
DetectorShop:
Democratizing Deep Learning Object

Detectors
Tan Li

CMU-CS-19-121

Aug 2019

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Mahadev Satyanarayanan (Chair)
Padmanabhan Pillai (Intel Lab)

Submitted in partial fulfillment of the requirements
for the Degree of Master of Science.

Copyright c© 2019 Tan Li

Keywords: Computer System, Computer Vision, Deep Learning, Object Detection,

You were born with potential.

You were born with goodness and trust.

You were born with ideals and dreams.

You were born with greatness.

You were born with wings.

You are not meant for crawling, so don’t.

You have wings.

Learn to use them and fly.

∼Rumi

iv

Abstract

Deep learning object detectors have been demonstrated to be critical com-
ponents in emerging artificial intelligent applications such as autonomous ve-
hicles, cognitive assistants, and search & rescue drones. Due to the complexity
of building deep learning object detectors, a toolchain for lowering the barrier
has significant value. This thesis presents an end-to-end system to lower the
barrier of building deep learning object detectors. The major contribution of
this thesis is the design and implementation of DetectorShop, a desktop-based
system that works as a PhotoShop for building object detectors.

vi

Acknowledgments

I would like to first thank my advisor, Prof. Mahadev Satyanarayanan (Satya), for giving
me the opportunity to work on this project. Studying computer systems to do cool stuffs is
always what I am after for at CMU. It was extremely lucky to be able to work on this cool
project and get guidance from the world-class computer system expert like Satya. I would
also like to thank my mentor, Junjue Wang. To me, Junjue is like a big brother and always
gives me the most sincere advice as if this was his project. Every time I had an argument
with Junjue, most likely I figured that I was on the wrong side. Although frustrated,
this experience is invaluable to me as I get the opportunity to deeply examine my ideas
and improve them. Besides my advisor and mentor, I also need to thank Padmanabhan
(Babu) Pillai for being my committee member. Outside of this thesis, Babu also gave me
tremendous help, especially guided me and another PhD student through building an AR
zombie gesture shooting game.

My fifth-year master journey could not happen without my undergrad academic advi-
sor, professor Mark Stehlik, encouraging my to apply and professor Mor Harchol-Balter
writing me the recommendation letter. I was lucky to get advices from people like Mark
and Mor during the critical time, especially when deciding whether to directly go to in-
dustry or grad school. Looking back at the last year, especially what I’ve learned, I am
confident that declining industry offers and went for the fifth-year program is definitely a
correct decision. I also need to thank Zhuo Chen for guiding me into computer systems
research in my senior year, especially taught me how to build something that no one has
ever built before. The methodology Zhuo taught me is invaluable.

Finally, I want to thank my parents and my younger brother. It was my family gave me
the courage and ability to pursue the life that really excites me. This thesis denotes the end
of my student life at CMU, but the life of studying technologies to let this world a little
better is just getting started.

vii

viii

Contents

1 Introduction 1

1.1 Thesis Statement . 2

1.2 Role of End-To-End Tools . 2

1.3 Thesis Overview . 3

2 Background 5

2.1 Object Detection Applications . 5

2.2 Object Detection Algorithms . 6

2.2.1 Traditional Object Detection Algorithms 7

2.2.2 Deep Learning based Object Detection Algorithms 9

2.3 Transfer Learning . 11

3 User Workflow 13

3.1 Workflow Overview . 13

3.2 Specify and Label Datasets . 14

3.3 Choose the Model, Make tradeoffs and Start Training 16

3.4 Experiment with the Detector and Check the Performance 18

4 System Architecture 21

4.1 Design Constraints . 21

4.1.1 Large Datasets . 21

4.1.2 Flexible Adoption of Specialized Hardware 21

ix

4.1.3 Cost of System Operation . 22

4.2 Resource-Centric System Architecture Design 23

4.2.1 Data-Centric Design . 24

4.2.2 Hardware-Centric Design . 25

4.2.3 Software Distribution . 26

4.3 Remarks and Basic Evaluations . 27

4.4 Similar Ideas in Industry . 28

5 Abstraction Layer for Making Speed/Accuracy Tradeoffs 29

5.1 Appropriate Abstraction Level . 29

5.2 Feature Extractor + Meta Architecture 31

5.3 Grid Size (One-Stage Models) . 31

5.4 Number of Region Proposals (Two-Stages Models) 32

6 Implementation 35

6.1 Implementation Overview . 35

6.2 System Pipeline . 36

6.3 Labeling Module . 37

6.3.1 Computer Vision Annotation Tool (CVAT) 37

6.3.2 File System Mapping Between Host and Container 38

6.4 Training Module . 39

6.4.1 Tensorflow Object Detection API 39

6.4.2 Transfer Learning . 39

6.4.3 Adjustable Grid Size . 39

6.5 Inference Module . 41

6.5.1 High Frame Rate Video Streaming 41

6.6 Miscellaneous . 41

6.6.1 State Management . 41

6.6.2 Async Framework . 41

x

6.6.3 Pushing Computation . 41

7 Conclusion and Future Work 45
7.1 Contributions . 45

7.2 Roadmap for Evaluations . 46

7.2.1 One-Week Evaluation Plan . 46

7.2.2 One-Month Evaluation Plan . 47

7.2.3 One-Year Evaluation Plan . 47

7.3 Future Work . 48

7.3.1 Configurable Training Strategy 48

7.3.2 Automatic Data Augmentation 49

7.3.3 More Advanced Labeling Functionalities 49

7.3.4 More Object Detection Models & Implementations 49

7.3.5 More Comprehensive Testing 49

7.3.6 Integrate Deep Learning Expert Heuristic Knowledge 50

A Screenshots of the Current Implementation 51

Bibliography 55

xi

xii

List of Figures

2.1 Autonomous vehicle using object detector to detect traffic signs and pedes-
trians on the road . 5

2.2 Cognitive Assistant using object detector to check whether the user has
assembled the sandwich correctly according to the top right instruction . . 6

2.3 Drone using object detector to search for people over water 6

2.4 Object Detection = Localization + Classification 7

2.5 Object Detection on an image containing multiple objects of interest, i.e.
Person, Car, Traffic Signs... 7

2.6 ImageNet challenge winners and their corresponding architecture and per-
formance. (source:[nip]) . 9

2.7 High-level abstraction for One-stage Architecture Models 10

2.8 High-level abstraction for Two-stages Architecture Models 11

3.1 Desktop application containing multiple containers as feature runtimes . . 14

3.2 High-level user workflow . 14

3.3 Labeling Screenshot in DetectorShop 15

3.4 The dashboard showing the current loss value of the training (Users can
configure the dashboard to show other information through the GUI) . . . 17

3.5 Experiment the Object Detector with Real-Time Camera Stream (Lag for
detecting the moving object, i.e., person. Need more speed) 18

3.6 Experiment the Object Detector with Real-Time Camera Stream (False
detection of wipe, detects person instead. Need more accuracy) 19

