A Programming System for Children
that is Desgned for Usability

John F. Pane

CMU-CS-02-127
May 3, 2002

School of Computer Science
Computer Science Department
Carnegie Méellon University
Pittsburgh, PA

Thesis Committee:
Brad A. Myers (co-chair)
David Garlan (co-chair)
Albert Corbett
James Morris
Clayton Lewis, University of Colorado

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Also appears as;. CMU-HCI1-02-101

Copyright © 2002 John F. Pane

Thisresearch was sponsored in part by the National Science Foundation under Grant No. IRI-9900452. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily
reflect those of the Nationa Science Foundation.

Keywords. Natural Programming, HANDS, End-User Programming, Psychology of Pro-
gramming, Empirical Studies of Programmers, Educational Software, Children, User Inter-
face Design, Programming Environments, Programming Language Design, Usability,

Human-Computer Interaction.

Abstract

A programming system is the user interface between the programmer and the computer.
Programming isanotorioudly difficult activity, and some of thisdifficulty can be attributed
to the user interface as opposed to other factors. Historically, the designs of programming

languages and tools have not emphasized usability.

Thisthesis describes anew processfor designing programming systems where HCI knowl-
edge, principles and methods play an important rolein al design decisions. The process
began with an exhaustive review of three decades of research and observations about the
difficulties encountered by beginner programmers. This material was catalogued and orga-
nized for this project as well as for the benefit of other future language designers. Where
guestions remained unanswered, new studies were designed and conducted, to examine
how beginners naturally think about and express problem solutions. These studiesrevealed
ways that current popular programming languages fail to support the natural abilities of

beginners.

All of thisinformation was then used to design HANDS, a new programming system for
children. HANDS is an event-based system featuring a concrete model for computation
based on concepts that are familiar to non-programmers. HANDS provides queries and
aggregate operations to match the way non-programmers express problem solutions, and
includes domain-specific features to facilitate the creation of interactive animations and
simulations. In user tests, children using the HANDS system performed significantly better
than children using aversion of the system that lacked several of thesefeatures. Thisisevi-
dence that the process described here had a positive impact on the design of HANDS, and

could have asimilar impact on other new programming language designs.

The contributions of thisthesisinclude a survey of the knowledge about beginner program-
mers that is organized for programming system designers, empirical evidence about how
non-programmers express problem solutions, the HANDS programming system for chil-
dren, anew model of computation that is concrete and based on familiar concepts, an eval-
uation of the effectiveness of key features of HANDS, and a case study of a new user-

centered design process for creating programming systems.

Acknowledgements
| would like to extend my heartfelt appreciation to Brad Myersfor hisinsight and guidance
throughout my Ph.D. work. | am very grateful for the many hours that he spent discussing

and critiquing my work.

| am aso very thankful for the feedback and support of my co-advisor, David Garlan, and
the other members of my committee: Jim Morris, Clayton Lewisand Albert Corbett. Albert
was especially generousin the time he spent helping me to design the user studies and ana-

lyze the results.

Many other faculty at CMU and el sewhere gave me valuable feedback and suggestions
along the way. In particular, | would like to thank Bonnie John, Ken K oedinger, Wayne
Gray, Margaret Burnett, Alan Blackwell, and Thomas Green.

| am especially grateful to Bonnie John, Dana Scott and Phil Miller, who were influential
in my decision to become a Ph.D. student, and who helped me gain admission to the pro-

gram.

| would like to thank the undergraduate and master’ s students who helped me develop the
ideasin HANDS and who worked on the user studies: Leah Miller, Chotirat “ Ann” Ratan-
amahatana, John Chang, Gabe Brisson, Luis Cota, and Ruben Carbonnell. Thanks to Joon-
hwan Lee for creating the graphicsin the HANDS system. Thanks to Rob Miller for

contributing his code for multi-level undo in the text editor.

Many thanksto Bernita Myers for acting as liaison to the East Hills Elementary school.
Thanksto Mr. Niklos, the principal, aswell asthe teacherswho allowed usto work in their
classrooms: Carol Beavers and John Meighan. Also, thanksto Laurie Heinreicher at Win-
chester-Thurston school. Thanksto Michael Panefor his assistance in pilot testing the user
study evaluating HANDS, and Melody Mostow for doing this and also starring in the
HANDS video. Thanksto Ryan and Reid Myers, who helped us recruit volunteers for one
of the studies. And, specia thanks to Ryan for hisinsightful comparison of HANDS with
Stagecast. And of course, thanksto all of the participants in my studies.

Thanksto Gary Perlman for working with me to develop and evaluate the search interface
for the HCI Bibliography.

Thanks to many additional friends and fellow students who have helped me in various
ways, especialy Neil Heffernan, Chuck Rosenberg, Laurie Hiyakumoto, Herb Derby,
Eugene Ng, Adam Berger, Matt Zekauskas, Maria Ebling, Chris Long, and David Eck-
hardt. A special thanksto Drew Morgan whose friendship and counsel was essential to my

ability to make it through this project.

Especiadly, | would like to express my gratitude to my family for their support and encour-
agement. Most of al, thanksto my wife Barbara, who has given me her patient loving sup-
port throughout. Without this| may have never madeit. | hopetherest of our liveswill give
me sufficient opportunity to reciprocate. Finally, thanks to Lorenzo, our next big project

and one of the compelling motivations to finish this one.

Contents

Abstract iii
Acknowledgements v

CHAPTER 1 Introduction 1

Historical Context 2
A User Centered Design Process for Programming Systems 3
Motivation 4
Thesis Statement 4
Target Audience and Domain 5
Understanding the Target Audience 5
General Design Principles 5
Observations about Existing Programming Languages 7
Naturalness 9
Sudies of Naturalnessin Problem Solving 10
Sudy of Methods to Specify Queries 11

Model of Computation 12
Visual vs. Textual 13

A Programming System for Children that is Designed for Usability Vii

Contents

The HANDS Programming System Design 13
Computational Model 14
Programming Style and Model of Execution 15
Aggregate Operations 15
Queries 15
Domain-Specific Support 16

Evaluation 16

Contributions 17

Overview of Thesis 18

CHAPTER 2 Related Work 19

Usability Issuesin Programming Systems for Beginners 19

Systems for Beginners and Children 19
The Logo Family 19
Boxer 20
ToonTalk 20
AgentSheets 21
Sagecast 21
SmallTalk and eToys 23
Alice 24
Rehearsal World 25
Karel the Robot 25
GRAIL 26
HyperTalk 26
AppleScript 26
K8cript 26
Chart ‘'n" Art 27
cT 27
LabView 27
Forms/3 27
Visual Basic 27
Javaand C# 28
MacGnome 28
Programming by Demonstration 29
Hank 29

viii A Programming System for Children that is Designed for Usability

Contents

CHAPTER 3

CHAPTER 4

The Language and Structure in Problem Solutions Written

by Non-Programmers 31

Comparison to Lance Miller's Studies 32
Overview of the Studies 33

Study One 34
Participants 34
Materials 35
Procedure 36
Content Analysis 36
Results 37
Overall Sructure 40
Keywords 41
Control Structures 42
Computation 44
Discussion 46

Study Two 46
Participants 46
Materials 47
Procedure 48
Content Analysis 48
Results 49
Keywords 49
Control Structures 52
Computation 53

Discussion of Results 58
Programming Style 58

Summary of These Studies 65

Methods for Expressing Queries 67

Overview 67
Prior work on Boolean Queries 70

Design alternatives for Boolean queries 70
Tabular query forms 71

Hypotheses 72
AND vs. nested IF 72
NOT vs. Unless 72

A Programming System for Children that is Designed for Usability

Contents

Location of Unless 72
Context-dependent interpretation of AND 73
Verbose AND vs. OR 73
Operator precedence of NOT 73
Parentheses for expression grouping 74
Tabular vs. textual 74

Method 74
Participants 75
Materials 76
Procedure 76

Results 78

Discussion 80
Textual query variations 81
Match formsvs. text 82
Summary 83

Application of Results 84

CHAPTER 5 The HANDS System 87

Motivating Factorsinthe HANDS Design 87

Representation of the Program 89
Cardsfor Data Sorage 89
Computation is Performed by Handy 94

Programming Style and Model of Executionin HANDS 96
Structure of Event Handlers 97
Event Dispatch 97
The Events 98
Event Patterns 99
Event Cards 101

DataTypes 101
Numeric Values and Calculations 102

Language Syntax 103
Natural-Language Style 103
Plurals 103
Control Structure Terminators 104
Satement Terminators 104
Parentheses Are Required to Indicate Precedence Explicitly 104
List Syntax 105

X A Programming System for Children that is Designed for Usability

Contents

Consistency Between Values on Cards and in Program Code 105
Comments, Indenting, and White Space 105
Choices for Keywords and Special Identifiers 106

Statements 106
Operationson Cards 107
Operations on Card Properties 107
Output Statements 109
Other Satements 109
Expressions 109
Relational Operators 110
Boolean Operators 110
Card Existence Predicate 111
Mathematical Operators 111
Random 111
Expression for Getting Input fromUser 112

Aggregate Operations 112

Queries 113

Queries and Aggregates in Combination 114
List Operators 114

Loop and Conditional Control Structures 119
Iteration Control Sructure 119
Conditional Control Sructure 121

Domain-Specific Support 123
Graphical Objects 123
Animation 124
Mouse Click Detection 127
Collision Detection 127
Coordinate System 129

Programming Environment 129
Systemrwide Menu Commands 129
Event Browser 131
Testing Window 136
CardsWindow 137
Handy’'sHand 137

Runtime Errors 138

Implementation Details 141
HANDS Runtime Implementation 141
Format for Saved Files 143

A Programming System for Children that is Designed for Usability

Xi

Contents

Sample Program 143
Importing Components 145
Summary 146

CHAPTER 6 Evaluation 147

User Study 148
Queries and the Alternative 149
Aggregate Operators and the Alternative 150
Visibility of Data and the Alternative 150

The Study 152
Participants 152
Materials 152
Procedure 153
Results 153
Informal Observations 155
Summary of Sudy 155

Example Programs 156
Breakout Game 156
Smulation of the Ideal GasLaw 156
Towersof Hanoi 157
Computing Prime Numbers 158

Comparison with Another System 159
Some Weaknesses of HANDS 161
Range of Capabilities 161
Programming Strategies 162
Evaluation of Earlier Design Ideas 163
Some Criticisms of HANDS 165
Summary of Evaluation 167

CHAPTER 7 FutureWork 169

Further Evaluation and User Testing 169

Ideas for Extending HANDS 170
Modularity and Encapsulation 170
Multiple Agents 171

Xii A Programming System for Children that is Designed for Usability

Contents

CHAPTER 8

CHAPTER 9

APPENDIX A

APPENDIX B

Graphics Primitives 172

Improvements to Collision Detection and Animation 172

Timers 173

Match Forms 173

Widget Library 173

Dealing with Large Numbers of Cards 174

Editing and Debugging Support 174

HANDS as a Complete Package for Teachers and Sudents 175
Applications of Resultsto Other Areas 175

Model of Computation 175

Export Features to Other Languages 175

Influence Design Process for Future Languages and Domains 176

Applications of Match Forms 176

Conclusion 177

Contributions 177
Design Process 177
HANDS 178
Tabular Method for Expressing Boolean Queries 178
User Sudies 178
Survey of Prior Work 179

Closing Remarks 179

References 181
Language Syntax Chart 193

Example Programs 215

Breakout 216
Ideal Gas Law Simulation 222

Towers of Hanoi 228
Extension to Towers of Hanoi 229

Primes Sieve 230
Compass 230

A Programming System for Children that is Designed for Usability

Xiii

Contents

Boundaries 231
Trap Door 232

APPENDIX C Background Research 233

APPENDIX D MaterialsfromSudy 1 321
APPENDIX E MaterialsfromSudy 2 341
APPENDIX F Materials from Sudy 3 381
APPENDIX G MaterialsfromSudy 4 415

Xiv A Programming System for Children that is Designed for Usability

CHAPTER 1 I ntrOdUCt| On

Only avery small proportion of users can program their computers. However, most could
benefit in some way from this powerful capability, whether to customize and interconnect
their existing applications or to create new ones. Aswith writing, “the significance of pro-
gramming derivesnot only from the carefully crafted works of afew professionals, but also
from the casual jottings of ordinary people’ [diSessa 1986, p. 859]. For ordinary people,

understandability, familiarity, ease of performing small tasks, and user interface are more
important featuresin aprogramming system than technical objectives such asmathematical

elegance, efficiency, verifiability, or uniformity.

Many of the peoplewho try to learn to program are quickly discouraged because it isvery
difficult. In fact, it is even chalenging for more experienced people who have received
formal training. Why is programming so difficult? Part of the problem isthat it requires
problem solving skills and great precision, but this does not fully explain the difficulty.
Even when a person can envision aviable detailed solution to a programming problem, it
is often very hard to express the solution correctly in the form required by the computer.

Thisis auser-interface problem that has long been recognized but neglected.

A Programming System for Children that is Designed for Usability 1

Introduction

1.1 Historical Context

In 1971, Gerald Weinberg published The Psychology of Computer Programming, with the
stated goal to trigger a new field that studies computer programming as a human activity
[Weinberg 1971]. At the time, there was little scientific literature about the human aspect
of programming, and most of it appeared in technical reports and other obscure publica-
tions. The field began to grow quickly after Allen Newell addressed the third ACM CHI
Conference on Human Factorsin Computing Systems, and later published hiscommentsin

an article with Stuart Card:

Millionsfor compilers, but hardly a penny for understanding
human programming language use. Now, programming lan-
guagesare obviousy symmetrical, the computer on oneside,
the programmer on the other. In an appropriate science of
computer languages, one would expect that half the effort
would be on the computer side, understanding how to trans-
late the languages into executable form, and half on the
human side, understanding how to design languagesthat are
easy or productive to use. Y et we do not even have an enu-
meration of all of the psychological functions programming
languages serve for the user. Of course, thereislots of pro-
gramming language design, but it comes from computer sci-
entists. And though technical papers on languages contain
many appeals to ease of use and learning, they patently con-
tain almost no psychological evidence nor any appeal to psy-
chological science. [Newell 1985, p. 212]

Soon two workshop series were started, which have becomefocal pointsfor researchinthe
usability of programming languages. the Psychology of Programming Interest Group
(PPIG) exploresthe cognitive aspects of computer programming; and the Empirical Sudies

of Programmers (ESP) group focuses on empirical studies of beginners and experts.

Over the past three decades, many researchers have worked to understand the cognitive
demands of programming and the sources of difficulty in existing programming languages
and tools. In addition to the proceedings of the PPIG and ESP workshop series, relevant
work has appeared in the International Journal of Human-Computer Studies (formerly
International Journal of Man-Machine Sudies), the proceedings of the ACM CHI confer-

ence and the |EEE Human-Centric Computing (formerly Visual Languages) conference,

2 A Programming System for Children that is Designed for Usability

Introduction

and the books Studying the Novice Programmer [Soloway 1989b], Psychology of Pro-
gramming [Hoc 1990a], and Software Design: Cognitive Aspects [Détienne 2001].

1.2 A User Centered Design Process for Programming Systems
It is disappointing that the knowledge gathered over the past thirty years has had so little

influence on the designs of new programming systems (in this document, the term pro-
gramming system is used to encompass the programming language as well as the tools for
viewing, editing, debugging and running programs). In order to help remedy this, | have
organized the prior work that studied beginner programmers so that it might be readily
included among the guidelines and strategies that are used by future programming system
designers. Generally, language designers have focused on technical goalsfor their systems,
such asto build systemsthat are scalable, efficient, reusable, provably correct, or that have
mathematical elegance. When they face a design decision that is not determined by these
criteria, they usually choose a solution that is similar to existing languages or one that

appealsto their intuition. Usability has rarely been adopted as aformal objective.

| believe that usability should always be included among the criteria that are considered
during the design of programming systems. Depending on the constraints of a particular
project and target audience, usability may be given more or less weight. However, it is

always worth considering for at least those decisions that are not already determined by

other design criteria

In thisthesis, | exemplify anew design process for programming systems, where usability

istreated as afirst-class objective:

1. Identify the target audience and the domain, that is, the group of people who will be

using the system and the kinds of problems they will be working on.

2. Understand the target audience, both the problems they encounter and the existing rec-
ommendations on how to support their work. This includes an awareness of general
HCI principles aswell as prior work in the psychology of programming and empirical
studies. When issues or questions arise that are not answered by the prior work, conduct

new studies to examine them.

3. Design the new system based on this information.

A Programming System for Children that is Designed for Usability 3

Introduction

4. Evaluate the system to measure its success, and understand any new problems that the
users have. If necessary, redesign the system based on this evaluation, and then re-eval-

uateit.

In thisdesign process, al of the prior knowledge about the human aspects of programming
are considered, and the strategy for addressing any unanswered questionsisto conduct user
studies to obtain design guidance and to assess prototypes. For my new programming
system for children, | adopted an extreme position by giving usability precedence over

other objectives.

While my focus has been on beginner programmers, | believe this approach also appliesto
experts, and that it can have positiveimpacts on training and productivity aswell asthereli-
ability of professional software systems. Improving the programming systems used by
experts will also affect beginners, because although these systems may not be the best
choices for learning to program, they are often chosen because they are widely available
and familiar to mentors. Everyone would benefit if these programming languages and tools

were more usable.

1.3 Motivation

The goal of thisthesisisto enable more beginnersto learn to program for their persona
purposes, with minimal training. Thereis no explicit goal to teach any particular computer
science concepts, such as recursion, unless the concept is essential to the users achieving
their goals. Thereis aso no requirement for the new programming language produced by
thiswork to match existing programming languages. |dedlly, the new system will be gen-
eral and powerful enough that many people will achieve their objectives without having to
move to other new languages. Hopefully, the need to learn some of the harder computer
science concepts can be deferred or eliminated. For those who do move on to other lan-
guages or even to become computer scientists, their early success with this first language

should ease their difficultiesin learning the harder computer science concepts.

1.4 Thesis Statement

The thesis statement for thiswork is:

4 A Programming System for Children that is Designed for Usability

Introduction

this user-centered design process, incorporating principles
from human-computer interaction, psychology of program-
ming, and empirical studies, will result in aunique program-
ming system that is easier to learn and use than more
conventional programming systems.

1.5 Target Audience and Domain

The target audience for my new programming system is children in fifth grade (about ten
yearsold) or older. | choseto build asystem for children because they often have aninterest
in learning how to program, but can be quickly discouraged when they try. Their goalsare
creative and ambitious — they would like to make programs that are similar to the applica-
tions they use, such as games and simulations. These applications are graphically rich and
highly interactive, unlike the first programsthey are likely to create in many professional
programming systems, such asto display “helloworld” onthe screen. My goal isto provide
an easy entry into creating these interactive graphical programs. However, to the extent
possible, | also tried to create a general purpose language that scales well, so that it is not

inherently limited to creating toy programs.

1.6 Under standing the Target Audience

In addition to general design principlesthat are applicable to al users, there is awealth of
information available about how beginner programmers work and the problems they
encounter. This section summarizes the prior work and briefly describes the new studies |

conducted to examine additional questions.

1.6.1 General Design Principles
The field of Human Computer Interaction (HCI) has general principles and heuristics that

can be applied to programming system design [Nielsen 1994]:

» simple and natural dialog — user interfaces should be simplified, and should match the
user’stask in as natural away as possible, such that the mapping between computer

concepts and user concepts becomes straightforward.

» gpeak the user’s language — the terminology in user interfaces should be based on the
user’s language, instead of using system-oriented terms or attaching non-standard

meanings to familiar words.

A Programming System for Children that is Designed for Usability 5

Introduction

* minimize user memory load — the system should take over the burden of memory from

the user.
» consistency — the same command or action should always have the same effect.

 feedback — the system should continuously inform the user about what it is doing and
how it isinterpreting the user’sinput.

» clearly marked exits — the system should offer the user an easy way out of as many sit-
uations as possible, including ways to undo.

» shortcuts — the system should make it possible for experienced users to perform fre-
guently used operations quickly.

» good error messages — the system should report errors politely in clear language, avoid
obscure codes, use precise rather than vague or general explanations, and include con-

structive help for solving the problem.

* prevent errors—where possible, the user interface should be structured to avoid error

situations.

 help and documentation — the help system and documentation should provide a quick

way for usersto find task-specific information when they are having a problem.

Many of these principles are routinely violated by programming systems — several exam-

ples are presented in Chapter 2.

When designing and eval uating programming systems, it isal so useful to consider themore
specific evaluation criteriain the Cognitive Dimensions of Notationsframework (Cognitive
Dimensions, for short) [Blackwell 2000, Green 1996]:

* viscosity —the system should not resist change; it should not require many user actions

to accomplish one small goal.

* vighility —the information needed by the programmer at any particular time should be

visible or very easy to access.

* premature commitment — the system should not force the user to go about the job in a

particular order, or make a decision before the needed information is available.

 hidden dependencies — important links between entities should be visible.

6 A Programming System for Children that is Designed for Usability

Introduction

* role expressiveness — the purpose of an entity should be readily apparent.
* error proneness — the notation should protect against slips and errors.

 closeness of mapping — the system’s operations should closely match the way users

think about problem solutions.

» secondary notation — the system should alow the programmer to communicate addi-

tional information with comments, typography, layout, etc.
* progressive evaluation — the system should permit users to test partial programs.

 diffuseness— small goals should not require extraordinarily long solutions or large

amounts of screen space.

» provisionality — the system should allow the user to sketch out uncertain parts of their

solution.

» hard mental operations — none of the system’s operations should require great mental

effort to use.
» consistency — similar notations should mean similar things, and vice versa.

* abstraction management — the system should provide a way to define new facilities or
terms that allow the user to express ideas more clearly or succinctly, but it should not

force users to use this capability right from the start.

These factors are sometimesin conflict, so improving the system along one dimension can
result in reduced performance on another. Tradeoffs are necessary, and in making these

tradeoffsit isuseful to consider cognitive models and observations from empirical studies.

1.6.2 Observations about Existing Programming L anguages

The principles of simple and natural dialog, speak the user’ s language and closeness of
mapping are reinforced by cognitive models that define programming as a process where
the user trand atesamental plan into onethat iscompatible with the computer [Hoc 1990b].
The language should minimize the difficulty of thistranslation by providing operators that
match those in the plan, including any that may be specific to the topic or domain of the
program. “The closer the programming world isto the problem world, the easier the prob-

lem-solving ought to be.... Conventional textual languages are along way from that goal”

A Programming System for Children that is Designed for Usability 7

Introduction

[Green 1996, p. 146]. Hix & Hartson describe the general usability guideline to use cogni-
tive directness [Hix 1993, p. 38] to “minimize the mental transformations that a user must
make. Even small cognitive transformations by a user take effort away from the intended
task.” If the language does not provide these high-level operators, programmers have to
assemble lower-level primitivesto achievetheir goals. Thissynthesisis one of the greatest

cognitive barriersto programming [Lewis 1987].

Programmers are often required to think about algorithms and datain ways that are very
different than the waysthey already think about them in other contexts. For example, atyp-
ical C program to compute the sum of alist of numbersincludes three kinds of parentheses

and three kinds of assignment operators in five lines of code:

sum = O;

for (i=0; i<numtens; i++) {
sum += itens[i];

}

return sum

In contrast, this can be done in a spreadsheet with asingle line of code using the sum oper-
ator [Green 1996]. The mismatch between the way a programmer thinks about a solution
and the way it must be expressed in the programming language makes it more difficult not
only for beginnersto learn how to program, but also for peopleto carry out their program-
ming tasks even after they become more experienced. One of the most common bugs
among professional programmers using C and C++ isthe accidental use of “=" (assign-
ment) instead of “==" (equality test). Thismistakeis easy to make and difficult to find, not
only because of typographic similarity, but also because “=" operator does indeed mean

equality in other contexts such as mathematics.

Soloway, Bonar & Erlich [Soloway 1989a] found that the looping control structures pro-
vided by modern languages do not match the natural strategies that most people bring to
the programming task. Furthermore, when novices are stumped they try to transfer their
knowledge of natural language to the programming task. This often resultsin errors
because the programming language definesthese constructsin an incompatible way [Bonar

1989]. For example, then isinterpreted as afterwards instead of in these conditions.

8 A Programming System for Children that is Designed for Usability

Introduction

1.6.3 Naturalness

There are two ways to improve closeness of mapping. Oneisto teach peopleto think more
like computers; the other isto make the programming system’ s operations match how users
think. The latter approach is preferred in thisthesis. A primary goal of my programming
systemisto support the natural waysthat non-programmersthink about problem solutions,
instead of making them learn new and often unnatural waysto accomplish their objectives.
In this context, natural means expected or accepted. If people have a viable approach to
solving problems, the ideal programming system would support that solution directly,
without requiring the programmer to learn anything new or perform additional work in

trandating their ideas into program code.

By this definition, naturalness is not universal for all humans. People from different back-
grounds and cultures, or from different pointsin history, arelikely to bring different expec-
tations and methods to the programming task. Therefore, a programming system that is

designed to be natural for aparticular target audienceis unlikely to be universally optimal.
Thisiswhy identifying the target audience is an intrinsic part of the design process, and

why the processitself isimportant. It will have to be applied over and over again, in order
to best support the particular characteristics of the people who will use each new program-

ming system.

Striving for naturalness does not necessarily imply that the programming language should
use natural language. Programming languages that have adopted natural-language-like syn-
taxes, such as Cobol [Sammet 1981] and HyperTalk [Goodman 1987], still have many
usability problems. For example, HyperTalk often violates the principle of consistency
[Thimbleby 1992]. There are also many ambiguities in natural language that are resolved

by humans through shared context and cooperative conversation [Grice 1975].

Novices attempt to enter into a human-like discourse with the computer, but programming
languages systematically violate human conversational maxims because the computer
cannot infer from context or enter into a clarification dialog [Pea 1986]. The use of natural
language may compound this problem by making it more difficult for the user to under-

stand the limits of the computer’sintelligence [Nardi 1993].

A Programming System for Children that is Designed for Usability 9

Introduction

However, these arguments do not imply that the algorithms and data structures should not
be close to the ways peopl e think about the problem. In fact, leveraging users’ natural-lan-
guage-like knowledge in amore formalized syntax can be an effective strategy for design-

ing end-user-programming languages [Bruckman 1999].

There are additional motivations for why a more natural programming language might be
better. A programming language is atype of user interface, and user interfaces in general
are recommended to be natural so they are easier to learn and use, and will result in fewer
errors. Naturalness is closely related to the concept of directness which, as part of direct
manipulation, is akey principle in making user interfaces easier to use. Hutchins, Hollan
& Norman describe directness as the distance between one’ sgoal s and the actions required
by the system to achieve those goals [Hutchins 1986]. Reducing this distance makes sys-
tems more direct, and therefore easier to learn. User interface designers and researchers
have been promoting directness at least since Shneiderman identified the concept [Shnel-

derman 1983], but it has not been a consideration in most programming language designs.

1.6.4 Studies of Naturalnessin Problem Solving

This thesis presents two studies examining the language and structure that children and
adults naturally use before they have been exposed to programming (Chapter 3). In these
studies, | gave programming tasks to non-programmers and they solved these problems by
writing and sketching their answerson paper. Thetasks covered abroad set of essential pro-
gramming techniques and concepts, such as control structures, storage and mani pul ation of
data, arithmetic, Boolean logic, searching and sorting, animation, interactions among
objects, etc. In posing the problems, | was careful to minimize the risk that my materials

would influence the answers, so | used pictures and very terse captions.
Some observations from these studies were:

* An event-based or rule-based structure was often used, where actions were taken in

response to events. For example, “when pacman loses all hislives, it's game over.”

» Aggregate operators (acting on a set of objects all at once) were used much more often
than iterating through the set and acting on the objects individually. For example,

“Move everyone below the 5th place down by one.”

10 A Programming System for Children that is Designed for Usability

Introduction

» Participants did not construct complex data structures and traverse them, but instead
performed content-based queries to obtain the necessary data when needed. For exam-
ple, instead of maintaining alist of monsters and iterating through the list checking the

color of each item, they would say “all of the blue monsters”

* A natural language style was used for arithmetic expressions. For example, “add 100 to

score.”

* Objects were expected to automatically remember their state (such as motion), and the
participants only mentioned changesin this state. For example, “if pacman hitsawall,

he stops.”

» Operations were more consistent with list data structures, rather than arrays. For exam-
ple, the participants did not create space before inserting a new object into the middle
of alist.

 Participants rarely used Boolean expressions, but when they did they were likely to
make errors. That is, their expressions were not correct if interpreted according to the

rules of Boolean logic in most programming languages.

 Participants often drew picturesto sketch out the layout of the program, but resorted to

text to describe actions and behaviors.

1.6.5 Study of Methodsto Specify Queries

Because content-based queries were prevalent in non-programmers’ problem solutions, |
began to explore how this might be supported in a programming language. Queries are usu-
ally specified with Boolean expressions, and the accurate formulation of Boolean expres-
sions has been a notorious problem in programming languages, as well as other areas such
as database query tools[Hildreth 1988, Hoc 1989]. In reviewing prior research | found that
there are few prescriptions for how to solve this problem effectively. For example, prior
work suggests avoiding the use of the Boolean keywords AND, OR, and NOT [Greene
1990, McQuire 1995, Michard 1982], but does not recommend a suitable replacement
guery language.

Therefore | conducted a new study to examine the ways untrained children and adults nat-

urally express and interpret queries, and to test a new tabular query form that | designed

A Programming System for Children that is Designed for Usability 11

Introduction

called match forms (shownin Figure 1-1). Thisstudy confirmed that relying onthe Boolean
keywords, aswell as parenthesesfor grouping, would result in poor usability. Textual alter-

natives that avoided the Boolean keywords were not reliably better. However, the match

forms were successful.
objects that match objects that match
- blue | circle
not square | not green

Figure 1-1. Match forms expressing the query: (blue and not square) or (circle and not green)

Each match form containsavertical list of slots. Conjunction is specified by placing terms
into these dots, oneterm per slot. Negation is performed by prefacing aterm with the NOT
operator, and digunction is specified by placing additional match forms adjacent to thefirst
one. This design avoids the need to name the AND and OR operators, provides aclear dis-
tinction between conjunction and disunction, and makes grouping explicit. Match forms
are suitable for incorporation into programming systems. When compared with textual
Boolean expressions, users performed significantly better when they expressed their que-
ries using match forms. When interpreting already-written queries, performance was about
equal using either language. Chapter 4 contains full details about match forms and this
study, aswell as an application of thiswork to the search interface for the online HCI Bib-

liography.

1.6.6 Model of Computation

One of the biggest challengesfor new programmersisto gain an accurate understanding of
how computation takes place. Traditionally, programming is described to beginnersin
completely unfamiliar terms, often based on the von Neumann model, which has no real-
world counterpart [du Boulay 1989a, du Boulay 1989b]. Beginners must learn, for exam-
ple, that the program follows special rules of control flow for procedure calls and returns.

There are complex rules that govern the lifetimes of variables and their scopes. Variables

12 A Programming System for Children that is Designed for Usability

Introduction

may not exist at all when the program is not running, and during execution they are usually
invisible, forcing the programmer to use print statements or debuggersto inspect them. This
violates the principle of visibility, and contributes to a general problem of memory over-
load [Anderson 1985, Davies 1993].

Usability could be enhanced by providing a different model of computation that uses con-
creteand familiar terms[Mayer 1989, Smith 1994]. Using adifferent model of computation
can have broad implications beyond beginners, because the model influences, and perhaps

limits, how experienced programmers think about and describe computation [Stein 1999].

Section 1.7.1 introduces the new model of computation | invented to address this problem.

1.6.7 Visual vs. Textual

In visual languages, graphics replace some or al of the text in specifying programs. Propo-
nents of visual programming languages often argue that reducing or eliminating thetext in
programming will improve usability [Smith 1994]. However, much of the underlying ratio-
nale for this expectation is suspect [Blackwell 1996]. User studies have shown mixed
results on the superiority of visual languages over text (e.g. [Green 1992]), and the advan-
tage of visual languages tendsto diminish on larger tasks. It isuseful to note that one of the
most successful end-user programming systems to date i s the spreadsheet, which is mostly
textual [Nardi 1993].

My new programming system supports the hybrid graphical-textual approach used by the
participantsin my studies, and relies on the programming environment to alleviate some of
the difficulties of textual languages. For example, during program entry, context-sensitive
menus like those in Microsoft’s Visual Studio can make it easier to know what choices are
available and to help the user to enter the program correctly. This support could be aug-
mented with a drag-and-drop syntax-directed editor, as seen in Squeak’ s eToys interface
[Steinmetz 2001] and other systems. The system can also provide visual representationsfor

textual e ements that are difficult, such as the match forms mentioned in Section 1.6.5.

1.7 The HANDS Programming System Design

All of these observations have influenced the design of my new programming system,
which is called HANDS (Human-centered Advances for the Novice Development of Soft-

A Programming System for Children that is Designed for Usability 13

Introduction

ware). HANDS uses an event-based language that features a new concrete model for com-
putation, provides queries and aggregate operators that match the way non-programmers
express problem solutions, has high-visibility of program data, and includes domain-spe-
cific features for the creation of interactive animations and simulations. The HANDS

system is detailed in Chapter 5.

1.7.1 Computational M odel

In HANDS, the computation is represented as an agent named Handy, sitting at a table
manipulating a set of cards (see Figure 1-2). All of the datain the system is stored on these
cards, which are global, persistent and visible on the table. Each card has a unique name,
and an unlimited set of name-value pairs, called properties. The program itself isstored in
Handy’ sthought bubble. To emphasize thelimited intelligence of the system, Handy ispor-
trayed asan animal —like adog that knows afew commands—instead of aperson or arobot

that could be interpreted as being very intelligent.

=] board

The bee with the most nectar is: Stripes
He has this much nectar: 8

All the bees have collected: 45

777
178

bee
bumbleb.gif

Figure 1-2. The HANDS system portrays the components of a program on around table. All datais stored
on cards, and the programmer inserts code into Handy’s thought bubble at the upper |eft corner. When the
play button is pressed, Handy begins responding to events by manipulating cards according to the
instructions in the thought bubble. Thisis described in more detail in Chapter 5.

14 A Programming System for Children that is Designed for Usability

Introduction

1.7.2 Programming Style and M odel of Execution

HANDS is event-based, the programming style that most closely matches the problem
solutionsin my studies. A program is a collection of event handlersthat are automatically
called by the system when a matching event occurs. Inside an event handler, the program-

mer inserts the code Handy should execute in response to the event.

1.7.3 Aggregate Operations

In my studies, | observed that the participants used aggregate operators, manipulating
whole sets of objectsin one statement rather than iterating and acting on them individually.
Many languages force users to perform iteration in situations where aggregate operations
could accomplish the task more easily [Miller 1981]. Requiring usersto trandlate a high-

level aggregate operation into alower-level iterative process violates the principle of close-
ness of mapping.
HANDS has full support for aggregate operations. All operators can accept listsaswell as

singletons as operands, or even one of each. For example,

1 + 1 evaluatesto 2

1 + (1,2,3) evauatesto 2, 3, 4

(1,2,3) + 1levauatesto?2, 3, 4

(1,2,3) + (2,3,4) evduatesto3, 5,7

1.7.4 Queries

In my studies, | observed that users do not maintain and traverse data structures. Instead,
they perform queries to assemble lists of objects on demand. For example, they say “all of
the blue monsters.” HANDS provides a query mechanism to support this. The query mech-

anism searches al of the cards for the ones matching the programmer’ s criteria.

Queriesbegin with theword all. If aquery containsasinglevalue, it returnsall of the cards
that have that value in any property. Figure 1-3 contains cards representing three flowers

and abeeto help illustrate the following queries.

 all flowers evaluatestoorchid, rose, tulip

A Programming System for Children that is Designed for Usability 15

Introduction

[]rose [Eorcnid =

name | waluoe narme | wvalue name |
cardname |rose cardname |tulip cardname |orchid cardname |bumble
® z0s ® is0 ® 636

W g B a1 B g Y ao
group flower qroup flower qroup flower qroup bee
nectar 150 nectar 75 nectar 0

Figure 1-3. When the system evaluatesthe query al | fl owers it returnsrose, tulip, orchid

* all bees evaluatesto bunbl e
* all snakes evaluatesto the empty list

HANDS permits more complex queriesto be specified with traditional Boolean expres-
sions, however the intention isto eventually incorporate match formsinto the system asan

option for specifying and displaying queries.

Queries and aggregate operations work in tandem to permit the programmer to concisely

express actions that would require iteration in most languages. For example,

e set the nectar of all flowers to O

1.7.5 Domain-Specific Support

HANDS has domain-specific features that enable programmersto easily create highly-
interactive graphical programs. For example, the system’ s suite of events directly supports
this class of programs. The system automatically detects collisions among objects and gen-
erates eventsto report them to the programmer. It also generates eventsin responseto input
from the user viathe keyboard and mouse. It is easy to create graphical objects and text on

the screen, and animation can be accomplished without any programming.

1.8 Evaluation

To examine the effectiveness of three key features of HANDS: queries, aggregate opera-
tions, and data visibility, | conducted a study comparing the system with alimited version
that lacks these features. In the limited version, programmers could achieve the same

results but had to use more traditional programming techniques. Fifth-grade children were

16 A Programming System for Children that is Designed for Usability

Introduction

ableto learn the HANDS system during a three-hour session, and then use it to solve pro-
gramming problems. Children using the full-featured HANDS system performed signifi-
cantly better than their peers who used the reduced-feature version. Thisis evidence that
this set of features improves usability over the typical set of features in programming sys-

tems.

