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Abstract

This thesis presents Nominal Wyvern, a nominal type system that empha-
sizes semantic separation for better usability. Nominal Wyvern is based on
the dependent object types (DOT) calculus, which provides greater expressiv-
ity than traditional object-oriented languages by incorporating concepts from
functional languages. Although DOT is generally perceived to be nominal due
to its path-dependent types, it is still a mostly structural system and relies on
the free construction of types. This can present usability issues in a subtyping-
based system where the semantics of a type are as important as its syntactic
structure. Nominal Wyvern overcomes this problem by semantically separat-
ing structural type/subtype definitions from ad hoc type refinements and type
bound declarations. In doing so, Nominal Wyvern is also able to overcome the
subtype undecidability problem of DOT by adopting a semantics-based sep-
aration between types responsible for recursive subtype definitions and types
that represent concrete data. The result is a more intuitive type system that
achieves nominality and decidability while maintaining the expressiveness of
F-bounded polymorphism that is used in practice.
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Chapter 1

Introduction

The power of abstraction is recognized as one of the greatest ideas in computer science
[Vleck, 2008]. It allows humans to safely segregate pieces of large systems so they can be
reasoned about individually. For programming languages, abstraction provides flexibility
by allowing for code reuse and modularization. However, while functions are the agreed
upon way for abstracting away specific values to focus on the procedure itself, the exact
way to achieve polymorphism, the abstraction of types (a.k.a. generic programming), is
less agreed upon. On the one end is pure object-oriented (OO) languages, where polymor-
phism exists in the form of subtyping. Types are generally monomorphic except for the
ability for specific types to act like general ones. On the other end is functional languages,
where parametric polymorphism allows type variables to stand in for real types, and new
types can be constructed from abstract type parameters. The differences also correspond
to the encouraged ways of achieving data abstraction in each paradigm. OO languages
naturally use objects to encapsulate state and procedures for interaction (a.k.a. accepted
messages). Functional languages utilize modules to encapsulate abstract type members
and operations on them (i.e. abstract data types). Each paradigm has its own benefits: ob-
jects enjoy the flexibility of being dynamically generated and treated as first-class values,
while modules allow for more efficient implementations [Cook, 2009] and more flexible
type abstraction via parameterization.

Programming language researchers have long wanted to get the best of both worlds.
Scala is one of the languages that sit in between the two paradigms by supporting type
members in objects and bounded parametric polymorphism (or “bounded quantification”).
In contrast to plain parametric polymorphism, the bounded version allows for an OO-style
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restriction that restricts the instantiating type to be the subtype of some type. The benefit is
one can now additionally require that the instantiating type has certain features by giving a
bound on how general it can be. For example, a hash table type can now easily require its
key type to be hashable by specifying the instantiating type to be a subtype of the general
Hashable type that has a hash method.

However, the merging of the two paradigms is also the merging of nominal and struc-
tural type systems. Traditionally, OO languages are nominal in that the names of the types
are significant in themselves since they are what the types are identified with in the sub-
type hierarchy, the backbone of OO abstractions. Two types can have the same structure
internally, but having different names means they are different. In contrast, functional
languages lean on the structural side, where the structure of a type is what defines the
type, and the name is a mere convenience in referring to it. This difference is closely re-
lated to how abstraction is achieved in each paradigm, so a careful merging of nominality
and structurality is also required to get the best of both worlds in terms of usability. The
foundational type system for Scala, dependent object types, merges the two paradigms by
preserving nominality only for the subtype topology. Path-dependent types are referred to
by name since they, combined with type bound declarations, make up the subtype topol-
ogy. However, the rest of the type system is structural since it allows the construction
of new types freely. This meant new structural types can be created without ever being
given any names. For large systems where subtype relations play an important role, this
may lead to accidental subtyping, or implicit subtyping relations that are unclear to code
readers. Heavily relying on structural types may also lead to types whose purposes are
less clear and whose problems cannot be easily communicated to the user by compiler and
programming tools.

Additionally, while the merging of the paradigms seem to have provided additional
expressiveness, it comes at the cost of decidability. While subtyping and parametric poly-
morphism by themselves are well-studied and easily decidable, the combination of them is
not. It is proved very early on that bounded quantification is fundamentally an undecidable
problem [Pierce, 1992]. This is due to the ability to define types that subtype a type pa-
rameterized by themselves. The languages that conservatively build on top of it also suffer
from the same problem. Scala, for instance, is known to have an undecidable subtyping
problem [Amin et al., 2014]. Scala also is not the only language that has tried to merge
the two concepts. Java and C++ are both object-oriented languages that have parametric
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polymorphism added (Java Generics, C++ templates), and these systems are also shown to
be problematic as well [Grigore, 2017]. Having an undecidable component in a language
can pose real problems to the user. Programmers unfamiliar with the intricacies of their
language’s type system may end up unable to compile their “well-written” program. The
compiler’s failure also means no guidance on what the programmer should do to fix the
problem.

This thesis presents Nominal Wyvern, a new core type system for the Wyvern pro-
gramming language [Nistor et al., 2013] based on the dependent object types calculus of
Scala [Odersky et al., 2003], that aims to solve the presented problems that arise from the
merging of the two paradigms with a clearer semantic separation. In particular, Nomi-
nal Wyvern’s nominal typing system separates the definition of a structural type from the
declaration of a type member’s bound so that both typing and subtyping are explicit and
nominal. It also separates the structural types that are responsible for recursive definitions
from the types that represent concrete data (inspired by Mackay [2019]’s adaptation of
Greenman et al. [2014]’s material-shape separation idea) to curb subtype undecidability.
The goal is to produce a type system that avoids the usability pitfalls mentioned above in
the hope of making it easier to write safe and correct code.

The main contribution of this thesis is the design of a more usable core type system for
Wyvern that achieves its usability goals via nominality and decidability. More specifically,
this thesis presents 1) the design of a more thoroughly nominal system based on DOT, and
2) an adaptation of material-shape separation to this DOT-based type system.

Chapter 2 discusses in detail the earlier research in DOT, subtype decidability, and
nominality that motivated this thesis. Chapter 3 presents the grammar and typing rules of
Nominal Wyvern with an example, and explains how this design facilitates usability and
decidability. Chapter 4 delves into the subtyping rules and gives a proof of why subtyping
is decidable when material-shape separation is observed. Chapter 5 shows the expressive-
ness of Nominal Wyvern by presenting several examples of common programming pat-
terns in Nominal Wyvern syntax. Chapter 6 concludes the thesis and talks about possible
directions for future work.
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Chapter 2

Background and Motivation

2.1 DOT and Path-Dependent Types

The dependent object types (DOT) calculus [Amin et al., 2014] was developed as a type-
theoretic foundation for Scala. The key distinguishing feature of the DOT calculus is
objects with type members. Traditionally, objects included only fields and methods. Mod-
ules in ML systems supported type members, but modules do not enjoy the benefits of
being first-class values like objects do in object-oriented programming languages. Unify-
ing concepts from objects and modules allows DOT to model types that are dependent on
objects. Listing 2.1 presents such an example.

1 class Bank {b =>

2 type Card

3 def applyForCard(name: String) : b.Card

4 def payOff(c: b.Card) : Unit = {}

5 }

6

7 val chase : Bank = ...

8 val pnc : Bank = ...

9 val myCard = chase.applyForCard("freedom")

10 chase.payOff(myCard) // OK

11 pnc.payOff(myCard) // type mismatch

12 // found : chase.Card

13 // required : pnc.Card

Listing 2.1: Path-dependent type
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The Bank class defines an abstract type member Card. This Card type is then used
in the definition of the class by the applyForCard and payOff methods (the variable
b is the self variable with which other members of the class can be accessed). This means
if you have a value, chase, of type Bank, calling applyForCard on it would return
a value of type chase.Card. This is a path-dependent type because the type is not
self-contained. It depends on another variable in the environment. Since the exact type
of chase.Card is unknown (abstracted away in Bank), paying it off at any other Bank
would not typecheck, even if the underlying Card type for the two Libraries are the same.
The type system thus allows the code to model the real world restrictions of cards (cannot
pay off a card from one bank at another bank) without restricting the number of possible
banks that can be dynamically created.

Unlike modules, type members in objects do not have to be either completely opaque
or completely transparent. The exposed type member can be specified with a bound on its
subtyping relation: A type member t can be either upper-bounded (t must be a subtype of
another type), lower-bounded (t must be a supertype of another type), or exact-bounded
(t is exactly another type, i.e. completely transparent).1 This provides the language with
not only the ability to represent and typecheck traditional object/record or module types,
but also more expressive types that are related to each other.

1 class CreditCard {}

2 class SecuredCard extends CreditCard {}

3 class AuthorizedUserCard extends CreditCard {}

4

5 class RegionalBank extends Bank {b =>

6 type Card ≤ SecuredCard

7 ...

8 }

9 def giveChildren(card: SecuredCard): Unit = ...

10

11 val veryCautiousBank : RegionalBank = ...

12 val pnc : Bank = ...

13 study(veryCautiousBank.applyForCard("...")) // OK

14 study(pnc.applyForCard("...")) // type mismatch

Listing 2.2: Bounds on type members

1In this system, a completely opaque type is usually defined with an upper bound of the top type (>),
which is defined as the supertype of all types. On the contrary, a bottom type (⊥) typically exists and is
defined as the subtype of all types.
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In Listing 2.2, RegionalBank is defined to be the kind of bank whose cards are all
of an abstract type that is a subtype of SecuredCard. This means cards issued by a
RegionalBank can be passed to giveChildren(), while a card issued by a generic
Bank whose type member Card is completely opaque will not typecheck when given to
children (it is not guaranteed to be safe to do so).

Finally, type refinements are also supported as a flexible way of specifying more spe-
cific types. In Listing 2.3, the applyAndGiveChildren function typechecks because
it requires its argument to not just be any Bank, but specifically a Bank whose Card type
is “at most” (i.e. no more general than) SecuredCard.

1 def applyAndGiveChildren(b: Bank{type Card ≤ SecuredCard}): Unit =

2 study(b.applyForCard("..."))

3

4 applyAndGiveChildren(veryCautiousBank) // OK

5 applyAndGiveChildren(pnc) // type mismatch

Listing 2.3: Type refinement

2.2 Subtyping and Undecidability

The widespread adoption of object-oriented programming languages has made popular
the concept of subtyping, a form of declaration-site inclusion polymorphism [Cardelli and
Wegner, 1985] that allows one type to masquerade as another. At its core, subtyping is
characterized by the substitution principle: if S is a subtype of T (written S <: T), then
values of type S can act like values of type T. Clearly, this provides additional expressive
power to programmers by enabling a limited form of bounded parametric polymorphism
for functions even without traditional parametric polymorphism support. For example,
one could write a traversal method that takes in any type of Graph, and not care what
particular subtype of Graph (e.g. DAG, Tree) they actually get since the interface would
be as expected from Graph.

Subtype checking is the procedure for checking if one type subtypes another. In the
basic scenario above, subtype checking is easily decidable. Since all the types are self-
contained names, the predefined subtyping relations (usually defined at the declaration site
of the type with keywords such as extends) define a partial order on all the type names.
Subtype checking is thus checking if the two types are correctly related with respect to the
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class Bank<Card> {
Card applyForCard(String name) {

...
}

}

(a) Type Parameter in Java

class Bank {b =>
type Card
def applyForCard(name: String): b.Card =
...

}

(b) Type Member in Scala

Figure 2.1: Type parameter vs type member

partial order.

However, many modern object-oriented languages also support parametric polymor-
phism, either in the form of type parameters (e.g. Java generics, C++ templates) or type
members (e.g. Scala type members2) as shown in Figure 2.1. As a result, not all types are
predefined like before. The possibility of constructing new types (by filling in type param-
eters or refining type members) means subtype checking in these systems must evolve to
be structural and recursive. However, A <: B does not necessarily mean each type param-
eter/member of A is a subtype of the corresponding parameter/member of B. Figure 2.2
illustrates that when A <: B, a type parameter/member can be covariant (i.e. it preserves
this subtyping relation) or contravariant (i.e. it reverses this subtyping relation).

class ReadStream[+T] {
def read(): T

}
val rs1 : ReadStream[Int] = ...
val rs2 : ReadStream[Num] = rs1
rs.read() // return type ≤ Num

(a) Covariant type parameter (+): Int <: Num
⇒ ReadStream[Int] <: ReadStream[Num]

class WriteStream[-T] {
def write(x: T): Unit

}
val ws1 : WriteStream[Num] = ...
val ws2 : WriteStream[Int] = ws1
ws.write(1) // input type ≥ Int

(b) Contravariant type member (-): Int <: Num
⇒WriteStream[Num] <: WriteStream[Int]

Figure 2.2: Variance of type parameter (in Scala’s type parameter syntax)

The difficulty of subtyping arises when a type S is defined as a subtype of some type
parameterized with S itself. Such a recursive definition may seem unfamiliar, but recursive
subtype definition is heavily used by F-bounded polymorphism [Canning et al., 1989], a
generalization of bounded polymorphism where the bounded type can appear in its bound.
One common usage, shown in Figure 2.3, is using recursive bounds to specify features
of the bounded type. In this case, String is defined recursively so that functions ex-

2Scala also supports type parameters.
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trait Cloneable[T] {
def clone(): T

}
class String extends Cloneable[String] {
def clone(): String = ...

}
def makeClone[T <: Cloneable[T]](x: T) = x.clone()

Figure 2.3: F-bounded polymorphism (in Scala)

Given types:

Eq〈−T 〉, List〈+T 〉 <: Eq〈List〈Eq〈T 〉〉〉, Tree <: List〈Tree〉

Query: Tree <: Eq〈Tree〉

Tree <: Eq〈Tree〉
List〈Tree〉 <: Eq〈Tree〉

Eq〈List〈Eq〈Tree〉〉〉 <: Eq〈Tree〉
Tree <: List〈Eq〈Tree〉〉

List〈Tree〉 <: List〈Eq〈Tree〉〉
Tree <: Eq〈Tree〉

...

Figure 2.4: Infinite derivation example (from Greenman et al. [2014])

pecting Cloneable objects can make more specific inferences about the return type of their
clone() method.

Subtype checking on these constructed types already involves recursively looking into
the structure of both types to make sure all members/parameters satisfy the subtyping
relation. Thus, recursive bounds are a potential cause for concern since subtype checking
can now possibly loop back to a type it has seen already. Prior research shows this is indeed
a challenge. For Java, allowing wildcards with contravariant bounds (i.e. <? super

T>) is shown to lead to an undecidable subtyping problem [Grigore, 2017]. For Scala,
it is the ability to encode system F<:, a language already shown to have an undecidable
subtyping problem [Pierce, 1992], that makes it undecidable [Amin et al., 2014].

Having an undecidable component in a language can pose real problems to the user
(e.g. programmer, compiler & tools implementer). Programmers unfamiliar with the in-
tricacies of the type system of their language may end up unable to compile their “well-
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written” program. This problem is worsened in that in these situations the compiler is
unable to provide any helpful hints as to why it timed-out/crashed (Running the exam-
ple in Figure 2.4, the javac compiler loops until it runs out of stack space, and the Scala
compiler complains the class graph is not finitary), not to mention any guidance on what
can be done to the source code to fix the problem (which is a feature expected of modern
compilers). By having a decidable system with clearly defined constraints, compilers and
other programming tools will be able to much better assist the programmer in expressing
what they want.