4.1 Normal approach in similar end-to-end systems 23

xiii

4.2 Previous Labeling Module Design . 24

4.3 Data-centric Labeling Module Design 24

4.4 Previous Model Training/Inference Module Design 25

4.5 Hardware-centric Model Training/Inference Module Design 26

4.6 Transform from a desktop application into a distributed system 27

4.7 VSCode Remote Development Module (source:[vsc]) 28

5.1 Yolo partitions the image into S*S grids (source: [Redmon et al., 2015]) . 32

5.2 SSD uses multiple feature maps with different resolutions (source: [Liu
et al., 2016]) . 32

5.3 Faster-RCNN has a regional proposal stage (source: [Ren et al., 2015]) . . 33

6.1 DetectorShop contains multiple containers as feature runtimes 35

6.2 Transform from a desktop application into a distributed system 36

6.3 System Pipeline . 37

6.4 Push computation using SSH . 38

6.5 Training Module Implementation . 40

6.8 Push computation using SSH . 42

6.6 Inference Module Implementation . 43

6.7 A Json file recording the user state . 44

A.1 A dashboard showing the overview information about datasets, data records,
and object detectors . 51

A.2 Basic information about a dataset, autonomous vehicle dataset for example 52

A.3 Specify a new dataset . 53

A.4 Train an object detector using Faster-RCNN and autonomous vehicle dataset 54

xiv

Chapter 1

Introduction

Using a deep learning object detector to detect objects of interest is a critical step in emerg-
ing artificial intelligence(AI) applications. For example, autonomous vehicles need to de-
tect pedestrians and traffic signs on the road; cognitive assistants need to detect whether
users complete tasks correctly according to instructions; search & rescue drones need to
detect people while searching over water.

Although deep learning detectors have been widely adopted, building them is still chal-
lenging for two reasons. First, building a deep learning detector is very time-consuming.
Developers need to set up the coding environment, collect and label datasets, and imple-
ment object detection models. Additionally, the training and testing of a object detector are
necessary. Second, the detector building process requires a deep field knowledge of ob-
ject detection. This is especially true when developers need to implement object detection
models by themselves. Developers need to know the usage of deep learning frameworks,
detection models’ details, and subtleties in tweaking models’ performance. This thesis
aims to lower the barrier of building deep learning object detectors.

The core contribution of this thesis is the design and implementation of DetectorShop,
an end-to-end system that works as a PhotoShop for building object detectors. This sys-
tem has an innovative system architecture design that efficiently manages datasets storage
and can flexibly adopt specialized hardware to accelerate deep learning computation. It
also provides an abstraction layer to enable users to easily make tradeoffs between speed
and accuracy without a deep understanding of object detection algorithms. Finally, Detec-
torShop has a user workflow that enables users to build object detectors through a user-
friendly GUI, entirely without coding.

1

1.1 Thesis Statement

In this thesis, I present a solution of lowering the barrier of building customized deep
learning object detectors with private datasets. In particular, I claim that

Lowering the barrier of building deep learning object detectors can be achieved by
factoring out low-level implementations and common operations to an end-to-end
specialized tool. This tool enables users to easily make tradeoffs between speed
and accuracy in object detection models and flexibly adopt specialized hardware to
accelerate deep learning computation. Additionally, this tool efficiently manages
datasets storage.

The main contributions of this thesis are as the following:

• I design and implement a user workflow, which enables users to build object detec-
tors through a user-friendly GUI, entirely without coding.

• I design and implement a system architecture, which efficiently manages storage for
datasets and is able to flexibly take advantage of specialized hardware.

• I design and implement an abstraction layer, which enables users to easily make
tradeoffs between speed and accuracy in object detection models.

1.2 Role of End-To-End Tools

There are many ongoing efforts in building the toolchain for building deep learning object
detectors. TPU by Google and ASICs from many startups could be thought as efforts on
the hardware level. These specialized hardware speed up the iteration speed by acceler-
ating the deep learning computation. Additionally, Tensorflow by Google and Pytorch by
Facebook represent efforts on the framework level. These frameworks provide users with
specialized programming models for deep learning. End-to-end tools are the kind of tools
that built on top of the previous mentioned efforts and factor out low-level implementa-
tions and common operations, just like PhotoShop. This is also the rationale behind the
naming of DetectorShop, the PhotoShop for building object detectors.

2

1.3 Thesis Overview

Chapter 2 offers the background of the thesis, including the applications of object detec-
tion, object detection algorithms, and deep learning transfer learning. Chapter 3 focuses
on the details of the user workflow, and chapter 4 covers the system architecture design
of DetectorShop. Chapter 5 provides details and the rationale of the abstraction layer for
making tradeoffs between speed/accuracy in object detection models. Details about the
implementation cloud be found in chapter 6. Chapter 7 ends the thesis with a conclusion
and a list of future works.

3

4

Chapter 2

Background

2.1 Object Detection Applications

Deep learning has enabled many exciting applications, for examples, autonomous vehicles,
cognitive assistants[Chen, 2018], and intelligent search & rescue drones. Among all these
applications, a reliable and accurate object detector is a critical component. By definition,
object detection is a task of detecting objects of interest in the image or video stream.

For example, an autonomous vehicle requires an object detector to detect traffic signs
and pedestrians to drive safely (figure 2.1).

Figure 2.1: Autonomous vehicle using object detector to detect traffic signs and pedestri-
ans on the road

Similarly, a cognitive assistant needs an object detector to detect whether the task is
completed correctly and then give corresponding instructions to the user [Chen, 2018]

5

(figure 2.2).

Figure 2.2: Cognitive Assistant using object detector to check whether the user has assem-
bled the sandwich correctly according to the top right instruction

In the search & rescue drone use case, the drone requires an object detector to search
for people over the water (figure 2.3).

Figure 2.3: Drone using object detector to search for people over water

2.2 Object Detection Algorithms

In general, any object detection task could be divided into two subtasks: localization and
classification. In other words, to do object detection on an image, we need first to locate
the object in the image and then classify what that object is, i.e., cat, dog, or a human
(figure 2.4).

6

Figure 2.4: Object Detection = Localization + Classification

For an image containing multiple objects of interest, an object detection model should
be able to localize and classify all the objects of interest in the image. (figure 2.5)

Figure 2.5: Object Detection on an image containing multiple objects of interest, i.e. Per-
son, Car, Traffic Signs...

2.2.1 Traditional Object Detection Algorithms

Traditional object detection algorithms normally contain three major steps: region pro-
posal, feature extraction, and classification. Region proposal is responsible for proposing
all the possible regions that contain objects of interest. Since the object of interest could
appear at any location of the image with any arbitrary size, most algorithms adopt a sliding

7

window strategy. After the regional proposal, most algorithms extract the features of the
potential regions and feed the extracted features into the classification step. In the feature
extraction stage, SIFT [Lowe, 2004] and HOG [Dalal and Triggs, 2005] are the popular
adopted feature extraction algorithms. As for classification, SVM [Cortes and Vapnik,
1995] and AdaBoost [Schapire, 1999] are widely adopted.

However, the performance of traditional object detection algorithms is not satisfying
in terms of both speed and accuracy. For speed, the region proposal step is the bottleneck.
The reason is that the sliding window strategy needs to slide through the whole image with
all the possible window sizes, which is very time consuming and produces a lot of redun-
dant potential regions. The redundant potential regions further slow down the algorithm
due to the unnecessary feature extraction and classification of redundant regions. As for
accuracy, the feature extractor is the bottleneck. Most feature extractors are sensitive to
the circumstance, i.e., lighting condition. The instability of feature extractors leads to a
poor accuracy in the classification stage.

