Helping Everyday Users Find Anomalies

in Data Feeds
Orna Raz

May 2004

CMU-CS-04-133
CMU-ISRI-04-119

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Mary Shaw, Carnegie Mellon University, Chair
Philip Koopman, Carnegie Mellon University
Christos Faloutsos, Carnegie Mellon University

Michael Ernst, Massachusetts Institute of Technology

Copyright © 2004 Orna Raz

This research was supported in part by the National Science Foundation under ITR Grant CCR-
0086003, in part by the Sloan Software Industry Center at Carnegie Mellon University, in part by the
NASA High Dependability Computing Program under cooperative agreement NCC-2-1298, and in
part by the EUSES Consortium via the National Science Foundation under ITR Grant CCR-0324770

The views and conclusions contained in this document are those of the author and should not be

interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

Keywords: Semantic anomaly detection, user expectations, everyday informa-

tion systems, data feeds

Abstract

Much of the software people use for everyday purposes incorporates
elements developed and maintained by someone other than the developer.
These elements include not only code and databases but also data feeds.
Although everyday information systems are not mission critical, they must
be dependable enough for practical use. This is limited by the depend-
ability of the incorporated elements.

It is particularly difficult to evaluate the dependability of data feeds.
The specifications of data feeds are often even sketchier than the specifi-
cations of software components, the data feeds may be changed by their
proprietors, and everyday users of data feeds only have enough knowledge
about the application domain to support their own usage. These fac-
tors inhibit many dependability enhancement techniques, which require a
model of proper behavior for failure detection, preferably in the form of
specifications.

The research presented here addresses this problem by providing CUES,
Checking User Expectations about Semantics. CUES is a method and a
prototype implementation for making user expectations precise and for
checking these precise expectations. CUES treats the precise expectations
as a proxy for missing specifications. It checks the precise expectations to
detect semantic anomalies—data feed behavior that does not adhere to
these expectations.

Three case studies and a validation study, all with real-world data,
provide evidence of the practicality and usefulness of CUES. The case
studies and the validation study indicate that a user of CUES gets sub-
stantial benefit for a modest investment of time and effort. In addition
to automated detection of anomalies, the benefit often includes a better
understanding of the user’s own expectations, of the data feeds, and of

existing and missing documentation.

Contents

1 Introduction 1
1.1 Claims statement oL 2
1.2 CUES in anutshell 2
1.3 Case studies in a nutshello)

1.3.1 Truck weigh-in-motion (WIM) case study 5
1.3.2 Stock quotes case study 6
1.3.3 Stock daily low case study 6
1.3.4 Validation study 0oL 7
1.4 Related work 8
1.5 Contribution 8
1.6 Outline. 9

2 Basic definitions 11
2.1 Data and its propertieso 11
2.2 Semantic anomalies 12

3 CUES: mechanisms 15
3.1 CUES stages: a process governing the mechanisms 16

3.1.1 Thesetupstage 16
3.1.2 The checking stage L. 18
3.1.3 The tuning stageo 18
3.2 Usageexample 19
3.3 Technique tool kit 22

3.3.1 Clustering—the Rectmix technique 22

3.3.2 The Mean and Percentile techniques 24
3.3.3 Association rules—the Magnum Opus technique 25
3.3.4 Dynamic invariant detection—the Daikon technique 26
3.3.5 Linear regression—the MUSCLES technique 27
3.3.6 Adding a technique to the tool kit 28
3.4 The template mechanism 0L 29
3.4.1 The template mechanism insetup 30
3.4.2 The template mechanism in tuning 31
3.4.3 Combining existing knowledge 32
3.4.4 Selecting techniqueso 34
3.5 Templates for the tool-kit techniques 36
3.5.1 Rectmix templates o000 36
3.5.2 Mean and Percentile templates 37
3.5.3 Association Rules templates, 37
3.5.4 Daikon templates oo 39
3.5.5 MUSCLES templates 39
3.6 Anomaly detector 40
CUES: scope, “background” processing, and related work 43
4.1 Scope ... 43
411 USerso v o 44
4.1.2 Data characteristics 44
4.2 Thesetup stageo 45
4.2.1 Data preprocessing 45
4.2.2 Parameter settingo oL 48
4.2.3 Related worko 50
4.3 The checking stage oL 52

4.3.1 Reporting anomalies 53

4.3.2 Detection rate and Misclassification rate 54

4.3.3 Related work 56

4.4 The tuning stage Lo 61
4.4.1 The moving window of observations 61
4.4.2 The sanity-check heuristic 62
4.4.3 Related worko 62

5 Case studies 65
5.1 The truck WIM case study 65
5.1.1 Case study hypothesis 66
5.1.2 Weigh-In-Motion data 66
5.1.3 Possible data faults and user expectations 68
5.1.4 Methodology 68
5.1.5 Detectionrate oL 69
5.1.6 Misclassification rate 74
5.1.7 Inferred model vs. documented model 75
5.1.8 Summary of expert insights 76
5.1.9 Confirmation from providers 7
5.1.10 Rectmix vs. Percentile 7
5.1.11 Results summary 78

5.2 The Stock quotes case study 78
5.2.1 Methodology 79

022 Data 82
523 Results. 83
5.2.4 Discussion 86
5.2.5 Results summary 0L 89

5.3 The stock daily low case study 90
5.3.1 Hypothesis. 90

5.3.2 Methodology oo 90

5.3.3 User expectations
5.3.4 Precise Expectations L.
5.3.5 MUSCLES vs. Daikon
5.3.6 Detectionrateo
5.3.7 Misclassification rate
5.3.8 Results summary 0oL
6 Validation
6.1 Casestudies
6.2 Validationstudy oo
6.2.1 Setup
6.2.2 Reviewer A
6.23 Reviewer B o
6.2.4 Tuning alternative models
6.2.5 Analysis and Summary
6.3 Cost-effectiveness analysis 0L
6.3.1 Cost and benefit for technical solution
6.3.2 Cost and benefit for original problem

