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Abstract

We propose a new multicast protocol calRHUNITE. The key idea oREUNITEis to use recur-

sive unicast trees to implement multicast serviREUNITE does not use class D IP addresses.
Instead, both group identification and data forwarding are based on unicast IP addresses. Com-
pared with existing IP multicast protocoREUNITE has several unique properties. First, only
routers that are acting as multicast tree branching points for a group need to keep multicast for-
warding state of the group. All other non-branching-point routers simply forward data packets by
unicast routing. In additiorREUNITE can be incrementally deployed in the sense that it works
even if only a subset of the routers implement the protocol. FurtherRakNITE supports load
balancing and graceful degradation such that when a router does not have resources (forwarding
table entry, buffer space, processing power) to support additional multicast groups, the branch-
ing can be automatically migrated to other less loaded routers. Finally, sender access control
can be easily supported REUNITE. Although inREUNITE, routers in a multicast tree still need

to maintain control path state, we discuss a variamREINITE in which routers do not need to
maintain any control path state. However, this is achieved at the expense of having two additional
protocol message types, and a slightly more complex protocol.



1 Introduction

IP multicast, which was proposed by Deering in 1988, has two important components: the service
model and routing protocols [3]. In the IP multicast service model, a group of receiver hosts can
be identified by a single class D droup address. Any host can send to the group by setting

the destination address in the IP header as the group address. Receivers can dynamically join
and leave the group. Such a service model provides a powerful abstraction for applications as
end hosts (senders and receivers) can utilize the service without having to keep track of the
membership of the group. Itis the responsibility of IP multicast routing protocols to maintain the
membership information and to build multicast distribution trees to deliver packets from a sender
to all the receivers in a group.

Despite a decade of research and development, there are still open technical issues that make it
difficult to deploy IP multicast in the global Internet. From the point of view of routing, existing
IP multicast routing protocols [3, 1, 5, 4, 12, 9] scale poorly with large number of groups. In
particular, with current routing protocols, each router needs to maintain a multicast forwarding
table entry for every group whose distribution tree passes through the router. Therefore, the size
of the multicasforwardingtable needs to grow with the number of active groups, which results
in higher router cost and lower forwarding performance. From the point of view of the service
model, the current model requires each new group to be allocated a globally unique address. This
is difficult to do in a large-scale distributed environment [8]. In addition, the current model does
not provide means to control who is allowed to send to the group — any host can send to any
IP multicast address. While this is also the case for IP unicast, the waste of network resources,
disruption or denial of service by unauthorized senders can be greatly amplified in the case of
multicast due to the potentially large number of receivers in the group [9].

Several schemes (e.g., Simple Multicast [12] and EXPRESS [9]) have been proposed recently
to tackle the address allocation and the sender access control problems. In these schemes, there
is a special node (sender or core) associated with each group and the group is identified by a two-
tuple <special node’s unicast IP address, class D multicast adelreBse allocation of group
address becomes trivial as by locally enforcing the uniqueness of the class D addresses used at
each node, the uniqueness of the two-tuples are enforced. In addition, access control of senders
can be supported by forcing all packets to go to the special node to be authenticated before being



multicasted to the receivers.

While these proposals address some important issues related to the service model of IP mul-
ticast, the scalability problem of IP multicast routing still remains. In this paper, we propose
a novel multicast scheme called REUNITE (REcursive UNicast TreE) to address the scalability
issues. Unlike all existing IP multicast protocols, REUNITE does not use class D IP addresses.
Instead, both data forwarding and group identification are based on unicast IP addresses. Mul-
ticast data forwarding is implemented with a novel technique called recursive unicast. A group
is identified by a two-tuple: root_I P_address, root _port_number > where the root node can
be either the sender or a special node. Compared with existing IP multicast solutions, REUNITE
has several important advantages:

Enhanced Scalability by Reduction of Forwarding StateWith REUNITE, only routers that
are acting as multicast tree branching points for a group need to keep multicast forwarding state
of the group. Non-branching-point routers simply forward packets by unicast routing.

No Need for Class D IP AddresaVith REUNITE, a multicast group is identified by a two tuple
< unicast_I P_address, port_number > and there is no need for a separate block of class D IP
addresses. In this case, the allocation of unique group identification becomes trivial. In addition,

the maximum number of simultaneously active multicast groups increases dramatically.

Native Support for Incremental Deployment Since unicast addresses are used as destination
addresses in the IP header, a router that does not implement REUNITE will simply forward the
packets to the next hop based on the unicast destination address, without any adverse effect on
the protocol other than the potential loss of efficiency. This allows REUNITE to be incrementally
deployed only at a subset of network nodes, without the need of tunnelling.

Load Balancing and Graceful DegradationWith REUNITE, when a router does not have re-
sources (forwarding table entry, buffer space, processing power) to support additional multicast
groups, it can simply ignore further protocol messages and the branching point will be automati-
cally migrated to other routers.

Support for Access ControlAccess control can be implemented by authenticating senders at the
root node.
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Figure 1: Traceroute experiment from CMU to 15 U.S. sites.

2 Multicast Scalability and Sparse Groups

As discussed in Section 1, existing multicast protocols are not scalable with respect to the num-
ber of simultaneously active groups. This is because each router needs to maintain a multicast
forwardingtable entry for every group whose distribution tree passes through the router. Tech-
niques such as hierarchical address assignment and forwarding based on longest prefix match,
which achieve great reduction in the unicast forwarding table size, cannot be easily applied to
multicast [10].

While the number of multicast groups can be large, we speculate that a majority of the groups
will be very sparse. An important observation is that when the members of a multicast group is
distributed sparsely in the network, the data delivery tree of the group is likely to have a large
number of non-branching routers or routers that have only one downstream router. To illustrate
this point, we obtained results from a set of traceroute experirfota Carnegie Mellon Uni-
versity to 15 U.S. sites and constructed the resulting tree as shown in Figure 1. Assuming routing
is symmetric, DVMRP [3] would create the same tree for CMU multicasting to these 15 des-
tinations. Clearly, most of the routers in the tree are non-branching. For example, on the path
from CMU to receiverR5, 15 out of 16 routers are not performing any multicast operations other
than forwarding the packets to the next hop. Furthermore, in the entire multicast tree, there are
only 8 branching points out of 97 routers. With most existing multicast protocols, even these

lWe thank Sanjay Gopinatha Rao for providing us with these data.
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Figure 2: Example of packet forwarding in REUNITE. Packets are sent via unicast and replicated

at branching points.

non-branching routers need to maintain for this group a multicast forwarding entry, which is an
important scarce resource in multicast routers.