2.2.1 Getting Back Decidability

Unfortunately, subtype checking in systems like F<: is not a simple case of cycle detection.
Figure 2.6 presents a classic example first discovered by Ghelli [1995] encoded in DOT
(based on the translation from Mackay [2019]). As the derivation progresses, we con-
stantly loop back to checking the same structural types but with different variable names,
and the context grows larger with these new types. In the general case, it is not trivial
to identify a looping derivation. In fact, it is not even ideal to implement only a simple
looping detector since, similar to just adding a time-out in the compiler, it does not help
the programmer in fixing the problem.

Many have since proposed enforcing some sort of subtype dependency restrictions so
that infinitely looping derivations never occur. The most notable is the ban on “expan-
sive inheritance” by Kennedy and Pierce [2006] as it is used by the Scala compiler. An
“expansive edge” exists when one type parameter of type S appears at a deeper nested
level in the supertype of S. However, as the authors themselves acknowledged, this solu-
tion is not immediately applicable to Java wildcards. In addition, Greenman et al. [2014]
pointed out that this restriction prevents a common pattern for expressing certain “fea-
tures” of types: Recall in Figure 2.3 the Cloneable type is used by its subtypes to signal
they have a clone() method. But if we want a generic list to be cloneable we would get
the definition in Figure 2.5, which now includes an expansive edge from E to E.

class List[E] extends Cloneable[List[E]] {z =>
def clone(): List[E] = ...

}

Figure 2.5: Cloneable list causing expansive inheritance
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Given types:

N = {n⇒ L ≥ ⊥}, T =

{
z ⇒

A ≤ >

B ≤ N{n⇒ L ≥
{
z1 ⇒

A ≤ z0.A
B ≤ z1.A

}
}

}
,

T0 =

{
z0 ⇒

A ≤ N{n⇒ L ≥ T}
B ≤ z0.A

}
Query: T0 <:T ?

∅ ` T0 <: T
[check bounds on type member B]

z0 : T0 ` z0.A <: N{n⇒ L ≥
{
z1 ⇒

A ≤ z0.A
B ≤ z1.A

}
}

[follow upper bound of A in T0]

z0 : T0 ` N{n⇒ L ≥ T} <: N{n⇒ L ≥
{
z1 ⇒

A ≤ z0.A
B ≤ z1.A

}
}

[check bounds on type member L (swapped sides due to contravariant bound)]

z0 : T0 `
{
z1 ⇒

A ≤ z0.A
B ≤ z1.A

}
<: T

[check bounds on type member B]
z0 : T0

z1 :

{
z1 ⇒

A ≤ z0.A
B ≤ z1.A

}
` z1.A <: N{n⇒ L ≥

{
z2 ⇒

A ≤ z1.A
B ≤ z2.A

}
}

To check if a type subtypes another type, we look inside the type structure and compare the bounds
on each member. Only the comparison on the type bounds of B is shown above for brevity.

Figure 2.6: Diverging context example
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2.2.2 Material-Shape Separation

The solution of Nominal Wyvern is adapted from the “material-shape separation” idea
proposed by Greenman et al. [2014] for Java-like languages (instead of DOT, which has
type members). Material-shape separation is a conservative way of separating all types
in a program into two camps: materials and shapes: A material type represents concrete
types that actually represent data, and are passed around in a program. A shape type, on
the other hand, are only used to bound other types, typically parameterized with these
other types as well (thus creating loops).

The restriction the authors enforced on top of this dichotomy is that all type cycles
must go through at least one shape (shapes enable loops), and that shapes cannot be used
as type arguments for inherited types. The reasoning behind the feasibility of such a split is
that the problematic dependencies in real world programs are not arbitrary, and are usually
not representative of the theoretical types that cause the subtyping to loop forever. Indeed,
after studying a large corpus of existing code (13.5 million lines of Java), the authors found
that current coding practices already mostly follow this separation, and that the rare cases
that do not conform can be easily made so.

The benefit of this solution is twofold: 1) The restriction is already compatible with
industry programming standards, meaning it would not require any major shift in pro-
gramming practices for its adoption. 2) The restriction is easy to understand and identify
due to a limited number of intuitive uses of shapes. In fact, Greenman et al. identified the
two ways in which shapes are used by programmers that are corroborated by their study
of existing code: A shape is either used as a bound for the “self” type, as is the case in
the aforementioned Equatable example, or used as a bound for the “self” type as part of a
type family. This means that instead of arbitrarily restricting what programmers can write
(and thus forcing them to adopt an esoteric rule), material-shape separation can serve as
a useful tool in helping them structure their code to be more modular, and in a way that
most programmers are already familiar with.

2.2.3 Material-Shape Separation for DOT

Getting a similar separation for DOT-based languages requires adapting the original solu-
tion from relying on type parameters to rely instead on type members. The most straight-
forward translation from a type parameter-based system like Java to a type member-based
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system like DOT is using type members to represent type parameters (e.g. Figure 2.7).
However, if we directly translate Greenman et al.’s restriction that shapes cannot be type
parameters to this system, we end up disallowing the use of shapes when defining type
member bounds. This is a notably wider restriction than it was originally meant for in
Java since type members have more uses than specifying type parameters. For example,
given a shape type Equatable, if we wanted to write a type storing a pair of equatable
objects, we would have to use equatable to define the type members, even if the parent
type Pair is not part of any subtype chain.

Nominal Wyvern’s adaptation of material-shape separation is inspired by work by
Mackay [2019] on Decidable Wyvern, in which the authors proposed an adaptation of
material-shape separation to DOT-based systems. Decidable Wyvern’s solution is a com-
bination of semantic and syntactic restrictions. Shapes are still defined as the enabler of
cycles in the subtyping dependency graph, but additionally all cycles must pass through
structural types (to avoid meaningless cross inter-member dependencies). On the syntactic
side, shapes can only serve as upper bounds for materials; shapes can only be refined with
purely materials; shapes can only be defined with purely materials; and additionally shapes
can only be upper-bounded by purely material refinements on the top type. This ensures
subtype derivations always sink towards purely material types, from where no cycles will
ever occur and termination of subtyping is guaranteed.

Nominal Wyvern differs from Decidable Wyvern mainly in having a nominal typing
and subtyping system. This allows for a slightly simpler set of material-shape separation
restrictions, which will be explained in detail in Section 3.4.

interface Pair<T> {
T getLeft()
T getRight()

}

class Point implements Pair<Int> {
Int getLeft() { ... }
Int getRight() { ... }

}

trait Pair { z =>
type E ≤ >
def getLeft(): z.E
def getRight(): z.E

}
class Point extends Pair { z =>
type E = Int
def getLeft(): Int
def getRight(): Int

}

Figure 2.7: Example translation from type parameter to type member
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2.3 Nominality

The typing of the DOT calculus is already considered partly nominal as it relies on the
names of objects to get path-dependent types. The nominality we present here goes one
step further by mandating all structural types be named, and that the subtyping relations
between these named structural types be entirely nominal as well. This contributes to a
simpler and more usable system. The particular formulation of nominality in Nominal
Wyvern also conveniently makes the material-shape separation rules simpler by syntacti-
cally preventing forms of mutually recursive structural definitions from appearing (instead,
forcing structures to carry their own meaning and relate to others’ type members through
refinements).

2.3.1 Typing Nominality

In contrast to DOT where a new structural type can be defined anywhere anonymously
by simply writing out its members, Nominal Wyvern requires all structural types to be
pre-declared and named in the scope. This is due to two reasons:

1. Usability: Explicitly written out structures make the code easier to understand since
the names would be representative of what the structure is used for. This is es-
pecially important as the object gets larger and contains more kinds of members
(i.e. type members, value members, function members). Equally important is that
having easily identifiable names would make any information the compiler or other
programming assisting tools generate be more readable.

2. Performance: Having named structures allows the typechecker to easily store pre-
checked subtyping relations so that later subtyping queries (or ones with the same
name but with slight refinements) can avoid repeating work. The next subsection
also explains how this benefit is augmented with a nominal subtyping system.

2.3.2 Subtyping Nominality

Traditionally, structural subtyping is done by comparing each member between two types
to ensure each satisfied the subtyping relation defined on structures (as shown in Figure
2.8). A nominal subtyping system requires, in addition to structural compatibility via
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{
val name : String
val bestseller : Food <:

}

{
val name : String

}

(a) Width Subtyping

{
val name : String
val bestseller : FastFood <:

}

{
val name : String
val bestseller : Food

}

(b) Depth Subtyping

{
def buy(card: CreditCard)

: FastFood <:
}

{
def buy(card: SecuredCard)

: Food
}

(c) Subtyping with Methods

{
type exportType <: FastFood
type importType >: Food <:

}

{
type exportType <: Food
type importType >: FastFood

}

(d) Subtyping with Type Members

Figure 2.8: Structural Subtyping

structural subtyping, that the names associated with structures have been declared to be
related. That is, type S subtypes type T only if the programmer writes that they want S to
subtype T. In Figure 2.9, if the programmer never declares SchoolCafeteria to be a subtype
of Restaurant, the type system cannot force that on them even though they are structurally
compatible.

SchoolCafeteria {
val name : String
val bestseller : FastFood !<:

}

Restaurant {
val name : String
val bestseller : Food

}

Figure 2.9: Width Subtyping

The provides the two familiar benefits:

1. Usability: Explicitly naming subtyping relations avoids accidental subtyping by
making sure that types whose signatures match are not automatically considered
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related. Since all structural types are named, types that are structurally compatible
should not be related if the meaning associated with the names do not match. This
makes the type system better match up with what a programmer reading the code
expects, and prevents accidental passing of the wrong argument to a function even if
coincidentally the structures match up. The added benefit is a more understandable
subtyping relation to the code reader (many subtyping checks are quite involved as
the rules will soon show).

2. Performance: Having all subtyping relations defined explicitly means more type-
checks can be done on the type signatures (and subtyping assertions) alone. The
result of these checks can also be saved and reused throughout the typechecking of
the dynamic expression, saving repeated checks that may be long and recursive.
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Chapter 3

Nominal Wyvern Design

This chapter discusses how the nominal design of Nominal Wyvern facilitates subtype
decidability and usability. Sections 3.1 to 3.2 build up a motivating example; Sections
3.3.1 to 3.5 explain the design while referencing the earlier example.

3.1 A Store of Named Structures

Suppose we want to write a system for keeping track of the stock at a store. Each piece
of fruit is labelled with an ID number, and they’re weighed when entered into the system.
Similar to DOT, this warrants a record (aka “structural”) type with the two member values.
As evident from the following code, the interface for both apple and orange are the same.
If not careful, a completely structural type system would fail miserably as any function that
is supposed to operate on Apples would “physically” work just as well when given an
Orange. Having a nominal type system means the type system will prevent the program-
mer from mixing apples and oranges since structural types are given names in addition to
their members. Similarly, a nominal subtyping system means that while both McIntosh
and Macintosh are structurally compatible with Apple (in this case, a form of width sub-
typing1), only the one that is declared to be a subtype explicitly by the programmer can be
used as an Apple. In Nominal Wyvern, this is declared with a special subtype declaration
as seen on line 26 of Listing 3.1.

1Width subtyping refers to allowing subtypes to have more members (hence ‘width’) than its supertype.
This is often supplemented with depth subtyping, which allows members to have more specific type bounds
in the subtype than in the supertype.
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1 // fruits for sale

2 name Apple {

3 val id : Int

4 val weight : Float

5 }

6 name Orange {

7 val id : Int

8 val weight : Float

9 }

10

11 // a flavor of apple

12 name McIntosh {

13 val id : Int

14 val weight : Float

15 val price : Int

16 }

17 // a product of Apple Inc

18 name Macintosh {

19 val id : Int

20 val weight : Float

21 val model : String

22 val price : BigInt

23 ...

24 }

25 // explicitly declared subtyping relation

26 subtype McIntosh <: Apple

Listing 3.1: A nominal typing system on structural interfaces (Part 1)

With all the basic setup completed, the following code uses the declared interfaces
to keep track of the stock with two simple counters encapsulated in a StockCounts
interface. StockTracker operates on the counter, and the type system makes sure that
subtyping is completely nominal by disallowing the mixing of apples and oranges.

27 // simple stock counter

28 name StockCounts {

29 val numApples : Int

30 val numOranges : Int

31 }

32 name StockTracker {

33 def empty () : StockCounts

34 def importApple (a : Apple, st : StockCounts) : StockCounts
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35 def importOrange (o : Orange, st : StockCounts) : StockCounts

36 }

37

38 let a1 = new Apple { val id = 0, val weight = 90.0 } in

39 let o1 = new Orange { ... } in

40 let m1 = new McIntosh { ... } in

41 let mac = new Macintosh { ... } in

42 let tracker = new StockTracker {

43 def empty () : StockCounts =

44 new StockCounts { val numApples = 0, val numOranges = 0 }

45 def importApple (a : Apple, st : StockCounts) : StockCounts =

46 new StockCounts {

47 val numApples = st.numApples + 1

48 val numOranges = st.numOranges

49 }

50 def importOrange (o : Orange, st : StockCounts) : StockCounts = ...

51 }

52 let empty_stock = tracker.empty() in

53 stock = tracker.importApple(a1, empty_stock) // OK

54 stock = tracker.importApple(o1, empty_stock) // type mismatch

55 stock = tracker.importApple(m1, empty_stock) // OK

56 stock = tracker.importApple(mac, empty_stock) // type mismatch

Listing 3.2: A nominal typing system on structural interfaces (Part 2)

3.2 Adding Generics

Suppose now we want to make our stock a “set” of fruits instead of just a count. This way
we can make sure we do not overestimate our stock if we accidentally scan the same piece
of fruit twice. We want to make the set generic so it can work for any type of fruit, but
in order for the set to properly operate, the element type must have an equals method
defined on it so we can remove duplicates. In Listing 3.3, we update the code so Apple
and Orange both subtype Fruit, which in turn subtypes a new Equatable type that has
an equals method.

Equatable is defined with F-bounded polymorphism. Similar to the Cloneable example
in Figure 2.5, the type member T’s purpose is for future subtypes to refine with themselves.
In order for equals to refer to it, we introduce a self variable to the named interface, just
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like with Scala. This self variable (named z in the example code) represents the object
that the member is being accessed on. For example, for any object that instantiates Fruit,
its equals method must take in an object of its own T type.

1 name Equatable {z =>

2 type T >= BOT

3 def equals (x : z.T) : Bool

4 }

5 name Fruit {z =>

6 type T >= BOT

7 val ID : Int

8 val weight : Float

9 def equals (x : z.T) : Bool

10 }

11 subtype Fruit <: Equatable

12 name Apple {z =>

13 type T >= BOT

14 ...

