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Abstract

The frameworks of game theory and mechanism design have exerted significant in-
fluence on formal models of multiagent systems by providing tools for designing and
analyzing systems in order to guarantee certain desirable outcomes. However, many
game theoretic models assume idealized rational decision makers interacting in pre-
scribed ways. In particular, the models often ignore the fact that in many multiagent
systems, the agents are not fully rational. Instead, they are computational agents
who have time and cost constraints that hinder them from both optimally determin-
ing their utilities from the game and determining which strategies are best to follow.
Because of this, the game theoretic equilibrium for rational agents does not generally
remain the same for agents with bounds on their computational capabilities. This
creates a potentially hazardous gap in game theory and automated negotiation since
computationally bounded agents are not motivated to behave in the desired way.

My thesis statement is that it is possible to bridge this gap. By incorporating
computational actions into the strategies of agents, I provide a theory of interaction for
self-interested computationally bounded agents. This allows one to formally study the
impact that bounded rationality has on agents’ strategic behavior. It also provides a
foundation for game-theory and mechanism design for computationally limited agents.

First, this thesis introduces a model of bounded rationality where agents must
compute in order to determine their preferences. The computing resources of the
agents are restricted so that the agents must carefully decide how to best use their
computation. I present a fully normative model of deliberation control, the perfor-
mance profile tree. Not only does this structure provide full normativity in theory, but
I also show that in real-world applications it improves deliberation control compared
to other methods.

This thesis proposes explicitly incorporating the deliberation actions of agents
into a game-theoretic framework. I introduce a new game-theoretic solution concept,
the deliberation equilibrium. This provides one with an approach for understanding
and analyzing the strategic use of computation. Using this approach I analyze dif-
ferent negotiation protocols for computationally limited agents. I study two different
bargaining settings where agents try to reach an agreement on whether to coordi-
nate their actions or act independently. I provide algorithms that agents can use to
determine their optimal strategies (including computing actions). I also study the
impact that computing limitations have on bidding agents in auctions, where agents
must compute or gather information in order to determine their valuations for the
items being auctioned. I show that commonly used auction mechanisms all suffer
from agents having incentive to strategically deliberate, that is use computing re-
sources in order to (partially) determine their competitors’ valuations. This means
that mechanisms which had dominant strategy equilibria for rational agents are no
longer strategy-proof for computationally limited agents.



Finally, this thesis studies the problem of designing mechanisms specifically for
computationally-limited agents. My goal is to build mechanisms which have good de-
liberative properties as well as good economic properties. I propose a set of properties
that I believe that mechanisms should exhibit, but then show that it is impossible
to design interesting mechanisms which satisfy all the properties. While this result
is negative, in that it is an impossibility result, it does provide direction for future
research.
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Chapter 1
Introduction

We are currently witnessing the growth of a new paradigm of open computer systems,
as embodied by the Internet. The heterogeneous participants in these systems (which
we will call agents) have their own private information and goals which may not
coincide with the goals of the system designer, nor is it reasonable to assume that
a system designer is able to force the agents to behave in some socially optimal
way. In particular, these agents are often self-interested, and will act in their own
self-interest, irrespective of the desires of others. Interesting applications with these
properties include selfish routing scenarios [99], mobile ad-hoc networks [2,33], as
well as innumerable ecommerce applications. These scenarios can all be modeled as

competitive multiagent systems.

The frameworks of game theory and mechanism design have exerted significant
influence on formal models of multiagent systems by providing tools for designing
and analyzing systems in order to guarantee certain desirable outcomes. However,
many game theoretic models assume idealized rational decision makers interacting in
prescribed ways. In particular, the models often ignore the fact that in many multia-
gent systems the agents are not fully rational. Instead they are computational agents
who have time and cost constraints that stop them from optimally determining their
utilities from the game and which strategies are best to follow. The game theoretic
equilibria which describe how rational agents should behave do not, generally, remain
the same for these (bounded-rational) agents. This creates a potentially hazardous
gap in game theory and automated negotiation since computationally bounded agents
are not motivated to behave in the desired way. The aim of this dissertation is to

bridge this gap.



