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Abstract

Memory management has always been a responsibility shared by the hardware
and the operating system. The MMU (memory management unit) walks the kernel-
managed page tables to ensure safety and isolation between data from different pro-
cesses. While users can alter some aspects of the memory system they control (e.g.,
permissions) these operations come with a high overhead.

We propose User Level Page Tables as a hardware/software mechanism that of-
fers a low overhead mechanism for users to manage their application memory per-
missions while still having hardware enforcing those permissions. Our mechanism
allows users to modify page permissions with a single write in user space and with-
out changing privilege levels. Users can also handle many types of page faults using
handler functions that they install, without crossing into kernel space.

To realize this mechanism, we start with an architecture that has already been
modified to support User-Level Interrupts and we modify components in its hard-
ware address translation pipeline, specifically the MMU and TLB. We also modify
the Linux kernel by adding a set of “shadow” user-level page tables.

We evaluate our approach of User Level Page Tables by using it to implement
watchpoints and analyze the overhead. We evaluate our system using GemS5, a full
system emulator, modified to implement User-Level Interrupts and User-Level Page
Faults as an extension of the x86_64 architecture.

Our microbenchmarks show that, even with thousands of watchpoints, we in-
cur a slowdown of only 3.25x compared to a 1,000,000x slowdown when using
GDB software watchpoints. With the SPEC benchmarks, watching every dynami-
cally allocated memory region, we see slowdowns range from 2.1x-15.8x. The latter
slowdown suggests we need to improve our method of tracking active watchpoints.
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Chapter 1

Introduction

There is forever a tradeoff between the operating system’s responsibilities and user capabilities.
To enforce safety and fairness between multiple running processes, the operating system must
impose some restrictions on the processes while giving the users maximal freedom. A prime
example of this divide is the memory management system.

1.1 Memory Management

The operating system manages resources for multiple processes running on the same machine.
Part of its responsibility is maintaining isolation between process memories; no process should be
able to manipulate memory that is not its own. From the perspective of each individual process,
it should seem as if it is the only process running on the machine, thus it should have access to all
resources, including the entire memory address space. This conflict is resolved by using virtual
addresses.

With virtual addressing, users cannot access physical memory directly but are still capable
of allocating as much memory as they desire. The operating system maintains a mapping within
kernel space between user-accessible virtual addresses and hardware-understandable physical
addresses in the page table. This data structure is managed exclusively by the operating system;
only certain capabilities are exposed to the user through system calls. Furthermore, this mapping
is enforced by specialized memory translation hardware, so a write to a stray pointer or one that
violates set permissions will cause the kernel to crash the application. Virtual addresses solve
both the user’s and system’s needs; user applications have the illusion of being able to access
the entire memory space through virtual addresses while being unable to manipulate another
process’ memory.

Using virtual addresses in user programs creates a new problem as hardware uses physical
addresses to access memory. Thus, the virtual address must be translated to a physical address.
Memory is allocated in contiguous chunks of 4096 bytes, known as pages. This memory corre-
sponds to a virtual page number, when accessed by virtual addresses, and a physical page frame
number, when accessed by physical addresses. The following steps take place when translating
from a virtual address to a physical address.

1. The memory management unit (MMU) within the CPU will separate the virtual memory



address into two sections: the virtual page number (the first 36 bits of the address) and
the offset (the remaining 12 bits of the address). The virtual page number be used in the
following steps to obtain the physical page frame number. The offset will be appended to
the physical page frame number to become the physical address that corresponds to the
original virtual address.

2. The MMU checks the translation look-aside buffer (more commonly known as the TLB)
to see whether the address has been recently translated.

(a) Ifits entry is in the TLB, the physical page frame number would have been stored in
the TLB.

(b) If it is not within the TLB, the MMU will use the virtual address to index into the
page tables to find the corresponding virtual address to the physical address. The
resulting physical frame number that the end of the page walk will be stored in the
TLB and used to obtain the physical address.

Address translation may result in several outcomes. The first, and best, case is that the phys-
ical page frame number is within the last level of the page table, and the page is mapped in
memory. The MMU will return the entry’s physical address, acquire the data, and execution will
proceed. All other cases, signifying that either an error occurred or something needs additional
attention, will throw a page fault exception and jump to the handler in kernel space.

1.2 Page Fault Handling

Under certain circumstances, the fault handler is able to recover and execution can proceed. For
example, the CPU may trigger a page fault when it encounters an invalid page during address
translation. Page table entries have a valid-invalid bit to indicate the page state in the context
of the executing process. If the bit is marked valid, then the page is within the process’ address
space (i.e. the access is legal) and the page is in memory. In any other case, the page table
entry for this page is marked invalid. So, a page that is within the address space of the process
but is not in memory will also throw a page fault. This can occur when RAM cannot hold all
memory pages for all running processes and stores the excess on some secondary storage drive
[9, Chapter 9]. This can also occur when the process being run for the first time, therefore none
of its data is in memory. The page fault handler in the kernel determines that the page is in
storage and swaps it into memory. Once the data is in memory, the handler updates the page
table to mark the page as valid. The instruction will again be executed. Since the access is now
on a valid page, program execution will continue past the point of the previous fault. This is an
example of a recoverable fault.

In other cases, the page fault handler is unable to resolve the cause of the exception. If
the access is on kernel memory or memory outside the process’ address space, the kernel will
terminate the process immediately. If the access violates the page’s memory protect, e.g., writing
to a page marked as read-only, the kernel will send a STGSEGV signal to the running process.
When this signal is later processed, the kernel checks whether the process registered a signal
handler. If it has, the handler will execute. If it has not, the default kernel signal handler will
execute, which will terminate the process.



1.3 Interrupts, Exceptions, and Signals

Intel categorizes interruptions to normal execution into two groups: asynchronous and syn-
chronous. Asynchronous interruptions, more typically known as interrupts, are raised by hard-
ware device controllers. For example, a keyboard device will raise an interrupt when a user
presses a key. These are unpredictable with respect to the execution of a program, as they are ex-
ternally generated. Synchronous interruptions, also known as exceptions, are thrown by the CPU
as the result of executing some instruction. These are synchronous with respect to the execution
of a program as the CPU will always throw the same exception when executing the instruction
that faulted. Page faults are an example of such exceptions.

Every interruption, synchronous or asynchronous, identifies with an interrupt vector. When
the operating system is first booted, it will create a table saving all interrupt vectors with a
corresponding handler to run when the interrupt is raised; these handler functions are traditionally
part of kernel code. When an interrupt is raised by hardware, the CPU will automatically save
the current application execution context and execute the registered interrupt handler. Assuming
that the handler completes execution without raising another interrupt, the previous context will
be restored and the application will continue.

This method of handling interruptions is appropriate when the interruption is intended to be
handled by the operating system. However, there are several applications for when select inter-
ruptions are meant to be handled by the user code. As briefly mentioned in the previous section,
user programs can install signal handlers that the kernel executes to process certain events. From
the example in that section, if the user signal handler can change the page permissions for the
illegal access, then the cause of the page fault will be resolved. When the faulting instruction
re-executes, it will not fault again. If the interruption is intended to be handled by user code,
there should be some way for that user code to be executed directly, without executing kernel
code.

The end-to-end process of signal handling involves several privilege level switches between
user space and kernel space. The current path of user-level signal handling involves the user ap-
plication falling into kernel space code to set up the user handler trampoline, jumping to the user
space handler, falling back to the kernel to restore the state pre-interrupt, and finally, resuming
user program execution [Fig. 1.1]. The privilege level switches should be unnecessary for a fault
purposefully raised by the user application to be handled by the user application. By removing
the back-and-forth switching between kernel space and user space, the faulting mechanism will
not invoke as many cache misses. This will decrease the overhead of handling a fault.

Instead of modifying the existing faulting pipeline and page fault handler, we create a new
mechanism for a new type of page fault, a User Level Page Fault, to reduce the pipeline overhead
for specific applications. In this thesis, we seek to imitate existing user signal handling behavior
while completely bypassing any kernel interference. We will implement a page faulting mecha-
nism that jumps directly to the user handler in user space. We use this mechanism for handling
user-set memory protection violations and demonstrate its utility in a watchpoints library. We
use the term “user-set” to describe that these permissions were added by the user process to the
memory within its address space, in contrast to the permissions that the kernel set to its pages
when the process is initialized.
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1.4 Thesis Statement

It is possible for the CPU to bypass executing kernel code to directly execute a handler in user
code when a User Level Page Fault is triggered while still offering the same level of safety as
existing architectures.

1.5 Roadmap

There is no mechanism in existing systems for an exception to fault directly into user space.
This thesis offers a mechanism design for the CPU to directly execute user handler code when a
program instruction violates its user-set permission. Our design delivers on three goals:

e Users can set and modify their user-set permissions without kernel involvement.

¢ Hardware enforces these user-set memory permissions.

¢ Exceptions raised by violating these user-set permissions will fault directly to user handler

code, without kernel involvement.

This thesis has the following structure. Chapter 2 will provide a more general background on
previous work on faulting to user space. Chapter 3 will explain, in detail, changes made to the
hardware and software components. Chapter 4 will cover changes made to adapt our mechanism
for a watchpoints application along with results from benchmarks. Chapter 5 will cover viable
places for improvement that we did not have a chance to explore. Chapter 6 will mention some
issues for future work to address. Chapter 7 will conclude our report and provide a general
reflection and discussion about this mechanism. Finally, the appendix contains references that
future developers may find useful in replicating or continuing our work.



