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Algebraic Constraints

James Gosling
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: Abstract

Constraints are a way of expressing relationships among
objects; satisfying a set of constraints involves finding an
assignment of values to variables that is consistent with the
constraints. In its full generality, constructing a constraint
satisfaction algorithm is a hopeless task. This dissertation
focuses on ,,he problem of performing constraint
satisfaction in an interactive graphical layout system. It
takes a pragmatic approach and restricts itself to a narrow
but very useful domain. The algorithms used by
MAGRITI'E, an editor for simple line drawings, are
presented. A major portion of the work concerns the al-
gebraic transformation of sets of constraints. It describes
algorithms for identifying difficult subregions of a con-
straint graph and replacing them with a transformed and
simplified new constraint.
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I Introduction

Constraints are a way of expressing relationships among objects; satisfying

a set of constraints involves finding an assignment of values to variables

that is consistent with the constraints. In its full generality, constructing a

constraint satisfaction algorithm is a hopeless task. This dissertation

focuses on the problem of performing constraint satisfaction in an inter-

active graphical layout system. It takes a pragmatic approach and restricts

itself to a narrow but very useful domain. The algorithms used by

MAGRrITE, an editor for simple line drawings, are presented. A major

portion of the work concerns the algebraic transformation of sets of con-
straints.

One problem with many existing graphical layout systems is that they

have no general notion of the semantics of objects. An object such as a

rectangle has certain invariant properties. It has four sides, each being

connected at its endpoints to the two adjacent sides of the rectangle, each

pair of connected sides meets at a 90 degree angle, and the size of the

rectangle may be fixed. If you grab a comer of the rectangle, the rest of

the rectangle should follow along, to preserve the rectangleness of the ob-

ject. If the size of the rectangle isn't fixed, perhaps it should stretch -- the

system has a certain amount of freedom in handling situations that are :

incompletely constrained. In typical layout systems, it is not possible to

specify such things. When you grab a point or line, that point or line

moves. You cannot connect _ings, you cannot define new types of ob-

jects with new behaviours. Instead, the person using the system must

understand the semantics of the object and ensure manually that they are

preserved. Several systems have extensive built-in semantic knowledge,

but they lack general methods for extending it.
'i

This lack of understanding provided the motivation for developing

MAGRITTE. It is capable of accepting constraints like 'this line should be
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horizontal' or 'this point should be midway between those two points'. It
will then endeavour to insure that the truth of these constraints is main-

tained: when some change is made, like moving a point, MAGRITTEwill

move other points to satisfy the constraints that have been violated. The

generality of the mechanism allows constraints to be arbitrary equations in

conventional algebra.

Constraint systems are capable of dealing with more than just geometric

properties. For example, the electrical properties of a circuit or the struc-

tural properties of a bridge can be described.

When MAGRITTEis started it presents the user with a blank canvas to

sketch on. If the user lays down 3 points, A, B and C, connects them with

lines and asserts that A + T= B and B+ T= C then figure I-la results. If A

is moved, then it uses the two equations in an obvious way and produces

figure I-lb. If, however, MAGRITTEwere told that A could not be moved,

and the user told it to move C, then the two equations can not be used as

they are to deduce a new value of B. MAGRITTEemploys some simple

algebra and derives and uses B=0.5*(A + C), resulting in figure I-lc. q:he

construction can be continued to create a triangle, as in the figure I-ld.

The inner triangle, whose vertices are the midpoints of the outer triangles

sides, is similar to the outer triangle. Normally this fact does not concern

M.AGRIT-I'E, since most changes made to this shape don't require knowing

any more than what the midpoint constraints tell it directly. However, if

two of the midpoints are fixed by the user and the other midpoint is

moved, then MAGRITTEdiscovers that it needs to do some algebra, and
does so.

In a similar fashion, drawings can be constructed that contain levers, pul-

leys, rocker arms, and cables. They can be strung together such that when

a lever is moved, the mechanism that was drawn follows along. Figure

I-2 contains the triangle of midpoints from the previous example along

with two levers and rigid bars. One lever is moved and everything else

follows along.
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a) Three points in a row b) MovingA: Bstaysand C adjusts

A

C

c) A anchored,C moved: B adjusts d) A triangle of midpoints

Figure I-1: Starting a session with MAGRITTE

1.1. Constraints

A constraint is a relation among several objects stating what should be

true. A set of constraints forms a network relating a larger set of objects.

A constraint system has an associated satisfaction mechanism that at-

tempts to adjust the related objects so that the relationships hold. For

example, we may have two points that are not horizontally aligned and a

constraint between them that insists they be horizontal. A constraint sys-

tem should be capable of resolving this inconsistency by moving one of

the points appropriately.

•
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a) Trianglewith two levers b) Movlngthe largelever
i Hill IH I,,I I llll HJ,,ll I I I I I I

A
A

i

-,La  cver

c) Moving'it more ....... d) Stilllnore ..............

Figure I-2: Levers and cables.

The network formed by a set of constraints and their constrained objects

may be visualised in several ways. One of these is as a set of devices that

behave like components in an electrical circuit: the values of the system
are the wires that connect them.

The boxes in figure [-3 are the constraints. They can be thought of as

little devices that get wired together like transistors or resistors. The box
labelled "+" constrains the value on the lead at the rounded end to be the

sum of the values on the other leads. Similarly, the boxes labelled "*" are

product constraints. This network constrains C to be the Celsius equiv-

alent of the Fahrenheit temperature F.
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I I I IIIIIII

32

Figure 1-3: Celsius-Fahrenheit temperature conversion

L I

32 32

C F c_@F9 9

(a) (b)

Figure 1-4: Data flow in a constraint network

Unlike the circuit analogy, there is no directionality in the components of

a constraint net, even though it is convenient to think of infornmtion as

flowing throug h them. Each component is capable of deriving a new
value in any direction. Figure!-4 shows the flow of information for cal-

culating both Celsius from Fahrenheit and Fahrenheit from Celsius
values.

A dual visualisation exists that is often more suggestive than the circuit

visualisation. This dual view is as something akin to a network data base

where the values of the system are the important things, mentally drawn

as boxes, connected by lines that represent the constraints. The con-

straints can be thought of as statements of relationships between the

nodes of the data base. Not facts, but compulsions.

Figure I-5 shows the representation of a rectangle as described in this way.

It has four points that are related: two pairs are horizontal and two pairs

are vertical. Two orthogonal sides have lengths specified; it is not neces-

sary to specify the lengths of the other sides since they are easily derived

from the other constraints. There are four line objects that have the con-
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•
• ,_,

D it

, ..iaor-i-z-oP,-t.a_-...,.
. ..tP1t ----IP2t-...

• •

Figure I-5: A constraint network representing a rectangle

strained points as parts. Actually, the points could be broken down fur-

ther into x ,'rody coordinates, and the constraints could be broken down

to constraints on these more primitive objects -- this is what is actually
done in MAGRITTE.

Yei another way to think of a constraint network is as a system of equa-
tions. This is a natural visualisation in MAGP,ITTEsince it restricts con-

straints to be equations in conventional algebra. For example, constrain-

ing two points to be horizontally aligned is done by equating their y coor-

dinates. This restricts the scope of what can be expressed, but there are

tremendous advantages to having the deductive machinery that comes

along with it.
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1.2. Related Work

Constraint systems have a fairly long history within computer science. In

this section I will briefly sketch the work of others. Several of these sys-

tems will be analysed in more detail later.

Ivan Sutherland's SKETCHPAD[18] was a novel drawing system that al-

lowed the definition of arbitrary objects and constraints. It pioneered the

use of interactive computer graphics and of constraint systems. Consider-

ing its age -- it was written in 1962 -- and the obvious benefits of some of

its novelties, it is amazing that few general design systems have been built

since then that have more powerful interaction mechanisms. It was

capable of, for example, being told what a bridge looked like, along with

all the structural properties of its components. A load could be placed on

the bridge and the bridge would deform to satisfy all the constraints on it,

such as the pull of gravity ,and the elasticity of the components. Its saris-

faction algorithm is discussed in some detail in section III.2.2 on page 38.

Alan Boming's THINGI.ABsystem [1]carried on where SKETCHPADleft

off. It was a generalized simulation laboratory based on constraints. Users

sketched a design and told THINGLABwhat the parts were and how they

behaved, and TH!NGLABperformed a simulation. It was capable of per-

forming the bridge simulation as SKETCHPADdid, as well as circuit and

physical simulations. It had a powerful class system, based in part on

SIMULAand SMALLTALK, for representing hierarchically constructed

designs and for composing new data types from old ones. New classes

could be defined either graphically or, as in more conventional systems,

from a piece of text. It was far more than a simulation system. More

detail appears in section III.2.3 on page 40.

Steele and Sussman [17]present a language for the construction of hierar-

chical constraint networks and a simple solution technique that they call

localpropagation. They also briefly discuss algebraic manipulations of
constraint networks.

Steele's thesis [16] is an examination of methods of implementing con-

straint systems -- of representing the network, of finding values that

satisfy it, and of asking questions about the state of the net. This system

had a capacity for explaining itself to the user, of describing why it

decided to do certain things.
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Van Wyk built a system, IDEAL[20], for textually expressing the layout of

line drawings. It used a constraint system that was limited to systems of

linear equations. Objccts in this system contained subparts that were in

turn other objects. Simple equations could be written that related the

coordinates of points in the objects; these were not assignment statements

or procedural calculations, but equations that were combined into a con-

straint network. It was designed for a batch-like environment and had no

capacity for interaction.

The VLSI layout system i [9], built by Steve Johnson at Bell Labs, is in

many ways similar to Van Wyk's system. It allows the definition of cells

that can be hierarchically composed. Van Wyk's system had a similar

notion, called a box. Unlike Van Wyk's boxes and THINGLAB'Sclasses,

the constraints in a cell are satisfied once, independent of any invocation.

All invocations use _he results of the one satisfaction process, with some

simple geometric transformation being applied. This has considerable

performance advantages, but flexibility is lost. Neither Van Wyk's system

nor i had a capacity for defining new data types with new operations and
constraints.

EARL [11] is another VLSt design system that was built by Chris Kingsley.

It bears a strong resemblance to i. An important difference between the
two is that while i fixes the layout of subcells so that successive invocations

of the same cell produce the same result. EARLdoes not. It'satisfies the

constraints for each invocation seperately. Its constraint satsifaction algo-

rithm is described in section III.1.7 (page 34).

MUMBLE[8] is a compiler for microcoded machines that I wrote. It uses a

simple constraint-based address assignment algorithm. Details appear in

section III.1.6, page 29. The present thesis was in part motivated by this
work.
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1.3. Scopeofthe Dissertation
The bulk of the dissertation is concerned with constraint satisfaction al-

gorithms. It is my intent to demonstrate that constraints can be used ef-

ficiendy in practical graphical layout systems and to show how it can be

done. Constraints willbe discussed in more general terms but the special

properties of such applications will be used extensively.

This dissertation followsin roughly the path of SKETCHFADand

THINGLAB. It presents, among.others, the algorithms used in MAGRITTE,

an editor for simple line drawings. Linguistic and user interface issues are

explicitly ignored, although there is some cursory discussion. Other theses

have dealt extensively with these. A progression of algorithms is

presented and discussed, some original, some not. Of particular interest

are the techniques for transforming networks of constraints into forms

that are tractable using simple satisfaction algorithms. Constraints are

generally restricted to equations in conventional algebra.

The guiding principle used to judge the various algorithms is that they
behave in a local fashion. The amount of work necessary to satisfy a net

after some change has been made should be related to the size of the

region affected by the change, not to ",.hesize of the net. The pursuit of

locality has a pervasive inflt_enceon the construction of the algorithms

and they "shouldbe viewed with this in mind.

The dissertation is broken into two parts:

Satisfaction: Given a constraint network, find values for the constrained

variables that satisfy the constraints. A progression of algorithms is

presented, each with its own faults. An important point is that there is no

known, or even possible, universally good satisfaction algorithm. The

special properties of the situation at hand must be used when constructing
an algorithm.

Transformation:To deal with some of the problems encountered by local

satisfaction algorithms, techniques for transforming parts of a net into

more tractable forms are given. Interrelating transformation and satis-

faction, detecting and identifying problems, is also discussed.

The net result is a set of algorithms and principles that can be used when

constructing constraint-based graphical layout systems.
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Several important advances are unique to this dissertation:

• The use of breadth-first search to plan propagation.
• The use of transformations to break loops, improve performance and

provide a more elegant notation.
• The automatic invocation of transformation from satisfaction.
• And the use of a fast graph isomorphism algorithm to make frequent

application of transformation feasible.



II Representation

The chapter covers the representation of constraint networks• It describes

briefly the representations used by a few other systems and goes into the

MAGRITTE system in some detail. The representation chosen does not

affect the performance of the system nearly so much as it affects its

elegance.

The usual representation chosen is that of a linked network of structures

that directly parallels one of the visualisations of constraint networks

presented in the introduction. In MAGRITTE, values and constraints are
distinct structures with cross references to each other. Since it is built on

top of Franz Lisp [6], it uses the facilities available there. These were

insufficient so a structure package had to be constructed.

II.1. Type System

Simula's type system [2] was used as the model for MAGRITTE"a data type

has named fields and may be a member of a single superclass. Both

Steele's system, being written in Lisp Machine LISP[21], and THINGLAB,

being written in SMALLTALK[7], are similar. THINGLABadded multiple
,

superclasses to SMALLTALK.

One of the important distinguishing features of structure systems is the

mechanism used to invoke operations on objects. In SIMULA, procedures

behave as fields of structures. They are invoked by presenting an object

and naming a procedure within it. In THINGLABan object is an active

entity that receives messages. Messages are roughly parallel to

procedures. In both of these, selection of an operation is based on the

type of a single operand. The major novelty in the type system used b'_,

MAGRITTEis that it allows the selection of an operator to be based on the

types of all the operands, much like operator identification in ADA [5],
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except that it is done dynamically, at runtime. For example, the following

defines addition for all combinations of integer and real operands:

(defmethod plus.((a real) (b real))
• • , )

(defmethod plus ((a integer) (b integer))
• • , )

(defmethod plus ((a integer) (b real))
(plus (float a) b))

(d_frnethodplus {(a real) (b integer))
{plus a {float b)))

The flexibility and power of this type system made major contributions

towards easing the implementation effort and simplifying the structure of
MAGRITTE.

II.2. Objects

The constraint system in MAGRITTE, not just the type system, considers

the basic object to be a simple numeric scalar. The constraint system, in

fact, reallyunderstands nothing else. More complicated types are con-

structed from scalars by wrapping them in structures. Constraints are a

separate type, distinct from constrainable objects. A simple constrainable

object will often be referred to as a cell.

The relationship between constraints and objects varies from system to

system. In THINGLABconstraints are actually parts of dataobjects. For

example, if you wanted to constrain two points to be horizontally aligned,

it would be necessary to have a dataobject for a horizontally-aligned-

point-pair that would contain as components two points and the specifica-

tion of the constraint between them. One would take this object and

equate or merge its two component points with the two points that are to

be horizontal. Steele's system is similar to this: one creates constraint

instances and then binds external objects to 'pins' of the constraint.

