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Abstract

Deep neural networks have revolutionized computer vision, with state-of-the art
performance across multiple tasks. An important part of training such networks is
the availability of large, high-quality labeled datasets. This makes building new
datasets a significant hurdle to approaching novel tasks or domains. In many cases,
acquiring labels can be difficult, expensive, or time-consuming. Active learning
seeks to improve label efficiency and lower overall labeling cost by allowing the
learning system to intelligently pick samples to label. Active learning is well stud-
ied for classical machine learning models, but many of these approaches have been
shown to be ineffective for deep models and modern image datasets. This raises the
question of how to develop and use active strategies in these settings. In this work,
we seek to build intuitions for deep active learning by conducting a comprehensive
empirical analysis of existing approaches for image classification tasks. Critical to
this analysis is the distinction between uncertainty and diversity-based strategies and
how they perform in various settings. Our experiments show surprising results re-
garding the efficacy of existing approaches in commonly tested settings. We find
that active learning is more useful in settings such as low data availability, class im-
balance, and transfer learning. Finally, our results provide heuristics for the active
learning practitioner to decide on a strategy to use, and more crucially whether to
use active learning at all.
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Chapter 1

Introduction

Machine learning models have shown incredible ability for inference and prediction across a
variety of domains. However, this ability is extremely dependent on the amount and quality of
training data. As model complexity increases, so does the amount of training samples required.
And while samples may be easy to collect, such as through crawling the web [S0], in supervised
learning we require a large number of labels as well.

Building such large datasets has become even more important with recent advances in deep
neural networks. Although they have achieved successful results in high complexity sample
domains like natural language and images, deep networks often require tens of thousands of
examples or more. ImageNet, a popular large image classification dataset, currently contains 14
million images with accompanying labels collected through crowdsourcing [12]. Collecting such
a labeled dataset for a novel task can thus be difficult, particularly if labeling is time-intensive or
expensive. For example, medical images may require an expert opinion in order to obtain a label
[1]. Active learning seeks to solve this problem by allowing learning systems to query labels for
unlabeled samples during the learning process, and has shown successful results in many tasks
including speech recognition, classification, and filtering [41]].

There have been several results for active learning with classical machine learning models.
One paradigm is uncertainty sampling, where the algorithm queries labels for samples that the
model is uncertain about. Other paradigms include query-by-committee, in which the algorithm
trains several models and queries the samples for which they disagree most, and density-weighted
sampling, which queries the most representative samples in the input space. Of these, uncertainty
sampling has been the most successful and commonly used [41]].

However, many of these intuitions, paradigms, and results have not been successful for deep
models. One issue is that deep models are unlikely to learn from single data points and generally
require mini-batch learning to train efficiently and avoid local minima. This requires design-
ing active algorithms which can query several samples at once. In addition, many uncertainty
sampling methods have been specifically shown to perform poorly in the deep setting. Methods
that have shown the most promise [40, 47| instead query diversely throughout the input space,
which is unlike most of the existing paradigms. Even so, it is still not clear which active learn-
ing methods a practitioner would use with a deep model. In addition, evaluating active learning
algorithms for deep networks is difficult due to long training times and noisy results. And criti-
cally, nearly all recent work trains in restricted settings which are often not the most realistic or
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practical.

In this work, we empirically analyze deep active image classification algorithms across sev-
eral different settings in order to address these concerns. We particularly focus on the differences
between uncertainty and diversity-based methods across these settings. Additionally, we argue
that the most common settings in which these algorithms are tested are not optimal for active
learning, and explore what we believe are more interesting and practical settings.

Our main contributions are: (a) identifying settings where uncertainty-based active methods
outperform diversity-based methods, (b) analyzing the effect of learned model representations
on diversity-based methods, (c¢) understanding how deep active methods perform in common
classification tasks of varying difficulty, and (d) helping the active learning practitioner identify
the usefulness of active learning strategies in their particular setting.



Chapter 2

Background

In this section we provide an overview of existing active learning paradigms and approaches,
both for classical models as well as deep models. In an active learning system, the learner
queries for new labels in a systematic way to achieve the best performance. In many cases, we
can achieve better performance with smart label queries than random selections, and indeed we
evaluate these systems against a random sampling baseline (’passive” learning).