Chapter 2

User-Level Exceptions

2.1 Problem Statement

In this project, we design a mechanism in which the CPU, upon some condition, raises a special
exception that would execute a user-registered handler function and proceed with the rest of
program execution. Our goal is to completely bypass any kernel interference, eliminating the
overhead of jumping to the kernel, then from the kernel space exception handler, to the user
space handler, back to the kernel space handler, and finally back to user space to resume the
program. Since the fault was triggered by the user space program, we want to stay in user space
to handle the exception and proceed with execution.

There are some existing frameworks that we build upon, mainly the existing interrupt/excep-
tion handling mechanism. There are already x86 instructions, INT and IRET, that can invoke
the handler code and return to program execution. However, the registers that the CPU saves and
restores when invoking the INT and IRET are not necessary for our use case. Also, the CPU is
currently programmed to reference the interrupt descriptor table (IDT) to determine the function
to execute when it raises an exception. While we initially considered just adding another entry
in the table, we found that the table was set to read-only after the initial setup; it was designed to
be set up once and not modified again. Overall, the exception handling mechanism mostly suits
our needs; we need to create another channel to invoke it.

2.2 Previous Work

The overhead of switching back and forth between user space and the kernel incurs a non-
negligible overhead on program performance. Invoking system calls, Soares et al. breaks down
how executing kernel code impacts application runtime [10]. System calls, sometimes referred
to as traps, are how users modify kernel-managed data. Traps and faults are both subclasses of
exceptions and enter kernel space with near-identical mechanisms. Traps differ from faults in
that the faulting instruction will be re-executed after it is handled whereas execution proceeds
with the instruction following the trap instruction. The authors found that user mode IPC can de-
grade between 20-60% depending on the frequency of invoking system calls. They attribute this
overhead to two factors: pipeline cost and pollution cost. The pipeline cost involves switching
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between kernel and user space and flushing the processor pipeline. The pollution cost involves
changes to the underlying architecture to run kernel code. This is mainly attributed to evictions
in the L2, L3, and d-TLB caches that will create caches misses later in the execution [10].

There has been previous work done around moving kernel components to user space to reduce
processing overhead. One area of work involves moving select device handlers to user level as
the handlers handle hardware interrupts that might ultimately be handled by user level code.
Caulfield et al. created a mechanim, Moneta-D [4], that provides a channel for transparently
bypassing the kernel for processing I/O operations from their custom Moneta storage architecture
[3]. Their user library maps the device control registers and device-writable memory into the
address space of the calling process. The kernel stores the files’ physical byte range and their
respective permissions, which the hardware consults before serving I/O requests. Moving device
drivers to user space also has been used to decrease kernel size for microkernel development.
However, even if the interrupt handler code is in user space, the microkernel is still responsible
for receiving the interrupt and redirecting it to a user task to process. That being said, the kernel’s
responsibility can be minimal. Upon receiving an interrupt in the Raven microkernel [8], the
kernel performs a check to see whether kernel code handles the interrupt or user code handles
the interrupt. If user code handles the interrupt, the kernel will pass the interrupt information
to the user level dispatcher, which then invokes the actual handler. The device driver maps its
register set into the application address space when it initializes. So, the user handler function
can access device data without kernel involvement.



Chapter 3

User-Level Page Fault Design

The traditional architecture for exception handling involves components from the hardware and
operating system. For the specific case of page fault exceptions, the major hardware components
involved are the memory management unit (MMU) and the translation look-aside buffer (TLB).
We will discuss these components in more detail later. The page tables and the exception han-
dling mechanism within the operating system are the major software components. In this section,
we will first explain the current architecture for page fault exception handling. We will then go
over the modifications we made to each component of the architecture to implement User-Level
Page Faults (ULPFs).

For the remainder of this report, variables proceeded by %, e.g. %AX, will represent the
hardware register while AX will represent values stored in the register.

I will also refer to the set of following registers as “exception context registers”: %SS, %RSP,
%RFLAGS, %CS, and %RIP. The hardware automatically stores the values within these registers
onto the kernel stack when an exception occurs. After executing the exception handler and prior
to returning to user code, the hardware recovers these saved values from the kernel stack back to
their corresponding registers.

3.1 Overview

Exceptions are software interrupts generated by either the hardware or the operating system upon
some event. Exception handlers are installed into the interrupt descriptor table (IDT) when the
operating system boots.
When an exception is triggered, the hardware replaces the user code’s context registers with
the exception handler’s context registers in the following steps:
1. The CPU saves the values of major context registers (%SS, %RSP, %RFLAGS, %CS, and
%RIP) to internal registers.

2. The CPU loads the kernel stack segment (SS0) and stack pointer (RSPO) values into %SS
and %RSP, respectively. These values are stored within the Task State Segment (TSS)
whose address is stored in the task register (%TR), both of which are written when the
kernel boots.



Once the hardware registers %SS and %RSP hold SSO and RSPO, all operations will be
done in kernel space until the execution jumps back to user space.

3. The CPU pushes the previously saved context registers values (saved within internal reg-
isters in step 1) onto the kernel stack.

4. The hardware may sometimes push an error code onto the kernel stack, depending on what
caused the exception.

5. From the IDT, the CPU finds and loads the kernel entry point and code segment offset for
the exception into %RIP and %CS, respectively.

The kernel entry point pushes the execution context, e.g., all register values, onto the kernel
stack and jump to the specific handler address for the exception.

In some cases, the exception handler will resolve the cause of the exception; these exceptions
are known as faults. One example is when the hardware throws a page fault when accessing
memory that is swapped out to disk. The kernel page fault exception handler will bring the page
to memory. The execution unit will reexecute the faulting instruction and continue, because the
memory access is now valid.

In other cases, the kernel exception handler will send a signal to the running process. If a
signal handler exists, the kernel will save its current execution state in kernel space. The kernel
then sets up a return stack on the user stack and executes the user signal handler in user space.
After the user signal handler returns, the execution will be back in kernel space to restore the user
execution context. Finally the CPU will once again jump back to user space to continue executing
the original code. The overhead of signal handling is large, due to its repeated privilege-level
switches between user space and kernel space. However, the privilege-level switches ensures that
memory from one process is secure from other processes. Specifically, the program execution
state must be saved within kernel space to be safe from other processes, which leads to the
multiple privilege-level switches to save and restore this context.

3.1.1 ULI Architecture

This work on implementing ULPFs is built on an existing ULI (User Level Interrupts) archi-
tecture [11]. This architecture has a custom ULI hardware device specifically for delivering
interrupts between different processors. Once a processor receives a ULI, the CPU raises a pre-
cise interrupt; the CPU saves the current program counter, flushes the execution pipeline, and
fetches ULI microcode instructions. The ULI microcode saves the RELAGS register value. It
also saves the RDT register value, which holds the processor ID of the processor that sent the
ULI. Afterwards, the CPU loads the ULI handler address, stored in a register we created, and
executes the handler.

ULPFs are exceptions raised and handled on the same processor while ULIs are meant to
be raised and handled between separate processors. However, we use the ULI pipeline and
microcode to implement ULPFs.
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3.1.2 Problem Statement

The x86_64 architecture and current operating systems does not lend itself to have low-overhead
user-level, hardware-enforced memory protection for several reasons. First, the user cannot ac-
cess its process page tables directly. Rather, the application must request the operating system
to modify paging structures through system calls, such as mprotect and mmap, with specific
permissions. Second, the current faulting architecture automatically jumps to a kernel address
when a fault occurs.

If the problem is simply invoking a user handler at a permission violation, users can solve this
problem by using the current signal handling architecture (Example code: 3.1). However, the
current signal handling mechanism and having to invoke multiple system calls add 3000-4000
cycles of overhead per system call to the application.

void signal_handler (int sig, siginfo_t»* info) {
void* fault = info->si_addr;
mprotect (mm_aligned, 4096, PROT_WRITE) ;

}

7 void setHandler (void (xhandler) (int,siginfo_t «))

19

{
struct sigaction action;
action.sa_flags = SA_SIGINFO;
action.sa_sigaction = handler;

if (sigaction(SIGSEGV, &action, NULL) == -1) {
perror ("sig action err\n");
_exit (1);

}
int main(int argc, charxxargv) {

setHandler (signal_handler) ;

char* mm_addr = malloc ((PAGE_SIZEx2 — 1) % sizeof (char));

mm_aligned = (char ) (((int) mm_addr + PAGE_SIZE-1) & ~ (PAGE_SIZE-1));
mprotect (mm_aligned, PAGE_SIZE, PROT_READ);

// Regular program code
}
Listing 3.1: Signal Handling

Our goal is to decouple a permission violation page fault, which would send a signal to the
user program, and a disk I/O page fault, which the kernel should handle. We separate these two
cases into two different mechanisms. The kernel needs to handle disk 1/0O page faults ensure
the safety of process data; this is the existing page fault mechanism. The second mechanism
will specifically handle address permission violations in the context of the executing process; we
optimize this mechanism to bypass all kernel intervention.

3.2 Hardware Modifications

The memory management unit (MMU) within the CPU performs the virtual-to-physical address
translations and raises page fault exceptions. We modify this mechanism to implement ULPFs.
The components we change include the virtual-to-physical address translation logic within the
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MMU, the faulting mechanism microarchitecture, and we add registers to store data specific to
ULPFs.

We first describe the existing faulting mechanism in detail. We then explain the mircoarchi-
tectural changes to we made on the existing design to implement ULPFs.

