore, Plotkin, and Turi [FPT99] and others. In the author’s view, it is the “purest”
form of variable binding and has been shown to be very useful.
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§2.2.2. The theory of a pointed set and topoi étalé

(2.2.2∗1) Now we consider the theory generated by a single sort and a constant of that
sort, i.e. the theory of a pointed set. We will write A• for the classifying topos of this
theory; the internal language of SetA• must, by definition, have an abstract type V together
with a constant v : V. It can be shown that SetA• is simply the slice (SetA)/V — with this
computation in hand, the constant v is just the “variable” (concretely, the identity map
V V). In general, taking the slice of a category over an object corresponds to freely
adding an element of that object.

(2.2.2∗2) For a topos X and a sheaf E : SetX, the topos dual to the slice logos (SetX)/E is
so important that we will write XE for it. Most type theorists will recall the very useful
fact that when SetX is a category of presheaves Pr(C), then the slice logos (SetX)/E is as
well — we may present (SetX)/E and hence SetXE as the category of presheaves Pr(yC ↓ E)
on the category of elements of E.

(2.2.2∗3) Étale maps and topoi étalé. The “weakening map” SetX (SetX)/E taking
F : SetX to πE : E× F E can be seen to be the inverse image part of a morphism of
topoi XE X; a morphism (equivalent to one) of this form is called an étale map and
the domain XE is called the topos étalé of E.

(2.2.2∗4) Every étale morphism of topoi arises by pullback from the universal étale map
A• A in an essentially unique way:

XE

X

A•

A
E

(2.2.2∗5) The beauty of the topos étalé viewpoint is that it provides a geometrical
counterpart to the algebraic notion of sheaves. Any construction that makes sense within
the logos SetX also makes sense in the full subcategory ÉtX ⊆ Topos/X spanned by topoi
étalé over X, i.e. étale maps into X; in fact, these two categories are equivalent — the
identification (sheaves, topoi étalé, étale morphisms of topoi) generalizes the classical
identification (sheaves on a topological space, espaces étalé, local homeomorphisms); on
the other hand, there is no analogue to the topos-theoretic characteristic map X A in
point-set topology, except in the case of a subterminal sheaf (proposition). The existence
of characteristic maps for all sheaves is a striking feature of topos geometry, an example of
the way topoi provide a more realistic candidate for “general topology” than topological
spaces or locales.

(2.2.2∗6) A computer scientist might observe that the topos of sets A acts as a universe
that strictifies the notion of a sheaf qua étale morphism — one has a strictly functorial
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“substitution action” on characteristic maps of sheaves given by precomposition, in contrast
to the pullback perspective which is functorial only in a weak sense.

§2.2.3. The theory of an inhabited set

(2.2.3∗1) A subtle variation on the theory of a pointed set is the theory of an inhabited
set. What is the difference? An inhabited set is one for which “there exists” an element,
but we don’t keep track of what that element is; this can be axiomatized by a sort V
together with the assertion that ∃x : V.>. The classifying topos for this theory is written
A◦, and we compute it in a geometrical style in (2.2.3∗2) below.

(2.2.3∗2) We can define A◦ to be the image of the universal étale map A• A:

A• A
étale map

A◦
étale cover

op
en

im
me

rsi
on

(2.2.3∗2∗1)

Above both components of the image factorization are étale; using the identification
between topoi étalé and sheaves, we can rephrase Diagram 2.2.3∗2∗1 above as an image
factorization internally to the logos SetA:

V 1SetA

{1SetA | ∃x : V.>}

cover mo
no

(2.2.3∗2∗2)

§2.2.4. The theory of a proposition/open

(2.2.4∗1) Sierpiński topos. So far we have seen two ways to think of opens of a topos: as
propositions or subterminal sheaves U 1SetX , or as open immersions of topoi U X.
We will now examine a third perspective on opens, via the classifying topos of opens S,
also called the Sierpiński topos. S is defined by the equation SetS = Set→, and has two
topos theoretic points in the sense of (2.0∗12):

1) The open point ◦ : 1 S, whose inverse image part is the codomain functor
cod : Set→ Set.

2) The closed point • : 1 S, whose inverse image part is the domain functor dom :
Set→ Set.
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(2.2.4∗2) The open point ◦ : 1 S is the universal open immersion, in the sense that
every open immersion of topoi arises from it by pullback in an essentially unique way.
To be precise, let j : U X be an open immersion; then there is an essentially unique
morphism of topoi X S such that the following diagram is cartesian in Topos:

U

X

j

1

S

◦

∃!
(2.2.4∗3) From a geometrical perspective, the Sierpiński topos can be thought of as a
directed interval

{
• ◦

}
in the language of topoi. Recalling (2.0∗7), a morphism of

points • ◦ is nothing more than a natural transformation of inverse image functors
ι : dom cod : Hom

(
Set→,Set

)
which we may construct as follows:

ιf : dom(f) cod(f)
ιf (x) = f(x)

Given a topos X, one may form a cylinder X × S by Cartesian product equipped
with open/closed immersions 〈idX,◦〉 : X X× S and 〈idX,•〉 : X X× S respectively.
Pinching either the closed or open copy of X along a morphism of topoi is, then, the
geometrical content of Artin gluing to be exposed later in §§2.4 and 4.3.

(2.2.4∗4) For the sake of building intuition, it is worth computing what a sheaf on a
cylinder X × S should be. We may think of a sheaf on a topos as a “set” that varies
“continuously” over the points of that topos; hence a sheaf on the Sierpiński topos is a
morphism of sets, with the domain set covering the closed point and the codomain set
covering the open point. Likewise, a sheaf on the cylinder X× S is nothing more than a
family of sheaves on X; hence we may compute SetX×S = SetX→.

§2.2.5. The theory of a clock: step-indexing and guarded recursion

(2.2.5∗1) In the theory of programming languages, it is often necessary to find solutions
to domain equations that cannot be solved in the category of sets. The classical solution
to such problems is to move to a category in which such solutions do exist: categories of
dcpos or Scott domains form one solution, but more recently the utility of a much simpler
construction has been studied by Birkedal, Møgelberg, Schwinghammer, and Støvring
[Bir+11a] and adopted by many practitioners: the category of presheaves Pr(ω), where ω
is the preorder {1 ≤ 2 ≤ 3 ≤ . . .}.

As a logos it is appropriate to refer to Pr(ω) as the “logos of trees” following the
traditional terminology; but it is perhaps more appropriate to refer to corresponding topos
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K := ω̂ as the “topos of clocks”. Why? Because X-valued points X K of K are clocks in
SetX.

(2.2.5∗2) The theory of clocks. A clock is a monotone sequence of propositions φ(i∈ω) such
that the additional axiom `

∨
i∈ω φi holds; the intuitive meaning of each proposition φk

is “There are currently k many steps left”, and the clock axiom states that the concept of
“now” is meaningful. In §2.3.1 we will introduce the tools needed to see that K is actually
the classifying topos of clocks, but we will simply take it on faith here.

§2.2.6. The theory of a vector clock

(2.2.6∗1) A guarded fixed point is a special kind of infinite object that expresses some
resource sensitivity, forcing maps out of guarded fixed points to exhibit “causality” when
unfolding their arguments — in other words, consumption and production proceed in
lock-step. On the other hand, coinductive definitions lack this resource sensitivity — a
map out of a coinductive object may unfold its argument as many times as it likes, though
in a computational setting, certain continuity principles may be admissible.

The question of whether coinduction can be reduced to guarded recursion was inves-
tigated by Atkey and McBride [AM13]; their solution was (in essence) to replace the
clock with a parameterized clock, i.e. a decidable object K of clock names together with a
model of the theory of clocks for every κ : K. Then a guarded recursive definition over a
generic clock κ : K can be turned into a coinductive definition by taking a limit over all
κ : K. The internal parameterization of Atkey and McBride [AM13] was somewhat ad hoc
and ill-behaved, but Bizjak and Møgelberg [BM20] studied a better-behaved variant that
omits the decidability of the parameterizing object.5

(2.2.6∗2) For any finite set E, one can formalize the notion of |E|-many clocks by taking
a product

∏
e∈EK in the category of topoi. The internal parameterization of Atkey and

McBride [AM13] and Bizjak and Møgelberg [BM20] is however not of this form: instead
one has internally an abstract type K of clock names, which is not necessarily finite nor
necessarily infinite, and definitely not discrete.

The first attempts to explain this phenomenon in the language of category theory
involved indexing a family of topoi over a category of “clock contexts” [BM15]; while this
approach persisted in the literature for some years, it was plain that a better account could
be obtained by replacing “(topos of guarded recursion) indexed in clock contexts” with
“topos of (guarded recursion indexed in clock contexts)” via the Grothendieck construction
— as promoted by Sterling and Harper [SH18] for instance and adopted by Bizjak and
Møgelberg [BM20].

The superiority of the latter bracketing was not only located in its support for strict
interpretations of dependent type theory: it exposes the fact that the topos models of
5 Their construction is however still ad hoc as we will see in (2.2.6∗8).
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multi-clock guarded recursion are instances of a very canonical construction, the lower
bag topos of Vickers [Vic92] — a topos-theoretic categorification of the lower (Hoare)
powerdomain from the classical theory of programming languages. In the parlance of
Vickers, then, the topoi modeling multi-clock guarded recursion classify the theory of “a
bag of clocks”, which we might somewhat rudely refer to as the theory of a vector clock.

(2.2.6∗3) Powerdomains, once dubbed the “waterloo of denotational semantics”, are a
tool to model concurrent and non-deterministic computation. If D is a domain, then the
lower powerdomain PLD is approximately the collection of downward closed subsets of
D, putting aside some subtleties. The intuition of powerdomains is that an element of
PLD captures the collection of values that a non-deterministic computation is taking; the
different versions of the powerdomain correspond to different semantics of non-determinism
(e.g. “may” vs. “must”, etc.).

Aside from the variety of possible powerdomains (lower, upper, mixed, etc.), one
limitation of powerdomains is that their elements are just subsets ordered by inclusion,
and hence transitions between these subsets cannot evince any relationship to (e.g.) a
concrete thread pool; in contrast to operational semantics of concurrency, the powerdomain
semantics is quite lossy. In the language of domains, this is quite unavoidable because the
specialization order on the points of a domain obviously cannot carry any data.

(2.2.6∗4) While investigating the denotational semantics of databases, Vickers [Vic92]
observed that this limitation could be lifted by replacing domains with topoi, in essence
because topoi have categories of points rather than preorders of points. Given a topos
D, one can form the lower bag topos BLD whose points correspond to indexed families
or bags of D-points rather than sets. In generality, a morphism X BLD corresponds
to the data of a sheaf E : SetX together with a morphism XE D [Joh02]. One has an
obvious projection p : BLD A that takes a bag of D-points to its parameterizing set.

(2.2.6∗5) Sets. The lower bag topos BL1 of the point is simply the topos of sets A from
§2.2.1: a morphism of topoi X BL1 is given by a sheaf E : SetX together with a
morphism XE 1, but of course there is exactly one of the latter.

(2.2.6∗6) Subsets. Recall the Sierpiński topos S from (2.2.4∗1); the lower bag topos BLS
classifies subsets; a morphism of topoi X BLS is given by a sheaf E : SetX together with
a morphism XE S, i.e. an open of the topos étalé XE, i.e. a subobject of E.

(2.2.6∗7) Families of sets. A variation on (2.2.6∗6) can be obtained by replacing S with
A; in this case, the lower bag topos BLA classifies families of sets: a morphism of topoi
X BLA is given by a sheaf E : SetX together with a morphism XE A, i.e. a sheaf on
XE, i.e. a family of sheaves F E : SetX.

(2.2.6∗8) Vector clocks. We may reconstruct the topos of multi-clock guarded recursion
considered by Bizjak and Møgelberg [BM20] as the lower bag topos BLK of the topos



64 CHAPTER 2. THE LANGUAGE OF TOPOI

of clocks. A morphism X BLK consists of a sheaf of clock names K : SetX together
with a morphism XK K, i.e. a monotone sequence of subobjects ϕn K satisfying the
geometrical axiom κ : K | · `

∨
n κ ∈ ϕn.

(2.2.6∗9) Non-empty vector clocks. It is now quite easy to see how the multi-clock guarded
recursion topos of Sterling and Harper [SH18] relates to that of Bizjak and Møgelberg
[BM20]. Sterling and Harper chose to validate an additional (a priori non-geometric)
axiom that ensures a well-behaved intersection over degenerately clock-indexed relations:

∀ψ : Ω. (∀κ : K.ψ) =Ω ψ (“clock irrelevance”)

It is easy enough to see that the above is equivalent to the geometrical axiom ∃κ : K.>.
This suggests that we can obtain the topos of Sterling and Harper [SH18] from that of
Bizjak and Møgelberg [BM20] by some kind of image factorization. Indeed, first we define
K : SetBLK to be the generic parameterizing object:

(BLK)K

BLK

A•

A
p

Then the topos of Sterling and Harper [SH18] is obtained from the image factorization
of the left-hand étale map:

(BLK)K BLK
étale map

(BLK)‖K‖

étale cover
op
en
im
me
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§2.3. AFFINE & QUASI-AFFINE TOPOI

2.3.1 Free cocompletion, Diaconescu’s theorem, and quasi-affine topoi . . . . . 65
2.3.2 Affine topoi: classifiers of diagrams . . . . . . . . . . . . . . . . . . . . . . 66

(2.3∗1) Many of the examples of topoi that we have seen so far can be presented by
logoi of the form Pr(C) — such a topos is called quasi-affine.6 A more specific but very
6 Here we adopt the terminology of Anel and Lejay [AL20].
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important subtype is the affine topoi; an affine topos is the dual of a logos that is generated
from a category by freely adding all colimits and finite limits (a “free logos”), whereas a
quasi-affine topos is the dual of a “quasi-free logos”, which is a logos that is generated
from a category by freely adding all colimits but retaining whatever limits already exist;
quasi-affine topoi are sometimes referred to as “algebraic topoi” by analogy with domain
theory, where ideal completion plays a similar role to the presheaf construction.

§2.3.1. Free cocompletion, Diaconescu’s theorem, and quasi-affine topoi

This exposition draws on joint work with Daniel Gratzer.

(2.3.1∗1) We already noted in (2.0∗14) that the presheaf construction can be viewed
as a free cocompletion, i.e. freely adding all colimits to a small category. Unfolding the
universal property, this means that arbitrary functors C E for a cocomplete category
E correspond to cocontinuous functors Pr(C) E . When E is additionally a logos, it is
very important to understand what kind of functors C E correspond to morphisms of
logoi Pr(C) E . Stated more concisely, we have so far understood presheaves as a free
construction that takes a category to a cocomplete category; we now wish to understand
presheaves as a free construction that takes a category to a logos. This is the purpose of
Diaconescu’s theorem [Dia75], one of the most useful theorems of category theory.

(2.3.1∗2) A functor F : C E from a small category C to a logos E is called flat7 when
it satisfies the following condition for each finite diagram D• : I C. Let Cone(D•) :={
(C,π•)

∣∣ π• : {C} D•
}
be the collection of cones in C over D•. For each cone (C,π•),

there is a canonical map F(C) limI F(D•) induced by F(π•). Then, we require the
following map to be an epimorphism in E :∐

(C,π•)∈Cone(D•)F(C) limI F(D•)

(2.3.1∗3) Let E be a logos and F : C E be a functor from an arbitrary category C. The
universal property of the free cocompletion Pr(C) yields an essentially unique cocontinuous
Yoneda extension F̂ : Pr(C) E factoring through F:

C

Pr(C)

EF

yC
F̂

If the extension F̂ is additionally left exact, then it is tautologically a morphism of
logoi; the content of Diaconescu’s theorem (2.3.1∗5) is to connect these morphisms of
logoi with (2.3.1∗2), expressing the universal property of presheaf logoi.
7 Some others, e.g. Mac Lane and Moerdijk [MM92], refer to this as internal flatness; Johnstone [Joh02]
refers to such functors as torsors on Cop.
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(2.3.1∗4) When C is finitely complete and E is a logos, a functor C E is flat if and only
if it is left exact.

Proof. Let F : C E be flat; then the Yoneda extension F̂ : Pr(C) E is left exact, but
so is F because F = F̂ ◦ yC and yC is continuous. Conversely, supposing that F : C E is
left exact, we must argue that F is flat; fixing a finite diagram D• : I C, we must check
that the canonical map

∐
(C,π•)∈Cone(D•)F(C) limI F(D•) is an epimorphism. It suffices

to exhibit a section for this map, using the left exactness of F and the actual limit cone
for D• in C:

limI F(D•) F
(
limID•

) ∐
(C,π•)∈Cone(D•)F(c)

limI F(D•)

r

∼= i

id

(2.3.1∗5) Diaconescu’s theorem [Dia75]. Morphisms of logoi out of Pr(C) correspond to
flat functors out of C, in the sense that the equivalence Hom(Pr(C),E)cc = Hom(C,E)
restricts to an equivalence HomLogos(Pr(C),E) = Hom(C,E)flat. In particular, if C is left
exact then morphisms of logoi out of Pr(C) correspond to left exact functors out of C
because of (2.3.1∗4).

(2.3.1∗6) Quasi-free logos, quasi-affine topos. A logos (equivalent to one) of the form Pr(C)
for a small category C is called quasi-free. A topos X such that SetX is quasi-free (i.e.
X ' Ĉ) is called quasi-affine.

(2.3.1∗7) Rephrasing Diaconescu’s theorem (2.3.1∗5) into the language of classifying
topoi, we see that a quasi-affine topos X ' Ĉ classifies the geometric theory of flat functors
out of C. Hence if C is a left exact category (a finite limit theory) a morphism Y Ĉ
corresponds to a left exact functor C SetY, i.e. a model of the finite limit theory C.
In other words, the classifying topos of a finite limit theory C is the quasi-affine topos Ĉ
generated by that theory.

§2.3.2. Affine topoi: classifiers of diagrams

(2.3.2∗1) Free logoi. A free logos is one obtained from a category C by freely adding all
finite limits and then all colimits. The free finite limit completion Clex of C can be obtained
by taking the opposite of the full subcategory of Pr(Cop) spanned by finite colimits of
representables; then all colimits are added to Clex by taking presheaves, yielding the free
logos Set[C] := Pr

(
Clex

)
.
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(2.3.2∗2) Taking the free logos on a category C can be thought of in the following way:
one is freely adding a diagram of shape C to the category of sets. An interesting aspect of
this characterization is that Set[C] does not need to behave like the category of sets — for
instance, the law of the excluded middle and the axiom of choice may fail in a free logos.

(2.3.2∗3) Affine topoi. An affine topos is a topos X such that SetX is free, i.e. there is
some small category C such that SetX ' Set[C].

(2.3.2∗4) In fact, we have already seen our first example of an affine topos, the topos of
sets A from §2.2.1; we will show that SetA is Set[1], the free logos on a single generator.
This computation will also give us a better understanding of the connection between SetA
and variable binding broached in (2.2.1∗3).

First we observe that the free finite limit completion 1lex of the terminal category 1
is opposite of the free finite colimit completion 1rex of the same. Generating a finitely
cocomplete category from a single object produces the category of finite sets; hence 1lex
is FinSetop; hence the free logos Set[1] can be computed as the category of presheaves
Pr(FinSetop). The connection to variable binding is as follows: an object of FinSetop is
essentially a context of (untyped) variables, and a morphism in FinSetop is a substitution!
Hence an object of Set[1] is a family of sets that varies functorially in contexts and
substitutions.

We now check that the free logos Set[1] really is the theory of a set by computing
relative to an arbitrary logos E :

HomLogos(Set[1],E)
= HomLogos

(
Pr

(
1lex

)
,E
)

by definition
∼= HomCatlex

(
1lex ,E

)
by Diaconescu’s theorem

∼= HomCat(1,E) by universal property of −lex

Hence morphisms of logoi from Set[1] to E really do correspond to objects of E , so we
see that SetA = Set[1].

(2.3.2∗5) By analogy with classifier of sets A, we will write AC for the affine topos
generated by a category C, i.e. we set SetAC := Set[C]; then we have A = A1, which we
will sometimes refer to as “the” affine topos.

(2.3.2∗6) The computation (2.3.2∗4) also shows that AC classifies diagrams of shape C,
by generalizing from 1 to C. In other words, a morphism of topoi X AC is the same as
an arbitrary diagram C SetX.
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§2.4. ARTIN GLUING OF OPEN AND CLOSED SUBTOPOI

(2.4∗1) Given an open subset U of a topological space X, we may always reconstruct X by
gluing U together with its complement X\U. The observation of the Grothendieck school
in the early 1960s is that this reconstruction theorem also applies to topoi [AGV72]; it
was not until later that the connection to Tait’s method of computability was observed
by Freyd [Fre78].

(2.4∗2) Let U be an open of a topos X; the closed complement of U will be written
X\U. We define X\U by setting SetX\U to be the full subcategory of SetX spanned by
sheaves E that are (−)U-connected, in the sense that the canonical map EU 1SetX is an
isomorphism. The inclusion SetX\U SetX is the direct image part of an embedding of
topoi X\U X, called a closed immersion.

(2.4∗3) The inverse image part of the closed immersion i : X\U X sends a sheaf E : SetX
to the following pushout:

E×U

E

U

i∗E

(2.4∗4) Let i : X\U X be a closed immersion; based on the computation (2.4∗3), show
that for any sheaf E : SetX the inverse image i∗E is (−)U-connected in the sense of (2.4∗2).

(2.4∗5) Artin gluing. We may reconstruct X from the complementary open and closed
subtopoi corresponding to an open U. We may construct a “boundary” or “fringe” functor
ρ : SetXU SetX\U from the direct image of the open immersion followed by the inverse
image of the closed immersion:

SetXU SetX\U

SetX
j∗ i∗

ρ

We immediately observe that the functor ρ is left exact, but it is not necessarily the
inverse image part nor the direct image part of a morphism of topoi. In most instances of
gluing that bear on the metatheory of type theory, ρ will in fact be involved in a morphism
of topoi, in which case some more geometrical constructions become available as we will
see in §4.3. We may form a new logos by gluing SetXU and SetX\U along ρ by taking the
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following pullback of categories, E = SetX\U ↓ ρ:

E

SetXU

SetX\U
→

SetX\U

cod

ρ

The gluing theorem of SGA 4 [AGV72] states that E is in fact a logos that is equivalent
to SetX, and under this identification, E SetXU is the inverse image part of the open
immersion j : XU X.

(2.4∗6) Conversely let U and Y be topoi and suppose that ρ : SetU SetY is a left exact
morphism. Form the Artin gluing of ρ:

E

SetU

SetY→

SetY

cod

ρ

Letting X be the topos such that SetX = E , we may find an open U of X such that
U ' XU and Y ' X\U. Recalling the computation E = SetY ↓ ρ from (2.4∗5), we define U
by the morphism 0SetY ρ(1SetU) which is clearly subterminal in E .

§2.5. TINY OBJECTS IN LOGOI

(2.5∗1) Let E be a logos and let E : E . The sheaf E is called tiny when the exponential
functor (−)E : E E has a right adjoint (−)E [Yet87]. By the adjoint functor theorem,
this is equivalent to (−)E preserving colimits.

(2.5∗2) Tininess of representables. Consider a quasi-free logos E = Pr(C), and let C : C be
an object. If C has products of the form −× C, then yC(C) is tiny in E .

Proof. We must check that the exponential functor (yC(C)→ −) preserves colimits; we
fix a diagram E• : I E and compute the representable points of the exponential(
yC(C)→ colimI E•

)
, using the fact that colimits of presheaves are computed pointwise:

HomE
(
yC(D),yC(C)→ colimI E•

)
∼= HomE

(
yC(D)× yC(C), colimI E•

)
∼= HomE

(
yC(D× C), colimI E•

)
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∼= colimIHomE(yC(D× C),E•)
∼= colimIHomE(yC(D)× yC(C),E•)
∼= colimIHomE(yC(D),yC(C)→ E•)
∼= HomE

(
yC(D), colimI yC(C)→ E•

)
(2.5∗3) Gluing of tiny objects. Let f : Y U be a morphism of topoi. Write X for the
Artin gluing of the inverse image functor f∗, and write j : U X and i : Y X for the
respective open and closed immersions of topoi. Suppose that X : SetX is a sheaf such
that j∗X is a tiny object in SetU and i∗X is a tiny object in SetY; then X is tiny.

Proof. It suffices to check that the exponential functor (X→ −) preserves colimits. Fixing
a diagram E• : I SetX, we may compute the exponential

(
X→ colimI E•

)
in the

language of SetY as follows; first, the standard computation that glues a function from
the open subtopos onto a function from the closed subtopos [Joh02]:

i∗
(
X→ colimI E•

)

f∗
(
j∗X→ j∗ colimI E•

)

i∗X→ i∗ colimI E•

i∗X→ f∗j∗ colimI E•

Commute cocontinuous functors past colimits.

i∗
(
X→ colimI E•

)

f∗
(
j∗X→ colimI j

∗E•
)

i∗X→ colimI i
∗E•

i∗X→ colimI f
∗j∗E•

Use the tininess of i∗X,j∗X and the cocontinuity of f∗.

i∗
(
X→ colimI E•

)

colimI f
∗(j∗X→ j∗E•)

colimI (i∗X→ i∗E•)

colimI (i∗X→ f∗j∗E•)

Hence by the universality of colimits we have:

colimI i
∗(X→ E•)

colimI f
∗(j∗X→ j∗E•)

colimI (i∗X→ i∗E•)

colimI (i∗X→ f∗j∗E•)
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(3.0∗1) In this chapter we recall the concept of universes, and expose the notion of
a strong universe which has played an important role in several recent works [Awo21;
Bir+16; GSS21; KL21; OP16; Shu15a; Str14a].

§3.1. UNIVERSES IN SET THEORY

(3.1∗1) Assuming the existence of enough strongly inaccessible cardinals, the category
of sets is closed under a transfinite and cumulative hierarchy of universes U ⊆ V ⊆ . . .;
a universe is a “set of sets” that is closed under all connectives (including dependent
products, dependent sums, coproducts, quotients, equality types, etc.).

(3.1∗2) Let κ be a cardinal number; we will write Setκ for the full subcategory of Set
spanned by sets A such that |A| < κ. Such sets are called κ-small.

(3.1∗3) A cardinal number κ is called strongly inaccessible when Setκ is closed under
dependent products.

(3.1∗4) Most strongly inaccessible cardinals are infinite; but 2 is also a strongly inaccessible
cardinal!

(3.1∗5) Explicitly, the force of (3.1∗3) is the following: if X has cardinality less than κ
and {Yx}x∈X is a family of sets that each have cardinality less than κ, then

∏
x∈XYx has

cardinality less than κ.

71
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(3.1∗6) Each strongly inaccessible cardinal κ gives rise to a set of sets Uκ called a
Grothendieck universe [AGV72]; the set Uκ is the set of objects of a category of small
sets equivalent (but not isomorphic) to Setκ. Therefore Uκ is closed under all all set/type
theoretical notions, including dependent product/sum, κ-small (co)limits, powersets, etc.

(3.1∗7) Explicitly, Uκ can be defined to be the set of sets with rank less than κ; then
Uκ has both rank and cardinality κ. The rank of a set is defined to be the smallest
ordinal number strictly bounding the ranks of all the members of that sets; the notion is
well-defined because the membership relation is well-founded.

(3.1∗8) Once we have set up the universe hierarchy, it is better to work with the resulting
universes than with the cardinals they are defined from. However, the fact that each
universe is a restriction of the collection of sets by a cardinality bound leads to some
important properties that we will exploit.

(3.1∗9) Cumulativity. Let λ < κ be strongly inaccessible cardinals; then Uλ ⊆ Uκ and
moreover Uλ ∈ Uκ.

(3.1∗10) If U is a universe in Set, then consider the family U̇ U where we write U̇ for
the collection

∑
A∈UA. A family of sets Y X is called U -small if and only if there exists

a (not necessarily unique) pullback square in the following configuration:

Y

X

U̇

U

A set X is called U-small when the terminal family X 1Set is U-small. The family
U̇ U is called the “generic family” of the universe.

§3.2. UNIVERSES IN CATEGORIES

(3.2∗1) The notion of a universe makes sense in any category E : we might define a
universe to be simply an arbitrary morphism p : U̇ U such that the following pullback
exists for any morphism A : X U :

[A]

X

pA

U̇

U

qA

p

A
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A map that arises as pA for some A : X U is called U-small. Then, it is possible to
speak of the universe U̇ U being closed under various connectives.

For the sake of simplicity, we will assume that E itself is locally Cartesian closed.

(3.2∗2) When A : U , we will write [A] for the fiber of U̇ over A:

[A]

X

U̇

U
A

(3.2∗3) Dependent sums. The universe U̇ U is closed under dependent sums when the
following projection morphism is U-small:(∑

A:U
∑

B:[A]→U
∑
a:[A][B(a)]

) ∑
A:U ([A]→ U)

(3.2∗4) Dependent products. The universe U̇ U is closed under dependent products
when the following projection morphism is U-small:(∑

A:U ([A]→ U̇)
) ∑

A:U ([A]→ U)

(3.2∗5) What (3.2∗3) and (3.2∗4) have in common is that the closure of a universe under
a connective is stated by requiring that a certain morphism be small; this morphism is
the “generic” dependent sum/dependent product/etc. situation. From a type theoretic
perspective, the domain of the morphism is the data assumed in its introduction rule and
the codomain is the data assumed in its formation rule.

§3.3. STRONG UNIVERSES AND REALIGNMENT

(3.3∗1) Realignment (externally). A property of central importance for a universe p :
U̇ U is to support realignment along monomorphisms. We will write S for the collection
of morphisms that arise by pullback from p : U̇ U . LetM be a set of monomorphisms
in E ; we say that p : U̇ U supports M-realignment when any lifting problem of the
following kind admits a solution in the cartesian arrow category E→cart, assuming that
f ∈ S and h f lies horizontally over an element ofM:

h

f

π

cart.

cart.

car
t.
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(3.3∗2) History. The external realignment principle above has played an important role
in almost every work on the semantics of homotopy type theory, notably in Voevodsky’s
simplicial set semantics of homotopy type theory [KL21] as well as that of Streicher [Str14a].
Shulman [Shu15a] stated the principle more abstractly,1 contributing a construction of
universes of presheaves satisfying realignment that relies only on the exactness properties
of Grothendieck topoi; this result is replayed in generality for an arbitrary Grothendieck
topos by Gratzer, Shulman, and Sterling [GSS21]. The external realignment property
also appears in a disguised form in the proof of canonicity for XTT [SAG20], a version of
cubical type theory with proof-irrelevant equality types.

An internal version of the realignment property, detailed below, has been employed in
the semantics of cubical type theory, first suggested by Coquand and then adapted to the
setting of guarded cubical sets by Birkedal, Bizjak, Clouston, Grathwohl, Spitters, and
Vezzosi [Bir+16], and employed more generally by Orton and Pitts [OP16]. When M
is represented by a subobject P ⊆ Ω of the subobject classifier, the presence of internal
realignment structure is implied by the external realignment property. Internal realignment
is the workhorse lemma of the synthetic Tait computability presented in this dissertation,
in essence because it allows one to align a computability structure strictly over a given
component of the syntactic algebra.

(3.3∗3) Internal realignment. The internal version of realignment can be stated in the
type theoretic language of a logos E . Write A : U ` Iso(A) for the collection of U-small
isomorphs of A defined as follows:

Iso(A) :=
∑

B:U ([B] ∼= [A])

Let P ⊆ Ω be a subobject of the subobject classifier; then a realignment structure for
U with respect to P is an element of the following type:

realignU :
∏

A:U
∏
φ:P

∏
B:[φ]→Iso(A)

{
A′ : Iso(A)

∣∣ ∀z : [φ].A′ = B(z)
}

(3.3∗4) Strong universe. A universe U equipped with such a realignment structure is called
P-strong; when P is Ω itself, we simply refer to U as strong.

(3.3∗5) Internalizing. If U satisfies the external realignment property (3.3∗1) relative to
the collection of monomorphisms classified by P, then U is P-strong.

Proof. The generic internal realignment situation can be expressed as an external realig-
ment problem, as shown in detail by Gratzer, Shulman, and Sterling [GSS21].

1 Referred to as Condition (2’) by Shulman [Shu15a].
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(3.3∗6) Realignment connective. We will use the following type theoretic notation for
applications of the realignment structure of a given strong universe U :

A : U φ : P B : [φ]→ Iso(A)
realign [A | φ ↪→ B] : U z : [φ] ` realign [A | φ ↪→ B] = π1(B(z)) : U

A : U φ : P B : [φ]→ Iso(A) a : [A]
bac : [realign [A | φ ↪→ B]] z : [φ] ` bac = π2(B(z))−1(a) : [π1(B(z))]

A : U φ : P B : [φ]→ Iso(A) a : [realign [A | φ ↪→ B]]
dae : [A] z : [φ] ` dae = π2(B(z))(a) : [A]

§3.4. UNIVERSE HIERARCHIES IN LOGOI

(3.4∗1) The hierarchy of strongly inaccessible cardinals in the ambient set theory gives rise
to a cumulative hierarchy of universes of sets (§3.1) that has extremely strict properties.
In this section, we axiomatize some of the properties of this universe hierarchy for use
elsewhere; such hierarchies exist at least in all Grothendieck topoi.

(3.4∗2) In this section, we assume that E is a logos; let L be the total order of the natural
numbers with an additional top element � : L adjoined. We intend L to be the index of a
hierarchy of universes; our arguments also work when L contains additional limit ordinals,
but we will not need this.

(3.4∗3) Universe systems. An L-shaped universe system is given by the following data:
1) A diagram U• : L E where all arrows 〈↑βα〉 : Uα Uβ are monomorphisms,

together with a family U̇ : E/U� . We will write U̇α for the restriction of U̇ along 〈↑βα〉:

U̇α

Uα

U̇

U�
〈↑�α〉

2) For each object α < �, an element Uα : 1E Us(α) together with a cartesian square
in the following configuration:

Uα

1E

U̇s(α)

Us(α)Uα

U̇

U�
〈↑�α〉
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(3.4∗4) Strong universe hierarchies. We say that a universe system is strong when each
Uα is strong in the sense of (3.3∗4).

(3.4∗5) Coherent codes for connectives. Let (U•,U̇ ,U•) be a universe system such that
each universe Uα has dependent product types in the sense of (3.2∗4). It is not a priori
the case that the Πα codes at each universe level are coherent with the lifting coercions,
i.e. we do not necessarily have 〈↑βα〉Πα(A,B) = Πβ(〈↑βα〉A,λx.〈↑βα〉B(x)) strictly (though it
does hold up to isomorphism by the universal property of the dependent product). If the
universe system is strong, however, we may choose a new sequence of codes Π′

α such that
〈↑βα〉Π′

α(A,B) = Π′
β(〈↑

β
α〉A,λx.〈↑βα〉B(x)).

Proof. This is a result of Shulman [Shu15a], and proceeds by induction on α : L. First we
choose Π′

0 := Π0; in the successor and limit cases, we define Π′
α(A,B) by realigning the

existing code Πα(A,B) against the following proposition φA,B:

φA,B :=
∨
n<α

∃A′,B′.A = 〈↑αn〉A′ ∧ B = λx.〈↑αn〉B′(x)

The partial isomorph of Πα(A,B) under φA,B is defined piecewise for each n < α in
terms of the unique A′,B′ that lie in the image of the lift 〈↑αn〉, writing ιx.P(x) for the
definite description operator that is justified in any logos:

n 7→ 〈↑αn〉Π′
n(ιA′.A = 〈↑αn〉A′, ιB′.B = λx.〈↑αn〉B′(x))

It is necessary to check that the family of partial types defined above matches on the
overlap between different n,n′ < α; this follows by induction.

(3.4∗6) An argument analogous to (3.4∗5) works for all connectives of dependent type
theory; hence, a strong universe system can be used as the basis for the cumulative-style
notation where level coercions silently commute past connectives.

(3.4∗7) Cumulative notation. In only the case of a strong universe system, we adopt an
only slight abuse of notation in which we omit the coercions 〈↑βα〉.

(3.4∗8) Existence of universes. Assuming enough universes in the ambient set theory, any
logos has a strong hierarchy of universes as exposed by Gratzer, Shulman, and Sterling
[GSS21]; these universes may be constructed using a variant due to Shulman [Shu15a]
of the small object argument. Shulman’s result refutes a number of conjectures in the
literature concerning the lack of strict universes in categories of sheaves [CMR17; Man16;
Péd21; Xu15; XE16]. In fact, there seems to have also been confusion in the type theoretic
community as to the existence of weak universes, a result established by Streicher in 2014.
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§3.5. DIRECT IMAGE AND EXTENT TYPES

(3.5∗1) In this section we will fix notations for two important type formers that are
available in the internal languages of logoi, partial types and extent types.

(3.5∗2) Russellian notation. When working with universes in a logos we will no longer
distinguish between a code A : U and its decoding [A]. While these are formally different,
leaving the decoding implicit causes no ambiguity. Given a proposition φ : Ω, we will
likewise abuse notation by writing φ for the decoding [φ].

(3.5∗3) Direct image types. Let φ : Ω be a proposition, and let A : φ→ U be a partial type
defined on φ. We may define the “direct image” of A in U to be the dependent product
type

∏
z:φA(z) : U . Because these direct images will play such an important role in our

developments, we will impose an “implicit dependent function” notation in the style of
Agda: ∏

z:φA(z) written {φ}A
λz : φ.a(z) written a

a(z) written a

The above causes no ambiguity because any two proofs u,v : φ are equal.

(3.5∗4) Partial element types. A special case of (3.5∗3) is the partial element type {φ}A
for a total type A : U .

(3.5∗5) Extent types. Let A : U be a type, and let a : {φ}A be a partial element defined
on φ : Ω. We may define the extent of a to be the subset of A spanned by elements that
restrict under φ to a:

A : U φ : Ω a : {φ}A
{A | φ ↪→ a} := {a′ : A | ∀z : φ.a′ = a}

As in (3.5∗3) we will render the coercion {A | φ ↪→ a} A implicit in our notation.

(3.5∗6) The extent types are based on the work of Riehl and Shulman [RS17], where they
appeared under the name extension types, and on the work of Cohen, Coquand, Huber,
and Mörtberg [Coh+17] and Orton and Pitts [OP16] where they appeared alongside
partial element types as a notational device in the service of the syntax and semantics of
cubical type theory.

§3.6. MODAL UNIVERSES OF MODAL TYPES

(3.6∗1) Fix a proposition φ : Ω; we also assume strong universes U ⊆ V.
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(3.6∗2) From within SetX, it is useful to think of the point / terminal object 1SetX as an
internal representation of the entire space X; from this perspective, we might write 1X for
the corresponding “internal topos” in SetX. Then a universe U : SetX can be thought of
in two ways:

1) U is an internal category of (small) sheaves on the point 1X.
2) U is an internal representation of the (external) category of (small) sheaves on X.
Using these intuitions, it is geometrically profitable to view a proposition φ : Ω as an

“internal open subtopos” φ 1X; it is therefore appropriate to ponder the internal closed
subtopos \φ 1X. In the internal language of SetX, we may approximate both internal
subtopoi by defining universes Uφ and U\φ that serve as their internal categories of small
sheaves in the same sense that U is the internal category of small sheaves on 1X.

(3.6∗3) Open and closed subuniverses are developed more thoroughly in the context of
homotopy type theory by Rijke, Shulman, and Spitters [RSS20]; our contribution will
be to give a specific construction of these universes that is compatible with the needs of
strict & non-homotopical type theory in which the univalence principle is not available.

(3.6∗4) Open subuniverse. We define the open subuniverse Uφ to be the following realign-
ment of {φ}U :

Uφ : {V | φ ↪→ U}
Uφ := realign [{φ}U | φ ↪→ (U , λA : U .λ{z : φ}.A)]

The inverse image function φ∗ : U Uφ is deduced from the weakening U {φ}U
via the realignment isomorphism:

φ∗ : U Uφ
φ∗A = bλ{z : φ}.Ac

We could naïvely define the direct image function to take A : {φ}U to {φ}A, but this
would not be an injection; the problem is easily solved by realignment:

φ∗ : Uφ U
φ∗(A) = realign [{φ} dAe | φ ↪→ (dAe{?}, λa : dAe{?}.λ{z : φ}.a)]

(3.6∗5) It is a surprising reminder of the power of realignment that is possible to define a
version of the direct image function that is an injection! It is worth verifying for yourself
that the direct image function φ∗ : Uφ U is in fact an injection.

(3.6∗6) Closed subuniverse. The closed subuniverse U\φ is defined as a realignment of the
extent type {U | φ ↪→ 1}:

U\φ : {V | φ ↪→ 1}
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U\φ = realign [{U | φ ↪→ 1} | φ→ (1, λ_ : 1.?)]