In a separate informal study, a high-school student compared hands with Stagecast, acom-
mercial programming environment for children [Earhart 1999]. Heimplemented agamein
both systems, and concluded that HANDS was easier to use, enabled him to implement
more features, and required fewer lines of code. In addition, several more experienced pro-
grammers have used HANDSto implement abroad variety of programsto exploreitsrange
of capabilities.

Evaluation of the HANDS system is detailed in Chapter 6.

1.9 Contributions

The contributions of thisthesis are:

» acase study of anew design process for creating programming systems, where usabil-

ity isafirst class objective;

» the HANDS programming systemfor children, which has aunique set of features dueto
its user-centered design, several of which were demonstrated to be more usable than

those found in typical programming systems;

» anew model of computation, or way of thinking about programs, that is concrete and
based on familiar concepts, unlike the traditional Turing machine or von Neumann

machine models;

* ageneral-purpose programming language that offers database-style access to the pro-

gram’s data, and in which all operators can be applied to singletons and lists;

» match forms, atabular method for expressing queries that was compared to textual

expressions and shown to improve beginners' performance;

* anew query interface for the HCI Bibliography (www.hcibib.org), based on match

forms, which reduces user errorsin comparison to the old interface;

A Programming System for Children that is Designed for Usability 17

Introduction

» empirical evidence about how non-programmers express problem solutions, which can
be used to help designers generate and select programming system features that provide
a close mapping between those problem solutions and their expression in program

code;

» empirical evidence characterizing the kinds of errors made by inexperienced users of

textual Boolean expressions;

» auser study demonstrating the effectiveness of queries, aggregate operations, and high-
visibility of data, in comparison to the typical features sets of programming systems;

and,

» abroad survey of the prior work on beginner programmers, organized in aform that can

be used by other programming system designers (appearsin Appendix C).

1.10 Overview of Thesis

Theremainder of thisthesisisorganized asfollows: Chapter 2 describesthe prior empirical
work on beginner programmers as well as other programming systems for beginners and
children; Chapter 3 describes the first two studies examining the language and structurein
non-programmers sol utions to programming problems; Chapter 4 describesthethird study,
examining methods for specifying queries, and provides details about match forms; Chap-
ter 5 details the design of the HANDS system; Chapter 6 describes a fourth study, to eval-
uate features of HANDS, as well as other less formal evaluations; Chapter 7 discusses the
implications of thiswork and some ideas for future work; and Chapter 8 gives some con-

cluding remarks.

Supplemental materials are contained in appendices. Appendix A contains aformal speci-
fication of the HANDS language syntax; Appendix B contains some example programs
implemented in HANDS; Appendix C contains the full text of my technical report survey-
ing usability issuesin programming systemsfor beginners; Appendix D contains the mate-
rials used in the first study; Appendix E contains the materials used in the second study;
Appendix F contains the materials used in the third study; and Appendix G contains the
materials used in the fourth study.

18 A Programming System for Children that is Designed for Usability

CHAPTER 2 Rda:taj \/\brk

This chapter surveys other programming systems for beginners and children.

2.1 Usability I'ssuesin Programming Systems for Beginners
Appendix C contains the full text of my technical report surveying usability issuesin the
design of programming systemsfor beginners, covering the prior work in Empirical Sud-
ies of Programmers and Psychology of Programming [Pane 1996]. Throughout this
thesis, additional relevant related work is cited in context.

2.2 Systemsfor Beginnersand Children
Thissection briefly summarizesthe numerous systemsthat have been created for beginners

and children.

2.2.1 TheLogo Family

Logo [Papert 1980] is a successful and popular language for children. Its textual language
isbased on Lisp, with asyntax that was redesigned to be easier to learn and read, yet it does
use unusual punctuation and cryptic names for commands. L ogo uses a turtle metaphor for
adrawing pen. There have been many implementations of Logo. StarL.ogo extends the met-

aphor to parallel processing [Resnick 1994]. Figure 2-1 shows an solution to the Towers of

A Programming System for Children that is Designed for Usability 19

Related Work

Hanoi problem implemented in LogoMation. LEGO/L ogo links the popular LEGO con-
struction kit with the L ogo programming language [Martin 1993]. Children build machines
out of LEGO pieces, including newer pieces such as gears, motors and sensors, and then
write computer programs to control the machines.

Towers of Hanoi — —
=——HH

[0 =————=RUNWindow - status: Aborted
[=] [rina-

// MoveOne - move one ring from one pole to another
SEELEEELEEET LT T LT T T T E i i i i i i i i diiddiidiiiddy
Function MoweOne|ring, from, to)

If doPause

ask| 1)

Pen name=ring, speed=speedl

Down .

Goto towerX[from], towerTop¥+50, 0O

Goto towerX[to], w(), O

Pause thePause

Pen speed=speed2

Goto x(), towerBaseY + nTower|to]*ringHeight,-90
dong(5)

nTower[from] = nTower| from] - 1

nTower[to] = nTower[to] + 1

Pen name="moved"

Down

Color 65535,65535,65535

Fill 1,65535,65535,65535

Color 65535,7106,29616
nMoved = nMoved+l
Frint nMoved

Figure 2-1. A solution to the Towers of Hanoi problem, implemented in LogoMation.

2.2.2 Boxer

Boxer [diSessa 1986] uses atwo-dimensional, visible, concrete metaphor where boxes and
their spatial relations represent the computation (Figure 2-2). Variables can be modified by
direct manipulation, and the state and code for graphical objects is packaged with their
graphical representation. Boxer’ stextual languageisvery similar to Logo, with extensions

to broaden its range of capabilities.

2.2.3 ToonTalk

ToonTalk isachildren’s programming language based on a video game metaphor [Kahn
1996)]. Its cartoon world provides concrete realizations of all of the concepts required in
concurrent constraint programming. For example, birds and nests represent communica
tion, arobot represents a statement guarded by a condition, abalance scale represents com-
parison tests, awand can be used to create data, avacuum cleaner can be used to del ete data,
and abomb represents termination of a process (see Figure 2-3). Programs are constructed

by using video-game controlsto train the robots. For example, if arobot drops a number 2

20 A Programming System for Children that is Designed for Usability

Related Work

|m Data - KR v
&zg Data ngi E;!:‘g

43 2nd St
Bel 1wood

for x in list —
if x.name = name
change number x.number

If you put a name in the NAME box and press the FUNCTION-1
key the phone number will appear in the NUMBER box.

Dat r D
numbe SN 2 KRR

Figure 2-2. In Boxer, the computation is represented by boxes and their spatial relations. The language is
based on Logo. Thisfigure originally appeared in [diSessa 1986].

on top of anumber 7, acharacter named Bammer appears and smashes the numberswith a
sledgehammer, causing the 7 to be replaced with the sum 9. It is afascinating system, how-
ever itslow-level primitives present a challenge for beginners, who may have great diffi-
culty infiguring out how to compose the primitives to accomplish their higher-level goals.
For example, a single robot cannot accomplish the test x+y>100; ateam of robots must
be programmed to do this simple test. As another example, aresearch paper devotes more
than four pages (including illustrations) to explain how a programmer would program
ToonTalk to append two lists [Kahn 1999].

2.2.4 AgentSheets

AgentSheets[Repenning 1995] isthefirst inafamily of rule-based graphical programming
environments based on a spreadsheet metaphor. In these systems, program objects occupy
cellsin agrid, and interact with the objectsin neighboring cells. These interactions are

specified by graphical rewrite rules, which are before-and-after pictures (see Figure 2-4).

2.2.5 Stagecast
Stagecast (formerly KidSim and Cocoa) extended this metaphor with the capability to use
programming by demonstration to create the graphical rewriterules (see Figure 2-5) [Joers

A Programming System for Children that is Designed for Usability 21

Related Work

Figure 2-3. ToonTalk has concrete representations for computational concepts. For example, birds and nests
represent communication, a robot represents a statement guarded by a condition, a balance scale represents
comparison tests, awand can be used to create data, a vacuum cleaner can be used to delete data, and abomb
represents termination of a process. Thisfigure originally appeared in [Kahn 1999].

1999, Smith 1994]. While beginners can quickly create some interesting programs, some
kinds of games and simulations are difficult to implement. For example, the grid makesiit
difficult to implement smooth motionsin arbitrary directions. Also, graphical rewrite rules
arelocal —aregion of the grid surrounding the object is considered in determining whether
arewrite rule matches. Therefore, these rules by their nature are not suited to interactions
at adistance. As more objects populate the system, and as the grid region is expanded to
include more cells, there can be a combinatorial explosion in the number of situations that
must be considered. Often, multiple similar rules must be programmed in order to handle

the various situations.

22 A Programming System for Children that is Designed for Usability

Related Work

=
il

|

i

E

1
r =4

L

|

=3
S

Figure 2-4. AgentSheets uses rewrite rules. In this example, the top rule specifies that if the serotonin has a
certain appearance it will change to another appearance; and the bottom rule specifiesthat if thereisa
membrane to the right, the serotonin will move to the right with at 15% probability. Thisfigure originally
appeared in [Repenning 2000].

i o s define

@ gy oo

Figure 2-5. In Stagecast, the rewrite rules can be specified by demonstration, by directly manipulating the
objects. For smplerules, no text is required. In thisfigure, the programmer is defining arule that moves a
vehicle forward (to the right) along atrack. Thisfigure originally appeared in [Smith 2000].

2.2.6 SmallTalk and eToys
SmallTalk isan exploratory object-oriented language that was designed to be accessible to
non-technical people [Ingalls 1981]. A recent portable implementation named Squeak

includes alearning environment interface for children. This system, called eToys, has sup-

A Programming System for Children that is Designed for Usability 23

Related Work

port for children to add behaviorsto objects, using an interface that features a subset of the
SmallTak language in a more verbose style, with atile-based drag-and-drop interface to
assist in constructing correct programs (see Figure 2-6) [Steinmetz 2001].

" -
@] tasic]
+ Car's x . ?#'?36 3

- Car's ¥ . #2?9
- |Car's heading . #—139
! - Car forward by #5]
! - Car turn by #5 |

! -|Car make sound #:rnak

@ # testg]

+ (Car's isOverColor Bl colot if‘a]se:

1 @ O |Car =:rip1‘1|0[pnu==d:| IE @

+ Car's isUnderMouze é.f‘alse:

Car forward by #? | 2
- |Car's colorSees
Test \Car's iz over color color T
= + (Car's touchesA Car
Tez Car make zound 5 croak r |
- |&ar's obtrudes [falze I
No Car make sound #mn‘ror :
Car turn by Wheel's heading #h’ =5 z
e

Figure 2-6. The eToys interface in Squeak provides atile-based drag-and-drop interface for constructing
programs in a verbose version of SmallTalk.

2.2.7Alice

Alice [Conway 2000, Conway 1997] is an authoring tool for scripting and prototyping 3D
object behaviors. By writing simple scripts, Alice users can control object appearance and
behavior, and while the scripts are executing, objects respond to user input viamouse and
keyboard. Alice is designed to be simple enough that it can be used by people who don't

necessarily call themselves programmers. A new version of Alicethat is currently being

24 A Programming System for Children that is Designed for Usability

Related Work

Tun Around Dnce ! ul|

Chow me what vou cando.

Lopy
Bename...
Fant Texiure...

T e Ty
b B R B

Haiee

Mesume

Stop

Figure 2-7. Aliceis an authoring tool for scripting and prototyping 3D object behaviors. Thisfigure
originally appeared in [Conway 1997].

built has been influenced by this thesis. For example, Alice team hastried to reduce punc-

tuation in their language, and to avoid the Boolean keywords AND and OR.

2.2.8 Rehearsal World
Rehearsal World is a system that uses atheatre metaphor, where the programming process
consists of moving “ performers’ around on “stages’ and teaching them how to interact by

sending “cues’ to one another [Finzer 1993].

2.2.9 Karel the Robot

Numerous“mini-languages’ have been created over the yearsfor teaching programmingin
an environment that is intentionally limited for simplicity [Brusilovsky 1997]. These lan-
guages are used for ashort timeto allow beginnersto learn some programming, beforethey
move to more compl ete programming languages. Usually these languages are very similar
to existing languages, so they generally do not break substantial new ground in language
design. For example, Karel the Robot was designed as a simple introduction to the Pascal

language [Pattis 1995].

A Programming System for Children that is Designed for Usability 25

Related Work

2.2.10 GRAIL

GRAIL stands out among mini-languages because its creators relaxed this constraint, and
adopted usability principles and a pedagogical theory to guideits design [Mclver 2001].
GRAIL isan imperative language with an English-like syntax. It has no pointers or refer-
ences, and it hasasingle numeric type. GRAIL usesnon-ascii charactersto typographically
represent the symbols that students are used to seeing in other domains (such as+), A user
study showed that students made significantly fewer errors when using GRAIL than with
Logo.

2.2.11 Hyper Talk

HyperTalk isthe scripting language in the HyperCard system [Goodman 1987]. HyperTalk
isaverbose English-like language, with optional extrawordsto enhance readability. Code
islocated inside the user interface object it is associated with. This makesit difficult for a
programmer to find all of the code in alarge or unfamiliar program, or to determine why
the code is not working as expected. Even if the programmer knows where to look, the
system requiresmany stepsto makeadesired item visible [Green 1990, Green 1996]. Many
inconsistency issues and other usability problems have been reported about HyperTalk
[Thimbleby 1992].

2.2.12 AppleScript

AppleScript isascripting language built into the A pple Macintosh operating system. It has
asimilar English-like flavor to HyperTak. The system has a programming by demonstra-
tion capability, where the programmer can turn on arecord mode and then perform the
actions using the standard user interface of the application, such as menus and buttons.

When the record mode is turned off, an AppleScript script to perform those same actions

appears.

2.2.13 SK8Script

SK8Script isasimilar scripting language in Apple’ s SK8 authoring tool. SK8Script has a
guery-like mechanism for locating objects matching certain criteria, and has the ability to
act on them in aggregate. For example, set the fill Col or of every Rectan-
gl e whose height > 30 in DrawW ndow to Red.

26 A Programming System for Children that is Designed for Usability

Related Work

2.2.14 Chart ‘n’ Art

Chart‘n’ Artisaprogrammabletool for creating charts, graphs, and other kinds of graphics
[DiGiano 2001, DiGiano 1996]. Thetool isself-disclosing. Astheuser performsinteractive
commands the system volunteers information about how the same commands can be per-
formed programmatically, and also offersalist of possible commands that could be issued
next. Thisis donein anon-intrusive way, so that the user might learn to accomplish their
tasks more efficiently through programming than they could interactively. Chart ‘'n’ Art
uses SK8Script, so it also has aggregate operations.

2.2.15cT

cT [Sherwood 1988] isamultimediaauthoring tool for creating simulations. When the user
interactively defines and manipulates graphical objects, the corresponding cT codeis auto-
matically written or revised to reflect the changes. The cT language has few extraneous

brackets, and indenting is used to indicate scope, instead of begin-end blocks or brackets.

2.2.16 LabView

LabView isavisua programming environment for creating interfaces to scientific instru-
ments. A study comparing LabView with atextual language concluded that visual pro-
grams were more difficult to comprehend, even by programmers who were experienced

with the language [Green 1992].

2.2.17 Forms/3

Forms/3 [Hays 1995] is ageneral purpose, declarative, spreadsheet-based visual program-
ming language (see Figure 2-8). Its goal isto provide computational and expressive power
in alanguage featuring asimple, concrete programming style with immediate feedback. In
Forms/3 the programmer creates cells by direct manipulation and then defines formulasfor
the cells.

2.2.18Visual Basic
Visual Basic is apopular end-user programming system for non-programmers. It is atex-

tual event-based language with domain-specific support for forms, dial og boxes and tables,

A Programming System for Children that is Designed for Usability 27

Related Work

| Testl
—
I—
CEL LN MATR ———
[e] | [E=] I:Iif {inlist input (2 356 78 9 0))
= 1 @ | then horizontal
EADIO| OPTION T
QQ Lif (inlict anput (1 2 3 4 7 8 © 0}]
e | lthen vertical |
N = e] !
s Tf (inlist input (4 56 8 & 0)) |
= Sl [then wertical
5Q —_—
6@ |j|if‘(inlist input (2 34568 9))
. o then horizontal
TED | T T
o | |
89 |I | |._I.': Fmlamd memimaad 1 3 4 C £ T 0O 0 N%Y 1
Dy il if {inlist drput (1 34567830} i
3 | [then vertical]
UQ if (inlist input (2 6 8 0))
then wvertical

input | |
——————if (inlist input {2 3 5 & 8 3 03] |
lthen horizantal |

T

———————————a
| .

line 820 0

[
NOC1E00CAL oo

ertical fline 0 80

Figure 2-8. Forms/3 isavisual programming environment based on a spreadsheet paradigm. This example
shows the program for an LED digit. This figure originally appeared in [Wilcox].

k=

which are common in businesstasks. The programming language itself isbased on the orig-

inal Basic language, which has many well-known usability problems [Pane 1996].

2.2.19 Javaand C#

Java and Microsoft’ s C# contain many usability refinements over C and C++. These
changes were based on common problems experienced by programmers using the earlier
languages. For example, these languages prohibit assignment in the tests of conditional
structures because thiswas acommon place of errorsin C and C++. However the designers
were constrained in how far they could deviate from the predecessors, so programmers

could more easily switch to the new languages.

2.2.20 MacGnome

MacGnome is afamily of structure-editor based programming environments for beginner
programmers [Miller 1994]. The structure editor keeps the program syntactically correct,
and offers context-sensitive menus showing all of the legal constructs at any point in the

program.

28 A Programming System for Children that is Designed for Usability

Related Work

These systems started out enforcing syntactic correctnessat all times, which has many ben-
efitsfor beginners who otherwise might make many syntactic errors and not discover them
until much later. However, this made editing difficult because it was not possible to tem-
porarily go through syntactically-incorrect states while making a change. Later, these sys-
tems added the ability for the user to edit portions of the program textually, and tried to
make the transition between textual and structure editing as smooth as possible. For exam-
ple, to prevent users from naively staying in textual mode and not receiving the benefits of
structure editing, the system automatically returned to structure mode at the end of each
statement (which included a check for correct syntax), but would go back into text mode

again if the user kept typing.

These systems also performed incremental semantic analysis, so that errors such as type
errorsor using an undeclared variable could be flagged while the programmer was editing.
They aso had integrated support for running and debugging programs. Asthe program ran,
the executing code was highlighted in the editing window. A graphical portrayal of the call
stack showed all program data and was updated as the program ran. Common data struc-
tures, such as linked lists and binary trees, were automatically recognized and displayed

similar to the way teachers draw them on the blackboard.

2.2.21 Programming by Demonstration

In programming by demonstration (PBD) systems, the user performs actions interactively
to demonstrate the desired behavior and the system generalizes these actions to form a pro-
gram [Myers 1992]. One of the difficultiesin PBD systemsis this generalization step and
getting the user to provide the right examplesto make the correct inferences possible. Often
there is no visible representation of the program itself, but Pursuit [Modugno 1995] pro-
vided acomic-strip metaphor to represent programs. Gamut [McDaniel 1999] wasasystem
that permitted children to create entire board-game applications by demonstration. This

thesis does not make use of PBD techniques.

2.2.22 Hank
Hank [Mulholland 2000] is a cognitive modelling language for non-programmers. It con-

tains a database with “fact cards,” represented graphically as small spreadsheets, and

A Programming System for Children that is Designed for Usability 29

Related Work

“instruction cards,” represented as flowcharts. The system uses a comic strip storyboard to
represent the model's behavior, and includes aquery system for finding information on fact

cards.

30 A Programming System for Children that is Designed for Usability

CHAPTER 3 The Language and Sructurein
Problem SolutionsWritten by Non-
Programmers

In Chapter 1 it isargued that programming systems should provide operations that closely
match the ways people naturally think about achieving their goals. While the prior work
provides general design guidance, and identifies specific areas where people are known to
have difficulty, it offerslittle prescriptive information about which features should be
included in programming systems. This chapter describesapair of studies seeking to obtain
this prescriptive guidance, by examining the ways that people solve programming-like
tasks before they have been influenced by an exposure to programming.t These studies
were designed to provide insight into the concepts people use when thinking about algo-
rithms, the kinds of structuresthey used to organizetheir solutions, and the vocabul ary they
useto expresstheir answers. The programming system can then be designed to directly sup-
port the natural methods that are observed.

Thefirst study focuses on children because they are the audience for my new programming
language. In addition, children arelesslikely to be programmers, so their responses should
reveal problem solving techniques that have not been influenced by programming experi-

ence. The exercises in this study are drawn from the domain of computer games and ani-

1. Portions of this chapter were previously reported in [Pane 2001].

A Programming System for Children that is Designed for Usability 31

The Language and Structure in Problem Solutions Written by Non-Programmers

mated stories, because children are often interested in building these kinds of programs.
The second study then examines how the results of the first study generalize to a broader
range of ages that includes adults, and to a different domain that incorporates database

access scenarios that are typical of business programming tasks.

3.1 Comparison to Lance Miller’s Studies

These studies are similar to a series of studies by Lance Miller in the 1970s [Miller 1974,
Miller 1981]. Miller examined natural language procedural instructions generated by non-
programmers and made arich set of observations about how the participants naturally
expressed their solutions. Thisresulted in a set of recommended features for computer lan-
guages. For example, Miller suggested that contextual referencing would be a useful alter-
native to the usual methods of locating data objects by using variables and traversing data
structures. In contextual referencing, the programmer identifies data objects by using pro-
nouns, ordinal position, salient or unique features, relative referencing, or collective refer-
encing [Miller 1981, p 213].

Although Miller’ s approach provided many insightsinto the natural tendencies of non-pro-
grammers, there have only been afew studies that have replicated or extended that work.
Biermann, Ballard & Sigmon confirmed that there are many regularitiesin the way people
express step-by-step natural language procedures, suggesting that these regularities could
be exploited in programming languages [Biermann 1983]. Galotti & Ganong found that
they were able to improve the precision in users' natural language specifications by ensur-
ing that the users understood the limited intelligence of the recipient of the instructions
[Galotti 1985]. Bonar & Cunningham found that when users translated their natural-lan-
guage specificationsinto aprogramming language, they tended to use the natural -language
semantics even when they were incorrect for the programming language [Bonar 1988]. It
issurprising that the findings from these studies have apparently not had any direct impact

on the designs of new programming languages that have been invented since then.

A risk in designing these studies is that the experimenter could bias the participants with
the language used in asking the questions. For example, the experimenter cannot just ask:
“How would you tell the monsters to turn blue when the PacM an eats a power pill?’

because this may lead the participants to simply parrot parts of the question back in their

32 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

answers. Thiswould defeat the prime objective of these studies, to examineusers unbiased

responses.
The studies reported in this chapter differ from Miller’'s studiesin severa ways:

1. Eliminating possible bias. Miller’s studies used verbose textual problem statements,
increasing the risk that the language used in the participants' responses was biased by
the materials. In fact, one of the frequently-observed keywords in Miller’s results actu-
aly appeared in the problem statement that was given to the participants. The current
studies take great care to minimize thiskind of bias by using terse descriptions along

with graphical depictions of the problem scenarios.

2. Fewer constraints on the form of the solutions. Miller’s studies placed constraints on
the participants’ solutions, such as: they were broken into steps, each aline of text lim-
ited to 80 characters; steps had to be retyped completely in order to edit them; and, a
minimum of five steps was required in a solution. The current studies are much less
constrained, allowing usersto write or draw as much or aslittle text and pictures asthey

need to convey their solutions.

3. Broader range of tasks. Miller’'stasks were typical database problems common to the
eraof his studies. The current studies investigate a broader range of tasks that incorpo-

rate modern graphical user interfaces and media such as animations.

4. Broader age range of participants. Miller’s participants were al college students. The

current studies investigate a broader age range, including children.

Thus, the current studies may yield more reliable information about the natural expressions

of awider audience, on a broader range of algorithms and domains.

3.2 Overview of the Studies

In these studies, participants were presented with programming tasks and asked to solve
them on paper using whatever diagrams and text they wanted to use. Before designing the
tasks, alist of essential programming techniques and concepts was enumerated, covering
various kinds of applications. Theseinclude: use of variables, assignment of values, initial-
ization, comparison of values, Boolean logic, incrementing and decrementing of counters,

arithmetic, iteration and looping, conditionals and other flow control, searching and sort-

A Programming System for Children that is Designed for Usability 33

The Language and Structure in Problem Solutions Written by Non-Programmers

ing, animation, multiple things happening simultaneously (parallelism), collisions and

interactions among objects, and response to user input.

Because children often express interest in creating games and animated stories, the first
study focused on the skills that are necessary to build such programs. In this study, the
PacMan video game was chosen as a fertile source of interesting problems that require
these skills. Instead of asking the participantsto implement an entire PacM an game, various
situations were selected from the game because they touch upon one or more of the above
concepts. Thisallowed arelatively small set of exercises to broadly cover as many of the
concepts as possible in the limited amount of time available. Many of the skills that were
not covered in the first study were covered in the second, which used a set of spreadsheet-

like tasks involving database manipulation and numeric computation.

To minimize the form of bias described in Section 3.1 on page 32, a collection of pictures
and QuickTimemovie clipswere devel oped to depict the various scenarios using very terse
captions. This enabled the experimenter to show the depictions to the participants and ask
general, open-ended questions to prompt their responses. An example from Study Oneis

shown in Figure 3-1. Copies of the materials are availablein Appendix D and Appendix E.

3.3 Study One

Thefirst study examines children’s solutions to a set of tasks that would be necessary to

program a computer game.

3.3.1 Participants

Fourteen fifth graders at a Pittsburgh public elementary school participated in this study.
The participants were equally divided between boys and girls, wereracialy diverse, and
wereeither ten or elevenyearsold. All of the participantswere experienced computer users,
but only two of them (both boys) said they had programmed before. All of the analysesin
this article examine only the twelve non-programmers. The participants were recruited by
sending abrief note and consent form to parents. The participants received no reward other
than the opportunity to leave their normal classroom for ahalf hour, and the opportunity to

play acomputer game for afew minutes.

34 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

3.3.2 Materials

A set of nine scenarios from the PacMan game were chosen, and graphical depictions of
these scenarios were developed, containing still images or animations and a minimal
amount of text. The topics of the scenarioswere: an overall summary of the game, how the
user controls PacMan’ s actions, PacMan’ s behavior in the presence and absence of other
objects such as walls, what should happen when PacMan encounters a monster under var-
ious conditions, what happens when PacMan eats a power pill, scorekeeping, the appear-
ance and disappearance of fruit in the game, the completion of onelevel and the start of the
next, and maintenance of the high score list. Figure 3-1 shows one of the scenario depic-
tions and therest are in Appendix D. The participants viewed the depictions on a color

laptop computer, and wrote their solutions on blank unlined paper.

Usually Pacman moves like this.

Now let's say we add a wall.

Not like this.

Do this: Write a statement that summarizes how I (as the computer) should
move Pacman in relation to the presence or absence of other things.

Figure 3-1. Depiction of a problem scenario in study one.

A Programming System for Children that is Designed for Usability 35

The Language and Structure in Problem Solutions Written by Non-Programmers

3.3.3 Procedure

After abrief interview to gather background information, participants were shown each
scenario and asked to write down in their own words and pictures how they would tell the
computer to accomplish the scenario. When a response was judged to be incomplete or
unsatisfactory, the experimenter attempted to elicit additional information by asking the
participant to give more detail, by demonstrating an error in the existing answer, or by
asking questions that were carefully worded to avoid influencing the responses. The ses-

sions were audiotaped.

3.3.4 Content Analysis

A rating form was devel oped to be used by independent raters to analyze each participant’s
responses. Each question on the form addressed some facet of the participant’ s problem
solution, such asthe way aparticular word or phrase was used, or some other characteristic
of the language or strategy that was employed. Many of these questions arose from the
results of a pilot study. In addition, a preliminary review of the participant data reveal ed
trends in the solutions that seemed important, so the rating form was supplemented with

guestions to explore these as well.

Each question was followed by several categories into which the participant’ s responses
could be classified. The rater was instructed to ook for relevant sentences in the partici-
pant’ s solution, and classify each one by placing atickmark in the appropriate category,
also noting which problem the parti cipant was answering when the sentence was generated.
Each question also had an other category, which the rater marked when the participant’s
utterance did not fall into any of the supplied categories. When they did this, they added a
brief comment. Figure 3-2 shows one of the questions from the rating form for study one,

and the rest can be found in Appendix D.

Five independent raters categorized the participants’ responses. These raters were experi-
enced computer programmers, who were recruited by posting to Carnegie Mellon Univer-
sity’ selectronic bulletin boards, and were paid for their assistance. They were given a one-
page instruction sheet describing their task. Each rater filled out a copy of the 17-question

rating form for each of the participants. Theraters reported that thiswas avery tedious pro-

36 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

3. Please count the number of times the student uses these various methods to express concepts about
multiple objects. (The situation where an operation affects some or all of the objects, or when different
obj ects are affected differently.)

Thinks of them as a set or subsets of entities and operates on those, or specifies them with plurals.
Example: Buy all of the books that are red.

Uses iteration (i.e. loop) to operate on them explicitly.
Example: For each book, if it isred, buy it.

Other (please specify)

Figure 3-2. A question from the rating form for study one. The nine blanks on each line correspond to the
nine tasks that the participants solved.

cess that took each of them 8-10 hours to answer all of the 17 questions for the fourteen

participants.

3.3.5Results

The participants solutions ranged from one to seven pages of handwritten text and draw-
ings. Some excerpts from the solutions are shown in Figure 3-3. Theraters were instructed
to use each utterance (statement or sentence) asthe unit of text to analyze. Since each rater
independently partitioned the text into these units, the total number of tickmarks differed
across raters, so the results are normalized by looking at the proportion of the tickmarks
credited to each category rather than the raw counts. Although there was variance among
the results from individual raters, their ratings were generally similar. So the results are

reported as averages across al raters and al of the non-programmer participants.

Theresultsfor each rating form question are summarized with an overall prevalence score
followed by frequency scoresfor each category sorted from most frequent to least frequent.
The prevalence score measures the average count of occurrences that each rater classified
for each participant when answering the current question. In study one, this score varies

from 1.0 to 23.2, indicating the relative amount of datathat was available to the ratersin

A Programming System for Children that is Designed for Usability 37

The Language and Structure in Problem Solutions Written by Non-Programmers

k
Pac "E" c/?{ £ p%:_:,{f,

* @ I
AN : l,"mm(l lW'II
@ @ &i’{) when he hits Hhe wall f5+0(3 uaki| the
Player hEs amothec Key.

When "k Aig, packmen goesdown

DF scofe is larger th an any F{W""’S sm] FUf‘ all
5c0r% N numeric ordel, then f}’sf’/ay 2ores /0

wWhen e 16Xy hey U5 Preeeed 78T AT G025 ek,
(e [z

- Vae Up arrow Ky s pl8sedgecmdn moves ©OP

I ol c’agwwet IR B S vt (1 devn

S TR (T
lwgu he 9&?: ot o wall e baks vp dnd goes d affewot-cry.

Lnen Yackan Wits the g\osl"ﬁf Yhe mo”f’h"f/he B loze a lu_)g_ 4
stk agaun

[o (QQJ’H-

\hen Poc won ke & gost he Wil bsea Woe Wy picmdr cats
SPecial Aok Ve \sdoe iy eat %)he sk 0T mensten Theit- 1=

book 20 seonde. Whey thy O fen,

When Yhe. do% v eaten 5 T g\qm%-@n& woekes pma blue cob
‘dhdl k\"‘[{_‘?\aﬂe_(gers wmoce PO'ﬂst-r'Usuaﬂg i+ w.“gg op 50 mm
M{m]\‘ ot appear EVEY WMinyfp, SWCfdfgdﬁpf’e,df’”)

2D seLonds. :

Reer Pt €35 Mo s Qov)Q new \eudwﬁws\fi?h
The ﬂegﬂle,m\ ™ hager;and Yhe dots Jppear o5 The - g;]m
S axen. | ; \ |
\“j\(\f)d\ a ?e\’bon ‘ﬂav 3 }115‘1 5cole ege,@‘mdj moves A p dcc,d{)?)v?

(o Phe. o (ke V¥ person szen do&sn% #Br?f@

(L mgle! 70 in Bt plice, the people Tom -~
\%ﬂn ?@dﬁﬂgﬂédﬁn ¢ &%\1::)&?@%& E«fc\“omp V-H Fegy tn ‘t‘hu%olam._ .

Figur e 3-3. Excerpts from the participants’ solutionsin Study 1.

38 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

answering the question. The frequency scores then show how those occurrences were
apportioned across the various categories, expressed as percentages. The frequencies may
not sum to exactly 100% due to rounding errors. The examples are quoted from the partic-
ipants solutions. Table 3-1 summarizes the results that follow, which are sorted into four
general categories: theoverall structure of the solutions, the waysthat certain keywordsare
used, the kinds of control structures that are used, and the methods used to effect various
aspects of computation. These results are presented from most frequent to least, which is
generally not the order that they appeared on the rating form, and frequencies below 5% do
not appear in the summary table.

Overall Structure
Perspective
45% Player or end-user
34% Programmer
20% Other (third-person)

Programming Style

54% Production rules / events
18% Constraints

16% Other (declarative)

12% Imperative

Modifying State

61% Behaviors built into objects
20% Direct modification

18% Other

Pictures
67% Yes

Keywords
AND OR THEN
67% Boolean conjunction 63% Boolean disjunction 66% Sequencing
29% Sequencing 24% To clarify or restate a prior item 32% “Consequently”, or “in that case”
8% “Otherwise”
5% Other

Control Structures

Operations on Multiple Objects Complex Conditionals Looping Constructs

95% Set / subset specification
5% Loops or iteration

Remembering State
56% Present tense for past event
19% “After”
11% State variable
6% Discuss future events
5% Past tense for past event

Tracking Progress
85% Implicit
14% Maintain a state variable

37% Set of mutually exclusive rules
27% General case, with exceptions
23% Complex boolean expression

14% Other (additional uses of exceptions)

Computation
Mathematical Operations

59% Natural language style - incomplete

40% Natural language style - complete

Motions
97% Expect continuous motion

Randomness
47% Precision

20% Uncertainty without using “random”

18% Precision with hedging
15% Other

73% Implicit
20% Explicit
7% Other

Insertion into a Data Structure
48% Insert first then reposition others
26% Insert without making space
17% Make space then insert

8% Other

Sorted Insertion

43% Incorrect method

28% Correct non-general method
18% Correct general method

Table 3-1. Summary of results from the first study. Items with frequencies below 5% do not appear.

A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

3.3.6 Overall Structure

3.3.6.1 Programming Style
The raters classified each statement or sentence in the solutions into one of the following

categories based on the style of programming that it most closely matches.
Prevalance: 22.7 occurrences per participant.

» 54% - production rules or event-based, beginning with when, if, or after.

Example: When PacMan eats all the dots, he goes to the next level.

» 18% - constraints, where relations are stated which should always hold.
Example: PacMan cannot go through a wall.

* 16% - other (98% of these were classified by the raters as declarative statements).

Example: There are 4 monsters.

* 12% - imperative, where a sequence of commands is specified.

Example: Sart with thisimage. Play this sound. Display “ Player One Get Ready”

3.3.6.2 Per spective
Beginners sometimes confuse their role or perspective while they are developing a pro-

gram. Instead of thinking about the program from the perspective of the programmer, they
might adopt therole of the end-user of the program, or in the case of games and stories, one
of the characters portrayed by the program. The raters classified the participants' state-
ments according to the perspective or role that they indicated.

Prevalance: 23.2 occurrences per participant
» 45% - player's or end-user’s perspective.
Example: When | push the |eft arrow PacMan goes | eft.
* 34% - programmer’s perspective.
Example: If arrow for Player 1is* left” move PacMan left.

» 20% - other (99% of these were classified by the raters as third-person perspective).
Example: If he eats a power pill and he eats the ghosts, they will die.

40 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

3.3.6.3 Maodifying State
The raters examined places where the participants were making changes to an entity.

Prevalance: 4.6 occurrences per participant.

* 61% - behaviors were built into the entity, in an object-oriented fashion.

Example: Get the big dot and the ghost will turn colors...

» 20% - direct modification of the properties of entities.

Example: After eating a large dot, change the ghosts from original color to blue.
* 18% - other.

3.3.6.4 Pictures
In addition to the above classifications done by the raters, the experimenter examined each

solution to determine whether pictures were drawn as part of the solution.
* 67% - included at |east one picture.

* 33% - used text only.

3.3.7 Keywords

3.3.7.1AND
The raters examined the intended meaning when the participants used the word AND.

Prevalance: 6.3 occurrences per participant.

* 67% - Boolean conjunction.

Example: If PacMan istravelling up and hits a wall, the player should...

» 29% - for sequencing, to mean next or afterward.

Example: PacMan eats a big blinking dot, and then the ghosts turn blue.
* 3% - other
Example: Every level the fruit should stay for less and less seconds.
33.720R
The raters examined the intended meaning when the participants used the word OR.

Prevalance: 1.5 occurrences per participant.

A Programming System for Children that is Designed for Usability 41

The Language and Structure in Problem Solutions Written by Non-Programmers

63% - Boolean digunction.

Example: To make PacMan go up or down, you push the up or down arrow key.

24% - clarifying or restating the prior item.

Example: When PacMan hits a ghost or a monster, he loses his life.
8% - meaning otherwise.

5% - other.

3.3.7.3THEN
The raters examined the intended meaning when the participants used the word THEN.

Prevalance: 2.2 occurrences per participant.