3.2.1 Current Page Fault Handling

There are several hardware components the MMU and the operating system use to coordinate
the paging system. The purpose of paging is to create a distinct address space for individual
processes by creating an abstraction for the user, away from directly accessing physical memory.
To accomplish this, the operating system holds a per-process page table (referred to as the kernel
page tables) that holds the virtual address to physical address mappings. Kernel page tables are
a hierarchical mapping structure between user-visible virtual memory addresses and hardware-
visible physical memory addresses. Its structure is defined as part of the x86 architecture.

The hardware, specifically the MMU, traverses kernel page tables to translate virtual ad-
dresses to physical addresses. The hardware register %CR3 stores the base address of the page
table for the current executing process. This structure is also known as the page global direc-
tory (PGD), is stored in the hardware register %CR3. The kernel is responsible for writing this
register with the PGD of the running process during context switches. The memory permissions
for each page are also stored within page table entries. If the MMU sees that the executing in-
struction will violate the permissions in the page table entries, the MMU will throw a page fault.
When a page fault is thrown on an address, the MMU will load the address that caused the fault
in to hardware register %CR2. The kernel page fault handler uses this value to diagnose the
cause of the exception.

Address translation is a very mechanical process. The MMU takes a 48-bit virtual address as
input and uses the address itself to index into the kernel page table structures. The 48-bit address
is partitioned into five parts: the first 36 bits are partitioned into four 9-bit sections and the fifth
part is the remaining 12 bits. The first 9 bits are used to index into the PGD. If we represent the
value of the 9 bits as i, then we will retrieve the value stored in the ith element of the PGD.
This value is the base address of the next level of the page table, also known as the page upper
directory (PUD). We use the following 9-bit section from the virtual address to index into the
PUD to get the next level of page table, or the page middle directory (PMD). Again, we use
the following 9-bit section from the virtual address to get the next level of the page table, the
page table entries (PTE). We use the last 9-bit section to index into the PTE, which will give
the address of the physical page frame. Finally, we append the last 12 bits of the given virtual
address to the physical page frame to get the physical address that corresponds to the virtual
address. This process is illustrated in Figure 3.3.

For the purposes of implementing User Level Page Faults, which are very similar to the
permission violation kernel page fault, we borrowed from the existing page faulting framework.
We duplicated most of the same translation logic for traversing the ULPF page tables (these will
be referred to as ULPTs); as such, most of the page table structure remained unchanged from
current kernel page tables. The only difference is in the last level of tables, in which our design
differs from current designs. This will be explained in more detail in section 3.4.

10
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Figure 3.2: Hardware changes for ULPF

3.2.2 Modifications

In total, we add three registers, a write-once bit and user read-only bit in the TLB, and extend
MMU logic to implement ULPFs.

Registers

We added three registers to support ULPFs that parallel the design in current architectures.
%CR16 holds the base address of the user page table, analogous to how %CR3 holds the kernel
process page table. %CR17 holds the value of the address that caused the ULPF, analogous to
%CR2. %CR18 holds the address of the user-registered ULPF handler. The user page table base
address and user handler address are saved within the process control block within the kernel and
will be swapped in and out upon context switch.

Our first implementation registered the user handler as a new entry within the IDT to parallel
current systems completely. However, this will allow only one application to use this mecha-
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nism, because the IDT is typically written to once during boot time and set as read-only for the
remainder of execution. Even if we took away this requirement, we would have to modify this
IDT entry on every context switch, which increases the critical path. By holding the handler
address in a new register, we increase the number of applications that can use this mechanism at
the cost of a register write every context switch. We have also added additional x86 instructions
that can read %CR17 and write %CR16, %CR18.

Page Walking Logic

In our design, the MMU will traverse both the kernel and user page tables concurrently (Fig.
3.3). This way, the addition of this mechanism will not incur an increased critical path length.
Unlike walking the kernel page tables, walking the user page tables will never cause a fault for
a nonexistent entry. If any mid-level entry in a kernel page table is absent, the MMU will throw
either a page fault to bring data into memory or a segmentation fault. In contrast, if an entry is
absent in the user-level page table, we silently abort any further page walking on the user page
tables, while the kernel page walking will continue.

When a page of memory is allocated, the page is mapped within the kernel page tables. Our
mechanism does not automatically map this page into the user page tables. It is unnecessary
to map the page within the user page tables if the user never sets user-level permissions to this
memory. We also do not want to force the user to set user-level permissions to all their allocated
memory. To accommodate having empty user page table entries on potentially valid address
translations, the MMU walks both the kernel and user tables with the following logic: If the
kernel page table entry is invalid, the MMU raises a kernel page fault; if the user page table entry
is invalid, the MMU continues page walking as it does in current architectures, only traversing
the kernel page tables.

If there is an instance where a translation will cause both a kernel and user page fault, we
raise the kernel handler.

TLB

TLB within Current Address Translation The TLB is a cache to store recent virtual to
physical page translations. It takes advantage of locality as the translations for addresses on
the same page are stored within the TLB. Having translations cached shortens the critical path
for instruction execution as page-walking need not occur. Upon receiving a virtual address, the
MMU will first search the TLB for an existing translation. If an entry exists, the physical address
returns immediately. If one does not, then the MMU will perform the page walk, return the
physical address, and cache the translation in a TLB entry.

TLB Permission Caching We made several modifications to the TLB design to accommodate
our mechanism. We add a user-level-read-only bit within TLB entries that stores the user-level
permissions. When the MMU performs a page walk on both the kernel and user-level page
tables, the hardware stores the page frame number from the kernel page tables and the user level
permissions from the user page tables within a TLB entry.
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Figure 3.3: Address translation with kernel and user-level page tables

However, the MMU will not walk the page tables if the address translation is already cached
within the TLB. As a concrete example, suppose the user allocated a block of memory and writes
to an address in this memory. At this point, the translation for the accessed address is cached
within a TLB entry. Suppose the user now sets a user-level read-only permission on this address.
The next time the user writes to this address, there will not be a ULPF because the TLB entry is
not updated with the new user-level permissions. The MMU will not traverse the user page tables
to get the permission because there is already a cached TLB entry. Thus, we need to extend our
mechanism to be able to update TLB entries to keep the ULPTs and TLB entries consistent.

So, if the address translation for a certain page is already cached with no user permissions and
the user set it as read-only in the user page tables, the change will not be reflected in execution
as the permission did not change in the TLB. To address this issue, we need a method to allow
users to modify a TLB entry corresponding to a virtual page number from user space.

The inv1pg x86 instruction is one of the only methods to change a TLB entry from soft-
ware; it invalidates the TLB entry for a virtual page number and forces a page walk to occur.
There are two issues with using this instruction for our purposes: the first is that this is a priv-
ileged instruction, the second is that we feel that a user-level operation should not be able to
shootdown a system-controlled TLB entry, especially if used in a malicious program that can
repeatedly shoot down entries with a single write in user space. While we had the option of
creating a user-available inv1pg to address the first point, we implemented a set of new x86
instructions, SET_TLB_RO and SET_TLB_RW, which can be invoked from user space and can
only toggle this additional user read-only bit we added in TLB entries. It is the user’s respon-
sibility to invoke these instructions to maintain coherence between the user page tables and the
TLB. If the instructions are invoked with addressed not in the TLB, they will be ‘NO—-OPs.
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Compiler Modifications and ULIRET It is important to mention the compiler modifications
done to accommodate compiling user-level page fault handlers (credit to Chrisma Pahka, CMU)).
We defined a special attribute, ulihandler __attribute__ (user_level_interrupt)
, to identify the user-level handler function to the compiler. We modified the compiler such that
we insert a prologue and epilogue around the compiled handler function that saves and restores
the user registers (e.g. %RCX, %RDX) that the compiled handler code uses. After the end of the
epilogue, we insert a new x86 instruction, ULIRET, to return from a user level handler.

ULPT Faulting Pipeline Let us take a moment to tie all components together and go through
the process in more detail. The MMU to translates a virtual address as follows:
1. The address will be checked against TLB entries to see if its translation is cached.

e If it is, then its user permission bit would also be cached in the entry. If the entry
is marked as user read-only and the operation is a memory write, then the CPU will
execute the faulting pipeline.

2. If the entry is not in the TLB, the MMU will walk both the kernel page tables and user
page tables at the same time.

¢ [f the entry is in both page tables, we check whether the access is legal within the
kernel table entry.

= If the access is illegal within the kernel page table, then we raise a kernel page
fault.

= If the access is legal within the kernel the page table, we check the permissions
of the user page table, raising a ULPF is the access violates user permissions or
returning the physical address if the access is legal.

3. If a ULPF is raised, the CPU will execute microcode that pushes the current %RFLAGS
and %RIP onto the user stack.

4. The CPU will execute the user handler code. This will include: the prologue inserted by
the compiler that pushes all registers used within the handler code, the actual handler code,
the epilogue inserted by the compiler that restore the registers saved in the prologue, and
the ULIRET instruction inserted by the compiler.

5. The ULIRET instruction runs microcode that restores the %RFLAGS and %RIP that were
previously stored on the user stack by the hardware.

3.2.3 Instruction Re-execution

Assuming that the instruction successfully faults into the user space handler and returns, the
hardware will attempt to execute the faulting instruction again. Reexcuting the instruction will
involve going through the entire faulting process again, which would fault again if the address
permissions are not updated to allow the execution. If the user does not update the address
permissions to allow the write, this mechanism will loop forever. In addition, if the user modifies
the permissions to allow this one write, the user must reset the permissions on the page for the
next memory operation on the address to fault. We made the design decision to fault on the
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first memory operation on an address and automatically allow the second memory operation, the
reexecution, to proceed without any user modifications.

