
Mode checking in the Concurrent Logical
Framework

Jorge Luis Sacchini∗ Iliano Cervesato∗

Frank Pfenning† Carsten Schürmann‡

August 2014
CMU-CS-14-134

CMU-CS-QTR-123

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

†Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
∗Carnegie Mellon University, Qatar campus
‡IT University of Copenhagen — Copenhagen, Denmark

The authors can be reached at sacchini@qatar.cmu.edu, iliano@cmu.edu, fp@cs.cmu.edu, and

carsten@itu.dk.

Abstract

We define and prove correct a mode checker for a significant fragment of the concurrent logical
framework CLF.

∗ This paper was made possible by grant 09-1107-1-168, Formal Reasoning about Languages for Distributed
Computation, from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made
herein are solely the responsibility of the authors.

mailto:sacchini@qatar.cmu.edu
mailto:iliano@cmu.edu
mailto:fp@cs.cmu.edu
mailto:carsten@itu.dk

Keywords: Mode Checking, Logical Frameworks, Concurrent Logical Framework

Contents

1 Introduction 1

2 Mode checking in LF 2
2.1 Syntax and semantics of LF . 2
2.2 Mode checking . 7
2.3 Correctness of the mode checker . 11

2.3.1 Partial semantics . 14
2.3.2 Completeness of the moded semantics . 16

3 Mode checking in CLF 18
3.1 Syntax and semantics of Mini-CLF . 18
3.2 Mode checking . 20
3.3 Correctness of the mode checker in CLF . 22

3.3.1 Partial semantics . 24
3.3.2 Completeness of the moded semantics . 25

A Mode Checking Rules for CLF 28
A.1 Types and Terms . 28
A.2 Normal Patterns . 28
A.3 Mode Checking . 29
A.4 Programs . 30

A.4.1 Programs . 30
A.4.2 Declarations . 31
A.4.3 Mode Direction . 31

A.5 Declarations in Forward Chaining Mode . 32
A.5.1 Declarations . 32
A.5.2 Left-Hand Side of a Monad . 33
A.5.3 Monads . 33
A.5.4 Monads . 33
A.5.5 Extracting Pattern Variables . 34

A.6 Declarations in Backward Chaining Mode . 34
A.6.1 Declarations . 34
A.6.2 Heads . 35
A.6.3 Declaration Body . 35
A.6.4 Negative Goals . 35
A.6.5 Atomic Goals . 36
A.6.6 Monadic Goals . 36
A.6.7 Monadic Exist Goals . 37
A.6.8 Embedded Clauses . 37

A.7 Term judgments . 37

i

List of Figures

2.1 Typing rules of LF . 4
2.2 Typing rules for generalized substitutions . 5
2.3 Semantics of LF . 8
2.4 Typing rules for abstract substitutions . 9
2.5 Mode checker for LF . 12
2.6 Partial semantics of LF . 15
2.7 Oracle semantics for LF . 16
3.1 Additional typing rules for Mini-CLF . 19
3.2 Operational semantics of Mini-CLF . 21
3.3 Additional mode checking rules for Mini-CLF . 22
3.4 Oracle semantics for Mini-CLF . 26

ii

1 Introduction

The Edinburgh Logical Framework (LF) [5] is a logical framework based on a simple dependently-
typed theory. It is designed to specify and reason about programming languages and deductive
systems. One particular feature of LF that makes it suitable for this task is the use of higher-order
abstract syntax (HOAS) for specifying object variables as LF variables. Therefore, properties of
variables and contexts (such as substitution and weakening) in the object language are obtained
“for free”, as they map directly to the same property in LF.

The LF specification of a system (e.g., a programming language or a logic) is given by a set of
datatypes describing the object language and a set of relations describing the system semantics.
For example, the operational semantics of a programming language can be defined as a relation
evalE V between a program E and a value V , meaning that E evaluates to V . This semantics can
be executed as in logic programming, using backward chaining and unification.

A relation often defines a function (e.g., the eval relation above defines a function from pro-
grams to values). Such functional reading can be specified through a mode declaration that defines
arguments as inputs or outputs. Mode declarations are used in systems like Twelf [10] as part of
the totality checker. They can also be used to give specialized operational semantics that rely on
matching instead of full unification. To ensure a mode declaration is valid, it is necessary to check
that all rules describing the relation respect the declared modes.

In this report, we define mode checking for an extension of LF called the Concurrent Logical
Framework (CLF) [4, 18]. CLF has been designed to specify and reason about concurrent and
distributed programming languages. It extends LF with linear and affine types, as well as monadic
types based on lax logic. The semantics of CLF combines backward chaining (as in Twelf) with
committed-choice forward chaining [7].

The main contribution of this report is the definition of a mode checker for a substantial subset
of CLF which we call Mini-CLF. To show the correctness of the mode checker, we define a mode-
aware semantics, i.e., a semantics that uses mode declarations to compute the output arguments
of a functional relation, given ground values for the inputs. This semantics fails if, during search,
the input arguments are not ground. For well-moded programs, we show that this cannot happen.
That is, during proof search, the input arguments in a goal are ground, and solving the goal grounds
the output arguments. Furthermore, the mode-aware semantics is complete, in the sense that if
there is a derivation for a well-moded goal, the semantics will find it.

Related work CLF was introduced by Watkins et al. in [4, 18]. The semantics of CLF is based
on the semantics of Lollimon described in [7]. The semantics combines backward chaining as in
LF with forward chaining for the monadic fragment. In [7], two criteria for stopping forward
chaining are defined: saturation (when taking a further step does not change the current context)
and quiescence (when no further steps can be taken). For the purpose of mode checking, we do
not need to commit to any stopping criterion or clause-selection mechanism, as the mode checker
should be valid in all cases.

Mode checking is used in Twelf in combination with termination and coverage checking to
ensure that a sequence of declarations represent a valid proof [10]. See [11] for a description of
mode checking in LF; our development is closer to that of Sarnat [13].

1

Rest of the report The presentation is organized in two stages. In Sect. 2 we define and prove
correct a mode-checker for standard LF. In Sect. 3, we extend LF with linear and monadic types to
obtain Mini-CLF, a substantial subset of CLF. The mode-aware semantics, mode checker, and the
proof of correctness for Mini-CLF are obtained as extensions to the definitions and proofs given in
Sect. 2. In Appendix A we define the mode checker for the full language of CLF.

2 Mode checking in LF

In this section we define and prove correct a mode checker for LF. In Sect. 2.1 we define the syntax
and operational semantics of LF. As we explain below, we use a different presentation of LF that is
easier to extend to CLF. In Sect. 2.2 we define the mode-checker for LF. The proof of correctness
is given in Sect. 2.3.

2.1 Syntax and semantics of LF

We use a non-standard definition of LF that makes explicit certain aspects of LF related to the
operational semantics and mode checking, as explained below. For completeness, we first give the
standard presentation of LF.

Standard LF LF is a basic dependently-typed lambda calculus. Its syntax is defined as follows:

K ::= type | Πx:A.K (Kinds)

A ::= a·S | Πx:A1.A2 (Types)

S ::= () | N ;S (Spines)

N ::= λx.N | H·S (Terms)

H ::= x | c (Heads)

Γ ::= · | Γ, x:A (Contexts)

Σ ::= · | Σ, a:K | Σ, c:A (Signatures)

Terms are classified by types, which are themselves classified by kinds. We use the spine notation [1]
for defining terms and types, so application is defined as a head (either a variable or constant)
applied to a spine (a sequence of terms). Contexts are sequences of declarations; we write #Γ for
the number of declarations in context Γ.

We make use of the usual metatheoretical properties of LF including existence of canonical
forms, hereditary substitutions, weakening, strengthening, etc. (see, e.g., [6] for proofs of these
properties).

2

Alternative presentation of LF We use a non-standard presentation of LF that can be easily
extended with features from CLF (cf. Sect. 3). The alternative syntax of LF is the following:

K ::= ΠΓ.type (Kinds)

A− ::= ΠΓ.A+ → P (Negative types)

A+ ::= 1 | A− ×A+ (Positive types)

P ::= a·S (Atomic types)

S ::= () | N ;S (Spines)

Γ ::= · | Γ, x:A− (Contexts)

Σ ::= · | Σ, a:K | Σ, c:A− (Signatures)

As in the polarized definition of CLF [15], we divide types between negative and positive types.
LF types in the standard presentation correspond to negative types.

We make explicit the distinction between non-dependent and dependent product types. De-
pendent arguments are joined in context (without loss of generality, we assume that dependent
arguments occur in front). Non-dependent arguments are uncurried in a product type (associated
to the right).

This distinction between dependent and non-dependent arguments stems from the operational
semantics: dependent arguments are solved by matching (or unification), while non-dependent
arguments represent goals to be solved by proof search.

We leave the syntax of terms implicit, as it will not play a major role in the following. One
consequence of this assumption is that the operational semantics does not construct a proof term,
but only computes the substitution for the free variables. However, extending the semantics to
compute proof terms is straightforward.

Typing rules They are given by the judgments:

• Γ ` K : kind meaning that kind K is well-typed in context Γ;

• Γ ` A− : type (resp. Γ ` A+ : type) meaning that type A− (resp. type A+) is well-typed in
context Γ;

• Γ ` S : Γ′ > type meaning that spine S is well-typed for a kind of type ΠΓ′.type in context Γ;

• Γ ` N : A− meaning that term N has type A− in context Γ (this judgment is left unspecified);

• Γ ` Γ′ meaning that context Γ′ is well-typed in context Γ.

• ` Σ meaning that signature Σ is well typed.

We assume a fixed global signature Σ that is left implicit in the rules. The typing rules are given
in Fig. 2.1. In the rules for spines, we use hereditary substitutions to compute the canonical form
of substituting x by N in Γ′ (denoted [N/x]Γ′). See [6] for a definition of hereditary substitutions
for LF.

3

Γ ` K : kind

Γ ` Γ′

Γ ` ΠΓ′.type : kind

Γ ` A− : type

Γ ` Γ′ Γ,Γ′ ` A+ : type a:ΠΓ0.type ∈ Σ Γ,Γ′ ` S : Γ0 > type

Γ ` ΠΓ′.A+ → a·S : type

Γ ` A+ : type

Γ ` 1 : type

Γ ` A− : type Γ ` B+ : type

Γ ` A− ×B+ : type

Γ ` S : Γ′ > type

Γ ` () : · > type

Γ ` N : A− Γ ` S : [N/x]Γ′ > type

Γ ` N ;S : (x:A−),Γ′ > type

Γ ` Γ′

Γ ` ·
Γ ` Γ′ Γ,Γ′ ` A− : type

Γ ` Γ′, x:A−

Figure 2.1: Typing rules of LF

4

Γ ` ρ : Φ′

Φ ` · : ·
Φ′ ` ρ : Φ |Φ′| ` ρA− : type

Φ′,∀?x:ρA− ` ρ, ∀?x/x : Φ, ∀?x:A−

Φ′ ` ρ : Φ |Φ′| ` N : ρA−

Φ′ ` ρ, ∃N/x : Φ,∃x:A−

Figure 2.2: Typing rules for generalized substitutions

Preliminary definitions We introduce some notions needed to define the operational seman-
tics. Following [13, 11] we consider an operational semantics based on mixed-prefix contexts to
differentiate between existential variables that are solved by unification, and universal variables
that are treated as constants (eigenvariables). Using mixed-prefix contexts avoids introducing logic
variables. Mixed-prefix contexts are defined as follows:

Φ ::= · | Φ,∀x:A− | Φ,∀x:A− | Φ, ∃x:A−

We distinguish between universal clauses (∀) and universal parameters (∀); universal clauses can
be used during search while universal parameters are only used during matching (or unification).
This means that dependent arguments are introduced in the context using ∀, while non-dependent
arguments are introduced by ∀ (see rule sem-type−). We write ∀?x for a generic declaration that
is either ∀x or ∀x. Existential variables are dependent variables that will be substituted by actual
terms through unification (or matching).

We write |·| for the erasure function that transforms a mixed-prefix context into a regular
context by erasing all quantifiers. It it defined by the following rules:

| · | = · |Φ,∃x:A−| = |Φ|, x:A−

|Φ, ∀x:A−| = |Φ|, x:A− |Φ,∀x:A−| = |Φ|, x:A−

Given a context Γ, we write ∀Γ (resp. ∀Γ, ∃Γ) for the mixed-prefix context obtained by prefixing
each declaration in Γ with ∀ (resp. ∀, ∃).

A generalized substitution is a substitution that applies to the existential variables of a mixed-
prefix context. They are defined as follows:

ρ ::= · | ρ, ∀x/x | ρ,∀x/x | ρ, ∃N/x

Applying a substitution to a term (resp. a spine) is denoted ρN (resp. ρS). The result is the
canonical form obtained by performing the hereditary substitution of ρ in N (resp. S).