There are several high-level scenarios for active learning. In pool-based active learning, the
most common scenario, samples come from a fixed unlabeled pool. When the algorithm queries
a sample and receives a label, the sample moves to the labeled pool. Other scenarios exist,
such as query-synthesis, in which the system can query any sample from the input space (even
synthetically generated ones), and stream-based, in which the system receives candidate samples
in a stream and chooses whether or not to label them [41]].

We focus on pool-based active learning in this work. At each active acquisition step, we
query the new sample(s) to label from the unlabeled pool. These samples are moved to the
labeled pool, and the process is repeated with the next step

2.1 Classical Active Learning

There have been many successful active learning results for classical models. A common cate-
gory of methods is uncertainty sampling, in which we query samples the learner is unsure about.
These strategies implicitly select points near decision boundaries in order to improve perfor-
mance. For models that estimate class probabilities, margin [39], and entropy [45] sampling are
common ways of computing uncertainty. For maximum-margin classifiers, we can directly es-
timate distance to the margin [9, 49]]. Uncertainty-based strategies also exist for nonparametric
models such as decision trees [32] and nearest-neighbor classifiers [[18, 33].

A related category of strategies is query-by-committee (QBC), where several learners are
trained and the samples that the learners most disagree on are selected [44]]. QBC strategies
have been explored for naive Bayes [35] and hidden Markov models [3]]. Several model-agnostic
methods also exist [2, 36, 37]. Often these methods employ methods similar to uncertainty
sampling in order to compute disagreement, such as [3] which extends entropy sampling to a
committee of models. An issue with QBC methods is that we must train multiple models, but
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[350142, 144] suggest that using as few as two models is sufficient.

Another important category of strategies is density-weighting, where the learner queries the
most “representative” samples. This involves modeling the input space, which can be challeng-
ing, but avoids the problem of querying unnecessary outliers (which uncertainty sampling may
do). It also allows for possibly leveraging the unlabeled samples, turning the active strategy
into a form of semi-supervised learning. [42]] employs a density-weighted strategy that estimates
density using average similarity to nearby samples, and combines it with uncertainty sampling.
The formulation allows for arbitrary uncertainty methods to be used, and for trading off between
representativeness and uncertainty. [52]] performs a similar tradeoff by using an integer pro-
gramming formulation to querying informative samples while querying close to the input data
distribution.

Other strategies aim to find samples that most improve expected error or induce the greatest
model change. [29] introduces a Bayesian method for Gaussian processes to find queries that
maximize expected model improvement. [43]] uses expected gradient length as a proxy for model
change. [38] proposes an error reduction strategy for naive Bayes. Again, efficiency is often a
concern with some of these strategies, as we may have to retrain the model for every candidate
query.

A significant characteristic of classical methods is strong theoretical results. One specific
idea we are interested in in this work is understanding the conditions under which active learning
algorithms will provide a potential advantage. [10] studies upper and lower bounds for active
classification improvement for nonparametric active methods, as functions of data dimensional-
ity, decision boundary complexity, and noise around the boundaries. Critically, they show that
potential improvement degrades exponentially as dimensionality d or noise ~ increases. [6] ex-
tends this result to parametric methods and shows a better lower bound on active classification
improvement, but with a similar dependence on the dimension d. Together both works sug-
gest that increased task difficulty, represented by higher data dimensionality and more complex
boundaries, lowers the effectiveness of active learning. The various settings we study in this
work are motivated by this idea.

A full overview of classical active learning techniques is out of the scope of this work, and
we refer the reader to [41] for a comprehensive survey.

2.2 Deep Active Learning

As we move to settings with deep models and complex datasets, many of these active strate-
gies have been empirically shown to break down. Several studies [/, 40] find that uncertainty
sampling methods, are ineffective (i.e. unable to outperform random sampling) for nontrivial
datasets. It has been shown that class scores from softmax outputs are often poor estimates of
probability (the “calibration problem™) [23]. This cripples uncertainty sampling strategies that
leverage these scores like entropy and margin sampling. [22] finds that an expected gradient
length strategy significantly underperforms for image datasets.

