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Abstract

Modern servers typically process request streams by assigning a worker thread to a request, and rely
on a round robin policy for context-switching. Although this programming paradigm is intuitive, it
is oblivious to the execution state and ignores each software module’s affinity to the processor
caches. As a result, resumed threads of execution suffer additional delays due to conflict and com-
pulsory misses while populating the caches with their evicted working sets. Alternatively, the staged
programming paradigm divides computation into stages and allows for stage-based (rather than
request thread-based) cohort scheduling that improves module affinity.
This technical report introduces (a) four novel cohort scheduling techniques for staged software
servers that follow a “production-line” model of operation, and (b) a mathematical framework to
methodically quantify the performance trade-offs when using these techniques. Our Markov chain
analysis of one of the scheduling techniques matches the simulation results. Using our model on a
staged database server, we found that the proposed policies exploit data and instruction locality for a
wide range of workload parameter values and outperform traditional techniques such as FCFS and
processor-sharing. Consequently, our results justify the restructuring of a wide class of software
servers to incorporate the staged programming paradigm.
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1 Introduction

Modern application servers typically accept streams of requests, and assign each request an execution

thread. Context-switching amongst threads is at the discretion of the operating system, which typically

employ a time-sharing context-switching policy. This programming paradigm is elegant and intuitive;

however, each request spends a different amount of time in each software module. Round-robin time-shar-

ing context switching is oblivious to the execution state, and ignores module affinity to the memory hierar-

chy resources. Consequently, each resumed thread often suffers additional delays while re-populating the

processor caches with its evicted working set.

As the processor-memory speed gap [12] continues to increase, cache misses are becoming an increas-

ingly important factor of a server’s performance. Research [15] has shown that this gap affects commercial

database server performance more significantly than it affects other engineering, scientific, or desktop

applications. The reason is that database applications access the memory subsystem far more often than

desktop or engineering workloads. Moreover, database workloads exhibit large instruction footprints and

tight data dependencies that reduce instruction-level parallelism opportunity and incur data and instruction

transfer delays [7][10].

To alleviate memory delays, numerous data placement techniques and cache-conscious algorithms

[2][3][5][6] have been proposed that exploit spatial and temporal locality. Such techniques, however,

improve the locality within each request and have limited effects on the locality across requests. Database

servers typically assign threads to queries; therefore, context-switching across concurrent requests is likely

to destroy data and instruction locality in the caches. When running OLTP workloads, for instance, most

misses occur due to conflicts between threads whose working sets replace each other in the cache [8][9].

As incoming requests go through different modules of the server code, while the CPU switches execution

between concurrent requests. Figure 1 illustrates an example where successive executions of module 2 are

interleaved with executions of other modules, forcing module 2’s content to be repeatedly evicted from and

restored into the memory hierarchy. As future systems are expected to have deeper memory hierarchies, a

more adaptive programming solution becomes necessary to best utilize the available memory resources.

The staged server [1] is a programming paradigm that divides the computation that a server performs

in response to a request into stages and schedules request execution within one stage at a time, to improve

locality. The staged server defers executing a stage until its queue accumulates operands, then it processes

the entire queue, by repeatedly executing its operation. Once that queue is empty, the processor keeps tra-

versing the list of stages going first forward and then backward. The authors have demonstrated that their

approach can improve the performance of a simple, custom built web server by reducing the frequency of

cache misses in both the application and operating system code. While the web server is a successful first
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experiment, there remain significant scheduling trade-offs to be solved. For instance, it is not clear under

which circumstances a policy should delay execution of individual requests before moving to the next

module, before the locality benefit is offset. In addition to the forward-backward list traversal scheduling

algorithm proposed, other techniques may work even better under a variety of application workloads. The

staged server paradigm can improve performance of an application server if (a) the application is bound by

delays in the memory hierarchy, (b) requests are executed through well-defined modules, and (c) the mod-

ule topology is relatively simple to minimize scheduling complexity.

Database management systems meet all of these requirements and are an excellent candidate for the

staged programming paradigm. The discussion in the beginning of this section indicates that database

applications suffer from memory hierarchy delays more than other types of workloads, which increases the

potential for performance gains. Furthermore, database servers are naturally modular, as queries follow the

same sequence (parser, optimizer, transaction manager, etc.). Different requests can benefit from locality

within each module as they access common data structures and code. In addition, the flow of execution is

purely sequential, which makes the search space for scheduling policies conveniently manageable: possi-

ble policies are more likely to include a combination of the number of requests to receive service (one, sev-

eral, all), the time they receive service within a module (until completion or up to a cutoff value), and the

order of visiting the modules.