15 }

16 name Orange {z => ... }

17 subtype Apple {type T >= Apple} <: Fruit

18 subtype Orange {type T >= Orange} <: Fruit

Listing 3.3: Adding generics to Nominal Wyvern (Part 1)

The Set type consists of an element type elemT that must subtype Equatable. A
refinement serves as a qualification of the Equatable type that additionally requires the
T type of Equatable to be lower bounded by elemT itself. This is key in enabling any
client method to pass objects of elemT type to the equals method of another object of
elemT type.

19 name Set {z =>

20 type elemT <= Equatable {type T >= z.elemT}

21 ...

22 }

23 name SetTracker {z =>

24 type S <= Set

25 def empty () : z.S

26 def insert (stock : z.S, item : stock.elemT) : z.S

27 ...

28 }

29
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30 let apple_tracker = new SetTracker {z =>

31 type S = Set { type elemT = Apple }

32 def empty () : z.S =

33 new Set {s =>

34 type elemT = Apple

35 ...

36 }

37 def insert (stock : z.S, item : stock.elemT) : z.S = ...

38 ...

39 } in

40 let a1 = new Apple {type T = Apple} {z =>

41 type T = Apple

42 val ID = 0

43 val weight = 90.0

44 def equals (x : Apple) : Bool = (z.ID == x.ID)

45 } in

46 let o1 = new Orange {type T = Orange} {z =>

47 type T = Orange

48 ...

49 } in

50 let apple_stock = apple_tracker.empty() in

51 apple_stock = apple_tracker.insert(apple_stock, a1) // OK

52 apple_stock = apple_tracker.insert(apple_stock, o1) // type mismatch

Listing 3.4: Adding generics to Nominal Wyvern (Part 2)

3.3 Language Design

Figure 3.1 shows the formal grammar of Nominal Wyvern. As evident from the earlier
code example, programs in Nominal Wyvern consist of two parts: A list of top-level dec-
larations (D), and a main expression (e) to be evaluated during execution.

The top-level declarations is where all structural types and the subtype relations be-
tween them are specified. Each named type declaration binds a structure with a name.
Similar to DOT, the structure can contain type members, fields, and methods. However,
type members in Nominal Wyvern is only bounded on one side (unless it is an exact bound,
which bounds on a type member on both sides by the same type). This design decision
was made to simplify the syntax since in most practical cases a bound on one side is
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sufficient. This is supported by evidence in Chapter 5 that shows the expressiveness of
Nominal Wyvern by encoding common patterns from both object-oriented languages and
functional languages. Explicit subtype declarations sets up a relation between two named
types with an optional refinement allowed on the LHS. Section 3.3.1 details how the top
level declarations differ from their DOT counterparts.

A type in Nominal Wyvern is made of a base type and a refinement. Base types define
the actual structure of a type, while the refinement allows ad hoc modifications to the
base type that override the definitions of some of its members. A base type is either
top (>), bottom (⊥), a raw named type (n), or a path-dependent type (p.t) (A path, as
usual, is a variable appended with zero or more successive field accesses)2. Refinements in
Nominal Wyvern refine members of base types. Types and decidability are the main focus
of this thesis, so Nominal Wyvern only considered type member refinements (instead of
refinements for all three kinds of members). A more complete refinement formulation may
be added to future iterations of this system if deemed necessary.

Nominal Wyvern carries only the basic forms expressions. All expressions in Nominal
Wyvern are objects. A path is the smallest unit for object representation. The grammar
requires method applications to be on paths instead of arbitrary expressions so that all ob-
jects in scope are named, which makes typing (and future evaluation) rules sligtly simpler.
It does not hinder expressiveness as Chapter 5 will show since it is trivial to translate a
program with arbitrary expressions to this form. “New” expressions are the only way of
creating objects. Since all types are named, and since different names can correspond to
the same structure, the exact type of an object is specified upon creation. The “let” expres-
sion is important for Nominal Wyvern since it is what enables all objects to have a name
as required earlier. Finally, an “if” expression is included to allow for simple control flow
(mainly useful for showing more complicated examples for the expressiveness argument).
The programmer is required to supply the type of the entire expression, which is expected
to be a supertype for the types of both branches. This ensures the entire expression is
typeable since arbitrary intersection types are removed in favor of naming every struc-
ture. The two paths involved in the conditional will be checked dynamically for location
equality. This way dynamic conditionals can be achieved without any primitive types like
booleans or natural numbers.

2A path can also start with a location, which is used to represent heap locations during evaluation. Note
that evaluation rules are not included in this work
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P ::= program:
D e

D ::= top-level decls:
name n {x⇒ σ} named type decl
subtype n r <: n subtype decl

B ::= type bound:
≤ upper bound
≥ lower bound
= exact bound

σ ::= member decl:
type t B τ type member decl
val v : τ field decl
def f : τ x→ τ method decl

r ::= refinement:
{δ}

δ ::= refinement member decl:
type t B τ

β ::= base type:
⊥ bottom type
> top type
n named type
p.t path type

τ ::= type:
β r

p ::= path:
x variable
l store location*
p.v val selection

e ::= expression:
p path
p.f(p) method application
new τ{x⇒ d} new object
let x = e in e let expr
if[τ ] p = p then e else e if expr

d ::= object member defn:
type t = τ type member defn
val v : τv = e field defn
def f : τ x→ τ = e method defn

∆ ::= n : {x⇒ σ}
Σ ::= n r <: n
Γ ::= x : τ

S ::= l : τ

µ ::= l : {x⇒ d}

Name Definition Context
Name Subtype Relation Context
Variable Typing Context
Location Typing Context
Runtime Store

* Intermediate form only (not user accessible)

Figure 3.1: Nominal Wyvern Grammar
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The following subsections dive into certain noteworthy aspects of the Nominal Wyvern
design.

3.3.1 A Binary Typing Approach

The main difference of Nominal Wyvern compared to DOT is its heterogenous typing
system. In DOT, all nominal types are type members of some other types, whereas in
Nominal Wyvern, there are two sorts of types: The concrete structural types (aka “named
types”) and the abstract member types. At first glance Nominal Wyvern may seem like an
extraction of all structural types (along with any width-expanding refinement) to a global
object type in DOT, but there is a more fundamental difference between named types and
type members that contributes to Nominal Wyvern’s theme of usability and decidability.

The key difference between named types and type members is the way they are spec-
ified. Type members are declared with a bound: either with only a lower bound, only an
upper bound, or both bounds that are the same in the case of an exact bound. In contrast,
named types are defined as a named record for representing entities with the given prop-
erties. Semantically, this more closely resembles the usual definition of a “definition”: If
our store thinks of each Apple as a record with an integer ID and a floating point weight,
then that is exactly what the named type “Apple” is. Contrast this with the declaration of a
type member “Apple” with a bound on the subtype relation, which more closely resembles
a guideline and guarantee on how generic/specific this type may be for future instantiators
and users of the parent type (Recall in Listing 3.4, the type member elemT of Set is
defined with an upper bound to make sure all instantiators use an equatable type in sets).
This dichotomy separates responsibility by making named types the definer of types, and
type members merely users of the pre-defined types. Consequently, all instantiable types
(except the native top and bottom types) are defined by some structure in the top-level.

The separation of named types from member types also warrants a separate way of
defining the subtype relation between named types. Traditionally in DOT, type bounds
perform two roles with different semantic meanings: One can use a type bound to either
define a “guarantee” on a particular type member or define a subtype relation between
nominal types. Nominal Wyvern separates this mix of semantically distinct roles with two
separate constructs. Type bounds still exist but are made more focused: They are used
only to specify guarantees on type members. E.g. if we know a particular member type is
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always a subtype of Fruit, we can use it wherever fruit is accepted. Complementing type
members are explicit subtype declarations. Their sole purpose is to define the nominal
subtype relation between pre-defined named types. E.g. if we think of McIntosh as a
special kind of apple, then we can explicitly declare this subtype relation between the two
named types McIntosh and Apple. We can think of the explicit subtype declarations as
defining base cases for the substitution principle. They are only base cases because depth
subtyping in the form of type refinement is automatic (e.g. in Listing 3.4, Apple {type

T = Apple} <: Apple).

In addition to the usability benefits of semantic separation (e.g. clearer code), explicit
subtype declarations also allow for more flexibility than traditional bounds in two ways:

1. Multiple Subtyping: Type T can be a subtype of multiple types. This is often used
when one type wants to have the features of many other types. For example, a
resource type (such as Apple) can declare itself a subtype of both Equatable and
Hashable to signal it has both an equals method and a hash method, so types
that require either one (e.g. Set, Hashtable) can use it as the key. This mitigates
the loss from not having arbitrary intersection types by essentially requiring each
intersection type to have a unique name.

2. Conditional Subtyping: Type T can be a subtype of another type only if T is under
certain refinements. It may be the case that named type T is not inherently a subtype
of named typed S. This could be due to either structural incompatibility or seman-
tic incompatibility (i.e. the subtype relation does not match the semantic meanings
attached to the types). The syntax allows a refinement on the LHS of the subtype
symbol (<:) to make a subtype relation hold conditionally. For example, this was
used in Listing 3.3 for the F-bounded polymorphism example.

This difference carries over to the subtyping algorithm as well. While the type bound
on a type member S represents the authoritative “next” type to check after S, the sub-
type declarations with S as the base type on the LHS present us with multiple conditional
options for what this type could also be seen as by the substitution principle. Chapter 4 de-
tails the binary subtyping algorithm and why it is a decidable problem after material-shape
separation is applied.
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3.3.2 Top-Level Well-Formedness

The static contexts ∆ and Σ are derived solely from the top-level declarations D, and
are used in the typing and subtyping rules detailed in the following sections. Figures 3.2
and 3.3 present the judgment rules for top-level declaration well-formedness. Note that
all named types are considered to be declared at the same time (in the same scope and
can reference each other). One noteworthy constraint when checking named type well-
formedness (∆ ` n : {x ⇒ σ} wf) is that the bounds on type members cannot reference
any of its sibling fields. This prevents infinite typing derivations that bounce between fields
and type members, which will be shown in section 3.5.

3.3.3 Nominal Subtyping Graph

To aid in nominal subtyping, we define a “nominal subtyping graph” to capture the multi-
ple conditional subtyping relations between named types.

Definition 1 (Nominal subtyping graph). For a set of top level declarationsD, the nominal

subtyping graph is a graph 〈V,E〉. The vertices, V , consist of all the named types in D.

The edges, E, each represent an explicit subtype declaration in D, with the refinement

labeled on the edge:

n1 r1 <: n2

n1
r1−→ n2

Example 1. The nominal subtyping graph for the code in Listing 3.4 is:
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D wf

names(D) = ∆ ∀ n : {x⇒ σ} ∈ ∆. ∆Σ ` n : {x⇒ σ}wf
subs(D) = Σ ∀ n1 r1 <: n2 ∈ Σ. ∆Σ ` n1 r1 <: n2

D wf

names(D) = ∆

names(·) = ·
names(D) = ∆

names(D, name n {x⇒ σ}) = ∆, n : {x⇒ σ}

subs(D) = Σ

subs(·) = ·
subs(D) = Σ

subs(D, subtype n1 r1 <: n2) = Σ, n1 r1 <: n2

∆Σ ` n : {x⇒ σ} wf

∀ type t B τt ∈ σ. ∀ val v : τv ∈ σ. v /∈ τt ∧∆Σ(x : n) · ` τt wf
∆Σ ` n : {x⇒ σ} wf

∆Σ ` n1 r1 <: n2

∆(n1) = {x1 ⇒ σ1}
∆(n2) = {x2 ⇒ σ2} r1 = {δ1} ∆Σ(x1 : n1 r1) · ` σ1 +σ δ1 <: [x1/x2]σ2

∆Σ ` n1 r1 <: n2

where +σ is the binary merge operation on σ. On conflict, RHS is preserved and LHS is discarded.

Figure 3.2: Nominal Wyvern Top-Level Declarations Well-Formedness
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∆ΣΓS ` σ <: σ

∆ΣΓS ` σ <: ·

r1 3 type t B1 τ1

∆ΣΓS ` type t B1 τ1 <: type t B2 τ2

∆ΣΓS ` σ1 <: σ2

∆ΣΓS ` σ1 <: σ2, type t B2 τ2

r1 3 val v : τ1

∆ΣΓS ` val v : τ1 <: val v : τ2

∆ΣΓS ` σ1 <: σ2

∆ΣΓS ` σ1 <: σ2, val v : τ2

r1 3 def f : τa1 x1 → τr1
∆ΣΓS ` def f : τa1 x1 → τr1 <: def f : τa2 x2 → τr2

∆ΣΓS ` σ1 <: σ2

∆ΣΓS ` σ1 <: σ2, def f : τa2 x2 → τr2

where ∆ΣΓS ` σ <: σ is the subtype judgment on σs (defined with the other subtyping rules in
Chapter 4).

Figure 3.3: Nominal Wyvern Top-Level Declarations Well-Formedness (continued)

3.4 Material-Shape Separation

The definition of materials and shapes is based on the discovery by Greenman et al. [2014]
that shapes should be the only types that enable cycles during subtype derivation. Prac-
tically, shapes are used either to define features of the self-type, or to define features of
a type family that the self-type is a part of. In the fruit shop example, Equatable is an
obvious case of the former use of shape since it prescribes that whatever subtypes it must
have an equals method that takes in a value of their own T type.

For Java, Greenman et al. [2014] defines a subtype dependency graph (called “inher-
itance usage graph” in their paper) that maps each type S to the types mentioned in its
inheriting type so that when S becomes the LHS type, we know what types will be visited
by the subtype derivation afterwards. By preventing the cycle-inducing shapes from ap-
pearing as type arguments, no new usages of shapes are created and eventually all shapes
are reduced into materials.

Nominal Wyvern follows a similar adaptation of the subtype dependency graph as
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Mackay [2019]’s adaptation in Decidable Wyvern3. The difference is due to the binary
typing approach that Nominal Wyvern employs. Before defining this graph, we first define
the refinement tree for types.

Definition 2 (Refinement tree). For a type τ = β r, the refinement tree is a tree 〈V, vr, E〉.
The vertices, V , consist of all the base types referred to in τ . The root vertex, vr, is β.

The edges, E, each go from a base type, β′ ∈ τ (β′ syntactically appears in τ ), to the root

of the refinement tree generated by the type used as the bound in a refinement to β′. It is

formally generated by GenTree:

GenTree(τ) = 〈V, vr, E〉. (Each edge is represented by v1 → v2: An edge from node n1

to n2).

r = type t1 B1 τ1 . . . type tn Bn τn

GenTree(τ1) = 〈V1, r1, E1〉 . . . GenTree(τn) = 〈Vn, rn, En〉

GenTree(β r) = 〈V1 . . . Vn β, β, E1 . . . En (β → r1) . . . (β → rn)〉

Example 2. The refinement tree for type

SetTracker {

type S = Set {

type elemT = Apple {T = Apple}

}

}

is:

3Detailed in Section 2.2.3
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The subtype dependency graph is defined partially using refinement trees.