In this paper, we propose a new multicast protocol called REUNITE. One of its main advan-
tages is that non-branching routers do not need to maintain the forwarding state for the group.
This has the potential of greatly reducing the size of multicast forwarding table in a network that
has a large number of sparse groups.

3 REUNITE Addressing and Forwarding Algorithm

The key idea of the REUNITE protocol is to useursive unicasto implement multicast service.

For each group, REUNITE builds a delivery tree rooted at a specially designated nodeaxztlled

Every branching node of the tree maintains a list of receivers’ addresses. A rekdweaid

to have joined the multicast tree at nofleif R's address is maintained at. In REUNITE, a

receiver’s address is maintained at exactly one node in the group’s delivery tree. To multicast a

packet, the root sends a copy of the packet to each receiver in its list. Similarly, when a branching

node forwards such a packet, it sends a copy of the packet to each receiver in its own list. This

procedure continues recursively until packets reach all leaf nodes of the tree, i.e., all receivers.
Consider the example in Figure 2, which shows a multicast group with three receivers. As-

sumes is the source and the rodt] joins atS, 3 at N3, andR2 at N4. Note that onlyV3 and
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N4 are branching nodesy1 and N2 are not. The list of receivers maintained by each node is
shown in thdastentry of the corresponding tables. Wh&multicasts a packet, it simply sends
the packet to all receivers in its list, which in this case consists onfylofWhen N3 forwards
this packet it also sends a copy&8, which is the only receiver in its list. Finally, when the copy
traversesV4, N4 makes another copy and sends ifi2.

Using unicast addresses instead of class D addresses for data delivery is a key difference be-
tween REUNITE and all existing IP multicast protocols [3, 1, 5, 4, 12, 9]. As a result, while
in these protocols each router in the multicast tree has to maintain multicast forwarding state,
in REUNITE multicast packets can be simply forwarded based on a router’s unicast forwarding
table in any of the following cases: (a) the router is non-branching, (b) the router does not im-
plement REUNITE, or (c) the router runs out of multicast related resources such as forwarding
table entries. As will be discussed later, this results in three unique advantages of REUNITE:
(a) enhanced scalability due to reduction of forwarding state, (b) native support for incremental
deployment, (c) graceful degradation and load balancing.

We will present the details of the REUNITE addressing and forwarding algorithm in the rest
of this section, and describe the tree maintenance protocol in the next section.

3.1 Addressing

One of the key distinctive features of REUNITE is that it uses only unicast IP addresses for both
data forwarding and group identification purposes. In contrast, all existing IP multicast protocols
use class D IP addresses.

In REUNITE, there is a special root node associated with each group. While any node can
serve as the root, the source may be a more desirable choice in the csisglefsourceor
almost single-sourcapplications [9]. A multicast group is identified by a two tuplgoot IP_
addr, rootport number-. This makes the generation of globally unique group identifiers trivial
as it only requires each of the root nodes to generate a locally unique port number.

For each multicast packet, the source and destination address fields in the packet header are
set to be the IP addresses of the root and one of the receivers in the group, respectively.



3.2 Forwarding Algorithm

For each multicast group, REUNITE builds a delivery tree that is rooted at the root node. Each
REUNITE router maintains a Multicast Forwarding Table (MFT) that contains an entry for every
multicast group whose data delivery tree branches at the router. An MFT entry has the following

format:
< root_addr, root_port >< dst, stale >

<< revy,alive; >, ..., < rev,, alive, >>

where< root_addr, root _port > identifies the group¢st is the IP address of the first receiver
that joins the group among all receivers in the downstream of the router;,: = 1,...,n,
called thereceiver list are IP addresses of the receivers to which the router will send replicated
unicast packets when it receives a multicast packet from the group that is destifep /e
andalive are boolean variables. MFT state is soft; unless it is refreshed, an entry bestahees
in TO1 seconds. Similarly, if not refreshed, each receiver list entry becomwiealivein 701
seconds.

Consider again the example in Figure 2, wheredtge, alive, and the source port number
are not shown for simplicity. Also, since the root does not usést, stale >, this is omitted.
Assumer1 joins the group first, followed by3, and thenk2. As can be seen, only the branching
nodesN3 and N4 have MFT entries for the group.

When a data packet with source addr&sport number”, and destination addregsarrives
at a node, the forwarding algorithm searches for the entssy P >< D, > in the MFT (with
the exception of the root node, whefeis not used). If the entry exists, the packet is duplicated
for each receiver in the receiver list of the group MFT entry. The destination address of each
duplicated packet is replaced by the corresponding receiver’s IP address. The original packet
is simply forwarded based on its destination address. In the examplayill forward each
multicast packet as a unicast packet because it does not have a corresponding entry in its MFT
while N3 and V4 replicate the packet.



MFET MCT MFT MFET MCT MFT MFT
JOIN m
(s[Ry| |[s[RI [ || |[s[R] |[s[RI [ || |[S[r] N
S 3 —a= = Marked
3 TREE msgy

@

MCT MFT

(d) (e 0] )
Figure 3: Example illustrating the tree creation and maintenance protocol of REUNITE.

4 REUNITE Tree Maintenance

As discussed earlier, the per group state in MFT at each branching router defines the multicast

forwarding tree. The states are installed and deleted by a control protocol. In this section, we

describe the control protocol that is used to create and maintain the MFT at each router. In

addition to the MFT, each REUNITE router maintains another table called the Multicast Control

Table (MCT). A more complex version of the protocol that does not require the MCT is discussed

in the Appendix.