To our knowledege, this is the first attempt to extensively study the scheduling trade-offs when apply-

ing the staged server paradigm in the context of a complex application server such as a database system.

The contributions of this technical report are twofold. First, it introduces four novel cohort scheduling

techniques for staged software servers that follow a “production-line” model of operation. Next, it presents
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a mathematical framework to methodically quantify the performance trade-offs when using these tech-

niques. We model one of the proposed policies using a Markov chain and validate its solution against sim-

ulation scripts. This analysis applies to a wide class of systems following a “production line” model of

operation that may benefit from a stage divided service, repeatedly performed on batches of jobs. In the

context of a simulated database system, we compare six scheduling alternatives: the traditional processor-

sharing model, plain FCFS, and four proposed scheduling techniques. In order to show the performance

gains under each possible scenario, we vary parameters such as the importance of the module loading time

when compared to the execution time and the overall load in the system. Our results show that the pro-

posed policies exploit data and instruction locality for a wide range of workload parameter values and out-

perform traditional techniques such as FCFS and processor-sharing.

The rest of the report is organized as follows. Section 2 reviews additional related work. Section 3 pre-

sents the framework along with our assumptions, defines the problem, and describes the existing and pro-

posed scheduling policies. Section 4 presents a queueing model which incorporates locality-aware

execution, along with its analysis. Section 5 discusses the results from measuring and comparing the per-

formance of all policies under various scenarios. Section 6 discusses the system assumptions the simula-

tion is based upon. Finally, Section 7 concludes the report's results.

2 Related work

The term “affinity scheduling” has been widely used in shared-memory multiprocessor systems. In those

environments, it is sometimes beneficial to schedule a task on a certain processor that contains relevant

data in its local cache [16][17]. Although this type of affinity is similar to the one that the staged program-

ming paradigm tries to leverage on, the latter approaches the problem by restructuring a single application

to exploit locality, rather than improve locality for a collection of tasks in a generic setting.

Most server architectures have adopted processor-sharing (PS) scheduling as a “fair” scheduling policy.

The CPU(s) spend a fixed amount of time (typically in the order of 1ms) on each active process and keep

switching processes in a round-robin fashion. Recent work tries to argue in favor of SRPT (Shortest

Remaining Processing Time first) scheduling for the case of a single server [13]. The authors in [11] have

shown that traditional assumptions for workload modeling are not accurate. More specifically, it was

shown that UNIX jobs have sizes that follow a Pareto (heavy-tailed) distribution and not an exponential

one. The effects of taking into account this distribution can be counter-intuitive and are discussed in [11].

In the database community there is significant research towards improving DBMS performance by

making several of the database systems components “cache-conscious”. Relevant studies target a part of

the query execution lifetime such as query processing algorithms [5], index manipulation [2][3][4], and
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data placement schemes [6]. Although the proposed techniques take advantage of the inherent data and

instruction locality within the database server modules to decrease cache misses (and hence memory

delays), uncontrolled context-switching between different execution threads hurts program locality.

The authors in [14] proposed a staged event-driven architecture (SEDA) for highly concurrent internet

services. SEDA decomposes a complex, event-driven application into a set of stages connected by queues.

This design avoids the high overhead associated with thread-based concurrency models and enables ser-

vices to be well-conditioned to load, preventing resources from being overcommitted when demand

exceeds service capacity. The potential benefits of this design are orthogonal to the benefits stemming

from a cache-aware scheduling policy, provided that the stage definition has been done with taking the lat-

ter into account.

3 Problem formulation and proposed methods

We consider the case of a single-CPU database server with a memory-resident workload. Each query sub-

mitted to the server passes through several stages of execution, and each one of those stages corresponds to

a server module. A module is defined as a relatively autonomous, in terms of the data structures owned and

accessed, part of the work that the database server performs in response to a request. An example of such a

module is the parser or the optimizer of the database (shown in Figure 2.). Data structures referenced and

code executed by two different queries during the execution of a single module can overlap by a variable

amount of instructions and data. For instance, two different queries may use different execution operators,

produce their own plans, and access different tuples; however, they will reference common code such as

buffer pool code or index look-up, and common data such as the symbol table or the database catalog.

Once the common data structures and instructions of a module are accessed and loaded in the cache,

subsequent executions of different requests within the same module will significantly reduce memory

delays and will reduce the cycles-per-instruction (CPI) rate. The model assumes, without loss of generality,
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FIGURE 2: A query passing sequentially through N modules.
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that the entire set of a module's data structures can fit in the higher levels of the memory hierarchy, and that

a total eviction takes place when the CPU switches to a different module. The results drawn using this

model may easily be transferred from the processor/cache/memory to the CPU/memory/disk hierarchy.

