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Abstract
One of the recurring themes in information theory and quantum information theory is correlationcorruption and correlation recover. Correlation corruption refers to the situation where Alice andBob share information that is not perfectly correlated (or perfectly entangled, if they share quantuminformation). Correlation corruption arises in many natural situations, including transmittinginformation through a noisy channel, measuring a noisy signal source, quantum decoherence, andadversarial distortion. Correlation recovery refers to the action Alice and Bob takes to \restore"the correlation/entanglement by agreeing on some perfectly correlated/entangled information.Traditionally correlation repair is done via a preventive strategy, namely error correction. Usingthis strategy, Alice encodes her information using an error correcting code or a quantum errorcorrecting code before sending it through a noisy channel to Bob, who then decodes and recoversthe original information. Error correcting codes and quantum error correcting codes are extremelyuseful objects in information theory with numerous applications in many other areas of science andtechnology. They are well studied and well understood. However they have limitations. We shallshow that some assumptions used by error correction are not sound in many scenarios and makethe preventive strategy unsuitable.We study the alternative strategy of correlation repair, known as the reparative strategy. Usingthis strategy, Alice and Bob start by sharing imperfectly correlated (raw) information, and thenengage in a protocol to \distill" the correlation/entanglement via communication. We call theseprotocols (classical) correlation distillation protocols and (quantum) entanglement distillation pro-tocols. We show that such a reparative strategy can be as eÆcient as the preventive strategy.Furthermore, the reparative strategy is more exible, in that it doesn't have the limitations suf-fered by error correction. We also point out that in particular, quantum entanglement distillation1



protocols play a very important role in quantum information theory. Despite the signi�cance ofthese protocols, they have received much less attention than error correcting codes and are muchless well understood.We focus on the communication complexity of the correlation and entanglement distillationprotocols. In designing error correcting codes, eÆciency is one of the main concerns. One wants toconstruct an error correcting code with the least possible redundancy while being able to withholdthe highest rate of noise. In correlation and entanglement distillation protocols, the eÆciency ismeasured by the amount the communication between Alice and Bob, and thus it is important todesign protocols with minimal amount of communication. Our study is concerned with the minimalamount the communication needed for distillation.We present a number of results concerning communication complexity for protocols over variousnoise models, which are mathematically models for di�erent types of correlation corruption. Theseresults span both classical and quantum information theory, and have connections to other areasof computer science, including cryptography and computational complexity.
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Chapter 1
Introduction
We introduce the notion of correlation distillation and entanglement distillation. We also discusstheir motivations and related work.1.1 Correlation Corruption and Correlation RepairInformation theory, since its inception in 1948 by Claude Shannon in his groundbreaking paper [82],has developed into a rich �eld of research, with applications in a broad spectrum of areas, includingelectrical engineering, computer science, statistics, and physics. From the 1970s, as researchersstarted to understand quantum mechanics, the �eld of quantum information theory emerged as anatural extension to the classical information theory. Exciting (and sometimes confusing) resultswere discovered, such as the EPR paradox (that two quantum states can be space-separated yetentangled, such that their measurements will be correlated), the non-cloning theorem (that quantuminformation cannot be duplicated), and teleportation (that Alice and transmit an unknown quantumstate to Bob by sending two classical bits). Not only did quantum information theory contributeto the development of quantum mechanics, it also found applications in \traditional" areas, suchas cryptography.One of the most recurring themes in information theory is correlation corruption and correlationrecovery. Correlation corruption refers to the situation where Alice and Bob share some informationwhich is not perfectly \correlated". Classically this means that with positive probability, Alice'sbits doesn't agree with Bob's. Quantum mechanically, this means that Alice's quantum state isn't10



perfectly entangled with Bob's quantum state. Researchers have striven to understand the natureof correlation corruption and constructed various mathematical models for it; we call them noisemodels. On the other hand, correlation recovery refers to the action Alice and Bob take to \restore"the correlation (or entanglement) to the maximum. Naturally, the goal is to perform correlationrepair, using as little resource as possible.We discuss some situations where the theme of correlation corruption and correlation recoveryoccurs naturally.1.1.1 Information TransmissionPerhaps the most well-known problem in information theory is to transmit information througha noisy channel. In fact, it was considered in Shannon's original paper [82] and remains one ofthe most important topics in information theory. When Alice sends information to Bob througha noisy channel, the channel can \distort" the information. More concretely, suppose Alice sendsclassical bits to Bob, a classical noisy channel may ip some of the bits (a bit \0" becomes \1", anda bit \1" becomes \0"), or erase some of the bits (a bit becomes \?", a special symbol indicatingthe loss of the bit); suppose Alice sends qubits to Bob, a quantum noisy channel may apply a \bit-ip" (normally denoted by X) which switches j 0i and j 1i, a \phase-shift" (normally denoted byZ), which keeps j 0i unchanged but changes j 1i to �j 1i, or a bit-ip composed with a phase-shift(normally denoted by Y ). If Alice keeps a copy of the information she sends to Bob, then the noisychannel certainly can corrupt the correlation between Alice and Bob. A large part of informationtheory is to understand the nature of these noisy channels and devise mechanisms to �ght the noise,namely, to perform correlation recovery.1.1.2 Random BeaconsA random beacon is an entity that broadcasts uncorrelated unbiased random bits. The concept ofrandom beacons were �rst introduced in 1983 by Rabin [74], who showed how they can be usedto solve problems in cryptography. Bennett, DiVincenzo, and Linsker [26] proposed to use a ran-dom beacon to authenticate video recording. Maurer [60], Aumann and Rabin [6], and Ding [33]proposed to use a random beacon of extremely high rate to build information-theoretically se-11



cure cryptographic primitives, e.g., key exchange, encryption, and oblivious transfer. von Ahn et.al. [2] discusses various applications of random beacons, including veri�able lotteries and proof ofignorance.There are many proposals to construct a public, veri�able random beacon, among them are theones that use the signals from a cosmic source [2, 63]. In these proposals, Alice (as the beaconowner) and Bob (as a veri�er) both point a radio telescope to some extraterrestrial objects, e.g.pulsars, and then measure the signal from them, which presumably contains enough randomness.However, it is inevitable that Alice and Bob have discrepancy in their results, due to measurementerrors. Nevertheless, Alice and Bob still wish to agree on some common random bits, or, in otherwords, to recover the correlation between them. Notice that the random bits they wish to agreeon are not necessarily the \raw data" from the measurement. Alice and Bob are free to apply anytransformation to their measurement results.1.1.3 Distilling EPR PairsAn EPR pair, or an Einstein-Podolsky-Rosen pair [35], is a qubit pair in the state 1p2(j 00i+ j 11i)shared by two parties, with one party (Alice) holding one quantum bit and the other party (Bob)holding the second bit. EPR pairs are maximally entangled states and play a very importantrole in quantum information theory. Using an EPR pair, Alice and Bob can perform quantumteleportation. By performing only local operations and classical communication (often abbreviatedas \LOCC"), Alice can \transport" a qubit to Bob, who could be miles away from Alice [18]. SoEPR pairs, along with a classical communication channel, e�ectively constitute a quantum channel.Conversely, \superdense coding" is possible with EPR pairs: if Alice and Bob share an EPR pair,then Alice can transport two classical bits to Bob by just sending one qubit [29]. Therefore, it isvery desirable for Alice and Bob to pre-manufacture a large number of EPR pairs and store them.In this way, they only need to maintain a classical channel between them, which is much moreeconomical than a quantum channel, to transmit quantum information.However, it is very hard to store qubits, since they can easily become entangled with the envi-ronment and decohere. Moreover, the decoherence happen continuously with time, and it is hard toprevent with current technology. This poses a serious problem to teleportation, since teleportation12



needs perfect EPR pairs, and if EPR pairs cannot be stored almost perfectly, teleportation wouldnot be useful. Therefore, Alice and Bob need to \distill" almost perfect EPR pairs from the noisyones, or, in other words, to \recover" the entanglement.1.1.4 Quantum Key DistributionConsider the quantum key distribution protocols by Bennett and Brassard [16], and by Bennett [13].In these protocols, Alice randomly produces a sequence of qubits and send them to Bob, who thenmeasures these qubits. If Alice keeps a copy of the qubits she sends to Bob, then Alice and Bobwill share a number of perfectly entangled states. Next, Alice and Bob can exchange informationto agree on some random bits, which then will be used as their shared key. However, Eve, theeavesdropper, might intercept some of the qubits Alice sent and distort them. This distortioncaused by Eve will result in imperfectly entangled states between Alice and Bob. Therefore, theyneed to recover from the imperfect entanglement and agree on almost perfectly entangled states,or EPR pairs.1.2 Error Correction: the Preventive StrategyThe most popular strategy to correlation repair is though the means of Error Correcting Codes(ECCs) and Quantum Error Correcting Codes (QECCs). Consider the situation of transmittinginformation through a noisy channel. Alice can encode her information using an error correctingcode, or a quantum error correcting code into a code-word, before sending it to Bob. Then Bobcan decode the noisy code-word and recover the information. See Figure 1.1. We call this the\preventive" strategy, since preventive measures are taken before the corruption takes place.Error correcting codes and quantum error correcting codes have long been central objects ofstudy in the �eld of information theory, and they have received tremendous amount of attention.Moreover, not only are they extremely useful in information theory, they also found numerousapplications in other �elds, including combinatorics, cryptography, and computational complexity.However, they have their limitations, and we discuss some of these limitations below.
13
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timeFigure 1.1: The preventive strategy for correlation repair.Timing ConstraintFirst of all, there is the timing constraint. Error correction codes only work if Alice can encodethe information before the noise takes place, which is not always possible. Consider the randombeacon where Alice and Bob measure the noisy signals from a pulsar. In this case, it is impossibleto encode the signal from the pulsar and thus error correction becomes totally useless.Assumptions on Noise ModelMoreover, almost all research work on error correcting codes focuses on a relatively limited noisemodel, which we call the identical independent distortion (IID). In this model, the information istransmitted in units (e.g. bits or qubits) through a noisy channel, which applies a \distortion"process to each of the units independently. Examples of the deformation process include \ip a bitwith probability �" (which corresponds to the Binary Symmetric Channel), \change a bit to ? withprobability �" (which corresponds to the Erasure Channel), and \replace a qubit by a a completelymixed state with probability �" (which corresponds to the Depolarization Channel). Two importantassumptions in the IID model is that: 1) the deformation processes are identical to each unit; 2) theprocesses are independent. These two assumptions greatly simplify the problem of error correction,since the Law of the Large Numbers can be used. One can thus separate the so-called \typicalerror syndromes" from the \atypical" ones, and only focus on the typical syndromes. However, itis not always realistic to assume the IID model. This is best illustrated by the case of quantumkey distribution protocols. Recall in this situation, Eve may intercept some qubits sent by Aliceand cause distortion. Notice Eve is adversarial in nature and there is no reason to assume the the14



noise she causes is IID. Therefore, quantum error correction is not suitable in this case.As a comment, we point out that Shor and Preskill [84] in fact used a particular class of quantumerror correcting codes (known as CSS codes) in the analysis of security of the BB84 protocol. Inparticular, they showed that this class of QECCs, which were originally designed to work in aso-called \bounded corrupt" noise model, work in the so-called \�delity" noise model as well. Here,the �delity model is adversarial and is suitable for the quantum key distribution protocol. However,this appears to be a coincidence, and there is no evidence that an arbitrary QECC designed for anon-adversarial model will automatically work for an adversarial one.Assumptions on Noise RateFinally, error correcting assumes that the noise rate is known at the time of encoding, so that anappropriate encoding scheme with appropriate redundancy can be designed. Notice that the noiserate has to be determined before the noise actually takes place, and therefore one often has to guessthe rate. If the guess is too high, then too much redundancy would be added and bandwidth wasted;if the guess is too low, then too little redundancy may cause the loss of information. Furthermore,there are situations where there simply is not a �xed noise rate. Take the decohering EPR pairs asan example. The decoherence happens continuously with time, and thus the noise rate is varyingwith time (more precisely, increases with time). In this case, it is rather ineÆcient and inexibleto use an quantum error correcting code of a �xed rate.1.3 Correlation Distillation: the Reparative StrategyCorrelation Distillation Protocols (CDPs) and Entanglement Distillation Protocols (EDPs) providean alternative strategy for correlation repair. In this strategy, Alice and Bob start by sharingimperfectly consistent information, and then \distill" near-perfect information via communicationand local operations. See Figure 1.2. If it is the classical information Alice and Bob are to distill,we call the process a \correlation distillation protocol"; if it is the quantum information, we call itan \entanglement distillation protocol". Overall, we call the strategy the \reparative strategy".As a technical note, we always assume that the communication in the protocols is classical andnoise-free. It is a standard assumption that only classical communication is allowed in quantum15
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timeFigure 1.2: Reparative strategy for correlation repair.entanglement distillation protocols, since quantum communication is considerably more expensive.These protocols that only involve local operations and classical communications are called \LOCCprotocols", standing for \Local Operation Classical Communication". The assumption of noise-free communication can be justi�ed in the following ways. First, the amount of communication isnormally much smaller than the amount of the information Alice and Bob share, and thus they cana�ord to protect their communication either using a communication channel of higher quality orusing error correcting codes of high redundancy. In this way, Alice and Bob can virtually assumenoiseless communication. Second, much of the study in this thesis focus on the question of howmuch information Alice and Bob need to exchange in order to perform correlation/entanglementdistillation, and the assumption of noiseless communication greatly simpli�es the analysis. Finally,in the case of entanglement distillation, classical communication is used to distill quantum entan-glement, and it is reasonable to assume a noise-free classical channel while the quantum channelmight be noisy.Correlation distillation protocols and entanglement distillation protocols solve several problemswith error correcting codes and quantum error correcting codes. First, since the distillation takesplace after the noise, there is no timing constraint for correlation/entanglement distillation. There-fore, CDPs are suitable for situations such as random beacons. Furthermore, since Alice and Bobperform distillation only after the correlation corruption, they can measure the noise rate �rst,and then choose the appropriate distillation protocol. This is more exible and some times moredesirable than error correction, which needs to guess the noise rate (for example, in the case ofdecohering EPR pairs). In fact, as we shall exhibit later in the thesis, there exist situations (bothin classical and in quantum) where error correction almost completely fails while it is still possible16



to do correlation distillation (see Section 4.3). Finally, as we shall discuss later, CDP/EDPs admita broader range of noise models, and in particular, noise models that are not identical independentdistortion. In particular, while QECCs are not appropriate for quantum key distribution protocols,where the noise model is adversarial, EDPs turned out to be the perfect solution, as pointed outby Lo and Chau [57] and Shor and Preskill [84] (they used the term \entanglement puri�cationprotocols" for EDPs). 1Besides the \practical" advantages of EDPs, they have great theoretical importance in quantuminformation theory. Quantum entanglement plays a crucial role in quantum information and re-searchers have striven to understand entanglement, and in particular, ways to measure the amountthe entanglement as a physical resource. Among various proposals is the concept of distillable en-tanglement [25]. For a quantum state �, its distillable entanglement is de�ned to be asymptoticallythe ratio of the amount of EPR pairs that can be produced by the optimal EDP from n copies ofstate � over n, as n increases. Clearly, the study of entanglement distillation protocols is closelyrelated to that of entanglement.If we compare the two approaches to information agreement, ECC/QECC and CDP/EDP,perhaps the most salient di�erence between them is that ECC/QECCs are algorithms performed bya single party (Alice for encoding and Bob for decoding), while CDP/EDP are two-party protocolsthat involve communication. In designing ECC/QECCs, the overhead is one of the main concernsand the goal is to design ECC/QECCs with as low as possible overhead that can withstand an ashigh as possible noise rate. For CDP/EDPs, the overhead is the amount of communication betweenAlice and Bob, i.e., the number of bits exchanged between them. Therefore, the communicationcomplexity of CDP/EDPs is one of their most important parameters.1.4 Our ContributionsIn this thesis, we study the communication complexity of correlation and entanglement distillationprotocols. Since CDP/EDPs are protocols, they are more complicated objects than ECC/QECCs.For example, with protocols, one might want to distinguish one-way communication, where only1In fact, Shor and Preskill used CSS codes, which are a special class of quantum error correcting codes, in theirproof. See the discussion before. 17



Alice sends information to Bob, who never sends anything back, from two-way communications,where Alice and Bob exchange bits. A protocol can be deterministic, where both Alice and Bobare deterministic, randomized, where Alice and Bob can have their own supply of random bits, orrandomized public-coin, where Alice and Bob share a common random source.2 It is the focus ofthis thesis to study various type of CDP/EDPs over a large range of noise models.We briey summarize a collection of results contained in this thesis. The ones marked with astar (?) are the major results.1. A Relation Between ECC/QECCs and CDP/EDPsWe relate a large class of error correcting codes and quantum error correcting codes to corre-lation distillation protocols and entanglement distillation protocols. More precisely, we pointout that every linear ECC corresponds to a CDP over the same noise model with the sameoverhead, and every stabilizer QECC corresponds to an EDP over the same noise model withthe same overhead. See Theorem 4.1 and Theorem 4.4. Furthermore, we prove that theirexist natural noise models where CDP/EDPs overperform ECC/QECCs. See Theorem 4.5,Theorem 4.7, and the discussions in Section 4.3.2. (?) Impossibility Resulta for Non-Interactive Correlation DistillationWe show several general impossibility result for non-interactive correlation distillation over anumber of natural noise models, including the binary symmetric model, the binary erasuremodel, and the extensions. We also show how this result is related to various research areas,including random beacon and information reconciliation. See Theorem 5.1, Theorem 5.2,Theorem 5.3, and Theorem 5.4.3. A Positive Result on One-bit Correlation DistillationWe present a positive result where Alice and Bob, by exchanging one bit of information,can perform correlation repair, which would be impossible without communication. Thisshows that even the minimal amount of communication can help in correlation repair. SeeTheorem 6.1.2We are using the notations from Kushilevitz and Nisan [52].18



4. (?) An Impossibility Result of Non-Interactive Entanglement DistillationWe show several impossibility results for non-interactive entanglement distillation, where Al-ice and Bob wish to produce near-EPR pairs without communication. These are the �rstresults in the area of communication complexity of EDPs, and they provide the �rst stepin understanding entanglement distillation protocols. See Theorem 7.1, Theorem 7.2, Theo-rem 7.3.5. An Impossibility Result of EDPs over the Entanglement Noise ModelWe prove an impossibility result on entanglement distillation over the so-called \entanglementnoise model". We show that it is impossible to distill EPR pairs from an arbitrarily entangledquantum state. We show how this result is related to classical randomness extractors. SeeTheorem 8.1.6. (?) A Complete Characterization of EDPs over the Fidelity Noise ModelWe completely characterize the communication complexity of entanglement distillation proto-cols over the so-called \�delity noise model". We present a protocol that distills near-perfectEPR pairs very eÆciently, and prove such a protocol is in fact optimal (up to an additive con-stant). We also show how this noise model is related to other areas of quantum informationtheory, including purity-testing protocols [23] and quantum key-distribution protocols [57, 84].See Theorem 8.2, Theorem 8.3, Theorem 8.4 and Theorem 8.5.These results appear in the following publications.1. A. Ambainis, A. Smith, |.Extracting Quantum Entanglement (General Entanglement Puri�cation Protocols).Appeared in the IEEE Conference of Computational Complexity (CCC 2002), Montr�eal,Queb�ec, Canada, pp. 103-112, 2002.2. |.On the (Im)possibility of Non-interactive Correlation Distillation.Appeared in the Latin American Theoretical INformatics (LATIN 2004), Buenos Aires, Ar-gentina, 2004. 19



3. A. Ambainis, |.Towards the Classical Communication Complexity of Entanglement Distillation Protocolswith Incomplete Information.To appear in the 19th Annual IEEE Conference of Computational Complexity (CCC 2004),Amherst, MA.
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reparative strategy.Not only are error correcting codes extremely useful in information theory, they have also foundnumerous applications in other �elds, including combinatorics, cryptography, and computationalcomplexity.Error correction has received a tremendous amount of attention. Because of its sheer volume,it is impossible to give an (even remotely) comprehensive list of the literature on this topic. I onlylist a few items. Shannon [82] is the �rst one to consider the problem of error correction, and hispaper marked the beginning of the �eld of information theory. Blahut [12] has a wonderful bookcompletely dedicated to error correcting codes and contains abound resources. Sudan [86] has avery nice survey on ECCs that is more tailor-made for audiences in computational complexity.Shor [83] and Steane [85] are the �rst to study quantum error correcting codes and to actuallyconstruct them. Gottesman's thesis [36] is a great source for the theory behind quantum errorcorrecting codes with many results. Nielsen and Chuang's book [69] also gives a nice descriptionon both classical and quantum error correction.1.5.2 Two-party Coin-ippingTwo-party coin-ipping is a classical problem in cryptography, where Alice and Bob wish to es-tablish some commonly agreed random bits by communication. Blum [10] is the �rst to study thesetting where Alice and Bob initially don't share any information and one of them could be cheat-ing. He suggested protocols that are secure against a computationally-limited adversary, based onnumber-theoretical assumptions. Following Blum's work, Lindell [54] studied the parallel versionof the problem under the same setting. Barak [9] consider the two-party coin-tossing resistant tothe man-in-the-middle attack. On the other hand, researchers have studied quantum coin-ipping,where Alice and Bob exchange quantum information and agree on a classical bit. For results in thisarea, see [56, 62, 1, 4, 88, 53]. Classical two-party coin-ipping is a special version of correlationdistillation protocols with the assumption that: 1) the players do not share any prior information;2) they are polynomial-time bounded; and 3) they don't necessarily collaborate and are liable tocheating. As a result, the protocols for two-party coin-ipping rely on cryptographic assumptionsand the communication complexity is higher than the number of coin ips they agreed on. Quantum21



two-party coin-ipping, however, does not �t into this thesis, since it requires a quantum channelbetween Alice and Bob.1.5.3 Information ReconciliationInformation reconciliation is an extensively studied concept [17, 61, 27, 30, 31] with applicationsin quantum cryptography and information-theoretical cryptography. In this setting, Alice and Bobeach possesses a sequence of random bits that agree \most of the time". Here the \agreement"between Alice's bits (denoted by A) and Bob's bits (denoted by B) is described by the mutualinformation I(A;B). Moreover, Eve, the eavesdropper, also possess some information (denoted byZ) about the bits held by Alice and Bob, which is quanti�ed by the mutual information I(Z;AB).Alice and Bob wish to \reconcile" their information (namely, to agree on some random information)by communicating in a public channel (which is noiseless but readable by Eve). Their goal is toagree on a common random string U with very high probability, while ensuring that Eve gains littleinformation from U . In terms of the entropy, let C be the communication between Alice and Bob,then we should have H(U jAC) � 0, H(U jBC) � 0, and I(U ;ZC) � 0. Information reconciliationand correlation distillation operate in similar models: Alice and Bob share noisy information, andthen communicate to agree on something with higher correlation. However, the primary concern forinformation reconciliation is privacy, i.e., that Eve gains little information about the informationagreed upon, while this thesis focus on the communication complexity.1.5.4 Quantum Entanglement DistillationAs we mentioned before, quantum entanglement distillation protocols are two-party protocols in-volving only local (quantum) operation and classical communication. These protocols generallytakes some entangled bipartite states as input and output near-perfect EPR pairs. The processof entanglement distillation was also known as \entanglement concentration" or \entanglementpuri�cation".There have been a lot of research e�orts on studying entanglement distillation protocols [21,22, 25, 43, 44, 75, 76, 77, 7]. Di�erent \noise" models on the imperfect EPR pairs are presentedand studied. 22