MAGRITTEtakes the slightly more conventional approach of binding ex-

ternal objects to the 'pins' of a constraint at the same time that the con-

straintis instantiated. Dam objects are completely external to the con-

straints acting on them. SKETCHPAD is a cross between these two: one

creates constraints that have 'pins' and connects constraints by 'merging'

their pins.
:
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Constraints may be treated as full-fledged constrainable objects. They can

be thought of as boolean predicates. Similarly, a constraint system can be

thought of as a conjunction of these predicates. Allowing constraints to be

combined in boolean equations would allow one to express such things as

a= bva= c. To limit the scope of this thesis, this issue has been avoided

in MAGRITTEby not allowing constraints to be constrained.

11.3. Primitive Constraints

A primitive constraint is one that the satisfaction algorithm understands.

Its definition contains all the necessary information for telling whether or

not the constraint is satisfied and for doing the computations necessary to

satisfy it if it isn't. The satisfaction process is discussed in depth in Chap-
ter III.

A constrainable object contains a value and the set of constraint instances

that apply to it. A constraint instance contains a reference to a constraint

definition and a set of constrainable objects that are bound to the

parameters of the constraint- A constraint definition contains a formal

parameter list, a ru/e that evaluates to true or false depending on whether
or not the constraint is satisfied, and a set of clauses that can be used to

compute a new value for rely of the parameters given the values of the
others.

For example, the definition of the sum constraint that is used in

MAGRITTEappearsin figure II-1. It contains:

• A parameter list. In this case, they are result, a, and b, which are all
scalars.

• A rule that is a boolean expression that evaluates to true or false,
depending on whether or not the constraint is satisfied. For the sum
constraint, the rule is result=a+ b.

• A set of clauses that reevaluate the constrained values from the
others. For example:

((result; (a b)) (serf result (+ a b)))

shouldbeinterpretedassayingthat "in orderto calculateresult
given a and b, assign it the value a+ b. Similarly, each of the other
clauses contain code to propagate a value in some direction, all pos-
sible propagation paths being enumerated.

The form taken by the clauses depends on the satisfaction mechanism

used. The form used in this example follows THINGLABand Steele's sys-
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(defprimc sum ((result scalar) (a scalar) (b scalar))

(equal result (+ a b))

((result (a b)) (serf result (+ a b)))
((a (result b)) (serf a (- result b)))
((b (result a)) (serf b (- result a)))

),

Figure II-l: The primitive sum constraint

tem. The clauses enumerate each subset of the constrained values from

which other values can be deduced. It is the one used in an early version

of MAGRITTE. More discussion of this appears in the section on transfor-

mations (Section IV, page 53).

SKETCHPAD defined constraints solely in terms of an error function.

Given an assignment of values to variables, this function returned a

measure of the violation of the constraint. To satisfy the constraint by

changing one variable SKETCHPADwould numerically differentiate the"

error function and search for a zero crossing.

In MAGRITTEthe only primitive constraints are sum, product, equals and

less-than. All others are derived by composition and transformation. The

transfornaation techniques given in chapter IV rely on there being only

this small primitive set.

11.4. Compound, or Macro, Constraints

Constraints on non-scalar objects, as well as many constraints on scalars,

can be expressed in terms of primitive constraints on scalars. This is im-

plemented as something akin to macro expansion.

Consider the compound type point that contains two fields: p-x and p-y,

the x and y coordinates of the point. To constrain two points p/and,p2 to

be horizontal, the following suffices:

(defmacc horizontal ((pl point) (p2 point)) ..
(constrain equal (p-y pl) (p-y p2)) . ._

The overloading of operator identification can be used to define the ad-

dition of two points:
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(defmacc sum ((result point) (e point) (b point))
(constrain sum (p-x result) (p-x a) {p-x b))

(constrain sum (p-y result) (p-y a) (p-y b))
)

An even more interesting effect can be obtained by using the meta-type

arb that represents an arbitrary type. A midpoint constraint that con-

strains one thing to be midway between two others can be defined like
this:

(defmacc midpoint ((a arb) (barb) (c arb))
{local (temp (typeof a)))
{constrain sum b a temp)
(constrain sum c b temp)

)

This definition works on any type for which sum is defined.

, . . , L._, _.

..... !
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III Satisfaction

At the heart of any constraint system, at least for the purposes of this

thesis, is a satisfaction mechanism. Its task is to find a set of values that

satisfy all of the specified constraints. The construction of a general saris-

tier is a very hard problem, even if the constraints are restricted to simple

arithmetic operations. For example, boolean satisfiability can be cast in

this framework and is NP-complete, so general satisfaction is at least as
hard.

However, all is not lost. Satisfaction algorithms can be constructed that

work often enough to be veer useful. The structure and utility of these

algorithms is highly dependent on the application context in which they

exist• For example, several VLSI design aids, such as i[9] and EARL[11],

have within them very simple constraint systems that achieve powerful
results.

The algorithms are also influenced by the manner in which they will be

used. Batch-style satisfiers can use more global and time-consuming tech-

niques while interactive satisfiers have much tighter performance require-

ments. EARL [11] is a batch satisfier that performs an operation akin to a

transitive closure on its constraint graph. THINGLAB, on the other hand,

is interactive. It contains a complicated mechanism to improve perfor-

mance by compiling satisfaction strategies.

In this chapter a progression of satisfaction algorithms is presented. Each

is described along with an analysis of its effectiveness, efficiency and

weaknesses. The progression is intended to justify and provide a basis for

later algorithms. Some of the problems that they have are addressed in

the following chapter on transformation.
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III.1. One-shot Satisfaction

First consider the problem of solving a constraint system where the vari-

ables in the net are initially partitioned into a set of known and a set of

unknown values. Such situations arise in batch-style satisfiers where the

input consists of a set of values, constraints, and constants. Any assign-

ment of values that satisfies the constraints is, by definition, acceptable.

III.1.1. Propagation

There is a very simple algorithm for solving such nets that has appeared in

one form or another in many constraint systems that have been built.

This technique is so simple and fast that it should alwaysbe tried before

resorting to more general techniques. In some application areas it always

works, but even small problems in the structure of the net can render it

useless. Chapter IV of this thesis is devoted to a technique for expanding
its usefulness.

In one sentence the algorithm is 'If you can deduce something im-

mediately, then do so'. Viewing the constraint network as a system of

equations, this corresponds to ordering the equations so as to .solvethem

by back substitution. Algebraic manipulations may be used within in-

dividual equations, but never between equations, except to substitute ac-
tual numerical values.

In the circuit view, this amounts to firing any device that has enough

known pins to allow the computation of the values on the other pins.

Devices continue firing until either all values have been deduced, an in-

consistency has been encountered, or no more deductions can be made.

The clauses that appear in a primitive constraint definition contain in-

structions to perform the firing of a device in every possible direction.
..

When it works, propagation can be applied successfully in many domains.

So long as the non:directional constraint definitions can be made, the

satisfaction algorithm needs no knowledge of the nature of the constraints.

Success or failure is determined by the structure of the graph. When

propagation fails, more powerful methods must be applied. Unfor-
tunately, these all tend to be very domain dependent and are often quite

slow. Their power comes from their knowledge of the behaviour of the

constraints.A common technique, relaxation, is a well known numerical:

approximation algorithm andis discussed in III.1.4 on page 25. Many

other classical techiniques exist that can be used for constraint satisfaction.
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Among them are Gaussian elimination and linear programming. Both of

these, however, place even more strict restrictions on the nature of the
constraints that can be handled.

III.1.2. h Simple Example

Consider the following example. It connects two sum constraints to cor-

respond to the equations:

C=B+T

B=A+ T

This simply constrains B to be the average of A and C. It is very simple,

but it contains some twists that complicate the satisfaction process. I will

use this example extensively in evaluating other techniques.
I

T

Figure III-1: Midpoint constraint

Suppose A and B areknown• Then Tcan be deduced directly using the

left constraint to evaluate B-'A. From there, C is simply evaluated using

the fight constraint by adding T and B.

T

Figure III-2: Successful Propagation
• ._i"

Now suppose A and C are known but B and Tare not. Nothing can be

deduced from either constraint since neither has enough known values on
,ub
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its pins. Given a sum constraint, the value on any pin can be deduced
from the values on the other two.

I I I I

/¢....Known _.,. Unknown Know%

Neither of the constraints can

/_T deduce any new values given onlyvalues for A and C.
Unknow_

Figure III-3: Unsuccessful Propagation

Suppose that A= 1 and C= 3, then the equations for this net are:

3=B+T
B=I+ T

It is clear that from neither of these equations can a nun_erical value for

either B or Tbe deduced. However, if one is able to perfom simple al-

gebraic manipulations the first equation can be solved for T, deriving
T= 3- B, which can be substituted in the second and solved for B, deriv-

ing B= 1 +(3- B), B=4/2. The final evaluation of B as 2 requires per-

forming a division, as would evaluating T. The propagation algorithm has

no way to do this division. All that it has at its disposal are rules provided

by the primitive constraints and it must find a sequence of rule applica-

tions that satisfy the system. The problem arises because of the circular

nature of the graph. All values on the outside of the cycle are known, but

an algebraic transformation is necessary to break the cycle. Almost all of

the complexity of constraint satisfaction is a consequence of the presence

of cycles.

Any satisfaction algorithm that is going to solve this net will have to look

at it globally. SKETCHPADand THINGLABboth use relaxation to cope
with situations like this.

111.1.3. The Propagation Algorithm

Here is the propagation algorithm spelt out in detail. It is neither difficult

nor new, but is presented here to provide a foundation for what follows.
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• A global queue is maintained called SuspectConstmints that contains
all constraints of interest to the satisfier. It is initially empty.

• Whenever a constrained cell is given a value all adjacent constraints
are added to SuspectConstraints unless they are already there. This
includes cells assigned by the satisfier.

• When a constraint is created it is added to SuspectConstraints.

The preceding points result in SuspectConstraints containing all those

constraints that have a chance of firing. When the time comes to satisfy

the system, iterate:

• Pick a constraint from SuspectConstraints without removing it.
• Apply the primitive constraint body. One of the following can hap-

pen:

o The constraint is already satisfied.
o The constraint fires, assigning values to constrained cells, and

possibly enqueueing yet more constraints.
o The constraint can't fire because not enough values were

known: forget it. If it eventually becomes satisfiable it will be
because an adjacent cell receives a value that will requeue the
constraint.

o The constraint can't fire because all values were known, but
they disagree with the rule for the constraint. The network is
inconsistent.

• Remove the constraint from SuspectConstraints. It is removed now,
rather than when it was picked to avoid requeuing it when it fires:
changing a value queues all adjacent constraints, but the one that
changed it doesn't need to be requeued.

• Loop back to the beginning unless SuspectConstraints is empty.
• If, after SuspectConstraints becomes empty, cells still remain without

values, then the system cannot be satisfied using local propagation.

The actual operation of the algorithm is fairly subtle. It bears a strong

resemblance to Sutherland's ordering, see section III.2.2, page 38, and to

the topological sort discussed by Knuth [12]. Except for newly created

constraints, SuspectConstraints initially contains only those constraints
connected to at least one known cell. Thereafter constraints will be en-

queued only when an adjacent'cell becomes known. The satisfier con-

centrates its attention where truths are known and extends them, com-

pletely ignoring other regions until there is some reason to believe that

something might be deduced there. One might try to avoid firing con-

straint functions until enough values are known, but the bookkeeping in-

volved can be more expensive than if the constraint functions are imple-
mented well.
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The definition of a primitive 'sum' constraint is given on page 16. A

straightforward compiler for such constrain_ might generate the follow-

ing Lisp code, as an early version of MAGRITTEdid:

(defun sum-apply (result a b)
(If (and (cell-boundp result)

(cell-boundp a)
(ce11-boundp b)) then

(If (equal result (+ a b)) then ..
'AlIIsWell

else
'Conflict)

elseif (and (cell-boundp a)
(cell-boundp b)
(null (cell-boundp result))) then

(setf result (+ a b))
'OK

elseif (and (cell-boundp result)
(cell-boundp b)
(null (cell-boundp a))) then

(setf a (- result b))
'OK

elseif (and (cell-boundp result)
(cell-boundp a)
(null (cell-boundp b))) then

(setf b (- result a))
'OK))

There is a lot of redundancy in the testing of various booleans. The se-

quence of ifs can be leworked into a binary tree. The following compiled

form might result:

(defun sum-apply (result a b)
(If (cell-boundp result) then

(If (cell-boundp a) then
(If..(cell-boundpb) then

(If (equal result (+ a b)) then
'AllIsWell

else
'Conflict)

else
(serf b (- result a))
'OK)

else

(If (cell-boundp b) then
(setf a (- result b))-
'OK))

else

(If (and (cell-boundp a I
(cell-boundp b)) then

(setf result (+ a b))
'OK))) .....

This is exactly the sort of detailed fiddling that one can expect a compiler

to do. Going even farther, if a compiler knew a little algebra it could

generate the previous form given nothing more than result= a+ b. This is

precisely what chapter IV describes.



Chapter III: Satisfaction 25

111.1.4. Relaxation

Relaxation is a classical numerical approximation technique for iteratively

finding solutions to systems of equations. It is extremely general since all

that it needs to do with each equation is compute an estimate of the error

induced by some particular assignment of values to variables. The sum of

these error values gives an error estimate for the entire system. Relaxation

functions by minimizing this global error value. It does this by perturbing

the values assigned to the variables and watching the change in the error.

One form of relaxation, as used in SKErCHPAD[18], presumes that errors

in constrained values can be approximated by some linear function. To
form a new estimate of the value of some variable, the derivative of each

error function of the attached constraints is approximated and a linear

function is obtained for each. Then a least squares fit is used to find a

new value of the variable that minimizes the errors. This process is

repeated for each variable until a solution is reached. The criteria for

determining when a solution is reached are based on looking at the rate of

change of the new values.

Whether or not relaxation converges, and the rate of convergence, are

very sensitive to the choice of initial values, error functions and connec-

tivity. It con{terges in a very wide range of circumstances, which is why it

is so useful. But the convergence is usually slow. Even for well-behaved

systems of linear equations the number of iterations is proportional to

m+(-log2_k ) where m is the number of bits of accuracy and h is the
eigenvalue of the system with least absolute value [3].

A satisfaction algorithm is said to exhibit locality if when a value is per-

turbed in a satisfied system, the calculation of the effects of that pertur-

bation do not go beyond the parts that are actually affected. Naive im-

plementations of relaxation do not have this property. They always look

at all values and all constraints. This can exact a severe performance

penalty if the network is large. By trimming and partitioning the graph as

in THINGLABthe extent of the application of relaxation can be restricted.

These problems are compounded when the constraint system is imbedded

in an interactive program like a drawing editor. With each change of a

value, such as the movement of a point, satisfaction must be invoked.