7 Conclusions and future work

7.1 Conclusions
7.1.1 Evidence
7.1.2 Contributions
7.2 Futurework
7.2.1 Extensions to CUES
7.2.2 Enhancing dependabilityo

A Validation

study reviewer’s guide

105
106
108
108
111
116
120
121
123
124
125

129
129
129
130
131
131
134

Data 139
Scenario 139
Recommended techniques and their parameters 139
A.6.1 Percentile 140
A6.2 Daikon 140

A6.3 MUSCLES. 141

Acknowledgments

I thank my advisor, Mary Shaw, for giving me the freedom to do what I am interested
in and for all her support and guidance. I was fortunate to have an advisor who is
not only an outstanding researcher but also a remarkable human being. I have yet to

discover a topic I cannot discuss with Mary.

I was fortunate to have thesis committee members who have provided me with
ongoing guidance and encouragement. Philip Koopman has been like a second advisor
to me and has helped to shape this research from its conception. Thinking in terms of
templates was his suggestion. Christos Faloutsos always provided timely and helpful
feedback. He helped me clarify the technical problem of this research and introduced
me to the truck weigh-in-motion data and domain expert. Michael Ernst always
found the time to discuss my research and provided excellent suggestions. His detailed

suggestions helped me to greatly improve the presentation of this research.

The software engineering group has provided me with a forum for discussions.
Its members provided valuable feedback, in particular, Shawn Butler, David Garlan,
Aaron Greenhouse, James Herbsleb, Timothy Halloran, Elizabeth Latronico, Vahe
Poladian, and William Scherlis. I would also like to thank Roy Maxion for thought-

provoking discussions.

Laurie Hiyakumoto, Jorjeta Jetcheva, Rosie Jones, Jeanie Komarek, Brigitte Pien-
tka, Bianca Schroeder, Anne Siegel, and Belinda Thom have been good friends, pro-

viding support, understanding, and fun.

My parents and brother have always supported and encouraged me. Their love
made everything easier. My husband, Dan Pelleg, has shared this journey with me.
His love and support made it truly enjoyable. Our son, Tomer, has been a source of

joy and has helped me to be the most efficient I have ever been.

Thank youl!

x1

Chapter 1

Introduction

People expect software that they use for everyday purposes to be dependable enough
for their needs. Because everyday software is not usually mission-critical, it may be
cost-effective to detect improper behavior and either notify the user or take remedial
actions rather than rely solely on prevention. Fault tolerance approaches to increasing
dependability include detection and masking. Both detection and masking require
specifications. Detection requires specifications of normal, degraded, and abnormal

behavior. Masking requires specifications of outputs.

Unfortunately, specifications of everyday software are often incomplete and impre-
cise. The situation is exacerbated in modern information systems that incorporate
third-party information resources such as Commercial-Off-The-Shelf (COTS) software

components, databases, or data feeds.

Data feeds provide a challenging example of everyday information resources. A
data feed is a time-ordered sequence of observations on output values. Data feeds
may remain under the control of their providers and may have many users relying,
in different ways, on behavior the providers may or may not have anticipated. Many
challenging, real-world information resources fall under the category of data feeds,
including services found on the Internet and software elements that process sensor
data or perform monitoring activities. Examples include truck weigh-in-motion data,
online quotes for a stock, and online weather conditions. These examples are the data

feeds that we use in our case studies and in our validation study.

We propose CUES—Checking User Expectations about Semantics—a three-stage,
user-centric method and prototype implementation for coping with incomplete spec-

ifications of data feeds. The stages of CUES are as follows:

1. Setup stage: CUES begins by helping users make their ezpectations about data
feed behavior precise. These precise expectations may serve as proxies for miss-

ing specifications.

2. Checking stage: CUES then uses these proxies to automatically detect semantic

anomalies—data feed behavior that violates these expectations.

3. Tuning stage: CUES also tunes the precise expectations to account for changing

data feed behavior or changing user expectations.

Section 1.1 states the claims of this research. Sections 1.2 and 1.3 introduce CUES
and the case studies, respectively. Section 1.4 briefly discusses related work. Section

1.5 summarizes the contributions of this research.

1.1 Claims statement

This research contributes to the engineering of information systems that incorporate
data feeds by providing CUES.

e CUES is a practical method for helping users state precisely their own expec-

tations about the behavior of data feeds.

e CUES is a practical means of exploiting the users’ descriptions of expectations

for semi-automated semantic anomaly detection.

By practical we mean cost effective and useful. We measure cost qualitatively both
by computation load and by load on the user. We measure benefit/usefulness both
qualitatively, by the insights the user gains (the usefulness of the process), and quan-
titatively, by the detection and misclassification rates (the usefulness of the resulting
model). Three case studies and a validation study, all with real-world data, support

our claims.

1.2 CUES in a nutshell

CUES consists of a technique tool kit, a template mechanism, and an anomaly detec-

tor. The three stages of CUES rely on these mechanisms, as Figure 1.1 shows.

Setup Checking Tuning
Model] ~ |Anomalies
Technique tool kit

Technique tool kit Technique tool kit

Templates = | Anomaly detector [= | Templates
Anomaly detector
/1\ Detection
Model Yes | Reasonable?
Model Na

Figure 1.1: CUES: stages and mechanisms. Arrows indicate data flow.

The technique tool kit is a collection of existing statistical, machine learning, and
program analysis techniques for predicate inference that CUES supports and adapts.
The synthesis of these techniques for the purpose of creating a model of proper be-

havior of data feeds is new. This synthesis is done via a novel template mechanism.

CUES applies the tool kit techniques to help discover meaningful information in
the data. These techniques precisely characterize various aspects of the data. How-
ever, to characterize relevant behavior, CUES must elicit the user expectations as
well. The template mechanism guides the human attention required in making expec-
tations precise, using templates that document the predicates a particular technique

can output.