Definition 3 (Subtype dependency graph (SDG)). For a set of top level declarations D,

the subtype dependency graph is a graph 〈V,E〉. The vertices, V , consist of all available

base types, which are: >, ⊥, all declared named types in D and their type members. To

disambiguate type members with the same name from different named types, each type

member t of name n is denoted n::t (which will be referred to as a “pseudotype”). The

edges, E, are generated as follows:

For each type member declaration, type t B βt rt, in named type n, generate edges:

n::t→ βt
DIRECT

type tr _ βr rr ∈∗ rt

n::t
rta(βt rt, βr)−−−−−−−→ βr

INDIRECT

And for each subtype declaration subtype n1 r1 <: n2 in D, generate edges:

n2 → n1

BACK
type tr _ nr rr ∈∗ r1

n2 → nr
BACK-REF-ROOT

where δ ∈∗ r is true if the refinement member δ occurs anywhere syntactically within r,

and δ ∈ r is true only if δ is immediately within r, and

where rta(τ, β) returns all the ancestors of β in the refinement tree of τ in the order from

root of tree to β (not including β itself), and

where v1 → v2 represents an unlabeled edge, and v1
β1β2...−−−→ v2 represents an edge labeled

with the base types β1, β2, . . . in that order.

The idea is if β has an edge to (“depends on”) β′, then when β is encountered as a
base type during subtype derivation, β′ may appear as the base type later in the derivation.
The graph is thus a conservative guarantee of what types will not be visited again in later
derivations. This serves as the key idea for proving decidability in Chapter 4.

Example 3. The subtype dependency graph for the declarations in Listing 3.4 is:
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(Rounded rectangles represent named types. Rectangles represent member types. >
and ⊥ are not included.)

Shapes are still defined to be the types that enable cycles in the subtype dependency
graph:

Definition 4 (Shape type). Shapes are the set of types such that if all edges labeled with at

least one shape are removed from the subtype dependency graph, then the graph is acyclic.

All other types are material types.

Clearly, the solution to which set of types are the shapes in a program is not unique: one
can simply label all types as shapes. However, not only does that not follow the semantic
meaning of shapes and materials detailed earlier (the two uses of shapes), the material-
shape separation requirements will further limit which types are allowed to be shapes.
Observe that as long as the separation requirements are fulfilled, the number of possible
solutions does not matter for decidability as long as there is one valid set of shapes.

Definition 5 (Material-shape separation). A program is material-shape separated if there

exists a set of shape types such that:

• A shape is never used as part of a lower bound syntactically (i.e. after ≥ or =).

• The upper bound of a shape is always a shape, and named shapes can only subtype

named shapes.

• Shapes cannot be refined in refinements.

Example 4. For the code in Listing 3.4, the only shape type is Equatable because

removing the self loop that is labeled with it will make the subtype dependency graph in

Example 3 be acyclic.
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It is a valid use of shape since it follows the restrictions in Definition 5.

The separation rules are partly inherited from earlier works by Greenman et al. [2014]
and Mackay [2019], and partly created for Nominal Wyvern.

From a semantic separation standpoint, the intuition behind the rules follow how shapes
are supposed to be used in programs. As explained earlier in Section 2.2.2, shapes can be
thought of as the types that are used for the sole purpose of F-bounding some other type
to guarantee that the other type has certain features (for example, Equatable is a shape
since it is used as bounds in F-bounded polymorphism, and serves to show that whatever
subtypes it has an equals() method). As a result, it would, first of all, make sense only
to serve as upper bounds of other types. This view of shapes also means that whatever type
a shape subtypes must be another shape, otherwise the substitution principle would allow
shapes to be used as materials, which does not fall in line with the only role shapes are
supposed to perform. Finally, a shape should not be used in a refinement when there are
no self-variables in scope. Since shapes are supposed to be used by F-bounded polymor-
phism, the lack of self-variables means there is no way to use shapes to recursively bound
a type. The rules encourage the programmer to declare their F-bounded types as pre-
declared structures instead of refining pre-declared structures to utilize F-bounded later.

From a decidability standpoint, the rules allow decidability of subtyping to be achieved
(and proved in Chapter 4). However, following the theme of usability, the rules are de-
signed not to be the tightest they can be to make the proof goes through. Instead, they
are made to be easier to understand and follow as explained earlier. Nonetheless, the pri-
mary goal of the separation rules is still achieving decidability. Therefore, it does not
govern other best practices of using shapes vs. materials (for example, one should not be
instantiating shapes as objects).

3.4.1 Comparison to Decidable Wyvern

Nominal Wyvern’s version of material-shape separation is based on the adaptation of
material-shape separation to DOT in Decidable Wyvern by Mackay [2019]. Both Nominal
Wyvern and Decidable Wyvern achieve decidable subtyping with material-shape separa-
tion, but the details are different due to the added nominality of Nominal Wyvern.

Dependency graph construction is similar for the two systems in that type members
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depend on the types in its bound (in fact, this concept finds its roots all the way in Green-
man et al. [2014]). The construction process is, however, simpler in Decidable Wyvern
because it is based on a more uniform type system (instead of the binary typing approach
here). In contrast, Nominal Wyvern’s subtype dependency graph is separated into nodes
that are named types and nodes that are type members (pseudotypes). By sacrificing uni-
formity, however, Nominal Wyvern actually allows the entire subtype dependency graph
to be easily partitioned into N + 1 separate graphs that can be individually checked for
cycles (where N is the number of named types in the top-level): For each named type
we can identify a sub-graph that only contains the edges between the pseudotypes of this
named type (this gives us N sub-graphs), and all the edges between named types gener-
ated by the subtype declarations can be put into one other sub-graph. Since a named type
node only points to named type nodes, and a pseudotype node n::t only points to either 1)
named types, or 2) other pseudotypes in n, there will be no cycles that span multiple sub-
graphs. This separation makes graphs more easily checkable for cycles, and also prevents
long-spanning dependencies that may be hard to understand.

The way material-shape separation rules are defined also differs. For Nominal Wyvern,
the separation rules are treated as an additional requirement that needs to be separately en-
forced during typechecking. In contrast, Decidable Wyvern incorporates the separation
rules directly in its grammar. The benefit of having a syntactical restriction means the
separation rules can be easily specified along with its grammar, and can be easily checked
by existing parsers. However, this also means the grammar involves many nuanced details
that may be hard to follow: Users will need to always be aware of whether they are cur-
rently programming a shape or material, and be wary of what syntactical constructs are
not allowed. Nominal Wyvern trades-off the easily specifiable separation rules in favor of
a simpler grammar with an additional separation check enforced on top.

3.5 Term Typing

All expressions in Nominal Wyvern correspond to objects. All expressions are given
names, either assigned with a let expression, or as a val member in another object.
Objects are then used by referring to the path that refers to their names, either directly
as the assigned variable in a let expression, or by selecting a val member from an-
other object. This simplification makes objects slightly easier to work with in the type
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system while not hindering expressiveness at all, since to use “anonymous” objects, one
only needs to wrap the object in a local let expression with a fresh variable name and
immediately use it.

The judgments for typing expressions in Nominal Wyvern are shown in Figure 3.4.
The two relevant contexts are the variable typing context Γ and the location typing context
S. Γ keeps track of the type of each variable and S keeps track of the concrete type of
objects for evaluation (S is currently reserved for future evaluation rules). The typing of
variables and locations is therefore just looking up the relevant context. The typing of a
non-zero-length path p.v involves first typing the immediate sub-path p, expanding its type
into the name type it was based on with an additional refinement, and looking up the type
of v from there.

Method application typing is done by first checking the argument type is a subtype
of the required argument type specified by the type of the method receiver. Note that the
argument type of the function comes from the exposed type of the object rather than the
actual internal type. The resulting type of the application is the exposed return type with
the argument variable and self variable replaced with paths from the current context.

All objects are created with the new expression and are given a type explicitly. This is
in line with the goals of a nominal type system. Without a name provided by the program-
mer, a structure can potentially be mapped to many un-related (w.r.t. subtyping) named
types. However, the explicit type given to new need not be exactly the same type as the
following structure. It is only required that the structure is proper structural subtype to the
exposed type. This differing view of the same object provides an easy way to abstract the
types and other members of the new’ed object. The object definition is checked for well-
formedness by ensuring the type signature of its members form a structural type that is a
subtype of the declared type of the object. Note that even though a self-variable is allowed
in the object definition, it is defined to not be in scope for the definition of type members.
This ensures there are no looping dependencies among type member definitions. Fields
and methods are typechecked with the self-variable given the type of the declared object
type plus any additional refinements made implicit by the type member definitions in the
actual object definition.

The let expressions allow giving arbitrary terms an alias variable. The variable takes
on the type of the aliased expression in the prior context without x itself. The rest of the
expression is typed with x included.
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Conditional if expressions simply type into the type provided by the programmer.
The type is required to be a supertype of the type of each branch.

3.5.1 Typing Decidability

Term typing (∆ΣΓS ` e : τ ) is heavily reliant on path typing, which judges the type
that a path represents. In order to find out the type of a path, we need to look at the
type of the object whose val field is being accessed. To understand the type of this
inner object, which is also a path, we need to recursively apply the path typing procedure
until we get down to a single variable. However, since the type of a variable can be a
path-dependent type, we need to find out the underlying named structure it is based on
in order to know the type of its fields. This is reliant on continually following the upper
bound of a path-dependent type until a name is reached (This is possible because well-
formed programs can only access members of objects whose type is upper bounded, since
otherwise we are unable to know if it even has the desired member). The type expansion
rules (∆ΣΓS ` τ ≺ τ ) capture this process. Therefore, as we back out of the recursive
path typing judgments, we repeatedly apply type expansion to find out the type of each
successive field access.

To understand why this process always terminates, we first look at how variables de-
pend on each other in the dynamic context.

Theorem 1. Each record x : τ in Γ can only mention the variables that were added to Γ

before it.

Proof. There are only two rules that add to Γ during term typing: T-LET and T-NEW.

• Case T-LET: For each “let” expression let x = ex in e, the rule adds to the context
x : τe when typing e, where τe is the type of the enclosed expression ex. Since ex is
typed under Γ, its type τe can only refer to variables in Γ, which does not yet contain
x.

• Case T-NEW: For each “new” expression new τ{x⇒ d}, for each method declara-
tion def f : τx x → τr = e, the rule adds to the context x : τx when typing e. τx
cannot refer to x because x is not defined to be in scope for τx.

35



∆ΣΓS ` e : τ

Γ(x) = τ

∆ΣΓS ` x : τ
T-VAR

S(l) = τ

∆ΣΓS ` l : τ
T-LOC

∆ΣΓS ` p : τ ∆ΣΓS ` τ ≺ n r
∆ΣΓS ` n r 3x val v : τv

∆ΣΓS ` p.v : [p/x]τv
T-SEL

∆ΣΓS ` p : τ ∆ΣΓS ` τ ≺ n r
∆ΣΓS ` n r 3x def f : τa xa → τr

∆ΣΓS ` p′ : τ ′ ∆ΣΓS ` τ ′ <: [p/x]τa

∆ΣΓS ` p.f(p′) : [p, pa/x, xa]τr
T-APP

∆ΣΓS ` τ wf
∆ΣΓS ` τ{x⇒ d} wf

∆ΣΓS ` new τ{x⇒ d} : τ
T-NEW

∆ΣΓS ` ex : τx
∆ΣΓ, x : τx S ` e : τ

∆ΣΓS ` let x = ex in e : τ
T-LET

∆ΣΓS ` τ wf
∆ΣΓS ` e1 : τ1 ∆ΣΓS ` τ1 <: τ
∆ΣΓS ` e2 : τ2 ∆ΣΓS ` τ2 <: τ

∆ΣΓS ` if[τ ] p1 = p2 then e1 else e2 : τ
T-IF

∆ΣΓS ` τ {x⇒ d} wf

∆ΣΓS ` τ ≺ n r ∆(n) = {xn ⇒ σn} r = {δ} στ = σn +σ δ

τx = n (r +r ref(sig(d))) Γ′ = Γ, x : τx ∆ΣΓ′S ` sig(d) <: [x/xn]στ
∀ val v : τv = e ∈ d. ∆ΣΓ′ S ` e : τv

∀ def f : τa xa → τr = e ∈ d. ∆ΣΓ′, xa : τa S ` e : τr

∆ΣΓS ` τ {x⇒ d} wf

∆ΣΓS ` τ wf

∆ΣΓS ` > wf ∆ΣΓS ` ⊥ wf

∆ΣΓS ` β rβ ≺ n rn ∆(n) = {xn ⇒ σn} rβ = {δ}
∀ type t B τ ∈ δ.∆ΣΓS ` n rn 3x type t B′ τ ′ and

∆ΣΓ, xn : β rβS ` type t B τ <: type t B′ τ ′

∆ΣΓS ` β rβ wf

where +σ and +r are merge operations on σ and refinements, respectively (On conflict, RHS is
preserved and LHS is discarded).
sig : d → σ transforms object member definitions into member declarations by removing the
dynamic expression part of vals and funs.
ref : σ → r filters member declarations by preserving only type member declarations.
∆ΣΓS ` τ ≺ τu is true if following the upper bound of τ leads to τu, whose upper bound is itself.
Judgments not formally defined here are defined with the subtyping rules.

Figure 3.4: Nominal Wyvern Term Typing
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This means every successive member of Γ can only refer to the variables that were added
before it.

To make referring to positions easier, define the position of a variable x in Γ as its
rank (The first variable has rank 1). Intuitively, this means the first variable can only
refer to static types (names, top, or bottom), and higher ranked variables can refer to path-
dependent types whose paths are rooted at the lower ranked variables (the variable that
begins a path is denoted as the root of the path, and the rank of a path is defined as the
rank of its root). This hints at the possibility that as path typing progresses, its range
of reference decreases, and derivation eventually stops. For the following theorems, we
define the length of a path p (written |p|) as the number of field accesses it has. A single
variable has length 0, and x.v1.v2. · · · .vm has length m.

Theorem 2. ∆ΣΓS ` p : τp is decidable for all path p.

Theorem 3. ∆ΣΓS ` p.t r ≺ τ is decidable for all path-dependent type p.t r.

Since the path-typing and type expansion are mutually recursive, the two theorems are
proved at the same time with a nested induction proof.

Proof. The two theorems are combined and strengthened to get the following statement.
P∆ΣΓS(p.t r): let xp be the root of path p. ∆ΣΓS ` p.t r ≺ τ and ∆ΣΓS ` p : τp, and

τp can only contain either static types, path-dependent types whose path has a lower rank

than p, or path-dependent types rooted at xp whose length is less than |p|.
We wish to show: P(p) holds for all p.
Prove by induction on the rank of p.
Base Case: The rank of p is 1.

Prove by induction on the length of the longest xp-rooted path in p.t r.
Base Case: The length of the longest xp-rooted path is 0.