66% - sequencing, to mean next or afterward.

Example: First he eats the fruit, then his score goes up 100 points.

32% - meaning consequently, or in that case.

Example: If you eat all the dots then you go to a higher level.
1% - to mean besides or also.

1% - other.

3.3.8 Control Structures

3.3.8.1 Operations on Multiple Objects

The raters examined those statements that operate on multiple objects, where some or all

of the objects are affected by the operation.

Prevalance: 6.1 occurrences per participant.

95% - set and subset specifications.
Example: When PacMan gets all the dots, he goesto the next level.

5% - loops or iteration.
Example: #5 moves down to #6, #6 moves to #7, etc. until #10 which is kicked off the
high score list.

42

A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

3.3.8.2 Iteration or Looping Constructs
The raters examined those statements that were either implicit or explicit looping con-

structs.

Prevalance: 1.6 occurrences per participant.

» 73% - implicit, where only aterminating condition is specified.
Example: Make PacMan go left until a dead end.

» 20% - explicit, with keywords such as repeat, while, and so on, etc.

e 7% - other.

3.3.8.3 EL SE or Equivalent Clauses
The raters looked for occurrences of ELSE clauses or equivalent constructs in the partici-

pants solutions. They simply counted these, without classifying them further.

Prevalance: 0.4 occurrences per participant.

3.3.8.4 Complex Conditionals
The raters examined those statements that specify conditions with multiple options.

Prevalance: 2.3 occurrences per participant.

» 37% - aset of mutually exclusive rules.
Example: When the monster is green he can kill PacMan. When the monster is blue

PacMan can eat the monster.

* 27% - agenera condition, subsequently modified with exceptions.
Example: When you encounter a ghost, the ghost should kill you. But if you have a

power pill you can eat them.

» 23% - Boolean expressions.
Example: After eating a blinking dot and eating a blue and blinking ghost, he should
get points.

* 14% - other (95% of these either listed the exception first, or did not list ageneral case).
Example: If he getsa [power pill] then if you run into them you get points.

A Programming System for Children that is Designed for Usability 43

The Language and Structure in Problem Solutions Written by Non-Programmers

3.3.9 Computation

3.3.9.1 Remembering State
The raters examined the methods used to keep track of state when an action in the past

should affect a subsequent action.
Prevalance: 4.1 occurrences per participant.

» 56% - using present tense when mentioning the past event.

Example: When PacMan eats a special dot heis able to eat the ghosts.

* 19% - using the word after.

Example: After using up the power pill, the ghosts can eat PacMan again.

* 11% - using a state variable to track information about the past event.

Example: When the monster is blue PacMan can eat the monster.

* 6% - mentioning the future event at the time of past event.

Example: When PacMan gets a shiny dot, then if you run into the ghosts, you get points.

* 5% - using the past tense when mentioning the past event.

Example: In about 10 seconds, if PacMan didn't eat it take it off again.
* 4% - other.
3.3.9.2 Tracking Progress
The raters examined the methods used to keep track of progress through along task.
Prevalance: 2.0 occurrences per participant.

» 85% - dl or nothing, where tracking isimplicit or done with sets.
Example: When PacMan gets all the dots, he goesto the next level.

» 14% - using counting, where a variable such as a counter tracks the progress.

Example: When PacMan loses 3 lives, it's game over.
* 1% - other.
3.3.9.3 Mathematical Operations
The raters examined the kinds of notations used to specify mathematical operations.

Prevalance: 3.4 occurrences per participant.

44 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

* 59% - natural language style, missing the amount or the variable.

Example: When he eats the pill, he gets more points...

* 40% - natural language style, with no missing information.

Example: When PacMan eats a big dot, add 100 points to the score.
* 0% - programming language style (count = count + 20)

* 0% - mathematical style (count + 20)

3.3.9.4 Motions

Theratersexamined the participants’ expectations about whether motions of objectsshould

require explicit incremental updating.
Prevalance: 7.8 occurrences per participant.

* 97% - expect continuous motion, specifying only changes in motion.
Example: PacMan stops when he hits a wall.

» 2% - continually update the positions of moving objects.

e 1% - other.

3.3.9.5 Randomness

The raters examined the methods used by the participants' in expressing events that were

supposed to happen at uncertain times or with uncertain durations.
Prevalance: 1.4 occurrences per participant.

* 47% - using precision, where no element of uncertainty is expressed.

Example: Put the new fruit in every 30 seconds.

* 20% - using words other than random to express the uncertainty.

Example: The fruit will go away after a while.

» 18% - using precision with hedging to express uncertainty.

Example: After around 3 or 4 more seconds the fruit disappears.

* 15% - other (often the action was tied to another event).

Example: Put a fruit on the screen when PacMan is running out of power.

e 0% - used the word random.

A Programming System for Children that is Designed for Usability

45

The Language and Structure in Problem Solutions Written by Non-Programmers

3.3.9.6 Insertion into a Data Structure
The raters examined the methods used by the participants to insert an element into the

middle of an existing sequence of elements.

Prevalance: 1.0 occurrences per participant.

* 48% - inserting first, repositioning other elements afterwards.

* 26% - no mention of making room for the inserted element.

» 17% - making space by repositioning others, then inserting the element.
* 8% - other.

3.3.9.7 Sorted Insertion
The raters examined the methods used by the participants to determine the correct place to

insert an element into a sorted list.

Prevalance: 1.1 occurrences per participant.

* 43% - using an incorrect method, with missing or incorrect details.

» 28% - amethod that is correct for the current data, but not a correct general solution.
» 18% - acorrect general method that would work for any data.

* 10% - other

3.3.10 Discussion
Combined discussion of the two studies appears in Section 3.5 on page 58.

3.4 Study Two

To seewhether the observationsfrom thefirst study would generalize to other domainsand
other age groups, a second study was conducted. This study used database access scenarios
that are more typical of business programming tasks, and was administered to a group of

adults aswell as a group of children similar to the participantsin study one.

3.4.1 Participants
Nineteen adults from the Carnegie Mellon University community, ranging in age from 18

to 34, participated in the study (10 men, 9 women). In addition, 22 fifth graders, ages 10 or

46 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

11, participated (13 boys, 9 girls). These fifth graders were recruited from the same Pitts-
burgh public elementary school as study one, but it was anew academic year so none of the
participants from study one were involved in study two. The participants were racially
diverse. Although the children spanned a range of academic abilities, al of the Carnegie
Mellon participants had strong academic backgrounds.

Of the adults, only five had never programmed before (2 men, 3 women). Of the children,
fourteen said they had never programmed before (11 boys, 3 girls). However, thereis
reason to believe that some of the children who claimed to be programmers did not accu-
rately answer this question because they did not really seem to know what programmingis.
Nonetheless, only those participants who said they never programmed (5 adults, 14 chil-
dren) were included in the analysis that follows.

The adult participantswererecruited by word of mouth, and signed the usual human subject
consent forms. The children were recruited by sending abrief note and consent form to par-
ents. The adult participants received no reward for their participation; the children had an
opportunity to leave their normal classroom for a half hour, and were given a snack at the

end of thelir participation.

3.4.2 Materials

A set of eleven scenarios were created, representing a progression of problems that a pro-
grammer might encounter in the process of creating and manipulating a database of names
and numeric values. These scenarios were chosen to cover some of the essential concepts
of programming that were not addressed in study one, and to further elucidate some of the
resultsfrom that study. Asin study one, graphical depictions of these scenarioswere devel-
oped. In this case they contained before and after pictures of database valuesin atabular
layout, with graphical annotations highlighting the differences between the before and after
pictures, along with aminimal amount of text that was carefully chosen to avoid biasing
the participants' responses. The topics of the scenarios were: entering values into the cor-
rect rows of atable, adding certain values in each row to produce a column of sums, dis-
carding the smallest or largest value from each row when cal culating the sum, assigning
nominal valuesto each row depending on textual attributes or numeric ranges, producing a

numerically sorted summary table with entries for only the rows with the highest sums,

A Programming System for Children that is Designed for Usability 47

The Language and Structure in Problem Solutions Written by Non-Programmers

adding or subtracting afixed value to every valuein acolumn, deleting rows from the table
or adding rowsto it, and zeroing all of the valuesin acolumn. Figure 3-4 shows one of the
scenario depictions, and the rest are shown in Appendix E. The depictions were displayed

to the participants on paper, and they wrote their solutions directly on the problem pages.

Average
No. | First name Last name Score Performance

1 Sandra Bullock 3,000

2 Bill Clinton 60,000
3 Cindy Crawford 500

4 Tom Cruise 5,000

5 Bill Gates 6,000
6 Whitney Houston 4,000
7 Michael Jordan 20,000
8 Jay Leno 50,000
9 David Letterman 700
10 | will Smith 9,000

Question 5A
o Describe in detail what the computer should do to obtain these results.

Average
No. | First name Last name Score Performance
1 Sandra Bullock 3,000 Fine
2 Bill Clinton 60,000 Extraordinary
3 Cindy Crawford 500 Poor
4 Tom Cruise 5,000 Fine
5 Bill Gates 6,000 Fine
6 Whitney Houston 4,000 Fine
7 Michael Jordan 20,000 Extraordinary
8 Jay Leno 50,000 Extraordinary
9 David Letterman 700 Poor
10 | Will Smith 9,000 Fine

Figure 3-4. Depiction of a problem scenario in study two.

3.4.3 Procedure
The same procedure was used as in study one, except the sessions were not audiotaped.

3.4.4 Content Analysis

Once again aform was devel oped, similar to the one used in study one, so that independent
raters could analyze the data (see Appendix E). Thisrating form had 18 questions. Because
the performance of the five analystsin the first study was satisfactory, there was general

agreement among them, and the task was very tedious, it was decided that three analysts

48 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

were sufficient for the second study. The analysts from the first study were permitted to
return for this study because there was no reason to expect their prior participation to have
amaterial affect on theresults. Therefore, three analysts from the prior study analyzed the

participants’ responsesin this study.

3.4.5 Results

The participants answerstypically consisted of oneto five sentencesin response to each of
the eleven questions. Once again, there was general agreement among the raters. The per-
formance of adults was generally similar to the performance of children. Therefore, the
results reported below are averages across the raters (n=3) and all of the non-programmer
participants (n=19, 5 adults and 14 children).

Asin study one, the results for each question are summarized with an overall prevalence
score followed by frequency scores for each category. The prevalence score measures the
average count of occurrencesthat each rater classified for each participant when answering
the current question. In study two, this score variesfrom 0.2 to 11.5, indicating the relative
amount of datathat was available to the raters in answering the question. The frequency
scores then show how those occurrences were apportioned across the various categories,
expressed as percentages. The frequencies may not sum to exactly 100% due to rounding
errors. The results are presented from most frequent to least, which is generally not the
same order as they appeared on the rating form. The examples are quoted from the partic-
ipants solutions. Table 3-2 summarizes the results that follow, which are sorted into three
general categories. the ways that certain keywords are used, the kinds of control structures
that are used, and the methods used to effect various aspects of computation. In the sum-

mary table, items with frequencies below 5% do not appear.

3.4.6 Keywords

3.4.6.1AND
The raters examined the intended meaning when the participants used the word AND.

Prevalance: 6.1 occurrences per participant.

* 47% - Boolean conjunction.

A Programming System for Children that is Designed for Usability 49

The Language and Structure in Problem Solutions Written by Non-Programmers

AND
47% Boolean conjunction
43% Sequencing
5% Other

AND as a boolean operator
76% Incorrect
24% Correct

Operations on Multiple Objects
97% Sets and subsets, including plurals

Set Construction
46% Plurals
18% “Each” or “every”
16% Naming a column of the table
14% “All’

Set Manipulation
45% Set inverse
29% Set difference
22% Disjoint or mutually exclusive sets
5% Other

Complete Specification of Ranges
50% Correct
50% Incorrect

Keywords
OR
100% Boolean Disjunction

NOT
100% Low precedence

Control Structures
Complex Conditionals
45% Set of mutually exclusive conditions
36% Dependent clause cannot stand alone
16% Nested conditions

Computation
Specifying Open Intervals
35% “Above” is exclusive
22% “Above” is inclusive
22% Powers of ten
15% Other
5% Mathematical notation

Specifying Closed Intervals

35% “From ... t0" is inclusive

19% Powers of ten

10% Mathematical notation
9% Other
9% "Between" used inconsistently
7% “From ... t0” used inconsistently
6% "Between" is inclusive
5% Ends of interval specified separately

Mathematical Operations
52% Natural language style - complete
40% Other

BUT
92% To mean “except”
8% Other

THEN
91% Sequencing
7% “Consequently”

Sorting
37% “Alphabetical”, etc.
36% “From Ato Z”, etc.
11% Concrete example
9% Provide a key to a sort operator

Deleting an Element from a Data Structure
73% No hole expected after deletion
25% Repaired a hole after deletion

Inserting an Element into a Data Structure
75% Insert without making space
16% Make space then insert
6% Insert then make space

Sorted Insertion
46% Incorrect method
34% Correct non-general method
13% Correct general method
6% Insert then sort

Table 3-2. Summary of results from the second study. Items with frequencies below 5% do not appear.

Example: Erase Bill Clinton and Jay Leno.

* 43% - sequencing, meaning next or afterward.

Example: Crossed out the highest score, and added the lower scores.

e 5% - other.

* 4% - to specify arange.

Example: Fineis between 3,000 and 20,000.

50 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

3.4.6.2 AND as a Boolean Operator
Theraters examined the answers to two questionsthat were likely to elicit Boolean expres-

sions. If the word AND appeared in a Boolean expression, the raters determined whether it

was used correctly.
Prevalance: 0.6 occurrences per participant.

» 76% - incorrect, interpreting as Boolean conjunction would not give the intended result.
Example: Everybody whose name starts with the letter G and L would be in the black
group.

» 24% - correct, Boolean conjunction is intended meaning.

Example: If AvgScore 21000 and <10000, say Fine.

3.4.6.30R
Theraters examined the places where the participants used the word OR as a Bool ean oper-

ator to seeif it was used correctly.
Prevalance: 0.6 occurrences per participant.

e 100% - correct.

Example: [Score] in the hundreds or lessis poor.

3.4.6.4NOT
The raters examined the places where the participants used the word NOT as a Boolean

operator to see what operator precedence was intended.
Prevalance: 0.1 occurrences per participant.

* 100% - low precedence: NOT A or B means NOT (A or B).
Example: The Gold group [contains the people] with the first two lettersin their last

name that are not Le or Ga.
3.4.6.5BUT
The raters examined the intended meaning when the participants used the word BUT.
Prevalance: 0.2 occurrences per participant.

* 92% - to mean except.

A Programming System for Children that is Designed for Usability 51

The Language and Structure in Problem Solutions Written by Non-Programmers

Example: Add every element in the row, but the maximum.
» 8% - other.
* 0% - to mean and.
3.4.6.6 THEN
The raters examined the intended meaning when the participants used the word THEN.
Prevalance: 1.3 occurrences per participant.

* 91% - sequencing, to mean next or afterward.

Example: Add up all the scoresin each row, then subtract the lowest score in each row.

* 7% - to mean consequently, or in that case.

Example: If their name begins with a G or an L then put them in the Black group.
* 1% - besides or also.

e 1% - other.

3.4.7 Control Structures

3.4.7.1 Operationson Multiple Objects
The raters examined statements that operate on multiple objects, where some or al of the

objects are affected by the operation.
Prevalance: 11.5 occurrences per participant.

* 97% - set or subset specifications, including the use of plurals.
Example: Select the four highest scores of the participants.

* 3% - loop or iteration.

Example: Match the last name and fill the score until there is no more input.
* 1% - other.
3.4.7.2 Complex Conditionals
The raters examined statements specifying conditions with multiple options.
Prevalance: 1.3 occurrences per participant.

* 45% - aset of mutually exclusive conditions.

52 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

Example: If Average Scoreis lessthan 1000, performance is poor. If Average Scoreis
between 1000 and 10000, performance isfine. If Average Score is more than 10000,

performance is extraordinary.

* 36% - acondition with a dependent clause that cannot stand alone.
Example: If the people’slast name start with G or L they are on the black team. If not

they are on the gold team.

* 16% - nested conditions

Example: If average scoreisin the hundredsit's poor. Less than ten thousand is fine.

e 3% - other.

3.4.8 Computation

3.4.8.1 Set Construction
The raters examined the places where sets are used, to determine how those sets were con-

structed.
Prevalance: 11.0 occurrences per participant.

* 46% - using plurals.

Example: Add the scores of 3 rounds.

» 18% - using the words each or every.

Example: Add the scorein every round.

* 16% - naming a column of the table.
Example: Add 10,000 points to Round 1 and Round 3.

* 14% - using the word all.
Example: Subtract [20,000 from] all elementsin Round 2...

* 4% - enumerating the members of the set.
* 1% - other.

3.4.8.2 Set Manipulation
Theraters examined the ways that subsequent sets are created after aninitial related set has

been created.

A Programming System for Children that is Designed for Usability 53

The Language and Structure in Problem Solutions Written by Non-Programmers

Prevalance: 2.7 occurrences per participant.

* 45% - using set inverse, where the leftover items are operated on.
Example: If the last name beginswith G or L, they are in the Black group. The rest are
in the Gold group.

* 29% - set difference, where some items are removed from the specified set.
Example: Add all the Rounds up except the highest score to get TOTAL.

» 22% - constructing digoint or mutually exclusive sets.
Example: Blackisfor Gand L. Goldisfor B, C, H, J,and S

* 5% - other.

3.4.8.3 Complete Specification of Ranges
The raters examined the participants statements that specify arange of integers, to see

whether all of the possibilities were covered without holes or overlaps.
Prevalance: 1.3 occurrences per participant.

* 50% - correct.
Example: Scores below 1000 are Poor. Scores from 1000 - 10,000 are Fine. Any scores
above 10,000 are Extraordinary.

¢ 50% - incorrect.

3.4.8.4 Specifying Open Intervals
Theratersexamined the participants’ statements specifying openintervals, whereall values

beyond a single boundary are specified.

Prevalance: 2.0 occurrences per participant.

» 36% - words such as above, below, greater than or |ess than were intended to be exclu-
sive.
Example: The performance of the person with the average scores below 1000 is consid-

ered as poor (the participant then used good for 1000).

» 22% - words such as above, below, greater than or less than were intended to be inclu-

sive.

54 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

Example: Poor would be below 999 (the participant then used poor for 999).

» 22% - powers of ten were used to specify the range.

Example: If your scoreisin the hundred's your performance is poor.
* 15% - other.

* 5% - mathematical notation, with inequality operators such as“>" or “<”.

Example: if score < 1000, performance = poor.

3.4.8.5 Specifying Closed Intervals
The raters examined the participants statements specifying closed intervals, where both

boundaries are specified for arange of values.
Prevalance: 1.2 occurrences per participant.

* 35% - from ... to, the symbol “-”, or similar notations are intended to be inclusive.
Example: The performance of ones whose average scores from 1000 up to 10,000 is
considered as a fine performance (the participant then assigned fine to both 1000 and
10,000).

» 19% - powers of ten were used to specify the range.

Example: If your scoreisin the thousands, you are fine.

* 10% - mathematical notation, with inequality operators such as“>" or “<”.

Example: 1000 < x < 9999; performance = fine.
* 9% - other.

* 9% - between is used with an inconsistent meaning at each end of the interval.
Example: If the average score is between 1000 and 10,000, the performance isfine (the

participant then assigned fine to 1000, and extraordinary to 10,000).

* 7% - from... to, the symbol “-”, or similar notations are used with an inconsistent mean-
ing at each end of the interval.
Example: Scores from 1000 - 10,000 are fine (the participant then assigned fine to 1000,
and extraordinary to 10,000).

* 6% - between isintended to be inclusive.

A Programming System for Children that is Designed for Usability 55

The Language and Structure in Problem Solutions Written by Non-Programmers

Example: Score between 1000 and 10,000 is fine (the participant then assigned fine to
both 1000 and 10,000).

5% - specified each end of the interval separately.
0% - between isintended to be exclusive.

0% - from ... to, the symbol “-", or similar notations are intended to be exclusive.

3.4.8.6 Mathematical Operations

The raters examined the kinds of notations used by the participants’ in specifying mathe-

matical operations.

Prevalance: 5.4 occurrences per participant.

52% - natural language style, with no missing information.
Example: Add 10,000 points to the scoresin Round 1 and Round 3.

40% - other (which includes natural language style, with missing amount or variable).
Example: Add up the scores of each person but don't add the highest number (missing
variable).

4% - mathematical notation.
Example: Column for r2 = x - 20000.

4% - programming language notation.

3.4.8.7 Sorting
The raters examined the participants solutions to see how sorting operations were

expressed.

Prevalance: 1.3 occurrences per participant.

37% - using keywords such as al phabetical or numerical.
Example: Sort the table alphabetically.

36% - using expressions like from A to Z or from lowest to highest.
Example: Put the 4 highest scores ... in a different table from highest to smallest.

11% - using a concrete example from the current situation.

56

A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

Example: Put himin number 6 because his last name comes before Jordan but after

Houston.

* 9% - using a sort key, such as sort according to score.

Example: Insert Elton John in order of the last name.

» 4% - using words like ascending or descending.

Example: Sort “ total score” column in descending order.

e 4% - other.

3.4.8.8 Deleting an Element from a Data Structure
The raters examined the methods used to delete an element from the middle of an existing

sequence of elements, to see whether they expected a hole to be left behind.
Prevalance: 1.0 occurrences per participant.

* 73% - no hole was expected after the deletion.
Example: Take out Bill and Jay then put Elton John in.

* 25% - fixed ahole after the deletion.

Example: Delete Row 2 and 8, moving everyone down to any unoccupied Rows.
e 2% - other.

3.4.8.9 Insertion into a Data Structure
The raters examined the methods used to insert an element into the middle of an existing

sequence of elementsto see whether they expected that itemswould have to be arranged to

make space for the new element.
Prevalance: 1.0 occurrences per participant.

* 75% - no mention of making room for the new element.

Example: Put Elton John in the records in alphabetical order.

* 16% - make room for the element before inserting it.
Example: Use the cursor and push it down a little and then type Elton John in the free

space.

* 6% - make room for the element after inserting it.

A Programming System for Children that is Designed for Usability 57

The Language and Structure in Problem Solutions Written by Non-Programmers

e 4% - other.

3.4.8.10 Sorted I nsertion
The raters examined the methods used to determine the correct place to insert an element

into a sorted sequence of elements.
Prevalance: 1.0 occurrences per participant.

* 46% - using an incorrect method, with missing or incorrect details.

Example: Insert row between number 5 and 7 and name it Elton John.

* 34% - amethod that is correct for the current data, but not a correct general solution.
Example: Put himin number 6 because his last name comes before Jordan but after

Houston.

* 13% - acorrect general method that would work for all data.
Example: Insert Elton John into the table in alphabetical order of the last name.

* 6% - insert then sort.
Example: Add Elton John, and then sort the table al phabetically.

e 2% - other.

3.5 Discussion of Results
This section contains adiscussion of the combined results from the two studies. In addition
to interpretation of theresults, this section includes some recommendations on how the pro-

gramming system might be made more natural 1

3.5.1 Programming Style

The mgjority of the statements written by the participants were in a production-rule or
event-based style, beginning with wordslikeif or when. However, theraters observed asig-
nificant number of statements using other styles, such as constraints, other declarative

statements (that were not constraints), and imperative statements.

1. These recommendations are not restricted to the programming language in isolation, but encompass the
entire programming system, which includes the programming environment (editor, debugger, etc.) aswell as
the language. In modern programming systems these components all work in tandem, so it is most useful to
consider how the findings of this study might impact the entire system.

58 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

The dominance of rule- or event-based statements suggests that a primarily imperative lan-
guage may not be the most natural choice. One characteristic of imperative languagesis
explicit control over program flow. Although imperative languages haveif statements, they
are evaluated only when the program flow reaches them. The participants solutions seem
to be more reactive, without attention to the global flow of control. When imperative state-
ments were used, it was usually for local flow of control. The declarative style seemsto
have been primarily used for setting up the scenario (data, characters, objects, etc.) of the
program. Many of the constraintsthat were observed in this study were graphical in nature,
such as objects that had certain fixed positions relative to one another, or limitations on
where those objects could go. The event-based style is used by several popular end-user
programming environments such as Visual Basic, Lingo for Macromedia s Director, and
HyperTak for HyperCard, although these systems have usability problems of their own
[see, for example, Thimbleby 1992].

Thismix of stylessuggeststhat designers might be ableto improve usability by not limiting
the languageto asingle style. Different styles seem to be more natural for different parts of

the programming task.

HANDS supports an event-based style, with imperative statementsfor local flow of control
(see Section 5.3 on page 96). Data, characters and objects can be created declaratively (see
Section 5.2 on page 89).

3.5.1.1 Operations on Multiple Objects
The results from both studies highlight an important area where today’ s popular program-

ming languages differ from the natural expressions used by the participants: the way that
operations are performed on multiple objects. The participants strongly preferred to use set
and subset expressions, or plurals, to specify the operationsin aggregate. Miller made sim-
ilar observationsin his studies [Miller 1974, Miller 1981].

Although aggregate operations have appeared in some languages, such as Lisp, APL,
SETL, and Perl, most popular languages require iterative operation on the objects, oneat a
time. It has been well established in the literature that loops are a hotspot of difficulty and
errors for novice programmers [du Boulay 1989a]. And in many cases, aloop isamore

complicated and contorted way to specify operations that the participants were able to

A Programming System for Children that is Designed for Usability 59

The Language and Structure in Problem Solutions Written by Non-Programmers

express easily and succinctly with aggregate set operations. Languages should support
these aggregate operations, thus eliminating many of the cases where loops would other-

wise be necessary.

Another requirement imposed by loopsisthe need to use extravariablesto count iterations,
flag terminating conditions, or hold the current object being operated upon. Thisis even

truein “high level” looping constructs such as mapcar in Lisp. The aggregate operations
preferred by the participants reduce the need for these variables, which are another known
area of difficulty for beginners [du Boulay 1989a]. Spreadsheets provide afew aggregate

operators, such as sum, but this feature is not generalized across al of the operators.

However, the participants did use looping constructs in afew cases, and the language
should support these aswell. Often, theseloops use until to specify aterminating condition,
while other times the terminating condition is implicit in phrases such as and so on or etc.
In deciding the exact loop control structures to provide, the language designer should con-
sider prior empirical studies which found that novices expect the terminating condition to
be checked continuously, and the loop to halt the instant the condition is satisfied, rather
than waiting until al of the subsequent statements inside the loop have been executed one
last time [du Boulay 19894].

HANDS supports aggregate operations (see Section 5.9 on page 112), and aso provides a
high-level iteration construct (see Section 5.13 on page 119).

3.5.1.2 Set Construction and Manipulation
Study two illustrates avariety of waysthat the participants construct sets. using plurals, the

keywords each, every or all, or by naming columnsin atable. Once they had created a set,
the participants often used operations such asinverse or difference to create related sets.

However, they sometimes preferred to create a separate digoint set from scratch.

HANDS supports queries for the creation of sets of objects (see Section 5.10 on page 113).

3.5.1.3 Complex Conditionalsand NOT
The participants used a number of ways to avoid writing complex Boolean conditionals.

For example, they often wrote aseries of mutually exclusive ssimplerulesinstead of amore

complex conditional.

60 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

Also, they would sometimes express a general case followed by exceptions, asin:

if A do sonmething unless B
Notice that the equivalent Bool ean expression that would be required to accomplish thisin

many programming languages involves not only a conjunction, but also the negation of the

exception clause:

if A and not B do sonething
The try...catch exception mechanismsin C++, Java, Lisp and other languages support this

tendency by putting the general case first and listing the exceptions later, but other control
structures in these languages do not. It might be useful to support the use of unless clauses

throughout the language.

The raters found very few uses of negation. Thisis consistent with earlier findings that

expressing negative concepts is more difficult than affirmative ones [Wason 1959].

When the participants did use the not operator they gave it low precedence, which is con-
trary to the precedence that it has in most programming languages. Operator precedence
errors were among the high frequency bugs observed by Spohrer & Soloway in novice pro-
gramsin atraditional programming language [Spohrer 1986]. However, in arecent study
of anatural language style programming language, Bruckman & Edwards found that oper-

ator precedence errors were very infrequent [Bruckman 1999].

Chapter 4 explores these issues further and details match forms, which avoid many of the

problems with forming expressions with the Boolean operators.

3.5.1.4 Mathematical Operations
In study one, all of the mathematical operationswere expressed in anatural language form;

the raters found no mathematical or programming language notations. In study two, they
found avery small amount of mathematical and programming notations among the adults
solutions. The vast preference for natural language mathematical operations should be sup-
ported by the programming language. However, more concise mathematical notation may
be still necessary for cal culationsthat are more complex than the ones required by the tasks

in these studies.

A Programming System for Children that is Designed for Usability 61

The Language and Structure in Problem Solutions Written by Non-Programmers

Many of the mathematical expressions were missing either the variable on which to oper-
ate, or the amount of the operation. This might be solved by providing slots that make the
missing information more obvious, or by entering into adialog with the user, with ques-

tions such as how much? or to what?

HANDS provides both natural language and mathematical notations for mathematical
operations (see Section 5.2 on page 89).

3.5.1.5 Specifications of Ranges and Intervals
In study two, the raters found that the participants were only about 50% successful in spec-

ifying ranges without holes or overlaps. Adults were more successful than children, possi-
bly because they had mathematical notations for inequality in their arsenal. The children
never made use of these mathematical notations. I nstead they used powers of ten, or natural
language expressions of inequality such asabove or greater than. However, the participants
were inconsistent about whether these latter terms were inclusive or exclusive. Adults
achieved 100% accuracy when they used mathematical notations, suggesting that these are

a better choice for audiences that understand them.

HANDS uses mathematical notation since it is more accurate (Section 5.8.1 on page 110).

3.5.1.6 Tracking Progress and Remembering State
The participants often avoided the use of variables to track progressin atask. Thisis not

surprising because, as mentioned above, variables are an area of difficulty for novice pro-
grammers [du Boulay 19894]. Instead of variables, the participants preferred to use terms
likeall or noneto detect when the task isfinished. When they needed to use historical infor-
mation to make decisions about present actions (or present information to make decisions
about future actions), the participants usually did not use state variables to record the infor-
mation. Instead they used future and past tenses to refer to the needed information. State

variables are the only way accomplish thisin most programming languages. The challenge

for language designersisto find ways to accommodate the more natural preferences.

In HANDS, queries can be used to determine when all objects, or no objects, meet certain

criteria (see Section 5.10 on page 113).

62 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

3.5.1.7AND, OR and BUT
The raters found that often the word and was used as a sequencing word rather than asa

Boolean operator. Also, in study two, the raters examined the Boolean uses of and, and
found that 75% were used in situations where the or operator would be required to achieve
the desired effect in today’ s programming languages, as well as the query languages used
for most database search engines. For example, asubject said, “if you score 90 and above,”
but the score cannot simultaneously be 90 and greater than 90. Because the natural uses of
and have such diverse meanings, and most of them are inconsistent with the Boolean oper-
ator, designers of future language should consider substituting a different name or symbol

for this operator.

Or and but appeared too rarely in these studies to draw firm conclusions without further
research. When or was used, a Boolean interpretation would result in correct results. The
infrequent use of or may be because disjunctive expressions are cognitively more difficult

than conjunctive ones [Bourne 1966].

Chapter 4 explores these issues further.

3.5.1.8THEN
Theratersfound that the most popul ar use of theword then isfor sequencing, or specifying

that an action should happen after finishing a prior action. Thisisinconsistent with its use
in most programming languages, where it means consequently. This confirms an earlier

observation by du Boulay [du Boulay 19894].

HANDS does not address this problem.

3.5.1.9 Data Structure Operations: Insertion, Deletion, Sorting
When the participants were inserting and deleting data elements, they often did not con-

sider issues about storage space that come up when working with the array data structures
in most popular programming languages. Thissuggeststhat abuilt-inlist-like datastructure

such asin the Lisp language may be more natural.

The participants seemed to expect sorting to be a basic operator that they could utilize in
their solutions, using expressions like alphabetical or from A to Z. When they were asked

to provide an algorithm for sorting, they wererarely ableto do thisin acorrect general way.

A Programming System for Children that is Designed for Usability 63

The Language and Structure in Problem Solutions Written by Non-Programmers

HANDS provideslist datastructures, and high-level list operatorsto accomplish tasks such
as sorting (see Section 5.4 on page 101, and Section 5.12 on page 114).

3.5.1.10 Randomness and Uncertainty
Theraters did not find any uses of the word randomin study one. Instead, the participants

either expressed things with precision, or used other ways of expressing uncertainty. Some-
timesthey tied the uncertain event to some other event that would happen at some unknown
time. Perhaps a system could supply the uncertainty that isimplicit in phraseslike about 3

seconds.

HANDS provides a basic random operator, but no other methods for expressing uncer-

tainty.

3.5.1.11 Object Oriented
Some aspects of object-oriented programming were apparent in the participants’ solutions.

Entities were treated asif they have state and an ability to respond to requests for action.
However, there was no evidence in these studies of other aspects of object-oriented pro-
gramming such asinheritance or polymorphism. Cypher & Smith found in user studiesthat
inheritance hierarchies cause difficulty for children [Cypher 1995]. Even among profes-
sional programmers, researchers have found that full-fledged object-oriented programming
is not necessarily natural [Détienne 1990, Glass 1995].

In HANDS, objects encapsul ate state, but not code (see Section 5.18 on page 143). There
is no inheritance mechanism. However, operators are provided for making copies of exist-

ing objects, so a programmer could use a prototype-instance style for managing objects.

3.5.1.12 Motion and Other Domain Specific Needs
The participants expected objects to move on their own, so their behaviors were similar to

real-world objects. Thisisin contrast to the incremental way that animation is accom-
plished in many systems. This may not come up on all programming tasks, and thus might
not be considered alanguage issue. But similar issues can arise in other domains, and the
usability of the programming system can benefit from analysis of the specific needs of the
particular domainsin which it will be used [Green 1990]. One way to do thisin a general

way isto alow the language to be customized with domain-specific features.

64 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

HANDS provides domain-specific support for interactive graphical programs (see
Section 5.14 on page 123).

3.5.1.13 Pictures
In study one, the experimenter counted how many participants used pictures or diagramsin

their solutions, and found that two-thirds of them did. All of these pictures appeared early
in the solutions, when setup and layout were being defined. Programming systems should

accommodate this form of graphical specification in addition to textual specification.

HANDS permits setup and layout to be done by direct manipulation (see Section 5.2 on
page 89).

3.6 Summary of These Studies

A large part of the programming task is to take a mental plan for solving a problem and
transform it into the particular programming language being used. These studies attempt to
capture these plans before they undergo the transformation into a programming language.
Ideally, the distance between the plans and the programming language should be mini-
mized. However, these studies identify many places where an unnecessarily large gap is

imposed by the features and requirements of today’ s programming languages.

Programming is atask of precision, and one reason that the programming languages may
differ from these natural language solutionsis that programming languages are more
formal and facilitate the expression of solutions with more precision. Indeed, thereisa
large amount of imprecision and underspecification in the participants work, and it is
important to find ways to help beginners to make their specifications more complete. In
many cases, however, the structure and algorithms of the natural language solutions are sat-

isfactory, but are in adifferent style than is allowed in today’ s programming languages.

HANDS has been influenced significantly by these studies. For example, it supports an

event-based style of programming aswell as aggregate data access and queriesfor creating
the setsto be operated on. In order for queriesto be effective, it isnecessary to improvethe
accuracy of query specification, but these studies have shown many serious problemswith
the Boolean operators and, or and not. Chapter 4 proposes and tests severa alternativesto

textual Boolean expressions.

A Programming System for Children that is Designed for Usability 65

The Language and Structure in Problem Solutions Written by Non-Programmers

These studies, along with theresults of other human-centered research about programming,
are resources that can be used to guide and evaluate programming language designs. In
addition to HANDS, this approach could result in effective new language designs for other
domains where it would be useful for non-programmers to have the capabilities of pro-

gramming.

66 A Programming System for Children that is Designed for Usability

CHAPTER 4 Methods for Expressing Queries

The studies described in Chapter 3 suggest that programming languages should provide
mechanismsfor usersto perform queries. This capability would reduce the need for the cre-
ation, maintenance, and traversal of data structures. However, the accurate specification of
gueries as Boolean expressionsis anotorious problem areain programming languages and
other activities such as web searching, library catalog searching, and other database
retrieval tasks [Hildreth 1988]. This chapter introduces and evaluates a new tabular query
form that | invented to avoid many of the common problems with the Boolean operators,
and also explores the effectiveness of alternative textual methods for specifying queries.1
4.1 Overview

Despitethe great difficulty that users have demonstrated with using the operatorsAND, OR,
and NOT to construct Boolean expressions, no universally better alternatives have been dis-
covered. Therefore most programming languages continueto rely on them, including many
visual and forms-based languages (e.g., [Hays 1995, Pictorius 1996]). Early web search
engines a so used these operators, athough many have now turned to less expressive query

languages (for example, the plus and minus unary operators for inclusion and exclusion).

1. Portions of this chapter were previously reported in [Pane 2000].

A Programming System for Children that is Designed for Usability 67

Methods for Expressing Queries

Newsweek reported in 1999 that even with these simplifications, most web users are dissat-
isfied with search engines, and less than 6% manage to use these operatorsin their searches
[Tanaka 1999]. Google has become very successful by returning useful results when users

enter ssimple keyword searches, without any operators at all.