The direct image function is the easy part this time:

\φ∗ : U\φ U
\φ∗(A) = dAe

The inverse image function \φ∗ : U U\φ takes a type A : U to a realignment of the
join of A with φ:

\φ∗ : U U\φ
\φ∗A := brealign [φ tφ×A A | φ ↪→ (1, λ_ : 1.inl(_ : φ))]c

Above we have written φ tφ×A A for the following internal pushout, which can be
formed using quotient and coproduct types:

φ×A

φ

π1

A

φ tφ×A A

π2

inr

inl
(3.6∗7) Modalities. Composing direct image with inverse image, one obtains an internal
lex idempotent monad on the universe U . We define notations for these monads below:

#φ, φ : U U
#φA = φ∗φ

∗A
 φA = \φ∗\φ∗A

Of course, it is not strictly necessary for us to even write down the direct images —
it is conventional to write canonical injections as subtype inclusions. But there will be
times when clarity is served by being explicit.

(3.6∗8) Notation for the open subuniverse. In (3.6∗4) we used realignment twice: first to
define the universe Uφ, and then to define the direct image φ∗A. We will harmlessly treat
the corresponding realignment isomorphisms as implicit coercions in our notation:

A : Uφ ` dAe : {φ}U written A
A : {φ}U ` bAc : Uφ written A

A : Uφ,a : #φA ` dae : {φ}A written a

A : Uφ,a : {φ}A ` bac : #φA written a

(3.6∗9) Notation for the closed subuniverse. In (3.6∗6) we made two uses of realignment;
first we realigned the extent {U | φ ↪→ 1} to define the closed subuniverse U\φ. In our
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notations, we treat the corresponding realignment isomorphism as an implicit coercion:

A : U\φ ` dAe : {U | φ ↪→ 1} written A
A : {U | φ ↪→ 1} ` bAc : U\φ written A

Second we realigned a pushout to obtain the inverse image \φ∗A : U\φ; of course,
universal properties are stable under isomorphism, hence  φA is also the pushout of
the product projections of φ × A. We impose notations below for its introduction and
elimination forms:

a : A
η\φ(a) :  φA

u : φ
? :  φA

a :  φA cφ : {φ}C cA : A→ {C | φ ↪→ cφ}
try a [cA | φ ↪→ cφ] : {C | φ ↪→ cφ}

These notations are substantiated below, writing h for try− [cA | φ ↪→ cφ]:

φ×A

φ

π1

A

 φA

π2

η\φ

?

Ccφ

cA

h

(3.6∗10) The open and closed subuniverses Uφ,U\φ are both strong; the condition for the
open subuniverse is trivial (but tedious) to verify; for the closed subuniverse, realignment
at ψ : Ω is achieved using realignment at ψ ∨ φ.2

§3.7. ALGEBRAS FOR A SIGNATURE IN A UNIVERSE

(3.7∗1) Let X be a topos, and let S be a signature in the logical framework of Chapter 1;
an algebra for S in SetX is nothing more than a locally Cartesian closed functor TS SetX
where TS is the category of judgments defined in (1.4∗8). When all the sorts of S are
interpreted by small objects for a given universe U of SetX, we may give an alternative
internal characterization of S-algebras.

(3.7∗2) Every universe in SetX gives rise to a model of the theory of LF signatures in the
following sense. Let U be a universe in SetX; we have a locally Cartesian closed functor
J−KU : SIG SetX sending � to U , and � : SIG/� to U̇ : (SetX)/U . The functor J−KU
sends each signature S to the sheaf of U-small S-algebras over X.
2 I have checked these conditions carefully in Coq, because it is intricate enough that an informal proof
may not be convincing.
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Open subuniverse:

Uφ : {V | φ ↪→ U}
Uφ := realign [{φ}U | φ ↪→ (U , λA : U .λ{z : φ}.A)]

φ∗ : U Uφ
φ∗A = bλ{z : φ}.Ac

φ∗ : Uφ U
φ∗(A) = realign [{φ} dAe | φ ↪→ (dAe{?}, λa : dAe{?}.λ{z : φ}.a)]

Closed subuniverse:

U\φ : {V | φ ↪→ 1}
U\φ = realign [{U | φ ↪→ 1} | φ→ (1, λ_ : 1.?)]

\φ∗ : U U\φ
\φ∗A := brealign [φ tφ×A A | φ ↪→ (1, λ_ : 1.inl(_ : φ))]c

\φ∗ : U\φ U
\φ∗(A) = dAe

Modalities:

#φ, φ : U U
#φA = φ∗φ

∗A
 φA = \φ∗\φ∗A

Figure 3.1: A summary of the construction of open and closed subuniverses for a proposi-
tion φ : Ω and a universe U : V.
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(3.7∗3) Consider the signature ML∅ of the “walking type theory” (1.6∗3); then the
interpretation JML∅KU is the following object of SetX:

JML∅KU ∼=
∑

tp:U (tp→ U)

If U ≤ V , we have the canonical coercion JML∅KU JML∅KV that we will leave implicit
in the presence of cumulative universes. In fact these coercions exist more generally for
any signature S, in essence because � is restricted in a signature to appear in strictly
positive positions, recalling (1.2.1∗4).

(3.7∗4) Let φ be an open of SetX; because the open modality (3.6∗7) commutes with
dependent product/sum types and equality types, we always have a canonical isomorphism
#φJSKU ∼= JSKUφ

for any signature S : SIG.
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CHAPTER 4

TAIT’S METHOD OF COMPUTABILITY

This chapter contains joint work with Robert Harper [SH21] and Daniel Gratzer.
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§4.1. CONTEXTS, FIGURE SHAPES, AND TAIT COMPUTABILITY

(4.1∗1) Experience has shown that the important theorems about the syntax of type
theory (canonicity, parametricity, normalization, etc.) do not hold unconditionally, but
only with respect to a restricted form of context. For instance, because equality is a
judgment it may appear in either the domain or in the codomain of a morphism in the
category T of judgments, but unrestricted assumptions of equality are well-known to
make the type checking problem undecidable [CCD17].

Hence, metatheorems such as the existence of canonical forms are stated not uncon-
ditionally for a form of judgment like tp : T , but are instead formulated relative to the
nerve functor Nρ : T Pr(C) sending X : T to the “functor of points” HomT (ρ− ,X) for
some carefully chosen figure shape ρ : C T .

85
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(4.1∗2) The figure shape ρ : C T plays essentially the same role as worlds in the
Edinburgh tradition of logical frameworks [HL07]. In some cases, the figure shape is a full
subcategory of the category of judgments spanned by certain judgments distinguished as
contexts — such canonical figure shapes may be used to obtain a traditional “gammas
and turnstiles” presentation from the category of judgments of a type theory.

(4.1∗3) Each figure shape ρ : C T induces a (generalized) notion of Kripke logical
relations or Tait computability on T : a ρ-computability structure over a sort X : T is
a family of presheaves X′ : Pr(C)/Nρ(X) — the fibers of X′ over a given piece of syntax
are the “proofs” of computability/reducibility of that piece of syntax; the indexing in C
generalizes the variation over Kripke worlds in Kripke logical relations.

Such computability structures organize themselves into a category G = Pr(C) ↓ Nρ

called the Artin gluing of Nρ; a morphism in G is (roughly) a morphism in T together
with a proof that it takes computable terms to computable terms. The “fundamental
theorem” of ρ-computability is then to exhibit a suitable structure preserving functor
T G that is a section of the projection gl : G T .

(4.1∗4) Consider a type theory T that contains an answer type ans and two constants
yes, no : ans; the property that every global element a : ans is either equal to yes or no
is called closed canonicity. The closed canonicity theorem is stated (and in many cases
proved) relative to the trivial figure shape ∗ : 1Cat T determined by the terminal
judgment 1T ; the corresponding nerve functor is the global sections functor. This trivial
figure shape corresponds to the fact that canonicity is a statement about terms without
any free variables.

The Tait computability arising from the trivial figure shape assigns to each sort X : T a
family of sets X′ indexed in the closed elements of X; this is only a mild generalization of the
conventional logical predicates argument known to type theorists. The main substantive
difference is that the families of sets are restricted in the conventional argument (to little
advantage, we will see) to families of truth values, rendering X′ a predicate on the closed
elements of X. We will return to this example in §4.5.

§4.1.1. Cubical canonicity

(4.1.1∗1) Let T be the category of judgments of cubical type theory. T is similar to T
from (4.1∗4) except that it contains some additional objects and morphisms corresponding
to an interval (along with a number of other primitives that we need not detail now):

I : T 0,1 : 1T I

(4.1.1∗2) While it remains possible to state a closed canonicity result for T in the spirit
of (4.1∗4), it does not appear to be possible to prove such a result in terms of the trivial
figure shape ∗ : 1Cat T . Instead one must apparently prove a stronger canonicity result
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characterizing terms not only in the empty context, but in any context of the form In

— in other words, the “purely cubical” contexts. The generalized canonicity result is
achieved by means of a more complicated (but geometrically natural) figure shape.

(4.1.1∗3) Write for the Cartesian cube category, which is the same as the free category
with finite products generated by an object with two global points. The universal property
of places “finite product categories E equipped with an interval object” into unique
correspondence with finite product preserving functors E . Hence we have a finite
product preserving functor ρ : T , the cubical figure shape, taking each formal finite
product [n] : to the n-fold product of the interval ρ[n] = In : T .

(4.1.1∗4) The nerve Nρ : T Pr( ) takes, for instance, the sort tp : T of types to the
functor of cubical points HomT (ρ− ,tp), consisting of the collection of all types with free
variables ranging only over the interval. The use of such a nerve was suggested by Awodey
in 2015 as a way to rationalize the nuts-and-bolts canonicity argument of Huber [Hub18],
and employed in unpublished work of Awodey and Fiore in 2018, and by Sterling, Angiuli,
and Gratzer [SAG19] in 2019; in light of the analysis of Kripke logical relations by Jung
and Tiuryn [JT93] as early as 1993, it is not surprising in hindsight that this cubical nerve
plays an important role.

(4.1.1∗5) The Tait computability theory induced by ρ associates to each sort X : T a
cubical computability structure, which is a family of cubical sets X′ : Pr( )/NρX indexed
in the cubical points of X. The cubical Tait computability sketched here generalizes and
immensely simplifies the argument of Huber [Hub18] for the canonicity of cubical type
theory, to the point that cubical canonicity can be established without more difficulty than
ordinary canonicity in a purely conceptual way involving no technical lemmas whatsoever.

§4.2. CANONICITY FOR TYPED λ-CALCULUS, EXPLICITLY

(4.2∗1) We warm up by considering a familiar example, canonicity of the λ-calculus.
Although conceptual arguments for λ-canonicity are well known enough to appear in
undergraduate-level textbooks [Cro93], regrettably intricate proofs employing operational
semantics and “hand-coded” logical relations still remain dominant in both the scholarly
and pedagogical literature.

(4.2∗2) By typed λ-calculus we mean a simple type theory with finite products A×B× . . .,
exponentials A→ B, and an answer type ans with two constants yes, no : ans. The purpose
of the answer type, as argued by Harper [Har16, §48.2], is to provide an observation
with respect to which one may state and prove a canonicity result. The statement of the
canonicity theorem is as follows:

Canonicity. Any closed term · ` a : ans is equal to either yes or no.
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(4.2∗3) Rather than defining the syntax of the λ-calculus by means of a grammar, dealing
with the complexities of α-renaming and substitution, we may simply define the syntax of
λ-calculus to be the free Cartesian closed category T generated by one object ans and
two constants yes,no : 1 ans. The motivation of such a definition is that the syntax of
a given theory may be presented in many different ways, but all these presentations give
rise to the same category, considered up to equivalence of categories.

An important observation on which this dissertation rests is that the theorems of type
theory can be stated in a way that is invariant under equivalence of categories; hence,
there is no need to concern ourselves with the specifics of tree representations or variable
binding conventions, which in hindsight can be seen to be predilections of essentially
the same ill-advised nature as the unfortunate emphasis of “parsing” in undergraduate
computer science pedagogy, or counting of parentheses in undergraduate logic pedagogy.

(4.2∗4) As previewed in (4.1∗4) we consider the trivial figure shape {1T } : 1Cat T
determined by the terminal object 1T . Hence the nerve N{1T } takes each A : T to its
set of closed terms HomT (1T ,A) under the identification Pr(1Cat) = Set; in other words,
N{1T } is the global sections functor Γ : T Set.

(4.2∗5) To develop a theory of closed computability for T we will form the Artin gluing of
the global sections functor Γ, namely the comma category G = Set ↓ Γ; it will be helpful
in the longer term to think of G as the fiber of the codomain fibration Set→ Set over
T as depicted below:

G

T

gl

Set→

Set

cod

Γ
(4.2∗6) An object of G is called a computability structure, and is defined by specifying a
pair of an object A : T together with a morphism A′ Γ(A) : Set, i.e. a family of sets
A′
a indexed in closed terms a : 1T A. Let

(
A,A′ Γ(A)

)
and

(
B,B′ Γ(B)

)
be two

objects of G; a morphism between them is given by a morphism f : A B : T together
with a commuting square in Set configured like so:

A′

Γ(A)

B′

Γ(A)

f ′

Γ(f)
(4.2∗7) As alluded to in (4.1∗3), we will prove the canonicity theorem for T by exhibiting
a suitable model of the typed λ-calculus in G in which the interpretation of the answer
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type ans associates to each closed term of answer type a proof that it is either yes or no.
Technically speaking, this means to exhibit a diagram of the following shape such that
the dotted functor preserves Cartesian closed structure:

T G

T

s

glid
T

(4.2∗7∗1)

Diagram 4.2∗7∗1 is the mathematical version of the fundamental theorem of logical
relations: one is exhibiting a computability structure over every construct from T in a
way that is compatible with substitution (this is the content of functoriality). However, it
is always considerably less technical to exhibit Diagram 4.2∗7∗1 than to manually prove
the FTLR — not least because one may develop a wealth of general theorems about
gluings of different kinds of categories that can be reused, unlike the case for conventional
non-mathematical applications of logical relations. It is also less technical even in the
cases where general results are not available beforehand, because the categorical setting
provides certain significant simplifications and reductions, a strange state of affairs that
will come into relief when we develop the topos theoretic perspective on Tait computability
later on.

(4.2∗8) Using the universal property of T as the free Cartesian closed category generated
by an answer type, we may split (4.2∗7) into two easy steps:

1) Show that G has finite products and exponentials, and that gl preserves them.
2) Choose a suitable interpretation of the answer type in G, aligned over the answer

type from T in the following configuration:

ans∗1G 1G

ans1T 1Tyes no

yes∗ no∗ G

T

gl

(4.2∗8∗1)

(4.2∗9) Closure of G under finite products. This is simple to establish because finite
products may be computed pointwise in G; for pedagogical reasons, however, we give the
construction explicitly. We will use the (unconditional) fact that the global sections functor
Γ for any category preserves finite products. Given a finite family of objects X(i∈I) : G we
define the product

∏
i∈IXi : G by the following family of sets, writing X↓

i : X•
i Γ(X◦

i )
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for the corresponding families of sets:

∏
i∈IX•

i

∏
i∈IΓ(X◦

i )

Γ
(∏

i∈IX◦
i

)

∏
i∈IX

↓
i

∼=

(∏
i∈IXi

)↓

It remains to check that
∏
i∈IXi : G so defined is in fact the cartesian product of the

finitary family X(i∈I). We first exhibit projections πk :
∏
i∈IXi Xk for each k ∈ I:

∏
i∈IX•

i

Γ
(∏

i∈IX◦
i

)
(∏

i∈IXi
)↓

X•
k

Γ(X◦
k)

πk

X↓
k

Γ(πk)

Then it remains to show that the (discrete) cone
{
πk :

∏
i∈IXi Xk

}
given by all the

projections is universal. Fixing any other cone
{
pk : Z Xk

}
, we must exhibit a unique

morphism Z
∏
i∈IXi with the property that all the triangles below commute:

Z ∏
i∈IXi

Xk

πk

p
k

Rephrasing into the language of Set using (4.2∗6), the existence and uniqueness of
the universal map Z

∏
i∈IXi follows immediately from the corresponding universal

properties of the cartesian products
∏
i∈IX•

i : Set and
∏
i∈IX◦

i : T .

(4.2∗10) Closure of G under exponentials. The construction of exponentials in G is more
technical than that of finite products, but it can be seen to mirror exactly the conventional
method for defining logical relations at function type: one must attach a “semantic
function” between sets of computable closed terms to a syntactic function. Fixing X,Y : G
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we construct their exponential W := (X→ Y) as a pullback in Set involving both the
exponentials of Set and the exponentials of T :

W•

Γ(X◦ → Y◦)

W↓

(X• → Y•)

(X• → Γ(Y◦))

Y↓ ◦ −
f 7→ λx.app(f,X↓x)

(Γ(X◦)→ Γ(Y◦))

app
(−
◦X

↓ )

The map app is implemented by the counit ε : ((X◦ → Y◦)×X◦) Y◦ of the expo-
nential after commuting some finite products past Γ:

Hom(Γ(X◦ → Y◦),Γ(X◦)→ Γ(Y◦))
∼= Hom(Γ(X◦ → Y◦)× Γ(X◦),Γ(Y◦))
∼= Hom(Γ((X◦ → Y◦)×X◦),Γ(Y◦))

To check that W : G so-defined is actually the exponential (X→ Y), we check that we
have the family of isomorphisms below natural in a computability structure Z taken by gl
to the corresponding isomorphism in T :

(natural in Z) αZ : HomG(Z,W) ∼= HomG(Z×X,Y) (4.2∗10∗1)

(4.2∗11) Identity 4.2∗10∗1 above is a more compact way to package the existence of
λ-abstraction and application operators for W that (1) commute with substitution, and
(2) satisfy the β and η laws of the function type. Verifying this condition is left to the
reader — not only because it is a worthwhile and elementary exercise, but also because
we will later on see how to totally dispense with it using a much stronger general theorem.

(4.2∗12) Any construction of a connective that has both a β-law and an η-law is auto-
matically unique up to unique isomorphism! This means that there can be no creativity
or careful thought involved in exhibiting its computability structure: either it exists or it
doesn’t, but there is no question of the “good” way to define it. For this reason, the usual
emphasis on careful constructions of logical relations for (e.g.) product types or function
types that pervades the literature must be regarded as essentially misguided, an artifact of
the now-eclipsed era in which the universal properties of type theoretic connectives were
either omitted or hidden underneath inessential syntactical matters such as raw terms.

(4.2∗13) The second step of (4.2∗8), the interpretation of the answer type, is the meat of
the canonicity argument; the rest of it is bureaucracy that we will later on see how to
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completely dispense with in all cases. First, we note that however we define ans∗ : G, we
must have gl(ans∗) = ans, since we are trying to make a computability structure over the
answer type, not some other type!

We will choose to define ans∗ : G by the family of sets {yes,no} Γ(ans) that isolates
the canonical closed terms of answer type. Recalling the computation of morphisms in G
in terms of squares in Set of (4.2∗6), we substantiate Diagram 4.2∗8∗1 in the language of
Set as follows:

1Set

Γ(1T )

{yes,no}

Γ(ans)

yes

Γ(yes)

1Set

Γ(1T )

no

Γ(no)

Considering the division of labor of (4.2∗8), we have defined by means of (4.2∗9),
(4.2∗10) and (4.2∗13) a Cartesian closed section s : T G of the projection gl : G T
such that s(ans) = ans∗, etc.

(4.2∗14) Canonicity. The canonicity result is then read off directly off our construction.
Fixing a closed term a : 1T ans, the upstairs functor s : T G of Diagram 4.2∗7∗1
gives us a morphism s(a) : 1G ∼= s(1T ) ans∗ such that gl(s(a)) = a. Rephrasing into the
language of Set, we have a commuting square in the following configuration:

1Set

Γ(1T )

{yes,no}

Γ(ans)

a•

Γ(a)
(4.2∗14∗1)

The commutativity of Diagram 4.2∗14∗1 states that we have an element a• ∈ {yes,no}
such that a = a• under the identification HomSet(Γ(1T ),Γ(ans)) ∼= Γ(ans). In other words,
either a = yes or a = no.

§4.3. GLUING WITH FIGURE SHAPES

(4.3∗1) In §4.1 we considered ρ-computability for a figure shape ρ : C T where T is the
category of judgments for a given type theory. Here we explore a more conceptual and
geometric construction that generalizes the category of ρ-computability structures — as a
particularly well-behaved special case of the Artin gluing detailed in §2.4.
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(4.3∗2) Let T be a type theory and fix a figure shape ρ : C T ; in §4.2 we constructed
the Artin gluing G = Pr(C) ↓ Nρ of the nerve functor Nρ : T Pr(C) to form the category
of ρ-computability structures. A disadvantage of the perspective detailed there is that
the category G does not a priori have any useful structure: we must manually show that
it possesses products, exponentials, etc., but as our type theoretic structure becomes
more complex (consider for example dependent products), the corresponding explicit
constructions start to become intractable and unintuitive.

We have discovered a very simple way to work around this problem and render any
explicit construction of type theoretic structure just as redundant as it is ill-advised.
Rather than considering the category G = Pr(C) ↓ Nρ of ρ-computability structures
over T , we will instead work with a topos G such that G embeds fully faithfully into
SetG. Hence, all type theoretic structure will already exist (without any special effort on
our part) in SetG and the substantiation of a type theoretic metatheorem is reduced to
elementary considerations of representation by universes.

(4.3∗3) From the figure shape ρ : C T , we obtain a morphism between presheaf topoi
ρ : Ĉ T̂ (no ambiguity will be caused by sharing the name); the inverse image part of ρ
simply restricts a presheaf on T to a presheaf on C. We intend to create a topos G that
includes T̂ via an open immersion and Ĉ via a complementary closed immersion. We may
achieve this geometrically by forming the cylinder Ĉ × S and gluing the open copy of Ĉ
along ρ to the topos T̂ by means of a pushout in Topos:

Ĉ

Ĉ × S

◦Ĉ

T̂

G

ρ

j

Ĉ

•Ĉ i

(4.3∗3∗1)

(4.3∗4) We will examine the logos SetG induced by (4.3∗3) from the algebraic perspective.
The first step is to dualize Diagram 4.3∗3∗1 into the language of categories.

SetG

SetT̂

j∗

SetĈ×S

SetĈ

〈idĈ ,◦〉
∗

ρ∗
(4.3∗4∗1)
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Following (2.2.4∗4) we may rewrite the right hand side of Diagram 4.3∗4∗1 as follows:

SetG

Pr(T )

j∗

Pr(C)→

Pr(C)

cod

ρ∗
(4.3∗4∗2)

Hence SetG is just the Artin gluing of the inverse image functor ρ∗ : Pr(T ) Pr(C) in
the sense of (2.4∗5).

(4.3∗5) The existence of a left adjoint ρ! a ρ∗ characterizes the property of ρ : Ĉ T̂
being an essential geometric morphism. In this case the closed immersion Ĉ G is also
essential, with i! a i∗ taking each E : Pr(C) to the family determined by the unit of the
monad ρ∗ρ!:

i! : Pr(C) SetG
i! : E

(
ρ!E, ηE : E ρ∗ρ!E

)
In this case, the monad  := i∗i

∗ : SetG SetG that isolates the part of a sheaf lying
over the closed subtopos has a left adjoint � := i!i

∗:

HomSetG(E, F) = HomSetG(E,i∗i
∗F)

∼= HomPr(C)(i∗E,i∗F)
∼= HomSetG(i!i

∗E,F)
= HomSetG(�E,F)

If i! is additionally left exact, then so is �.

§4.4. SYNTHETIC TAIT COMPUTABILITY

4.4.1 Lifting negative types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.2 Lifting positive types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.3 Lifting hierarchies of strict universes . . . . . . . . . . . . . . . . . . . . . 98

(4.4∗1) In this section, let ¶ be an open of a topos G; hence in the internal language
of SetG we have a proposition ¶ : Ω; we fix a strict universe hierarchy U ≤ V < W;
accordingly we will freely employ the notation (3.4∗7) in which 〈↑VU 〉 are omitted. We will
write #, for the modalities #¶, ¶ respectively.

(4.4∗2) The open and closed modalities corresponding to ¶ : Ω provide the abstract setting
in which to synthetically develop the main components of proofs by Tait computability.
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Rather than explicitly constructing logical relations or computability predicates, we take
the perspective that everything is a computability structure (relative to ¶ : Ω), and use
the modalities to fracture an object into its syntactic and semantic aspects as needed.

First we build up a large library of small results in this “synthetic Tait computability”;
then, we instantiate these constructions at a specific glued topos and extract a metatheorem
for a specific type theory, as in §4.5. Our approach to computability arguments /
logical relations is analogous to other topos theoretic reconstructions of differential
geometry [Koc06; Koc09], differential topology [BGS18], algebraic geometry [Ble17],
domain theory [Bir+11a; Hyl91], and computability theory [Bau06].

(4.4∗3) We will refer to an element of JML∅KU¶
as a syntactic universe; recall from (3.7∗3)

that this is a syntactic type tp : U¶ together with a family of syntactic types tm : tp→ U¶.

(4.4∗4) Universe of computability structures. Let (tp,tm) : JML∅KU¶
be a syntactic universe;

for each strong universe V <W we may define an element of JML∅KW aligned over (tp,tm)
as follows:

tp★V : {W | ¶ ↪→ tp}
tp★V = realign

[∑
A:tp{V | ¶ ↪→ tm(A)}

∣∣ ¶ ↪→ (tp, λA : tp.(A, tm(A)))
]

tm★V(A) = dAe.2

The realignment above is possible because the extent type {V | ¶ ↪→ tm(A)} restricts
to a singleton under ¶.

(4.4∗5) In the future, we will not explicitly write the realignment; instead we will write
definitions like (4.4∗4) in the following style:

record tp★V : {W | ¶ ↪→ tp} where
syn : tp
ext : {V | ¶ ↪→ tm(syn)}

tm★V : {tp★V →W | ¶ ↪→ tm}
tm★V(A) = A.ext

Given A : tp★V , we will write A to mean tm★V(A).

(4.4∗6) We may write Ω\¶ for the classifier of  -modal propositions, i.e. the ones of the
form  φ := φ ∨ ¶.

(4.4∗7) Semantic realignment. The computability universe tp★V is Ω\¶-strong, i.e. supports
realignment for any proposition of the form  φ.

Proof. Fix a type B : tp★V and a partial isomorph A : { φ} tp★V of B. We may define the
realignment realign [B |  φ ↪→ A] : tp★V as follows:

realign [B |  φ ↪→ A].syn = A
realign [B |  φ ↪→ A].ext = realign [B.ext |  φ ↪→ A.ext]
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§4.4.1. Lifting negative types

(4.4.1∗1) Lifting dependent products. Suppose that the syntactic universe (tp,tm) is closed
under dependent products in the sense that there exist constants of the following types:

Π :
(∑

A:tp(tm(A)→ tp)
)
→ tp

λ : {A,B}
(∏

x:tm(A)tm(B(x))
) ∼= tm(Π(A,B))

Then we may define a dependent product structure aligned strictly over (Π,λ):

Π★V :
{(∑

A:tp★V
(A→ tp★V)

)
→ tp★V

∣∣ ¶ ↪→ Π
}

Π★V(A,B).syn = Π(A,B)
Π★V(A,B).ext = realign

[∏
x:AB(x)

∣∣ ¶ ↪→ (tm(Π(A,B)), λ{A,B})
]

The constant λ★V :
{
{A,B}

(∏
x:AB(x)

) ∼= Π★V(A,B)
∣∣ ¶ ↪→ λ

}
is precisely the realign-

ment isomorphism induced by the clause Π★V(A,B).ext.

(4.4.1∗2) A code A★ : {tp★V | ¶ ↪→ A} is completely determined by its collection of
elements A : {V | ¶ ↪→ tm(A)}; furthermore, in keeping with (4.4∗5), we may suppress the
realignment by a canonical isomorphism. Hence, we can impose the following notation for
the definition of Π★V without sacrificing any precision:

Π★V :
{(∑

A:tp★V
(A→ tp★V)

)
→ tp★V

∣∣ ¶ ↪→ Π
}

Π★V(A,B).syn = Π(A,B)
Π★V(A,B).ext ∼=

∏
x:AB(x)

(4.4.1∗3) Lifting dependent sums. Let the syntactic universe (tp,tm) be closed under
dependent sums in the sense that there exist constants of the following types:

Σ :
(∑

A:tp(tm(A)→ tp)
)
→ tp

pair : {A,B}
(∑

x:tm(A)tm(B(x))
) ∼= tm(Σ(A,B))

We may define a dependent sum structure on tp★V strictly aligned over (Σ,pair):

Σ★V :
{(∑

A:tp★V
(A→ tp★V)

)
→ tp★V

∣∣ ¶ ↪→ Σ
}

Σ★V(A,B).syn = Σ(A,B)
Σ★V(A,B).ext ∼=

∑
x:AB(x)

The realignment isomorphism implicitly introduced above above induces the correctly
aligned pairing constant:

pair★V :
{
{A,B}

(∑
x:AB(x)

) ∼= Σ★V(A,B)
∣∣ ¶ ↪→ pair

}
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(4.4.1∗4) Lifting equality types. Let the syntactic universe (tp,tm) be closed under equality
types in the sense that there exist constants of the following types:

eq :
(∑

A:tptm(A)× tm(A)
)
→ tp

refl : {A,a0,a1} (a0 =tm(A) a1) ∼= tm(eq(A,a0,a1))

We may define an equality type structure on tp★V aligned over (eq,refl):

eq★ :
(∑

A:tp★A×A
)
→ tp★

eq★(A,a0,a1).syn = eq(A,a0,a1)
eq★(A,a0,a1).ext ∼= (a0 =A a1)

The constant refl★V is induced by the realignment isomorphism above.

§4.4.2. Lifting positive types

(4.4.2∗1) While the lifting of “negative” types is always trivial, creativity is required
when lifting a positive type to computability structures. This is because positive types in
dependent type theory rarely have strict universal properties — hence their liftings are
not unique up to unique isomorphism; instead one chooses a lifting that will facilitate the
proof of the desired metatheorem. In this section, we provide a number of tools for lifting
positive types that can be pulled off the shelf later on.

(4.4.2∗2) Lifting an answer type. Let ans : tp be a syntactic type, and let yes,no : tm(ans)
be two constants; we may define a computability structure ans★V over ans that can be used
to prove a canonicity property for the answer type.

record ansV : {V | ¶ ↪→ tm(ans)} where
syn : tm(ans)
sem :  ((syn = yes) + (syn = no))

ans★V : {tp★V | ¶ ↪→ ans}
ans★V .syn = ans
ans★V .ext = ansV

yes★V : {ans★V | ¶ ↪→ yes}
yes★V .syn = yes
yes★V .sem = η\¶(inl(?))

no★V : {ans★V | ¶ ↪→ no}
no★V .syn = no
no★V .sem = η\¶(inr(?))

(4.4.2∗3) The computability structure of an answer type (4.4.2∗2) is the first time we
have used the closed modality (3.6∗7); without wrapping the computability data in  ,
the realignment above would not be possible! Under the assumption of z : ¶, however,
the second component of the record becomes a singleton.

(4.4.2∗4) Lifting an inductive type. We will show that the lifting of an answer type (4.4.2∗2)
extends to the case that the answer type includes an induction principle. Fix a syntactic
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induction form of the following type:

ind :
∏

C:tm(ans)→tp
∏
c0:tm(C(yes))

∏
c1:tm(C(no))

∏
x:tm(ans)tm(C(x))

We can program an induction form for the lifted answer type aligned directly over ind:

ind★V :
{∏

C:ans★V→tp★V
∏
c0:C(yes★V )

∏
c1:C(no★V )

∏
x:ans★V

C(x)
∣∣ ¶ ↪→ ind

}
ind★V(C,c0,c1,x) = try x.sem [case{inl(_) ↪→ c0, inr(_) ↪→ c1} | ¶ ↪→ ind(C,c0,c1,x)]

If the syntactic induction form ind satisfies its β-laws, then so does the lifted induction
form ind★V ; likewise, if ind satisfies a unicity principle (η-law), then so does the lifted
induction form.

§4.4.3. Lifting hierarchies of strict universes

(4.4.3∗1) Let L be the partial order N ∪ {�} where � > n for all n ∈ N. In this section,
we will fix an L-indexed hierarchy of syntactic universes assuming a U¶-valued algebra M
for the following signature:

tpα : �
tmα : tpα → �
〈↑βα〉 : tpα → tpβ for each α ≤ β : L

_ : {A} 〈↑αα〉A =tpα A
_ : {A} 〈↑γβ〉〈↑

β
α〉A =tpγ 〈↑

γ
α〉A

_ : {A} tmα(A) =� tm(〈↑�α〉A)
_ : {A,B} 〈↑βα〉A =tpβ 〈↑

β
α〉B→ A =tpα B

Un : tpn+1

_ : tmn+1(Un) =� tpn

We will define computability structures aligned over the above, assuming strong
universes Vα for each α : L such that U ≤ Vα ≤ Vβ <W for all α ≤ β. For convenience,
we will extend the V• hierarchy by defining Vs(�) :=W.

(4.4.3∗2) We define the computability structure for each level of the typehood judgment
à la (4.4∗4); in particular, we have:

record tp★α : {Vs(α) | ¶ ↪→ tpα} where
syn : tpα
ext : {Vα | ¶ ↪→ tmα(A)}

tm★α : {tp★α → Vα | ¶ ↪→ tmα}
tm★α(A) = A.ext

As a notational convenience, we will write A for tm★α(A) = A.ext.
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(4.4.3∗3) We may define the computability structure of the coherent lifting coercions,
using the corresponding (implicit) coercions for the universes Vα:

〈↑βα〉
★ : {tp★α → tp★β | ¶ ↪→ 〈↑βα〉}

〈↑βα〉
★A.syn = 〈↑βα〉A

〈↑βα〉
★A.ext = A

(4.4.3∗4) Codes for universes. We define the computability structure of universes:

U★n : {tp★n+1 | ¶ ↪→ Un}
U★n.syn = Un
U★n.ext = tp★n

The correct alignment of the above depends on the fact that tpn = tmn+1(Un).

(4.4.3∗5) Coherent connectives. Just as in (3.4∗5), we may close each universe tp★α under
codes for connectives that commute strictly with the lifting coercions 〈↑βα〉★, lying strictly
over the syntactic codes that we assume in tpα. By (4.4.1∗1) each universe is closed (inco-
herently) under dependent product types by some code Π★α; by the semantic realignment
lemma (4.4∗7), we may realign Π★α(A,B) against the following  -modal proposition:

 
∨
n<α

∃A′,B′.A = 〈↑αn〉
★A′ ∧ B = λx.〈↑αn〉

★B′(x)

The partial isomorph of Π★α(A,B) against which we realign is then defined piecewise
in two cases: underneath ¶ we choose the syntactic code Πα(A,B), and underneath each
n < α we apply the lift coercion 〈↑αn〉 to the inductively determined dependent product
code applied to the uniquely determined A′,B′ such that A = 〈↑αn〉A′ and B = λx.〈↑αn〉B′(x).
The realignment can be seen to be well-defined using our assumption that the syntactic
codes commute with the syntactic lift coercions.

§4.5. CANONICITY FOR MARTIN-LÖF TYPE THEORY

(4.5∗1) We will now develop the canonicity proof for Martin-Löf’s type theory, as defined
in Fig. 1.2; if it was somewhat technical to close the category G of computability structures
under exponentials (4.2∗10), it would be significantly worse to manually define the
computability structure of the judgment tp : T as well as its closure under dependent
products and dependent sums, to the point of being nearly intractable if a suitable level
of precision is maintained.

(4.5∗2) Although Coquand [Coq19] has sketched an explicit construction of the computabil-
ity structure of the judgments of type theory as well as their closure under connectives at
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the level of raw sets, we will promote a significantly simpler and more abstract approach
that relies only on the closure of Grothendieck topoi under Artin gluing [AGV72] as well
as certain results about universes in logoi detailed in Chapter 3 — all of which can be
proved more easily than any of their type theoretic corollaries. Our approach, which we
will later abstract into synthetic Tait computability, was pioneered by the author in several
recent papers [SA21; SH21].

While Coquand works directly at the level of sets, thus incurring an avalanche of mostly
unchecked but apparently trivial naturality and (dependent) functoriality obligations, the
essence of our approach will be to exploit the internal language of a category formed by
Artin gluing — reducing the canonicity result to a number of reusable constructions on
universes over a topos that can be developed modularly in naïve type theoretic language.

§4.5.1. Exploring the computability topos

(4.5.1∗1) Let T be the category of judgments of Martin-Löf’s type theory; we are trying
to prove closed canonicity as in (4.1∗4), so we consider the trivial figure shape 1Cat T
determined by the empty context 1T . Noting that 1̂C ' 1, we see that the morphism of
topoi corresponding to the figure shape 1Cat T is a topos theoretic point 0T̂ : 1 T̂ .

(4.5.1∗2) The point 0T̂ : 1 T̂ can be seen under inverse image to correspond to the
global sections functor, i.e. 0∗

T̂
(E) = HomT̂ (1,E). On the other hand, the direct image(

0T̂
)
∗ : Set Pr(T ) may be computed by adjointness at each set S:

(
0T̂

)
∗S(X) ∼= HomPr(T )

(
y(X),

(
0T̂

)
∗S

) ∼= HomSet
(
0∗
T̂
y(X),S

) ∼= HomSet(HomT (1,X),S)

We have already seen the global sections functor in the guise of the direct image part of
the terminal map T̂ 1; the existence of a point whose inverse image corresponds with
the direct image of a different geometric morphism will provide us with an alternative
(and perhaps more familiar!) computation of the computability topos in (4.5.1∗5).

(4.5.1∗3) The point 0T̂ : 1 T̂ has a universal property: it is the initial object in
the category of points HomTopos(1,T̂ ). Recalling the perspective of classifying topoi and
presheaves on left exact categories (2.3.1∗5), the initial point 0T̂ is then the initial model
of T regarded as a finite limit theory. But what does this mean?

Recall that as a category of judgments, T is a locally Cartesian closed category;
when the structure of dependent products is forgotten, one obtains a finite limit theory
whose models are “nonstandard” models of Martin-Löf type theory in which hypothetical
judgments may not be interpreted by dependent products of sets. It is historically
appropriate to refer to such a nonstandard model as a Henkin model of T ; hence, T̂ is
the classifying topos of Henkin models of Martin-Löf’s type theory, and 0T̂ corresponds
under inverse image to the Henkin model obtained by taking closed terms at every sort.
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record MLbase : Sig where
Mα : ML∅ for each α : L
tpα,tmα := Mα.tp,Mα.tm
tp,tm := tp�,tm�

〈↑βα〉 : tpα → tpβ for each α ≤ β
_ : {A} 〈↑αα〉A =tpα A
_ : {A} 〈↑γβ〉〈↑

β
α〉A =tpγ 〈↑

γ
α〉A

_ : {A} tmα(A) =� tm(〈↑�α〉A)
_ : {A,B} 〈↑βα〉A =tpβ 〈↑

β
α〉B→ A =tpα B

include Jbool(M�)
include ∏

F:fam(M�)JΠ(M�,F)
include ∏

F:fam(M�)JΣ(M�,F)
bool�,Π�,Σ� := bool,Π,Σ

Un : tpn+1 for each n < �
_ : tmn+1(Um) =� tpm
Πn,Σn : fam(tpn,tmn)→ tpn for each n < �
bool0 : tp0

_ : {A,B} 〈↑βα〉Πn(A,B) =tpβ Πβ(〈↑βα〉A,〈↑βα〉 ◦ B)
_ : {A,B} 〈↑βα〉Σn(A,B) =tpβ Σβ(〈↑βα〉A,〈↑βα〉 ◦ B)

record MLext : Sig where
include MLbase
include ∏

A:tp;a0,a1:tm(A)Jeq(M�,A,a0,a1)
eq� := eq
eqn :

(∑
A:tpntmnA× tmnA

)
→ tpn for each n < �

_ : {A,a0,a1} 〈↑βα〉eqα(A,a0,a1) =tpβ eqβ(〈↑
β
α〉A,a0,a1)

Each universe is closed under the booleans as well as all the smaller universes:

boolα : tpα
boolα = 〈↑α0 〉bool0

Un,α : tpα for each n < α

Un,α = 〈↑αn+1〉Un

Figure 4.1: (For convenience, we repeat Fig. 1.2 from Chapter 1.)
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(4.5.1∗4) The gluing for the trivial figure shape (4.5.1∗1) may be constructed à la (4.3∗3):

1

S

◦

T̂

G

0T̂

j

(4.5.1∗4∗1)

(4.5.1∗5) Using our observation that 0∗
T̂
= T̂∗ from (4.5.1∗2), we may give an alternative

construction of the computability topos that involves gluing along the terminal map
T̂ 1 rather than the initial point 0T̂ : 1 T̂

T̂

T̂ × S

•T̂

1

G

i

(4.5.1∗5∗1)

To see that these constructions of G coincide, we consider what a sheaf is on the
two pushout topoi from Diagrams 4.5.1∗4∗1 and 4.5.1∗5∗1 respectively. In the case of
Diagram 4.5.1∗4∗1, a sheaf on G is a presheaf E : Pr(T ) together with a family of sets
S 0∗

T̂
E. On the other hand, in the case of Diagram 4.5.1∗5∗1, a sheaf on G is a set S

together with a family of presheaves T̂ ∗S E : Pr(T ). These can be seen to coincide by
a simple computation:

HomPr(T )(T̂ ∗S,E) ∼= HomSet(S,T̂∗E) ∼= HomSet
(
S,0∗

T̂
E
)

(4.5.1∗6) Diagrams 4.5.1∗4∗1 and 4.5.1∗5∗1 are two perspectives on the same object:
the first is specified in terms of open immersions and the second is specified in terms of
closed immersions. Diagram 4.5.1∗4∗1 is paradigmatic of type theoretic gluing situations
(Artin gluing along an inverse image functor), but Diagram 4.5.1∗5∗1 has topos theoretic
significance as the Sierpiński cone or Freyd cover [Fre78] of T̂ . Most type theoretic
gluing situations cannot be described in terms of pushouts of closed immersions; closed
canonicity and parametricity, as well as phase separated variants of these [SH21], are
notable exceptions.