A generalized substitution is well typed from Φ to Φ′, denoted Φ′ ` ρ : Φ, if it satisfies the
rules given in Fig. 2.2. We write idΦ for the identity substitution for context Φ that replaces every
existential variable in Φ with its η-expansion; formally it is defined by the following equations:

id· = ·
idΦ,∀?x:A− = idΦ, ∀?x/x

idΦ,∃x:A− = idΦ, expandidΦA−(x)

5

It is easy to check that Φ ` idΦ : Φ for any context Φ.
Given a substitution ρ we write ρ|Φ for the restriction of ρ to the domain of Φ. The following

lemmas state properties about restriction. They are proved by induction on the typing derivation.
In the first lemma, when restriction cuts out an existential context, the typing context Φ′ remains
the same. However, in the second lemma, when cutting out a universal context, we also need to
change the typing context Φ′.

Lemma 2.1 If Φ′ ` ρ : Φ,∃Γ, then Φ′ ` ρ|Φ : Φ.

Lemma 2.2 If Φ′,∀Γ′ ` ρ : Φ,∀Γ, with #Γ = #Γ′, then Φ′ ` ρ|Φ : Φ.

A term N is ground with respect to a mixed-prefix context Φ, denoted Φ ` N grd, if N does not
contain any existentially quantified variable from Φ. A term N (resp. a spine S) is in the pattern
fragment with respect to Φ, denoted Φ ` N pat (resp. Φ ` S pat), if every existential variable in
N (resp. in S) is applied to a pattern (i.e., to distinct universal variables). We write Φ `x N pat
(resp. Φ `x S pat) to mean that the existentially quantified variable x occurs in N (resp. in S) as
the head of a term applied to a pattern.

The following lemma states that substitutions preserve groundness.

Lemma 2.3 If Φ ` S grd and Φ′ ` ρ : Φ, then Φ′ ` ρS grd.

Operational Semantics The operational semantics of LF is defined as in logic programming:
given a type A− (a goal) in a mixed-prefix context Φ, find a substitution Φ′ ` ρ : Φ and a term
N such that |Φ′| ` N : ρA− and |Φ′| ` N grd. Since we do not specify the syntax of terms, our
semantics only computes the substitution ρ.

The operational semantics is defined by the judgments

Φ ` A− =⇒ ρ; Φ′

Φ ` A+ =⇒ ρ; Φ′

meaning that searching for a proof of A− (resp. of A+) in Φ returns a substitution ρ and a context
Φ′ such that Φ′ ` ρ : Φ. We define a mode-aware semantics, which means that type families have a
mode declaration that indicates input and output arguments. A mode is either input (+) or output
(−). A mode declaration for a type family a is a sequence of modes whose length is the number
of arguments of a; we denote it with mode(a). We assume that input arguments precede output
arguments; we write a·Š Ŝ to separate the input (Š) and output (Ŝ) arguments.

We define the semantics based on matching, as opposed to using full unification as it is usual.
This is possible because we consider a semantics that is mode aware. The matching algorithm is
given by a judgment of the form

Φ ` S2 =: S1 =⇒ �

meaning that matching S1 against S2 under context Φ gives a result �. This result can be either a
pair (ρ; Φ′) where ρ is a substitution satisfying Φ′ ` ρ : Φ and ρS1 = S2; or ⊥ if the algorithm fails
(meaning that no such substitution exists). A precondition is that S1 is well typed in |Φ| and S2 is
ground. We say that S1 is on the pattern side and S2 is on the value side of the matching equation.

6

We do not define the matching algorithm explicitly, but only state the required properties as
assumptions. We require the matching algorithm to be able to solve the pattern fragment [8], which
is known to be decidable. This is stated in the following assumptions, which is used in the proofs
in Sect. 2.3.

Assumption 2.4 Given a context Φ and spines S1 and S2 such that Φ ` S2 grd and Φ ` S1 pat,
then exactly one of the following holds:

• Φ ` S2 =: S1 =⇒ ⊥ and there is no substitution ρ such that ρS1 = S2;

• there exists a unique ρ such that ρS1 = S2 and Φ ` S2 =: S1 =⇒ ρ; Φ′ for some Φ′.

The rules of the semantics are given in Fig. 2.3. Rule sem-type− describe the execution of nega-
tive types. Dependent and non-dependent arguments are introduced as assumptions in the context.
Dependent arguments are introduced as parameters, meaning they are not used for searching (see
rule sem-atm), while non-dependent arguments can be used for searching. We use the judgment
~x:A− =⇒ ∀Γ0 to construct a context from a sequence of variables and a positive type; it is defined
by the following rules:

·:1 =⇒ ·
~x:B+ =⇒ ∀Γ

x~x:A− ×B+ =⇒ ∀x:A−,∀Γ

Execution is then reduced to solving an atomic goal, which is handled by rule sem-atm. In this case,
we pick a clause c from the signature or the context which must have the same head as the goal we
are trying to solve. Note that this clause must not be a parameter (i.e., it is not annotated with ∀).
It then proceeds by matching the inputs (Š against Š0), solving the goals A+

0 , and matching the
outputs (Ŝ0 against Ŝ). The final result combines the substitutions obtained in each step. We do
not specify any procedure for picking clauses, since the mode checker should be correct no matter
which search procedure is used. Rule sem-type+ executes a sequence of goals from left to right,
collecting the results.

Note that this semantics describes only successful queries. Queries that fail because the type is
not inhabited or that lead to non-termination are represented by the absence of a derivation. We
will extend this semantics to account for partial derivations in Sect. 2.3.1.

It is easy to check that derivations in the semantics compute substitutions between the input
and output context.

Lemma 2.5 If Φ ` A− =⇒ ρ; Φ′ then Φ′ ` ρ : Φ.

Proof: By mutual induction on the derivation using the equivalent statement for positive types,
using Lemmas 2.1 and 2.2. �

2.2 Mode checking

The purpose of mode checking is to statically ensure that mode declarations will be respected at
run-time (when running a query). This means that, every time the matching algorithm is invoked,
the preconditions given in Assumption 2.4 are met, i.e., the value side is ground and the pattern
side is in the pattern fragment.

7

Φ ` A =⇒ ρ; Φ′

~x:A+
0 =⇒ ∀Γ0 ~x fresh

Φ, ∀Γ, ∀?Γ0 ` a·S =⇒ ρ; Φ′, ∀?Γ1 #Γ1 = #(Γ,Γ0)

Φ ` ΠΓ.A+ → a·S =⇒ ρ|Φ; Φ′
sem-type−

∀c:ΠΓ0.A
+
0 → a·Š0 Ŝ0 ∈ Σ,Φ

Φ, ∃Γ0 ` Š =: Š0 =⇒ ρ1; Φ1 Φ1 ` ρ1A
+
0 =⇒ ρ2; Φ2 Φ2 ` ρ2ρ1Ŝ0 =: ρ2ρ1Ŝ =⇒ ρ3; Φ3

Φ ` a·Š Ŝ =⇒ ρ3ρ2ρ1|Φ; Φ3

sem-atm

Φ ` A− =⇒ ρ1; Φ1 Φ1 ` ρ1B
+ =⇒ ρ2; Φ2

Φ ` A− ×B+ =⇒ ρ2ρ1; Φ2
sem-type+

Φ ` 1 =⇒ idΦ; Φ
sem-one

Figure 2.3: Semantics of LF

The mode checker can be seen as an abstract interpretation of a program. The result of executing
the mode checker is an abstract substitution [11, 13] representing the groundness information of a
generalized substitution. Abstract substitutions are defined by the following grammar:

ν ::= · | ν, ∀x:A−, | ν, ∃ux:A− | ν, ∃gx:A−

There is an obvious mapping from abstract substitutions to mixed-prefix contexts and to contexts.
We denote them with ↓· and |·|, respectively. Concretely, these mapping are defined by the following
rules:

↓(·) = · | · | = ·
↓(ν, ∀x:A−) = ↓ν, ∀x:A− |ν,∀x:A−| = |ν|, x:A−

↓(ν, ∃ux:A−) = ↓ν, ∃x:A− |ν, ∃ux:A−| = |ν|, x:A−

↓(ν,∃gx:A−) = ↓ν, ∃x:A− |ν,∃gx:A−| = |ν|, x:A−

Given a mixed-prefix context Φ we denote with ↑Φ the abstract substitution obtained by chang-
ing every ∃ into ∃u:

↑(·) = ·
↑(Φ, ∀x:A−) = ↑Φ, ∀x:A−

↑(Φ, ∀x:A−) = ↑Φ, ∀x:A−

↑(Φ, ∃x:A−) = ↑Φ, ∃ux:A−

We write domg(ν) (resp. domu(ν), dom∀(ν)) for the subset of variables declared in ν annotated
with ∃g (resp. ∃u, ∀).

Abstract substitutions define an abstraction over generalized substitutions, as expressed by the
judgments Φ ` ρ : ν and ν ` ρ : ν ′ given by the rules of Fig. 2.4. Every existential ground variable
in ν (declared with ∃g) must be substituted with a ground term (in Φ) by ρ. Unknown existential

8

Φ ` ρ : ν

Φ ` · : ·

Φ ` ρ : ν |Φ| ` ρA− : type

Φ ` ρ, ∀?x/x : ν,∀x:A−

Φ ` ρ : ν |Φ| ` N : ρA− Φ ` N grd

Φ ` ρ,∃N/x : ν, ∃gx:A−

Φ ` ρ : ν |Φ| ` N : ρA−

Φ ` ρ, ∃N/x : ν, ∃ux:A−

ν ` ρ : ν ′

ν ` · : ·

ν ` ρ : ν |ν| ` ρA− : type

ν ` ρ,∀?x/x : ν, ∀x:A−

ν ` ρ : ν |ν| ` N : ρA− ν ` N grd

ν ` ρ, ∃N/x : ν, ∃gx:A−

ν ` ρ : ν |ν| ` N : ρA−

ν ` ρ,∃N/x : ν, ∃ux:A−

Figure 2.4: Typing rules for abstract substitutions

9

variables (declared with ∃u) can be substituted with any term, not necessarily ground. We write
ν ` N grd to mean that N does not contain any existential unknown variable (declared with ∃u).

Given a context Φ and a substitution ρ there is usually more than one ν that satisfies Φ ` ρ : ν
(i.e., ρ can be abstracted in more than one way). This is captured by defining an order relation
between abstract substitutions: ν1 v ν2 is defined as the point-wise extension of the smallest order
relation between declarations containing the rule

∃gx:A− v ∃ux:A−

Abstract substitutions obey the properties given next. The proofs proceed by induction on the
relevant structure. The proofs are easy so we omit them.

Lemma 2.6 If Φ ` ρ : ν1 and ν1 v ν2, then Φ ` ρ : ν2.

Lemma 2.7 If Φ ` ρ : ν, ∃?Γ, then Φ ` ρ|ν : ν.

Lemma 2.8 If Φ,∀?ρΓ ` ρ : ν, ∀Γ, then Φ ` ρ|ν : ν.

The mode checker It is defined as a static analysis performed on the program and the goal. It
is defined by the following judgments:

• ν ` A− bwd > ν ′ checks that A− is a valid declaration to be used in backward chaining,
returning the output groundness information ν ′.

• ν ` A goal > ν ′ checks that A (either positive, negative, or atomic type) is a valid goal,
returning the output groundness information ν ′.

• ν ` A− decl checks that A− is a valid declaration. In LF, this judgment reduces to checking
that A− is valid for backward chaining (ν ` A− bwd > ν ′). However, in CLF, this depends
on whether A− is used for backward or forward chaining (cf. Sect. 3.2).

• ν ` S > ν ′ infers groundness for all variables in S. If ν `x N pat with N a term in S and
∃?x:A− ∈ ν, then ∃gx:A− ∈ ν ′.
We use the operation ν|gX for the abstract context obtained by grounding in ν the variables
in X ; formally, it is defined by the following rules:

·|gX = ·

ν, ∀x:A−|gX = ν|gX , ∀x:A−

ν, ∃?x:A−|gX =

{
ν|gX ,∃gx:A− if x ∈ X
ν|gX ,∃?x:A− otherwise

• ν `grd S checks that S is ground with respect to ν (i.e., S does not contain unknown existential
variables).

• ` Σ decl and ν ` Φ decl check that all declarations in Σ and Φ are well moded.