Processor sharing (PS) fails to reuse cache contents, since it switches from query to query in a random

way with respect to the query’s current execution module. To exploit the data locality, we propose tech-

niques for scheduling queries between different modules, and evaluate them against processor sharing. In

order to compare the different scheduling policies we assume a Poisson stream of queries, whereas the

query service time follows an exponential distribution. Whenever a query starts execution at a certain mod-

ule and the common data structures are not already in the cache (that is, the CPU was previously working

on a different module), then the query is charged with an additional fixed CPU demand for that module.

This extra CPU demand represents the time spent in memory stalls due to fetching common data structures

from main memory to cache, for a given query. Under PS, these stalls are the default ones, and herein lies

the opportunity for better exploiting data locality.

Clearly, several of the assumptions related to the system architecture (single CPU, in-memory DBMS,

context switch costs, common data structure sizes and cache behavior) are simplifications used to under-

stand the problem and create the framework for evaluating the scheduling policies. Relaxing these assump-

tions does not affect the generality of our results, as is discussed in more detail in Section 6. The

assumption of exponentiality with respect to query sizes and interarrival times does not match workloads

universally, but it provides a tractable model for comparing the different policies. For the specific problem

under consideration, bursty arrivals will only increase the potential of cache-conscious scheduling, and

thus, the use of Poisson arrivals is adequate for qualitatively comparing the different scheduling policies.

Nevertheless, the experimentation section departs from exponentially distributed query sizes, and exam-

ines what would happen in the case of a highly variable distribution (where a small fraction of the work-

load consists of really large queries). It has been shown [11] that such a distribution can closely model real

workloads. Given the assumptions mentioned, the exact problem definition follows.

3.1 Problem definition

Queries arrive at a DBMS server according to a Poisson process with rate . Each query passes, always in

the same order, through a series of M modules. Each module has its own separate queue. There is only one

CPU at the system. Whenever a query arrives at the server, it’s service time is drawn from an exponential

distribution with mean m; when that query executes at a given module i, it spends time . If the immedi-

ately previous query execution happened at a different module, then the CPU also spends time (fixed) to

λ

mi

li
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load module i common contents in the cache. The goal is to devise a scheduling policy that minimizes the

average query response time.

The baseline scheduling policies are First Come First Serve (FCFS) and the prevailing one, PS. Under

FCFS, whenever a query arrives at module 1 it executes and then continues with module 2, until it has exe-

cuted all M modules. New queries that arrive at module 1 will have to wait until the current query exits the

system. Since there is only one CPU, the only queue that actually accumulates input is one at the entrance

of module 1. Like PS, FCFS is also oblivious to the module structure and is not locality-aware (each newly

loaded module wipes the previous one from the cache).

3.2 Proposed scheduling policies

D-gated (Dynamic-gated). This policy dynamically imposes a gate on the incoming queries, and executes

the admitted group of queries as a batch at each module, until their completion. Execution takes place in a

first-come first-served basis at the queue of each module.When the first query in the queue of module 1

starts execution, it fetches the common data structures of the module in the cache. The rest of the queries

that form the current batch pass through module 1 without paying the penalty of loading the common data

structures in the cache. When the last query of the batch finishes execution at module 1, the CPU shifts to

TABLE 1: Symbol definitions

symbol explanation value

M number of modules

to be set at the
experimenta-
tion section

,

fraction of a query’s total execution time
spent at module i

query arrival rate

m mean query service time, when all common
data+code is found in cache

l total time a query spends loading in cache
common data+code

mean query service time, at module i, when
common data+code is found in cache

time a query spends at module i, loading in
cache common data+code

c% percentage of query execution time spent on
average servicing common instruction and
data cache misses

system load

α i α i

i 1=

M

∑ 1=

λ

mi α i m×

li α i l×

l
l m+
------------

ρ λ m l+( )×
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the queue of module 2 and again processes the whole batch in a FCFS fashion. Meanwhile, incoming que-

ries to the database server are queued up, at the first module’s queue. Eventually, the current batch moves

to the last module, and each query leaves the system immediately after its execution. Then, the CPU shifts

to the first module and marks the new batch of admitted queries. These are the queries that have accumu-

lated so far in the first module’s queue. From that point of time and on, a gate is imposed to all incoming

queries, for the duration of the next batch’s execution. Since the gate defines a batch size each time module

1 resumes execution, we call this policy Dynamic-gated, or D-gated. The whole process is illustrated in

Figure 3 for three modules. Whenever the CPU shifts to module 1 and the queue is empty, D-gated reduces

to plain FCFS. Note that D-gated is a cache-conscious scheduling policy since it only pays the penalty of

loading a module in the cache once per batch of queries.