There is no way that solutions from previous situations can aid the satis-

faction process, except that the values from one situation provide good
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guesses for the ,-,_in the next situation. They may, however, be very

goodguessesinda_

The perforrnance.tfzlaxadoncan be improved by two techniques that

restrict the size o_dia'egionexamined. The first, used by THINGLABI,is

tOexamine the nmKk and remove values that may be calculated as the

direct consequen_ some unique other value. If you consider the graph

of the system of_ptions, this amounts to trimming off the leaves that

are connected to d_dnnercycles [see figure 11I-4].
IIIII II I I I I

These values and thetr
connecting constra4nts can be
trimmed from the relaxation
)rocess since _hey can be

;_:::ly derived from other

Figure HI-4: Tr_ning leaves from a net to be relaxed

The second teelm_e, which hasn't been used in other systems, involves

maintaining a qulv of values whose perturbation is likely tO reduce the

overall error. Ifm start with a satisfied system, then when the user
changes some vdg, that new value is frozen and the values connected to

it by constraints 8 queued. The 'freezing' is done tOavoid having the

sadsfier change It value back to what it was, undoing the user's change.

Remember that m overall error is the sum of the squares of the errors

from all of the c_traints. The error from a constraint will change only if

one of the construed values changes, hence improvements can be at-

tained by relaxi_only values directly related to changed values. This

notion of change_nplying relaxation of neighbours is recursively applied,

spreading the rei_ed region outward from the original change. Depend-

1SKE'rc_ADusesit to_ but it isn't in the_em.
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ing on the connectivity of the graph and the nature of the induced errors

this will limit relaxation to only those values that change and the values

adjacent to them. A common example of the necessary use of relaxation

in constraint systems is the structural description of a bridge under load,

calculating the sag of the bridge and the tension and compression of the

members. If the bridge is divided into two spans by a rigid pylon, then a

change in the loading on one span will not affect the other span, and with
localised relaxation the values there will not even be examined.

While relaxation did work in SKETCHPADand THINGLAB,using it on

anything but trivial examples was not practical. Admittedly, there was a

fair penalty in the way that the two systems were implemented, but an

improvement in the implementation would yield only a constant factor.

The slow rate of convergence remains a large problem.

III.1.5. Alternate Views

In their PhD theses [16, 1] Steele and Boming independently observe that

one way to handle the problems introduced by circularities is to add •
redundant constraints to the network that are alternate ways to view the

constraints that are already there. Using our midpoint example, two con-

straints might be added as follows:
I II .............. I II I

Figure III-5: The midpoint constraint with an alternate view

Expressed algebraically:
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B=A+T
C=B+T
C=A+ T2
72= T*2

Now, no matter which pair of values from the set {A, B, C} is defined the

other can be determined by propagation. Given A and C, the third con-

straint can be used to derive 72, using the forth constraint Tcan be

derived, then B follows from either the first or the second.

In previous systems where the use of alternate views was advocated as a

method for extending the applicability of propagation, they have been

constructed manually. This introduces substantial complexity to the

process of specifying constraint nets since the user must both recognize
the need for an alternate view and construct the alternate view. Redun-

dant specifications like this introduce opportunities for errors that are very

hard to detect. In many programming languages redundancy like that

found in variable declarations is used in part for cross-checking the user's

progrmm the compiler is able to compare the two differently expressed

statements of the same thing and check their consistency. This is not pos-

sible in a constraint system since comparing systems of equations for

equivalence is generally an unsolvable problem, although it is often solv-

able in practice.

Inconsistency problems can be avoided by a slightly different use of alter-
hate views. If the user detects a situation where an alternate view would

be required, a single primitive constraint can be constructed by hand that

captures the semantics of the original network but avoids its problems.

The part of the network that was causing the problem is replaced by the

newly constructed constraint.

Returning to the midpoint example, one would construct a single con-
straint on three values that constrains one to be at the midpoint of the

other two. Semantically this is equivalent to the other network, but

propagation works properly on it. See figure III-6.

It should be clear from the preceding discussion that a propagation tech--

nique is very desirable. It combines simplicity and good performance

very nicely. Its major drawback is that there are many situations where it

fails. However, by using alternate views it is possible to transform a net-

. work where propagation doesn't work to one where it does. The construe-
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(defpr.imc midpoint ({a scalar) (b scalar) {c scalar))
(equal (- b a) (- c b))
((C Ca b)) (setf c (- (* Z b) a)))
• ° •

)

r r,,t,
MIDPOINTl

Figure HI-6: Replacing a net by an alternate view of it

tion of these alternate views when the basic constraints are limited to al-

gebraic relations is a mechanical task, given the ability to perform simple

algebra. Recognizing situations where alternate views are productive is

also fairly mechanical.

This suggests that what one really wants is a system that automatically

recognizes situations where alternate views are necessary and constructs

,andapplies them. This automatic recognition and construction is the sub-

ject of chapter IV.

111.1.6. The MUMBLEMicrocode Compiler

This section describes the code generator in the MUMBLE [8]2 compiler.

A simpleminded constraint satisfier is used that achieves surprisingly good

results. It is the effectiveness of such a simpleminded approach that is of
interest.

MUMBLEgenerates horizontal microcode from programs in a simple high

level language. Statements are translated into micro-operations which are

the simple conceptual atomic instructions out of which programs are built.

These correspond closely to the instructions in a conventional machine.

The interesting aspects of a horizontal micromachine are that several of ::_

these micro-operations can be fit into one instruction word and tha t _ere

2AMostUnlikelyMicroassembler
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are often critical timing dependencies between operations. For example,

consider a hypothetical micromachine that has a general register set and

an ALU. Within a microword are fields specifying the source registers,

the ALU operation, mid the destination register. The catch is that the

ALU operation in one microword uses the source operands specified in

the previous microword and its result is stored according to the destina-

tion specified in the following microword - this is just an explicit specifica-

tion of the stages of a pipeline. Thus a simple statement like 'A: = B+C'

must be compiled into three microwords, but there is much 'free space' in

them that can be used by merging adjacent statements.

A linear block of code is represented as a dependency graph, each micro-

operation having a link to all those micro-operations on which it depends

and each link having information about the type of dependency. The

implementation restricts tile dependencies to be of one of the following

five types:

• The two microinstructions must not reside in the same microword.

• They must be executed in the same microcycle.
• One must be executed precisely one microcycle before the other.
• One must be executed in the same or earlier microcycle as the other.
• One must be executed in some microcycle preceding the execution

of the other.

Figure III-7 contains a sample of a dependency graph.

Once the dependency graph is constructed, the address assignment algo-
rithm is trivial:

1. Assign all micro-operations to relative address 0 within the linear
block.

2. Scan all the micro-operations and examine their dependency arcs.
For each micro-operation:

• If some dependency upon another micro-operation is violated
• then push one of the micro-operations to a higher address until

the dependency is satisfied.
• q]ais may cause other dependencies to be violated.

3. If no micro-operation had to be pushed forward, then quit. It is
guaranteed that this address assignment is admissible.

4. Otherwise go back to step 2. _

Figure III-8 demonstrates one pass of the address assignment algorithm

over the example of figure III-7, again many dependencies have been ig-
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(A & B) + (B & "-C)

_ J_.__ource program gets transformed

• to a linear block of micro-operations

1

immln 2
_r

Ha 3

n 4

um _ 5
which in turn ge_ 6

' transformed into
i a dependancygraph 7

Instruction field interactions
Data dependancies
Micro-operations.

Figure 1II-7: Translating a program into a dependency graph

nored. Note that after only one pass, the address assignment is already
correct.

It should be clear from the construction of the algorithm that the address

assignment produced will be admissible; that is, it will be functionally

correct with respect to the semantics of the original program and the
characteristics of the micromachine.

What is not clear is the minimality of the assignment: that the length of

the linear block is as short as possible. Experiments have shown that

human microprogrammers can rarely do better than the compiler for a

single linear block. On average the two perform identically, with a lack of

vigilance on the part of human microprogrammers often causing them to
.... !

do worse than the MUMBLEcompiler.
"

Termination is also an issue: if no address assignment is possible because

of conflicting circular dependencies the algorithm will never terminate,

even if an address assignment is possible. By using an adversary-style
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1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 We start with every.
0 _ _ _ _=a _ _= _ _ thing in word O

1 2 4 5 6 7 8 Examining operation
0 _ _ 3 mill _ _ _ _ 1 moves operation
1 I_U 3 forward.

1 2 4 5 6 3 moves
0 BIEmN _ imuRIJ IEU_l Immnl3 7 and 8 forward
1 _ 7 8
2 _

1 2 4 6 4 movesO_ _ _
3 5 5 forward

1 _
7 8

2 _

Examining 5 and 6 does nothing since their constraints with 7 are already satisfied.

1 2 4 6 finally,7 moves
0 _ _ 3 _ 5 _ 8 forward
1 _

7
2

8
3

Figure III-8: The address assignment algorithm

argument it is possible to cause a choice of which micro-operation to push

that will keep the algorithm running indefinitely. This situation is

avoided by heuristics 3 that have proven to be very effective. In the im-

3a.k.a.Hacks
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plementation it is assumed that non-termination, detected using a counter,

is a result of a fundamental contradiction in the constraint graph.

MUMBLEdoes no sophisticated graph analysis.

The number of iterations of the algorithm when applied to real programs

is usually in the range from 2 to 4. Figure III-9 contains statistics collected

from the microcode support for the ECHOES[10] operating system. It re-

lates the number of micro-operations in a block and the number of itera-

tions required to pack the block to the number of blocks with those

properties. As you can see, nearly half of all linear blocks were packed in

one iteration and contained fewer than 10 micro-operations; since they

were packed in one iteration, they had to generate one microword. Over

85% of all the linear blocks were packed in 3 or fewer iterations.
II

Number of Micro-operations total %of overall
0 10 20 30 40 50 60 70 80 90 total

11126 126 40.91%

21 33 18 14 5 1 71 23.05%

Number 31 24 11 24 5 1 1 66 21.43%

of 41 2 4 5 11 3.57%-

Iterations 51 11 3 3 6 2 1 26 8.44%

61 2 3 2 7 2.27%

71 1 1 .32%

Figure Ill-9: Packing algoritfim performance

Most of the blocks appeared, on inspection, to be packed as tightly as

possible. The skilled human microprogrammers who examined the code

found almost none that they could improve. While examples can be con-

structed that MUMBLEwill do poorly on, these examples occur infre-

quently in practice. MUMBLEdid poorly in interblock code motion, but

was good at packing within one block.

The moral to this story is that there is often no need for theoretically

complete but computationally expensive solutions when the hard cases

never appear. MUMBLE'Svery simple satisfaction algorithm works per-

fectly well, but only in a very limited and special domain.

,IB
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111.1.7. EARL, a VLSI Layout System

Chris Kingsley in [11] describes EARL, an integrated circuit design lan-

guage. At its heart is a constraint system that computes the layout of a

chip based on user-specified constraints. The only constraints allowed are

that a point be either to the left of or above another point by a distance of

either at least or exactly k. The x and y constraint graphs are thus

separable.

This amounts to a constraint network based on scalars where the only

constraints allowed are either a- b+ k or a>b+ k. Constraints of the form

a= b+ k are removed from the graph by substituting b+ k for a

everywhere that it occurs. The satisfaction algorithm minimizes the values
of each variable, relative to the least value.

Consider constructing the transitive closure of the relation represented by

this graph. That is, if a>b+ k1 and b>c+ k2 then a>c+ k1+ k2can be

deduced. Also, ira>b+ k1 and a>b+ k2 are known, and kl>k 2,then the
second constraint may be ignored since it is redundant. Thus a matrix can
be constructed of size n2. where n is the number of cells. Each element of

the matrix contains the minimum spacing between two cells.

If there is a contradiction in the network then a>_a+k will be deduced,
where k>0.

To assign values to the variables, pick some variable a. For all bi such that

b_a + ki is known, set bi to a + ki if it's greater than b_s old value, if it had

one. We don't need to account for constraints of the form b_bi+ k being
violated since they would be accounted for in the transitive construction

of b>_a+ k. Minor complexities are introduced when one such pass does
not assign values for all the variables; another must be picked to deal with
related unaccounted-for relations.

The full transitive closure is not actually computed. EARLcomputes what

Kingsley calls the transitive almost-closure. It depends on the observation

that the address assignment phase ignores constraints of the form a>b+ k,

where b is not one of the picked variables. For each node in the constraint

graph that has both incoming and outgoing arcs, each incoming arc is

combined with each outgoing arc to yield a new constraint and the old

outgoing arc is removed. Multiple constraints connecting the same pair of
nodes are resolved in favor of the widest of them. The result is a net

where no node has both incoming and outgoing arcs. See figure III-10.
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I III I I I II I I I II I IIII

(a) Original net (b) Net after processing B

®

/
®-

®
(c) Pier after processing all nodes

Figure lll-lO: Constn_ction of the transitive almost-closure

Looked at in another way, what this algorithm does is compute the longest

path between each point and each leftmost point.

The point of this detailed explanation of Kingsley's algorithm is that spe-

cial properties of the constraints involved should be exploited to the ful-

lest. He obtains a lot of leverage, and a fairly fast algorithm that performs

a minimal packing, by being able to do deductions based on a restricted

class of constraints. Compromises must always be made: this algorithm

does not solve the real problem, that of laying out an IC design in the

minimum area. It solves a different problem, but one that is close enough
to be useful.

-.
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III.2. Incremental Satisfaction

The applications of interest in this thesis maintain a network of constraints

and values that is incrementally modified. Constraints and cells will be

createdand deleted and cells will have their values changed. In the midst

of these changes, and in step with them, the assertions represented by the
interconnected values and constraints must be maintained. Values related

to the changes must be changed to account for the constraints. Hence the

satisfaction process is given a set of values that is not neatly partitioned

into known and unknown categories. Not only must the process calculate

new values, but it must also choose which values to change. Often the

choice is not obvious or may be done in one of many ways. Subsequent

parts of this section present a progression of incremental satisfaction tech-

niques.

III.2.1. Unplanned Firing

The work on MUMBLEled me to try a naive extension of its satisfaction

algorithm to handle arbitrary constraints. Each value in a constraint net-
work is connected to some constraints, which are in turn connected to •

other values. When a value changes, tlle simple algorithm examines each

attached constraint and uses it to change some other value attached to it.

The choice of which value to change can be difficult. "[his is exactly like

propagation, without the partitioning between known and unknown

values. One can think of the partitioning as providing guidance in the

selection of which rule to apply.

This algorithm is very similar to the way that dataflow machines

operate [4, 19]. Each constraint acts as a processing element in the
dataflow machine. The crucial difference is that in a dataflow machine

the devices are directional, but in a constraint network they are not; they

can compute results in any direction. Both Petri nets and Markov al-

gorithms are similar to dataflow machines.

If unplanned firing is applied to the Fahrenheit-Celsius network that ap-

pears in figure I-3, page 7, and the only guidance used is not to fire rules

that would overwrite constants or values that have just been generated,

then changes to any variable node will be correctly propagated.

Unfortunately, there are many situations where problems arise. A simple

case is shown in figure IIl-lla. Here the value of cell A is uniquely deter-

mined by a constraint relationship with a constant. If the sum is satisfied
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by changing A, then the equality constraint cannot be satisfied without

either changing the constant or A. A simple heuristic for handling such

cases is to attach to each value the time that it was last changed. When

constraints fire, the rule chosen is the one that alters the oldest non-

constant values. With this modification, the equality constraint in figure

III-11b will change A back to its old value, then the sum constraint will

change B. This amounts to a crude form of backtracking.
II I I

(a) (b)

Finally the addition changes B to 5

- " Th e uality resets A to 6

Sets A to 6=10-4 _ ._
But 6 contradicts §

FigureIll-ll: Failures in unplannedfiring.