10

The rules of the mode checker are given in Fig. 2.5. In rule mc-bwd we start by assuming that
all dependent variables are unknown. We infer groundness information from the input arguments
obtaining ν ′. Then we infer groundness information from executing the goals in A+, checking that
solving goals would ground Γ. Finally, we check that the output arguments are ground.

In rule mc-goal, we infer groundness information from P and check that all types in A+ are
valid declarations. For atomic goals (rule mcg-atm) we check that input arguments are ground and
infer groundness information for output arguments. Rules mcg-prod and mcg-one infer groundness
information from all components of a positive type.

Rule mcd-bwd check that a declaration is valid for use in backward chaining. In the case of CLF,
we will extend this judgment to account for declarations that can be used in forward chaining. The
rest of the rules for declarations just iterate over the corresponding structure.

We prove some simple properties about the mode checking judgments, including substitution,
weakening, and strengthening.

In the following, we write ν ` X > ν ′ to mean a generic judgment that can be either of the
form ν ` A− bwd > ν ′, ν ` A goal > ν ′, or ν ` S > ν ′. We have the following properties of the
mode checker. We omit the easy proofs by induction on the relevant mode-checking derivation.

Lemma 2.9 If ν ` X > ν ′, then ν ′ v ν.

Lemma 2.10 Let ν1 ` X > ν2 and ν ′1 v ν1. Then, there exists ν ′2 v ν2 such that ν ′1 ` X > ν ′2.

Lemma 2.11 (Weakening for mode checking) Let ν1, ν
′
1 ` X > ν2, ν

′
2 where dom(ν1) = dom(ν2)

and dom(ν ′1) = dom(ν ′2). Then, ν1, ν0, ν
′
1 ` X > ν2, ν0, ν

′
2.

Lemma 2.12 (Strengthening for mode checking)

• Let ν1, ν0, ν
′
1 ` X > ν2, where FV(X) ∩ dom(ν0) = ∅. Then there exists ν ′2, ν ′′2 such that

ν2 = ν ′2, ν0, ν
′′
2 , dom(ν1) = dom(ν ′2), dom(ν ′1) = dom(ν ′′2), and ν1, ν

′
1 ` X > ν ′2, ν

′′
2 .

• Let ν1, ν0, ν
′
1 `grd A− where FV(A−) ∩ dom(ν0) = ∅. Then ν1, ν

′
1 `grd A−

The following lemmas are key in showing that the mode checker is a form of abstract interpre-
tation.

Lemma 2.13 (Substitution lemma for mode checking goals) If ν1 ` A goal > ν2 and ν ′1 `
ρ : ν1, then there exists ν ′2 such that ν ′1 ` ρA goal > ν ′2 and ν ′2 ` ρ : ν2.

Lemma 2.14 (Substitution lemma for mode checking declarations)

1. If ν ` A− decl and ν ′ ` ρ : ν, then ν ′ ` ρA decl.

2. If ν ` Φ decl and ν ′ ` ρ : ν, then ν ′ ` ρΦ decl.

2.3 Correctness of the mode checker

In this section we show that the mode checker is correct, by showing that mode checking is a form
of abstract interpretation over the semantics.

We need the following technical lemma on the matching algorithm, which follows from Assump-
tion 2.4.

11

ν ` A− bwd > ν ′

ν, ∃uΓ ` Š > ν ′ ν ′ ` A+ goal > ν ′′,∃gΓ ν ′′, ∃gΓ `grd Ŝ
ν ` ΠΓ.A+ → a·Š Ŝ bwd > ν ′′

mc-bwd

ν ` A goal > ν ′

ν,∀Γ ` P goal > ν ′ ν, ∀Γ ` A+ decl

ν ` ΠΓ.A+ → P goal > ν ′
mc-goal

ν `grd Š ν ` Ŝ > ν ′

ν ` a·Š Ŝ goal > ν ′
mcg-atm

ν ` A− goal > ν ′ ν ′ ` B+ goal > ν ′′

ν ` A− ×B+ goal > ν ′′
mcg-prod

ν ` 1 goal > ν
mcg-one

ν ` A decl

ν ` ΠΓ.A+ → a·Š Ŝ bwd > ν ′

ν ` ΠΓ.A+ → a·Š Ŝ decl
mcd-bwd

ν ` A− decl ν ` B+ decl

ν ` A− ×B+ decl
mcd-prod

ν ` 1 decl
mcd-one

` Σ decl

` · decl
mcs-emp

` Σ decl · ` A− decl

` Σ, a:A− decl
mcs-cons

ν ` Φ decl

ν ` · decl
mcc-emp

ν ` Φ decl ν, ↑Φ ` A− decl

ν ` Φ,∀x:A− decl
mcc-∀

ν ` Φ decl

ν ` Φ, ∀x:A− decl
mcc-∀

ν ` Φ decl

ν ` Φ, ∃?x:A− decl
mcc-∃

ν ` S > ν ′

X = {x : ν `x S pat}
ν ` S > ν|gX

mcsp-infer

ν `grd S
FV(S) ⊆ dom∀(ν) ∪ domg(ν)

ν `grd S
mcsp-check

Figure 2.5: Mode checker for LF

12

Lemma 2.15 If Φ ` S2 =: S1 =⇒ ρ; Φ′, ↑Φ `grd S2, and ↑Φ ` S1 > ν, then Φ′ ` ρ : ν.

The following theorem states that mode checking is a form of abstract interpretation. Con-
cretely, it states that substitutions obtained from executing a query respect the groundness infor-
mation obtained from mode checking. For example, consider a goal of the form ∃Γ ` a·Š Ŝ, where
Š is ground, and FV(Ŝ) = dom(Γ). If there exists a derivation ∃uΓ ` a·Š Ŝ goal > ∃gΓ, then every
substitution obtained from executing this goal grounds all variables in Γ (i.e. in Ŝ).

Theorem 2.16 Assume that ` Σ decl and · ` Φ decl. If ↑Φ ` A goal > ν, where A is either a
positive, negative, or atomic type, and Φ ` A =⇒ ρ; Φ′, then · ` Φ′ decl and Φ′ ` ρ : ν.

Proof: We proceed by induction on the derivation of the semantics and inversion on the derivation
of the mode checker.

sem-type− We have the following derivation:

~x:A+
0 =⇒ ∀Γ0 ~x fresh

Φ, ∀Γ, ∀Γ0 ` a·S =⇒ ρ; Φ′,∀?Γ1 #Γ1 = #(Γ,Γ0)

Φ ` ΠΓ.A+ → a·S =⇒ ρ|Φ; Φ′
sem-type−

By inversion on ↑Φ ` ΠΓ.A+ → P goal > ν we have ↑Φ ` P goal > ν and ↑Φ, ∀Γ ` A+ decl.
From the latter and ~x:A+

0 =⇒ ∀Γ0, we have · ` ↑Φ,∀Γ,∀Γ0 decl. By IH, Φ′,∀?Γ1 ` ρ :
ν,∀Γ,Γ0. The result follows by Lemma 2.8 (note that ρ|ν is the same as ρ|Φ).

sem-atm We have the following derivation:

∀c:ΠΓ0.A
+
0 → a·Š0 Ŝ0 ∈ Σ,Φ

Φ, ∃Γ0 ` Š =: Š0 =⇒ ρ1; Φ1 Φ1 ` ρ1A
+
0 =⇒ ρ2; Φ2 Φ2 ` ρ2ρ1Ŝ0 =: ρ2ρ1Ŝ =⇒ ρ3; Φ3

Φ ` a·Š Ŝ =⇒ ρ3ρ2ρ1|Φ; Φ3

By inversion on the mode-checking derivation of ↑Φ ` a·Š Ŝ goal > ν, we have ν `grd Š and

↑Φ ` Ŝ > ν.

By inversion on the mode-checking derivation of the type of h and weakening (Lemma 2.11),
we have ↑Φ ` ΠΓ0.A

+
0 → a·Š0 Ŝ0 bwd > ν0, for some ν0. Again by inversion, ↑Φ,∃uΓ0 ` Š0 >

ν ′0, ν ′0 ` A
+
0 goal > ν0, ∃gΓ, and ν0, ∃gΓ `grd Ŝ0.

By Lemma 2.15 on the matching equation for inputs, we have Φ1 ` ρ1 : ν ′0. By Lemma 2.13,
there exists ν1 such that ↑Φ1 ` ρ1A

+
0 goal > ν1 and ν1 ` ρ1 : ν0,∃gΓ.

By IH, we have Φ2 ` ρ2 : ν1.

From ↑Φ ` Ŝ > ν, by weakening, ↑Φ,∃uΓ0 ` Ŝ > ν, ∃uΓ0. Since ν ′0 v ↑Φ, ∃uΓ0, there exists
ν∗ such that ν ′0 ` Ŝ > ν∗ and ν∗ v ν, ∃uΓ0.

There exists ν∗∗ such that Φ2 ` ρ2ρ1Ŝ > ν∗∗ and ν∗∗ ` ρ2ρ1 : ν∗.

By Lemma 2.15 on the matching equation for outputs, we have Φ3 ` ρ3ρ2ρ1 : ν∗. From
ν∗ v ν,∃uΓ0, we have Φ3 ` ρ3ρ2ρ1 : ν,∃uΓ0. The result follows by restricting the ρ3ρ2ρ1 to Φ
(same as restricting to ν).

13

sem-type+ We have the following derivation:

Φ ` A− =⇒ ρ1; Φ1 Φ1 ` ρ1B
+ =⇒ ρ2; Φ2

Φ ` A− ×B+ =⇒ ρ2ρ1; Φ2

By inversion on ↑Φ ` A− ×B+ goal > ν, there exists ν ′ such that ↑Φ ` A− goal > ν ′ and
ν ′ ` B+ goal > ν. By IH on A− we have Φ1 ` ρ1 : ν ′. By Lemma 2.13, there exists ν ′′

such that ↑Φ1 ` ρ1B
+ goal > ν ′′ and ν ′′ ` ρ1 : ν. By IH on B+ we have Φ2 ` ρ2 : ν ′′. By

composing ρ2 and ρ1 we have the desired result Φ2 ` ρ2ρ1 : ν.

sem-one Follows immediately.

�

A consequence of this lemma is that if a program is well moded, the semantics respects mode
declarations (in a sense, well-moded programs cannot go wrong).

Definition 2.17 A derivation Φ ` A =⇒ ρ; Φ′ is mode correct if the following conditions hold:

1. every subderivation Φ0 ` A0 =⇒ ρ0; Φ′0 satisfies · ` Φ0 decl and ↑Φ0 ` A0 goal > ν for some
ν;

2. every subderivation Φ0 ` S2 =: S1 =⇒ ρ0; Φ′0 (resp. Φ0 ` S2 =: S1 =⇒ ρ0; Φ′0) satisfies
↑Φ0 `grd S2 and ↑Φ0 ` S1 > ν for some ν.

Lemma 2.18 Assume that ` Σ decl, · ` ↑Φ decl and ↑Φ ` A goal > ν for some ν (where A is a
positive, negative, or atomic type). Then any derivation Φ ` A =⇒ ρ; Φ′ is mode correct.

Proof: By induction on the semantics derivation and case analysis on the last rule used. Clause 1
of Def. 2.17 follows immediately for each rule. Clause 2 follows the same pattern as in Lemma 2.16.
�

The following corollary is a particular and common case of Theorem 2.16. It shows that when
solving goals of the form a·ŠŜ, with Š ground, the resulting substitution ground all variables in Ŝ.

Corollary 2.19 Assume that ` Σ decl and · ` Φ decl. If ∃uΓ ` a·ŠŜ goal > ∃gΓ, and Φ `
a·ŠŜ =⇒ ρ; ·, then · ` ρ : ∃gΓ.

2.3.1 Partial semantics

The previous lemma shows that, during the execution of successful queries, every call to the match-
ing algorithm satisfies the conditions of Assumption 2.4. However, it does not say anything in the
case of failing queries, since there is no derivation. To remedy this situation, we extend the seman-
tics with partial executions, i.e., partial derivations, where execution is stopped at the point where
the matching algorithm is called.