Each user relies on a data feed in certain ways and expects the behavior of the
data feed to support this usage. Therefore, a given user may only care about a subset
of the properties the data feed specifies. For example, in our truck weigh-in-motion
case study, the providers specified exact ranges for various vehicle attributes such
as length and weight. Our user had more relaxed expectations and did not care
about exact values as long as vehicles in the same class had similar attribute values.
Moreover, a user may care about behavior that is missing from existing specifications
or even unnoticed by the providers. For example, in the weigh-in-motion case study,
the providers only cared about overestimation, so they specified upper bounds but
not lower bounds. Our user cared about both upper and lower bounds, resulting
in predicates that immediately detected, for example, a large number of one-axle
vehicles, suggesting a problem in the weigh-in-motion system. Users’ expectations
are informal and imprecise, though they are reasonably accurate. For example, a user
may expect trucks reported by an on-road scale to be physically plausible but may not

be able to specify a priori all the properties and values that define such plausibility.

The anomaly detector uses the precise expectations as a model of proper behavior
and reports as anomalies any data feed observations that differ from the expectations.
Anomaly detection is straightforward when a model of proper behavior and a criterion
for comparing precise expectations to actual behavior exist. However, providing these
is challenging when specifications are incomplete. The main contribution of this
research is providing automated assistance to users in creating a model of proper
behavior for data feeds from the users’ informal expectations. In addition, CUES
provides principled guidance for adding existing techniques to the tool kit. A user
adds a technique by providing details that CUES requires, including a comparison

criterion that is appropriate to the technique the user adds.

Figure 1.1 gives a diagram of CUES, showing the data flow. The three stages of
CUES rely on the above mechanisms. Chapter 3 provides details about the mecha-
nisms and their synthesis in CUES.

The setup stage initializes a model of expected behavior by eliciting user expec-
tations. It relies on all three mechanisms. The setup stage identifies appropriate
techniques for the problem from the technique tool kit, utilizes these techniques to
infer predicates that describe data behavior, and creates a model from predicates
the user indicates as matching the user’s expectations. The setup stage is semi-
automated. The main role of the user in this stage is to select predicates that match
the user’s expectations. The user does this by classifying the predicates that CUES
infers. CUES infers predicates automatically by utilizing the tool-kit techniques. The
user may also intervene by selecting values other than the default parameter values,

over-riding any of CUES’ recommendations, and adding predicates to check.

The checking stage checks the model resulting from the setup stage. It relies
on the technique tool kit and on the anomaly detector. The checking stage detects
semantic anomalies when a new observation violates a predicate in the model. The

checking stage is fully automated.

The tuning stage tunes the model to account for changing data behavior or user
expectations. It relies on the technique tool kit and the template mechanism. The
tuning stage examines the results of the checking stage on the current data subset.
If the number of reported anomalies is reasonable (the detection rate is lower than a
percentage the user indicates) then the tuning stage re-applies the selected tool kit
techniques to the current data subset and gives the re-inferred model to the checking
stage. The checking stage will check this model on the next data subset. Otherwise,
CUES goes back to the setup stage. The tuning stage is semi-automated. The main

role of the user is to inspect the model when CUES notices the model it automatically

re-infers may no longer be effective for anomaly detection. The user does this by re-
classifying predicates. CUES limits the frequency with which the user has to intervene

by combining intervention requests with presenting the detected anomalies to the user.

CUES has the advantages of (1) requiring no knowledge about implementation
details of the data feed, including source code or binaries and (2) requiring no user
data mining expertise. CUES assumes only that (1) it can observe the data feed over
time, in the form the user or automated processing uses it, (2) the data feed usage will
tolerate recognition and repair of faults rather than require prevention, and (3) the
user has sufficient domain knowledge to select precise characterizations of the data

feed behavior.

1.3 Case studies in a nutshell

Three case studies with real-world data feeds and a validation study provide empirical
evidence in support of the usefulness of CUES. Each case study is principally focused
on the validation of one of the stages of CUES: the truck weigh-in-motion case study,
presented in Section 1.3.1, focuses on the setup stage, the stock quotes case study,
presented in Section 1.3.2, focuses on the checking stage, and the stock daily low case
study, presented in Section 1.3.3, focuses on the tuning stage. The validation study,
presented in Section 1.3.4, focuses on the technical feasibility and practicality of the
CUES end-to-end approach.

1.3.1 Truck weigh-in-motion (WIM) case study

The truck weigh-in-motion (WIM) case study [Raz et al., 2004a, Raz et al., 2004b,
Raz et al., 2003] used a real-world data feed from an experimental truck WIM system
from the Minnesota Department of Transportation. The data was collected over
roughly two years. Truck WIM data is common in the transportation domain, where
civil engineers use it for analyses such as road wear. A scale located in a traffic lane of
a road weighs every axle that passes over it. It records the weight on the axle, the time
of day, the lane the axle was in, and any error codes. Software components analyze
this data to map axle data to vehicles, estimate the speed and length of the inferred
vehicles, calculate a measure of load on an axle called ESAL (Equivalent Standard
Axle Load), classify the vehicle type, eliminate passenger cars from the data, and

(purportedly) filter out unreasonable values.

In the truck WIM case study a domain expert interacted with the template mech-

anism to create a model of proper behavior for the WIM data feed from her informal
expectations. These informal expectations could be summarized as: (1) vehicles in
the same class should be similar and (2) vehicles should be physically plausible. CUES
successfully turned these vague expectations into precise predicates, using two tool-
kit techniques (Percentile and Rectmix). CUES checked the resulting model to detect
anomalies in the WIM data feed. Together with the expert, we compared this model
to existing documentation of the data feed. The case study showed that the template
mechanism was effective: using CUES, it took just hours to detect problems that had
taken the data providers months to detect independently. These problems surprised

our user even though she had previously analyzed the same data feed.