To the best of our knowledge, Bennett, Bernstein, Popescu, and Schumacher are the �rstto consider the problem of producing EPR pairs from \less entangled" states. In their seminalpaper [21], they give a protocol that converts many identical copies of pure state j�i = (cos �j 01i+sin �j 10i) to perfect EPR pairs. They call this process \entanglement concentration". In the sameyear, Bennett, Brassard, Popescu, Schumacher, Smolin, and Wootters [22] studied the problemof \extracting" near-perfect EPR pairs from identical copies of mixed entangled states. This isthe �rst time that the notion \entanglement puri�cation protocols" was presented, which wererenamed to \entanglement distillation protocols" later. They also pointed out that EDPs can beused to send quantum information through a noisy channel. Later, Bennett, DiVincenzo, Smolinand Wootters [25] improved the eÆciency of the protocols in [22] and proved a result that closelyrelated EDPs to quantum error correcting codes, which is an alternative means to transmit quantuminformation reliably through a noisy channel. Horodecki, Horodecki, and Horodecki [42, 45] andRains [75, 76, 77] give various asymptotic bounds on distillable entanglement for arbitrary entangledstates. They considered the situation where n identical copies of a state are given as input to anLOCC protocol, which then outputs m EPR pairs. They studied the asymptotic behavior of m=nas n approaches in�nity. Researchers also studied EDPs for a single copy of an arbitrary purestate, see, for example, Vidal [90], Jonathan and Plenio [49], Hardy [41], and Vidal, Jonathan, andNielsen [91]. Much of the work was built on the result of majorization by Nielsen [67], who is the�rst one that studied conditions under which one pure state can be transformed into another oneby LOCC.From another direction, researchers have studied EDPs with incomplete information, whereAlice and Bob do not know the exact state they share. The state is in a mixed state, or is preparedadversarially. In this case we cannot hope that Alice and Bob would act optimally. However, therestill exist protocols that do reasonably well. Bennett et. al [22, 25] studied the model where Bob'sshare in the EPR pairs underwent a noisy channel, resulting in a mixed state. They showed thattheir protocol would \distill" near-perfect EPR pairs even when Alice and Bob do not have thecomplete knowledge of the shared state. Under another circumstance, \purity-testing protocols"were studied implicitly by Lo and Chau [57], Shor and Preskill [84], and later explicitly by Barnum,Cr�epeau, Gottesman, Smith, and Tapp [23]. Purity-testing protocols are LOCC protocols that23



approximately distinguish the state of perfect EPR pairs from the rest states. Ambainis, Smith,and Yang [7] pointed out that purity-testing protocols are indeed EDPs where Alice and Bob onlyknow the �delity of the state they share. Using constructions from [23], Ambainis, Smith and Yangconstructed a \Random Hash" protocol that produces (n � s) EPR pairs of conditional �delityat least 1 � 2�s1�� on any n qubit-pair input state of �delity 1 � �. Their protocol would fail withprobability �, and the conditional �delity of its output is the �delity conditioned on the protocolnot failing.Much of previous work assumes that Alice and Bob have the complete information about thestate they share, and thus they can act optimally. The main focus of the majority of the previouswork is the yield of the protocols, i.e., the question \how many EPR pairs can be extracted fromthe input state, using unlimited classical communication?" Lately, there has been work that startto study the communication complexity of EDPs, started by Lo and Popescu [58] and followed byAmbainis and Yang [8]. Here the question is \how many bits need to be exchanged in order todistill n EPR pairs?" In the thesis, I continue this line of research on the communication complexityof EDPs with the focus on the situation where Alice and Bob have incomplete information abouttheir shared states.1.5.5 Communication ComplexityClassical communication complexity studies the minimal amount of classical information (typicallymeasured in bits) needed to be transmitted between multiple parties in order to collectively performa certain computation. The results are typically information theoretical, and do not rely on anyun-proven assumptions. The �eld of communication complexity was pioneered by Yao [94], andnow is a very rich �eld in theoretical computer science, and has found applications in many areas,like network analysis, VLSI design, data structure, and computational complexity. The readers arereferred to [52] for a nice introduction and tutorial.Quantum communication complexity mostly studies the minimal amount of quantum informa-tion (typically measured in qubits) needed to be exchanged in order to perform some (classical orquantum) task. This �eld was also �rst studied by Yao [95], and now it is becoming one of themain topics in quantum information theory. It is a very successful area, and numerous results have24



emerged. In fact, most known lower bounds in quantum computation can be regarded as commu-nication complexity results. We refer the readers to [15] for a nice survey, and [19, 50, 51, 78] forsome important techniques and results.Despite the numerous results emerging from classical and quantum communication complexity,another class of problem, namely the classical communication complexity for quantum protocols,has being largely ignored until very recently. This class of problem is concerned with the minimalnumber of classical bits needed to be communicated to perform certain quantum tasks. An exampleis the classical communication complexity for EDPs. One may ask \how many bits do Alice andBob need to exchange in order to distill n EPR pairs?" One reason that not many researcherspay too much attention to this problem might be the conception that classical communication is\cheap" compared to quantum communication, and thus one can assume they are free. However,as pointed by Lo and Popescu [58], there are situations where classical communication can not bejusti�ably ignored. One example is the super-dense coding [29]. Alice and Bob can use n qubits totransmit 2n bits of classical information, if they previously share n EPR pairs. Nevertheless, if ittakes more than n bits of classical communication to distill the n EPR pairs, it would completelydestroy the purpose of super-dense coding. Furthermore, in the study of LOCC protocols overquantum states, no quantum communication takes place, and it is therefore interesting to studythe classical communication complexity of these (quantum) protocols.The history of classical communication complexity for quantum protocols can probably tracedback to the seminal paper by Bennett and Wiesner [29], which discussed teleportation and con-structed a protocol that uses 2n classical bits to transmit n qubits. However, this topic was largelyoverlooked until the work by Lo and Popescu [58] and Lo [55]. Lo and Popescu [58] discussed theclassical communication complexity of various protocols by Bennett et. al. [21]. They observed thatthe \entanglement concentration protocol" in [21] does not require any classical communication.However, the \entanglement dilution protocol", which transformsm EPR pairs into n copies of lessentangled qubit pairs, requires O(n) bits of classical communication. Lo and Popescu then con-structed a new dilution protocol that only uses O(pn) bits of communication. This protocol wasproven to be asymptotically optimal independently by Hayden and Winter [47], and Harrow andLo [46], who proved matching lower bounds for general entanglement dilution protocols. Lo [55]25



studied the communication complexity for Alice and Bob to jointly prepare many copies of arbitrary(known) pure states, and proved a non-trivial upper bound.All the previous results focus on a relatively simple situation, where the input are identicalcopies of a known pure state, and only the asymptotic results are known. In this thesis, I study thecommunication complexity of EDPs with incomplete information. In this setting, Alice and Bobdo not have the complete knowledge about the input state they share. Rather, the input state isa mixed state, or is adversarially prepared. I also study the precise communication complexity ofEDPs, rather than their asymptotic behavior. In fact, we try to answer questions of the followingfashion: \On this particular input state class, how many bits of classical communication are neededin order to just output a single EPR pair with a certain quality?"
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Chapter 2
Quantum Mechanics and QuantumInformation Theory
We introduce the notions and concepts in quantum mechanics and quantum information theory.2.1 Quantum MechanicsWe briey summarize the laws and conventions in quantum mechanics used in this thesis. Thissummary is by no means complete and we refer the reader to Peres [73] and Nielsen and Chuang [69]for a more comprehensive treatise.2.1.1 The Quantum States and the Dirac NotationA quantum system is described in a Hilbert space, i.e., a linear space with a well-de�ned innerproduct. In this thesis we only consider Hilbert spaces of �nite dimension. We use HN to denotea Hilbert space of dimension N . A pure state is described by a unit (column) vector in a Hilbertspace HN and is normally denoted in the so-called Dirac notation as j�i. A qubit is a two-statequantum system (and is thus in a 2-dimensional space H2), and is also the smallest quantumstate possible. A general qubit can be written as j�i = �j 0i + �j 1i, where � and � are complexnumbers satisfying j�j2 + j�j2 = 1. We can view this general state j�i as a superposition of thetwo basis states j 0i and j 1i. In general, a system of n qubits is described in a Hilbert space of27



dimension 2n, which can be conveniently viewed as a tensor product of n two-state subspaces, i.e.,H2n = H2 
 H2 
 � � � 
 H2. We always assume the existence of a �xed, canonical computationalbasis in an N -dimensional Hilbert space, denoted as fj 0i; j 1i; :::; jN �1ig, and a general pure statecan be written as j�i =P2n�1x=0 �xjxi, where P2n�1x=0 j�xj2 = 1. Naturally we have N = 2n. Again,it is in general a superposition of 2n basis states.A \bra" is a unit row vector, de�ned as h� j = (j�i)y, where xy denotes the operation of applyingtranspose followed by the complex conjugate to x. For pure states j�i and j i, their inner productcan be conveniently written as (j�i; j i) = h� j � j i = h� j i.An outer product of two pure states j�i and j i is a matrix de�ned as j�ih j = j�i � h j.The outer product and the inner product are conveniently related by the trace of a matrix.Tr(j�ih j) = h j�i (2.1)2.1.2 The Density Matrix and Mixed StatesAn alternative way to describe a pure state j�i is by its outer product with itself, j�ih�j. This isknown as the density matrix notation, and j�ih�j is the density matrix representing state j�i. Oneadvantage for the density matrix notation is that it can conveniently represent mixed states. Amixed state emerges when we do not have the complete information about a quantum system butonly partial knowledge represented as a probabilistic distribution. More precisely, a mixed stateis a probabilistic ensemble (mixture) of pure states. In Dirac notation, one writes a mixed stateas fpi; j�iig, which means this state is in state j�ii with probability pi. Naturally, we have thatPi pi = 1. In the density matrix notation, such a state is simply represented as� =Xi pi � j�iih�ij: (2.2)It is easy to see that all density matrices are positive operators (i.e., they are Hermitians andall their eigenvalues are non-negative) and have trace 1. In fact, one can de�ne a density matrixas one that is positive and have trace 1. Notice any such matrix can be written in the form ofEq. (2.2) by spectral decomposition.Notice that there might exist two very di�erent ensembles of pure states that yield the same28



density matrix. For example, consider an ensemble A which is state j 0i with probability 0:5, andstate j 1i with probability 0:5. Its density matrix is �A = 0:5 � j0ih0j + 0:5 � j1ih1j = I=2. Consideranother ensemble B that is state j�+i = 1p2(j 0i + j 1i) with probability 0:5 and state j��i =1p2(j 0i � j 1i) with probability 0:5. It density matrix is �B = 0:5 � j�+ih�+j+ 0:5 � j��ih��j = I=2.So these two ensembles have the same density matrix, although they are formed very di�erently.However, by the laws of quantum mechanics, all the information one can obtain from a quantumsystem can be derived from its density matrix. Therefore, if two systems have identical densitymatrices, then there is no way to distinguish them. So the two ensembles A and B describe thesame quantum system.When studying a large quantum system, sometimes it is convenient to focus on a smaller\subsystem" within the large system. One can derive the reduced density matrix for the subsystemfrom the density matrix of the large system. Suppose the smaller system is in a Hilbert space HAand the large system is in a Hilbert space HAB with density matrix �. Then the density matrix �Afor the subsystem can be obtained by \tracing out" the system B, denoted by �A = TrB(�). HereTrB is a linear operator de�ned asTrA(ja0iha1jA 
 jb0ihb1jB) = hb0 j b1i � ja0iha1j (2.3)Here we use superscript to denote the subsystem a state is in: ja0iha1jA is a state in subsystem Aand jb0ihb1jB is a state in subsystem B. It is possible that � is a pure state in the large quantumsystem AB, while the local density matrix �A corresponds to a mixed state. In this case we say thatstate AB is entangled. Entanglement is one of the most important features in quantum mechanicsand quantum information theory.2.1.3 Quantum OperationsThere are two types of operations that can be applied to a quantum system, namely unitaryoperations and measurements.A unitary operation is a linear operator. For a quantum system of dimension N , such a linearoperator can be naturally described as an N � N matrix U that maps a pure state j�i to U j�i,and (equivalently) a mixed state � to U�U y. Such a matrix is unitary, if and only if UU y = I.29



The laws of quantum mechanics stipulate that all unitary operations are allowed. Some of themost important unitary operations are single-qubit operators known as Pauli operators or Paulimatrices, denoted by X, Y , and Z, respectively, and de�ned asX(�j 0i + �j 1i) = �j 0i + �j 1i (2.4)Y (�j 0i + �j 1i) = �i�j 0i + i�j 1i (2.5)Z(�j 0i + �j 1i) = �j 0i � �j 1i (2.6)The simplest version of measurements is a projective measurement. A projector is a linearoperator P such that P 2 = P . An observable is an orthogonal decomposition of the identityoperation. In other words, an observable is a collection of projectors fPig satisfying Pi Pi = I. Ifone applies an observable j�i to a state j�i, we have a projective measurement. A measurement isgenerally probabilistic: the resulting state is Pij�iph� jPij�i with probability h� jPij�i. A measurementon a mixed state can be naturally generalized. A more general version of measurement, knownas POVM (\Positive Operator-Valued Measurement"), is more conveniently described using thedensity matrix notation. A POVM is a collection of measurement operators fEig, where each Eiis a positive operation and we have PiEi = I. One may write Ei = M yiMi for each i. The resultof such a measurement on a quantum state � is state Mi�MyiTr(MyiMi�) with probability Tr(M yiMi�). Tosee that POVM is indeed a more general notion, observe that it includes unitary operations as aspecial case. It can be shown, however, that any POVM can be realized by unitary operator andprojective measurements with ancillary qubits.The formalism of super-operators is used to describe how a quantum system evolve when inter-acting with its environment. A super-operator, normally denoted by E , is a linear operator overdensity matrices de�ned as E(�) =Xi Ei�Eyi (2.7)where PiEyiEi � I. We say E is trace-preserving, if PiEyiEi = I.
30



2.2 Quantum Information TheoryWe review some of the basic notions in quantum information theory. We do not attempt to givea complete or comprehensive survey on this topic. Again, the readers are refereed to Nielsen andChuang [69] for more comprehensive treatise.2.2.1 EntropyThe entropy of a quantum state � is denoted by S(�) and known as the von Neumann entropy. Itis de�ned as S(�) = �Tr(� log �) (2.8)where the logarithm is base-2.It is not hard to derive from the de�nition that all pure states have entropy zero and themaximum entropy of an n-qubit system is n, which is achieved by the completely mixed state I2n .2.2.2 EntanglementIn this thesis we will be mainly interested in bipartite systems shared between Alice and Bob. Insuch a bipartite system, the entanglement of a normalized pure state j�i, denoted by E(j�i), isde�ned to be the von Neumann entropy of the mixed state obtained by tracing out Bob's subsystem.In other words, E(j�i) = S(TrB(j�ih�j)) (2.9)A pure state is entangled if its entanglement is non-zero, and is otherwise disentangled orseparable. A mixed state is disentangled if it can be expressed as an ensemble fpi; j�iig where eachj�ii is disentangled. All other mixed states are entangled. However, there isn't an agreed-uponde�nition on the amount of entanglement of a mixed state.For a bipartite system consisting of n qubit pairs (or 2n qubits in total), its maximum possibleentanglement is n. The most important among the maximally entangled states are the four Bell
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states, de�ned as �+ = 1p2(j 0iAj 0iB + j 1iAj 1iB) (2.10)�� = 1p2(j 0iAj 0iB � j 1iAj 1iB) (2.11)	+ = 1p2(j 0iAj 1iB + j 1iAj 0iB) (2.12)	� = 1p2(j 0iAj 1iB � j 1iAj 0iB) (2.13)These are maximally entangled two-qubit pure states.The Bell states are closely related to the Pauli matrices. In particular, it is easy to verify thatunitary operators of the form I 
U , where U 2 fX;Y;Zg translates one Bell state to another. Forexample, we have (I 
X) �+ = 	+, (I 
 Y ) �+ = 	�, and (I 
 Z)�+ = ��.An EPR pair, or an Einstein-Podolsky-Rosen pair, refers to the Bell state �+.1 We denotethe state (�+)
n, which represents n perfect EPR pairs, by �n. We also abuse the notation touse �n to denote both the vector j�ni and its density matrix j�nih�nj, when there is no danger ofconfusion.2.2.3 FidelityThe �delity is a measure of the \closeness" of two quantum states. For two (mixed) states � and� of equal dimension, their �delity if de�ned asF(�; �) = Tr2(q�1=2��1=2): (2.14)Notice we are using a di�erent de�nition as in [NC00], where the square root of (2.14) is used.If � = j'ih'j is a pure state, the de�nition simpli�es toF(�; j'ih'j) = h' j�j'i (2.15)A special case for the �delity is when j'i = �n for some n. In this case, we call the �delity of1There exist contexts where an EPR pair refers to the state 	�. See, for example, Bohm [14]. But in this thesis,we use the convention of �+. 32



� and j'i simply the �delity of state �, denoted as F(�). In other words, we haveF(�) = h�n j�j�ni (2.16)We are often interested in the �delity of two states of unequal dimensions, and in particular,the �delity of a general bipartite state �, and the Bell state �+. If � has dimension 2, then thisis simply F(�). However, when � has a higher dimension, we need to de�ne its base �delity as the�delity of the state obtained by tracing out all but the �rst qubit pair of �. We denote the base�delity of � by Fb(�). Mathematically, we have Fb(�) = F(Tr1(�)).It is easy to verify that the �delity is linear with respect to ensembles, so long as one of theinputs is a pure state, as in the following claim.Claim 2.1 If � is the density matrix for a mixed state that is an ensemble fpi; j�iig, and � is thedensity matrix of a pure state, then we haveF(�; �) =Xi pi � F(j�iih�ij; �): (2.17)The �delity is also monotone with respect to trace-preserving operations [69].Claim 2.2 For any states � and � and any trace-preserving operator E, we haveF(E(�); E(�)) � F(�; �): (2.18)One useful fact is that the base �delity of any completely disentangled state is at most 1=2.Lemma 2.1 If � is a completely disentangled state, then Fb(�) � 1=2.Proof: By the de�nition of base �delity, we may assume that � has dimension 2. By Claim 2.1,we only need to consider the case that � is a pure state j�ih�j. Since j�i is disentangled, we maywrite it as j�i = (�0j 0i + �1j 1i) 
 (�0j 0i+ �1j 1i)
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Then a direct calculation reveals thatFb(j�ih�j) = 12 j�0�0 + �1�1j2= 12 �j�0j2j�0j2 + j�1j2j�1j2 + �0�0��1��1 + ��0��0�1�1�� 12 �j�0j2j�0j2 + j�1j2j�1j2 + j�0��1 j2 + j�1��0 j2�= 12(j�0j2 + j�1j2)(j�0j2 + j�1j2)= 12
2.3 Some Useful Results2.3.1 The Deviation of Pure States over Unitary OperationsWe study how much \deviation" a quantum state undergoes when applied various unitary opera-tions. In particular, we will prove two lemmas that would be useful in the rest of the thesis.First, we consider the \deviation" of an arbitrary pure state under the operations fI;X; Y; Zgover its �rst qubit.Lemma 2.2 Let j�i and j i be two pure states of the same dimension, not necessarily bipartite.Let I, X, Y , and Z be the unitary operations over the �rst qubit of j�i. Then we haveXU2fI;X;Y;Zg jh� jU j ij2 � 2 (2.19)Proof: We write j�i = �0j 0ij�0i+ �1j 1ij�1i and j i = �0j 0ij 0i+ �1j 1ij 1iThen we have h� jIj i = ��0�0h�0 j 0i+ ��1�1h�1 j 1ih� jXj i = ��1�0h�1 j 0i+ ��0�1h 0 j�1ih� jY j i = �i�1��0h�1 j 0i+ i�0��1h�0 j 1ih� jZj i = ��0�0h�0 j 0i � ��1�1h�1 j 1i34



ThereforeXU2fI;X;Y;Zg jh� jU j ij2 = 2j�0�0j2jh�0 j 0ij2 + 2j�1�1j2jh�1 j 1ij2 + 2j�0�1j2jh�0 j 1ij2 + 2j�1�0j2jh�1 j 0ij2� 2j�0j2j�0j2 + 2j�1j2j�1j2 + 2j�0j2j�1j2 + 2j�1j2j�0j2= 2(j�0j2 + j�1j2)(j�0j2 + j�1j2)= 2
An immediate corollary isCorollary 2.1 For any pure state j�i, PU2fI;X;Y;Zg jh� jU j�ij2 � 2.Next, we consider quantum states and operations over bipartite systems, and study the \de-viation" of a general bipartite state under unitary operations of the form U 
 U�, where U� isde�ned as the complex conjugate of U , i.e., one simply takes the conjugate of each entry in U�.Alternatively, U� is de�ned as the unique unitary operation that satis�es that U�j��i = (U j�i)�.We interpret U 
 U� as Alice applies U to her �rst qubit and Bob applies U� to his �rst qubit.Again, we consider U 2 fI;X; Y; Zg.Lemma 2.3 Let j�i be a pure state in a bipartite system shared between Alice and Bob. Let I,X 
X�, Y 
 Y �, and Z 
 Z� be the unitary operations over the �rst All these 4 operations workon the �rst qubit of Alice and the �rst qubit of Bob. Then we haveh� j�i+ h� j(X 
X�)j�i+ h� j(Y 
 Y �)j�i + h� j(Z 
 Z�)j�i = 4Fb(j�i) (2.20)Proof: We �rst consider how the Bell states behave under these unitary operations. It is easy toverify the result, which we compile into the following �gure.It is easy to see that the state �+ is invariant under any of the 4 operations, while other Bellstates will change their signs under some operations.Notice the 4 Bell states form an orthonormal basis for a bipartite system of 2 qubits. We35



state �+ �� 	+ 	�I 
 I� �+ �� 	+ 	�X 
X� �+ -�� 	+ -	�Y 
 Y � �+ -�� -	+ 	�Z 
 Z� �+ �� -	+ -	�Figure 2.1: The Bell States under Pauli Operatorsdecompose j�i into the Bell basis and writej�i = �0�+ 
 j 0i+ �1�� 
 j 1i+ �2	+ 
 j 2i+ �3	� 
 j 3iwhere P3j=0 j�j j2 = 1. Therefore we haveh� j�i = j�0j2 + j�1j2 + j�2j2 + j�3j2h� j(X 
X�)j�i = j�0j2 � j�1j2 + j�2j2 � j�3j2h� j(Y 
 Y �)j�i = j�0j2 � j�1j2 � j�2j2 + j�3j2h� j(Z 
 Z�)j�i = j�0j2 + j�1j2 � j�2j2 � j�3j2
and so, h� j�i + h� j(X 
X�)j�i+ h� j(Y 
 Y �)j�i + h� j(Z 
 Z�)j�i = 4j�0j2 = 4Fb(j�i)
2.3.2 Positive OperatorsFor two positive operators A and B, we say A dominates B, if A � B is still a positive operator,and we write this as A � B, or equivalently, B � A.Lemma 2.4 For any super-operator E and any positive operators A and B, if A � B, then E(A) �E(B). 36