8

2.2.2 Deep Learning based Object Detection Algorithms

In the past several years, deep learning has dominated the research of computer vision. In
almost all the computer vision tasks, deep learning based approaches dramatically outper-
form the traditional approaches. Take the ImageNet ILSVRC classification challenge for
example, starting 2012, all the winners’ models are based on deep learning (figure 2.6).

Figure 2.6: ImageNet challenge winners and their corresponding architecture and perfor-
mance. (source:[nip])

At high-level, many of the leading state of the art models have converged on common
deep learning architectures. For example, YOLO [Redmon et al., 2015], SSD [Liu et al.,
2016], CornerNet [Law and Deng, 2018] represent models with one-stage architecture,
while R-CNN [Girshick et al., 2013], FCN [Long et al., 2014], Faster R-CNN [Ren et al.,
2015] represent models with two-stages architecture. We call these architectures meta-
architectures. These two common meta-architectures have different tradeoffs between
speed and accuracy. Typically, one-stage models have simpler neural network structures
and get rid of the region proposal stage. On the other side, two-stages models first generate
region proposals and then classify the regions along with modifying the regions to fit the
object of interest better. Due to the more complex structures, two-stages models usually
have a lower speed but higher accuracy than one-stage models. Each meta-architecture

9

adopts a image classification model as the feature extractor, e.g., Resnet, Mobilenet. Such
combinations are often referred as feature extractor + meta-architecture, such as Resnet +
Faster-RCNN, Mobilenet + SSD.

One-Stage Meta-Architecture Models

One-stage models take the ground truth (labeled data) and encode the objects’ classifica-
tion and localization information into a single target. Based on different encoding methods,
different models have different loss functions for quantifying the difference between mod-
els’ predications and the ground truth. The design of the loss function is a critical part of
the object detection model design. In general, the smaller the loss is, the better the model
performs. The training of one-stage models is done through a regression task to reduce
the loss between models’ output and the target (figure 2.7). In this thesis’s implementa-
tion, to achieve the real-time speed performance, we focus on SSD as the representative of
one-stage architecture models.

Figure 2.7: High-level abstraction for One-stage Architecture Models

Two-Stages Meta-Architecture Models

Two-stages models could be perceived as the composition of two one-stage models. Two-
stages models first adopt a similar process as the one-stage model to train a region proposal
network (RPN), instead of the final model. With the result from the RPN, two-stages
models apply another one-stage model to each of the regions of interest (ROI). In this

10

thesis’s implementation, to achieve the state of the art accuracy, we adopt Faster-RCNN as
the representative of two-stages architecture models. We provides combinations of meta-
architectures and feature extractors like Faster-RCNN + Resnet, Faster-RCNN + Inception
Net, and Faster-RCNN + NAS.

Figure 2.8: High-level abstraction for Two-stages Architecture Models

2.3 Transfer Learning

Transfer learning is a technique to reduce the amount of necessary data for deep learning
training. In practice, training a deep learning model from the ground up requires a lot
of data. Most of the state of the art accuracy models are trained on super large datasets
like COCO (Common Objects in Context). COCO contains 330k images and over 1.5
million object instances. It is unlikely for individual users to have such a large dataset.
On the other side, the backbone network layer of a model doesn’t change a lot at the later
period of the training, for examples, the RPN or the Feature Extractor. Therefore, to build
customized object detectors, instead of training the model from ground up, people usually
use a pre-trained model as the base model and train the critical layers to make sure the
model performs well on their personal datasets. This technique is also adopted in the

11

implementation of DetectorShop.

12

Chapter 3

User Workflow

The user workflow is designed for factoring out low-level code implementations and com-
mon operations. Users focus on making tradeoffs between speed and accuracy in object
detection models, instead of implementing models and setting up environments. Addition-
ally, this user workflow takes advantage of labeled datasets’ reusability. The same labeled
dataset could be used for generating different object detectors with different tradeoffs.

3.1 Workflow Overview

Although DetectorShop is a distributed system, users can install DetectorShop as a desk-
top application. To access this system, all the user needs to do is downloading the applica-
tion from the internet. Once the desktop application and docker-supervisors are installed,
everything is self-contained, no extra installation is required. If the user wants to take
advantage of a remote machine, for training for example, the user needs to make sure that
the remote machine is installed with docker-supervisor and the docker deamon is running
appropriately beforehand.

13

Figure 3.1: Desktop application containing multiple containers as feature runtimes

The high-level user workflow can be described as follows:

• Specify datasets, either on the local machine or on a remote server.

• Label a dataset using the data labeling module.

• Pick a labeled dataset, make model tradeoffs, and start model training.

• Monitor the progress of model training and manually decide when to stop training

• Test the performance of object detector by a live camera stream or a recorded video.

Figure 3.2: High-level user workflow

3.2 Specify and Label Datasets

To specify a dataset, users need to first indicate whether this dataset is local or remote. For
local datasets, users just need to specify the folder path containing all the data. For remote

14

datasets, users need to specify the following information:

• URL for accessing the remote machine through SSH

– e.g. cloudlet002.elijah.cs.cmu.edu

• Path of the folder containing all the data

– e.g. ˜/datasets/cognitive_assistant/

• SSH credentials for accessing remote machine

– i.e. username & password or ssh private key

After users specify the dataset, users are able to label the dataset using the labeling
module. This module will open a new window and provide a set of rich UI labeling tools,
e.g. drawing bounding boxs on images (figure 3.3). No matter where the dataset is located,
the user experiences are the same. The design of the system architecture achieving this is
provided in the section 4.3.1.

Figure 3.3: Labeling Screenshot in DetectorShop

15

3.3 Choose the Model, Make tradeoffs and Start Training

With a labeled dataset, users are able to generate a customized object detector. When
users click the new object detector button, the system will ask users for the following
information:

• The labeled dataset to build object detector

• Choice of tradeoffs between speed and accuracy

– Feature Extractor + Meta Architecture

∗ e.g. mobilenet + ssd, resnet + faster-rcnn...

– Grid Size (One-Stage Models)

∗ e.g. small, medium, large

– Number of Region Proposals (Two-Stage Models)

∗ e.g. 100, 300, 500...

• The machine to train the model

– SSH credentials and URL are required if the machine is remote

– e.g. a remote cluster equipped with Nvidia GPU

Once users finish the configuration and start training the model, users are able to keep
track of the training progress through a training dashboard. This dashboard is a plugin
in Tensorflow which provides critical information such as loss rate, learning rate to users.
Based on these information, users are responsible for deciding when to stop the training
(figure: 3.4).

16

Figure 3.4: The dashboard showing the current loss value of the training
(Users can configure the dashboard to show other information through the GUI)

The rationales behind the configurable options for tradeoffs, such as the meaning of
grid size and number of region proposals are provided in section 4.4. With the ability
of choosing different machines to train models, usres can flexibly adopt newly released
specialized hardware. Otherwise users have to physically purchase the new hardware and
install it to the system. The system architecture design achieving flexible adoption of new
hardware is provided in section 4.3.2.