A router's MCT contains an entry for every group whose multicast delivery tree passes but

doesnotbranch at the router. A MCT entry has the following format:

< root_addr, root_port >< dst >
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where< root_addr, root_port > identifies the groupdst is the IP address of the first receiver
that joins the group among all receivers in the downstream of the router. Again, MCT state is
soft, and unless it is refreshed, an entry times outdn seconds.

It is worth noting that if a REUNITE router is traversed by a multicast group’s delivery tree,
the router will maintain an entry either in its MFT (in the case that the tree branches at the router)
or in its MCT (in the case that the tree does not branch). A natural question to ask is: since
a REUNITE router does maintajer groupstate, why is REUNITE more scalable than other
IP multicast protocols? The key observation is that only MFT needs to be maintained on the
data plane, while MCT, as will be discussed later, can be maintained on the control plane. That
is, when a data packet arrivesnly MFT needs to be looked up. In contrast, MCT needs to
be looked up only when control messages are processed. Therefore, by partitioning per group
multicast state into forwarding and control state, REUNITE maintains a much sipeilgroup
forwarding tablethan other IP multicast protocols in a network with a large number of sparse
groups.

Unlike previous multicast protocols that only have control messages sent from receivers to
the source or core, REUNITE uses two types of control messages: JOIN message, which is uni-
casted periodically by each receiver towards the root, and TREE message, whnighicasted
periodically by the root along the multicast delivery tree. JOIN messages are used to create and
refresh thereceiverentries in MFT, while TREE messages are used to create and refresh the
entries in MCT and to refresh thlgroupentries in MFT.

To describe the tree creation and maintenance operations, we use a detailed example shown
in Figure 3.5 is the source and the root of a groufl, and k2 are the receivers, anl1 through
N4 are router nodes. To better illustrate the properties of REUNITE, we assume the following
asymmetriaunicast routessS — N1 —- N3 — Rl, Rl -+ N2 - N1 — S, 5 — N4 — R2,
andR2 — N3 — N1 — S. We omit the port number and the flags in the figures for simplicity.

In addition, we also omik dst, stale > tuple from root’s MFT, as it is not used by the root.

4.1 Joining a Group

AssumeR]1 is the first receiver that joins the group (Figure 3(a)). Since initially no router is
aware of the group, the JOIN message senkbys propagated all the way t®. Upon receiving
this messagey creates an entry fak1 in its MFT. SinceS maintains the MFT state fdk1, we

8



say R1 joins the multicast tree &f.

S then begins sending data packetgio In addition,S also sends periodic TREE messages
down the delivery tree (Figure 3(b)). When a TREE message arrives at hddasd V3, their
MCT are updated to indicate that they are part5af multicast forwarding tree. In particular,
packets destined fak1 traverse through them.

Before we continue the example, it is worth noting that in a network where the paths between
the root and a receiver are asymmetric, the JOIN and TREE messages will traverse different
paths. In this example, the JOIN message fil®@hpassesV2, while the TREE message from S
passesV3. This is quite different from all existing multicast protocols in which JOIN messages
and data packets traverse the exact reverse paths. This is because, with REUNITE, each branch
of the data delivery tree is constructed based oridheard direction unicastouting towards the
receiver. In contrast, with other multicast protocols, the data delivery tree is constructed based on
thereverse direction unicasbuting towards the sender. Therefore, in a network with asymmetric
links or paths, REUNITE may potentially generate a higher quality data delivery tree than other
multicast protocols.

Now, supposéi? joins the group by sending a JOIN message towar¢sigure 3(c)). Upon
receiving this messag@/3, which is part of the multicast tree, becomes a branching node. This
is accomplished by removing the MCT entry for the group and creating a MFT entiyXor
From now on, data packets and TREE messages sent towatusS will be replicated and sent
to k2 by V3.

A receiver periodically sends JOIN messages to refresh the MFT entry at the router it joins.
These JOIN messages are discarded at the router and will not be propagated further. In this
example,Rk1’s and k2’s JOIN messages will reachhand V3, respectively.

4.2 Leaving a Group

To leave a group, a receiver simply stops sending JOIN messages. Consider the casélwhere
decides to leave the group (Figure 3(d)). Since the MFT entryfoat S is no longer refreshed,
after a time period of'O1 secondsS concludes that?1 has left. However, note that cannot
stop sending data t&1 immediately, since other receiver84 in this example) might receive
data that are replicated from those sentiic Thus, beforeS can remove the MFT entry for

R1 and terminate the unicast flow,mtustallow these receivers sufficient time to discover a new

9



JOIN msg from R to S received

ez
R >
NO
Node is
overloaded ?
NO

Insert (S,MCT[S].dst) in MF
Insert R in MFT[S].rcv_list

MFT[S].rev_list[R].alive = Insert R in
Set timer TO1 MFTI[S].rev_list

Discard Discard
JOIN msg JOIN msg
Forward
JOIN msg

Figure 4: Flowchart of JOIN message processing algorithm.

branch point to receive data from.

To accomplish thiss maintains the MFTR1 entry for an additional’O2 seconds, but marks
it as beingnot alive(this is indicated by the shaded area in Figure 3(d)). During this time period,
S keeps sending data and TREE messagéesitoHowever, these TREE messages are marked
staleto indicate that the data flow t&1 is to be torn down (Figure 3(e)). Whelil receives
such a TREE message with th®lebit set, it removes the corresponding entry from its MCT.
When N3 receives such a TREE message, it marks its corresponding MFT entry as being stale as
well. As a result, the next JOIN message fréin is no longer intercepted by eith&f3 or V1.

It eventually reacheS and a new MFT entry foR2 is created ab' (Figure 3(e)).

From now on,S begins sending data and TREE message&2and these packets pass
through nodeV4 (Figure 3(f)). The TREE messages are processed byas described before.
The MFT entry forR2 at S is refreshed by subsequent JOIN messages am During the
time period until the stale MFT entry fakl at .S is removed,Rk2 will receive some duplicate
data packets. Aftef'O2 seconds, the stale statesaand N3 for R1 is removed (Figure 3(g))Y
therefore no longer sends any data or TREE messages &ndF£2 will stop receiving duplicate
data packets.

10



TREE msg from S to R received
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Figure 5: Flowchart of TREE message processing algorithm.