The problems with Boolean queries are exemplified in the studies described in Chapter 3.
For example, it was very common for participantsto use theword AND wheretheword OR
is the correct Boolean operator. Instead of saying something like “count the cars with
license plates from Georgiaor Louisiana’ they would say “count the cars with license
plates from Georgiaand Louisiana.” The latter version refersto an empty set of license
plates when interpreted according to Boolean logic, but in English it isusually interpreted
to mean the union of the two states’ license plates. This ambiguity in how to interpret the

word that means “and” also appears in many other natural languages.

These studies also found that the words OR and NOT rarely appeared, suggesting that Bool-
ean expressions are not natural. The participants often used other words and sentence struc-
tures to specify their queries accurately. For example, rather than saying “if | get up late

and I’'m not very hungry | skip breakfast,” they might say “if | get up late | skip breakfast
unlessI’m very hungry.” Thislatter construction avoids both the AND and NOT operators.

Thischapter describesastudy that examines several of these alternative formulationsto see
whether they are more usable than traditional Boolean expressions. In addition, because
prior research suggeststhat non-textual query languages may be more effective than textual
syntaxes [Y oung 1993], the study compared these textual alternatives against a proposed
new query language that uses tabular forms, which could beintegrated into aprimarily tex-

tual programming language.

The study used agrid of nine colored shapes, where a subset of the shapes could be marked
(see Figure 4-1). The participants were given two kinds of problems:. code generation prob-
lems, where some shapes were already marked and they had to formulate a query to select
them; and code inter pretation problems, where they were shown a query and had to mark

the shapes selected by the query. They solved all of these problemstwice, once using purely

68 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

textual queries, and once using the proposed tabular forms. Additional examples appear in
Figure 4-3, and the full materials from this study can be found in Appendix F.

oo
gl
N A

select the objects that match A

|
H

> 0« D

J

Figure 4-1. Sample problem from the study. In this problem, the participant is asked to write atextual query
to select the objects that are marked. The color of each object isred, green or blue on the computer screen.

Theresults suggest that atabular language for specifying Boolean expressions canimprove
the usability of a programming or query language. On code generation tasks, the partici-
pants performed significantly better using the tabular form, while on code interpretation
tasks they performed about equally in the textual and tabular conditions. The study also
uncovered systematic patterns in the ways participants interpreted Boolean expressions,
which contradict the typical rules of evaluation used by programming languages. These
observations help to explain some of the underlying reasons why Boolean expressions are
so difficult for people to use accurately, and suggest that refining the vocabulary and rules
of evaluation might improve the learnability and usability of textual query languages. A
general awareness of these contradictions can help designers of future query systems

adhere to the HCI principle to speak the user’s language [Nielsen 1994].

A Programming System for Children that is Designed for Usability 69

Methods for Expressing Queries

4.2 Prior work on Boolean Queries

Many researchers have noted that Boolean query languages using the AND, OR, and NOT
operators are not very effective in programming languages or database retrieval (e.g. [Hil-
dreth 1988, Hoc 1989]). Several researchers have noted that the common usage of these
operators in natural language causes errors in queries, such as the substitution of AND for
OR|[Greene 1990, Michard 1982]. It has al so been noted that the intended scope of the NOT
operator is ambiguous in natural language [McQuire 1995].

The difficulties of Boolean expressions are intensified when several operators must be
combined to form the query [Essens 1992]. Parentheses improved performance in that
study, but other studies have shown that beginners have difficulty with parentheses, espe-
cially if they are nested [Greene 1990, Michard 1982].

Replacing the Boolean query language with a different subset of natural language, using
other words for the operators, is still likely to be inadequate [Kohl 1987]. Many systems
that permit unrestricted natural language queries have been shown to be effectivefor infor-
mation retrieval tasks (e.g. [Turtle 1994]).

These problems have led researchersto devel op graphical interfacesfor queries. For exam-
ple, truth tables and Venn diagrams have been shown to be effective for specifying ssmple
gueries [Jones 1998, Michard 1982, Thomas 1975]. Another system used tilesin atwo-
dimensional grid, where one dimension represented union and the other represented inter-
section, although these implicit semantics were found to be confusing [Anick 1990]. A
system that used the graphical metaphor of water flowing through filters was found to be
superior to Boolean expressions [Y oung 1993], however the screen space required for this

tool might limit its effectivenessin alarger context such as a programming language.

4.3 Design alternatives for Boolean queries

My earlier studies (Chapter 3) analyzed the natural language solutions that non-program-

mers provided to solve programming problems, and identified some common trendsin the
ways that Boolean queries were expressed. The vocabulary and syntax of these solutions

were unconstrained, so they provide insight into how people prefer to express their

answers. | speculated that a programming language that closely matches these natural pref-

70 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

erences would be more usable than one that requires users to translate their natural solu-
tionsinto aless natural form. With thisin mind, | proposed several aternate ways to
express textual queries and compared them in thisstudy. In addition, | also proposed atab-

ular format for queries.

4.3.1 Tabular query forms

Although some graphical query methods had been shown to be more effective than Boolean
expressions, many of them were limited to expressing very simple queries. | wanted a solu-
tion that isfully expressive. Also, many of the graphical systemswould not integrate well

into a programming language, where the entire computer screen cannot be devoted to this
one subtask of the programming process. | required aformat that is compact and readable
in the context of alarger program. With these pointsin mind, | designed atabular form that

isfully expressive and compatible with the programming language | was devel oping.

Since the HANDS programming language represents data on cards containing attribute-

value pairs, | designed the query form to also use a card metaphor. For the purposes of this
study, | ssimplified the forms by leaving out the attribute names, and limiting the number of
termsto three. | called these match forms (see Figure 4-2). Criteriaare placed into the slots,
oneterm per slot. All of thetermson asingleform implicitly form aconjunction. Negation
is specified by prefacing aterm with the NOT operator. Digunction is specified by includ-

ing an additional match form adjacent to the first one.

objects that match objects that match
- blue | circle
not square | not green

Figure 4-2. Match forms expressing the query: (blue and not square) or (circle and not green)

Thistwo-dimensional layout issimilar to the grid of tiles described by Anick et al. [Anick
1990] — one dimension implementsintersection and the other implements union. However,

match forms provide cues to help users remember which operator uses each dimension,

A Programming System for Children that is Designed for Usability 71

Methods for Expressing Queries

such as the text in the form heading and the visual grouping. In addition, the scope of the
NOT operator is made explicit by confining it to asingle term. This proposed query lan-
guage can express arbitrarily complex queries, athough some queries have to be formu-

lated in aless concise way than pure Boolean expressions would allow.

4.4 Hypotheses
The study tests nine hypotheses. The first seven hypotheses examine various textual alter-
nativesto traditional Boolean expressions, and the last two hypotheses examine the tabul ar

design aternative.

4.4.1 AND vs. nested | F
Hypothesis 1: Users will interpret nested IF statements more accurately than a Boolean

expression using AND.

In the prior studies, people frequently nested an IF statement inside another IF statement.
Instead of saying, “if aand b then ... ,” they would say, “if athenif b then” The use of
nested |Fsmay be easier to use and understand because it avoids using the confusing AND

operator for conjunction, and keeps the Boolean expression simpler.

4.4.2 NOT vs. Unless
Hypothesis 2: Users will interpret an Unless clause more accurately than a Boolean

expression that uses AND and NOT.

In the prior studies, people often wrote a simple conditional statement and then stated an
exception at the end. For example, they would write, “if athen ... unlessb” Thisisan ater-
nativeto “if aand not b then” In addition to avoiding the AND operator, the Unless

clause permits the user to express a negated term without using the NOT operator.

4.4.3 Location of Unless
Hypothesis 3: Users will interpret an Unless clause more accurately when it appears at

the very end of the statement.

Although in English it may be natural to say “if athen ... unlessb,” in programming lan-

guagesthose éllipsis(...) may befilled with alarge block of code. If the Unless clause will

72 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

appear at the very end of the IF statement, it will be far removed from the part of the query
that is specified in the IF clause. Because this violates the principle of locality [Cordy

1992], it may reduce usability. While the principle of locality could not be tested directly
with my simple stimuli, | wanted to investigate whether the Unless clause is sensitiveto its

placement within the query, so | also tested queries of the form “unlessb, if athen ...”

4.4.4 Context-dependent interpretation of AND
Hypothesis 4: Users will interpret AND as Boolean conjunction in some contexts but not

in other contexts.

Peopl e often use AND in places where the correct Boolean operator is OR. This may be
because interpretation of AND in the English language depends on its context. In some
casesitisinterpreted to be afurther restriction on aquery (Boolean conjunction or set inter-
section), while in other casesit isinterpreted to expand the query (Boolean disjunction or
set union). For example, these two statements are usually interpreted differently: “pick up
the boxes that are blue and green” vs. “pick up the boxes that are blue and the boxes that
are green.” | attempted to demonstrate this context-sensitive interpretation of the AND

operator.

4.4.5Verbose AND vs. OR
Hypothesis 5: Userswill interpret a verbose AND expression as Boolean disjunction more

accurately than an OR expression.

If Hypothesis 4 is confirmed, it would be useful to characterize the contextsin which AND
isinterpreted as a Boolean digjunction instead of conjunction. If certain constructions con-
sistently lead to digunctive interpretations, perhaps they can reliably replace the rarely-
used OR operator. | hypothesized that a more verbose expression that restates part of the
guery is more likely to induce a digunctive interpretation (see the example in

Section 4.4.4).

4.4.6 Operator precedence of NOT
Hypothesis 6: Userswill interpret the NOT operator with lower precedence than the other

Boolean operators.

A Programming System for Children that is Designed for Usability 73

Methods for Expressing Queries

Peopl e often interpret the NOT operator with lower precedence than the other Boolean
operators. Thisis opposite to the rules of interpretation in most programming languages,
where NOT has higher precedence than the other Boolean operators. That is, in “not a and
b,” programming languages associate the NOT tightly with the “a’, while | expect people
to first interpret the expression “aand b” and then apply the NOT operator to the resuilt.

4.4.7 Parentheses for expression grouping

Hypothesis 7: Userswill misinterpret parenthesized expressions.

Regardless of the precedences chosen for the Boolean operators, a mechanism is required
for the user to clarify or override them. Programming languages typically use parentheses
to explicitly group sub-expressions, but research has shown that beginners have difficulty

with parentheses.

4.4.8 Tabular vs. textual
Hypothesis 8: Users will interpret queries that use match forms more accurately than

equivalent textual queries.

Hypothesis 9: Userswill generate more accurate queries using match forms than they gen-

erate using text.

| investigated the relative usability of match forms compared with text on both interpreta-
tion and generation of queries. | expected match forms to be effective because they elimi-
nate many of the problemswith text that are discussed above. By avoiding the words AND
and OR, any confusion with the meaning of these wordsin English is avoided. Also, the

precedence or grouping of the operators becomes less ambiguous.

4.5 Method
Before beginning the study, participants filled out a questionnaire that collected basic

demographic information. Then they answered a set of problemsthat were divided into four
sections. In two of the sections, the writing sections, the participants generated queries to
match aresult that | supplied. In the other two sections, the reading sections, participants
interpreted queriesthat | supplied. | label thetwo writing sections WT (writing text) and WF
(writing forms), and the two reading sections RT (reading text) and RF (reading forms).

74 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

Therewerefive WT questionsand fiveidentical WF questions. Comparing the performance
across these two conditionsis the basis for testing hypothesis 9. By random assignment,
half of the participants answered the WT questions first, and the other half answered the
WEF gquestions first, to control for any effect of presentation order. All of the writing ques-
tions were presented before any of the reading questions, so that the queries that were dis-

played in the reading sections would not bias their responses in the writing sections.

Therewere eleven RT questions, forming the basisfor testing hypotheses 1-7. Thefirst five
hypotheses can be evaluated by comparing relative student accuracy across a pair of ques-
tions. Hypotheses 6 and 7 can be evaluated by examining which of two interpretations the
participants used in answering a single question. To control for any effect of presentation

order, participants were randomly assigned to a path through the questions. The pathswere
constructed so that, for every pair of questions | intended to compare, the number of times

that either question appeared first was balanced.

The eleven RF questions were constructed by trand ating the RT questionsinto the tabular
language. So, each participant answered the same question twice, once with text and again
with match forms. Comparing the performance in these two conditionsisthe basisfor test-
ing hypothesis 8. By random assignment, half the participants solved the RF questionsfirst,
and the other half solved the RT questions first, to control for any effect of presentation

order.

There were atotal of 32 questionsin the four reading and writing sections. After this, par-
ticipants answered a survey of seven preference questions. Each of these showed a query
result along with two or more queries that would correctly generate the result. The partici-
pants were asked to select the one they liked the best.

4.5.1 Participants

In addition to examining these hypotheses with children who are the target audience of my
programming language, | wereinterested in how the resultswould generalize to other ages.
So, | recruited both children and adults to participate in the study.

Of the 33 volunteers who participated, 17 adults were recruited by sending a messageto an

email list for fans of amusician, and they participated by accessing the study over the web.

A Programming System for Children that is Designed for Usability 75

Methods for Expressing Queries

The rest of the participants were recruited by two of my advisor’s children, who invited
their friendsto cometo CMU for one hour in exchange for $5 and ice cream. These partic-
ipants gathered in a classroom full of computers, and accessed the study over the web. 13
of these participants were children and three were adults (parents of children who partici-
pated).

Overall, 13 children (ages 10-14), and 20 adults (ages 18-46) participated. 14 were male
and 19 were female. All but two were native speakers of English. 7 participants reported
that they had written computer programs (4 adults, 3 children). 27 reported that they had
some experience with web search engines, and 18 had used advanced searching features
(such as AND, OR, NOT, +, -, etc.). Two adults were experienced with the SQL database

guery language.

4.5.2 Materials

The 32 problems were presented in aweb browser, one problem per web page. Each of the
problem groups was preceded by an instruction page explaining how the query language or
guery formswork and introducing the format of the exercises. The WT and WF instruction
pages were constructed to be as similar to each other as possible, as were the RT and RF
pages. The web server managed the random assignment of participants to a path through
the problems, the presentation of the problemsin the order determined by that path, and the
collection of the data anonymously. Figure 4-3 contains an example problem from each of

the four problem groups.

4.5.3 Procedure

Parti ci pants began on the demographic questionnaire page and proceeded at their own pace
through the materials. They wereinstructed to be as accurate as possible and were told that
there was no time limit. When they submitted an answer, the server recorded it and pre-
sented them with the next page in the sequence. The server performed some basic syntactic
checks (for example, it made sure the user provided a Boolean operator on the WT tasks,
and that they did not put multiple criteriainto asingle slot in the WF tasks). If this check
failed, an error message asked the participant to go back and fix the answer. Any time par-

76 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

00 A 00 A

select /

objects that match objects that match

v
BEHO | — [— EEe

I .
B AA HAA
4 /
select the objects that match [=]
4] 3 [~
WF WT

. [. | select the objects that match blue and circle
a s @ 0 A
select I I
objects tmatc . . .

o O o
e | o 3 o EEe
HAA ERCE

= '@ @ B A A

o O o

RF RT

Figur e 4-3. Example problems from each of the four problem groups (WF, WT, RF, and RT) before the
answers arefilled in. The color of each object is red, green or blue on the computer screen.

ticipants returned to a previous page to revise an answer, | recorded all of the answers but

only used the final one for the results presented here.

Each participant’ s answer was scored as correct or incorrect according to the following pol-
icy. Spelling errors were tolerated, as were additional words such as an, a, or the. Plural
and singular forms of all words were accepted. Consistent use of an incorrect color name
that did not actually appear in the study (e.g. orange for red) wastolerated. But, any incor-
rect replacement of one color or shape with another one that did appear in the study (e.g.
blue for green) was marked as incorrect. Except where otherwise noted, textual answers
were interpreted the way a programming language would interpret them. Invented short-

hand notations were marked as incorrect. Redundant or overly complex answers were

A Programming System for Children that is Designed for Usability 77

Methods for Expressing Queries

scored as correct if they resulted in the correct selection. Finally, on the problems where |
gave special instructions, answersthat did not follow theinstructions were marked asincor-
rect even if they resulted in a correct selection (e.g. one of the questionsin WF and WT

asked the usersinclude the word NOT in their answers).

Because | simplified the match forms for this study, some of the problems became more

complex when they weretransglated from RT to RF. For example, thelack of away to negate
awhole match form causes the expression “not (aand b)” to be translated into the tabular
equivalent of “(not a) or (not b).” These question pairswere discarded from the comparison

of RT to RF in testing hypothesis 8.

4.6 Results

No significant differences were detected between children and adults, between males and
females, or between programmers and non-programmers, so the results are aggregated

across all of the participants. The numbers shown are percentages.

In evaluating hypotheses 1-5, | performed within subject comparisons on pairs of questions
from the RT problem group. Statistical significance in these comparisons was evaluated
with anon-parametric sign test. To test hypotheses 6 and 7, | examined which of two inter-
pretations participants used in answering asingle question. Statistical significancein these
comparisons was evaluated with a binomial test. In evaluating hypotheses 8 and 9, | com-
pared pairs of questions between RT & RF and between WT & WF, respectively. These
comparisons were within subject, and statistical significance was evaluated with a non-
parametric sign test. In all of the statistical tests, p<.05 was used as the threshold for signif-

icance.

Hypothesis 1 isnot confirmed.
Users will interpret nested | F statements more accurately than a Boolean expression using AND. % correct
Nested |F 94

select the objects that match red, if the objects match triangle
AND 85
select the objects that match blue and circle

not significant

78 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

Hypothesis 2 isnot confirmed.
Users will interpret an Unless clause more accurately than a Boolean expression that usesAND and
NOT. % correct
Unless 97
select the objects that match blue, unless the objects match square
AND NOT 94
select the objects that match square and not red
not significant
Hypothesis 3 is confirmed.
Users will interpret an Unless clause more accurately when it appears at the very end of the statement.
% correct
Unless at end 97
select the objects that match blue, unless the objects match square
Unless earlier 76
unless the objects match green, select the objects that match circle
p<.05
Hypothesis 4 is confirmed. % con-
Userswill interpret AND as Boolean conjunction in some contexts but not in other contexts. junction
select the objects that match blue and circle 85
select the objects that match blue and the objects that match circle 36
(55% of the participants interpreted this as Boolean disjunction)
p<.0001
Hypothesis 5 is disconfirmed.
Userswill interpret a verbose AND expression as Boolean disjunction more accurately than an OR % dis-
expression. junction
select the objects that match blue and the objects that match circle 55
select the objects that match square or green 82
p<.05
Hypothesis 6 is disconfirmed for NOT with AND.
Userswill interpret the NOT operator with lower precedence than the other Boolean operators.
select the objects that match not red and square %
precedence of NOT is higher than AND 64
interpreted as: (not red) and square
precedence of NOT islower than AND 9
interpreted as: not (red and square)
p<.001
Hypothesis 6 is confirmed for NOT with OR.
Userswill interpret the NOT operator with lower precedence than the other Boolean operators.
select the objects that match not triangle or green %
precedence of NOT is higher than OR 9
interpreted as: (not triangle) or green
precedence of NOT islower than OR 67
interpreted as: not (triangle or green)
p<.001
A Programming System for Children that is Designed for Usability 79

Methods for Expressing Queries

Hypothesis 7 is confirmed.

Users will misinterpret parenthesized expressions.
select the objects that match (not circle) or blue

%

ignore parentheses, NOT has low precedence 39
interpreted as: not (circle or blue)
observe parentheses 12
interpreted as. (not circle) or blue

p<.05

Asmentioned above, three of the RF problemswere not well-matched to the corresponding

RT problems, so these pairs were discarded in analyzing hypothesis 8. This|left eight pairs

of reading problems to test hypothesis 8. All five pairs of writing problems were used to

test hypothesis 9.
Hypothesis 8 isnot confirmed.
Userswill interpret queries that use match forms more accurately than equivalent textual queries. % correct
Match Forms (RF) 71
Text (RT) 74

not significant

Hypothesis 9 is confirmed.

Users will generate more accurate queries using match forms than they generate using text. % correct

Match Forms (WF) 94

Text (WT) 85
p<.0001

The following table breaks down the individual problemsin WF vs. WT, showing the per-

cent correct. The problems are labeled with my canonical text solutions.

red and squareand | (blueandcircle) or circleor square and
triangle not red (red and triangle) blue not red®
Match Forms (WF) 94 73 91 42 33
Text (WT) 94 64 12 18 21
n.s. n.s. p<.0001 p<.01 n.s.

a. Theword NOT was required in the solution to this problem

4.7 Discussion

Although the results help to explain some of the reasons why Boolean queries using AND,

OR, and NOT are so difficult, the textual aternatives that | proposed did not improve per-

80 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

formance. On the other hand, the proposed tabular query forms did improve performance

on writing tasks, while performing about the same on reading tasks.

4.7.1 Textual query variations
Hypothesis 1 was not confirmed. The participants performed about the same using nested
|F statements as they did using a Boolean expression with the AND operator. On the pref-

erences survey, the mgjority of the participants preferred the Boolean expression.

Hypothesis 2 was not confirmed. The participants performed about the same using an
Unless clause asthey did using a Boolean expression with the AND and NOT operators. On

the preferences survey, the majority of the participants preferred the Boolean expression.

Hypothesis 3 was confirmed. The participants performed significantly better with the
Unless clause at the end than they did with the Unless clause earlier in the statement. How-
ever, given the result of Hypothesis 2, the importance of this result is questionable. Also,
the very simple problems used in this study did not provide agood way to test the situation
where | speculated that the Unless would violate the principle of locality. On the prefer-

ences survey, most of the participants preferred the Unless at the end.

Hypothesis 4 was confirmed. Two dlightly different queries using AND resulted in signifi-
cantly different interpretations. 85% of the participants interpreted the AND in “select the
objects that match blue and circle” as a conjunction operator. But only 36% of them inter-
preted it that way in “ select the objects that match blue and the objects that match circle.”

Instead, 55% of them interpreted the AND in the second statement as adijunction operator.
Thisresult helpsto explain the frequently observed error where usersincorrectly use AND

instead of OR.

Hypothesis 5 was disconfirmed. Despite the fact that the majority of the participantsinter-
preted AND as adisjunction operator in “ select the objectsthat match blue and circle,” they
aresignificantly more accuratein interpreting digunction if the OR operator isused. Onthe
preferences survey, the majority of the participants preferred OR over averbose AND state-

ment to express digunction.

In the surprising results of hypothesis 6, | measured reliable effects in opposite directions

depending on context. The hypothesis was disconfirmed when comparing the precedence

A Programming System for Children that is Designed for Usability 81

Methods for Expressing Queries

of NOT with AND. 64% of the participants treated NOT with higher precedence than AND,
matching the common usage in programming languages. However, the hypothesiswas con-
firmed when comparing the precedence of NOT with OR. In this case, 67% of the partici-
pants treated NOT with lower precedence than OR. Since consistency is an important
human-computer interaction principle [Nielsen 1994], thisreversal in the natural interpre-

tation of precedence suggeststhat it is unwise to rely on implicit precedence rules.

Hypothesis 7 was confirmed. Usersignored parentheses significantly more often than they
observed them. The query was, “select the objects that match (not circle) or blue.” The

results on hypothesis 6 suggest that without the parentheses, most participants would have
applied the NOT operator to the expression “circle or blue.” The parentheses were not able

to override this tendency.

4.7.2 Match formsyvs. text

Hypothesis 8 was not confirmed. On reading tasks, the participants performed about aswell
with match forms as they did with text. However, hypothesis 9 was confirmed. On writing
tasks, the participants performed significantly better with the match forms than they did
with text. This disparity, where a positive effect is stronger on generation tasks than inter-
pretation tasks, has also been observed in other systems (e.g. [Modugno 1996]). On the
preferences survey, which was areading task, the participants’ choices were about equally

divided between text and match forms.

Match forms were not superior for code interpretation, but they did not have a detrimental
impact on that task. Thusthe overall effect of using match forms should be positive dueto
the strong gains on generation tasks, despite the lack of an effect on interpretation tasks.

The breakdown of individual questionsin the query generation task shows that the partici-
pants performed about the same in the two conditions when the queries were ssimpler, but
asthe queries became more complex, the differencesin favor of the match formsincreased.
While the trend in favor of match forms was present in all cases, only the queries that
involved disunction revea ed significant differences between match forms and text. As
expected, the most common error on these problemswas the substitution of AND where OR

was required.

82 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

Thethree problemsthat were excluded from the reading comparison were among the more
complex queries. Since the advantage of query formsis stronger on more complex queries,
excluding this data may have reduced any positive effect of match forms on the reading

task. Thusit would be lesslikely for the study to be able to confirm hypothesis 8. Further

research into this question is warranted.

The strong effect of match forms came with very little training. It is unlikely that the par-
ticipants had used an equivalent tabular query language before, and they only viewed a
brief instruction page with afew examples before beginning to solve the problems. While
the instructions for the textual problems were similarly brief, the participants brought
knowledge from alifetime using the words AND, OR, and NOT in English. This may have
interfered with the programming language interpretation, or made them less careful in read-

ing the instructions.

4.8 Summary
Based on the results of this study, | can make the following recommendations to designers
of programming languages, scripting tools, and search engines that incorporate query

mechanisms:

» Do not use the word AND.

» Do not rely on parentheses for grouping.

* Do not rely onimplicit operator precedence rules.

» Consider using match forms or similar tabular query forms instead of pure text.

The success of match forms can be attributed to several factors: AND and OR are avoided;
the scope of NOT is unambiguous; parentheses are not needed for grouping; and cues help

to disambiguate conjunction and disunction.

This study of what is natural for untrained users provides an empirical basis for choosing
among design alternativesin query toolsfor beginners. The strategy employed here can be

also used by developersto assist in the design of other kinds of tools for programmers.

A Programming System for Children that is Designed for Usability 83

Methods for Expressing Queries

4.9 Application of Results

The HCI Bibliography (www.hcibib.org) isaweb database of HCI related resources, main-
tained by Gary Perlman. This site uses the glimpse tool (glimpse.cs.arizona.edu) for its
search engine. Glimpse has an unusual query syntax that was causing many errors and com-
plaints from users. For example, the glimpse syntax for the query (Pane or Myers) and
Boolean is{pane,myers};{boolean}. | proposed to use match formsfor queries on thissite,
and created a prototype. When the user submitted a query using this match form interface,

JavaScript trandlated the query into the glimpse syntax and sent it to the server.

Mr. Perlman liked the idea, but felt that conjunctive normal form was more useful for
searching bibliographic databases. We worked together to create a conjunctive normal
derivative of match formsthat preserves their important features. The result is shownin

Figure 4-4, and isinstalled on the HCI Bibliography website.

Sponzorad by ACMESIECH]
HCIBIB Search Powerad by: glimpse search

7 Cobbled by Gary Pedman, director@heibib.o
m NE_WS HE|D Comments’ Retum TshulsrsgsmTa?ased oh reseanch by John P;'%ne

and it ALSC

matchos ANY of thoco: I I I I

[Search] [Clear] Examyple
Options: Any Type Records | Whole Word | Highlight Terms

iy

o1 ey
| Show Options |

Figure 4-4. The new tabular search interface for the HCI Bibliography (www.hcibib.org).

Note that the descriptive text along the left edge of the form includesthe word and. Wefelt
this use was acceptable because it is part of the longer phrase, and it ALSO, which rein-

forces the conjunctive interpretation of the word and.

Mr. Perlman recently analyzed user performance on the new tabular search interfacein

comparison to the older glimpse-syntax interface, and concluded that users make fewer

84 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

errors when using the new tabular interface. He has also received favorable comments
about the new interface, such as, “What a great search interface! | like how easy it isto
figure out how to search using ‘and’ or ‘or.”” Our conclusion is that this new search inter-

faceis a success.

A Programming System for Children that is Designed for Usability 85

Methods for Expressing Queries

86

A Programming System for Children that is Designed for Usability

CHAPTER 5 The HANDS%%

This chapter describes the details of the HANDS system design. It beginswith areview of
the high-level motivating factors for the design, and then describes the computational
model that is portrayed in HANDS, followed by details of the syntax and features of the
HANDS language and environment. A full syntax chart for the language appearsin
Appendix A.

5.1 Motivating Factorsin the HANDS Design
The various components of the system were designed in response to the observationsin my

studies as well as prior work:

* Beginners have difficulty learning and understanding the highly-detailed, abstract and
unfamiliar concepts that are introduced to explain how most programming languages
work. HANDS provides a simple concrete model based on the familiar idea of acharac-

ter sitting at a table, manipulating cards.

» Beginners have trouble remembering the names and types of variables, understanding
their lifetimes and scope, and correctly managing their creation, initialization, destruc-
tion and size, all of which are governed by abstract rulesin most programming lan-

guages. In HANDS, all datais stored on cards, which are familiar, concrete, persistent,

A Programming System for Children that is Designed for Usability 87

The HANDS System

and visible. Cards can expand to accommodate any size of data, storage isaways ini-
tialized, and types are enforced only when necessary, such as when performing arith-

metic.

Most programming languages require the programmer to plan ahead to create, main-
tain, and traverse data structures that will give them access to the program’s data.
Beginners do not anticipate the need for these structures, and instead prefer to access
their data through content-based retrieval as needed. HANDS directly supports queries
for content-based data retrieval.

Most programming languages require the programmer to use iteration when performing
operations on a group of objects. However, the details of iteration are difficult for
beginners to implement correctly, and furthermore, beginners prefer to operate on
groups of objectsin aggregate instead of using iteration. HANDS uniformly permits all
operations that can be performed on single objects to also be performed on lists of

objects, including the lists returned by queries.

Despite awidespread expectation that visual languages should be easier to use than tex-
tual languages, the prior work finds many situations where the opposite is true (see
Section 1.6.7 on page 13). In my studies, pictures were often used to describe setup
information, but then text was used to describe dynamic behaviors. HANDS supports
this hybrid approach, by permitting objectsto created and set up by direct manipulation
but requiring most behaviors to be specified with atextual language. This design
assumes that the environment will provide syntax coloring and other assistance with
syntax. These features are commonly available in programming environments, but re-

implementing them in HANDS was beyond the scope of thisthesis.

Programming language syntax is often unnatural, laden with unusual punctuation, and
in conflict with expectations people bring from their knowledge in other domains such
as mathematics. The HANDS language minimizes punctuation and has a more natural

syntax that is modeled after the language used by non-programmersin my studies.

The prior research offers few recommendations about which programming paradigm
might be most effective for beginners (imperative, declarative, functional, event-based,

object-oriented, etc.). In my studies of the natural ways beginners expressed problem

A Programming System for Children that is Designed for Usability

The HANDS System

solutions, an event-based paradigm was observed most often, and program entities were
often treated with some object oriented features. HANDS therefore uses an event-based
paradigm. Cards are the primary data structure, and they have some object-like proper-
ties: they are global, named, encapsulated, persistent, and have some autonomous

behaviors.

» The prior work recommends that programming systems should provide high-level sup-
port for the kinds of programs people will build, so they do not have to assemble more
primitive features to accomplish their goals. In my interviews with children, they said
they wanted to create interactive graphical programs like the games and simulations

they use every day. HANDS provides domain-specific support for thiskind of program.

5.2 Representation of the Program
TheHANDS system introduces anew model of computation that is concrete, uses concepts
that are familiar to children, and provides high visibility of program data. In HANDS, an

agent named Handy sits at a table, manipulating information on cards (see Figure 5-1).

5.2.1 Cardsfor Data Storage

All of the datain the system is stored on cards, which are global, persistent and visible on
the table. Each card must have a unique name, which is not case sensitive. The name must
be anidentifier, which is generally aword without spaces. The exact definition of an iden-
tifier isincluded in Appendix A. When anew card is created, it is given a unigue name by
the system unless the programmer specifies aname. The names of cards can be changed at
any time, and an error dialog comes up immediately if the programmer attempts to use a

name that is already in use.

5.2.1.1 Properties
The front of each card has alist of properties, which are name-value pairs (Figure 5-2).

Names of properties must be identifiers, are not case sensitive, and must be unique within
each card. See Section 5.4 on page 101 for information about what types of information can
be stored into the value of a property. Several properties are always present: the car d-

name property holdsthe card’ sname, and thex andy propertiescontain the card’ sposition

coordinates. The card’ s name is aso shown in the title bar at the top of the card. The pro-

A Programming System for Children that is Designed for Usability 89

The HANDS System

Hands Programming

Fboara::

The bee with the most nectar is: Stripes
He has this much nectar: 8

All the bees have collected: 45

Hew Cards

narme
cardname Bumbles
X 777
M 178
kind
back
nectar

3peed
direction

Figure5-1. The HANDS system portrays the components of a program on around table. All datais stored
on cards, which can be drawn from the pile at the top right and dragged into position. At the lower left, two
cards are shown face-down on the table. One has a generic card back and the other has been given a picture
by the programmer. In the center of the tableisaboard, where the cards are displayed in a special way where
only the contents of the back are displayed. Each picture, string, and number on the board is a card. At the
right, one of the cards has been flipped face-up, where its properties can be viewed and edited. The
programmer inserts code into Handy's thought bubble, by clicking on Handy's picture in the upper left
corner. When the play button is pressed, Handy begins responding to events by manipulating cards according
to theinstructions in the thought bubble. The stop button halts the program, and the reset button will restore
all cardsto their state at the time the play button was last pressed. For reference, a compass is embossed on
the table at the lower right.

grammer can add more properties as needed, so cards are similar to records (or structs) in
other languages. When a new property is created, and the programmer does not specify a
name, the system automatically generates a unigue name. An error dialog comes up imme-

diately if the programmer attempts to use a property name that already exists on the card.

5.2.1.2 Direct Manipulation of Cardsand Properties
In addition to the usual ways that data can be manipulated by the code of arunning pro-

gram, cards and their properties can be managed by direct manipulation, even before or

after the program has run. New cards can be drawn from the pile of new cards in the top

90 A Programming System for Children that is Designed for Usability

The HANDS System

[Flcard-1:: [] [Flcard-1:: I
3 >
nare | vl ue | Duplicate Card ve |
cardname Card-1 Delete Card
¥ 825 X T
y 140 Y 140
. I :

Figure5-2. InHANDS, al datais stored on cards. The fronts of cards have an unlimited set or properties, or
name-value pairs. The car dnamne, x, and y properties are always present. Additional properties can be
added by the running program, or by making an entry into the blank slot that is always available at the
bottom. A popup menu on the card enables the programmer to duplicate or delete the card.

right corner of Figure 5-1, and existing cards can be cloned by choosing “Duplicate Card”
from a popup menu on the card (see theright side of Figure 5-2). The cloneisidentical to
the original, except a unique name is generated from the original name. The popup menu
also allows cards to be deleted. Cards can be moved around on the screen to set their posi-
tion (x and y properties). Property names and values can be edited by typing directly into
the slots on the card. New properties can be added by inserting entries into the blank row
that isaways present at the bottom of each card. If only avalueisinserted, the system gen-
erates a unique name for the property. If only a property name is specified, the property is
initialized to the value enpt y. If the programmer editsthe x or y properties, the card is

automatically moved to the new position.

When a card’ s properties are showing, it is considered to be face-up. The other side of the
card iscalled its back, which can contain a picture or other information. A face-up card can
be flipped face-down to show its back by clicking the close box at the top right corner.

When face-down, clicking the close box, or anywhere on the back of the card, flipsit face-

up again.

A Programming System for Children that is Designed for Usability 91

The HANDS System

5.2.1.3Theback Property
Theback property controlswhat is displayed on the back of the card when it isface-down.

If thereisno back property on acard, apicture of ageneric card back isdisplayed (shown

at left in Figure 5-3). If the value of the back property isthe name of afile containing an

Figure5-3. The backs of cards are controlled by theback property. If this property is absent, ageneric card
back is shown (left). If the name of an image file is placed into the back property, the image is displayed on
the back of the card (center). In either of these cases, the card name is superimposed on the back. If astring
or number is placed into the back property, it is displayed on the card back (right), and the card name is not
superimposed.

image, theimage is displayed on the back of the card (shown at center in Figure 5-3). The
program automatically searchesfor animagefile with the specified namein the samedirec-
tory asthe HANDS program, and if not found, it then searchesin the “ Graphics’ subdirec-
tory. Pathsrelativeto these directoriesmay also be used, aswell asfull pathnames. It would
be astraightforward extension to allow the programmer to select animage fileusing afile
browser. If the specified fileislocated, and it contains a JPEG or GIF graphic, theimageis
automatically loaded, the card is resized to the match the size of the image, and theimage
is displayed on the back of the card. When an image is shown on the card back (either the
generic card back image or another image), the name of the card is superimposed on the
image. If theback property contains any other value that cannot be resolved into the name
of an imagefile, the value is displayed as a string on the back of the card. Quotes are
removed if they delimit the string, and the card’ s size is adjusted to match the size of the
string (shown at right in Figure 5-3). All cards are automatically flipped so the back shows

when the program starts running.

92 A Programming System for Children that is Designed for Usability

The HANDS System

5.2.1.4The Game Board
When creating a program for other peopleto use, usually some of the program’ sdataisvis-

ible to the end-user (such as charactersin agame), while other dataisinvisible (such as
intermediate cal culations, or charactersthat are not supposed to bevisible at acertaintime).
In traditional programming systems, all dataisinvisible unlessit is explicitly printed or
drawn onto the screen. InasystemlikeHANDS, where all datahasavisible representation,
another mechanism is needed to separate these two kinds of data. In Rehearsal World
[Gould 1984], which uses a stage metaphor, the hidden datais placed in the wings. The
game board addresses thisissue in HANDS, and also provides away for programmersto
display information that does not look like a card (such as characters, scenes, text and num-

bers).