1.3.2 Stock quotes case study

The stock quotes case study [Raz et al., 2002] used correlated real-world data feeds of
current stock information. Each data feed contained data from one of three Internet
services for one out of three stock ticker symbols (CSCO, SUNW, TXN). This data
was collected Mon—Fri, every ten minutes between 10am and 4pm eastern standard
time, for about six weeks. The data feeds were nearly redundant: they provided
similar information, but each data feed had a slightly different subset of attributes.
The attributes in the superset were: current value, last value, change in value, highest
and lowest values in 52 weeks, highest and lowest daily values, value when daily trade
began, stock’s anticipated fluctuations relative to the market fluctuations (beta), and

stock volume.

In the stock quotes case study CUES detected semantic anomalies in the data feeds
by using predicates inferred by two of the tool kit techniques (Mean and augmented
Daikon). The experimental results demonstrated that it was possible to infer useful
predicates over a single data feed of numeric attributes and that this could be done, to
a large extent, automatically (in the context of stock market tickers). Not only were
the predicates effective in discovering semantic anomalies in a data feed but also they
helped us to deduce implicit specifications of the data feed. The case study utilized
the existence of nearly redundant data feeds in a voting heuristic that improved the

misclassification rate.

1.3.3 Stock daily low case study

The stock daily low case study used three of the stock quotes case study data feeds.

It used feeds for the same stock ticker symbol from three different online services.

It used only the daily low attribute from each of the feeds, ignoring other attributes
that the feeds provided.

In the stock daily low case study an everyday (non-expert) user interacted with the
template mechanism to create a model of proper behavior for the daily low attribute
of the three feeds. The case study used two of the tool-kit techniques (MUSCLES and
augmented Daikon). CUES updated the resulting predicates to account for changing
data feeds behavior. The experimental results demonstrated that it was possible to
infer useful predicates over multiple loosely-synchronized data feeds with numeric
attributes. It was possible to handle time lags if these lags were either fixed or the
sampling interval was large compared to the difference in the lag. In addition, it was

possible to infer stateful predicates—predicates over multiple observations.

1.3.4 Validation study

The validation study used two weather-conditions data feeds. The data was collected
hourly during one year. Each data feed reported dry-bulb temperature, wet-bulb
temperature, and dew-point temperature at its location. The distance between the

two locations was less than 20 miles.

In the validation study two reviewers who had not previously utilized CUES inter-
acted with CUES. Each reviewer set up a model of proper behavior for the weather
data feeds. The reviewers set up the model according to a usage scenario and in-
formal expectations that a reviewer’s guide defined. The informal expectations were
that the data feeds should be roughly similar. The case study used three of the tool-
kit techniques (Percentile, Daikon, and MUSCLES). We did not make any changes
to CUES in preparation for or during the validation study. Within an hour each
reviewer successfully set up a model for the behavior of the data feeds. Analysis of
detection and misclassification rates supported the usefulness of the models. Each
reviewer then assessed the practicality of CUES for potential users. Both reviewers
felt that CUES provides immediate and substantial benefit to non-expert users. A
user quickly discovers interesting behavior by looking at the observations CUES flags
as anomalous. Setting up the model for anomaly detection is quick. Further, it does
not require any expertise beyond having enough understanding about the application

domain to support the usage of the data feeds.

1.4 Related work

The motivation and setting of our work draw from work on homeostasis in open
resource coalitions [Shaw, 2000]. Shaw recognized the potential benefits of utilizing
existing information resources to cost-effectively build information systems. Shaw
identified the dependability of such third-party resources as a major obstacle and
suggested a self-healing approach. Our work takes a first step towards increasing the
dependability of data feeds.

The software engineering research community typically primarily considers soft-
ware components as information resources. The research described in this dissertation
extends that view to include data feeds as first class information resources. The re-
search treats data feeds as part of a composable system. Making data feeds more

dependable supports their combination in information systems.

Many computer science sub-disciplines treat data as part of a composable system.
Work most closely related to ours includes software architecture styles, such as styles
of shared information systems [Shaw and Garlan, 1996], that emphasize the role of
data in a system, and continuous queries or stream mining [Seshadri et al., 1996,
Chen et al., 2000, Babu and Widom, 2001].

Continuous query systems deal with ways to (efficiently) query continuously ar-
riving data streams. A continuous query engine filters and synthesizes data streams
to deliver unbounded results in response to a user query. Adaptation of continuous
query engines (e.g., [Avnur and Hellerstein, 2000, Madden et al., 2002]) aims to en-
sure efficient processing over time, such as minimizing the amount of storage and
computation a continuous query requires. Though CUES deals with similar data, it

focuses on generating a model of proper behavior for the data streams.

Other related work is discussed in context throughout the presentation of CUES

and the case studies.

1.5 Contribution

The main contribution of this research is CUES, a method and a prototype imple-
mentation for helping users make their expectations about the behavior of data feeds
precise and for checking the precise expectations to detect semantic anomalies in the
data feeds.

Detecting semantic anomalies in data feeds is a first step towards increasing the

dependability of information systems that incorporate data feeds. Detection raises a

flag that can trigger mitigation or repair.

Other contributions are:

e This research demonstrated how CUES may assist the user in better under-
standing the user’s own expectations about the behavior of data feeds, missing

documentation, or imprecise existing specifications.

e This research showed how to exploit and adapt existing techniques from the
areas of machine learning, statistics, and dynamic program analysis for the

purpose of inferring anomaly detection predicates.

e This research provided a template mechanism to elicit user expectations in the

form of anomaly detection predicates and to support updating these predicates.
e This research helped to clarify the need for user-centered specifications.

e In addition to the above contributions to computer science, the truck WIM
case study produced a contribution in its application domain. That case study
made advances towards automated cleaning of data produced by event-based

monitoring systems in civil engineering.