4.3 Details of the Tree Maintenance Protocol

While the previous example illustrates most of the important operations of the protocol, it is
nonetheless a very simplified scenario. In this section, we specify the complete protocol by
describing the details of message generation, message processing, and timeout handling.

Message GeneratiodOIN messages are periodically generated by eswgiverand are unicas-

ted to theroot of the group. TREE messages are periodically generated hypahef the group

and are multicast forwarded based on the root’s own MFT. In both cases the message generation
period should be less tha)1 seconds.

Message Processing Algorithm$he message processing algorithms at non-root nodes are pre-
sented in Figures 4 and 5. Group addressoot_addr, root_port > is abbreviated as’, and
dst_addr is abbreviated agst.

The description of the JOIN message processing algorithm is implicitly covered in Sec-
tion 4.1. The flowchart of the TREE message processing algorithm involves several cases not
discussed in Section 4.2. Below, we briefly describe the other actions: (1), (2), and (3).

Action (1) is executed whenever a node that is a branching point for a group whose state is
stale receives a non-stale TREE message destined to a refeivitis can happen when the
first receiver who joined at that node leaves the group, but there is another receiver who, in the
meantime, has joined the group at an upstream node. When such a message is received, the
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group’s entry in the MFT is refreshed. At the same tifeis set to the new receiver address
This indicates that from now on the node will replicate only data and TREE messages received
for R. In addition, the entry fof, if any, in the group’s receiver list is removed.

Action (2) is performed when a receivérs entry in the MFT is stale but the group entry is
not stale, and an unmarked TREE messagg ts received. This can happen when receiker
leaves the current node and joins at another node upstream (this may be caused by a change of
the route fromR to S.) In this case receivel’s entry is simply removed from the MFT as there
is no longer any need to replicate and send packets &b this node; the packets @ will be
replicated by the new branching node, at whi¢has just joined.

Action (3) is executed wheneveman-branchinghode receives a stale TREE message. The
action consists of simply removing the group entry, if any, from the MCT. This is because, the
stale TREE message indicates that, after at M@&seconds, data and TREE message transmis-
sions may terminate, and as a result the node will no longer be part of the tree.

Finally, note that when a TREE message is replicated and forwarded to reGeiVeeceiver
R’s entry in the MFT is stale, then the replicated TREE message is marked stale.

Timeout Handling When a timeout/’O1 expires for an MFT group entry, the entire entry is
marked asstale A second timeout'O2 is set. Whenl'O2 expires, the entire MFT entry is
removed. When a timeoWtO1 expires for a receiver entry in an MFT entry, the receiver entry is
marked asiot alive A second timeoui'O2 is set. Wheri'O2 expires, the receiver entry in the
MFT entry is removed. When a timeotit)1 expires for an MCT entry, the entry is removed.

5 REUNITE Advantages

Enhanced Scalability by Reducing Forwarding StateMost of the existing multicast routing
protocols requir@veryrouter on a multicast tree to keep forwarding state for the multicast group.
This is because forwarding is based on class D multicast addresses. In contrast, in REUNITE,
only routers that are acting as multicast tree branching points for a group are required to keep
multicast forwarding state of the group. All other non-branching nodes simply forward data
packets by default unicast routing. In effect, REUNITE removes unnecessary forwarding state
by converting it into control path state. As discussed in Section 2 this can lead to significant
savings, especially in large networks with many sparse groups.

12
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Figure 6: Scenario illustrating the incremental deployability of REUNITE.

In the steady state, the amount of multicast forwarding state maintained in the entire network
for a group isO(r), wherer is the number of receivers in the group. This is because each receiver
joins the multicast tree at exactly one node, and only that node maintains the receiver’s state.
Note that this value is optimal for any multicast protocol that uses a tree topology. From a single
router’s point of view, if all routers in the network implement REUNITE, in the steady state, there
is at most one receiver in a MFT entry for each of the input interfaces. This is because, in the
steady state, a link in a network can be traversed by JOIN messages from at most one receiver
per group.

Incrementally DeployableMost existing multicast protocols require every router in the network
to implement the protocol. This introduces a deployment problem as it requires all routers in
a network to be updatesimultaneously A possible solution is to use IP tunneling across the
regions of the network that are not multicast aware.

REUNITE, on the other hand, has native support for incremental deployment. Since all pack-
ets have unicast addresses, a router that does not implement REUNITE will forward the packets
as if they are unicast packets. This does not affect the correctness of the protocol but may lose
some efficiency. In the extreme case when no router implements our protocol, REUNITE degen-
erates into sending unicast streams to receivers from the root.

To illustrate, Figure 6 depicts the same scenario as in Figure 3(c), except that onliy hode
implements REUNITE. In this casé;2 will join the tree at nodeV1, as nodeN3 no longer
interceptsiZ2’s JOIN messages. As a result, the packets destinétt twill be replicated atV1
instead of/V3. Note that no tunneling is needed even though the down-streamMdde not
REUNITE-aware.
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Load Balancing and Graceful DegradationIn multicast protocols that requires every router
on a multicast tree to maintain forwarding state, if some of these routers are no longer able to
store this state, either because they are overloaded or they run out of memory, the multicast tree
will become partitioned. In contrast, since REUNITE does not require every router to process
protocol messages, a router that is overloaded can choose to ignore further JOIN messages and
let other upstream routers to process those messages and share the load.

For example, in the scenario shown in Figure 3(c), nddemay choose to ignore a JOIN
message fronk2. In this case the JOIN message will simply propagate up-streail. thoose
to accept this message, thBa will get multicast service froniV1. This results in the same tree
as shown in Figure 6. From the point of view of the new group, a router running out of forwarding

table entries exhibits the same behavior as a non-REUNITE-aware router.

Unique Group Identification. Generating globally unique group identification is trivial in RE-
UNITE as each root just needs to generate locally unique port numbers.

Support for Access ControlREUNITE can also easily support sender access control. Since only
the root is allowed to inject multicast traffic into the network, access control can be implemented
simply by authenticating senders at the root node.

6 Discussion

6.1 Protocol Dynamics

While the use of recursive unicast has many desirable properties, it also introduces dynamic be-
haviors that do not exist in other multicast protocols. In this section, we describe some situations
with more complex dynamic behaviors and show that REUNITE can perform gracefully in these

situations.