Formally, we extend the semantics with the judgment

Φ `? A ⇀ ρ; Φ′

14

Φ `? A ⇀ ρ; Φ′

~x : A+
0 =⇒ ∀Γ1

Φ,∀Γ0, ∀Γ1 `? a·S ⇀ ρ; Φ′

Φ `? ΠΓ0.A
+
0 → a·S ⇀ ρ; Φ′

psem-type−

∀c:ΠΓ0.A
+
0 → a·Š0 Ŝ0 ∈ Σ,Φ

Φ `? a·Š Ŝ ⇀ ·; Φ
psem-atm-in

∀c:ΠΓ0.A
+
0 → a·Š0 Ŝ0 ∈ Σ,Φ

Φ, ∃Γ0 ` Š =: Š0 =⇒ ρ1; Φ1 Φ1 ` ρ1A
+
0 =⇒ ρ2; Φ2

Φ `? a·Š Ŝ ⇀ ρ2ρ1|Φ; Φ2

psem-atm-out

Φ `? A− ⇀ ρ; Φ′

Φ `? A− ×B+ ⇀ ρ; Φ′
psem-type+-l

Φ ` A− =⇒ ρ1; Φ1 Φ1 `? B+ ⇀ ρ2; Φ2

Φ `? A− ×B+ ⇀ ρ2ρ1; Φ2

psem-type+-r

Figure 2.6: Partial semantics of LF

that computes a partial substitution Φ′ ` ρ : Φ. The partial semantics is defined by adding the
rules of Fig. 2.6. The important rules are psem-atm-in and psem-atm-out that stop execution before
executing a matching between inputs and outputs respectively. The other rules simply propagate
a partial substitution.

We extend the notion of mode-correct derivation to partial derivations and prove that well-
moded programs have mode-correct derivations.

Definition 2.20 A derivation Φ `? A ⇀ ρ; Φ′ is mode-correct if the following conditions hold:

1. every subderivation Φ0 ` A0 =⇒ ρ0; Φ′0 or Φ0 `? A0 ⇀ ρ0; Φ′0 satisfies · ` Φ0 decl and
↑Φ0 ` A0 goal > ν for some ν;

2. every subderivation Φ0 ` S2 =: S1 =⇒ ρ0; Φ′0 (resp. Φ0 ` S2 =: S1 =⇒ ρ0; Φ′0) satisfies
↑Φ0 `grd S2 and ↑Φ0 ` S1 > ν for some ν;

3. every subderivation of the form

∀c:ΠΓ0.A
+
0 → a·Š0 Ŝ0 ∈ Σ,Φ

Φ `? a·Š Ŝ ⇀ ·; Φ
psem-atm-in

satisfies ↑Φ `grd Š and ↑Φ ` Š? > ν for some ν;

4. every subderivation of the form

∀c:ΠΓ0.A
+
0 → a·Š0 Ŝ0 ∈ Σ,Φ

Φ, ∃Γ0 ` Š =: Š0 =⇒ ρ1; Φ1 Φ1 ` ρ1A
+
0 =⇒ ρ2; Φ2

Φ `? a·Š Ŝ ⇀ ρ2ρ1|Φ; Φ2

psem-atm-out

15

∀?Γ ` A
~x:A+

0 ` ∀Γ1 ~x fresh ∀?Γ, ∀Γ0, ∀Γ1 ` a·S
∀?Γ ` ΠΓ0.A

+
0 → a·S

osem-type−

∀c:ΠΓ0.A
+
0 → a·S0 ∈ Σ,Γ

∀?Γ ` ρ : ∃Γ0 ρS0 = S ∀?Γ ` ρA+
0

∀?Γ ` a·S
osem-atm

∀?Γ ` 1
osem-one

∀?Γ ` A− ∀?Γ ` B+

∀?Γ ` A− ×B+
osem-type+

Figure 2.7: Oracle semantics for LF

satisfies ↑Φ2 `grd ρŜ and ↑Φ2 ` ρŜ0 > ν for some ν.

Lemma 2.21 Assume that ` Σ decl, · ` ↑Φ decl and ↑Φ ` A goal > ν for some ν (where A is a
positive, negative, or atomic type). Then any derivation Φ `? A ⇀ ρ; Φ′ is mode correct.

Proof: By induction on the semantics derivation and case analysis on the last rule used. The proof
proceeds similarly to Lemma 2.18. �

2.3.2 Completeness of the moded semantics

Finally, we show that, for well-moded programs, the moded semantics is complete with respect to
an oracle semantics. The oracle semantics is given by the judgment

∀?Γ ` A

meaning basically that A is inhabited in Γ. The rules are given in Fig. 2.7. The oracle gives the
value of ρ in rule osem-atm.

The completeness of the moded semantics with respect to the oracle semantics is expressed by
the following theorem. We need a lemma on the completeness of the matching algorithm, which
follows from Assumption 2.4.

Lemma 2.22 Let S1 and S2 be well-typed spines under context |Φ| such that S1 is in the pattern
fragment and S2 is ground. Assume ∀?Γ ` ρ : Φ such that ρS1 = S2. Then there exists ρ0 and ρ1

such that Φ ` S2 =: S1 =⇒ ρ0; Φ1, ∀?Γ?ρ1 : Φ1 and ρ = ρ1ρ0.

Theorem 2.23 Assume that ` Σ decl, · ` Φ decl, ↑Φ ` A goal > ν, and ∀?Γ ` ρ : Φ. If ∀?Γ ` ρA,
then there exists ρ0 and ρ1 such that Φ ` A =⇒ ρ0; Φ′, ∀?Γ ` ρ1 : Φ′ and ρ = ρ1ρ0.

Proof: By induction on the derivation in the oracle semantics and case analysis on the last rule
applied.

16

osem-type− We have the derivation

~x:A+
0 ` ∀Γ1 ~x fresh ∀?Γ, ∀ρΓ0, ∀ρΓ1 ` a·ρS

∀?Γ ` ρ(ΠΓ0.A
+
0 → a·S)

By inversion on the derivation ↑Φ ` ΠΓ0.A
+
0 → a·S goal > ν we have ↑Φ, ∀Γ0 ` a·S goal > ν

and ↑Φ, ∀Γ0 ` A+
0 decl. From the latter, · ` Φ,∀Γ0, ∀Γ1 decl. Let ρ′ = ρ, id∀Γ0,∀Γ1 . Then

∀?Γ,∀ρΓ0, ∀ρΓ1 ` ρ′ : Φ, ∀Γ0,∀Γ1.

By IH, there exists ρ0 and ρ1 such that ↑Φ, ∀Γ0,∀Γ1 ` a·S =⇒ ρ0; Φ′, ∀?Γ, ∀ρ0Γ0, ∀ρ0Γ1 `
ρ1 : Φ′, and ρ′ = ρ1ρ0. The context Φ′ must be of the form Φ′′, ∀ρ0Γ0, ∀ρ0Γ1. Then ρ0|Φ and
ρ1|Φ′ are the desired substitutions.

osem-atm We have the derivation

∀c:ΠΓ0.A
+
0 → a·S0 ∈ Σ,Γ

∀?Γ ` ρ0 : ∃Γ0 ρ0S0 = ρS ∀?Γ ` ρ0A
+
0

∀?Γ ` ρ(a·S)

We have to show that we can find a derivation in the operational semantics for type a·S in
context Φ.

We first show that there is a clause in Σ,Φ corresponding to h. Let A− = ΠΓ0.A
+
0 → a·S0.

Constant h is declared either in Σ or Γ. In the latter case, h is also declared in Φ with a
type A′− such that ρA′− = A−. In the former case, we can also assume that h has type A′−

satisfying ρA′− = A−, by setting A′− = A− since ρ behaves like the identity on A−. In both
cases, A′− has the form ΠΓ′0.A0

′+ → a·S′0, and ρA′− = A−.

From ∀?Γ ` ρ : Φ and ∀?Γ ` ρ0 : ∃Γ? we have ∀?Γ ` ρ, ρ0 : Φ, ∃Γ0. Let ρ′ = ρ, ρ0. Let
S = Š Ŝ, S0 = Š0 Ŝ0, and S′0 = Š′0 Ŝ

′
0, according to the mode declaration of a. By inversion

on the mode-checking derivation of A and h we have that Š′ is ground and Š′0 is in the pattern
fragment. We have ρ0S0 = ρ0ρS

′
0 = (ρ, ρ0)S′0 = ρ′S′0 and ρS = ρ′S. By Lemma 2.22, there

exist ρ1 and ρ′1 such that Φ,∃Γ0 ` Š =: Š′0 =⇒ ρ1; Φ1, ∀?Γ0ρ
′
1 : Φ1 and ρ′ = ρ′1ρ1.

Note that ρ0A
+
0 = ρ0ρA0

′+ = (ρ, ρ0)A0
′+ = ρ′A0

′+ = ρ′1ρ1A0
′+. By IH, there exists ρ2 and

ρ′2 such that Φ1 ` ρ1A0
′+ =⇒ ρ2; Φ2, ∀?Γ ` ρ′2 : Φ2 and ρ′1 = ρ′2ρ2.

We have ρ′ = ρ′2ρ2ρ1. Then, We have ρ′2ρ2ρ1Ŝ′0 = ρ′2ρ2ρ1Ŝ. By Lemma 2.22, there exist ρ3

and ρ′3 such that Φ2 ` ρ2ρ1Ŝ′0 =: ρ2ρ1Ŝ =⇒ ρ3; Φ3, ∀?Γ ` ρ′3 : Φ3 and ρ′2 = ρ′3ρ3. Hence,
Φ3 ` ρ3ρ2ρ1 : Φ,∃Γ0 and ∀?Γ ` ρ′3 : Φ3. Then, ρ3ρ2ρ1|Φ and ρ′3 are the desired substitutions.

osem-one Trivial.

osem-type+ We have the derivation

∀?Γ ` ρA− ∀?Γ ` ρB+

∀?Γ ` ρ(A− ×B+)

By IH on the derivation of ρA− there exists ρ0 and ρ1 such that Φ ` A =⇒ ρ0; Φ1, ∀?Γ ` ρ1 :
Φ1 and ρ = ρ1ρ0. By Theorem 2.16, · ` Φ1 decl. By IH on the derivation of ρB+ there exists
ρ′0 and ρ′1 such that Φ1 ` B+ =⇒ ρ′0; Φ2, ∀?Γ ` ρ′1 : Φ2 and ρ1 = ρ′1ρ

′
0. Then, ρ′0ρ0 and ρ′1 are

the desired substitutions.

�

17

3 Mode checking in CLF

In this section we extend the development from the previous section to a significant fragment of
CLF that combines forward chaining and backward chaining. We call the fragment of CLF studied
in this report Mini-CLF. With respect to full CLF, Mini-CLF does not feature affine hypotheses
nor additive conjunctions. Adding these features does not significantly change the definition of the
mode checker nor the proof of correctness.

We follow the same template as in Sect. 2. In Sect. 3.1 we present the syntax and operational
semantics of Mini-CLF. In Sect. 3.2 we define the mode checking algorithm. Finally, in Sect. 3.3
we prove the correctness of the mode checker.

3.1 Syntax and semantics of Mini-CLF

Mini-CLF is a restriction of CLF where additive conjunctions and affine types are removed. Alter-
natively, Mini-CLF can be seen as an extension of LF with linear and monadic types.

For completeness, we first present the syntax of full CLF:

K ::= type | Πx:A−.K (Kinds)

A− ::= a·S′ | A−1 & A−2 | Πp:A
+.A− | {A+} (Negative types)

A+ ::= 1 | ∃p:A+.A+ | !A− | @A− | ↓A− (Positive types)

N ::= H·S | 〈N1, N2〉 | λ̂p.N | {E} (Negative terms)

H ::= x | c (Heads)

S′ ::= () | N ;S (Type spines)

S ::= () | π1;S | π2;S |M ;S (Spines)

E ::= M | let ε in E (Expressions)

ε ::= · | δ | ε1; ε2 (Traces)

δ ::= {p} = H·S (Steps)

p ::= 1 | 〈p1, p2〉 | !x | @x | ↓x (Patterns)

M ::= 1 | 〈M1,M2〉 | !N | @N | ↓N (Positive terms)

Σ ::= · | Σ, a:K | Σ, c:A− (Signatures)

The constructions in gray are not included in Mini-CLF.
Expressions are defined using traces for denoting the terms corresponding to the monadic frag-

ment, following [12, 17].
CLF has three different injections from negative into positive types (the last three productions

of A+) and three corresponding flags for variable and residual terms. They have the following
meaning:

• !A− indicates that A− is a persistent type. Pattern variables of this type have the form !x
and residual terms have the form !N .

In the mode checking rules, we distinguish between dependent and non-dependent occurrences
of persistent types. Dependent goals are solved in the semantics by unification (or matching),
while non-dependent goals are solved by search.

18

Γ ` A− : type

Γ ` Γ1 Γ,Γ1 ` A+
1 : type Γ,Γ1 ` Γ2 Γ,Γ1,Γ2 ` A+

2 : type

Γ ` ΠΓ1.A
+
1 ({∃Γ2.A

+
2 } : type

Γ ` A+ : type

Γ ` 1 : type

Γ ` A− : type Γ ` B+ : type

Γ ` !A− ⊗B+ : type

Γ ` A− : type Γ ` B+ : type

Γ ` ↓A− ⊗B+ : type

Figure 3.1: Additional typing rules for Mini-CLF

• @A− indicates that A− is a (non-dependent) affine type. Pattern variables of this type have
the form @x and residual terms have the form @N . Affine types are never dependent.