There are still problems. Networks like III-12 can be constructed that are

satisfiable, but that will cause an unplanned firing satisfier to loop. One

might be tempted to try detecting these loops, but it is easy to get con-

fused between loops and backtracking.

There is an interesting special case involving constraints on two cells

where a known value for one implies a unique value for the other. In

such a system all deductions are forced. If a sequence of firings exists that

will satisfy the system, then unplanned firing will find it. The only situa-

tion where a satisfactory set of values exist but will not be found occurs

when a global technique is necessary. For example, the constraints a= b

and a= - b are only satisfied when a and b are both 0. This cannot be

deduced given an arbitrary initial value for one and a sequence of applica-

tions of the rules a _ b, b +- a, a ,---- b or b _ - a. This special case is

actually more general: it holds whenever the constrained cells can be par-

titioned into two sets where knowing values for all in one set implies

unique values for all in the other. When designing a constraint-based

. system, decreeing that this special case will hold and making appropriate
restrictions on the constraints that it will deal with can result in substantial

simplifications and speedups.
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I

B . 0

A

T t 5

Sets to

T- 0

Figure III-12: An infinite propagation loop

While this unplanned firing method is simple, l_al, aJld potentially fast, it

depends too much on making the right guesses. It would be wonderful on

a nondeterministic computer. In the sections that follow, satisfaction

methods that perform sophisticated planning are presented along with a

discussion of their shortcomings. Finally, unplanned firing will be

revisited and improved.

III.2.2. SKETCHPAD

Sutherland's SKETCHPADsystem [18] contained a satisfaction mechanism

that used propagation. The propagation phase was preceded by a plan-

ning phase that used a topological sort to order the constraints. If no

ordering could be found, relaxation was used.

A free variable in SKETCHPADis one 'which has so few constraints apply-

ing to it that it can be re-evaluated to completely satisfy them ,4. When

the constrained value is a scalar, it can have at most one constraint apply-

ing to it. The significance of such a free variable is that if the one con-

straint that it is attached to is not satisfied, then the variable can be

changed without fear of invalidating some other constraint.
!"

4Tut,tut Ivan. Asplitinfinitive!
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The ordering algorithm iteratively identifies all free variables, eliminates

them and the constraints they are attached to. This may free up variables

for the next iteration. Iteration stops when there are no more free vari-

ables: if there are no variables left at all in the network then an ordering

has been found, otherwise relaxation must be applied. When free vari-

ables are eliminated they are placed in a list in the order of elimination.

This order is the ordering used in reverse for the propagation stage.

The propagation phase runs through the list of variables in order from the

most recently eliminated to the least recently eliminated. For each vari-

able it uses the constraint attached to it that has all other parameters

specified to calculate a value.

Consider figure III-13. The squares represent constraints and the small

circles represent constrained values. The large concentric circles divide

the network into layers. The outer layer contains only variables that are

attached to one constraint. SKETCHPAD'S algorithm works by stripping

off this outer layer, exposing the next layer, that is stripped off in turn.

Then, working from the inside out, values are assigned to variables.

This algorithm has several good points:

1. Its runtime is linear in the size of the network•
2. Checking for failure is simple, it falls out naturally from the order

calculations.
3. The orderiiag is not affected by changes in the values of the constants

in the network, so the same ordering may be reused.
4. It calculates an exact answer, within the usual numerical limitations

of the representation of real numbers.

It does, however, have some problems:

1. Its runtime is linear in the size of the network.
2. The ordering is affected by changes in the structure of the network.

The linear runtime of the algorithm may appear attractive, and it certainly

is by comparison with relaxation. But when you consider the task of inter-

actively editing large graphical structures, like the layout of an integrated

circuit, a runtime that is even linear in the size of the graph is unaccept"

able. Many changes to the structure of the net have only a local effect.

However, the planning phase starts at the farthest reaches of the graph

and works inwards to the center, where the change is happening. It would
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(a) (b)

(c) (d)

Figure][]-]3: PropagationandOrderingin SKETCm)_J:)

be better to restrict the range of the algorithm to just those areas of the

graph that are affected by a change. ..............

Many of the changes made when editing a drawing affect the structure of

the net, hence the evaluation of this ordering may have to be made quite

frequently. Since this is a global process, it is quite expensive. '.
• _7

III.2.3. TmNGLAB.

Alan Boming's THINGLABsystem has some stringent performance re-

quirements that have a substantial impact on the satisfaction mechanisms
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it uses. These requirements arise from the way that users are expected to

interact with THINGLAB. Users interactively sketch constraint systems

and can grab points and drag them, with constraint satisfaction happening

continuously as the points are being dragged. For example, suppose two

lines are defined such that the length of one interpreted as a Celsius tem-

perature matches the length of the other as a Fahrenheit temperature. If

the end of one line is dragged, then the end of the other will also drag

along. Think of a drawing of two thermometers side by side where the

mercury in one can be grabbed and dragged using a pointing device.

Then the mercury in the other will move correspondingly. This cor-

responding motion happens continuously in step with the dragging of the
other line.

To achieve this, for each editable thing, such as a point or a line, a

SMALLTALK routine is constructed that performs the necessary assign-

ments to propagate the changes indicated by the constraints. These

routines are constructed on the fly as they are needed. Like SKETCHPAD,

THINGLABperforms satisfaction in two phases: planning and execution.

The planning phase is the construction of these routines, and the execu-

tion phase merely invokes daeconstructed routines. Dragging an object

simply involves repeated invocation of the routines with only an initial

execution of the planning algorithm.

The planning phase of THINGLABprovides an interesting contrast to

SKETCHPAD.While SKETCHPAD'Splanning is global and independent of

the change being made, THINGLAB'Sis local and driven by the change. It

starts by looking at the part to be changed. Then it looks at the constraints

connected to it and the parts they connect to. This planning spreads out

radially along possibly many paths. If two paths intersect, the method

fails and relaxation is used. This carries on outwards, progressively getting

farther and farther from the original points, until the edges of the con-

nected region are encountered. SMALLTALKcode is generated by travers-

ing this set of constraints in the order that it was built.

It is important to note that this planning is dependent only on the struc-

ture of the net and not on any values, just as in SKETCHPAD.In situations

where the change of a value on a pin of a constraint may leave the con-

straint satisfied, this sort of planning can involve examining more of the-

net than is necessary. A good example of such a constraint is "less than or

equal to". Such constraints are common in VLSI layouts. Every point is
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likely to be reachable by every other point through a chain of them, yet

moving a point in a layout will affect only the parts nearby.

In the actual operation of THINGLABthis problem with planning does not

inflict a runtime penalty. Rather, the performance problems stem from

two .sources. First, THINGLABresorts to relaxation when propagation

doesn't work. This happens when changes are made near any circularity

in the net. The use of relaxation is made less costly by some tree-

trimming operations. By providing many powerful primitive operations

and advocating the use of alternate views, the use of relaxation is often
avoided.

Second, THINGLABperforms an expensive compilation whenever a point

is moved that hasn't been moved since the last structural change• Any

time that a structural change is made to the net, all of the remembered

and compiled plans are thrown away. Some of this could have been

avoided by clever bookkeeping.

111.2.4. Retraction

The constraint systems built by Stalhnan and Sussman, and Sussman and

Steele [15, 16]keep u'ack of the flow of information during propagation.

Variables are either bound to a value or they aren't• Each time an un-

bound variable is bound to a value the premises, those variables on which

the new value isbased, are recorded. If the value of a bound value is to be

changed, then it must be unbound first. This 'unbinding' is called

retraction. If a variable to be retracted is a premise of some other

variable's value then that variable is retracted too, so that its value can be

recomputed. If a variable to be retr_icted is premised on some other

values, then these must be accounted for as well.

Values come either from outside the system, set by the user, or from in-

side as the result of some constraint firing• Each time a rule is fired and a

new value for a cell is computed, the cells that the computation used as

inputs are recorded.

Each cell has a set of deductions associated with it. This is the set of cells

whose values were based on its value, through however long a chain of

reasoning• Looking at the history information in the other direction, each

cell has a set of premises that contains those cells that implied it. The

ultimate premises of a cell are those premises that do not themseleves have

premises.



Chapter III: Satisfaction 43

Steele [16]achieves the effect of incremental satisfaction by retracting a

cell's value, giving the cell a new value, then performing propagation as in

section III.1.1, page 20.

Consider the case where a cell has no premises; that is, it wasn't deduced

from anything by the firing of a contstraint. This corresponds to a value

set by the user. In order to retract the value from its cell, the effects of the

old cell must be undone, qqaisis simply a matter of recursively removing
the effects of each of the deduced values.

In the case where a cell has premises, more needs to be done than simply

retracting the deductions. This value was deduced from other values; if it

were changed without accounting for this then the constraints involved in

those deductions would be contradicted. However, if any one of the ul-

timate premises were retracted, then the original cell would also be
retracted since it must be in the set of deductions from the ultimate

premise. The satisfaction process is then expected to propagate a new

value from the changed cell to the cell originally retracted. The changed

cell will now be an ultimate premise of its old ultimate premise.

For example, we start with the constraint graph in figure III-14.
II 1

A= 1

B-2 _ E_ 7

D (unbound)

Figure Ill-14: Initial graph.

Running the propagation algorithm, A and B are used to deduce C, then
C and E are used to deduce D. The final net with the deduction infor-

mation is shown in figure III-15. A, B and E have no premises. C has A

and B as premises and ultimate premises. D has A, B, C and E as premises

but only A, B and E as ultimate premises.

In order to change A we first retract it. This involves following the depen-
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I I IIIIII • I II

A_uctJon links

D=4

Figure III-15: Deduction information after propagation.

dency chains and also retracting C and D. The result is shown in figure
III-16.

II II I II II I

A (unbound)

B -Z _ E" 7
e*-

D (unbound)

Figure III-16: Retracting a cell with no premises.

Assigning new values to A and performing propagation, the net in figure
III-17 results.

II

""---2, E-'
D= Z

Figure III-17: Propagation after retraction. _

A similar, but less extensive retraction occurs when E is changed.



Chapter HI: Satisfaction 45

Continuing with this example, we attempt to change C. Its set of ultimate

premises, A and B, is not empty. One of these is picked, say B, and is

retracted• This retracts C and D, leaving the net of figure III-18.

A- 3

C {unbound)

B {unbound)

E = 7

D {unbound)

Figure 111-18: Retracting a cell with premises.

C is now given its new value and is propagated. This and the new deduc-

tion links are shown in figure III-19. Note the differences between this

and figure III-17.
I I III

A-3

D=3

Figure 111-19: Propagation after retraction with premises.

Those nodes that were retracted and had been deduced from C before the

retraction are again deduced from it by propagation. But those that were

retracted and were premises are now deduced. The deduction chains have
been reversed.

A set of deductions forms a tree that is rooted at some ultimate premise.
t

For each ultimate premise there is a tree of deductions. These trees may

overlap. Retraction and propagation together have the effect of taking

one of these trees, picking some node in it as the new root, and reshaping
the tree around it.

Q
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Retraction has several problems: it is not data directed, it presumes that

all deductions are reversible, it still has to decide which ultimate premise

to retract, it deals with dynamic values but not with dynamic nets, and it

overly restricts the system's choice of how to propagate the effects of a

change. By a deduction being reversible, I mean that the deduction could

have been performed in the reverse direction m if A can be used to

deduce B via some constraint's rule, then B can be used to deduce A via

some other rule of that constraint. This is equivalent to saying that the

deduction function is invertable: B=j(A) implies that f-1 exists.

Retraction is based entirely on the flow of previous computations. It takes
no direction from the actual data in the net. When the value of a cell is

changed it might be possible to restrict the scope of the retraction by

taking the new value and the semantics of the constraint into account;

changing a constrained value might not contradict the constraint.

For example, if A is constrained to be less than B, and B was deduced
from A, then if the value of A is decreased there is no need to retract the

value of B, which flow-directed retraction would. Planning techniques
which take into account the values that will be deduced, like the one

described in section III.2.5, page 49, don't have this problem.

There is a strong presumption in retraction that all computations are re-

versible. This is used in the revocation of the ultimate premise of a cell

and the subsequentldeduction of a new value for it. Problems can occur

when this presumption is invalid and reverse flow cannot happen.

When the cell to be retracted has more than one ultimate premise, the

choice of which to retract must be made. Usually, any of them may be

retracted and the system will still be satisfiable. The choice is often an

aesthetic one of 'doing the right thing'. This requires an omniscience that

is beyond the power of mere mortals. Any of a number of heuristics may
be used:

• Ask the user: This gets verbose and annoying. It also makes the
foolhardy assumption that the user knows what is going on, what is
right, and cares about the differences between the solutions. . _

• Pick the nearest ultimate premise: the rationale being that this cell is
the one 'most responsible'.

• Pick the ultimate premise with the smallest set of repercussionsi this
minimizes the extent of a change, but can be tricked by adversary-
argument style problems and can be computationally expensive.
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• Random: the rationale being that no premise is worse than any
other. The user should probably be allowed to complain and force
the system to try something else.

I I III I

C

e

a

Figure 111-20: A triangle of midpoint constraints.

Unfortunately, it is not always the case that the retraction of any ultimate

premise will leave the system satisfiable by propagation. In figure III-20,

B is constrained to be the midpoint of A and C; D is the midpoint of C

and E; and F is the midpoint of E and A. A and B derived C; C and D

derived E; and E and A derived F. If F is to be moved we must retract

one of its ultimate premises, A, B or D. If A is retracted then both other

vertices, C and E, will also be retracted since they were deduced from it.

The system that results, even with F bound, is not satisfiable by propaga-
tion. All of the vertices have been retracted, which is too much. One

could, in this case, pick some arbitrary value for one of the newly un-

bound cells, but the result would certainly not be the 'right thing'. If

either of the other two ultimate premises, B or D, is chosen for retraction,

then the problem will not occur.

If we look again at the triangle example, another problem can be seen by

trying to change the value of A. Retraction has no choice: it removes the

values of C, E and F. Propagation can then re-evaluate them without any

problems. If this triangle was drawn on a screen and was being manipu-

lated by the user, what he would see is shown in figure III-21. A user of

such a drawing system would probably be surprised; such a twisting of the

structure is probably not what he wanted. Figure III-22 shows what was
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I i! i| i i I i

C C C

Move point a _ a f e

e __e e
a f a f a f

Figure 111-21: Moving a vertex using retraction.

I I

C C C

Move point a /_

d

/ \

e e e
a f a f a f

Figure 111-22: Moving a vertex, doing the 'fight thing'

more likely to have been on his mind. Of course, the twisting solution

may be the one that the user has it mind, but it isn't the only possible

solution. The point here is that by restricting itself to the data flows in the

dependency graph the algorithm has blinded itself from considering in

this case that B could have been moved in response to the movement of A.

It is based on the naive belief that if something worked once, you should
stick to it.