1.6 Outline

The remainder of this dissertation is organized as follows.

Chapter 2 presents basic definitions related to data, its properties, and semantic

anomalies.

Chapter 3 introduces CUES. CUES has three stages: setup, checking, and tuning.
CUES has three mechanisms that implement CUES’ stages. These mechanisms are

the technique tool kit, the template mechanism, and the anomaly detector.

Chapter 4 first defines and scopes the technical problem that CUES addresses—
building a model to detect semantic anomalies in data feeds. It then presents “back-
ground” processing that provide support to the CUES stages beyond the CUES mech-

anisms. It also presents other work most closely related to each of CUES’ three stages.

Chapter 5 presents the case studies that utilize CUES over real-world data feeds—
the truck WIM case study, the stock quotes case study, and the stock daily low case

study. Two of these case studies involved users. The user in the truck WIM case study

was a domain expert. The user in the stock daily low case study was an everyday

(non-expert) user.

Chapter 6 provides evidence in support of our thesis claims. In addition to the
three case studies, a validation study and a cost-benefit analysis support the thesis

claims.

Chapter 7 concludes with a summary of the contributions of this research and a

discussion of future work.

10

Chapter 2
Basic definitions

We define the basic terms that we use in this research. Section 2.1 provides basic
definitions related to the data CUES handles. Section 2.2 defines the problems CUES

detects: semantic anomalies.

2.1 Data and its properties

Data feeds are third party information resources, such as Internet services and sensor
data. A data feed is a time-ordered vector of observations. An observation at time
t is a tuple that contains a value for each attribute: OBS(t) = (ay, ..., a,), where
a; is a numeric valued attribute (in this research we concentrate on numeric valued
attributes).

Anomaly detection requires a model of proper behavior of the data feed, preferably
in the form of specifications. Specifications define what a user of a data feed can rely

on. However, data feeds often have incomplete and imprecise specifications.

CUES infers a model of proper behavior that may serve as a proxy for incomplete
or imprecise specifications. A model is a set of predicates. Given a model and a toler-
ance (i.e., threshold or confidence), an anomaly is an observation that has attribute

values that are different from the model by more than the tolerance.

A single data feed or multiple data feeds may be used for inferring predicates.
For multiple data feeds CUES requires synchronization in the form of matching time
stamps. CUES’ implementation does not have a means for synchronization. Section
4.2.1 discusses how CUES handles multiple data feeds. Basically, CUES creates a sin-

gle observation from multiple data feeds (it concatenates observations with identical

11

time stamps) and possibly accommodates a time lag between the feeds.

Predicates may be stateless or stateful. Stateless predicates require a single obser-
vation for evaluation, whereas stateful predicates require a sequence of observations

for evaluation.

2.2 Semantic anomalies

A semantic anomaly is defined with respect to a model. If a model exists, a semantic
anomaly is an observation that has values that deviate from the model by more
than a tolerance. This research finds a model that matches a subset of the user’s
expectations and captures the model as a set of predicates. A semantic anomaly is,
then, an observation that has values that violate any of the predicates of the model

by more than the tolerance.

Examples of problems that may result in semantic anomalies in data feeds are
reporting data provided by an erroneous sensor, relying on erroneous data provided
by a different data feeds or entered by a human, changing database schema, and

changing the method of reporting.

In the absence of complete specifications, the same anomalous behavior sometimes
indicates a failure and at other times does not. A software failure [Liyu, 1996] is either
an outcome that violates the specifications of that software or an unexpected software
behavior observed by the user. A software fault is the identified or hypothesized cause
of the software failure. For example, an extreme value change in the value of a stock
may be caused by a fault in the data. However, stocks sometimes exhibit extreme
value changes. These cases cannot be distinguished without knowledge of the market,

although both are anomalous.

Ideally, specifications would describe correctly and precisely all possible data feed
behavior. In reality, however, this rarely happens for data feeds. Often, the model
CUES checks to detect semantic anomalies, which describes precisely a subset of the
user’s expectations, complements existing documentation or suggests missing docu-
mentation. It enables the discovery of previously unknown or unnoticed behavior.
Our case studies provide examples. The truck WIM case study suggested behavior
the expert was unaware of—the expert gained insights about the system’s behavior.
See Section 5.1.8 for details. That case study also suggested places where the exist-
ing documentation was too restrictive or too permissive. See Section 5.1.7 for details.

The stock quotes case study helped us to suggest missing documentation. See Section

12

5.2.4 for details.

Our definition of semantic anomalies can be viewed as a semantic extension of
the usual notion of availability—a facet of dependability. The dependability of a
computing system [Avizienis et al., 2001] is “the ability to deliver service that can
justifiably be trusted. The service delivered by a system is its behavior as it is
perceived by its user(s)”. Awailability [Avizienis et al., 2001] is “readiness for correct
service, a measure of delivery of correct service with respect to the alternation of
correct and incorrect service”. Instead of using the traditional “fail-silent” (crash

failures) fault model of availability, we explore using a “semantic” fault model.

13

14

Chapter 3

CUES: mechanisms

CUES—Checking User Expectations about Semantics—is a three-stage user-centered

method and prototype implementation for checking data feeds that have incomplete

(i.e., missing or imprecise) specifications. Figure 3.1 depicts the stages of CUES—

setup, checking, and tuning—and the mechanisms these stages rely on—technique

tool kit, templates, and anomaly detector.

Setup

Technique tool kit
Templates
Anomaly detector

Do Background
Processing

Initialize Model

¢

Model

Checking Tuning
Technique tool kit Technique tool kit
Anomaly detector Templates
Anomalies
| Detect Anomalies | ——=>1 Update Model
IT\ Model Yes Detection
Model No Reasonable?