We added a second bit, the write-once bit, within the TLB entry. The default state for this bit
is 0, indicating that the current operation on this address is executing for the first time, and thus,
should fault. Just prior to executing the fault handler, this bit is set. On the second execution, the
MMU sees that this bit is set in the TLB and allows the instruction to execute without faulting.
Right before executing the instruction, the TLB resets the write-once bit to 0 in the TLB entry so
the next memory operation within the page will also fault.

This mechanism, as currently described, fails when executing CISC instructions that operate
on separate memory addresses. One example of such a CISC instruction is MOVUP S_XMM_XMM,
which breaks down into two move operations on different addresses.

1: movfp xmm_low, xmm_low_new
2: movip xmm_high, xmm_high_new

The %RIP value for the instruction is 1. The execution will be as follows:
1. The MMU translates the virtual address in the first microoperation.

2. The translation triggers the user-level handler; the write-once bit for the TLB entry for the
address will be set.

The user level handler executes and returns, reloading the %RIP, or the first microop, again.
The MMU clears the write-once bit in the TLB and executes the instruction.

The MMU translates the virtual address in the second microoperation

oS kW

The translation will trigger the user-level handler; the write-once bit for the TLB entry for
the address will be set.

7. The user level handler will execute and return, reloading the %RIP, or 1, again.

8. Steps 4-7 will loop indefinitely.

We add an internal register within the TLB to save the address used in the last memory
operation. When the MMU translates a virtual address, it first checks whether the write-once bit
is set. If the bit is not set, then the instruction has not faulted before. Here, we also save the
faulting memory address in the internal register. If we see that the write-once bit is set, we know
that we have already faulted on this instruction. However, this instruction may contain microcode
that performs multiple memory references, so we check the current faulting address against the
previous faulting address that we have saved. If the addresses don’t match, we continue execution
because we have not reached the microinstruction that we faulted on. If the addresses match,
we continue execution but reset the write-once bit and clear the saved faulting address so the
next microinstruction can fault. We are basing this logic on the assumption that microoperation
sequences will not refer to the same memory instruction more than once. This logic is illustrated
in Figure 3.5.

3.3 Software Modifications

We prioritized several goals in our design. First, we are looking for a paging structure that
somewhat resembles existing structures to simplify necessary hardware changes. Second, we
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would like the user to be able to modify the table on a page-granularity without invoking kernel
code, meaning that the last level of the tables must be in user space. Finally, we would also like
our structures to take up as little space as possible.

Given these requirements, we divided the software modifications into two major portions:
the kernel portion and the user library. The kernel portion involves system calls that will install
and manage the first three levels of the table in kernel space; the user library will handle the user
interface and manage the user space level of the user page table.

3.3.1 Kernel Modifications

Current Design

The kernel is responsible for storing and managing page tables for every process. Page tables
are typically copied from the parent process and their contents are replaced with the code and
data of the new process. While there are multiple running processes, the kernel scheduler is
responsible for context switching between them. Context switching involves writing the %CR3
register, which holds the base address of the current process’ page global directory.

The only way for users to interact with system-level resources, like their page table, is to
make system calls, e.g. mprotect and mmap.

All kernel modifications were applied to Linux version 2.6.22.9. To support ULPFs, we
added two system calls and extended some existing process structures to support user-level in-
terrupts.

Modifications

There are four levels to kernel page tables to accommodate 64-bit architectures. Since user-level
page tables are a per-process structure, we would like the maximal number of table levels to be
in kernel space. So, the first three levels of kernel page tables are duplicated to be the first three
levels of user page tables.

The first system call, long sys_register_uli(void*user_handler_addr), makes
the hardware aware that the application has activated ULIs. The function will write to CR16 and
CR18, respectively holding values for the user-level paging structure and the address of the user-
level handler. The process’ control block is extended to save these two addresses. The system
call will also allocate the initial level of user level page table, the user PGD, to be in kernel space.

The second system call, long sys_set_ro (voidx vm.addr, void* addr_region)
updates the value corresponding to the PMD entry of the virtual address in the kernel page table
to map to the given parameter, addr_region. The method to page walk the first two levels of
the user-page tables is identical to that for the first two levels of the kernel page tables. Referring
back to Figure 3.3, the given vm_addr will be a 48-bit virtual address. In address translation,
this address is split into five discreet sections: the first 36 bits are split into four 9-bit sections
that are used to index into intermediate page tables. The indexed entry stores the base address
of the table used in the next level of the page walk. We copy this design exactly for the first
two levels: the first 9 bits of the virtual address are used to index into the user PGD to get the
base address of the user PUD. The next 9 bits are used to index into the user PMD to get the
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base address of the user PMD. Here, the designs differ. The user PMD entry will hold the user-
provided addr_region. Since this parameter is from user space, it is a virtual address. It must
be translated to a physical address to be stored in the user PMD because the hardware assumes
that table entries are physical addresses.

3.3.2 User Space Components

In contrast to the PTE of the kernel page tables, the fourth level of user level page tables is in
user space; we refer to them as page level indicators (PLIs). A PLI is a page-aligned page of
user-space memory that holds the user page permissions for a program using ULPFs.

We mentioned that we use the first 27 bit of the virtual address, that we call the virtual prefix,
to index into the first three levels of the user page tables that are stored in kernel space. We are
left with the remaining 9 bits of the page frame number (PFN) to index into a structure to get
the page’s permissions. A virtual prefix will correspond to a range of 512 consecutive pages. If
we allocate two bits per page for permissions, we would have 1024 bits, or 128 bytes that would
map to virtual addresses that have the same virtual prefix. In other words, one user PMD entry
would only need to map to a 128-byte block; the remaining 9 bits of the virtual address can be
used to index into this block to find the permissions for the page.

We partitioned the PLI into thirty-two, 128-byte regions; these regions are indexed from zero
to thirty-one. Regions one through thirty-one on a PLI hold user-level page permissions for the
current process; region zero is reserved for holding metadata about the structure.

Region zero holds three values. The first, free_regions, is a 32-bit bitmap that represents
the allocation state of the remaining thirty-one regions. If the nth region is allocated, the nth bit in
this value is set. The two remaining values in region zero are the prev and next pointers; PLIs
are kept in a doubly-linked list structure. When users set user-level permissions on a memory
range, we allocate PLI regions that have enough bits to cover this range. There are two cases to
consider for PLI region allocation. If the lower and upper bound virtual addresses for the user
memory range has the same virtual prefix (i.e., the first 27 bits of the virtual addresses are the
same), then one region can cover the memory range. If the lower and upper bound do not have
the same virtual prefix, the numbers of regions to allocate is the range modular 4096, the number
of pages one region covers.

We allocate regions by searching existing PLI structures to see if there are empty regions.
If any bit in free_regions is not set, there is a free region in the current PLI. If the all the
regions are allocated, we load the next pointer, which is the next PLI in the linked-list, and we
check for free regions. If all regions in all allocated PLIs are allocated, we allocate a new PLI
page and append it to the front of the PLI linked list. We then allocate the regions we need from
this new PLI. Once a new region is allocated, it is passed as an argument to the sys_set_ro
system call to be stored in the page’s user PMD entry.

3.4 User Library Design

The ULPF library manages two key structures in user space: the PLI structures and the region
lookup table. We described the PLIs earlier; they are the last level of the ULPTs that hold the
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page permissions. As mentioned previously, the PLIs are pages partitioned into 32 regions where
each region hold permissions to pages that map to the same virtual prefix. The ULPF library code
is responsible for checking for free regions in existing PLIs and allocating a new PLI page if there
are no free regions.

The region lookup table is a structure that stores the mappings between virtual address pre-
fixes and the base address of the corresponding PLI region. The table is initialized as one page
that holds 255 table entries. A table entry consists of two 64-bit values: the virtual prefix and the
PLI region base address. When all entries are full, we allocate another page for the region lookup
table and store the address of that page as the final entry of our existing region table. Thus, the
region lookup table is also a linked list. These tables store entries as they are set by the user, so
the entries are not sorted. We implement the check_virt_prefix function within the library
to traverse the region tables to checked whether the virtual prefix of the given address is mapped
in the ULPTs, i.e. has an entry in the region lookup table.

We use the region lookup table for two reasons. When users set user-level permissions on an
address, we first check whether the virtual prefix is in the region lookup table. If it is, then setting
user permissions will only require modifications in user level code. If the virtual prefix is not in
the region lookup table, we know that the address is not mapped in the ULPTs in kernel space.
Here, we must invoke the system call sys_set _ro to populate the ULPTs in kernel space before
continuing with operations in user space.

Second, the return value of check_virt _prefix is the base address of the PLI region of
the virtual prefix of the virtual address, if the address is mapped. This value is one of the input
parameters for modify_pli, which is responsible for updating the permission bits for spe-
cific pages in the PLI structures. The signature of the function is void modify pli (voidx
vm_addr, int perms, unsigned long pli_region). vm_addr is the virtual ad-
dress that on which user sets user permissions. perms are the user permissions; currently we
only support USER_RW and USER_RO. The address, pli_region, is the base address of the
PLI region returned from check_virt _prefix.