Retraction uses previous flow patterns to guide subsequent flows. It

provides no guidance if there were no previous flows. This problem oc-

curs when a new constraint is added to an existing network. If it is un-
satisfied when it is instantiated then some of the constrained values must

change. Often, as in most of the examples presented so far, a constraint

can be satisfied by changing just one of the constrained values -- in that

case the satisfaction algorithm can pick one of the ultimate premises of

one of the constrained values and retract it. In more complicated cases,
more than one value needs to be retracted. Information is needed from
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the constraint of the form 'in order to satisfy this constraint it is necessary
to retract either A and B or C and D.'

Note that there are few problems when a constraint is removed from the

system. If the system was originally satisfied, then the system will surely

remain satisfied. If it was unsatisfied before, then it may be satisfiable
after.

Despite these flaws retraction is still a useful and elegant technique. It

plans the propagation process with low overhead using only local infor-

mation. A small bookkeeping expense in the propagation phase has paid

off with performance in planning.

111.2.5. Breadth-First Planning

Preceding sections of this thesis have discussed several simple and elegant

techniques for performing incremental satisfaction. Unfortunately they

all have either the problem of not finding a solution or finding a 'bad' one

in many cases. In this section the brute application of force is discussed.

This results in guarantees of success and 'goodness' and, it will be argued,

without much performance penalty.

What is a 'good' solution? To a first approximation, it is any one that is

correct. When there are many correct solutions one must be chosen some-

how. This choice is necessarily domain dependent. For the purposes of

this thesis I have chosen to prefer solutions that change a minimum num-

ber of values. For the applications that I am concerned with, graphical

editors, this seems reasonable since it maximises the coherence of the

satisfaction process; as many things as possible are left alone on the
screen.

The unplanned firing algorithm of section III.2.1, page 36, was the first
one tried in MAGRITTE. It worked most of the time but sometimes would

not find a solution, or the solution found would be 'surprising'. Next,

backtracking was added. This turned it into a depth-first search. It always

found a solution if one existed. If the search was stopped when the first

answer was found, it tended to give 'surprising' answers like the one seen

in the retraction example, figure III-21, page 48. But exhaustively search-

ing for a good solution consumed too much time. Other slight variations

and algorithms from the literature were tried without much success. It

became clear that there was no good alternative but to bite the bullet and

i.
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use breadth-first search. In this case, the criteria for a good solution are
used to limit the search.

Breadth-first search works by first constructing all sequences of constraint

firings of length one. Then it extends these to all sequences of length two;

then length three, four, five.., until finally one is reached were all con-

straints are satisfied. This is then taken as the solution. In the general

case, the performance of breadth-first search is most affected by high

branching factors. If there are many different deductions that can be

made, then each sequence of length n leads to many sequences of length

n + 1. After very few layers this exponential blowup will produce an over-

whelming number of possibilities.

Fortunately, in the case of constraint systems used in drawing editors the

network structure provides a lot of guidance. The most common branch-

ing factors seen are one and two. Constants have the effect of cutting

down the branching factors of the constraints to which they are attached.

It is crucial that every opportunity to reduce the branching factor be ex-

ploited.

One can think of a single sequence of constraint firings as a tendril that

spreads out through the network. At each cell it branches to all the at-

tached constraints and at each constraint it picks some adjacent cell, al-

though it might have to choose several, and spreads through them.

Finally, the tendril stops when it reaches a cell that has no attached con-

straints other than the one it just came through, or where none of the

attached constraints is violated by the cell's new value. The tendril

satisfies the system when all of its branches stop.

Different tendrils are created each time there is a choice of which cell to

alter at a constraint. The breadth-first algorithm maintains a set of

tendrils. It iteratively extends each one, creating new tendrils as choices

are encountered, rejecting them when they reach a contradiction, and

finally succeeding when any of the tendrils succeeds.

The basic data structure used by the algorithm is a tendril. A tendril is

composed of a set of bindings and two sets of constraints. The bindings

are those changes to cells values that are represented by this tendril. One
set of constraints contains those that have fired to create the tendril. The

other contains those constraints that are suspected to be unsatisfied. This
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is the SuspectConstraints queue from the simple propagation algorithm of

section III.1.3, page 22. All constraints that need to be satisfied must be in

this queue, but not all of the constraints in the queue definitely need to

have some cell's value changed in order to be satisfied.

Two sets of these structures are maintained. One contains sequences of

length n and the other of length n+ 1: one for this iteration and one for

the next. Initially the set for the first iteration contains one tendril that

contains those cells that were changed by the user in the last editing step

and the adjacent constraints. The algorithm terminates when a tendril is

constructed that has an empty set of suspect constraints.

The breadth-first algorithm:

1. Empty the set of tendrils for the next iteration.
2. If the set of tendrils for this iteration is empty, terminate. The sys-

tem is unsatisfiable.
3. While the set of tendrils for this iteration isn't empty:

a. Take a tendril from the set of tendrils.
b. Pick a constraint from its set of suspect constraints.
c. Apply it, taking into account the bindings for this tendril. The

constraint is allowed to fire in any direction that doesn't change
a constant or a cell bound by this tendril.

d. If the constraint was already satisfied, go back to b and pick
another constraint.

e. It"the constraint wasn't satisfied and it's a member of the set of
constraints that were fired to create this tendril, then a loop has
been encountered: abandon this tendril.

f. If the constraint couldn't fire, then this tendril is a dead end.
Go back to 2 and pick another one.

g. If the constraint fired then create a tendril for the next iteration
that is almost the same as the current tendril. The exceptions
are that it contains the bindings from the firing and has the
constraint moved from the set of suspect constraints to the set
of constraints that have fired. Add to the set of suspect con-
straints all constraints adjacent to the values that changed. Go
back to c to apply the constraint again, leaving around hints so
that it won't fire in the same direction again.

4. If a tendril has been constructed that has an empty set of suspect
constraints, terminate with a cheer. The system has been ,satisfied.

5. Move the set of tendrils for the next iteration to the set for this itera-
tion and start a new iteration. - i-

,.

For an example of the running of this algorithm, see section IV.5.2, page

80. It shows the integration of this algorithm and the network transfor-

mations of chapter IV, page 53.
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It is difficult to provide a detailed analysis of the perfomlance of breadth-

first satisfaction. So much depends on the general nature of the networks

encountered. To say that it is exponential in time and space is to ignore

the special properties of the tasks at hand. In networks where there are

many 'loose ends' m objects that have at most one constraint m the satis-

faction process is very quick since the loose ends terminate the search

soon. If there are many direct deductions -- constraints with only two

non-constants attached to them -- then not many tendrils will be created

and the satisfaction process will go quickly. In MAGRITTE'Sdomain of

graphical editing, both of these conditions tend to hold.

The configurations that cause the most difficulty involve loops, par-

ticularly small tight ones. The search will spiral around the loop, branch-

ing out at its contacts with the rest of the world, creating a new tendril at

each such branch. As it spirals, many tendrils are generated and the

search effectively grinds to a halt. There are many heuristic tricks that can

be used to make these situations more bearable, but they still remain a

problem. Fortunately it is exactly these situations, small tight loops in the

graph, where the algebraic transformation techniques of the next chapter

really pay off. They can be used to analyse such hot spots and reduce

them to much simpler configurations.

I.



IV Transformation

The efficiency and tractability of constraint network satisfaction al-

gorithms can be enhanced by transforming parts of the network of con-

straints into single constraints. Preceding sections of this thesis have dis-

cussed the need for and application of such transformations. This chapter

discusses how to perform these transformations, and how to detect the

situations where they are needed and where they fail.

These transformation techniques only apply to networks where the prim.i-
tive constraints are restricted to the operations of conventional algebra:

sum, product, and equality. The transformations are based on the ability

to perform algebraic transformations on equations derived from the con-
straints.

Two transformation algorithms are presented in this chapter. The first

generates constraints whose primitive definitions require the enumeration

of all useful cases. This is the "formused in preceding sections of this

thesis and discussed in section II.3 on page 15. The second algorithm is

based loosely on the first but uses a different target primitive constraint

definition. It usually avoids the exponential complexity blowup of the
first.

The chapter ends by discussing when to use transformations, how toavoid

them when possible, and how to link them to satisfaction algorithms.
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IV.1. Transforming Entire Given Nets

Assume that we have a network that is to be converted entirely to a single

new constraint. We will be abstracting its properties to maintain its exter-

nal behaviour while suppressing inner details. Such net_'orks are usually

derived either by detecting a problem subnet of a largernetwork or by

using the hierarchy of object construction.

Given such a network, the transformation algorithm seeks to construct a

single primitive constraint that captures the external semantics of the en-

tire net. Remember that a primitive constraint specification contains

three parts:

1. A set of parameters to which the constrained values are bound.
2. A rule that is a boolean expression that evaluates to true or false

depending on whether or not the constraint is satisfied.
3. A set of clauses that are used to evaluate propagated values. One

exists for each possible evaluation direction.

The exhaustive set of clauses in this form of primitive constraint definition

is used by SKIZI'CHPAD, THINGLAB, and Steele's system. Transformation

techniques for this foma are given in this section. Following sections

present a different form and a corresponding transformation technique.

Figure II-1, page 16, contains the actual definition of the primitive sum

constraint in the MAGRITTEsystem. It constrains three scalars called

result, a, and b such that result=a+ b. The three clauses at the end

specify how to propagate values in all possible directions. For example,

the last of them states that to evaluate b given result and a the difference

of result and a should be computed and assigned to b.

The last and most complicated stage of the transformation process is the

construction of the propagation clauses. One wants to derive expressions

for each subset of the set of parameters that evaluates each of them using

only the values of the other parameters. This will usually be possible for

only a few of the subsets. Brute force enumeration works, but it is very

expensive computationally.

As an example of what is to be constructed, consider once again the mid-

point network. Here is an enumeration of all subsets of the parameter list

and expressions evaluating to them, the output set, in terms of the other

parameters, the input set.
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Inputs Outputs Expressions
{} {A,B,C} Nothing can be derived
{C} {A,B} Nothing can be derived
{B} {A,C} Nothing can be derived
{B,C} {A} X=2 -C
{A} {B,C} Nothing can be derived
{A,C} {B} B=(A+O+2
{A,B} {C} C=2B-A
{A,B,C} {} Nothing can be derived;

everything is known

If the constraint to be transformed consists of a single equation of k vari-

ables, as this example is, then only k of the 2k sets are interesting.

Restricting the enumeration to the useful cases when more complicated
constraints are transformed can be difficult. This is addressed in section

IV.2 on page 68.

The algorithm goes through several major phases. First, the internal and
external variables are identified. Then the network is converted into a

system of equations. These equations are manipulated to remove all in-

ternal variable references. The equations that remain are used to generate

all of the useful _signment statements, then these are merged into the

actual propogation clauses. Finally, the parts are put together into the

primitive constraint.

IV.I.1. Identify Internal and External Variables
Parametersof a constraint to be constructed are identified based on the

context from whichthe net was derived. If it comes from a cell definition,

then the parameters to the cell have been explicitly specified by the user

and these become the parameters to the constraint. When a net is clipped

out of a larger net, the parameters are those values that are visible to the
outside world.

Values are visible in two ways: they can be changed and examined by

either the user or the constraint system. Those that are visible to the user

are determined by the natureof the application. Those visible to the con-

straint system are at the periphery of the subnet, where the cut was made.

Figure IV-1 should make this clear. Here the cycle involving the two

lower sum constraints has been clipped out and the three values A, B and

C become the parameters. T is not a parameter since it is not referenced
from outside the subnet.
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A B C

be transformed ,,,

Figure IV-l: Deriving parameters when clipping out a subnet.

IV.l.2. Convert the Network to a System of Equations

The system of equations represented by the network is derived by travers-

ing the network and extracting the rules from each constraint. Since the.
network is satisfied only when all of the component constraints are, the

rule for the new derived constraint is simply the conjunction of the col-
lected rules.

Using the the network clipped out in figure IV-1 and the definition of sum

from figure II-1 we get the following two equations:

B=A+T
C=B+T

Notice that the propagation clauses of the constraints Withinthe subnet

are completely ignored. All that is being used is the satisfaction test rule.

This suggests another method for defining primitive constraints: as a sys-

tem of equations that will be transformed to something suitable for use by

the propagation algorithm. This technique is discussed again in section

IV.3.3 on page 76.

IV.1.3. An aside: solving a single equation

An important operation performed in several situations in the rest of the

transformation algorithm is that of solving some equation for the value of

some variable. For example, solving B= A + T for T should return

T= B- A. This can be performed by invoking a system such as

Q
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MACSYMA[13]. As far as possible in this thesis, I want to treat these

systems as black boxes.

It is not necessary to have the full algebraic manipulatiofi power of

MACSYMA.Many applications need no more than the ability to deal with

simple linear equations and some restricted quadratics. An example of

such a system is Chris Van Wyk's IDF_AL[20]. It is similar to the one used

in MAGRITTE, but not as general. The batch processing orientation of

IDEALlets a numerically-oriented manipulation system work.

There is a strong assumption made in several places that it is always pos-

sible to solve any equation tbr the value of any variable. While this is

false in general, for many domains it is quite reasonable. The existence of

an extensive algebra, with its accompanying deductive machinery, is the

key to the success ofthese algorithms.

In subsequent sections this manipulation function will be referred to as:

expression = SoiveFor[var, equation]

which solves for varin the equation, returning the resulting expression in

expression. Appendix I on page 89 discusses the algebraic manipulations

used by MAGRITIE.

IV.l,4. Eliminate Redundant Internal Variables

Since the values of internal variables are not accessible from outside the

subnet, they can safely be eliminated.

In simple cases it suffices to pick an equation that contains an internal

variable, solve for it, and substitute it into all other equations that contain

that internal variable. Returning to the previous midpoint example, we

eliminate the internal variable T by solving for it in the first equation,

which yields T= B=- A. Then by substituting that in the second equation
we obtain C= B+ B- A.

This process is equivalent to the tree-tracing extractionof equations that

was done in chapter 3 of[16]. The only real difference is that here the

operations are explicitly performed in terms of symbolic algebra.

Elimination in this manner fails only if, contraryto our assumption, an

equation can't be solved for an internal variable, or if some internal vari-
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able occurs non-trivially in only one equation 5. What does it mean for an

internal variable to occur in only one equation? Since these equations are

constraints, they must be true for the constraint represented by the whole

net to be satisfied. Assume that the equation can be solved for the inter-

nal variable and that the equation is continuous in all the other variables.
Then it can be transformed to T= e, where T is the internal variable and e

is the expression that defines it. Since Tis unbound outside the constraint

and appears nowhere else inside the new constraint, the satisfaction algo-

rithm is free to choose any value at all for it. The only constraint imposed

by the equation is that e evaluate to something. Effectively, this means

that the equation can simply be ignored and discarded.

Recapping our example so far, we have the set of parameters {A, B, C}

and the rule 2B= A + C. The primitive constraint so far is shown in figure
IV-2.

(defprimcmidpoint ((A scalar)(B scalar)(C scalar))

(equal("2 B) (,A C))

The propagation clauses will go here
)

Figure IV-2: The partially constructed 'midpoint" constraint

IV.1.5. Deriving Propagation Assignments

The propagation clauses consist of assignment statements that evaluate

parameter values from other parameter values. Before constructing the

clauses we need to derive for each parameter all possible ways of evaluat-

ing it in terms of the other parameters.