According to rule T-VAR, τp = Γ(xp), which is easily decidable by looking up Γ.
Theorem 1 indicates τp cannot contain any path-dependent types. Therefore, it does
not contain any xp-rooted path at all.
To expand a p.t r, expansion rules first expand τp. Since τp only contains static types,
its expansion is τp itself (rule TE-NAME). When accessing type member t from τp,
if the bound is a lower bound, the judgment ends, so we only consider when t is
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not just lower bounded. There are two cases (let x denote the self-variable from the
membership judgment (∆ΣΓS ` τp 3x type t ≤= βt rt)):

If t is in the refinement of τp: Then βt rt can only contain static types or 0-length
xp-rooted paths. Therefore, the replacement [p/x] has no effect. Combining two
refinements does not create any new types, so the resulting type βt rt +r r1 has
the same property (can only contain static types or 0-length xp-rooted paths). If
βt is a name, the second expansion also terminates. If βt is xp.t′ (for some t′),
then expansion recurses on this new path-dependent type. However, material-
shape separation rules require there be no cyclic dependencies between type
members unless it goes through a refinement (i.e. a labeled edge). Therefore,
this limited recursion either ends when it accesses a type member that was re-
fined, or when it naturally ends before going through all type members of p.

If t is not in the refinement (i.e. the bound of t comes from the name type defini-
tions): The bound of t can only contain static types or 0-length x-rooted paths
(Due to restriction on length of paths for type member bounds). The replace-
ment [p/x] replaces x with xp. This means we get to the exact same situation as
in the previous case when t is in the refinement.

Inductive Case: The length of the longest xp-rooted path in p.t r is l (l > 1). Let length
of p be m (m ≤ l). Denote p as x.v1. · · · .vm.

Inductive Hypothesis: The statement P∆ΣΓS() holds for all p.t r whose longest xp-
rooted path (where xp is root of p) is less than |p|, and p has rank 1 in Γ.
Let p′ = x.v1. · · · .vm−1.
Rule T-SEL depends on the typing of p′. The IH determines that ∆ΣΓS ` p′ : τp−1.
Since τp−1 does not contain xp-rooted paths with length ≥ |p| − 1, type expansion is
decidable for τp−1 according to IH.
Now consider when the field declaration of vm is accessed in τp−1. Again, let x
denote the self-variable. If the type of vm in τp−1 (denote as τv) does not refer to
x, it will be static only. If it does refer to x, then any x-rooted paths will have 0

length. After performing [p′/x], the longest xp-rooted path in τv is still no longer
than m− 1.
Next consider the expansion of p.t r. Expansion rules first expand the type of p,
which was just showed to not contain any xp-rooted paths longer than m − 1. Ac-
cording to IH, this expansion is decidable. The proof for accessing the type member
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t is very similar to the proof in the base case: The bound of t (denote as βt rt) will
either have a name type as base, in which case the second expansion terminates, or
it is a xp-rooted path with length equal to m, and r can only contain static types or
xp-rooted paths with length no greater than l. In the latter case, the recursion is with
another type member of p, but this cannot happen infinitely due to material-shape
separation.

Inductive Case: The rank of p is r (r > 1).

Inductive Hypothesis: The statement P∆ΣΓS() holds for all p.t r where p has rank less
than r in Γ.
Prove by induction on the length of the longest xp-rooted path in p.t r.
This part is omitted for brevity: Similar to the base case on rank, when the longest
length is 0, the type of p can only refer to lower-ranked paths. By IH, they are all type-
able and expand-able. When the longest length is l, it can refer to both lower-ranked
and shorter paths. The key is always that the material-shape separation rules and the
restriction on path-length of type member bounds prevent infinite cyclic expansion for
any one particular path.

One additional lemma we are able to gain from this strengthened proof is that typing a
path will either decrease the rank of the path or the length of the path. We can thus define
a measure on paths.

Definition 6 (rank-length (RL)). The rank-length measure of a path, p, given context Γ

(written RLΓ(p), or just RL(p)) is the pair of natural numbers:

(rank(p), length(p))

, where rank(p) and length(p) are the rank and length of p, respectively.

Ordering of RL follows dictionary ordering. Two RL measures (ir, il) < (i′r, i
′
l) iff ir < i′r,

or ir = i′r ∧ il < i′l. They are equal if both components are equal.

Lemma 1. If ∆ΣΓS ` p : τp, then for any path-dependent type p′.t r in τp, RLΓ(p′) <

RLΓ(p).

In addition, as can be seen from the proof, given any type p.t r, if ∆ΣΓS ` p.t r ≺ τ ,
then the largest RL of any path in τ cannot be larger than the largest RL of any path in
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p.t r. This is because at no point during expansion can a path type get longer. The only
time a new path type is created is when the type bound came from a name type definition,
in which case any self variable x (length 0) is replaced with p.

Lemma 2. If ∆ΣΓS ` p.t r ≺ τ , then the largest RL of any path in τ cannot be larger

than the largest RL of any path in p.t r.
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Chapter 4

Subtyping Decidability

4.1 Subtyping Judgments

Figures 4.1 and 4.2 present the subtyping judgments for Nominal Wyvern. They consist
of three main parts:

1. Nominal type subtyping: subtyping between two named types.

2. Member type subtyping: subtyping between two type members.

3. Structural subtyping: subtyping between two structural types.

Nominal type subtyping follows the nominal subtyping graph (Definition 1). To check
n1 r1 <:n2 r2, we first check if the two are related by the nominal subtype relation by
finding a path from n1 to n2 in the nominal subtyping graph. If there is no such path, we
can immediately conclude ‘false’. Due to conditional subtyping, even if there are paths
from n1 to n2, we must check if there is a path such that the refinement labeled on every
edge of the path (the “conditions”) are each satisfied by r1. Finally, if we have a conditional
path, we still have to check if the refinements in r2 are still supertypes of the corresponding
types in n1 r1. It is possible that r2 makes some type member of n2 too specific for even
n1 r1. Listing 4.1 contains one example for each of these three cases.
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∆ΣΓS ` τ <: τ

∆ΣΓS ` τ <: >
S-TOP

∆ΣΓS ` ⊥ <: τ
S-BOT

∆ΣΓS ` p : τp ∆ΣΓS ` τp ≺ n r ∆ΣΓS ` n r 3x type t ≤= βt rt
∆ΣΓS ` [p/x](βt rt +r r1) <: τ2

∆ΣΓS ` p.t r1 <: τ2

S-UPPER

∆ΣΓS ` p : τp ∆ΣΓS ` τp ≺ n r ∆ΣΓS ` n r 3x type t ≥= βt rt
∆ΣΓS ` τ1 <: [p/x](βt rt +r r2)

∆ΣΓS ` τ1 <: p.t r2

S-LOWER

∆ΣΓS ` r1 <: r2

∆ΣΓS ` p.t r1 <: p.t r2

S-STRUCT

∆ΣΓS ` n1
r1−→ n2 ∆ΣΓS ` r1 <: r2

∆ΣΓS ` n1 r1 <: n2 r2

S-NAME

∆ΣΓS ` τ ≺ τ

∆ΣΓS ` > ≺ >
TE-TOP

∆ΣΓS ` ⊥ ≺ ⊥
TE-BOT

∆ΣΓS ` n r ≺ n r
TE-NAME

∆ΣΓS ` p : τp ∆ΣΓS ` τp ≺ n r
∆ΣΓS ` n r 3x type t ≤= βt rt ∆ΣΓS ` [p/x](βt rt +r r1) ≺ τ2

∆ΣΓS ` p.t r1 ≺ τ2

TE-UPPER

∆ΣΓS ` p : τp ∆ΣΓS ` τp ≺ n r ∆ΣΓS ` n r 3x type t ≥ τt

∆ΣΓS ` p.t r1 ≺ p.t r1

TE-LOWER

where type t B1
B2
τ matches a type member declaration with either bounds B1 or B2.

Figure 4.1: Nominal Wyvern Subtyping
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∆ΣΓS ` r <: r

∆ΣΓS ` r <: {}
SR-EMPTY

r1 3 type t B1 τ1

∆ΣΓS ` type t B1 τ1 <: type t B2 τ2

∆ΣΓS ` r1 <: {δ2}
∆ΣΓS ` r1 <: {δ2, type t B2 τ2}

SR-CONS

∆ΣΓS ` σ <: σ

∆ΣΓS ` τ1 <: τ2

∆ΣΓS ` type t ≤= τ1 <: type t ≤ τ2

SS-UPPER

∆ΣΓS ` τ2 <: τ1

∆ΣΓS ` type t ≥= τ1 <: type t ≥ τ2

SS-LOWER

∆ΣΓS ` τ1 <: τ2 ∆ΣΓS ` τ2 <: τ1

∆ΣΓS ` type t = τ1 <: type t = τ2

SS-EXACT

∆ΣΓS ` τ1 <: τ2

∆ΣΓS ` val v : τ1 <: val v : τ2

SS-VAL

∆ΣΓS ` τa2 <: τa1 ∆ΣΓ, x1 : τa2 S ` τr1 <: [x1/x2]τr2

∆ΣΓS ` def f : τa1 x1 → τr1 <: def f : τa2 x2 → τr2
SS-DEF

∆ΣΓS ` n r−→ n

∆ΣΓS ` n r−→ n
SN-REFL

Σ 3 n1 r1 <: n2 ∆ΣΓS ` r′1 <: r1 ∆ΣΓS ` n2

r′1−→ n3

∆ΣΓS ` n1

r′1−→ n3

SN-TRANS

∆ΣΓS ` n r 3x σ

σ ∈ δ x /∈ Γ

∆ΣΓS ` n {δ} 3x σ
M-REF

σ /∈ δ ∆(n) = {x⇒ σn} σ ∈ σn
∆ΣΓS ` n {δ} 3x σ

M-NAME

σ ∈ δ is true if σ is a type member declaration (i.e. δ), and is part of δ.
x /∈ Γ is true when x is a fresh variable under the current variable typing context.

Figure 4.2: Nominal Wyvern Subtyping (continued)
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1 name A {z => ...}

2 name B {z => ...}

3 name C {z => ...}

4 subtype C <: B

5 subtype B <: A

6

7 name N1 {z => type t <= >}
8 name N2 {z => type t <= A}

9 name N3 {z => type t <= A}

10 subtype N1 {type t <= B} <: N2

11

12 /* Query 1: N1 {type t <= B} <: N3

13 * --> false, no path in graph

14 * Query 2: N1 {type t <= A} <: N2

15 * --> false, condition not met

16 * Query 3: N1 {type t <= B} <: N2 {type t <= C}

17 * --> false, r_2 too specific

18 */

Listing 4.1: 3 ways nominal subtyping can fail

Member type subtyping is similar to DOT. Follow the upper bound for LHS base types,
and follow the lower bound for RHS base types. Existing refinements are merged with new
refinements by discarding the new ones on conflict. Reflexivity applies for when base types
on both sides are exactly the same path, in which case structural subtyping applies to the
refinements. If any one side’s base type becomes a name type, it waits for the other side
to also reduce into a name type, at which point nominal type subtyping applies. If both
sides gets stuck without reflexivity or nominal subtyping applying, the query concludes to
‘false’.

Structural subtyping follows standard subtyping on record types. Width subtyping
allows LHS to contain more members than the RHS. Depth subtyping allows the bounds
on the LHS to be more specific than the corresponding bounds on the RHS.

• For type members, the LHS type bound must be in the same direction (or be an exact
bound) as the RHS, and be no less specific than the RHS

• For field members, the LHS type of the val must be a subtype of the RHS type

• For method members, first replace the argument variable so that both sides use the
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Figure 4.3: Ways to get recursive subtyping judgments

same name. The argument type of LHS must be a supertype of the RHS, and the
result type must be a subtype of RHS.

For all subsequent subtype queries, the self variable (and the argument variable in the
case of method) are added to the single context with the LHS parent type.

In all three parts, whenever a bottom type appears on the LHS, or a top type appears
on the RHS, derivation immediately returns ‘true’.

4.2 Decidability

Observe from the subtyping rules the only ways nested subtype judgments can occur in
a derivation tree. Figure 4.3 shows the ways one subtype judgment (any S-* rule) can
call back to a subtype judgment. Each node represents one family of subtype judgment
rules (based on the prefix of the rule names in Figure 4.1): SN-* rules judge subtype
relations between named types; SR-* rules judge structural subtyping relations between
refinements; SS-* rules judge subtyping relations between individual refinement member
definitions. Each edge (black arrow) represents a possibility of a rule from one rule family
calling into another family, labeled with the inducing rule names. Note that there are two
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outgoing edges from S-* labeled with S-NAME. This is because the S-NAME rule both
directly calls into SR-* and calls SR-* as well inside SN-TRANS. The three colored
paths cover the three general ways recursion can occur:

• [RED] S-UPPER or S-LOWER: called directly.

• [GREEN] S-STRUCT or S-NAME directly: called directly via structural subtyping
rules, specifically SS-LOWER or SS-UPPER.

• [BLUE] S-NAME indirectly: called while checking conditional subtyping between
names in the nominal subtyping graph.

All the potential ways of getting nested subtype judgments can be partitioned into the
following cases (the name of each case is given in parentheses):

1. [RED] via S-UPPER (RSU): The new LHS is the upper bound of the old LHS type.
RHS stays the same.

2. [RED] via S-LOWER (RSL): The new RHS is the lower bound of the old RHS type.
LHS stays the same.

3. [GREEN] via S-STRUCT (GSS): The new type on each side comes from inside the
refinement of each side. (Left and right may be swapped if path also went through
SS-LOWER or SS-EXACT).

4. [GREEN] via S-NAME (GSN): The new RHS comes from inside the old RHS re-
finement. The new LHS comes from either the old LHS refinement or a type bound
in the definition of the LHS named type. (Left and right may be swapped if path
also went through SS-LOWER or SS-EXACT).

5. [BLUE] (BSN): The new LHS comes from inside the old LHS refinement. The new
RHS comes from the refinement labeled on an edge between the old LHS named
type and old RHS named type in the nominal subtyping graph. (Left and right may
be swapped if path also went through SS-LOWER or SS-EXACT).

To prove decidability, we define the notion of a “lineage” in the context of a sub-
type derivation. The idea is that given a subtype query (∆ΣΓS ` τ <: τ ), a lineage L
captures the trace a type goes through during the subtype derivation that starts with that
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initial query. Concretely, a lineage is a tree with types as nodes. The shape of the tree
corresponds exactly to the derivation tree of the initial subtype query. Each subtyping
derivation creates two lineages: an initial left-lineage rooted at the initial LHS type, and
an initial right-lineage rooted at the initial RHS type. For each nested subtyping judgment
in the derivation tree, the inner judgment’s (deeper in tree) LHS and RHS types are linked
to the outer judgment’s types depending on which rules were used between the inner and
outer subtype judgments. In most cases, the inner type is added as a child of the outer type
of the same side. However, if the judgments involve a SS-LOWER or SS-EXACT (i.e. the
bound on the type in the structure involved a lower bound), the inner LHS type is added
as a child of the outer RHS type (“the left lineage swings to the right”), and the inner RHS
links to the outer LHS. This is the only case when the two lineages swap sides.