The actual bit-manipulation is as follows:

#define CHAR_BITS 0x7

#define OFFSET_SIZE Ox1FF

void modify_pli(voidx vm_addr, int perms, unsigned long pli_region) {
// Gets the nine bits that typically corresponds to the PTE index and
// doubles it because there are two permission bits per page
unsigned long region_offset = (((unsigned long)vm_addr >> 12) & OFFSET_SIZE) << 1;

// Divide by 8 to get the byte within the region that the offset corresponds to
charx region_byte = (charx)pli_region + (region_offset >> 3);

// Mask to only get the last three bits to get the bit to flip within
// region_byte
unsigned char page_bit_first = (region_offset & CHAR_BITS);

// BITAND to set the "page_bit"-th bit in region_byte
switch (perms) {
case USER_RW:
*region_byte = (xregion_byte & (7 (1 << page_bit_first)));
break;
case USER_RO:
*region_byte = (xregion_byte | (1 << page_bit_first));
break;
default:
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printf ("NOT VALID PERMISSION\n");
}

return;

Once the user changes the permissions pertaining to any address, we update the TLB to
ensure coherence between the user page table structures and the hardware. Here, we invoke the
new x86 instructions mentioned in the TLB section, SET_TLB_RO and SET_TLB_RW. If these
instructions are called on an address not in the TLB, the instruction performs a NO-OP. This is
illustrated in Figure 3.6.

3.5 Summary

To realize our design goals for ULPFs, we modify both hardware and software components. We
ensure that ULPT permissions will be hardware enforced by basing our design off of existing
page walking logic within the MMU. Likewise on the software front, we duplicate the kernel
level page table structures for ULPTs to interface with the hardware extensions we made. We
move the last level of ULPTs to user space so users can modify their memory permissions with
a single write instruction without changing privilege levels. We bypass any kernel intervention
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by modifying the interrupt pipeline to jump to user handler code immediately after the hardware
throws a ULPF.
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3.6 List of New Instructions, System Calls, and User API

/*+ Returns from the ULPF handler; restores $RFLAGS and $RIP that were saved by hardware xx/
ULIRET

/*x Sets the TLB entry for vaddr to be user read-only if it is within the TLB, NO-OP the entry
does not exist *x/
SET_TLB_RO (vaddr)

/*% Sets the TLB entry for vaddr to be user read-write if it is within the TLB, NO-OP the entry
does not exist *x/
SET_TLB_RW (vaddr)

/*x Writes the value vaddr into CR16 (the address of the user PGD) xx*/

WRITE_CR16 (vaddr)

/+x Reads the value stored in CR17 (the faulting address) and writes it to vaddr *x/
READ_CR17 (vaddr)

/*x Writes the value vaddr into CR18 (the address of the ULPF handler) xx/
WRITE_CR18 (vaddr)

Listing 3.2: New ULPF x86 Instructions

/*x This is not invoked directly by the user program, but rather through the user library.
Initializes the User PGD level and writes address to CR16. Writes the user_handler_address
into CR18 xx/

long sys_register_uli( voidx user_handler_addr);

/** This is not invoked directly by the user program, but rather through the user library. The
library will manage the PLI structures that will designate the addr_region argument. The
vm_addr is the virtual address whose ULPT entry will be set to read-only. *x/

long sys_set_ro(void* vm_addr, voidx addr_region)

Listing 3.3: New System Calls

/+x Possible values for the PERMS value *x/

#define USER_RW 0x0
#define USER_RO 0x1
#define USER_EXE 0x10

/*x Wrapper around the sys_register_uli system call; initializes the user library structures (
the virtual prefix map, a page for PLI, initialize the watchlist tree structure.)
int register_user_handler (void* handler_addr) ;

/*x Wrapper around the sys_set_ro system call. First checks whether the address range covered
by [addr, addr + range) is already watched, checked via the user space region table. If the
range is watched, the function returns. If the range is not entirely watched, the function
will allocate a new region within a PLI and make the sys_set_ro system call with the new
region address and the given addr. Adds a new node within the watchlist tree, merging
existing nodes if necessary. *x/
long set_permissions (void* addr, size_t range, int PERMS);

/** Wrapper around the READ_CR17 instruction. Returns the virtual address stored in CR17,
which holds the faulting address. xx*/
unsigned long read_fault_addr();

/%% Searches through the watchlist splay tree to check whether the faulting address is being
watched. Internally invokes the read_fault_addr function to find the faulting address. xx*/
int lookup_wp () ;

Listing 3.4: User API
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Chapter 4

Case Study: Watchpoints

We use ULPFs to implement watchpoints that users can set within their program. We chose this
application for our case study because watchpoints are one example where the hardware throws
a fault for the running process that eventually gets handled in user code of the running process.
A watchpoint is a debugging mechanism that suspends program execution when a “watched”
address is modified. We implement watchpoints by setting the watched addresses to have read-
only user-level permissions. When the CPU raises a ULPF, it will execute a user-level handler
set by the user.

However, our ULPF mechanism stores permissions only on the page-level granularity. Users
typically set watchpoints on individual addresses or small address ranges. Our mechanism will
raise a ULPF for addresses within the same page as a watched address; we refer to these as false
positives. To be able to differentiate between false positive addresses and true watched addresses,
we built on our ULPF library with additional data structures to track watched addresses.

4.1 Watchpoint User Library

Our watchpoint user library provides users with a simple interface to set watchpoints within
their program. It internally implements a watchlist, a structure containing watched address, to
differentiate between true watched addresses and false positives.

All watched addresses are kept in a splay tree, sorted by address; this is our watchlist data
structure. The ULPTSs only store permissions pertaining to pages rather than individual addresses.
Watchpoints, however, can be set on individual addresses. Using the unextended ULPF library,
setting one address to have user read-only permissions is equivalent to setting the permission on
the entire page. Thus, there needs to be a structure to track addresses on a finer granularity to
distinguish actual watched addresses from false positives.

After some experimentation, we settled on using a splay tree as our watchlist structure. A
splay tree is a self-balancing binary search tree that rotates the most recently accessed element to
the root. This leads to having a smaller search time for elements that are accessed often. Being a
binary search tree, every subtree holds the invariant that all elements to the right of the root will
be larger than the root element and all elements to the left of the root will be smaller than the
root. For our watchlist implementation, an element within the tree is an address range, defined
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by a lower and upper bound. The library splay tree will dynamically merge overlapping address
ranges as the user inserts them. This preserves our binary tree invariant and minimizes the tree
size.

We provide three functions within our watchpoint user library:

® long set_permissions (voidx addr, size_t range, int PERMS)

® unsigned long read_fault_addr ()

e int lookup-wp ()

We will explain these functions in more detail.

The first, set_permissions (voidx addr, size_t range, int PERMS), sets
the address range from [address, address + range) to have PERMS permssions. In
other words, this function sets the addresses within the given range to have user-level permis-
sions. We assume that the user already initialized the ULPF mechanism prior to invoking this
function. The ULPF mechanism is initialized by invoking the register_user_handler
library call that we covered previously. The set_permissions (void* addr, size_t
range, int PERMS) watchpoint library call is a wrapper function around internal ULPF li-
brary calls. First, it checks whether the virtual prefix of the virtual address is already mapped in
the user page tables by invoking check virt _prefix. Ifitis, then the function returns the
base of the PLI region that maps to the virtual prefix. If it is not, then the set _permissions
function allocates a new PLI region and invokes the sys_set_ro system call to map the vir-
tual prefix into the ULPTs that reside in kernel space. Lastly, it invokes modify pli, which
actually find the permission bits in the PLI that corresponds to the given virtual address. The
functions mentioned were covered in detail in Section 3.4.

The second function, unsigned long read_fault_addr (), reads the %CR17 regis-
ter to find the address that caused the CPU to raise a ULPF.

The third function, int lookup_wp (), invokes read_fault _addr to find that address
that caused the ULPF, and uses it to traverse the watchlist tree. This function returns zero if the
address that faulted was not a watched address, i.e. a false positive, and returns one if the address
that faulted is being watched.

Bringing everything together, a typical user application will look as such. The user would first
register a ULPF handler function through the register_user_handler call, which initial-
izes the user level paging in kernel space. The library call also initializes the PLI structures in user
space. The user handler function will first check whether the faulting address is being watched
by invoking lookup_wp. If it is a watched address, it will continue executing the handler.
Otherwise, it will immediately return. The user can then set read-only permissions on individ-
ual addresses or ranges of addresses that are in its address space through set permissions
within the program.