This directly follows the fact that E is linear and preserves the positivity of operators: If A�B isa positive operator, then E(A)� E(B) = E(A�B) is also a positive operator.Lemma 2.5 Let � and � be density matrices such that � � a � �, for some positive number a. Forany POVM fEig, where Ei = M yiMi, let pi = Tr(�Mi) and and qi = Tr(�Mi) be the probabilitiesthe measurement result being i for � and �, respectively. Then we have pi � a � qi.This is obvious, since we have pi � a � qi = Tr((�� a � �)Mi) � 0.
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Chapter 3
Preliminaries and Notations
3.1 General NotationsWe present some general notations, both classical and quantum, to be used throughout the thesis.All logarithms are base-2. All vectors are column vectors by default. We use [n] to denote theset f0; 1; :::; n � 1g. If A and B are two sets, then A � B denotes the Cartesian product betweensets A and B.We often work with symbols from a particular alphabet, which is a �nite set and is normallydenoted by �. We always assume the existence of a canonical one-to-one correspondence betweenan alphabet � of size q and the set [q], and often identify � with [q].A string is a sequence of symbols from an alphabet. We often identify a string with a vectorand shall use them interchangeably. For a string x of length n, we use x[j] to denote its j-th entry,for j = 0; 1; :::; n � 1. We often also use a tuple to index an entry in a vector. For example, Weindex an (a � b)-dimensional vector by (x; y), where x 2 [a] and y 2 [b]. In this case, we assumethere exists a canonical mapping from [a] � [b] to [ab]. We use 0n to denote the all-zero vector(whose each entry is 0) of dimension n, and 1n to denote the all-one vector (whose each entry is 1)of dimensional n. When the dimension is clear from the context, it is often omitted.The Hamming distance between 2 strings x and y of equal length is the number of positionsthat these 2 strings di�er, and is denoted by dist(x; y). For strings x and y, we use x; y to denotethe concatenation of these 2 strings. 38



A binary string or binary vector is a string over alphabet f0; 1g. We identify an integer withthe binary vector obtained from its binary representation. For a binary vector x, we denote itsHamming weight by jxj, which is the number of 1's in x. Obviously the Hamming distance between2 binary strings x and y is simply jx � yj, where x � y denote the string obtained by entry-wiseXORing x and y.A classical probabilistic distribution for some alphabet �, normally denoted by D, is a mappingfrom �� to [0; 1], such thatPx2�� D(x) = 1. A uniform distribution over a set S is denoted by US ,and is de�ned to be US(x) = 1=jSj for all x 2 S.We identify a random variable with its distribution and shall use the terms \random variable"and \probabilistic distribution" interchangeably.The correlation of a pair of random variables X and Y over a distribution D, denoted byCorD[(X;Y )], is the probability they agree minus the probability they disagree.CorD[(X;Y )] = Prob D[X = Y ]� Prob D[X 6= Y ]: (3.1)The statistical distance between two distributions X and Y isSD(X;Y ) = 12Xx jProb [X = x]� Prob [Y � x]j (3.2)If the statistical distance between X and Y is �, then we say that they are �-close.For any function over a �nite set, we identify this function with its truth table, which can bewritten as a vector. For example, we regard a function over f0; 1gn also as a 2n-dimensional vector.We assume a canonical ordering of n-bit strings.3.2 ProtocolsWe focus on two-party protocols executed between Alice and Bob. A protocol is normally denotedby P. Classical protocols can be modeled by two interactive Turing machines as by Goldreich [40].Quantum protocols can be modeled by two quantum circuits connected by classic wires, as de�nedby Yao [95]. The actual model of computation isn't essential for this thesis, since all the lower39



bounds I shall prove are information-theoretical, and therefore are independent from the actualcomputation model being used, and all the algorithms I present would be eÆciently realizable inany of the reasonable computation models.Next, we will give formal de�nitions on various aspects of the correlation distillation protocols.However, �rst we discuss di�erent types of these protocolsClassical vs. Quantum The classical version of correlation distillation protocols work with clas-sical information. At the beginning of a protocol, Alice and Bob share information that is notperfectly correlated, and at the end of the protocol, they output classical information that isalmost perfectly correlated.The quantum version of correlation distillation protocols is more appropriately called entan-glement distillation protocols. Here, Alice and Bob start with qubits that are imperfectlyentangled, and at the end, they output qubits that are almost perfectly entangled.Recovering vs. Refreshing Intuitively, the recovering protocols are the ones that try to recoverthe information that is \corrupted" by a noisy channel. A bit more formally, a protocol isa recovering protocol, if Alice directly outputs her local input. Consider the situation whereAlice sends some information A through a noisy channel, and when Bob receives B from thechannel, A and B are not perfectly correlated (or entangled). In a recovering protocol, Aliceand Bob try to reconstruct the information A Alice sent out. At the end of the protocol,Alice will output A, and Bob tries to output Â that is as \close" to A as possible.Protocols that are not recovering protocols are called refreshing protocols. These protocols,on the other hand, aim to generate fresh information that is not necessarily the originalshared information. At the end of a refreshing protocol, Alice and Bob each outputs someinformation, which we denote as X and Y . The goal is to have X and Y be as correlated (orentangled) as possible.Non-interactive, One-way, and Two-way Depending on the amount of communication, a pro-tocol can be non-interactive, one-way, or two-way. A non-interactive protocol is one whereAlice and Bob don't communicate at all. They are perhaps the simplest protocols in theirclass. For interactive protocols, we say a protocol P is a k-bit protocol, if it contains k bits40



of communication. In a one-way protocol, only one of the players sends information to theother party. We always assume that in this case it is Alice that sends information to Bob,and Bob sends nothing back. In a two-way protocol, Alice and Bob both send information toeach other.Deterministic, Randomized, and Randomized Public-Coin A distillation protocol is eitherdeterministic or randomized. Deterministic protocols refer to ones where both Alice and Bobare deterministic. In a randomized protocol, both Alice and Bob are randomized. They bothhave their own supply of random bits, but they do not share any randomness. A protocol israndomized public-coin, if Alice and Bob have read access to a shared random string.Clearly a randomized public-coin protocol is more powerful than a randomized one, whichin turn is more powerful than a deterministic protocol. In fact, refreshing protocols withshared randomness are trivial, since Alice and Bob can simply discard the imperfectly sharedinformation and use the shared randomness entirely. However, shared randomness does nottrivialize quantum entanglement distillation protocols. In fact, it proves very useful in con-structing EDPs.Absolute vs. Conditional We assume that protocols always terminate. However, we make adistinction between a successful termination and an abort. Protocols that always successfullyterminate are called absolute protocols; protocols that may abort are called conditional proto-cols. For a conditional protocol, we assume that besides the normal output, Alice will outputa special symbol (either SUCC or FAIL) that indicates if the protocol successfully terminatesor aborts. We assume that this special symbol is output in a special tape (in the TuringMachine notation) or a special wire (in the circuit notation), so that it will not be confusedwith the \normal" output of Alice. We also assume that the special symbol is a piece ofclassical information.A classical correlation distillation protocol P works over a �xed alphabet �. Both the input andthe output of P are pairs of strings in �.1 A string pair S 2 �n � �n is written as S = (SA; SB),indicating that SA belongs to Alice and SB belongs to Bob.1In fact, in some of the protocols we study in the thesis, the input and the output alphabets are di�erent. However,they can be viewed as a natural extension to our convention here.41



We say P is a (�; n;m)-protocol, if the input string pairs have length n, and the output pairshave length m. We call m the yield of the protocol P. Formally we may write this asP(I) = O (3.3)where I 2 �n � �n is the input string pair, and O 2 �m � �m is the output string pair. At thebeginning of the protocol, Alice receives IA as her local input, and Bob receives IB as his. At theend of the protocol, Alice outputs OA as her local output, and Bob outputs OB . Notice that if Pis randomized, then O can be a random variable.A quantum entanglement distillation protocol P works over qubits. The shared quantum statebetween Alice and Bob can be described by a mixed state �. Suppose Alice and Bob share a stateconsisting of n qubit pairs, then � is a mixed state in a Hilbert space of dimension 22n. The reduceddensity matrices of Alice and Bob represent the local information they possess regarding the state�. We denote them by �A and �B. In other words, we have �A = TrB [�] and �B = TrA[�].We say P is an (n;m)-protocol, if its input consists n qubit pairs and it outputs m qubit pairs.We call m the yield of P. Formally we write this asP(�) = � (3.4)where � is a density matrix of dimension 22n and � a density matrix of dimension 22m.3.3 Noise ModelsFor both classical and quantum protocols, noise models are used to describe the inputs to theprotocols. A noise model is normally denoted by N, and is either classical or quantum, and is eitheradversarial or probabilistic.De�nition 3.1 (Adversarial Classical Noise Model) An adversarial classical noise model overan alphabet �, often denoted by Nca�;n, is a set of string pairs.Nca�;n = fI1; I2; :::; IMg (3.5)42



where Ik 2 �n � �n for k = 1; 2; :::;M . When there is no danger of confusion, the subscripts �and/or n are omitted.De�nition 3.2 (Probabilistic Classical Noise Model) A probabilistic classical noise modelover an alphabet �, often denoted by Ncp�;n, is a probabilistic distribution over �n � �n. Whenthere is no danger of confusion, the subscripts � and/or n are omitted.De�nition 3.3 (Adversarial Quantum Noise Model) An adversarial quantum noise model,often denoted by Nqan , is a set of quantum (mixed) states in a 22n-dimensional Hilbert space.Nqan = f�0; �1; :::; �M�1g (3.6)When there is no danger of confusion, the subscript n is omitted.De�nition 3.4 (Probabilistic Quantum Noise Model) A probabilistic quantum noise model,often denoted by Nqpn , is a single density matrix � of dimension 22n. When there is no danger ofconfusion, the subscript n is omitted.All our de�nitions on noise models (classical/quantum, adversarial/probabilistic) can be natu-rally extended to families of noise models.De�nition 3.5 (Noise Model Family) A noise model family is an in�nite sequence of noisemodels over a �xed alphabet �. N = (N1;N2; :::;Nn; :::) (3.7)3.4 Quality of the ProtocolsWe de�ne measures for the quality of correlation distillation protocols.3.4.1 Classical Correlation Distillation ProtocolsThe quality of a classical protocol is measured by the correlation of the string pair it outputs.43



De�nition 3.6 (Correlation of Classical Protocols) If a classical correlation distillation pro-tocol P produces a string pair O = (OA; OB) on input I, then its correlation on input I is thecorrelation between OA and OB, and it written as as Cor[P(I)]. The correlation of P over anadversarial noise model Nca, denoted by CorNca [P], is the minimal correlation of P over all inputsin Nca CorNca [P] = minI2Nca fCor[P(I)]g (3.8)The correlation of P over a probabilistic noise model Ncp, denoted by P[Ncp], is the expected corre-lation of P over all inputs in Nca CorNcp [P] = EI2Ncp fCor[P(I)]g (3.9)De�nition 3.7 (Perfect Classical Protocol) A classical correlation distillation protocol P isperfect for a classical noise model Nc, if CorNcp [P] = 1.Often there are other constraints on the output besides the correlation. In a recovering protocol,Alice needs to output the original information she sent over. In a refreshing protocol, both Aliceand Bob need to output (locally) uniformly distributed bits. The performance of a protocol ismeasured both in its yield and the correlation of its output with the constraints.3.4.2 Quantum Entanglement Distillation ProtocolsThe quality of a quantum protocol is measured by the �delity of its output and the perfect EPRpairs.De�nition 3.8 (Fidelity of Quantum Protocols) The �delity of an entanglement distillationprotocol P on input state � is the �delity of its output, written as F(P(�)). The �delity of P overan adversarial noise model Nqa, denoted by FNqa(P), is the minimal �delity of P on all inputs inNqa FNqa(P) = min�2Nqa fF (P(�))g : (3.10)The �delity of a protocol P over Nqp is simply F(P(Nqp)).44



De�nition 3.9 (Perfect Quantum Protocol) A quantum correlation distillation protocol P isperfect for a quantum noise model Nq, if FNq(P) = 1.De�nition 3.10 (Conditional Fidelity) For a conditional protocol P, its conditional �delityover a noise model Nq is its �delity conditioned on that P succeeds (i.e., outputs \SUCC"), and isdenoted by FcNq(P).
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Chapter 4
Error Correcting Codes andCorrelation Distillation Protocols
We discuss the relation between error correcting codes and correlation distillation protocols. Inparticular, we shall establish several results. The �rst result relates classical linear error correctingcodes to classical correlation distillation protocols by proving that every linear ECC corresponds toa CDP of the same overhead with respect to the same noise model; the second result relates quantumstabilizer codes to entanglement distillation protocols by proving a similar result, that any stabilizerQECC corresponds to an EDP of the same overhead with respect to the same noise model.1 Thelast result separates the power of error correction from correlation distillation. In particular, wepresent two noisy channels (one classical and one quantum) of such high noise rates that errorcorrection becomes useless (for noiseless transmission of information), but there exist correlationdistillation protocols that can achieve a positive rate of noiseless information transmission.The results in this Chapter relative to this thesis are summarized in Figure 4.1.1In fact, we prove that for any stabilizer QECC with an overhead of ` qubits, there exists an EDP with an overheadof ` bits. Thus, in some sense EDPs are much more eÆcient than QECC, since classical bits are much cheaper thanqubits.
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stablizer QECC => perfect EDPFigure 4.1: Results in Chapter 4.4.1 Classical Error Correcting Codes and Correlation DistillationProtocolsHere we prove a very general result that relates a very large class of error correcting codes tocorrelation distillation protocols.4.1.1 Error Correcting CodesWe describe the notion of Error Correcting Codes very briey. Generally, an error correcting codeis a systematic way of adding redundancy to the information, so that the redundant information isresilient to \small" disturbances. In this thesis we only focus on block codes that encode messagesof a �xed length into code-words of a �xed length.De�nition 4.1 (Classical Error Correcting Code) A (classical) error correcting code of pa-rameter (n; k; d) over an alphabet � is function E : �k 7! �n, such that for any x; y 2 �k, x 6= y,dist(E(x); E(y)) � d. The function E is called an encoder. A string x 2 �k is called a message,and its image E(x) 2 �n is called its code-word.This de�nition implicitly de�nes a decoder D as well. Consider an (n; k; d)-code. For any stringt 2 �n, there can be at most one code-word of Hamming distance less than or equal to (d � 1)=2from t. If such a code-word exists, and suppose it is E(x), then t will naturally be decoded to47



message x. If no such code-word exists, the decoding of t is unde�ned. More formally, D : �n 7! �kis de�ned as D(t) = 8><>: x if there exists an x s.t. dist(E(x); t) � (d� 1)=2? otherwise (4.1)We stress that we focus on the properties of the code-words, rather than computational com-plexity of encoding/decoding. For example, we don't require the encoding and decoding algorithmsof the codes to be eÆcient. Neither do we consider list decoding, where some strings more than(d� 1)=2 away from any code-words may be decoded to a list of \candidate" messages (interestedreaders are referred to Guruswami's Ph.D. thesis [38] for a comprehensive survey).4.1.2 Linear CodesPerhaps the most important class of error correcting codes is the class of linear codes. Linear codesare of particular interest because of their simplicity and beautiful mathematical structures. In fact,most of the known good codes belong to the class of linear codes. The alphabet of a linear code isa �nite �eld F, and the encoder E for a linear code is a linear mapping from Fk to Fn . Therefore Ecan be succinctly described as an n� k generator matrix G, and the encoding is simply a matrixmultiplication: a message x, a k-dimensional vector, is mapped to code-word G � x. All the code-words form a k-dimensional subspace in Fn , which is the column space of G2. An (n; k; d)-linearcode is often denoted as a [n; k; d]-code. The square brackets replaces the round parentheses toindicate that it is a linear code.Given two linear codes E and E0, represented by generator matrices G and G0, we say they areequivalent, if G0 can be obtained from G by row permutations and elementary column operations.Intuitively, if E and E0 are equivalent, then one is only trivially di�erent from the other, and thereexists a very simple correspondence between the code-words of E and E0.Next, we describe a special form of linear codes, known as the systematic codes. The de�nitionis taken from [12, De�nition 3.2.4, page 49].2The column space of G is the subspace generated by the columns of G.48



De�nition 4.2 (Systematic Code) A linear code E is a systematic code, if its generator matrixG is of the form G = 264 IP 375 , where I is an k � k identity matrix and P a (n� k)� k matrix.Intuitively, a systematic code is one where a code-word is the message it encodes concatenated with(n� k) so-called \parity-check symbols".It is a standard exercise in linear algebra that any linear code is equivalent to a systematiccode [12, Theorem 3.2.5, page 80].4.1.3 The Classical Bounded Corruption ModelWe describe a classical noise model that is used by most error correcting codes, namely, the classicalbounded corruption model.De�nition 4.3 (Classical Bounded Corruption Model) A classical bounded corruption modelof parameter (n; t) over alphabet �, denoted by Bcn;t, is an adversarial model consisting of all thepairs (a; b), where both a and b are elements of �n and the Hamming distance between a and b isat most t. In other words, Bcn;t = f(a; b) j a; b 2 �n; dist(a; b) � tg (4.2)Intuitively, the classical bounded corruption model adversarially corrupts (modi�es) up to tsymbols in a string of length n.Now we are ready to state a positive result. We show a relation between systematic linear codesand correlation distillation protocols over the bounded corruption noise model.Theorem 4.1 (From ECC to CDP) For every systematic linear code E of parameter [n; k; d]over alphabet �, there exists a perfect recovering, one-way, (�; k; k)-protocol PE over a classicalbounded corruption noise model Bck;(d�1)=2 that uses (n� k) bits of communication.Proof: The idea behind this proof is in fact very simple. Let the generator matrix of the sys-tematic linear code E be G = 264 IP 375. Then PE proceeds as follows. When PE starts, Alice andBob each possesses a length-k string, IA and IB , respectively. Alice then computes C = P � IA,49



an (n � k)-dimensional vector, sends it over to Bob, and output OA = IA. Bob then applies thedecoding function D and compute OB = D(IB ;C).We prove that PE is perfect with respect to Bck;(d�1)=2. In fact, IA;C is the code-word for themessage IA, and since the channel Bck;(d�1)=2 only changes at most (d� 1)=2 symbols, we have thatdist([IA;C]; [IB ;C]) � (d � 1)=2. Therefore, the decoding function D will correctly decode IB ;Cto IA. In other words, we have OA = OB, and thus PE is perfect.We present this positive result as a link to relate error correction to correlation distillation. Asthe result shows, in general, correlation distillation is at least as eÆcient as error correction, if notmore eÆcient, for the majority of the error correction codes.4.2 Quantum Error Correcting Codes and Entanglement Distilla-tion ProtocolsWe relate the notion of quantum error correcting codes (QECCs) to entanglement distillationprotocols (EDPs), with the focus on their eÆciencies.4.2.1 Quantum Error Correcting CodesLike their counterparts in classical information theory, quantum error correcting codes are system-atic ways of adding redundancy to the quantum information, so that the encoded information isresilient to \small" noises. However, quantum error correction is more complicated. First of all,unlike in the classical case, quantum information cannot be duplicated, due to the No-cloning The-orem [93]. So the redundancy added by QECCs is limited, and measurement of the error syndromeshould not yield any information about the encoded message. Second, the noise model is morecomplicated: one qubit can su�er from a bit ip (an X operator), a phase shift (a Z operator), abit ip combined with a phase shift (a Y operator), or a superposition of them. There are in�nitelymany (in fact, uncountably many) possible ways to \corrupt" a code-word, and a QECC needs tocorrect all of them. Indeed, less than one decade ago, it was not even clear if QECC was possibleat all, and a positive answer by Shor [83] and Steane [85] caused quite a surprise in the quantuminformation community. In a nutshell, QECC is possible because of the following reasons. First, for50



properly designed codes, the measurement of the error syndrome will only yield information aboutthe errors on a code-word, and no information about the encoded message, thus not violating theno-cloning theorem. Second, due to the linearity of quantum mechanics, it suÆces to correct thebasis errors, and all other errors will be automatically corrected (by \collapsing" into one of thebasis errors), thus solving the problem of in�nitely many errors.We now formally de�ne QECCs. We always assume that these codes work over qubits, andthey are block codes.De�nition 4.4 (Quantum Error Correcting Code) An error correcting code of parameter (n; k; r)is a pair of quantum algorithms (E;D), both over n qubits as input (they can have ancillary qubits,initialized to state j 0mi), such that for every x 2 f0; 1gk, j�xi = Ejxij 0n�ki, and for any state j ithat can be obtained from j�xi by (arbitrarily) modifying at most r qubits, we have Dj i = jxi
 �for some mixed state � of n� k qubits. We write such a code a [[n; k; r]]-code.4.2.2 The Quantum Bounded Corruption ModelWe describe the quantum bounded corruption model, which is the quantum counterpart of theclassical bounded corruption model. Correspondingly, this model is used by most quantum errorcorrecting codes.Before giving the formal de�nition, we need some additional notations. Recall that X, Y , and Zdenote the Pauli operators, while I denotes the identity operator, all over a single qubit. We de�neX0 = Y 0 = Z0 = I. We use Xk, Yk, and Zk to denote these operators over the k-th qubit. Givena 2n-bit vector v = (x0; x1; :::; xn�1; z0; z1; :::zn�1), which we call a Pauli vector, we can associateit with a unique multi-qubit Pauli operator Uv, de�ned asPv = Xx00 Zz00 
 � � � 
Xxn�1n�1 Zzn�1n�1 (4.3)which is a unitary operator over n qubits. Notice that since X � Z = �iY , we have X0Z0 = I,X0Z1 = Z, X1Z0 = X, and X1Z1 = �iY . In other words, a Pauli vector designates a unitaryoperator formed by applying one of the four operators in fI;X; Y; Zg to each of the n qubits. Wede�ne the degree of a Pauli vector to be the number of k's where xk and zk are not both 0, and we51



denote this by deg(v).We use [A;B] to denote AB �BA, and we say operators A and B commute, if [A;B] = 0. Weuse fA;Bg to denote AB +BA, and we say operators A and B anti-commute, if fA;Bg = 0. It isnot hard to see that any two Pauli operators either commute or anti-commute.De�nition 4.5 (Quantum Bounded Corruption Model) A quantum bounded corruption modelof parameter (n; r), denoted by Bqn;r, is an adversarial quantum noise model consisting of all statesof the form (I 
 Pv)�n, where v is a Pauli vector of degree at most k. In other words,Bqn;r = f(I 
 Pv) �n j deg(v) � rg (4.4)Intuitively, the quantum bounded corruption model adversarially corrupts up to r EPR pairs.The corruption appears quite limited, since it only allows applying one of the Pauli operators toBob's share of the qubit (we call them \Pauli corruptions"). There are certainly more ways tocorrupt the qubits; in fact there are uncountably many. However, since Pauli matrices, along withthe identity operator, form a basis for one-qubit operations, any corruption can be decomposedinto a linear superposition of the Pauli corruptions (or a mixture of them, if the corruption involvesmeasurements).4.2.3 An Equivalence between QECCs and One-way EDPsBennett et. al. [25] showed that every QECC corresponds to a one-way EDP with the same \eÆ-ciency". We review their results here.Theorem 4.2 (From QECC to EDP [25]) For every [[n; k; r]]-code, there exists a correspond-ing perfect, deterministic, one-way, (n; k)-protocol over a quantum bounded corruption model Bqn;rthat uses 2n bits of communication.Proof's sketch: Let (E;D) be an [[n; k; r]]-code. We construct a protocol P as follows. FirstAlice generates k fresh EPR pairs locally, keeps half of them, and encodes the other half using E.Next, Alice sends these n qubits to Bob by teleportation, using the shared n EPR pairs. FinallyBob decodes the n qubits received using D. Since at most r out of the n original EPR pairs are52



corrupted, the n qubits Bob receives from the teleportation contains at most r errors, and they canbe recovered by the decoding algorithm D.Theorem 4.3 (From EDP to QECC [25]) For every perfect, one-way (n; k)-protocol over aquantum bounded corruption model Bqn;r, there exists a corresponding [[n; k; r]]-code.Proof's sketch: First, we show how Alice and Bob can turn the EDP protocol into a error-correcting protocol with one-way communication. This is simple: Alice and Bob �rst use the EDPto distill k perfect EPR pairs, and then Alice teleport k qubits to Bob using the distilled EPRpairs. In both the EDP and the teleportation, only one-way communication is used. Finally, it wasproven that any error-correcting protocol with one-way communication corresponds to a QECCwith the same rate but no communication [25].4.2.4 Stabilizer Codes and EDPsTheorems 4.2 and Theorem 4.3 establishes the equivalence between QECCs and EDPs over thequantum bounded corruption model. In particular, Theorem 4.2 shows a positive result on thepower of EDPs. However, the construction of the EDPs in this theorem is not very eÆcient. Sincen teleportation procedures are used, a total of 2n bits of communication is needed. Can we dobetter than this? The answer is \yes" for a large class of QECCs, namely the stabilizer codes.Stabilizer CodeThe class of stabilizer codes is a very general class of quantum error correcting codes, and isthe analogue of the class of linear codes in classical error correction. We briey describe theproperties, and the readers are referred to Gottesman [37] and Nielsen and Chuang [69] for acomprehensive tutorial. Informally, a stabilizer code S is a collection of \parity check" operatorsS = fM0;M1; :::;M`�1g, where each Mi is a Pauli operator, and a state jxi is a code-word, if andonly if Mijxi = jxi for all i = 1; 2; :::; ` � 1. We use hSi to denote the subgroup generated by S,and N(S) the normalizer of S, which consists of all Pauli operators P such that P �S �P y = S. Wesay a subspace L is stabilized by S, if every element j�i 2 L is invariant under all elements in S.In other words, L = fj�i j 8i 2 [`];Mij�i = j�ig, and we write this as L = C(S). Then C(S) isalso precisely the subspace spanned by all the code-words.53