T-gated(N) (Threshold-gated). This policy works similarly to D-gated, except for the way it specifies

the size of the admitted batch of queries. T-gated explicitly defines an upper threshold N for the number of

queries that will pass through module 1 and form a batch of maximum size N. If more than N queries have

queued up in module 1 when the CPU finishes with the previous batch, T-gated will admit just N queries

while the rest will be considered for the next batch. For N=1, this policy reduces to FCFS.

non-gated. This policy admits all queries queued up in module 1, and works on module 1 until the

queue becomes empty. At that point the CPU moves to the next module and proceeds in the same fashion

as D-gated and T-gated. Once the current batch exits the system, the CPU shifts to module 1 and keeps

admitting queries until there is no more work to be done at module 1. Non-gated is more sensitive to star-

vation, since a continuous stream of queries might cause the server to work indefinitely on module 1.

While the analytic workloads we used didn’t produce this behavior, the use of a time-out mechanism is

necessary in a real implementation. This policy is similar to the one described in [1] (when applied to our

framework).

C-gated (Cutoff-gated). One possible issue with the two previous policies is that a very large query

can essentially block the way to other, smaller ones, and thus lead momentarily to higher response times.

With an exponential distribution of query sizes, this problem does not surface when the average response

M1 M2 M3

FCFS FCFS
until empty until empty

FCFS
w/gate

outin

gate

FIGURE 3: Illustration of dynamic - gated for three modules
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time is measured. This is because the majority of the system load is attributed to relatively small query

sizes (close to the mean). A heavy-tailed distribution on the other hand, typically involves half the system

load to be made up by infrequent but very large queries. In a scenario like that, FCFS based policies could

lead to unreasonably high response times, compared to processor-sharing. C-gated tries to bridge the

cache-awareness that D-gated and T-gated exhibit with the fairness in the presence of large queries that PS

shows. Under C-gated, apart from the imposed gate to the incoming queries at the first module (either

dynamically or as a predefined threshold), an additional cutoff value applies to the time the CPU spends on

a given query at a given module. Whenever the CPU exceeds that cutoff value, it switches execution to the

rest of the queries in the queue and to the next module, leaving the large query unfinished. That query will

rejoin the next batch, and eventually resume execution. Whenever its remaining CPU demand for the cur-

rent module drops below the cutoff value, it will advance to the next module. This way, both small and

large queries make progress while still benefiting from increased data locality. The cutoff technique resem-

bles the Foreground-Background scheduling policy used in Unix, where large jobs, when identified, are

pushed in a separate queue and receive service only when there are no small jobs in the default queue. The

difference is that under C-gated large queries receive service at the presence of small queries, once per

batch passing.

3.3 Analysis of PS and FCFS

Under both FCFS and PS each query sees all modules as if they were one M/G/1 server, with mean service

time the mean module service time plus the module load time. That is, each query has to serve for l time

units plus a variable amount of time drawn from an exponential distribution with mean m. For PS, the

mean response time (expected time in system) in a M/G/1 server, is:

(PS)

For FCFS, the Pollaczek - Khinchin formula applies to the expected time in system for a M/G/1 server:

(P-K)

M1 M2 M3

FCFS FCFS
until empty until empty

FCFS
w/gate

outin

gate

or size > cutoffuntil size > cutoff or size > cutoff

FIGURE 4: Illustration of cutoff-gated for three modules
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This formula needs the first two moments of the general query size distribution (Exp(m) + l):

(1),

(2)

So, the expected response time for a query for the given problem definition, under FCFS, is:

(FCFS)

4 Analysis of the M/M/1 queue with a staged, locality-aware policy

This section considers a special case of the M/M/1 queue where the notion of data locality is incorporated

into the job service times. While in CPU, we assume that each job undergoes a series of execution steps

(modules). At each of those modules the service time is affected by the cache hit ratio. Whenever a job

moves to the next execution module, new data structures and new instructions need to be loaded in the

cache. However, if a second job is preemptively scheduled to execute the very same module that the previ-

ous job was working on, then, the cache hit ratio increases, and thus, the service time for the second job is

reduced.

Although the analysis described here is in the context of the staged server paradigm, it can also apply

to a wider class of servers that follow a “production-line” model of operation. For instance, we can imagine

a single robotic arm (could be part of a chain) performing several tasks on incoming items. Suppose some

or all of those tasks require each time a special, time-consuming preparation on behalf of the robotic arm

(such as switching position or functionality). Then, it could be more efficient if the robotic arm treated

incoming items as a batch and performed each task on the whole batch (thus paying the penalty of prepara-

tion only once per incoming batch). In that system, the notion of the cache and common data structures is

replaced by the preparation of the robotic arm that is common to each task.