§4.5.2. The computability algebra

(4.5.2∗1) The abstract syntax of Martin-Löf type theory embeds into SetG along the
following locally Cartesian closed functor:

T Pr(T ) SetG
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From an internal perspective, there is a universe U such that the interpretation above
corresponds to an algebra M : JMLextKU¶

. Our goal will be to construct a computability
algebra M★ : {JMLextKW | ¶ ↪→M} for some sufficiently large W.

(4.5.2∗2) In SetG we have a strict universe hierarchy U < V0 < . . . < Vn . . . < V� < W.
These universes exist because we have assumed sufficiently many strongly inaccessible
cardinals in the background set theory.

(4.5.2∗3) We define the components of the computability algebra M★ one-by-one:
1) The hierarchy of type structures Mα and universe codes Um are given by (4.4.3∗2)

through (4.4.3∗4) from §4.4.3.
2) The dependent product structure is given by (4.4.1∗1).
3) The dependent sum structure is given by (4.4.1∗3).
4) The equality type structure is given by (4.4.1∗4).
5) The boolean structure is given by (4.4.2∗2) and (4.4.2∗4).

a) The formation and introduction structure is implemented by (4.4.2∗2), setting
ans := bool, yes := tt, and no := ff.

b) The elimination structure is implemented by (4.4.2∗4).
6) The strict closure of each universe level under connectives is given by (4.4.3∗5).

§4.5.3. The canonicity result

(4.5.3∗1) Canonicity. Let b : 1 tm(bool) : T be a closed term of boolean type; then
either b = tt or b = ff, meant as a statement about global elements in Set.

Proof. The assumed closed term may be interpreted into the computability algebra
(4.5.2∗3) as a global element b★ : 1SetG {tm★�(bool★) | ¶ ↪→ b}. Unfolding the com-
putability structure of the booleans from (4.4.2∗2), we have a global element of the
modal type  ((b = tt) + (b = ff)). We compute, using the fact that i∗ is left exact and
cocontinuous:

HomSetG(1SetG , ((b = tt) + (b = ff)))
= HomSetG(1SetG , i∗i∗((b = tt) + (b = ff))) by def.
∼= HomSet(1Set, i∗((b = tt) + (b = ff))) i∗ left exact
∼= HomSet(1Set, i∗(b = tt) + i∗(b = ff)) i∗ cocontinuous
∼= HomSet(1Set, (b = tt) + (b = ff)) i∗ left exact
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SYNTHETIC NORMALIZATION BY EVALUATION
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(5.0∗1) This chapter is a more abstract and more detailed version of the normalization
argument of Coquand [Coq19], compressed into the language of synthetic Tait computabil-
ity (§4.4); the construction of Coquand is itself a dependently typed generalization of the
arguments of Altenkirch, Hofmann, and Streicher [AHS95] and Fiore [Fio02]. The purpose
of this exposition is to lay the groundwork for developing the more complex normalization
argument for cubical type theory in Chapter 6.

(5.0∗2) In this chapter we work abstractly over a given topos G equipped with an open
¶ : OG, as well as a transfinite and strict hierarchy of universes U ≤ Vα < W for α : L,
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defining Vs(�) :=W. In §5.5, we will explicitly construct a topos whose logos models the
synthetic Tait computability of normal forms developed in §§5.2 and 5.3.

§5.1. WHAT IS NORMALIZATION?

(5.1∗1) Normalization means many things to many people; one common view of normal-
ization is that it is a property of a rewriting system, in which case it is often qualified as
either “weak” or “strong”. Strong normalization qua rewriting is the property that every
sequence of rewrites eventually results in an term that can be reduced no further. Of
course, normalization in this sense is not a property of a type theory, but of a presentation
of a type theory by a rewriting system. The purpose of presenting a type theory by a
confluent and strongly normalizing rewriting system is to achieve the following desirable
properties:

1) The decidability of judgmental equality.
2) The admissible injectivity of type constructors: for example, to deduce Γ ` A = A′

from Γ ` (A→ B) = (A′ → B′).
Modern type theory has unfortunately resisted the application of rewriting theoretic

techniques; in part, this is because rewriting appears to be poorly adapted to handling
extensionality and unicity laws. For this reason, reduction-free approaches to normalization
have been increasingly used by type theorists such as normalization by evaluation [Abe09;
Abe13; AAD07; AVW17; AMB13; Alt+01; GSB19a; WB18].

Because strongly normalizing confluent rewriting systems that are both sound and
complete for modern type theories are somewhat rare and exceptional, we take a broad
view of normalization that does not constrain the presentation artificially. We take a
“normalization result” to be any result that equips a type theory with a presentation for
which it is trivial to establish the desired properties (including decidability of the word
problem, as well as various inversion principles). In practice, the resulting “normal forms”
may not be fully syntactic: for instance, normal forms for type theory with coproducts
are decision trees quotiented under certain permutations [Alt+01].

(5.1∗2) There is even precedent to consider notions of normal form that are not decidable,
such as the infinitary normal forms employed by Zeilberger [Zei08; Zei09] in his higher-order
analysis of focusing. Zeilberger’s generalization of Schütte’s ω-rule [Sch50] is spiritually
very similar to our account of binders for both the interval and for witnesses of cofibrations,
except that the latter can be seen to be finitary from an external perspective.

(5.1∗3) Our method will be to axiomatize in synthetic Tait computability a notion of
normal form, and then prove that under the assumption of various normal form constants,
that the generic T -algebra admits a sound and complete translation into these normal
forms. Then when substantiating the axioms of this synthetic Tait computability with
a topos model, we ensure that the assumed normal form constants can be constructed
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in such a way that they have the appropriate properties (inversion laws and decidable
equality) externally, i.e. when viewed from Set.

§5.2. SYNTHETIC NORMAL FORMS

(5.2∗1) Let L be the partial order N ∪ {�} with � > n as in §4.4.3. In this section, we
assume a U¶-valued algebra for the following signature:

tpα : �
tmα : tpα → �
〈↑βα〉 : tpα → tpβ for each α ≤ β

_ : {A} 〈↑αα〉A =tpα A
_ : {A} 〈↑γβ〉〈↑

β
α〉A =tpγ 〈↑

γ
α〉A

_ : {A} tmα(A) =� tm(〈↑�α〉A)
_ : {A,B} 〈↑βα〉A =tpβ 〈↑

β
α〉B→ A =tpα B

Um : tpm+1

_ : tmm+1(Um) =� tpm
Further assumptions (such as closure under connectives) will be made locally.

(5.2∗2) Next we assume collections of normal forms for the basic sorts of the type theory.

nftp : {U | ¶ ↪→ tp}
var,ne,nf :

∏
A:tp{U | ¶ ↪→ tm(A)}

We define derived collections nftpα, netpα:

nftp� = nftp
nftpn = nf(〈↑�n+1〉Un)
netpn = ne(〈↑�n+1〉Un)

(5.2∗3) To populate the normal form presentation, we assume the following constants:

var : {A} {var(A)→ ne(A) | ¶ ↪→ λx.x}
Uα
n : {nftpα | ¶ ↪→ 〈↑αn+1〉Un} for n < α

upαn : {netpn → nftpα | ¶ ↪→ 〈↑αn〉} for n < α

ũpn :
∏

A:netpn{ne(〈↑
�
n〉A)→ nf(〈↑�n〉A) | ¶ ↪→ λx.x}

Every variable is a neutral form; the presentation of the normal forms of universes
embodied in Uα

n and upαn reflects our general strategy to collate the level coercions as
close to the leaves of the syntax tree as possible.
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§5.3. NORMALIZATION STRUCTURES AND TAIT’S YOGA

(5.3∗1) Relative to each syntactic type system (tpα,tmα) we have defined in (4.4.3∗2) a
universe tp★α of computability structures that glues a type A★ : Vα together with a syntactic
type A : tpα assuming that A★ restricts to tmα(A) under ¶. Inspired by Altenkirch,
Hofmann, and Streicher [AHS95], Coquand [Coq19], and Tait [Tai67] we will define a
universe of normalization structures that incorporates into the above a normal form for
each type, and functions that reflect neutrals as computable elements and reify computable
elements as normals.

record tp⨳α : {Vs(α) | ¶ ↪→ tpα} where
include tp★α as C
N :

∏
β≥α{nftpβ | ¶ ↪→ 〈↑

β
α〉C}

 : {ne(C)→ C | ¶ ↪→ λx.x}
 : {C→ nf(C) | ¶ ↪→ λx.x}

(5.3∗2) The phrase “include tp★α as C” in the signature above is meant to expand to the
more verbose signature:

record tp⨳α : {Vs(α) | ¶ ↪→ tpα} where
include tp★α
C : {tp★α | > ↪→ (syn,ext)}
N :

∏
β≥α{nftpβ | ¶ ↪→ 〈↑

β
α〉C}

 : {ne(C)→ C | ¶ ↪→ λx.x}
 : {C→ nf(C) | ¶ ↪→ λx.x}

We will also impose the following notations for projecting the components of a normal-
ization structure:

 βtpA := A.Nβ

 

A := A.  

 A := A.  

We will treat the obvious projection tp⨳V → tp★V implicitly in our notation when it
causes no ambiguity. Symmetrically, when defining an instance of tp⨳α by “co-pattern
matching”, we provide a notation to extend an existing element of tp★α by the additional
fields of a normalization structure. Therefore the declaration on the left should be read as
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expanding to the declaration on the right, given some X★ : tp★α:

X⨳ ⇐ extend X★

 βtpX⨳ = Xβ

 

X⨳a = f(a)
 X⨳a = g(a)

X⨳.syn = X★.syn
X⨳.ext = X★.ext
X⨳.C = X★

X⨳.N(β) = Xβ
X⨳.  (a) = f(a)
X⨳.  (a) = g(a)

(5.3∗3) Coherent lifts. The normalization structure of universe level lifts is inherited nearly
directly from (4.4.3∗3).

〈↑βα〉⨳ : {tp⨳α → tp⨳β | ¶ ↪→ 〈↑
β
α〉}

〈↑βα〉
⨳A⇐ extend 〈↑βα〉★A

 γ≥βtp (〈↑βα〉
⨳A) =  γ≥αtp A

 

〈↑βα〉⨳A
a =  

Aa

 〈↑βα〉⨳Aa =  Aa

(5.3∗4) Normalization structure of neutral types. Let A : netpn be a neutral type; we may
define a normalization structure consisting of the neutral elements of A.

elim⨳
n : {netpn → tp⨳n | ¶ ↪→ λA.A}

elim⨳
n(A).syn = A

elim⨳
n(A).ext = ne(〈↑�n〉A)

 β≥ntp elim⨳
n(A) = upβn(A)

 

elim⨳
n(A)a = a

 elim⨳
n(A)a = ũpn(A,a)

(5.3∗5) Normalization structure of universes. For each finite universe level n we may define
the normalization structure of the universe Un, making critical use of (5.3∗4):

U⨳
n : {tp⨳n+1 | ¶ ↪→ Un}

U⨳
n.syn = Un

U⨳
n.ext = tp⨳n

 β≥n+1
tp U⨳

n = Un
β

 

U⨳
n
A = elim⨳

n(A)

 U⨳
n
A =  ntpA
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(5.3∗6) Normalization structure of dependent products. Suppose that our type theory is
closed under dependent product types and the the language of normal forms contains the
following constants:

piα :
{(∑

A:nftpα(var(〈↑
�
α〉A)→ nftpα)

)
→ nftpα

∣∣ ¶ ↪→ Πα
}

app : {A,B}
{
ne(Π(A,B))→

∏
x:nf(A)ne(B(x))

∣∣ ¶ ↪→ λf.λx.f(x)
}

lam : {A,B}
{(∏

x:var(A)nf(B(x))
)
→ nf(Π(A,B))

∣∣ ¶ ↪→ λf.λx.f(x)
}

Then we may extend the (coherent) computability structure of dependent products
(4.4.3∗5) to a normalization structure:

Π⨳
α :

{(∑
A:tp⨳α(A→ tp⨳α)

)
→ tp⨳α

∣∣ ¶ ↪→ Πα
}

Π⨳
α(A,B)⇐ extend Π★α(A,B)

 β≥αtp Π⨳
α(A,B) = piβ

(
 βtpA, λx.  

β
tpB(

 

Avar(x))
)

 

Π⨳
α(A,B)f = λx.  B(A(x))app(f,  Ax)

 Π⨳
V (A,B)f = lam(λx.  B(

 

Avar(x))f(

 

Avar(x)))

(5.3∗7) Normalization structure of dependent sums. Suppose that our type theory is closed
under dependent sum types and we have the following constants implementing their
normal forms:

sgα :
{(∑

A:nftpα(var(〈↑
�
α〉A)→ nftpα)

)
→ nftpα

∣∣ ¶ ↪→ Σα
}

split : {A,B}
{
ne(Σ(A,B))→

∑
x:ne(A)ne(B(x))

∣∣ ¶ ↪→ λp.(p.1,p.2)
}

pair : {A,B}
{(∑

x:nf(A)nf(B(x))
)
→ nf(Σ(A,B))

∣∣ ¶ ↪→ λp.(p.1,p.2)
}

We may extend the (coherent) computability structure of dependent sums (4.4.3∗5) to
a normalization structure:

Σ⨳
α :

{(∑
A:tp⨳α(A→ tp⨳α)

)
→ tp⨳α

∣∣ ¶ ↪→ Σα
}

Σ⨳
α(A,B)⇐ extend Σ★α(A,B)

 β≥αtp Σ⨳
α(A,B) = sgβ

(
 βtpA, λx.  

β
tpB(

 

Avar(x))
)

(  

Σ⨳
α(A,B)p).1 =  

Asplit(p).1
(  

Σ⨳
α(A,B)p).2 =  

B(

 

Asplit(p).1)split(p).2

 Σ⨳
V (A,B)p = pair(  Ap.1,  B(p.1)p.2)

(5.3∗8) Computability structure of the open booleans. Base types (such as abstract types,
booleans, or other inductive types) do not inherit their underlying computability structures



5.3. NORMALIZATION STRUCTURES AND TAIT’S YOGA 111

from the canonicity argument (4.4.2∗2): this is the base case for the Tait normalization
argument. We must therefore define a computability structure for the booleans that
incorporates the lifting from neutrals to normals.

Assuming closure of the type theory under a boolean type, we define bool : {U |
¶ ↪→ bool} to be the smallest type aligned over the syntactic booleans closed under the
following constructors:

tt : {bool | ¶ ↪→ tt}
ff : {bool | ¶ ↪→ ff}

upbool[φ] : {ne(bool)→ bool | ¶ ↪→ λx.x}

We then define the computability structure of the open booleans as follows:

bool★α : {tp★α | ¶ ↪→ boolα}
bool★α.syn = boolα
bool★α.ext = bool

(5.3∗9) To execute the inductive definition described in (5.3∗8), we actually define an
indexed inductive family x : bool ` bool[x] : U\¶ of  -modal types, and then realign the
dependent sum

∑
x:boolbool[x] as in (4.4.2∗2). Inductive definitions of  -modal types

are quotient-inductive definitions of ordinary types in which a constructor is added that
collapses the type to a point underneath ¶.

(5.3∗10) Normalization structure of booleans. We extend the computability structure
(5.3∗8) to a normalization structure; first we assume the following constants in the
language of normal forms:

boolα : {nftpα | ¶ ↪→ boolα}
tt : {nf(bool) | ¶ ↪→ tt}
ff : {nf(bool) | ¶ ↪→ ff}

upbool : {ne(bool)→ nf(bool) | ¶ ↪→ λx.x}
indbool :

{∏
C:var(bool)→nftp

∏
c0:nf(C(tt))

∏
c1:nf(C(ff))

∏
x:ne(bool)ne(C(x))

∣∣ ¶ ↪→ indbool
}
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The remainder of the normalization structure is then defined as follows:

bool⨳α : {tp⨳α | ¶ ↪→ boolα}
bool⨳α ⇐ extend bool★α 〈defined in (5.3∗8)〉

 β≥αtp bool⨳α = boolβ

 

bool⨳αb = upbool(b)
 bool⨳αtt = tt

 bool⨳αff = ff

 bool⨳αupbool(x) = upbool(x)

_ : ¶ `  bool⨳αx = x

Above, the reification map goes by induction on elements of bool★, or to be more
precise, by induction on the proofs bool[b] for some syntactic boolean b : bool. We recall
from (5.3∗9) that bool[b] is defined as the smallest fiberwise ¶-connected type closed
under the rules (5.3∗8); to eliminate into a type that is not ¶-connected we must therefore
provide an additional clause to state what the map does under ¶ that matches all the
other clauses. We must also implement the induction principle:{

ind⨳bool :
∏

C:bool⨳→tp⨳
∏
c0:C(tt⨳)

∏
c1:C(ff⨳)

∏
x:bool⨳C(x)

∣∣ ¶ ↪→ indbool
}

ind⨳bool(C,c0,c1,tt) = c0

ind⨳bool(C,c0,c1,ff) = c1

ind⨳bool(C,c0,c1,upbool(x)) =

 

C(

 

bool⨳x)
indbool

(
 �tpC(

 

bool⨳x),  C(tt)c0,  C(ff)c1, x
)

_ : ¶ ` ind⨳bool(C,c0,c1,x) = indbool(C,c0,c1,x)

§5.4. A NORMALIZATION ALGEBRA FOR MARTIN-LÖF’S TYPE THEORY

5.4.1 Indexed inductive definition of normal forms . . . . . . . . . . . . . . . . 112
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(5.4∗1) Suppose we have a syntactic algebra for Martin-Löf’s type theory with universes,
valued in U¶ : SetG; as in §4.5.2, our goal is to construct a normalization algebra
M⨳ : {JMLbaseKW | ¶ ↪→M} for sufficiently large W. In §5.4.1 we give an inductive
definition that explicitly substantiates the normal form constants assumed earlier in this
chapter, and in §5.4.2 we construct the normalization algebra.

§5.4.1. Indexed inductive definition of normal forms

(5.4.1∗1) An indexed inductive definition. To substantiate the neutral/normal form con-
stants enumerated in Fig. 5.1, we will manually define an indexed inductive definition
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whose fibers are taken in the closed subuniverse U\¶ U :

[a ∈ne A] : U\¶ (A : tp,a : tm(A))
[A 3nf a] : U\¶ (A : tp,a : tm(A))

[tp� 3nf A] : U\¶ (A : tp)

We then define [tpα 3nf A] to be [tp� 3nf A] when α = � and [Un 3nf A] when α = n.
Viewed from the perspective of U , we take this to mean that each inductive definition

has an implicit clause that collapses each fiber to a point under ¶; for example:

A : tp z : ¶
pt(A,z) : [tp� 3nf A]

A : tp Ã : [tp� 3nf A] z : ¶
Ã =[tp�3nfA] pt(A,z)

The resulting indexed inductive types have an induction principle for motives valued
in U\¶ that omits the pt case; to eliminate into U , one must provide a case for pt and
show that under ¶, all other cases agree with it.

(5.4.1∗2) Basic judgmental structure. We add inductive clauses to substantiate the basic
judgmental structure of Martin-Löf’s type theory with universes:

(n < α)
Uα
n : [tpα 3nf 〈↑αn+1〉Un]

A : tpn (n ≤ α) Ã : [A ∈ne 〈↑�n+1〉Un]
upαn{A}(Ã) : [tpα 3nf 〈↑αn〉A]

A : tpn a : tmn(A)
Ã : [A ∈ne 〈↑�n+1〉Un] ã : [a ∈ne 〈↑�n〉A]

ũpn{A,a}(Ã,ã) : [〈↑�n〉A 3nf a]
A : tpn ã : var(A)
var{A}(ã) : [ã ∈ne A]

(5.4.1∗3) Normal and neutral forms for connectives. We add the inductive clauses exhibiting
normal and neutral forms involving dependent products and sums:

A : tpα B : tmα(A)→ tpα
Ã : [tpα 3nf A] B̃ :

∏
x:var(〈↑�α〉A)[tpα 3nf B(x)]

piα{A,B}(Ã,B̃) : [tpα 3nf Πα(A,B)] sgα{A,B}(Ã,B̃) : [tpα 3nf Σα(A,B)]

A : tp B : tm(A)→ tp f : tm(Π(A,B))
f̃ :

∏
x:var(A)[B(x) 3nf f(x)]
lam{A,B,f}(f̃) : [Π(A,B) 3nf f ]

A : tp B : tm(A)→ tp f : tm(Π(A,B)) a : tm(A)
f̃ : [f ∈ne Π(A,B)] ã : [A 3nf a]

app{A,B,f,a}(f̃ ,ã) : [f(a) ∈ne B(a)]
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A : tp B : tm(A)→ tp p : tm(Σ(A,B))
ã : [A 3nf p.1] b̃ : [B(a) 3nf p.2]

pair{A,b,p}(ã,b̃) : [Σ(A,B) 3nf p]

A : tp B : tm(A)→ tp p : tm(Σ(A,B))
p̃ : [p ∈ne Σ(A,B)]

fst{A,B,p}(p̃) : [p.1 ∈ne A] snd{A,B,p}(p̃) : [p.2 ∈ne B(a)]

(5.4.1∗4) Normal and neutral forms for the booleans. The normal and neutral forms for
the boolean type are presented below:

boolα : [tpα 3nf boolα] tt : [bool 3nf tt] ff : [bool 3nf tt]

a : tm(bool) ã : [a ∈ne bool]
upbool{a}(ã) : [bool 3nf a]

C : tm(bool)→ tp c0 : tm(C(tt)) c1 : tm(C(ff)) a : tm(bool)
C̃ :

∏
x:var(bool)[tp� 3nf C(x)] c̃0 : [C(tt) 3nf c0] c̃1 : [C(ff) 3nf c1] ã : [a ∈ne bool]

indbool{C,c0,c1,a}(C̃,c̃0,c̃1,ã) : [indbool(C,c0,c1,a) ∈ne C(a)]

(5.4.1∗5) The collections of neutral and normal forms. We then take the total spaces of
the indexed inductive definitions (5.4.1∗1) to define the collections of neutral and normal
forms of terms and types by realignment:

nftpα : {U | ¶ ↪→ tpα}
nftpα ∼=

∑
A:tpα [tpα 3nf A]

nf :
∏

A:tp{U | ¶ ↪→ tm(A)}
nf(A) ∼=

∑
a:tm(A)[A 3nf a]

ne :
∏

A:tp{U | ¶ ↪→ tm(A)}
ne(A) ∼=

∑
a:tm(A)[a ∈ne A]

The realignments above are possible because each fiber [tpα 3nf A],[A 3nf a],[a ∈ne A]
was valued in the closed subuniverse U\¶ U , and hence is ¶-connected.

(5.4.1∗6) The constants specified in Fig. 5.1 are obtained directly from the indexed
inductive definitions under the realignment from (5.4.1∗5). For instance, consider the
constructor for the normal form of the dependent product type:

piα :
{(∑

A:nftpα(var(〈↑
�
α〉A)→ nftpα)

)
→ nftpα

∣∣ ¶ ↪→ Πα
}

Given a normal type A : nftpα and a normal family of types B : var(〈↑�α〉A)→ nftpα,
we have by unfolding (5.4.1∗5) some Ã : [α 3nf A] and B̃ :

∏
x:var(〈↑�α〉A)[tpα 3nf B(x)]. We
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then choose the element of nftpα determined by the pair
(
Πα(A,B),piα{A,B}(Ã,B̃)

)
; the

required boundary ¶ ↪→ Πα(A,B) follows immediately by definition of realignment. All
the remaining constants work in an identical fashion.

(5.4.1∗7) Modal injectivity of normal form constructors. It is not the case that the con-
structor for the normal form of the dependent product type

pi� :
{(∑

A:nftp�(var(A)→ nftp)
)
→ nftp

∣∣ ¶ ↪→ Π
}

is injective: indeed, this would imply that the syntactic Π constructor is injective, which
we would not expect to hold internally to the syntactic category because of the existence
of non-injective models of dependent products.

What we can show is a modal version of injectivity that captures the sense in which
injectivity rules should be admissible but not derivable. Letting nffam be the type of
pairs of a normal type A : nftp and a normal family B : var(A)→ nftp, we will verify the
folowing modal statement:

∀F,F′ : nffam. (pi�(F) = pi�(F′)) =⇒  (F = F′)

Proof. By induction for normal forms, we may define a predicate isPi : nftp→ Ω\¶ valued
in purely semantic propositions, satisfying the following universal property:

∀X : nftp.isPi(X)⇔  ∃A,B.X = pi�(A,B) (5.4.1∗7∗1)

We define isPi(X) by induction as follows:

isPi(U�
n) =  ⊥ isPi(up�n) =  ⊥ isPi(pi�(A,B)) = > isPi(sg�(A,B)) =  ⊥

isPi(bool�) =  ⊥

The universal property depicted in Eq. (5.4.1∗7∗1) holds by induction. It is then
possible to define another function to invert the pi� constructor within the extent of isPi:

unPi : {X : nftp | isPi(X)} →  nffam
unPi(pi�(A,B)) = η\¶(A,B)

No further cases are needed because isPi(X) computes to  ⊥ in all other cases. Now
suppose that pi�(A,B) = piα(A′,B′); by applying unPi to both sides of this equation, we
obtain η\¶(A,B) = η\¶(A′,B′), which is equivalent to  ((A,B) = (A′,B′)).

(5.4.1∗8) The modal injectivity result of (5.4.1∗7) verifies the sense in which our definition
of normal forms is in fact concrete enough to be useful — since one could have degenerately
chosen nftpα := tpα otherwise. Now that we have established the appropriateness of our
notion of normal form, we will the instantiate synthetic constructions in the foregoing
sections onto our explicit construction of the topos G in order to argue that every type
and term can be represented by one of these normal forms in a sound and complete way.
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§5.4.2. The normalization algebra

(5.4.2∗1) We define the components of the normalization algebra M⨳ one-by-one:
1) The hierarchy of type structures M⨳.Mα and universe codes M⨳.Un are given by

(5.3∗1), (5.3∗3) and (5.3∗5) from §5.3.
2) The dependent product structure at each universe level is given by (5.3∗6).
3) The dependent sum structure at each universe level is given by (5.3∗7).
4) The boolean structure is given by (5.3∗8) and (5.3∗10).

§5.5. A TOPOS FOR NORMALIZATION

5.5.1 Atomic terms: variables and structural renamings . . . . . . . . . . . . . 116
5.5.2 The syntactic topos and its universal property . . . . . . . . . . . . . . . 118
5.5.3 The computability topos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

(5.5∗1) In this section we construct a topos G that substantiates the assumptions made
by the foregoing synthetic constructions, to yield a concrete normalization result. As
always, we will employ the yoga of figure shapes (§4.1); whereas in §4.5 we used the
trivial figure shape (4.5.1∗1), we will develop a more complex figure shape based on the
notion of an atomic term; in ordinary dependent type theory, the atomic terms are just
the variables, but they may have additional structure in more complex theories such as
cubical type theory (Chapter 6).

(atomic context) Γ,∆ ::= 1 | Γ.A
(atomic term) a,b ::= qA | pA(b)
(atomic substitution) γ,δ ::= · | γ.a

Figure 5.3: The grammar of atomic contexts, terms, and substitutions.

§5.5.1. Atomic terms: variables and structural renamings

(5.5.1∗1) We begin by defining a notion of atomic context; intuitively, such a context is
the same as an ordinary context in dependent type theory1, but the morphisms between
atomic contexts will correspond only to renamings of variables and not to arbitrary terms.
We define the atomic contexts together with the judgments they correspond to inductively

1 Recall, however, that our axiomatization of dependent type theory Fig. 1.2 does not distinguish contexts
a priori from other judgments.
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by assertions Γ ctx  X with X : T , meaning “Γ is an atomic context-form of X”.

Γ ctx  X presupposing X : T

1 ctx  1T

Γ ctx  X A : X tp
Γ.A ctx  

∑
x:Xtm(A(x))

(5.5.1∗2) Atomic terms. For Martin-Löf type theory, an “atomic term” is just a variable;
we give an inductive De Bruijn encoding of variables below, simultaneously with their
decodings into actual semantic terms.

Γ 
 a : A a presupposing


Γ ctx  X
A : X→ tp
a :

∏
x:Xtm(A(x))

top variable
Γ ctx  X A : X→ tp
Γ.A 
 qA : A ◦ π1  π2

pop variable
Γ ctx  X A,B : X→ tp a :

∏
x:Xtm(A)(x) Γ 
 a : A a

Γ.B 
 pA(a) : A ◦ π1  a ◦ π1

(5.5.1∗3) Atomic substitutions. The notion of an atomic term (5.5.1∗2) is extended point-
wise to give a notion of simultaneous atomic substitutions:

∆ 
 γ : Γ y presupposing


∆ ctx  X
Γ ctx  Y
y : X→ Y

nil
∆ ctx  X

∆ 
 · : 1 !X

snoc
∆ ctx  X Γ ctx  Y
A : Y→ tp y : X→ Y a :

∏
x:Xtm(A(y(x)))

∆ 
 γ : Γ y ∆ 
 a : A ◦ y  a

∆ 
 γ.a : Γ.A (y,a)

(5.5.1∗4) Identity substitution. For any atomic context Γ ctx  X, there is an atomic
substitution Γ 
 idΓ : Γ idX. We may form idΓ by recursion on the structure of Γ.

id1 = ·
idΓ.A = idΓ.qA
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(5.5.1∗5) Atomic substitution action. Let ∆ ctx  X and Γ ctx  Y be atomic contexts,
and let ∆ 
 γ : Γ  y by an atomic substitution. For any atomic term atomic term
Γ 
 a : A a, we may define a substituted atomic term Γ 
 γ∗a : A a by recursion on
γ,a using inversion.

(γ.a)∗qA = a

(γ.b)∗pB(a) = γ∗a

(5.5.1∗6) Composition of atomic substitutions. Let ∆ ctx  X, Γ ctx  Y, and Ξ ctx  Z
be atomic contexts, and let ∆ 
 γ : Γ y and Γ 
 ξ : Ξ z be atomic substitutions. We
may define a composite substitution ∆ 
 ξ ◦ γ : Ξ z ◦ y using the substitution action
on atomic terms (5.5.1∗5) by recursion on ξ.

· ◦ γ = ·
(ξ.a) ◦ γ = (ξ ◦ γ).γ∗a

We observe that the composition of substitutions is associative and unital, i.e. we have
the following laws:

idΓ ◦ γ = γ

γ ◦ idΓ = γ

(γ ◦ δ) ◦ ξ = γ ◦ (δ ◦ ξ)

(5.5.1∗7) The atomic figure shape. We may therefore form a category A whose objects are
atomic contexts Γ ctx  X and whose morphisms are atomic substitutions ∆ 
 γ : Γ y,
together with a functor α : A T taking each atomic context to its underlying judgment:

α : A T

α(Γ ctx  X) = X
α(∆ 
 γ : Γ y) = y

We will refer to the functor α : A T as the atomic figure shape in the sense of §4.1;
the purpose of α is to determine a suitable essential geometric morphism (4.3∗5) to glue
along.

§5.5.2. The syntactic topos and its universal property

(5.5.2∗1) The syntactic topos and the Yoneda model. We can turn the category of judgments
T into a topos T := T̂ , defined by the identification SetT = Pr(T ). The Yoneda embedding
yT : T Pr(T ) is locally Cartesian closed, hence it is a model of Martin-Löf type theory
over T.
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(5.5.2∗2) The generic model. The Yoneda model (5.5.2∗1) is universal in the sense that
any other topos model M : T SetY arises from yT by restriction along an essentially
unique morphism of topoi χM : Y T in the sense that χ∗

M ◦ yT ∼= M:

M

Y

yT

T
χM

(5.5.2∗2∗1)

The characteristic map χM : Y T is obtained in the following way from the special
case of Diaconescu’s theorem [Dia75] that characterizes geometric morphisms into presheaf
topoi. We consider the cocontinuous Yoneda extension of the model M : T SetY
induced by the universal property of Pr(T ) as the free cocompletion of T :

T SetY

Pr(T )

M

yT
M̃

(5.5.2∗2∗2)

By definition M̃ is cocontinuous; because M is left exact and T is finitely complete,
we conclude from Diaconescu’s theorem that M̃ is also left exact. Hence M̃ is the inverse
image part of a morphism of topoi that we shall denote χM : Y T; we immediately have
χ∗
M ◦ yT ∼= M considering Diagram 5.5.2∗2∗2, because we have defined χ∗

M = M̃. That χM
is essentially unique with this property is deduced again from Diaconescu’s theorem.

(5.5.2∗3) Henkin models. We have seen that each model T SetY arises in a canonical
way from a morphism of topoi Y T; conversely, it is reasonable to ask which morphisms
Y T correspond to models of T in SetY. If f : Y T is an arbitrary morphism of
topoi, the restriction f∗ ◦ yT : T SetY is clearly left exact, but there is no reason for it
to preserve dependent products.

In logic and model theory, an “almost model” that may interpret relations or function
types in a non-standard way is called a Henkin model2 — in particular, every actual model
is a Henkin model, but important metatheorems (such as completeness) tend to involve
“proper” Henkin models with non-standard interpretations of relations; the study of type
theory is no exception, as can be seen already from the importance of “weak morphisms
of cwfs” in the existing literature [KHS19; New18].

(5.5.2∗4) It is perhaps appropriate to adapt the same terminology to our situation,
defining a Henkin model of the type theory T to be a left exact functor T SetY without
2 Originally considered by Henkin [Hen50]; relevantly, these were studied in a topos-theoretic setting by
Awodey and Butz [AB00].
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any additional conditions on the interpretation of dependent products (hypothetical
judgments). The interpretation of a dependent product in such a Henkin model necessarily
behaves like a dependent product with respect to things in the image of the interpretation,
but it may not in fact be the dependent product in SetY.

(5.5.2∗5) Therefore the pair (T,yT ) satisfies an additional universal property: T is also
the classifying topos of Henkin models of T , and yT is the universal Henkin model of T .

(5.5.2∗6) When it is convenient, we will often refer to a morphism of topoi f : Y T as
a (Henkin) T -model, blurring the lines between a functorial model and its characteristic
map. Under this identification, we may then attach further adjectives to the model that
describe classes of morphisms of topoi. For example:

1) An essential (Henkin) T -model is one whose characteristic map f : Y T is
essential, i.e. the inverse image f∗ : Pr(T ) SetY has an additional left adjoint
f! a f∗.

2) A locally connected (Henkin) T -model is one whose characteristic map f : Y T
is locally connected, i.e. the inverse image f∗ : Pr(T ) SetY preserves dependent
products.3

(5.5.2∗7) Essential Henkin models from figure shapes. Any figure shape ρ : C T gives
rise to a Henkin T -model over the presheaf topos Ĉ. We define the (abusively named)
morphism of topoi ρ : Ĉ T in terms of its inverse image using precomposition:

ρ∗ : Pr(T ) Pr(C)
(ρ∗X)(C) = X(ρ(C))

The precomposition functor ρ∗ has both left and right adjoints ρ! a ρ∗ a ρ∗ by Kan
extension, so it is the inverse image part of an essential geometric morphism. We therefore
refer to ρ : Ĉ T as the essential Henkin model corresponding to the figure shape
ρ : C T .

(5.5.2∗8) We will write A := Â for the presheaf topos on atomic contexts and substitutions,
which we might refer to as the “topos of atomic terms”. Then, we will write α : A T for
the essential Henkin model corresponding to the figure shape α : A T . This notation
accords with our intuition that A,T are geometrical entities that correspond to “blown
up” versions of A,T .

§5.5.3. The computability topos

(5.5.3∗1) In this section, we define a topos G that satisfies all the assumptions made
earlier in the chapter. In particular, we take G to be the Artin gluing of the atomic figure

3 Obviously any locally connected Henkin model is an actual model; the converse does not hold.
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shape α : A T:

A

A× S

◦A

T

G

α

j

A
•A

i

The syntactic open ¶ : OG is defined to be the subterminal satisfying T ' G¶
in the sense of (2.1∗6); this can be computed explicitly by setting ¶ := j!1SetT =(
1SetT , 0SetA α∗1SetT

)
.

(5.5.3∗2) We recall from (4.3∗5) that the closed immersion i : A G is an essential map,
because the figure shape α : A T is essential. Hence we have an additional left adjoint
i! a i∗ a i∗, computed as follows:

i! : SetA SetG
i! : E

(
α!E, ηE : E α∗α!E

)
(5.5.3∗3) The collection of variables. We first define a presheaf of typed variables in SetA =
Pr(A); to be precise, we start by defining a presheaf V equipped with a representable
natural transformation V α∗tm : Pr(A), where by tm we mean

∑
A:tptm(A). By

adjointness, each representable point of α∗tm : Pr(A) is determined by an “atomic point”
of tm : Pr(T ), i.e. a morphism α(Γ) tm for some atomic context Γ. Hence we define V
by setting its fiber over each (A,a) : α(Γ) tm to be the collection of variables a such
that Γ 
 a : A  a. Hence we have a glued object ṽar : SetG determined by the pair(
tm,V α∗tm

)
; furthermore, we have a morphism p : ṽar j∗tp under adjointness by

the projection (j∗ṽar ≡ tm) tp. Therefore we may define the collection of variables by
realignment and pullback like so:

var :
∏

A:tp{U | ¶ ↪→ tm(A)}
var(A) ∼= {a : ṽar | p(a) = A}
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§5.6.1. Computability structure of atomic substitutions and “atomic points”

(5.6.1∗1) Given an atomic context Γ, we may define a computability structure LΓM : SetG
of “atomic substitutions into Γ”, namely LΓM = i!yA(Γ). In the specifics of Martin-Löf
type theory, LΓM is a computability structure of vectors of variables.

(5.6.1∗2) Given a computability structure X : SetG, it would be appropriate to refer to
any morphism of the form LΓM X as an “atomic point”.

(5.6.1∗3) The atomic points of X : SetG are in natural bijection with the “representable
points” of its semantic component i∗X, i.e. we have a natural isomorphism of hom sets
HomSetG(LΓM,X) ∼= HomSetA(y(Γ),i

∗X).

Proof. By adjointness, using the fact that LΓM = i!yA(Γ) and i! a i∗.

In other words, the “functor of atomic points” of X is naturally isomorphic to the
functor of points of i∗X.

(5.6.1∗4) We may unfold the definition (5.6.1∗1) to gain a better understanding. First of
all the syntactic part of LΓM is always yT (α(Γ)):

HomSetT(j
∗LΓM,E)

= HomSetT(j
∗i!yA(Γ),E) by def.

∼= HomSetG(i!yA(Γ),j∗E) by j∗ a j∗
∼= HomSetA(yA(Γ),i

∗j∗E) by i! a i∗

∼= HomSetA(yA(Γ),α
∗E) by computation

∼= HomSetT(α!yA(Γ),E) by α! a α∗

∼= HomSetT(yT (α(Γ)),E) α! is Yoneda extension of α

Now consider an element yA(∆) α∗j∗LΓM of the base, i.e. a map g : α(∆) α(Γ); a
witness of computability for g is nothing more than an atomic substitution ∆ 
 γ : Γ g,
which can be seen explicitly considering the computation (5.5.3∗2). This is the sense in
which LΓM is the computability structure of atomic substitutions for an atomic context Γ;

§5.6.2. Canonical computability structures and “canonical points”

(5.6.2∗1) The interpretation functor. The normalization algebra M⨳ defined in (5.4.2∗1)
lying over generic T -model under the open immersion j : T G corresponds to a locally
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Cartesian functor T SetG in the following configuration:

T SetG

Pr(T )

M⨳

yT j∗

(5.6.2∗2) The interpretation functor M⨳ : T SetG induces a “canonical” computability
structure JΓK for each atomic context Γ, namely JΓK = M⨳(α(Γ)).

(5.6.2∗3) We have a pointwise-vertical natural transformation  

atm : L−M J−K defined
by extending the reflection of atomic terms to computable terms pointwise:

 Γ
atm : LΓM JΓK

 1
atm(·) = ·

 Γ.A
atm(γ.a) = (  Γ

atm(γ),

 

M⨳(A)var(a))

(5.6.2∗4) Analogous to (5.6.1∗2), it is appropriate to refer to a morphism of the form
JΓK X as a “canonical point” of the computability structure X : SetG. The functor
of canonical points HomSetG(J−K,X) : SetA can be turned into a further computability
structure over j∗X in a canonical way.