1.1 Thesis Statement

In this thesis we are trying to understand the impact that computational limitations
have on the interactions of agents in multiagent environments. In particular, we
are interested in the strategic behavior of computationally limited agents in different
market mechanisms, in order to understand how these agents differ from the clas-
sic, fully-rational, agents and whether it is desirable and possible to design market

mechanisms which take into account the limitations of the participating agents.

The thesis statement is:

By using a fully normative model of bounded rationality it is possible to

incorporate agents’ deliberation actions into game theoretic settings.

e This allows us to formally study the impact that limited deliberation

resources has on agents’ strategic behavior.

e This provides a foundation for game theory and mechanism design

for computationally limited agents.

1.2 Approach

This thesis has been heavily influenced by the ideas of Herbert Simon. As Simon
pointed out, real economical players have limited time and powers of deliberation.

He proposed the study of bounded rationality to investigate

“... the shape of a system in which effectiveness in computation is one of

the most important weapons of survival.” [113]
Additionally, in correspondence with Ariel Rubinstein, Simon said

“In my version of bounded rationality we look for answers to questions
like:... What are the economic consequences of participants using certain
procedures and not others? In what respects are current economic mod-
els deficient in the assumptions they make about reasoning procedures?”
(February 7, 1997) [101].



Our approach develops and combines ideas from both a resource-bounded reason-
ing framework and a game theoretic framework. We model agents as being deliber-
ative, in that at the meta-level they have to carefully reason about their preferences
and goals. We assume that the resources used in this reasoning process are limited,
forcing the agents to carefully weigh their alternatives and make tradeoffs concerning
how they will deliberate.

We explicitly model the agents’ deliberation decisions in a game-theoretic frame-
work. This allows us to rigorously study how computational limitations affect the
strategic behavior of agents as they interact with others. In particular, it provides us
with a systematic way to compare computationally limited agents with fully rational
agents, as well as providing us with a foundation for designing negotiation protocols
explicitly for these agents.

1.2.1 Motivating Example

To make the presentation more concrete, we now discuss an example domain where

our methods are needed. We use this example throughout the thesis.

Consider a distributed vehicle routing problem with two geographically dispersed
dispatch centers that are self-interested companies (Figure 1.1) [106] [109]. Each
center is responsible for certain tasks (deliveries) and has a certain set of resources
(vehicles) to take care of them. So each agent—representing a dispatch center—has

its own vehicles and delivery tasks.

Each agent’s problem is to minimize transportation costs (driven mileage) while

still making all of its deliveries while honoring the following constraints:

e Each vehicle has to begin and end its tour at the depot of its center (but neither

the pickup nor the drop—off locations of the orders need to be at the depot).
e Each vehicle has a maximum load weight and maximum load volume constraint,
e Each vehicle has a maximum route length (prescribed by law).

e Each delivery has to be included in the route of some vehicle.

This problem is N'P-complete.
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Figure 1.1: Small example problem instance of the distributed vehicle routing problem.

Assume that an additional task is to be allocated to a dispatch center via some
auction mechanism. Before agents’ can formulate and submit bids, they must first
know how much they value the new task. This requires determining the cost of incor-
porating the new task into the current delivery schedule which potentially requires
solving two N'P-complete problems (one without the new task, and one with the new
task). The resources available to the agents to solve these problems may be limited.
For example, the agents may have deadlines by which they require a solution or com-
puting may be costly. Each agent must carefully consider the tradeoff they are willing
to make on solution quality given the restrictions on their computing resources, as
well as accounting for the fact that their computed solutions will also influence what

sort of bids they can submit to the auctioneer.