[40] argues that mini-batch training in deep learning is a large part of the reason why classi-
cal active learning algorithms underperform. Most classical methods query samples in a serial
manner, but deep active strategies must query in batches since networks have difficulty learning
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from single samples. Furthermore, within these batches, we would like the samples to be uncor-
related for the networks to learn well. Another issue is efficiency. Some methods are suited to
small datasets and have undesirable time or space complexity. For example, [15} 24, 56] require
optimization over O(n?) variables where n is the dataset size.

2.2.1 Diversity-based approaches

A recent trend in deep active methods is querying diversely throughout the sample space. This
direct optimization of sample diversity is claimed to improve learning, and runs contrary to the
uncertainty sampling intuitions that have been successful in classical methods. Coreset [40]]
formulates this approach geometrically through the k-Center problem [53]]. The goal is to find
a subset of points, which they call a “core-set”, such that for all points, the maximum distance
to the closest selected point is minimized. If X, and X, are the set of unlabeled and labeled
samples respectively, we aim to find a set S C X, of size £ such that:

min max min_ A(x;, x;)

SCXy 1 x;€EX,UXy
The method includes a greedy solution as well as a robust solution with mixed integer program-
ming - we use the greedy solution following the recommendation of [7], which showed that the
performance difference was negligible. Coreset incorporates the current model (and by exten-
sion, the current labeled pool) by defining A(z;, z;) as the Euclidean distance between last-layer
embeddings of ; and z;.

Other diversity-based methods seek to model the unlabeled sample space more directly, lever-
aging the large set of unlabeled samples. These methods are similar to density-sampling as they
aim to query in areas of the sample space where labels are sparse. [22]] train a binary classifier
to distinguish between unlabeled and labeled samples. The samples that are predicted to be most
likely from the unlabeled set are selected. [47] extends this by using the classifier as a discrim-
inator. The discriminator is trained adversarially with a variational autoencoder (VAE) [30] -
the VAE aims to trick the discriminator into classifying both unlabeled and labeled samples as
labeled, while the discriminator aims to distinguish the two.

2.2.2 Uncertainty-based approaches

A few uncertainty-based methods have also been proposed for deep models. [[14] aims to query
samples near decision boundaries by taking labeled samples, finding their adversarial attacks,
and querying unlabeled samples near the attacks. Combining Bayesian methods with deep mod-
els is a promising direction, as such methods have been sparsely used with classical models
successfully with the exception of Gaussian processes. One recent approach [[19, 20, 21]] obtains
posterior uncertainties using dropout masks. This method, called MC-dropout, involves get-
ting uncertainty estimates by setting several random dropout masks and averaging the resulting
network outputs. This approximates a query-by-committee strategy as the collection of masks
implicitly defines an ensemble of models.

[7]], which we call Ensembles, extends MC-dropout by explicitly using an ensemble of mod-
els. They experiment with various uncertainty estimation methods to compute disagreement, and
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find that the best performing one is the variation ratio, defined as the proportion of predictions
from the ensemble that are not equal to the modal prediction. If p,, is the most common class
prediction for a sample across the ensemble and N is the number of networks, the uncertainty
estimate for the sample would be

Pm

1 2m

N
The algorithm simply ranks unlabeled samples according to this metric and picks the top k.
Ensembles has been shown to outperform MC-dropout and a variety of classical uncertainty
sampling methods.

2.2.3 Hybrid approaches

Finally, some works have explored hybrid methods that incorporate both diversity and uncer-
tainty. [27] combines uncertainty estimation with softmax entropy with an “informativeness”
metric for pretrained networks. [4] computes embeddings for each sample based on induced gra-
dients, and then uses k-means sampling to geometrically pick diversely from the space, similar
to Coreset. They argue that since the gradient space gives information on both the magnitude
and direction, picking diversely from this space yields useful, yet diverse sample queries. Such
hybrid approaches are promising but have failed to outperform non-hybrid methods in standard
deep settings. In this work we mainly focus on the distinction between purely diversity and
uncertainty-based approaches.

2.3 C(lass Imbalance

An interesting setting for active learning is class imbalance, where one more more classes is rarer
than the others. Nearly all practical classification problems are inherently imbalanced to some
degree. In some cases, we are not even aware that classes are imbalanced, such as when there
are hidden patterns in the data or when our selection of classes is poorly defined.