J−K X
(5.6.2∗3)

L−M X

i!yA(−) X
i!yA(−) j∗j

∗X

yA(−) i∗j∗j
∗X

yA(−) α∗j∗X

α∗j∗X

We will write Xcan : SetG for the induced computability structure of canonical points.
By (5.6.1∗3), the analogous computability structure of atomic points of X is just X itself.

(5.6.2∗5) We may define a vertical map  ∗
atm : Xcan X for any computability structure

X, i.e. one that restricts to the identity under ¶. To construct such a vertical map is the
same as to define a morphism configured in SetA like so, recalling from (5.6.1∗3) that
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i∗X ∼= HomSetG(L−M,X):

HomSetG(J−K,X) HomSetG(L−M,X)

α∗j∗X

We define the dotted above by restriction along the pointwise vertical natural transfor-
mation  

atm : L−M J−K defined in (5.6.2∗3).

(5.6.2∗6) The evaluation morphism. Writing M : T SetG for the generic model j∗ ◦ yT ,
we may define a vertical morphism evalT : M(T) M⨳(T)can for any sort T : T that
abstractly “evaluates” syntax into canonical points of T’s canonical computability structure.
This is the same as to exhibit a section α∗yT (T) HomSetG(J−K,M⨳(T)) configured in
SetA like so:

α∗yT (T) HomSetG(J−K,M⨳(T))

α∗yT (T)

M⨳(T)can

Recalling that α∗yT (T) ∼= HomT (α(−),T) and J−K = M⨳(α(−)), we see that the up-
stairs map can be given by the functorial actionHom(α(−),T) Hom(M⨳(α(−)),M⨳(T)).

(5.6.2∗7) For a sort T, we will write J−KT : M(T) M⨳(T) for the following vertical
composite:

M(T) M⨳(T)can M⨳(T)
evalT

 ∗
atm

J−KT

The function of J−KT is to give the normalization-algebra interpretation of any syntactic
object by first evaluating and then by reflecting the entire context.

§5.6.3. The normalization function and its correctness

(5.6.3∗1) The normalization function. We may define a vertical normalization function
nbetp : tp nftp in SetG that takes a syntactic type to its normal form, using the vertical
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maps from (5.6.2∗5) and (5.6.2∗6):

tp tp⨳ nftp
J−Ktp  �tp

nbetp

Normalization of terms works in the same way:

tm tm⨳
∑

A:tpnf(A)
J−Ktm λ(A,a).(A,  Aa)

nbetm

(5.6.3∗2) Soundness and completeness. Normalization is sound and complete in the follow-
ing internal sense, fixing two syntactic types A,B : tp:

1) Soundness — if nbetp(A) = nbetp(B), then A = B.
2) Completeness — if A = B then nbetp(A) = nbetp(B).

Proof. Soundness follows from the fact that the normalization function is vertical, hence
a section of the unit to the open modality, and hence a monomorphism. Completeness is
immediate, by virtue of the fact that normalization is a function and we are working with
semantic terms rather than raw terms.

(5.6.3∗3) The fact that soundness and completeness are immediate consequences of the
construction is a significant advantage of abstract / algebraic techniques like those used
here over the conventional operational versions of normalization by evaluation. Indeed, a
traditional proof of completeness of normalization can take up to 60 pages of very tricky
inductive cases, and likewise for soundness.

§5.6.4. Injectivity of type constructors

(5.6.4∗1) We may now extend the modal injectivity result of (5.4.1∗7) to the syntactic
type constructors. In particular, we argue that the following proposition holds in SetG:

∀F0,F1 :
∑

A:tp(tm(A)→ tp). Π(F0) = Π(F1) =⇒  (F0 = F1)

Proof. Fixing Fi = (Ai,Bi) such that Π(F0) = Π(F1), we must show that  (F0 = F1).
By soundness (5.6.3∗2) it suffices to show  (nbefam(F0) = nbefam(F1)), where nbefam(Fi)
denotes the pair (nbetp(Ai),λx.nbetp(Bi(x))). By modal injectivity of normal form con-
structors (5.4.1∗7), it suffices to show that pi�(nbefam(F0)) = pi�(nbefam(F1)). But
pi�(nbefam(Fi)) = nbetp(Π(Fi)), and we have already assumed Π(F0) = Π(F1).
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§5.6.5. Surjectivity of the normalization function

(5.6.5∗1) It is possible a priori for a given type or term to have arbitrarily many distinct
normal forms, which would have negative implications for the computational effectivity of
the normalization function defined in §5.6.3. Therefore we want to prove that the normal
form representation is tight, in the sense that the normalization function is surjective. To
do so, it is necessary to find a strong enough induction motive — which is handily supplied
by Fiore [Fio02] and Kaposi [Kap17], adapted below in (5.6.5∗3): we must prove that all
normal and neutral forms are stationary with respect to the normalization function.

(5.6.5∗2) Variables are stationary. For any variable x : var(A), we have JxKtm(A) =

 

JAKvar(x). In other words, variables in the normalization algebra are always interpreted
by the reflection.

Proof. First we note that the identification above holds already when restricted under the
open modality, hence it suffices to argue “upstairs” in the language of the closed subtopos.
Therefore, we may fix an atomic context Γ : A and an atomic term Γ 
 x : A α(x) to
compute JxKΓtm(A) : LΓM tm⨳(A), which by definition projects the appropriate atomic
term from the vector γ : LΓM, embeds it into the neutrals, and finally reflects it in the
chosen computability structure JAKγ.

(5.6.5∗3) All normals and neutrals are stationary. The following facts can be proved by
simultaneous induction on normals and neutrals, using (5.6.5∗2) in the base case.

1) For any neutral a : ne(A), we have JaKtm(A) =

 

JAKa.
2) For any normal a : nf(A), we have a = nbetm(A,a).
3) For any normal A : nftp, we have A = nbetp(A).

(5.6.5∗4) Normalization is surjective. It is an immediate corollary of (5.6.5∗3) that the
normalization functions are surjective: for instance, any normal form A : nftp is the image
of its underlying term A : tp under nbetp.

(5.6.5∗5) Normalization is an isomorphism. Soundness (5.6.3∗2) states that the normal-
ization function is injective; hence by surjectivity (5.6.5∗4), the normalization function
actually tracks a vertical isomorphism tp ∼= nftp.

§5.7. RECURSION-THEORETIC RESULTS

(5.7∗1) Our normalization argument so far has been carried out in ordinary mathematics;
we have not yet argued that the normalization algorithm is computable, nor have we
shown that our normalization result implies the decidability of judgmental equality.
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(5.7∗2) Both the syntax of Martin-Löf’s type theory as well as its normal forms may be
presented by finitely many rules in a conventional deductive system. The specifics of such
a “raw term presentation” are irrelevant, and the main point is to observe that the set of
normal forms for a given term is recursively enumerable.

(5.7∗3) The function nbetp is externally recursive. By (5.6.3∗1) and the verticality of the
normalization function, the set of normal forms of a type A : LΓM tp is non-empty;
by (5.6.5∗5) this set has exactly one element. Because it is recursively enumerable, we
therefore have a terminating recursive function that takes a given type A : LΓM tp to
its unique normal form nbeΓtp(A) : LΓM nftp.

(5.7∗4) Decidability of judgmental equality. Hence it is effectively decidable whether two
types A,B : LΓM tp are equal: first use the search algorithm (5.7∗3) to obtain normal
forms of A and B, and then compare them. Equality of normal forms is clearly decidable
(externally), because the inductive definition of normal forms in SetG boils down to a
finitary indexed inductive definition in Set.
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nftp : {U | ¶ ↪→ tp}
var,ne,nf :

∏
A:tp{U | ¶ ↪→ tm(A)}

nftp� = nftp
nftpn = nf(〈↑�n+1〉Un)
netpn = ne(〈↑�n+1〉Un)

var : {A} {var(A)→ ne(A) | ¶ ↪→ λx.x}
Uαn : {nftpα | ¶ ↪→ 〈↑αn+1〉Un} for n < α

upαn : {netpn → nftpα | ¶ ↪→ 〈↑αn〉} for n < α

ũpn :
∏

A:netpn
{ne(〈↑�n〉A)→ nf(〈↑�n〉A) | ¶ ↪→ λx.x}

piα :
{(∑

A:nftpα
(var(〈↑�α〉A)→ nftpα)

)
→ nftpα

∣∣ ¶ ↪→ Πα
}

app : {A,B}
{
ne(Π(A,B))→

∏
x:nf(A)ne(B(x))

∣∣ ¶ ↪→ λf.λx.f(x)
}

lam : {A,B}
{(∏

x:var(A)nf(B(x))
)
→ nf(Π(A,B))

∣∣ ¶ ↪→ λf.λx.f(x)
}

sgα :
{(∑

A:nftpα
(var(〈↑�α〉A)→ nftpα)

)
→ nftpα

∣∣ ¶ ↪→ Σα
}

split : {A,B}
{
ne(Σ(A,B))→

∑
x:ne(A)ne(B(x))

∣∣ ¶ ↪→ λp.(p.1,p.2)
}

pair : {A,B}
{(∑

x:nf(A)nf(B(x))
)
→ nf(Σ(A,B))

∣∣ ¶ ↪→ λp.(p.1,p.2)
}

boolα : {nftpα | ¶ ↪→ boolα}
tt : {nf(bool) | ¶ ↪→ tt}
ff : {nf(bool) | ¶ ↪→ ff}

upbool : {ne(bool)→ nf(bool) | ¶ ↪→ λx.x}
indbool :

{∏
C:var(bool)→nftp

∏
c0:nf(C(tt))

∏
c1:nf(C(ff))

∏
x:ne(bool)ne(C(x))

∣∣ ¶ ↪→ indbool
}

Figure 5.1: A summary of the normal form constants for Martin-Löf’s type theory.
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record tp⨳α : {Vs(α) | ¶ ↪→ tpα} where
include tp★α as C
N :

∏
β≥α{nftpβ | ¶ ↪→ 〈↑

β
α〉C} : {ne(C)→ C | ¶ ↪→ λx.x}

 : {C→ nf(C) | ¶ ↪→ λx.x}

 βtpA := A.Nβ

 

A := A.  

 A := A.  

〈↑βα〉⨳ : {tp⨳α → tp⨳β | ¶ ↪→ 〈↑
β
α〉}

〈↑βα〉
⨳A⇐ extend 〈↑βα〉

★A

 γ≥βtp (〈↑βα〉
⨳A) =  γ≥αtp A

 

〈↑β
α〉⨳Aa =  

Aa

 〈↑β
α〉⨳Aa =  Aa

elim⨳
n : {netpn → tp⨳n | ¶ ↪→ λA.A}

elim⨳
n(A).syn = A

elim⨳
n(A).ext = ne(〈↑�n〉A)

 β≥ntp elim⨳
n(A) = upβn(A)

 

elim⨳
n(A)a = a

 elim⨳
n(A)a = ũpn(A,a)

U⨳
n : {tp⨳n+1 | ¶ ↪→ Un}

U⨳
n.syn = Un

U⨳
n.ext = tp⨳n

 β≥n+1
tp U⨳

n = Unβ

 

U⨳
n
A = elim⨳

n(A)
 U⨳

n
A =  ntpA

Π⨳
α :

{(∑
A:tp⨳α(A→ tp⨳α)

)
→ tp⨳α

∣∣ ¶ ↪→ Πα
}

Π⨳
α(A,B)⇐ extend Π★α(A,B)

 β≥αtp Π⨳
α(A,B) = piβ

(
 βtpA, λx.  

β
tpB(

 

Avar(x))
)

 

Π⨳
α(A,B)f = λx.  B(A(x))app(f,  Ax)

 Π⨳

V(A,B)f = lam(λx.  B(
 

Avar(x))f(
 

Avar(x)))

Σ⨳
α :

{(∑
A:tp⨳α(A→ tp⨳α)

)
→ tp⨳α

∣∣ ¶ ↪→ Σα
}

Σ⨳
α(A,B)⇐ extend Σ★α(A,B)

 β≥αtp Σ⨳
α(A,B) = sgβ

(
 βtpA, λx.  

β
tpB(

 

Avar(x))
)

(  

Σ⨳
α(A,B)p).1 =  

Asplit(p).1
(  

Σ⨳
α(A,B)p).2 =  

B(
 

Asplit(p).1)split(p).2

 Σ⨳

V(A,B)p = pair(  Ap.1,  B(p.1)p.2)

bool⨳α : {tp⨳α | ¶ ↪→ boolα}
bool⨳α ⇐ extend bool★α 〈defined in (5.3∗8)〉

 β≥αtp bool⨳α = boolβ

 

bool⨳αb = upbool(b)
 bool⨳αtt = tt
 bool⨳αff = ff

 bool⨳αupbool(x) = upbool(x)
_ : ¶ `  bool⨳αx = x

{
ind⨳bool :

∏
C:bool⨳→tp⨳

∏
c0:C(tt⨳)

∏
c1:C(ff⨳)

∏
x:bool⨳C(x)

∣∣ ¶ ↪→ indbool
}

ind⨳bool(C,c0,c1,tt) = c0

ind⨳bool(C,c0,c1,ff) = c1

ind⨳bool(C,c0,c1,upbool(x)) =

 

C(

 

bool⨳x)
indbool

(
 �tpC(

 

bool⨳x),  C(tt)c0,  C(ff)c1, x
)

_ : ¶ ` ind⨳bool(C,c0,c1,x) = indbool(C,c0,c1,x)

Figure 5.2: A summary of the normalization structures for Martin-Löf’s type theory.
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CARTESIAN CUBICAL TYPE THEORY
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(6.0∗1) Cubical type theories extend Martin-Löf’s basic type theory with the structure
of an interval I to capture a profound form of identification that is both syntactically
and semantically better-behaved than the one provided by extensional equality types.
Unfortunately, this additional structure was incompatible in important ways with both
the conventional methods for proving canonicity as well as the state-of-the-art methods
for proving normalization (Chapter 5).

(6.0∗2) There are several variants of cubical type theory, each corresponding to a different
version of the interval. We will mainly focus on the so-called Cartesian version of cubical
type theory [Ang+19], but our work also applies to the De Morgan variant [Coh+17]. For
overviews of several different cube categories and their respective intervals, see Awodey
[Awo15] and Buchholtz and Morehouse [BM17].

§6.1. THE INTERVAL IN CUBICAL TYPE THEORY

(6.1∗1) The Cartesian interval. Cubical type theory begins by adding a judgmental interval
with two endpoints:

I : �
0, 1 : I

It is important for our results that the interval is not a type but a judgment.
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(6.1∗2) Other variants of the interval. The Dedekind variant of cubical type theory enriches
the interval with the structure of a bounded distributive lattice with 0 u r = 0, 1 u r = r,
0 t x = x, and 1 t x = 1. The De Morgan variant of cubical type theory adds to this an
involution ∼ : I I such that ∼(r u s) = ∼r t ∼s.

(6.1∗3) The interval as a figure shape. The purpose of the interval in cubical type theory is
to provide a “shape” for drawing figures in other types. For instance, a function f : I→ A
can be thought of as drawing a line figure in A:

f : f(0) f(1)

It is appropriate to think of f above as an identification of the endpoint f(0) with
the endpoint f(1); such an identification is called a “path”. Of course, depending on
the structure of A there may be any number of such paths. Generalizing to a higher
dimension, a function f : I× I→ A draws a square figure in A; working generically over
i,j : I we can visualize such a square as follows:

f(0,0)

f(0,1)

f(0,j)

f(1,0)

f(1,1)

f(i,0)

f(1,j)

f(i,1)

f(i,j)

The surface f(i,j) can be thought of as either an identification f(0,j) f(1,j) or as
an identification f(i,0) f(i,1).

(6.1∗4) Heterogeneity. The interval also provides a heterogeneous version of identification:
starting with a line of judgments A : I → �, the dependent product

∏
i:IA(i) classifies

lines in the total space of A between a point of A(0) and a point of A(1).

§6.2. JUDGMENTAL UNIVERSE OF COFIBRATIONS

(6.2∗1) Cubical type theory adds a notion of cofibration or cofibrant proposition classified
by a judgmental universe:

F : �
[−] : F→ �

The following two axioms ensure that (1) the judgments classified by F are proof-
irrelevant propositions, and (2) that codes for proof-irrelevant propositions in F are unique
whenever they exist:

_ :
∏
φ:F

∏
p,q:[φ]p =[φ] q
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_ :
∏
φ,ψ:F([φ] ∼= [ψ])→ φ =F ψ

The second axiom above is sometimes called propositional univalence.

(6.2∗2) The name cofibration is inspired by model category theory, but it shouldn’t be
taken too seriously as far as the syntax of cubical type theory is concerned.

(6.2∗3) Given φ : F, we will in some cases write φ for the judgment [φ] where it causes
no ambiguity.

(6.2∗4) Closure under dimension equality. The universe of cofibrations is closed under
equality of dimensions:

(=) : I× I→ F
_ :

∏
r,s:I(r =I s) ∼= [r = s]

The second axiom above expresses an equality reflection principle for dimension equality;
this is the source of many of the difficulties in normalizing cubical type theory.

(6.2∗5) Closure under dimensional quantification. F is closed under universal quantification
over the interval:

(∀I) : (I→ F)→ F
_ :

∏
φ:I→F

(∏
i:I[φ(i)]

) ∼= [∀I(φ)]

(6.2∗6) Closure under conjunction. F is closed under conjunction:

(u) : F× F→ F
_ :

∏
φ,ψ:F([φ]× [ψ]) ∼= [φ u ψ]

(6.2∗7) We will close F under a form of disjunction; disjunction is however a kind of colimit,
which takes us outside the logical framework that we developed in Chapter 1. Therefore,
we will add the code for disjunctions and then later in this section express a locality
condition that equips a given judgment with a strict elimination rule for disjunctions of
cofibrations.

(6.2∗8) We add a code for disjunctions of cofibrations to the signature:

(t) : F× F→ F
_ :

∏
φ,ψ:F{φ} [φ t ψ]

_ :
∏
φ,ψ:F{ψ} [φ t ψ]

(6.2∗9) Write ‹ := (0 = 1) and > := (0 = 0). The reason for writing ‹ rather than ⊥ is
to avoid confusion: it is not the case that ⊥ is the initial object of our syntactic category,
but (6.2∗11) defines a class of objects that treat it as if it is.
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(6.2∗10) Given r : I, we will write ∂r for the boundary of r, namely r = 0 t r = 1.

(6.2∗11) ‹-connectedness. Let X : � be an arbitrary form of judgment; we say that X is
‹-connected when X×‹ ∼= ‹. In other words, we have a partial isomorphism {‹}X ∼= 1.
Assuming ‹, we will write [] for the unique element of X.

(6.2∗12) F-locality. Let X : � be an arbitrary form of judgment; we say that X is F-local
when X is ‹-connected and for any φ,ψ : F, the collection of partial elements {φ t ψ}X
is isomorphic to the collection of matching families below:

{x0 : {φ}X, x1 : {ψ}X | {φ u ψ}x0 =X x1}

We will write [φ ↪→ x0,ψ ↪→ x1] for the element of X determined by a matching family
assuming φ t ψ.

(6.2∗13) The data of an F-locality structure can be expressed as a “snippet” isLocal :
�→ � in the logical framework.

(6.2∗14) We assert that the interval, the collection of cofibrations, and the extent of a
given cofibration are all F-local:

_ : isLocal(I)
_ : isLocal(F)
_ :

∏
φ:FisLocal([φ])

§6.3. COMPOSITION STRUCTURE

(6.3∗1) Homogeneous composition structure. Let A : � be a sort; a homogeneous composi-
tion structure on A is defined to be an element of the folowing sort:

HCom(A) =
∏
r,s:I

∏
φ:F

∏
a:
∏

i:I{i=rtφ}A
{A | r = s t φ ↪→ a(s)}

Given h : HCom(A), we will write hr s;φa for h(r,s,φ,a).

(6.3∗2) Coercion structure. Let A : I→ � be a line of sorts; a coercion structure on A is
defined to be an element of the following sort:

Coe(A) =
∏
r,s:I

∏
a:A(r){A(s) | r = s ↪→ a}

Given c : Coe(A), we will write cr sa for c(r,s,a).

(6.3∗3) Composition structure. Let A : I→ � be a line of sorts; a composition structure
on A is defined to be an element of the following sort:

Com(A) =
∏
r,s:I

∏
φ:F

∏
a:
∏

i:I{i=rtφ}A(i){A(s) | r = s t φ ↪→ a(s)}
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Given c : Com(A), we will write cr s;φa for c(r,s,φ,a).

(6.3∗4) Composition from coercion and homogeneous composition. Let A : I→ � be a line
of sorts; given a coercion operation c : Coe(A) and a line of homogeneous composition
operations h• :

∏
i:IHCom(A(i)), we may define a composition operation mk-com(c,h•) :

Com(A) as follows:
mk-com(c,h•)r s;φa = hr s;φs λi.ci sa(i)

§6.4. TYPE STRUCTURE AND CONNECTIVES

(6.4∗1) Cubical type theory is an extension of the signature of basic Martin-Löf type
theory; we therefore include this signature, adding to it the assertion that its various sorts
are all F-local:

include MLbase
_ : isLocal(tpα)
_ :

∏
A:tpisLocal(tm(A))

(6.4∗2) For readability, we will write A for tmα(A) when it does not cause ambiguity.

(6.4∗3) Coercion and homogeneous composition. Following Angiuli, Brunerie, Coquand,
Hou (Favonia), Harper, and Licata [Ang+19] and Angiuli, Hou (Favonia), and Harper
[AHH18] we add generic coercion and homogeneous composition operations:

coe• :
∏

A:I→tpCoe(A)
hcom• :

∏
A:tpHCom(A)

Composition is then a defined notion:

com• :
∏

A:I→tpCom(A)
comA = mk-com(coeA, λi.hcomA(i))

(6.4∗4) Dependent products and sums. Equations are added to govern the computational
behavior of coercion and composition on the existing connectives:

coer sλj.Π(A(j),B(j,−))f = λx.coer s
λj.B(j,coes j

A x)coe
s r
A x

coer sλj.Σ(A(j),B(j,−))(a,b) =
(
coer sA a, coer s

λj.B(j,coer j
A a)b

)
hcomr s;φ

Π(A,B)f = λx.hcomr s;φ
B(x) λi.f(i,x)

hcomr s;φ
Σ(A,B)p =

(
hcomr s;φ

A (λi.p(i).1), comr s;φ
λj.B(hcomr j;φ

A (λi.p(i).1))
(λi.p(i).2)

)
(6.4∗5) Weak booleans. We add equations to govern the behavior of coercion and composi-
tion for the (weak) booleans.

coer sλj.boolA = A



138 CHAPTER 6. CARTESIAN CUBICAL TYPE THEORY

indbool
(
C,c0,c1,hcomr s;φ

bool b
)
= comr s;φ

λj.C(hcomr j;φ
bool b)

λi.indbool(C,c0,c1,b(i))

(6.4∗6) The circle. We will add a single higher inductive type, the circle S1.

S1α : tpα
base : S1

loop :
∏
i:I{S1 | ∂i ↪→ base}

indS1 :
∏

C:S1→tp
∏
cb:C(base)

∏
cl:
∏

i:I{C(loop(i))|∂i↪→cb}
∏
x:S1C(x)

We add the following computation rules for the induction principle:

indS1(C,cb,cl,base) = cb

indS1(C,cb,cl,loop(i)) = cl(i)

The following equations govern universe lifting, coercion, and composition:

S1α = 〈↑α0 〉S10
coer s

λ_.S1x = x

indS1
(
C,cb,cl,hcomr s;φ

S1 x
)
= comr s;φ

λi.C(hcomr i;φ
S1

x)
λi.indS1(c,cb,cl,x(i))

(6.4∗7) The path type. We add a connective for the path type to each universe level:

pathα :
(∑

A:I→tpα
∏
i:I{∂i}A(i)

)
→ tpα

_ : {A,a}
(∏

i:I{A(i) | ∂i ↪→ a}
) ∼= path(A,a)

The following equations govern universe lifting, coercion, and composition:

〈↑βα〉pathα(A,a) = pathβ(〈↑βα〉 ◦A, a)

coer sλj.path�(A(j,−),a(j,−))p = λi.comr s;∂i
λj.A(j,i)λj.[j = r ↪→ p(i), ∂i ↪→ a(j,i)]A(j,i)

hcomr s;φ
path�(A,a)

p = λj.hcomr s;φt∂i
A(i) λj.[j = r t φ ↪→ p(j), ∂i ↪→ a(i)]

(6.4∗8) Path notation. We define the following more convenient notation for path types:

x ∼i.A(i) y := pathα
(
A, λi.[i = 0 ↪→ x, i = 1 ↪→ y]

)
x ∼A y := x ∼_.A y

(6.4∗9) To prepare for specifying the glue type we define the following notations for
contractibility and type theoretic equivalences:

isContrα : tpα → tpα
isContrα(A) = Σα(A, λx.Πα(A, λy.x ∼A y))
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Equivα : tpα × tpα → tpα
Equivα(A,B) := Σα(Πα(A,λ_.B), λf.Πα(B, λb.isContrα(Σ(A, λa.f(a) ∼B b))))

We will treat the projection Equivα(A,B) Πα(A,λ_.B) implicitly.

(6.4∗10) Gluing data. The data involved in the formation of the glue type (6.4∗11) below
is somewhat complex; hence we define a record to encapsulate it.

record Descα : � where
phi : F
B : tpα
A : {φ} tpα
f : {φ}Equiv(A,B)

(6.4∗11) The glue type. Univalence as well as composition in the universe are implemented
by the following glue type connective:

glueα :
∏

D:Descα{tpα | D.φ ↪→ D.A}
_ : {D}

{(∑
a:{D.φ}D.A{D.B | D.φ ↪→ D.f(a)}

) ∼= glue�(D)
∣∣ D.φ ↪→ −.1}

_ : {D} 〈↑βα〉glueα(D) =tpβ glueβ(D.φ,〈↑βα〉D.B,〈↑βα〉D.A,D.f)

(6.4∗12) Given B : tpα, A : {φ} tpα and f : {φ}Equivα(A,B), we will write glueα [B |
φ ↪→ (A,f)] for glueα(φ,B,A,f). Given a : {φ}A and b : {B | φ ↪→ f(a)}, we will write
englue [b | φ ↪→ a] for the corresponding element of glueα [B | φ ↪→ (A,f)]. Given an
element g : glueα [B | φ ↪→ (A,f)], we will write unglue(g) for the corresponding element
of B.

(6.4∗13) Coercion and composition in the glue type. The equational laws for coercion and
composition in the glue type are very complex, so we refer the reader to their definition
by Angiuli, Brunerie, Coquand, Hou (Favonia), Harper, and Licata [Ang+19].

(6.4∗14) Composition in the universe. We can define composition in the universe in terms
of the glue type, using the fact that coercion is an equivalence.

hcomr s;φ
Un

A = gluen
[
A(r)

∣∣ φ t (r = s) ↪→
(
A(s),

[
φ ↪→

(
coes r〈↑�

n〉◦A − , . . .
)
, r = s ↪→ (id, . . .)

])]
The ellipses above are filled by (coherent) proofs that coercion and the identity function

are equivalences; see [Ang+19] for the details.

§6.5. ASPECTS OF CUBICAL COMPUTATION

§6.5.1. Cubical computation and canonical forms

(6.5.1∗1) The study of cubical type theory has since its inception been motivated by
essentially computational questions:
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1) Can terms in cubical type theory be run like programs with observable results?
2) Can equality of types and terms be decided by a computerized implementation of

cubical type theory?

Long before anybody had an inkling of how to resolve these questions, they played
an important role in guiding the design of the more difficult aspects of cubical type
theory. For instance, it is easy to design a version of cubical type theory that treats the
composition operation axiomatically, and such a type theory is homotopically well-behaved
(as shown by Coquand, Huber, and Sattler [CHS19]); but to support the view of terms as
running programs it was necessary to include equations that govern the computational
behavior of composition at every type connective [Ang+19; AHH18; Coh+17].

(6.5.1∗2) Semantic and syntactic aspects of coherence. Designing the computational behav-
ior of composition was highly non-trivial: while any two implementations of composition
automatically agree up to homotopy, exhibiting any specific implementation is quite diffi-
cult because of various coherence or stability requirements that are built into dependent
type theory. For instance, one may define a composition operation for the collection of
elements of the glue type; but we recall that glue [B | φ ↪→ A] will compute to A if φ = >,
hence it is necessary that our implementation of composition for glue [B | φ ↪→ A] agree
with the existing implementation of composition for A under φ. This property can be
seen to be an instance of the general principle that equations in type theory must be
stable under substitution.

The semantic models of cubical type theory were developed prior to the introduction of
cubical type theory itself. Hence the computational behavior of composition was originally
designed from a semantic perspective (denotationally by Cohen, Coquand, Huber, and
Mörtberg [Coh+17] and operationally by Angiuli, Hou (Favonia), and Harper [AHH18]);
in the latter setting, the coherence requirement can be seen as a kind of “confluence”: one
must ultimately get the same result by composing in glue [B | > ↪→ A] and then reducing,
or by reducing and then composing in A.

The syntactic perspective on the same phenomenon is different: the boundary equations
for glue and for composition are imposed at the outset, and then the question is whether it is
possible to control their consequences. Adding further equations that reduce compositions
may imply unexpected identifications (by transitivity and congruence). This shows the
importance of studying models of a theory, in which the interpretations of the various
constructs and the consequences of the equational theory are made concrete.

(6.5.1∗3) Cubical operational computation. The first substantive results in cubical compu-
tation were achieved by Angiuli, Hou (Favonia), and Harper [AHH18] and Huber [Hub18].
Huber proved an operational canonicity theorem for cubical type theory; and Angiuli,
Hou (Favonia), and Harper proved a related result that establishes the compatibility of
cubical type theory with a computational interpretation of terms as running programs.
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(6.5.1∗4) We define an operational notion of computation by the following data:
1) A nonempty subset C of the collection of contexts.
2) A reduction relation M −→Γ N ranging over untyped terms M,N that are well-scoped

in Γ ∈ C.
3) A distinguished set of types OΓ in contexts Γ ∈ C.
4) For each O ∈ OΓ, a set of observables VOΓ ranging over terms Γ ` V : O.

(6.5.1∗5) Closed computation. Choosing C to be the singleton spanned by the empty
context, we define (−→) to be the ordinary untyped operational semantics of the type
theory; we then choose O = {bool} and V = {tt,ff}.

(6.5.1∗6) Cubical computation. Choose C to be the set of purely cubical contexts Ψ
generated by finite powers of the interval; let (−→Ψ) be the untyped operational semantics
of cubical type theory [AHH18]. We then choose OΨ to be the singleton spanned by a
base type (such as the booleans or the circle), and we choose VboolΨ to be the set containing
{tt,ff} — and potentially additional terms corresponding to formal compositions.

(6.5.1∗7) Operational canonicity. Let (C, −→ ,O,V) be an operational notion of computa-
tion; relative to these data, an operational canonicity result states that for any Γ ` M : O
with Γ ∈ C and O ∈ PΓ, there exists V ∈ VOΓ such that both M −→Γ V and Γ ` M = V : O.

(6.5.1∗8) Computational interpretation. A computational interpretation relative to an
operational notion of computation (C, −→ ,O,V) is a model of the type theory in which for
each Γ ∈ C and O ∈ OΓ, the interpretation TmJΓK(JOK) is a subquotient of the collection
{M | ∃V ∈ VΓ(O).M −→Γ V}.

(6.5.1∗9) Canonicity implies computational interpretation. Let (C, −→ ,O,V) be an opera-
tional notion of computation satisfying operational canonicity (6.5.1∗7). The canonicity
result establishes the compatibility of the type theory with a form of semantics in which
the types O ∈ OΓ are interpreted by saturating the well-typed observables VOΓ under
converse evaluation (6.5.1∗15), or a coherent variation thereof (6.5.1∗16).

(6.5.1∗10) Canonicity from computational interpretation. In some but not all cases, a
computational interpretation can be used to obtain a canonicity result. Assume the
following additional properties of the notion of computation and the computational
interpretation, fixing Γ ∈ C and O ∈ OΓ:

1) Subject reduction. If Γ ` M : O and M −→Γ N, then Γ ` N : O and Γ ` M = N : O.
2) Alignment. If Γ ` M : O, then Γ ` JMK : O and Γ ` M = JMK : O.
Under these additional assumptions, it is easy to see that canonicity holds. Of course,

it is not difficult to define a computational interpretation in which both subject reduction
and alignment are violated — hence while the existence of a computational interpretation
is of independent interest for philosophical purposes, it is strictly weaker than canonicity.
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� (6.5.1∗11) It is somewhat difficult to compare the results of Huber [Hub18] with those
of Angiuli, Hou (Favonia), and Harper [AHH17; AHH18]. The authors of op. cit. had a
different motivation that did not entail specifying which type theory they have constructed
a model of, and moreover there are rules in the operational semantics of op. cit. that cannot
be presented by type-theoretic equations on open terms without violating the syntactical
presuppositions of the open judgments in a traditional presentation. In particular, the
algorithm for coercion in V-types presented in op. cit. is only well-typed in purely cubical
contexts Ψ ∈ C. Conventionally, the rules of type theory must make sense in arbitrary
contexts, so it is not a surprise that this difference in perspective led to bugs1 in the
original RedPRL implementation of computational cubical type theory. This can be fixed
by adopting a different algorithm for coercion, e.g. that of Angiuli [Ang19].

(6.5.1∗12) Modulo the adjustments to the coercion algorithm described above (6.5.1∗11),
it is possible to view the semantics given by Angiuli, Hou (Favonia), and Harper [AHH18]
as a computational interpretation of a version of Cartesian cubical type theory à la
[Ang+19], in the sense of (6.5.1∗6) and (6.5.1∗8), a perspective worked out in more detail
by Angiuli [Ang19]. Although Angiuli does not verify the additional assumptions needed
to turn this into a canonicity result (6.5.1∗10), these assumptions are likely to be true
regardless, or at least validated under minor adjustments to the argument. Huber [Hub18]
defines a similar computational interpretation of cubical type theory for which it is more
direct to validate these assumptions and in this way obtains his canonicity result.

� (6.5.1∗13) Instability of untyped computation. The untyped operational semantics of
ordinary Martin-Löf type theory is particularly well-adapted: while the operational
semantics is usually defined on closed terms, the same rules make sense for open terms as
well and exhibit some remarkable properties for an arbitrary context Γ and an untyped
term M well-scoped in Γ. In addition to subject reduction, Martin-Löf type theory’s
operational semantics involves the following stability property:

If γ : ∆ Γ is an arbitrary substitution and M −→Γ N, then γ∗M −→∆ γ∗N.

Unfortunately, the deterministic operational semantics of cubical type theory cannot
satisfy untyped stability — in fact, cubical computation is not even stable when restricted
to purely cubical contexts Ψ = [i : I,j : I, . . .]. To see that this is the case, consider the
following untyped composite term varying in a cubical context Ψ,i : I:

Ψ,i : I | M := hcom0 i;>
bool λk.[k = 0 ↪→ tt,> ↪→ ff]

Assuming the deterministic operational semantics of [AHH18], we have M −→Ψ,i:I ff
and 〈0/i〉∗M −→Ψ tt, but we do not have 〈0/i〉∗M −→Ψ 〈0/i〉∗ff. Of course, the term that
we started with was not well-typed, and it can be seen that ill-typedness is the source of
1 See https://github.com/RedPRL/sml-redprl/issues/692.

https://github.com/RedPRL/sml-redprl/issues/692
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all such pathologies; for this reason, it is appropriate to say that computation in cubical
type theory is inherently typed, in contrast to ordinary type theory.

(6.5.1∗14) Many difficulties in the subjective metatheory of cubical type theory can be
avoided by defining operational semantics over typed terms (as in Huber [Hub18]) rather
than untyped terms; in particular, there is no difficulty with stability (6.5.1∗13) for typed
terms. We will see below that there are additional difficulties that can only be overcome by
passing to the objective metatheory, where terms are quotiented by judgmental equality.

� (6.5.1∗15) Failure of head expansion. Head expansion or converse evaluation is a property
of the computational interpretation of a given type as a relation: if N ∈ JAK and M −→ N,
then M ∈ JAK and M = N ∈ JAK. The computational interpretation of Martin-Löf type
theory can be closed under this condition, and this observation is the work-horse of the
soundness theorem. Unfortunately we may deduce from the same counterexample that
we used for stability (6.5.1∗13) that a non-trivial computational interpretation of cubical
type theory cannot be closed under head expansion, because it implies tt = ff ∈ JboolK.

(6.5.1∗16) Coherent expansion. Independently, both Angiuli [Ang19] and Huber [Hub18]
have discovered a higher-dimensional generalization of head expansion called coherent
expansion. Coherent expansion is a work-horse lemma that plays a role in the subjective
metatheory of cubical type theory analogous to that of head expansion in the subjective
metatheory of Martin-Löf type theory. Unfortunately, the resulting proofs are quite
complex and their authors concluded after subsequent investigations that the subjective
metatheory could not practically be scaled to more difficult results, such as normalization.

(6.5.1∗17) Objective metatheory. If one could avoid the need to consider head expansion
of any form whatsoever, then surely the burdensome consequences of coherent expansion
would also disappear from the metatheory of cubical type theory. This was the prediction
of Angiuli that in part motivated Sterling, Angiuli, and Gratzer [SAG19] to reformulate
the computational semantics of cubical type theory in an equational way, where types and
terms are only ever considered up to judgmental equality. To achieve this, we adapted the
recent perspective of Coquand [Coq19] in which types are interpreted as proof relevant
families indexed in equivalence classes of typed terms rather than proof irrelevant relations
on raw terms. In the equational setting, invariance under head expansion vis-à-vis
well-typed reductions is therefore built into all definitions for free.

§6.5.2. Open computation and normal forms

(6.5.2∗1) So far we have discussed the difficulties of computing in cubical contexts
Ψ = [i : I, . . .], all of which which are addressed directly by adopting the “objective
metatheory” approach as shown by Sterling, Angiuli, and Gratzer [SAG19; SAG20]. While
this form of computation is of philosophical interest because it expresses the sense in
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which terms can be run as programs, it is not pertinent to the needs of users of type
theory which are mostly centered around computation in general contexts Γ that contain
not only dimensions but ordinary variables x : A. When programming in type theory, one
mainly encounters computation during type checking and elaboration which of course
must occur in all contexts; it is true that closed computation pertains to the results of
program extraction, but extraction occurs only at the tail end of the programming process.

� (6.5.2∗2) Lack of neutral terms. We will see that the objective metatheory does not
immediately address a new difficulty found in computing with the open terms of cubical
type theory. Our analysis of open computation in terms of synthetic normalization by
evaluation (Chapter 5) relies on the presentation of type theory in terms of neutral and
normal forms. A neutral form is to be thought of as a variable with various blocked stack
frames stuck to it, and at types lacking an η-law the neutrals embed into the normals.
The choice of closed subtopos for the gluing argument is determined by isolating a figure
shape under whose morphisms the neutrals and normals carry a substitution action.

In ordinary type theory, an appropriate figure shape is the category A of contexts and
structural renamings of variables; this choice is possible because neutrals and normals carry
structural renaming actions, even though they do not a priori support general substitution.
The situation for cubical type theory is more complex: the need for a representable interval
forces us to include it in the category A of “cubical atomic contexts”, but this means
that both normals and neutrals must be closed under not only renamings of variables but
also under dimension substitutions 〈0/i〉 and 〈1/i〉 — in fact, in Cartesian cubical type
theory one can even see that the diagonal renaming 〈j/i〉 is already problematic.

To understand why the neutrals of cubical type theory are not closed under 〈0/i〉,
consider a variable x : path(A,a); the path application to a generic dimension should be a
neutral x(i) : A(i). But the substitution 〈0/i〉∗(x(i)) cannot be a neutral, because it must
“compute” to the normal form of a(0). Adding further annotations to the neutral does
not help: for instance, one might decide to annotate the application with normal forms
a0,a1 of a(0),a(1) respectively; but even in this case, the substitution action would need
to replace the neutral x(i) with the normal a0. The lack of a genuinely cubical notion of
neutral form is the reason why normalization for cubical type theory has remained an
open question within the community until the present intervention.

(6.5.2∗3) The frontier of instability. Prior attempts to understand the neutrals of cubical
type theory have cast them as terms that are stuck under some condition; for instance,
the path application x(r) is stuck so long as r 6= 0 ∧ r 6= 1 [Ste20]. This characterization
of neutrals is semantically a non-starter, however, because the notion of non-equality
required here is the external set-theoretic one: in the language of the logos, r 6= 0 means
that there is no atomic substitution that can identify r and 0: hence r 6= 0 ∧ r 6= 1 is
always false. This suggests that “conditional stuckness” is not the correct way to think
about neutrals for cubical type theory, because the conditions under which a neutral
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remains stuck are not expressible in a cubically stable way.
An alternative perspective is to view neutrals in terms of “conditional non-stuckness”:

rather than specifying conditions under which a neutral remains stuck, we specify the
conditions under which a neutral ceases to be stuck. In this case, the neutral x(r) would
cease to be stuck on the boundary ∂r := (r = 0 t r = 1); we will refer to the condition
under which a given neutral ceases to be stuck as its frontier of instability. Our negative
point of view on neutrals has a significant advantage: the frontier of instability for any
neutral of cubical type theory is expressible as a cofibration φ : F.