Thewhite areain the center of the screen in Figure 5-1 isthe game board. The game board
represents the part of the program that would be visible to an end user of a program devel-
oped in HANDS. When cards are face-down on the board, only the back is displayed, with-
out a containing window or the name of the card. The container seems to magically
disappear and appear as the programmer drags a card on and off the board. Unlike face-
down cards, cards that are face-up on the board ook and behave the same asiif they were
off the board. Since thereisno containing window once acard has been dropped face-down
onto the board, it can be flipped only by clicking within the bounding rectangle of its back.
Also, HANDS does not currently implement away to begin dragging a card that is face-

down on the board, so it must first be flipped over to gain accessto its window title bar.

Figure 5-4 shows how the three cards in Figure 5-3 are displayed when they are on the
board. A featurethat is not yet implemented would allow the programmer to create an end-
user version of the program, where only the game board is displayed, and any cardsthat are

off the board would beinvisible.

These features make it relatively easy for the programmer to display graphics, animations
and text on the screen. For example, no code is necessary to create the classic program that
displays“hello, world” on the screen. Any time arunning program changes contents of the
back property, the back of the card isimmediately updated. A program can cycle a series

of imagesinto the back property to animate the appearance of an object.

A Programming System for Children that is Designed for Usability 93

The HANDS System

| board R A A A R A A A A

Score: 100

Figure 5-4. When cards are on the board, only the back is displayed, without a containing window and
without the card’s name. This makesit very easy to display text and graphics on the screen.

Objects are drawn onto the board in aphabetical order by cardname, so cardsthat fall later
in the alphabet are drawn on top of any overlapping cards that fall earlier in the al phabet.
While this gives the programmer some control over the layering of objects, it is at the
expense of flexibility in naming cards. HANDS could be easily extended to allow the pro-
grammer to specify adrawing order independently of the card’ s name. For example, cards
could be displayed in the order created, with explicit commands to move them in front of

or behind other cards.

5.2.1.5Modelsfor the Cardsin HANDS
Although the backs of cards have ageneric design that |ookslike the backs of playing cards,

children are often familiar with other kinds of cards that have a strong resemblance to the
the cardsin HANDS. For example, baseball cards have large quantities of information on
them, like the lists of propertiesin HANDS. Also, popular games such as Magic the Gath-
ering (www.magicthegathering.com) use cards with rich graphics and a set of properties

defining the characteristics of game entities.

5.2.2 Computation is Performed by Handy
Beginners often expect the computer to be very intelligent and to be able to make infer-

ences, so they are often lax in describing important details. Galotti & Ganong [Gal otti

94 A Programming System for Children that is Designed for Usability

The HANDS System

1985] found that they were able to improve the precision in procedural specifications by

ensuring that users understood the limited intelligence of the recipient of the instructions.
To emphasize the limited intelligence of HANDS, Handy is portrayed as an animal— like a
dog that knows afew commands — instead of a person or arobot that could be interpreted

as being very intelligent.

Below the game board are play, stop, and reset buttons. When the play button is pressed,

the program beginsto run. Theimage of Handy (at the top left corner of Figure 5-1), which
isastatic picture when the program is not running, beginsto animate. The animation shows
Handy picking up and putting down miniature cards, and the squiggly linesin his“thought
bubble” wiggle around to indicate that he isthinking. This animation helpsto confirm that

the program isindeed running, even if no other visible action istaking place on the screen.

5.2.2.1 Handy Watches for Events and Executesthe Codein His Thought Bubble
The program itself is stored in Handy’ s “thought bubble,” which can be accessed from a

menu, or by clicking on Handy. The thought bubble provides a central location for all of
the program code, unlike some other beginner systems such as Hypercard [Goodman
1987], where the code is scattered around and it may be difficult for the programmer to
determine where the code is that is causing something to happen or preventing it from hap-

pening.

When the program isrunning, Handy watchesfor events, and if histhought bubble contains
a corresponding event handler he responds by executing the code in the event handler.
There is more information about events and event handlersin Section 5.3 on page 96, and
the browser for viewing event handlersis described in Section 5.15.2 on page 131. Handy
is also responsible for some domain-specific functions that do not require any program-

ming, such as animating cards that have speed and direction slots (see Section 5.14 on

page 123).

5.2.2.2 Stop and Reset
The stop button halts the program. Any changes to the cards are preserved if play is hit

again. In this sense, stop is more like the pause button on a CD player. If the programmer

would like to restore al of the cards to their state at the last time the play button was

A Programming System for Children that is Designed for Usability 95

The HANDS System

pressed, the reset button can be used. The reset button also halts the program if it isn’'t
aready halted. The reset feature is accomplished by saving all of the cards to a checkpoint
file when play is pressed, and reading them back in when reset is pressed, after first dis-
playing a confirmation dial og.

Anearlier version of HANDS saved and restored the program code aswell asthe cards, but
this had an undesirable effect that was uncovered in early testing. During program devel-
opment and debugging, atypical sequence of operations was to run the program, stop it,
make changes to the code, and then hit reset right before running the program again. When
used in thisway, the reset operation was discarding the changes the programmer had made

to the code. For this reason, the reset operation was modified to only restore the cards.

5.2.2.3 Handy’sHand
Handy can be directed to pick up cards off the table and put them into his hand. When he

picks up a card, it disappears from the table, but all of the card’ s properties remain
unchanged, including its position properties. Therefore, acard that is picked up from a cer-
tain location on the table will be put down at that same location on the table, unlessthe pro-
gram changes its location properties in the interim. Picking up and putting down cards is
anaogousto thevisibility property of objectsin other systems. A menu command switches
the system to aview that shows only the cardsin Handy’ s hand, at their appropriate places
onthetable. Section 7.2.2 on page 171 describesamultiple-agent extensiontothe HANDS
system where an agent’ s hand could also represent private data that is not visible to other

agents, and the passing of cards could be used for private communication between agents.

5.3 Programming Style and M odel of Execution in HANDS
HANDS is event-based, to match the style of programming that | observed in my studies.
A program is a collection of event handlers that are automatically called by the system
when amatching event occurs. Inside an event handler, the programmer inserts one or more
imperative statements to execute in response to the event. After these statements have exe-

cuted, control returnsto the system, where the next event is dispatched.

96 A Programming System for Children that is Designed for Usability

The HANDS System

5.3.1 Structure of Event Handlers
All event handlers have this structure:

when <event >
<st at enent s>
end when

The keywordswhen andi f both appeared frequently at the start of code fragmentsin my
studies. One reason when was selected for the event handler keyword isbecauseit is more
suggestive of one-time evaluation at or near the occurrence of an event, whereasi f might
engender acontinuous-evaluation interpretation. Also, | felt it was better to have akeyword
that was distinct from the conditional statement, which usesthei f keyword. | also consid-
eredusingat the ti me asthekeyword for event handlers, but thiswasrejected, mainly
because it suggests more precise timing than an event-oriented system provides, where the
execution of the event handler may actually be delayed by the processing of other events

aready in the queue. Furthermore, it was too verbose.

5.3.2 Event Dispatch

The system automatically maintains the event queue. All of the supported events are listed
below in Section 5.3.3. When the system observes one of these events taking place, it
inserts arecord of the event into the queue. Meanwhile, an event dispatcher continuously
removes the first event in the queue, callsall of the appropriate event handlers (there may
be zero, one, or more than one), and then discards the event and moves on to the next one.
When the event queueis empty, the dispatcher synthesizesan idle event and callsthe appro-

priate handler if it exists.

When there is more than one event handler matching a particular event, they are all exe-
cuted, one at atime in the order they appear in the event browser, which is aphabetical.
There could be many handlers for a particular event. For example, seven event handlers
would be called if the bee Bunbl es collided into the flower Rose, and there were han-
diersfor each of: Bunbl es col | i des,Bunbl es col | i des i nto any fl ower,
Bunbl es col lides into Rose,any bee collides,any bee collides

into any fl ower,any bee collides i nto Roseandanyt hi ng happens.

A Programming System for Children that is Designed for Usability 97

The HANDS System

Ideally, HANDS would give the programmer better control over which order the event han-

dlersarecalledin.

The event dispatcher periodically allowsthe user interface and animation engineto run, by
releasing control to them between event dispatches. This ensures that no event handler can
create adeadlock, for example, by repeatedly inserting anew event that will causethe same
handler to be called again. Even if the code were written this way, objects on the screen
would continue to be animated, screen updates would occur, the user interface would
respond to the user, and other kinds of eventswould beinserted into the queue between the
ones by the offending code, such as collisions, objects changing, and the user clicking on

objects or typing on the keyboard.

5.3.3 The Events
The following events are defined:

e programstarts

Thisevent is awaysthe first event that is dispatched when the program beginsto run.

* program st ops
Thisevent isalwaysthelast event that is dispatched when the program stops. This event
has priority over any other events in the queue, which are discarded when the program

stops.

* <identifier> appears

A card named <identifier> is created.

e <identifier> di sappears
A card named <identifier> is destroyed. A runtime error will occur if the event handler
for this event attempts to access the card named <identifier>, unless it was replaced in

the interim.

 <identifier> changes
A card named <identifier> has any of its properties set. If thereis aready a change
event for this card in the event queue, another oneis not inserted. Otherwise it would be

too easy for events to be inserted into the queue faster than they could be removed. For

98 A Programming System for Children that is Designed for Usability

The HANDS System

example, without this protection, the problem would occur if the event handler for

Card-1 changes assigned to more than one property of Car d- 1.

e <identifier> collides

A card named <identifier> collides into any object (see Section 5.14.4 on page 127).

e <identifier> collides into <identifier2>

A card named <identifier> collides into another card named <identifier2>.

e <identifier>is clicked
A card named <identifier> is clicked on by the mouse. The object must be on the board,
and the mouse click must be within the bounding box of the object. At thistime, only
the mouse-down event using the left mouse button is supported. Support for the right

mouse button, and “still down,” “mouse moved,” and “mouse released” events should

be added in the future.

 <key> is typed
The keystroke <key> is typed on the keyboard.

* not hi ng happens
The systemisidle; there are no eventsin the event queue. It is possible that thisevent is

never dispatched if the event queue aways has at least one event in it.

e anyt hi ng happens
Any event except not hi ng happens will cause an handler for this event to be dis-

patched. The only time this handler is not called is when the system is completely idle.

5.3.4 Event Patterns
The programmer can use patterns of theformany <i denti fi er> <event > orany
key i s typed. Thisenables cardsto be treated as groups by giving them a common

string in a property such aski nd or gr oup:

 any <identifier> appears

A cardwith<i denti fi er > inone of its propertiesis created.

e any <identifier> disappears

A card with<i dent i fi er >inone of its propertiesis destroyed.

A Programming System for Children that is Designed for Usability 99

The HANDS System

* any <identifier> changes

A card with<i dent i fi er >inone of itsproperties has any of its properties set.

« any <identifier> collides

A cardwith<i dent i fi er > inone of its properties collides into any object.

e any <identifier> collides into any <identifier2>
A cardwith <i denti fi er > inone of its properties collides into another card with
<i dentifier2>inoneof itsproperties. This pairwise collision event can also be
specified with oneeach of <i denti fi er>andany <i dentifi er>,ineither

order.

» any <identifier>is clicked

A card with<i dent i fi er >inoneof itspropertiesis clicked by the mouse.

 any <key> is typed
Any keystroke is typed on the keyboard.

5.3.4.1 Temporary Variablesfor Event Patterns
Within these event handlers that use any patterns, the system automatically creates atem-

porary variable for the duration of the event, binding the<i denti fi er > or <key> to
the specific object that wasinvolvedin the event. For example, consider thecard Bunbl es
from Figure 5-1 and repeated in Figure 5-5. If there is an event handler for any bee

col | i des, it would be called when Bunbl es collides into any object, because one of
the propertiesof Bunbl es containsthe string bee. During the execution of the event han-

dler, theidentifier bee isbound to Bunbl es.

In the case of the collision event handler where there are two identifiers to bind, for exam-
ple,any bee collides into any flower,bothbee andfl| ower arebound to
the appropriate objects. For example, if Bunbl es collidesinto the flower Rose, theiden-
tifier bee isbound to Bunbl es, and the identifier f | ower isbound to Rose. If both

identifiersarethe same, the prefixesf i r st - andsecond- areattachedtotheidentifiers.
For example, intheevent handler any bee col | i des i nt o any bee, thetwo cards

inthe collision arebound tofi r st - bee and second- bee.

100 A Programming System for Children that is Designed for Usability

The HANDS System

| C)Bumbles
>
name | wvalue |
cardnare Burnbles -
% 530 '
W &0
kind bee
back burmbieb.qif
nectar 2
speed 1
direction 261 —
= =]

Figure 5-5. If thereisan event handler for any bee col | i des, it would be called if the card Bunbl es
collides into any object. During the execution of event handler, the identifier bee is bound to Bunbl es.

5.3.5 Event Cards

Like data, each event is represented by a card, with aunique car dnane, an x, y position,
at ype (awaysevent car d), agr oup indicating thetype of event (e.g.col | i si on),
andaval ue property that containsinformation specific to the event. When asingle object
isinvolvedintheevent, itsnameisintheval ue property. When two objects are involved
inacollision, both arelistedintheval ue property. When the event isakeystroke, the key
that was typed islisted in theval ue property.

During the execution of the event handler, the temporary variable event isbound to the
current event card, so that its properties can be accessed. However, for efficiency reasons,
events do not appear on the table while the program is running, unless there is aruntime
error (see Section 5.16 on page 138). A future extension to HANDS could offer a“slow”
debugging mode where the current event as well as the event queue are displayed continu-

ously on the table.

5.4 Data Types
Valuesin HANDS can have the following types:

A Programming System for Children that is Designed for Usability 101

The HANDS System

» anidentifier, such as the name of acard, which is not case-sensitive;

» astring literal delimited by quotes;

» aninteger or floating point number, which can be used interchangeably;
» aBoolean literal, either yes or no;

» alist of zero or more data elements that do not necessarily have to be all of the same

type. The empty list isrepresented by enpt y.

The vocabulary for literal constants, yes, no and enpt y, was selected for smplicity and
familiarity, instead of choosing termsor symbolsthat arelessfamiliar to non-programmers,

suchastrue,fal seornul | .

The system does not enforce types until necessary. All data values are treated as strings
until they are used in an operation that requires a different type, such as arithmetic. This
includesidentifiers, so many single-token strings do not have to be quoted in HANDS.
Identifiers must begin with aletter and cannot have spaces, but they can contain hyphens,
underscores, periods, and slashes. The last two of these are accepted so that many file

names and paths can be stored into card slots without quoting.

However, thisflexibility isnot universal, because strings that are not legal identifiers, such
as multiple-word strings or keywords of the language, must be quoted. The strategy for
addressing thisissuein HANDS is to provide good error messages, both interactively and
from the parser. For example, the interactive message for when a user tries to insert multi-
ple valuesinto a card slot without separating them with commasis, “A property cannot
havethevalueone two t hree, unlessitisquoted or there are commas separating the

items.”

Listshavepropertiesliketraditional lists, such asbeing unbounded and permitting insertion
without making space, and properties like arrays, such as index-based access. The syntax
of listsisdescribed in Section 5.6.6 on page 105.

5.5 Numeric Values and Calculations
In HANDS thereis no operational distinction between integer and floating-point numbers.

All numeric calcul ations are conducted using doubl e-precision, and thefull-precision result

102 A Programming System for Children that is Designed for Usability

The HANDS System

ismaintained. However, floating point numbersthat endin“. 0” have this suffix removed
so that the result is converted into an integer for display. This ensures that the results of
addition, subtraction, and multiplication on integers are not converted into floating point

numbers as a side effect of the double-precision math.

5.6 Language Syntax
The syntax of HANDS was designed to match the common ways that participants
expressed operationsin my studies, in order to observe the principles of smpleand natural

dialog, speak the user’ s language, and closeness of mapping.

5.6.1 Natural-Language Style

The syntax for accessing properties on cards uses a natural-language style instead of the
dot’s, arrows, and brackets used in many other languages. The programmer can refer to the
nect ar property of acard named f | ower with either of these syntaxes: nect ar of
fl ower orfl ower’ s nect ar. These choices are provided so the programmer can
select whichever is more readable in context. However, the“’ s” syntax is not adapted for
any special cases such as plurals (see Section 5.6.2 on page 103). Another example isthe
natural-language stylethat is provided for arithmetic: add 100 to t he gane’s score,
in addition to the usual more mathematical style: set the gane’s score to 100 +

gane’ s score.

The language is uniformly case-insensitive. Overall, the language has a verbose conversa-
tional style, smilar to HyperTalk [Goodman 1987], AppleScript, and Macromedia sLingo
[Gross 1999]. To improve readability, the system allowsthewordst he or i s to be placed
anywhereinthe code—they areignored. For example,set t he nectar of the bee

to Oisthesameasset nectar of bee to 0.Theworda isnotignored however,

because thisword is often used by programmers to name variables.

5.6.2 Plurals

The HANDS language does not attempt to correctly handle special cases with plurals.
Instead it uses simple fixed rules for creating possessives to access properties (see
Section 5.2.1.1 on page 89) and the plurals used in queries (see Section 5.10 on page 113).

A Programming System for Children that is Designed for Usability 103

The HANDS System

For example, if therewere several cardswith ox inone of their slots, the query to find them
wouldbeal I oxs,notal | oxen.Whilethe system could have been designed to auto-
matically handle plurals, it would require fairly sophisticated processing, and would likely
be imperfect [Conway 1998, Mclver 2001]. Furthermore, it is unlikely that the children

using HANDS would know all of the correct rules for pluralization.

5.6.3 Control Structure Terminators

Many languages use acommon symbol (suchas®}” or “end”) to terminate many different
kinds of control structures. When several structures are nested, it can be difficult to figure
out which terminator belongs to which structure. If the terminator is optional, additional
ambiguities can result. For example, Pascal and HyperTak have the dangling-else prob-
lem, where the system may attach an else clause to adifferent if statement than the user
intended. For these reasons, all structuresin HANDS that allow statements to be nested
require amatching terminator that incorporates the name of the structure. For example, the
when statement is terminated with end when. To reduce the amount of typing required,

the system automatically inserts some of the terminators.

5.6.4 Statement Terminators

Where possible, HANDS avoids requiring punctuation or other symbolsif their only pur-
pose was to make it easier to parse. These syntactic elements are a distraction from the
semantically-important parts of the program, and are acommon source of errors. For exam-
ple, no semicolon isrequired to terminate or separate statements. Because each statement
in HANDS begins with akeyword, and the last statement in any context must be followed
by the keyword end, the system is able to parse the code without help from statement ter-

minators.

5.6.5 Parentheses Are Required to I ndicate Precedence Explicitly

In my studies, | observed that beginners have many problems with implicit precedence
rules, so HANDS requires parentheses when expressions are nested. The studies also deter-
mined that parentheses were confusing, but | could not figure out agood aternativeto their

use. To reduce confusion, the language uses only one kind of parentheses: “(” and “) ”.

104 A Programming System for Children that is Designed for Usability

The HANDS System

5.6.6 List Syntax

In early implementations of HANDS, the syntax required special symbols at the beginning
and the end of lists. | experimented withlist(1 2 3) andlist 1 2 3;,butwas
unsatisfied with the extra required symbols for opening and terminating the lists. After
much experimentation and re-organization of the parser, | was able to achieve amore real-
istic syntax for lists, where commas are used to separate list items but no opening and clos-
ing delimitersarerequired: 1, 2, 3. Listscan be nested by using parentheses. For
example, (1, 2, (9, 8, 7), 4, 5).Theempty listisrepresented by the keyword
enpt y, instead of using symbolssuchas() ornul | . Another alternative might have been
to use the absence of anything to indicate an empty list, but this would introduce parsing

difficulties.

Thereis no distinction between single-item lists and singletons. This feature is extremely
convenient, for example, when working with query results where the number of itemsin
the result may be unpredictable (queries are described in Section 5.10 on page 113). How-
ever, it does mean nested lists containing one item lose their nested structure. For example,
thelistl, (((3))), 5becomesl, 3, 5 assoonasitisevauated by HANDS.

Although HANDS does not support subranges, it would be anatural extension. Thiswould
alow longer listssuchas1, 2, 3, 4, 5, 6, 7, 8, 9, 10 tobeabbreviated as:
1..10.

5.6.7 Consistency Between Values on Cardsand in Program Code

In HANDS, the syntax for entering and displaying values on cardsisidentical to the syntax
used in program code. Thisisin contrast to LISP, for example, where values must be
guoted in program code. This consistency eliminates the need for people to learn two dif-
ferent formats, and enablesvaluesto be copied and pasted from one placeto the other. Also,
data of any type can be displayed on the board in areadable format, ssimply by storing it

into the back slot of acard.

5.6.8 Comments, I ndenting, and White Space
TheHANDS languageis not sensitive to white space or indenting. Two kinds of comments

are provided, like those found in Java and C: one line comments beginning with/ / , and

A Programming System for Children that is Designed for Usability 105

The HANDS System

multi-line comments delimited by / * and */ . It isassumed that the program editor would
provide syntax coloring, to flag situations where the programmer accidently comments out

more code than intended.

5.6.9 Choicesfor Keywords and Special I dentifiers

The names of special wordsin the language were chosen to be easy to typein and spell cor-
rectly. For example, where several systems usetheword appear ance, HANDS usesthe
word back. Similarly, speed was chosen over vel oci t y. However, concisenessis not
takento an extremeasit isin somelanguages, where the programmer isforced to memorize
the meanings of many short abbreviations. For example, in StarL ogo [Resnick 1994] the
cg command clears all of the graphical patches, but the mnemonically-similar but much
more dangerous command ca clearsall of the graphical patchesand also destroysall of the
turtle objects. All of the HANDS keywords are full names. Menus are available to help
users enter them correctly (see Section 5.15.2.2 on page 132).

HyperTak [Goodman 1987] binds the temporary variablei t to the result of the most
recent computation. There are several placesin the HANDS language where the system
automatically generates temporary variables for referring to a computed value (see
Section 5.3.4.1 on page 100 and Section 5.13.1.1 on page 119). | considered using the
namei t for thesevariablesand in some other situationswhere the programmer might want
ashorthand notation for accessing arecently computed value. However, when | wrote some
sample code using this feature, | found that the ambiguity of what i t actually referred to
was very confusing. | would write the code with a particular binding in mind, but when |
read the code later | would use a different binding. For this reason, the idea was rejected.
Instead, the default binding is the name of the property value searched for (see

Section 5.3.4 on page 99) or else the user can assign a name (Section 5.13.1 on page 119).

5.7 Statements

This section summarizes the operators in the HANDS language. Thisisfollowed by adis-
cussion of expressions in Section 5.8 on page 109. Error messages are discussed in
Section 5.16 on page 138.

106 A Programming System for Children that is Designed for Usability

The HANDS System

5.7.1 Operationson Cards
The programmer can instruct Handy to pick up and put down cards, or flip them over:

pi ckup <identifier>

The card named <i dent i fi er > ispicked up into Handy’s hand, making it invisible.

put down <identifier>

The card named <i dent i f i er > isput down onto the table from Handy’s hand, mak-
ing it visible.

flip <identifier>

The card named <i dent i f i er > isflipped over to show the back or front. Thisis
mainly used for interactive debugging, to locate a card. There is no way for program

code to determine which side of the card is showing at any given time.

Cards can be created, duplicated, and destroyed:

make new card <identifier>

A new card is created with the name<i denti fi er >.

make duplicate of <identifier>

A new card is created by cloning all of the properties of the card named <i dent i -

fi er >, exceptitisgiven aunique namethat is generated from the original card’s name
(for example, aduplicate of thecardr ose isnamed r ose- copyN, where Nisan inte-

ger that makes the card name unique).

put down <identifier> onto discard pile

The card named <i dent i fi er > isdestroyed.

A runtimeerror isgenerated if the program attemptsto operate on acard that does not exist,

or to create a card with aname that is already in use.

5.7.2 Operationson Card Properties

The programmer can instruct Handy to manipulate properties of cards:

set <property> to <expression>

The expression is evaluated, and the resulting value is stored into the specified card

A Programming System for Children that is Designed for Usability 107

The HANDS System

property. If the card does not already have the named property, it is created. Set isa

less confusing alternative to using = for assignment.
* add <expression> to <property>

* subtract <expression> from <property>
The expression is evaluated and then added to or subtracted from the value in the speci-
fied card property, and the result is stored into the property. If the card does not already
have the named property, or if the expression and the property are not both numeric val-

Ues, an error occurs.
e multiply <property> by <expression>

» divide <property> by <expression>
The expression is evaluated, and it is multiplied or divided by the value in the specified
card property, and the result is stored into the property. Errors are handled the same way

they arefor add and subtract.

* append <expression> to <property>
The expression is evaluated and then appended onto the end of the list in the specified
card property, and the result is stored into the property. If the card does not already have

the named property, an error occurs.

5.7.2.1 Specifying a Property
A <pr oper t y>isspecified with acard name and a property name, using one of thesetwo

formats:

* <propertynane> of <cardnane>

e <cardnane>s <property>

It is also possible to determine a cardname indirectly, asin this example:

* nectar of (buzzy's favoriteFl ower)
Refersto the nectar property of acard whose nameisstoredinthef avori t eFl ower

property on the card named buzzy.

The evaluation of the property dereference operators (of and* s) has higher precedence

than any other operator.

108 A Programming System for Children that is Designed for Usability

The HANDS System

5.7.3 Output Statements
In addition to the ability to display messages on the screen, by placing information into the
back properties of cards, HANDS also provides two output statements:

* tell <expression>
The expression is evaluated, any quotes are removed, and if it isalist, thelist itemsare
concatenated with a blank space between each item and without the commas. The
resulting string is displayed in amodal dialog box Figure 5-6. Execution pauses while
the dialog box is up, and the user is offered two choices: to continue running the pro-
gram or to stop the program. The stop option is necessary because after the user dis-
misses the dialog box, the system could execute another tell statement so quickly that
the user have no time to access the stop button or any of the other controls in the user

interface. An expression for getting input from the user is described in Section 5.8.6 on

page 112.
N =———FMaccaga=————H
Congratulations, your score is: 10526 |
|
[ox][stwn | |
2
Figure5-6. A dialog box similar to thiswill come up when the statementt el | " Congr at ul ati ons,
your score is:", score's back isexecuted. Execution pauses while the dialog box is showing.

If the Ok button is pressed, execution continues; if the Stop button is pressed, the program is halted.

* beep
When this statement is executed, the computer beeps.

5.7.4 Other Statements

The two remaining statements, thewi t h andi f control structures, are discussed in
Section 5.13 on page 119.

5.8 Expressions
Anytime an expression with more than one operator appears, it must be parenthesized to

indicate the order of evaluation. In addition to the expressions|listed here, thelist operators

A Programming System for Children that is Designed for Usability 109

The HANDS System

described in Section 5.12 on page 114 are also accepted anywhere expressions are
accepted.

5.8.1 Relational Operators

The following binary relational operators work on al types. If both operands are numeric,
anumeric comparison is performed; if both operands are Boolean, a Boolean comparison
is performed, whereyes is greater than no; otherwise the operands are treated as strings
and are compared lexicographically. These operators each have both mathematical and nat-

ural-language variants, separated by vertical bars (|) in the lists below:

=| equal s | equal

>| greater than

« >=| greater than or equal

<=| l ess than or equal

<| less than

<>| not equal

Theword i s can be used in these expressions because it isignored, and theword t o can

optionally be appended to these operators. Here are some examples:
e x=0

* X equals zero

* xisequa to0

The use of the = symbol for the equality predicate matches the way equality iswritten in

other situations such as mathematics, in contrast to the == in C and Java.

5.8.2 Boolean Operators

The Boolean operators require Boolean operands:
* and
e or

* not

110 A Programming System for Children that is Designed for Usability

The HANDS System

The first two are binary infix operators, and the latter is a unary prefix operator. Note, we

do not expect these to be used except by experienced programmers.

5.8.3 Card Existence Predicate
The programmer can check whether a card exists anywhere in the program, or at a partic-

ular location:

e <cardname> exi sts

Returns true if the card exists anywhere in the system.

e <cardnane> exi sts in hand

Returnstrue if the card exists, and isin Handy’s hand.

e <cardnane> exi sts on table

Returnstrueif the card exists, and is on the table.

5.8.4 Mathematical Operators

The following infix binary math operators work only on numbers, except where noted:

+ | plus
Thisoperator will perform string concatenation on its operandsif either or both of them

are not numbers.
e - | mnus
e * | tinmes

« /| divided by

% | nodul o

5.8.5 Random
The r andomfunction returns an integer between the specified lower bound and upper

bound, inclusive. The bounds must be integers. The wordsf r omand t o are optional:

* random [fron] <l|owerbound> [to] <upperbound>

A Programming System for Children that is Designed for Usability 111

The HANDS System

5.8.6 Expression for Getting I nput from User

The programmer can use ask to bring up a dialog box requesting an expression from the
user, analogoustothet el | statement described in Section 5.7.3 on page 109. As with

t el |, execution pauses while the dialog box is up, and the user is offered two choices: to
continue running the program or to stop the program. The string argument is displayed as
aprompt in the dialog box (see Figure 5-7). The user’sinput is treated as a string, and is

guoted unlessit is alegal value without quotes (such as a number).

 ask <string>

Please enteér your name.

[s Inpit —"ia0"=7"rr—7o=4g
|
|
|

Figure5-7. If thecodeset wi nner's back to ask "Pl ease enter your nane." is
executed, this dialog box comes up. If the user types a value and presses the Ok button, the valueis stored
intowi nner' s back. If the user presses the Cancel button, the program is halted.

5.9 Aggregate Oper ations

In my studies, | observed that the participants used aggregate operators, manipulating
whole sets of objectsin one statement rather than iterating and acting on them individually.
Most languages require the programmer to use iteration, forcing them to use control struc-
turesthat are very difficult for beginners (see Chapter 2), and violating the principle of

closeness of mapping.

HANDS hasfull support for aggregate operations. Every operationin HANDS acceptslists
aswell as singletons for its operand(s), using exactly the same syntax. Binary operators
even accept one list and one singleton as operands. The user does not have to correctly

anticipate the number of itemsin the data being operated on.
Here are several examples using the + operator:

* 1 + 1 evaluatesto 2

e 1 + (1,2,3) evaluatesto 2, 3,4

* (1,2,3) + 1 evauatesto 2, 3,4

112 A Programming System for Children that is Designed for Usability

The HANDS System

e (1,2,3) + (2,3,4) evauatesto 3,5,7
If the operands are lists of unequal length, the itemsin the shorter list are cycled through.
e (1,10) + (4,5,6,7,8) evauaesto5, 15,7,17,9

Additional list operators are discussed in Section 5.12 on page 114.

5.10 Queries

In my studies, | observed that users do not maintain and traverse data structures. Instead
they perform queries to assemble lists of objects on demand. For example, they say “all of
the blue monsters.” HANDS provides a query mechanism to support this. The query mech-

anism searches all of the cards for the ones matching the programmer’ s criteria.

Queries begin withtheword al | . If aquery contains asingle value, it returns all of the

cards that have that value in any property. If the valueisaword ending in s, it will also

match cards that have the value without the trailing s. Although this simplistic rule does
not cover all of the special casesfor pluralsin English, it seemsto work well in practice
(see Section 5.6.2 on page 103).

_jrose " [: it = :

name | wvalue name | walue name | value name | walue
cardname |rose cardnarme |tulip cardname |orchid cardname |[bumble
X 208 x 350 x 430 x 636
Y al W al W al W a0
graup flower group flower group flower group bee
nectar 100 nectar 150 nectar 75 nectar 1]

Figur e 5-8. When the system evaluates the query all flowersit returnsor chi d, rose, tulip.

Queriesreturn alist of cards satisfying the query, in aphabetical order by cardname.
Figure 5-8 contains cards representing three flowers and a bee to help illustrate the follow-

ing queries.

e all cards evauatestobunbl e, orchid, rose, tulip

Car ds isaspecia keyword that matches every card.

A Programming System for Children that is Designed for Usability 113

The HANDS System

 all flowers evauatestoorchid, rose, tulip
Fl ower s isnot akeyword, so HANDS searches al of the cardsin the system, and

returnsalist of all cardsthat have thewordsf | ower or f | ower s in any sot.

 all bees evauatesto bunbl e

Note that there is no difference between a singleton and alist with one item.

* all snakes evauatestoenpty

Enpt y isthe value representing the empty list in HANDS

« all (flower and (nectar < 100)) evaluatestoor chi d
Chapter 4 describes Match Forms, a more effective method for specifying more com-
plex querieslike this example. If Match Forms are incorporated into afuture version of
HANDS, the programmer would have the option to enter this query asit is shown

above, or using Match Forms, with the same resullts.

5.11 Queriesand Aggregatesin Combination

Queries and aggregate operations work in tandem to permit the programmer to concisely
express actions that would require many lines of code in most other languages. For exam-
ple,

» set the nectar of all flowers to O

This statement is evaluated as follows;

1. thequery al | f1 ower s returnsalist of all of the cards containing f | ower or

fl owers.

2. nectar of isappliedto thislist, resulting in alist of properties (see Section 5.7.2.1
on page 108).

3. theset statement sets each property to zero in the list of properties.

5.12 List Operators
The system provides abasic set of list operators. Like all operatorsin HANDS, these oper-

ators also accept empty lists and singletons where they accept lists. These operators are

114 A Programming System for Children that is Designed for Usability

The HANDS System

non-destructive —they do not modify their operands. If the result of an operationisalist, a

new copy is returned. The names of these operators were selected to indicate this fact.

The following list reduction operators accept alist and return a single value (unless there
are nested lists). Thewordsinsidethe brackets([i n | of]) areoptiona:

Sum[in | of] <list>
Returns the sum of theitemsin thelist if all itemsin the list are numeric; otherwise

generates aruntime error.

AllYes [in| of] <list>

Returnsyes if all itemsinthelist areyes. Returnsyes if theargumentisenpt y.

AllNo [in| of] <list>

Returnsyes if al itemsinthelist are no. Returnsyes if theargument isenpt y.

Firstitem[in | of] <list>
Returnsthefirst iteminthelist. If the argument isasingleton, it isreturned; if the argu-

ment isenpt y, enpt y isreturned.

Lastlitem[in | of] <list>
Returnsthe last item in the list. If the argument isasingleton, it isreturned; if the argu-

ment isenpt y, enpt y isreturned.

NunberOfltens [in | of] <list>
Returns the number of itemsin the list. If the argument isa singleton, 1 isreturned; if

the argument isenpt y, 0 isreturned.

Concatenateltens [in | of | <list>
Treats all elementsin the list as strings, and concatenates them into a single string.
Commas are not included in the result, and no extra spaces are inserted between the

items.

Anyltem s <expression> in | of] <list>

Returnsyes if any iteminthelist isequal to the <expr essi on>.

A Programming System for Children that is Designed for Usability 115

The HANDS System

* ltemAtPosition <index> [in | of] <list>
Returnsthe item at position <i ndex> inthelist. If theindex isout of range, enpt y is

returned.

Thefollowing list reduction operators accept alist and return asingle value unlessthereis
atie, in which case alist of thetied itemsisreturned. The programmer does not have to
check the number of items returned, because all subsequent operations will accept lists as
well as singletons. If the programmer wants asingleresult, the Fi r st | t emoperator can
be used to extract the first result (and the Shuf f | edCopy operator can be used to ran-
domize which item is extracted by Fi r st | t em). Once again, if the list contains nested
lists, the value returned may be alist:

 Geatestltem[in| of] <list>
Returns the item(s) in the list that is(are) numerically greatest if all itemsin thelist are
numeric; otherwise treats al elements as strings and returns the item(s) in the list that

is(are) lexicographically greatest.

e Leastltem|[in | of] <list>
Returnsthe item(s) in thelist that is(are) numerically smallest if all itemsin thelist are
numeric; otherwise treats all elements as strings and returns the item(s) in the list that

is(are) lexicographically smallest.
The following list operators accept lists and generally return lists:

e AllButFirstitem][in | of] <list>
Returns all but thefirstiteminthelist. If theargument isasingleton or enpt y, enpt y
IS returned.

e AllButLastlitem[in | of] <list>
Returns all but the last item in thelist. If the argument isasingleton or enpt y, enpt y
is returned.

e Round [in | of] <list>
If dl itemsinthelist are numeric, anew list isreturned where al of theitems are

rounded; otherwise generates a runtime error.

116 A Programming System for Children that is Designed for Usability

The HANDS System

SortedCopy [in | of] <list>
If dl itemsinthelist are numeric, anew list is returned where the items are sorted
numerically from least to greatest; otherwise treats all elements as strings and returns a

new list is returned where the items are sorted lexicographically from least to greatest.

ShuffledCopy [in | of] <list>

A new list is returned where the items are randomly shuffled.

ReversedCopy [in | of] <list>
A new list isreturned where the items are in the reverse order of their appearancein the

origina list.

Connect edCopy <first list>[to] <second |ist>
A single new list is returned where the items of the second list are concatenated to the
end of thefirst list.

Thefollowing operators accept aproperty name and alist of cards, and expect each card in

thelist to have the named property. The property isinspected on each card to determine an

ordering of the cards. Numeric ordering isused if theall of the property valuesare numeric,

otherwise the property values are treated as strings and the order is lexicographical. Once

again, if thereisatie, al of thetied items are returned. The ordering is then applied to the

list of cards as follows:

CardWthG eatest <propertyname> [in | of] <cardlist>
Returns the card(s) in the list that has(have) the greatest value in the named property,

according to the ordering.

CardWt hLeast <propertynane> [in | of] <cardlist>
Returns the card(s) in the list that has(have) the |east value in the named property,

according to the ordering.