As imbalance increases, a carelessly trained model can achieve high accuracy on majority
classes while ignoring minority classes. Although we can track metrics that tease out perfor-
mance between classes like area under curve (AUC) and average precision (AP), it is still often
nontrivial to improve minority class performance. A common approach is to force a balanced
class distribution by oversampling minority classes and/or undersampling majority classes. How-
ever, both of these can cause issues - overfitting on minority class samples [11], or losing valuable
majority class information [[13}28].

Active learning methods have high potential in this setting. A common approach for improv-
ing performance is to collect more data for the minority class. This “mining” problem involves
finding probable minority class samples without labels, a clear application for active learning.
Active learning could also be used to implicitly undersample the majority class by identifying
the most useful samples. In this way, classical active methods are able to be used out-of-the-box
in imbalanced scenarios. [S)] and [[17] show that SVM-based active learning strategies are able to
query minority samples without any modifications. However, there are some issues with directly
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using active methods. As imbalance becomes more harsh, minority samples may get missed en-
tirely, worsening the problem for future label acquisitions. Several works propose to explicitly
encourage minority selections. [8] modify the SVM loss to weight classes differently. [S7] and
[16] adaptively oversample minority class samples through query synthesis.

Once again, however, we see issues when moving to the deep setting. The problems that arise
with imbalanced settings are exacerbated in data-hungry deep networks that need to learn highly
nonlinear decision boundaries. Classical active learning methods, even those specifically de-
signed for imbalanced datasets, have shown difficulty when applied to deep learning [S]]. Certain
task-specific deep methods have succeeded - for example, object detection is a common highly
imbalanced task between positive (is an object) and negative (not an object) classes. Hard ex-
ample mining [46]] has been extensively studied for detection and related tasks, and can be seen
as a form of active learning. Active learning has also been applied to the problem of fairness
by emphasizing less-represented classes using diversity-based sampling [54, 55]. However, it is
unclear how recent deep active methods for classification perform in this setting, as they usually
test on balanced, standard datasets. We seek intuitions on how uncertainty and diversity-based
methods perform in imbalanced settings in Chapter 4.4.






Chapter 3

Simple Classification Settings

3.1 Introduction

As mentioned in Chapter 2, a common intuition in classical active learning is to select points near
decision boundaries. However, this becomes difficult when working with high-complexity data
as decision boundaries are highly complex, and we have to simultaneously learn a representation
for the data. We can alleviate this problem by studying settings where the classification task is
easy enough for a network to learn a discriminative representation with few samples and where
decision boundaries are simple. In this chapter, we focus on a simple synthetic dataset as well as
two image classification datasets, and investigate the ability of uncertainty-based and diversity-
based active strategies to identify samples near decision boundaries.

3.2 Experimental Setup

We briefly describe here the specific pool-based framework we use for experiments in this chapter
and the following chapter. An initial labeled pool, which we denote as the warmup set is selected
randomly from all samples. These are the only labels available before any active queries. At
each step, we select the same number of samples from the unlabeled pool, denoted as the query
size, and receive labels for them. Unless otherwise specified, the warmup set is initialized with
the same number of samples as the query size. The model is initially trained on the warmup set,
and the active algorithm has access to this trained model when selecting samples to query. We
record the number of samples in the current labeled pool, and evaluate the trained model on a
held-out test set. After a new set of labels is queried, this model is discarded, and a fresh model
is trained on the new labeled set. The process continues until we are satisfied with the model’s
performance. We run each active strategy with 3 random seeds to reduce variability.

3.3 Synthetic Data

In order to motivate our work in this setting, we experiment with deep active algorithms on a
synthetic dataset consisting of 5000 points sampled from two equal-variance 2D Gaussians, as
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Selection 1 Selection 2 Selection 3

Figure 3.1: Active queries on 2-blob Gaussian dataset. First row: Coreset selections. Second
row: Ensembles selections. Labeled points denoted in orange, Current step label queries in red.

shown in Figure[3.1] Each Gaussian represents one class, so this sets up a binary classification
problem with a simple decision boundary. The low data complexity allows us to easily visualize
selections in the original space. We train a simple multilayer perceptron (MLP) network with
2 layers and ReLLU activation to solve this task, and simulate 3 active acquisition steps with
random, diversity, and uncertainty sampling. We choose the Coreset and Ensembles [7]]
strategies as described in Chapter 2 as our diversity and uncertainty candidates respectively. The
warmup set consists of 5 randomly chosen labels, and each strategy queries 5 additional points at
each step. After each selection, we evaluate accuracy on a held-out test set of 500 samples from
the same synthetic dataset.