(6.5.2∗4) Stabilizing neutral forms. Let ans be an “answer type” with two constants
yes,no : ans. The normal form presentation of ordinary type theory would include normal
forms for the constants as well as an embedding of neutral forms of answer type into
normal forms of answer type:

yes : {nf(ans) | ¶ ↪→ yes}
no : {nf(ans) | ¶ ↪→ no}

upans : {ne(ans)→ nf(ans) | ¶ ↪→ λx.x}

In cubical type theory, a neutral form that has become “unstuck” is one that needs to
compute. Suppose that we have a variable x : yes ∼ans no of path type; the neutral x(0)
is unstuck, so its frontier of instability is > — and unfortunately, we now have an exotic
normal form upans(x(0)) which ought to be equal to yes but isn’t. The solution to this
problem proceeds in two steps.

First of all, we should recognize that a neutral that is unstable everywhere carries no
useful computability data; if we write neφ(A) for the collection of neutrals of type A with
frontier of instability φ, we will ensure that neφ(A) is purely syntactic under φ:

neφ(A) : {U |  φ ↪→ tm(A)}

Then we will change the upans constructor to require each neutral a : neφ(A) to be
glued with or stabilized by a compatible partial normal form defined on the frontier of
instability:

upans[φ] :
∏
a0:neφ(ans)

∏
aφ:{φ} {nf(A)|¶↪→a0}{nf(ans) |  φ ↪→ [¶ ↪→ a0, φ ↪→ aφ]}

The modification above builds in enough information to the boundary between neutrals
and normals to compute to the appropriate normal form just as soon as the neutral
destabilizes. Because we will ensure that the cofibrations φ are only built from disjunctions,
conjunctions and dimension equations, the component aφ of the normal form can be
represented essentially by left-inversion as a finitary tree branching on disjunctions and
whose leaves are all normal forms under a conjunction of equational constraints.



146 CHAPTER 6. CARTESIAN CUBICAL TYPE THEORY

(6.5.2∗5) Under the stabilization discipline (6.5.2∗4), the normal form for the path
application x(i) given a variable x : yes ∼ans no would therefore be represented like so:

upans[∂i](x(i), [i = 0 ↪→ yes, i = 1 ↪→ no])

Under i = 0 then we have the following equations:

upans[∂i](x(i), [i = 0 ↪→ yes, i = 1 ↪→ no])
= upans[∂0](x(0), [0 = 0 ↪→ yes, 0 = 1 ↪→ no])
= [0 = 0 ↪→ yes, 0 = 1 ↪→ no]
= yes

(6.5.2∗6) It is unconventional (but not unheard of, see [Alt+01]) to impose equations
on normal forms, since the purpose of normal forms is to get rid of equations. For
more complicated type theories, such as cubical type theory or type theory with strict
coproducts, a more refined perspective is applicable: a normal form presentation reduces
a theory that is hard to decide to a theory that is trivial to decide. Because the finitary
disjunctive theory of the interval is decidable, we have no compunction about imposing
equations arising from this theory in the definition of normal forms.
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NORMALIZATION FOR CUBICAL TYPE THEORY

(7.0∗1) The proof of normalization for univalent cubical type theory without universes is
joint work with Carlo Angiuli [SA21]. This dissertation extends that result to a cumulative
hierarchy of univalent universes.
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(7.0∗2) We fix a topos G equipped with an open ¶ : OG , as well as a transfinite and
strict hierarchy of strong universes U ≤ Vα <W for α : L, defining Vs(�) :=W . Not all of
our constructions in this section will be internal to SetG in the sense of being preserved
under base changes between slices.

(7.0∗3) As always, we assume a syntactic algebra for the Cartesian cubical type theory
defined in Chapter 6, i.e. an algebra valued in U¶. We additionally assume that the
syntactic interval object I is tiny in the sense of (2.5∗1), and that ‹ ≤ ¶.
(7.0∗4) We define the normalization structure I⨳ of the interval to be I itself.

(7.0∗5) We assume a type of variables for each syntactic type:

var :
∏

A:tp{U | ¶ ↪→ A}

§7.1. NORMALIZATION STRUCTURE OF COFIBRATIONS

(7.1∗1) It is true that in the syntax of cubical type theory, all cofibrations are built
up from dimension equality, conjunction, disjunction, and universal quantification over
the interval. The obvious computability structure for F does not have this restriction,
however; because this property is important for establishing our decidability result, we
will be careful to impose it in the corresponding normalization structure (7.1∗3).

(7.1∗2) Computability structure of cofibrations. We may define a computability structure
F★ : {U | ¶ ↪→ F} by realigning the following subobject of Ω:

F★ :∼= {φ : Ω | ∃ψ : F.#([ψ] =Ω φ)}

The alignment above is possible because the element of F quantified by φ ∈ F★ is
uniquely determined by propositional univalence of F.

(7.1∗3) Normalization structure of cofibrations. We define F⨳ to be the smallest subobject
of F★ closed under the following rules:

φ : F★ | ¶ ` φ ∈ F⨳

φ,ψ : F★ | φ ∈ F⨳ ∧ ψ ∈ F⨳ ` (φ ∧ ψ) ∈ F⨳

φ,ψ : F★ | φ ∈ F⨳ ∧ ψ ∈ F⨳ ` ((φ t ψ) ∧ (φ ∨ ψ)) ∈ F⨳

φ : I→ F★ | ∀i : I.(φ(i) ∈ F⨳) ` (∀i : I.φ(i)) ∈ F⨳

r,s : I | > ` (r = s) ∈ F⨳

The first rule above ensures that underneath the open modality, F⨳ is all of F★; hence
we retain the alignment F⨳ : {U | ¶ ↪→ F}.
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(7.1∗4) Closure under connectives. The normalization structure F⨳ is closed under the
following connectives:

(=⨳) : {I× I→ F⨳ | ¶ ↪→ (=)}
(r =⨳ s) := (r = s)

(u⨳) : {F⨳ × F⨳ → F⨳ | ¶ ↪→ (u)}
(φ u⨳ ψ) = φ ∧ ψ

(t⨳) : {F⨳ × F⨳ → F⨳ | ¶ ↪→ (t)}
(φ t⨳ ψ) = (φ t ψ) ∧ (φ ∨ ψ)

(∀⨳) : {(I→ F⨳)→ F⨳ | ¶ ↪→ (∀)}
∀⨳(φ) = ∀i : I.φ(i)

We provide the definitions above to indicate the interpretations of each cofibration
connective in the normalization algebra, but in practice we will simply write r = s and
φ ∧ ψ and ∀i.φ(i); on the other hand, we will write φ t⨳ ψ for the disjunction rather than
expanding it to its more complex definition.

(7.1∗5) If E is any type in the internal language of SetG , then E is F⨳-local if and only
if #E is F-local. In other words, locality can fail only at the syntactical level.

Proof. It is obvious that E being F⨳-local is sufficient for #E to be F-local; we will check
that this condition is also necessary. Assume that #E is F-local; first we must show that
E is ‹-connected, but this follows from F-locality of #E combined with our assumption
(7.0∗3) that ‹ ≤ ¶. Next we fix φ,ψ : F⨳ to check that the collection of partial elements
{φ t⨳ ψ}E is isomorphic to the collection of matching families for φ,ψ in E. It suffices to
check this condition on both #E and  E; the former we have by assumption, and the
latter we have because φ t⨳ ψ ≤  (φ ∨ ψ).

(7.1∗6) Syntactic stabilization. Let φ : Ω be a proposition; fix X◦ : U¶ and X : {U |
 φ ↪→ X◦} and Y : {φ} {U | ¶ ↪→ X◦}. We define the syntactic stabilization of X by Y
along φ as follows:

record X oφ Y : {U |  φ ↪→ [¶ ↪→ X, φ ↪→ Y]} where
constructor [− | φ ↪→ −]
base : X
part : {φ} {Y | ¶ ↪→ base}

It is worth checking the alignments above:

¶ ` X oφ Y ∼=
∑
b:X{φ} {Y | > ↪→ b} ∼= X
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φ ` X oφ Y ∼= X◦ o> Y ∼=
∑
b:X◦{Y | ¶ ↪→ b} ∼=

∑
b:#Y{Y | ¶ ↪→ b} ∼= Y

The intuition for this type is that X is a type that destabilizes to its syntactic part
under φ; meanwhile, Y is a type with the same syntactic part that may not destabilize.
Then the syntactic stabilization of X by Y along φ consists of glued elements [x | φ ↪→ y]
that restrict on  φ to the partial element [¶ ↪→ x, φ ↪→ y].

§7.2. NORMAL AND NEUTRAL FORMS

(7.2∗1) The collections of normal and neutral forms for cubical type theory are similar to
those of Chapter 5, except that we must account for frontiers of instability.

nftp : {U | ¶ ↪→ tp}
var,nf :

∏
A:tp{U | ¶ ↪→ A}

ne• :
∏
φ:F⨳

∏
A:tp{U |  φ ↪→ A}

We have the following derived collections:

nftp� = nftp
nftpn = nf(〈↑�s(n)〉Un)

netpφn = neφ(〈↑�s(n)〉Un)

(7.2∗2) Stabilized neutrals. We may stabilize the neutrals against the normals via neφ(A) oφ
nf(A). Later on, we will stabilize neutrals against different computability structures to
generalize Tait’s reflect operation to the cubical setting.

(7.2∗3) Reflection and reification operations. We define some notations for expressing the
closure of a computability structure under Tait’s yoga §5.3. Let E : {W | ¶ ↪→ B} be a
type in some universe that is aligned over the terms of type B; we may express the closure
of E under a stabilized Tait reflection operation and an ordinary Tait reification operation
as follows:

Reflect[φ](B,E) := {ne(B) oφ E→ E |  φ ↪→ λx.x}
Reify(B,E) := {E→ nf(B) | ¶ ↪→ λx.x}

(7.2∗4) Homogeneous composition operation. Let A : tpα be a syntactic type and let
E : {W | ¶ ↪→ 〈↑�α〉A} be a type in some universe aligned over elements of A. A well-
aligned homogeneous composition structure for (E,A) is an element of the following
#-connected and hence  -modal type:

HCom★(A,E) :=
∏
r,s:I

∏
φ:F⨳

∏
a:
∏

i:I{(i=r)t
⨳φ}E{

E
∣∣  ((i = r) t⨳ φ) ↪→

[
¶ ↪→ hcomr s;φ

〈↑�α〉A
a, (i = r) t⨳ φ ↪→ a(s)

]}
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(7.2∗5) Variables. We add an inductive clause to treat every variable as a totally stable
neutral:

var : {A} {var(A)→ ne‹(A) | ¶ ↪→ λx.x}

(7.2∗6) Universe structure. The normal forms of universes and their lifting coercions are
more complex in the cubical setting:

Uαn : {nftpα | ¶ ↪→ 〈↑αn+1〉Un} for n < α

upαn[φ] :
∏

A:netpφn

∏
Aφ:{φ} {nftpα|¶↪→〈↑α

n〉A}{nftpα |  φ ↪→ [¶ ↪→ 〈↑αn〉A, φ ↪→ Aφ]} for n < α

ũpn[φ,ψ] :
∏

A:netpφn
{neψ(〈↑�n〉A) oφ∧ψ nf(〈↑�n〉A)→ nf(〈↑�n〉A) |  (φ ∧ ψ) ↪→ λx.x}

(7.2∗7) Stuck Kan operations. A new source of normal forms in cubical type theory is the
coercion and homogeneous composition operations on neutral types:

φ : F⨳ A : netpφn r,s : I ψ : F⨳ a :
∏
i:I{r = s ∨ ψ} nf(〈↑�n〉A)

h : {φ}
{
nf(〈↑�n〉A)

∣∣  (r = s ∨ ψ) ↪→ ¶ ↪→ hcomr s;a
〈↑�

n〉A
, r = s ∨ ψ ↪→ a(s)

}
hcomn[φ](A,r,s,ψ,a,h) :

{
nf(〈↑�n〉A)

∣∣  (φ ∨ r = s ∨ ψ) ↪→ ¶ ↪→ hcomr s;ψ
〈↑�

n〉A
a, φ ↪→ h, r = s ∨ ψ ↪→ a(s)

}
φ : I→ F⨳ A :

∏
i:Inetp

φ(i)
n r,s : I a : nf(〈↑�n〉A(r))

c : {∀i.φ(i)}
{
nf(〈↑�n〉A(s))

∣∣  (r = s) ↪→
[
¶ ↪→ coer s〈↑�

n〉◦Aa, r = s ↪→ a
]}

coen[φ](A,r,s,a,c) :
{
nf(〈↑�n〉A(s))

∣∣  ((∀i.φ(i)) ∨ r = s) ↪→ ¶ ↪→ coer s〈↑�
n〉Aa,∀i.φ(i) ↪→ c, r = s ↪→ a

}
(7.2∗8) Standard connectives. The normal forms for the standard connectives do not
change except to preserve frontiers of instability.

sgα :
{(∑

A:nftpα(var(〈↑
�
α〉A)→ nftpα)

)
→ nftpα

∣∣ ¶ ↪→ Σα
}

split : {A,B,φ}
{
neφ(Σ(A,B))→

∑
x:neφ(A)neφ(B(x))

∣∣  φ ↪→ λp.(p.1,p.2)
}

pair : {A,B}
{(∑

x:nf(A)nf(B(x))
)
→ nf(Σ(A,B))

∣∣ ¶ ↪→ λp.(p.1,p.2)
}

piα :
{(∑

A:nftpα(var(〈↑
�
α〉A)→ nftpα)

)
→ nftpα

∣∣ ¶ ↪→ Πα
}

app : {A,B,φ}
{
neφ(Π(A,B))→

∏
x:nf(A)neφ(B(x))

∣∣  φ ↪→ λf.λx.f(x)
}

lam : {A,B}
{(∏

x:var(A)nf(B(x))
)
→ nf(Π(A,B))

∣∣ ¶ ↪→ λf.λx.f(x)
}

(7.2∗9) The path type. The path type is one location where the frontier of instability on a
neutral changes.

pathα :
{(∑

A:I→nftpα
∏
i:I{∂⨳i} nf(〈↑�α〉A(i))

)
→ nftpα

∣∣ ¶ ↪→ pathα
}

papp : {A,a,φ}
{
neφ(path�(A,a))→

∏
i:Ineφt⨳∂⨳i(A(i))

∣∣ ¶ ↪→ λp.λi.p(i)
}

plam : {A}
{∏

a:
∏

i:Inf(A(i))nf(path�(A,λi.a(i)))
∣∣ ¶ ↪→ λp.λi.p(i)

}
(7.2∗10) The glue type.
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glueα :
∏
φ:F⨳

∏
B:nftpα

∏
A:{φ} nftpα

∏
f :{φ} nf(Equiv(〈↑�

α〉A,〈↑�
α〉B)){nftpα |  φ ↪→ [φ ↪→ A,¶ ↪→ glueα [φ | B ↪→ (A,f)]]}

englue : {D} {neψ(glue�(D))→ neψt⨳D.φ(D.base) | ¶ ↪→ unglue}
englue : {D}

∏
a:{D.φ} nf(D.A)

∏
b:{nf(D.B)|D.phi↪→a}{nf(glue�(D)) |  φ ↪→ [φ ↪→ a,¶ ↪→ englue [b | φ ↪→ a]]}

(7.2∗11) The booleans. The normal forms for the booleans are similar to those of (5.3∗10),
except we must stabilize the neutrals before they are lifted into the normals; we also add
formal composite terms.

boolα : {nftpα | ¶ ↪→ boolα}
tt : {nf(bool) | ¶ ↪→ tt}
ff : {nf(bool) | ¶ ↪→ ff}

upbool[φ] : Reflect[φ](bool,nf(bool))
hcombool : HCom★(bool,nf(bool))
indbool [φ] :

{∏
C:var(bool)→nftp

∏
c0:nf(C(tt))

∏
c1:nf(C(ff))

∏
x:neφ(bool)neφ(C(x))

∣∣ ¶ ↪→ indbool
}

(7.2∗12) The circle.

S1
α : {nftpα | ¶ ↪→ S1α}

base : {nf(S1) | ¶ ↪→ base}
loop :

∏
i:I{nf(S

1) |  ∂⨳i ↪→ [¶ ↪→ loop(i), ∂⨳i ↪→ base]}
upS1 [φ] : Reflect[φ](S1,nf(S1))
hcomS1 : HCom★(S1,nf(S1))
indS1 [φ] :

{∏
C:var(S1)→nftp

∏
cb:nf(C(base))

∏
cl:
∏

i:I
{C(loop(i))|∂i↪→cb}

∏
x:neφ(S1)neφ(C(x))

∣∣ ¶ ↪→ indS1
}

§7.2.1. Explicit construction

(7.2.1∗1) The collections of normal and neutral forms can be constructed as in §5.4.1 by
a mutual indexed inductive definition. We will define the following families:

[a ∈φne A] : U\ φ (φ : F⨳,A : tp,a : A)
[A 3nf a] : U\¶ (A : tp,a : A)

[tp� 3nf A] : U\¶ (A : tp)

We define [tpα 3nf A] to be [tp� 3nf A] when α = � and [Un 3nf A] when α = n. To
define an indexed inductive family of ψ-connected types is the same as to define an indexed
quotient-inductive family of ordinary types, by adding the additional following clauses
that collapse the fiber to a point when restricted over ψ:
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A : tp z : ¶
pt(A,z) : [tp� 3nf A]

A : tp Ã : [tp� 3nf A] z : ¶
Ã =[tp�3nfA] pt(A,z)

A : tpα a : A z : ¶
pt(A,a,z) : [A 3nf a]

A : tpα a : A ã : [A 3nf a] z : ¶
ã =[A3nfa] pt(A,a,z)

φ : F⨳ A : tpα a : A z :  φ
pt(A,a,z) : [a ∈φne A]

φ : F⨳ A : tpα a : A ã : [a ∈φne A] z :  φ
ã =[a∈φ

neA] pt(A,a,z)

In this section, we will give as examples a few representative clauses of this inductive
definition.

(7.2.1∗2) Basic judgmental structure. We add inductive clauses to substantiate the basic
judgmental structure of cubical type theory with universes:

(n < α)
Uα
n : [tpα 3nf 〈↑αn+1〉Un]

φ : F⨳ A : tpn (n ≤ α)
Ã : [A ∈φne 〈↑�n+1〉Un] Ãφ : {φ} [tpn 3nf A]

upαn{A}(Ã,Ãφ) : [tpα 3nf 〈↑αn〉A]

φ,ψ : F⨳ A : tpn a : 〈↑�n〉A
Ã : [A ∈φne 〈↑�n+1〉Un] ã : [a ∈ψne 〈↑�n〉A]

ũpn{A,a}(Ã,ã) : [〈↑�n〉A 3nf a]
A : tpn ã : var(A)
var{A}(ã) : [ã ∈‹ne A]

After the inductive definitions are completed, we may take their total spaces to define
the collections of neutral and normal forms of terms and types by realignment:

nftpα : {U | ¶ ↪→ tpα}
nftpα ∼=

∑
A:tpα [tpα 3nf A]

nf :
∏

A:tp{U | ¶ ↪→ tmα(A)}
nf(A) ∼=

∑
a:A[A 3nf a]

neφ :
∏

A:tp{U |  φ ↪→ A}
neφ(A) ∼=

∑
a:A[a ∈φne A]

The realignments above are possible because each fiber [tpα 3nf A],[A 3nf a],[a ∈φne A]
was valued in an appropriate closed subuniverse U\¶ or U\ φ.

(7.2.1∗3) Each subtype {nftpα | ¶ ↪→ A} is isomorphic to [tpα 3nf A]. Likewise, {nf(A) |
¶ ↪→ a} is isomorphic to [A 3nf a] and {neφ(A) | ¶ ↪→ a} is isomorphic to [a ∈φne A].

(7.2.1∗4) As an example, we show how to use the isomorphisms (7.2.1∗3) explicitly to
define the following normal form constructor:

upαn[φ] :
∏

A:netpφn
∏

Aφ:{φ} {nftpα|¶↪→〈↑αn〉A}{nftpα |  φ ↪→ [¶ ↪→ 〈↑αn〉A, φ ↪→ Aφ]}
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Fixing A and Aφ, we note by definition of netpφn, nftpα that we have Ã : [A ∈φne 〈↑�n+1〉Un]
and Ãφ : {φ} [〈↑�n〉A 3nf A]. Hence we choose the pair (A,upαn{A}(Ã,Ãφ)).

§7.2.2. Injectivity of normal form constructors

(7.2.2∗1) We will use roughly the same technique as (5.4.1∗7) to prove a modal injectivity
result for the dependent product normal form constructor. The argument is more intricate,
however, due the presence of non-trivial boundaries on cubical normal forms.

(7.2.2∗2) We begin by defining a modal predicate isPi : nftp→ Ω\¶ satisfying the following
universal property:

∀X : nftp.isPi(X)⇔  ∃F.X = pi�(F) (7.2.2∗2∗1)

We proceed by induction on the normal types:

isPi(U�
n) =  ⊥ isPi(up�n[φ](A,Aφ)) =  ∃_ : φ.isPi(Aφ) isPi(sg�(A,B)) =  ⊥

isPi(pi�(A,B)) = > isPi(path�(A,a)) =  ⊥

isPi(glue�(φ,B,A,f)) =  ∃_ : φ.isPi(A) isPi(bool�) =  ⊥ isPi(S1
�) =  ⊥

The universal property Eq. (7.2.2∗2∗1) follows again by induction.

Proof. Let X be a normal type such that isPi(X) holds; we must check that ∃F.X = pi�(F);
we proceed by induction on X. The induction cases can be organized into three representave
categories.

1) Total case. If X = pi�(F), then we choose F itself.
2) Partial case. If X = up�n[φ](A,Aφ), our assumption isPi(X) computes to  ∃_ :

φ.isPi(Aφ). Because our goal is  -modal we may assume φ = > and isPi(Aφ), so by
induction we have  ∃F.Aφ = pi�(F). Because φ = > we also have upφn[>](A,Aφ) =
Aφ, hence  (X = pi�(F)).

3) Empty case. If X = U�
n, our assumption isPi(X) computes to  ⊥, which implies any

 -modal proposition.

Conversely, assume  ∃F.X = pi�(F). Because isPi(X) is  -modal, we may uncondi-
tionally assume some family F such that X = pi�(F). Then we have isPi(X) = >.

(7.2.2∗3) Modal injectivity. The normal form constructor pi is semantically injective in
the sense that the following holds:

∀F,F′ : nffam. (pi�(F) = pi�(F′)) =⇒  (F = F′)
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Proof. We will use the same argument as (5.4.1∗7), adjusted for the more complex
boundaries that appear in the cubical setting. We define a function to “invert” the pi�
constructor within the extent of isPi:

unPi : {X : nftp | isPi(X)} →  nffam
unPi(pi�(A,B)) = η\¶(A,B)

unPi(up�n[φ](A,Aφ)) = unPi(Aφ)
unPi(glue�(φ,B,A,f)) = unPi(A)

It is worth carefully justifying the partial cases for up�n[φ] and glue�(φ,B,A,F); in the
latter (representative) case, we have  ∃_ : φ.isPi(A) by assumption, but because we are
constructing an element of the  -modal type  nffam, we may assume φ and isPi(A);
hence it is possible to make the recursive call unPi(A).

§7.3. TYPES AND UNIVERSES

§7.3.1. Computability structure of types

(7.3.1∗1) Recall that we have assumed in (7.0∗3) that the interval is tiny (2.5∗1), i.e. we
have an adjunction (−)I a (−)I in SetG . While this adjunction does descend to each slice
of SetG , it is not preserved by base change; therefore, one must be cautious when using
it. Thankfully, we will only have need of it at the borders of our construction.

(7.3.1∗2) The “root” functor (−)I : SetG SetG preserves  -modal objects.

Proof. Let E : SetG be a  -modal object; equivalently, E is #-connected in the sense
that {¶}E ∼= 1 or equivalently {¶} (E ∼= 1). We will check that EI is #-connected by a
computation, fixing an arbitrary sheaf F : SetG :

HomSetG (F,{¶}EI)
∼= HomSetG (F× ¶,EI)
∼= HomSetG ((F× ¶)I,E)

Evaluating with either endpoint of the interval and then projecting, we have a morphism
(F× ¶)I ¶; hence HomSetG ((F× ¶)I,E) is isomorphic to HomSetG ((F× ¶)I,1).

. . . ∼= HomSetG ((F× ¶)I,1)
∼= HomSetG (F× ¶,1)
∼= HomSetG (F,1)

Thus EI is #-connected or  -modal.
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(7.3.1∗3) Pretype computability structure. We recall the computability structure of types
from (4.4∗4):

record tp★α : {Vs(α) | ¶ ↪→ tpα} where
syn : tpα
ext : {V | ¶ ↪→ 〈↑�α〉syn}

We will refer to an element of tp★α as a pretype computability structure, and the goal of
this section is to add additional structures corresponding to the Kan operations.

(7.3.1∗4) hcom-type computability structure. We may define the type of hcom-type com-
putability structures with the following alignment using (7.2∗4):

record hcomtp★α : {Vs(α) | ¶ ↪→ tpα} where
include tp★α
hcom : HCom★(syn,ext)

The alignment above is correct because HCom★ is valued in  -modal types.

(7.3.1∗5) Kan computability structure. We additionally equip the type computability
structure with coercion operations using a variant of the method of Licata, Orton, Pitts,
and Spitters [Lic+18]. Let A : I → tp★α be a line of pretype computability structures;
a well-aligned coercion structure for A is an element of the following type, once again
 -modal: ∏

r,s:I
∏
a:A(r)

{
A(s)

∣∣  (r = s) ↪→
[
¶ ↪→ coer sA a, r = s ↪→ a

]}
The above determines a morphism Coe★α : (tp★α)

I Vα\¶, and hence by adjoint transpose,
a morphism (Coe★α)

] : tp★α (Vα\¶)I. We may therefore combine the coercion and homoge-
neous composition structures to obtain a universe tpα of Kan computability structures,
writing Ẇ for the object

∑
A:WA of pointed types classified by a universe W:

tpα

hcomtp★α

coetp★α

tp★απ

(V̇α\¶)I

(Vα\¶)I
(Coe★α)

]
(7.3.1∗5∗1)

We need to check that tpα is aligned over tpα, which we can do by applying the open
modality to the outer pullback square, recalling the alignment of hcomtp★α and using the



7.3. TYPES AND UNIVERSES 157

fact that root functor preserves #-connected objects (7.3.1∗2).

#tpα

#hcomtp★α

#(V̇α\¶)I

#(Vα\¶)I

#tpα

tpα

#((V̇α\¶)I)

#((Vα\¶)I)

#tpα

tpα

1

1

Hence #tpα ∼= (tpα ×1 1) ∼= tpα, so we may align tpα strictly over tpα.

(7.3.1∗6) Notation for Kan computability structures. Considering Diagram 7.3.1∗5∗1 it
is easy to see by transpose that every line of Kan computability structures A : I→ tpα
possesses a coercion operation coeA. But how do we construct a specific Kan computability
structure? The use of the root functor (−)I in the definition of tpα implies we must take
parameters into account. Therefore we do not speak of constructing elements of tpα, but
rather of constructing functions E→ tpα. Suppose we have the folowing data:

A[−] : E→ tp★α
h[−] :

∏
e:EHCom★(A(e))

c[−] :
∏
e:EICoe★(λi.A(e(i)))

Then we specify the corresponding Kan computability structure A′[−] like so:

A′[e]⇐ extend A[e]

hcomr s;ψ
A′[e] a = h[e](r,s,ψ,a)

coer sλi.A′[e(i)]a = c[e](r,s,a)

§7.3.2. Normalization structure of types

(7.3.2∗1) The normalization structure of types (5.3∗1) from Chapter 5 is almost sufficient,
replacing the underlying computability structures with the Kan computability structures
of (7.3.1∗5). We would find, however, that the “induction hypothesis” of the Tait reflection
operation is too weak to close the normalization structures under connectives. It is easy
to see that a reflection operation with type

∏
φ:F⨳{neφ(A)→ A | ¶ ↪→ λx.x} would be far

too strong, considering the extreme case where φ = > under which neφ(A) destabilizes to
tm(A). In that case, the reflection operator amounts to a choice of computability data for
all terms simultaneously. The solution here is to stabilize the neutrals not against the
normals, but against the given computability structure; in this way, the up operators for
neutral forms of base types are essentially serialized versions of Tait reflection.

(7.3.2∗2) Normalization structure of types. We define the normalization structure of types,
adjusting the reflection operator for A : tpα from (5.3∗1) to employ the stabilized reflection
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structure defined in (7.2∗3).

record tp⨳α : {Vs(α) | ¶ ↪→ tpα} where
include tpα as C
N :

∏
β≥α{nftpβ | ¶ ↪→ 〈↑

β
α〉ext}

 :
∏
φ:F⨳Reflect[φ](syn,ext)

 : Reify(syn,ext)

§7.3.3. Universe level coercions

(7.3.3∗1) Kan computability structure.

〈↑βα〉 : {tpα → tpβ | ¶ ↪→ 〈↑
β
α〉}

(〈↑βα〉 A)⇐ extend 〈↑βα〉★A
hcomr s;φ

〈↑βα〉 A
a = hcomr s;φ

A a

coer s
λi.〈↑βα〉 A(i)

a = coer sA a

(7.3.3∗2) Normalization structure.

〈↑βα〉⨳ : {tp⨳α → tp⨳β | ¶ ↪→ 〈↑
β
α〉}

〈↑βα〉
⨳A⇐ extend 〈↑βα〉 A

 γ≥βtp (〈↑βα〉
⨳A) =  γ≥αtp A

 φ
〈↑βα〉⨳A

a =  φ
Aa

 〈↑βα〉⨳Aa =  Aa

§7.3.4. Stabilized neutral types

(7.3.4∗1) Ultimately we will need to implement the Tait reflection operation for universes
in §7.3.5, which entails taking a stabilized neutral type A : netpφn oφ tp⨳n to a normalization
structure that restricts to A on  φ. What should the elements of this normalization
structure be? We recall from our experience with ordinary type theory (Chapter 5) that a
neutral type can only contain neutral elements; because every type in cubical type theory
is equipped with Kan operations, we must add to this a way to form formal coercions and
homogeneous compositions in a neutral type. In this section, we define the normalization
structure elim⨳

n[φ](A) of formal elimination trees with type A, comprised of neutrals,
homogeneous compositions, and coercions.
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(7.3.4∗2) The presence of formal coercions and formal homogeneous compositions is
reminiscent of and inspired by the Cavallo–Harper account of indexed higher inductive
types in cubical type theory [Cav21; CH19].

(7.3.4∗3) Computability structure. We define elimφ
n : {netpφn oφ tp★n → U |  φ ↪→ 〈↑�n〉

★} to
be the smallest so-aligned family of types closed under the following constructors:

φ,ψ : F⨳ A : netpφn oφ tp★n
upA[ψ] : Reflect[ψ](〈↑�n〉A,elimφ

n(A))

φ : F⨳ A : netpφn oφ tp★n r,s : I ψ : F⨳ a :
∏
i:I{r = s ∨ ψ} elimφ

n(A)
h : {φ}

{
elimφ

n(A)
∣∣  (r = s ∨ ψ) ↪→ ¶ ↪→ hcomr s;a

〈↑�
n〉A

, r = s ∨ ψ ↪→ a(s)
}

hcom[φ](A,r,s,ψ,a,h) :
{
elimφ

n(A)
∣∣  (φ ∨ r = s ∨ ψ) ↪→ ¶ ↪→ hcomr s;ψ

〈↑�
n〉A

a, φ ↪→ h, r = s ∨ ψ ↪→ a(s)
}

φ : I→ F⨳ A :
∏
i:Inetp

φ(i)
n oφ(i) tp★n r,s : I a : elimφ(r)

n (A(r))
c : {∀i.φ(i)}

{
elimφ(s)

n (A(s))
∣∣  (r = s) ↪→ ¶ ↪→ coer s〈↑�

n〉◦Aa, r = s ↪→ a
}

coe[φ](A,r,s,a,c) :
{
elimφ(s)

n (A(s))
∣∣  ((∀i.φ(i)) ∨ r = s) ↪→ ¶ ↪→ coer s〈↑�

n〉Aa,∀i.φ(i) ↪→ c, r = s ↪→ a
}

Using the above, we may define a computability structure for stabilized neutral types.

elim★n[φ] : {netp
φ
n oφ tp★n → tp★n |  φ ↪→ λA.A}

elim★n[φ](A).syn = A

elim★n[φ](A).ext = elimφ
n(A)

(7.3.4∗4) Kan computability structure.

elimn[φ] : {netp
φ
n oφ tpn → tpn |  φ ↪→ λA.A}

elimn[φ](A)⇐ extend elim★n[φ](A)

hcomr s;ψ
elimn[φ](A)

a = hcom[φ]
(
A,r,s,ψ,a,hcomr s;ψ

A a
)

coer s
λi.elimn[φ(i)](A(i))a = coe[φ]

(
A,r,s,a, coer sA a

)
In the definition of coercion above, we used the fact that universe levels are discrete

and so any line LI is constant. The boundary under φ is satisfied trivially given the
boundaries of the hcom/coe constructors.
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(7.3.4∗5) Normalization structure. We extend the Kan computability structure of stabilized
neutral types (7.3.4∗3) to a normalization structure.

elim⨳
n[φ] : {netp

φ
n oφ tp⨳n → tp⨳n |  φ ↪→ λA.A}

elim⨳
n[φ](A)⇐ extend elimn[φ](A)

 β≥ntp (elim⨳
n[φ](A)) = upαn[φ]

(
A.base,  βtpA

)

 ψ
elim⨳

n[φ](A)a = upA[ψ](a)

 elim⨳
n[φ](A)upA[ψ](a) = ũpn[φ,ψ](A.base, [a.base | φ ∧ ψ ↪→  Aa])

 elim⨳
n[φ](A)hcom[φ](A,r,s,ψ,a,h) = hcomn[φ](A.base,r,s,ψ, λi.  elim⨳

n[φ](A)a(i),  Ah)

 elim⨳
n[φ(s)](A)coe[φ](A,r,s,a,c) = coen[φ](λi.A.base(i), r,s,  elim⨳

n[φ(r)](A(r))a,  A(s)c)

§7.3.5. Universes

(7.3.5∗1) Computability structure. For each finite universe level n, we define a computability
structure for the universe Un.

U★n : {tp★n+1 | ¶ ↪→ Un}

U★n.syn = Un
U★n.ext = tp⨳n

(7.3.5∗2) Kan computability structure.

Un : {tpn+1 | ¶ ↪→ Un}

Un ⇐ extend U★n
hcomr s;φ

Un
A = 〈as in (6.4∗14)〉

coer s
λi.Un

A = A

(7.3.5∗3) Normalization structure. We extend the Kan computability structure of uni-
verses (7.3.5∗2) to a normalization structure, making use of (7.3.4∗5).

U⨳
n : {tp⨳n+1 | ¶ ↪→ Un}

U⨳
n ⇐ extend Un

 β≥n+1
tp U⨳

n = Un
β

 φ
U⨳
n
A = elim⨳

n[φ](A)

 U⨳
n
A =  ntpA
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§7.4. CLOSURE UNDER CONNECTIVES

§7.4.1. Dependent sum types

(7.4.1∗1) Kan computability structure. The underlying computability structure Σ★α of
dependent sums is inherited from (4.4.1∗3).

Σα :
{(∑

A:tpα(A→ tpα)
)
→ tpα

∣∣ ¶ ↪→ Σα
}

Σα(A,B)⇐ extend Σ★α(A,B)

hcomr s;φ
Σα(A,B)p = 〈as in (6.4∗4)〉

coer s
λi.Σα(A(i),B(i))p = 〈as in (6.4∗4)〉

(7.4.1∗2) Normalization structure.

Σ⨳
α :

{(∑
A:tp⨳α(A→ tp⨳α)

)
→ tp⨳α

∣∣ ¶ ↪→ Σα
}

Σ⨳
α(A,B)⇐ extend Σα(A,B)

 β≥αtp Σ⨳
α(A,B) = sgβ

(
 βtpA, λx.  

β
tpB

(  ‹
A[var(x) | ‹ ↪→ []]

))
 φ

Σ⨳
α(A,B)p = let (p1,p2) = split(p.base) in

let p̃1 =  φ
A[p1 | φ ↪→ p.1] in(

p̃1,

 φ
B(p̃1)[p2 | φ ↪→ p.2]

)
 Σ⨳

α(A,B)p = pair(  Ap.1,  B(p.1)p.2)

§7.4.2. Dependent product types

(7.4.2∗1) Kan computability structure. The underlying computability structure Π★α of
dependent sums is inherited from (4.4.1∗1).

Πα :
{(∑

A:tpα(A→ tpα)
)
→ tpα

∣∣ ¶ ↪→ Πα
}

Πα(A,B)⇐ extend Π★α(A,B)

hcomr s;φ
Πα(A,B)p = 〈as in (6.4∗4)〉

coer s
λi.Πα(A(i),B(i))p = 〈as in (6.4∗4)〉
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(7.4.2∗2) Normalization structure.

Π⨳
α :

{(∑
A:tp⨳α(A→ tp⨳α)

)
→ tp⨳α

∣∣ ¶ ↪→ Πα
}

Π⨳
α(A,B)⇐ extend Πα(A,B)

 β≥αtp Π⨳
α(A,B) = piβ

(
 βtpA, λx.  

β
tpB

(  ‹
A[var(x) | ‹ ↪→ []]

))

 φ
Π⨳

α(A,B)f = λx.  φB(x)[app(f.base,  Ax) | φ ↪→ f(x)]

 Π⨳
α(A,B)f = lam

(
λx.let x̃ =  ‹

A[var(x) | ‹ ↪→ []] in  B(x̃)f(x̃)
)

§7.4.3. Path types

(7.4.3∗1) Computability structure. We may define the computability structure of the path
type by realignment as follows:

path★α :
{(∑

A:I→tp★α
∏
i:I{∂⨳i}A(i)

)
→ tp★α

∣∣ ¶ ↪→ pathα
}

path★α(A,a).syn = path(A,a)
path★α(A,a).ext ∼=

∏
i:I{A(i) | ∂⨳i ↪→ a(i)}

In order to make the path type constructor commute with universe level lifts, we must
realign path★α(A,a) along the  

∨
n<α ∃A′.A = 〈↑αn〉

★ ◦A′ as in (4.4.3∗5).

(7.4.3∗2) Kan computability structure.

pathα :
{(∑

A:I→tpα
∏
i:I{∂⨳i}A(i)

)
→ tpα

∣∣ ¶ ↪→ pathα
}

pathα(A,a)⇐ extend path★α(A,a)

hcomr s;ψ
pathα(A,a)

p = 〈as in (6.4∗7)〉

coer s
λj.pathα(A(j),a(j))p = 〈as in (6.4∗7)〉

(7.4.3∗3) Normalization structure.

path⨳α :
{(∑

A:I→tp⨳α
∏
i:I{∂⨳i}A(i)

)
→ tp⨳α

∣∣ ¶ ↪→ pathα
}

path⨳α(A,a)⇐ extend pathα(A,a)

 β≥αtp path⨳α(A,a) = pathβ
(
λi.  βtpA(i), λi.  A(i)a(i)

)

 φ
path⨳α(A,a)

p = λi.  φt
⨳∂⨳i

path⨳α(A,a)
[papp(p.base,i) | φ t⨳ ∂⨳i ↪→ [φ ↪→ p(i), ∂⨳i ↪→ a(i)]]

 path⨳α(A,a)p = plam(λi.  A(i)p(i))
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§7.4.4. Glue types

(7.4.4∗1) For a token µ ∈ {?, ,†}, we will write Descµα for the following records:

record Descµα : {Vs(α) | ¶ ↪→ Descα} where
φ : F⨳

B : tpµα
A : {φ} tpµα
f : {φ}Equiv(A,B)

Given D : Desc★α we will write 〈↑βα〉★D : Desc★β for the following lifted gluing data:

(〈↑βα〉
★D).φ = D.φ

(〈↑βα〉
★D).B = 〈↑βα〉

★D.B
(〈↑βα〉

★D).A = 〈↑βα〉
★D.A

(〈↑βα〉
★D).f = f

(7.4.4∗2) Computability structure.

glue★α :
{∏

D:Desc★α{tp
★
n | D.φ ↪→ D.A}

∣∣ ¶ ↪→ glueα
}

glue★α(D).syn = glue★α(D)

glue★α(D).ext ∼=
∑
a:{D.φ}D.A{D.B | D.φ ↪→ D.f(a)}

The realignment above is taken with respect to  D.φ. As in (4.4.3∗5) and (7.4.3∗1)
we must realign once more at  

∨
n<α ∃D′.D = 〈↑αn〉

★ ◦D′.