Definition 7 (Lineage). Given a subtype derivation tree rooted at ∆ΣΓS ` τinitl <: τinitr,

the two lineages of the derivation tree are each a tree. Each subtype judgment in the

derivation tree is given a label, and for each subtype judgment J: ∆ΣΓS ` τl <: τr, two

vertices are created: J#τl and J#τr. For each pair of judgments J1: ∆ΣΓS ` τl1 <: τr1

and J2: ∆ΣΓS ` τl2 <: τr2 such that J1 is the closest ancestor of J2 that is a subtype

judgment S-*, denote new sets of edges:

• Covariant edges: J1#τl1 → J2#τl2, J1#τr1 → J2#τr2

• Contravariant edges: J1#τl1 → J2#τr2, J1#τr1 → J2#τl2

, with each edge labeled with how the recursive call was made (one of RSU, RSL, GSS,

GSN, BSN). Then generate edges depending on the path from J1 to J2:

• If J1 calls to J2 via a SS-EXACT, add both contravariant and covariant edges

• If J1 calls to J2 via a SS-LOWER, add contravariant edges

• Otherwise, add covariant edges

The initial left-lineage and right-lineage are the trees rooted at τinitl and τinitr, respec-

tively.

Example 5. Consider the following partial derivation (judgments are labeled on the

right):
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∅ ` n1 <: n2 [J1]

z : n1 ` z.t2 <: z.t4{t′ ≤ z.t1} [J2]

z : n1 ` z.t3{t′ ≤ z.t2} <: z.t4{t′ ≤ z.t1} [J3]

z : n1 ` z.t4{t′ ≤ z.t2} <: z.t4{t′ ≤ z.t1} [J4]

z : n1 ` z.t2 <: z.t1 [J5]

z : n1 ` z.t2 <: z.t4{t′ ≤ z.t1} [J6]

· · ·

The setup for the derivation is shown below on the left. The two lineages are the two trees

(each with only one branch) on the right.

n1 =


z ⇒

t1 ≥ z.t4{t′ ≤ z.t1}
t2 ≤ z.t3{t′ ≤ z.t2}
t3 ≤ z.t4

t4 ≤ n2

t′ ≤ >



n2 =

z ⇒
t1 ≥ z.t2

t2 ≤ >
t′ ≤ >


J3#z.t3{t′ ≤ z.t2} J3#z.t4{t′ ≤ z.t1}

J4#z.t4{t′ ≤ z.t2} J4#z.t4{t′ ≤ z.t1}

J5#z.t2 J5#z.t1

J6#z.t2 J6#z.t4{t′ ≤ z.t1}

J2#z.t2 J2#z.t4{t′ ≤ z.t1}

J1#n1 J1#n2

A lineage captures the relation between types in recursively dependent subtyping judg-
ments. As long as all paths in a lineage (from the root downwards) are finite, the entire
corresponding subtype derivation is finite. We can consider any path starting from the
root of a lineage as made up of many segments, divided by edges labeled with S-NAME
recursions (i.e. GSN or BSN). Below, we first study the behavior within a segment, and
then extend to across segments.

To prove decidability, we define a measure E on types that will decrease during deriva-

48



tion. To define E , we first define two measures, M and A, on type members of a given
name type n. M(n::t) captures the number of other type members of n reachable from t.
A(n::t) captures the other dependencies of t.

Definition 8 (M andAmeasures of pseudotypes). Given a name type definition n : {x⇒
σ} ∈ ∆ and the subtype dependency graph derived from ∆Σ, theM∆Σ and A∆Σ mea-

sures of a pseudotype n::t is defined as:

type t B τ ∈ σ T = {n::t′|x.t′ ∈ τ ∧ n::t→B n::t′}

M∆Σ(n::t) = 1 +
∑
x.t′∈T

M∆Σ(n::t′)

type t B τ ∈ σ T = {n::t′|x.t′ ∈ τ ∧ n::t→B n::t′}

A∆Σ(n::t) = 1 +
∑
x.t′∈T

A∆Σ(n::t′) +
∑
n′∈τ

E∆ΣΓS(n′)

where n::t→B n::t′ is true if there is a path in the subtype dependency graph from n::t to

n::t′ that only consists of edges whose variance is B and are not labeled with shapes, and

the path does not consist of nodes that are not pseudotypes of n.

E∆ΣΓS() is the measure on types to be defined below.

TheM and A measures are computable thanks to the shape-material separation rules.
Since there are no cycles without going through labeled edges, a topological ordering
based on dependency exists on all type members of a given name type. Both measurements
can be computed “bottom-up” from this ordering.

Example 6. Consider the following setup:

n =


z ⇒

t1 ≥ z.t2

t2 ≥ z.t6{t′ ≤ z.t3}
t3 ≤ z.t4{t′′ ≤ n3}
t4 ≤ z.t5{t′ ≤ z.t3}
t5 ≤ n2

t6 ≥ ⊥


The partial subtype dependency graph generated from the type members of named type n

is the graph below on the left. It shows that there is only one shape pseudotype, n::t5. Since

the definition of n follows material-shape separation rules, if we remove all dependencies
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that go through shapes, we get the graph on the right, which is guaranteed to be acyclic

(the edge labels in the right hand side graph are omitted since they are not needed for the

M and A measures).

n::t1

n::t2

n::t3

n::t4

n::t5 n::t6

n2

n3

⊥

n::t6

n::t4
n::t5

n::t1

n::t2

n::t3

n::t4

n::t5 n::t6

n2

n3

⊥

⇒

From the right hand side graph, we can calculate theM and A measures for each pseu-

dotype of n “bottom-up”:

M A

n::t1
M(n::t2) + 1 A(n::t2) + 1

= 6 = 4 + E(n2) + E(n3) + E(⊥)

n::t2
M(n::t3) +M(n::t6) + 1 A(n::t3) +A(n::t6) + 1

= 5 = 3 + E(n2) + E(n3) + E(⊥)

n::t3
M(n::t4) + 1 A(n::t4) + E(n3) + 1

= 3 = 2 + E(n2) + E(n3)

n::t4
M(n::t5) + 1 A(n::t5) + 1

= 2 = 1 + E(n2)

n::t5 1 E(n2)

n::t6 1 E(⊥)

As evident from the example, for any non-shape dependency (i.e. any edge in the right
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hand side dependency graph above), both M and A are strictly larger for the source

node than for the destination node. Moreover, if the source node has multiple non-shape

dependencies, theM value of the source node will be strictly larger than the sum of the

M values of all its out-neighbors (and the same holds for A). This property ofM and A
will prove to be useful when used by the E measurement on types defined below.

We now wish to define the measure E on types. It can be thought of as the “potential
energy” of a type, and that continued subtype derivation requires spending energy.

Definition 9 (Energy measure of a type). Given the contexts ∆ΣΓS, first define the energy

E∆ΣΓS of a base type as:

E∆ΣΓS(>) = 0 E∆ΣΓS(⊥) = 0

N = {n1|n1r1 <: n ∈ Σ} ∪ {n′|n1r1 <: n ∈ Σ, n′ ∈ r1}

E∆ΣΓS(n) =
∑
n′∈N

(E∆ΣΓS(n′)) + 1

∆ΣΓS ` p : τp ∆ΣΓS ` τp ≺ n r

E∆ΣΓS(p.t) = E∆ΣΓS(n r)×M∆Σ(n::t) +A∆Σ(n::t)

The energy E∆ΣΓS of a type τ is the sum of the energies of the base types that occur in τ

(i.e. the nodes of the refinement tree of τ ).

E∆ΣΓS(τ) =
∑
β∈τ

E∆ΣΓS(β)

Example 7. Consider the following top-level subtype declarations:

subtype n1 <: n2

subtype n1 { type t’ <= n3 } <: n4

subtype n3 { type t’’ <= n4 } <: n5

The partial subtype dependency graph generated from the above declarations is shown be-

low on the left (omitting edge labels). The energy measure of each name can be calculated

from the bottom up (shown in the table on the right below).
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n5

n4

n3n1

n2

E
n1 1

n2
E(n1) + 1

= 2

n3 1

n4
E(n1) + E(n3) + 1

= 3

n4
E(n3) + E(n4) + 1

= 5

The material-shape separation requirements ensure that the energy measurement is
defined on name types: The rules dictate a topological order over all named types, which
make sure that it is always possible for the recursive energy calculation to terminate (as
shown in Example 7). For the path-dependent types, lemmas 1 and 2 make sure that
every recursive E call can only contain paths strictly smaller in terms of RL. This means
recursion eventually all stops on static types.

The intuition behind the energy equation of path-dependent types is to make sure that
even if one type member t depends on many other type members, the energy of p.t for any
p should be greater than the combined energy of all that t depends on. Due to the existence
of cyclic dependencies through shapes, this is not always possible to compute. However,
the definition ofM and A takes this into account by ignoring any dependencies that are
inside the refinement of a shape. This means during subtype derivation, when following
the type bound of t, as long as the bound does not include any shapes, the energy before
will be bigger than after. If there is a shape, we’ll show that it is still fine.

First we wish to show that, within any segment of a lineage, the energy of nodes
decrease when the lineage is on the right-hand side.

Theorem 4. Given a subtype derivation under the contexts ∆ΣΓS and one of its lineages

L, if J1#τ1 is the parent of J2#τ2 in the same segment in L and τ2 is on the RHS of J2,

then E∆ΣΓS(τ2) < E∆ΣΓS(τ1) (unless the edge between J1#τ1 and J2#τ2 is RSU, in which

case the energy stays the same).

Proof. Within a segment we only need to case on the following three recursion pathways:

• RSU: τ2 = τ1, and the energy stays the same.
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• RSL: Let τ1 = p.t r1. S-LOWER shows that ∆ΣΓS ` p : τp, ∆ΣΓS ` τp ≺ n r, and
∆ΣΓS ` n r 3x type t ≥= βt rt. There are two places the bound βt rt could come
from:

– Case - t is from r: The energy of p.t already includes the energy from n r,
which includes the energy of βt rt.

– Case - t is from n: βt rt came from ∆. The energy measure E∆ΣΓS([p/x]βt rt)

is the sum of the energies of all types in [p/x]βt rt. Observe that since n::t is
lower bounded, any pseudotype that bound it are reachable from n::t without
going through shapes. Therefore, M∆Σ(n::t) =

∑
x.t′∈βt rtM∆Σ(n::t′), and

A∆Σ(n::t) = 1 +
∑

x.t′∈βt rt A∆Σ(n::t′) +
∑

n′∈τ E∆ΣΓS(n′). This means the
energy-calculating equation of p.t already subsumed all the energy from its
bound.

In all cases, E∆ΣΓS([p/x]βt rt) is no greater than the energy contributed by one part
of p.t r1. Therefore, total energy decreases for the RHS after RSL.

• GSS: τ2 is a bound in the refinement part of tau1, which means E∆ΣΓS(τ2) is strictly
smaller since it contains strictly less types.

The same is true for the left-hand side, but since we allow certain cyclic dependencies
to exist through shapes, the LHS energy can increase when introducing a shape.

Definition 10. A path-dependent base type p.t is considered a shape if ∆ΣΓS ` p : τp,

∆ΣΓS ` τp ≺ n r, and n::t is marked as a shape in the subtype dependency graph.

Theorem 5. Given a subtype derivation under the contexts ∆ΣΓS and one of its lineages

L, if J1#τ1 is the parent of J2#τ2 in the same segment in L and τ2 is on the LHS of J2,

then E∆ΣΓS(τ2) < E∆ΣΓS(τ1) unless 1) τ2 contains a shape, or 2) the edge from J1#τ1 to

J2#τ2 is RSL, in which case the energy stays the same.

Proof. Within a segment we only need to case on the following three recursion pathways:

• RSL: τ2 = τ1, and the energy stays the same.
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• RSU: Let τ1 = p.t r1. S-UPPER shows that ∆ΣΓS ` p : τp, ∆ΣΓS ` τp ≺ n r,
and ∆ΣΓS ` n r 3x type t ≤= βt rt. There are two places the bound βt rt could
come from:

– Case - t is from r: The energy of p.t already includes the energy from n r,
which includes the energy of βt rt.

– Case - t is from n: βt rt came from ∆. The energy measure E∆ΣΓS([p/x]βt rt)

is the sum of the energies of all types in [p/x]βt rt.

∗ If [p/x]βt rt does not contain a shape: Similar to the RHS proof, if the
bound does not contain any shapes, then all type members and names that
are in this bound are already included in the energy calculation of p.t.

∗ If [p/x]βt rt contains a shape: Then the energy calculation of p.t only
included the energies from the types that are not refining the shape. If the
shape does not refine anything, the energy of the entire [p/x]βt rt is still
covered by p.t, but if the shape is refined, the LHS may incur an increase
in energy.

In all cases other than when [p/x]βt rt contains a refined shape, E∆ΣΓS([p/x]βt rt) is
no greater than the energy contributed by one part of p.t r1.

• GSS: τ2 is a bound in the refinement part of tau1, which means E∆ΣΓS(τ2) is strictly
smaller since it contains strictly less types.

An energy increase on the LHS is fine because the proof shows that to do so, a path-
dependent shape was encountered on the LHS, and it requires an S-STRUCT for both
lineages in order to progress. However, this means the RHS base type was also a shape.
Note that shapes rarely appear as base type on the RHS within a segment:

Theorem 6. Given a subtype derivation under the contexts ∆ΣΓS and one of its lineages

L, if J1#τ1 is the parent of J2#τ2 within a segment in L (and τ1 6= τ2), and τ2 is on the

RHS of J2, and τ2 is a shape, then the edge from J1#τ1 to J2#τ2 must be GSS and τ1 must

also be on the RHS of J1.

Proof. Within a segment we only need to case on the following three recursion pathways:
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• RSU: τ2 = τ1, the RHS type does not change.

• RSL: τ2 is the base type of the lower bound of τ1. However, since shapes can never
be used after a lower bound, τ2 is not a shape.

• GSS:

– If recursion is via SS-LOWER: τ2 is the base type of a lower bound in the
refinement of τ1. Therefore, τ2 cannot be a shape.

– If recursion is via SS-UPPER: τ2 is the base type of an upper bound in the
refinement of τ1. It is possible that it is a shape.

– If recursion is via SS-EXACT: both of the above will happen, though in two
separate branches of the lineage (i.e. reduces to the above two cases).

As a result, the only shapes that can appear on the RHS as base types are the ones
that were already in the refinement on the RHS. We know every time the LHS increases
its energy by going through a shape, the RHS loses a shape. However, even though the
LHS can replenish energy, the RHS cannot replenish its number of shapes. When the RHS
runs out of shapes, it will no longer be able to aid in the energy increase of the LHS by
performing S-STRUCT. Therefore, any infinite derivation cannot be entirely within one
segment. Both lineages must eventually go through a S-NAME.

S-NAME can trigger two kinds of recursions: one through the green path (GSN), one
through the blue path (BSN). Denote the types on the LHS and RHS of the judgment
immediately before S-NAME as n1 r1 and n2 r2, respectively.

First, consider BSN recursions. BSN recursion is when S-NAME calls into SN-TRANS,
which in turn recurses by replacing the RHS with types defined on the edges of the nominal
subtyping graph. After BSN, the old left-lineage’s energy decreases since we recursed on
its refinement members (i.e. strictly smaller refinement tree). The old right-lineage turns
into a completely new type, but it contains only static types. In fact, the energy of the old
right-lineage also decreased due to the way energy is defined on named types. The old
name type n2 has a greater energy than the entire new RHS type.