CardsSortedBy <propertynane> [in | of] <cardlist>

Returns anew list of cards that is sorted according to the ordering.

Here are some examples of the list operators, referring again to Figure 5-8:

A Programming System for Children that is Designed for Usability 117

The HANDS System

Firstltemof all the flowers evaluatestoorchid
all the flowers returnsalist of the cardscontainingf | ower or f | ower s, and
then Fi r st | t emreturnsthefirst item in that list.

AllButFirstitemof all the flowers evaluatestorose, tulip
all the flowers returnsalist of the cardscontainingf | ower or f | ower s, and
then Al | But Fi r st | t emreturnsall but the first item in that list.

G eatestltemin the nectar of all the flowers evauatesto150
all the fl owers returnsalist of the cards containing f | ower or f | ower s,
nect ar of returnsalist of the nectar properties of those cards, and then G- eat es-
t I t emreturnsthe greatest item in that list.

CardWthG eatest nectar of all the fl owers evaluatestoor chid
all the flowers returnsalist of the cards containing f | ower or f | ower s,
nect ar of returnsalist of the nectar properties of those cards, which Car dW' t h-
G eat est then usesto select the card(s) holding the greatest nectar value(s), which
is(are) returned. The difference between Greatestitem and CardWithGreatest is that the
former returns the greatest nectar value while the latter returns the name of the card

holding the greatest nectar value.

Sort edCopy of the nectar of all the flowers evauatesto
75, 100, 150

Sum the nectar of all the fl owers evauatesto 325

It isinteresting to compare the last example (Sum) with how it might look in atypical pro-

gramming language:

int sum= 0;
for (i=0; i<cards.length(); i++) {
if (cards[i].containsValue("flower")) {
sum += cards[i].nectar;
}
}

return sum

This solution requires the programmer to create and maintain a data structure allowing

accessto all of the flower objects, plustwo temporary variables, three kinds of parentheses

118 A Programming System for Children that is Designed for Usability

The HANDS System

or brackets, two kinds of punctuation, and the complexities of iteration, function calls, and

array indexing.

5.13 Loop and Conditional Control Structures

This section describes the iteration and conditional control structuresin HANDS. Thereis
only one of each, but they are flexible enough to cover avariety of control structuresin
other languages. Each of these structures can accept multiple statementsinside each clause,
without the need for abegi n- end block or other grouping mechanism (see Section 5.6.3
on page 104 and Section 5.6.4 on page 104).

5.13.1 Iteration Control Structure
The aggregate and list operators, described in Section 5.9 on page 112 and Section 5.12 on
page 114, greatly reduce the need for iteration in HANDS. However, one high-level loop

control structureis available, if needed.

with <list>
<st at enent s>
end with

The statementsinsidethew t h statement are evaluated oncefor each iteminthelist. If the

list is empty, the statements are not executed at all.

5.13.1.1 Automatic Temporary Variable for Iteration
On each iteration, the read-only variablei t emis bound to successive items from the list.

| considered heuristically naming the this temporary variable, based onthe<l i st >
expression, similar to the way temporary names are formed in event patterns (see

Section 5.3.4 on page 99). For example, if the<l i st > expressionisaquery suchasal |

f | ower s, the temporary variable could be named f | ower . However, the<| i st >
expression is much less restricted than the event patterns — it could be a more complex
query, aliteral list, an expression, or a property that contains alist. It was impossible to
come up with a heuristic naming scheme that would provide useful and predictable names

in all of these cases, so the generic namei t emwas chosen.

A Programming System for Children that is Designed for Usability 119

The HANDS System

As an example, the following with statement will put up three dialog boxes, with the mes-

sages“1”,“2", and “3", beeping right before each dialog box comes up:

with 1,2,3

beep

tell item
end with

If loops are nested, the inner binding will mask an outer binding to the same identifier, so
the default identifier i t emcannot be used for both the outer and inner loops, if both need
to be accessibleinsidetheinner loop. Inthiscase, thecal | i ng each variant must be used
for at least one of the two wi t h statements (see Section 5.13.1.2).

5.13.1.2 Programmer-Specified Temporary Variable for Iteration
The programmer can bind the list items to a different temporary variable name:

with <list> calling each <identifier>
<st at enent s>
end with

On each iteration, the read-only variable <i dent i f i er > isbound to successive items

fromthelist. Thewordscal | i ng each were selected to emphasize that the itemsin the
list areindividually assigned to thevariable. The dternativecal | i ng i t wasalso consid-
ered, but it was rejected because programmers might have naturally interpreted this clause
to mean that the variable is an alias for the entire list — where the whole list is assigned to

the variable at once — rather than holding the individual items of thelist one at atime.

To illustrate this variant, this example will also put up three dialog boxes, with the mes-

sages“1”,“2", and “3”, beeping right before each dialog box comes up:

with 1,2,3 calling each i
beep
tell i

end with

120 A Programming System for Children that is Designed for Usability

The HANDS System

Thefollowing exampleillustrates the use of nested lists. Here nine dialog boxeswill come
up, with themessages“1a’,“1b",“1¢c",2a’,“2b",“2c",3a’,“3b", and“3 ¢”, witha
beep right before each dialog comes up:

with 1,2,3 calling each i
with a,b,c calling each j
beep
tell i,j
end with
end with

Thew t h statement can be used to create temporary bindings, even if iteration is not

needed. This example, binds highScoreto gane’ s scor e:

with gane’s score calling each highScore
tell “you have the new high score:”, highScore
end with

5.13.1.3 Iteration vs. Aggregates
In many situations, aggregates can be used instead of iteration (see Section 5.9 on

page 112). However, sometimes iteration is necessary. Consider this example, which sets
the nectar properties of the orchid, rose, and tulip cards in Figure 5-8 to separate random
values between 50 and 100:

with all the flowers
set nectar of the itemto randomfrom 50 to 100
end with

Thisachieves adifferent effect than if an aggregate operation had been used. In thisaggre-
gate assignment, r andomis evaluated only once and al of the flowers would receive the

same random value:

set nectar of all flowers to randomfrom50 to 100

5.13.2 Conditional Control Structure
A general i f statement isavailablein HANDS which incorporates the functionality of i f

statements as well asthe case and cond statementsin other languages. These three con-

A Programming System for Children that is Designed for Usability 121

The HANDS System

trol structureswere unified for consistency. Thereisno good reason that they should be dis-
tinguished as three different structures with unique names and syntaxes. The keyword
ot her wi se was chosen in order to have a uniform keyword that emphasizes that the

clauseis executed only if al of the prior conditions do not execute.

When there are multiple conditions, only the first one to evaluate to yes is executed. The
ot herwi se clauseisoptional, and is executed only if none of the previous conditions

were executed.
The variants of thei f statement are:
e A variant that lookslikeani f -t hen- el se statement:

i f <bool ean expression> then
<st at ement s>

ot herw se
<st at enent s>

end if

e A variant that looks like acond statement:

i f
<bool ean expressi on> then <statenents>
<bool ean expression> then <statenents>
ot herw se <st at ement s>

end if

e A variant that looks like acase statement:

i f <expression> <relational operator> ...
<expressi on> then <statenents>
<expression> then <statenents>
ot herwi se <statenents>

end if

The ellipsisin the last variant is necessary to help the parser distinguish it from the other
variants. Evenwith thisassistance, the parser hasdifficulty providing useful error messages
when there is a syntax error in this control structure. Thisis agood example of atrade-off
between flexibility and good error messages. It is easier for the system to provide good

error messages when the language has a more rigid syntax.

122 A Programming System for Children that is Designed for Usability

The HANDS System

O her w se wasselected instead of el se or def aul t, becauseit makessensein all of
the control structure’ svariants, helpsto convey theideathat itisonly evaluated if all of the
prior conditions were not evaluated, and is more natural than the others—in natural lan-

guage, peoplewould usually say, “or else”, and would probably never ssimply say “ default”.
Here are some examples using thei f control structure:

if flower’'s nectar > 0 then
subtract 1 fromthe flower’s nectar
add 1 to the bee’'s nectar

end if

if the tenperature of the sinmulation is greater than 10 then
subtract 10 fromthe tenperature of the sinulation

ot herw se
beep

end if

i f
taxform s amount > 0 then tell “please remt paynent®
taxforms anount < 0 then tell “refund will be sent”
ot herw se tell “we’re even”

end if

if player’s score > ...

10000 then tell “your score is excellent!”
1000 then tell “your score is very good!”
100 then tell “your score is fair!”
otherwise tell “you need nore practice!”

end if

5.14 Domain-Specific Support

HANDS has domain-specific features that enable progranmersto easily create highly-
interactive graphical programs. The system’s suite of events directly supports this class of
programs. The system automatically animates objects, generating events to report colli-

sions among objects as well as input from the user via the keyboard and mouse.

5.14.1 Graphical Objects
It is easy to create graphical objects and text on the screen, as described abovein

Section 5.2 on page 89. All cards have x and y positions which specify where the top left

A Programming System for Children that is Designed for Usability 123

The HANDS System

corner off the object is located. See Section 5.14.5 on page 129 for information about the
coordinate system. A back property can be created to specify the appearance of the object.
The system automatically determines the extent, or bounding box, of the object for use by
the mouse detection and collision detection algorithms. Thisinformation is not accessible
to the programmer, although it would often be useful for the programmer to have accessto
thisinformation. For example, to programmatically position an object just to the left of a
wall, it is necessary to know where the right edge of the object is. Making this information

accessible through additional properties would be a straightforward extension to HANDS.

5.14.2 Animation

Any card that contains integer or floating point numbersin the properties named speed
and di r ect i on isautomatically animated by the system without any programming.
Speed isarelative value indicating how many pixels the object should be moved during
each time step, and can be a positive or negative. Numbers in the range of about +/- 5 are
most useful, because larger numbers cause the object to move too far in each time step,
which can make the motion appear jerky and could interfere with collision detection (see
Section 5.14.4 on page 127). Di r ect i on isan angle specified in degrees (0 to 360, but
larger and negative values wrap correctly), adopting the convention from math that zero
points to the right and the angle increases in a counter-clockwise direction. Since some
usersmay not be familiar with this convention, an image of acompassisshown onthetable

in HANDS for the user to refer to when working with directions (see Figure 5-1).

5.14.2.1 Method Used by Animation Engine
Each time the animation engine runs, it processes every card that haslegal speed and direc-

tion values. The new position for the card is calculated as follows:

newX = ol dX + (speed * cosine(direction))
newY = ol dY + (speed * sin(direction))

Thiscal culation uses doubl e-precision, and the new floating point position isstored into the

x andy propertiesof the card. Thesefloating point values are rounded to determine the new

pixel location for the object. For small speeds, the animation engine may have to run mul-

tiple times before the object moves enough to change its pixel location on the screen.

124 A Programming System for Children that is Designed for Usability

The HANDS System

This sub-pixel method for computing and storing the object’ s position gives the program-
mer fine-grained control over the directions of objects, and their relative speeds. This
makes it possible to create some kinds of programs such as molecular smulations that are
not directly supported in systems that do not have sub-pixel positioning. For example,
Stagecast [Joers 1999] uses a grid for positioning objects, and graphical rewrite rules for
deciding whether to move an object and to where to move it. Even if the grid is one-pixel
in size, it offers only eight adjacent cells for the graphical rewrite rules to move an object
into, producing horizontal, vertical and diagonal motions. To implement motions along
other angles would require the programmer to supplement the graphical rewrite ruleswith
manual calculation and storage of sub-pixel locations, using formulas similar to the ones
built into HANDS.

Aslong as speed is no greater than 1, the object is guaranteed to move at most one pixel
during each run of the animation engine. Faster speeds have an impact on collision detec-
tion (see Section 5.14.4 on page 127).

5.14.2.2 Examples of Using Animation
For example, consider the card in Figure 5-9. This card has a speed of 1 and a direction of

270, so when the programis running it would move down slowly. If the speed was changed

A Programming System for Children that is Designed for Usability 125

The HANDS System

to 5, it would move faster. It would move up if its speed was changed to -5, or itsdirection

was changed to 90.

Buzzy -
>

name | val e I
cardname Euzzy

® I7a
Y 3.0
back bee.qif
speed 1
270

direction

Figure 5-9. This card has a speed of 1 and adirection of 270, so it would move down slowly when the
program is running. Changing the speed to 5 would make it go down faster, and changing the direction to 90
would make it go up.

Thiscombination of features permitsthe programmer to implement sophisticated behaviors
with only afew lines of code. For example, the following event handlers make the card
shown in Figure 5-9 respond to the U, D, L, and R keysto go up, down, left, and right,
respectively:

when U is typed
set Buzzy’'s direction to 90
end when

when D is typed
set Buzzy's direction to 270
end when

when L is typed
set Buzzy’'s direction to 180
end when

when R is typed
set Buzzy’'s direction to O
end when

126 A Programming System for Children that is Designed for Usability

The HANDS System

Another example is, after giving the beesin Figure 5-1 initial speeds and directions, the

programmer can use this event handler to make them fly around like bees:

when any bee changes
add randomfrom-5 to 5 to the bee' s direction
end when

Each time the system moves one of the bees, an event is generated indicating that the card
has changed. Thisevent handler responds to that change by making asmall random change
to the bee’ s direction in the range of -5 to 5 degrees. Note that this change causes another
changes event to be inserted into the event queue for this bee card. When this new event
iseventually removed from the queue, thisevent handler will run again, once again making

asmall change to the bee’ s direction.

5.14.3 Mouse Click Detection

When the mouse is clicked on the board, mouse click events are generated for each object
that islocated under the click location. Thisis determined by checking whether theclick is
within the bounding box of the image or string that is displayed on the card’ s back. For
images that are not rectangular and oriented parallel to the x and y axes, clicks near the
image but not appearing to touch it may actually be within the bounding box and will there-

fore generate a clicked event for that object. We hope to fix thisin the future.

5.14.4 Collision Detection
The collision detector is responsible for generating events when two objects collide into
one another. Onceacollision has been reported between apair objects, no further collisions

are reported until they have moved apart.

5.14.4.1 Method Used by Collision Detector
The collision detector is run each time an object’ s position is changed. This can happen if

the x or y properties are modified by an event handler, if acard is dragged around while
the program is running, or when Handy usesthespeed and di r ect i on valuesto move

the object. Only the new position of the object is used in the collision detection calculation.

For each abject, the system maintainsacollision list holding other objectsthat are currently
in a collided state with this object. If the collision detector determines that thereis acolli-

A Programming System for Children that is Designed for Usability 127

The HANDS System

sion with an object that is not on this collision list, the collision is reported and the other
object is added to the callision list. If the collision detector determines that thereisacolli-
sion with an object that is already on the collision list, the collision is not reported. If the
collision detector determines that an object on the collision list is no longer colliding with

this object, the other object is removed from the collision list.

Collisions are detected and reported in a pairwise fashion. The objects that have collided
areboth listed intheval ue property of the collision event. If three objects collide at once,
three separate collisions are reported, one for each pair of objects. Thisworks correctly in
the case of aball striking two wallsat acorner, but further investigation isrequired to deter-
mine if this works correctly in more complex multi-object collisions such as with billiard
balls.

5.14.4.2 Limitations of the Collision Detector
Collision detection uses bounding boxes, and is subject to the same issue as mouse clicks,

where the bounding box may include area that appears to be outside the image. A better
collision detection algorithm would use the actual shape of the object to determine when it

collides, but that work was outside the scope of thisthesis.

When the speed of an object is no more than one pixel at atime, the collision is detected
when the objects are butted against one another according to their bounding boxes. A prob-
lem arises when an object has alarge value in its speed slot. As described in

Section 5.14.2.1 on page 124, the animation engine may move the object by multiple pixels
inasingle step. If the object jumps completely past another object in one step, no collision
is detected or reported. Even if the collision is detected, the objects may move enough in
one step to penetrate one another, preventing the programmer’ s collision handler from exe-
cuting exactly when the objects make contact. Also, in the current system it isdifficult for
the programmer to determine the direction of the collision or which surfaces of the object
collided.

A better method would be for the animation engine and collision detection algorithm to
work more closely, calculating a path for the object instead of ssmply calculating a new
position. The collision detector could check for collisions along the entire path, and the

algorithm could provide additional information such as the actual point of impact. Other

128 A Programming System for Children that is Designed for Usability

The HANDS System

researchers have already addressed these problems (e.g. [Baraff 1989]), but improving the

collision detection algorithm was beyond the scope of thisthesis.

5.14.5 Coordinate System

In HANDS, the origin of the coordinate system isthetop left corner of the screen. X values
increase as you move to the right, and y values increase as you move down. | considered
tying the coordinate system to the lower |eft corner of the board, to better match the coor-
dinate system children learn in math class. However, issues arose about what to do when
the board is moved or resized: should the cards move with the board or should this cause
the coordinates of every card to change? Also, the possibility of negative coordinates
seemed to be an unnecessary complexity. In the end, | decided to leave the coordinate
system theway it isin virtually all other computer systems, but to do internal transforma-
tions to make the angles (directions) work the same as they do in math class: zero degrees

to the right, and increasing in a counter-clockwise direction.

5.15 Programming Environment
The HANDS programming environment includes some basi ¢ support for building, running,

testing, and debugging programs.

5.15.1 System-wide M enu Commands

The following menu commands are always available in the HANDS menu:

* New
Creates anew blank program, by removing all cards and event handlers from the sys-

tem. If there are unsaved changes, the user isfirst given an opportunity to save them.

* Open...
Displays afile browser dialog box, allowing the user to select a program file to be
loaded into the system. Before loading the program, all existing cards and event han-
dlersare removed. If there are unsaved changes, the user isfirst given an opportunity to

save them.

e Import...

Displays afile browser dialog box, allowing the user to select a program file to be

A Programming System for Children that is Designed for Usability 129

The HANDS System

imported into the existing program. All existing cards and event handlers are kept,
unless they are duplicated in the imported file. If the imported program has a card with
the same name as an existing card, the user is given a choice of replacing the old card,
having the system rename the new card to have a unique name, or ignoring the new
card. If an imported event handler handles the same event as an existing event handler,
the user is given a choice of replacing the old event handler, having the system automat-
ically merge the code of the two event handlers, or ignoring the new event handler. The
system merges event handlers by producing an event handler that first lists al of the
statements from the original event handler, followed by afew blank lines, and then all

of the statements from the imported event handler.

Save
Saves the entire program, including all cards and event handlers, to itsfile. If the pro-
gram has not yet been associated with afile, this command acts like the “ Save As...”

command.

SaveAs...
Displays afile browser dialog box, allowing the user to specify afile name and loca

tion. The program, including al cards and event handlers, is saved to thisfile.

Revert

After confirmation from the user, restores the program to its state at the last time it was
saved. If the program has never been saved, this command will revert the program back
to ablank program.

Quit

Quits HANDS. If there are unsaved changes, the user isfirst given an opportunity to

save them.

The following menu commands are always available in the Programming menu:

Open Handy’ s Thought Bubble

Brings up the Event Browser (Figure 5-10 on page 131).
Open Testing Window

Brings up the Testing Window (Figure 5-13 on page 136).

130 A Programming System for Children that is Designed for Usability

The HANDS System

Show Card List
Brings up the Cards window (Figure 5-14 on page 138).

Show Handy’ s Hand
Hides the table and all objects on the table — including the board, card pile, and the
cards that are on the table — and shows Handy’ s hand (Figure 5-15 on page 139).

Animate Handy
This menu item toggles whether Handy’ s animation is shown when the program is run-
ning (see Section 5.2.2 on page 94). This setting defaults to on, but the programmer can

turn it off if the animation is distracting.

5.15.2 Event Browser

Figure 5-10 shows the inside of Handy’ s “thought bubble”, which isthe browser for event
handlers. The left pane of the event browser lists all of the complete and syntactically-cor-
rect event handlersin green. Any event handlers with parsing errors are listed in red, and
are ignored when the program is run. The code for the selected event handler isshownin
the top right pane, and any error is shown in the bottom right pane.

[~] Handy"s Thought Bubble
Edit Build

Hands

Delete Go to Testing Window

any bee collides into any flow :
anything happens
Dis typed

Lis typed
program starts
Ris typed

Lis typed

J{when any bee collides into any flower

end when

subtract 1 from the flower's nectar
add 1 to the bee's nectar
beep

unfinished-2

Figure 5-10. HANDS is an event-based system. The left pane lists seven complete (syntactically correct)

event handlers, and one that is marked in red because it is not finished (unf i ni shed- 2). The upper right
pane shows the code for when any bee collidesinto any flower. The lower right pane would report any error
messages for this event handler.

A Programming System for Children that is Designed for Usability 131

The HANDS System

5.15.2.1 Editing Codein the Event Browser
Thetop right pane of the Event Browser supportsfreeform text editing, with commandsfor

cut, copy, paste, and multi-level undo and redo. It aso alowsthe programmer to enter pro-
gram text by selecting items from context-sensitive menus, which saves typing and offers
assistance with the language syntax (see Section 5.15.2.2 on page 132). This hybrid
approach offers many of the benefits of structure editors (e.g. MacGnome [Miller 1994]),
but it isless restrictive. For example, unlike most structure editors, the system alows the
programmer to spend large portions of an editing session with syntactically-incorrect code

while working towards a solution.

5.15.2.2 Context-Sensitive M enus
The Build menu is context-sensitive, listing the syntactically legal choices at the insertion

point (see Figure 5-11). When one of these menu items is selected, the system inserts the
text into the program at the insertion point, ensuring that it is surrounded by spacesto keep

it separated from adjacent code.

These menus are constructed on the fly when the user clicks on the menu bar, by submitting
all of the program text up to the insertion point, but nothing past the insertion point, to the
parser. Sincethiswill be anincomplete event handler, the parser will generate an error mes-
sage. A list of legal choicesis extracted from this error message. A small lookup tableis
used to make some basic transformations to this data, such as coal escing multiple-word
sequences into a single menu choice (for example, after selecting “anything” from the con-
text-sensitive menu, the next menu would always have a single choice: “happens’; so the
lookup table changes the first menu to: “anything happens’). The choice “identifier” is
replaced with a submenu containing all of the cards and properties in the system. Sets of
related items such as the list operators are a'so grouped into submenus. The main menu is
sorted alphabetically to help the programmer find the desired choice.The disadvantage of
using the parser to generate this menu is that it does not work if there is a syntax error in
the text before the insertion point. The JavaCC parser stops at the earlier error and does not
continue parsing. In this case, an explanatory message is placed into the menu instead of a
list of possible choices. However, any errors after the insertion point do not affect the sys-

tem’ s ability to generate this menu.

132 A Programming System for Children that is Designed for Usability

The HANDS System

[]Handy's Thought Bubble
Hands Edit | Build

appears
changes
clicked
collides when any bee |

disappears

unfinished-

| end when

[]Handy's Thought Bubble
Hands Edit | Build

oLl Hew || Delete || Check
append

beep : :
divide Jwhen any bee collides

end |
flip 1 end when
if :

into

unfinished-

make
multiply
pickup
putdown
et
subtract
tell
with

<enter a strina>
any

anything happens
Card or Property Name b <enter a Card or Property Name>
nothing happens

nronram
HHEL

beeTotal

heeTatalSian
bestBee
bestBeeSign
Bumbles
Bumbles2?

[=5

bestBee

cardname
irts

W W W W, T ¥

ack

pt]
»

besibee s

[T+]

bestBee’s cardname
bestBee s x
bestBee’s y

eztBes’s hack

=
=
e
)
&
L . .

Figure5-11. HANDS has context-sensitive menus to assist in constructing correct programs. When a menu
item is selected, the text is entered into the program.

A Programming System for Children that is Designed for Usability 133

The HANDS System

5.15.2.3 Parsing Code that has been Edited
The program can be edited whether or not it isrunning. Edits have no effect on the program

until the parser isinvoked. This happens when the programmer presses the Check button
(see Section 5.15.2.4 on page 134), selects a different event handler in the left pane, or
closes the thought bubble window. If the event handler parses correctly, the name of the
event in the pane at the left is updated with text describing the event name, and the pane at

the bottom right shows the message “ok”.

If there is a parsing error, the name of the event handler is not changed in the left pane,
except that itismaderedif it wasgreen. Thelower right pane showsthe error messagefrom
the parser. In the upper right pane, the insertion point is moved to the location in the code
where the error occurred. The JavaCC-generated parser only reports the first error; subse-
guent errors are reported only after thefirst one has been eliminated. Several example error
messages are shown in Figure 5-12. The system does some manipulation of the error mes-
sagesreceived from the JavaCC parser. For example, theintroductory text “ Thereisaprob-
lem” is prepended to the error message, quotes are stripped from around each item in the
list of expected tokens, and instead of reporting an “end of file error” the message says “I
expected more text after this.” More work could be done to improve these messages. For
example, the message that lists expected tokens could be modified so that “<INTEGER _
LITERAL>" and “<FLOATING_POINT_LITERAL>" are replaced with “anumber”.

5.15.2.4 Command Buttonsin Event Browser
The"New” button at the top of the event browser creates a new event handler inthelist on

the left, with aname like “ unfinished-2". The nameis shown in red because the new event

handler is not complete. It starts with this skeleton of an event handler:

when

end when
The“Delete” button can be used to remove aselected event handler from the program. The
system first prompts the user for confirmation.

The* Check” button can be pressed by the programmer at any time. Thisinvokesthe parser
on the event handler as described in Section 5.15.2.3 on page 134.

134 A Programming System for Children that is Designed for Usability

The HANDS System

[_JHandy s Thought Bubble

Hands Edit Build

| New ||

when anything happens
: | set pacman's speed to
i|end when

(

new
duplicate

| was expecting to find one of:

Delete | | Check | | Go to Testing Yindow

unfinished-2

i|when anything happens

set pacman's speed to O

pickup
putdown
fiip

Py

=2l

Y ls)
[ZL¥ LY

subtract
multiply
divide
append
tell
make
beep

et

ﬁrﬂ:fﬂeflfﬂmgi when 5 is typed

There is a proklem: | don't know what to do with the extra text after the cursor,

Figure 5-12. This figure shows several examples of the error messages that are displayed when thereisa

parsing error.

A Programming System for Children that is Designed for Usability 135

The HANDS System

5.15.3 Testing Window

When developing a program, it is useful to be able to test code without having to put the
code into an event handler, run the program, and wait for the event to occur. The system
provides a Testing Window for this purpose. The Testing Window can be brought up by
selecting “ Open Testing Window” command from the Programming menu, or by clicking
the “Go to Testing Window” button in the Event Browser. The Testing Window is shown
in Figure 5-13. Any statement or expression can be entered into the top right pane of this
window. When the “ Test It Now” button is pressed, the code is parsed, and if there are no
parsing errors, then it is evaluated. The lower right pane of this window reports the result
of the evaluation if the code was an expression, or the message “ ok” if the code was a state-
ment. If there are errors, the lower right pane shows the error message, similar to the Event

Browser.

[]Testing Window -
Hands Edit Build

| sum nectar of all bees

Figure 5-13. The testing window allows statements and expressions to be evaluated immediately. The code
is entered in the upper right pane, and the result is shown in the lower right pane. The left pane contains a
history of the code that has been tested.

The Testing Window keeps afull history of the code that is evaluated and the evaluation
results. The left pane shows this history in anumbered list containing the code that was
evaluated. When one of theitemsin this history list is selected, the right two panes are
restored to their state right after that item was evaluated — the code in the top pane and the
result of the prior evaluation in the lower pane. The programmer can then execute the code

again, with or without editing it, by pressing the“ Test It Now” button. In either case, anew

136 A Programming System for Children that is Designed for Usability

The HANDS System

entry is made at the end of the history list and the result window is updated with the new

result of evaluating the code.

After each press of the “Test It Now” button, aswell as any time an item is selected from
the history list, the full text in the upper right pane is selected. Thisis for the convenience
of the programmer, who may want to copy it for pasting into an event handler, or to type

over it with new code. The “Clear” button can also be used to clear the contents of the top

right pane.

The same menus are provided as in the Event Browser, including menus for cut, copy and
paste, multi-level undo and redo, and the context-sensitive Build menus. The “Go to
Thought Bubble” and “Go to Testing Window” buttons can be used to quickly move back

and forth between the Event Browser and the Testing Window.

5.15.4 CardsWindow

The Cards window, shown in Figure 5-14, lists all of the cards in the program. It can be
accessed by selecting the“ Show Card List” command in the Programming menu. Clicking
on one of the cardsin thislist flipsit face-up. Thisisuseful if acard isdifficult to locate,
isbehind another card, or istoo small to click on accurately. Using thiswindow to flip cards
has no effect onthevisibility of acard, whichiscontrolled by whether itisin Handy’ shand
(Section 5.15.5) or on the table.

5.15.5 Handy’sHand

When Handy picks up cards from the table, they become invisible. The menu command
“Show Handy’s Hand” allows the programmer to look at the cards in Handy’ s hand
(Figure 5-15). In thisview, the table, board, new card pile, and all the cards that are not in
Handy’ s hand areinvisible. Handy’ s picture is changed to highlight his hand. The cardsin
his hand are shown at the screen positions where they would beif they were put back down
without moving themfirst. The card list window can be used to flip these cards, in the same
way it isused in the normal view. The system automatically returns to the normal view
when the user selects any menu item (including toggling the “ Show Handy’ s Hand” menu

item) or clicks on Handy’ s picture.

A Programming System for Children that is Designed for Usability 137

The HANDS System

Eﬁnrds z’ =] "%u%j;
. L Al p—_— -
bumbies] Rose Ell

bumbles2 n I

buzzy name val U

buzzy2 cardname Rose

fuzzy . x 205 l ‘
fuzzy2 1 512 [

grass . kind flower

hﬁl’ié‘f back rDSE.gif

honey?2 . nectar 93

killer o

killer? -

left

Rilwr

sy

lity2

moctnartar

mostnectarsign
right

rose
rose2
strines
stripes2
sunflower

Figure5-14. The Cards window (at |eft) listsal of the cardsin the program. When the user clicks one of the
card namesin this list, the card is flipped face-up.

5.16 Runtime Errors

When thereisaruntimeerror during program execution, the event card that caused the error
is displayed face-up on the table, and the error is reported in adialog box. If the error was
generated from the test window, thereisno event card. If the error relatesto any other card,

it is also flipped face-up.

The error messages in HANDS are tuned to be as specific and helpful as possible. For
example, in user testing with children, | observed that the most common error was amis-
spelling or other typographical mistake. This often causesfailureto find acard or property
that isidentified in the code, so the messages for thiskind of error were customized to sug-
gest apossible spelling problem. An exampleis shown in Figure 5-16. In this case, the pro-
grammer misspelled the word “ nectar”, so the program attempted to access a property that

did not exist.

138 A Programming System for Children that is Designed for Usability

The HANDS System

Hands Programming

W= !
“‘J-|| |

P

P
T

+z

Figure5-15. When the programmer display’s Handy’s hand, only the cardsthat are in his hand are shown, in
the positions they would be in on the table. The table, board, new card pile, and al other cards areinvisible
in this view. Handy’s picture is changed to highlight his hand.

The error dialog box offers two choices, to stop the program or to keep going. If the user
chooses to keep going, the erroneous expression evaluates to the string ERROR. The
ERROR valueis propagated to subsequent cal culations that depend on the value, similar to
the error values in spreadsheets.

- Y e [—— i .8 .] || 1]
elete | | Lheck | | Lo to Testing Y¥indow | " r.% _—— _ |”
.. [~ %} |_|Buzzy S |
“|\when buzzy is clicked 2 | LT (B
; add 10 to the necter of buzzy ﬁﬁ
send when Al x g03.8916.. |
il £ Fyevreenny | |
3 ‘E}J Y o LFUET .. IE
Aok kind bee
: f back bee.gif

f nectar 3
spesd 3
y direction 73 -
A T
L)

walue Buzzy
x G25

Iz "Buzzy~ the right card?

230

Y

[
= 1]
e —r————
=———Thereisaproblem.=———H cardname Cven
type eventcard
. The card “Buzzy~ does not have a “necter”™ property. ‘ group clicked
| Ky 1]
| B I
| NI 1]
ML T [

is the properiy speiied “necier” on the card?

| Keep Going || |
L

Figure5-16. An example runtime error. Related cards are automatically flipped face-up. If the user chooses
to keep going, the erroneous expression returns the string ERROR. The ERROR value is propagated to
subsequent calculations that depend on the value, similar to error values in spreadsheets.

A Programming System for Children that is Designed for Usability 139

The HANDS System

Figure 5-17 contains additional examples of error messages for:
1. Referring to a nonexistent card.
2. Division by zero.

3. Attempting to store a string into the x property, which must be numeric. The x, y and

cardname properties are the only properties that have restrictions on what can be stored

in them.
4. Attempting to perform subtraction on a non-numeric value.

5. Attempting to use the Boolean operators on non-Boolean values.

[0 =—=Thereis aproblem.=——=H
e I do not see a card named “buzy".
.
13 the card s name spelied “bhuzy ™7
[— . I =]
| Keep Going | | Stop |
| | ==————Thereis aproblam.="0————H

e Dops, there must be a mistake. It i3 not possible to divide by Zero.

Keep Going | | Stop

[0 =———=nThereisaproblem.=—"——H|.

e I cannot put “abc™ into Card-1"s x because it is not a number.

Keep Going | | Stop

[J=——Thereisaproblem.=>————H

Dops, there must be a mistake. | can only do subtraction on numbers.

|1 Step |
Step i

—

T

|

‘ | Kee
|

‘ LIl =———————Therais a probiem.
-

.
@ Oops, there must be a mistake. "AND~ and "OR™ only work with “yes™ and “no~.

| Keep Going || Stop I

..M

i

Figure5-17. Examples of error messages for 1) referring to a nonexistent card, 2) division by zero, 3)
attempting to store a string into the x property, which must be numeric, 4) attempting to perform subtraction
on anon-numeric value, and 5) attempting to use the Boolean operators on hon-Boolean val ues.

140 A Programming System for Children that is Designed for Usability

The HANDS System

5.17 Implementation Details

HANDS isimplemented in Java, using the JFC/Swing classes to implement the user-inter-
face. All of the user interface e ements are widgets from the Swing toolkit. The main
HANDS application uses a JDesktopFrame, and all of the other windows are Jinternal-
Frames. The system makes heavy use of the Java2 collections classes, which | back-ported
into the pre-Java2 (Java 1.1) runtime that is available under Macintosh OS 9.

The parser was generated from a grammar description using JavaCC/JJTree [Webgain
2001]. One of the advantages of JavaCC isthat it produces top-down recursive descent
parsers, which can be used to begin parsing at any non-terminal. It has flexible lookahead
capabilities that permit most of the grammar to efficiently parsed asLL (1), but at complex
points the grammar | could specify greater lookahead amounts to resolve ambiguities. The
lookahead can be specified syntactically, rather than specifying a fixed number of tokens.

JJTree produces a parse tree, which iswalked by the interpreter.

Simpler programs written in HANDS execute at barely adequate speeds on the five-year-
old computers | used for devel opment and testing. In the user study described in Chapter 6,
speed was not an issue for the participants. However, programs with large numbers of
objects or very complex computations run too slowly, and garbage collection or thread
scheduling cause pauses in animations. | believe this slowness problem is not intrinsic to
the model of computation or the event based paradigm, and could be addressed by looking
for ways to improve efficiency (such as by compiling, reducing the burden on the garbage

collector, caching numeric values to reduce conversions back and forth to strings, etc.).

The system is comprised of about 44 non-anonymous classes, about 80% of them hand-
written and the rest generated by JavaCC, and it is about 20,000 lines of code, about 50%
hand-written code and 50% generated by JavaCC.

5.17.1 HANDS Runtime | mplementation

Currently, all of the HANDS runtime processing occursin a Swing Timer thread, whichis
set to be called as frequently as possible. The event handler runs until the event queueis
emptied or it has dispatched 20 events, then the animation engine runs for one time step,

and then control is released by the Timer thread. The Swing user interface code takes over

A Programming System for Children that is Designed for Usability 141

The HANDS System

and performs screen updates and any other processing it needs to do, and another cycleis

begun as soon as Swing gives control to the Timer thread again.

This strategy means that animation speeds are dependent on processor speed, the number

of events generated by the program, and on the complexity of the code inside the event han-
dlers. It isnot possible to awaysjust wait until the event queueis empty because some pro-
grams may always generate new events (card changed events) in the course of processing

events.

The choice of 20 events dispatched per cycle was determined by experimenting with vari-
ous values and selecting one that balances the tradeoff between good animation perfor-
mance and the ability of the event processor to keep the event queue reasonably empty and
to respond quickly to events. However, this choice is dependent on the particular HANDS
program that isrunning. It workswell for smaller programs, but isnot optimal for programs
with avery large number of animated objects. For example, each object that is moved by
the animator generates a card changed event, so, without even considering other events
such as collisions, if there are more than 20 moving objects it will not be possible for the
event processor to dispatch all of the events in the queue before the animator runs again.
One optimization that would partialy relieve this problem would beto insert card changed

eventsinto the event queue only if thereis an event handler actually watching for them.

If the animator runs before the event processor has been able to empty the event queue, a
problem with collision detection arises. For example, supposethe programiswrittento stop
an object or change its direction when it has acollision. If the collision event is not pro-
cessed during the 20 events that are processed in a cycle, the animation engine will run

again, moving the object further before the program has had an opportunity to respond.

| experimented with running the animation engine in a separate thread from the event pro-
cessing code, so that it would run on amore regular schedule, even if the event processing
code was bogged down by very complex event handlers and a full event queue. This actu-
ally compounded the problem mentioned above regarding collision detection, because this
removed the guarantee that 20 pending events would be handled before the next time the

animation engine was run.