Tree Restructuring Due to Member Departure In REUNITE, when a receiver leaves a group,
the corresponding branch in the data delivery tree will be removed and may affect other receivers
on the same branch. As explained in Section 4.2 and as shown in Figures 4 and 5, REUNITE has
mechanisms to restructure the delivery tree so receivers do not lose any packet as a result.

Race Condition of Joinsin REUNITE, an MCT entry for a group is created when a router

receives a new TREE message generated as a result of a new receiver joining at an upstream node.
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Before this TREE message traverses the new branch and establishes MCT state on the branch,
if another JOIN message from a second receiver arrives at a router on the branch, the message
would be propagated upstream. However, had the MCT state been established, the JOIN message
would have been intercepted by the router and this router would become the branching point for
the second receiver. Due to this race condition of JOINs, the branching point of the second
receiver is further upstream than necessary, resulting in a sub-optimal tree. Fortunately, the data
delivery tree will only be in this sub-optimal state transiently. This is because once the MCT
state has been established on the branch, subsequent JOIN messages from the second receiver
will be intercepted and a new optimal branching point will be created. The previous non-optimal

branching point will eventually timeout and be removed.

Duplicate Packets During Tree RestructuringAs discussed in the previous paragraph, and also

in Section 4.2, it is possible that during short time periods a receiver get duplicate packets. To
reduce the number of duplicate packets, additional techniques can be used. For example, when
a receiver joins the multicast tree at a node, the node can generate a TREE nressedjately
towards the receiver. This will update the MCT tables of nodes on the new branch immediately,
without having to wait for the next TREE message generated by the root. With this technique,
the time window during which new receivers cannot join at nodes on the newly created path is
greatly reduced.

6.2 Multiple Senders

So far, we have assumed that the root is the only sender in a group in REUNITE. In this section
we show how REUNITE can be extended to support multiple senders. The idea is to have the
root acting like a “reflector”. Suppose a host wants to multicast a packet to a group with address
< root_addr, root _port >. Then, it will simply send a unicast packet with the destination address
and port number set t@wot _addr, androot _port, respectively. When the root node receives the
packet and determines that root_addr, root_port > corresponds to a multicast group rooted
at itself, it just multicasts the packet to the group. Note that access control can be implemented
easily by authenticating each sender before multicasting their packets.

We note that the mechanism to accommodate multiple senders in REUNITE is similar to the
session relay approach proposed in EXPRESS [9]. However, unlike EXPRESS, our solution does
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not require an application level layer or IP encapsulation for unicasting packets from a sender to
the root. Thus REUNITE can be implemented more efficiently.

However, this simple solution has several drawbacks. First, since all messages have to go
through the root, any network partition or root failure will compromise the entire group. To
alleviate this problem, a possible solution is to have a backup root, and use it whenever the
primary one fails. Second, the transmission delay can become larger than directly unicasting a
packet to the destination. However, we believe that for most applications, such delay increase is
acceptable.

In comparison, solutions based on bidirectional trees, such as CBT or Simple, are more robust.
In particular, in these solutions, members of a group may be able to communicate even if the core
node fails. However, if access control is required, then this advantage is negated, as a special
designated node, e.g., the core node [12], is assumed to perform this task.

6.3 Source Address Spoofing and Ingress Filtering

In REUNITE, when a router duplicates packets, it rewrites the destination address field in the
packet header, but keeps the source address field to be the root address instead of over-writing the
field with its own address. From the point of view of a router down-stream, this is equivalent to
source address “spoofing”. Routers implementing ingress filtering [7] interpret this as a security
attack and automatically drop such packets. This problem is also shared by other protocols, such
as Mobile IP [11].

In a network in which all routers implement REUNITE, a possible solution to protect against
source address spoofing attack is to authenticate TREE messages and add in each MFT entry a
UpStreaminterfacéield which is set to be the interface that the group’s TREE message comes
from. A multicast data packet is only forwarded if it comes from W@gStreaminterface In
a network in which not all routers implement REUNITE, protocol modification is needed to
accommodate both REUNITE and ingress filtering. One solution is to use an IP option to store
the root address and rewrite source address field whenever a packet is duplicated. The advantage
of this approach is that it is compatible with non-REUNITE-aware routers that implement ingress
filtering. The disadvantage is that it adds extra overhead in packet processing.
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6.4 Unicast Packet Forwarding

When a REUNITE router receives a packet, it extracts the source and destination addresses and
the source port number from the packet, and performs a lookup in the MFT. If the entry is not
found, then a second lookup is performed in the IP forwarding table. Thus, when a regular
unicastpacket is received, two lookups are required. However, we note that since the MFT
lookup involves an exact match as opposed to a longest-prefix-match, it can be performed faster
than an IP forwarding table lookup.

6.5 Efficiency of Packet Replication

As discussed in Section 3.2, REUNITE’s MFT stores a lisegkiver addresses each of which

a unicast packet needs to be sent. In contrast, the forwarding table of other multicast protocols
stores the list obutput interfaceso each of which a multicast packet needs to be replicated. This
can be implemented efficiently by using a bitmap of output interfaces and leveraging the packet
replication capabilities in the switch backplane.

Despite the MFT table’s content is different, REUNITE'’s packet replication algorithm can
also be implemented efficiently. The content of the MFT can be distributed among input and out-
put ports of the router. At the input, an MFT entry will contain orlyoot_addr, root_port ><
dst_addr, stale >< port_mask >, whereport_mask is a bit mask which specifies the output
ports to which a multicast packet needs to be forwarded. The receiver list associated to each
group entry will be stored at the corresponding output ports. Therefore, packets can be repli-
cated based on bitmaps and transmitted across the backplane in a fashion similar to existing IP
multicast protocols. Rewriting the destination address field of duplicated packets can be done at
corresponding output ports.