Consider an equation where every variable appearing in it is a parameter

to the constraint. Each such equation is a relation among the variables

that appear in it and may be _lved for each, yielding some assignment
statements:

• ..... ; - .:

5A trivial occurance is something like A- A.
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OutputAssignments [e] =
For each unique variable v in e

Output "v "= SolveFor Iv, e]"

The set of equations that results from the elimination of internal variables,

as described in the preceding section, can have OutputAssignments ap-

plied to its members to generate some of the assignments. All of the other

assignments can be generated from equations that are compositions of the

original equations.

Two equations are composed by solving one for a variable that appears in

the other and substituting it. This can be done for each variable that

appears in both expressions. It doesn't matter which is substituted in the

other; the two resulting equations would be semantically the same.

Consider a set s of equations. Initially it is the equations from the preced-

ing section. S is enlarged as follows:

Veles, e2es, V(el)n V(e2),eJ

Vvc V(el)n V(e2) let s= su(e 1 with SolveFor(v, e2) substituted for vj

until no new equations are being added to s. V(e) is the set of variables

appearing in e.

This procedure results in s being the set of all possible equations that

relate a distinct subset of the input paramters. Some of these equations

may be redundant, ifthere were redundancies in the initial set.

As described, this is a computationally expensive procedure. Here is the

real implementation, as it appeared in an early version of MAGRITTE,with

some notation changed to make it more legible:
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ExtractedSystem is the system of equations to be transformed.
SolutionSets and ExamineSets are lists of pairs { e, used }:

e is an expression,
used is a setof expressions.

TotalSolution is the final set of assignment statements.

AddAssignment (e, used) =
let varsbe

if--,3s¢SolutionSetssuch that V(e)= V(s.e)then
push {e, used} onto ExamineSets
for v in II"(e)do

push "v := SolveFor (v, e)" onto TotalSolution
endif

FindAllAssignments =
TotalSolution := {}
SolutionSets := {}
ExamineSets := {}
for e in ExtractedSystem do

AddAssignment (e, {e})
for s = pop(ExamineSets) while Sl._ do

belgin

for s2 in SolutionSets do '
forv in s vns v unless s usedcs usedvs used_s used do

1" 2" 1" -2" 1" -2"
let e be s_with Solvefor(v, s_.e) substituted for v.
AddAssi_nment (e, sl.usedu's2.used)

push s1 onto SolutionSets
end

The only tricky part of this algorithm concerns the use of the used sets

associated with SolutionSets and ExamineSets. Used is the set of equa-

tions from the original set that have been composed to form the new

equation. The algorithm does not compose two equations if either used

set is a subset of the others -- the composition must yield an equation

whose used set will differ from those of the original two -- each must

bring in some new information.

The output of FinciAllAssignments comes from the value of TotalSolution

whose elements are generated in the deepest part of the loop. Hence its

runtime will be linear in the output size. This is not quite true since the

various conditionals may cut off some inner loops. It also isn't a very

strong statement: the output size can be exponential in the input size.
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IV.1.6. PropagationClause Construction

Each propagation clause consists of three parts: an input set, an output set

and an evaluation set. The input set contains the variables input to the

clause, the output set contains those that areoutput by it, and the evalua-

tion set contains the code necessary to evaluate the members of the output

set from the input set. The input and output sets are used by the propaga-

tion mechanism to determine which clause to apply, and the evaluation

set is used when it is decided that that clause applies.

Given the total solution from the previous phase, prototype clauses are

constructed by examining the input and output variables. For the mid-

point example, this results in:

Output Evaluation set
{B,C} {A} {A:= 2B-C}
{A,C} { B} { B:= (A+O+2}
{B,A} {C} {C:= 2B-A}

Some solutions returned from FindAllAssignments may be redundant

and should be eliminated. The following procedure eliminates an assign-
ment if there is another that evaluates to the same variable and uses a set

of variables that is a subset of the variables used by the first.

For each ProtoClause i
For each ProtoClause j

•Such that i,j, outputL= outputyAinput_input ieliminate r'rotoClause i

The last step remaining before the final construction of the constraint is

the merging of prototype clauses with equal input sets resulting in a single

clause with a larger output set. At the same time we take any prototype

clause whose input set is a subset of another's and merge it into the other,
but leave it as a distinct clause as well.

The midpoint example that we've been working through in this descrip-

tion is so simple that nothing is done by this step, but the example worked

through in IV.1.7 shows it in action.

We're finally ready to put everything together. The constraint name,

parameter list, satisfaction test role, and propagation clauses are simply

concatenated together and wrapped inside a defprimc. Defprimc is a LISP

function used to define a primitive constraint. Ittakes the constituent
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parts and builds the structures necessary for use by the satisfier. The final

constructed midpoint constraint is:

(defprimc midpoint ((A scalar) (B scalar) (C scalar))

(equal (* 2 B) (+ A C))

((e (A C)) (setf B (+ (* 0.5 C) (* 0.5 A))))
((A (B C)) (setf A (- (* 2 B) C)))
((C (B A)) (setf C (- (* 2 B) A)))

)

IV.1.7. A Large Example

The following example is similar to the midpoint example that has been

used time and again in this thesis. Instead of constraining three points to

be equally spaced, it defines four to be equally spaced. It is no more

complicated algebraically, but it does show a few more points of the con-
struction of the constraint.

Defalgcon is a LISP function to define an algebraic constraint. In this

example, a constraint called fourspaced is being defined with four scalar

paramaters. The parameters are related by three boolean equalities. "

First, the following definition is presented to MAGRITTE:

(defalgcon fourspaced (a b c d)
(equal b (+ a t))
(equal c (+ b t))
(equal d (+ c t))

)

It correspondsto the following equations:

t+a=b
t+b=c
t+c=d

Eliminating the internal variable t, MAGR1TTEsimplifies this to:

c+b=d+a
2b=c+a

Then FindAllAssignments is invoked on this set of equations. It generates

the following equations and passes them to AddAssignment, which out-

puts the associated assignment statements.
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c+ b=d+ a was given.
Yielding the following assignments:

(setf d (- (+ b c) a))
(setf c (- (+ a d) b))
(setf a (- {+ b c) d))
(setf b (- (+ a d) c))

2b= c+ a was given.
Yielding the following assignments:

(setfc (-(*2 b)a))
(setfa (-(*2 b)c))
(setfb (+(*0.5a).(*0.5c)))

-2a+ 3b=dwas derived from:
2b=c+a
c+b=d+a

Yielding the following assignments:

(setf d (+ (* 3 b) (* -2 a)))
(setf a (+ (* 1.5 b) (* -0.5 d)))
{setf b {+ (* 2/3 a) (* I/3 d)))

d-2c + b=0 was derived from:
2b=c+a
c+b=d+a

Yielding the following assignments:

(serf d (- (* Z c) b)) ::l::
(setf c (+ (* 0.5 b) (* 0.5 d)))
(setf b (- (* 2 c) d))

2d- 3c + a=0 was derived from:
2b=c+a
c+b=d+a

Yielding the following assignments:

(setf d (+ (* -0.5 a) (* 1.5 c)))
(setf c (+ (* 1/3 a) (* 2/3 d)))
(setf a (+ (* 3 c) (" -2 d)))

The following solutions will be eliminated as being redundant. They were

all derived from c+ b=d+ a. The rationale is simply that for the last as-

signment, for example, what use is being able to derive d from b, c and a

when it can be derived from b and c alone? See _Fabove.

(setf a (- (+ b c) d))
(setf b (- (+ a d) c))
(setf c (- (+ a d) b)) . :
(setf d (- (+ b c) a))
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Given this set of assignment statements, MAGRITTEmerges those with

identical input sets into single clauses, wraps them up and produces the

ffmalprimitive constraint definition:

(defprimc fourspaced ((a scalar) (b scalar) (c scalar) (d scalar))
(and (equal (+ c b) (+ d a))

(equal (* 2 b) (+ c a)))
(((a b) (d C))

(progn (setf b (- (* 2 c) d))
(setf a (+ (* 3 c) (* -2 d)))))

(((c a) (d b))
(progn (setf c (+ (* 0.5 b) (* 0.5 d)))

(setf a (+ (* 1.5 b) (* -0.5 d)))))
(((d a) (c b))

(progn (serf d (- (* 2 c) b))
(setf a (- (* z b) c))))

(((c b) (d a))
(progn (setf c (+ (* 1/3 a) (* 2/3 d)))

(setf b (+ (* 2/3 a) (* 1/3 d)))))
(((d b) (c a))

(progn (setf d (+ (* -0.5 a) (* 1.5 c)))
(setf b (+ (* 0.5 a) (* 0.5 c)))))

(((d c) (a b))
(progn (setf d (+ (* 3 b) (* -2 a)))

(setf c (- (* 2 b) a)))))

If, instead of the definition presented at the beginning of this example, the

following had been used, the final constraint would have been exactly the
same:

(defalgcon fourspaced (a b c d)
(equal (* Z.O b) (+ c a))
(equal (* Z.O c) (+ d b))

)

This next example shows the complexity that arises when there are many

parameters to a constraint and small subsets of the parameters can derive

other small subsets of the parameters:

(defalgcon redun (a b c d tl t2)
(equal tl t2)
(equal a (+ b tl))
(equal c (+ d t2))

)

It corresponds to the following equations:

t2=tl
b+ tl=a
d+t2=c " _ _

.,

Since there are no internal variables, simplification changes nothing.

........... The process of finding assignments generates:
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d+ t2= c was given.
Yielding the following assignments:

(setf d {- c t2))

(setf c (+ t2 d))
(setf t2 (- c d))

b+ tl = a was given.
Yielding the following assignments:

(setf a (+ tl b))
(setf b (- a tl))
(setf tl (- a b))

t2= tl was given.
Yielding the following assignments:

(setf tl t2)
(setf t2 tl)

b+ t2 = a was derived from:
b+ tl =a
t2 = tl

Yielding the following assignments:

(setf a (+ t2 b))
(setf b (- a t2))
(serf t2 (- a b))

c= d-e tl was derived from:
d+ t2=c
t2=tl

Yielding the following assignments:

(setf d (- c t!))

(setf c (+ tl d))
(setf t! {- c d))

c+ b= d+ a was derived from:
d+ t2=c
b+ tl= a
t2=tl

Yielding the following assignments:

(setf d (- (+ b c) a))

(setf c (- (+ a d) b))
(setf a (- (+ b c) d))
(setf b (- (+ a d) c))

None of these can be eliminated as redundant.

The final constraint is:
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(defprimc redun
((a scalar) (b scalar) (c scalar) (d scalar)

(tl scalar) (t2 scalar))
(and (equal (+ d t2) c)

(equal (+ b tl) a)
(equal t2 tl))

(((a tI t2) (d c b))
(progn (serf t2 (- c d))

(setf tl (- c d))
(setf a (- (+ b c) d))))

(((a tl) (b t2))
(progn (serf tl t2)

(setf a (+ t2 b))))
(((a t2) (b tl))
(progn (setf t2 tl)

(setf a (+ tl b))))
{{(b tl t2) {d c a))
(progn (setf t2 (- c d))

(setf tl (- c d))
(setf b (- (+ a d) c))))

(((b tl) (a t2))
(progn (setf tl t2)

(serf b (- a t2))))
(((b't2) (a tl))
(progn (setf t2 tl)

(serf b (- a tl))))
(((c tl t2) (d a b))
(progn (setf t2 (- a b))

(setf tl (- a b))
(setf c (- (+ a d) b))))

(((c t2) (d tl))
(progn (serf t2 tl)

(setf c (+ tl d)))).
(((c tl) (d t2))
(progn (setf tl t2)

(setf c (+ t2 d))))
(((d tl t2) (c a b))
(progn (setf t2 (- a b))

(serf tl (- a b))
(setf d {- (+ b c) a))))

(((d t2) (c tl))
(progn (setf t2 tl)

(setf d (- c tl))))
(((d tl) (c t2))
(progn (setf tl t2)

(setf d (- c t2))))
(((tl t2) (d c))
(progn (setf t2 (- c d))

(setf tl (- c d))))
(((tl) (t2)) (setf tl t2))
(((tl t2) (a b))
(progn {setf t2 {- a b))

(setf tl (- a b))))

{((t2) (tl)) (serf t2 tl)))

..

In this case the transformation process has taken a trivial set of equations

and blown them up into a very complicated routine. If one were to have

taken the ofigina! three equations and created three separate constraints

from them, the resulting net would have been simpler and still been solv-

able by propagation _nce there are no circularities. In section IV.2.1 a
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different form of primitive constraint is given along with a corresponding

transformation algorithm that generates much simpler constraints.

This last example is much simpler than most of the preceding ones. It

demonstrates some slightly more complicated algebra by constraining the

point (x 1, Yl) to be r units from (x2, Y2)" litcould have come from the
constraint graph of figure IV-3:

(defalgcon dist (xl yl x2 yZ r)

(equal dx (- xl x2))

(equal dy (- yl y2))
(equal (* r r)

(+ (* dx dx) (* dy dy)))
)

I II I IIIII IIII II II

xl
xZ

y2
yl

Figure IV-3: Constraining the distance between two points.

This is equivalent to:

Xl = X2+ dx

Yl=dy+Y2

dy2+ dx2= r2

MAGRITTEeliminates the internal variables dx and dy, resulting in:

Xl2+ yl 2- 2XlX2 + X22- 2YlY2+ y22= r2

The deductions from FindAllAssignments are straightforward, and the

following definition is produced: 6

6ThisistheactualoutputofMAORITTE, reformattedtobe morelegible.
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(defprimc dist-cons ((x 1 scalar) (Yl scalar) (x 2 scalar) (Y2scalar)

(r scalar))

Xl2 + yl 2 - 2x ix 2+ x22- 2YlY2+ y22= r2

(((0 yax2h))
(r:= (y22-- 2YlY2+ x22--2XlX2 + yl 2+ x12)1/2)

(((Xl) (r Yl x2 h))

(x 1 := 0.5(-4Y22 + 8YlY2-4Yl 2+4r2)1/2+ x2)

(((x2) (r x1Yl Y2))

(x 2 := 0.5(--4),22 + 8YlY2--aYl 2+ 4r2)1/2+ x 1)

((tYl)(rxi x2Y2))
(Yl := 0"5(--4x22 +SXlX2--4Xl 2 +412)1/2+)'2)

(((Y2) (r x1Yl x2))

0'2 .= 0'5(- 4x22+ 8XlX2-4Xl 2+ 4t2)1/2+ Yl))

IV.2. Reducing the Complexity of Transformed Constraints

The example of the transformation of a loosely coupled network that ap-

pears on page 64 shows the exponential blowup that can result. In other

cases substantial simplification can result,as is seen in the distance con-

straint example on page 67. The simplifications result from the elimina-

tion of internal variables and from the tightly coupled relationships

among the parameters. In the first example, transformation was unneces-

gary. Normal propagation could have dealt with it easily if each equation

were implemented as a separate constraint. The only improvement came

from the speedup of applying fewer constraints. In the second, transfor-
mation wasessential in order to deal with the circularities in the mul-

tiplications used for exponentiation. It also helped by hiding the internal

variables. Transformation does best where propagation does worst, and

transformation does worst where propagation does best. In this section

techniques will be shown that blend the advantages of both.
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IV.2.1. Primitive Constraints as Subnets

To exploit these differences and strengths, MAGRITTEuses a primitive

constraint definition that is more like a constraint network. A primitive

constraint contains not a set of clauses, but a set of sets of clauses. EachJ

set of clauses is, in a sense, a primitive constraint on its own.