• ↓A− indicates that A− is a (non-dependent) linear type. Pattern variables of this type have
the form ↓x and residual terms have the form ↓N . Linear types are never dependent.

Mini-CLF Following the development of the previous section, we give a presentation of Mini-
CLF suitable for defining the operational semantics and mode checker. This alternative presentation
makes explicit the distinction between dependent and non-dependent arguments in products. Also,
the term language is left unspecified, since the semantics does not construct a proof term.

The syntax of Mini-CLF is as follows:

K ::= ΠΓ.type (Kinds)

P ::= a·S | {∃Γ.A+} (Type heads)

A− ::= ΠΓ.A+
0 P (Negative types)

A+ ::= 1 | ↓A− ⊗A+ | !A− ⊗A+ (Positive types)

S ::= () | N ;S (Spines)

Γ,∆ ::= · | Γ, x:A− (Contexts)

Σ ::= · | Σ, a:K | Σ, c:A− (Signatures)

A positive type is essentially a sequence of linear and persistent hypotheses. All dependent hy-
potheses are persistent; no linear dependencies are allowed. Types whose head is of the form a·S
are called atomic types, while types whose head is of the form {∃Γ.A+} are called monadic types.

Typing rules Since dependencies are only persistent, the typing rules for types only depend on
the persistent context, while typing rules for terms depend on a persistent and linear context. The
typing judgments are the same as for LF. The typing rules include all the rules from Fig. 2.1 (except
for the rules for positive types) and rules of Fig. 3.1.

Operational semantics It is defined using mixed-prefix contexts and purely linear contexts (i.e.,
contexts that contain only linear hypotheses). The operational semantics is defined by the following

19

judgments:

Φ; ∆ ` A− =⇒ ρ; Φ′

Φ; ∆ ` a·S =⇒ ρ; Φ′

Φ; ∆ ` {∃Φ.A+} =⇒ ρ; Φ′

Φ; ∆ ` A+ =⇒ ρ; Φ′

Φ; ∆ ρ; Φ′;∀?Γ; ∆′

Persistent hypotheses are placed in a mixed-prefix context to differentiate between parameters and
existential hypotheses. However, since there are no linear dependencies, the linear hypotheses are
placed in a plain context.

The operational semantics is defined by the rules of Fig. 3.2. In rule sem-type− we use the
judgment ~x:A− =⇒ ∀Γ,∆ to construct a context from a sequence of variables and a positive type;
it is defined by the following rules:

·:1 =⇒ ·
~x:B+ =⇒ ∀Γ,∆

x~x:↓A− ⊗B+ =⇒ ∀Γ; (x:A−,∆)

~x:B+ =⇒ ∀Γ,∆
x~x:!A− ⊗B+ =⇒ (∀x:A−,∀Γ); ∆

In rule sem-atm, we write ∆ \\ h to mean the context obtained by removing the declaration of h (if
h is declared in ∆; otherwise this is the same as ∆).

Forward chaining is defined by rules sem-stop, sem-step, and sem-comp. They correspond to the
trace constructors in CLF: empty trace, a single step, and trace composition. We do not specify
any procedure for choosing which hypothesis to apply in rule sem-step nor any stopping criterion in
rule sem-stop. The judgment Φ; ∆ ρ; Φ′; ∀?Γ; ∆′ means that Φ′ ` ρ : Φ, and the context pair Φ; ∆
is transformed into Φ′, ∀?Γ; ∆′ by the forward chaining steps. The context ∀?Γ contains the new
persistent binders introduced during forward chaining, while ∆′ contains new linear hypotheses (as
well as unused hypotheses from ∆).

The pattern fragment is extended to expressions: an expression let δ1; . . . ; δn in M is in the
pattern fragment if the following conditions hold [12]:

1. at most one step whose head is an existentially quantified variable and is applied to a pattern;

2. every other step is in the pattern fragment for LF; and

3. M is a sequence of variables.

These conditions ensures that the matching algorithm is sound and complete.

3.2 Mode checking

In this section, we define the mode checker for Mini-CLF by extending the mode checker defined
in Sect. 2.2.

We use the same judgments as in Sect. 2.2 for mode checking with the addition of judgments
to check forward chaining declarations:

• ν ` A− fwd checks that A− is a valid declaration to be used in forward chaining; the head
type A− must be monadic.

20

Φ; ∆ ` A− =⇒ ρ; Φ′

~x:A+ =⇒ ∀Γ0; ∆0 ~x fresh

Φ,∀Γ,∀Γ0; ∆,∆0 ` P =⇒ ρ; Φ1,∀?Γ1 #Γ1 = #(Γ,Γ0)

Φ; ∆ ` ΠΓ.A+ (P =⇒ ρ|Φ; Φ1
sem-type−

Φ; ∆ ` P =⇒ ρ; Φ′

h : ΠΓ0.A
+
0 (a·Š0 Ŝ0 ∈ Σ,Φ,∆ Φ, ∃Γ0 ` Š =: Š0 =⇒ ρ1; Φ1

Φ1; (∆ \\ h) ` ρ1A
+
0 =⇒ ρ2; Φ2 Φ2 ` ρ2ρ1Ŝ0 =: ρ2ρ1Ŝ =⇒ ρ3; Φ3

Φ; ∆ ` a·Š Ŝ =⇒ ρ3ρ2ρ1|Φ; Φ3

sem-atm

Φ; ∆ ρ1; Φ1;∀?Γ1; ∆1

Φ1,∀?Γ1, ∃ρ1Γ0; ∆1 ` ρ1A
+
0 =⇒ ρ2; Φ2,∀?Γ2 #Γ2 = #Γ1

Φ; ∆ ` {∃Γ0.A
+
0 } =⇒ ρ2|Φ1ρ1; Φ2

sem-mon

Φ; ∆ ` A+ =⇒ ρ; Φ′

Φ; · ` 1 =⇒ idΦ; Φ
sem-one

Φ; ∆1 ` A− =⇒ ρ1; Φ1 Φ1; ρ1∆2 ` ρ1B
+ =⇒ ρ2; Φ2

Φ; ∆1,∆2 ` ↓A− ⊗B+ =⇒ ρ2ρ1; Φ2
sem-prod-lin

Φ; · ` A− =⇒ ρ1; Φ1 Φ1; ρ1∆ ` ρ1B
+ =⇒ ρ2; Φ2

Φ; ∆ ` !A− ⊗B+ =⇒ ρ2ρ1; Φ2
sem-prod-bang

Φ; ∆ ρ; Φ′;∀?Γ; ∆′

Φ; ∆ idΦ; Φ; ·; ∆
sem-stop

h : ΠΓ.A+ ({∃Γ0.A
+
0 } ∈ Σ,Φ,∆ Φ, ∃Γ; ∆ \\ h ` A+ =⇒ ρ; Φ1

~x:ρA+
0 =⇒ ∀Γ1; ∆1 ~x fresh

Φ; ∆,∆0 ρ|Φ; Φ1;∀ρΓ0, ∀Γ1; ∆0,∆1
sem-step

Φ0; ∆0 ρ1; Φ1; ∀?Γ1; ∆1

Φ1,∀?Γ1; ∆1 ρ2; Φ2,∀?Γ′1;∀?Γ2; ∆2 #Γ1 = #Γ′1

Φ0; ∆0 ρ2|Φ1ρ1; Φ2;∀?Γ′1, ∀?Γ′2; ∆2

sem-comp

Figure 3.2: Operational semantics of Mini-CLF

21

ν ` A− fwd

ν,∃uΓ1 ` A+
1 goal > ν ′,∃gΓ1 ν ′,∃gΓ1, ∀Γ2 ` A+

2 fwd

ν ` ΠΓ1.A
+
1 ({∃Γ2.A

+
2 } fwd

mc-fwd

ν ` A+ fwd

ν ` 1 fwd
mcf-one

ν ` A− decl ν ` B+ fwd

ν ` ↓A− ⊗B+ fwd
mcf-lin

ν ` A− decl ν ` B+ fwd

ν ` !A− ⊗B+ fwd
mcf-pers

ν ` A goal > ν ′

ν, ∃uΓ ` A+ goal > ν ′,∃gΓ

ν ` {∃Γ.A+} goal > ν ′
mcg-mon

ν ` B+ goal > ν ′ ν ′ ` A− goal > ν ′′

ν ` !A− ⊗B+ goal > ν ′′
mcg-pers

ν ` B+ goal > ν ′ ν ′ ` A− goal > ν ′′

ν ` ↓A− ⊗B+ goal > ν ′′
mcg-lin

ν ` A− decl

ν ` ΠΓ1.A
+
1 ({∃Γ2.A

+
2 } fwd

ν ` ΠΓ1.A
+
1 ({∃Γ2.A

+
2 } decl

Figure 3.3: Additional mode checking rules for Mini-CLF

• ν ` A+ fwd checks that all negative types in A+ are valid declarations. When applying a
rule of the form ΠΓ1.A

+
1 ({∃Γ2.A

+
2 }, the context is extended with Γ2 and the components

(negative types) in A+
2 . The judgment ∀Γ2 ` A+

2 fwd checks that the components of A+
2 are

well moded.

The mode checking rules are those of Fig. 2.5 plus the rules of Fig. 3.3.
Rule mc-fwd checks that monadic types are valid to be used in forward chaining. Similar to

rule mc-bwd, we check that goals in A+
1 force the dependent arguments to be ground. Then, we

check that A+
2 consists of valid declarations. The rules mcf-one, mcf-lin, mcf-pers simply iterate

over a positive type, checking that all components are valid declarations.
The rule mcg-mon checks that a monadic head type is a valid goal, by checking that solving

the non-dependent goals in A+ grounds the dependent variables in Γ. Rules mcg-pers and mcg-lin
simply iterate over a positive type.

Finally, rule mcd-fwd extends the judgment for mode checking declarations to monadic types.

3.3 Correctness of the mode checker in CLF

We show that the mode checker for Mini-CLF is correct in the same way as in Sect. 2.3.
The mode checker satisfies all the properties of Sect. 2.3 and the following property extending

Lemma 2.13 to forward chaining.

22

Lemma 3.1 (Substitution lemma for mode checking forward declarations) If ν ` A fwd
and ν ′ ` ρ : ν, then ν ′ ` ρA fwd.

The following theorem states that the mode checker is a form of abstract interpretation over
the semantics.

Theorem 3.2 Assume that ` Σ decl, · ` Φ decl, and ↑Φ ` ∀∆ decl.

1. If ↑Φ ` A goal > ν, where A is either a positive, negative, or atomic type, and Φ; ∆ ` A =⇒
ρ; Φ′, then Φ′ ` ρ : ν.

2. If Φ; ∆ ρ; Φ′;∀?Γ; ∆′ then ↑Φ′ ` ∀?Γ, ∀∆′ decl.

3. If Φ ` S2 =: S1 =⇒ ρ; Φ′, ↑Φ `grd S2, and ↑Φ ` S1 > ν, then Φ′ ` ρ : ν.

Proof: We proceed by induction on the semantic derivation and case analysis on the last rule used.

sem-type− We have the derivation

~x:A+ =⇒ ∀Γ0; ∆0 ~x fresh

Φ, ∀Γ,∀Γ0; ∆,∆0 ` P =⇒ ρ; Φ1,∀?Γ1 #Γ1 = #(Γ,Γ0)

Φ; ∆ ` ΠΓ.A+ (P =⇒ ρ|Φ; Φ1

By inversion on ↑Φ ` ΠΓ.A+ (P goal > ν, there exists ν ′ such that ↑Φ ` P goal > ν, and
↑Φ,∀Γ ` A+ decl. From the latter and ~x:ρ0A

+ =⇒ ∀Γ0,∆0, we have · ` Φ, ∀Γ, ∀Γ0 decl and
↑Φ, ∀Γ, ∀Γ0 ` ∆,∆0 decl. By IH, Φ1, ∀?Γ1 ` ρ : ν, id∀Γ,∀Γ0 . The result follows by restricting
the domain of ρ to ν.

sem-atm Similar to the corresponding rule in Theorem 2.16.

sem-mon We have the derivation

Φ; ∆ ρ1; Φ1; ∀?Γ1; ∆1 Φ1, ∀?Γ1,∃ρ1Γ0; ∆1 ` ρ1A
+
0 =⇒ ρ2; Φ2, ∀?Γ2 #Γ2 = #Γ1

Φ; ∆ ` {∃Γ0.A
+
0 } =⇒ ρ2|Φ1ρ1; Φ2

By IH on the first premise, ↑Φ1 ` ∀?Γ1, ∀∆1 decl. By inversion on ↑Φ ` {∃Γ0.A
+
0 } goal >