Figure 3.1: CUES: detailed stage diagram. Arrows with italics show the data flow

Section 3.1 introduces CUES. It provides an overview of the mechanisms that

CUES is based on by presenting the CUES stages—the process governing the CUES

mechanisms. Section 3.2 expands the introduction of CUES through a simple exam-

ple, concentrating on how a user may utilize CUES. A detailed presentation of the

mechanisms follows: Section 3.3 presents the technique tool kit, Section 3.4 presents

the template mechanism, Section 3.5 provides details about the templates of the

tool-kit techniques, and Section 3.6 presents the anomaly detector.

15

Chapter 4 that follows presents “background” processing that CUES performs but
is not part of its three underlying mechanisms. Chapter 4 also presents other work
related to CUES.

3.1 CUES stages: a process governing the mecha-

nisms

CUES’ stages can be viewed as a process that provides appropriate data to the CUES
mechanisms and controls their execution. The goal of this process is to generate a
model of proper behavior for data feeds and to check this model in order to detect
semantic anomalies—data feed observations that differ from the model. CUES per-
forms model generation and checking for data feeds that the user indicates. Sections
3.1.1, 3.1.2, and 3.1.3 introduce the CUES mechanisms and their role in model gen-
eration, checking, and tuning, respectively. Section 3.2 that follows complements this
introduction by providing an example concentrating on the view point of a user of
CUES.

3.1.1 The setup stage

The setup stage (the left box in Figure 3.1) provides semi-automated support to the
user in creating the proper-behavior model. CUES automatically generates predicates
over a sample of the data. These predicates describe various aspects of the data
behavior. CUES lets the user choose the predicates that describe behavior that is
relevant to the user’s expectations. The resulting model is the set of predicates that

the user selected.

The setup stage operates from the assumption that choosing is easier than gen-
erating. Templates provide the major mechanism that supports working under this
assumption. The template mechanism enables the user to choose a model—a set of
predicates—from a list of predicates CUES automatically generates. The user sorts
predicates into three categories: (1) “accept”: the user expects this predicate to hold
over the data, (2) “update”: the user expects this predicate to hold over the data
but also expects some of its numeric values to change over time, and (3) “reject”:
the user does not expect this predicate to hold over the data (the behavior the pred-
icate characterizes may be irrelevant to the user’s expectations or the predicate may

describe noise in the data).

16

The technique tool kit enables automated predicate generation. The technique tool
kit supports and adapts multiple inference techniques. These techniques are existing
machine learning, statistical, and program analysis techniques. In essence, templates
document the predicates of the inference techniques. A template is a generalized
predicate: it is identical to the predicate with the exception of a # sign indicating a
numeric value where the predicate has a specific numeric value. Often, only a subset
of the tool-kit techniques is appropriate to the problem. Further, only a subset of the
predicates inferred by these techniques is relevant to the user expectations. Templates
support selecting only the relevant predicates from the output of the appropriate
techniques. The template mechanism applies the user’s predicate classification to
instantiate templates and to filter the output of the inference techniques. It includes

only “accept” and “update” predicates in the resulting model.

In addition to automated predicate generation, CUES supports incorporating
some forms of existing specifications. CUES supports specifications that allow dis-
crete localized checking and adds these specifications as “accept” predicates. Section

3.4.3 provides details.

The setup stage also operates under the assumption that it is easier for users
to understand their expectations about data behavior when presented with exam-
ples of data behavior. Specifically, examples of anomalous behavior together with
the predicates flagging them as anomalous are especially helpful. The anomaly de-
tector provides the major mechanism that supports working under this assumption.
Anomaly detection is not only a first step in increasing the dependability of data
feeds but it also is a means of providing immediate feedback to the user about the
consequences of the model the user selected. In our research, we also employ anomaly

detection in assessing the usefulness of the model the user has selected.

It is common knowledge that insights often arrive from looking at a problem from
different view points. Examples of points of view are examining existing documen-
tation of a data feed and inspecting predicates that a technique infers dynamically
over the data feed. The structure of CUES supports this known benefit: making
expectations precise often leads the user to take a different view point and gain ad-
ditional understanding. For example, in the truck WIM case study (Section 5.1), the
user gained insights about the underlying WIM system, its calibration, and the data

processing. Section 5.1.8 summarizes the user’s insights in that case study.

17

3.1.2 The checking stage

The checking stage (the middle box in Figure 3.1) automatically checks the model
to detect semantic anomalies in the data feeds. The checking stage gets the model
from either the setup stage or the tuning stage. Both the setup and the tuning stages
utilize the template mechanism to only give the anomaly detector predicates that the
user has selected: “accept” and “update” predicates. The anomaly detector evaluates
these predicates on current observations—observations in the current moving window
of observations (CUES infers the predicates over the previous moving window of
observations). The anomaly detector warns the user if the results of evaluating the
predicates are different from the values of actual observations. The technique tool kit
defines a proper comparison measure for the predicates each technique can infer. The
anomaly detector aggregates warnings and only reports them to the user once for every

moving window of observations. These warnings do not require user confirmation.

The anomaly detector checks predicates that the tool-kit techniques dynamically
infer, including predicates the user expects to change over time. CUES can treat these
predicates as a proxy for missing specifications because it tunes these predicates to

adjust then to changing data behavior and changing user expectations.

3.1.3 The tuning stage

The tuning stage (the right box in Figure 3.1) repeatedly tunes the model to account
for changing behavior. It does this mostly automatically. The tuning stage employs
the tool-kit techniques that the user has selected in the setup stage. It runs these
techniques to re-infer predicates over a moving window of observations. The tuning
stage employs the template mechanism to update those predicates in the model that
the user expects to change over time: the “update” predicates. The tuning stage
has a sanity-check heuristic (Section 4.4.2) for deciding when to request the user
to intervene. This heuristic examines the number of anomalies the checking stage
detects. If this number is larger than a pre-defined threshold and using a previous
model does not result in a reasonable detection rate, the tuning stage takes the user
back to the setup stage and asks the user to re-examine the model and to possibly
change the user’s classification. The tuning stage tries to reduce the user distraction
by combining requests to intervene with a task that may already require the user’s at-
tention: examining the anomalies the checking stage reports over the moving window

of observations.