17

3.4 Experiment with the Detector and Check the Perfor-
mance

With a freshly built object detector, getting an intuitive impression of the detector perfor-
mance is desirable. In DetectorShop, users are able to experiment with the object detector
by specifying the following:

• The object detector to experiment with

• The machine to run the object detector

– SSH credentials and URL are required if the machine is remote

– e.g. a remote cluster equipped with TPU Edge

• The testing data to run the detector on

– e.g. a pre-recorded video or the live camera video stream

With the feedback from the experiments, users are able to iterate on their choice of
tradeoffs between speed and accuracy.

Figure 3.5: Experiment the Object Detector with Real-Time Camera Stream
(Lag for detecting the moving object, i.e., person. Need more speed)

18

Figure 3.6: Experiment the Object Detector with Real-Time Camera Stream
(False detection of wipe, detects person instead. Need more accuracy)

Additionally, with the ability to choose different hardware platforms, users can easily
see the difference between running the same object detector on two different platforms,
i.e. CPU machine vs TPU-Edge machine. Finally, once the detector is acceptable in terms
of both speed and accuracy, users can export the detector and use it in final applications,
such as autonomous vehicles, cognitive assistants, search & rescue drones.

19

20

Chapter 4

System Architecture

4.1 Design Constraints

4.1.1 Large Datasets

Although there isn’t a clear rule indicating how much data is sufficient to train a deep
learning object detector, a large dataset is always necessary. Most state of the art object
detection models are trained on COCO dataset, which contains 330k images and over 1.5
million object instances. Currently, almost all others end-to-end systems require users
to upload the dataset into the system. Uploading datasets will cause unnecessary duplica-
tions. Meanwhile, the bandwidth consumption is significant to transmit large datasets. De-
tectorShop avoids unnecessary datasets duplication by pushing computation to the dataset
instead of pulling the data into the system.

4.1.2 Flexible Adoption of Specialized Hardware

As an end-to-end system, one goal is to enable users faster iteration in building deep
learning object detectors. However, the deep learning training is very time consuming.
Take Faster-RCNN for example. Faster-RCNN with 10000 images could easily take weeks
to converge on a CPU-only machine.

To accelerate the iteration of building object detectors, adopting specialized hardware
to accelerate the training is necessary. There are many ongoing efforts in building special-
ized hardware for deep learning, TPU for an example. The state of the art hardware keeps

21

rapidly evolving. Always buying the latest hardware and plugging it into the system is
not feasible. Meanwhile, a lot of specialized hardware are exclusive. For example, TPU is
only accessible through Google Cloud Platform(GCP). DetectorShop solves this challenge
by pushing deep learning computation to computing platforms with specialized hardware.

4.1.3 Cost of System Operation

To fully democratize the power of object detectors, the system should also take care of
the system operation costs. Most of others similar systems are web-based tools. In other
words, there is an server running 7*24 in such systems. Keeping a server running 7*24
is very costly, normally requires a dedicated operation team. This is the major reason
that most similar systems only get deployed in big tech companies and research labs.
DetectorShop reduces the operation cost by packing all the functionalities into a desktop
application and make the setups on remote machines minimal, i.e. only need to install
docker-supervisor.

22

4.2 Resource-Centric System Architecture Design

This section first illustrates the current approach adopted in most similar systems, and then
discusses the new approach adopted in DetectorShop. Most similar systems are web-based
tools. In those systems, users need to upload their datasets into the system. To adopt the
newly released specialized hardware, users need to purchase the hardware and plug it into
the server.(figure 4.1)

Figure 4.1: Normal approach in similar end-to-end systems

There are many interpretations of the current approach’s prevalence. One interpretation
is that implementation(code) is always the biggest cost in developing such systems. In
other words, the codebase is the most valuable resource in the system. Keep the code
running and manage the codebase are challenging. However, as there are more and more
frameworks and development tools emerging these days, implementation cost is reduced
dramatically. Sometime, the data storage or specialized hardware become the biggest cost
in building such systems. Based on this idea, this thesis proposes a resource-centric system
design, that is the system should be built around the most valuable resource in the system,
i.e., datasets, specialized hardware.

This thesis practices the resource-centric system design in two specific examples, data-
centric and hardware-centric. Data-centric design is adopted in the data labeling module.
The goal is to eliminate the step of uploading data. Therefore, this system avoids large
bandwidth consumption and unnecessary dataset duplication. The hardware-centric design
is adopted in the model training and model inference modules. With the hardware-centric
design, the system can flexibly adopt newly released hardware to accelerate deep learning
computation. Such flexibility has significant meaning since the state of the art hardware
keeps evolving rapidly.

23

4.2.1 Data-Centric Design

Instead of pulling data from the data server and then upload to the labeling module (figure
4.2), the data-centric design pushes the labeling runtime to the remote data server (figure
4.3). All users’ labeling operations are done through HTTP and the pushed labeling run-
time can access the dataset with local machine performance. Therefore, there is no need to
upload the dataset anymore. Such mechanism is implemented by container and file system
mapping. Implementation details are in chapter 6.

Figure 4.2: Previous Labeling Mod-
ule Design

Figure 4.3: Data-centric Labeling Module
Design

24

4.2.2 Hardware-Centric Design

Instead of plugging more and more hardware to the server running the system codebase
(figure 4.4), hardware-centric design pushes the deep learning computation to remote ma-
chines with specialized hardware (figure4.5). Therefore users could flexibly adopt newly
released hardware without actually purchase it and plug into the system. All users need is
the access to a machine with the latest specialized hardware. Implementation details are
shown in the chapter 6.

Figure 4.4: Previous Model Training/Inference Module Design

25

Figure 4.5: Hardware-centric Model Training/Inference Module Design

4.2.3 Software Distribution

DetectorShop is delivered as a cross-platform desktop application. All the major function-
alities, such as labeling module, training module and inference module are encapsulated
as containers. DetectorShop will expand itself into a distributed system when user need
to access remote datasets or adopt remote hardware accelerators. Once users finish the
remote task, DetectorShop will automatically cleanup itself, i.e. release the remote hard-
ware accelerator, deleted temporary files, close the http connection. Therefore, there’s no
need to maintain a server that keeps running at all time.

26

Figure 4.6: Transform from a desktop application into a distributed system

4.3 Remarks and Basic Evaluations

One thing need to mention is that the hardware-centric design depreciates the benefit of
data-centric design to some extent. The reason is that in the hardware-centric design, we
push the training files to a remote machine which is equipped with specialized hardware.
Those training files include bytes of original data. In other words, the training files include
a duplication of the original dataset. However, if the data server happens to be equipped
with specialized hardware, then this is not a problem anymore. Although DetectorShop
doesn’t eliminate data duplication completely, DetectorShop provides the flexibility to
users to eliminate data duplication entirely when it is possible.

To get an understanding of the benefits brought by the data-centric design, we consider
the following usecase: A user need to label three datasets which locate on a single remote
data server. Each dataset is 10 Gigabytes. Then the bandwidth consumption by Detector-
Shop versus traditional data uploading approach is as followings:

Bandwidth Consumption for Labeling Datasets
Operations DetectorShop Data Uploading
Label the First Dataset 2.4 GB 10 GB
Label the Second Dataset 1.4 KB 10 GB
Label the Third Dataset 1.4 KB 10 GB

The reason for the relative large bandwidth consumption for labeling the first dataset is that
we need to ship the labeling module docker image to the remote machine. Once that image

27

is shipped, the docker supervisor will cache the image and there’s no need for retransmis-
sion in the following labeling operations.