/+*x Possible values for the PERMS value *x/

#define USER_RW 0x0
3 #define USER_RO Ox1
#define USER_EXE 0x10

/** Wrapper around the sys_register_uli system call; initializes the user library structures (
the virtual prefix map, a page for PLI, initialize the watchlist tree structure.)
int register_user_handler (voidx handler_addr);

/** Wrapper around the sys_set_ro system call. First checks whether the address range covered
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by [addr, addr + range) is already watched, checked via the user space region map. If the
range is watched, the function returns. If the range is not entirely watched, the function
will allocate a new region within a PLI and make the sys_set_ro system call with the new
region address and the given addr. Adds a new node within the watchlist tree, merging
existing nodes if necessary. xx/

long set_permissions (void* addr, size_t range, int PERMS) ;

/** Wrapper around the READ_CR17 instruction. Returns the virtual address stored in CR17,

which holds the faulting address. *x%/

unsigned long read_fault_addr () ;

/ * %

int

Searches through the watchlist splay tree to check whether the faulting address is being
watched. Internally invokes the read_fault_addr function to find the faulting address. x*/
lookup_wp () ;

Listing 4.1: Watchpoints API and Definitions

fdefine ulihandler __attribute_  ((user_level_interrupt)) \\
__attribute_  ((disable_tail_calls)) void
ulihandler user_handler () {
void* addr = read_fault_addr();
int found = lookup_wp () ;
if (found) {
printf ("Watchpoint hit")
}
else {
printf ("False positive")
}
}
int main (int argc, charxxargv) {

int ret = register_user_handler (&user_handler) ;
if (ret < 0) {
return -1;

}
charx mm_addr = malloc (PAGE_SIZE * sizeof (char));
set_permissions (mm_addr, PAGE_SIZE, USER_RO);

// Regular program code

Listing 4.2: Example Watchpoint Usage

4.2 Previous Work

There are several existing projects that explore watchpoint implementation. The first is GDB, a
popular debugger. GDB utilizes the hardware debug registers for the first three watchpoints and
falls back on a software watchpoint implementation if the user sets more watchpoints. GDB’s
internal software watchpoint implementation is very slow, as it forks the application as a child
process and uses the pt race system call to single step the application code and check whether
the accessed address is watched against some internal data structure. The pt race call also uses
signals to communicate between the parent debugger and child application, which adds to the
overall slowdown. While this enables setting any number of watchpoints, software watchpoints
incur a huge slowdown (up to 800,000x) over the native application.
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Another method to implement watchpoints is using dynamic binary instrumentation (DBI)
along with shadow memory to execute a check on each memory access. DBI frameworks are used
as program profilers that can observe behavior at runtime. Pin [5], one DBI framework, takes
an executable file as input and rewrites the given binary using its internal just-in-time compiler.
This allows Pin to inject user-installed monitoring code before each memory operation.

Shadow memory is specially allocated memory used to identify permissions for another re-
gion of memory. A naive implementation partitions the address space in two, with one region
being program-accessible and the other being a one-to-one mapping for the permissions of bytes
being used. Although space-inefficient, the implementation is straightforward; the user-installed
instrumentation code would add a set offset to the accessed memory address to find its corre-
sponding permission in the shadow memory and execute some routine. EDDI [13] uses DBI and
shadow memory to efficiently implement unlimited watchpoints in programs running on IA32
architecture. They further decrease the overhead of their mechanism by shadowing one byte of
memory with one bit, performing register analysis to reduce spilling when executing instrumen-
tation code, and batch checking memory accesses [7].

Along a similar vein, MemTrace [6] expanded on a cross-ISA binary translator to provide
memory watching capabilities. It cross compiles between 32-bit and 64-bit architectures and uses
the additional registers and increased memory space to inject and execute small code sequences
within the original executable. The concept is similar to that of EDDI but MemTrace used a
binary translator, instead of a DBI, for code insertion. MemTrace also uses shadow memory to
save permissions pertaining to the original 32-bit application’s memory space.

The Mondrian Memory Protection (MMP) [12] scheme is one implementation that modifies
hardware rather than only modifying software tools. MMP stores permission information corre-
sponding to sections of user space memory within kernel space. A hardware component checks
every address against this kernel structure. MMP and ULPF contain many similar components.
We differ in our methods to update user permssions: MMP invokes an inter-protection domain
call, ULPF directly writes to the PLI permission bit. When a permission violation triggers a
fault, MMP invokes the traditional kernel fault, while ULPF faults to a user-defined handler. Our
faulting mechanism has a lower overhead over that the inter-protection domain call that MMP
uses.

4.3 Implementation Details

As we explained in the previous chapter, we needed to modify the hardware, the operating sys-
tem, and add a user library. Our hardware modifications are simulated on Gem5 [1], an open-
source computer architecture simulator. It also has a “full-system” emulation setting where it
can emulate an unmodified kernel binary. Within its source code, we modified the page walking
and TLB execution logic and implemented the additional aforementioned x86 instructions.

To invoke our new instructions, we also modified the LLVM compiler to compile ULPF
programs. The compiler detects the user handler function through a unique attribute and will
automatically generate assembly to save and restore the execution registers prior to and after
executing the handler code. For example, if the compiler used registers %RAX, %RBX, and
%RCX within the handler code, the final generated assembly code for the handler will be:
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I push $RAX

2 push %RBX

3 push $%RCX

4 // handler code assembly
5 pop %RCX

6 pop %RBX

7 pop %RAX

We chose to modify Linux kernel 2.6. Unfortunately, we later found that Gem5 was unable
to run some executables because the kernel version was too old.

For our benchmarks, we wrote programs in C and compiled with Clang 6.0 with our modified
LLVM back-end. We compiled everything with —O3 unless stated otherwise. We also found
that some functions were not supported by the internal 1ibc library within Gem5 so all our
programs were statically linked against glib 2.17. Our cycle counts were taken using the
rdtsc instruction with the start point after initial variable declaration and argument checking
and the end point before any resource cleanup. Our reported cycle counts are the difference
between the end point and the start point.

We ran benchmarks on two different user handler configurations. The first is an empty han-
dler; this measures the overhead of the faulting mechanism. The second is a watchpoint handler.
Upon every invocation of the user handler, it first invokes our library call to check whether the
faulting address is a watched address. If it is, then it will increment a global watchpoint_hit
variable by one; otherwise it will increment a global false positive variable by one.

4.4 Comparison to Signal Handling

Table 4.1: ULPF to Signal Handling Comparison

ULPF (cycles) | Signal Handling (cycles)
(1) Fault to entering handler 130 8800
(2) Handler lookup 200 210
(3) Allowing the write inst. - 3500
(4) Exiting handler 85 5200
(5) Reexecute write - 3600
(6) Restore R/O permissions - 3600

When comparing our faulting mechanism as a faster signal handling mechanism, we found
that in a step-by-step breakdown of that our permission-setting and faulting mechanism is up to
100x faster (Table 4.1) than the same a program of the same functionality written using signals
(Listing 4.3). An important difference is that our architecture modifications are specifically
targeted for this application. As a byproduct, steps 3, 5, and 6 (see Fig. 4.1) of the execution
put regular signal handling at a disadvantage because our architecture handles the write-once
operation within hardware. Other than that, there are major differences in comparing the cycles
it take to point of faulting to the point that the handler code runs. The ULPF mechanism pushes
only a couple of registers onto the user stack and jumps to the handler address. The signal
handling mechanism would have to perform a stack change, execute the kernel handler, and then
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Figure 4.1: Signal execution steps corresponding to Table 4.1
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jump to the signal handler address (step 1). Likewise, when we are returning from the handler,
the ULPF approach uses a specialized instruction to return; it pops the saved registers and jumps
to the faulting instruction address. The signal handling pipeline involves jumping back to kernel
space to restore the original context, and then jumping back to the user program (step 4).

I void signal_handler (int sig, siginfo_tx info) {
2 void+ fault = info->si_addr;

mprotect (mm_aligned, 4096, PROT_WRITE) ;
}

1o R W

void setHandler (void (xhandler) (int,siginfo_t «))
8 {

9 struct sigaction action;

10 action.sa_flags = SA_SIGINFO;

11 action.sa_sigaction = handler;

12

13 if (sigaction(SIGSEGV, &action, NULL) == -1) {
14 perror ("sig action err\n");
15 _exit (1);

16 }
17 '}
18 int main(int argc, charxxargv) {
19
20 setHandler (signal_handler) ;
21 charx mm_addr = malloc ((PAGE_SIZEx2 - 1) x sizeof (char));
22 mm_aligned = (char =) (((int) mm_addr + PAGE_SIZE-1) & ~ (PAGE_SIZE-1));
23 mprotect (mm_aligned, PAGE_SIZE, PROT_READ);
24
// Regular program code
26 }

Listing 4.3: Signal Handling

We further break down the cycles for the process from the time the CPU throws a ULPF to
the point of executing the first instruction in the handler prologue (Table 4.2). In the future, we
can potentially cut down cycles by saving multiple registers in parallel.

Table 4.2: ULPF Fault to handler breakdown

ULPF (cycles)
(1) Flushing the pipeline 10
(2) Inform microarchitecture of ULI 6
(3) Save the next PC 6
(4) Save the current RFLAGS 12
(5) Save the current RDI register 12
(6) Write the CPU id to RDI 7
(7) Misprediction 10
(8) Execute first instruction of the handler prologue 2
Total 65
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4.5 Microbenchmarks

Our first microbenchmark is a general overview of the scalability and overhead of a user-level
page fault. Our test program allocates 256 consecutive pages, each 4096 bytes, and sets watch-
points on addresses according to different distributions. Our measurement times a loop that
writes to each address in order. We also took measurements with two different user handlers: an
empty handler and one that searches the watchlist tree to determine whether the faulting address
1s watched.

Table 4.3: Sparsely Distributed Watchpoints

WPs | Pages Spanned | False Positives | Slowdown (lookup) | Slowdown (no lookup)
1 1 4095 1.05 1.01
2 2 8190 1.11 1.02
3 3 12285 1.17 1.02
4 4 16380 1.22 1.03
8 8 32760 1.45 1.06
16 16 65520 1.91 1.13
32 32 131040 2.84 1.26
64 55 225216 4.16 1.45

128 101 413568 6.81 1.83
256 156 638720 9.97 2.29

Table 4.4: Densely Distributed Watchpoints

WPs | Pages Spanned | Slowdown (lookup) | Slowdown (no lookup)
8 1 1.05 1.01
16 1 1.05 1.01
24 2 1.11 1.01
32 2 1.11 1.01
40 3 1.16 1.02
48 3 1.16 1.02

In our first microbenchmark, we place watchpoints on uniformly distributed random ad-
dresses. We refer to this as the sparse configuration. From the data in Table 4.3, we see that
the overall slowdown of the application is linear with respect to the number of pages spanned
when there is no lookup in the user handler. It is also linear with respect to the number of
watchpoints when invoking an empty handler (Fig. 4.2).