ν we have ↑Φ,∃uΓ0 ` A+
0 goal > ν,∃gΓ0. By weakening (Lemma 2.11), ↑Φ, ∀Γ1,∃uΓ0 `

A+
0 goal > ν,∀Γ1,∃gΓ0 Extending ρ1 we have Φ1,∀?Γ1,∃Γ0 ` ρ1, id∀?Γ1,∃Γ0

: Φ, ∀?Γ1,∃Γ0. Let

ρ′1 = ρ1, id∀?Γ1,∃Γ0
. By Lemma 2.13, there exists ν ′ such that ↑Φ1, ∀?Γ,∃uΓ0 ` ρ′1A

+
0 goal > ν ′

and ν ′ ` ρ′1 : ν, ∀Γ1, ∃gΓ0. Then ν ′ is of the form ν ′′, ∀Γ1,∃gΓ0 for some ν ′′ and ν ′′ ` ρ1 : ν.
Since ρ′1A

+
0 = ρ1A

+
0 , we can apply IH to obtain Φ2,∀?Γ2 ` ρ2 : ν ′. Then Φ2 ` ρ2|Φ1 : ν ′′ and

Φ2 ` ρ2|Φ1ρ1 : ν as desired.

sem-one Follows immediately.

sem-prod-lin We have the following derivation

Φ; ∆1 ` A− =⇒ ρ1; Φ1 Φ1; ρ1∆2 ` ρ1B
+ =⇒ ρ2; Φ2

Φ; ∆1,∆2 ` ↓A− ⊗B+ =⇒ ρ2ρ1; Φ2

23

From ↑Φ ` ∆1,∆2 decl we have ↑Φ ` ∆1 decl and ↑Φ ` ∆2 decl. By inversion on ↑Φ `
↓A− ⊗B+ goal > ν there exists ν ′ such that ↑Φ ` A− goal > ν ′ and ν ′ ` B+ goal > ν. By
IH on A−, Φ1 ` ρ1 : ν ′. By Lemma 2.14, ↑Φ1 ` ρ1∆2 decl. By Lemma 2.13, there exists ν ′′

such that ↑Φ1 ` ρ1B
+ goal > ν ′′ and ν ′′ ` ρ1 : ν. By IH on B+, Φ2 ` ρ2 : ν ′′. Combining ρ2

and ρ1 we get Φ2 ` ρ2ρ1 : ν as desired.

sem-prod-bang Similar to the previous case.

sem-stop Follows immediately.

sem-step We have the following derivation

h : ΠΓ.A+ ({∃Γ0.A
+
0 } ∈ Σ,Φ,∆ Φ,∃Γ; ∆ \\ h ` A+ =⇒ ρ; Φ1

~x:ρA+
0 =⇒ ∀Γ1; ∆1 ~x fresh

Φ; ∆,∆0 ρ|Φ; Φ1;∀ρΓ0,∀Γ1; ∆0,∆1

By inversion on the mode-checking derivation of the type of h and weakening (Lemma 2.11),
we have ↑Φ ` ΠΓ.A+ ({∃Γ0.A

+
0 } decl. Again by inversion on the mode-checking derivation

there exists ν ′ such that ↑Φ,∃uΓ ` A+ goal > ν ′, ∃gΓ and ν ′, ∃gΓ, ∀Γ0 ` A+
0 fwd.

By IH on A+, we have Φ1 ` ρ : ν ′,∃gΓ. Then, ↑Φ1 ` ρ : ν ′, ∃gΓ and, by substitution on
the mode-checking derivation, we have ↑Φ1 ` ρA+

0 fwd. Note that this last judgment means
checking that every component of ρA+

0 is a valid declaration. It is then easy to see check that
↑Φ1 ` ∀ρΓ0,∀Γ1,∆0,∆1 decl.

sem-comp Follows directly from two applications of the IH.

�

We can adapt directly the definition of mode-correct derivation (Def. 2.17) to Mini-CLF. The
following theorem states that the well-moded programs have mode-correct derivations (similar to
Lemma 2.18).

Theorem 3.3 Assume that ` Σ decl, · ` ↑Φ decl, ↑Φ ` ∀∆ decl, and ↑Φ ` A goal > ν for some
ν (where A is a positive, negative, or atomic type). Then any derivation Φ; ∆ ` A =⇒ ρ; Φ′; ∆′ is
mode correct.

Proof: By induction on the semantics derivation and case analysis on the last rule used. All cases
proceed similarly to Theorem 3.2. �

3.3.1 Partial semantics

We can define a partial semantics for Mini-CLF as we did in Sect. 2 and prove that derivations in
the partial semantics are also mode correct.

We omit the development here as it is very similar to that of Sect. 2.3.1. The main difference
is the addition of the linear context. In particular, the rules related to forward chaining do not
change in the partial semantics, since the matching algorithm is used only in the backward chaining
fragment.

24

3.3.2 Completeness of the moded semantics

We prove that the moded semantics of Mini-CLF is complete with respect to the oracle semantics,
similar to the development of Sect. 2.3 for LF.

The oracle semantics for Mini-CLF is given by the judgments

∀?Γ; ∆ ` A
∀?Γ1; ∆1 ∀?Γ2; ∆2

The former means basically that A is inhabited in Γ; ∆, while the latter means that ∀?Γ1; ∆1 is
transformed into ∀?Γ2; ∆2 by a sequence of forward steps. The rules are given in Fig. 3.4. It is easy
to see by induction on the rules that if ∀?Γ1; ∆1 ∀?Γ2; ∆2, then ∀?Γ2 is of the form ∀?Γ1, ∀?Γ3

for some ∀?Γ3.
As in the case of LF, the oracle gives the value of ρ in rules osem-atm, osem-mon, and osem-step.
Completeness of the moded semantics with respect to the oracle semantics is expressed similarly

to Theorem 2.23.

Theorem 3.4 Assume that ` Σ decl, · ` Φ decl, ↑Φ ` ∀∆ decl, ↑Φ ` A goal > ν, and ∀?Γ ` ρ : Φ.

• If ∀?Γ; ρ∆ ` ρA, then there exists ρ0 and ρ1 such that Φ; ∆ ` A =⇒ ρ0; Φ′, ∀?Γ ` ρ1 : Φ′ and
ρ = ρ1ρ0.

• If ∀?Γ; ρ∆1 ∀?Γ,∀?Γ2; ∆2, then there exists ρ0 and ρ1 such that Φ; ∆1 ρ0; Φ′; ∀?Γ′2; ∆′2,
∀?Γ,∀?Γ2 ` ρ1 : Φ′,∀?Γ′2, ∆2 = ρ1∆′2 and ρ = ρ1ρ0.

Proof: By induction on the derivation in the oracle semantics and case analysis on the last rule
used. We show only the most relevant cases.

osem-mon We have the derivation

∀?Γ; ρ∆ ∀?Γ, ∀?Γ1; ∆1 ∀?Γ,∀?Γ1 ` ρ0 : ∃ρΓ0 ∀?Γ, ∀?Γ1; ∆1 ` ρ0ρA
+
0

∀?Γ; ρ∆ ` ρ({∃Γ0.A
+
0 })

By IH, there exists ρ1 and ρ′1 such that Φ; ∆ ρ1; Φ′;∀?Γ′1; ∆′1, ∀?Γ, ∀?Γ1 ` ρ′1 : Φ′,∀?Γ′1,
∆1 = ρ′1∆′1, and ρ = ρ′1ρ1. Extending with ρ0 we get ∀?Γ, ∀?Γ1 ` ρ′1, ρ0 : Φ′,∀?Γ′1,∃ρ1Γ0.
Note that ρ0ρA

+
0 = ρ0ρ

′
1ρ1A

+
0 = (ρ′1, ρ0)ρ1A

+
0 , and ρ′1∆′1 = (ρ′1, ρ0)∆′1. By IH, there exists ρ2

and ρ′2 such that Φ′, ∀?Γ′1,∃ρ1Γ0; ∆′1 ` ρ1A
+
0 =⇒ ρ2; Φ2, ∀?Γ, ∀?Γ1 ` ρ′2 : Φ2 and ρ′1 = ρ′2ρ2.

Then, ρ2|Φ2ρ1 and ρ′2 are the desired substitutions.

osem-step We have the derivation

h : ΠΓ0.A
+
0 ({∃Γ1.A

+
1 } ∈ Σ,Γ, ρ∆ ∀?Γ; (ρ∆ \\ h) ` ρ0A

+
0

~x:ρ0A
+
1 =⇒ ∀Γ2; ∆2 ~x fresh

∀?Γ; ρ∆, ρ∆0 ∀?Γ;∀ρ0Γ1, ∀Γ2; ρ∆0,∆2

By reasoning similar to the case of rule osem-atm in Theorem 2.23, there exists h declared
in Σ,Φ,∆ such that h has type ΠΓ′0.A0

′+ ({∃Γ′1.A1
′+} and ρ(ΠΓ′0.A0

′+ ({∃Γ′1.A1
′+}) =

ΠΓ0.A
+
0 ({∃Γ1.A

+
1 }.

25

∀?Γ; ∆ ` A−

~x:A+
0 =⇒ ∀Γ1,∆1 ~x fresh ∀?Γ, ∀Γ0,∀Γ1; ∆,∆1 ` P

∀?Γ; ∆ ` ΠΓ0.A
+
0 (P

osem-type−

∀?Γ; ∆ ` P
h:ΠΓ0.A

+
0 (a·S0 ∈ Σ,Γ.∆

∀?Γ ` ρ : ∃Γ0 ρS0 = S ∀?Γ; (∆ \\ h) ` ρA+
0

∀?Γ; ∆ ` a·S
osem-atm

∀?Γ; ∆ ∀?Γ1; ∆1 ∀?Γ1 ` ρ : ∃Γ0 ∀?Γ1; ∆1 ` ρA+
0

∀?Γ; ∆ ` {∃Γ0.A
+
0 }

osem-mon

∀?Γ; ∆ ` A+

∀?Γ; ∆ ` 1
osem-one

∀?Γ; ∆1 ` A− ∀?Γ; ∆2 ` B+

∀?Γ; ∆1,∆2 ` ↓A− ⊗B+
osem-prod-lin

∀?Γ; · ` A− ∀?Γ; ∆ ` B+

∀?Γ; ∆ ` !A− ⊗B+
osem-prod-bang

∀?Γ; ∆ ∀?Γ′; ∆′

∀?Γ; ∆ ∀?Γ; ∆
osem-stop

h : ΠΓ.A+ ({∃Γ0.A
+
0 } ∈ Σ,Γ,∆ ∀?Γ; (∆ \\ h) ` ρA+

~x:ρA+
0 =⇒ ∀Γ1; ∆1 ~x fresh

∀?Γ; ∆,∆0 ∀?Γ,∀ρΓ0,∀Γ1; ∆0,∆1

osem-step

∀?Γ0; ∆0 ∀?Γ1; ∆1 ∀?Γ1; ∆1 ∀?Γ2; ∆2

∀?Γ0; ∆0 ∀?Γ2; ∆2

osem-comp

Figure 3.4: Oracle semantics for Mini-CLF

26

Since ∀?Γ ` ρ0 : ∃Γ0, and ∀?Γ ` ρ : Φ, we have ∀?Γ ` ρ, ρ0ρ : Φ,∃Γ′0. By IH, there exists ρ1

and ρ′1 such that Φ,∃Γ′0; ∆ ` A0
′+ =⇒ ρ1; Φ1, ∀?Γ ` ρ′1 : Φ1 and ρ, ρ0ρ = ρ′1ρ1. From the

latter, ρ = ρ′1ρ1|Φ.

On Γ′0, ρ0ρ coincide with ρ′1ρ1, then ρ0A
+
1 = ρ0ρA1

′+ = ρ′1ρ1A1
′+. Then, there exists Γ′2 and

∆′2 such that ~x:ρ1A1
′+ =⇒ Γ′2; ∆′2.

Then, ρ1|Φ, with Φ1 ` ρ1|Φ : Φ, and ρ′1, with ∀?Γ, ∀Γ2 ` ρ′1 : Φ1,∀Γ′2, satisfy the required
conditions.

�

27

A Mode Checking Rules for CLF

In this section, we define the mode checker for the full language of CLF, as it is implemented in
Celf [15].