In order to model this queue, we assume that all jobs pass through the same execution modules. The

breakdown of the service requirement into modules is such that the common data associated with each

module fit entirely in the cache (or in the higher levels of the memory hierarchy, in general). The total ser-

vice time for a job that always suffers the default cache miss ratio (as in the FCFS case) is drawn from an

exponential distribution with mean . A job that always executes a module just after another job has

brought the common data of that module in the cache, requires a total service time drawn from an exponen-

tial distribution with mean , with .

E S[ ] xf x( ) xd
l

∞

∫ l m+= =

E S2[ ] x2f x( ) xd
l

∞

∫ l2 2lm 2m
2

+ += =

E Ts[ ] λ l2 2lm 2m
2+ +( )

2 1 ρ–( )
--------------------------------------------- l m+ +=

1 µ⁄

c µ⁄ 0 c 1≤<
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All existing scheduling policies (preemptive and non-preemptive) for the M/M/1 queue are oblivious to

cache performance. For exponential service times all non size-based policies result in the same expected

time in system, namely:

,

where is the job arrival rate. The rest of this Section analyses d-gated for the M/M/1 queue just

described.

An equivalent way to think of the proposed cache-conscious execution is as a modified FCFS policy.

Under this policy the first job in the queue (and in a group) gets uninterrupted service with rate and then

waits until all jobs in its group finish. Each of those jobs in turn, executes in a FCFS fashion, but with an

“accelerated” rate of , and then waits for the rest (note that c was defined to be between zero and one).

When the last job of the group finishes execution, all jobs leave the system at the same time and the CPU

looks at the queue: the jobs that wait there will consist the next group (if there are no jobs in the queue,

then the first job to arrive in the system will consist a group by itself, in which case the cache-conscious

execution reduces to a true FCFS policy). This modified FCFS scheme behaves the same as the proposed

cache-conscious execution in terms of the number of jobs in the system at any time.
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Since both the interarrival and service times are exponential, a Markov chain can be written for this

modified FCFS scheme (illustrated in Figure 5). A state (m, n, z) in this chain is defined as: m is the num-

ber of jobs waiting in the queue (not admitted), n is the number of jobs consisting the current batch, and, z

is the number of jobs, out of the current batch, that would have finished execution under normal FCFS but

now have to wait for all members of the batch to complete execution. Every batch comes to completion

whenever there is a departure with rate (for batch size = 1) or rate (for batch size > 1), from a state

in the form of: (m, n, n-1); this departure leads to state (0, m, 0), since all m jobs waiting in the queue will

consist the next batch.

Solution of Markov chain. We can write a balance equation for the state (m, n, z): the rate we leave

that state equals the rate at which we enter into that state.

, for (1)

For z = 0, the balance equation is:

, (2)

Convention: from now on we will write all probabilities of the form , as ..The goal is to express

all state probabilities as functions of .

For z = 1, the balance equation is:

, (3)

By substituting (2) into (3) and solving the recurrence, we derive:

, (4)

For z = 2, (1) and (4) give, after solving for the recurrence:

, (5)

Similarly, for z = 3, we have:

, (6)

From (2), (4), (5), and (6) we can conclude what the formula for as a function of is.

µ µ c⁄

µ
c
--- λ+

 
 Pm n z, ,

µ
c
---Pm n z 1–, , λPm 1– n z, ,+= 1 z n< <

µ λ+( )Pm n 0, , λPm 1– n 0, ,= Pm n 0, ,→ λ
µ λ+
-------------

 
 

m
P0 n 0, ,=

P0 n 0, , Pn

Pn

µ
c
--- λ+ 

  Pm n 1, , µPm n 0, , λPm 1– n 1, ,+=

Pm n 1, ,
µ

µ c⁄ λ+
------------------- λ

µ c⁄ λ+
-------------------

 
 

i λ
µ λ+
-------------

 
 

m i–
⋅

i 0=

m

∑
 
 
 
 

Pn⋅ ⋅=

Pm n 2, ,
µ c⁄

µ c⁄ λ+
------------------- µ

µ c⁄ λ+
------------------- λ

µ c⁄ λ+
-------------------

 
 

i λ
µ λ+
-------------

 
 

m i–
⋅

i 0=

m

∑ … λ
µ c⁄ λ+
-------------------

 
 

i λ
µ λ+
-------------

 
 

m i–
⋅

i m=

m

∑+ +
 
 
 
 

Pn⋅ ⋅ ⋅=

Pm n 3, ,
µ c⁄

µ c⁄ λ+
-------------------

 
 