It is trivial that specialized hardware will accelerate the deep learning training. To
verify this idea, we compared running deep learning training on different platforms, i.e.
Nvidia Tesla K40C GPU and Intel Core I7 CPU. The result is as following:

Time to achieve loss <= 0.02 with Transfer Learning on 2000 images
Models Tesla K40C (GPU) Core I7 4 cores (CPU)
MobileNet + SSD 6 hours 18 hours
ResnetNet + FasterRCNN 8 hours 26 hours

4.4 Similar Ideas in Industry

During the development of the thesis project, Microsoft released the remote development
module for VScode[vsc]. To adopt specialized hardware, such as mutli-core processors for
accelerating compilation, users sometime want to develop their code remotely. However,
most current approaches, such as network file system mapping, only fetch the actively edit-
ing files to users’ machine and sync those files with the remote server. Such approaches
don’t have the knowledge of the whole codebase, therefore users are not able to use some
advanced functionalities, such as go-to jumping. In VSCode, instead of fetching the ac-
tively files to users’ laptop, VSCode pushes a server to the remote machine and let the
server operate on the codebase in behalf of users (figure 4.7). Although this usecase is
completely different from DetectorShop, the technical challenges and solutions are quite
similar.

Figure 4.7: VSCode Remote Development Module (source:[vsc])

28

Chapter 5

Abstraction Layer for Making
Speed/Accuracy Tradeoffs

Different from most computer vision research which targets only at achieving state of the
art accuracy, object detectors produced by DetectorShop should also address speed. On
the one hand, DetectorShop should be able to produce state of the art accuracy. On the
other hand, DetectorShop should also be able to generate object detectors with realtime
speed. Users need to make tradeoffs between speed and accuracy based on the specific use
case. DetectorShop enables users to easily make tradeoffs between speed and accuracy by
providing an abstraction layer.

5.1 Appropriate Abstraction Level

An appropriate level of abstraction is the fundamental factor in the design. That is what
the lowest level of abstraction exposed to the users should be? Should it be model, neural
network layer, or even tensor?

The most naive approach is providing a model level abstraction, that is treating mod-
els as black boxes. There are many open-sourced implementations of different models,
and most codebases provide some callable scripts to run the model. Ideally, we could
plug the system with different model implementations and produce object detectors with
the corresponding performance. However, relying on the model level abstraction is not
enough. Even for the same model, different implementations could generate object detec-
tors with completely different performance. On extreme cases, some poorly implemented
accuracy oriented models, e.g., Faster-RCNN have lower accuracy than a speed oriented

29

model, e.g, Yolo, and vice versa. Fortunately, at least at high-level, many of the leading
state of the art models have converged on common deep learning architectures. For ex-
ample, SSD, YOLO represent models with one-stage architecture, while R-CNN, Faster
R-CNN, FCN represent models with two-stages architecture. Meanwhile, there are some
high-quality open-sourced toolboxes for object detection released by big tech companies,
such as [Huang et al., 2016] and [Chen et al., 2019].

Taking advantage of the converged architectures and the high-quality toolboxes, De-
tectorShop fixes the model implementation and provide users ability to make tradeoffs
between speed and accuracy. In other words, users cannot plugin their own models but are
able to make tradeoffs between speed and accuracy through a model abstraction proposed
by DetectorShop.

Inherently, there’s a tradeoff between one-stage and two-stage models, that is one-
stage models have higher speed but lower accuracy while two-stages models have higher
accuracy but lower speed. Therefore, different from other similar works [Huang et al.,
2016] [Chen et al., 2019], focusing on modularizing object detection models, the focus of
this model abstraction is enabling users to trade accuracy for speed in two-stage models
and trade speed for accuracy in one-stage models.

In the proposed model abstraction, a model is specified with the following components:

• Feature Extractor (e.g., Mobilenet, Resnet, VGG...)

• Meta Architecture (e.g., SSD, Yolo, Faster-RCNN...)

• Grid Size (One-Stage Models) (e.g., small, medium, large)

• Number of Proposal (Two-Stage Models) (e.g., 100, 300, 500,...)

The configuration space can be summarized as the following:
Different Configurations for Object Detection Models

Feature Extractor Meta Architecture Grid Size Number of Proposals
Mobilenet SSD Small 100
Resnet Yolo Medium 300
VGG Faster RCNN Large 500

800
...

30

5.2 Feature Extractor + Meta Architecture

As demonstrated in the section 2.2, both one-stage models and two-stage models use a
image-classification model as a feature extractor to extract a feature map of the input im-
age. All the following steps in the algorithm are applied on the feature map instead of
the original input image. By intuition, the better the performance of image-classification
model is, the better the performance of the object detection model is. [Huang et al., 2016]
has shown that there’s indeed an overall positive correlation between the classification
performance and the object detection performance. Since the better feature extractor per-
formance requires more complicated image classification models, the speed of the overall
object detection model become lower. In this sense, making feature extractor + meta ar-
chitecture as an configurable option is a natural decision in the abstraction design.

5.3 Grid Size (One-Stage Models)

Although [Huang et al., 2016] has shown that there’s indeed an overall positive correla-
tion between the classification performance and the object detection performance, [Huang
et al., 2016] also points out that such correlation is only significant in two-stage models.
For one-stage models, especially SSD, such positive correlation is not significant. There-
fore, the options provided in section 5.3 are not sufficient to enable users to trade speed
for accuracy in one-stage models.

Based on the knowledge of the current one-stage models, grid size is a good option to
enable users to trade speed for accuracy in one-stage models. This is because all the one-
stage models have a common step, that is partitioning the input image into grids. These
grids are used as default regions of interests. The bigger the grids are, the faster the speed
is but the lower the accuracy becomes. Because it is harder for the models to detect small
objects. On the other hand, the smaller the grids are, the better the accuracy of detecting
small objects, but lower the speed. This is because there are more grid cells in the image
and models require more computation.

Different models have different approaches of partitioning the image into grids. In the
Yolo’s family, the models explicitly partitions the image into S*S grids (figure 5.1). On the
other side, SSD partition the image by producing feature maps with different resolutions
(figure 5.2).

31

Figure 5.1: Yolo partitions the image into S*S grids (source: [Redmon et al., 2015])

Figure 5.2: SSD uses multiple feature maps with different resolutions (source: [Liu et al.,
2016])

Therefore, in the proposed abstraction, instead of asking users for the specific grid
size, we only ask users for the relative info of the grid size, for example, small, medium or
large. For the medium option, we use the default value specified by the original models’
paper. The small and large options correspond to the 50% and 150% of the default value
respectively.

5.4 Number of Region Proposals (Two-Stages Models)

As described in section 2.2, all the two-stage models have a common step for proposing
regions of interest. As pointed out in [Ren et al., 2015], region proposal is one of the most
expensive steps in two-stage models. A smaller number of proposed regions could accel-
erate the step of region proposal. Also, fewer region proposals reduce the computation
for the following detection network. Therefore, reducing the number of region proposals
provides the possibility of trading accuracy for speed in two-stage models.