De�nition 4.6 (Stablizer Code) A [[n; k; r]]-stabilizer code S is an independent set of (n � k)Pauli vectors of dimension 2n, denoted by S = fM0;M1; :::;Mn�k�1g, such that for any two Paulivectors P0, P1 of degree at most r, P y0P1 62 N(S)� hSi.It is known that an [[n; k; r]]-stabilizer code is an [[n; k; r]]-QECC [37, 69]. In other words, thereexists generic constructions of the encoding/decoding circuit pair (E;D) from any stabilizer code.In particular, the decoding circuit D takes the following form. First, a unitary operator M isapplied to all n qubits, which, intuitively, computes the (n � k) \parity checks" de�ned by the(n�k) operators M0;M1; :::;Mn�k�1 2 S. Then, (n�k) qubits are measured in the computationalbasis, resulting an \error syndrome" e. Finally, an appropriate \correction" circuit Ue is appliedto the remaining k qubits. In particular, if the error syndrome is 0n�k, then the correction circuitis the identity circuit.Theorem 4.4 (From Stabilizer QECC to EDP) For every [[n; k; r]]-stabilizer code, there ex-ists a corresponding perfect, one-way, (n; k)-protocol over a quantum bounded corruption modelBqn;r that uses (n� k) bits of communication.Comparing this result to Theorem 4.2, we see a large improvement for communication complexity(from 2n to n � k). Notice that there exists [[n; k; r]]-stabilizer codes where c is a constant andk = n�c logn. In this case, Theorem 4.4 yields an exponential improvement over Theorem 4.2. Thisresult appears to be a folk-lore in the quantum information theory community and in particular,appeared as an exercise in Nielsen and Chuang [69, pp.597].We present a sketch of the proof for completeness.Proof's sketch: Let S = fM0;M1; :::;Mn�k�1g be an [[n; k; r]]-stabilizer code, and (E;D) be thecorresponding encoding/decoding circuit pair. In particular, we assume that D takes the formof a parity check circuit M (which is a linear mapping modulo 2) followed by measuring (n � k)qubits and then a family of correction circuits Ue. We construct a corresponding EDP PS asfollows. Alice applies the decoding circuit D to her share of qubits, i.e., she applies the parity checkcircuit M followed by a measurement and the corresponding correction circuit. She then outputsthe remaining k qubits and sends the (n � k) bits of the measurement result, denoted by eA, toBob. Bob performs the same parity check circuit M to his share of qubits, followed by the same54



measurement and obtain (n�k) bits, denoted by eB . Then Bob computes e = eA� eB and appliesthe correction circuit Ue to his remaining k qubits and output them.We prove that protocol PS is perfect. The main observation is that a stabilizer code is linear.The entire space of n-qubit states can be decomposed into 2n�k subspaces, each of dimension 2kand denoted by Le, where e 2 f0; 1gn�k , such that each subspace Le is stabilized by the groupgenerated by Se = f(�1)e0 �M0; :::; (�1)en�k�1 �Mn�k�1g. In particular, L0 is the subspace spannedby all code-words. Naturally, all these 2n�k subspaces are isomorphic to each other.Now consider the operation in PS . If the input to the protocol is (I 
 Pv)j�iAj�iB , thenthis state becomes (M 
MPv)j�iAj�iB after both Alice and Bob have applied their parity checkcircuits. If j�i is a code-word, then it is clear that Alice's measurement would yield eA = 0 andBob will apply the correction circuit Ue = UeB , which will correct the \corrupted code-word"Pvj�i, and result in state j iAj iB , where j i is the decoding of state j�i. Now, we �xed Pv andconsider the case j�i 2 La is not a code-word. In this case, it is not hard to see that M j�i willyield a measurement result of a. Furthermore, the measurement of MPvj�iB will give a result ofe � a, since j�i is stabilized by hSei, which has the same commute/anti-commute property withPv as hSei, since a phase change does not a�ect commutability. Therefore, Bob will still apply thecorrecting circuit Ue, e�ectively \remove" the a�ect of Pv | this is by the isomorphism betweenL0 and La.Finally, notice that the state �n can is a superposition of 2n states of form j�xiAj�xiB , with2k x's from each subspace Le. Overall, we conclude that the output of the protocol PS is �k.4.3 Separating Error Correction from Correlation DistillationWe present two (very) noisy channels, one classical, one quantum. In both channels the error cor-rection almost completely fails to transmit information noiselessly (because of the high noise rate),while there exist correlation distillation protocols promising a positive rate of noiseless informationtransmission. These results show a separation between the power of error correction and that ofcorrelation distillation.
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4.3.1 Separation Result for Classical ChannelsConsider a classical bounded corruption model Bcn;n=3. It is a classical result that a perfect errorcorrecting code can only encode two bits of information for such a channel. So error correction isalmost useless.Theorem 4.5 (Limits on ECCs) A perfect error correcting code for Bcn;n=3 can only encode 2bits of information.Proof: We prove that there can be at most 4 n-bit vectors such that any two of them haveHamming distance at least 2n=3. This will imply the theorem.We write these vectors as v1; v2; :::; vm and de�ne m new vectors u1; u2; ::; um as follows: ui[j] =2vi[j]�1. Thus each entry of ui is �1 and we have (ui; uj) � �1=3, where (x; y) denotes the scaledinner product (x; y) = 1nPi x[i] � y[i]. This is because any ui and uj must di�er at at least 2n=3 oftheir entries. Now, let u =Pi ui, and we compute (u; u). We have(u; u) = Xi (ui; ui) +Xi6=j (ui; uj) � m�m(m� 1)=3 = m(4�m)=3Since we have (u; u) � 0, we have m � 4.However, using correlation distillation protocols, we can do much better. To show the result,we need to introduce some notions from [72, 65].Consider a cooperative game played by two players, the \sender" S and the \receiver" R. At thebeginning of the game, S receives a private input x and R receives a private input y, where the pair(x; y) is drawn from a pre-determined set T � f(x; y)jx; y 2 f0; 1g�g. Here we call T the support set.Furthermore, we de�ne the projection of T on the sender S to be TS = fx : (x; y) 2 T for some yg,and TR similarly. During the game, S and R communicate, using a pre-determined protocol P. Atthe end of the game, R outputs x0, and they win if x0 = x. A winning protocol is one that alwayswins over all inputs in T . The communication complexity of the protocol P is the maximum numberof bits exchanged between S and R over all possible inputs (x; y) 2 T . Clearly this game is closelyrelated to correlation distillation protocols, and in particular, if the support set T is an adversarialclassical noise model, then the protocol is precisely a perfect recovering classical protocol.56



For a �xed support set T and a string y, we de�ne the ambiguity of y (with respect to T ) to be�(y; T ) = jfx : (x; y) 2 Tgj ; (4.5)and the maximum ambiguity of T to bê�(T ) = maxy2TRf�(y; T )g: (4.6)An element y 2 TR de�nes a hyperedgeE(y) = fx : (x; y) 2 Tg: (4.7)Finally, we de�ne the edge count of T is de�ned as�(T ) = jfE(y) : y 2 TRgj : (4.8)Naor et al.[65] proved the following theorem.Theorem 4.6 (Communication Compleiry Result [65]) For any support set T , there existsa four-round winning protocol with communication complexity at mostlog log �(T ) + log �̂(T ) + 3 log log �̂(T ) + 7 (4.9)Now we bring our attention to the case where T = Bcn;t is a classical bounded corruption model.It is straightforward to compute the maximum ambiguity and the edge count of T . In fact, we have�̂(T ) = �(T ) = Pn=3i=0 �ni� � 2n�(H(1=3)+o(1)) (we refer the readers to, for example, Sudan's coursenote [87] for proofs). Plugging in this to Theorem 4.6, we haveTheorem 4.7 (Separating ECC from CDP) There exists a four-round perfect correlation dis-tillation protocol for the noise model Bcn;t with communication complexity n � (H(1=3) + o(1)).Here H(x) is de�ned as H(x) = �x � log(x). Notice that log �̂(T ) dominates all other termsin (4.9). By investing about n � H(1=3) � 0:918n bits of communication, Alice and Bob are able57



transmit n bits of information. So the saving is about 0:082n bits. By contrast, the error correctionapproach can only manage to get two bits through.4.3.2 Separation Results for Quantum ChannelsThe separation results for quantum channels is in fact given by Bennett et al. [25]. We brieysketch a slight variation of their result here for completeness.Consider a quantum bounded corruption model Bqn;n=2. In other words, the model corrupts upto half of the qubits transmitted. One can easily prove that there does not exist perfect QECC forsuch a channel. Here is a brief sketch. Assuming otherwise, then we can feed a k-qubit state j�iinto the encoding algorithm and obtain an n-qubit state j i. The decoding algorithm would beable to recover j�i from the �rst n=2 qubits of j i, as well as the last n=2 qubits of j i. If we doboth, we can e�ectively clone the state j�i, which contradicts the No-cloning Theorem. Thereforeno QECC can be used here to even transmit a single qubit perfectly.On the other hand, there exists a two-round entanglement distillation protocol for Bqn;n=2 thatproduces a constant fraction (0:00457) of perfect EPR pairs that can then be used to transmitquantum information through teleportation. The detailed protocol can be found in [25].
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Chapter 5
Non-Interactive CorrelationDistillation
Here we demonstrate a series of negative results that aim to understand one of the most basic prob-lems in the communication complexity of correlation distillation, i.e., how well Alice and Bob cando if there is no communication at all? We call this process non-interactive correlation distillation(NICD).The results in this Chapter relative to this thesis are summarized in Figure 5.1.
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Figure 5.1: Results in Chapter 5.At the �rst glimpse of the problem, it may be tempting to answer \nothing interesting". Intu-59



itively, it makes sense; if Alice and Bob do not communicate at all, they have no knowledge aboutthe other party, and how would they possible \recover" the information?This intuition is in some sense correct for recovering protocols. Recall that in a recoveringprotocol, Alice simply outputs her input (OA = IA), and Bob wishes to output a OB that is asclose to OA as possible. For an adversarial noise model, the optimal behavior of Bob is determinedby the minimax theorem. For a probabilistic noise model, Bob knows IB and the joint distribution(IA; IB), and therefore his optimal strategy is to \guess" IA according to the Bayes rule. In otherwords, Bob needs to choose X such thatX = argmax x( D(x; IB)Py D(y; IB)) (5.1)where D is the distribution of (IA; IB) according to the noise model. Therefore, the noise modelessentially determines the optimal strategy of Alice and Bob for non-interactive recovering protocols.However, the situation is quite di�erent for refreshing protocols over a probabilistic noise model.In a refreshing protocol, Alice and Bob share a probabilistic noise model, which is a distributionover the string pairs. Alice does not need to output her input string verbatim. Rather, Alice andBob have the liberty to output anything. Furthermore, Alice and Bob may gather a large collectionof the samples, all from the same distribution, and then hope to \concentrate" the correlation downto a small number of symbols. In this case, the problem of whether Alice and Bob can distill highlycorrelated bits without communication is not intuitively clear.In fact, this problem of non-interactive correlation distillation has been considered by variousresearchers from di�erent perspectives.Consider the study of information reconciliation. In information reconciliation, Alice and Bobeach possess some information that are not perfectly correlated. They wish to distill highly cor-related bits by communication, yet maintaining privacy. In this model, Eve, the eavesdropper,can see all the communication between Alice and Bob. Therefore, if Alice and Bob could distillcorrelated bits non-interactively, this would be ideal for information reconciliation. Moreover, onlyafter having an impossibility result on non-interactive distillation should one consider interactiveinformation reconciliation. In this sense, the problem of non-interactive correlation distillation isthe underlying problem of the study of information reconciliation, and only a negative answer to60



this problem can justify the existence of this study.A similar situation exists in the study of random beacons. In this setting, Alice (the beaconowner) and Bob (the veri�er) each possesses the measurement data from an extraterrestrial object.Due to the measurement error, their data are correlated but not perfectly so. Alice would converther measurement into a sequence of random bits and publish these bits. The goal of the study ofrandom beacons is to construct a publicly veri�able random source, and prevent Alice (the beaconowner) from cheating, i.e., a�ecting the outcome of the bits. If it is possible to distill highlycorrelated bits non-interactively, then the random beacon problem would be perfectly solved. Alicedistills her bits from the measurement and publishes them. Then Bob can apply his part of thedistillation, and with very high probability the result would agree with the bits Alice publishes.If the bits do not agree, Bob announces that Alice is cheating. In this way Alice would have nomotives to cheat, since Bob can catch her cheating with very high probability. Therefore, hereagain, the problem of non-interactive distillation underlies the study of random beacons, and anegative answer to this problem lies at the foundation of this study.Given the importance of this problem, it is not surprising that many researchers have consideredit. In fact, a basic version of the problem was discovered and proven independently by severalresearchers beginning in 1991, including Alon, Maurer, Wigderson [3], Mossel and O'Donnell [63],and Yang [96].We shall prove a sequence of negative answers to various versions of this problem. We assumethat in all the protocols considered in this section, Alice and Bob only output one bit each. Wemake this assumption, since it seems to be the minimal requirement for a useful refreshing protocol.In some of the results, we will consider protocols whose output alphabets di�er from their inputalphabets.5.1 Tensor Product Noise ModelsThe noise models we discuss in this section are of a special form, which we call the \tensor productnoise models". First, we review the de�nitions of the tensor product.De�nition 5.1 (Tensor Product of Vectors) The tensor product of an n-dimensional vector vand an m-dimensional vector u is an (n�m)-dimensional vector, denoted by w, such that w[(x; y)] =61



v[x] � u[y], for x 2 [n] and y 2 [m]. We use v
k to denote the vector obtained by taking the tensorproduct of k copies of v, and call it the n-th tensor power of v.De�nition 5.2 (Tensor Product of Matrices) The tensor product of an a � c matrix A anda b� d matrix B is an (ab)� (cd) matrix P , such that P(x;z);(y;w) = Ax;y �Bz;w for x 2 [a], y 2 [b],z 2 [c], and w 2 [d]. We write this as P = A
 B. We use A
k to denote the matrix obtained bytaking the tensor product of k copies of A, and call it the n-th tensor power of A.De�nition 5.3 (Tensor Product of Probabilistic Distributions) The tensor product of aprobabilistic distribution DA over set A and a distribution DB over set B is a distribution D overset A � B, such that D(a; b) = DA(a) � DB(b). We write this as D = DA 
 DB. We use D
k todenote the matrix obtained by taking the tensor product of k copies of D, and call it the n-th tensorpower of D.De�nition 5.4 (Tensor Product Classical Noise Model) A probabilistic classical noise modelNcp�;n is a tensor product classical noise model, if there exists a probabilistic distribution D over�� � such that Ncp�;n is formed by the pair (a0a1 � � � an�1; b0b1 � � � bn�1), where (ak; bk) is indepen-dently drawn from D, for k = 0; 1; :::; n � 1. The distribution D is called the base distribution ofNcp�;n.In other words, the distribution of Ncp�;n is simply the n-th tensor power of the distribution Dwith symbols rearranged.5.2 The Binary Symmetric ModelWe �rst prove the negative result to perhaps the most basic version of the problem.De�nition 5.5 (Binary Symmetric Model) A binary symmetric model of parameter (n; p),denoted as Sn;p, is a probabilistic noise model de�ned as followsSn;p(a; b) = 12n (1� p)n�ja�bj � pja�bj (5.2)where a; b 2 f0; 1gn. 62



The binary symmetric model is indeed a tensor produce noise model, and its base distributionis de�ned as D(0; 0) = D(1; 1) = (1 � p)=2 and D(0; 1) = D(1; 0) = p=2. This model is closelyrelated to the so-called \Binary Symmetric Channel". Imagine that Alice generates a uniform bitA as her local input, and sends it to Bob through a noisy channel that ips each bit independentlywith probability p. If we denote the bit received by Bob by B, then the distribution of (A;B) isprecisely D.Now suppose the bit strings of Alice and Bob are described by Sn;p. Alice and Bob each wishesto output one bit, denoted by a and b, respectively, such that the correlation between a and b ismaximized. We also require that a and b themselves be unbiased. What is the maximum possiblecorrelation of a and b, if Alice and Bob are not allowed to communicate?If Alice and Bob simply output the kth bit of their strings, for any k 2 [n], their outputs willhave a correlation 1 � 2p. This method is very simple, and almost appear na��ve. Do there existmore sophisticated methods which will yield a higher correlation? Intuitively, it is not entirelyclear that there do not. Our �rst negative result addresses this problem and proves that in fact the\na��ve" method is optimal, and no protocol can yield a higher correlation than 1� 2p.First, we need to de�ne a restricted class of protocols, namely, locally uniform protocols.De�nition 5.6 (Locally Uniform Protocols) A protocol P is locally uniform over a probabilis-tic noise model Ncp, if the distribution of its outputs are locally uniform bits, i.e., both OA and OBare uniform distributions over f0; 1g, where (OA; OB) = P(Ncp).Theorem 5.1 (NICD for the Binary Symmetric Model) The correlation of any locally uni-form, randomized, non-interactive protocol over the binary symmetric model of parameter (n; p) isat most 1� 2p for p � 1=2.The deterministic version of Theorem 5.1 (where the protocol is restricted to deterministic)was discovered and proven independently since 1991 by many researchers, including Alon, Maurer,Wigderson, Mossel, O'Donnell, and Yang [3, 63, 96], and was attributed to \folklore" by Mosseland O'Donnell [63].Proof: To prove the theorem, it suÆces to consider protocols of yield 1, namely, protocols whereAlice and Bob only output one bit each. 63



Consider a non-interactive protocol P. Since there is no communication, the most generalcharacterization of the protocol would be that both Alice and Bob apply a (randomized) booleanfunction to their share of bit strings, and output the result.We de�ne the character functions of Alice and Bob as follows. The character function of Alice,denoted by �A, maps strings from f0; 1gn to real numbers within [�1;+1]. Over input x,�A(x) = 2 � Prob [Alice outputs 1 over input x]� 1; (5.3)where the probability is taken over the random bits used by Alice. Similarly the character function�B of Bob can be de�ned.Since P is locally uniform over the binary symmetric model Sn;p, we haveEx;y2Sn;p [�A(x)] = Ex;y2Sn;p [�B(y)] = 0 (5.4)Notice that for any x, we haveXy Sn;p(x; y) = 12n Xx (1� p)n�jx�yj � pjy�yj = 12nand thus (5.4) simpli�es to Xx �A(x) =Xx �B(x) = 0 (5.5)It is easy to verify if Alice receives x as her input and Bob receives y, then �A(x) � �B(y) isthe correlation between their outputs. Therefore, the correlation of protocol P over the binarysymmetric model isCorSn;p [P] = Xx2f0;1gn Xy2f0;1gn Sn;p(x; y) � �A(x) � �B(y)= 12n Xx2f0;1gn Xy2f0;1gn(1� p)n�jx�yj � pjx�yj � �A(x) � �B(y)Now we view the summation above as a quadratic form. We de�ne a 2n � 2n matrix S, whereSx;y = (1� p)n�jx�yj � pjx�yj 64



We identify the character functions �A and �B with their truth tables, which are 2n-dimensionalreal vectors. Then it is easy to verify thatCorSn;p [P] = 12n (�A)T � S � �B (5.6)We can diagonalize the matrix S and it turns out it is a positive matrix with eigenvectors beingparity functions. More formally, de�ne parity functions as �ax = (�1)a�x, where a; x 2 f0; 1gn,and a � x is the inner product of a and x. Then each �a is an eigenvector with eigenvalue �a =(1 � 2p)jaj. The statement and the proof are postponed to Lemma 5.1 (after this proof). Animportant observation is that the unique largest eigenvalue is 1, with corresponding eigenvector�0. Here we use 0 as a shorthand to denote the all-zero vector. All other eigenvalues are at most1� 2p.We now perform a Fourier Analysis to vectors �A and �B . First we de�ne an inner prod-uct for 2n-dimensional vectors: for vectors A and B, their inner product is de�ned as hA;Bi =12n Px2f0;1gn A[x]B[x]. It is then easy to verify that all the parity functions f�aga2f0;1gb form anorthonormal basis. We can then write �A =Ps2f0;1gn �s�s and �B =Ps2f0;1gn �s�s. Notice thatsince j�A[x]j � 1, we know that jj�Ajj � 1, and thus Ps �2s � 1, by Parseval. Similarly we havePs �2s � 1.Furthermore, since �0 is the constant function, we know that�0 = 12n Xx �A(x)�0 (x) = 12n Xx �A(x) = 0Similarly we have �0 = 0.
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Next, we break down the summation in (5.6):CorSn;p [P] = 12n (�A)T � S � �B= 12n  Xa �a � �Ta! � S � Xb �b � �b!= 12n  Xa �a � �Ta! � Xb �b � �b � �b!= Xa �a � �a � �aNow, since �0 = �0 = 0, and �a � 1� 2p for all a 6= 0, we haveCorSn;p [P] � (1� 2p) �Xa �a � �a � (1� 2p) � Xa �2a! 12 � Xa �2a! 12 = 1� 2p (5.7)The second inequality is by Cauchy-Schwartz.Lemma 5.1 Let S be a 2n�2n matrix de�ned by Sxy = pjx�yj(1�p)n�jx�yj. Let ea(x) be functionde�ned by ea(x) = (�1)a�x Then we have S � ea = (1� 2p)jaj � ea.Proof: Notice that for any x 2 f0; 1gn, we have(S � ea)[x] = Xy pjx�yj(1� p)n�jx�yj � (�1)a�y= Xy pjyj(1� p)n�jyj � (�1)a�(x�y)= (�1)a�x �Xy pjyj(1� p)n�jyj � (�1)a�y= ea[x] �Xy pjyj(1� p)n�jyj � (�1)a�yNow it should already be clear that ea is an eigenvector. Next, we compute the correspondingeigenvalue. We shall prove thatXy pjyj(1 � p)n�jyj � (�1)a�y = (1� 2p)n�jaj:WLOG we assume that a contains k 1's followed by (n � k) 0's. We partition each y into y066



and y1, where y0 contains the �rst k bits, and y1 contains the last (n � k) bits. We use y0; y1 todenote the concatenation of y0 and y1. Then the previous formula becomesXy pjyj(1� p)n�jyj � (�1)a�y = Xy02f0;1gk Xy12f0;1gn�k pjy0j+jy1j(1� p)n�jy0j�jy1j � (�1)jy0j=  Xy0 (�p)jy0j(1� p)k�jy0j! � Xy1 (p)jy1j(1� p)n�k�jy1j!= (�p+ 1� p)k � (p+ 1� p)n�k= (1� 2p)k
In fact, this proof implies more than the theorem. From the proof, we can see that the onlyprotocols that saturate the 1 � 2p upper bound are the ones where Alice and Bob both outputthe k-th bit or the complement of the k-th bit, for some k 2 [n]. To see this, we re-examine theproof. The only way to make (5.7) an equality is that for all a such that �a < 1 � 2p, we have�a � �a = 0. Also we must have Pa �2a = Pa �2a = 1, and �a = �a for all by. Putting thingstogether, we see that for all a's of Hamming weight more than 1, we have �a = 0. So we have�A(x) =Pjaj=1 �a�a (x). There are n such �a's, and we can always �nd an x such that �a(x) hasthe same sign as �a. Denote this x by ~x, and then we have�A(~x) = Xjaj=1�a �a (~x) = Xjaj=1 j�aj � Xjaj=1)�2a = 1 (5.8)However, we have �A(~x) � 1, and thus the inequality in (5.8) must be an equality, which meanseach �a is either 0, 1, or -1. So there exists a k such that both �A and �B are parity functions �fkgor its complement. These functions correspond to the \na��ve" protocols where Alice and Bob bothoutputs the k-th bit or the complement of the k-th bit.We can further extend Theorem 5.1 to protocols that are not locally uniform.De�nition 5.7 (Æ-Locally Uniform Protocols) A protocol P is Æ-locally uniform over a prob-abilistic noise model Ncp, if the distribution of its output are locally Æ-close to uniform bits, i.e.,both OA and OB are Æ-close to uniform distributions over f0; 1g, where (OA; OB) = P(Ncp).67