18

3.2 Usage example

Following is an example showing how a user may interact with CUES. This example

draws from the stock quotes case study (Section 5.2).

Imagine a casual user of stock quotes. For example, the user may invest small
amounts of money in the stock market or may seek employment in companies that the
user believes show promise in the stock market. The user may carry out such decisions
based on automated processing. The user may utilize CUES to be automatically

notified when the data this processing is based on seems anomalous.

The user indicates the data feeds to CUES. For example, the user may be down-
loading stock quotes for a stock ticker symbol from a freely available online service
every 10 minutes during business hours of weekdays. Table 3.1 gives an example such
a stock quote data feed. The data feed provides information about a specific stock
(CSCO) from a specific online service [S3, 2000]. A data feed is a time ordered vector
of observations. Each observation (a row in Table 3.1) contains a time stamp and a
value for each attribute. This data feed has three attributes: the current value of the
stock cur, the daily low value of the stock dlow, and the lowest value of the stock
during the last 52 weeks w521low.

Date and time cur dlow wb2low
10/11/2000 15:30 | 52.13 48.22 32.53
10/11/2000 15:40 | 52.06 48.22 32.53

10/17/2000 14:20 | 54.00 54.00 32.56
10/17/2000 14:30 | 53.50 53.44 32.56

Table 3.1: Example of a stock quote data feed

During the setup stage the user creates a model of proper behavior for the data
feed. This model is based on past behavior of the data feed. The checking stage will
check future behavior. The main task of the user is to select predicates that match
her expectations from the list of predicates that CUES generates. Her expectations
may be vague and informal, such as expecting reasonable values for the current value
of the stock.

To make expectations precise, the template mechanism interacts with the user.
Prior to interacting with the template mechanism, the user may select data prepro-
cessing actions, improve automated attribute selection, and run clustering algorithms

or indicate manually classes in the data (details follow in Chapter 4). In the example,

19

none of these is necessary. When interacting with the template mechanism, the user
first provides basic information about the data scale. If the user supplies multiple
data feeds to CUES, the user also selects the type of correlation the user expects
among the feeds! (e.g, a linear relation). This enables the template mechanism to
suggest an initial set of tool-kit techniques that may be appropriate to the problem
(details in Section 3.4.4). The user may further select techniques. In the example,
the user indicates that all attributes have an interval scale. The template mechanism

suggests two of the tool-kit techniques.

The template mechanism repeatedly runs the selected techniques to infer predi-
cates, presents to the user the anomalies that result from checking these predicates,
and asks the user to classify predicates. This classification has three categories: “ac-
cept”, “update”, and “reject”. The template mechanism uses the classification to
initialize templates and automatically filter the output of the tool-kit techniques (de-
tails in Section 3.4). In the example, the selected techniques may infer the predicates
that Table 3.2 lists. The user is now able to make her expectations precise by select-
ing from these predicates through classification. Table 3.2 also lists an example of
possible user classification. The template corresponding to predicate number (6), for

example, would be # < dlow < #, where # indicates a numeric value.

First technique Second technique

Predicate Classification | Predicate Classification
(1) cur > dlow accept (5) 44.81 < cur < 65.27 reject

(2) dlow > whb2low accept (6) 42.05 < dlow < 64.50 update

(3) dlow > 48.22 reject (7) 32.50 < w52low < 32.60 | update

(4) wb2low == 32.53 | reject

Table 3.2: Example of predicate the two selected techniques infer over the data feed

of Table 3.1 and of user classification for these predicates

Once a model exists, the checking stage of CUES repeatedly and automatically
checks the model’s “accept” and “update” predicates over observations in the current
moving window of observations. It reports to the user as anomalous observations that
violate any of these predicates. The checking stage outputs one report summarizing
anomalies over all the observations in the moving window. The user examines the
anomalies and may decide to change the classification as a result. Table 3.3 shows

!The user could also get arbitrary correlations by running all the CUES techniques. However,

the user will them have to tune parameters for all the techniques and also inspect a potentially large

number of predicates

20

an example of detecting an anomaly. The anomaly detector flags the observation at
date 10/25/2000 time 11:10 as anomalous as a result of checking predicates number
(1), (6) and (7) of Table 3.2.

time cur dlow wb2low
10/11/2000 15:30 | 52.13 48.22 32.53
10/11/2000 15:40 | 52.06 48.22 32.53

10/17/2000 14:20 | 54.00 54.00 32.56
10/17/2000 14:30 | 53.50 53.44 32.56

10/25/2000 11:10 | 52.38 106.00 106.00

Table 3.3: Example of anomaly detection. Italics mark the anomalous observation.
Checking the Table 3.2 predicates flags the dlow and w52low values of the 10/25/2000

11:10 observation as anomalous

The tuning stage of CUES repeatedly updates the “update” predicates in the
model by automatically re-inferring predicates over each new window of observations.
It provides the anomaly detector (in the checking stage) with the current model. The
checking stage will check this model on the next moving window. If the checking
stage flags too many observations as anomalous (e.g., the anomaly detector flags
as anomalous more than 30% of the observations in the window) the tuning stage
requests the user to intervene by taking the user back to the classification step of
the setup stage. In the example, there may be a period of time in which there is not
much activity in the stock, therefore, dlow is constant. As a result, the first technique
may infer the predicate dlow == 48.22 and the user may classify this predicate as
“update”. As a result, the template mechanism will generate the template dlow ==
for this predicate. This period may be followed by a period in which there are rapid
changes in the value of the stock. Updating the constant to any numeric value would
result in flagging many valid observations as anomalous. During the predicate re-
inference, the first technique will no longer infer the above predicate (and therefore,
the tuning stage will keep the existing numeric value; the tuning stage does not
automatically remove or add predicates to the model). This predicate will cause the
checking stage to detect too many anomalies. When presenting the anomalies to the
user, the tuning stage will warn the user that the model is probably dated and request
the user to examine the model. The user may decide to change the classification of this

predicate to “reject”. The user may also decide to classify newly inferred predicates

21

that better describes the current behavior of the data feed (such as predicate number
(6) in Table 3.2) as “update”.