BSN has a great impact on the right-lineage. It contains only static types, and the only
shapes it contain are not refined (due to material-shape restrictions). This means the only
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recursions it and its paired lineage can perform are S-NAME and S-UPPER. The lineage
with the all-static types can never use S-UPPER, so it can never increase in energy at all
within any lineage segment. As we will soon see, going through GSN decreases the energy
for both lineages. We know that this is true for BSN as well. The result is the lineage with
the all-static types will monotonically decrease its energy until its type becomes either
top, bottom, a path-dependent type that is not lower-bounded, or a named type that is not
declared to be the supertype of any other name type, all of which ends the derivation.

Now consider GSN recursions. GSN recursion is when S-NAME recursively checks
subtyping between the commonly refined members of both sides. It behaves exactly like
an S-STRUCT: There are no replenishing of energies or shapes on either side. Instead, the
energy of both sides decrease because the recursion is on a proper subtree of the original
type’s refinement tree. This means the depth of the refinement trees of types on both sides
strictly decrease every time recursion passes through GSN. Recursion continues as before,
which means any infinite derivation will eventually visit S-NAME again. As shown earlier,
the branch that goes through BSN is determined to end. The branch that goes through GSN
again will decrease in depth. Since no available recursion paths (other than BSN) can
increase the depth of any type, recursion eventually stops when there are no refinements
on the RHS type and GSN no longer occurs.

Due to the combined result of energy decreasing, number of RHS shapes decreasing,
and depth decreasing, no lineage can have infinite length. All subtype derivations must
eventually terminate.
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Chapter 5

Expressiveness

This chapter discusses the expressiveness of Nominal Wyvern by showing the encoding of
some of the important features of both object-oriented languages and functional languages
that we identified. Section 5.1 introduces the syntax sugar that will be used as shorthand
in this section. Sections 5.2 through 5.4 shows how some of the common patterns express-
ible in DOT are encoded in Nominal Wyvern. Sections 5.5 and 5.6 show how Nominal
Wyvern can be compatible with common patterns in both functional and object-oriented
programming languages.

5.1 Syntax Sugar

For brevity, this chapter makes use of the following syntactic sugar for expressing common
patterns.

• Omitting self-variables

The self-variable that immediately follows the open curly brace of name declara-
tions and new object definitions may be omitted if they are never referred to in the
structure. Desugaring would just be adding a fresh identifier as the self-variable
wherever it was omitted.

• Omitting val types during object creation

In new expressions, the type annotation on val can be omitted if they are identical
to the type of the val defined by the type (or its upper bound) that is being created.
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This is always known during new because of the need to check well-formedness.
Desugaring would just be adding back the required type of the val.

• Inline member declarations

Members of named type definitions (σ), refinements (δ), and new object definitions
(d) are allowed to be separated with commas to make it clearer to the reader when
placed on a single line. This can be easily desugared by removing the commas.

• Inline expressions

The abstract syntax requires the argument to methods to be pre-bound to a variable.
This is relaxed to allow using any arbitrary expression directly as the argument to
a method. The desugaring would be moving the expression into a let expression
(with a fresh variable) that wraps the method call, and instead invoking the method
with the fresh variable.

• Multiple method arguments

The abstract syntax only allows one argument in method declarations. This is ob-
viously not practical, but it is also not as limiting as it appears to be. Since all
expressions are objects, multiple arguments are simply considered a new object that
encapsulates them. For the examples shown in this chapter, the type of a function ar-
gument is allowed to be a structural type with a self-variable ({x⇒ σ}). Desugaring
would be declaring the structure as a fresh name in the top level and then using that
name in the method signature. Any references to the method’s sibling type mem-
bers are swapped for a fresh type member (bounded with > or ⊥ as appropriate) in
the argument type when moved outside. The use site subsequently refines the fresh
name type with the referenced sibling type members.
This serves as a useful feature for a concrete syntax since it does not break the theme
of semantic separation of Nominal Wyvern: The arguments to a function should be
considered to be defined by the function itself. It would therefore be perfectly fine if
each method also declared a named type 〈method_ID〉_arg. Therefore, to spare
the need to separately declare each such type, they are declared together with the
method signatures.

• Passing new objects to methods

Since the argument to a method can now be of an anonymous named type, it is
impossible to new such an object. As a result, we introduce a syntax sugar that
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allows the creation of a new object by simply defining a structure ({x ⇒ d}) to be
passed to any method whose argument type is an anonymous name. The desugaring
for this is paired with the desugaring of the method signature: the anonymous named
type is declared with a name, and the object is re-defined with a new expression
using this name.

5.2 Basic Path-Dependent Types

Since Nominal Wyvern is based on DOT, the first example re-implements the Bank ex-
ample of Listing 2.1 and Listing 2.2 in Nominal Wyvern to show that it preserves the
abstraction boundaries and provides the same guarantees.

1 // assume a pre-defined String type. String objects are created

2 // directly with string literals.

3 name Unit {}

4

5 name CreditCard {}

6 name SecuredCard {}

7 subtype SecuredCard <: CreditCard

8 name AuthorizedUserCard {}

9 subtype AuthorizedUserCard <: CreditCard

10

11 name Bank {b =>

12 type Card

13 def applyForCard : String name -> b.Card

14 def payOff : b.Card c -> Unit

15 }

16

17 name RegionalBank {b =>

18 type Card <= SecuredCard

19 def applyForCard : String name -> b.Card

20 def payOff : b.Card c -> Unit

21 }

22 subtype RegionalBank <: Bank

23

24 name Utils {

25 def giveChildren : SecuredCard card -> Unit

26 }
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27

28 let pnc = new Bank {b =>

29 type Card = CreditCard

30 def applyForCard : String name -> b.Card = new CreditCard {}

31 def payOff : b.Card c -> Unit = new Unit {}

32 } in

33 let veryCautiousBank = new RegionalBank {b =>

34 type Card = SecuredCard

35 def applyForCard : String name -> b.Card = new SecuredCard {}

36 def payOff : b.Card c -> Unit = new Unit {}

37 } in

38 // attempt to pay off

39 let myCard = veryCautiousBank.applyForCard("...") in

40 let legal = veryCautiousBank.payOff(myCard) in // OK

41 let illegal = pnc.payOff(myCard) in // type mismatch

42

43 let utils = new Utils {

44 def giveChildren : SecuredCard card -> Unit = new Unit {}

45 } in

46 // attempt to give children

47 let pass = utils.giveChildren(

48 veryCautiousBank.applyForCard("...")) in // OK

49 let fail = utils.study(pnc.applyForCard("")) in // type mismatch

50 ...

Listing 5.1: Basic path-dependent types in Nominal Wyvern

The types of credit cards are empty structures whose names give them meaning. Two
types of banks are defined. Note that the name declarations are equivalent to interface
declarations in other languages, therefore they do not contain implementation. Instead,
the implementation is given to the particular object at creation time with new. 1

The guarantees provided by DOT are preserved in Nominal Wyvern:

• A card can only be paid off at the bank that issued it: Each bank object x carries with
it a type x.Card that is hidden from the outside. In this case, the object myCard
has type veryCautiousBank.Card (derived directly from the signature of the
applyForCard()method of RegionalBank, the type of veryCautiousBank).
Therefore, it is incompatible with the input type of pnc.payOff(), which re-

1This difference is discussed more in depth in section 5.6.

60



quires the argument to be of the entirely opaque type pnc.Card.

• Only a secured card can be given to children: Even though the exact type of very-
CautiousBank.Card is unknown, RegionalBank provides the hint that its
card type is a subtype of SecuredCard. As a result, it fits the requirement of
util.giveChildren(). In contrast, since pnc.Card is completely abstract,
it is not safe to pass into util.giveChildren().

Since Nominal Wyvern supports refinements, one can avoid the need to declare a spe-
cific bank type if the difference can be succinctly represented by a refinement (and prefer-
ably only when the new type is not used as a common concept in the code). For example,
the veryCautiousBank can be written without a RegionalBank:

1 ...

2 let veryCautiousBank = new Bank {type Card <= SecuredCard} {b =>

3 type Card = SecuredCard

4 def applyForCard : String name -> b.Card = new SecuredCard {}

5 def payOff : b.Card c -> Unit = new Unit {}

6 } in

7 ...

Listing 5.2: Expressing RegionalBank with a refinement

The underlined type declared in the new expression denotes the type that this new
object has. The Card type is refined so that cards issued here can be given to children.
Note that it does not need to match the exact type declared inside the definition. This
allows a more fine-tuned approach to expressing the degree of abstraction desired.

5.3 F-Bounded Polymorphism

Recall from section 2.2 that one of the benefits of combining subtype polymorphism with
parametric polymorphism is the ability to express F-bounded polymorphism.

5.3.1 Positive Recursion

Positive recursion refers to when the recursive type variable is at an “output” position,
or covariant. For example, since the clone() method in Figure 2.3 returns the param-

61



eterized type, the Cloneable class is considered a positive recursion. When positive
recursive usages are encoded in mainstream object-oriented languages that do not support
F-bounded polymorphism, the output type is usually the most general type, and a dynamic
cast is performed to get back the original type. With F-bounded polymorphism, the type
of the output can be guaranteed statically.

The example in the original paper (Canning et al. [1989]) was able to express a type t
as “movable” by bounding it with a special constructor F-Movable[t] that represents a
type with a move() method. This can be expressed in Nominal Wyvern with subtyping.

1 // assume pre-defined Real type with "+" operator

2 name RealPair {

3 val l : Real

4 val r : Real

5 }

6 name Movable {m =>

7 type t <= >
8 def move : RealPair amount -> m.t

9 }

10

11 name Point {p =>

12 type t <= Point

13 val x : Real

14 val y : Real

15 def move : RealPair amount -> p.t

16 }

17 subtype Point <: Movable

18 // constructor for points

19 name PointCons {pc =>

20 def create : RealPair pos -> Point

21 }

22

23 // container for F-bounded Movable objects

24 name F-Movable {x =>

25 type t <= Movable {type t <= x.t}

26 val obj : x.t

27 }

28 name Utils {

29 // arbitrarily translate any movable object

30 def translate : F-Movable arg -> arg.t

31 }
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32

33 let utils = new Utils {

34 // translate any movable object by 1.0 (:Real) in both directions

35 def translate : F-Movable arg -> arg.t =

36 arg.move(new Pair {val l = 1.0, val r = 1.0})

37 } in

38 let pointCons = new PointCons {pc =>

39 def create : RealPair pos -> Point =

40 new Point {p =>

41 type t = Point

42 val x = pos.l

43 val y = pos.r

44 def move : RealPair amount -> Point =

45 pc.create(new RealPair {

46 val l = p.x + amount.l

47 val r = p.y + amount.r

48 })

49 }

50 } in

51 let origin = pointCons.create(

52 new RealPair {val l = 0.0, val r = 0.0}) in

53 utils.translate(

54 new F-Movable {x => type t = Point, val obj = origin})

Listing 5.3: F-Movable example in Nominal Wyvern

Any structure that structurally satisfies the Movable interface and semantically sup-
ports such a move operation may subtype Movable. As a result, it will be allowed to be
passed to the utils.translate method to get a translated version of itself.

1 ...

2 name Vector2D {v =>

3 type t <= Vector2D

4 val x : Real

5 val y : Real

6 def move : RealPair amount -> v.t

7 }

8 subtype Vector2D <: Movable

9 ...

10 // zero : Vector2D

11 utils.translate(
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12 new F-Movable {x => type t = Vector2D, val obj = zero})

Listing 5.4: More movable types

5.3.2 Negative Recursion

In contrast to positive recursion, negative recursion is when the parameterized type is an
input to a method, or contravariant. One popular use of this is the built-in equals()

methods of Object in Java. Traditionally in Java, any object that wants to override the
equals method needs to put a boilerplate at the beginning to make sure the object that is
passed in is indeed of the same type as the parent type. This is because any overriding
methods have to preserve the original signature. Thus, all equals() methods takes in
a generic Object. With F-bounded polymorphism, this boilerplate can be checked by
the type system. For Nominal Wyvern, this is illustrated as the motivating example of
chapter 3 in section 3.2. The property of having an equals() method is expressed with
the named type Equatable.

5.4 Family Polymorphism

Family polymorphism [Ernst, 2001] is useful when subtyping a set of types that are mu-
tually dependent. A classic example is a node type and an edge type. The types are
inter-dependent because a node references its incident edges, and an edge references its
two endpoint nodes. To create a specific type of graph, one may wish to subtype both
node and edge types. Without variances, the subtypes still refer to the general node
and edge types, and dynamic checks have to be performed. This can be made statically
safe with path-dependent types.

1 // assume pre-defined type Bool with constructors "true" and "false"

2 name Unit {}

3

4 name Node {n =>

5 type e <= Edge

6 // checks if edge is incident on this node

7 def touches : n.e edge -> Bool

8 }

9 name Edge {e =>
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10 type n <= Node

11 // the two endpoints of this edge

12 val l : e.n

13 val r : e.n

14 }

15 // constructors for both types

16 name Graph {c =>

17 type n <= Node

18 type e <= Edge

19 def createNode : Unit x -> c.n

20 def createEdge : {val a : c.n, val b : c.n} arg -> c.e

21 }

22

23 let g = new Graph {c =>

24 type n = Node

25 type e = Edge

26 def createNode : Unit x -> Node =

27 new Node {n =>

28 type e = Edge

29 def touches : Edge edge -> Bool =

30 if[Bool] edge.l = n then true

31 else if[Bool] edge.r = n then true

32 else false

33 }

34 def createEdge : {val a : Node, val b : Node} arg -> Edge =

35 new Edge {e =>

36 type n = Node

37 val l = arg.a

38 val r = arg.b

39 }

40 } in

41 let node1 = g.createNode(new Unit {}) in

42 let node2 = g.createNode(new Unit {}) in

43 let edge12 = g.createEdge({val a = node1, val b = node2}) in

44 ...

Listing 5.5: Family polymorphism: general nodes and edges

The example above sets up the general Node and Edge types for creating a general
graph. Now we can subtype the two inter-dependent types to create the OnOffGraph from
Ernst [2001]. (Identical structures are omitted below for conciseness).
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1 // assume pre-defined type Bool with constructors "true" and "false"

2 name Unit {}

3

4 name Node {...}

5 name Edge {...}

6 // constructors for both types

7 name Graph {...}

8

9 name OnOffNode {n =>

10 type e <= OnOffEdge

11 def touches : n.e edge -> Bool

12 }

13 name OnOffEdge {e =>

14 type n <= OnOffNode

15 val enabled : Bool // each edge can be on or off

16 val l : e.n

17 val r : e.n

18 }

19 subtype OnOffNode <: Node

20 subtype OnOffEdge <: Edge

21

22 name Utils {u =>

23 def build : {arg =>

24 val g : Graph

25 val a : arg.g.n

26 val b : arg.g.n

27 } arg -> arg.g.e

28 }

29

30 let g = new Graph {...} in

31 let oog = new Graph {type n <= OnOffNode, type e <= OnOffEdge} {c =>

32 type n = OnOffNode

33 type e = OnOffEdge

34 def createNode : Unit x -> OnOffNode =

35 new Node {n =>

36 type e = OnOffEdge

37 def touches : OnOffEdge edge -> Bool =

38 if[Bool] edge.l = n then edge.enabled

39 else if[Bool] edge.r = n then edge.enabled

40 else false

41 }
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42 def createEdge : {val a : OnOffNode, val b : OnOffNode} arg

43 -> OnOffEdge =

44 new Edge {e =>

45 type n = OnOffNode

46 val enabled = true // default to enabled

47 val l = arg.a

48 val r = arg.b

49 }

50 } in

51 let utils = new Utils {u =>

52 def build : {...} arg -> arg.g.e =

53 arg.g.createEdge({val a = arg.a, val b = arg.b})

54 } in

55 let n1 = g.createNode(new Unit {}) in

56 let n2 = g.createNode(new Unit {}) in

57 let oon1 = oog.createNode(new Unit {}) in

58 let oon2 = oog.createNode(new Unit {}) in

59 // OK

60 let e12 = utils.build({val g = g, val a = n1, val b = n2}) in

61 let ooe12 = utils.build({val g = oog, val a = oon1, val b = oon2}) in

62 // type mismatch

63 let fail1 = utils.build({val g = oog, val a = n1, val b = n2}) in

64 let fail2 = utils.build({val g = oog, val a = oon1, val b = n2}) in

65 ...