6.6 Accommodating Multicast-Capable Subnets

So far we have described REUNITE assuming a point-to-point network. However, many of
the LAN and WAN technologies have native support for multicast. Sending individual unicast
messages to each of the receivers in a multicast-capable subnet such as Ethernet is very inefficient.
A possible solution is to map a REUNITE group ontdoaal IP multicast group in such a
network. Before joining, an end-host first sends a request containing a REUNITE group address
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to the local gateway. The local gateway maps this REUNITE group address onto a local IP mul-
ticast group address and replies the end-host with this local IP multicast address. Subsequently,
the end-host joins the local IP multicast group by using IGMP [3, 2, 6]. The local gateway will
then join the REUNITE group on behave of the local receivers. When a REUNITE packet is
received by the local gateway, it translates the destination address and forwards the packet onto
the local IP multicast group. There are two points worth noting. First, the IP multicast address
allocation is simple because this address only has to be locally uhi@szond, this solution

does not require changes in IGMP, or in the end-host’s IP protocol stack.

7 Simulation Experiments

We have implemented REUNITE in ns-2 [14]. In this section, we present results from three
simulation experiments, illustrating three aspects of the protocol: graceful degradation and load
balancing, incremental deployment, and dynamic join/leave of receivers.

7.1 Experiment Design

Due to the high overhead incurred by ns-2’s packet-level simulation, we limit the simulation time
to 60 seconds. In all experiments, senders become active during the first second and remain
active afterwards. In the first two experiments, receivers join groups during the first ten seconds
and remain active until the simulation ends. To remove the transient, in the first two experiments
we report only the results for the last 50 seconds of the simulations, after all receivers have joined
their groups. In the third experiment, receivers join and leave dynamically. Since the simulation
time is short, we set the refresh period of the JOIN message to 2.5 sec. Correspondingly we set
both timeouts/’O1 and7T'O2 to 5 sec. Finally, all senders are assumed to send constant bit rate
traffic with 1000 byte packets every 100 ms.

We use two performance metricéverage RedundandAR), and Maximum Redundancy
(MR). AR is defined over an interval, ¢,) as

2We assume that the hosts in the subnet are only using REUNITE multicast. Otherwise, if both REUNITE and
IP multicast are simultaneously used, then we assume that a block of class D IP addresses is exclusively allocated
for REUNITE.
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Figure 7: (a) Experiment involving 16 groups with four receivers subscribing to each group. (b)
Average redundancy (AR) of links 1, 2 and 3, versus the number of entries in each MFT.

Pt(tlv t?)

AR(tlth) = Pu(tl tz)v (1)

where P;(t1,1,) is the total number of multicast packets, afgt,,?,) is the total number of
uniquemulticast packets sent during the interjfal ¢;). For example, the AR of linkvV1 : N3
depicted in Figure 6 is two, since the link is traversed by two copies of each packet, one that is
sent toR1 and the other that is sent .

MR is defined as the maximum number of copies of a packet, including the original, that
traverse a link. Again, in Figure 6, the MR for link1 : N3 is two.

Note thatA R and M R are always greater than or equal to one. Ideally, we want both to be
equal to one, i.e., alink is traversed by only one copy of a packet.

7.2 Load Balancing and Graceful Degradation

In this experiment, we illustrate the behavior of our algorithm when routers do not have large
enough MFTs to accommodate the entire multicast forwarding state.

For clarity, we use a simple topology as shown in Figure 7(a). There are 64 receivers and
16 groups and there are four receivers subscribing to each group. Ideally, we would like packets
from each group to be replicated at natlé. However, this would requir&’4 to have at least 16
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Figure 8: MCI backbone topology. There are 8 groups and 64 receivers, randomly placed.

entries in its MFT, one for each group. If the MFT has less than 16 entries, some of the receivers
will have to join at other routers up-stream, which will increase network load. As an example,
assume that each router can store no more than six group entries in their MFTs.Nhang

N3 will store six group entries each, whilg2 will store the remaining four. Consider a group

that is stored atv2's MFT, it is easy to see that both links 2 and 3 are traversed by four copies of
each packet of this group, one for each of its receivers. Figure 7(b) plots the average redundancy
(AR) along links 1, 2, and 3 versus the number of entries in the MFT. As expected, AR decreases
as the MFT size increases. When MFT size is 16, AR becomes one as every receiver is able to
join its group at nodéev4.

There are two points worth noting. First, even if a router does not have enough space in its
MFT, the protocol continues to operate. Second, to reduce the network traffic it is more effective
to have routers with large MFTs near the receivers rather than the senders, as this allows receivers
to join their groups at routers in close proximity.

7.3 Incremental Deployment

In this experiment, we illustrates the incremental deployability of REUNITE and how the number

of REUNITE-aware routers affects the performance. Here, we consider a more realistic topology,
the MCI backbone netwotkshown in Figure 8. We assume there are 8 senders (or groups) and

64 receivers. Both senders and receivers are randomly placed, with the only restriction that no
sender and receiver are connected to the same router. We vary the percentage of routers that are

3Topology obtained from www.caida.org in October 1998.
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%REUNITErouters] 0 |20 |40 [e0 [80 [100]

AR 2.063| 1.697| 1418 | 1.257| 1.132 | 1
MR 12 8 5 4 3 1

Table 1: AR and MR along any link as the percentage of REUNITE-aware routers varies.

REUNITE-aware from 0 to 100 % in increments of 20%. For each percentagepaleemake
ten independent simulations with random REUNITE-aware router assignment.

Table 1 shows thARandMR for the entire network versus the percentage of routers that are
REUNITE-aware. As expected, as more routers become REUNITE-aware, the lowdR thie
Note that when no router is REUNITE-aware, all receivers join directly at the senders, and thus
the protocol degenerates into the sender generating unicast messages for each of the receivers.
Note that MR is significantly larger than AR. In fact, if no router is REUNITE-aware, MR is as
high as 12. Again, as the percentage of REUNITE-aware routers increases, MR decreases. When
all routers are REUNITE-awarep link carries duplicate packets, i.é4 R = 1.