A.1 Types and Terms

K ::= type | Πx:A
−
.K (Kinds)

A
−

::= a·S′ | A−1 & A
−
2 | Πp:A

+
.A
− | A+

(Negative types)

A
+

::= 1 | ∃p:A+
.A

+ | !A− | @A− | ↓A− (Positive types)

N ::= H·S | 〈N1, N2〉 | λ̂p.N | E (Negative terms)

H ::= x | c (Heads)

S′ ::= () | N ;S (Type spines)

S ::= () | π1;S | π2;S |M ;S (Spines)

E ::= M | let ε in E (Expressions)

ε ::= · | δ | ε1; ε2 (Traces)

δ ::= {p} = H·S (Steps)

p ::= 1 | 〈〈p1, p2, |〉〉!x | @x | ↓x (Patterns)

M ::= 1 | 〈〈M1,M2, |〉〉!N | @N | ↓N (Positive terms)

Σ ::= · | Σ, a:K | Σ, c:A− (Signatures)

Note that the spines S′ in atomic types have the form S′ ::= () | M ;S′ (because type families are
classified by kinds, which do not admit & as a constructor).

For the purpose of mode-checking, the distinction between dependent and non-dependent types
or variables is essential, while the differences between persistent, affine and linear types or variable
is irrelevant. We will then write � for any one of the modalities !, @ and ↓ (e.g., in �A

−
).

A.2 Normal Patterns

The general definition of CLF patterns leads to unwieldy mode rules. For this reason, we consider
normal patterns, which essentially reassociate general patterns to the right. There is nothing special
about normal patterns, except that they simplify many of the rules in this report.

Normal patterns np ::= 1 | 〈〈!x, np〉〉 | 〈〈@x, np〉〉 | 〈〈↓x, np〉〉

Normal patterns have the form: 〈〈�x1, 〈〈�x2, . . . 〈〈�xn, 1〉〉 . . .〉〉〉〉, where �xi is one of !xi, @xi or
↓xi.

Pattern Normalization p : A
+ 7→ np : B

+

Functional reading: (p,A
+

) 7→ (np,B
+

)
Defined inductively on p ::= 1 | 〈〈p1, p2〉〉 | �x

28

Generic patterns (and their type) can be compiled into normal patterns by means of the rules
below:

pn-1
1 : 1 7→ 1 : 1

p : A
+ 7→ np : B

+

pn-1-ex
〈〈1, p〉〉 : ∃1:1. A

+ 7→ np : B
+

〈〈p1, 〈〈p2, p3〉〉〉〉 : ∃p1:A
+

1 . (∃p2:A
+

2 . A
+

3) 7→ np : B
+

pn-ex-ex

〈〈〈〈p1, p2〉〉, p3〉〉 : ∃〈〈p1, p2〉〉:(∃p1:A
+

1 . A
+

2). A
+

3 7→ np : B
+

pn-�
�x : �A

− 7→ 〈〈�x, 1〉〉 : ∃�x:�A
−
.1

p : A
+

2 7→ np : B
+

pn-�-ex
〈〈�x, p〉〉 : ∃�x:�A

−
1 . A

+

2 7→ 〈〈�x, np〉〉 : ∃�x:�A
−
1 . B

+

The type B
+

differs from A
+

by the reassociation of inner existentials to the right and by the
possible addition of 1 at the end.

A.3 Mode Checking

Abstract substitutions Recall that the mode checker produces an abstract substitution rep-
resenting the groundness information of the dependent arguments of a context. For readability,
the abstract substitutions we use in this section do not contain types. We thus define abstract
substitutions as follows:

ν ::= · | ν, ∀x, | ν, ∃ux | ν, ∃gx

We use the following meet-like and join-like operations on abstract substitutions, denoted ν1tν2

and ν1uν2, defined as the point-wise extension of the following operations on variable declarations:

∀x t ∀x = ∀x ∀x u ∀x = ∀x
∃?x t ∃gx = ∃gx ∃?x u ∃ux = ∃ux
∃gx t ∃?x = ∃gx ∃ux u ∃?x = ∃ux
∃ux t ∃ux = ∃ux ∃gx u ∃gx = ∃gx

29

Mode checking It is defined by the following judgments:

` Σ prog (mode-checking a logic program)

ν ` A− decl (mode-checking a declaration)

A
−
fchain (forward chaining declaration)

A
−
bchain (backward chaining declaration)

ν ` A− fwd (mode-checking a fw-chaining declaration)

ν ` p : A
+

1 [A
−
2] fwd (mode-checking fw-chaining dependent type)

ν ` A+
fwd (mode-checking a fw-chaining monad)

ν ` p : A
+

1 [A
+

2] fwd (mode-checking a fw-chaining exists type)

Γ `̀ p (extracting pattern variables)

ν ` A− bwd > ν ′ (mode-checking bw-chaining programs)
ν ` S : m head > ν ′ (mode-checking a head)

ν ` p : A
+

1 [A
−
2] bwd > ν ′ (extracting patterns in bw search)

ν ` A− goal > ν ′ (mode-checking negative goals)
ν ` S : m goal > ν ′ (mode-checking atomic negative goals)

ν ` A+
goal > ν ′ (mode-checking positive goals)

ν ` p : A
+

1 [A
+

2] goal > ν ′ (mode-checking exists goals)

ν ` p : A
+

1 [A
−
2] goal > ν ′ (mode-checking goal patterns)

ν `M > ν ′ (infer groundness for monadic terms)

ν `M (check groundness for monadic terms)

ν `G M > ν ′ (request groundness for monadic terms)

In all judgments, we assume to be working with well typed objects with respect to some larger
CLF specification, which also includes kind declarations for all type families, and type declara-
tions for all constants that are not interpreted operationally as (logic) programs. For the sake of
readability, we do not mention this CLF specification in the above judgments as it stays fixed.

We also assume that this specification contains mode declarations for the type families that are
to be interpreted operationally. A mode declaration for a type family a is a sequence of modes
whose length is the number of arguments of a; we denote it with mode(a).

A.4 Programs

Judgments:
` Σ prog (mode-checking a logic program)

ν ` A− decl (mode-checking a declaration)

A
−
fchain (forward chaining constant)

A
−
bchain (backward chaining constant)

A.4.1 Programs ` Σ prog

Functional reading: Σ 7→ {true, false}
Defined inductively on Σ ::= · | Σ, c : A

−

30

sig-empty
` · prog

` Σ prog · ` A− decl
sig-decl

` Σ, c : A
−
prog

We remark that programs are always negative, and hence, we only need one judgment for
checking negative types as programs.

A.4.2 Declarations ν ` A− decl

Functional reading: (ν,A
−

) 7→ {true, false}
Defined based on whether A

−
is a forward- or backward-chaining definition.

A
−
fchain ν ` A− fwd

prog-fwd
ν ` A− decl

A
−
bchain ν ` A− bwd > ν ′

prog-bwd
ν ` A− decl

A.4.3 Mode Direction A
−
fchain A

−
bchain

A declaration c : A
−

may have multiple heads when A
−

contains additive conjunctions. If a head
is monadic, then the constant is used in forward chaining fashion, if it is not, it is a backward
chaining constant. We require that all heads of a declaration be either one or the other.

For the definition, we use some auxiliary judgments:

• A+
okchain checks that embedded clauses in A

+
are either backward chaining or forward

chaining;

• p : A
+
okchain checks that non-dependent clauses in A

+
satisfy the okchain predicate;

• A− okgoal checks that embedded clauses in A
−

satisfy the okchain predicate; A
+
okgoal is also

defined with similar meanings.

A
−
bchain

P bchain

A
−
1 bchain A

−
2 bchain

A
−
1 & A

−
2 bchain

A
+

1 okgoal A
−
2 bchain

Πp:A
+

1 . A
−
2 bchain

A
−
fchain

A
+
okchain

{A+} fchain

A
−
1 fchain A

−
2 fchain

A
−
1 & A

−
2 fchain

A
+

1 okgoal A
−
2 fchain

Πp:A
+

1 . A
−
2 fchain

A
−
okgoal

P okgoal

A
+
okgoal

{A+} okgoal

A
−
1 okgoal A

−
2 okgoal

A
−
1 & A

−
2 okgoal

A
+

1 okchain A
−
2 okgoal

Πp:A
+

1 . A
−
2 okgoal

31

A
+
okgoal

1 okgoal

x ∈ FV (A
+

2) A
+

2 okgoal

∃!x:!A
+

1 . A
+

2 okgoal

x 6∈ FV (A
+

1) A
−
1 okgoal A

+

2 okgoal

∃�x:�A
+

1 . A
+

2 okgoal

A
−
okchain

A
−
bchain

A
−
okchain

A
−
fchain

A
−
okchain

A
+
okchain

1 okchain

x ∈ FV (A
+

2) A
+

2 okchain

∃!x:!A
+

1 . A
+

2 okchain

x 6∈ FV (A
+

2) A
−
1 okchain A

+

2 okchain

∃�x:�A
+

1 . A
+

2 okchain

A.5 Declarations in Forward Chaining Mode

Judgments:

ν ` A− fwd (mode-checking a fw-chaining declaration)

ν ` p : A
+

1 [A
−
2] fwd (mode-checking fw-chaining dependent type)

ν ` A+
fwd (mode-checking a fw-chaining monad)

Γ `̀ p (extracting pattern variables)

A.5.1 Declarations ν ` A− fwd

Functional reading: (ν,A
−

) 7→ {true, false}
Defined inductively on A

−
::= a·S | A−1 & A

−
2 | Πp:A

+
. A
− | {A+}

(no rule for ν ` a·S fwd)

ν ` A−1 fwd ν ` A−2 fwd
fwd-and

ν ` A−1 & A
−
2 fwd

ν ` p : A
+

1 [A
−
2] fwd

fwd-pi
ν ` Πp:A

+

1 . A
−
2 fwd

ν ` A+
fwd

fwd-mon
ν ` {A+} fwd

32

A.5.2 Left-Hand Side of a Monad ν ` np : A
+

[B
−

] fwd

Functional reading: (ν, np,A
+
, B
−

) 7→ {true, false}
Defined inductively on np ::= 1 | 〈〈!x, np〉〉 | 〈〈�x, np〉〉

ν ` B− fwd
fw-lhs-1

ν ` 1 : 1[B
−

] fwd

ν, ∃ux ` np : A
+

2 [B
−

] fwd x ∈ FV (A
+

2 , B
−

)
fw-lhs-bang

ν ` 〈〈!x, np〉〉 : (∃!x:!A
−
1 . A

+

2)[B
−

] fwd

ν ` A−1 goal > ν ′ ν ′ ` np : A
+

2 [B
−

] fwd
fw-�

ν ` 〈〈�x, np〉〉 : (∃�x:�A
−
1 . A

+

2)[B
−

] fwd

A.5.3 Monads ν ` A+
fwd

Functional reading: (ν,A
+

) 7→ {true, false}
Defined inductively on A

+
::= 1 | ∃p:A+

1 . A
+

2 | �A
−

fw-mon-one
ν ` 1 fwd

ν ` p : A
+

1 [A
+

2] fwd
fw-mon-exists

ν ` ∃p:A+

1 . A
+

2 fwd

ν ` A− decl
fw-�

ν ` �A− fwd

A.5.4 Monads ν ` p : A
+

1 [A
+

2] fwd

Functional reading: (ν, p,A
+

1 , A
+

2) 7→ {true, false}
Defined inductively on p ::= 1 | 〈〈�x, np〉〉

ν ` A+
fwd

fw-exists-one
ν ` 1 : 1[A

+
] fwd

ν, ∀x ` np : A
+

2 [B
+

] fwd x ∈ FV (A
+

2 , B
+

)
fw-exists

ν ` 〈〈!x, np〉〉 : ∃!x:A
+

1 . A
+

2 [B
+

] fwd

ν ` A+

1 fwd ν, ∀x ` np : A
+

2 [B
+

] fwd x 6∈ FV (A
+

2 , B
+

)
fw-exists

ν ` 〈〈�x, np〉〉 : ∃�x:A
+

1 . A
+

2 [B
+

] fwd

33

A.5.5 Extracting Pattern Variables Γ `̀ p

Functional reading: np 7→ Γ
Defined inductively on np ::= 1 | 〈〈�x, np〉〉

pattern-one
· `̀ 1

Γ `̀ np
pattern-�

x,Γ `̀ 〈〈�x, np〉〉

A.6 Declarations in Backward Chaining Mode

Judgments:

ν ` A− bwd > ν ′ (mode-checking bw-chaining programs)
ν ` S : m head > ν ′ (mode-checking a head)

ν ` p : A
+

1 [A
−
2] bwd > ν ′ (extracting patterns in bw search)

ν ` A− goal > ν ′ (mode-checking negative goals)
ν ` S : m goal > ν ′ (mode-checking atomic negative goals)

ν ` A+
goal > ν ′ (mode-checking positive goals)

ν ` p : A
+

1 [A
−
2] goal > ν ′ (mode-checking goal patterns)

Backward chaining rules make use of groundness obligations. Recall that an entire declaration must
be in backward chaining, not just part of it.