32

According to the empirical work of [Huang et al., 2016], the number of proposals could
be dramatically reduced without hurting accuracy excessively. Since each region only
contains one object in the setup of most models, we ask users to specify the exact number
of region proposals based on users’ knowledge about the final use case. For example, if
a user wants to deploy the object detector in an autonomous vehicle to detect traffic signs
on empty streets, then he might want to specify 300 proposals at the beginning, since he is
confident that it is extremely unlikely that there will be over 300 traffic signs on the street
simultaneously. After several iterations, the user might be able to reduce the original 300
proposals to 30, with acceptable accuracy.

Figure 5.3: Faster-RCNN has a regional proposal stage (source: [Ren et al., 2015])

33

34

Chapter 6

Implementation

6.1 Implementation Overview

DetectorShop is built with Electron.js, a framework for building cross-platfrom desktop
applications. DetectorShop uses React.js to build the UI and Node.js to access user’s
desktop OS resource. DetectorShop contains several docker container images as binary
files. Specifically, DetectorShop contains three container images, which are labeling im-
age, training image and inference image. These three images correspond to three major
modules: labeling, training and inference. Each module is responsible for a critical aspect
of DetectorShop.

Figure 6.1: DetectorShop contains multiple containers as feature runtimes

If users need to access resources on remote machines, e.g., remote datasets, remote

35

hardware accelerators, DetectorShop will use SSH to transmit the docker container images
to the remote machine and expand into a distributed system.

Figure 6.2: Transform from a desktop application into a distributed system

Within each module, there’s a web server responsible for users’ interaction. Once the
system expands into a distributed system, all the interactions between the desktop client
and remote module runtimes are through HTTP.

6.2 System Pipeline

The different modules are connected as follows:

1. Users use the labeling module to label the data, and get back a zip file containing the
necessary files for training. We call this zip file a data record. In the current imple-
mentation, these files are the TFRecord files which contain actual bits of images and
the labeling. Because TFRecord is a binary file format designed for compression,
the file generated by the labeling module is way smaller than the original data.

2. DetectorShop automatically ships the data record generated from the labeling mod-
ule along with the training container image to the training machine, a GPU cluster
for example, and start the training. During the training, users are able to monitor the
progress through a Tensorboard dashboard.

36

3. Once the training is ended by the user, DetectorShop will clean up the training run-
time and get back a zip file containing the trained model (object detector). Users
could either use the model file with Tensorflow in the final applications, or could
ask DetectorShop to ship the zip file along with the inference image to an inference
machine for testing the performance of the object detector.

Figure 6.3: System Pipeline

6.3 Labeling Module

6.3.1 Computer Vision Annotation Tool (CVAT)

The labeling module is built on top of an open-sourced labeling tool called Computer
Vision Annotation tool(CVAT). CVAT is a Django web application developed and open-
sourced by Intel [cva].

37

6.3.2 File System Mapping Between Host and Container

The original CVAT requires users to upload the data. In our system, we eliminate the step
of uploading data by following these steps:

1. Create a empty folder in the host file system

2. Use Docker’s volume mechanism to map the folder into the labeling runtime

3. For each source image, create a corresponding dummy file in the newly created
folder.

4. Create symbolic links between all the source images and their corresponding dummy
files

5. Upload the dummy files into the labeling tool.

Figure 6.4: Push computation using SSH

38

After the aforementioned steps, users can use the CVAT just like uploading the original
images.

6.4 Training Module

6.4.1 Tensorflow Object Detection API

The training module is built on top of the Tensorflow Object Detection API, an open-
sourced tool box for object detection by Google. Specifically, we adopt the implemeation
of Faster-RCNN, SSD, Resnet, Mobilenet, Inception Net.

6.4.2 Transfer Learning

We build the object detector with the pre-trained model by the Tensorflow Object Detection
API. The pre-trained models are trained on Coco and Kitti datasets.

6.4.3 Adjustable Grid Size

To make the grid size adjustable, we modified the source code of the Tensorflow Object
Detection API. We prepared three copies of the implementation of SSD. We ship the cor-
responding implementation to the training platform based on user’s choice. More details
are provided in the code base.

39

Figure 6.5: Training Module Implementation

40

6.5 Inference Module

6.5.1 High Frame Rate Video Streaming

One challenge in building an inference module is the video streaming frame rate. The sys-
tem is able to produce object detector with realtime speed. For example the SSD+Mobilenet
model’s process latency is 30ms. In other words, to fully test the performance of the
SSD+Mobilenet model, the inference module should support at least 30 frames per sec-
ond. DetectorShop adopts webRTC as the streaming pipeline. The webRTC pipeline can
easily stream video over 120fps with 1080P resolution.

6.6 Miscellaneous

6.6.1 State Management

In DetectorShop, users’ states are stored as a JSON file in the desktop application (figure:
6.7). Each feature module has its own state and is stored within the feature container
image. States across feature modules are synchronized by an async framework.

6.6.2 Async Framework

One challenge in the implementation is coordinating different remote module runtimes.
For example, after DetectorShop pushes the labeling module image to the remote machine,
it usually takes a while for the remote docker supervisor to load and run the docker image.
It is critical for the desktop application to know when to open a new window for users to
label the data. Network error would occur if open a window before the labeling module
runtime is ready, and users will get confused. To solve this problem, we built a naive async
framework. This async framework use a while loop to check the status of remote module
runtimes.

6.6.3 Pushing Computation

DetectorShop first sets up a SSH connection with the remote machine. Once the SSH con-
nection is established, DetectorShop will transmit the binary docker image to the remote

41

machine. Once the transmission is done, DetectorShop will invoke the remote docker su-
pervisor to start and run the container image through SSH. All the runtime images contain
a web server for handling user interactions. Once the docker container is ready and up, the
users could interact with the remote runtime through the web server.

Figure 6.8: Push computation using SSH

42

Figure 6.6: Inference Module Implementation

43

Figure 6.7: A Json file recording the user state

44

Chapter 7

Conclusion and Future Work

This thesis aims at lowering the barrier of building object detectors. It proposes Detec-
torShop, an end-to-end system that works as a PhotoShop for building object detectors.
Through a careful system architectural design, DetectorShop efficiently manages datasets
storage and is able to flexibly take advantage of specialized hardware. With a newly pro-
posed abstraction layer, users are able to easily make tradeoffs between speed and accuracy
in object detection models. Finally, DetectorShop provides a user workflow that enables
users to build object detectors through a user-friendly GUI without any coding

7.1 Contributions

This thesis claims that

Lowering the barrier of building deep learning object detectors can be achieved by
factoring out low-level implementations and common operations to an end-to-end
specialized tool. This tool enables users to easily make tradeoffs between speed
and accuracy in object detection models and flexibly adopt specialized hardware to
accelerate deep learning computation. Additionally, this tool efficiently manages
datasets storage.

In this thesis, I have validated this statement from various aspects. Specifically this
thesis has the following contributions:

• Design and implementation of a user workflow, which enables users to build object

45

detectors through a user-friendly GUI, entirely without coding.

• Design and implementation of a system architecture, which efficiently manages stor-
age for datasets and is able to flexibly take advantage of specialized hardware.