142 A Programming System for Children that is Designed for Usability

The HANDS System

These problems arise due to alack of computational resources. Using afaster processor or
compiling HANDS code instead of interpreting it, would relieve this problem. With faster
execution, the animation engine would run on aregular schedule and the event processor

would have enough computational power to keep the event queue nearly empty.

5.17.2 Format for Saved Files

HANDS programs are saved as ordinary text files. These files are not intended to be edited
by HANDS users, but programmers could use external text editors to edit these files, for
example, to select parts of aprogram to copy into another file. Inthesefiles, cardsarelisted
on asingle line, beginning with the card name, followed by a space-separate list of prop-
erty:value pairs, and ending with a semicolon. Event handler codeis stored exactly the way
it isseen in the Event Browser. In order for the parser to be able to read in syntactically
incorrect event handlers, they stored inside special comment symbols($) which are used

exclusively for this purpose.

5.18 Sample Program

Ehnard
The bee w

He has this much nectar: "w C%

All the bees have collected:

&

Figure 5-18. In this example program, bees fly around collecting nectar from flowers.

This section describesthe entire code for the program shown in Figure 5-18, where beesfly

around collecting nectar from flowers. The large bee named Buzzy can be controlled by

A Programming System for Children that is Designed for Usability 143

The HANDS System

typing keysindicating which direction it should fly. Appendix B has additional examples
of programs that have been build in HANDS.

e Thecardsfor al of the bees:

Bunbl es x: 530 y: 60 ki nd: bee back: bunbl eb. gi f nectar:5 speed: 1 direction: 261
Bunbl es2 x: 465 y: 35 ki nd: bee back: bunbl eb. gi f nectar:5 speed: 1 direction: 241
Buzzy x: 610 y:194 ki nd: bee back: bee.gi f nectar:3 speed: 3 direction: 464,
Buzzy?2 x: 677 y:102 ki nd: bee back: bunbl eb. gi f nectar: 6 speed: 1 direction: 267;
Fuzzy x:450 y: 120 ki nd: bee back: bunbl eb. gi f nectar: 3 speed: 1 direction: 279;
Fuzzy2 x: 580 y: 290 ki nd: bee back: bunbl eb. gi f nectar:7 speed: 1 direction: 296;
Honey x: 280 y: 230 ki nd: bee back: bunbl eb. gi f nectar:7 speed: 1 direction: 297,
Honey2 x: 490 y: 260 ki nd: bee back: bunbl eb. gi f nectar:1 speed: 1 direction: 253;
Killer x:650 y:90 kind: bee back: bunbl eb. gif nectar: 0 speed: 1 direction: 264,
Killer2 x:205 y: 108 ki nd: bee back: bunbl eb. gi f nectar: 0 speed: 1 direction: 265;
Stripes x:300 y: 150 ki nd: bee back: bunbl eb. gi f nectar: 8 speed: 1 direction:273;
Stripes2 x:403 y: 202 ki nd: bee back: bunbl eb. gi f nectar:3 speed: 1 direction: 292

e Thecardsfor al of the flowers:

Lily x:318 y:329 kind: flower back:lily.gif nectar:94;

Lily2 x: 675 y: 308 kind: flower back:lily2.gif nectar: 96;

Rose x:205 y: 319 kind: fl ower back:rose.gif nectar:98;

Rose2 x:465 y: 328 kind: fl ower back:rose2.gif nectar: 94;

Sunfl ower x: 555 y: 330 kind: flower back:sunflower.gif nectar: 92;

» Thecard for the grass:

grass x:198 y: 431 back: grass.gif kind: hwal | ;

e The on-screen text:

beeTotal x: 406 y: 60 back: " ???";

beeTot al S gn x: 200 y: 60 back:"A|l the bees have coll ected:";
best Bee x:406 y: 20 back: "???";

best BeeSi gn x: 200 y: 20 back:"The bee with the nost nectar is:";
nost Nect ar x: 406 y: 40 back:"???";

nost Nect ar Si gn x: 200 y: 40 back:"He has this nuch nectar:";

144 A Programming System for Children that is Designed for Usability

The HANDS System

* These event handlers allow the user to type keys to make Buzzy, the large bee, move

down, left, right and up:

when Dis typed

set buzzy's direction to 270
end when
when L is typed

set buzzy's direction to 180
end when
when Ris typed

set buzzy's direction to 0
end when
when Uis typed

set buzzy's direction to 90
end when

* Thisevent handler transfers one unit of nectar from aflower to abee that fliesinto it:

when any bee collides into any fl ower
subtract 1 fromthe flower's nectar
add 1 to the bee's nectar
beep

end when

» Thisevent handler updates the on-screen text when necessary:

when any fl ower changes
set bestBee's back to cardw thgreatest nectar of all bees
set nostNectar's back to nectar of (bestbee's back)
set beeTotal's back to sumnectar of all bees

end when

* Thisevent handler initializes each bee to fly in arandom direction

when programstarts
with all bees calling each b
set direction of b to randomO to 359
end with
end when

5.19 Importing Components

HANDS programs can be extended by importing one or more existing programs. The
system integrates the new program by adding the cards to the table and adding the event
handlers to the thought bubble. If ahandler exists for a particular event in both programs,
the system offers to merge the code automatically. This makesit very convenient to build
and use alibrary of small autonomous objects, each as a small program with one card and

the code to control its behavior.

A Programming System for Children that is Designed for Usability 145

The HANDS System

For example, the bees in Figure 5-18 do not stop at the edges of the board. However,
HANDS comes with a program called “Boundaries’ that can be imported into any other
program. This containsinvisible cardsthat are positioned along the edges of the board, and
code that responds to collisions by changing the direction of the colliding object to turn it
around. If thisprogram isimported into the program in Figure 5-18, the beeswould bounce
when they reach the edge of the board. A similar program can be imported to create an

invisible“trap-door” that causes objectsto beteleported to adifferent |ocation on the board.

A compass card contains alist of directions, like north, south, east, west, up, down, left,
right, etc. Importing this compass program would allow the programmer to use symbolic

directions instead of numeric directionsin their code, such asconpass’ s nort h.

Chapter 7 describes additional ideas | have about modularity and encapsul ation of program

components.

5.20 Summary

The unique set of featuresin HANDS isadirect result of the human-centered design pro-

cess | used. The implementation demonstrates the feasibility of the HANDS model for rep-
resenting computation. Chapter 6 presents a user study as well aslessformal evaluations

of HANDS.

146 A Programming System for Children that is Designed for Usability

CHAPTER 6 Eval uatl on

There are several waysthat HANDS can be evaluated. One way would be to conduct auser
study comparing the overall HANDS system with other programming systemsfor children
such as Logo [Papert 1980] or Stagecast [Smith 1994]. Thiskind of study would assessthe
entire system, but if HANDS wasfound to be statistically better or worse than the other sys-
tems, the study would not yield information about which features contributed to these dif-
ferences and in what proportion. It is also possible that some of the features enhance the
usability of HANDS and others detract from usability, but these effects would cancel each
other out in the study results. This kind of study also requires great care to perform rigor-
ously, because there are so many differences between HANDS and the other environments

that could confound the results.

On the other hand, an endless number of studies could be done to examine the effectiveness
of individual features of HANDS. In these studies, onewould try to isolate the features and
test them without confounds. If particular features are shown to be statistically better than
the features they replace, it would suggest that the features would be useful in other pro-
gramming systems. However these results would not tell us how the individual features
work together to enhance or hinder performance, or whether the system asawholeismore

effective than other systems.

A Programming System for Children that is Designed for Usability 147

Evaluation

In the context of thisthesis, | decided to conduct astudy that falls somewherein themiddle.
| chose to examine three key features of HANDS that are not found in most popular pro-

gramming systems: queries, aggregate operations, and the high visibility of program data.
In asensethe study skims off somethe most likely parts of HANDS to have an impact, and

tests them in arigorous way.

| designed the study to isolate these key features and compare them with realistic alterna-
tive methods like the ones required in most programming systems, while controlling all
other aspects of the programming experience. This evaluation can only answer questions
about the collective impact of the three features, and not their individual contributions. It
also says nothing definitive about the overall effectiveness of the HANDS system relative
to other systems. However, if these key features are shown to improve performance in this
study, it would suggest that they may also be effective collectively in other future and cur-
rent programming systems. The results of this study can also help us to form hypotheses
about both theindividual contributions of featuresand the overall effectivenessof HANDS,

to guide further evaluation in the future.

This chapter describes the user study of three key features of HANDS, and concludes with

some additional, less formal, evaluations.

6.1 User Study

The study examines the effectiveness of three features of HANDS: queries, aggregate
operations, and data visibility. For this study, a comparison system was constructed by
taking the HANDS source code and disabling these features. All other aspects of the system
were identical between the two conditions. The comparison system is still fully capable,
because HANDS contains aternative features that can be used to solve any programming
problem. These alternative features are realistic, because they are the features that must be
used in most other programming systems. In essence, these aternatives are: to create and
maintain data structures, to use iteration to operate on groups of objects one at atime, and

to use debuggers or inspectors to view program data.

148 A Programming System for Children that is Designed for Usability

Evaluation

6.1.1 Queriesand theAlternative

The HANDS query feature alows the programmer to assemble lists of objects on demand,
by asking for all the objects with data matching certain criteria. For example, in Figure 6-
lthequery al | fl ower s searchesfor all of the cards that contain the string “flower” or
“flowers’ in any slot and returns alist of their names(e.g.,,Lily, Lily2, Rose,

Rose2, Sunfl ower). HANDS supports more complex queries, but only this simple
keyword form of query was used in this study.

[*]Testing ¥indow :
Hands Edit Build

| =

| Test It How || Clear || Go to Thought Bubble |

1: all flowers

Lily, Lily2, Rose, Rose2, Sunflower
1

i [»

Figure6-1. In HANDS, programmers can use content-based queries to create lists of cards.

Most programming systems do not have aquery feature. In those systems, the programmer
must create and maintain data structures that provide access to the desired information.
Thisis also necessary in the limited version of HANDS. For example, the programmer
could create acard that holds alist of al of the flowers, as shown in Figure 6-2. Thislist

has to be updated each time a flower is added or removed from the program.

— —
[Jearden S |
>

narme | valug

catrdname garden

k4 492

vl 193

flowerList |Lily, LilvZ, Rose, RozeZ, Sunflower

beelist Bumbles, Bumblesz, Buzzy, BuzzyZ, Fuzzy, FuzzyZ, Honey, HoneyZ, Killer, Kille...

Figure 6-2. Other programming systems require the programmer to create and maintain data structures to
keep track of the program’s data. This garden card haslists of all of the flowers and beesin the system. When
one of these objectsis added or deleted, the list must be updated.

A Programming System for Children that is Designed for Usability 149

Evaluation

6.1.2 Aggregate Operatorsand the Alternative

In HANDS, all operations can be performed on awhole list of objects, including query
results, with a single command. For example, the code in Figure 6-3 will set the nectar
properties of all of the flowersto zero, no matter how many flowers there are. Continuing
with the above example in Figure 6-1, the Lily, Lily2, Rose, Rose2, and Sunflower cards

would all have their nectar properties set to zero.

set the nectar of all flowers to O

Figure 6-3. In HANDS, all operations can applied to lists of objects.

Most other programming Systems do not support aggregate operations. In those systems,
the programmer must iterate over the list of objects, operating on them one at atime. This
isaso the case in the limited version of HANDS, where the example shown in Figure 6-3

can be accomplished by the code shown in Figure 6-4.

with garden’s flowerList calling each the fl ower
set the nectar of the flower to O
end with

Figur e 6-4. Without aggregate operations, iteration must be used to operate on groups of objectsone at a
time.

6.1.3 Visibility of Data and the Alternative

All datain HANDS is stored on cards, in name-value pairs called properties (Figure 6-5).
Cards are always visible, even when the program is not running. They can be created and
edited by direct manipulation as well as by actions taken by the program itself. The prop-

erties of multiple cards can be viewed simultaneoudly.

Traditional programming systems often do not provide these features for data. Variables
might exist only temporarily while certain parts of the program are running. Data may not
be visibleto the programmer unless a debugging tool isused. In some systems, objects can

only be created by executing code, and they do not exist when the program is not running.

150 A Programming System for Children that is Designed for Usability

Evaluation

much nectar: 7?7 C% []Bumbies
have collected: ?7? >
narme walue
cardnarme Bumbles -
% B30
¥ &0
kind bee
bk bumblebqgif
nectar 5
speed 1
[Honey : direction 261
5 I —— -
name walue HINEVES: E }
cardname Haney > I —
x ZaE0 narnns val ug
Y 230 cardname Honey 2 -
kind bee ® 490
back bumbleb.gif Y 280
nectar 2 kind bee
speed 1 ‘balzk burnbleb.gif
direction 297 qnecmr !
speed 1
qdirection 263

Figure 6-5. In HANDS, dl datais stored on cards, which are visible and persistent. The properties of
multiple cards can be viewed at the same time.

The limited version of HANDS has only minor restrictions compared with these other sys-

tems. In the limited version, cards are only visible if they represent on-screen objects,

although all cards can be inspected, one at atime, using the Cards window (Figure 6-6).

This mechanism that is similar to the property inspector in Visual Basic.

Figure 6-6. Many programming systems do not

J—— F
| oo [P . - | [oo o - =1
I_ll..-ﬂrl]S.” ; E Iﬂ I_IIjI.II'I'IDIBSL ﬂ
beetotal |l »
beetotalsion EI i M valle
B i cardname Bumbles2 -
pestbee |G =
bestbeesign |EIX 176 |E
. . W 2G5
bumbias Vi -
1
bumbles2 ——
I s back pumbiebgit - jE
buzzy
nectar 5
buzzy2 anand 1
zpeed 1
If“H"'r |Eldirectiun 241 E
|fuzzy2 I7ZIN 4]

of a debugger or inspector to view data.

=0

ave visible representations of all data, and require the use

A Programming System for Children that is Designed for Usability

151

Evaluation

6.2 The Study

6.2.1 Participants

Volunteers were recruited from the fifth-grade class at a public elementary school in Pitts-
burgh. The studentsin this school are diversein race, socio-economic status, and academic
achievement. The 23 volunteersranged in age from 9 to 11 years. There were 12 girlsand
11 boys. All were native speakers of English, and none had computer programming expe-
rience. The participants cameto the Carnegie Mellon campus on one of two Saturday morn-
ings for a three-hour session, and were paid $20 for their participation. On one Saturday,
12 participants used the full-featured HANDS system (Full), and on the other Saturday 11
participants used the limited system (Limited).

6.2.2 Materials
Appendix G contains copiesof all of the materialsused in thisstudy. Thisincludesthe tuto-
rials and tasks described below, along with solutions to the tasks for each of the two con-

ditions.

In the Full condition, a 13-page tutorial was used to teach the participants the basics of the
HANDS system. The tutorial began with an empty program, and the participants built a
program with several flowers and a bee that flies around collecting nectar from them. The
beeis controlled by keyboard commands, and the program displays some basic statistics

about which flower has the least nectar and the amount of nectar the flowers have.

The tutoria for the Limited condition was derived from the full-featured tutorial. Those
portions utilizing afeature that was missing in the limited system were replaced with mate-
rial teaching the easiest way to use the system’s remaining features to achieve the same

result. This modification increased the size of the tutorial by one page, to 14 pages.

After completion of the tutorial, participants were given a two-page set of five tasks, plus
an optional bonus problem. Each of these tasks was selected because its solution would

make use of at least one of the features that are missing in the Limited system. All partici-
pants started the tasks by loading a partially implemented program. This program was sim-
ilar to the one they had been working on, but it had more bees and some pre-defined cards

to help solve the tasks. Once again, these material s were constructed to be as similar as pos-

152 A Programming System for Children that is Designed for Usability

Evaluation

sible in the two conditions, differing only where necessary due to the limitations of the
reduced-feature version of HANDS.

6.2.3 Procedure

The participants worked individualy, at their own pace. When they finished the tutorial,
they immediately started on thetasks. They were permitted to continue referring to the tuto-
rial while solving the tasks, and the task descriptions had referencesto rel evant pages of the
tutorial. Participants could stop working before the three-hour session was over if they fin-
ished the tasks, or if they wanted to quit for any other reason. At the end of the session, the
participants filled out a brief questionnaire, providing information about their prior com-

puter experience and indicating how much they enjoyed the activity.

During the sessions, the experimenters answered the parti ci pants questions and hel ped with
any problems that the participants encountered, unless the assistance would reveal part of
atask solution. In such acase, the experimenters simply referred the participantsto material
in the tutoria that might be helpful.

6.2.4 Results

Overall, the children enjoyed the activity. The average rating for enjoyment was 4.3 on a
scale of 1to 5. Thethreshold | used for testing significance was p<.05. There was a mar-
ginally significant difference in enjoyment between the two groups, although the trend was
in favor of the Full condition (4.5 to 4.0). In the Full condition, the children tended to rate
the level of difficulty to be lower than in the Limited condition (2.8 to 3.5), but this differ-

ence was aso only marginally significant.

There was no significant difference in performance between boys and girls. All of the chil-
dren were able to accomplish some programming by following the explicit instructionsin
the tutorial, and most of them completed the tutorial: in the Full condition, 75% (9 of 12)

of the participants compl eted the tutorial and began to work on the tasks; and thisratio was
82% (9 of 11) inthe Limited condition. Thisdifferenceisnot significant, and the remainder

of this analysis examines only the participants who achieved this level of success.

On average, the participants in the Full condition spent 121 minutes working on the tuto-

rial, while the participantsin the Limited condition spent 139 minutes. This differenceis

A Programming System for Children that is Designed for Usability 153

Evaluation

not significant, but it does mean the participantsin the Full condition had more time avail-
able to compl ete the tasks. Indeed, on average the participantsin the Full condition spent
more time on the tasks, 36 minutes compared to 30 minutesin the Limited condition. How-
ever thisdifference is also not significant. These times spent working on the tutorials plus
tasks do not add up to the full 180 minute session (3 hours) because the participants took

breaks or stopped working early.

In the Full condition, seven participants solved at |east one problem correctly, whilein the
Limited condition only one participant achieved this. This difference in the number of stu-

dents completing at |east one task is significant (p<.05).

Participants received one point for each task problem they completed correctly. No partial
credit was given. With the bonus problem, the maximum score was 6. Of the nine partici-
pantsin the Full condition, the scores ranged from O to 6, with an average of 2.1. Cumula-
tively, the participants in the Full condition received 19 points. Of the nine participantsin
the Limited condition, the scores ranged from 0 to 1, with an average of 0.1. Cumulatively,
the participantsin the Limited condition received only 1 point. This differencein the
number of points scored is significant (p<.05). These results are summarized in Table 6-1.

Table 6-1. Summary of results from this study. Participants using the Full system performed significantly
better on the tasks than participants in the Limited condition.

Full Limited
Total number of participants 12 11
Participants completing the tutorial 9 9
Participants solving at least one task correctly (p<.05) 7 1
Cumulative number of tasks solved (p<.05) 19 1

One question that arises is whether the extratime that the Limited participants spent work-
ing on the tutorial, and the corresponding decrease in the amount of time spent working on
the tasks, can account for the difference in performance. Thisisunlikely. The participants
inthe Full condition were, on average, ableto solve 2.1 tasksin 36 minutes, whichisarate
of about 17 minutes per solution. The participants using the Limited system had an average
of 30 minutes to work on the tasks, so if they were indeed capable of achieving the same

problem solving rate as the other participants, they should have had adequate time to solve

at least one problem per person on average. They did not come close to achieving this.

154 A Programming System for Children that is Designed for Usability

Evaluation

6.2.5 Informal Observations

The experimenters took notes about any interesting things they observed the participants
doing. Sometimes the participants asked for help with their problems, and sometimes they
were able to figure out the solution without help, and the experimenter simply observed

over their shoulders. Two of the most common observations are listed here.

» The participants made many spelling errors. After seeing alot of spelling problems dur-
ing pilot testing for this study, the error messages for when the system attempts to
access non-existent cards or properties were changed to explicitly suggest the possibil-
ity of spelling problem (for example, see Figure 5-16). However, there are situations
where the system cannot determine that there is an error. For example, if the property
name is misspelled when using the set command, the system automatically creates a
new property instead of reporting an error. While this behavior is often convenient,
more spelling errors would be detected if this were an error and an explicit command

was required to create a new property.

» The participants assumed the system’s capabilities and vocabulary is much larger than
it is. After successfully learning several statementsin the HANDS language, the partic-
Ipants often tried typing in their own natural language commands that are not part of the
language. This occurred even though the tutorial was careful to point out that Handy is
not very intelligent and has limited vocabulary. This problem isto be expected when the
syntax of the language is verbose and like natural language. It isinteresting to note that
severa participantsin the Limited condition were observed typing commands that use
guery and aggregate features, even though those features were not available and were
not mentioned in the tutorial. For example, one participant spontaneously typed, “ set all

bee’s speed to 0,” which would have actually worked correctly in the Full system.

6.2.6 Summary of Study

The superior performance of participantsin the Full condition can be attributed to the pres-
ence of queries, aggregate operations, and data visibility in the system they used. This sug-
gests that these features could improve the usability of programming systemsin general.
However, the study does not tease apart the contributions of the individual features. How-

ever, it ismy conjecture that the largest portion of the impact came from the combined

A Programming System for Children that is Designed for Usability 155

Evaluation

power of queries and aggregates, and that the visibility differences made little contribution

to the difference in performance.

This study also does not provide any evidence whether the HANDS system as awholeis
better than other programming systems. However, in athree hour session, children who had
never before programmed were able use atutoria to learn how to programin HANDS, and

then go on to solve additional programming problems. This, initself, is a success.

6.3 Example Programs

In order to assessthe suitability of HANDS for building larger programs, an undergraduate
computer science student working on a one-semester independent study project, used
HANDS to build a game and a simulation. In addition, | implemented programs to solve
the Towers of Hanoi problem, and to compute prime numbers. These programs are sum-

marized here, and more details are available in Appendix B.

6.3.1 Breakout Game

The gameis aversion of the game Breakout, where there are rows of bricks at the top of
the screen and a user-controlled paddle at the bottom (Figure 6-7). A ball bounces around
the screen and eliminates bricks when it hits them. The object of the gameisto removeal
of the bricks without allowing the ball to fall below the paddle. A two-level version of this
game was implemented with 12 rules containing 178 lines of program code, and 62 cards.
53 of the cards represent bricks. Each additional level added to the game would require

about 25 more cards and 15 more lines of code.

6.3.2 Simulation of the Ideal GasLaw

The second program is asimulation of the ideal gas law, which specifies the relationships
among pressure, volume, and temperature according to theformula: PV=nRT (Figure 6-8).

This program displays a chamber with small molecules bouncing around inside. The user

can manipul ate the pressure, volume, or temperature of this chamber, and observeits effect
on the other variables as well as seeing changes in the speeds of the molecules. This simu-

lation was implemented with 18 rules containing 180 lines of code, and 36 cards. 12 of the

156 A Programming System for Children that is Designed for Usability

Evaluation

I N DN D DS D

I N I N

I N I N
L

90

Figure 6-7. A version of the game Breakout, implemented in HANDS.

rules and 12 of the cards implemented checkboxes and scrollbars for controlling the simu-

lation, which would probably be supplied in atoolkit in other systems.

6.3.3 Towers of Hanoi

The Towers of Hanoi solution shown in Figure 6-9 was implemented using 6 rules contain-
ing 53 lines of code, and 10 cards. One of these cards is off-screen, where the goals and
subgoals are stored as the problem is solved. This programisagenera solution that works
for any number of rings. Adding an additional ring to the pictured three-ring solution can
be done by importing a program file that has two cards and no code (see Section 5.19 on
page 145). One of the cards represents the fourth ring, and the other card replaces the goal
card with an updated goal card indicating the presence of thefourth ring. | was pleased how
easy thiswas to implement in HANDS, especially since | had never solved this problem

without using recursion, and HANDS does not support recursion. For comparison, arecur-

A Programming System for Children that is Designed for Usability 157

Evaluation

Tamnaraturalfahsind DenccunnfATREDY kdnlarulac
ampearaiiraseiin; assurajAiNvg Mbiatues
d -

Solvino For: Temperature

Figure 6-8. Simulation of theideal gas law, asimplemented in HANDS.

Figure 6-9. A solution to the Towers of Hanoi problem, asimplemented in HANDS.

sive solution to this problem in Logo required 117 lines of code (see Figure 2-1 on

page 20).

6.3.4 Computing Prime Numbers
The program shown at the top of Figure 6-10 uses a sieve technigque to compute prime num-

bers. It has only one rule with 8 lines of code, and 6 cards. This program takes about 5 sec-

158 A Programming System for Children that is Designed for Usability

Evaluation

onds to compute the first 100 primes on a 400 MHz Powerbook G3. | wrote this program

to show that HANDS is useful for general computation, not just for games and animations.

current: 719
last prime found: 709
primes found: 127

|2,3,5,7,11,13,17, 15, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, B3, BY, &7,

1101, 103,107, 109, 113, 127, 131, 137, 135, 149, 151, 157, 163, 167, 173, 175, 181, 191,
193, 197, 199, 211, 223, 227, 229, 233, 238, 241, 251, 257, 263, 269, 271, 277, 281, 283
293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 357, 40

|1, 409, 419, 421, 431, 433, 439, 443, 445, 457, 461, 463, 467, 479, 467, 491, 495, 503, 5

1631, 641, 643, 647, 653, 650, 661, 673, 677, 683, 691, 701, 709

Figure 6-10. The top of this figure shows the screen of a program that computes prime numbers using a
sieve technique, asimplemented in HANDS. The bottom of this figure shows the primes that have been
computed so far, which are stored inthel i st property of the card pr i ne.

6.4 Comparison with Another System

A high school student with some programming experience compared HANDS with Stage-
cast [Smith 1994] in an informal evaluation for his science project. He implemented
PacMan in both systems, and concluded that HANDS was easier to learn and use, required
fewer lines of code, and enabled him to implement more features than Stagecast. Because
Stagecast is not atextual language, he used this heuristic to count lines of code within each
rule: each rule was counted as one line of code, and each t hen clause, eachand i f
clause, and each appear ance check was counted as one additional line of code. His
implementation of PacManin HANDSisshownin Figure 6-11, and his statistics are shown
in Table 6-2.

Table 6-2. Statistics from the comparison of HANDS with Stagecast.

HANDS Stagecast
Minutes learning system with tutorial 40 60
Hours spent implementing Pacman?® 15 9
Types of objects 9 6
Number of event handlers 15 64
Number of “lines’” of code 183 253

A Programming System for Children that is Designed for Usability 159

Evaluation

Good luck!

o
(=
=]
=]

=]
[I —
=]
=]
=]
L=
L

I
o
=]

=]

:: | »
J[:Z:l.

=]

[=]

=]
(=]
"y
-l
o
al
=]

[=]
=]

[==]
=]
=]

L [[_[[[|
o o
L1]|

[=]

|

=]
[=] ‘l

I I I
L
o
.
e o
o
[]
=)
=)
I
o o
)
I N

Figure6-11. A high school student created this implementation of PacMan as part of his science project,
where he compared HANDS to Stagecast.

a. The student implemented Pacman first in HANDS, and while he was doing this he learned
strategies and algorithms for implementing various features that he then reused when he
implemented Pacman in Stagecast. Therefore, the time difference can be discounted by this
learning effect.

He commented that some of the advantages of HANDS were: “simple syntax, logical
method of programming, information about the game can easily be displayed on screen, can
move cards wherever you want, cards can easily be picked up or put down, and HANDS is
more flexible.” Hislist of disadvantages of HANDS were: “not very good collision algo-

rithm, doesn’t come with drawing editor, and it is tedious to copy and arrange cards.”

That last point arises because face-down cards on the board cannot be dragged without flip-
ping them face-up first. But while the cards are face-up, theimagein their back property is
not shown. Thismakesit very inconvenient to precisely position these objects. The cards

must flipped face-up, moved off the board, and flipped face-down. Now theface-down card

can be dragged back onto the board, so that the picture on the back can be viewed while it

160 A Programming System for Children that is Designed for Usability

Evaluation

ispositioned. This problem can be eliminated by implementing the capability to drag cards

that are face-down on the board.

6.5 Some Weaknesses of HANDS

The game and simulation programs are much larger than most of the other examples, and

they exposed some weakness of the HANDS system:

» These programs would have been easier to implement if the collision detection mecha-
nism was more advanced. For example, when objects collide, the collision event does
not include any additional information beyond the names of the objects involved. The
system could report the actual point of contact, to assist the programmer in determining
how to react to the collision. Other issues with the collision detection mechanism are
discussed in Section 5.14.4.1 on page 127.

» The mechanism for accurate timing mechanism would be very useful, both for control-
ling the speed of the game and for taking measurements such as collision ratesin the
simulation. Ideas for extending the HANDS metaphor with a timer mechanism are dis-
cussed in Chapter 7.

» For programmers at this skill level and programs of this size, the abstraction capabili-
ties described Chapter 7 would be quite useful for organizing and modularizing the

code.

» Execution performanceis often sluggish, and often the animations are not very smooth,
perhaps due to garbage collection or thread scheduling. These performance issues are
discussed in Section 5.17 on page 141.

Nonetheless, it was reasonably easy to implement these programs, and they demonstrate

the wide range of programs that can be built in HANDS.

6.6 Range of Capabilities

In HANDS, it is very easy to make interactive graphical programs such as games and ssim-
ulations. The difficulties that arise with larger programs are discussed above and are
addressed in Chapter 7. It was also quite easy to make small programs of the type that are

used in computer science courses (computing prime numbers, Towersof Hanoi, etc.). Inthe

A Programming System for Children that is Designed for Usability 161

Evaluation

case of the primes program, aggregates make the program simpler than it isin many other
languages. The primes program ran with surprising speed, however for very intense
numeric calculations, the performance of HANDS will likely have to be improved, for
example by compiling instead of interpreting programs. HANDS, asitistoday, isnot really
suitable for creating business programs such as word processors, spreadsheets, web brows-
ers, or anything that requires alot of user interface widgets. This class of programsis out-
sidetheorigina domain that HANDStargets, but thislimitation can be addressed by adding
domain specific features such as user-interface widgets (buttons, scrollbars, menus, etc.),
text objects, better support for mouse manipulations (drag and drop, double-clicks, etc.),
keyboard commands, and so forth. Assuming these kind of extensions can be made for any
particular domain, there are no known classes of programs that would be impossible to
build in HANDS.

6.7 Programming Strategies
There are several strategies aprogrammer can use to improve the aesthetics and efficiency

of HANDS programs.

» Graphicsfilesused inthe back property should have tight bounding boxes, because

collision detection and mouse-click detection use this bounding box.

» Graphicsfilesused intheback property that have lots of white space should use the
GIF transparency feature. This prevents the invisible parts of an object from blocking

objects that are behind.

» Cards can be renamed to take advantage of the alphabetic layering feature. Cards with

names later in the alphabet are drawn over cards with names earlier in the al phabet.

* If objects have lower speeds, they move more smoothly, and are less likely to penetrate
or jump over objects they are colliding with. The optimal speed value for balancing

smooth motion and collision accuracy with speed of motionis 1.

» Computation should not be donein theanyt hi ng happens event handler if it can
be avoided. This event handler is called when every event is dispatched, and in many

cases this would cause the code to be executed more frequently than necessary.

162 A Programming System for Children that is Designed for Usability

Evaluation

* If the exact same calculations are being repeated in several event handlers, try putting
the calculationsin asingle event handler that istriggered by a particular card changing.
If none of the cardsin the system fit this description, an off-board card can be used for
this purpose. In the various places where recal culation must take place, the trigger card

can be changed by setting any of its properties.

» Small invisible objects are very useful for making visible objects do something, such as
change direction, when they reach a particular location. The invisible object can be
positioned at the location, and the behavior can be programmed into the event handler

for the collision between the two objects.

6.8 Evaluation of Earlier Design Ideas

The HANDS design evolved from earlier preliminary designs that included various fea-
turesthat | eventually decided to change, due to problems discovered in early pilot testing.
Onewasto use allow multiple agentsto be present around the table, working in cooperation
or competition to complete tasks (Figure 6-12). In this design, the table is a shared data
space, accessible to al agents, but cardsin one agent’ s hand would not be visible to the
other agents, providing dataprivacy. It aso enablesthe programmer to modularize the code
by grouping related event handlers into separate agents. In addition, imported code could
be kept separate from existing code by automatically installing it into a new agent, instead
of merging it into Handy’ s thought bubble. The multi-agent extension isimplemented in
the underlying HANDS system. In this implementation, the agents always execute in a
fixed order, although it may be desirable to give the programmer better control over this.
The multi-agent feature was thought to be too confusing for beginners so it was not exposed

in the user-interface.

In even earlier designs, | proposed a card game metaphor, where the agents were players
in acard game. In addition to data cards, the system would also have rule cards holding
program code, which could be on thetable or in aplayer’ shand (see Figure 6-13). A player
would execute code on the rule cards in his hand. An agent could disable rules by putting
them face-down on the table in apile in front of the agent, and re-enable the rules by pick-
ing them back up. When an event occurs, execution order might be determined by the

ordering of players around the table, which could vary over time. All of the players might

A Programming System for Children that is Designed for Usability 163

Evaluation

S

Figure 6-12. The underlying HANDS system can support multiple agents working in cooperation or
competition, but this feature was removed from the user interface because it was too complicated for
beginners. Sketch by Joonhwan Lee.

have an opportunity to respond to an event unless one of the players removesit from the
table, rendering it invisible to the other players. Within aparticular player, execution order
could be determined by the ordering of the rulesin the player’s hand. Shuffling could be
used to put non-deterministic orderings on the execution of rule cards. Rule cards might
even be given to other players, as a mechanism for assigning work to other processes or
threads.

The purpose of this metaphor was to enable beginners to figure out how the system works
by relating it to acard game. However, as| developed this metaphor many problems arose,
including inconsistencies with real card games and complexities that do not exist in real
card games. For example, there were many different roles that might be confused by begin-
ners. the programmer, the end user, the players, the charactersin the program, etc. In rea
card games the players usually abide by a uniform set of rules, not by their own personal

setsof rules. Therewere also issues about what would happen when rule cards were handed

164 A Programming System for Children that is Designed for Usability

Evaluation

from one agent to another or placed face-up on the table, and whether it would be too dif-
ficult tofind all of the codeif it was scattered throughout the system. Resolving theseissues
would have resulted in increased complexity that outweighed the benefits of the card game
metaphor, so it was discarded in favor of the much simpler model now used in HANDS,

where all of the codeisin the agent’s head.

o
[handle collision

- s
. . .. collizion
13if there iz a on the table then

ol
. spaceship rock
12.12 if it is between the and a then
explos‘ion
1a.1a.1) pUt @ new there

exp]osion
12.12.2) set the duration of the to 3 seconds

ol
) spaceship rock
121221 discard the and the

Figure 6-13. In early designs of HANDS, | experimented with the idea of storing code on rule cards. Sketch
by John Chang.

6.9 Some Criticisms of HANDS

Some computer scienceresearchersand educatorsaretroubled becausethe HANDS system
is so different than other programming systems. They are concerned that children learning
HANDS are not learning essential computer science concepts and techniques they will

need in the future. There are two parts to my reply to this criticism.

First, my objective in designing this system was to enable a broad range of children to
expresstheir ideas and to explore the grand possibilities of computer programming. Thisis
something that most children are eager to try, and it is very important that their early expe-
riences are fulfilling ones. Unfortunately, the programming systems used by most profes-
sional programmers and computer science students are very difficult to learn and use, and
are inappropriate for the “casual jottings of ordinary people[diSessa 1986, p. 859].” When
children try to use these tools, the vast majority will become frustrated, and may be perma-
nently turned off programming. If, on the other hand, the early experiences are positive
ones, and children can accomplish their objectives, there is agood chance their eyes will

be opened to the possibilities and some of them may be more likely to pursue more formal

A Programming System for Children that is Designed for Usability 165

Evaluation

computer science knowledge. Children using HANDS will learn some of the difficult skills
that are fundamentally important in programming, rather than struggling with difficulties
that are caused by the limitations of current languages. For example, they will learn how to
precisely specify tasks, which isauniversal requirement in computer programming. | also
expect that, just like computer scientists, children will find it easier to learn subsequent pro-

gramming languages after they have aready successfully learned one.

Second, this research has produced some useful ideas that may impact how computer sci-
ence is taught and what topics are considered essential. Perhaps by the time some of the
children using HANDS start to learn computer science there will not be so many differ-
ences between HANDS and the systemsthey learn. For example, other researchersare also
guestioning whether the computational metaphors established by Turing and von Neumann
are the correct ways for modern computer scientists to think about computation [Stein
1999]. In addition, perhaps more mainstream computer languages will begin to support
gueries and aggregate operations, which seem universally useful if they can beimple-
mented efficiently. As computer science evolves, the set of conceptsthat are considered to
be essential will surely change. Having children struggle to learn C++ or Javatoday may
not prepare them for future careers in computer science any more than learning assembly

language or Fortran helped students of previous decades.

Another criticism of HANDS isthat thereisno evidence that its model of computation will
scaleto large problems or other domains such as creating programsfor officetasks. Thisis
avalid point. While | have listed some promising ideas in Chapter 7 for expanding the

range, the ideas remain untested. No showstopper problems have been encountered so far,

and it will be worthwhile to explore thisissue in future work.