Theorem 5.2 (NICD for the Binary Symmetric Model, extended) The correlation of anyÆ-locally uniform, randomized, non-interactive protocol over the binary symmetric model of param-eter (n; p) is at most 1� 2p(1� 4Æ2) for p � 1=2.Proof: Consider a (f0; 1g; n; 1)-protocol P. But de�nition it outputs a single bit-pair O =(OA; OB). Since P is Æ-locally uniform, we know that OA is Æ-close to Uf0;1g. We de�ne Prob [OA =0] = 1=2 � t, then we have Prob [OA = 1] = 1=2 + t, and SD(OA;Uf0;1g) = jtj. Therefore if wedenote the character functions of Alice and Bob by �A and �B , respectively, then we have jtj � Æ.On the other hand, Ex;y2Sn;p [�A(x)] = 2 � Prob [OA = 1]� 1 = 2t, and thus we havejXx �A(x)j � Æ � 2n+1 (5.9)Similarly we have jXx �B(x)j � Æ � 2n+1 (5.10)As in the proof to Theorem 5.1, we perform Fourier analysis to �A and �B, and white �A =Ps2f0;1gn �s�s and �B =Ps2f0;1gn �s�s. Then we know from (5.9) and (5.9) that j�0j � 2Æ andj�0j � 2Æ.Then we know thatCorSn;p [P] = Xa �a � �a � �a � 4Æ2 + (1� 4Æ2)(1 � 2p) = 1� 2p(1� 4Æ2)
Theorem 5.2 shows a trade-o� between the \local uniformness" of a protocol and its correlation.5.3 General Noise ModelsHere, we extend the previous result to a general class of noise models.De�nition 5.8 (Distribution Matrix) Let D be a probabilistic distribution over � � �, wherej�j = q. We say a q � q matrix M is the distribution matrix for D, if Mx;y = D(x; y) for all68



x; y 2 �.1 We write the distribution matrix of D by MD.De�nition 5.9 (Regular Matrix) A q � q matrix M is regular if it is symmetric and 1q is theunique eigenvector with the largest absolute eigenvalue. Let � be the di�erence between the largestabsolute eigenvalue and the second largest. Then q � � is called the scaled eigenvalue gap of M . Adistribution D is regular if its distribution matrix is regular.Notice that a distribution matrix M is non-negative (that every entry is non-negative). Bythe Perron-Frobenius Theorem [59], if M is symmetric, irreducible, and has 1q as an eigenvector,then 1q is the unique eigenvector with the largest eigenvalue, and thus M is regular. Therefore,intuitively, a noise model Ncp is regular if it satis�es the following three requirements: that it issymmetric, i.e., Ncp(a; b) = Ncp(b; a) for every a; b 2 �; that it is locally uniform, i.e., both thedistributions of the local inputs of Alice and Bob are uniform; that it is connected, i.e., � cannotbe partitioned into �0 and �1 such that Ncp(a; b) = Ncp(b; a) = 0 for all a 2 �0 and b 2 �1. Noticethat if a noise model is not connected, that non-interactive correlation distillation is indeed possiblefor such a model. Suppose � is partitioned into �0 and �1. If Alice and Bob interpret symbols in�0 as a \0" and symbols in �1 as a \1", then they essentially have a noiseless binary noise modelwhich allows for non-interactive correlation distillation.Theorem 5.3 (NICD for the General Noise Model) If Ncp�;n is a tensor product noise modelwhose base distribution is regular with scaled eigenvalue gap �, then the correlation of any Æ-locallyuniform, randomized, non-interactive (�; n; 1)-protocol over the classical probabilistic noise modelD
n is at most 1� �(1� 4Æ2).To see that Theorem 5.3 is indeed a more general result, notice that the base distribution ofthe binary symmetric model is indeed regular with scaled eigenvalue gap 2p.Proof: The strategy of this proof is the same as of that to Theorem 5.1. We convert the correlationof a protocol P into a quadratic form, and then we diagonalize the matrix and use Fourier analysisto upper bound the correlation.1Here we identify � with [q]. 69



We de�ne q = j�j and identify � with [q] for the rest of the proof. We still use �A and �Bto denote the character functions of Alice and Bob (notice both Alice and Bob still only outputone bit in P). We use M to denote the distribution matrix of the distribution D. We denote theeigenvector of M by v0; v1; :::; vq�1 with corresponding eigenvalues �0; :::; �q�1. We assume that�0 > �1 � � � � �q�1. Since M is regular, �0 is the unique largest eigenvalue that corresponds toeigenvector 1q.Since M is the distribution matrix, we know that the sum of all its entries is 1. Thus we have1 = 1Tq �M � 1q = �0 � 1Tq � 1q = �0 � q;or �0 = 1=q. Since the scaled eigenvalue gap of M is �, we know that the second largest absoluteeigenvalue of M is (1� �)=q.The distributionmatrix of D
n isM
n. As in the proof to Theorem 5.1, we denote the characterfunctions of Alice and Bob by �A and �B , respectively. Both �A and �B are vectors of dimensionqn. Since P is Æ-locally uniform, we have������ Xx2�n Xy2�nD
n(x; y) � �A(x)������ � 2Æor j1Tqn �M
n ��Aj � 2Æ. Since 1q is an eigenvector of M with eigenvalue 1=q, 1qn is an eigenvectorof M
n with eigenvalue 1=qn. Since M is symmetric, so is M
n. Thus we have j1Tqn ��Aj � 2Æ � qn.Similarly we have j1Tqn � �B j � 2Æ � qn.Again, as in the proof of Theorem 5.1, we can express the correlation of protocol P in terms ofa quadratic form: CorD
n [P] = (�A)T �M
n � �B.We diagonalize the matrix M
n. First we de�ne a natural notion of inner product: hA;Bi =1qn Px2�n A[x]B[x]. SinceM
n is symmetric, it has a set of eigenvectors that form an orthonormalbasis. We denote the eigenvectors of M
n by ut with corresponding eigenvalues �t, where t 2 [qn].We assume that �0 � �1 � � � ��qn�1. By the property of the tensor product (see Lemma 5.2 afterthis proof), the eigenvalues �t are of the form Qni=1 �ki , where ki 2 [q]. Therefore M
n also hasa unique maximum eigenvalue �n0 = 1=qn, which corresponds to the eigenvector 1
nq = 1qn . Thesecond largest value is (1 � �)=q � 1=qn�1 = (1 � �)=qn. In other words, M
n has the same scaled70



eigenvalue gap as M .Now we perform a Fourier analysis to vectors �A and �B . We write �A = Pt2[qn] �t � ut and�B =Pt2[qn] �t � ut. Then we have Pt �2t � 1, Pt �2t � 1, and j�0j � 2Æ, j�0j � 2Æ.Now, putting things together, we haveCorD
n [P] = (�A)T �M
n � �B = qn � Xt2[qn]�t � �t � �t � 4Æ2 + (1� �) � (1� 4Æ2) � 1� �(1� 4Æ2)
Lemma 5.2 Let A be an a� a matrix of eigenvectors v0; :::; va�1, with corresponding eigenvalues�0; :::; �a�1. Let B be a b � b matrix of eigenvectors u0; :::; ub�1, with corresponding eigenvalues�0; :::; �b�1. Then the eigenvalues of the matrix A 
 B are vi 
 uj with corresponding eigenvalues�i � �j, for i 2 [a] and j 2 [b].Proof: We prove that for every i 2 [a] and j 2 [b], (A 
 B)(vi 
 uj) = �i � �j � (vi 
 uj), whichwill imply that (vi
uj) is an eigenvector. Then, since (A
B) is an (ab)� (ab) matrix, it only hasab eigenvectors. Therefore this would imply our lemma.Now we prove that (A
B)(vi 
 uj) = �i � �j � (vi 
 uj).(A
B)(vi 
 uj)[(x; y)] = Xs2[a];t2[b](A
B)(x;y);(s;t) � (vi 
 uj)[(s; t)]= Xs2[a];t2[b]Ax;s � By;t � vi[s] � uj [t]= 0@Xs2[a]Ax;s � vi[s]1A �0@Xt2[b]By;t � uj [t]1A= �i � vi[x] � �j � uj [y]= �i � �j � (vi 
 uj)[(x; y)]Since the equation holds for all x 2 [a]; y 2 [b], we have (A
B)(vi 
 uj) = �i � �j � (vi 
 uj).Theorem 5.3 provides a general negative answer to the question of non-interactive correlationdistillation. Notice the upper bound on the correlation is independent of n, the size of the inputto the protocols. Therefore, if the noise model is regular, then Alice and Bob cannot distill the71



correlation any higher than what is dictated by the scaled eigenvalue gap, even if they are willingto collect many samples from the same model and then \concentrate" them them into one singlesymbol.5.4 The Binary Erasure Noise ModelWe prove a similar impossibility result for another noise model, namely the binary erasure noisemodel. Intuitively, this model describes the situation where Alice sends an unbiased bit to Bob,which is erased (and replaced by a special symbol ?) with probability p.De�nition 5.10 (Binary Erasure Noise Model) The binary erasure noise model, denoted byEp is a tensor product noise model with base distribution DE over alphabet f0; 1;?g, de�ned asDE(0; 0) = DE (1; 1) = (1� p)=2, DE (0;?) = DE(1;?) = p=2.Perhaps the binary erasure noise model is the simplest noise model that is not symmetric, andthus isn't regular. It is, however, a realistic one. Consider as example the situation where Alice andBob receive their inputs by observing a pulsar. It is quite likely that the noise of the measurementsby Alice and Bob are of the \erasure-type", i.e., the corruption of information can be detected.Furthermore, it is also possible that Alice and Bob have di�erent measurement apparatus anddi�erent levels of accuracy. In the random beacon problem, Alice (as the beacon owner) mightown a more sophisticated (and more expensive) measuring device with higher accuracy, while Bob(as the veri�er) has a more noisy measurement device. An extreme case would be that Alice hasnear-perfect accuracy in her measurement, but Bob's measurement is noisy. Such a situation canbe well approximated by the binary erasure noise model.Notice that in this model, Alice's input is the uniform distribution over f0; 1g, and Bob's inputis 0 and 1 with probability (1 � p)=2 each, and ? with probability p. A na��ve protocol under thismodel only uses the �rst pair of the inputs. Alice outputs her bit, and Bob outputs his bit if hisinput is 0 or 1, and outputs a random bit if his input is ?. This is a locally uniform protocol withcorrelation 1� p.The next theorem shows that no protocol can do much better than the na��ve protocol.72



Theorem 5.4 (NICD for the Binary Erasure Model) The correlation of any locally uniformprotocol over the noise model Ep is at most p1� p(1� 4Æ2).We suspect that it is not a tight bound, but it is suÆcient to show that it is bounded awayfrom 1 and is independent from n. Therefore, even with perfect accuracy in Alice's measurement,non-interactive correlation distillation is impossible if Bob's measurement is noisy.Proof: We introduce more notations. A binary string is a string over alphabet f0; 1g. For abinary string x, we denote its Hamming weight by jxj, which is the number of 1's in x. We call avector v over alphabet f0; 1;?g an extended bit vector, and de�ne its degree, denoted by deg(v), tobe the number of ?'s in it. An error vector, denoted by u is a vector over alphabet f?;?g, and itsdegree also the number of ?'s in it. Take a k-dimensional bit vector v and an n-dimensional errorvector u of degree (n� k), we de�ne their composition to be an n-dimensional extended bit vectorx de�ned as x[i] = 8>>>><>>>>: v[j] if u[i] = ? and j = jfl : 0 � l < i; u[j] = ?gj? if u[i] =? (5.11)and we write this as x = v . u. As an example, we have (1; 0; 1) . (?; ?; ?;?; ?) = (?; 1; 0;?; 1).Notice that every extended bit vector x can be uniquely written as such a composition of a bitvector v and an error vector u. So we denote v to be the extracted bit vector of x, and write it asv = [x]; we denote u to be the error vector of x and write it as u = fxg.For a bit vector x and an extended bit vector v, both of dimension n, we say x is consistentwith v, if for every i such that v[i] 6=?, we have x[i] = v[i]. We denote this as x v v.For a bit vector x and an error vector u of degree d, we de�ne the restricted vector of x withrespect to u to be the unique (n� d)-dimensional bit vector v such that x v (v . u), and we writethis as v = xju. The excluded vector of x with respect to u is the d-dimensional vector v0 de�nedto be v0[i] = x[k] where k = jfj : 0 � j < i; u[j] = ?gj. We also write x = v u_ v0, and say x isjoined by v and v0 with respect to u.We now �x a protocol P and consider its characteristic functions �A and �B (we omit thesubscript n). Both are real functions over f0; 1;?gn. Both since in the erasure model, the input toAlice never contains ?, we assume that �A is a function over f0; 1gn. We perform Fourier analysis73



to �A, using parity functions as the orthonormal basis.�A(x) =Xs �s �s (x) (5.12)where we have Ps �2s � 1. Since P is Æ-locally uniform, we havej�0j � 2Æ: (5.13)The analysis for �B is more complicated. We decompose �B into 2n \sub-functions", accordingto the 2n error vectors. For error vector u, we de�ne a function  u that maps (n� k)-dimensionalbit vectors to f�1;+1g, where k is the degree of u. Then we perform a Fourier analysis for everysub-function, and write  u(x) =Xs �u;s �s (x) (5.14)Again we have Ps �2u;s � 1 for every error vector u.We de�ne � = p=(1�p), then it is easy to see that the probability that Bob receives an extendederror vector of degree d is �d � (1� p)n. Furthermore, it is easy to verify thatXu2f?;?gn �deg(u) = nXk=0�nk��k = 1(1� p)n (5.15)For the rest of the proof, we write �u as a shorthand for �deg(u).Finally, we estimate the correlation between the outputs. We denote it by � and it is not hardto see that � = �1� p2 �n Xu2f?;?gn �uXx �A(x) u(xju) (5.16)By substituting in the Fourier coeÆcients, we have� = �1� p2 �n Xu2f?;?gn �uXx Xs�f0;1gn Xt�f0;1gn�deg(u) �s�t �s (x)�t (xju)= �1� p2 �n Xu2f?;?gn �u Xs�f0;1gn Xt�f0;1gn�deg(u) �s�t Xx �s(x)�t (xju)!
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Now, we �x an error vector u of degree r, and �x sets s, t. We write s = s0 [ s1, such that forevery i 2 s0, we have u[i] = ? and for every i 2 s1, we have u[i] =?. We write this as s0 = sju. Ifs1 = ;, we say that s is consistent with u, and we write this as s v u. Then we haveXx2f0;1gn�s(x)�t (xju) = Xv2f0;1gn�d Xv02f0;1gd�s0(v)�s1 (v0)�t (v)= Xv2f0;1gn�d�s0�t(v) Xv02f0;1gd�s1(v0)
So the only we we get non-zero as a result is when s0 = t and s1 = ;, which means s = t.Therefore, we have� = (1� p)n Xu2f?;?gn �uXsvu�s�u;sju� (1� p)n0@ Xu2f?;?gn �u1A1=2 � 24 Xu2f?;?gn �u0@Xsvu�s�u;sju1A2351=2 (Cauchy-Schwartz)= (1� p)n=2 � 24 Xu2f?;?gn �u �0@Xsvu�2s1A �0@Xsvu �2u;sju1A351=2 (Eq. 5.15)� (1� p)n=2 � 24 Xu2f?;?gn �u �0@Xsvu�2s1A351=2 (Parseval, Psvu �2u;sju � 1 )= (1� p)n=2 � 24Xs �2s Xu:svu�u351=2

= (1� p)n=2 � "Xs �2s � (1 + �)n�jsj#1=2� (1� p)n=2 �(1 + �)n�1(1 + 4Æ2(1 + �))�1=2 (Eq. 5.13)= p1� p(1� 4Æ2)
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Chapter 6
A Positive Result on One-bitCorrelation Distillation
The impossibility results from the previous chapter suggest that for many noise models, communi-cation is essential for correlation distillation. Thus it is interesting to ask how much communicationis essential. In particular, we were interested in the question \does a single bit of communicationhelp?" We answer this question positively by presenting a protocol that non-trivially distills cor-relation from the binary symmetric noise model with one bit of communication. This result showsthat even the minimal amount of communication is provably more powerful than no communicationat all.The result in this Chapter relative to this thesis is summarized in Figure 6.1.Recall that over a binary symmetric noise model Sn;p, no non-interactive, locally uniform pro-tocols can have a correlation more than 1 � 2p. Now, we consider protocols with one bit ofcommunication. Suppose Alice sends one bit to Bob, which Bob receives with perfect accuracy. Ifwe still only require Alice and Bob each to output a single bit, then the problem is trivial: Alicecan generate an unbiased bit x and send it to Bob, and then Alice and Bob both output x. Thisprotocol has perfect correlation. Thus, to make the problem non-trivial, we require that Alice andBob must output two bits each. Suppose Alice outputs (X1;X2) and Bob outputs (Y1; Y2). We
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Figure 6.1: The Result in Chapter 6.de�ne the correlation of a protocol to be2 � mini=1;2fProb [Xi = Yi]g� 1In this situation, we say a protocol is locally uniform, if both (X1;X2) and (Y1; Y2) are uniformlydistributed.Now we describe a locally uniform protocol of correlation about 1�3p=2. The protocol is calledthe \AND" protocol. Both Alice and Bob only take the �rst two bits as their inputs. Alice directlyoutput her bits, and sends the AND of her bits to Bob. Then, intuitively, Bob \guesses" Alice'sbits using the Bayes rule and outputs them. A technical issue is that Bob has to \balance" hisoutput so that the protocol is still locally uniform. The detailed description is in Figure 6.2.We can easily verify (by a straightforward computation) the following result.Theorem 6.1 (One-bit Protocol for the Binary Symmetric Model) The AND protocol isa locally uniform protocol with correlation 1� 3p2 + p24�2p .This is a constant-factor improvement over the non-interactive case.This result may seem a little surprising. It appears that Alice isn't fully utilizing the one-bitcommunication, since she is sending an AND of two bits, whose entropy is less than 1. It is temptingto speculate that by having Alice send the XOR of the two bits, Alice and Bob can obtain a better77