For example, the constraint on page 64 could be expressed as follows:

(defprimc redun
((a scalar) (b scalar) (c scalar) (d scalar)

(tl scalar) (t2 scalar))

(and (equal (+ b tl) a)
(equal (+ d t2) c)
(equal t2 tl))

part (equal t2 t%)
((tl (t2)) (setf tl t2))
((t2 (tl)) (serf t2 tl))

part (equal (+ d t2) c)
((d (c t2)) (setf d (- c t2)))
((C (d t2)) (setf c (+ t2 d)))
((t2 (d c)) (satf t2 (- c d)))

part (equal (+ b tl) a)
((a (b tl)) (setf a (+ tl b)))
((b (a tl)) (setf b (- a tl)))
((tl (a b)) (setf tl (- a b))))

"Eachset of rules between part keywords acts as a constraint on its own.

The expression at the head of each part defines the part of the constraint

dealt with by the following clauses. Firing a constraint is no longer a

matter of picking the single clause that applies and executing its body.

The firing process is now a loop: pick a clause, execute it, then pick a

clause again. This continues until no more clauses can be applied. The

clauses must be chosen carefully so that a sequence of clause applications

exists that will satisfy the entire constraint.

Multipart primitive constraints aren't the only alternate form that could

be used. The original primitive form along with the macro constraints of

section II.4 on page 16. If this were done each part would become a

primitive constraint and the entire constraint would be a macro constraint

that invoked the primitive parts. This exposes an opportunity to use com-

mon subparts. However, in an attempt to keep the data structures more

compact, this form was not used.
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IV.2.2. Transforming to this Form

We can generate primitive constraints in this new form by using a slight

modification of the previous transformation algorithm. Refer back to the

calculation of TotalSolution from section IV.1.5, page 58. 'Fake each set

of clauses generated by a call to AddAssignment, separate them with part

keywords and we have a primitive constraint of the new form.

"llaisnew constraint will be applicable in exactly the same situations as the

old. Iterative firing replaces the merging of section IV.1.6, page 61. We're

trading compile time work for run time work and a complexity reduction.

A bdefrecap: Clauses are generated from equations An equation relates
the set of variables that appear in it. A clause is generated for every dis-

tinct variable that appears in an equation. Two equations are composed

by picking a variable that they have in common, solving for it in one and

substituting the result in the other.

Now, let's try to reduce the number of clauses in the primitive constraint.

Suppose two equations are composed that have only one variable in com-

mon. The clauses that result f?om the new equation will be able to com-

pute no more than the clauses from the original two. Hence, they are

redundant and may be eliminated. Why? qqaenew equation can deduce

something only when all but one of its variables are known: it will deduce
a value for the one unknown variable. This one unknown variable will

come from one of the two original equations. The other original equation

is thereby able to deduce the variable that they have in common, assum-

ing that it is unknown. After this, the one equation is able to deduce the

unknown value. One can think of the iteration of clause application as

being equivalent to algebraic composition in some cases.

By a similar chain of reasoning, if the set of variables appearing in one

equation is a superset of those appearing in another, then it and its

derived clauses may be omitted. It and the smaller equation must have

been algebraically composed; the result of the composition and the

smaller one supplant the larger one. One must also be careful to avoid

circular elimination relationships: a can be eliminated because of b and b
can be eliminated because ofa.

Here is the derivation of the redundant constraint example of section

IV.1.7, page 64, using the new form. Given this definition:
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(defalgcon redun (a b c d tA t,Z)
(equal tl t.Z)
(equal a (+ b tl))
(equal c (+ d t,Z))

)

It corresponds to these equations:

t2= tl
d+ t2=c
b+ tl=a

MAGRITTEperforms the following derivations:

b + tl = a was given.
Yielding the following assignments to a, b and tl

a_ tl+b
b_ a-tl
tl _a_b

d+ t2 = c was given.
Yielding the following =ssignments to d, c and t2

d_ c-t2
c _- t2+d
t2 _ c-d

t2 = tl was given.
Yielding the following assignments to tl and t2

tl_t2
t2_tl

d+ tl=c derived from d+ t2= c using:
t2_tl

Since it was derived by a one-variable
deduction, its assignments won't be
added to the final constraint.

c+ b=d+a derived from b+ tl =a using:
tl _c-d

Since it was derived by a one-variable
deduction, its assignments won't be
added to the final constraint.

b+ t2 = a derived from b+ tl = a using:
tl_t2

Since it was derived by a one-variable
deduction, its assignments won't be
added to the final constraint.

In this case, none of the derivations generates anything useful. The con-
qlb
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straint that is finally built contains no more than the assignments that are

generated from the initial equations.

The following example is slightly more complicated. It generates both

useful and useless clauses. Think of it as constraining the y coordinates of

the five points on a figure shaped like an A. Vertex is the vertex of the A,

LeftMid and RightMid are the endpoints of the crossbar, and LeflBot and

RightBot are the feet. The crossbar is horizontal and halfway along the

length of the A. Here is the definition:

(defalgcon A-shape (keftBot Left,lid vertex aightMid RightBot)
(= LeftMid (+ LeftBot T_))
(= vertex (+ LeftMid T1))
(= RightMid (+ RightSot T2))
(= vertex (+ RightMid T2))
(= LeftMid RightMid))

MAGRITTEsimplifies this to:

vertex+ RightBot= 2*RightMid
2*LeftMid= LeflBot + vertex
RightMid= LeftMid

Then the following deductions are done:

vertex+ RightBot= 2*RightMid was given.
Yielding the following assignments to

vertex, RightMid and RightBot
vertex _ 2*RightMid- RightBot
RightMid .-- 0.5*RightBot + O.5*vertex
RightBot ,---2*RightMid- vertex

2*LeftMid= LeftBot + vertex was given.
Yielding the following assignments to LeftBot, LeftMid and vertex

LefiBot _ 2*LeftMid- vertex
LeftMid _ 0.5*vertex + 0.5*LeftBot
vertex _ 2*LeftMid- LeftBot

RightMid= LeftMid was given.
Yielding the following assignments to LeflMid and RightMid

LeftMid ,-- RightMfd
RightMid _ LeftMid

2*RightMid= LeftBot + vertex derived from
2*LeflMid= LeftBot + vertex using:

LeftMid _ RightMid
Since it was derived by a one-variable
deduction, its assignments won't be
added to the final constraint.
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RightBot= LeftBot derived from
vertex + R ightBot = 2*R ightMid using:

vertex _ 2*RightMid-LeftBot
Yielding the following assignments to LeftBot and RightBot

LeftBot _ RightBot
RightBot _ LeftBot

2*LeftMid+ RightBot= LeftBot + 2*RightMid derived from
vertex + Right Bot = 2" RightMid using:

vertex ,- 2*LefiMid- LeftBot
Since it was derived by a one-variable
deduction, its assignments won't be
added to the final constraint.

vertex + RightBot= 2*LeftMid derived from
vertex + R ightBot = 2*RightMid using:

RightMi.d ,-- LeftMid
Since it was derived by a one-variable
deduction, its assignments won't be
added to the final constraint.

The primitive constraint that results is:



74 Constraint Systems

(defprimc A-shape ((LeftBot scalar)(LeftMid scalar)(vertex scalar)
(RightMid scalar) (RightBot scalar))

(and (equal (+ vertex RightBot)
(* 2 RightMid))

(equal (* 2 LeftMid)
(+ LeftBot vertex))

(equal RightMid LeftMid))

part (equal RightMid LeftMid)
((LeftMid (RightMid)) (setf LeftMid RightMid))
((RightMid (LeftMid)) (setf RightMid LeftMid))

part (equal (" 2 LeftMid)
(+ LeftBot vertex))

((LeftBot (LeftMid vertex))
(setf Lefteot (- (* 2 LeftMid) vertex)))

((LeftMid (LeftBot vertex))
(setf LeftMid

(+ (* 0.5 vertex) (* 0.5 LeftBot))))
((vertex (LeftBot LeftMid))
(setf vertex (- (* 2 LeftMid) LeftBot)))

part (equal (+ vertex RightBot)
(* 2 RightMid))

((vertex (RightMid RightBot))
(setf vertex

(- (* 2 RightMid) RightBot)))
((RightMid (vertex RighLBot))
(setf RightMid

(+ (* 0.5 RightBot) (* 0.5 vertex))))
((RightBot (vertex RightMid))
(setf RightBot

(- (* 2 RightMid) vertex)))

part (equal RightBot LeftBot)
((LeftBot (RightBot)) (serf LeftBot RightBot))
((RightBot (LeftBot)) (serf RightBot LeftBot)))

Here, all of the deductions except RightBot= LeftBot were ignored. It

the only one that cannot be duplicated by the iterative application of the

clauses generated from other rules. The algebraic magic occurs when

vertex is eliminated from vertex+ RightBot= 2*RightMid by substituting

vertex _ 2*RightMid- LeftBot. Not only is vertex eliminated, but

RightMid cancels and disappears too. This has happened because of the

circular relationship among the expressions as linked by their common
variables.

.i-
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IV.3. When to use Transformation

Constraint network transformation may be applied for a variety of reasons

in a variety of situations. It may used to increase performance, make a

network tractable, and it may be used to provide a better notation for

defining primitive constraints.

IV.3.1. Performance

Transformed constraint networks provide a performance advantage be-

cause they replace a set of constraints with a single constraint whose ex-

ecution time is almost always substantially less. In a sense, what transfor-

mation does is to abstract from a network its e.xternal properties as visible

to the outside world. The internal details of the operation of the con-

straint are completely hidden. This abstraction becomes particularly

powerful when applied hierarchically.

A powerful circumstance for the use of transformations occurs with user-

defined cells. In a design system, users will typically be able to define

cells that they can invoke repeatedly. These cells usually have very few

parameters in relation to the size of their internal state. For example, in

the specification of a VLSI shif1 register a single cell will have many inter-

nal variables representing the coordinates of the various parts but all that

matters to the outside world is the relationships among the externally

visible points: the input, output, clock, power and ground. If a row of
such cells is laid down then the constraint system composed of the trans-

formed nets is much simpler than the one obtained without performing

the transformation. When it is necessary to finally expand the design and

lay out the internals of the entire shift register the solution obtained from

the transformed instances can provide guidance for laying out each sub-

cell as an independent constraint net.

IV.3.2. Tractability

The original motivation for applying transformations was to improve the

tractability of the satisfaction process when a propagation algorithm is

used. Chapter III discusses satisfaction and situations where satisfaction
._:

can fail. An example is shown in section III.1.2 on page 21.
I

The key observation is that propagation is a local technique, but cyclic

dependencies may require that the network be examined at a more global

level. Transformation locally alters the topologyof the network and this
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altered topology is amenable to a propagation algorithm. A global tech-

nique like relaxation will work, but it is applied each time a value changes.

The operation of the algorithm depends both on the constraint and value

instances. Transformation, on the other hand, is only sensitive to con-

straint instances and not to the values. Transformation may have to be

reapplied when the shape of the network changes, but not when values

change. It incurs a cost only when something new is seen, but the cost of

relaxation must be paid over and over. Transformations can be invoked

automatically by satisfaction algorithms when they encounter problems.

This is discussed in section IV.5 on page 79.

1¥.3.3. Notation

An almost serendipitous offshoot of the ability to perform transformations

is the ability to define constraints in terms of conventional algebra. In

systems like THING'LABthe definition of primitive constraints is compli-

cated and error-prone. They require the redundant specification of a rule

and all of the propagation clauses. MAGRITTEallows just the rule to be

specified and can derive the propagation clauses automatically. For •

example, some systems might require a specification of the sum constraint

that looks like what appears in Figure II-1 on page 16. In MAGRrrTE, one

need only write:

(defa]gcon sum (result a b)
(= result (+ a b)))

IV.4. Avoiding Transformations
While considerable care has been taken to make the constraint net trans-

formation algorithm as inexpensive as possible, it is still not cheap. One

of the easiest ways of making an algorithm run faster is not to run it at all.

Transformation algorithm should be used only when really necessary.

There are two ways of doing this that are employed in the MAGRITTE

system: detecting situations that have been seen before and detecting

situations where propagation can work without the aid of a transforma-
tion.

Situations that have been seen before are detected by the use of a high

performance graph isomo_hism algorithm. Each time a net is trans-
formed the net and the resultant constraint are saved in a definition

library. Then when a net is found that needs to be transformed, a quick

Q
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check is made to see if a network that is isomorphic to this one has already
been seen. If it has, then it is used. Otherwise the transformation is

carried out and the new definition is added to the library. Doing graph

isomorphism checking quickly is not an obvious process. The following

section is a pragmatic presentation of the algorithm; theoretical details can

be found in Read [14].

Transformations can be triggered in a number of ways: the instant a cir-

cularity is created in the network, whenever a network is unsatisfiable

without transformation, or at some intermediate point. It is important to

use the simplest and f_tstestalgorithm whenever possible and it is equally

important to notice when it fails and then, and only then, apply a more

powerful method. All of the satisfaction algorithms discussed in chapter

III can easily be adapted to invoke transformation automatically if they

fail. The breadth-first algorithm can be adapted to invoke transformation

if it appears that its simple propagation solution will be too complicated.
Later sections discuss the links between satisfaction and transformation in

greater detail.

IV.4.1. Graph Isomorphism

The key part of this graph isomorphism algorithm is the construction of

isomorphism-independent hashes for the graph and for each node. Given

these hash values vet3,high speed searches and validations can be done.

Consider the construction of an isomorphism-independent hash value for

each node of a graph. Given an isomorphic pair of graphs, nodes that

map together under an isomorphism must have the same hash value, al-

though having the same hash value does not necessarily mean that two

nodes map together, unless the hash values of all nodes in both graphs are

all distinct. Examples of such hash functions are the constant I or the

degree of the node. Neither of these is particularly good, but they may be

refined iteratively. This iterative refinement must be isomorphism-

independent, just like the initial hash. A workable, but not particularly

good, refinement function is to replace the hash value of a node with the

sum of its hash value and the hash values of its neighbours. A much

better refinement function would be to use some good conventional hash-

ing function on the sorted set of adjacent hash values. Sorting isn't neces-

sary, but the commutativity of the hashing function is. The sorting stage
converts a non-commutative function into a commutative one.
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II I

Nodes A B C D E F
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Figure I¥-4: Evaluating an isomorphism-independent hash.

In figure IV-4 the first row shows the initial hash for each node. It is just

the degree of the node. The two subsequent rows show refined hash

values derived by summing adjacent elements from the previous row.
Note that in the second row tile hashes for nodes A and D are the same.

If you look at the graph up to a distance of two ai-csfrom A and two arcs

from D, the two are isomorphic to each other. By the end of the second
refinement iteration, the hash values for the nodes are all distinct. The

advantage of distinct hash values is that when the time comes to validate
the match of a hash, no searching is required: just take the nodes of the

two graphs that have equal hashes and presume that they match in the

isomorphism. There are complications when the graphs are symmetric.