A.6.1 Declarations ν ` A− bwd > ν ′

Functional reading: (ν,A
−

) 7→ ν ′

Defined inductively on A
−

::= P | A−1 & A
−
2 | Πp:A

+
. A
− | {A+}

ν ` S : mode(a) head > ν ′

bwd-head
ν ` (a·S)

−
bwd > ν ′

ν ` A−1 bwd > ν1 ν ` A−2 bwd > ν2
bwd-and

ν ` A−1 & A
−
2 bwd > ν1 t ν2

ν ` p : A
+

1 [A
−
2] bwd > ν ′

bwd-pi
ν ` Πp:A

+

1 . A
−
2 bwd > ν ′

(no rule for ν ` {A+} bwd > ν ′)

mode(a) is the declared mode for type family a. In rule bwd-and one among the left or right conjunct
will be executed, but we do not know which one, so both must enforce groundness.

34

A.6.2 Heads ν ` S : m head > ν ′

Functional reading: (ν, S,m) 7→ ν ′

Defined inductively on m ::= () | +→ m | − → m

bw-head-nil
ν ` () : () head > ν

ν ` N > ν ′ ν ` S : m head > ν ′′
bw-head-input

ν ` (N ;S) : (+→ m) head > ν ′ u ν ′′

ν ` S : m head > ν ′′
bw-head-output

ν ` (N ;S) : (− → m) head > ν ′ u ν ′′

We infer that all variables in input position are ground. Variables occurring in output positions
are checked to be ground after processing the goals (see below). There is no reason to sequentialize
the manipulation of variables.

A.6.3 Declaration Body ν ` p : A
+

[B
−

] bwd > ν ′

Functional reading: (ν, np,A
+
, B
−

) 7→ ν ′

Defined inductively on np ::= 1 | 〈〈!x, np〉〉 | 〈〈�x, np〉〉

ν ` B− bwd > ν ′
bw-body-1

ν ` 1 : 1[B
−

] bwd > ν ′

ν, ∃ux ` np : A
+

2 [B
−

] bwd > ν ′, ∃gx x ∈ FV (A
+

2 , B
−

)
bw-body-bang

ν ` 〈〈!x, np〉〉 : (∃!x:!A
−
1 . A

+

2)[B
−

] bwd > ν ′

ν ′ ` A−1 goal > ν ′′ ν, ∀x ` np : A
+

2 [B
−

] bwd > ν ′,∀x x 6∈ FV (A
+

2 , B
−

)
bw-body-�

ν ` 〈〈�x, np〉〉 : (∃�x:�A
−
1 . A

+

2)[B
−

] bwd > ν ′′

Rule bw-body-bang states that dependent arguments must be made ground after processing goals.
Input arguments are made ground when processing the head, while output arguments should be
made ground when processing the goals. If this rule does not apply (i.e., the variable x is not made
ground), then mode checking fails.

A.6.4 Negative Goals ν ` A− goal > ν ′

Functional reading: (ν,A
−

) 7→ ν ′

Defined inductively on A
−

::= P | A−1 & A
−
2 | Πp:A

+
. A
− | {A+}

ν ` S : mode(a) goal > ν ′

goal-atomic
ν ` (a·S)

−
goal > ν ′

ν ` A−1 goal > ν1 ν1 ` A
−
2 goal > ν2

goal-and
ν ` A−1 & A

−
2 goal > ν2

35

ν ` p : A
+

1 [A
−
2] goal > ν ′

goal-pi
ν ` Πp:A

+

1 . A
−
2 goal > ν ′

ν ` A+
goal > ν ′

goal-mon
ν ` {A+} goal > ν ′

mode(a) is the declared mode for type family a.
In rule goal-and, the subgoals A

−
1 and A

−
2 are independent, and yet their processing is sequen-

tialized. This is because both must be evaluated, and the operational semantics of Celf (and LLF)
processes them left-to-right.

A.6.5 Atomic Goals ν ` S : m goal > ν ′

Functional reading: (ν, S,m) 7→ ν ′

Defined inductively on m ::= () | +→ m | − → m

goal-nil
ν ` () : () goal > ν

ν `M ν ` S : m goal > ν ′
goal-input

ν ` (M ;S) : (+→ m) goal > ν ′

ν `M > ν ′ ν ` S : m goal > ν ′′
goal-output

ν ` (M ;S) : (− → m) goal > ν ′ u ν ′′

We check that all variables in input positions are ground and assume that the variables in output
position are ground for mode-checking the rest of the clause. We do not need to sequentialize the
processing of the arguments.

A.6.6 Monadic Goals ν ` A+
goal > ν ′

Functional reading: (ν,A
+

) 7→ ν ′

Defined inductively on A
+

::= 1 | ∃p:A+

1 . A
+

2 | �A
−

goal-one
ν ` 1 goal > ν

ν ` p : A
+

1 [A
+

2] goal > ν ′

goal-exists
ν ` ∃p:A+

1 . A
+

2 goal > ν ′

ν ` A− goal > ν ′
goal-�

ν ` �A− goal > ν ′

36

A.6.7 Monadic Exist Goals ν ` p : A
+

1 [A
+

2] goal > ν ′

Functional reading: (ν, p,A
+

1 , A
+

2) 7→ ν ′

Defined inductively on np ::= 1 | 〈〈�x, np〉〉

ν ` A+
goal > ν ′

exists-goal-one
ν ` 1 : 1[A

+
] goal > ν ′

ν,∃ux ` np : A
+

2 [B
+

] goal > ν ′,∃gx x ∈ FV (A
+

2 , B
+

)
exists-goal-bang

ν ` 〈〈!x, np〉〉 : (∃!x:!A
−
1 . A

+

2)[B
+

] goal > ν ′

ν ` A−1 goal > ν ′ ν ′,∀x ` np : A
+

2 [B
+

] goal > ν ′′, ∀x x 6∈ FV (A
+

2 , B
+

)
exists-goal-�

ν ` 〈〈�x, np〉〉 : (∃�x:�A
−
1 . A

+

2)[B
+

] goal > ν ′′

A.6.8 Embedded Clauses ν ` p : A
+

1 [A
−
2] goal > ν ′

Functional reading: (ν, np,A
+
, B
−

) 7→ ν ′

Defined inductively on np ::= 1 | 〈〈!x, np〉〉 | 〈〈�x, np〉〉

ν ` B− goal > ν ′

bw-emb-1
ν ` 1 : 1[B

−
] goal > ν ′

ν, ∀x ` np : A
+

2 [B
−

] goal > ν ′,∀x x ∈ FV (A
+

2 , B
−

)
bw-emb-bang

ν ` 〈〈!x, np〉〉 : (∃!x:!A
−
1 . A

+

2)[B
−

] goal > ν ′

ν ` A−1 decl ν,∀x ` np : A
+

2 [B
−

] goal > ν ′, ∀x x 6∈ FV (A
+

2 , B
−

)
bw-emb-�

ν ` 〈〈�x, np〉〉 : (∃�x:�A
−
1 . A

+

2)[B
−

] goal > ν ′

A.7 Term judgments

Let us recall the mode checking judgments for terms:

ν ` N > ν ′ (infer groundness for negative terms)
ν ` N (check groundness for negative terms)

The judgment ν ` T > ν ′, assume that M term M is ground, and convert any free variable in M
of unknown status within ν into a ground variable in ν ′, with the condition that M is a pattern.
A term M is a pattern if its free existential variables are applied to distinct bound variables I.e.,
if X ∈ FV (T), then it occurs in terms of the form X · x1; . . .;xp; () where x1, . . . , xp are distinct
bound variables. See [16, 14] for the concrete definition of pattern for CLF, which is an extension
of the pattern fragment defined by Miller [9]. For expressions, we require that there is at most one
unknown variable of monadic type [2, 3]. Concretely, the judgment ν ` M > ν ′, is specified as
follows:

ν `M > ν ′ iff M is a pattern and for all x ∈ FV (T), if ∃ux ∈ ν then ∃gx ∈ ν ′

37

The judgment ν ` T checks that all free variables of term M are either universal or ground in
ν. Concretely,

ν ` T iff for all x ∈ FV (T), either ∃gx ∈ ν or ∀x ∈ ν

(but not ∃ux ∈ ν).

References

[1] Iliano Cervesato and Frank Pfenning. A linear spine calculus. Journal of Logic and Computa-
tion, 13(5):639–688, 2003.

[2] Iliano Cervesato, Frank Pfenning, Jorge Luis Sacchini, Carsten Schürmann, and Robert J.
Simmons. On Matching in CLF. Technical Report CMU-CS-12-114, Department of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, July 2012.

[3] Iliano Cervesato, Frank Pfenning, Jorge Luis Sacchini, Carsten Schürmann, and Robert J.
Simmons. Trace Matching in a Concurrent Logical Framework. In Adam Chlipala and Carsten
Schürmann, editors, 7th International Workshop on Logical Frameworks and Meta-languages:
Theory and Practice — LFMTP’12, Copenhagen, Denmark, September 2012.

[4] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A Concurrent Logical
Framework II: Examples and Applications. Technical Report CMU-CS-02-102, Department
of Computer Science, Carnegie Mellon University, Pittsburgh, PA, May 2003.

[5] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143–184, 1993.

[6] Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical framework. J.
Funct. Program., 17(4-5):613–673, July 2007.

[7] Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic concurrent linear
logic programming. In Pedro Barahona and Amy P. Felty, editors, PPDP, pages 35–46. PUB-
ACM, 2005.

[8] Dale Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. Journal of Logic and Computation, 1(4):497–536, 1991.

[9] Dale Miller. Unification of simply typed lamda-terms as logic programming. In Koichi Fu-
rukawa, editor, ICLP, pages 255–269. MIT Press, 1991.

[10] Frank Pfenning and Carsten Schürmann. System description: Twelf - A meta-logical frame-
work for deductive systems. In Harald Ganzinger, editor, CADE, volume 1632 of LNCS, pages
202–206. Springer, 1999.

[11] Ekkehard Rohwedder and Frank Pfenning. Mode and termination checking for higher-order
logic programs. In Hanne Riis Nielson, editor, ESOP, volume 1058 of Lecture Notes in Com-
puter Science, pages 296–310. Springer, 1996.

38

[12] Jorge Luis Sacchini, Iliano Cervesato, Frank Pfenning, Carsten Schürmann, and Robert J.
Simmons. On trace matching in CLF. Technical Report CMU-CS-12-114, Department of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, July 2012.

[13] Jeffrey Sarnat. Syntactic Finitism in the Metatheory of Programming Languages. PhD thesis,
Yale University, May 2010.

[14] Anders Schack-Nielsen. Implementing Substructural Logical Frameworks. PhD thesis, IT Uni-
versity of Copenhagen, January 2011.

[15] Anders Schack-Nielsen and Carsten Schürmann. Celf — A logical framework for deductive
and concurrent systems (system description). In Alessandro Armando, Peter Baumgartner,
and Gilles Dowek, editors, IJCAR, volume 5195 of LNCS, pages 320–326. PUB-SP, 2008.

[16] Anders Schack-Nielsen and Carsten Schürmann. Pattern unification for the lambda calculus
with linear and affine types. In Karl Crary and Marino Miculan, editors, LFMTP, volume 34
of EPTCS, pages 101–116, 2010.

[17] Robert J. Simmons. Substructural Logical Specifications. PhD thesis, Carnegie Mellon Univer-
sity, 2012.

[18] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A Concurrent Logical
Framework I: Judgments and Properties. Technical Report CMU-CS-02-101, Department of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, May 2003.

39

	Introduction
	Mode checking in LF
	Syntax and semantics of LF
	Mode checking
	Correctness of the mode checker
	Partial semantics
	Completeness of the moded semantics

	Mode checking in CLF
	Syntax and semantics of Mini-CLF
	Mode checking
	Correctness of the mode checker in CLF
	Partial semantics
	Completeness of the moded semantics

	Mode Checking Rules for CLF
	Types and Terms
	Normal Patterns
	Mode Checking
	Programs
	Programs
	Declarations
	Mode Direction

	Declarations in Forward Chaining Mode
	Declarations
	Left-Hand Side of a Monad
	Monads
	Monads
	Extracting Pattern Variables

	Declarations in Backward Chaining Mode
	Declarations
	Heads
	Declaration Body
	Negative Goals
	Atomic Goals
	Monadic Goals
	Monadic Exist Goals
	Embedded Clauses

	Term judgments