3.3 Technique tool kit

The technique tool kit supports and adapts multiple predicate inference techniques.
The tool kit incorporates existing machine learning, statistical, and program analysis
techniques. The tool kit provides default values for the parameters of each technique.
It also recommends parameter values for the user to experiment with if the user
chooses not to use the default values. It does so in order to ease the user’s task of
parameter setting. In the description of the techniques that follows we specify the
default values and the values that CUES recommends. However, the user may choose
any values. The tool kit also provides a measure for comparing the predicates the

technique infers to actual data.

The technique tool kit currently includes the following techniques: Rectmix—a
clustering technique, Mean and Percentile—simple statistical techniques, Magnum
Opus—an association rules technique, Daikon—a dynamic invariant detection tech-
nique, and MUSCLES—a linear regression technique. We selected these techniques
because they expose different aspects of the data and because their output is easy for
a human to understand. Table 3.4 summarizes the assumptions the different tech-
niques make and the resulting type of predicates they can infer. The assumptions
include the minimal data measurement scale ([Fenton and Pfleeger, 1997]; reviewed
in Figure 3.2) each technique is appropriate for. Section 3.4.4 discusses how the tem-
plate mechanism utilizes the information of Table 3.4 to select from the tool kit a
subset of techniques appropriate to the problem. Sections 3.3.1-3.3.5 describe each of
the tool-kit techniques. Sections 3.5.1-3.5.5 present the templates corresponding to
each technique—a precise documentation of the type of predicates each technique can
infer. Sections 3.5.1-3.5.5 also provide additional examples of predicates: predicates

each technique infers over the truck WIM data.

A person who has a good understanding of a technique may add this technique
the tool kit. Section 3.3.6 provides guidelines for adding a technique to the tool kit.
3.3.1 Clustering—the Rectmix technique

The Rectmix technique [Pelleg and Moore, 2001] is a clustering algorithm that sup-
ports soft membership (a point can probabilistically belong to multiple clusters). The

22

Attribute values are somewhat centered

Technique Assumptions about the data Types of predicates
Rectmix Interval scale Hyper rectangles
Correlation among multiple attributes exists
in the form of different groups (classes) of values,
and the values are concentrated in ranges
Mean Interval scale Range
Attribute values are normally distributed
Percentile Interval scale Range

Association rules

Nominal scale
Correlation among multiple attributes exists

in the form of associations

Association rules
(if A then B)

Daikon Nominal /interval scale Equality, inequality,
linear, one-of
MUSCLES Interval scale Multi-variate linear-

Correlation among multiple attributes exists regression

in the form of a linear relation, possibly over time

Table 3.4: Tool-kit techniques: assumptions and resulting predicate types

clusters it finds are hyper-rectangles in N-space. Rectmix provides a measure of un-
certainty called sigma (an estimate for the standard deviation) for each dimension.

Anomalies are points that are not within a cluster.

Rectmix assumes clusters have a hyper-rectangle shape. It is appropriate for

interval scale data.

Rectmix has two parameters: the number of rectangles (clusters) and the number
of sigmas of uncertainty to allow (the same for all dimensions). The technique tool
kit runs Rectmix for three to ten rectangles. The default is four rectangles. When
determining whether a value fits a predicate? the tool kit allows one to fours sigmas

difference from the rectangle. The default is two sigmas.

An example of predicates (with three clusters/rectangles) that Rectmix could infer

over the stock quotes data feed example (Table 3.1) is:

o 52 < cur <53 A48 < dlow <485 A 32 <wb2low < 32.6

o 53 < cur <54.5A53 <dlow < 54.5AN 32 <wh2low < 32.6

2CUES implements this by adjusting the predicates during inference. The effect is identical to
soft comparisons during checking.

23

Nominal measurement assigns items to categories. It is not possible to quantify
or rank order these categories. An example is the lane attribute in the truck
WIM case study. Other examples are gender and race. Categorical variables

are measured on a nominal scale.

Ordinal measurement assigns higher numbers to items representing higher val-
ues. However, the intervals between the numbers cannot quantify the difference
between the numbers. An example is a three point rating scale for customer

satisfaction.

Interval measurement allows not only to rank order items but also to quantify
and compare the size of differences between the items. However, interval scales
do not have a “true” zero point and therefore, it is not possible to take the ratio

of two interval scale items. An example is the Fahrenheit scale for temperature.

Ratio measurement is similar to interval measurement with the addition of the
existence of an identifiable absolute zero point. An example is the Kelvin scale
of temperature. Most statistical data analysis procedures do not distinguish
between the interval and ratio properties of the measurement scales. CUES

follows this common approach.

Figure 3.2: Measurement scales

o 52 < cur <55 A48 < dlow < 54.5 A 32 < wh2low < 32.6

3.3.2 The Mean and Percentile techniques

Mean and Percentile estimate an interval for the values of an attribute (Rectmix also

estimates intervals but in multiple dimensions, therefore it finds a correlation among

attributes). Mean estimates the mean and standard deviation of an attribute distri-

bution from the data and expects values to be within a certain number of standard

deviations of the mean.

Mean assumes the data is normally distributed.? It is inappropriate when extreme

values exist or when the distribution is highly skewed (one of its tails is longer than

the other). Mean is appropriate for interval scale data.

3The CUES implementation could include a test for normality, to decide between