• Design and implementation of an abstraction layer, which enables users to easily
make tradeoffs between speed and accuracy in object detection models.

7.2 Roadmap for Evaluations

In this section, we discuss the future evaluation of DetectorShop that can be done. Specif-
ically, we discuss plans with different time budgets.

7.2.1 One-Week Evaluation Plan

With one week, the goal of the evaluation will be evaluating the usability of DetectorShop,
i.e, whether DetectorShop can actually help a user without much background knowledge
to build an object detector. The specific steps are as follows:

• Recruit two computer science major students without much background in building
deep learning object detectors.

• Provide both students a dataset of 10K images, and ask them to individually build
an object detector based on this dataset.

• Provide one of the students a script of steps in building deep learning objectors, but
ask the student to find corresponding tools by himself or herself.

• For the second student, provide him or her the DetectorShop.

• After one week, compare two students whether he or she is able to successfully
create an object detector.

The reason we design the dataset to be 10K images large is that labeling and training 10K
images using DetectorShop with a GPU suppose to take roughly half a week. Therefore,
the user will have about half a week to study how to use DetectorShop.

46

7.2.2 One-Month Evaluation Plan

With one month, the goal of the evaluation will be evaluating whether DetectorShop can
help users to create detectors that meet different speed/accuracy constraints. Similar to the
one-week evaluation plan, we plan to recruit two students with similar backgrounds. But
this time, we require them to have the knowledge of building deep learning object detection
models. For the purpose of the evaluation, we provide 3 datasets and each dataset contains
10K images for a specific use scenario. For each of the use scenarios, we ask them to
individually build an object detector that meets the speed/accuracy constraint. The 3 use
scenarios are as follows:

• Ping-Pong ball detector used in cognitive assistants

– accuracy requirement: low

– speed requirement: around 100ms

• Person detector used in auto following drone

– accuracy requirement: medium

– speed requirement: around 500ms

• Defect detector used in factory quality control inspector

– accuracy requirement: high

– speed requirement: around 1000ms

For each use scenario, we ask the first student to implement his own detection model
and ask the second student to tweak the provided models in DetectorShop through the
Speed/Accuracy tradeoffs abstraction layer. After one month, we compare the completion
rate of whether students are able to create detectors that meet different speed/accuracy
constraints. The reason we design each dataset containing 10K images is that 10K images
are enough for training an accuracy-oriented model such as Faster-RCNN.

7.2.3 One-Year Evaluation Plan

With one year, the goal of the evaluation will be extensive evaluations on all the compo-
nents and critical design decisions in DetectorShop, i.e., labeling module, training mod-
ule, inference module, data-centric design, and hardware-centric design. For each module

47

and critical design decision, we can conduct rigorous user studies for users with different
backgrounds, instead of recruiting two computer science major students. The potential
evaluation goals of each module and design decisions are as follows:

• Labeling Module & Data-Centric Design

– How much user time can the labeling module save comparing to using Photo-
Shop for data labeling?

– How much bandwith and disk storage can data-centric design save comparing
to the traditional data-uploading approach?

• Training Module & Hardware-Centric Design

– How much training time can the training module save by adopting specialized
hardware comparing to running the deep learning training on normal hardware,
such as a multi-core CPU?

– How many new hardware that the training module can take advantage of by
adopting hardware-centric design in the coming year?

• Inference Module & Hardware-Centric Design

– How much user time can the inference module save comparing to inference
models manually on images and video stream?

– How many new hardware that the inference module can explore by adopting
hardware-centric design in the coming year?

7.3 Future Work

Object detection is one of the most rapidly evolving research areas today. To match the
advancement in computer vision research, many potential areas need to be explored for an
end-to-end system. This section discusses future improvements toward fast iteration and
testing in building object detectors. For each improvement, this thesis will discuss benefits
it brings and provide a possible approach for implementations.

7.3.1 Configurable Training Strategy

Training heuristics greatly improve the accuracy of deep learning models. For object de-
tection specifically, a good training strategy can improve the absolution precision up to

48

5% compared to the state of the art baselines [Zhang et al., 2019]. Enabling users to
configure the object detection model training is desirable, for instance through dynamic
learning rate. This functionality could be achieved by utilizing the checkpoint mechanism
in Tensorflow.

7.3.2 Automatic Data Augmentation

A recent work by Google demonstrates that simply by data augmentation, the current state
of the art models could improve their accuracy by more than +2.3 mAP [Zoph et al.,
2019]. This functionality could be added in the labeling module by implementing the data
augmentation in Tensorflow.

7.3.3 More Advanced Labeling Functionalities

The current labeling functionality in DetectorShop only supports simple data labeling, i.e.
drawing bounding boxes. DetectorShop could integrate other complicated labeling tools,
such as Eureka at CMU [Feng et al., 2019]. This integration could be achieved by creating
a web-service between DetectorShop and Eureka.

7.3.4 More Object Detection Models & Implementations

DetectorShop’s object detection models are built on top of Tensorflow Object Detec-
tion API which was developed in 2016 and only implements meta-architectures such as
SSD, Faster-RCNN, FCN. Recently, there are emerging new toolboxes, e.g., MMDetec-
tion [Chen et al., 2019] . These new toolboxes support more models and claim to have
better implementations. To take advantage of these new toolboxes, we can replace the
Tensorflow Object Detection API with these new toolboxes in the model training module.

7.3.5 More Comprehensive Testing

DetectorShop only supports object detector testing in term of human inspection. To pro-
vide users a more complete developing experience, DetectorShop needs to provide a more
comprehensive testing mechanism. One feasible approach is coming up a set of bench-
marks for different applications, e.g., [Chen, 2018] proposes a set of benchmarks for cog-
nitive assistant applications. For each of those benchmarks, DetectorShop could automate
the testing process to enable users to test the object detector in the final application context.

49

7.3.6 Integrate Deep Learning Expert Heuristic Knowledge

As a high-level tool, DetectorShop can also integrate some deep learning expert heuristic
knowledge to prevent users from making common mistakes, such as training overfitting,
insufficient dataset for specific models, and datasets with too similar data. For handling
training overfitting, DetectorShop can partition the dataset into the training dataset and the
testing dataset. During the training, DetectorShop can create snapshots of the detection
model. Once DetectorShop detects overfitting, such as the training loss keeps reducing but
the testing loss starts increasing, DetectorShop can stop the training and export the latest
previous snapshot as the detection model. To handle insufficient datasets, if the dataset
is too small for some specific models, e.g., only 500 images for Faster-RCNN + Resnet,
DetectorShop will notify the user and prevent users from start training the model. To
prevent users from working on datasets that contain too similar data, DetectorShop can run
perceptual hashing on the datasets. If the data are too similar to each, DetectorShop will
warn the user that detectors built on such dataset is not likely to have a good performance.