Finally, many people point out that the natural -language-like syntax of HANDS is prob-
lematic. Indeed, | observed children making errors and incorrect assumptions about the lan-
guage because it is not obvious what the limitations are (see Section 6.2.5 on page 155).
The authors of MOOSE Crossing studied thisissue, and concluded that thiskind of error is
easy for beginnersto recover from [Bruckman 1999]. It isimportant to remember that
beginners will have great difficulty with the syntax of any programming language. Pro-

gramming editors can guide people on the syntax and limits of the language, and certainly

166 A Programming System for Children that is Designed for Usability

Evaluation

the HANDS environment could be enhanced in thisway. | subscribe fully to the principle
to speak the user’s language and for the young non-programmers who will use HANDS,

natural language isthe only fully developed language they know. They are learning math-
ematical notations, but many programming language notations aren’t even consistent with
mathematics (e.g. a=a+ 1). Aspeoplelearn to use more concise formal notations, | believe
it isgood to support these notations in programming languages, but it is not necessary for
beginnersto learn anew formal notation in order to writetheir first programs. Furthermore,
reading code is an essential component of programming and debugging, and so improving

the readability of programsis bound to improve usability.

6.10 Summary of Evaluation

The formal evaluation of HANDS showed that three key features had a significant impact
on the ability of fifth-grade non-programmers to learn to program and accomplish tasksin
a3-hour session. Lessformal evaluation by an older student with some programming expe-
rience concluded that HANDS is easier to learn and use, requires fewer lines of code, and
enablesimplementation of more featuresthan acommercial programming environment for
children. In addition, expert programmers have implemented awide variety of programsin
HANDS, demonstrating its breadth. The criticisms and weaknesses that were identified do
not point to flawsin the design and architecture of HANDS, but rather mainly derive from
the limited time available for implementing HANDS to date. They can al be addressed by
making the code run faster, improving the user interface, and improving and extending the

domain specific support for collisions, timing, and animation.

A Programming System for Children that is Designed for Usability 167

Evaluation

168 A Programming System for Children that is Designed for Usability

CHAPTER 7 FUturEV\brk

This chapter discusses some of the ways this thesis work could be extended. They are cat-
egorized into three sections:. further evaluation work, direct extensionsto HANDS, and

applications of the research resultsto other areas.

7.1 Further Evaluation and User Testing

The formal evaluation of HANDS discussed in Chapter 6 does not provide conclusive evi-
dence about how the HANDS programming system stands against the alternative program-
ming systems children might use for learning to program and building their first programs.
Such a study could use an approach similar to the one described in Chapter 6, but instead
of using aversion of HANDS for the comparison system, one or more of the existing pro-
gramming systemsfor children, such as Stagecast, Logo, or Boxer, would be selected. Par-
ticipants would work with one system or the other, first learning it and then solving
programming tasks. Much care would have to be taken in sel ecting tasks and preparing the

materials, to eliminate bias and minimize confounding factors.

Thestudy in Chapter 6 measuresthe collectiveimpact of queries, aggregate operations, and
the high visibility of program data. It would be useful to determine the individual contribu-

tions of these features, and whether there are dependencies that make a particular feature

A Programming System for Children that is Designed for Usability 169

Future Work

more useful in the presence of another feature. Similarly, it would be useful to look at other
important features of the HANDS system, to assess their contributions to usability. For
example, the computational model portrayed by HANDS, with cards on atable and the
agent Handy manipulating them, could be tested by comparing it with a system that usesa
more traditional model of computation. This could be done by again producing amodified
version of HANDS that presents a more traditional model of computation, while keeping
other factors such as the language fixed. The verbose style of the language could be tested
by creating aversion of HANDS with amore terse language that hasidentical structure and
semantics. It would be harder to modify HANDS for testing the event-based paradigm,

because so much of the system is dependent on its event-based structure.

Finally, HANDS surely could be improved by observational user testing, which would
uncover common problems that people have with the system. These observations could
then be used to improve the HANDS design.

7.2 ldeasfor Extending HANDS

There are many things that can be done to improve and extend the HANDS system. Some
of these are engineering improvements, such as improving the collision detection algo-
rithm, while others are research ideas. Many extensions were discussed in prior chapters,

but afew more are presented here.

7.2.1 Modularity and Encapsulation

One problem with the event-oriented approach in HANDS isthat it isimpossible to factor
code into afunction or subroutine that can be called during the course of an event handler.
| have worked on a design for extending the HANDS model of computation with a special
kind of card that represents procedural abstraction. Parameters could be passed to the
abstraction by setting properties on thiscard. A specia property, perhapsnamedr esul t ,
would represent the result of executing the abstraction. Whenther esul t property isread
by an event handler, the processing of the event handler would be suspended while the sub-
routine is run. The subroutine would perform its calculations, and store the result into the

r esul t property. When the subroutine finished, control would return to the suspended

170 A Programming System for Children that is Designed for Usability

Future Work

event handler, and it would receive the result as a consequence of having read ther esul t
property.
The subroutine would be programmed as an event handler responding to a new kind of

event: <identifier>is run.

For example, consider how adice-rolling subroutine might be created. A card di ce might
haveasi des property, indicating the number of faces of the dice. A caller could set this
property to 6, for example, then attempt toreadt he di ce’ s resul t. Thiswould sus-
pend the caller and call the event handler for when di ce i s run. Thisevent handler
could animate the dice by inserting aseries of picturesinto theback property, and usethe
random function to produce a random number between 1 and thevalueindi ce’ s

si des, storing theresult intodi ce’ s resul t. When the dice event handler finishes,
control would return to the caller, and thevalueread fromt he di ce’ s resul t would

be the same value that was set by the subroutine.

Unfortunately, this mechanism would not support recursion unless the subroutine has a pri-
vate copy of the dice card’ s properties that cannot be corrupted by other invocations of the
same subroutine. Further work is required to address this problem in away that is easy to
understand and within the card model. One ideais to have the subroutine run on a com-
pletely separate table with a copy of the one card that represents the subroutine and its
parameters. Additional private cards could be present on this other table, but none of the
other cards from the original table (global data) would be accessibleto the subroutine. This
would open the possibility of having multiple event handlersinvolved in the subroutine’s
computation, and raises the possibility of multithreading, with its attendant issues of inter-
process communication, synchronization, deadlock, and starvation. Work would also have
to be done to provide a simple concrete representation for these subprograms that allows
the programmer to collect together the needed cards and event handlers. Thiswould be an

interesting and fertile areato explore.

7.2.2 Multiple Agents
My original ideafor the HANDS model of computation had multiple agents sitting at the
table (see Section 6.8 on page 163). In fact, this capability is built-in to the underlying

A Programming System for Children that is Designed for Usability 171

Future Work

HANDS system but is not exposed in the user interface because it was believed to be too
confusing for children. However, having multiple agents would enable many interesting
ideas to be explored in HANDS.

The cardsin the hands of the agents would represent private datawhich is not accessible to
other agents. These agents could be used to modularize the code, so that related event han-
dlers and data could be kept separate from unrelated ones. When new capabilities are
imported into aprogram (see Section 5.19 on page 145), they could be automatically stored
into anew agent to help keep the program organized. Agents could be used to represent
thread or processes running on local or remote processors, and cards could be used for pri-
vate communication between these processes. The table itself would be the global data
store, like in blackboard architecturesin Al [Carver 1994] and tuple spacesin Linda [Car-
riero 1989]. Agents could be turned on and off to enable and disable program features or to

implement modes.

Oneissue to examineisthe current policy that all cards must have a unique name through-
out the whole system. Private cards in the hand of one agent would be invisible to other
agents, so it may be possible to relax this constraint so that all cards must unique names
only from each agent’ s point of view. That is, two agents could hold private cards with the
same name. An agent could act as a namespace, but the system would have to have a con-
sistent way to handle cards that are put down onto the table (which makes them globally
visible) or passed to other agents.

7.2.3 Graphics Primitives

HANDS only supportsimport of graphical pictures, and should be extended so that the pro-
grammer can draw graphics (such aslines, circles, etc.) onto the screen. Oneidea, to stay
within the card model, isto allow the programmer to create a blank card of a certain size

and position, and then draw the graphics primitives into the back slot of this card.

7.2.4 Improvementsto Collision Detection and Animation
Engineering improvements to the HANDS runtime engine could solve many of the prob-
lems described in Section 5.17.1 on page 141. For example, the collision detection and ani-

mation mechanism could work more closely together to use the actual object boundaries

172 A Programming System for Children that is Designed for Usability

Future Work

instead of bounding boxes; handle multi-object collisions in a more sophisticated manner
than the current multiple pairwise collisions; to enable programmers to handle collisions
without penetration; and to determine the exact points of collisions. A further improvement

would be to extend the animation and collision engines to handle 3-dimensional graphics.

7.25Timers

Timers are an important missing feature in the current HANDS system. | have some pre-
liminary ideas of how to use cardsto provide timing mechanisms. Like the speed and direc-
tion properties which are monitored by the animation mechanism, other properties of cards
could be monitored by atiming mechanism. For example, the timer might recognize acard
with acount down property, decrement the value of this property every second (or milli-
second), and generate a<i denti fi er > expi r ed event when the count down prop-
erty reached zero. Similarly, anexpi r es property might cause acard to be automatically

deleted when the value reaches zero.

7.2.6 Match Forms

Match forms (Chapter 4) are designed to be incorporated into the HANDS system.
Although match forms can express arbitrarily complex queriesin digunctive normal form,
thisis sometimes less concise than unrestricted Boolean expressions would allow. This
could be relieved somewhat by allowing an entire form to be negated (“ objects that do not
match ...”). Thematch formsin HANDSwould also have property namesalongside the val-

ues, like cards do, so the programmer can easily restrict the match of avalue to a specific

property.

7.2.7Widget Library

A largefraction of the code in the simulation sample program writtenin HANDS (Figure 6-
8 on page 158) was dedi cated to managing widgets. A future version of HANDS could pro-
videalibrary of widgets, such asscroll bars, buttons, text panes, etc. Theinterfacesto these
widgetswould be through card properties, but their behaviors could be automatic, reducing

the amount of code that a programmer would have to write to make these widgets work.

A Programming System for Children that is Designed for Usability 173

Future Work

7.2.8 Dealing with Large Numbers of Cards

Thevisibility of cardsis an advantage for smaller programs, but can become a problem in
programs with avery large number of cards. The HANDS model needs away to collect
groups of related cards, such as piles, decks, or paperclips. In HANDS, thereis already a
new card pile and discard pile (accessible from code but not visible in the user interface).
Other piles could be used to provide special features, like the shuffle feature in GAMUT
[McDaniel 1999], which is used to randomly select one card to be visible at the top of the
pile. Piles might be displayed in various ways, such as all stacked up where only the top
card is showing, or spread out like in solitaire card games. Card piles might be used to rep-
resent all of the cardsin asubroutine (Section 7.2.1 on page 170) or all of an agent’s cards
(Section 7.2.2 on page 171). Piles of cards might be used to group graphical objects, so that
they move around together on the screen and can be manipulated asif they were asingle
object. Open issues are whether these collections should have names, and whether the exist-
ing features of HANDS, such as lists, will allow these groups to be manipulated without

adding anew collection data type.

7.2.9 Editing and Debugging Support

Much work can be done to support editing and debugging programs. Some examples are:

* the system could support a drag-and-drop syntax-directed editor, as seen in Squeak’s
eToys interface [Steinmetz 2001] and other systems.

* the system could include a spelling checker that watches for possible spelling errors, of
language syntax as well asidentifiers. For example, if thereisanect ar property on a
card, and the programmer writes code to set the nect er property, the system might
ask the user if he/she really intends to create a new property so similar to the existing
nect ar property. Thisrelatesto the old do what | mean (DWIM) mechanism of Inter-
lisp [Teitelman 1981], but modern spell checking technologies and user interfaces can
be used to make it more successful than DWIM was.

 afiledialog could come up so that the programmer doesn’t have to enter the image file-
nameinto the back property. If the entry in the back property looks like afile name (i.e.,

itendsin®“. gi f” or*“. j pg”) but thefileis not found or doesn’t contain an image, the

174 A Programming System for Children that is Designed for Usability

Future Work

system might explain the problem to the user instead of simply displaying the filename

as a string on the back of the card.

7.2.J0 HANDS as a Complete Package for Teachersand Students

In addition to adding many of the features listed above, and improving the general robust-
ness of the system, there would be more work involved in turning HANDS into a*“com-
plete” package that could be used by many students and teachers. The HANDS system
would have to be supplemented with complete tutorials and study materials, and a curricu-
lum for use in schools. A big library of pictures and sample code should be provided,
including libraries for creating a full suite of programs, so that HANDS will be afertile
environment for long-term study. In order to extend the kinds of problems students could
work on beyond games and simulations, additional libraries and domain-specific features
could be added for creating business programs and for hooking into the user-interface com-
ponents that are available in the Swing toolkit or the OS-native windowing systems such

as Windows or M acintosh.

7.3 Applications of Resultsto Other Areas

There are several ways that this research could impact other areas of computer science.

7.3.1 Modédl of Computation

The HANDS model of computation is anew way of describing and thinking about pro-
grams. It would be very interesting to push this computational model, to seeif it isagen-
erally useful way to represent large programs and whether it offers any benefits over
existing models of computation used by experienced programmers. Several extensions to
the model are proposed above in Section 7.2 on page 170, and surely more will become

necessary as the model is tested.

7.3.2 Export Featuresto Other Languages

The query and aggregate operationsin HANDS, and the way they work in combination, are
powerful and useful to beginners. | believe they would also be very useful for other types
of end-user programming tasks, such as multimediaand web authoring, aswell asfor expe-

rienced programmers. It would be interesting to explore how these features, especially que-

A Programming System for Children that is Designed for Usability 175

Future Work

ries, might be efficiently implemented in professional programming languages, and how
their availability might affect programmers’ productivity and bug rates. If thesefeaturesare
shown to be successful in a professional programming setting, it is more likely that the

designers of future programming languages will incorporate them.

7.3.3 Influence Design Process for Future Languages and Domains

The process used in designing the HANDS system, and the knowledge gathered along the
way isnow available for the designers of future programming languages. As mentioned in
Chapter 1, the design of the system is dependent on the target group of people who will be
using the system, including their cultural background and their placein history. The process
can and should be applied over and over to building systems for various audiences over
time. Hopefully, thiswill eventually cause al new programming languages to become

more usable.

7.3.4 Applications of Match Forms

In Chapter 4, Match Formswere shown to be better than textual query languagesin astudy
of non-programmers. Already, this research has influenced the interface for the search
engine at the HCI Bibliography (www.hcibib.org), and early analysis showsit to have
improved usability (Section 4.9 on page 84). Match Forms could be deployed in many

places on the web and in other online databases, to improve the usability of search engines.

176 A Programming System for Children that is Designed for Usability

CHAPTER 8 Conduson

Thisthesisis a case study of a new, human-centered approach to the design of program-
ming languages. It tracks the design and evaluation of anew programming system for chil-
dren, describing how HCI techniques and evidence from the literature, as well as new
studiesinvestigating unaddressed questions, impacted the design and selection of features
for the system.

8.1 Contributions

This section summarizes the contributions of this thesis.

8.1.1 Design Process

This thesis describes and exemplifies a new design process for programming systems,
wherefirst atarget audience and domain areidentified, and then the target audienceis stud-
ied to examine the ways they solve problems and the problems they encounter when trying
to program. Thisinformation is used to design the new system, and the system isthen eval-

uated for usability. Any problems uncovered are fed back into redesign.

Specifically, thisthesistargets ten year old children creating interactive games and simula-

tions. In addition to studying the literature about children and beginner programmers, | per-

A Programming System for Children that is Designed for Usability 177

Conclusion

formed three new studiesto gain abetter understanding of thisgroup. | then designed anew
system, refined the design based on early testing, and then evaluated the system in a user
study.

8.1.2 HANDS

Thisthesisresulted in a new programming system for children, called HANDS, with a
unique set of features due to its user-centered design. In addition to the HANDS program-
ming system as a standalone artifact, HANDS embodies features that may be broadly
useful in other languages.

HANDS incorporatesanew model of computation, or way of thinking about programs, that
is concrete and based on familiar concepts, unlike the traditional Turing machine or von
Neumann machine models. In HANDS, all datais stored on cards, which are visible on a

table. An agent named Handy manipulates the cards in response to events.

HANDS also incorporates a genera -purpose programming language that offers database-
style access to the program’ s data, and in which all operators can be uniformly applied to
singletons and lists. Three of the featuresin HANDS, queries, aggregate operations, and
the high visibility of data, were demonstrated to be more usable than the features found in
typical programming systems.

8.1.3 Tabular Method for Expressing Boolean Queries
Thisthesis describes Match Forms, a new tabular method | invented for expressing Bool-
ean queries. Match Forms were compared to textual expressions and shown to improve

beginners performance.

The match form research was applied to creating a new search interface for the HCI Bibli-
ography (www.hcibib.org), and preliminary analysis comparing it with the old search inter-

face shows that it has reduced users' error rates.

8.1.4 User Studies
Several empirical user studies were conducted as part of thisthesis. Two studies examined
how non-programmers express problem sol utions, and provided empirical datathat be used

to help designers generate and select programming system features that provide a close

178 A Programming System for Children that is Designed for Usability

Conclusion

mapping between those problem solutions and their expression in program code. An addi-
tional study provided empirical evidence characterizing the kinds of errors made by inex-

perienced users of textual Boolean expressions.

A user study of HANDS demonstrated the effectiveness of queries, aggregate operations,
and high-visibility of data, in comparison to the typical features sets of programming sys-
tems. This study also provides evidence that children who had never programmed before

were able to learn to program in a three hour session with HANDS.

8.1.5 Survey of Prior Work
The thesis also includes a broad survey of the prior work on beginner programmers, orga-
nized in aform that can be used by other programming system designers. This survey

appearsin Appendix C.

8.2 Closing Remarks

Thisthesis set out to demonstrate that programming systems can be made significantly
more usable by applying a human-centered design process. This goal has been achieved.
The thesis statement set forth in the Chapter 1 has been validated: “this user-centered
design process, incorporating principles from human-computer interaction, psychology of
programming, and empirical studies, will result in a unique programming system that is
easier to learn and use than more conventional programming systems.” The combined con-
tributions of the HANDS system, the facts discovered about non-programmers, and the
design process described in this thesis promise to have a broad impact on improving the

usability of computer programming in the future.

A Programming System for Children that is Designed for Usability 179

Conclusion

180 A Programming System for Children that is Designed for Usability

CHAPTER 9 References

Anderson, J.R. and Jeffries, R. (1985). “Novice LISP Errors: Undetected L osses of Infor-
mation from Working Memory.” Human-Computer Interaction 1: 107-131.

Anick, PG., Brennan, J.D., Flynn, R.A., Hanssen, D.R., Alvey, B. and Robbins, J.M.
(1990). A Direct Manipulation Interface for Boolean Information Retrieval via Nat-
ural Language Query. Proceedings of the Thirteenth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. Brus-
sels, Belgium: 135-150.

Baraff, D. (1989). “Analytical Methods for Dynamic Simulation of Non-Penetrating Rigid
Bodies” Computer Graphics 23(3): 223-232.

Biermann, A.W., Ballard, B.W. and Sigmon, A.H. (1983). “An Experimental Study of Nat-
ural Language Programming.” International Journal of Man-Machine Studies 18(1):
71-87.

Blackwell, A.F. (1996). Metacognitive Theories of Visual Programming: What Do We

Think We Are Doing? Proceedings of the VL'96 IEEE Symposium on Visual Lan-
guages. Boulder, CO, |IEEE Computer Society Press: 240-246.

Blackwell, A.F. and Green, T.R.G. (2000). A Cognitive Dimensions Questionnaire Opti-
mised for Users. Proceedings of the 12th Annual Meeting of the Psychology of Pro-

A Programming System for Children that is Designed for Usability 181

References

grammers Interest Group. A. F. Blackwell and E. Bilotta. Corigliano Calabro, Italy,
Edizioni Memoria: 137-154.

Bonar, J. and Soloway, E. (1989). Preprogramming Knowledge: A Major Source of Mis-
conceptionsin Novice Programmers. Studying the Novice Programmer. E. Soloway
and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 325-353.

Bonar, J.G. and Cunningham, R. (1988). Bridge: Tutoring the Programming Process.
Intelligent Tutoring Systems: Lessons Learned. J. Psotka, L. D. Massey and S. A.
Mutter. Hillsdale, NJ, Lawrence Erlbaum Associates: 409-434.

Bourne, L.E. (1966). Human Conceptual Behavior. Boston, Allyn & Bacon.

Bruckman, A. and Edwards, E. (1999). Should We Leverage Natural-L anguage Knowl-
edge? An Analysis of User Errorsin a Natural-Language-Style Programming Lan-
guage. Proceedings of the 1999 Conference on Human Factors in Computing
Systems. Pittsburgh, PA, ACM Press. 207-214.

Brusilovsky, P, Calabrese, E., Hvorecky, J., Kouchnirenko, A. and Miller, P. (1997).
“Mini-languages: A Way to Learn Programming Principles.” Education and Infor-
mation Technologies 2(1): 65-83.

Carriero, N. and Gelernter, D. (1989). “Lindain Context.” Communications of the ACM
32(4): 444-458.

Carver, N. and Lesser, V. (1994). “The Evolution of Blackboard Control Architectures.”
Expert Systems with Applications 7(1): 1-30.

Conway, D.M. (1998). An Algorithmic Approach to English Pluralization. Proceedings of
the Second Annual Perl Conference. C. Salzenberg. San Jose, CA, O'Reilly.

Conway, M., Audia, S., Burnette, T., Cosgrove, D., Christiansen, K., Deline, R., Durbin,
J., Gossweller, R., Koga, S., Long, C., Mallory, B., Mide, S., Monkaitis, K., Patten,
J., Pierce, J., Shochet, J., Staack, D., Stearns, B., Stoakley, R., Sturgill, C., Viega, J.,
White, J., Williams, G. and Pausch, R. (2000). Alice: Lessons Learned from Build-
ing a 3D System for Novices. Proceedings of CHI2000 Conference on Human Fac-
tors in Computing Systems. T. Turner and G. Szwillis. The Hague, Netherlands,
ACM Press: 486-493.

Conway, M.J. (1997). Alice: Easy-to-Learn 3D Scripting for Novices. Ph.D. Thesis. Uni-
versity of Virginia. School of Engineering and Applied Science, 242 pages.

182 A Programming System for Children that is Designed for Usability

References

Cordy, J.R. (1992). Hints on the Design of User Interface Language Features — L essons
from the Design of Turing. Languages for Developing User Interfaces. B. A. Myers.
Boston, Jones and Bartlett: 329-340.

Cypher, A. and Smith, D.C. (1995). KidSim: End User Programming of Simulations. Pro-
ceedings of CHI'95 Conference on Human Factors in Computing Systems. Denver,
ACM: 27-34.

Davies, S.P. (1993). Externalising Information During Coding Activities; Effects of
Expertise, Environment and Task. Empirical Studies of Programmers: Fifth Work-
shop. C. R. Cook, J. C. Scholtz and J. C. Spohrer. Palo Alto, CA, Ablex Publishing
Corporation: 42-61.

Détienne, F. (1990). Difficulties in Designing with an Object-Oriented Programming Lan-
guage: An Empirical Study. Proceedings of INTERACT '90 Conference on Com-
puter-Human Factors. Cambridge, England: 971-976.

Détienne, F. (2001). Software Design: Cognitive Aspects. London, Springer.

DiGiano, C., Kahn, K., Cypher, A. and Smith, D.C. (2001). “Integrating Learning Sup-
portsinto the Design of Visua Programming Systems.” Journal of Visual L anguages
& Computing 12(5): 501-524.

DiGiano, C.J. (1996). Self-Disclosing Design Tools: An Incremental Approach Toward
End-User Programming. Boulder, CO, University of Colorado: Department of Com-
puter Science Technical Report CU-CS-822-96, 154 pages.

diSessa, A.A. and Abelson, H. (1986). “Boxer: A Reconstructible Computational
Medium.” Communications of the ACM 29(9): 859-868.

du Boulay, B. (1989a). Some Difficulties of Learning to Program. Studying the Novice
Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Asso-
ciates: 283-299.

du Boulay, B., O'Shea, T. and Monk, J. (1989b). The Black Box Inside the Glass Box: Pre-
senting Computing Concepts to Novices. Studying the Novice Programmer. E. Solo-
way and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 431-446.

Earhart, C., Ed. (1999). Stagecast Creator Teacher's Guide. Palo Alto, CA, Stagecast Soft-
ware, http://www.stagecast.com.

A Programming System for Children that is Designed for Usability 183

References

Essens, PJ.M.D., McCann, C.A. and Hartevelt, M.A. (1992). An Experimental Study of
the Interpretation of Logical Operators in Database Querying. Cognitive Ergonom-
ics. Contributions from Experimental Psychology. G. C. v. d. Veer, S. Bagnara and
G. A. M. Kempen. Amsterdam, North-Holland, Elsevier Science Publishers: 201-
225,

Finzer, W.F. and Gould, L. (1993). Rehearsal World: Programming by Rehearsal. Watch
What | Do: Programming by Demonstration. A. Cypher, MIT Press.

Galotti, K.M. and Ganong, W.F., 111 (1985). “What Non-Programmers Know About Pro-
gramming: Natural Language Procedure Specification.” International Journal of
Man-Machine Studies 22: 1-10.

Glass, R.L. (1995). “O0 Claims — Natural ness, Seamlessness Seem Doubtful ” Software
Practitioner 5(2).

Goodman, D. (1987). The Complete HyperCard Handbook. New York, Bantam Books.

Gould, L. and Finzer, W. (1984). “ Programming by Rehearsal.” BY TE Magazine 9(6).

Green, T.R.G. (1990). The Nature of Programming. Psychology of Programming. J.-M.
Hoc, T. R. G. Green, R. Samurcay and D. J. Gilmore. London, Academic Press: 21-
44,

Green, T.R.G. and Petre, M. (1992). When Visua Programs are Harder to Read than Tex-
tual Programs. Human-Computer Interaction: Tasks and Organisation, Proceedings
of ECCE-6 (6th European Conference on Cognitive Ergonomics). G. C. van der
Veer, M. J. Tauber, S. Bagnarolaand M. Antavolits. Rome, CUD.

Green, T.R.G. and Petre, M. (1996). “Usability Analysis of Visual Programming Environ-
ments. A 'Cognitive Dimensions Framework.” Journal of Visual Languages and
Computing 7(2): 131-174.

Greene, S.L., Devlin, S.J., Cannata, PE. and Gomez, L.M. (1990). “No IFs, ANDs, or
ORs: A Study of Database Querying.” International Journal of Man-Machine Stud-
ies 32(3): 303-326.

Grice, H.P. (1975). Logic and Conversation. Syntax and Semantics111: Speech Acts. P.
Cole and J. Morgan. New York, Academic Press.

184 A Programming System for Children that is Designed for Usability

References

Gross, P. (1999). Director 7 and Lingo Authorized, Peachpit Press.

Hays, J.G. and Burnett, M.M. (1995). A Guided Tour of Forms/3, Oregon State Univer-
sity: Dept. of Computer Science Technical Report 95-60-6.

Hildreth, C. (1988). Intelligent Interfaces and Retrieval methods for Subject Searchin
Bibliographic Retrieval Systems. Research, Education, Analysis & Design. Spring-
field, IL.

Hix, D. and Hartson, H.R. (1993). Developing User Interfaces: Ensuring Usability
Through Product and Process. New York, New York, John Wiley & Sons, Inc.

Hoc, J.-M. (1989). Do We Really Have Conditional Statementsin Our Brains? Studying
the Novice Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence
Erlbaum Associates: 179-90.

Hoc, J.-M., Green, T.R.G., Samurcay, R. and Gilmore, D.J., Eds. (1990a). Psychology of
Programming. Computers and People Series. London, Academic Press.

Hoc, J.-M. and Nguyen-Xuan, A. (1990b). L anguage Semantics, Mental Models and
Analogy. Psychology of Programming. J.-M. Hoc, T. R. G. Green, R. Samurgay and
D. J. Gilmore. London, Academic Press; 139-156.

Hutchins, E.L., Hollan, J.D. and Norman, D.A. (1986). Direct Manipulation Interfaces.
Hillsdale, NJ, Lawrence Erlbaum Associates.

Ingalls, D.H.H. (1981). Design Principles Behind Smalltalk. BY TE Magazine, August
1981.

Joers, J. (1999). Stagecast Creator Creator's Guide. Palo Alto, CA, Stagecast Software,
http://www.stagecast.com/.

Jones, S. (1998). Graphical Query Specification and Dynamic Result Previews for a Digi-
tal Library. Proceedings of the ACM Symposium on User Interface Software and
Technology: 143-151.

Kahn, K. (1996). “ToonTalk: An Animated Programming Environment for Children.”
Journal of Visual Languages and Computing 7(2): 197-217.

A Programming System for Children that is Designed for Usability 185

References

Kahn, K. (1999). From Prolog and Zelda to ToonTalk. Proceedings of the 1999 Interna-
tional Conference on Logic Programming. D. De Schreye, MIT Press.

Kohl, A. and Rupietta, W. (1987). The Natural Language Metaphor: An Approach to Avoid
Misleading Expectations. Proceedings of 1FIP INTERACT'87: Human-Computer
| nteraction: 555-560.

Lewis, C. and Olson, G.M. (1987). Can Principles of Cognition Lower the Barriersto Pro-
gramming? Empirical Studies of Programmers. Second Workshop. G. M. Olson, S.
Sheppard and E. Soloway. Norwood, NJ, Ablex: 248-263.

Martin, F.G. and Resnick, M. (1993). LEGO/L ogo and Electronic Bricks: Creating a Sci-
enceland for Children. Advanced Educational Technologies for Mathematics and
Science. D. L. Ferguson. Berlin, Springer-Verlag.

Mayer, R.E. (1989). The Psychology of How Novices Learn Computer Programming.
Studying the Novice Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ,
Lawrence Erlbaum Associates: 129-159.

McDaniel, R. (1999). Building Whole Applications Using Only Programming-by-Demon-
stration. Ph.D. Thesis. Carnegie Mellon University. Computer Science Department.
Pittsburgh, PA, 271 pages.

Mclver, L.K. (2001). Syntactic and Semantic Issuesin Introductory Programming Educa-
tion. Ph.D. Thesis. Monash University. School of Computer Science and Software

Engineering. Australia, 200 pages.

McQuire, A. and Eastman, C.M. (1995). Ambiguity of Negation in Natural Language
Queries. Proceedings of the Eighteenth Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval: 373.

Michard, A. (1982). “Graphical Presentation of Boolean Expressionsin a Database Query
Language: Design Notes and an Ergonomic Evaluation.” Behaviour and Information
Technology 1(3): 279-288.

Miller, L.A. (1974). “Programming by Non-Programmers.” International Journal of Man-
Machine Studies 6(2): 237-260.

Miller, L.A. (1981). “Natural Language Programming: Styles, Strategies, and Contrasts.”
IBM Systems Journal 20(2): 184-215.

186 A Programming System for Children that is Designed for Usability

References

Miller, P, Pane, J., Meter, G. and Vorthmann, S. (1994). “Evolution of Novice Program-
ming Environments. The Structure Editors of Carnegie Mellon University.” Interac-
tive L earning Environments 4(2): 140-158.

Modugno, F. (1995). Extending End-User Programming in aVisual Shell with Program-
ming by Demonstration and Graphical Language Techniques. Ph.D. Thesis. Carn-
egie Mellon University. Computer Science Department. Pittsburgh, PA, 334 pages.

Modugno, F., Corbett, A.T. and Myers, B.A. (1996). Evaluating Program Representation
inaVisual Shell. Empirical Studies of Programmers: Sixth Workshop. W. D. Gray
and D. A. Boehm-Davis. Norwood, NJ, Ablex Publishing Corporation: 131-146.

Mulholland, P. and Watt, S.N.K. (2000). “Learning by Building: A Visual Modelling Lan-
guage for Psychology Students.” Journal of Visual L anguages and Computing 11(5):
481-504.

Myers, B.A. (1992). “Demonstrational Interfaces: A Step Beyond Direct Manipulation.”
|EEE Computer 25(8): 61-73.

Nardi, B.A. (1993). A Small Matter of Programming: Perspectives on End User Comput-
ing. Cambridge, MA, The MIT Press.

Newell, A. and Card, SK. (1985). “ The Prospects for Psychological Science in Human-
Computer Interaction.” Human-Computer Interaction 1(3): 209-242.

Nielsen, J. (1994). Heuristic Evaluation. Usability Inspection Methods. J. Nielsen and R.
L. Mack. New York, John Wiley & Sons. 25-62.

Pane, J.F. and Myers, B.A. (1996). Usability Issuesin the Design of Novice Programming
Systems. Pittsburgh, PA, Carnegie Mellon University: School of Computer Science
Technical Report CMU-CS-96-132, 85 pages.

Pane, J.F. and Myers, B.A. (2000). Tabular and Textual Methods for Selecting Objects

from a Group. Proceedings of VL 2000: |EEE International Symposium on Visual
Languages. Seattle, WA, IEEE Computer Society: 157-164.

Pane, J.F., Ratanamahatana, C.A. and Myers, B.A. (2001). “ Studying the Language and
Structure in Non-Programmers' Solutions to Programming Problems.” I nternational
Journal of Human-Computer Studies 54(2): 237-264.

A Programming System for Children that is Designed for Usability 187

References

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York,
Basic Books.

Pattis, R.E., Roberts, J. and Stehlik, M. (1995). Karel the Robot: A Gentle Introduction to
the Art of Programming. New York, John Wiley & Sons.

Pea, R. (1986). “Language-Independent Conceptual “Bugs’ in Novice Programming.”
Journal of Educational Computing Research 2(1).

Pictorius (1996). Prograph CPX User Guide. Halifax, Nova Scotia, Pictorius Incorporated,
http://www.pictorius.com/prograph.html.

Repenning, A. (2000). AgentSheets®: an Interactive Simulation Environment with End-
User Programmable Agents. Interaction 2000, Tokyo, Japan.

Repenning, A. and Sumner, T. (1995). “Agentsheets: A Medium for Creating Domain-Ori-
ented Visual Languages.” Computer 28: 17-25.

Resnick, M. (1994). Turtles, Termites, and Traffic Jams: Explorationsin Massively Paral-
lel Microworlds. Boston, The MIT Press.

Sammet, J.E. (1981). The Early History of COBOL. History of Programming L anguages.
R. Wexelblat. New York, Academic Press.

Sherwood, B.A. (1988). The cT Language. Champaigne, IL, Stipes Publishing Company.

Shneiderman, B. (1983). “ Direct Manipulation: A Step Beyond Programming L anguages.”
|EEE Computer 16(8): 57-69.

Smith, D.C. (2000). “Building Personal Tools by Programming.” Communications of the
ACM 43(8): 92-95.

Smith, D.C., Cypher, A. and Spohrer, J. (1994). “KidSim: Programming Agents Without a
Programming Language.” Communications of the ACM 37(7): 54-67.

Soloway, E., Bonar, J. and Ehrlich, K. (1989a). Cognitive Strategies and Looping Con-
structs: An Empirical Study. Studying the Novice Programmer. E. Soloway and J. C.
Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 191-207.

188 A Programming System for Children that is Designed for Usability

References

Soloway, E. and Spohrer, J.C., Eds. (1989b). Studying the Novice Programmer. Hillsdale,
NJ, Lawrence Erlbaum Associates.

Spohrer, J.G. and Soloway, E. (1986). Analyzing the High Frequency Bugs in Novice Pro-
grams. Empirical Studies of Programmers. E. Soloway and S. lyengar. Washington,
DC, Ablex Publishing Corporation: 230-251.

Stein, L.A. (1999). “Challenging the Computational Metaphor: Implications for How We
Think.” Cybernetics and Systems 30(6): 473-507.

Steinmetz, J. (2001). Computers and Squeak as Environmentsfor Learning. Squeak: Open
Personal Computing and Multimedia. M. Guzdial and K. Rose, Prentice Hall: 453-
482.

Tanaka, J. (1999). The Perfect Search. Newsweek. 134: 71, September 27 1999.

Teitelman, W. and Masinter, L. (1981). “ The Interlisp Programming Environment.” Com-
puter 14(4): 25-34.

Thimbleby, H., Cockburn, A. and Jones, S. (1992). HyperCard: An Object-Oriented Dis-
appointment. Building Interactive Systems: Architectures and Tools. P. Gray and R.
Took. New York, Springer-Verlag: 35-55.

Thomas, J. and Gould, J. (1975). A Psychological Study of Query by Example. National
Computer Conference. Anaheim, CA, AFIPS. 44: 439-445.

Turtle, H. (1994). Natural Language vs. Boolean Query Evaluation: A Comparison of
Retrieval Performance. Proceedings of the Seventeenth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval: 212-
220.

Wason, P.C. (1959). “The Processing of Positive and Negative Information.” Quarterly
Journal of Experimental Psychology 11.

Webgain (2001). JavaCC - The Java Parser Generator, http://www.webgain.com/products/
metamata/java_doc.html.

Weinberg, G.M. (1971). The Psychology of Computer Programming. New York, Van Nos-
trand Reinhold Company.

A Programming System for Children that is Designed for Usability 189

References

Wilcox, E. and Burnett, M. Programming a Single Digit LED in Forms/3 http://
www.cs.orst.edu/~burnett/Forms3/LED.html.

Young, D. and Shneiderman, B. (1993). “A Graphical Filter/Flow Representation of Bool-
ean Queries: A Prototype Implementation and Evaluation.” Journal of American
Society for Information Science 44(6): 327-339.

190 A Programming System for Children that is Designed for Usability