STEP I Alice computes r := a1 ^ a2, sends r to Bob, and outputs (a1; a2).STEP II Bob, upon receiving r from Alice:IF r = 1 THEN output (1; 1).ELSE IF b1 = b2 = 1 THEN output{ (0; 0) with probability p=(2� p);{ (0; 1) with probability (1� p)=(2 � p);{ (1; 0) with probability (1� p)=(2 � p);ELSE output (b1; b2).Alice receives input bits a1; a2, and Bob received input bits b1; b2, where (a1a2; b1b2) is drawn fromS
2p Figure 6.2: The AND protocolresult, since Bob gets more information. Nevertheless, the XOR doesn't work, in some sense due toits \symmetry". Consider the case that Alice sends the XOR of her bits to Bob. Bob can computethe XOR of his bits, and if the two XOR's agree, Bob knows that with high probability, bothhis bits agrees with Alice's. However, if the two XOR's don't agree, Bob knows one of his bits is\corrupted", but he has no information about which one. Furthermore, however Bob guesses, hewill be wrong with probability 1=2. On the other hand, in the AND protocol, if Bob receives a\1" as the AND of the bits from Alice, he knows for sure that Alice has (1; 1) and thus he simplyoutputs (1; 1); if r = 0 and b1 = b2 = 1, he knows that his input is \corrupted", and he \guesses"Alice's bit according to the Bayes rule of posterior probabilities. If Bob receives a \0" as the ANDand (b1; b2) 6= (1; 1), then the data looks \consistent" and Bob just outputs his bits. In this way,1=4 of the time (when Bob receives a 1), Bob knows Alice's bits for sure and can achieve perfectcorrelation; otherwise Alice and Bob behave almost like in the non-interactive case, which gives1� 2p correlation. So the overall correlation is about 1=4 � 1 + (3=4) � (1� 2p) = 1� 3p=2.
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Chapter 7
Non-Interactive EntanglementDistillation
We study non-interactive entanglement distillation (NIED) protocols. As in the case of non-interactive classical correlation distillation, non-interactive entanglement distillation also servesas the most basic problem in the study of communication complexity of EDPs. Notice that apriori, it is not necessarily obvious that non-interactive protocols would be useless. In fact, Ben-nett et. al. [21] constructed a non-interactive entanglement distillation protocol for a speci�c noisemodel where Alice and Bob share a large number of identical copies of some pure state.1 However,as we shall soon see, non-interactive entanglement distillation is impossible for a number of less\benign" noise models.In this section, we only study protocols that only output one qubit pair, since these are theminimally \useful" protocols, and a lower bound on their �delities suÆces as a general lower bound.In particular, we consider three noise models, namely the bounded decoherence model, the boundedcorruption model, and the depolarization model, and prove corresponding bounds on the �delityof non-interactive EDPs over them. These bounds are tight or almost tight.The results in this Chapter relative to this thesis are summarized in Figure 7.1.1They call their scheme \entanglement concentration".
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Figure 7.1: Results in Chapter 7.7.1 The Bounded Measurement ModelWe de�ne the bounded measurement noise model, and prove a tight lower bound on the �delity ofnon-interactive protocols over such a model. We �rst need some more notation. An error indicatorvector is a n-dimensional vector from an alphabet v 2 f0; 1; �g. The degree of a vector v, denotedby deg(v), is the number of entries in v that are not \�". Each v corresponds to a measurementerror state j�vi =Nn�1j=0 j�ji, wherej�ji = 8>>>><>>>>: j 0iAj 0iB if v[j] = 0j 1iAj 1iB if v[j] = 1�+ if v[j] = �The degree of a measurement error state j�vi is the degree of v.De�nition 7.1 (Bounded Measurement Model) A bounded measurement model of parame-ter (n; t), denoted by Mn;t, is an adversarial quantum noise model consisting of all measurementerror states of degree at most t. In other words,Mn;t = fj�vi j deg(v) � tg (7.1)
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Intuitively, the bounded measurement model describes the situation where up to t (unknown)EPR pairs are measured in the computational basis (thus each pair results in either j 0ij 0i or j 1ij 1i).Therefore, this model is in some sense more \benign" than the quantum bounded corruption model,where the corruptions on an EPR pair can be more general. However, this simpler model is alreadyinteresting enough to ensure a non-trivial result.Theorem 7.1 (NIED for the Bounded Measurement Model) The �delity of any non-interactive,randomized public-coin entanglement distillation protocols over a bounded measurement modelMn;ris at most 1� r2n .Notice that there exists a very simple non-interactive, randomized public-coin protocol thatachieves a �delity of 1� r2n . Alice and Bob use their shared randomness to select a random inputqubit pair to output. If this pair is not measured, it has �delity 1; if the pair is measured, it has�delity 12 . Clearly, a random pair is measured with probability at most rn . Therefore, the overall�delity is at least 1� r2n , and the upper bound in Theorem 7.1 is tight.Despite the fact that the matching upper bound is almost trivial, the proof to this lower bounddoes not appear so.Proof: (of Theorem 7.1) We consider a slightly di�erent noise model, where r random EPRpairs are measured. This corresponds to the density matrix� = 12n�nr� Xv: deg(v)=r j�vih�vjWe shall prove that no deterministic non-interactive protocol can have a �delity higher than 1� r2nif � is the input. Then, we conclude that no share-randomized protocol can have a �delity higherthan 1� r2n , too, since �delity is a linear function.Consider a deterministic non-interactive protocol P. Notice P doesn't involve any communica-tion, we can model it as Alice and Bob both applying a unitary operation to their share of qubits,output the �rst qubits and discard the rest.Suppose the unitary operators of Alice and Bob are UA and UB . We denote the states under
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these operations by UAjxi �! j�xiUB jxi �! j xiNotice that we use \�!" instead of \=" since we allow Alice and Bob to use ancillary bits. Clearly,the vectors fj�xigx are orthonormal, and so are the vectors fj xigx.We shall prove that12r�nr� Xdeg(v)=r h[Fb((UA 
 UB)j�vih�vj(UA 
 UB)y)i � 1� r2n; (7.2)which implies the theorem.By Lemma 2.3, Eq.(7.2) is equivalent to12r�nr� Xdegv=r24 XU2fI;X;Y;Zgh�v j(UA 
 UB)y(U 
 U�)(UA 
 UB)j�vi35 � 4(1� r2n) (7.3)We expand the left hand side: Notice that(UA 
 UB)j�vi = 12(n�r)=2 Xxvv j�xij xiwhere x v v if x is consistent with v (that is, if x[j] = v[j] for all j such that v[j] 6= �).Therefore, we haveh�v j(UA 
 UB)y(U 
 U�)(UA 
 UB)j�vi = 12n�r XxvvXyvvh�x jU j�yi � h x jU�j yi
for any unitary operation U . So, Eq.(7.3) is equivalent to12n�nr� Xdegv=rXxvvXyvv XU2fI;X;Y;Zgh�x jU j�yi � h x jU�j yi � 4(1 � r2n) (7.4)
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However, by Cauchy-Schwartz, we haveXdegv=rXxvvXyvv XU2fI;X;Y;Zgh�x jU j�yi � h x jU�j yi� 0@ Xdegv=rXxvvXyvv XU2fI;X;Y;Zg jh�x jU j�yij21A 12 �0@ Xdegv=rXxvvXyvv XU2fI;X;Y;Zg jh x jU�j yij21A 12Next, we estimate the terms on the right hand side:Xdegv=rXxvvXyvv XU2fI;X;Y;Zg jh�x jU j�yij2 = Xx Xy XU2fI;X;Y;Zg jh�x jU j�yij2 Xdegv=r : x1vv^x2vv 1Notice that since j�xi's are all orthonormal, we have Py jh�x jU j�yij2 � 1 for all x's. ThusXx Xy XU2fI;X;Y;Zg jh�x jU j�xij2 � 2n+2For any x and y, we have Xdegv=r : xvv^yvv 1 = � n� jx� yjn� r � jx� yj�The reason is simple: the only freedom for v is where to put the (n� r) �'s. But for every positionk such that x[k] 6= y[k], we have to have v[k] = �. Then we still have (n� r � jx� yj) �'s we canput anywhere. So if x 6= y, Xdegv=r : xvv^yvv 1 � � n� 1n� r � 1�Also notice that by Lemma 2.2, we have PU2fI;X;Y;Zg jh�x jU j�xij2 � 2 for any x.
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Putting things together, we haveXdegv=rXxvvXyvv XU2fI;X;Y;Zg jh�x jU j�yij2 � �nr� �Xx XU2fI;X;Y;Zg jh�x jU j�xij2+�n� 1r � 1� �Xx6=y XU2fI;X;Y;Zg jh�x jU j�yij2= ��nr���n� 1r � 1�� �Xx XU2fI;X;Y;Zg jh�x jU j�xij2 +�n� 1r � 1� �Xx Xy XU2fI;X;Y;Zg jh�x jU j�yij2= ��nr���n� 1r � 1�� � 2n+1 +�n� 1r � 1� � 2n+2= 2n+2�nr�(1� r2n)Similarly, we have Xdegv=rXxvvXyvv XU2fI;X;Y;Zg jh x jU�j yij2 � 2n+2�nr�(1� r2n)too.Thus we haveXdegv=rXxvvXyvv XU2fI;X;Y;Zgh�x jU j�yi � h x jU�j yi � 2n+2�nr�(1� r2n)which proves (7.4).7.2 The Bounded Corruption ModelWe prove a similar upper bound on the �delity of non-interactive protocols over a bounded corrup-tion model.Theorem 7.2 (NIED for the Bounded Corruption Model) The �delity of any non-interactive,randomized public-coin entanglement distillation protocols over a quantum bounded corruption modelBqn;r is at most 1� r2n . 84



Notice that if Alice and Bob use their shared random bits to select an input pair and outputthem, they will achieve a �delity of 1 � rn . So this upper bound is almost tight (up to a constantfactor).Proof: (of Theorem 7.2) As in the proof for Theorem 7.1, we consider a di�erent \randomcorruption" noise model, where r EPR pairs are randomly chosen and each is independently replacedby a random Bell state. We shall prove that the �delity of any deterministic, non-interactiveprotocol over such a noise model is at most 1� r2n , which will imply our theorem.It is easy to verify that14 ��+ +�� +	+ +	�� = 14 (j00ih00j + j01ih01j + j10ih10j + j11ih11j) = I4 (7.5)So we can interpret the random corruption noise model as randomly choosing r EPR pairs andreplace each of them by the completely mixed state I=4.We present more notations and de�nitions. As corruption indicator vector, often denoted byu, is an n-dimensional vector, whose each entry is an element from alphabet f00; 01; 10; 11; �g. Itsdegree is the number of entries that are not �. There are 4r�nr� corruption indicator vectors ofdegree r, where each u corresponds to a unique bipartite state j ui in the following way:
j ui = n�1Oj=0 j�ji; where j�ji = 8>>>>>>>>>><>>>>>>>>>>:

j 0iAj 0iB if u[j] = 00j 0iAj 1iB if u[j] = 11j 1iAj 0iB if u[j] = 10j 1iAj 1iB if u[j] = 11�+ if u[j] = � (7.6)
We call such an j ui an corruption error state.An 2n-bit string x is consistent with a corruption indicator vector u, if x[j];x[n+ j] = u[j] forall j such that v[j] 6= �, and x[j] = x[n+ j] for all j such that v[j] = �. We write this as x v u.There are 2n�r bit-strings consistent with a corruption indicator vector of degree r. We often viewx as the concatenation of 2 n-bit string: x = l; r, and we write them as l = LT(x) and r = RT(x).
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With the notations, we can write the corruption error states as u = 12(n�r)=2 Xxvu j LT(x)iAjRT(x)iB (7.7)We de�ne the discrepancy of a 2n-bit string x to be DIS(x) = LT(s)�RT(s), where \�' stands forbit-wise XOR. The degree of discrepancy of x is jDIS(x)j, the Hamming weight of DIS(x). Clearly,there are �nd�2n 0-1 vectors of dimension 2n having degree of discrepancy d. Furthermore, if x hasdegree of discrepancy d, then the number of degree-r corruption indicator vectors u such that x v uis �n�dr�d�. This is because for every j such that x[j] 6= x[n + j], we must have u[j] = x[j];x[n + j]in order to have x v u. So the only freedom for u is to put (n� r) �'s in the n� d places wherex[j] = x[n+ j].Consider a deterministic non-interactive protocol P. Again, since P is non-interactive, we canmodel it by a pair of unitary operators (UA; UB), such that P consists of Alice and Bob eachapplying their operators, outputs the �rst qubits, and discarding the rest. We write the unitaryoperators as UAjxi �! j�xiUB jxi �! j xiThen as in the proof to Theorem 7.1, we shall prove that14r�nr� Xdegu=r24 XU2fI;X;Y;Zgh u j(UA 
 UB)y(U 
 U�)(UA 
 UB)j ui35 � 4(1 � r2n) (7.8)which implies our theorem.Notice that (UA 
 UB)j ui = 12(n�r)=2 Xxvu j�LT(x)ij RT(x)i
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and so we haveh u j(UA 
 UB)y(U 
 U�)(UA 
 UB)j ui = 12n�r XxvuXyvuh�LT(x) jU j�LT(y)i � h RT(x) jU�j RT(y)i
So we only need to prove that12n+r�nr� Xdegu=r XxvuXyvu XU2fI;X;Y;Zgh�LT(x) jU j�LT(y)i � h RT(x) jU�j RT(y)i � 4(1 � r2n) (7.9)By Cauchy-Schwartz, we haveXdegu=rXxvuXyvu XU2fI;X;Y;Zgh�LT(x) jU j�LT(y)i � h RT(x) jU�j RT(y)i� 0@ Xdegu=r XxvuXyvu XU2fI;X;Y;Zg jh�LT(x) jU j�LT(y)ij21A 12 �0@ Xdegu=r XxvuXyvu XU2fI;X;Y;Zg jh RT(x) jU�j RT(y)ij21A12Now we estimate Xdegu=r XxvuXyvu XU2fI;X;Y;Zg jh�LT(x) jU j�LT(y)ij2Notice we can write x as x = LT(x); (LT(x)� DIS(x)) and y as y = LT(y); (LT(y)� DIS(y)). Ifthere exists an extended indicator vector u such that x v u and y v u, we must have DIS(x) =DIS(y). This is because that for every j such that DIS(x)[j] = 1, x[j] and x[n+ j] di�er. Thus wemust have v[j] = x[j];x[n+ j], which implies that v[j] = y[j]; y[n+ j], and DIS(y)[j] = 1. In fact,for every j such that DIS(x)[j] = 1, we have x[j] = y[j] and x[n+ j] = y[n+ j].So we have
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Xdegu=r XxvuXyvu XU2fI;X;Y;Zg jh�LT(x) jU j�LT(y)ij2= Xa2f0;1gn Xb2f0;1gn XU2fI;X;Y;Zg jh�a jU j�bij2 Xc2f0;1gn Xdegu=r: [(a;(a�c))vu]^[(b;(b�c))vu] 1by a substituting a for LT(x), b for LT(y), and c for DIS(x).Now we �x a and b, and computeXc2f0;1gn Xdegu=r: [(a;(a�c))vu]^[(b;(b�c))vu] 1We de�ne k = ja � bj. For every j where a[j] 6= b[j], we must have c[j] = 0 and u[j] = �. Forevery j where a[j] = b[j], if we have c[j] = 1, then we must have u[j] = a[j]; (a[j] � 1); if we havec[j] = 0, then u can be either a[j]; a[j] or �. Therefore, of n�k positions where a[j] = b[j], r wouldbe chosen where u has a non-� entry. Of these r places, one has the freedom to choose c[j] = 0 orc[j] = 1. For all other places, c[j] = 0 and u = �. So we haveXc2f0;1gn Xdegu=r: [(a;(a�c))vu]^[(b;(b�c))vu] 1 = 2r ��n� kr �In other words,Xdegu=rXxvuXyvu XU2fI;X;Y;Zg jh�LT(x) jU j�LT(y)ij2 = Xa2f0;1gn Xb2f0;1gn XU2fI;X;Y;Zg jh�a jU j�bij2�2r��n� ja� bjr �(7.10)Since j�ai's are orthogonal, we haveXa Xb XU2fI;X;Y;Zg jh�a jU j�bij2 � 2n+2Also by Lemma 2.2, we have Xa jh�a jU j�aij2 � 2n+1
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ThereforeXa2f0;1gn Xb2f0;1gn XU2fI;X;Y;Zg jh�a jU j�bij2 � 2r ��n� ja� bjr �� Xa jh�a jU j�aij2 � 2r ��nr���n� 1r ��+ 2r�n� 1r � Xa2f0;1gn Xb2f0;1gn XU2fI;X;Y;Zg jh�a jU j�bij2� 2n+r+1 ��nr���n� 1r ��+ 2n+r+2�n� 1r �= 2n+r+2�nr�(1� r2n)which implies (7.9), which implies the theorem.7.3 The Depolarization ModelDepolarization Model We de�ne the depolarization noise model, which is a commonly usedmodel for quantum noises [92, 69]. Intuitively, a depolarization model of parameter p describesthe situation where each of Bob's qubits is replaced by a completely mixed state independentlywith probability p. In particular, if Alice and Bob initially share the Bell state �+, then the\depolarization" noise moves it to�p = (1� 3p4 )j�+ih�+j+ p4(j��ih��j+ j	+ih	+j+ j	�ih	�j) (7.11)which is also known as the \Werner state" [92].De�nition 7.2 (Depolarization Model) A depolarization model of parameter (n; p) is a prob-abilistic quantum noise model de�ned as Dn;p = �
np .Theorem 7.3 (NIED for the Depolarization Model) The �delity of any non-interactive, ran-domized public-coin entanglement distillation protocols over a depolarization model Dn;p is at most1� p2 .Notice that there exists a very simple non-interactive protocol of �delity 1 � 3p4 . If Alice andBob simply outputs the �rst qubit of their shares, the �delity of the output is 1� 3p4 . Notice that89



this protocol is deterministic. Therefore the upper bound in Theorem 7.3 is almost tight (up to aconstant factor).Proof: (of Theorem 7.3) Notice that in the depolarization model, the probability that r EPRpairs are corrupted is �nr�pr(1 � p)n�r. Conditioned on that r pairs are corrupted, each of theser pairs are replaced by a completely mixed state, and this it is exactly the \random corruption"model in the proof of Theorem 7.2. So in this case, the �delity of any non-interactive protocol is atmost 1 � r=2n. Thus, the overall �delity of any non-interactive protocol is at most Pr �nr�pr(1 �p)n�r � (1� r=2n) = 1� p=2.
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Chapter 8
The Fidelity Noise Model
We introduce the �delity noise model and study the communication complexity of entanglementdistillation protocols over this model. We start by discussing the motivation for this noise model,namely, the problem of General Entanglement Extraction. Then we introduce the model andpresent our results.The results in this Chapter relative to this thesis are summarized in Figure 8.1.
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8.1 Motivation: General Entanglement ExtractionThe problem of general entanglement extraction is formulated (informally) as follows. Given anarbitrarily state of certain entanglement (say k), is it possible for Alice and Bob to extractor \high-quality" entanglement, namely EPR pairs? This problem is naturally motivated by an analogybetween classical randomness extraction and quantum entanglement distillation.8.1.1 Classical Randomness ExtractionClassical randomness extraction is a fascinating topic in theoretical computer science by itself. Themotivation for study randomness extraction is that randomness plays an important role in classicalcomputation (see Motwani and Raghavan [64] for a comprehensive explanation), but it can be veryexpensive, if not impossible, to have a perfect random source that produces unbiased, uncorrelatedrandom bits. Therefore, it is very natural to ask if it is possible to perform randomized computationusing less-than-perfect random sources. In particular, is it possible to have an automatic process toconvert any randomized computation that was designed to have a perfect random source as inputinto one that works with imperfect random sources?A series of results established by various researchers answered positive to this question, and thenotion of randomness extractors was developed along this line of research. Intuitively, a randomnessextractor is a procedure that converts input from an imperfect random source to almost-perfectrandom bits as its output. Technically, an extractor also takes a small number of perfect randombits from an auxiliary input. But the size of auxiliary input is normally logarithmically small ascompare to the size of its main input. See Figure 8.2.
extractor Aux

Output

Input 
Input:   random source

Output: near−uniform random bits

Aux:     uniform random bits

Figure 8.2: Classical randomness extractorWe briey review some of the work on extractors and refer the readers to Nisan and Ta-Shma [70] and Shaltiel [81] for a more comprehensive and up-to-date survey. In the early stages of92



research on extractors, people have considered various speci�c models of \imperfect random bits".Von Neumann [66] showed that a linear number of perfect random bits can be extracted fromindependent tosses of a biased coin with unknown bias. Blum [11] extended the model of a biasedcoin to a Markov chain. Santha and Vazirani [80] considered extractors with many independent,yet adversarial random sources, as input. This contrasts with the modern stage, started by Nisanand Zuckerman [71], where researcher started to study extractors over arbitrary input. Today, thestate-of-art extractors can extract near-perfect random bits from random source [89, 79]. We alsohave a quite good understanding about the limit of extractors. For example, we know that theyield (size of the output) of an extractor is determined by the min entropy of the input, and thatthe size of the auxiliary input needs to be logarithmic in the size of input. On the other hand,there exist constructions of extractors that match these limits [89, 79].8.1.2 Similarity Between Extractors and EDPsWe discuss the similarity between classical extractors and quantum entanglement distillation proto-cols. Entanglement plays a central role in quantum information theory and quantum computation.It was argued that entanglement is the essential physical phenomenon that gives quantum com-putation its power of exponential speed-up over classical computation. Although it is still underheated debate and relentless research whether entanglement is essential for quantum computa-tion [24, 48, 20], it is widely believed that that entanglement plays a crucial part for quantuminformation theory. However, somewhat like in the case of classical randomness, it is very hardto have a perfect source of entanglement. EPR pairs, as with currently technology, are notori-ously hard to maintain. They decohere very easily and become \less entangled". As randomnessextractors convert less-than-perfect random bits into near-perfect ones, entanglement distillationprotocols convert less entangled quantum states into almost perfect EPR pairs.There exist even deeper similarities. An extractor, being a deterministic procedure, cannotcreate randomness by itself. It needs to \distill" the randomness from the input bits into randomnessof the purest form, namely unbiased, uncorrelated random bits. An entanglement distillationprotocol, being an LOCC protocol, cannot create entanglement by itself. Therefore an EDP alsoneeds to distill the entanglement from the input into EPR pairs, which are the entanglement of the93



purest form | each pair is maximally entangled and separable from the rest.Moreover, the early stage of searches on EDPs greatly resembles that on the randomness ex-tractors, in that people have considered various speci�c models of \imperfect EPR pairs" andconstructed protocols over these speci�c models. As an example, the �rst work we are aware of onEDPs is by Bennett, Bernstein, Popescu, and Schumacher [21], which used the model where manyidentical copies of the pure state j�i = (cos �j 01i + sin �j 10i) is given as the input. The resem-blance of this model, as well as the solution, to the the biased coin model used by von Neumann [66]is striking. More complicated models were proposed later, as Bennett, Brassard, Popescu, Schu-macher, Smolin, and Wootters [22] studied the case where the input is identical copies of a mixedstate. Horodecki, Horodecki, and Horodecki [42, 45] and Rains [75, 76, 77] studied the case wherethe input is many identical copies of a known pure state. Notice that the classical counterpart ofthis state would be an input with known distribution, for which case the problem of randomnessextraction was long solved by Shannon [82]. This sharp contrast somewhat demonstrates the dif-�culty of quantum information theory, as very simple problems in classical information theory canbecome highly non-trivial in the quantum case.However, despite the similarities and the correspondence between the early stages in researchon randomness extractors and entanglement distillation protocols, there has not been a counterpartof the modern stage of extractors in the study of EDPs. In other words, there hasn't much workon EDPs over arbitrary entangled states. This observation naturally motivates the entanglementnoise model and the study on EDPs over such a model.8.1.3 The Entanglement Noise Model and the Impossibility ResultWe describe the entanglement noise model, which contains all pure states of a certain amount ofentanglement.De�nition 8.1 (Entanglement Noise Model) A entanglement noise model of parameter (n; k),denoted by En;k, is an adversarial quantum noise model consisting of all 2n-qubit pure states of en-tanglement at least k. In other words,En;k = fj�i 2 H22n j E(�) � kg (8.1)94



Unfortunately, there don't exist entanglement distillation protocols over the entanglement noisemodel. This is true even if we restrict ourselves to starting states with the maximum possibleentanglement and only requires the protocol to output a single EPR pair �+.Theorem 8.1 (Entanglement Model) There do not exist perfect (n; 1)-protocols over the en-tanglement noise model En;n.Proof: Consider a quantum system of 2n qubits. The maximum possible entanglement of sucha system is n. Unlike in the classical world where there is just one probability distribution over 2nelements with entropy n (the uniform distribution), there are in�nitely many quantum states withentanglement n. Namely, any quantum state of the formj�i = N�1Xi=0 �ij iij ii (8.2)with j�ij2 = 1=N for all i 2 f0; : : : ; N � 1g has entanglement logN , where we denote N = 2n. Inparticular, this includes j�ai = N�1Xb=0 1pN e2i ab�=N j bij bifor a 2 f1; : : : ; Ng. Assume that we have a protocol that extracts �+ from any j�ai. This meansthat, given j�ai, the protocol ends with the �nal state of the form �+
j�0ai. We consider runningthis protocol on the mixed state � that is j�0i with probability 1=N , j�1i with probability 1=N , ...,j�N�1i with probability 1=N . Then, the �nal state is of the form �+ 
 �0 where �0 is some mixedstate.The problem is that � is equivalent to the mixed state that is j 0ij 0i with probability 1=N ,j 1ij 1i with probability 1=N , ..., jN � 1ijN � 1i with probability 1=N . (This equivalence can beveri�ed by writing out the density matrices of both states.) None of the states j iij ii is entangled,so the mixed state obtained by combining them is also not entangled. Yet, since this mixed stateis equivalent to �, it gets transformed into �+ 
 �0, which is entangled.We have constructed a protocol that transforms a disentangled starting state into entangledend state without quantum communication. Since this is impossible [21], our assumption is wrongand there is no protocol that extracts any �+ from an arbitrary j�ai.95



The argument described above is still valid if we relax the requirement to extracting a stateclose to �+.This is a clear distinction between the situation of classical randomness extraction and quantumentanglement extraction. In the classical case, all the probabilities are non-negative real numbers,and the min entropy of a random distribution already characterizes the distribution well. In thequantum case, the magnitudes are complex numbers, and the entanglement alone isn't good enoughto describe the state. Even more interestingly, since one has the freedom to switch bases in quantum,we can build a mixed state which is a mixture of maximally entangled states, yet the mixed stateitself is completely disentangled. This phenomenon doesn't seem to have a counterpart in classicalprobability.8.2 The Fidelity Noise ModelWith the motivation of studying EDPs for a general class of noise models and the impossibilityresult for the (too general) entanglement noise model, we consider the �delity noise model as onethat is still quite general, but also useful. Intuitively, the entanglement noise model fails becausethere exists many maximally entangled states that are orthogonal to each other, and no protocol canwork with all of them. Therefore, some \closeness" condition is needed, i.e., we need some guaranteethat the input state is close to a �xed maximally entangled state. This intuition naturally leads tothe �delity noise model, which, informally speaking, describes the situation where the input statehas a reasonably high �delity with the perfect EPR pairs.We give the de�nition of the �delity noise model.De�nition 8.2 (Fidelity Noise Model) A �delity noise model of parameter (n; a), denoted byFn;a, is an adversarial quantum noise model consisting of all 2n-qubit mixed states of �delity atleast a. In other words, Fn;a = f� 2 H22n j F(�) � ag (8.3)This model was also independently considered by Lo and Chau [57] and Shor and Preskill [84] inproving the security of the BB84 quantum key distribution protocol [16], and by Barnum et. al. [23]in studying the so-called \purity-testing protocols".96