1.3 Contributions

The key contributions of this thesis are

A normative model of bounded rationality. We present a model for a computa-
tionally-limited agent, endowing it with a fully normative deliberation control
tool, the performance profile tree. This performance profile representation al-
lows an agent to condition its deliberation decisions on any and all information

deemed to be important. We show that this approach can be used in practice,



leading to superior deliberation control decisions.

A formal game theoretic model for computationally limited agents. We
propose incorporating the deliberation actions of agents in a game theoretic
setting. We introduce the deliberation equilibrium solution concept and are

able to understand and analyze the strategic use of computation.

Analysis of different negotiation mechanisms. Using the deliberation equilib-
rium solution concept, we analyze different standard negotiation mechanisms in
order to understand the impact that computational limitations have on agents’

strategies in such settings.

Mechanism design principles for computationally limited agents. @ We
propose a set of desiderata for mechanisms designed for computationally limited
agents. In particular, we argue that mechanisms should have good economic
properties and good deliberative properties. We show that these desiderata are

orthogonal, and that tradeoffs in design must be tolerated.

1.4 Guide to the Thesis

At a high level this thesis can be divided into two sections. In the first section we
discuss bounded rationality and present our model of bounded rationality - in the form
of computationally limited agents. This work is pertinent to both single-agent settings
and multiagent settings. In the second section we move to multiagent settings. We
show how we are able to model computationally limited agents in a game theoretic

setting, and use this approach to study and design negotiation mechanisms.

Here we outline the chapters in the rest of thesis.

Section I: Computationally Limited Agents

Chapter 2 - Modeling Computationally Limited Agents. In this chap-
ter we present our model of a computationally limited agent. We describe
the role of computation, limitations on an agent’s computing resources,
and provide policies an agent can follow in order to effectively use its com-
puting resources in the best possible way. In particular, we introduce the

performance profile tree; a fully normative deliberation control method.



Chapter 3 - Improving Deliberation Control: Experimental Results.
In this chapter we present a series of experimental results to show that the
performance profile tree, introduced in Chapter 2, is a feasible approach
for deliberation control for computationally limited agents, and that it

outperforms other commonly used deliberation control methods.
Section II: Negotiating and Computationally Limited Agents

Chapter 4 - Game Theory and Mechanism Design. In this chapter
we provide an overview of important game theory and mechanism design

concepts.

Chapter 5 - Game Theory for Computationally Limited Agents. In
this chapter we show how a model for a computationally limited agent
can be placed in a game theoretic setting. We define strategies so that
they include the deliberation actions of the agents as well as any other (i.e.
negotiation) actions. We introduce the deliberation equilibrium solution
concept and discuss new strategic behavior which arises with computation-

ally limited agents.
Chapter 6 - One-to-One Negotiation: Bargaining. In this chapter we

study bargaining protocols where two computationally limited agents must
try to reach agreement on whether to coordinate their actions to execute
a joint plan, or whether to act independently. We study the equilibria of
different scenarios, and present algorithms that agents can use to determine

their best strategies.

Chapter 7 - One-to-Many Negotiation: Auctions. In this chapter we
study common auction protocols in order to understand the the implica-
tions that computational limitations have on bidding agents. We show
that computationally-limited agents exhibit new forms of strategic behav-
ior, and that auction mechanisms, which in classical settings have desirable

game theoretic properties, lose these properties.

Chapter 8 - Mechanism Design for Computationally Limited Agents.
In this chapter we look at the problem of designing allocation mechanisms
for computationally limited agents in order to obtain desirable strategic
properties, as well as desirable deliberative properties. We propose a set
of reasonable desiderata which we believe that mechanisms should have,

but show that in many situations these requirements are too strong.



Chapter 9 - The Social Cost of Selfish Computing. In this chapter
we investigate what happens at a system wide level when the participants
in a system are computationally limited. We introduce the miscomputing
ratio, a way of measuring the system-wide impact of selfish computing. We
show that by allowing agents to freely choose their computing strategies,

the social welfare can be adversely affected.