(7.4.4∗3) Kan computability structure.

glueα :
{∏

D:Descα
{tpn | D.φ ↪→ D.A}

∣∣ ¶ ↪→ glueα
}

glueα(D)⇐ include glue★α(D)

hcomr s;ψ
glueα(D)

a = 〈as in (6.4∗13)〉

coer s
λi.glueα(D(i))a = 〈as in (6.4∗13)〉

(7.4.4∗4) Normalization structure.

glue⨳α :
{∏

D:Desc⨳α
{tp⨳n | D.φ ↪→ D.A}

∣∣ ¶ ↪→ glueα
}

glue⨳α(D)⇐ include glueα(D)

 β≥αtp glue⨳α(D) = glueα
(
φ,  βtpD.B,  βtpD.A,  Equiv(D.A,D.A)D.f

)

 ψ
glue⨳α(D)g = englue

[  ψt⨳φ
D.B

[
unglue(g.base)

∣∣ ψ t⨳ φ ↪→ [
φ ↪→ f

(  ψ
Ag

)
, ψ ↪→ unglue(g)

]] ∣∣ D.φ ↪→  ψ
D.Ag

]
 glue⨳α(D)g = englue(  Ag,  Bunglue(g))



164 CHAPTER 7. NORMALIZATION FOR CUBICAL TYPE THEORY

§7.4.5. The weak booleans

(7.4.5∗1) Computability structure. We first define bool : {U | ¶ ↪→ bool} to be the smallest
type aligned over the syntactic booleans closed under the following constructors:

tt : {bool | ¶ ↪→ tt}
ff : {bool | ¶ ↪→ ff}

upbool[φ] : Reflect[φ](bool,bool)
hcombool : HCom★(bool,bool)

Explicitly this can be done by defining an indexed inductive family of #-connected
types indexed in bool and taking a dependent sum; as we saw in earlier chapters, an
indexed inductive family of #-connected types is just a quotient-indexed inductive family
of ordinary types. For intuition, bool should be thought of as the type of values of boolean
type. We then define the computability structure of the booleans as follows:

bool★α : {tp★α | ¶ ↪→ boolα}

bool★α.syn = boolα
bool★α.ext = bool

(7.4.5∗2) Kan computability structure.

boolα : {tpα | ¶ ↪→ boolα}

boolα ⇐ extend bool★α
hcomr s;φ

boolα
b = hcombool(r,s,φ,b)

coer s
λ_.boolα

b = b

(7.4.5∗3) Normalization structure.

bool⨳α : {tp⨳α | ¶ ↪→ boolα}

bool⨳α ⇐ extend boolα
 β≥αtp bool⨳α = boolβ

 φ
bool⨳α

b = upbool[φ](b)

 bool⨳αtt = tt

 bool⨳αff = ff

 bool⨳αupbool[φ](b) = upbool[φ]([b.base | φ ↪→  bool⨳αb])

 bool⨳αhcombool(r,s,φ,b) = hcombool(r,s,φ,λi.  bool⨳αb(i))

(7.4.5∗4) Induction principle.
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{
ind⨳bool :

∏
C:bool⨳→tp⨳

∏
c0:C(tt)

∏
c1:C(ff)

∏
x:bool⨳C(x)

∣∣ ¶ ↪→ indbool
}

ind⨳bool(C,c0,c1,tt) = c0

ind⨳bool(C,c0,c1,ff) = c1

ind⨳bool(C,c0,c1,upbool[φ](b)) = let C(x) =  �tpC
(  ‹

bool⨳ [var(x) | ‹ ↪→ []]
)
in

let c0 =  C(tt)c0 in
let c1 =  C(ff)c1 in

 φ
C(upbool[φ](b))[indbool(C, c0, c1, b.base) | φ ↪→ ind⨳bool(C,c0,c1,b)]

ind⨳bool(C,c0,c1,hcombool(r,s,φ,b)) = comr s;φ
λj.C(hcomr j;φ

bool⨳
b)
λi.ind⨳bool(C,c0,c1,b(i))

§7.4.6. The circle

(7.4.6∗1) Computability structure. We define S1 : {U | ¶ ↪→ S1} to be the smallest type
aligned over the elements of the syntactic circle closed under the following constructors:

base : {S1 | ¶ ↪→ base}
loop :

∏
i:I{S1 |  ∂⨳i ↪→ [¶ ↪→ loop(i),∂⨳i ↪→ base]}

upS1 [φ] : Reflect[φ](S
1,S1)

hcomS1 : HCom★(S1,S1)

We may then define the computability structure of the circle as follows:

(S1α)
★ : {tp★α | ¶ ↪→ S1α}

(S1α)
★.syn = S1α

(S1α)
★.ext = S1

(7.4.6∗2) Kan Computability structure.

(S1α) : {tpα | ¶ ↪→ S1α}

(S1α) ⇐ extend (S1α)
★

hcomr s;φ
(S1α)

b = hcomS1(r,s,φ,b)

coer s
λ_.(S1α)

b = b
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(7.4.6∗3) Normalization structure.

(S1α)
⨳ : {tp⨳α | ¶ ↪→ S1α}

(S1α)
⨳ ⇐ extend (S1α)

 β≥αtp (S1α)
⨳ = S1

β

 φ
(S1α)⨳

b = upS1 [φ](b)

 (S1α)⨳base = base

 (S1α)⨳ loop(i) = loop(i)

 (S1α)⨳upS1 [φ](b) = upS1 [φ]([b.base | φ ↪→  (S1α)⨳b])

 (S1α)⨳hcomS1(r,s,φ,b) = hcomS1(r,s,φ,λi.  (S1α)⨳b(i))

(7.4.6∗4) Induction principle.

{
ind⨳S1 :

∏
C:(S1)⨳→tp⨳

∏
cb:C(base)

∏
cl:
∏

i:I
{C(loop(i))|∂i↪→cb}

∏
x:(S1)⨳C(x)

∣∣ ¶ ↪→ indS1
}

ind⨳S1(C,cb,cl,base) = cb

ind⨳S1(C,cb,cl,loop(i)) = cl(i)
ind⨳S1(C,cb,cl,upS1 [φ](b)) = let C(x) =  �tpC

(  ‹
(S1)⨳ [var(x) | ‹ ↪→ []]

)
in

let cb =  C(base)cb in
let cl(i) =  C(loop(i))cl(i) in

 φ
C(upS1 [φ](b))

[indS1(C, cb, cl, b.base) | φ ↪→ ind⨳S1(C,cb,cl,b)]

ind⨳S1(C,cb,cl,hcomS1(r,s,φ,b)) = comr s;φ
λj.C(hcomr j;φ

(S1)⨳
b)
λi.ind⨳S1(C,cb,cl,b(i))

§7.5. THE CUBICAL NORMALIZATION TOPOS

(7.5∗1) In this section, we construct a topos G satisfying all the assumptions of the
foregoing constructions.

§7.5.1. The cubical atomic figure shape

(7.5.1∗1) As in §5.5.1 we will define a notion of cubical atomic context, this time adding
context extensions by the interval.

Γ ctx  X presupposing X : T

1 ctx  1T

Γ ctx  X A : X tp
Γ.A ctx  

∑
x:Xtm(A(x))

Γ ctx  X
Γ.I ctx  X× I
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(7.5.1∗2) Atomic terms. For cubical type theory, an “atomic term” is either a term variable
or a dimension; the term variables are defined as in (5.5.1∗2):

Γ 
 a : A a presupposing


Γ ctx  X
A : X→ tp
a :

∏
x:Xtm(A(x))

top variable
Γ ctx  X A : X→ tp
Γ.A 
 qA : A ◦ π1  π2

pop variable
Γ ctx  X A,B : X→ tp
a :

∏
x:Xtm(A)(x) Γ 
 a : A a

Γ.B 
 pA(a) : A ◦ π1  a ◦ π1

The above extends pointwise to give a notion of simultaneous atomic substitutions:

∆ 
 γ : Γ y presupposing


∆ ctx  X
Γ ctx  Y
y : X→ Y

nil
∆ ctx  X

∆ 
 · : 1 !X

snoc
∆ ctx  X Γ ctx  Y
A : Y→ tp y : X→ Y a :

∏
x:Xtm(A(y(x)))

∆ 
 γ : Γ y ∆ 
 a : A ◦ y  a

∆ 
 γ.a : Γ.A (y,a)

dimension
∆ ctx  X Γ ctx  Y y : X→ Y
∆ 
 γ : Γ y r : X→ I

∆ 
 γ.r : Γ.I (y,r)

(7.5.1∗3) Cubical atomic figure shape. It is not difficult to see that (7.5.1∗1) and (7.5.1∗2)
give rise to a category A equipped with a functor α : A T into the syntactic
category of cubical type theory, just as in §5.5.1. Writing T and A for the quasi-affine
topoi T̂ and Â respectively, we then have a cubical atomic figure shape α : A T
given by the corresponding essential morphism of topoi.

(7.5.1∗4) The interval is preserved. The cubical atomic figure shape preserves the interval,
in the sense that we have α∗yT (I) ∼= yA (1.I).

Proof. This is established by computing naturally in Γ : A , by inversion on the inductive
definition of cubical atomic substitutions into any context of the form ∆.I from (7.5.1∗2).

HomPr(A )(yA (Γ),yA (1.I))
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∼= HomA (Γ,1.I)
∼= HomT (α (Γ),I)
∼= HomPr(T )(yT (α (Γ)),yT (I))
∼= HomPr(T )((α )!yA (Γ),yT (I))
∼= HomPr(A )(yA (Γ),α∗yT (I))

§7.5.2. The normalization topos and its open and closed subtopoi

(7.5.2∗1) Using the same construction as §5.5.3, we may define a suitable topos G by
considering the Artin gluing of the figure shape α : A T .

A

A × S

◦A

T

G

α

j

A
•A

i

As ever, we will write ¶ for the syntactic open that presents T as (G )¶, i.e. the
subterminal object in SetG that presents Pr(T ) as (SetG )/¶.

(7.5.2∗2) The syntactic algebra. The syntactic algebra M for cubical type theory in SetG
is obtained by pushing forward the generic model of cubical type theory from SetT along
the open immersion j : T G as follows:

T SetT

SetG

yT

j∗M

� (7.5.2∗3) Write I : SetG for the purely syntactic interval j∗yT (I) embedded into the
glued logos, and write 0,1 : I for its endpoints. It is not the case that ‹ is the initial
object in SetG , nor in SetT — this can be seen because ‹ is representable in Pr(T ).
On the other hand, we will observe that α∗‹ is the initial object of SetA and hence a
sheaf on G can fail to treat ‹ as false only in a syntactic way.

(7.5.2∗4) The restriction of ‹ over A is empty, i.e. we have α∗‹ = ⊥ : OA .
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Proof. Because A is presented by Â , it is enough to observe that HomT (α (Γ),‹) is
the empty set for all cubical atomic contexts Γ : A . To see that this holds, suppose to
the contrary that we have a term u : α (Γ) ‹ in cubical type theory for some Γ.

We may define a non-standard model of T in the category Set of Cartesian cubical
sets, in which the interval is interpreted by the generic strictly bipointed set and hence
J0K 6= J1K, and yet the interpretation of every atomic context Γ has a global point
tΓ : 1Set Jα (Γ)K. By composition with the interpretation of our assumption u, we
have a global point JuK ◦ tγ of J‹K and thence a contradiction. Such a model construction
is possible by defining JtpK to be the singleton cubical set, with JtmK(∗) a singleton as well.
The closure of this interpretation under the constructs of cubical type theory is immediate
for “negative” connectives; for “positive” types like the booleans and the circle, we observe
that the corresponding induction principles target only elements of types (singletons), and
hence are uniquely determined.

� (7.5.2∗5) Suppose that cubical type theory had types that strictly classified proofs of
arbitrary cofibrations; then (7.5.2∗4) would be refuted.

(7.5.2∗6) In the frame of opens OG , we have ‹ ≤ ¶.
Proof. It suffices to check that j∗‹ ≤ j∗¶ and i∗‹ ≤ i∗¶, but the former is immediate
because j∗¶ = > by definition. As for the restriction over A , we make use of our lemma
(7.5.2∗4) in the following computation:

i∗‹ = i∗j∗‹ = α∗‹ = ⊥

(7.5.2∗7) The interval I : SetG is tiny.

Proof. By the gluing lemma for tiny objects (2.5∗3) it suffices to check that both j∗I
and i∗I are tiny sheaves on T and A respectively. Because both T and A have
finite products, by (2.5∗2) it is enough to observe that both presheaves j∗I and i∗I are
represented by I : T and 1.I : A respectively, the latter following from (7.5.1∗4).

(7.5.2∗8) Computability structure of variables. The type of variables var(−) may be con-
structed exactly as in (5.5.3∗3).

§7.6. THE NORMALIZATION RESULT

§7.6.1. The normalization function

(7.6.1∗1) Preliminaries. Write M⨳ for the normalization algebra for T induced by the
foregoing constructions. In this section, we deduce the normalization theorem for cubical
type theory; we inherit from §5.6 the definitions of the constants depicted in Fig. 7.1.
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A

T

α

SetG

SetT

J−K

j∗

yT

M
⨳ SetG SetG

SetT

SetA

SetA

A(−)can

[J−K
,−]

j ∗

i∗

j∗

L−M

(α )!

yA

yA

i!

Figure 7.1: A summary of three functors used to implement the normalization function.

(7.6.1∗2) Reflection of atomic substitutions. The pointwise vertical natural transformation

 

atm : L−M J−K from (5.6.2∗3) can defined in the cubical setting as in the following way,
using the fact that variables have empty frontiers of instability:

 Γ
atm : LΓM JΓK

 1
atm(·) = ·

 Γ.A
atm(γ.a) =

(  Γ
atm(γ),

 ‹
M⨳(A)[var(a) | ‹ ↪→ []]

)

 Γ.I
atm(γ.r) = (  Γ

atm(γ), r)

(7.6.1∗3) For any sort T : T , we likewise have a vertical “evaluation” morphism evalT :
M(T) M⨳(T)can just as in (5.6.2∗6), and hence by composition with  

atm from (7.6.1∗2)
we obtain a vertical map J−KT : M(T) M⨳(T) taking syntax to computability data.
When it causes no ambiguity, we will write J−K for J−KT.

(7.6.1∗4) The normalization function. Using the above we may define a sound and complete
normalization function for types and terms exactly as in (5.6.3∗1):

tp tp⨳ nftp
J−Ktp  �tp

nbetp

tm tm⨳
∑

A:tpnf(A)
J−Ktm λ(A,a).(A,  Aa)

nbetm

Soundness and completeness follow immediately from the argument of (5.6.3∗2).
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§7.6.2. Idempotence of normalization

(7.6.2∗1) The purpose of this section is to show that the normalization function is
idempotent in the sense that normalizing the underlying term of a normal form yields
the same normal form. This can be achieved by showing that every normal form is
fixed or stationary with respect to normalization, which we verify by considering several
representative cases, sc. (7.6.2∗4) and (7.6.2∗8) through (7.6.2∗12).

(7.6.2∗2) Standard stabilization. Let a : neφ(A) be a neutral; in this section, we will write
⟪a⟫ for the stabilized neutral [a | φ ↪→ JaK] : neφ(A) oφ JAK.

(7.6.2∗3) We define what it means for a normal or neutral form to be stationary with
respect to normalization:

1) A neutral form a : neφ(A) is stationary when JaK =  φ
JAK⟪a⟫.

2) A normal form a : nf(A) is stationary when a = nbetm(A,a).
3) A normal form A : nftp is stationary when A = nbetp(A).

(7.6.2∗4) Variables are stationary. For any variable x : var(A), we have JxK =  ‹
JAK[var(x) |‹ ↪→ []]. In other words, variables in the normalization algebra are always interpreted by

the reflection.

Proof. Exactly as in (5.6.5∗2).

(7.6.2∗5) Let A : netpφn be a stationary neutral type; then JAK is the normalization
structure elim⨳

n[φ](⟪A⟫) of formal elimination trees.

Proof. By computation.

JAK =  φ
JUnK⟪A⟫ by assumption

=  φ
U⨳
n
⟪A⟫ unfolding

= elim⨳
n[φ](⟪A⟫) unfolding

(7.6.2∗6) Let A : netpφn be a stationary neutral type and let a : neψ(〈↑�n〉A) be a stationary
neutral element of A. Then the evaluation JaK is the formal elimination tree up⟪A⟫[ψ](⟪a⟫).

Proof. By computation.

JaK =  ψ
JAK⟪a⟫ assumption

=  ψ
elim⨳

n[φ](⟪A⟫)⟪a⟫ (7.6.2∗5)

= up⟪A⟫[ψ](⟪a⟫) unfolding
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(7.6.2∗7) Evalution of stuck coercions. Let A :
∏
i:Inetp

φ(i)
n be a line of neutral types,

let r,s : I be dimensions, and let a : nf(〈↑�n〉A(r)) be a normal form. Then we haveq
coer s〈↑�n〉◦A

a
y
= coe[φ]

(⟪A⟫,r,s,JaK,qcoer s〈↑�n〉◦A
a
y)
.

Proof. By computation:
q
coer s〈↑�n〉◦Aa

y

= coer sλi.JA(i)KJaK unfolding

= coer sλi.elim⨳
n[φ(i)](⟪A⟫(i))JaK (7.6.2∗5)

= coe[φ]
(⟪A⟫,r,s,JaK,coer sJAK JaK

)
unfolding

= coe[φ]
(⟪A⟫,r,s,JaK,qcoer s〈↑�n〉◦Aa

y)
folding

(7.6.2∗8) Elements of neutral types are stationary. Let A : netpφn be a neutral type and
let a : neψ(〈↑�n〉A) oφ∧ψ nf(〈↑�n〉A) be a stabilized neutral of type A. If A is stationary
and a.base is stationary and a.part is stationary under φ ∧ ψ, then ũpn[φ,ψ](A,a) is also
stationary.

Proof. We compute nbetm(A,ũpn[φ,ψ](A,a)).

nbetm(A,ũpn[φ,ψ](A,a))
= nbetm(A,a) syntactic boundary
=  JAKJaK unfolding

=  elim⨳
n[φ](⟪A⟫)up⟪A⟫(⟪a⟫) (7.6.2∗5) and (7.6.2∗6)

= ũpn[φ,ψ](⟪A⟫.base,[⟪a⟫.base | φ ∧ ψ ↪→  ⟪A⟫⟪a⟫]) unfolding (7.3.4∗5)
= ũpn[φ,ψ](A,[a | φ ∧ ψ ↪→  JAKJaK]) unfolding, φ ∧ ψ-boundary

= ũpn[φ,ψ](A,[a | φ ∧ ψ ↪→ nbetm(A,a)]) folding
= ũpn[φ,ψ](A,[a | φ ∧ ψ ↪→ a]) assumption
= ũpn[φ,ψ](A,a) η-contraction

(7.6.2∗9) Boundary-free type constructors are stationary. Let F = (A,B) : nffam be a
stationary family, in the sense that A is stationary and each B(x) is stationary. Then
pi�(F) is stationary in the same sense.

Proof. This follows by computation, fixing F = (A,B).

nbetp(pi�(A,B))
= nbetp(Π(A,B)) syntactic boundary
= pi�(nbetp(A),λx.nbetp(B(x))) unfolding (7.4.2∗2)
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= pi�(A,B) assumption

(7.6.2∗10) Type constructors with boundaries are stationary too. Fix ψ : F⨳, B : nftp,
A : {ψ} nftp, and f : {ψ} nf(Equiv(A,B)) such that B is stationary and A,f are stationary
under ψ. Then glue�(ψ,B,A,f) is stationary.

Proof. This follows in the same way as (7.6.2∗9).

nbetp(glue�(ψ,A,B,f))
= nbetp(glue [B | ψ ↪→ (A,f)]) syntactic boundary
= glue�(ψ, nbetp(B), nbetp(A), nbetm(Equiv(A,B), f)) unfolding (7.4.4∗4)
= glue�(ψ,B,A,f) assumption

(7.6.2∗11) Function application is stationary. Fix f : neφ(Π(A,B)) and a : nf(A) such that
f and a are both stationary. Then app(f,a) is stationary.

Proof. By computation.

Japp(f,a)K
= Jf(a)K syntactic boundary
= JfKJaK unfolding

=
(  φ

JΠ(A,B)K⟪f⟫
)
JaK assumption

=  φ
JBKJaK[app(f,  JAKJaK) | φ ↪→ JfKJaK] unfolding (7.4.2∗2)

=  φ
JB(a)K[app(f,nbetmA,a) | φ ↪→ Jf(a)K] folding

=  φ
JB(a)K[app(f,a) | φ ↪→ Jf(a)K] assumption

=  φ
JB(a)K[app(f,a) | φ ↪→ Japp(f,a)K] syntactic boundary

=  φ
JB(a)K⟪app(f,a)⟫ folding

(7.6.2∗12) Normal coercions are stationary. Fix the formation data of a stuck coercion:

φ : I→ F⨳ A :
∏
i:Inetp

φ(i)
n r,s : I a : nf(〈↑�n〉A(r))

c : {∀i.φ(i)}
{
nf(〈↑�n〉A(s))

∣∣  (r = s) ↪→
[
¶ ↪→ coer s〈↑�n〉◦Aa, r = s ↪→ a

]}
Assume in addition that each A(i) is stationary, a is stationary, and c is stationary

underneath ∀i.φ(i). Then the stuck coercion coen[φ](A,r,s,a,c) is also stationary.
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Proof. By computation:

nbetm(A(s),coen[φ](A,r,s,a,c))
= nbetm

(
A(s),coer s〈↑�

n〉◦Aa
)

syntactic boundary

=  JA(s)K
q
coer s〈↑�

n〉◦Aa
y

unfolding

=  elim⨳
n[φ(s)](⟪A⟫(s))coe[φ]

(⟪A⟫,r,s,JaK,qcoer s〈↑�
n〉◦Aa

y)
(7.6.2∗5), (7.6.2∗7)

= coen[φ]
(
A,r,s,  elim⨳

n[φ(r)](⟪A⟫(r))JaK,  JA(s)K
q
coer s〈↑�

n〉◦Aa
y)

unfolding (7.3.4∗5)
= coen[φ]

(
A,r,s, nbetm(A(r),JaK),  JA(s)K

q
coer s〈↑�

n〉◦Aa
y)

folding

= coen[φ]
(
A,r,s,a,  JA(s)K

q
coer s〈↑�

n〉◦Aa
y)

assumption

= coen[φ](A,r,s,a,  JA(s)Kc) syntactic boundary

= coen[φ](A,r,s,a, nbetm(A(s),c)) folding
= coen[φ](A,r,s,a,c) assumption

(7.6.2∗13) Idempotence. All normal forms of types, normal forms of terms, and neutral
forms of terms are stationary in the sense of (7.6.2∗3).

Proof. By simultaneous induction on normals and neutrals, for which lemmas (7.6.2∗4)
and (7.6.2∗8) through (7.6.2∗12) exhibit representative cases.

(7.6.2∗14) Normalization is an isomorphism. We conclude from (7.6.2∗13) that the nor-
malization functions for types and for terms are surjective, just as in (5.6.5∗4). The
normalization functions are already injective by soundness (7.6.1∗4), hence they are
isomorphisms as in (5.6.5∗5).

§7.7. RECURSION-THEORETIC RESULTS

(7.7∗1) Just as in §5.7, we can show that the normalization function is tracked by a
recursive function and that judgmental equality for cubical type theory is hence decidable.

(7.7∗2) The function nbetp is externally recursive. By (7.6.2∗14), the (external) set of
normal forms for a given type A : LΓM tp has exactly one element. Because this set
is also recursively enumerable, we have a terminating recursive function taking A to its
normal form nbeΓtp(A) : LΓM nftp.

(7.7∗3) Decidability of judgmental equality. It is effectively decidable whether two types
A,B : LΓM tp are equal, using the search algorithm (7.7∗2) to obtain normal forms of
A and B, and then comparing them. Equality of normal forms is externally decidable
because the quotienting is relative to boundaries tracked by cofibrations, and the theory
of cofibrations over the interval is externally decidable.
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In this dissertation, we have necessarily restricted our attention to the applications
of synthetic Tait computability to the syntactic metatheory of cubical dependent type
theory, culminating in our proof of normalization (Chapter 7). On the other hand, we
expect a deeper and more transformative marriage between synthetic Tait computability
and programming languages than can be seen from the vantage point of pure type theory.

This “new plan” for programming languages locates its point of departure in the phase
distinction, first conceptualized by Harper, Mitchell, and Moggi [HMM90] and Moggi
[Mog89] as an abstraction of the noninterference between static and dynamic code in
ML languages, and very recently identified by Sterling and Harper [SH21] with the Artin
gluing of open/closed partitions of generalized spaces. The contribution of op. cit. was to
observe that the relationship between syntax and semantics in logical relations arguments
has identical formal properties to the relationship between static and dynamic code, and
that several other widely appreciated PL constructs can be profitably expressed in the
same way. The purpose of this chapter is to set out an agenda for the next several years
of research into programming languages vis-à-vis the phase distinction.
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§8.1. TWO PHASE DISTINCTIONS FOR PROGRAM MODULES

§8.1.1. The static–dynamic phase distinction

(8.1.1∗1) The origins of synthetic Tait computability lie in the investigation by Sterling
and Harper [SH21] of the static–dynamic phase distinction for program modules in the
presence of weak structure sharing à la SML ’97 [Mil+97]. In ML-style module systems,
one has a distinction between the static part of a module (its type components) and the
dynamic part (its value or program components); our understanding of the static–dynamic
geometry of ML modules was facilitated by the following three observations:

1) The static part of a module is independent of its dynamic part.
2) The dynamic part of a module depends on its static part.
3) The static part of a module function space is again another function space.

The phase-splitting interpretation of modules by Harper, Mitchell, and Moggi [HMM90]
makes this relationship quite clear; every module signature splits into a dependent
sum [u : K ; T(u)] where ` K : kind is a classifier from the static sublanguage and
u : K ` T(u) : type is a dependent classifier from the dynamic sublanguage. A function
from [u : K ; T(u)] to [u : K′ ; T′(u)] splits into a pair of a static function f : K→ K′ and
a dynamic dependent function g :

∏
u:KT(u)→ T′(f(u)).

(8.1.1∗2) The phase distinction as Artin gluing. In the extreme case that the static and
dynamic sublanguages are the same language T , the phase-splitting interpretation of
modules is nothing more than the unary parametricity-translation of dependent type
theory, in which a type is interpreted as a family of types. Every type theory T then
can be equipped with a module language T → embedding two (static, dynamic) copies
of T that can be projected by means of the codomain and domain functors T → T
respectively.

More realistically, the static sublanguage may be a restriction of the dynamic sub-
language; then one expects an embedding ι : Tst Tdyn; reverse-engineering the phase-
splitting interpretation of modules, we obtain a new module language in the comma
category or Artin gluing M := {Tdyn} ↓ ι obtained like so:

M

Tst

static projection

T →
dyn

Tdyn

cod

ι

An object of the category of signatures and modulesM is given by an object K : Tst
together with an object T : (Tdyn)/ι(K); in type theoretic notation, this would be a static
classifier ` K : kind together with a dependent dynamic classifier u : ι(K) ` T(u) : type,
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just as before. A morphism (K,T) (K′,T′) is given by a morphism f : K K′ in Tst
together with a morphism T f∗T′ in the slice (Tdyn)/ι(K′), i.e. a dependent function
u : ι(K) ` T(u)→ T′(f(u)).

(8.1.1∗3) Static projection as weakening. Suppose that the dynamic sublanguage Tdyn has
an empty type ` ∅ : type satisfying the universal property of a strict initial object, i.e. the
slice (Tdyn)/∅ is equivalent to the terminal category. Then we can define a special module
§ :M with the remarkable property that Tst ' M/§ and that under this identification,
the static projection is simply the weakening functor §∗ :M M/§. This surprising
property means that in a syntactic calculus for ML modules we would be able to “extract”
the static part of any module by simply adding a variable u : § to the context; moreover,
the static equivalence Γ ` M ≡st N : S of Dreyer, Crary, and Harper [DCH03] can be
tested by checking the ordinary equivalence Γ,u : § ` M ≡ N : S in an extended context.

The special module §, which we call the static open, can be defined like so:

§ := [u : 1 ;∅] (static open)

It is not difficult to identify the slice M/§ with the static sublanguage Tst , because
the presence of the empty type in the dynamic component has the effect of trivializing
the dynamic components of any signature or module in its presence. For instance, we
immediately have Γ,u : § ` [u : K ; T(u)] ∼= [u : K ; 1] and therefore also also Γ,u : § `
[f ; g] ≡ [f ; g′] : [u : K ; T(u)].

(8.1.1∗4) The synthetic phase distinction. The reformulation of static projection in terms
of weakening by a special module (8.1.1∗3) has immediately profitable implications for
the design of languages that evince phase distinctions. Rather than working explicitly
with the (somewhat intricate) phase-splitting interpretation as we have above, we may
simply consider type theories T extended by an abstract type § that is proof-irrelevant in
the sense that x,y : § ` x ≡ y : §.

This abstract type § then generates a phase distinction in T . The static part of a type
T can be accessed synthetically as the function space #T := (§ → T), and the dynamic
part is the join  T := § ∨ T constructed as a quotient inductive type below:

data § ∨ T : type where
inl : § → § ∨ T
inr : T→ § ∨ T
glue :

∏
x:§,y:Tinl(x) ≡ inr(y)

Both #, are idempotent monadic modalities in T , with units η#(x) = λ_ : §.x and
η (x) = inr(x). The phase-splitting interpretation can be recovered in the synthetic setting
by the Artin’s fracture theorem [AGV72], which states that any type T is isomorphic to a
dependent sum built up from its static and dynamic parts:

T ∼=
∑
x:#T{y :  T | map (η#,y) ≡ #T η (x)} (fracture theorem)
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The fracture theorem is therefore a synthetic version of the phase-splitting interpre-
tation; it proves that nothing is lost by passing to the synthetic phase distinction. On
the other hand, something quite significant is gained by adopting the synthetic approach:
it becomes very obvious how to accommodate an entire lattice of distinct phase distinc-
tions simultaneously in a modular way without incurring a blow-up in complexity. A
major contribution of Sterling and Harper [SH21] was to overlay the syntactic–semantic
phase distinction atop the existing static–dynamic phase distinction in order to prove
representation independence results for ML modules.

§8.1.2. A phase distinction for Reynolds’ relational parametricity

(8.1.2∗1) In this dissertation we have mainly emphasized a phase distinction between
syntactic and semantic. A modification of this idea was employed by Sterling and Harper
[SH21] in which one has a notion of semantic part that depends not on a single syntactic
part, but on two of them! The resulting phase distinction captures the heterogeneous
binary logical relations that are typical of Reynolds’ relational parametricity [Rey83].

Rather than extending the type theory by a single abstract proposition ¶, we instead
add two disjoint propositions ¶L,¶R with ¶L ∧ ¶R = ⊥ signifying the “left” and “right”
copies of syntax respectively. Then the disjunction ¶LR := ¶L ∨ ¶R allows one to work
with both copies of the syntax simultaneously, and the corresponding fracture theorem
expresses the fact that every type is a semantic (proof-relevant) relation between its
left-syntactic and right-syntactic parts.

(8.1.2∗2) Building correspondences synthetically. We will write #qT := (¶q → T) and
 qT := ¶q ∨ T for the modalities corresponding to q ∈ {L,R,LR}. We furthermore have
subuniverses U/q and U\q classifying types for which the units η#q and η q respectively
are isomorphisms. Given a pair of types AL : U/L,AR : U/R and a (proof-relevant) relation
S : AL × AR → U\LR, we may piece together a single type S̃ : U such that #L(S̃ ∼= AL)
and #R(S̃ ∼= AR).

S̃ :=
∑
xL:AL,xR:AR

S(xL,xR)

(8.1.2∗3) A representation invariant for queues. Above we might think of AL,AR as two
different representations for an abstract type, with S a representation invariant. For
instance AL might be the type of list-queues and AR might be the type of batch-queues,
and S(xL,xR) would be defined to be the invariant that xL and xR represent the same
queue.

AL := ListQueue.t
AR := BatchQueue.t

S(xL,xR) := (xL = xR.1 @ rev(xR.2))
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Showing that S is a structure-respecting correspondence between implementations
of the queue abstract data type is as simple as defining a third queue implementation
ListBatchQueue where S̃ :=

∑
xL,xR

S(xL,xR) is the representation type, such that all queue
operations restrict under #L,#R to the ones given for AL,AR respectively.

(8.1.2∗4) Relational action of type constructors. The essence of Reynolds’ relational para-
metricity is that it provides a way to substitute a relation for a type in the interpretation,
i.e. every family of types or terms carries a relational action. In the synthetic setting,
the relational action is given by ordinary substitution; given a term X : U ` b(X) : B
and a relation (AL,AR,S) as above, the relational action of b(X) is nothing more than the
substitution instance b

(∑
xL,xR

S(xL,xR)
)
.

(8.1.2∗5) Observational equivalence of list and batch queues. Continuing from our exam-
ple (8.1.2∗3), we may deduce a representation independence theorem: if x : QUEUE `
b(x) : bool is a syntactic context, then we have b(ListQueue) = b(BatchQueue).

Proof. We consider the boolean b(ListBatchQueue) whose left-syntactic part is b(ListQueue)
and whose right-syntactic part is b(BatchQueue). But for any boolean, either both the
left and right syntactic parts are true or they are both false; therefore either b(ListQueue)
and b(BatchQueue) are both true or they are both false.

§8.2. TYPE REFINEMENTS AND PROGRAM EXTRACTION

(8.2∗1) What’s the difference between a refinement type and a subtype? Sometimes
conflated, these tools have very different semantics. In particular, it is not necessary that
a function {q : Q | q > 0} → {q : Q | q > 0} have a value at z = 0, whereas an element of
the refined function type [q : Q | q > 0]→ [q : Q | q > 0] carries within it the data of an
unrefined function Q→ Q that has the additional property of taking positive rationals
to positive rationals. Specializing the perspective of Melliès and Zeilberger [MZ15] of
functors as type refinement systems, we find that synthetic Tait computability also leads
to a modular and proof-relevant version of type refinements.

(8.2∗2) A phase distinction between program and specification. Consider the extension
of a type theory by a single abstract proposition ¶. Then it is possible to view the
modality # as isolating the program-level part of a construction, whereas the  isolates
the specification-level part of the construction. The fact that # A ∼= 1 corresponds to
the way that extracted programs are guaranteed not to contain any specification-level
data or proofs.

(8.2∗3) The refinement of positive rationals. We may define the positive refinement for
rationals using the modalities of synthetic Tait computability as the dependent sum∑
q:Q (q > 0) assuming that Q : U/¶ is the computational type of rational numbers.
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(8.2∗4) A general refinement type. Letting A : U/¶ be a computational type and B : A→
U\¶ be a family of specification-level types indexed in A, we can define the refinement
type [x : A | B(x)] as the

∑
x:AB(x). In fact, by realignment (3.3∗3) we may construct the

refinement type in such a way that the following equation holds judgmentally:

z : ¶ ` [x : A | B(x)] ≡ A (8.2∗4∗1)

Given a : A and b : B(a), we will write [a ; b] : [x : A | B(x)] for the corresponding
refined element. Given p : [x : A | B(x)], we note that we also have p : A from Eq. (8.2∗4∗1)
and the fact that A : U/¶; we will write p.spec : B(p) for the specification part of p.

(8.2∗5) The refinement relation. Eq. (8.2∗4∗1) suggests a definition of refinement. Let
P : U be an arbitrary type and let A : U/¶ be a computational type. We say that P refines
A, written P < A, when z : ¶ ` P ∼= A. In other words, the computational part of P is A.

(8.2∗6) Variance of subtyping and refinement. Another significant difference between
subtyping and refinement is that they obey very different laws concerning the function
type. The subtyping law for the function type is contravariant in the domain, whereas
the refinement law for the function type can be proved to be covariant in the domain
following our definition (8.2∗5):

A ≤ A′ B′ ≤ B
(A′ → B′) ≤ (A→ B)

A′ < A B′ < B
(A′ → B′) < (A→ B)

(8.2∗7) Extracting the underlying program. Let Q+ := [x : Q |  (x > 0)] < Q be the
refinement of positive rational numbers. We observe that any function f : Q+ → Q+

carries with it the data of function f# : Q→ Q:

Q #Q+ #Q+ Q
∼= #f ∼=

f#

We also have the following element witnessing that f# satisfies its specification:

f ′ :
∏
x:Q (x > 0)→  (f#(x) > 0)

f ′ := λx,p.(f [x ; p]).spec

(8.2∗8) Proof-relevance of refinements. In proof assistants like Nuprl and Coq [Con+86;
Coq16], squash/propositional truncation types ‖−‖ are used to control extraction, pre-
venting specification-level data from appearing in extracted programs. This has been used
to great effect in both Nuprl and Coq to extract efficient code from inefficient proofs. A
significant limitation of this approach is that in the absence of the axiom of choice, we will
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not usually be able to reconstruct a squashed function ‖A→ B‖ from an assumption like
A→ ‖B‖; therefore, using proof-irrelevance to hide things from extraction can in some
cases obstruct important specification-level constructions. The specificational modality
 provides a different and more practical way to hide data from extraction without
destroying it. If A : U is an arbitrary type and B : U\¶ is a specification-level type, we
have the following identifications:

(A→ B) ∼= (A→  B) ∼= ( A→  B) ∼=  (A→ B)

§8.3. INFORMATION-FLOW AND NONINTERFERENCE

(8.3∗1) Both the static–dynamic phase distinction (§8.1.1) and the syntactic–semantic
phase distinction (this dissertation) express a noninterference property: the (static,
syntactic) part of a function is independent of the (dynamic, semantic) part of its inputs;
to put it more directly, every function  A #B is constant. The noninterference between
the open and closed modalities suggests that one may profitably rephrase information flow
calculi such as Abadi, Banerjee, Heintze, and Riecke’s dependency core calculus [Aba+99]
in terms of a lattice of phase distinctions (open-closed partitions). Then the redaction of
information at a particular security level would correspond to a particular closed modality.

(8.3∗2) Let (L, v) be a lattice of “security levels”, where l v k means that l is a lower
security level than k. Any topos equipped with the structure of a filter on L can interpret
a modal type theory for information-flow validating standard non-interference properties.
A filter on L over a topos E is given by an upward-closed and downward-directed family of
opens [l] ∈ OE, in other words a finite meet-preserving homomorphism of lattices L OE.

(8.3∗3) Working abstractly with such a filter is the same as working concretely in the
presheaf category Pr(L), a consequence of Diaconescu’s theorem [Dia75].

(8.3∗4) Viewed from the perspective of the category of sheaves SetE, we can phrase the
structure of a filter in type theoretic language:1

security level
l ∈ L

[l] : Ω

upward-closed
l,k ∈ L l ≤ k

[l] ` [k]

nonempty

`
∨
l∈L[l]

bounded
l,k ∈ L

[l] ∧ [k] ` [l u k]

(8.3∗5) Consider the case of the lattice {low < med < high}. Then we have functions
#[high]A → #[low]A corresponding to the fact that low-security data is visible with a
high security clearance. On the other hand, the closed modalities may be used to
seal information behind a security clearance using the derived closed modality �lA :=
 (

∨
k<l

[k])A.
1 If L is totally ordered, then the bounded rule is redundant
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§8.3.1. A core calculus for dependency

(8.3.1∗1) Abadi, Banerjee, Heintze, and Riecke [Aba+99] introduced a variant of Moggi’s
computational λ-calculus [Mog91] equipped with a family of idempotent monadic modal-
ities Tl(A) indexed in security levels l ∈ L. Abadi, Banerjee, Heintze, and Riecke
incorporates an auxiliary form of judgment A protected @ l to mean that A is redacted
below security level l, i.e. the unit A Tl(A) is an isomorphism. The idempotence of
Abadi, Banerjee, Heintze, and Riecke’s modalities is seen in the following bind rule:

Γ ` M : Tl(A) Γ,x : A ` N(x) : B B protected @ l

Γ ` bind x← M in N(x) : B

(8.3.1∗2) We may interpret Abadi, Banerjee, Heintze, and Riecke’s A protected @ l

judgment in our setting as the assertion that A is
∨
k<l[k]-connected; then the modality

Tl(A) is interpreted as �lA from (8.3∗5). What’s more, the data that is visible from a
given security level k ∈ L may be extracted by considering the slice over [k], i.e. applying
the open modality #[k] := ([k]→ −). It is easy to see that if k < l, then #[k]�lA ∼= 1,
justifying our intuition for � as redaction.

§8.3.2. Adequacy of topo-logical semantics

(8.3.2∗1) Based on §8.3.1, we show that any topos equipped with a filter on L gives rise
to a sheaf model of the (total) dependency core calculus [Aba+99]. Let E be a topos, and
let [−] : L OE be a filter on L over E. Contexts and types are interpreted as sheaves
A : SetE; we say that such a sheaf is protected at level l ∈ L when the canonical map
A �lA is an isomorphism.