8.3 Our ResultsWe present our results here, where are arranged in three parts. The �rst part is concerned withabsolute protocols, whereas we prove both lower and upper bounds for the quality of the optimalprotocols; the second part relates conditional protocols with so-called \purity-testing protocols"and we construct a protocol called \random hashing" that works with the �delity model; in thethird part, we prove an almost tight bound (up to an additive constant) on the communicationcomplexity of EDPs over the �delity model. Our result implies that the \random hashing" protocolis optimal.8.3.1 Part I: Absolute ProtocolsWe prove that no absolute protocol would work well over a �delity noise model. In fact, we canprove an even stronger result, which extends to protocols that accept perfect EPR pairs as auxiliaryinputs.Protocols with Auxiliary Input We consider protocols with auxiliary inputs as a slight ex-tension to \standard" entanglement distillation protocols. In addition to the input states, Aliceand Bob also receive k EPR pairs (each pair is shared between Alice and Bob) as auxiliary inputs.Obviously a protocol with auxiliary input would be more powerful than one without. An imme-diate example is that a deterministic protocol with auxiliary inputs can simulate a randomizedpublic-coin protocol, since Alice and Bob can use the shared EPR pairs to simulate shared randombits.Theorem 8.2 (Absolute Protocols for the Fidelity Model) The �delity of any (n;m)-protocolwith k < m EPR pairs as auxiliary inputs over a �delity model Fn;1�� is at most 1� 2m�2k2m 2n2n�1�.Moreover, this upper bound is tight, in that for every n;m; n, there exists an (n;m)-protocol usingk EPR pairs as auxiliary inputs of �delity 1� 2m�2k2m 2n2n�1�.Typically, the size of the auxiliary input, k is very small compared to the size of the input andthe output. Since a protocol with k EPR pairs of auxiliary input can trivially output k perfectEPR pairs, we require that m, the size of the output of such a protocol to be greater than k. In97



particular, even in the \minimal case", where k = 0 and m = 1, the maximum possible �delityof any protocol is bounded by 1 � 2n�12n�1� � 1 � �=2. So it is impossible to arbitrarily increase the�delity to be close to 1, even with unlimited communication.To prove this theorem, we need the following lemma (we de�ne N = 2n, K = 2k and M = 2m).Lemma 8.1 Let j�i = (j0N 
 0N i) 
 �k be a state in a bipartite system HANK 
 HBNK sharedbetween Alice and Bob. Let � be the state Alice and Bob output after performing (arbitrary) LOCCoperations. Suppose that � is in the subspace HAM 
HBM . We have F(�) � KM .This lemma is a a direct corollary of a result by Vidal, Jonathan, and Nielsen [91]. For thecompleteness of the paper, we give a somewhat simpler proof here.For a self-adjoint matrix M , we de�ne its spectrum written as S(M), to be a vector formed bythe eigenvalues of M , and whose entries are sorted in a decreasing order. In other words, if theeigenvalues of M are �1; �2; :::; �d, where �1 � �2 � � � � � �d, then S(M) = (�1; �2; :::; �d).For a mixed state �, if we write � as� = dXi=1 pi � j�iih�ijwhere p1 � p2 � � � � � pd, and fj�iig is an orthonormal basis, thenS(�) = (p1; p2; :::; pd)A useful fact about the spectrum of a tensor product of two matrices is the following:Lemma 8.2 Let A and B be square matrices such that the eigenvalues for A are f�1; �2; :::; �mgand the eigenvalues for B are f�1; �2; :::; �mg. Then the eigenvalues for the matrix A 
 B aref�i � �jgi=1;2;:::;m; j=1;2;::;n.Proof: If A � ~v = � � ~v and B � ~u = � � ~u, then (A
B) � (v 
 u) = (� � �)(v 
 u)A corollary the above fact is as follows.Corollary 8.1 Let �A, �B be the density matrices for quantum systems HA and HB. Then wehave rank (�A 
 �B) � rank (�A) (8.4)98



Proof: The rank of a matrix equals the number of non-zero eigenvalues of this matrix. Since �Bis a density matrix, it has trace 1, and thus it has at least one non-zero eigenvalue | assume it is�1. We denote the eigenvalues of �A by �1; �2; :::; �m, then by Lemma 8.2, �1 ��1; �2 ��1; :::; �m ��1are all eigenvalues of �A ��B . Therefore, they contain at many non-zero numbers as the eigenvaluesof �A.Proof: (of Lemma 8.1)We consider an arbitrary protocol P between Alice and Bob involving only LOCC. We assumethat P consists of steps, where each step could be one of the following operations 1:1. Unitary Operation:Alice (or Bob) applies a unitary operation to her (or his) subsystem.2. Measurement:Alice (or Bob) performs a measurement to her (or his) subsystem.3. Tracing Out:Alice (or Bob) discards part of her (or his) subsystem, or equivalently, traces out part of thesubsystem.4. Classical Operation:Alice (or Bob) sends a (classical) message to the other party.We �rst convert this protocol P into another protocol P 0 in the following way: for each tracing-out operation Alice (or Bob) performs, we insert a measurement operation right before the tracing-out, and the measurement is a full measurement of the subsystem to be traced out. Notice thatP 0 will have exactly the same output as P, since the subsystem that was traced out isn't part ofthe output. However, P 0 has the property that for each subsystem traced out in the protocol, thatsubsystem is disentangled from the rest, since it is already completely measured.Now we analyze the new protocol P 0. We denote the partial density matrix of Alice for thestate j�i by �A: �A = TrB(j�ih�j) (8.5)1We assume that Alice have enough ancillary qubit at the beginning of the protocol and not more new ancillaryqubits need to be introduced during the protocol. 99



Since we know j�i precisely, we can compute �A precisely, and in particular, its spectrum. Itis easy to verify that the spectrum of �A isS(�A) = (1=K; 1=K; :::1=K| {z }K ; 0; 0; :::; 0| {z }(N�1)K )So the rank of �A (which is also the Schmidt Number of j�i) is K.We focus on how �A changes with the local operations Alice performs (apparently it doesn'tchange with Bob's local operations): we shall prove that the rank of �A never increases. There are3 types of operations Alice can perform: unitary operations, local measurements, and tracing outa subsystem, we analyze them one by one:� Unitary OperationsThis operation changes a mixed state �A to U�AU y, where U is a unitary operation. Obviouslythe rank doesn't change.� Local MeasurementsSuppose measurement operator is fMmg satisfying PmM ymMm = I, and the measurementyields result m. Then Alice ends in state�m = Mm�AM ymTr(M ymMm�A)Again, we have rank (�m) � rank (�A).� Tracing Out a SubsystemWe write HA = HA0 
HA1 , and we suppose that the subsystem HA1 is traced out. We writethe partial density matrix for HA0 as �A0 , and we have �A0 = TrA1(�A).We know that in protocol P 0, the subsystem HA0 is disentangled from the subsystem HA1 .Thus we have �A = �A0 
 �A1for some density matrix �A1 . and by Corollary 8.1, we have rank (�A0) � rank (�A).100



So, as Alice and Bob perform local operations, the rank of the partial density matrix for Alicenever increases. This fact remains true even if Alice and Bob perform classical communications(this just means that Alice has the ability to perform di�erent local operations according to Bob'smeasurement result, but no local operation Alice performs can increase the rank).We denote the density matrix for the �nal state after the protocol P to be �E , and we de�ne�AE = TrB(�E) to be the partial density matrix for Alice. Then we have rank (�AE) � K. Notice �AEshould be an M �M matrix since Alice and Bob are supposed to arrive at a state in HAM 
HBM .We use �A0 to denote the partial density matrix for Alice if we trace out the system HBM from thetarget state 	M . It is easy to verify that �A0 = 1M I, where I is the identity matrix.By monotonicity of �delity, we haveF (�E ; j	M ih	M j) � F (�AE ; �A0 )However, we have F (�AE ; �A0 ) = Trq(�AE)1=2�A0 (�AE)1=2= r 1M � Trq�AEWe write the spectrum of �AE as S(�AE) = (�1; �2; :::; �M )and we know that �K+1 = �K+2 = � � � = �M = 0 since rank (�AE) � K. Therefore, we haveTrq�AE = MXl=1p�l = KXl=1p�l � pK � KXl=1 �l! = pKand thus F (�AE ; �A0 ) =r 1M � Trq�AE �rKMTherefore we have F (�E) = F (�E ; j	M ih	M j) � F (�AE ; �A0 ) � KM101



Proof: (of Theorem 8.2)We prove the theorem by demonstrating a particular mixed state � of �delity 1� �, such thatno LOCC protocol can increase its �delity to more than 1� M�KM NN�1�.Let �0 = NN�1�. We de�ne the state � to be� = (1� �0) � �n + �0 � j0N 
 0N ih0N 
 0N j (8.6)In other words, � is the maximally entangled state �n with probability (1� �0) and the completelydisentangled state 0N 
 0N with probability �0.It is easy to verify that F(�) = 1� �, since h�n j0N 
 0N i = 1pN and, therefore,F(�) = (1� �0)F(�n) + �0F(j0N 
 0N ih0N 
 0N j) = (1� �0) + 1N �0 = 1� (1� 1N )�0 = 1� �: (8.7)For an arbitrary LOCC protocol P, we de�ne f1 = F(P(�n)) and f2 = F(P(j0N
0N ih0N
0N j))Then we have f1 � 1 and by Lemma 8.1, f2 � K=M .By the linearity of �delity of quantum operations, we know thatF(P(�)) = (1� �0)f1 + �0f2 � 1� M �KM �0 = 1� M �KM NN � 1�: (8.8)Now, we prove that this lower bound is tight by demonstrating an (n;m)-protocol that saturatesthe bound in (8.8). The protocol is called the \random permutation protocol". In the simplestversion, it doesn't use any auxiliary input (i.e. k = 0). Again, we de�ne N = 2n, M = 2m, andK = 2k.Construction 8.1 (Random Permutation Protocol)1. Alice generates a uniformly random permutation � on f0; 1gn using classical randomness andtransmits the permutation to Bob.2. Alice applies permutation � on HAN , mapping j ii to j�(i)i, Bob does the same on HBN .3. Alice and Bob decompose HN as HM 
HL, L = N=M and measure the HL part.4. Alice sends the result of her measurement to Bob, Bob sends his result to Alice.102



5. They compare the results. If the results are the same, they output the state that they have inHAM 
HBM . If the results are di�erent, they output jZM i 
 jZM i.We compute the �delity of the random permutation protocol. We need one more notation.For a symmetric, bipartite system H = HAN 
HBN , we denote by HD the N -dimensional subspacespanned by ( N�1Xi=0 �i � j iiAj iiB )and we call it the diagonal subspace of HAN 
HBN . A mixed state � is in the diagonal subspace, ifthere exists a decomposition of �: � =Xi pi � j�iih�ijsuch that all pure states j�ii are in the diagonal subspace.We start with the case when the state of Alice and Bob is in the diagonal subspace.Lemma 8.3 If the input state to the random permutation protocol is in the diagonal subspace, thenthe �delity of the output is M�1M NN�1�.Proof: Without loss of generality, we assume that the input state is pure. Let j�i =PNi=1 �ij iiAj iiBbe the starting state. For a permutation �, let U� be the unitary transformation de�ned byU� �j iiA 
 j jiB� = j�(i)iAj�(j)iB . Then, if Alice and Bob use a permutation �, the resultingstate is j��i = U�j�i = NXi=1 �ij�(i)iAj�(i)iB = NXi=1 ���1(i)j iiAj iiB :There are N ! permutations � on a set of N elements. Therefore, each of them gets applied withprobability 1=N !. This means that the �nal state is a mixed state of j��i with probabilities 1=N !each. We calculate the density matrix � of this state. It is equal toX� 1N ! j��ih�� j =X� 1N ! 0BBBBBBB@ ���1(1)����1(1) ���1(1)����1(2) : : : ���1(1)����1(N)���1(2)����1(1) ���1(2)����1(2) : : : ���1(2)����1(N): : : : : : : : : : : :���1(N)����1(1) ���1(N)����1(2) : : : ���1(N)����1(N)
1CCCCCCCA :
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We claim that all diagonal entries �ii are equal to 1=N and all o�-diagonal entries �ij , i 6= j areequal to some value a which is real. This follows from the symmetries created by summing over allpermutations.Consider a diagonal entry �ii. For each j 2 f1; : : : ; Ng, there are (N � 1)! permutations thatmap j to i. Therefore, �ii = NXj=1(N � 1)! 1N !�j��j = 1N NXj=1 j�j j2:PNj=1 j�j j2 is the same as k�k2 which is equal to 1. Therefore, �ii = 1N .Next, consider an o�-diagonal entry �ij. For each k; l, k 6= l, there are (N � 2)! permutationsthat map k to i and l to j. Therefore,�ij = NXk=1 NXl=1;l 6=k(N � 2)! 1N !�k��l = NXk=1 NXl=1;l 6=k 1N(N � 1)�k��l :This immediately implies that �ij is the same for all i 6= j. Also, notice that (�k��l )� = ��k�l.Therefore, �k��l + �l��k is real and �ij (which is a sum of terms of this form) is real as well. Leta = �ij . We have shown that � = 0BBBBBBB@ 1N a : : : aa 1N : : : a: : : : : : : : : : : :a a : : : 1N
1CCCCCCCA :

Notice that the density matrix � can be also obtained from a mixed state that is �n withprobability Na and each of basis states j iiAj iiB with probability 1N � a.We now consider applying steps 3-5 to those states. Measuring HAL 
HBL for �n always givesthe same results and leaves Alice and Bob with the state �m in HAM 
 HBM . The �delity of thisstate with �m is, of course, 1. Measuring HAL and HBL for j iiAj iiB also gives the same results andleaves Alice and Bob with some basis state j i0iAj i0iB in the diagonal subspace of HAM 
HBM . The�delity of this state and j	M i is 1M . By the linearity of �delity, if we apply those steps to the state�, we get that the �delity isNa+N � 1N � a� 1M = 1M +Na�1� 1M� : (8.9)104



We now lower-bound a. Again by the linearity of �delity, we have F(�) = 1N !P� F(j��i). Sincepermuting the basis states j iiAj iiB preserves the maximally entangled state �n = 1pN PNi=1 j iiAj iiB ,the �delity of any j��i is the same as the �delity of j�i. Therefore, F(�) = F(j�i) � 1 � �. Byapplying the de�nition of �delity,
F(�) = 0BBBBBBB@ 1pN1pN: : :1pN

1CCCCCCCA
0BBBBBBB@ 1N a : : : aa 1N : : : a: : : : : : : : : : : :a a : : : 1N

1CCCCCCCA� 1pN 1pN : : : 1pN �
= N 1N2 +N(N � 1) 1N a= 1N + (N � 1)a:Since F (�) � 1 � �, it must be the case that a � 1N � �N�1 . By substituting that into (8.9), the�delity of the �nal state with �m is at least1M +N � 1N � �N � 1��1� 1M� = 1� NN � 1 �1� 1M� �:

It remains to show that the protocol also succeeds for states not in the diagonal subspace. Letj�i be a state such that F(j�i) � 1� �. We decomposej�i = p1� Æj�1i+pÆj�2i;with j�1i 2 HD and j�2i 2 (HD)?. Let F(j�1i) = 1� Æ0. Since �n is in HD and j�2i is orthogonalto HD, we have F(j�2i) = 0 and F(j�i) = (1�Æ)(1�Æ0). Notice that (1�Æ)(1�Æ0) � 1� � becauseF(j i) � 1� �.Applying U� maps j�i to j��i = p1� Æj��;1i + pÆj��;2i where j��;1i = U�j�1i, j��;2i =U�j�2i. Since U� preserves the diagonal subspace, j��;1i 2 HD and j��;2i 2 (HD)?. MeasuringHAL and HBL for a state in HD always gives the same results and produces a state in the diagonalsubspace of HAM 
 HBM . Measuring HAL and HBL for a state in (HD)? either gives the di�erent105



results for Alice and Bob or gives the same results but produces a state orthogonal to the diagonalsubspace of HAM 
HBM .The �delity of the �nal state consists of two parts: the �delity of the �nal state if Alice's andBob's measurements of HL give the same answer and the �delity if measurements give the di�erentanswer. The �rst part is just (1 � Æ) times the �delity of the �nal state if the starting state wasj�1i (instead of j�i). Since j�1i is in the diagonal subspace, Lemma 8.3 implies that the �nal stateof the protocol j�1i has the �delity at least 1�DÆ0 where D = M�1M NN�1 . Therefore, the �rst partis at least (1� Æ)(1 �DÆ0) = (1� Æ)(1 � Æ0) + (1�D)Æ0(1� Æ) (8.10)The second part is the probability of measurements giving di�erent answers times the �delity ofthe state j 0i 
 j 0i which Alice and Bob output in this case. The �delity of this state is 1M and theprobability of this case is given by the following lemma.Lemma 8.4 The probability that Alice's and Bob's measurements give di�erent answers is N�MN�1 Æ.Proof: First, we look at the state j�2i. Since this state is in (HD)?, it is of the formj�2i = NXi;j=1;i6=j�i;jj iiAj jiB :Applying U� maps it toj��;2i =Xi6=j �i;jj�(i)iAj�(j)iB =Xi6=j ���1(i);��1(j)j iiAj jiB :The probability of Alice and Bob getting di�erent results is equal to the sum of j���1(i);��1(j)j2over all basis j iiA, j jiB that di�er in the HL part. If this sum is averaged over all permutations �,it becomes the same for all i; j, i 6= j. Therefore, the probability of Alice and Bob getting di�erentresults is just the fraction of pairs (i; j) that di�er in the HL part. It is N�MN�1 because for each i,there are (N � 1) j 2 f1; : : : ; Ng, j 6= i andM � 1 of them di�er only in the HK but the remainingN �M di�er in the HL part.If the starting state is j�i, the probability of Alice and Bob getting di�erent results is Æ timesthe probability for j�2i because j�i = p1� Æj�1i+pÆj�2i and the measurements always give the106



same answer on j�1i.Therefore, the second part of the �delity is 1M N�MN�1 Æ. Notice that 1 � D = 1 � (M�1)NM(N�1) =(M�1)N�M(N�1)M(N�1) = N�MM(N�1) . Thus, the second part is (1�D)Æ and the overall �delity is at least(1� Æ)(1 � Æ0) + (1�D)(1� Æ)Æ0 + (1�D)Æ = 1�D(Æ(1 � Æ0) + Æ0):Since (1 � Æ)(1 � Æ0) � 1 � �, Æ(1 � Æ0) + Æ0 � �. Therefore, the overall �delity is at least 1 �D�.This completes the proof of the second part of Theorem 8.2 for K = 1.For K > 1, we can just produce an entangled state of dimension M 0 = M=K without the useof j	Ki by the protocol above and then output this state and the original j	Ki. This achieves the�delity of at least 1�D� for D = M 0�1M 0 NN�1 = M=K�1M=K NN�1 = M�KM NN�1 , proving that the bound ofTheorem 8.2 is tight for k > 0.Interestingly, we can show that communication almost does not help for entanglement distilla-tion over the �delity model. The next theorem states that the random permutation protocol canbe modi�ed into an non-interactive one with only with a small loss of �delity.Theorem 8.3 (Non-interactive Absolute Protocols for the Fidelity Model) There existsa non-interactive, randomized public-coin entanglement distillation (n; 1)-protocol of �delity 1 �34 2n� 232n�1 � over a �delity noise model Fn;1��. Furthermore, this it is almost the best possible, in thatthe �delity of any non-interactive, randomized public-coin entanglement distillation (n; 1)-protocolover the model Fn;1�� is 1� 34 22n22n�1�, for � � 22n�122n+1 .It is interesting to compare this result to a special case of Theorem 8.2, where k = 0 and m = 1.We see that with communication, the maximum �delity of a protocol is about 1 � �=2, and thereexists a protocol that matches this bound exactly. Without communication, the maximum �delityis about 1 � 3�=4, and it is tight, too. Therefore, communication does help in this case, but notmuch.Proof: (of Theorem 8.3) We �rst show that the random permutation protocol in Construc-tion 8.1 cane modi�ed into a non-interactive one.107



Construction 8.2 (Non-interactive Random Permutation Protocol)1. Using the shared random string, Alice and Bob generate a uniformly random permutation� 2 S2n and x1 2 f�1; 1g, x2 2 f�1; 1g, : : :, x2n 2 f�1; 1g.2. Alice and Bob apply the transformation U mapping U j ii = (�1)xi j�(i)i to their qubits.3. They each output the �rst qubit and trace out the rest.Note that if they are given the perfect state �n, then U 
 U j�ni = �n and the output is aperfect EPR pair. If the starting state is not perfect, then the �rst two steps \symmetrize" it.Lemma 8.5 Let � be the mixed state obtained after the �rst two steps. Then,� = p0j	nih	n j+ p1�1 + p2�2 + p3�3where �1 is a uniform mixture of 2n states j iij ii, �2 is a uniform mixture of 2n(2n � 1) states1p2(j iij ji + j jij ii), j 6= i, �3 is a uniform mixture of 2n(2n � 1) states 1p2(j iij ji � j jij ii), j 6= iand p0, p1, p2, p3 2 R.Proof: We divide the transformation into two parts: U = U 00U 0, U 0j ii = (�1)xi , U 00j ii = j�(i)i.Let �0 be the intermediate density matrix after applying U 0. Then, the only nonzero entries in �0are j iij iihi jhi j, j iij iihj jhj j, j iij jihi jhj j, j iij jihj jhi j. Applying U 00 after that makes all entries ofeach type equal.Let a; b; c; d be their values. Then, we can set p0 = 2na, p1 = 2n(b� a), p2 = 2n(2n � 1)(c+ d),p3 = 2n(2n � 1)(c� d).We have F (�0) = 1, F (�1) = 12n and F (�2) = F (�3) = 0. We note thatp0 + 12n p1 � 1� � (8.11)because each of states U 
U j i has the same �delity as j i and �delity is convex. We can rewrite(8.11) as 2n�12n p1 + p2 + p3 � �. 108