Chapter 10 - Related Work. In this chapter we discuss other work that has
been done in the intersection of artificial intelligence, theoretical computer
science, and economic theory, and comment on how it is similar and how

it differs from the work presented in this dissertation.

Chapter 11 - Conclusions. We conclude our work with a review of our con-
tributions along with a discussion of future work in the area of mechanisms

for computationally limited agents.
Much of the work in this thesis has appeared in the following papers:

e Kate Larson and Tuomas Sandholm, Bargaining with limited computation: De-
liberation equilibrium, Artificial Intelligence, 132(2): 183-217. A short early
version appeared in AAAI-2000 [59].

e Kate Larson and Tuomas Sandholm, Costly valuation computation in auctions,
In the proceedings of the Eighth Conference of Theoretical Aspects of Knowl-
edge and Rationality (TARK VIII), July 2001 [60].

e Kate Larson and Tuomas Sandholm, Bidders with hard valuation problems, In
the proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2002), July 2002. (Poster paper) [62].

e Kate Larson and Tuomas Sandholm, An alternating offers bargaining model for
computationally limited agents, In the proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2002), July 2002 [61].

e Kate Larson and Tuomas Sandholm, Miscomputing Ratio: The social cost of
selfish computing, In the proceedings of the Second International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2003), July
2003 [63].



e Kate Larson and Tuomas Sandholm, Strategic deliberation and truthful revela-
tion: An impossibility result, In the proceedings of ACM Conference on Elec-
tronic Commerce (EC 04), May 2004 (short paper) [65].

e Kate Larson and Tuomas Sandholm, Using performance profile trees to improve
deliberation control, In the proceedings of the Nineteenth National Conference
on Artificial Intelligence (AAAI-2004), July 2004 [66].

e Kate Larson and Tuomas Sandholm, Fxperiments on deliberation equilibria in
auctions, In the proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), July 2004 [64].
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Chapter 2

Modeling Computationally-Limited
Agents

“Life is not long, and too much of it must not pass in idle deliberation

how it shall be spent.”

Samuel Johnson

In many Al applications, bounded rationality is simply a feature that has to
be dealt with. The realities of limited computational resources and time pressures
caused by real-time environments mean that agents are not always able to optimally
determine their best decisions and actions. The field of artificial intelligence has long
searched for useful techniques for coping with this problem. Herbert Simon advocated
that agents should forgo perfect rationality in favor of limited, economical reasoning.
His thesis was that “the global optimization problem is to find the least-cost, or best-
return decision, net of computational costs” [113]. In our work we follow the Simon
thesis. We assume that agents are deliberative in that they determine how to best
use their computational resources by “careful consideration with a view to decision”
(Oxford English Dictionary).

In this chapter we present a model for computationally limited, deliberative agents,
and show how these agents can effectively use their limited resources. The rest of this
chapter is organized as follows. We first provide an overview of the Al literature
which study the idea of agent rationality and address the problem of how agents

should behave when they are bounded-rational. We then present our model of a
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computationally limited agent. We describe the role that computing plays in settings
where agents are not endowed with full information about all possible states of the
world (Section 2.2). We then describe the properties which define a computationally
limited agent and explain the set of tools available to the agent so that it can effectively
use its resources (Section 2.3). We finally introduce the performance profile tree, a

fully normative deliberation control method (Section 2.4).

2.1 Al and Bounded Rationality

As a field, AT has long studied the problem of what does it mean to be rational. The
earliest models of rationality in artificial intelligence had a logical definition [72, 81].
In this “logicist” approach to rationality it was assumed that an agent could be
completely defined in terms of its beliefs and goals, and that an agent was rational
if it satisfied one of its goals entailed by its beliefs. In particular, the emphasis
of the research was on normative reasoning, while ignoring the p