The results are visualized in Figure 3.1l We found that Coreset is unable to identify the
points near the training boundary as it picks diversely throughout the space, causing more outlier
selections. This issue persisted over all selections. In contrast, Ensembles picked nearly all of
its points near the decision boundary. Table 3.1 shows test accuracy at each selection, including

Strategy Selection 1  Selection 2 Selection 3

Coreset 80.2 83.4 80.3
Ensembles 79.4 84.0 85.6
Random 77.8 81.8 82.4

Table 3.1: Test accuracy for active strategies on 2D Gaussian dataset at each selection
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accuracy of a random acquisition strategy. Coreset is hurt by outlier selections, causing accuracy
to actually regress at the last selection. In contrast, Ensembles is able to leverage good boundary
selections into a 3.2% improvement over random selection.

3.4 Natural Images

In moving to real datasets, we aim to find similar settings where a useful representation is quickly
learned, causing decision-boundary points to be important when querying labels. We start with
the MNIST handwritten digit dataset, which contains 60000 images. We run both Coreset and
Ensembles with a query size of 600 (1% of the dataset), following the setup in [22]. We also
replace the MLP with LeNet [31] to account for increased task difficulty. In order to slightly
increase the difficulty of querying labels, we also test with harshly restricted data availability,
using a low query size of 10 (0.2% of the dataset). Our results for both query sizes are shown in
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Figure 3.2: Left: MNIST test accuracy at each label query. Right: accuracy improvement over
random sampling. Top: low query size (0.2%). Bottom: high query size (1%).

Figure 3.2l We found that both active approaches consistently outperformed random sampling
at all queries, with Ensembles doing the best. In addition, all strategies achieved high accuracy
very early, which is similar to the synthetic case. We also saw that diversity sampling was
punished heavily when query size was low. This makes intuitive sense since the fewer points we
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query diversely, the farther away they will be from each other, making it difficult to evenly pick
throughout the space. In addition, Coreset relies heavily on the learnt representation - querying
diversely from a poor representation space may not result in diverse points at all. Although
MNIST is simple enough for a representation to be learnt with few samples, the extremely low
query size may have caused a snowballing effect starting from a flawed initial representation.

For both query size settings, we see that we are able to quickly achieve extremely high per-
formance on MNIST, even with less than 1% of the total labels. MNIST has been shown to
be a redundant dataset where a fraction of the dataset is sufficient to learn the task [51]]. [51]]
show that this is not the case for CIFAR-10, a 50000 image object recognition dataset. We test
on CIFAR-10 to investigate if our findings extend to less redundant, higher-dimensional data.
However, to keep the task simple, we reduce the number of classes to 2, using only the "horse”
and automobile” classes of CIFAR-10 as in [34]]. This reduces the overall dataset size to 10000.
We test Coreset and Ensembles with both a low query size of 10 (0.2%) and a high query size of
500 (5%).
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Figure 3.3: Left: CIFAR-10 2-class test accuracy at each label query. Right: accuracy improve-
ment over random sampling. Top: low query size (0.2%). Bottom: high query size (5%).

Our results are shown in Figure We again see the same trends in relation to Coreset and
low query size, as well as Ensembles continuing to outperform the other two strategies. However,
the margin of improvement was lower across all strategies. This introduces an idea that we will
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see again in future settings: active learning yields less of a benefit when the task becomes more
difficult. Table summarizes our results across all datasets, showing the average accuracy
improvement over all selections for each strategy.