Our second microbenchmark watches addresses, also in one byte units, uniformly spaced 256
bytes apart. We refer to this as the dense configuration. Setting an address to be watched involves
setting the entire page to be user read-only. This implies that even watching one address will lead
to 4096 faults, of which 4095 are false positives. The difference between data in Table 4.3 and
Table 4.4 reflects that the slowdown is independent of the number of addresses watched within
the same number of pages spanned. Since the addresses watched in the dense configuration are
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not consecutive, the number of nodes in the search tree is also equal to the number of watchpoints.
However, the slowdown in Table 4.3 for 8 watchpoints is much higher than for 8 watchpoints in
Table 4.4, because the benchmark in Table 4.3 triggered 8 times as many faults.

We had two additional microbenchmarks. One watches one address on each page and one
watches the entire block of allocated memory. Both configurations will have the same number
of pages spanned, leading to the same number of faults. Here, we see a slight variation in
slowdown for just the mechanism when there are many faults, as shown in the Slowdown (no
lookup) column of Table 4.5. However, we also see that the memory accesses from searching
the watchlist accumulates even if there is only one node, as seen in the dense configuration. The
slowdown for the sparse configuration may be optimistic, for we watch the first address on each
page and insert them into the splay tree in the same order as our access pattern. This will lead to
a fewer number of rotations when accessing the nodes of the splay tree.

Table 4.5: Extreme Distribution of Watchpoints

WPs | Pages Spanned | False Positives | Slowdown (lookup) | Slowdown (no lookup)

256 256 1048320 15.8 3.2
1048576 256 0 14.5 3.2

We ran the same microbenchmarks using GDB hardware and software watchpoints. In order
to have a reasonable runtime, we reduce the overall allocated memory to 8 consecutive pages.
We randomly select a number of addresses to watch in both GDB and user-level page faults. We
then time the number of cycles it takes to write to all allocated bytes. For implementation details
in GDB, please refer to Appendix A.

Microbenchmarks were compiled with —O0 optimization so that GDB will be able to set
watchpoints properly without variables being optimized out. This explains the ULPT slowdown
being drastically larger than the slowdowns presented in earlier experiments. GDB only allows
setting 3 hardware watchpoints at a time; the overall slowdown to using hardware watchpoints,
e.g. the debug registers, is close to negligible. However, if users want to watch more than 3
discrete addresses, GDB software watchpoints will incur a large slowdown, close to a million
times the original runtime.

Table 4.6: GDB Comparison (ULPF benchmark compiled with —00)

Addresses Watched | GDB HW Slowdown | GDB SW Slowdown | ULPF Slowdown
1 1.05 799600 2.5

2 1.05 1018000 4.2

3 1.03 1203000 6.0

4 - 1446000 6.1

8 - 2101000 8.2

16 - 3773000 12.0

32 - 6546000 17.1

64 - 13520000 194
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4.6 SPEC Benchmarks

We also tried to use our mechanism on applications in SPEC2006 benchmark suite. For each
benchmark, we choose to watch all allocated heap memory. Due to several setbacks, we only
successfully tested our mechanism on two benchmarks. We could not successfully run other
programs within suites due to issues such as the disk image having insufficient memory and the
kernel being outdated. We also had to disqualify programs that did not use heap memory; they
accessed global memory. We chose to only watch heap memory because the program is explicit
about when heap memory is allocated and freed.

Table 4.7: SPEC Watchpoints

Name | WP Hit | FP | Tree Nodes | Slowdown (lookup) | Slowdown (no lookup)
libquantum | 7249859 | 348 95 6.8 1.8
Ibm 4611909 | 3930 2 2.1 1.1

The many of the related work we mentioned previously did not run tests on the same set
of SPEC benchmarks we did. EDDI [13] and MMP [12] ran on the SPEC 2000 benchmarks.
MemTrace ran on the SPEC 2006 benchmarks and also benchmarked a watchpoint application.
Their slowdown for the two programs we tested are shown in Table 4.8. Overall, our ULPF
mechanism overhead is comparable to that of their binary translation implementation, shown
by the overhead of ULPF without lookup. Since we must traverse a binary search tree every
time we fault to differentiate between watched addresses and false positives, the overhead of
ULPF watchpoints is significantly higher than that using MemTrace, as shown by the overhead
of ULPF with lookup. However, it is important to note that ULPF applies to 64-bit applications,
while MemTrace can only apply to 32-bit applications. While we have a higher overhead in
runtime due to searching the watchlist tree with every fault, we allow the application to work
with a larger address space because we do not use shadow memory. Also, to add watchpoints to
a MemTrace program, the program must be recompiled, whereas recompiling is not necessary
for a ULPF program.

Table 4.8: Comparison with MemTrace

Name | ULI Slowdown (lookup) | ULI Slowdown (no lookup) | MemTrace |
libquantum 6.8 1.8 2.01
Ibm 2.1 1.1 1.11

4.7 Summary

From our microbenchmark data, we found that there are two components that contribute to
the overhead of running the program with addresses watched compared to having no addresses
watched. The first is the number of pages spanned by the watched addresses. In other words,
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this is the set of pages that the set of watchpoints are on. The second is the faulting cost. The
faulting cost covers the cost of the faulting mechanism and the cost of running the handler. Our
data shows that the slowdown of having watchpoints is linearly proportional to the product of
the pages spanned and the faulting cost. However, the proportional constant is high, 4096, the
number of addresses on a page.

The overhead of the ULPF faulting mechanism is low; there is around a 1% increase in over-
head for every page watched. As we show in sparse and dense distribution of watched addresses,
this overhead stays consistent as the number of pages increase. The size of the splay tree is con-
stant through the execution of the program; all nodes are inserted into the tree before any memory
is accessed. Therefore the cost of searching the splay tree is mostly the same from fault to fault.
However, once we have watchpoints that are on different pages, the overhead starts increasing
quickly. This is because for every address that is on a watched page, the faulting mechanism
executes. This is the proportional constant mentioned earlier in our slowdown equation. How-
ever small the faulting cost is, having it execute 4096 times will contribute significantly to the
runtime.

Overall, these results show that our hardware and software mechanisms for ULPFs are pro-
viding the low overheads that we hoped. Based on our current page-level faulting mechanism,
there is little we can do to lower the proportional constant, which is the main contributor to the
slowdown. Other than that, there might be optimizations we can make in the watchlist design for
a shorter lookup, to minimize the handler cost.
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Chapter 5

Improvements and Future Work

The ULPF design described in this thesis merely sets the foundation for future work; there are
many issues that are not addressed. We have not discussed whether child processes will inherit
their parents’ user level handler or whether they will have the same permissions in their corre-
sponding memory also set to read-only. We also have not deeply explored on whether giving
users this functionality will affect program security.

There are several avenues for improving the performance of this mechanism that we did not
have a chance to explore.

5.1 Watchlist Data Structure

5.1.1 Continue with Splay Trees

We selected splay trees as our watchlist structure based on our hypothesis that splay trees have
advantages in terms of locality and being balanced were not supported across the board, as a
unbalanced binary search tree showed less slowdown in some applications.

It is not clear whether using trees as our watchlist structure is the optimal choice. There needs
to be a more extensive exploration of various implementations of BSTs (binary search trees) and
balanced BSTs, e.g., red-black tree, AVL, splay tree, to see whether the one implementation has
an improvement over others.

5.1.2 Bloom Filters

Instead of a tree structure that holds all watched addresses, there can be an additional level of
indirection within the user library that uses bloom filters [2]. Bloom filters are probabilistic data
structures that can determine non-membership with certainty. In the case of potential member-
ship, a more concrete data structure, like a tree or hash-map, is needed. However, this method
does not lend itself intuitively to represent ranges.
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5.2 Optimizations

We decided to merge consecutive and overlapping address blocks to decrease the number of
nodes in our watchlist tree. This proved to be useless when we were collecting data from mi-
crobenchmarks. Given that malloc will take some amount of memory as the header for a
block, no consecutive allocated blocks will be merged. There is an argument to be made whether
we should account for the header as part of the watched memory and thereby merging watched
memory from two consecutive malloc calls. However, at this time, there is no method to de-
termine whether a watched address is the return address of a malloc call, so we cannot make
this assumption. We would need to make changes to the user library to make this distinction.

5.3 Future Exploration

Future work may include exploring other applications of a user-level faulting mechanism, like
stack guarding. We have intentionally allotted two bits for every page in the user page tables for
future applications.

Another interesting avenue to explore is having this user level faulting mechanism apply to
only certain threads in multithreaded applications. This way, the user would detect whether some
thread is writing into another thread’s memory or changing some variable value. Unfortunately,
existing hardware stores only states pertaining to individual processes rather than threads within
processes. We have no way to differentiate between threads of the same process. For example,
the MMU will refer only to %CR3, which holds the process page table, for address translation.
Only the kernel has thread-level information, but requiring kernel interference will defeat the
purpose of ULIs, which explicitly bypasses the kernel.
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Chapter 6

Conclusion

This thesis shows that having a specialized faulting mechanism for user-installed software han-
dlers is much more efficient than the current architecture of signal handling. There is a 100x
speedup in using ULPFs for watchpoint implementation over using signal handlers. For imple-
menting ULPFs, we essentially duplicated the kernel page tables and its corresponding page-
walking logic within the MMU to store and lookup our user-defined permissions. We also added
an additional path to be able to raise a ULPF through the TLB by caching user-level permissions
as part of a TLB entry. For user space programs to be able to interact with these new paging
structures, we installed new system calls.