2 µ
µ c⁄ λ+
------------------- λ

µ c⁄ λ+
-------------------

 
 

i1 λ
µ λ+
-------------

 
 

m i1–
⋅

i1 i2=

m

∑
i2 i3=

m

∑
i3 0=

m

∑
 
 
 
 

Pn⋅ ⋅ ⋅=

Pm n z, , Pn



14
, (7)

Convention: from now on, a[m, z] will be the following sum

, (8)

a[m, z] can be thought as a sequence for z > 0 with m being a non negative integer, and the following

recursive definition can be written:

, (9)

This will be useful when we want to evaluate those probabilities. We now need to compute probabilities

. For n > 1, we have the following balance equation:

,

and by using (7) and (9), we can rewrite that as:

, (10)

For n = 1, we can write the following balance equation:

,

which can be written as:

, (11)

The probability of being in state 0 (system being idle) equals 1 minus the sum of the probabilities of

being in every other possible state, namely:
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,

or:

, (12)

From equations (10), (11), and (12) we can see that the probabilities through are part of a set of

an infinite number of linear equations, and their value could had been obtained if we were able to solve this

linear system of infinite equations. Such a solution would have the following general representation:

where the quantity S(n) is defined as:

Evaluation. The above solution can be approximated by solving for a finite n. Since the last job on

every batch sees the system as if it was a simple FCFS server, the system is stable and the sum of the state

probabilities goes to 1 as n goes to infinity. We used dynamic programming to efficiently evaluate a[m,z],

and matlab to solve the linear equations, for n in the range of 100-500. The results matched exactly the

simulation scripts, for all combinations of tried.

5 Experiments

In all of our experiments, we set M, the number of modules, equal to five. For simplicity, an equal percent-

age of service time breakdown is assigned to the five different modules (that is, a query spends equal time

in all modules or , for all i). PS and FCFS are not affected by the number of modules neither the

service time breakdown. The gated algorithms can actually benefit by a biased assignment of service times

to the different modules. This happens when queries spend a significant amount of time at the last module.
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On average, those queries will leave the server faster since they execute mostly in a FCFS fashion (and

thus, are not delayed by all queries in the batch) and benefit from module locality, at the same time. Since

this is not typically the case in a real DBMS, the number of modules and service time breakdown remain

the same through all experiments.

The time it takes a module to load the common data structures and instructions, , is equal for all que-

ries and it varies in the experiments as a percentage of the total expected (mean value) execution time of a

query. The mean query execution time (CPU demand) for the case where all common instructions and data

structures need to be loaded in the cache (which always is the case for FCFS and PS) is 100ms. This value

consists of a fixed component (l, time it takes all modules to load common data and code), and a variable

one (m, query service time when all common code and data is found in the cache). The variable component

takes values in the experiments from two distributions: the exponential and the bounded pareto (a highly

variable distribution). Since other values for the total mean CPU demand resulted in the same relative dif-

ferences in response times among all policies tested, all performance graphs are based only on that value.

The results for both PS and FCFS are derived from analytical formulas, while all gated policies are based

on simulation scripts. The confidence intervals were tight enough and so they are omitted from the graphs,

for better readability. Table 2 shows all the experimentation parameters, along with their value range.

5.1 Effect of various degrees of data locality (different module loading times - l)

In the first experiment the variable component of the mean query CPU demand is drawn from an exponen-

tial distribution with mean in the range of 40-100ms. Initially, the query arrival rate is set to produce a sys-

tem load of 80%. This experiment compares the mean response time for a query under PS, FCFS, D-gated,

non-gated and T-gated(2), for various module loading times (the time it takes all modules to fetch the com-

mon data structures and code in the cache, l). This time varies as a percentage of the mean query CPU

demand, from 0% to 60% (the mean query service time that corresponds to private data and instructions,

m, is adjusted accordingly so that m+l=100ms). This value (l) can also be viewed as the percentage of exe-

TABLE 2: simulation parameters

parameter variance value range

M, number of modules fixed 5

, fraction of execution time at module i fixed 0.2

, query arrival rate Poisson 0-12 queries/sec

m+l, query service time, no module loaded see below for m, l mean = 100ms

m, query service time, all modules loaded exponential, bounded pareto mean = 0-100% of 100ms

l, common data+code loading time equal for all queries 0-100% of 100ms

li

ai

λ
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cution time spent servicing cache misses, attributed to common instructions and data, under the default

server configuration (e.g. using PS). The results are in Figure 6.