Listing 5.6: Family polymorphism with OnOffGraph

OnOffEdges can be turned on or off, so they are a special type of edge. Family poly-
morphism guarantees that utils.build will only work if the two types are of the same
graph family.

5.5 Representing ML Modules

Data abstraction in ML is based on abstract data types (ADT). An ADT encapsulates an
abstract type along with operations on the type. This serves as an interface that clients of
the ADT can use without depending on (or even having any knowledge of) the implemen-
tation details, including what the abstract type actually represents.

Formally, ADTs are modeled with existential types: ∃t.τ , where τ is typically a prod-
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uct of functions that operate on the abstract type t. This can simply be represented in
DOT-based systems by an object with a type member. For example, a natlist type in
System FE (modified from Harper [2016]) is

∃(t.〈emp ↪→ t, ins ↪→ nat× t→ t, rem ↪→ t→ (nat× t) + void〉

, where emp, ins, rem are the empty (i.e. create new), insert, and remove operations on
the abstract list type.

Note that the implementation of the functions are coupled with the type. Any two
expressions both of type natlist will use the same implementation (hidden, but fixed
nonetheless). In DOT based systems, an interface to a type does not define its implemen-
tation. On this front, objects in DOT, and by extension Nominal Wyvern, are more similar
to objects than ADTs. ADTs can still be represented, though, with a pre-defined interface
and a “standard” implementation.

1 // assume pre-defined Nat type.

2 // assume the Option type has the following signature

3 name Option {o =>

4 type elem <= > // type of the enclosed element

5 def isSome : Unit x -> Bool

6 def get : Unit x -> o.elem

7 }

8 name Product {p =>

9 type Ta <= >
10 type Tb <= >
11 val a : Ta

12 val b : Tb

13 }

14

15 name NatListInterface {nl =>

16 type t <= >
17 val emp : nl.t

18 def ins : {val elem : Nat, val list : nl.t} arg -> nl.t

19 def rem : nl.t list ->

20 Option {type elem = Product {type Ta = Nat, type Tb = nl.t}}

21 }

22 let natlist = new NatListInterface {nl => ...} in ...

Listing 5.7: Existential types in Nominal Wyvern
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ML modules solve the single implementation problem of ADTs by wrapping them in
named structures. Signatures define interfaces, and structures ascribe to signatures and de-
fine their own implementation. This is very closely modeled by Nominal Wyvern. Below
is a classic NatSet example translated into Nominal Wyvern.

1 // assume pre-defined Bool type with constructors "true" and "false"

2 // NAT_SET interface

3 name NAT_SET {s =>

4 type set

5 val emptyset : s.set

6 def insert : {val x : Nat, val S : s.set} arg -> s.set

7 def member : {val x : Nat, val S : s.set} arg -> Bool

8 }

9

10 ...

11 // assume a pre-defined ’natlist’ object as defined earlier

12 let NatSet = new NAT_SET {s =>

13 type set = natlist.t

14 val emptyset = natlist.emp

15 def insert : {val x : Nat, val S : s.set} arg -> s.set =

16 natlist.ins({val elem = x, val list = S})

17 def member : {val x : Nat, val S : s.set} arg -> Bool =

18 let elem = natlist.rem(S) in

19 if[Bool] elem.isSome(new Unit {}) = false then false

20 else

21 let data = elem.get(new Unit {}) in

22 if data.a.equals(x) = true then true

23 else s.member({val x = x, val S = data.b})

24 } in ...

Listing 5.8: NatSet in Nominal Wyvern

The example follows the SML naming convention. Signatures are named in ALL_CAPS
and structures are named in CamelCase. Module NatSet ascribing to signature NAT_SET
in SML is translated into object NatSet exhibiting type NAT_SET. The benefit of hav-
ing objects represent modules is the ability to have first-class modules. For the previous
example, a function could take in a generic list module (represented as an object with type
List), and use it to produce a nat_set module (an object with type NAT_SET).

1 // a generic List interface

2 name LIST {l =>
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3 type elem <= > // element type

4 type t <= >
5 val emp : l.t

6 def ins : {val x : l.elem, val L : l.t} arg -> l.t

7 def rem : l.t list ->

8 Option {type elem = Product {type Ta = l.elem, type Tb = l.t}}

9 }

10 name Utils {

11 def createNatSet : LIST {type elem <= Nat} l -> NAT_SET

12 }

13

14 let utils = new Utils {

15 def createNatSet : LIST {type elem <= Nat} l -> NAT_SET =

16 new NAT_SET {s =>

17 type set = l.t

18 val emptyset = l.emp

19 def insert : {val x : Nat, val S : s.set} arg -> s.set =

20 l.ins({val elem = x, val list = S})

21 ...

22 }

23 } in ...

Listing 5.9: Representing functors as functions

Note that signature modifications with where can be somewhat modeled with type
refinements. Type refinements are more expressive in that it can specify bounds on type
members of a module, but where is more flexible in that it can be used to directly relate
members of two modules.

5.6 Object-Oriented Programming

One of the main differences between pure objects in object-oriented programming (OOP)
languages and ADTs is how each paradigm relates interfaces to implementations. The
interface of an object type is defined separately from its implementation, whereas the
implementation of the functions in an ADT is part of its type. While modules allowed the
separation of the interface and implementation via signatures and structures, it is not able
to overcome the problem of having the implementation tied to the type it provides. Even if
two modules both ascribe to the List signature, they cannot operate on each other’s list
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type. This is due to the internal need to unpack abstract types when operating on them,
which only the type-providing module can do. Objects, however, do not provide any types.
They instead provide implementations for a common type with a common interface. In
fact, multiple objects of the same type can have wildly different implementations. Yet they
can still interact with each other with no regard to the internal differences since, instead
of unpacking the implementation type, they only rely on dynamically dispatched method
calls over the common interface. This added interoperability contributes to the success of
OOP languages [Aldrich, 2013].

The real world’s version of OOP languages paints a different picture than just de-
scribed. In the aforementioned “pure” OOP system, interoperability is enabled by autog-
nosis [Cook, 2009], or not caring about the implementation of other objects: An object can
only be interacted with over its public interface, which is considered its type. In contrast,
popular OOP languages such as Java and C++ are heavily based on classes. Instead of
knowing only about an object’s type/interface, we can also know about its class, which
may reveal information about the object’s implementation if the class is concrete. This
additional information breaches autognosis, making different parts of a system more inter-
dependent than in pure OOP languages.

Nominal Wyvern’s semantic separation naturally supports a pure OOP approach: Named
types serve as interface definitions, and objects created from named types serve as con-
structors, or “classes”. This way, the syntax guarantees interfaces are not tied to any
implementation, and classes are syntactically different constructs than types. Classes are
thus able to serve as pure organizers of implementations. The following listing translates
the sets example from Cook [2009] into Nominal Wyvern. In Cook’s paper, ISet defines
the interface for sets, while the classes are simply constructor functions. Once created,
an object is no longer associated with its constructing class, and can be freely used with
objects created from other classes.

1 // assume pre-defined Int and Bool types.

2 // Int type has builtin constructors from literals, and an equals()

3 // method. Bool type has builtin constructors "true" and "false",

4 // and binary operator "||" for logical or.

5

6 // interface for sets

7 name ISet {s =>

8 def isEmpty() : Bool

9 def contains(i: Int) : Bool
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10 def insert(i: Int) : ISet

11 def union(s: ISet) : ISet

12 }

13 // define classes/constructors

14 name SET_CONS {c =>

15 def Empty() : ISet

16 def Insert(s: ISet, n: ISet) : ISet

17 def Union(s1: ISet, s2: ISet) : ISet

18 }

19

20 let Set = new SET_CONS {c =>

21 def Empty() =

22 new ISet {z =>

23 def isEmpty() = true

24 def contains(i: Int) = false

25 def insert(i: Int) = c.Insert(z, i)

26 def union(s: ISet) = s

27 }

28 def Insert(s: ISet, n: Int) =

29 if[Bool] s.contains(n) = true then s else

30 new ISet {z =>

31 def isEmpty() = false

32 def contains(i: Int) = (i.equals(n)) || (s.contains(i))

33 def insert(i: Int) = c.Insert(z, i)

34 def union(s: ISet) = c.Union(z, s)

35 }

36 def Union(s1: ISet, s2: ISet) =

37 new ISet {z =>

38 def isEmpty() = s1.isEmpty() || s2.isEmpty()

39 def contains(i: Int) = (s1.contains(i)) || (s2.contains(i))

40 def insert(i: Int) = c.Insert(z, i)

41 def union(s: ISet) = c.Union(z, s)

42 }

43 } in

44

45 let s1 = Set.Empty() in // {}

46 let s2 = Set.Insert(s1, 1) in // {1}

47 let s3 = s1.insert(2) in // {2}

48 let s4 = Set.union(s2,s3) in // {1,2}

49 ...

Listing 5.10: Pure OOP in Nominal Wyvern
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5.6.1 Mixing functional and OOP

The following listing shows an interesting combined usage of objects and functional mod-
ules. The pair type is used to store two objects of the same generic type. Like modules, the
PAIR_MOD interface provides a p type that only the providing module can open. However,
the provided type can act like an object in that it is self-contained and thus interoperable.
It can be used like any PAIR without regard to who constructed it (although its constructor
can be easily accessed via its class member.)

1 // interface for pairs

2 name PAIR {p =>

3 type t <= > // type of the elements

4 val class : PAIR_MOD // reference to its class

5 def l : Unit x -> arg.t

6 def r : Unit x -> arg.t

7 }

8 // module providing pair types

9 name PAIR_MOD {c =>

10 type p <= PAIR

11 def create :

12 {arg => type t

13 val left : arg.t

14 val right : arg.t} arg

15 -> c.p {type t = arg.t}

16 def l : c.p arg -> arg.t

17 def r : c.p arg -> arg.t

18 }

19

20 // define a custom implementation

21 // ValPair uses two vals to store its info

22 name ValPair {p =>

23 type t

24 val class : PAIR_MOD

25 def l : Unit x -> arg.t

26 def r : Unit x -> arg.t

27 val a : p.t

28 val b : p.t

29 }

30 subtype ValPair <: PAIR

31

32 let ValPairMod = new PAIR_MOD {c =>
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33 type p = ValPair

34 def create {arg => type t

35 val left : arg.t

36 val right : arg.t} arg

37 -> c.p {type t = arg.t}

38 new ValPair {type t = arg.t} {p =>

39 type t = arg.t

40 val class = c

41 val a = arg.left

42 val b = arg.right

43 def l : Unit x -> arg.t = c.l(p)

44 def r : Unit x -> arg.t = c.r(p)

45 }

46 def l : c.p arg -> arg.t = arg.a

47 def r : c.p arg -> arg.t = arg.b

48 } in

49 let origin = ValPairMod.create(

50 {type t = Int, val left = 0, val right = 0}) in

51 let zero1 = origin.l() in // OO

52 let zero2 = ValPairMod.l(origin) // functional

Listing 5.11: Mixing OOP and FP in Nominal Wyvern

The examples in this chapter serve to show that, in addition to the added code clar-
ity brought by nominality, the restrictions made by Nominal Wyvern are not significant
enough to impact its ability to express practical common patterns.
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Chapter 6

Conclusion and Future Work

This thesis presents Nominal Wyvern, a new core type system for Wyvern based on the
DOT calculus. Nominal Wyvern achieves a higher degree of nominality in a DOT-based
system by semantically separating the definition of structures and their subtype relations
from arbitrary type refinements and the declaration of type bounds. This contributes to
a system with more explicit meanings and relations, useful for both human readers to
reason about and programming tools to refer to. Nominality also helps with achieving
subtype decidability. In line with the theme of semantic separation, Nominal Wyvern
adapts material-shape separation so that decidability results from an intuitive separation
of types with different roles. This contributes to a restriction that is more easily under-
standable and articulable. The resulting system preserves the ability to express common
patterns expressible with DOT, at the same time allowing for patterns that will be famil-
iar to programmers already used to traditional functional or object-oriented programming
languages.

Some further areas of study are discussed below.

• Type Safety. This thesis focused on the nominality and decidability aspects without
giving a soundness argument for the type system. Such a property is very important
for a practical programming language. Therefore, the logical next step is to show
that the system is sound with a type safety proof. One of the main difference from
DOT that may make soundness not follow directly from DOT is the explicit subtype
declarations that allow for multiple and conditional subtyping. Such a concept does
not exist, and will need to be proven or otherwise tweaked to make sound.
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• More flexible width subtyping. Nominal Wyvern separated out depth subtyping from
width subtyping, making the formal automatic and the latter disallowed (have to de-
fine new names). One may argue that width subtyping has more to do with what
the structure contains, which is more integral to the semantic meaning of the object
than the absolute types of each member. If a member needs to be a more specific
type, there is likely no need for an altogether semantically different structural name.
In fact, the type system additionally constraints how one can refine a type by disal-
lowing additional self-references in refinements (since that would likely change the
semantics of the structure). However, there are likely exceptions to both: there may
be cases where a width-refinement does not add much to the structure semantically,
and there may be cases where a depth-refinement significantly changes the meaning
of a structure. There are two potential solutions worth looking into:

– Allow certain kinds of structural width subtyping. The downside is too much
freedom risks taking away the benefits of the nominal system.

– Encourage programmers to write a new structure when a certain depth refine-
ment significantly alters the meaning.

Both are subjective and warrant further study.

• Bringing back uniformity. One of the benefits of the DOT system is that the entire
program is a first class value. In contrast, Nominal Wyvern breaks this uniformity
by introducing a set of second-class declarations at the top level. It would be nice
to bring back the uniformity of DOT while maintaining the benefits of nominality
presented in this thesis. One potential solution is integrating the named type defi-
nitions and explicit subtype declarations as members of object. A separate notation
would need to be created to refer to the named types of objects, as the binary typing
approach (section 3.3.1) makes it necessary to keep type members and named types
separate.
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