7.4 Performance with Dynamic Joins and Leaves

In REUNITE, a receiver leaving a group may cause other receivers to have to re-join the group
at different nodes. As explained in Section 4.2, this may result in duplicate packets being sent
to those receivers. To characterize the overhead, we conduct another experiment based on the
MCI topology with all routers being REUNITE-aware. As before, there are 8 senders (or groups)
and 64 receivers randomly placed. Each receiver joins and leaves the group based on an on-off
process, where the active and inactive periods are exponentially distributed with means of 25 sec
and 5 sec, respectively. This rather dynamic scenario is meant to stress test the algorithm. To
gauge the overhead of the REUNITE protocol we compute AR over ten independent trials. The
resulting average AR value is less than 1.06. Thus, REUNITE loses less than 6 % in efficiency,
as compared to an ideal multicast protocol that uses the same distribution trees. In addition,
the measured MR is no larger than 3. This shows that there are no significant hot-spots in the
network.
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8 Related Work

In [13], a scheme was proposed to achieve similar state reduction at non-branching nodes as RE-
UNITE. However, it requires dynamically setting up tunnels between adjacent branching routers
in a multicast tree. Using an additional layer of IP header introduces 20 more bytes overhead in
each header and also may result in packet fragmentation. In addition, to support dynamic mem-
bership, a sophisticated and complex control protocol is needed to dynamically set up and tear
down tunnels. In contrast, REUNITE achieves the state reduction without the need for tunnelling.

The tree maintenance protocol in REUNITE exhibits similarities to other tree based proto-
cols [1, 4, 9]. However, each new branch of the data delivery tree in REUNITE is constructed
based on th&rward direction unicastouting towards the receiver. In contrast, with other proto-
cols, the data delivery tree is constructed based ometherse direction unicasbuting towards
the sender.

Simple [12] and EXPRESS [9] augment the multicast class D address with a unicast address
of either thecore or the senderrespectively. This eliminates the address allocation problem
and provides support for sender access control. In contrast, REUNITE goes one step further
and eliminates the class D address altogether. Using only one unicast address to identify the
group makes it possible to provide additional features, such as reduced forwarding state, native
incremental deployability, load balancing, and graceful degradation.

Our mechanism to provide support for multiple senders is similar to the session relay mech-
anism proposed in EXPRESS [9]. Unlike EXPRESS however, our solution does not require an
application level layer or IP encapsulation for unicasting packets from a sender to the root.

9 Conclusion

In this paper, we propose a novel approach, called REUNITE, that supports multicast service
based onmecursive unicasin IP networks. To the best of our knowledge, REUNITE is the only

IP multicast protocol that uses only unicast addresses for both multicast forwarding and group
identification. All other IP multicast protocols need class D addresses. By using recursive uni-

cast to support multicast, REUNITE achieves many unique advantages. First, it does not require
non-branching routers to maintain per group forwarding state. In addition, it is the only protocol
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that provides native support for incremental deployment, load balancing and graceful degradation
when there are hot spots. To work in a network with unicast-only routers, all existing IP multicast
solutions need to use tunnels. In addition, none of the existing solutions can recover gracefully
from a scenario when a multicast request is made to a router that has run out of multicast for-
warding table entries. A more complex version of REUNITE that eliminates control path state
is discussed in the Appendix.

A direction for future work is to study how to implement address aggregation in REUNITE
to achieve further reduction of forwarding state.
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Appendix: Eliminating Control Path State

In the control protocol described in Section 4, each router needs to maintain a MCT on the control
plane. The purpose of having MCTs is to mark routers that are not branching points as a part of
the multicast tree. With this information in the control path, new branching points can be easily
created using JOIN messages.

In this section, we describe a modified version of the control protocol, called REUNITE II,
that eliminates the need for maintaining MCTs at routers. In addition, it also eliminates the race
condition of joins experienced by REUNITE (see Section 6). As will be discussed later, these
benefits are achieved at the expense of having more protocol message types and slightly more
complex protocol state machines than the original control protocol. In the following, we will
describe REUNITE II, and discuss the tradeoffs between REUNITE and REUNITE I1.

In order to remove MCTS, we need to introduce a new mechanism to create branching points
for new receivers. The key idea is to rely on the forwarding path to discover where a new receiver
can join the tree. The outline of REUNITE Il is as follows. As in REUNITE, each receiver sends
periodic JOIN messages towards the root node. These messages are intercepted by the first node
that maintains group state on the messages’ paths. Note that unlike REUNITE, in REUNITE
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=== JOIN msg
=== = BRANCH msg

Figure 9: Example illustrating the join operation when all nodes are REUNITE Il aware.

Il the JOIN message can be intercepted only by nodes that are already branching points in the
multicast tree, as these are iy nodes that maintain group state in their MFTs. Once a node
intercepts a JOIN message, it either inserts the new receiver in its MFT (if the node is a “suitable”
branching point for the receiver), or generates a new message, called BRANCH, and forwards it
down the tree. The purpose of the BRANCH message is to find a branching point for the new
receiver. Ideally, a branching point is created at the first node at which the path towards the new
receiver diverges from the path followed by the BRANCH message.

To illustrate this procedure, we consider a setting similar to the one previously shown in
Figure 3. The only difference is that, in order to better illustrate the behavior of the protocol,
the path fromS to R2 is changed to S —+ N1 — N3 — R2. The operations of REUNITE
Il are shown in Figures 9 and 10. For simplicity, TREE messages are not shown. We consider
two cases: (a) all nodes implement REUNITE II, and (b) only a subset of nodes implements the

protocol.

0.1 Join Operation When All Nodes Implement REUNITE I

Figure 9 shows the main messages exchanged as a restiltarid k2 joining the group. k1

joins first by sending a JOIN message towards the root (Figure 9(a)). Since no node maintains
multicast state, the message is delivered to the footUpon receiving the message, natle
creates an entry for the new receiver, as this is the first receiver to join the group. Note that this

4]f we maintain the same route, i.6, - N4 — R2, there would be no interaction betwe&i and R2 in
REUNITE I, as both of them would join &.
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Figure 10: Example illustrating the join operation for the case when only Addemplements
REUNITE II.

is virtually identical to the behavior of the original protocol depicted in Figure 3(a).