50

Appendix A

Screenshots of the Current
Implementation

Figure A.1: A dashboard showing the overview information about datasets, data records,
and object detectors

51

Figure A.2: Basic information about a dataset, autonomous vehicle dataset for example

52

Figure A.3: Specify a new dataset

53

Figure A.4: Train an object detector using Faster-RCNN and autonomous vehicle dataset

54

Bibliography

Powerful and efficient Computer Vision Annotation Tool (CVAT): opencv/cvat. URL
https://github.com/opencv/cvat. original-date: 2018-06-29T14:02:45Z. 6.3.1

Overarching trends and applications at nips 2017. URL http://copypasteprogrammers.
com/overarching-trends-and-applications-at-nips-2017-with-links-fc523d3354a7/.
(document), 2.6

Visual Studio Code Remote Development. URL https://code.visualstudio.com/docs/
remote/remote-overview. (document), 4.4, 4.7

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang
Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu,
Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong
Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin. MMDetection:
Open MMLab Detection Toolbox and Benchmark. arXiv:1906.07155 [cs, eess], June
2019. URL http://arxiv.org/abs/1906.07155. arXiv: 1906.07155. 5.1, 7.3.4

Zhuo Chen. An Application Framework for Wearable Cognitive Assistance. PhD thesis,
Carnegie Mellon University, April 2018. 2.1, 2.1, 7.3.5

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20
(3):273–297, September 1995. ISSN 1573-0565. doi: 10.1007/BF00994018. URL
https://doi.org/10.1007/BF00994018. 2.2.1

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 886–893 vol. 1, June 2005. doi: 10.1109/CVPR.2005.177.
2.2.1

Ziqiang Feng, Shilpa George, Jan Harkes, Padmanabhan Pillai, Roberta Klatzky, and Ma-
hadev Satyanarayanan. Eureka: Edge-based discovery of training data for machine
learning. IEEE Internet Computing, 2019. 7.3.3

55

https://github.com/opencv/cvat
http://copypasteprogrammers.com/overarching-trends-and-applications-at-nips-2017-with-links-fc523d3354a7/
http://copypasteprogrammers.com/overarching-trends-and-applications-at-nips-2017-with-links-fc523d3354a7/
https://code.visualstudio.com/docs/remote/remote-overview
https://code.visualstudio.com/docs/remote/remote-overview
http://arxiv.org/abs/1906.07155
https://doi.org/10.1007/BF00994018

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. arXiv:1311.2524 [cs],
November 2013. URL http://arxiv.org/abs/1311.2524. arXiv: 1311.2524. 2.2.2

Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza
Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and Kevin
Murphy. Speed/accuracy trade-offs for modern convolutional object detectors.
arXiv:1611.10012 [cs], November 2016. URL http://arxiv.org/abs/1611.10012. arXiv:
1611.10012. 5.1, 5.2, 5.3, 5.4

Hei Law and Jia Deng. CornerNet: Detecting Objects as Paired Keypoints.
arXiv:1808.01244 [cs], August 2018. URL http://arxiv.org/abs/1808.01244. arXiv:
1808.01244. 2.2.2

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C. Berg. SSD: Single Shot MultiBox Detector. arXiv:1512.02325
[cs], 9905:21–37, 2016. doi: 10.1007/978-3-319-46448-0 2. URL http://arxiv.org/abs/
1512.02325. arXiv: 1512.02325. (document), 2.2.2, 5.2

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional Networks for
Semantic Segmentation. arXiv:1411.4038 [cs], November 2014. URL http://arxiv.org/
abs/1411.4038. arXiv: 1411.4038. 2.2.2

David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Inter-
national Journal of Computer Vision, 60(2):91–110, November 2004. ISSN 1573-
1405. doi: 10.1023/B:VISI.0000029664.99615.94. URL https://doi.org/10.1023/B:
VISI.0000029664.99615.94. 2.2.1

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look Once:
Unified, Real-Time Object Detection. arXiv:1506.02640 [cs], June 2015. URL http:
//arxiv.org/abs/1506.02640. arXiv: 1506.02640. (document), 2.2.2, 5.1

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks. arXiv:1506.01497 [cs], June
2015. URL http://arxiv.org/abs/1506.01497. arXiv: 1506.01497. (document), 2.2.2,
5.4, 5.3

Robert E. Schapire. A Brief Introduction to Boosting. In Proceedings of the 16th In-
ternational Joint Conference on Artificial Intelligence - Volume 2, IJCAI’99, pages
1401–1406, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. URL

56

http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1611.10012
http://arxiv.org/abs/1808.01244
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.01497

http://dl.acm.org/citation.cfm?id=1624312.1624417. event-place: Stockholm, Sweden.
2.2.1

Zhi Zhang, Tong He, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag
of Freebies for Training Object Detection Neural Networks. arXiv:1902.04103 [cs],
February 2019. URL http://arxiv.org/abs/1902.04103. arXiv: 1902.04103. 7.3.1

Barret Zoph, Ekin D. Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon Shlens, and Quoc V.
Le. Learning data augmentation strategies for object detection, 2019. 7.3.2

57

http://dl.acm.org/citation.cfm?id=1624312.1624417
http://arxiv.org/abs/1902.04103

	1 Introduction
	1.1 Thesis Statement
	1.2 Role of End-To-End Tools
	1.3 Thesis Overview

	2 Background
	2.1 Object Detection Applications
	2.2 Object Detection Algorithms
	2.2.1 Traditional Object Detection Algorithms
	2.2.2 Deep Learning based Object Detection Algorithms

	2.3 Transfer Learning

	3 User Workflow
	3.1 Workflow Overview
	3.2 Specify and Label Datasets
	3.3 Choose the Model, Make tradeoffs and Start Training
	3.4 Experiment with the Detector and Check the Performance

	4 System Architecture
	4.1 Design Constraints
	4.1.1 Large Datasets
	4.1.2 Flexible Adoption of Specialized Hardware
	4.1.3 Cost of System Operation

	4.2 Resource-Centric System Architecture Design
	4.2.1 Data-Centric Design
	4.2.2 Hardware-Centric Design
	4.2.3 Software Distribution

	4.3 Remarks and Basic Evaluations
	4.4 Similar Ideas in Industry

	5 Abstraction Layer for Making Speed/Accuracy Tradeoffs
	5.1 Appropriate Abstraction Level
	5.2 Feature Extractor + Meta Architecture
	5.3 Grid Size (One-Stage Models)
	5.4 Number of Region Proposals (Two-Stages Models)

	6 Implementation
	6.1 Implementation Overview
	6.2 System Pipeline
	6.3 Labeling Module
	6.3.1 Computer Vision Annotation Tool (CVAT)
	6.3.2 File System Mapping Between Host and Container

	6.4 Training Module
	6.4.1 Tensorflow Object Detection API
	6.4.2 Transfer Learning
	6.4.3 Adjustable Grid Size

	6.5 Inference Module
	6.5.1 High Frame Rate Video Streaming

	6.6 Miscellaneous
	6.6.1 State Management
	6.6.2 Async Framework
	6.6.3 Pushing Computation

	7 Conclusion and Future Work
	7.1 Contributions
	7.2 Roadmap for Evaluations
	7.2.1 One-Week Evaluation Plan
	7.2.2 One-Month Evaluation Plan
	7.2.3 One-Year Evaluation Plan

	7.3 Future Work
	7.3.1 Configurable Training Strategy
	7.3.2 Automatic Data Augmentation
	7.3.3 More Advanced Labeling Functionalities
	7.3.4 More Object Detection Models & Implementations
	7.3.5 More Comprehensive Testing
	7.3.6 Integrate Deep Learning Expert Heuristic Knowledge

	A Screenshots of the Current Implementation
	Bibliography