We tested our mechanism on the watchpoints application, for which we developed a simple
user library with an intuitive API to ease usability. In our microbenchmarks and SPEC bench-
marks, we found advantages and disadvantages of our design. Our advantages are clear over
existing signal handling methods. Even if we ignore our hardware capabilities of being able to
“fault once” on an address without manipulating any permissions in memory, we save thousands
of cycles by staying in the user stack and having a specialized mechanism. Compared to invok-
ing the kernel page fault handler and passing execution to a user signal handler, our mechanism
proves to be 100x faster. Compared to an application that does not use our mechanism, we only
incur a 0.07% slowdown per page watched. Our disadvantages are that we are faulting on a page-
level granularity. While the relationship of our overhead is linear with respect the pages spanned
and the faulting cost, that the linear constant is 4096 causes our overhead to increase quickly as
the number of watchpoints increase. In other words, our mechanism will fault 4096 times on a
page with only a single watched address. To overcome this issue, we would need to reevaluate
the existing memory management system, for the current system operates on the page level.

We have successfully shown through this design that it is possible to give users the power
to define memory protection within their applications without compromising security of other
processes. Our approach differs from many previous proposals in that we implement changes to
the hardware, rather than limiting our changes to software components. Our mechanism is also
more memory efficient compared to shadow memory implementations. Rather than allocating
half, or an eighth of the entire memory space to store permissions, we allocate page tables with
an need-by-need basis.
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Chapter 7

Appendix

May it be a light to you in dark places,
when all other lights go out.

Galadriel
The Fellowship of the Ring, J.R.R. Tolkien

7.1 GDB Scripting

For the purpose of benchmarking, we needed such a script to automatically set watchpoints and
run the program in its entirety to mimic the behavior of the corresponding ULPT program. GDB
can be configured to run a script automatically upon startup. The contents of this script are
typically found in "/ .gdbinit. Each line is a command the user would have inputted into the
GDB interface. With the script below, GDB will automatically load the program gdb_test,
break at a certain line within the program, set a watchpoint at an address, and continue running
until the program terminates. This eliminates any user interaction that GDB typically requires.

=

set pagination off

set logging off

set can-use-hw-watchpoints 0
file gdb_test

break gdb_test.c:24

run

watch = (block + 1234)

Do not limit output length on screen

Turn off logging (can also be set to redirect to another file)
Force GDB to use software watchpoints

Name of file to run

Set breakpoint preemptively on line 24 of code file

Run the program to get variables in scope

block is base address of allocated memory. This sets a
watchpoint on address (block + 1234)

Continue with execution

Listing 7.1: Sample GDB Script

He oo HE 4R S o S

continue

7.2 Making a New System Call

This is a quick overview of the files needed to be changed to install a new system call. All this
information and more can be found on Google; I hope to make someone’s life a bit easier.

My example will be using the Linux 4.19 kernel. More recent kernels will have a similar file
structure, but the file or variable names might be a bit different. A grep over a classic system
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call like fork or wait would list a superset of the files you would need to change. I will be
using Ubuntu 18.04 as my distribution. Some Linux distros offer specialized packages to install
a modified OS (like dpkg for Debian-based distros); it worked once and never again. I found
the method I included below to be reliable and should be distro-insensitive, but I have only tried
it on Ubuntu.

Download the kernel source code from the official website and untar it.

// Comment: I will be referring to your download directory as $OS_HOME

>> wget https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.19.191.tar.xz
>> tar -xzvf linux-4.19.191.tar.xz

// I will be referring to the linux base directory ($SOS_HOME/linux-4.19.191) as SLINUX_HOME

The highest level file directory is split into key components of the kernel. I mostly focused in
mm (memory management), ke rne 1 (most system calls), andabitinarch/x86/include/asm
(macros that bridge between the software and the hardware); I don’t know much about the
rest. While technically we can write system calls anywhere, I'll demonstrate this within the
SLINUX_HOME/kernel subdirectory because that’s where all the cool system calls are.

Within the SLINUX_HOME /kernel subdirectory:

// my_syscall.c : My first system call
// Super interesting and requires kernel privilege to execute
// Full path: S$LINUX_HOME/kernel/my_syscall.c

asmlinkage long sys_mult_five (int input) {
return 5 x input;

}

// Makefile
// Full path: SLINUX_HOME/kernel/Makefile

// This is super forgettable and frustrating to debug the resulting make errors.
obj-y = shed.o fork.o exec-domain.o ... \
\

my_syscall.o

Hopping over to SLINUX_HOME /include, we need to add your new function to the header
files.

// syscalls.h
// Full path: SLINUX_HOME/include/linux/syscalls.h

// NOTE: If your syscall takes no parameters, you need to explicitly write void
asmlinkage long fork (void);

asmlinkage long sys_mult_five (int input);

// syscalls.h
// Full path: S$LINUX_HOME/include/uapi/asm-generic/unistd.h

// Each syscall is registered with a trap gate, these gates are identified by IDs

#define _ NR_statx 291

// This macro will generate and write the trap gate into the IDT for the corresponding ID and
function

__SYSCALL (__NR_statx, sys_statx)

#define _ NR_mult_five 292

__SYSCALL(__NR_mult_five, sys_mult_five);
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This file defines all system calls and their respective call numbers if invoked from user space.

// syscall_64.tbl
// Full path: SLINUX_HOME/arch/x86/entry/syscalls/syscall_64.tbl

332 common statx sys_statx
// This number is important
333 common mult_five sys_mult_five

This is basically it. Time to build.
// In SLINUX_HOME, within the shell

// Compile everything
>> make -3j $(nproc)

// Install kernel modules
>> sudo make modules_install

// Install the build images into your /boot directory
>> sudo make install

// For Debian-based distros, you don’t have to update the GRUB config but if you want:

3 >> sudo update-initramfs -c -k 4.19.191

>> sudo update—grub

I personally found it useful for the boot process to stop at the GRUB menu instead of auto-
matically booting into the first OS.

// Full path: /etc/default/grub

GRUB_TIMEOUT=-1

After this change, you must update grub.

>> sudo update-grub

Great. Reboot and select your new kernel in the GRUB menu (you may have to look in
Advanced options and select your kernel version).

>> reboot

Now, let’s invoke your new system call.

// User test for your new system call.
// Full path: S$HOME/test_syscall.c

#include<stdio.h>

int main() {
// syscall invokes system calls by their registered numbers in the syscall_64.tbl file
int num = syscall(333, 8);
printf ("$d\n", num);
return 0;

}
// Compile and run

>> . /test_syscall
40

Some things to know: These notes are not necessary if your system call does not involve any
other process or memory components.
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7.3

The internal kernel memory allocator is kmalloc. The first argument is the same as
malloc, the size of the memory you want to allocate. The second is flags for selecting
a pool and/or specific action that you want to execute. For most purposes, this would be
GFP_KERNEL if you want to allocate pages in kernel space (GFP stands for general free
pages). The full documentation is online on the official kernel website.

task_struct is the name of the general process control block. This holds all informa-
tion (PID, process state, parent process, signal handlers, etc.) pertaining to a process. You
can access the current running process by:

// task_struct is defined below

2 #include <linux/sched.h>
3 // get_current () is defined below

#include <asm/current.h>

5 void fun {

struct task_struct* proc = get_current ();

7}

Printing in kernel space uses printk with the same syntax as printf from stdio.h.
You can access these logs using

>> dmesg

in the shell.

Good References

Linux source code explorer: Elixir Bootlin

Most global variables, macros, and function declarations will hyperlink to a list containing
their definition and usage files. You can find the same information through grepping, but
this website clearly distinguishes the definition files.

Also contains LLVM, gemu, glibc, and several more repositories.

Building concepts: Operating System Concepts by Abraham Silberschatz, Peter B. Galvin,
Greg Gagne

The classic dinosaur book — not exactly the most practical (look at entry below) but great
to get to know the key kernel components.

Kernel text reference: Understanding the Linux Kernel by Daniel P. Bovet, Marco Cesati

This book covers, in extreme detail, Linux 2.6. Slightly outdated, but I found this book the
perfect bridge between 15-410 and working on an actual kernel.

Memory Management: Understanding the Virtual Memory Manager by Mel Gorman

This text provides line-by-line explanations of the memory management system, including
page faults, in Linux 2.6.

The Intel 64 and IA-32 Architectures Software Developer Manuals

Yes, they are massive. But if you want to play in their sandbox, these explain the rules (to
a certain extent) really well.
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https://elixir.bootlin.com/linux/latest/source

Easter Eggs

e The Linux kernel usually goes by numbers for its release versions, but each release has a
name. You can find them in the Makefile of the base directory. A personal favorite: 4.2.8
is “Hurr durr I’'ma sheep.”

¢ Developers (Linus) sometimes colorfully gripe about their struggles in the comments. A
quick grep will find you some interesting bits.

There seemed to be some dispute between Linus and Sun Microsystems. Prof. Eckhardt
might know something about it.

¢ Due to a change in the Linux Code of Conduct, a patch has replaced all the f-words with
“hug.” Other profanities have not been adjusted.
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