Low query size  High query size

Dataset/Strategy % improvement % improvement
MNIST
Coreset -13.388 0.725
Ensembles 4.584 1.547
CIFAR-10 2-class
Coreset -3.158 -0.178
Ensembles 1.338 0.667

Table 3.2: Average Coreset and Ensembles accuracy improvement over all selections for simple
classification settings

3.5 Discussion

Across all simple classification settings, uncertainty sampling was able to outperform diversity
sampling. We noted that regardless of strategy, in all of these cases deep networks were able to
achieve nearly 90% accuracy with extremely low data availability. Indeed, these settings may be
unrealistic for an active learning scenario unless incremental performance beyond 90% is desired,
or if label costs are extremely high. However, they give us empirical evidence that settings where
uncertainty-based strategies outperform both diversity-based strategies and random selection do
exist,

In the next chapter, we move to more practical datasets and settings while continuing to
investigate ideas from this chapter like low data availability, representation strength, and relative
task difficulty.
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Chapter 4

Practical Classification Settings

4.1 Introduction

In this chapter, we study a variety of practical datasets and settings for deep active image classi-
fication. As described in Chapter 2, most existing work explores the setting of high-dimensional,
difficult classification datasets with relatively large query sizes. However, we argue that this
“vanilla” setting is often not only impractical, but also crippling to active approaches. We nev-
ertheless experiment with uncertainty and diversity-based approaches in the vanilla setting, but
also explore other settings where AL may have a larger benefit. We also look at more challenging
settings involving low data availability.

4.2 Vanilla AL

For the vanilla setting, we tested Coreset and Ensembles on the CIFAR-100 dataset with a query
size of 2500 (5%). CIFAR-100 is a object-recognition dataset similar to CIFAR-10, but with 100
classes instead of 10. In many deep AL scenarios, the label cost is high, leading to low data
availability [48]. So, we also tested with a low query size of 50 (0.1%). To accommodate for the
higher task difficulty, we use ResNets [235] for all experiments in this chapter.

We found that in the high query size setting, Coreset outperformed random selection. Di-
versity outperforming uncertainty-based approaches in this setting was a key result of Coreset
[40]], but the improvement we saw in practice was slight and much less than originally reported
in the paper. However, in the low query size setting, both strategies failed to outperform random
selection. Results are shown in Figure 4.1} Coreset’s decline in performance was either due to
the inability to learn a good representation or the low query size itself. Our results suggest that
although this is the prevailing setting in previous work, it is an extremely challenging setting
with small, if any, improvements in performance over random selection.
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Figure 4.1: Left: CIFAR-100 test accuracy at each label query. Right: accuracy improvement
over random sampling. Top: low query size (0.1%). Bottom: high query size (5%).

4.3 Transfer Learning

4.3.1 ImageNet Pretraining

Pretraining on ImageNet is a staple technique in deep image classification [26]. By using a
network that has learned a more general object recognition representation space, we can ideally
learn more sample-efficiently in a related target domain. We investigate the effects of replacing
an untrained network in the vanilla setting with an ImageNet-pretrained network, with surprising
results. Ideally this would lead to an improved representation which would improve Coreset’s
performance.

First, we simply run the vanilla setting but with a pretrained network, with results shown
in Figure 4.2] For the high query size, we saw results similar to the vanilla setting. But for
the low query size, while Ensembles was competitive with random sampling, Coreset heavily
underperformed. We claim that this is because although the ImageNet representation is useful for
classification, it is heavily biased towards ImageNet samples. And although the natural images in
CIFAR-100 are similar, Coreset is unable to collect enough samples to unbias the representation.
Since it is such a representation-reliant method, this leads to extremely poor selections.
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Figure 4.2: Left: CIFAR-100 (ImageNet pretrained) test accuracy at each label query. Right:
accuracy improvement over random sampling. Top: low query size (0.1%). Bottom: high query
size (5%).

4.3.2 Same-Dataset Pretraining

In order to confirm this claim, we eliminate the domain shift by replacing ImageNet pretraining
with CIFAR-100 pretraining - that is, simply increasing the warmup size to a large percentage of
the data. We repeat the analysis with a vanilla network and a warmup size of 15k (30%), with
results in Figure [4.3] We saw that when a strong existing representation from the same dataset is
present initially, Coreset was able to outperform random even for the low query size. Table
summarizes our results across the vanilla and pretrained settings, showing the average accuracy
improvement over all selections for each strategy.

4.4 Class Imbalance

As discussed in Chapter 2.3, active learning is lucrative in imbalanced classification tasks for
its ability to identify minority class samples. In this section we experiment with active learning
strategies on imbalanced datasets ,with both natural and biological images, in order to see if these
methods are able to work out-of-the-box in less-standard settings.
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Figure 4.3: Left: CIFAR-100 (high warmup) test accuracy at each label query. Right: accuracy
improvement over random sampling. Top: low query size (0.1%). Bottom: high query size (1%).