Next, k2 joins by sending a JOIN message towasdd-igure 9(b)). Wherv' intercepts this
message it first checks whether there is any receiver in the METtbat uses the same output
interface ad?2. In this example, such a receivét], exists, as both pathts — R1 andS — R2
share the linkS : N1. As a result, node generates a message, called BRANCH, and sends it
towardsR1. The message contains a field that specifies the gsoapd a field that specifies the
receiver that wants to join, i.ek2.

When the BRANCH message arrivesiat, N1 checks whether the traffic towardd and
R2 uses the same output interface. Since this is the case, the BRANCH message is just forwarded
to the next nodeV3. Upon receiving the BRANCH messag¥€3 checks similarly whether the
next node along the paths towar@s and /2 is the same. Since this is not the ca¥8,concludes
that it is a branching point fok2 and as a result it installs the corresponding state in its MFT
(Figure 9(b)). Subsequent JOIN messages sertbwill be intercepted directly by3, and is
used to refrestk2’s entry in the MFT (Figure 9).

0.2 Join Operation in a Heterogeneous Network

In the previous example we have assumed that all nodes implement REUNITE Il, and that each

node has enough resources to create new entries in the MFT. Next, we show that the protocol
can be extended to handle the case when only a subset of nodes are REUNITE Il aware, and/or
there are nodes that may refuse to accept a new receiver. The main difficulty is, if a BRANCH
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message is propagated beyond the last usable REUNITE Il node on the path, no branching point
can ever be created for the receiver. Consider again Figure 9(b). Assumé3tdaes not have
enough resources to create a new entry for grdug\s a result, nodev3 will simply forward

the message t&1 without creating any branching point féi2.

To address this problem we introduce a new message, called FOROBDthat is generated
by a receiver upon the arrival of a BRANCH message. In addition, the BRANCH message needs
to carry another field that maintains tlaest node along the path that can be used as a branching
point. Consider the scenario in Figure 10. Assume that 6flys REUNITE Il aware, /N2, N3,
and/N4 are not.R1 joins first, and as in the previous casesimply insertsi1 to the receiver list
upon receiving the JOIN message frdth (Figure 10(a)).

Next, k2 joins the group. Upon receiving the first JOIN messag@enerates a BRANCH
message (Figure 10(b)). Besides carrying the gr8und the receiveft2, the message also
carriesS as the last potential branching point fB2. The message is then sent towards.
Since N1 is now the last node along the BRANCH message’s path that can act as a branching
point for k2, the last potential branching point field in the BRANCH message is updat&d.to
The message is then forwarded¥s, and sinceV3 does not implement the protocol, it simply
forwards the message #l. Upon receiving the BRANCH message] immediately sends a
FORCEDJOIN message td'1. The message contains the group identifieand the receiver,

R2, that has asked to join. Upon receiving this messagecreates a MFT entry faf and for
receiverRR2. Subsequent JOIN messages fré& will be intercepted byV1 and refreshiz2’s
MFT entry (Figure 10(c)).

We note that the use of FORCEDDIN messages is in fact not absolutely necessary. How-
ever, eliminating these messages would further increase the protocol complexity since TREE and
JOIN messages along with MFTs will need to be used to perform additional topology discovery

and management functions. Therefore we do not discuss these mechanisms here.
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Figure 11: Detailed message processing algorithms for the REUNITE Il protocol.
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0.3 Details of the REUNITE Il Protocol

The detailed message processing algorithms for REUNITE Il are presented in Figure 11(a)-(d).
The new JOIN message processing algorithm (Figure 11(a)) contains modifications to eliminate
the MCT operations and to add the generation of BRANCH messages as described in the previous
examples. The new TREE message processing algorithm (Figure 11(b)) similarly includes mod-
ifications to remove MCT related operations. The algorithms for processing the new BRANCH
and FORCEDJOIN messages are shown in Figure 11(c) and (d) respectively.

To reiterate, a BRANCH message contains three special fields, one specifying the group,
(< root_IP_addr, rootport number>), to be joined, one specifying the receiver who wishes to
join, and one specifying the last node traversed by the BRANCH message which can become a
branching point. A FORCEDIOIN message contains the group to be joined and the receiver to
be added.

Not shown in the figures is that, when a BRANCH message arrives at the reééjvgf
generates a FORCEDOIN message which contains the receivgrnwho wishes to join, and the
group.sS to join. R’ then sends the FORCEDOIN message to the last potential branching node
L.

Several actions in these figures are not discussed in the examples shown in Figure 9 and 10.
Action (1) shows how a BRANCH message is sometimes used to refresh MFT state created
by a previous BRANCH message. Action (2) is used to recursively send BRANCH messages
down the multicast tree in order to discover the branching point nearest to the receiver. Action
(3) and (4) are performed when there is previous stale MFT state in the node. This previous state
is replaced by the new information carried by the BRANCH/FORCEDN message.

0.4 Discussion

In this section, we compare REUNITE and REUNITE Il by discussing their advantages and
disadvantages.

The obvious advantage of REUNITE Il over REUNITE is that it eliminates the need for con-
trol path state. REUNITE Il has yet another advantage. As discussed in Section 6, in REUNITE,
simultaneous joins can lead to a race condition such that a sub-optimal multicast tree is created

for short transient periods. The cause is that control path state is not instantaneously created in
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REUNITE when a new receiver joins. In contrast, REUNITE Il eliminates this problem. In RE-
UNITE II, simultaneous joins can independently discover the optimal branching points without
relying on any control path state, thus eliminating the race condition.

However, these advantages do not come for free because REUNITE Il has a higher protocol
complexity. In particular, the REUNITE Il protocol introduces two additional message types,
i.e., BRANCH and FORCEDIOIN, and requires a receiver to be more actively involved in the
protocol by sending a FORCEDOIN message every time it receives a BRANCH message.

The number of control messages required under REUNITE Il can also be larger than un-
der REUNITE. When a receiver joins, up to two additional messages can be generated: one
BRANCH and one FORCELDIOIN. Moreover, if routing is asymmetric, even subsequent refresh
JOIN messages can trigger BRANCH messages. In Figures 9(c) and 10(d), since the path from
R2to S is symmetric, JOIN messages refresh the MFV adirectly. But if R2’s JOIN messages
arrive atS through~N4, then every JOIN will trigger a BRANCH message.
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