The left graph of Figure 6 shows that the gated family of algorithms performs better than PS for mod-

ule loading times that account for more than 8% of the query execution time. Response times are up to

twice as fast and improve as module load time becomes more significant. On the other hand, for module

loading times that correspond to less than 8% of the execution time, non-gated and D-gated policies show

up to 20% worse response times. Among those two gated policies, D-gated performs best. T-gated(2) per-

forms consistently well, outperforming PS in almost all configurations. The reason that T-gated(2) per-

forms better than D-gated or non-gated is because it closer approximates FCFS than D-gated does and

thus, the first query of every batch of two queries is delayed by only one other query. When the benefits of

cache hits are reduced, it is more important for a query not to be delayed by other queries. Note that the

response time under FCFS drops as the percentage of module loading time increases. This is because a

fixed part in the service time reduces variability and thus, queueing time delays. T-gated performed better

in this scenario for a threshold value of N = 2.

For the right graph in Figure 6, the same experimental setup is used, but the arrival rate is set to create

a system load of 95%. As the system load increases, the trends in the gated family of policies do not

change. The performance of PS and FCFS though drops significantly and as a result, gated policies per-

form better for almost all values of module loading time percentages (> 2%). The gains of the gated poli-

cies now increase to up to 7 times reduced response times. T-gated(2) is still the policy of choice, since it

never loses to PS and its ability of improving the performance (when compared to PS) even when the com-

mon memory references are low, outweigh its slightly worse performance than D-gated and non-gated for

high percentages of common memory references.

FIGURE 6: Mean response times for 80% system load (left) and 95% system load (right)
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5.2 Direct comparison of T-gated(2) and PS

This experiment directly compares PS and T-gated(2) (T-gated with N set to 2) by plotting the area that

each of those policies results in lower response times. The same exponential distribution is used for the

query sizes. The graph in Figure 7 is produced by varying both the system load and the module loading

times. It shows the relative speedup of T-gated(2) over PS, for a wide range of different locality scenarios.

The x-axis is the percentage of execution time that is eliminated for a query that finds the common data

structures of a module in the cache. This value varies from 1% to 70%. The y-axis is the server load; we

varied the arrival rate to achieve server loads between 1% and 98%. On the right of the y-axis we denote

the areas where the relative speedup of T-gated(2) over PS is within a certain range. Areas with darker

color correspond to higher speedup, while the white area corresponds to those combinations that both poli-

cies perform almost the same. PS is only able to perform better than T-gated(2) in a small area on the left of

the graph; the relative speedup of PS in that area does not exceed 1.1.

5.3 Effect of very large query sizes

For our last experiment, we study the effect of a highly variable distribution. The exponential distribution

assumes that the remaining query service times are independent of the CPU time they used so far. This is

not true in many real workloads, where many small queries are often the case, while the few large ones are

increasingly more likely to take more of the CPU time. Exactly this property (also called decreasing failure

rate) is characteristic of a heavy-tailed distribution. Under such a distribution (one example being the

pareto distribution), a very small fraction of the largest queries can comprise as much as half of the system

load. While PS, as a fair policy, is insensitive to different distributions (we only need the mean service time

and the arrival rate to compute the mean response time), the rest of the policies are not. A really large query
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can block the way of many smaller ones and thus, result in higher mean response times. In this section we

test how well C-gated can push small queries out of the system fast, while still exploiting data locality.

We use the same distribution as in [11], Bounded Pareto, B(k, p, a), for the variable component of the

total query size, with fixed mean in the range of 40-100ms (depending of the choice for l, so that the mean

query CPU demand remains 100ms). Parameter p denotes the maximum query size; we set this to

10,000sec. Parameter k is the smallest query size and was set to 12.2ms (its value is computed from the rest

parameters when we set the mean). Parameter a typically ranges between 0 and 2, and defines the degree of

variability (the same way as in Pareto). As a approaches zero, the distribution becomes more variable.

Bounded Pareto differs from Pareto in that it has all of its moments finite, but it still produces query sizes

with very high variance. We chose to set a equal 1.1. The probability mass function for the Bounded Pareto

B(k, p, a) is defined as:

For the C-gated policy we manually set a fixed cutoff value of 100ms (same as the mean CPU

demand). In a real environment, this can be implemented by monitoring the query sizes and using the aver-

age value as the cutoff. We repeated the first experiment (Figure 6) but this time we tested C-gated under

both the exponential and the Bounded Pareto distributions. FCFS, non-gated, D-gated, and T-gated

explode under Bounded Pareto (they result into very large response times) and thus they don’t appear in

the plot. Instead, we show again D-gated response times under the exponential distribution. PS, by defini-

tion, behaves exactly the same under both distributions. The results are in Figure 8. For the case of C-gated

under Bounded Pareto, the confidence intervals are also shown (here they are wider due to the highly vari-

able distribution).
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FIGURE 8: Highly variable distribution: Bounded Pareto
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As Figure 8 shows, C-gated under Bounded Pareto wins over PS for module loading times of 15% or

more of the mean query execution time. While C-gated under Bounded Pareto is worse when compared to

D-gated under the exponential distribution, it nevertheless manages to exploit data locality through cache-

conscious scheduling and avoid the pitfall of working almost indefinitely on very large queries. What is

interesting is that C-gated under the exponential distribution is only slightly worse than D-gated. This

means that C-gated could be the policy of choice when there is no apriori knowledge of the workload char-

acteristics. By increasing the system load, the same trends as in the right graph of Figure 6 are observed.