4.4.1 Natural Images

We manually construct an imbalanced binary classification task by marking the “automobile” and
“truck” classes in CIFAR-10 with a positive label, and all other classes with a negative label. This
sets up a “car” vs. “non-car” binary task, where the “car” class is the minority. We additionally
downsample the minority class to be 5% of the total labels, creating a 1:19 imbalance and further
increasing the task difficulty.

In these settings, we are usually interested in improving performance of the minority class
and not total accuracy. We instead evaluate average precision (AP) of the minority class. We
experiment with Coreset and Ensembles using a low query size of 50 ( 0.1%), both with and
without ImageNet pretraining.

Our results are shown in Figure In the pretrained case, we saw similar results to [7]],
with Ensembles handily outperforming random sampling in test AP. We also saw this without
pretraining. Figure [.5] shows that Ensembles consistently selected the highest proportion of
minority samples at each acquisition in both settings. Even with an extremely low query size,
Ensembles was able to adequately identify and query a sufficient number of minority samples.
Although the average AP improvement was only 0.03, the improvement increased with later
selections. At the 6% data threshold, Ensembles provided a significant 0.15 increase in minority
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Low query size  High query size

Setting/Strategy % improvement % improvement
Vanilla
Coreset -0.309 0.556
Ensembles -0.564 -0.167
ImageNet pretrained
Coreset -7.126 0.553
Ensembles -0.002 -0.221
High warmup
Coreset 0.340 0.174
Ensembles 0.350 -0.162

Table 4.1: Average Coreset and Ensembles accuracy improvement over all selections for CIFAR-
100 settings

class AP. On the other hand, Coreset was unable to outperform random sampling, with or without
a prior representation.

4.4.2 Biological Images

ImageNet pretraining has also historically been used for target domains with non-natural images,
such as biological images. [1] is such a dataset, containing high-resolution retina images in
varying stages of diabetic retinopathy (DR). DR affects over 90 million people worldwide and is
a leading cause of blindness. [[/] designed an imbalanced classification problem for this dataset,
and showed that Ensembles outperforms random sampling by identifying more minority samples
at every acquisition.

We follow the same setup, collecting the images into 2 classes with a 1:19 imbalance, and pre-
training our network on Imagenet. The minority class consists of retinal images with moderate-
severe DR, while the majority class consists of all healthier retinal images. Figure [4.6] shows
examples of both classes.

We run Ensembles and Coreset with a low query size of 20 images (0.1%). Our results are
shown in Figure We confirmed that Ensembles is able to outperform random sampling,
but also show that it outperforms Coreset. Figure {8 shows that Ensembles again consistently
selected the highest proportion of minority class samples at each acquisition.

Tabled.2|summarizes our results in the imbalanced setting, showing the average AP improve-
ment over all selections for each strategy. We see that Ensembles performs the best across all
settings, but with a much lower margin in the biological transfer learning settings vs. the natural
transfer learning setting. We expect that this is due to higher task difficulty as we shift between
image domains.
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Figure 4.4: Left: CIFAR-10 2-class (1:19 imbalance) test AP at each label query. Right: AP
improvement over random sampling. Top: vanilla. Bottom: ImageNet pretrained.

4.5 Discussion

In this chapter, we tested Ensembles and Coreset across a variety of practical settings. We found
that low query sizes were a difficult setting for both strategies. In the vanilla and transfer learning
cases both active strategy types struggled, and in the transfer learning setting with low data
availability, Coreset highly underperformed. One setting where Coreset succeeded with low
data availability was when a large initial labeled pool was present. This result is useful in rare
cases such as when labeling cost is continually increasing. We can use a higher query size at
the beginning of collection and lower it over time, using Coreset to query the labels. We also
saw that, in general Coreset benefits from higher query sizes and is able to produce an accuracy
improvement. This is true for both the vanilla and pretrained settings. However, the the average
accuracy improvements we saw over random sampling in all of these settings was relatively low,
at most 0.5%.

We note that once data complexity was high enough, it became difficult to consistently and
evaluate active strategies in balanced classification settings. Networks must be retrained and re-
evaluated at each query, so a true measure of performance at each data threshold would require
a full hyperparameter search - an impractical approach when testing across various settings. In-
stead most existing work, and the approach we followed, uses a fixed set of hyperparameters for
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Figure 4.5: CIFAR-10 2-class (1:19 imbalance): proportion of minority class queried labels.
Left: vanilla. Right: Imagenet pretrained.