JboolK = 1+ 1
JA→ BK = JAK→ JBK
JTl(A)K = �lJAK

We observe by induction that if ` B protected @ l, then the sheaf JBK is �l-modal. The
interpretation of DCC’s terms is trivial, except that of the bind operator. We assume
morphisms JΓK �lJAK and JΓK× JAK JBK such that JBK is protected at level l, and
we must produce an element of JBK. But we have assumed that JBK ∼= �lJBK, so we may
employ the ordinary Kleisli extension from �l.

(8.3.2∗2) A filter model of DCC is a pair (E,[−]) where E is a topos and [−] : L OE is
a filter on L over E. We call a filter model consistent when E is not the empty topos, i.e.
SetE is not the terminal category.

(8.3.2∗3) Observational equivalence. Two closed terms · ` a, b : A are called observationally
equivalent, written a ' b, when for any x : A ` c(x) : Tl(bool) we have · ` c(a) = c(b).
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(8.3.2∗4) Canonicity. Let · ` a : Tl(bool) be a closed term; then either a = ret(tt) or
a = ret(ff).

Proof. Letting C be the syntactic category of DCC, we instantiate synthetic Tait com-
putability by using the initial point 0Ĉ : 1 Ĉ as a figure shape to glue along; by
adjointness, this is equivalent to forming the Sierpiński cone of Ĉ.

1

S

◦

Ĉ

G

0Ĉ Ĉ

Ĉ × S

Ĉ × •

1

G

!Ĉ

Then we may reproduce Ĉ as the open subtopos G¶ for some ¶ ∈ OG. The direct
image of the open immersion Ĉ G embeds the generic model of DCC into SetG. We
define a new model of DCC in the STC metalanguage of SetG that restricts to the generic
model on G¶ ' Ĉ. In defining the model, there are only two degrees of freedom: the
computability structure of the booleans and of the monad, which we interpret so as to
ensure that every closed computation of boolean type is pure and returns either tt or ff:

JboolK ∼=
∑
x:bool (x = tt+ x = ff)

JTl(A)K ∼=
∑
x:Tl(A) {a : JAK | #(x = ret(a))}

Under these interpretations, a closed term · ` a : Tl(bool) corresponds in the STC
model to a morphism 1 JTl(bool)K that restricts to a over Ĉ. Unfolding further, this is
exactly a witness that a ∈ {ret(tt),ret(ff)}.

(8.3.2∗5) Adequacy of filter models. Let (E,[−]) be a consistent filter model of DCC. Then
for any · ` a,b : A, we have a ' b if JaK = JbK.

Proof. Fix a level l ∈ L and x : A ` c(x) : Tl(bool); we need to show that c(a) = c(b).
Suppose to the contrary that c(a) 6= c(b); by (8.3.2∗4), we may assume c(a) = ret(tt) and
c(b) = ret(ff) without loss of generality. Therefore we have Jc(a)K = η�l(inl(∗)) and Jc(b)K =
η�l(inr(∗)). Letting U ∈ OE be the open

∨
k<l[k], we note that Jc(a)K 6= Jc(b)K because these

two elements restrict along the closed immersion E\U E to the two disjoint elements of
the coproduct (\U)∗�l(1+ 1) ∼= (\U)∗(\U)∗(\U)∗(1+ 1) ∼= (\U)∗(1+ 1) ∼= (1+ 1). From
our assumption, we have Jc(a)K = JcKJaK = JcKJbK = Jc(b)K, a contradiction.

(8.3.2∗6) Noninterference. Let x : Tl(A) ` e(x) : Tl′(B) such that l′ < l. Then for all
closed terms a, b : Tl(A), we have the observational equivalence e(a) ' e(b).
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Proof. Choose an arbitrary consistent filter model (E,[−]); for instance, one could choose
the classifying topos L̂ of L-filters and its generic filter yL. Letting U ∈ OE be the open∨
k<l[k], we have an open subtopos EU ⊆ E and by restriction a new filter [−]U : L OEU .

By (8.3.2∗5), it suffices to check that e(a) and e(b) have equal interpretations in the filter
model (EU,[−]U). We observe that JaK = JbK because JTl(A)K = �lJAK ∼= 1, observing that∨
k<l[k]U = > in OEU .



REFERENCES

[Aba+99] Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. “A
Core Calculus of Dependency”. In: Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’99. San
Antonio, Texas, USA: Association for Computing Machinery, 1999, pp. 147–
160. isbn: 1-58113-095-3. doi: 10.1145/292540.292555 (cit. on pp. 183,
184).

[Abe09] Andreas Abel. “Extensional normalization in the logical framework with proof
irrelevant equality”. In: 2009 Workshop on Normalization by Evaluation. 2009
(cit. on pp. 26, 106).

[Abe13] Andreas Abel. “Normalization by Evaluation: Dependent Types and Impred-
icativity”. Habilitation. Ludwig-Maximilians-Universität München, 2013. url:
http://www2.tcs.ifi.lmu.de/~abel/habil.pdf (cit. on pp. 26, 106).

[AAD07] Andreas Abel, Klaus Aehlig, and Peter Dybjer. “Normalization by Evaluation
for Martin-Löf Type Theory with One Universe”. In: Electronic Notes in
Theoretical Computer Science 173 (Apr. 2007), pp. 17–39. issn: 1571-0661.
doi: 10.1016/j.entcs.2007.02.025 (cit. on pp. 26, 106).

[ACP09] Andreas Abel, Thierry Coquand, and Miguel Pagano. “A Modular Type-
Checking Algorithm for Type Theory with Singleton Types and Proof Ir-
relevance”. In: Typed Lambda Calculi and Applications. Ed. by Pierre-Louis
Curien. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 5–19. isbn:
978-3-642-02273-9 (cit. on p. 26).

[AÖV17] Andreas Abel, Joakim Öhman, and Andrea Vezzosi. “Decidability of Con-
version for Type Theory in Type Theory”. In: Proceedings of the ACM on
Programming Languages 2 (Dec. 2017), 23:1–23:29. issn: 2475-1421. doi:
10.1145/3158111 (cit. on p. 32).

[AVW17] Andreas Abel, Andrea Vezzosi, and Theo Winterhalter. “Normalization by
Evaluation for Sized Dependent Types”. In: Proceedings of the ACM on
Programming Languages 1.ICFP (Aug. 2017), 33:1–33:30. issn: 2475-1421.
doi: 10.1145/3110277 (cit. on pp. 26, 106).

187

https://doi.org/10.1145/292540.292555
http://www2.tcs.ifi.lmu.de/~abel/habil.pdf
https://doi.org/10.1016/j.entcs.2007.02.025
https://doi.org/10.1145/3158111
https://doi.org/10.1145/3110277


188 REFERENCES

[Acz78] Peter Aczel. A General Church-Rosser Theorem. Technical Report. University
of Manchester, 1978 (cit. on p. 12).

[Ahm04] Amal Jamil Ahmed. “Semantics of Types for Mutable State”. PhD thesis.
Princeton University, 2004. url: http://www.cs.indiana.edu/~amal/
ahmedsthesis.pdf (cit. on p. 9).

[AMB13] Guillaume Allais, Conor McBride, and Pierre Boutillier. “New Equations for
Neutral Terms: A Sound and Complete Decision Procedure, Formalized”.
In: Proceedings of the 2013 ACM SIGPLAN Workshop on Dependently-
typed Programming. DTP ’13. Boston, Massachusetts, USA: Association
for Computing Machinery, 2013, pp. 13–24. isbn: 978-1-4503-2384-0. doi:
10.1145/2502409.2502411 (cit. on p. 106).

[Alt+01] T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. “Normalization by
Evaluation for Typed Lambda Calculus with Coproducts”. In: Proceedings of
the 16th Annual IEEE Symposium on Logic in Computer Science. Washington,
DC, USA: IEEE Computer Society, 2001. doi: 10.1109/LICS.2001.932506
(cit. on pp. 106, 146).

[ADK17] Thorsten Altenkirch, Nils Anders Danielsson, and Nicolai Kraus. “Partiality,
Revisited: The Partiality Monad as a Quotient Inductive-Inductive Type”.
In: Foundations of Software Science and Computation Structures. Ed. by
Javier Esparza and Andrzej S. Murawski. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2017, pp. 534–549. isbn: 978-3-662-54458-7. doi: 10.1007/978-
3-662-54458-7_31. arXiv: 1610.09254 [cs.LO] (cit. on p. 11).

[AHS95] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. “Categorical
reconstruction of a reduction free normalization proof”. In: Category Theory
and Computer Science. Ed. by David Pitt, David E. Rydeheard, and Peter
Johnstone. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 182–199.
isbn: 978-3-540-44661-3. doi: 10.1007/3-540-60164-3_27 (cit. on pp. 105,
108).

[AK16a] Thorsten Altenkirch and Ambrus Kaposi. “Normalisation by Evaluation for
Dependent Types”. In: 1st International Conference on Formal Structures for
Computation and Deduction (FSCD 2016). Ed. by Delia Kesner and Brigitte
Pientka. Vol. 52. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016,
6:1–6:16. isbn: 978-3-95977-010-1. doi: 10.4230/LIPIcs.FSCD.2016.6. url:
http://drops.dagstuhl.de/opus/volltexte/2016/5972 (cit. on pp. 15,
31).

http://www.cs.indiana.edu/~amal/ahmedsthesis.pdf
http://www.cs.indiana.edu/~amal/ahmedsthesis.pdf
https://doi.org/10.1145/2502409.2502411
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1007/978-3-662-54458-7_31
https://doi.org/10.1007/978-3-662-54458-7_31
https://arxiv.org/abs/1610.09254
https://doi.org/10.1007/3-540-60164-3_27
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
http://drops.dagstuhl.de/opus/volltexte/2016/5972


189

[AK16b] Thorsten Altenkirch and Ambrus Kaposi. “Type Theory in Type Theory
Using Quotient Inductive Types”. In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’16. St. Petersburg, FL, USA: Association for Computing Machinery,
2016, pp. 18–29. isbn: 978-1-4503-3549-2. doi: 10.1145/2837614.2837638
(cit. on pp. 13, 15).

[AJ21] Mathieu Anel and André Joyal. “Topo-logie”. In: New Spaces in Mathematics:
Formal and Conceptual Reflections. Ed. by Mathieu Anel and Gabriel Catren.
Vol. 1. Cambridge University Press, 2021. Chap. 4, pp. 155–257. doi: 10.
1017/9781108854429.007 (cit. on pp. 51, 52).

[AL20] Mathieu Anel and Damien Lejay. Exponentiable ∞-topoi. Draft, version
2. 2020. url: http://mathieu.anel.free.fr/mat/doc/Anel-Lejay-
Exponentiable-topoi.pdf (cit. on p. 64).

[Ang19] Carlo Angiuli. “Computational Semantics of Cartesian Cubical Type Theory”.
PhD thesis. Carnegie Mellon University, 2019 (cit. on pp. 30, 142, 143).

[Ang+19] Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Kuen-Bang Hou (Favo-
nia), Robert Harper, and Daniel R. Licata. Syntax and Models of Cartesian
Cubical Type Theory. Preprint. Feb. 2019. url: https://github.com/
dlicata335/cart-cube (cit. on pp. 25, 133, 137, 139, 140, 142).

[AH18] Carlo Angiuli and Robert Harper. “Meaning explanations at higher dimension”.
In: Indagationes Mathematicae 29.1 (2018). L.E.J. Brouwer, fifty years later,
pp. 135–149. issn: 0019-3577. doi: 10.1016/j.indag.2017.07.010 (cit. on
p. 5).

[AHH17] Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. Computational
Higher Type Theory III: Univalent Universes and Exact Equality. 2017. arXiv:
1712.01800 [cs.LO]. url: https://arxiv.org/abs/1712.01800 (cit. on
pp. 18, 26, 30, 142).

[AHH18] Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. “Cartesian
Cubical Computational Type Theory: Constructive Reasoning with Paths
and Equalities”. In: 27th EACSL Annual Conference on Computer Science
Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 6:1–6:17. isbn: 978-3-95977-
088-0. doi: 10.4230/LIPIcs.CSL.2018.6. url: http://drops.dagstuhl.
de/opus/volltexte/2018/9673 (cit. on pp. 20, 22, 25, 137, 140–142).

https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1017/9781108854429.007
https://doi.org/10.1017/9781108854429.007
http://mathieu.anel.free.fr/mat/doc/Anel-Lejay-Exponentiable-topoi.pdf
http://mathieu.anel.free.fr/mat/doc/Anel-Lejay-Exponentiable-topoi.pdf
https://github.com/dlicata335/cart-cube
https://github.com/dlicata335/cart-cube
https://doi.org/10.1016/j.indag.2017.07.010
https://arxiv.org/abs/1712.01800
https://arxiv.org/abs/1712.01800
https://doi.org/10.4230/LIPIcs.CSL.2018.6
http://drops.dagstuhl.de/opus/volltexte/2018/9673
http://drops.dagstuhl.de/opus/volltexte/2018/9673


190 REFERENCES

[AGV72] Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier. Théorie des
topos et cohomologie étale des schémas. Séminaire de Géométrie Algébrique du
Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J.-L.
Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat,
Lecture Notes in Mathematics, Vol. 269, 270, 305. Berlin: Springer-Verlag,
1972 (cit. on pp. 51, 57, 68, 69, 72, 100, 179).

[AM13] Robert Atkey and Conor McBride. “Productive Coprogramming with Guarded
Recursion”. In: Proceedings of the 18th ACM SIGPLAN International Confer-
ence on Functional Programming. Boston, Massachusetts, USA: Association
for Computing Machinery, 2013, pp. 197–208. isbn: 978-1-4503-2326-0. doi:
10.1145/2500365.2500597 (cit. on p. 62).

[Awo10] Steve Awodey. Category Theory. 2nd. New York, NY, USA: Oxford University
Press, Inc., 2010. isbn: 978-0-19-923718-0 (cit. on p. 3).

[Awo15] Steve Awodey. “Notes on cubical models of type theory”. 2015. url: http:
//www.github.com/awodey/math/blob/master/Cubical/cubical.pdf
(cit. on p. 133).

[Awo18] Steve Awodey. “Natural models of homotopy type theory”. In: Mathematical
Structures in Computer Science 28.2 (2018), pp. 241–286. doi: 10.1017/
S0960129516000268. arXiv: 1406.3219 [math.CT] (cit. on pp. 40, 41, 43).

[Awo21] Steve Awodey. “A Quillen model structure on the category of cartesian cubical
sets”. Unpublished notes. 2021. url: https://github.com/awodey/math/
blob/e8c715cc5cb6a966e736656bbe54d0483f9650fc/QMS/qms.pdf (cit. on
p. 71).

[AB00] Steve Awodey and Carsten Butz. “Topological Completeness for Higher-Order
Logic”. In: The Journal of Symbolic Logic 65.3 (2000), pp. 1168–1182. issn:
00224812. arXiv: math/9707206 [math.LO]. url: http://www.jstor.org/
stable/2586693 (cit. on p. 119).

[Bau06] Andrej Bauer. “First Steps in Synthetic Computability Theory”. In: Electronic
Notes in Theoretical Computer Science 155 (2006). Proceedings of the 21st
Annual Conference on Mathematical Foundations of Programming Semantics
(MFPS XXI), pp. 5–31. issn: 1571-0661. doi: 10.1016/j.entcs.2005.11.049
(cit. on p. 95).

[BBS04] Andrej Bauer, Lars Birkedal, and Dana S. Scott. “Equilogical spaces”. In:
Theoretical Computer Science 315.1 (2004). Mathematical Foundations of
Programming Semantics, pp. 35–59. issn: 0304-3975. doi: 10.1016/j.tcs.
2003.11.012 (cit. on p. 8).

https://doi.org/10.1145/2500365.2500597
http://www.github.com/awodey/math/blob/master/Cubical/cubical.pdf
http://www.github.com/awodey/math/blob/master/Cubical/cubical.pdf
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1017/S0960129516000268
https://arxiv.org/abs/1406.3219
https://github.com/awodey/math/blob/e8c715cc5cb6a966e736656bbe54d0483f9650fc/QMS/qms.pdf
https://github.com/awodey/math/blob/e8c715cc5cb6a966e736656bbe54d0483f9650fc/QMS/qms.pdf
https://arxiv.org/abs/math/9707206
http://www.jstor.org/stable/2586693
http://www.jstor.org/stable/2586693
https://doi.org/10.1016/j.entcs.2005.11.049
https://doi.org/10.1016/j.tcs.2003.11.012
https://doi.org/10.1016/j.tcs.2003.11.012


191

[BCH14] Marc Bezem, Thierry Coquand, and Simon Huber. “A Model of Type Theory
in Cubical Sets”. In: 19th International Conference on Types for Proofs
and Programs (TYPES 2013). Ed. by Ralph Matthes and Aleksy Schubert.
Vol. 26. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014, pp. 107–
128. isbn: 978-3-939897-72-9. doi: 10.4230/LIPIcs.TYPES.2013.107. url:
http://drops.dagstuhl.de/opus/volltexte/2014/4628 (cit. on p. 21).

[Bic16] Mark Bickford. Constructive analysis and experimental mathematics using
the Nuprl proof assistant. 2016. url: http://www.nuprl.org/documents/
Bickford/reals.pdf (cit. on p. 17).

[Bic18] Mark Bickford. Formalizing Category Theory and Presheaf Models of Type
Theory in Nuprl. 2018. arXiv: 1806.06114 [cs.LO] (cit. on p. 6).

[Bic] Mark Bickford. Bishop and Bridges, Constructive Analysis, Chapter 2. Nuprl
formalization of Chapter 2 of Constructive Analysis. url: http://www.nuprl.
org/MathLibrary/ConstructiveAnalysis/Constructive_Analysis_Ch2.
html (cit. on p. 17).

[Bir+16] Lars Birkedal, Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas
Spitters, and Andrea Vezzosi. “Guarded Cubical Type Theory: Path Equality
for Guarded Recursion”. In: 25th EACSL Annual Conference on Computer
Science Logic (CSL 2016). Ed. by Jean-Marc Talbot and Laurent Regnier.
Vol. 62. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, 23:1–
23:17. isbn: 978-3-95977-022-4. doi: 10.4230/LIPIcs.CSL.2016.23 (cit. on
pp. 9, 71, 74).

[Bir+11a] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian
Støvring. “First Steps in Synthetic Guarded Domain Theory: Step-Indexing in
the Topos of Trees”. In: Proceedings of the 2011 IEEE 26th Annual Symposium
on Logic in Computer Science. Washington, DC, USA: IEEE Computer Society,
2011, pp. 55–64. isbn: 978-0-7695-4412-0. doi: 10.1109/LICS.2011.16. arXiv:
1208.3596 [cs.LO] (cit. on pp. 9, 61, 95).

[Bir+11b] Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob
Thamsborg, and Hongseok Yang. “Step-Indexed Kripke Models over Recur-
sive Worlds”. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. Austin, Texas, USA:
Association for Computing Machinery, 2011, pp. 119–132. isbn: 978-1-4503-
0490-0. doi: 10.1145/1926385.1926401 (cit. on p. 9).

https://doi.org/10.4230/LIPIcs.TYPES.2013.107
http://drops.dagstuhl.de/opus/volltexte/2014/4628
http://www.nuprl.org/documents/Bickford/reals.pdf
http://www.nuprl.org/documents/Bickford/reals.pdf
https://arxiv.org/abs/1806.06114
http://www.nuprl.org/MathLibrary/ConstructiveAnalysis/Constructive_Analysis_Ch2.html
http://www.nuprl.org/MathLibrary/ConstructiveAnalysis/Constructive_Analysis_Ch2.html
http://www.nuprl.org/MathLibrary/ConstructiveAnalysis/Constructive_Analysis_Ch2.html
https://doi.org/10.4230/LIPIcs.CSL.2016.23
https://doi.org/10.1109/LICS.2011.16
https://arxiv.org/abs/1208.3596
https://doi.org/10.1145/1926385.1926401


192 REFERENCES

[BST10] Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. “Realisability se-
mantics of parametric polymorphism, general references and recursive types”.
In: Mathematical Structures in Computer Science 20.4 (2010), pp. 655–703.
doi: 10.1017/S0960129510000162 (cit. on p. 9).

[Bis67] Errett Bishop. Foundations of Constructive Analysis. New York: McGraw-Hill,
1967 (cit. on p. 18).

[Bis69] Errett Bishop. “A General Language”. Unpublished manuscript. 1969 (cit. on
p. 5).

[BB85] Errett Bishop and Douglas S. Bridges. Constructive Analysis. Springer-Verlag
Berlin Heidelberg, 1985. isbn: 978-3-642-64905-9. doi: 10.1007/978-3-642-
61667-9 (cit. on pp. 6, 16, 17).

[Biz16] Aleš Bizjak. “On semantics and applications of guarded recursion”. PhD thesis.
University of Aarhus, 2016 (cit. on p. 9).

[BBM14] Ales Bizjak, Lars Birkedal, and Marino Miculan. “A Model of Countable
Nondeterminism in Guarded Type Theory”. In: Rewriting and Typed Lambda
Calculi – Joint International Conference, RTA-TLCA 2014, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings. Ed. by Gilles Dowek. Vol. 8560. Lecture Notes in Computer
Science. Springer, 2014, pp. 108–123. isbn: 978-3-319-08917-1. doi: 10.1007/
978-3-319-08918-8_8 (cit. on p. 9).

[BB18] Aleš Bizjak and Lars Birkedal. “On Models of Higher-Order Separation Logic”.
In: Electronic Notes in Theoretical Computer Science 336 (2018), pp. 57–78.
doi: 10.1016/j.entcs.2018.03.016 (cit. on p. 9).

[Biz+16] Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus E. Møgelberg,
and Lars Birkedal. “Guarded Dependent Type Theory with Coinductive
Types”. In: Foundations of Software Science and Computation Structures: 19th
International Conference, FOSSACS 2016, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2–8, 2016, Proceedings. Ed. by Bart Jacobs and
Christof Löding. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 20–
35. isbn: 978-3-662-49630-5. doi: 10.1007/978-3-662-49630-5_2. arXiv:
1601.01586 [cs.LO] (cit. on p. 9).

[BM15] Aleš Bizjak and Rasmus Ejlers Møgelberg. “A Model of Guarded Recursion
With Clock Synchronisation”. In: Electronic Notes in Theoretical Computer
Science 319.C (Dec. 2015), pp. 83–101. issn: 1571-0661. doi: 10.1016/j.
entcs.2015.12.007 (cit. on pp. 9, 62).

https://doi.org/10.1017/S0960129510000162
https://doi.org/10.1007/978-3-642-61667-9
https://doi.org/10.1007/978-3-642-61667-9
https://doi.org/10.1007/978-3-319-08918-8_8
https://doi.org/10.1007/978-3-319-08918-8_8
https://doi.org/10.1016/j.entcs.2018.03.016
https://doi.org/10.1007/978-3-662-49630-5_2
https://arxiv.org/abs/1601.01586
https://doi.org/10.1016/j.entcs.2015.12.007
https://doi.org/10.1016/j.entcs.2015.12.007


193

[BM20] Aleš Bizjak and Rasmus Ejlers Møgelberg. “Denotational semantics for
guarded dependent type theory”. In: Mathematical Structures in Computer
Science 30.4 (2020), pp. 342–378. doi: 10.1017/S0960129520000080 (cit. on
pp. 9, 62–64).

[Ble17] Ingo Blechschmidt. “Using the internal language of toposes in algebraic
geometry”. PhD thesis. Universität Augsberg, 2017 (cit. on p. 95).

[Blu67] Manuel Blum. “On the size of machines”. In: Information and Control 11.3
(1967), pp. 257–265. issn: 0019-9958. doi: 10.1016/S0019-9958(67)90546-3
(cit. on p. 10).

[BC05] Ana Bove and Venanzio Capretta. “Modelling general recursion in type theory”.
In: Mathematical Structures in Computer Science 15.4 (2005), pp. 671–708.
doi: 10.1017/S0960129505004822 (cit. on pp. 10, 11).

[Bra05] Edwin Brady. “Practical Implementation of a Dependently Typed Functional
Programming Language”. PhD thesis. Durham University, 2005 (cit. on pp. 7,
11).

[Bra13] Edwin Brady. “Idris, a general-purpose dependently typed programming
language: Design and implementation”. In: Journal of Functional Programming
23.5 (Sept. 2013), pp. 552–593. doi: 10.1017/S095679681300018X (cit. on
pp. 7, 26).

[Bra21] Edwin Brady. “Idris 2: Quantitative Type Theory in Practice”. In: 35th Euro-
pean Conference on Object-Oriented Programming (ECOOP 2021). Ed. by
Anders Møller and Manu Sridharan. Vol. 194. Leibniz International Pro-
ceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021, 9:1–9:26. isbn: 978-3-95977-190-0. doi:
10.4230/LIPIcs.ECOOP.2021.9. url: https://drops.dagstuhl.de/opus/
volltexte/2021/14052 (cit. on p. 7).

[Bra+11] Edwin Brady, James Chapman, Pierre-Évariste Dagand, Adam Gundry, Conor
McBride, Peter Morris, Ulf Norell, and Nicolas Oury. An Epigram Implemen-
tation. Feb. 2011 (cit. on pp. 7, 26).

[BMM03] Edwin C. Brady, Conor McBride, and James McKinna. “Inductive Families
Need Not Store Their Indices”. In: Types for Proofs and Programs, Interna-
tional Workshop, TYPES 2003, Torino, Italy, April 30 - May 4, 2003, Revised
Selected Papers. Ed. by Stefano Berardi, Mario Coppo, and Ferruccio Damiani.
Vol. 3085. Lecture Notes in Computer Science. Springer, 2003, pp. 115–129.
doi: 10.1007/978-3-540-24849-1_8 (cit. on p. 11).

https://doi.org/10.1017/S0960129520000080
https://doi.org/10.1016/S0019-9958(67)90546-3
https://doi.org/10.1017/S0960129505004822
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://drops.dagstuhl.de/opus/volltexte/2021/14052
https://drops.dagstuhl.de/opus/volltexte/2021/14052
https://doi.org/10.1007/978-3-540-24849-1_8


194 REFERENCES

[BM17] Ulrik Buchholtz and Edward Morehouse. “Varieties of Cubical Sets”. In:
Relational and Algebraic Methods in Computer Science. Ed. by Peter Höfner,
Damien Pous, and Georg Struth. Cham: Springer International Publishing,
2017, pp. 77–92. isbn: 978-3-319-57418-9 (cit. on p. 133).

[BGS18] Marta Bunge, Felipe Gago, and Ana María San Luis. Synthetic Differential
Topology. London Mathematical Society Lecture Note Series. Cambridge
University Press, 2018. doi: 10.1017/9781108553490 (cit. on p. 95).

[BCM20] Kevin Buzzard, Johan Commelin, and Patrick Massot. “Formalising Perfectoid
Spaces”. In: Proceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs. New Orleans, LA, USA: Association for
Computing Machinery, 2020, pp. 299–312. isbn: 978-1-4503-7097-4. doi:
10.1145/3372885.3373830 (cit. on p. 6).

[Car78] John Cartmell. “Generalised Algebraic Theories and Contextual Categories”.
PhD thesis. Oxford University, Jan. 1978 (cit. on pp. 27, 28, 36).

[Car86] John Cartmell. “Generalised Algebraic Theories and Contextual Categories”.
In: Annals of Pure and Applied Logic 32 (1986), pp. 209–243. issn: 0168-0072
(cit. on p. 13).

[CCD17] Simon Castellan, Pierre Clairambault, and Peter Dybjer. “Undecidability of
Equality in the Free Locally Cartesian Closed Category (Extended version)”.
In: Logical Methods in Computer Science 13.4 (2017) (cit. on pp. 38, 85).

[Cav21] Evan Cavallo. “Higher Inductive Types and Internal Parametricity for Cubical
Type Theory”. PhD thesis. Carnegie Mellon University, 2021 (cit. on pp. 17,
18, 159).

[CH18] Evan Cavallo and Robert Harper. Computational Higher Type Theory IV:
Inductive Types. 2018. arXiv: 1801.01568 [cs.LO] (cit. on p. 18).

[CH19] Evan Cavallo and Robert Harper. “Higher Inductive Types in Cubical Compu-
tational Type Theory”. In: Proceedings of the ACM on Programming Languages
3.POPL (Jan. 2019), 1:1–1:27. issn: 2475-1421. doi: 10.1145/3290314 (cit.
on pp. 18, 159).

[CB16] David Christiansen and Edwin Brady. “Elaborator Reflection: Extending
Idris in Idris”. In: Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming. Nara, Japan: Association for Com-
puting Machinery, Sept. 2016, pp. 284–297. isbn: 978-1-4503-4219-3. doi:
10.1145/2951913.2951932 (cit. on p. 10).

[CGM11] Carl von Clausewitz, J. J. Graham, and Federic Nautusch Maude. On War.
Trans. by J. J. Graham. New & rev. ed. / with introduction and notes by
F.N. Maude. Kegan Paul, Trench, Trubner London, 1911 (cit. on p. 4).

https://doi.org/10.1017/9781108553490
https://doi.org/10.1145/3372885.3373830
https://arxiv.org/abs/1801.01568
https://doi.org/10.1145/3290314
https://doi.org/10.1145/2951913.2951932


195

[Clo+15] Ranald Clouston, Aleš Bizjak, Hans Bugge Grathwohl, and Lars Birkedal.
“Programming and Reasoning with Guarded Recursion for Coinductive Types”.
In: Foundations of Software Science and Computation Structures. Ed. by
Andrew Pitts. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 407–
421. isbn: 978-3-662-46678-0. doi: 10.1007/978-3-662-46678-0_26. arXiv:
1501.02925 [cs.PL] (cit. on p. 9).

[Coh+17] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. “Cubical
Type Theory: a constructive interpretation of the univalence axiom”. In:
IfCoLog Journal of Logics and their Applications 4.10 (Nov. 2017), pp. 3127–
3169. arXiv: 1611.02108 [cs.LO]. url: http://www.collegepublications.
co.uk/journals/ifcolog/?00019 (cit. on pp. 25, 77, 133, 140).

[Con+86] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer,
R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
J. T. Sasaki, and S. F. Smith. Implementing Mathematics with the Nuprl
Proof Development System. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
1986. isbn: 0-13-451832-2 (cit. on pp. 6, 53, 182).

[CS87] Robert L. Constable and Scott F. Smith. “Partial Objects In Constructive
Type Theory”. In: Proceedings of the Symposium on Logic in Computer Science
(LICS ’87), Ithaca, New York, USA, June 22-25, 1987. IEEE Computer
Society, 1987, pp. 183–193 (cit. on p. 8).

[CZ84] Robert L. Constable and Daniel R. Zlatin. “The Type Theory of PL/CV3”. In:
ACM Transactions on Programming Languages and Systems 6.1 (Jan. 1984),
pp. 94–117. issn: 0164-0925. doi: 10.1145/357233.357238 (cit. on p. 6).

[Coq16] The Coq Development Team. The Coq Proof Assistant Reference Manual.
2016 (cit. on pp. 7, 182).

[CMR17] T. Coquand, B. Mannaa, and F. Ruch. “Stack semantics of type theory”. In:
2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). June 2017, pp. 1–11. doi: 10.1109/LICS.2017.8005130 (cit. on
p. 76).

[Coq18] Thierry Coquand. Canonicity and normalisation for Dependent Type Theory.
Oct. 2018. arXiv: 1810.09367 [cs.PL]. url: https://arxiv.org/abs/
1810.09367 (cit. on pp. 30, 31).

[Coq19] Thierry Coquand. “Canonicity and normalization for dependent type theory”.
In: Theoretical Computer Science 777 (2019). In memory of Maurice Nivat, a
founding father of Theoretical Computer Science - Part I, pp. 184–191. issn:
0304-3975. doi: 10.1016/j.tcs.2019.01.015. arXiv: 1810.09367 [cs.PL]
(cit. on pp. 27, 31, 99, 105, 108, 143).

https://doi.org/10.1007/978-3-662-46678-0_26
https://arxiv.org/abs/1501.02925
https://arxiv.org/abs/1611.02108
http://www.collegepublications.co.uk/journals/ifcolog/?00019
http://www.collegepublications.co.uk/journals/ifcolog/?00019
https://doi.org/10.1145/357233.357238
https://doi.org/10.1109/LICS.2017.8005130
https://arxiv.org/abs/1810.09367
https://arxiv.org/abs/1810.09367
https://arxiv.org/abs/1810.09367
https://doi.org/10.1016/j.tcs.2019.01.015
https://arxiv.org/abs/1810.09367


196 REFERENCES

[CHS19] Thierry Coquand, Simon Huber, and Christian Sattler. “Homotopy canonicity
for cubical type theory”. In: 4th International Conference on Formal Structures
for Computation and Deduction (FSCD 2019). Ed. by Herman Geuvers.
Vol. 131. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. isbn:
978-3-95977-107-8 (cit. on pp. 31, 140).

[Cra98] Karl Crary. “Type-Theoretic Methodology for Practical Programming Lan-
guages”. PhD thesis. Ithaca, NY: Cornell University, Aug. 1998 (cit. on p. 8).

[CH09] Karl Crary and Robert Harper. Mechanized Definition of Standard ML (alpha
release). 2009. url: https://www.cs.cmu.edu/~crary/papers/2009/mldef-
alpha.tar.gz (cit. on pp. 12, 26, 33).

[Cro93] R. L. Crole. Categories for Types. Cambridge Mathematical Textbooks. New
York: Cambridge University Press, 1993. isbn: 978-0-521-45701-9 (cit. on
pp. 28, 87).

[de 70] N. G. de Bruijn. “The mathematical language AUTOMATH, its usage, and
some of its extensions”. In: Symposium on Automatic Demonstration. Ed. by
M. Laudet, D. Lacombe, L. Nolin, and M. Schützenberger. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1970, pp. 29–61. isbn: 978-3-540-36262-3 (cit. on
p. 5).

[DU21] Leonardo De Moura and Sebastian Ullrich. “The Lean 4 Theorem Prover and
Programming Language (System Description)”. To appear in the proceedings
of the 28th International Conference on Automated Deduction. 2021 (cit. on
p. 7).

[Dia75] Radu Diaconescu. “Change of base for toposes with generators”. In: Journal
of Pure and Applied Algebra 6.3 (1975), pp. 191–218. issn: 0022-4049. doi:
10.1016/0022-4049(75)90015-8 (cit. on pp. 55, 65, 66, 119, 183).

[DCH03] Derek Dreyer, Karl Crary, and Robert Harper. “A Type System for Higher-
Order Modules”. In: Proceedings of the 30th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. POPL ’03. New Orleans,
Louisiana, USA: Association for Computing Machinery, 2003, pp. 236–249.
isbn: 1-58113-628-5. doi: 10.1145/604131.604151 (cit. on p. 179).

[Dyb96] Peter Dybjer. “Internal type theory”. In: Types for Proofs and Programs:
International Workshop, TYPES ’95 Torino, Italy, June 5–8, 1995 Selected
Papers. Ed. by Stefano Berardi and Mario Coppo. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1996, pp. 120–134. isbn: 978-3-540-70722-6 (cit. on p. 40).

https://www.cs.cmu.edu/~crary/papers/2009/mldef-alpha.tar.gz
https://www.cs.cmu.edu/~crary/papers/2009/mldef-alpha.tar.gz
https://doi.org/10.1016/0022-4049(75)90015-8
https://doi.org/10.1145/604131.604151


197

[Fio02] Marcelo Fiore. “Semantic Analysis of Normalisation by Evaluation for Typed
Lambda Calculus”. In: Proceedings of the 4th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming. PPDP ’02.
Pittsburgh, PA, USA: Association for Computing Machinery, 2002, pp. 26–37.
isbn: 1-58113-528-9. doi: 10.1145/571157.571161 (cit. on pp. 27, 28, 30,
105, 126).

[FH10] Marcelo Fiore and Chung-Kil Hur. “Second-Order Equational Logic (Extended
Abstract)”. English. In: Computer Science Logic. Ed. by Anuj Dawar and
Helmut Veith. Vol. 6247. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2010, pp. 320–335. isbn: 978-3-642-15204-7 (cit. on pp. 27, 58).

[FM10] Marcelo Fiore and Ola Mahmoud. “Second-Order Algebraic Theories”. In:
Mathematical Foundations of Computer Science 2010: 35th International Sym-
posium, MFCS 2010, Brno, Czech Republic, August 23-27, 2010. Proceedings.
Ed. by Petr Hliněný and Antonín Kučera. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 368–380. isbn: 978-3-642-15155-2 (cit. on pp. 12, 27,
58).

[FPT99] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. “Abstract syntax and
variable binding”. In: Proceedings of the 14th Symposium on Logic in Computer
Science. 1999, pp. 193–202 (cit. on pp. 12, 58).

[FR97] Marcelo P. Fiore and Giuseppe Rosolini. “Two models of synthetic domain
theory”. In: Journal of Pure and Applied Algebra 116.1 (1997), pp. 151–162.
issn: 0022-4049. doi: 10.1016/S0022-4049(96)00164-8 (cit. on p. 7).

[Fre78] Peter Freyd. “On proving that 1 is an indecomposable projective in various
free categories”. Unpublished manuscript. 1978 (cit. on pp. 30, 68, 102).

[Fre+92] Peter Freyd, Philip Mulry, Giuseppe Rosolini, and Dana Scott. “Extensional
PERs”. In: Information and Computation 98.2 (June 1992), pp. 211–227. issn:
0890-5401. doi: 10.1016/0890-5401(92)90019-C (cit. on p. 7).

[Gac08] Andrew Gacek. “The Abella Interactive Theorem Prover (System Descrip-
tion)”. In: Proceedings of IJCAR 2008. Ed. by A. Armando, P. Baumgartner,
and G. Dowek. Vol. 5195. Lecture Notes in Artificial Intelligence. Springer,
Aug. 2008, pp. 154–161. arXiv: 0803.2305 [cs.LO] (cit. on p. 15).

[Gon08] G. Gonthier. “Formal Proof — The Four-Color Theorem”. In: Notices of
the AMS 55.11 (2008). url: https://www.ams.org/notices/200811/
tx081101382p.pdf (cit. on pp. 6, 16).

https://doi.org/10.1145/571157.571161
https://doi.org/10.1016/S0022-4049(96)00164-8
https://doi.org/10.1016/0890-5401(92)90019-C
https://arxiv.org/abs/0803.2305
https://www.ams.org/notices/200811/tx081101382p.pdf
https://www.ams.org/notices/200811/tx081101382p.pdf


198 REFERENCES

[Gon+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,
François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi
Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi, and
Laurent Théry. “A Machine-Checked Proof of the Odd Order Theorem”. In:
ITP 2013, 4th Conference on Interactive Theorem Proving. Ed. by Sandrine
Blazy, Christine Paulin, and David Pichardie. Vol. 7998. LNCS. Rennes,
France: Springer, July 2013, pp. 163–179. doi: 10.1007/978-3-642-39634-
2\_14. url: https://hal.inria.fr/hal-00816699 (cit. on pp. 6, 16).

[Gra21] Daniel Gratzer. Normalization for Multimodal Type Theory. 2021. arXiv:
2106.01414 [cs.LO] (cit. on p. 31).

[GSS21] Daniel Gratzer, Michael Shulman, and Jonathan Sterling. “Strict universes
for Grothendieck topoi”. In preparation. 2021 (cit. on pp. 71, 74, 76).

[GS20] Daniel Gratzer and Jonathan Sterling. Syntactic categories for dependent type
theory: sketching and adequacy. 2020. arXiv: 2012.10783 [cs.LO] (cit. on
pp. 13, 14, 29).

[GSB19a] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. “Implementing a Modal
Dependent Type Theory”. In: Proceedings of the ACM on Programming
Languages 3.ICFP (July 2019), 107:1–107:29. issn: 2475-1421. doi: 10.1145/
3341711 (cit. on pp. 26, 32, 106).

[GSB19b] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. Normalization by
Evaluation for Modal Dependent Type Theory. Technical report. July 2019.
url: http://www.jonmsterling.com/pdfs/modal-mltt-tr.pdf (cit. on
p. 32).

[Gro60] Alexander Grothendieck. “Éléments de géométrie algébrique : I. Le langage
des schémas”. fr. In: Publications Mathématiques de l’IHÉS 4 (1960), pp. 5–
228. url: http://www.numdam.org/item/PMIHES_1960__4__5_0 (cit. on
p. 54).

[Gro] The PRL Group. Constructive Algebra. Formalization of some constructive
algebra in Nuprl. url: http://www.nuprl.org/wip/Mathematics/constru
ctive!algebra/index.html (cit. on p. 17).

[Har16] Robert Harper. Practical Foundations for Programming Languages. Second.
New York, NY, USA: Cambridge University Press, 2016 (cit. on pp. 12, 22,
23, 87).