Outputting the �rst EPR pair and tracing out the rest transforms �0 into a state of �delity 1,�1 into a state of �delity 1/2 and �2 and �3 into states of �delity (2n�1 � 1)=2(2n � 1). Thus, the�nal �delity is 1� Æ,Æ = 12p1 + 3 � 2n�1 � 12(2n � 1) (p2 + p3) � 3 � 2n�1 � 12(2n � 1) � = 34 2n � 2=32n � 1 �:Next, we prove the second part of the theorem, that this is almost the best a non-interactiveprotocol can do.Let � be the mixture of �n with probability 1� 22n22n�1� and the completely mixed state in 2n�2ndimensions with probability 22n22n�1�. Since the perfect state has �delity 1 and the completely mixedstate has �delity 122n , this state has �delity 1� �.W.l.o.g., a non-interactive protocol consists of Alice applying UA, Bob applying UB and eachof them outputting the �rst qubit.Let �A be the density matrix of Alice's �rst qubit if she starts with her system in 2n-dimensionalcompletely mixed state. As any density matrix on one qubit, �A has can be decomposed into mixtureof two orthogonal one-qubit states (its eigenstates)�A = �1j Aih A j+ �2j ?Aih ?A jwhere �1;2 are the eigenvalues of �A. Since eigenvalues of a density matrix must sum up to 1, wecan assume that �1 = 12 + ÆA and �2 = 12 � ÆA, ÆA � 0. Let �B be the density matrix of Bob's�rst qubit if he starts with his system in 2n-dimensional completely mixed state. We de�ne j Bi,j ?Bi, ÆB similarly. Let Æ = max(ÆA; ÆB).Lemma 8.6 If the starting state is �n, the �delity of the �nal state is at most 1� Æ2.Proof: W.l.o.g. assume that Æ = ÆA.Consider Alice's part of �n. It is the completely mixed state on Alice's 2n dimensional system.Therefore, Alice's output qubit will be in the state �A. This means that the �delity of the stateoutput by Alice+Bob and j 00i+ j 11i is at most the �delity between �A and 12I (density matrix ofAlice's part of 1p2 (j 00i + j 11i)). 109



Let U be the unitary transformation that maps j 0i to j Ai and j 1i to j ?Ai. Then,F (�A; 12I) = F (U�1�AU; 12I) = F 0B@0B@ 12 + Æ 00 12 � Æ 1CA ; 12I1CA=  1p2r12 + Æ + 1p2r12 � Æ!2 = 12 +r14 � Æ2 � 12 +�12 � Æ2� = 1� Æ2:
Lemma 8.7 If the starting state is the completely mixed state in 22n dimensions, the �delity ofthe �nal state is at most 14 + �.Proof: Since the completely mixed state is the tensor product of completely mixed states of Aliceand Bob, the �nal state of output qubits is �A 
 �B . This state is a mixture of j i 
 j 0i, wherej i (or j 0i) is one of j Ai and j ?Ai (or j Bi and j ?Bi) with probabilities (12 � ÆA)(12 � ÆB).Notice that 1p2(j 00i + j 11i) = 1p2(j ij �i+ j ?ij ( ?)�i)for any one qubit state j i. In particular, we can take j i = j Ai. Let a = jh �Aj Bij2. Then,the �delity of states j Ai 
 j Bi and j ?Ai 
 j ?Bi is a2 and the �delity of states j Ai 
 j ?Bi andj ?Ai 
 j Bi is 1�a2 . Therefore, the overall �delity of the �nal state isa2 �(12 + ÆA)(12 + ÆB) + (12 � ÆA)(12 � ÆB)�+ 1� a2 �(12 + ÆA)(12 � ÆB) + (12 � ÆA)(12 + ÆB)�= a2 �12 + 2ÆAÆB�+ 1� a2 �12 � 2ÆAÆB� � 12 �12 + 2ÆAÆB� � 14 + Æ2:

Therefore, the �delity of the protocol on �4 is at most(1� 22n22n � 1�)(1� Æ2) + 22n22n � 1�(14 + Æ2) � 1� 34 22n22n � 1�: (8.12)If Alice and Bob share randomness, we can �x one value r for randomness and take UA and UB110



for this r. The bound of Eq (8.12) applies for any particular r, Therefore, it also applies on theaverage over all r.8.3.2 Part II: Purity Testing Protocols and Conditional ProtocolsTheorem 8.2 spells a negative result for absolute protocols over the �delity noise model by demon-strating a state � such that no LOCC protocol can increase its �delity signi�cantly. However, thesituation is vastly di�erent for the case of conditional protocols. We shall prove that very eÆciententanglement distillation protocols exist that can increase the conditional �delity to as close to 1as possible. As we shall see, one construction of such protocols is closely related to the notion ofpurity testing protocols.Theorem 8.4 (Conditional Protocols for the Fidelity Model) For all integers n > s, thereexists an conditional, randomized, (2ns+ s)-bit one-way, (n; n� s) protocol over the �delity noisemodel Fn;1�� with success probability at least 1� � and conditional �delity 1� 2�s1+2�s�� .We prove this theorem by �rst demonstrating a closely related notion, namely the purity testingprotocols, and then showing how these protocols are in fact entanglement distillation protocols,followed by an explicit construction.Purity Testing ProtocolsA purity testing protocol is an LOCC protocol where the input is joint state shared by Alice andBob which they think might be the EPR state �n. Alice and Bob want to test if their sharedstate is indeed �n, while sacri�cing the least number of EPR pairs. The concept of purity testingprotocols were studied implicitly by Lo and Chau [57] and Shor and Preskill [84] in the context ofproving the security of the BB84 quantum key distribution protocol [16], and later explicitly byBarnum, Cr�epeau, Gottesman, Smith, and Tapp [23].De�nition 8.3 (Purity Testing Protocol, adapted from [23]) A purity testing protocol withparameters (n;m;�) is a LOCC super-operator Tn;m;� which maps 2n qubits (half held by Alice andhalf held by Bob) to 2m + 1 qubits (m of which are held by Bob) and satis�es the following twoconditions: 111



� Completeness: T (�n) = �m 
 jSUCCi� Soundness: Let P be the projection on the subspace spanned by �m
jSUCCi and j i
jFAILifor all j i. Then T is sound with error � if for all �,Tr (PT (�)) � 1� �:It's convenient to think of purity testing as approximating the measurement given by the pro-jector onto �m and its orthogonal complement.Purity Testing Protocols are Entanglement Distillation ProtocolsWe prove that every purity testing protocol is in fact an entanglement distillation protocol.Lemma 8.8 Every purity testing protocol Tn;m;� corresponds to an conditional entanglement dis-tillation (n;m)-protocol over the �delity noise model Fn;1�� with success probability at least 1 � �and conditional �delity at least 1� �1��+� .Proof: We show that the purity testing protocol Tn;m;� is in fact an entanglement distillationprotocol with the slightest modi�cation. Alice and Bob simply run the purity-testing protocol,with Alice outputting FAIL when the purity testing rejects the input. Now we estimate the successprobability and the conditional �delity of this protocol.Suppose at the end of the protocol Alice and Bob trace out everything except the 2m outputqubits and the qubit indicating accept/reject. Consider the three projectors:P1 = �m 
 jSUCCihSUCC jP2 = (IM � �m)
 jSUCCihSUCC jP3 = IM 
 jFAILihFAIL jAnd de�ne i = Tr[Pi�0] where �0 is the �nal state.If the input to the system had �delity 1��, then the completeness of the purity-testing protocolimplies that the �delity of the output to �mjSUCCi must be 1 � �, and so 1 � 1 � �. Therefore112



the success probability is at least 1� �. If the purity-testing protocol has soundness error �, thenthe soundness condition implies 2 � �.Now the output �delity conditioned on acceptance is11 + 2 = 1� 21 + 2 � 1� �1� �+ �:This �nishes the proof.Constructing Purity Testing ProtocolsPurity testing protocols are in fact easy to construct and are very eÆcient. A particularly simplepurity-testing protocol consists of picking a random stabilizer code of dimension 2n�s, having Aliceand Bob both measure the syndrome of the code, and then extracting the encoded state if bothmeasurement results are the same.Lemma 8.9 (Random hashing) For all integers n > s, there exist purity testing protocols ofparameters (n;m;�) such that such that m = n � s, � � 2�s and which use ns + s + 1 bits ofclassical communication.This lemma actually follows from the observation that the set of all stabilizer codes [36] ofdimension 2n�s is a purity-testing code family with error � � 2�s. However, we give a direct proofwith an explicit protocol description below.Without loss of generality, we describe the protocol in terms of purifying the state j	�i2. Wedescribe a protocol withm = n�1 and error � = 12 . Repeating the protocol s times yieldsm = n�sand � = 2�s.Construction 8.3 (Simple Random Hashing Protocol)1. Alice picks 2n random bits x1; :::; xn; z1; :::; zn such that not all the bits are 0.2. Alice will measure the operator given byXx1Zz1 
 � � � 
XxnZzn. To do this Alice:2For example, Bob can perform a \phase-shift" (Z) followed by a \bit-ip" (X) to every qubit he possesses. Thiswill transform j�+i to j	�i. 113



(a) Considers only qubits where (xi; zi) 6= (0; 0). Say there ` qubits left.(b) On qubit j, applies eitherH = 1p2 0B@ 1 11 �1 1CA if (xj ; zj) = (0; 1),B = 1p2 0B@ 1 ii 1 1CA if (xj ; zj) = (1; 1),the identity if (xj ; zj) = (1; 0).(c) Applies CNOT from each of the �rst `� 1 qubits onto the last.(d) Measures the last in the computational basis.(e) Applies the inverse transformation to the remaining qubits.3. Alice sends x1; :::; xn; z1; :::; zn and her measurement result to Bob.4. Bob performs the same measurement and sends back the result.5. Alice and Bob accept if the two results are di�erent and reject otherwise.Proof: (of Lemma 8.9)It is suÆcient to consider the performance of the protocol on states of the form X~aZ~bj	�i
n,where X~a denotes Xa1 
 � � � 
Xan when ~a = (a1; :::; an) 2 f0; 1gn. Without the loss of generality,we assume all the error operators are applied to Alice's share of the EPR pairs.The reduction to these Bell states is via a \quantum-to-classical reduction", as used in [57] forkey distribution. The reduction works because ultimately, the accept/reject decision is diagonal inthe Bell basis, and moreover if the input to the protocol can be described as X~aZ~bj	�i
n, the theoutput can be written X~a0Z~b0 j	�i
m.The idea is that measuring the operator Xx1Zz1 
 � � � 
 XxnZzn on both Alice and Bob'sshares and comparing the results is equivalent to measuring the bit ~a � ~x +~b � ~z, i.e. a randomlinear function of the vector (~x; ~z). To see this, �rst observe that HXaZb = (�1)abXbZbH andBXaZb = ibXa+bZbB. Moreover, both B 
 B and H 
H have j	�i as an eigenvector. Thus, ineach position we will end up with a state proportional to Xxjaj+zjbjZcj	�i after Alice and Bobhave applied their transformations and before they measure, where c is a bit. Measuring both halves114



in the computational basis and comparing results allows one to compute xjaj + zjbj. Similarly, theprotocol computes ~x� ~a+~b� ~z.A random linear function will detect a non-zero vector with probability 12 . Thus, the overallerror probability of the one-step protocol is bounded by 12 . Repeating the protocol s times lowersthis error to 2�s.Proof: (of Theorem 8.4) It directly follows Lemma 8.8 and Lemma 8.9.In fact, a closer look at the Construction 8.3 reveals that of the (2n+1) bits of communicationin this protocol, 2n of them are used for selecting a random string, which can be spared if Aliceand Bob initially share a random string. This observation leads to the following corollary toTheorem 8.4.Corollary 8.2 For all integers n > s, there exists an conditional, randomized public-coin, s-bitone-way, (n; n�s) protocol over the �delity noise model Fn;1�� with success probability at least 1��and conditional �delity at least 1� 2�s1+2�s�� .Here, we see an exponential trade-o� between the conditional �delity and the amount of com-munication: each additional bit communicated will reduce the gap between the conditional �delityand 1 by almost half. This contrasts sharply with the relation between �delity and communication,where communication does help a little, but by only at most a constant factor.8.3.3 Part III: The Communication ComplexityWe study the communication complexity of entanglement distillation protocols over the �delitynoise model. We prove a lower bound that matches the result from Corollary 8.2 up to an additiveconstant. This e�ectively shows that the construction of Corollary 8.2 is optimal.De�nition 8.4 (Ideal Success Probability) The ideal success probability of a conditional quan-tum entanglement distillation (n;m)-protocol is the probability that it succeeds over the input �n.A protocol is ideal if its ideal success probability is 1.Theorem 8.5 (Communication Complexity of Protocols for the Fidelity Model) The con-ditional �delity of any randomized public-coin s-bit (n;m)-protocol of ideal success probability p isat most 1� �p2s+1 over a �delity noise model Fn;1��115



An immediate corollary of this theorem is that the conditional �delity of an s-bit ideal protocolis at most 1� �=2s+1. Therefore, to achieve a �delity or 1� Æ on the output, log(1=Æ)+ log(� �p)�1bits of classical communication is needed. On the other hand, Corollary 8.2 yields a communicationcomplexity of log(1=Æ) + log(1� �). In the case where both � and p are constants, these two resultsmatch up to an additive constant. It is a rather interesting observation, besides the fact that itimplies the optimal of Corollary 8.2 and the tightness of Theorem 8.5. Notice that Theorem 8.5is proven for protocols that only output a single qubit pair | a minimal possible yield, whilethe construction from the random hash protocol used by Corollary 8.2 outputs (n � s) qubits |an asymptotically maximum possible yield.3 Despite the two extreme cases on the yield of theprotocols, this two result match nicely.Proof: (of Theorem 8.5) WLOG we assume the protocol only outputs one qubit pair, i.e.,m = 1, by the monotonicity of �delity. Consider a particular input state�0 = (1� �0)	n + �0 � I22n (8.13)It is a mixture of the perfect EPR pairs �n (with probability 1 � �0) and the completely mixedstate I22n (with probability �0). Notice that F ( I22n ) = 122n . So if we set �0 = 22n22n�1�, then wehave F (�) = 1 � �. We shall prove that no deterministic, s-bit protocol has �delity more than1� 2�(s+1)�p over state �0, which implies the theorem.We �x a protocol P. WLOG, we assume it proceeds in rounds: in each round, one of the twoparties (Alice or Bob) applies a super-operator E to his or her share of qubits, and then sends one(classical) bit to the other party. The protocol consists of s rounds: one bit is sent in each round.Finally, Alice outputs the special symbol, determining if the protocol succeeds or fails.To analyze the behavior of the protocol P over the input �0, we consider how P behaves overstate �n and state I22n , respectively. We use p (resp. q) to denote the probabilities that P succeedsover state �n (resp. I22n ). Notice p is in fact the ideal success probability of protocol P. Then it iseasy to see that Fc(P(�0)) = (1� �0)p � Fc(P(�n)) + �0q � Fc(P( I22n ))(1� �0)p+ �0q (8.14)3Notice that because of the exponential trade-o�, it is normally suÆcient to have s = o(n), and in that case therandom hash protocol outputs almost all the input qubit pairs.116



Notice that we always have Fc(P(�n)) � 1. Since I22n is a disentangled state, P( I22n ) is alsodisentangled. Therefore we have Fc(P( I22n )) � 1=2 by Lemma 2.1. We shall prove thatq � p2=2s; (8.15)which will imply thatF(P(�0)) � (1� �0) + �0p=2s+1(1� �0) + �0p=2s = 1� �0p2s+1(1� 2s2s�1�0p) � 1� �p=2s+1 (8.16)Now we prove that q � p2=2s. We analyze two cases separately: in case I, the state �n is theinput to the protocol; in case II, the state I22n is the input to the protocol. For each case, we keeptrack of the local density matrices of Alice and Bob. In case I, we use � I;Ak and � I;Bk to denote thelocal density matrices of Alice and Bob after the k-th round; in case II, we use � II;Ak and � II;Bk ,respectively. For k = 0, we de�ne the � I;A0 , � I;A0 , � II;A0 , and � II;A0 to be the density matrices at themoment that protocol starts.We give more de�nitions: after the k-th round, there are 2k possibilities depending on the �rstk bits communicated. For any binary string t 2 f0; 1gk, we use �I;At (resp. �I;Bt ) to denote thelocal density matrix of Alice (resp. Bob) after the k-th round in case I, conditioned on that the�rst k bits communicated so far are t[0]; t[1]; :::; t[k � 1]. We use pIt to denote the probability thatthis happens (that the �rst k bits are t[0]; t[1]; :::; t[k � 1]). Obviously we have pIt = pIt;0 + pIt;1 forany t 2 f0; 1gk . Furthermore, we have the following equalitiesXt2f0;1gk pIt = 1 (8.17)Xt2f0;1gk pIt � �I;At = � I;Ak (8.18)Xt2f0;1gk pIt � �I;Bt = � I;Bk (8.19)We de�ne �II;At , �II;Bt , and pIIt for case II, similarly.We use � to denote the empty string. So we have pI� = pII� = 1.One important observation is that when the protocol starts, the local density matrices for Alice117



and Bob are identical in both cases:�I;A� = �I;B� = �II;A� = �II;B� = I2n (8.20)When the protocol proceeds, the local density matrices in two cases will become di�erent, sincethe state �n is an entangled state, while I22n is not. However, they cannot di�er \too far", as weshall prove in the following lemma:Lemma 8.10 For all k = 0; 1; :::; s� 1 and all t 2 f0; 1gk, we have pIt ��I;At � �II;At and pIt � �I;Bt ��II;Bt .Proof: By induction. The base case is obvious. Now the inductive case. Consider the situationat the end of the k-th round. Suppose the �rst k bits sent are t[0]; t[1]; :::; t[k � 1]. WLOG weassume that in the (k + 1)-th round, Alice applies a super-operator E to her share of qubits, andsend one bit a to Bob.First we consider the density matrix for Alice. Notice that in general, a is the result of themeasurement from E . Therefore, we can \split" E into two positive super-operators E0 and E1, suchthat E0(�I;At ) = pIt;0pIt � �I;At;0 (8.21)E1(�I;At ) = pIt;1pIt � �I;At;1 (8.22)E0(�II;At ) = pIIt;0pIIt � �II;At;0 (8.23)E1(�II;At ) = pIIt;1pIIt � �II;At;1 (8.24)Intuitively, E0 corresponds to the case that a = 0 is sent, and E1 corresponds to the case that a = 1is sent.By inductive hypothesis, we have pIt � �I;At � �II;At (8.25)118



Combining (8.25), (8.21) and (8.23) with Lemma 2.4 yields thatpIt;0 � �I;At;0 = E0(pIt � �I;At ) � E0(�II;At ) = pIIt;0pIIt � �II;At;0 � �II;At;0 (8.26)Combining (8.25), (8.22) and (8.24) with Lemma 2.4 yields thatpIt;1 � �I;At;1 = E1(pIt � �I;At ) � E1(�II;At ) = pIIt;1pIIt � �II;At;1 � �II;At;1 (8.27)Now we consider the local density matrix for Bob. In case I, the qubits between Alice and Bobare entangled. Therefore, the bit Alice sends to Bob carries some information about his state. Interms of the density matrix, Bob's local density matrix will \split" from �I;Bt to �I;Bt;0 and �I;Bt;1 .Notice that Bob doesn't perform any operation to his qubits, and thus we have�I;Bt = pIt;0pIt � �I;Bt;0 + pIt;1pIt � �I;Bt;1 (8.28)In case II, the qubits between Alice and Bob are disentangled. Therefore, the bit sent by Alicecarries no information about Bob's own state. Thus Bob's local density matrix remains unchanged.Thus we have �II;Bt = �II;Bt;0 = �II;Bt;1 (8.29)By inductive hypothesis, we have pIt � �I;Bt � �II;Bt (8.30)Combining (8.28), (8.29), and (8.30), we havepIt;0 � �I;Bt;0 � pIt � �I;Bt � �II;Bt = �II;Bt;0 (8.31)pIt;1 � �I;Bt;1 � pIt � �I;Bt � �II;Bt = �II;Bt;1 (8.32)So the inductive case is proved. 119



Now we are ready to prove (8.15). After s bits are sent, Alice will decide whether to succeedor fail. In case I, we use rt to denote the probability that Alice choose to succeed conditioned onthat the bits communicated are t[0]; t[1]; :::; t[s � 1]. Notice we have pIt � �I;At � �II;At , and thus byLemma 8.10, we know that in case II, the success probability is at least pIt � rt.Therefore, we have p = Xt2f0;1gs rt � pIt (8.33)q � Xt2f0;1gs rt � pIt � pIt (8.34)which implies that q � Xt2f0;1gs rt � �pIt�2 (8.35)� 12s 0@ Xt2f0;1gs rt1A � 24 Xt2f0;1gs rt � �pIt�235 (8.36)� 12s 0@ Xt2f0;1gs rt � pIt1A2 (8.37)= p22t (8.38)This proves the theorem.
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Appendix A
Private Communication withAmbainis and Gottesman
I attach the results from Ambainis and Gottesman on entanglement distillation protocols that beatquantum error correcting codes.A.1 Quoted communication from Daniel GottesmanThe most interesting one is when you have 9 EPR pairs andat most 2 errors. The smallest QECC to correct 2 errorsencodes 1 qubit is 11.Using two-way communications, you can use the followingprocedure: divide the 9 EPR pairs up into a group of 5 anda group of 4. On the group of 5, measure the 4 generatorsof 5-qubit code (which has distance 3, and can thereforecorrect 1 general error, or detect 2 errors). On the groupof 4, measure the 2 generators of the [[4,2,2]] code (thatis, X X X X and Z Z Z Z, parity checks in the X and Z bases).The 4-qubit code has distance 2, which means it cannot correct130



a general error, but it can detect any single error. We initiallyuse the information to detect errors on the two sets. We dividethe results up into 3 cases:1) error detected on group of 5, no error on group of 4In this case, there is at least one error in the group of 5, sothere could only have been at most one error in the group of 4,which we would have detected. Therefore, there were no errorsin the group of 4, and we can use the 2 remaining pairs fromthat group.Result: 2 EPR pairs.2) no error on group of 5 (there may or may not be an errordetected on the group of 4).In this case, we know there cannot be any errors on the groupof 5, or we would have detected them. Therefore, we can usethe one remaining EPR pair from the group of 5 safely.Result: 1 EPR pair.3) error detected in both groupsIn this case, we know there is exactly one error in eachgroup. The group of 4 is hopeless -- we cannot correcterrors, but the group of 5 is also a code to correct onegeneral error, and we know there is only one error there.131



Therefore, we can correct that error, and extract a singlegood EPR pairResult: 1 EPR pair.In all cases, we get at least 1 good EPR pair out.
A.2 Quoted communication from Andris Ambainishere is a very simple particular case of what you wrote to me a whileago. Take 4 EPR pairs (8 bits). Measure XOR of all odd bits, destroyingthe 4th pair.1) If it is 1, take the 2nd and the 3rd pairs, measure theXOR of their odd bits, destroying the 3rd pair. If this XOR is 0, we knowthat the 2nd pair does not have an error. If it is 1, the 1st pair doesn'thave an error.2) If it is 0, measure the XOR of the even bits of the 2nd and the 3rdpair. The rest is similar to 1).In contrast, the smallest quantum error correcting code for correcting oneerror uses 5 qubits. So, we have another case where our protocols beatQECCs for small number of qubits/errors.
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Appendix B
List of SymbolsB.1 Mathematical NotationsX, Y , Z : Pauli matrices�+, ��, 	+, 	� : Bell states�n : n EPR pairsE(j�i) : the entanglement of the pure state j�iE(�) : a superoperator over the mixed state �HN : a Hilbert space of dimension N .S(�) : the von Neumann entropy of the mixedstate �(n; k; d)-code : a classical error correcting code[n; k; d]-code : a linear classical error correctingcode[[n; k; d]]-code : a quantum error correcting codeB.2 Protocols(�; n;m)-protocol : a classical correlation dis-tillation protocol over alphabet � with in-

puts from �n��n and outputs in �m��m(n;m)-protocol : a quantum entanglement dis-tillation protocol with inputs from H2n 
H2n and outputs inH2m 
H2mB.3 Noise ModelsBcn;r : the classical bounded corruption modelBEn;r : the bounded erasure modelBqn;r : the quantum bounded corruption modelMn;t : the bounded measurement modelDn;p : the depolarization modelEn;k : the entanglement noise modelFn;a : the �delity noise modelTn;m;� : the purity testing protocol
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