That is, the gains of the gated family over PS are increased.

6 Relaxing the model’s assumptions

In order to approach the problem of low cache performance in today’s servers and particularly DBMSs,

due to uncontrolled in-and-out swapping of concurrent requests at the CPU, several assumptions were

made. This served the purpose of formulating a framework under which existing and proposed solutions

could be compared and understood. This section discusses how the assumptions related to the architecture

of the system affect the overall solution and the experimental results:

Single CPU. High-end commercial database system installations typically run on high-performance

multiprocessor systems. Although this essentially adds a degree of freedom to the space of possible sched-

uling policies, it is straightforward to extend the proposed approach to include execution on multiple

CPUs. We divide the modules into groups, as we assign each group to a processor. The analysis in this

report then holds for each individual CPU. Moreover, there is an additional opportunity for cache-con-

scious execution: by assigning specific modules at each CPU and scheduling the queries accordingly, an

even higher number of queries pass through a module per CPU, and thus, higher performance gains are

expected (as it was illustrated in Figure 6b, for increased system load).

In-memory DBMS. Although the model discussed is based on the processor/cache/memory hierarchy,

our results can easily be applied to the CPU/memory/disk hierarchy, exploiting memory locality. I/O inter-

rupts cause the suspension of a thread execution, before the end of the time slice assigned to that thread.

Real servers are based on this mechanism to overlap and mask the latencies of the various system devices.

The assumption of an in-memory DBMS removes the need of premature thread preemption (except for

synchronization purposes), and thus, allows for a simpler execution model. Nevertheless, we found that

blocking threads do not affect the way the proposed policies work. Whenever a thread unblocks, it either

joins the next batch of queries passing through the module, or it executes alone, if the CPU was idle.

Context switch cost. This cost applies to all policies (except first-come-first-serve with no I/O inter-

ruptions) and thus it doesn’t affect the relative performance gains. Moreover, context switches tend to hap-
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pen less frequently for the gated family of policies, since a query tries to execute entirely, without

interruptions (if possible) when at a given module.

Common data structures / cache benefits model. The proposed framework models the benefit of

cache hits due to the staged execution with a single parameter per module (percentage of execution time

spent servicing cache misses attributed to: common instructions and code between two queries) that

includes all the possible code/data overlap between queries executing in a given module. This number is a

combination of all the overlaps in several data categories, and simplifies the presentation of the compari-

son among scheduling policies.

7 Conclusions

Modern servers and especially commercial database servers that run on current platforms typically suffer

from high processor/memory data and instruction transfer delays. Despite the ongoing effort to create

locality-aware algorithms, the interference caused by context-switching results in high penalties due to

additional conflict and compulsory cache misses. To preserve data locality across execution threads, the

staged server [1] programming model allows for the incoming queries to queue behind each of the database

server modules, and appropriate scheduling policies minimize conflicts across different modules' working

sets. This paradigm is ideal for database systems, due to their modular and memory-demanding nature.

The contributions of this technical report are twofold. First, it introduces four novel cohort scheduling

techniques for staged software servers that follow a “production-line” model of operation. Next, it presents

a mathematical framework to methodically quantify the performance trade-offs when using these tech-

niques. Our Markov chain based analysis can apply to a wide class of systems that may benefit from a

stage divided service, repeatedly performed on batches of jobs. In the context of a simulated database sys-

tem, we compare six scheduling alternatives: the traditional processor-sharing model, plain FCFS, and the

four proposed scheduling techniques.

In order to show the performance gains under each possible scenario, we vary parameters such as the

importance of the module loading time when compared to the execution time and the overall load in the

system. The experimental results show that the new scheduling policies (a) outperform processor-sharing

by delivering up to a seven-fold response time improvement in most configurations, and (b) exploit data

and instruction locality for a wide range of workload parameter values. Although the expected gains in a

real, large staged system can be lower, due to additional, implementation related overheads, this report

shows nevertheless, that the scheduling trade-off of delaying the requests forming a batch is justifiable and

pays off for even low degrees of inter-request locality.
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