[Har21] Robert Harper. An Equational Logical Framework for Type Theories. 2021.
arXiv: 2106.01484 [math.LO] (cit. on pp. 13, 36).

https://doi.org/10.1007/978-3-642-39634-2\_14
https://doi.org/10.1007/978-3-642-39634-2\_14
https://hal.inria.fr/hal-00816699
https://arxiv.org/abs/2106.01414
https://arxiv.org/abs/2012.10783
https://doi.org/10.1145/3341711
https://doi.org/10.1145/3341711
http://www.jonmsterling.com/pdfs/modal-mltt-tr.pdf
http://www.numdam.org/item/PMIHES_1960__4__5_0
http://www.nuprl.org/wip/Mathematics/constructive!algebra/index.html
http://www.nuprl.org/wip/Mathematics/constructive!algebra/index.html
https://arxiv.org/abs/2106.01484


199

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. “A Framework for Defining
Logics”. In: Journal of the ACM 40.1 (Jan. 1993), pp. 143–184. issn: 0004-5411.
doi: 10.1145/138027.138060 (cit. on pp. 12, 28, 36).

[HL07] Robert Harper and Daniel R. Licata. “Mechanizing Metatheory in a Logical
Framework”. In: Journal of Functional Programming 17.4-5 (July 2007),
pp. 613–673. issn: 0956-7968. doi: 10.1017/S0956796807006430 (cit. on
pp. 36, 86).

[HMM90] Robert Harper, John C. Mitchell, and Eugenio Moggi. “Higher-Order Modules
and the Phase Distinction”. In: Proceedings of the 17th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. San Francisco,
California, USA: Association for Computing Machinery, 1990, pp. 341–354.
isbn: 0-89791-343-4. doi: 10.1145/96709.96744 (cit. on pp. 24, 177, 178).

[HP05] Robert Harper and Frank Pfenning. “On Equivalence and Canonical Forms
in the LF Type Theory”. In: ACM Transactions on Computational Logic 6.1
(Jan. 2005), pp. 61–101. issn: 1529-3785. doi: 10.1145/1042038.1042041
(cit. on pp. 13, 32).

[HS00] Robert Harper and Christopher Stone. “A Type-Theoretic Interpretation of
Standard ML”. In: Proof, Language, and Interaction. Ed. by Gordon Plotkin,
Colin Stirling, and Mads Tofte. Cambridge, MA, USA: MIT Press, 2000,
pp. 341–387. isbn: 0-262-16188-5. doi: 10.5555/345868.345906 (cit. on
pp. 26, 33).

[Heg69] Georg Wilhelm Friedrich Hegel. Science of Logic. Trans. by A. V. Miller.
London: Allen & Unwin, 1969 (cit. on p. 26).

[Hen50] Leon Henkin. “Completeness in the Theory of Types”. In: The Journal of
Symbolic Logic 15.2 (1950), pp. 81–91. issn: 00224812. doi: 10.2307/2266967.
url: http://www.jstor.org/stable/2266967 (cit. on p. 119).

[Hil91] David Hilbert. “Über the vollen Invariantensysteme”. In: Mathematische
Annalen 42 (3 1891), pp. 313–373. doi: 10.1007/BF01444162 (cit. on p. 54).

[HS98] Martin Hofmann and Thomas Streicher. “The groupoid interpretation of
type theory”. In: Twenty-five years of constructive type theory (Venice, 1995).
Vol. 36. Oxford Logic Guides. New York: Oxford Univ. Press, 1998, pp. 83–111.
doi: 10.1093/oso/9780198501275.001.0001 (cit. on p. 19).

[Hub18] Simon Huber. “Canonicity for Cubical Type Theory”. In: Journal of Automated
Reasoning (June 13, 2018). issn: 1573-0670. doi: 10.1007/s10817-018-9469-
1 (cit. on pp. 20, 22, 26, 30, 87, 140, 142, 143).

https://doi.org/10.1145/138027.138060
https://doi.org/10.1017/S0956796807006430
https://doi.org/10.1145/96709.96744
https://doi.org/10.1145/1042038.1042041
https://doi.org/10.5555/345868.345906
https://doi.org/10.2307/2266967
http://www.jstor.org/stable/2266967
https://doi.org/10.1007/BF01444162
https://doi.org/10.1093/oso/9780198501275.001.0001
https://doi.org/10.1007/s10817-018-9469-1
https://doi.org/10.1007/s10817-018-9469-1


200 REFERENCES

[Hyl91] J. M. E. Hyland. “First steps in synthetic domain theory”. In: Category
Theory. Ed. by Aurelio Carboni, Maria Cristina Pedicchio, and Guiseppe
Rosolini. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 131–156.
isbn: 978-3-540-46435-8 (cit. on pp. 7, 9, 95).

[Ike19] Mirai Ikebuchi. “A Lower Bound of the Number of Rewrite Rules Obtained by
Homological Methods”. In: 4th International Conference on Formal Structures
for Computation and Deduction (FSCD 2019). Ed. by Herman Geuvers.
Vol. 131. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 24:1–
24:17. isbn: 978-3-95977-107-8. doi: 10.4230/LIPIcs.FSCD.2019.24. url:
http://drops.dagstuhl.de/opus/volltexte/2019/10531 (cit. on p. 28).

[Jac99] Bart Jacobs. Categorical Logic and Type Theory. Studies in Logic and the
Foundations of Mathematics 141. Amsterdam: North Holland, 1999 (cit. on
p. 9).

[Joh82] Peter T. Johnstone. Stone Spaces. Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press, 1982. isbn: 978-0-521-33779-3 (cit. on
p. 54).

[Joh02] Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium:
Volumes 1 and 2. Oxford Logical Guides 43. Oxford Science Publications,
2002 (cit. on pp. 28, 51, 63, 65, 70).

[JT93] Achim Jung and Jerzy Tiuryn. “A new characterization of lambda definability”.
In: Typed Lambda Calculi and Applications. Ed. by Marc Bezem and Jan Friso
Groote. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 245–257.
isbn: 978-3-540-47586-6 (cit. on p. 87).

[Jun+18] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. “Iris from the ground up: A modular founda-
tion for higher-order concurrent separation logic”. In: Journal of Functional
Programming 28 (2018), e20. doi: 10.1017/S0956796818000151 (cit. on
p. 9).

[Jun+15] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon,
Lars Birkedal, and Derek Dreyer. “Iris: Monoids and Invariants As an Or-
thogonal Basis for Concurrent Reasoning”. In: POPL ’15: Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. Mumbai, India: Association for Computing Machinery,
2015, pp. 637–650. isbn: 978-1-4503-3300-9. doi: 10.1145/2676726.2676980
(cit. on p. 9).

[Kap17] Ambrus Kaposi. “Type theory in a type theory with quotient inductive types”.
PhD thesis. University of Nottingham, 2017 (cit. on p. 126).

https://doi.org/10.4230/LIPIcs.FSCD.2019.24
http://drops.dagstuhl.de/opus/volltexte/2019/10531
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980


201

[KHS19] Ambrus Kaposi, Simon Huber, and Christian Sattler. “Gluing for type theory”.
In: 4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019). Ed. by Herman Geuvers. Vol. 131. Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. isbn: 978-3-95977-107-8
(cit. on pp. 28, 31, 119).

[KL21] Chris Kapulkin and Peter LeFanu Lumsdaine. “The Simplicial Model of
Univalent Foundations (after Voevodsky)”. In: Journal of the European Math-
ematical Society 23 (6 Mar. 8, 2021), pp. 2071–2126. doi: 10.4171/JEMS/1050.
arXiv: 1211.2851 [math.LO] (cit. on pp. 71, 74).

[KS19] Chris Kapulkin and Christian Sattler. Homotopy canonicity of homotopy type
theory. Slides from a talk given at the International Conference on Homotopy
Type Theory (HoTT 2019). Aug. 2019. url: https://hott.github.io/HoTT-
2019/conf-slides/Sattler.pdf (cit. on p. 31).

[KBC19] Ariel Kellison, Mark Bickford, and Robert Constable. “Implementing Eu-
clid’s straightedge and compass constructions in type theory”. In: Annals
of Mathematics and Artificial Intelligence 85.2 (2019), pp. 175–192. doi:
10.1007/s10472-018-9603-0 (cit. on pp. 17, 18).

[Koc06] Anders Kock. Synthetic Differential Geometry. 2nd ed. London Mathematical
Society Lecture Note Series. Cambridge University Press, 2006. doi: 10.1017/
CBO9780511550812 (cit. on p. 95).

[Koc09] Anders Kock. Synthetic Geometry of Manifolds. Cambridge Tracts in Mathe-
matics. Cambridge University Press, 2009. doi: 10.1017/CBO9780511691690
(cit. on p. 95).

[Laf88] Yves Lafont. “Logiques, catégories & machines : implantation de langages
de programmation guidée par la logique catégorique”. PhD thesis. Université
Paris 7, 1988 (cit. on p. 14).

[LS86] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic.
New York, NY, USA: Cambridge University Press, 1986. isbn: 0-521-24665-2
(cit. on p. 16).

[Law63] F. William Lawvere. “Functorial Semantics of Algebraic Theories”. PhD thesis.
Columbia University, 1963 (cit. on pp. 27, 29, 35, 39, 57).

[Law94] F. William Lawvere. “Tools for the advancement of objective logic: closed
categories and toposes”. In: The logical foundations of cognition. Ed. by John
Macnamara and Gonzalo Reyes. 4. Oxford University Press on Demand, 1994
(cit. on p. 26).

https://doi.org/10.4171/JEMS/1050
https://arxiv.org/abs/1211.2851
https://hott.github.io/HoTT-2019/conf-slides/Sattler.pdf
https://hott.github.io/HoTT-2019/conf-slides/Sattler.pdf
https://doi.org/10.1007/s10472-018-9603-0
https://doi.org/10.1017/CBO9780511550812
https://doi.org/10.1017/CBO9780511550812
https://doi.org/10.1017/CBO9780511691690


202 REFERENCES

[LS09] F. William Lawvere and Stephen H. Schanuel. Conceptual Mathematics:
A First Introduction to Categories. 2nd. New York, NY, USA: Cambridge
University Press, 2009. isbn: 0-521-89485-9 (cit. on p. 26).

[LCH07] Daniel K. Lee, Karl Crary, and Robert Harper. “Towards a Mechanized
Metatheory of Standard ML”. In: Proceedings of the 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
Nice, France: Association for Computing Machinery, 2007, pp. 173–184. isbn:
1-59593-575-4. doi: 10.1145/1190216.1190245 (cit. on pp. 12, 33).

[LH12] Daniel R. Licata and Robert Harper. “Canonicity for 2-Dimensional Type The-
ory”. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. Philadelphia, PA, USA: Association
for Computing Machinery, 2012, pp. 337–348. isbn: 978-1-4503-1083-3. doi:
10.1145/2103656.2103697 (cit. on p. 26).

[Lic+18] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. “Internal Uni-
verses in Models of Homotopy Type Theory”. In: 3rd International Conference
on Formal Structures for Computation and Deduction, FSCD 2018, July 9-12,
2018, Oxford, UK. 2018, 22:1–22:17. doi: 10.4230/LIPIcs.FSCD.2018.22
(cit. on p. 156).

[Luo97] Zhaohui Luo. “Coercive subtyping in type theory”. In: Computer Science
Logic. Ed. by Dirk van Dalen and Marc Bezem. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1997, pp. 275–296. isbn: 978-3-540-69201-0 (cit. on p. 6).

[MM92] Saunders Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic: a first
introduction to topos theory. Universitext. New York: Springer, 1992. isbn:
0-387-97710-4 (cit. on pp. 51, 65).

[MN94] Lena Magnusson and Bengt Nordström. “The Alf proof editor and its proof
engine”. In: Types for Proofs and Programs. Ed. by Henk Barendregt and
Tobias Nipkow. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 213–
237. isbn: 978-3-540-48440-0 (cit. on p. 6).

[MM16] Philippe Malbos and Samuel Mimram. “Homological computations for term
rewriting systems”. In: 1st International Conference on Formal Structures
for Computation and Deduction (FSCD 2016). Ed. by Delia Kesner and
Brigitte Pientka. Vol. 52. Leibniz International Proceedings in Informatics
(LIPIcs). Porto, Portugal: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2016, 27:1–27:17. isbn: 978-3-95977-010-1. url: https://hal.archives-
ouvertes.fr/hal-01678175 (cit. on p. 28).

[Man16] Bassel Mannaa. “Sheaf Semantics in Constructive Algebra and Type Theory”.
PhD thesis. University of Gothenburg, 2016. url: https://gupea.ub.gu.
se/handle/2077/48250 (cit. on p. 76).

https://doi.org/10.1145/1190216.1190245
https://doi.org/10.1145/2103656.2103697
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://hal.archives-ouvertes.fr/hal-01678175
https://hal.archives-ouvertes.fr/hal-01678175
https://gupea.ub.gu.se/handle/2077/48250
https://gupea.ub.gu.se/handle/2077/48250


203

[Mar71] Per Martin-Löf. “A Theory of Types”. 1971 (cit. on p. 5).

[Mar75a] Per Martin-Löf. “About Models for Intuitionistic Type Theories and the
Notion of Definitional Equality”. In: Proceedings of the Third Scandinavian
Logic Symposium. Ed. by Stig Kanger. Vol. 82. Studies in Logic and the
Foundations of Mathematics. Elsevier, 1975, pp. 81–109 (cit. on p. 30).

[Mar75b] Per Martin-Löf. “An Intuitionistic Theory of Types: Predicative Part”. In:
Logic Colloquium ’73. Ed. by H. E. Rose and J. C. Shepherdson. Vol. 80.
Studies in Logic and the Foundations of Mathematics. Elsevier, 1975, pp. 73–
118. doi: 10.1016/S0049-237X(08)71945-1 (cit. on p. 5).

[Mar79] Per Martin-Löf. “Constructive Mathematics and Computer Programming”.
In: 6th International Congress for Logic, Methodology and Philosophy of
Science. Published by North Holland, Amsterdam. 1982. Hanover, Aug. 1979,
pp. 153–175 (cit. on pp. 6, 20).

[Mar84] Per Martin-Löf. Intuitionistic type theory. Notes by Giovanni Sambin. Vol. 1.
Studies in Proof Theory. Bibliopolis, 1984, pp. iv+91. isbn: 88-7088-105-9
(cit. on pp. 6, 12, 20).

[Mar87a] Per Martin-Löf. The Logic of Judgements. Workshop on General Logic, Labo-
ratory for Foundations of Computer Science. Feb. 22, 1987 (cit. on pp. 35,
36).

[Mar87b] Per Martin-Löf. “Truth of a Proposition, Evidence of a Judgement, Validity
of a Proof”. In: Synthese 73.3 (1987), pp. 407–420 (cit. on p. 35).

[Mar90] Per Martin-Löf. “Mathematics of infinity”. In: COLOG-88. Ed. by Per Martin-
Löf and Grigori Mints. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990,
pp. 146–197. isbn: 978-3-540-46963-6 (cit. on p. 10).

[Mar96] Per Martin-Löf. “On the meanings of the logical constants and the justifica-
tions of the logical laws”. In: Nordic Journal of Philosophical Logic 1.1 (1996),
pp. 11–60 (cit. on pp. 20, 35, 36).

[MMS21] Cristina Matache, Sean Moss, and Sam Staton. “Recursion and Sequentiality in
Categories of Sheaves”. In: 6th International Conference on Formal Structures
for Computation and Deduction (FSCD 2021). Ed. by Naoki Kobayashi.
Vol. 195. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 25:1–
25:22. isbn: 978-3-95977-191-7. doi: 10.4230/LIPIcs.FSCD.2021.25. url:
https://drops.dagstuhl.de/opus/volltexte/2021/14263 (cit. on p. 8).

[McB99] Conor McBride. “Dependently typed functional programs and their proofs”.
PhD thesis. University of Edinburgh, 1999 (cit. on pp. 7, 26).

https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.4230/LIPIcs.FSCD.2021.25
https://drops.dagstuhl.de/opus/volltexte/2021/14263


204 REFERENCES

[McB12] Conor McBride. “Totality versus Turing Completeness?” Unpublished note.
2012. url: https://personal.cis.strath.ac.uk/conor.mcbride/pub/
Totality.pdf (cit. on p. 11).

[MM04] Conor McBride and James McKinna. “The View from the Left”. In: Journal
of Functional Programming 14.1 (Jan. 2004), pp. 69–111. issn: 0956-7968.
doi: 10.1017/S0956796803004829 (cit. on p. 7).

[MZ15] Paul-André Melliès and Noam Zeilberger. “Functors are Type Refinement
Systems”. In: POPL ’15: Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. Mumbai,
India: Association for Computing Machinery, 2015. isbn: 978-1-4503-3300-9.
url: https://hal.inria.fr/hal-01096910 (cit. on p. 181).

[Mil+97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Defi-
nition of Standard ML (Revised). MIT Press, 1997 (cit. on pp. 26, 178).

[MS93] John C. Mitchell and Andre Scedrov. “Notes on sconing and relators”. In:
Computer Science Logic. Ed. by E. Börger, G. Jäger, H. Kleine Büning, S.
Martini, and M. M. Richter. Berlin, Heidelberg: Springer Berlin Heidelberg,
1993, pp. 352–378. isbn: 978-3-540-47890-4 (cit. on p. 28).

[MP16] Rasmus Ejlers Møgelberg and Marco Paviotti. “Denotational Semantics of
Recursive Types in Synthetic Guarded Domain Theory”. In: Proceedings of
the 31st Annual ACM/IEEE Symposium on Logic in Computer Science. New
York, NY, USA: Association for Computing Machinery, 2016, pp. 317–326.
isbn: 978-1-4503-4391-6. doi: 10.1145/2933575.2934516 (cit. on p. 9).

[MV19] Rasmus Ejlers Møgelberg and Niccolò Veltri. “Bisimulation as Path Type
for Guarded Recursive Types”. In: Proceedings of the ACM on Programming
Languages 3.POPL (Jan. 2019). doi: 10.1145/3290317 (cit. on p. 9).

[MV21] Rasmus Ejlers Møgelberg and Andrea Vezzosi. “Two Guarded Recursive
Powerdomains for Applicative Simulation”. In: MFPS37: 37th Conference on
Mathematical Foundations of Programming Semantics. 2021 (cit. on p. 9).

[Mog89] Eugenio Moggi. “A Category-Theoretic Account of Program Modules”. In:
Category Theory and Computer Science. Berlin, Heidelberg: Springer-Verlag,
1989, pp. 101–117. isbn: 3-540-51662-X (cit. on p. 177).

[Mog91] Eugenio Moggi. “Notions of computation and monads”. In: Information and
Computation 93.1 (1991). Selections from 1989 IEEE Symposium on Logic in
Computer Science, pp. 55–92. issn: 0890-5401. doi: 10.1016/0890-5401(91)
90052-4 (cit. on p. 184).

https://personal.cis.strath.ac.uk/conor.mcbride/pub/Totality.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/pub/Totality.pdf
https://doi.org/10.1017/S0956796803004829
https://hal.inria.fr/hal-01096910
https://doi.org/10.1145/2933575.2934516
https://doi.org/10.1145/3290317
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4


205

[Mou+15] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and
Jakob von Raumer. “The Lean Theorem Prover (System Description)”. In:
Automated Deduction - CADE-25: 25th International Conference on Auto-
mated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings. Ed. by
Amy P. Felty and Aart Middeldorp. Cham: Springer International Publishing,
2015, pp. 378–388. isbn: 978-3-319-21401-6 (cit. on p. 7).

[New18] Clive Newstead. “Algebraic Models of Dependent Type Theory”. PhD thesis.
Carnegie Mellon University, 2018. arXiv: 2103.06155 [math.CT] (cit. on
p. 119).

[Niu+21] Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper. A cost-
aware logical framework. Conditionally accepted to POPL ’22. 2021. arXiv:
2107.04663 [cs.PL] (cit. on p. 11).

[Nog02] Aleksey Nogin. “Quotient Types: A Modular Approach”. In: Theorem Prov-
ing in Higher Order Logics, 15th International Conference, TPHOLs 2002,
Hampton, VA, USA, August 20-23, 2002, Proceedings. Ed. by Victor Carreño,
César A. Muñoz, and Sofiène Tahar. Vol. 2410. Lecture Notes in Computer
Science. Springer, 2002, pp. 263–280. doi: 10.1007/3-540-45685-6\_18
(cit. on p. 17).

[Nor88] Bengt Nordström. “Terminating general recursion”. In: BIT Numerical Math-
ematics 28.3 (1988), pp. 605–619. doi: 10.1007/BF01941137 (cit. on p. 10).

[NPS90] Bengt Nordström, Kent Peterson, and Jan M. Smith. Programming in Martin-
Löf’s Type Theory. Vol. 7. International Series of Monographs on Computer
Science. NY: Oxford University Press, 1990 (cit. on pp. 13, 36).

[Nor09] Ulf Norell. “Dependently Typed Programming in Agda”. In: Proceedings of the
4th International Workshop on Types in Language Design and Implementation.
TLDI ’09. Savannah, GA, USA: Association for Computing Machinery, 2009,
pp. 1–2. isbn: 978-1-60558-420-1 (cit. on p. 6).

[OP16] Ian Orton and Andrew M. Pitts. “Axioms for Modelling Cubical Type Theory
in a Topos”. In: 25th EACSL Annual Conference on Computer Science Logic
(CSL 2016). Ed. by Jean-Marc Talbot and Laurent Regnier. Vol. 62. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, 24:1–24:19. isbn: 978-3-
95977-022-4. doi: 10.4230/LIPIcs.CSL.2016.24 (cit. on pp. 71, 74, 77).

[PV07] E. Palmgren and S. J. Vickers. “Partial Horn logic and cartesian categories”. In:
Annals of Pure and Applied Logic 145.3 (2007), pp. 314–353. issn: 0168-0072.
doi: 10.1016/j.apal.2006.10.001 (cit. on p. 27).

https://arxiv.org/abs/2103.06155
https://arxiv.org/abs/2107.04663
https://doi.org/10.1007/3-540-45685-6\_18
https://doi.org/10.1007/BF01941137
https://doi.org/10.4230/LIPIcs.CSL.2016.24
https://doi.org/10.1016/j.apal.2006.10.001


206 REFERENCES

[Pal93] Erik Palmgren. “A note on Mathematics of infinity”. In: Journal of Symbolic
Logic 58.4 (1993), pp. 1195–1200. doi: 10.2307/2275138 (cit. on p. 10).

[Pav16] Marco Paviotti. “Denotational semantics in Synthetic Guarded Domain The-
ory”. English. PhD thesis. Denmark: IT-Universitetet i København, 2016.
isbn: 978-87-7949-345-2 (cit. on p. 9).

[PMB15] Marco Paviotti, Rasmus Ejlers Møgelberg, and Lars Birkedal. “A Model of
PCF in Guarded Type Theory”. In: Electronic Notes in Theoretical Computer
Science 319.Supplement C (2015). The 31st Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXXI)., pp. 333–349. issn:
1571-0661. doi: 10.1016/j.entcs.2015.12.020 (cit. on p. 9).

[Péd21] Pierre-Marie Pédrot. Debunking Sheaves. Feb. 8, 2021. url: https://www.xn–
pdrot-bsa.fr/drafts/sheaftt.pdf (cit. on p. 76).

[PS99] Frank Pfenning and Carsten Schürmann. “System Description: Twelf — A
Meta-Logical Framework for Deductive Systems”. In: Automated Deduction —
CADE-16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 202–206.
isbn: 978-3-540-48660-2 (cit. on p. 15).

[Pho91] Wesley Phoa. “Domain Theory in Realizability Toposes”. PhD thesis. Univer-
sity of Edinburgh, July 1991 (cit. on pp. 7, 9).

[PD10] Brigitte Pientka and Jana Dunfield. “Beluga: A Framework for Programming
and Reasoning with Deductive Systems (System Description)”. In: Auto-
mated Reasoning. Ed. by Jürgen Giesl and Reiner Hähnle. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 15–21. isbn: 978-3-642-14203-1 (cit. on
p. 15).

[Reu95] Bernhard Reus. “Program Verification in Synthetic Domain Theory”. PhD
thesis. München: Ludwig-Maximilians-Universität München, Nov. 1995 (cit.
on p. 7).

[Reu96] Bernhard Reus. “Synthetic domain theory in type theory: Another logic of
computable functions”. In: Theorem Proving in Higher Order Logics. Ed. by
Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Joakim von Wright, Jim
Grundy, and John Harrison. Berlin, Heidelberg: Springer Berlin Heidelberg,
1996, pp. 363–380. isbn: 978-3-540-70641-0. doi: 10.1007/BFb0105416 (cit.
on p. 7).

[Reu99] Bernhard Reus. “Formalizing Synthetic Domain Theory”. In: Journal of
Automated Reasoning 23.3 (1999), pp. 411–444. doi: 10.1023/A:1006258506
401 (cit. on p. 7).

[RS93] Bernhard Reus and Thomas Streicher. “Naïve Synthetic Domain Theory —
A Logical Approach”. Unpublished draft. Sept. 1993 (cit. on p. 7).

https://doi.org/10.2307/2275138
https://doi.org/10.1016/j.entcs.2015.12.020
https://www.xn--pdrot-bsa.fr/drafts/sheaftt.pdf
https://www.xn--pdrot-bsa.fr/drafts/sheaftt.pdf
https://doi.org/10.1007/BFb0105416
https://doi.org/10.1023/A:1006258506401
https://doi.org/10.1023/A:1006258506401


207

[RS99] Bernhard Reus and Thomas Streicher. “General synthetic domain theory —
a logical approach”. In: Mathematical Structures in Computer Science 9.2
(1999), pp. 177–223. doi: 10.1017/S096012959900273X (cit. on p. 7).

[Rey80] John C. Reynolds. “Using category theory to design implicit conversions and
generic operators”. In: Semantics-Directed Compiler Generation. Ed. by Neil
D. Jones. Berlin, Heidelberg: Springer Berlin Heidelberg, 1980, pp. 211–258.
isbn: 978-3-540-38339-0 (cit. on p. 6).

[Rey83] John C. Reynolds. “Types, Abstraction, and Parametric Polymorphism”. In:
Information Processing. 1983 (cit. on p. 180).

[RS17] Emily Riehl and Michael Shulman. “A type theory for synthetic∞-categories”.
In: Higher Structures 1 (1 2017), pp. 147–224. arXiv: 1705.07442 [math.CT].
url: https://journals.mq.edu.au/index.php/higher_structures/
article/view/36 (cit. on p. 77).

[RSS20] Egbert Rijke, Michael Shulman, and Bas Spitters. “Modalities in homotopy
type theory”. In: Logical Methods in Computer Science Volume 16, Issue 1 (Jan.
2020). doi: 10.23638/LMCS-16(1:2)2020. arXiv: 1706.07526 [math.CT].
url: https://lmcs.episciences.org/6015 (cit. on p. 78).

[Ros86] Guiseppe Rosolini. “Continuity and effectiveness in topoi”. PhD thesis. Uni-
versity of Oxford, 1986 (cit. on p. 7).

[Sch00] Stephen H. Schanuel. “Objective number theory and the retract chain condi-
tion”. In: Journal of Pure and Applied Algebra 154.1 (2000). Category Theory
and its Applications, pp. 295–298. issn: 0022-4049. doi: 10.1016/S0022-
4049(99)00185-1 (cit. on p. 26).

[Sch87] Peter Schroeder-Heister. “Structural Frameworks with Higher-level Rules:
Philosophical Investigations on the Foundations of Formal Reasoning”. Habil-
itation. Fachgruppe Philosophie, Universität Konstanz, 1987 (cit. on p. 36).

[Sch50] Kurt Schütte. “Beweistheoretische Erfassung der unendlichen Induktion in
der Zahlentheorie”. In: Mathematische Annalen 122.5 (1950), pp. 369–389.
doi: 10.1007/BF01342849 (cit. on p. 106).

[Sco70] Dana Scott. “Constructive validity”. In: Symposium on Automatic Demon-
stration. Ed. by M. Laudet, D. Lacombe, L. Nolin, and M. Schützenberger.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1970, pp. 237–275. isbn: 978-
3-540-36262-3 (cit. on p. 5).

[Shu15a] Michael Shulman. “The Univalence Axiom for Elegant Reedy Presheaves”.
In: Homology, Homotopy and Applications 17 (2 2015), pp. 81–106. doi:
10.4310/HHA.2015.v17.n2.a6. arXiv: 1307.6248 [math.AT] (cit. on pp. 71,
74, 76).

https://doi.org/10.1017/S096012959900273X
https://arxiv.org/abs/1705.07442
https://journals.mq.edu.au/index.php/higher_structures/article/view/36
https://journals.mq.edu.au/index.php/higher_structures/article/view/36
https://doi.org/10.23638/LMCS-16(1:2)2020
https://arxiv.org/abs/1706.07526
https://lmcs.episciences.org/6015
https://doi.org/10.1016/S0022-4049(99)00185-1
https://doi.org/10.1016/S0022-4049(99)00185-1
https://doi.org/10.1007/BF01342849
https://doi.org/10.4310/HHA.2015.v17.n2.a6
https://arxiv.org/abs/1307.6248


208 REFERENCES

[Shu15b] Michael Shulman. “Univalence for inverse diagrams and homotopy canonicity”.
In: Mathematical Structures in Computer Science 25.5 (2015), pp. 1203–1277.
doi: 10.1017/S0960129514000565 (cit. on p. 30).

[Spi+21] Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert
Krebbers, Derek Dreyer, and Lars Birkedal. “Transfinite Iris: Resolving an
Existential Dilemma of Step-Indexed Separation Logic”. In: Proceedings of
the ACM SIGPLAN 2-21 Conference on Programming Language Design and
Implementation. Association for Computing Machinery, 2021. doi: 10.1145/
3453483.3454031 (cit. on p. 9).

[Ste18] Jonathan Sterling. Algebraic Type Theory and Universe Hierarchies. Dec.
2018. arXiv: 1902.08848 [math.LO] (cit. on p. 31).

[Ste20] Jonathan Sterling. Objective Metatheory of (Cubical) Type Theories. Thesis
Proposal. 2020. url: http://www.jonmsterling.com/pdfs/proposal-
slides.pdf (cit. on p. 144).

[SA21] Jonathan Sterling and Carlo Angiuli. “Normalization for Cubical Type The-
ory”. In: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS). Los Alamitos, CA, USA: IEEE Computer Society, July 2021,
pp. 1–15. doi: 10.1109/LICS52264.2021.9470719. arXiv: 2101.11479
[cs.LO] (cit. on pp. 31, 100, 147).

[SAG19] Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. “Cubical Syntax for
Reflection-Free Extensional Equality”. In: 4th International Conference on For-
mal Structures for Computation and Deduction (FSCD 2019). Ed. by Herman
Geuvers. Vol. 131. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019,
31:1–31:25. isbn: 978-3-95977-107-8. doi: 10.4230/LIPIcs.FSCD.2019.31.
arXiv: 1904.08562 [cs.LO]. url: http://drops.dagstuhl.de/opus/
volltexte/2019/10538 (cit. on pp. 30, 31, 87, 143).

[SAG20] Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. A cubical language for
Bishop sets. Under review. 2020. arXiv: 2003.01491 [cs.LO] (cit. on pp. 30,
31, 74, 143).

[SH18] Jonathan Sterling and Robert Harper. “Guarded Computational Type Theory”.
In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science. Oxford, United Kingdom: Association for Computing
Machinery, 2018. isbn: 978-1-4503-5583-4. arXiv: 1804.09098 [cs.LO] (cit.
on pp. 9, 62, 64).

https://doi.org/10.1017/S0960129514000565
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/3453483.3454031
https://arxiv.org/abs/1902.08848
http://www.jonmsterling.com/pdfs/proposal-slides.pdf
http://www.jonmsterling.com/pdfs/proposal-slides.pdf
https://doi.org/10.1109/LICS52264.2021.9470719
https://arxiv.org/abs/2101.11479
https://arxiv.org/abs/2101.11479
https://doi.org/10.4230/LIPIcs.FSCD.2019.31
https://arxiv.org/abs/1904.08562
http://drops.dagstuhl.de/opus/volltexte/2019/10538
http://drops.dagstuhl.de/opus/volltexte/2019/10538
https://arxiv.org/abs/2003.01491
https://arxiv.org/abs/1804.09098


209

[SH21] Jonathan Sterling and Robert Harper. “Logical Relations as Types: Proof-
Relevant Parametricity for Program Modules”. In: Journal of the ACM 68.6
(Oct. 2021). issn: 0004-5411. doi: 10.1145/3474834. arXiv: 2010.08599
[cs.PL] (cit. on pp. iii, 24, 31, 85, 100, 102, 177, 178, 180).

[SS18] Jonathan Sterling and Bas Spitters. Normalization by gluing for free λ-theories.
Sept. 2018. arXiv: 1809.08646 [cs.LO] (cit. on p. 28).

[Str91] Thomas Streicher. Semantics of Type Theory: Correctness, Completeness,
and Independence Results. Cambridge, MA, USA: Birkhauser Boston Inc.,
1991. isbn: 0-8176-3594-7 (cit. on p. 26).

[Str14a] Thomas Streicher. “A model of type theory in simplicial sets: A brief intro-
duction to Voevodsky’s homotopy type theory”. In: Journal of Applied Logic
12.1 (2014), pp. 45–49. doi: 10.1016/j.jal.2013.04.001 (cit. on pp. 71,
74).

[Str14b] Thomas Streicher. Semantics of Type Theory Formulated in Terms of Repre-
sentability. Feb. 2014. url: https://www2.mathematik.tu-darmstadt.de/
~streicher/FIBR/natmod.pdf (cit. on p. 76).

[Tai67] W. W. Tait. “Intensional Interpretations of Functionals of Finite Type I”. In:
The Journal of Symbolic Logic 32.2 (1967), pp. 198–212. issn: 00224812. url:
http://www.jstor.org/stable/2271658 (cit. on pp. 31, 108).

[Tay91] Paul Taylor. “The fixed point property in synthetic domain theory”. In: [1991]
Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.
1991, pp. 152–160. doi: 10.1109/LICS.1991.151640 (cit. on pp. 7, 8).

[Tay99] Paul Taylor. Practical Foundations of Mathematics. Cambridge studies in
advanced mathematics. Cambridge, New York (N. Y.), Melbourne: Cambridge
University Press, 1999. isbn: 0-521-63107-6 (cit. on p. 28).

[Uem19] Taichi Uemura. A General Framework for the Semantics of Type Theory. 2019.
arXiv: 1904.04097 [math.CT] (cit. on pp. 13, 14, 27–29, 36).

[Uem21] Taichi Uemura. “Abstract and Concrete Type Theories”. PhD thesis. Amster-
dam: Universiteit van Amsterdam, 2021 (cit. on pp. 13, 14).

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study: https://homoto
pytypetheory.org/book, 2013 (cit. on p. 21).

[VV20] Niccolò Veltri and Andrea Vezzosi. “Formalizing π-Calculus in Guarded
Cubical Agda”. In: Proceedings of the 9th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs. New Orleans, LA, USA: Association
for Computing Machinery, 2020, pp. 270–283. isbn: 978-1-4503-7097-4. doi:
10.1145/3372885.3373814 (cit. on p. 9).

https://doi.org/10.1145/3474834
https://arxiv.org/abs/2010.08599
https://arxiv.org/abs/2010.08599
https://arxiv.org/abs/1809.08646
https://doi.org/10.1016/j.jal.2013.04.001
https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/natmod.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/natmod.pdf
http://www.jstor.org/stable/2271658
https://doi.org/10.1109/LICS.1991.151640
https://arxiv.org/abs/1904.04097
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://doi.org/10.1145/3372885.3373814


210 REFERENCES

[Vic92] S. Vickers. “Geometric theories and databases”. In: Applications of Categories
in Computer Science: Proceedings of the London Mathematical Society Sympo-
sium, Durham 1991. Ed. by M. P. Fourman, P. T. Johnstone, and A. M. Ed-
itors Pitts. London Mathematical Society Lecture Note Series. Cambridge
University Press, 1992, pp. 288–314. doi: 10.1017/CBO9780511525902.017
(cit. on p. 63).

[Vic07] Steven Vickers. “Locales and Toposes as Spaces”. In: Handbook of Spatial
Logics. Ed. by Marco Aiello, Ian Pratt-Hartmann, and Johan Van Benthem.
Dordrecht: Springer Netherlands, 2007, pp. 429–496. isbn: 978-1-4020-5587-4.
doi: 10.1007/978-1-4020-5587-4_8 (cit. on p. 51).

[Voe06] Vladimir Voevodsky. “A very short note on homotopy λ-calculus”. Unpublished
note. Sept. 2006. url: http://www.math.ias.edu/vladimir/files/2006_
09_Hlambda.pdf (cit. on p. 19).

[Wat+04] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. “A
Concurrent Logical Framework: The Propositional Fragment”. In: Types for
Proofs and Programs. Ed. by Stefano Berardi, Mario Coppo, and Ferruccio
Damiani. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 355–377.
isbn: 978-3-540-24849-1 (cit. on p. 13).

[WB18] Paweł Wieczorek and Dariusz Biernacki. “A Coq Formalization of Normal-
ization by Evaluation for Martin-Löf Type Theory”. In: Proceedings of the
7th ACM SIGPLAN International Conference on Certified Programs and
Proofs. Los Angeles, CA, USA: Association for Computing Machinery, 2018,
pp. 266–279. isbn: 978-1-4503-5586-5. doi: 10.1145/3167091 (cit. on pp. 32,
106).

[Xu15] Chuangjie Xu. “A continuous computational interpretation of type theories”.
PhD thesis. University of Birmingham, July 2015. url: http://etheses.
bham.ac.uk/5967/ (cit. on p. 76).

[XE16] Chuangjie Xu and Martín Escardó. Universes in sheaf models. Unpublished
note. 2016. url: https://cj-xu.github.io/notes/sheaf_universe.pdf
(cit. on p. 76).

[Yet87] David Yetter. “On right adjoints to exponential functors”. In: Journal of
Pure and Applied Algebra 45.3 (1987), pp. 287–304. issn: 0022-4049. doi:
10.1016/0022-4049(87)90077-6. url: http://www.sciencedirect.com/
science/article/pii/0022404987900776 (cit. on p. 69).

https://doi.org/10.1017/CBO9780511525902.017
https://doi.org/10.1007/978-1-4020-5587-4_8
http://www.math.ias.edu/vladimir/files/2006_09_Hlambda.pdf
http://www.math.ias.edu/vladimir/files/2006_09_Hlambda.pdf
https://doi.org/10.1145/3167091
http://etheses.bham.ac.uk/5967/
http://etheses.bham.ac.uk/5967/
https://cj-xu.github.io/notes/sheaf_universe.pdf
https://doi.org/10.1016/0022-4049(87)90077-6
http://www.sciencedirect.com/science/article/pii/0022404987900776
http://www.sciencedirect.com/science/article/pii/0022404987900776


211

[Zei08] Noam Zeilberger. “Focusing and Higher-Order Abstract Syntax”. In: Proceed-
ings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. San Francisco, California, USA: Association
for Computing Machinery, 2008, pp. 359–369. isbn: 978-1-59593-689-9. doi:
10.1145/1328438.1328482 (cit. on p. 106).

[Zei09] Noam Zeilberger. “The logical basis of evaluation order and pattern-matching”.
PhD thesis. Carnegie Mellon University, 2009 (cit. on p. 106).

https://doi.org/10.1145/1328438.1328482




LIST OF SYMBOLS

NAMES OF TOPOI

S the Sierpiński topos (2.2.4∗1)
T the classifying topos of Henkin models of Martin-Löf type

theory
(5.5.2∗1)

T the classifying topos of Henkin models of Cartesian cubical
type theory

(7.5.1∗3)

A the topos of atomic terms (5.5.2∗8)
A the topos of cubical atomic terms (7.5.1∗3)
G the glued topos used to prove canonicity or normalization of

Martin-Löf type theory
(5.5.3∗1)

G the glued topos used to prove normalization for Cartesian
cubical type theory

(7.5.2∗1)

NAMES OF CATEGORIES

T the category of judgments of Martin-Löf type theory (1.4∗8)
T the category of judgments of Cartesian cubical type theory (4.1.1∗1)
A the category of atomic contexts and substitutions (5.5.1∗7)
A the category of cubical atomic contexts and substitutions (7.5.1∗3)

INTERNAL NOTIONS

{φ}A the type of partial elements of A with support φ (3.5∗3)
{A | φ ↪→ a} the extent of a partial element a : {φ}A (3.5∗5)
#φ the open modality associated to a proposition φ (3.6∗7)
 φ the closed modality associated to a proposition φ (3.6∗7)
U\φ the closed subuniverse of U determined by a proposition φ (3.6∗6)
Uφ the closed subuniverse of U determined by a proposition φ (3.6∗4)
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¶ the “syntactic open”, a proposition under which the semantic
part of a computability structure is zeroed out

(4.4∗1)

#/ the open/closed modality associated to ¶ (4.4∗1)
X oφ Y the syntactic stabilization of X by Y along φ (7.1∗6)
[x | φ ↪→ y] an element of the the syntactic stabilization X oφ Y (7.1∗6)
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