Figure 4.6: Diabetic Retinopathy image samples. Left: healthy (majority class). Right: un-
healthy (minority class)

all steps. Ultimately this was reflected in inconsistent results, particularly in the vanilla setting
where active methods seem to provide small, if any, accuracy improvements. These inconsis-
tencies were echoed in the literature as well. [4] and [[7] found that Coreset has inconsistent
performance across different architectures and datasets. And our results were contradictory to
[7], which claimed that Ensembles is able to outperform Coreset in the vanilla setting. Rigor-
ously evaluating deep active methods may first require advances in deep learning theory.

Furthermore, our results across the 2D Gaussian, MNIST, CIFAR-10 2-class, and CIFAR-100
datasets suggest that in vanilla, balanced classification tasks, increased task complexity correlates
with a decreased benefit of active learning. This mirrors results from classical active learning,
as outlined in Chapter 2.1, and suggests that active learning may not be practically useful for
difficult balanced classification settings unless incremental improvements in accuracy are highly
valuable. Given these findings, our consistently results out-of-the-box in imbalanced settings
with an uncertainty-based method are very promising. Ensembles performed the best in all tested
scenarios, from vanilla binary classification to a challenging biological dataset, and in some cases
with relatively large minority class AP improvement.
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Setting/Strategy AP improvement
Vanilla CIFAR-10
Coreset -0.0015
Ensembles 0.0325
ImageNet pretrained CIFAR-10
Coreset 0.0198
Ensembles 0.1200
Imagenet pretrained Diabetic Retinopathy
Coreset -0.0001
Ensembles 0.0019

Table 4.2: Average Coreset and Ensembles AP improvement over all selections for imbalanced
settings
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Chapter 5

Conclusions

In this work, we empirically analyzed deep active image classification algorithms across sev-
eral different settings. We were motivated by the inability of classical active learning methods to
succeed with deep models, the unintuitive nature of the methods that do succeed, and the narrow-
ness of the settings that state-of-the-art methods are tested in. We focused on the performance of
two state-of-the-art approaches, one a diversity-based strategy and the other a uncertainty-based
strategy, while varying characteristics in the setting and data.

Our study found that while active learning is lucrative in simpler classification tasks, as data
complexity increases, the commonly tested vanilla settings are poor candidates for active learning
approaches. The small performance improvements we saw suggest that the use of an active
strategy in these cases may only be practical if incremental accuracy improvements are highly
valuable. Furthermore, when label cost is high, leading to low data availability, active approaches
are unable to produce any improvement at all. We also noted that the diversity-based method is
highly representation-dependent, and our study found at least one setting where this characteristic
caused it to dangerously underperform. Finally, we saw that across a wide variety of settings,
higher task complexity correlated with lower benefits of active learning, even for state-of-the-art
methods. These findings suggest that the active learning practitioner should be wary of using
active learning strategies out-of-the-box in these settings.

On the other hand, we saw that in imbalanced classification settings the uncertainty-based
strategy was able to produce a significant performance improvement, outperforming both the
diversity-based strategy and random sampling. This has two major implications. First, we ar-
gue that imbalanced classification should be the primary setting for developing and testing deep
active learning algorithms. Imbalance is ubiquitous in real-world problems, and given the addi-
tional difficulty of robustly evaluating active approaches for deep networks, large performance
improvements make it a promising setting for future active learning work. Second, the dom-
inance of an uncertainty-based method over a diversity-based one in this setting allows us to
revisit the existing literature on classical uncertainty sampling-based algorithms. We believe that
even better active methods could be developed for imbalanced classification tasks using intuition
from classical uncertainty-sampling methods.

In the future, we would like to also test hybrid strategies that incorporate both diversity and
uncertainty. While some methods have been explored for the deep setting, they have generally
not performed as well as non-hybrid approaches. It could be possible to combine Coreset and
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Ensembles in a formulation that suppresses the flaws of both strategies. We would also like to
test other practical changes to the setting, such as when acquired labels are noisy, or when the
initial warmup labels are highly biased.
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