The complete graph isomorphism algorithm is:

1. Hash each graph independently:
a. Pick an initial hash for each node.

b. Refine their hash values:

i. For each node replace each hash value by some commuta-

tive hash involving it and the hash value of neighboring

nodes, always using the values from the previous iteration.
ii. Continue the refinement until either all values are distinct

or some fixed number of iterations have passed.

c. Compute a hash value for each graph by hashing together the

hashes of their nodes using a commutative hash.
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2. Check that the hash values of the two graphs match.

3. If they do, validate the comparison:

a. Use a conventional exponential time brute force graph com-

parison, except that matches of node hash values are used for

guidance.

b. The guidance from the distinctness of the hash values usually

causes the brute force match algorithm to run in.linear time.

One of the outputs of this algorithm is a single number that is an

isomorphism-independent hash of the graph. MAGRITTEuses this tO con-

struct a library of graphs that have been transformed. Each time a graph

is transformed, it is added to the library. Then whenever another trans-

formation is needed a very fast lookup can be done.

IV.5. Linking Satisfaction and Transformation

The transformation algorithms of this chapter become particularly useful

if they can be linked to the satisfaction algorithms of the previous chapter.

Satisfaction algorithms may"fail in the face of a circularity in the network

and transformation may provide the bridges necessary to get over them.

IV.5.1. Propagation

The basic propagation algorithm of section III.1.3 (page 22) can easily be

modified to invoke transformation when it fails. If it fails after propagat-

ing as much as possible, it then picks some likely-looking cycle, trans-

forms it, and tries again. This modification considers a cycle to look likely
if it contains at least one constraint that is linked to one known and one

unknown value. In detail:

1. Change the part of the algorithm that throws away constraints that
couldn't fire because they didn't have enough adjacent values. Have
it instead remember the constraint as unfireable and change that
state if it ever does fire.

2. If the algorithm terminates and the list of unfireable constraints is
non..empty then it means that there are cells that have not been as-
signed values and the system has not been satisfied. Each one of
these constraints is attached to at least one known cell and one un-
known cell.

3. Find the smallest cycle in the constraint graph that contains at least
one of these unfired constraints. The cycle can be chosen in other
ways, but this has proven to be effective.

4. Transform the constraints in it, replacing them by the result.
5. Resume propagation.
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• ' C C3 •
- C4

Figure I¥-5: Linking transformation to propagation

Figure IV-5 revisits the midpoint constraint with some small frills added

on. Here are the steps that the sadsfac|ion algorithm will go through to

satisfy the network, including the detection of a cycle that needs to be
transformed:

1. Initially, A, D and F are known and SuspectConstraints contains el,
C3 and CA.

2. C3 is examined. It can deducc nothing, so it is remembered.
3. C4 is examined, E can be deduced and is given the value 5. C3 is put

back into the SuspectConstraints set.
4. Cl is examined and nothing can be deduced, so it is remembered.
5. C3 is examined and the value 9 is deduced _brC. C2 is put into the

SuspectConstraints set.
6. C2 is examined but cannot fire and so is remembered.
7. The SuspectConstra#_ts set is now empty, so no more propagation

can be attempted. The unfireable set contains C1 and C2.
8. The loop containing both of them is transformed and they are

replaced by C12.
9. C12 is examined and deduces B.

IV.5.2. Breadth-First Planning

The breadth-first algorithm of section III.2.5 (page 49) can be modified

similarly. The algorithm is modified so that loops detected in the section

on page 51, marked with _;,are remembered. Then, if the algorithm fails,

a loop can be picked, transformed, and the algorithm tried again. One

need not wait until the algorithm fails. Loops can be transformed as they

are encountered, or they can be transformed if the prospects for success:

otherwise look bleak. For example, if the number of tendrils becomes

large or the sequences become long, then a loop could be transformedand

the algorithm retried.

This can best be understood by looking at an example. Consider a graphi-
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cal editor where the user has drawn three points and constrained one to be

the midpoint of the others. The constraint is expressed using the tried,

true, and by now quite boring, pair of sum constraints.
I

C

A

Figure IV-6: Three points in a row.

In figure IV-6, if the user moves A then four tendrils will be built in at-

tempting to satisfy the system:

Set C success
Set B, fire C2 Set T. fire CI loop

Fire Cl_
. Set C success

/Set T. fire

CZ_set B, fire CI loop

Two tendrils succeed and alter the same number of cells: one maintains

the center point and moves the other end, the other maintains the relative

displacements and moves both the center arm the other end. If C had
been a constant then neither of the successful tendrils would have been

created, instead the algorithm would have terminated unsuccessfully

having found a loop. It would be transformed and satisfaction tried again.

Now, suppose that C were rigicllyconnected to many other cells, as in

figure IV-7. Moving C requires moving many other cells. If A is moved,

breadth-first search will not consider moving B and leaving C alone. This

would require transforming the loop, which can be avoided by moving C _

and its attached baggage. Moving all of the baggage, and the consequent

loss of visual coherence since much will change, is probably less reason-

able than attempting the transformation. The problem can be solved by
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J I I IIIII aN'1 I

C

Figure IV-7: Midpoint with a hanging weight.

modifying breadth-first search to give up early if a loop has been seen.

Having it try a little more after seeing the first loop cuts down on the
number of transformations.

In one of MAGRITTE'smany versions the breadth-first search maintained

a list of the loops that it had encountered. Each time a loop was encoun-

tered the tendril that encountered it was thrown away but the loop was

remembered. After the first loop was found and then some number of

subsequent tendril extensions was performed, MAGRITTE would throw.

away all of the tendrils, pick one of the loops, transform it, and restart the
breadth-first satisfaction.

This 'trying a little more' was done because transformation was believed

to be expensive, search to be cheap, and solutions that avoided the loop to

be common. All of these proved false. Transformation of small loops is

very cheap, substantially cheaper than a flailing search. Early resolution

of loops pays off substantially. The picture is not quite the same for larger

loops, here there tend to be enough degrees of freedom that search is soon
satisfied.



V Conclusion

The thesis of this dissertation is that constraints can be used effectively in

practical interactive graphical layout systems. They have been discussed

in more general terms, but emphasis has been placed on some of the spe-

cial properties of such systems. The primary effect has been the pervasive

pursuit of locality ori the satisfaction process. The need to be incremental

and do planning has also been important.

The dissertation contributes a broad analysis of several satisfaction al-

gorithms and some novel algebraic transformation techniques.

Several satisfaction algorithms were presented. They ranged from simple

to complex:

• Local propagation is simple and fast, but it often fails and needs
global planning direction.

• Relaxation, and other classical methods, are general but slow and
global. They provide a recourse of last resort.

• The techniques given in MUMBLEand EARLare simple, but they
clearlyshow the necessity and advantage of exploiting the special
properties of the domain.

• Unplanned firing is simple and fast, being essentially the same as
local propagation. It substitutes dice rolling fbr sophisticated plan-
ning. It often fails or produces a 'surprising' answer. The special
case of networks consisting only of forced deductions is powerful.

• Retraction is an elegant planning technique for local propagation.
Unfortunately, it is prone to failure and blind to many possible solu-
tions.

• Breadth-first search is reasonably simple, at least conceptually, and
general. Even though it is local, its performance can be poor unless
the branching factor is bounded. It also tends to eliminate
'surprising' results. -

To cope with some of the problems encountered in satisfaction, al-

gorithms for transforming networks of constraints into primitive con-

straints were developed:
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• Networks of algebraic constraints can easily be tr_msformed to primi-
tive constraints where constraint definitions require a complete
enumeration of all the possible propagation cases.

• An exponential size blowup can result. To counter this, constraints
can be defined as networks themselves.

• Networks can also be transformed easily to this type of constraint
definition.

• Transformation can be triggered automatically by satisfaction failure.
The subnets to be transformed are chosen from among the cycles
adjacent to the failure.

• Repeated transformation of the same subnet can be avoided ef-
ficiently by employing a graph isomorphism algorithm.

• Besides making networks tractable with simpler satisfaction al-
gorithms, transformation yields performance improvements.

• They also yield a more appealing and robust notation for defining
primitive constraints.

These have proven to be efficient and powerful. Stopping to transform a

small subnet does not slow down the satisfaction process much, but

speeds up subsequent satisfactions tremendously. Since these are local

transformations that are independent of the values of variables, they can

usually be retained for a long time.

The next step after this dissertation is the engineering of a useful layout

system that incorporates these principles. MAGRITTEis really only a

testbed; it is not directly useful itself. Most of its performance problems

stem from being based on a slow LIsP system and on some expediencies in

the implementation (for example, instead of doing sophisticated table

lookups it often does linear searches). The penalty for good performance

and generality is substantial complexity.

MAGRITTEdoes not use relaxation. The techniques developed here do

not supplant relaxation, they merely reduce the number of situations
where it is needed. MAGRITTEavoids it since it is a well-understood tech-

nique. A real satisfaction system would have the following structure:

• It would first use breadth-first propagation.
• If a small loop is found, if would be removed immediately by using

previous solutions to the same problem or by transformation if it
hasn't been seen before.

• If a large loop is found, remember the fact but try to ignore it.
• If problems persist use incremental relaxation in a clipped subregion.

Such regions should be marked so that if propagation encounters
them again it uses relaxation more readily.

As a simplification, a system that employs only propagation could be
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built. If it can't deal with a situation, it could just throw up its hands in

despair. This may seem like a brutal thing to do, but it's likely to be

surprisingly powerful. The many successful spreadsheet calculators avail-

able are nothing more than constraint systems with very simple satisfac-

tion algorithms. A similar satisfaction algorithm in a graphical domain

would be easy to implement.

Many questions are left unanswered or are suggested by this thesis. It is

up to future works to deal with them. Among them are:

Interfacing relaxation to propagationand transformation: Knowing when

and where to relax rather than transform or propagate -- can one simply

use relaxation on cyclic regions beyond a certain size? Can hints be main-

rained that make subsequent decisions to relax easier?

Automatic construction of errorequations: Relaxation algorithms need to

be able to evaluate the error introduced into the system by each constraint

and the values of the objects it constrains. Can these error functions be

constructed automatically given the rule to test for satisfaction that '

MAGR1T'I_E uses? This is a more subtle problem than it at first appears

because of the numerical properties of relaxation. For example, given the

definition of the sum constraint that appears in section IV.3.3 on page

76 can the error function be constructed automatically? An obvious can-

didate is (- (+ a b) resu 1t), is this good enough?

An incremental version of Sutherland's ordering: The ordering algorithm

that Sutherland used in SKETCHPADis quite attractive, it provides a static

plan that can be reused for several satisfaction attempts, It is invalidated

whenever a new constraint is added to the system. Is there a way to in-

crementally adjust the ordering when a new constraint is added to the net

in order to take the new constraint into account? An important point to

consider is the changing of the value of some object by the user, for

example, moving the endpoint of a line. Is this equivalent to constraining

the object to be equal to the new value? How does it affect the ordering?

Transformation with inequalities: MAGRITTEdeals with inequalities

(__.,..... ) during propagation but can not deal with them when transform-

ing. Are the extensions to the transformation process merely a matter of

augmenting the algebraic engine? In some sense, deductions based on

inequalities are less powerful than those based on equality: they don't

provide a tight a restriction on the set of accelatable values.
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Meta-constraints: one can think of a constraint network as a large

boolean expression which is the and of the test rules from all of the con-

tained constraints. What are the implications of letting a constraint net-

work be an arbitrary boolean expression that includes or and complement?.

This is necessary if, for example, you want to constrain two rectangles to

not overlap. At first glance this appears to be simple when breadth-first

search is used, although it does provide yet more branches in the search

for a solution. Can the transformation techniques be extended to cover it?

Lazy evalnation: When MAGRITTEtransforms a subnet it finds solutions

for propagation in all possible directions. For example, if you have a

geometric figure, the constraint needs to be able to cope with the user

moving any point on that figure. This means that for each point it needs

to know how changes to the value of that point affect the values of all the

other points. When "transforming such a net MAGRITI'E can generate

huge constraints, although it will do a fair anlount of simplification. One

fbrm of simplification that appears attractive that wasn't tried is lazy

evaluation. That is, lazy evaluation of the construction of the primitive
constraint

Domain-specific planning: The planning done by MAGRITTEdoes not ex-

ploit the fact that all of the networks it deals with concern graphical ob-

jects. This is good in terms of the generality that it provides, but is there

some domain specific information that could be used to aid planning?
For example, one of the most common changes that is made in a drawing

is the moving of a point- a translation of its coordinates. It is fairly easy

to detect constraints that are independent of translation, that will continue

to hold so long as all of their constrained points are similarly translated.

Networks of these translation independent constraints, and their con-

strained points, form rigid compound objects that can be moved as a

group to compensate for the translation of one of the contained points.

Implicit constraints: There are many implicit constraints that one might

want a constraint system to handle. When using MAGRITTEone often

wishes it had the implicit constraint that "points that are not explicitly

constrained to be equal are implicitly not equal". This would avoid the

black-hole syndrome -- many of the networks that have been worked

with have had a degenerat e solution where all the points get super-

imposed, MAGRITTEoften finds these. What is the best way to deal with

these? Should the satisfaction algorithms be altered or should explicit
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constraints automatically be constructed? If there are n points in a draw-

ing, automatic construction of these constraints would produce n2 new
constraints.
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I MAGRITTE'S Algebraic Engine

This appendix describes the algebraic manipulation engine upon which

MAGRITTEis based. It is very simple, certainly much simpler than

MACSY/vlA.But that is precisely the point: powerful results can be had by

applying even a very simple amount of algebraic knowledge.

At its heart there is a mechanism for maintaining a canonical represen-

tation. Expressions are always reduced to a sum of products of factors.

Factors can be variables, constants, or exponentiated expressions. Expres-

sions are kept as hashed, sorted lists so that comparisons are fast and so

that like terms and factors are adjacent. All exponents are restricted to

being constants. The following transformations are used:

-e=> -1.e

e_-e2=>e_+(-l'e 2)-1
el+e2=>e_'e_

el.(e2+e3)=>el.e2+el.e3
e.l=>e

e+0 => e

e.0 =>0

kl"e+ k2 j =>e=>(kl+k2)'e

• e0 =>1

(el. e2)e3 = > ele3"e2e3

ele2.ele3=>ele2+e3
e2=> .
13 el e1

e1 =>ex'e_'e_
el=e2=>e_-e2=0
el^e_=>e1
elve1=>e1
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The SoiveFor routine used in transformations is quite simpleminded.

Given an equation in canonical form, e=0, all terms containing the target

variable are collected on one side of the equality, and the rest on the other

side. The terms are then grouped according to the exponent of the target

variable, those with like exponents being together. If there is only one

group (ie... all occurences of the target variable have the same exponen0

then the obvious factoring out, division and exponentiation are per-

formed. If there are two groups and the exponent of the variable in one is

twice the exponent in the other, then it's a simple quadratic polynomial

and is _lved as such. If neither of these cases holds, MAGRITTEgives up.

More complicated forms could be dealt with, but they were never needed.

Along with this algebraic manipulation facility is one for converting be-

tween LISP expressions and MAGRITTE'scanonical form. The transfor-

mation process picks apa(t the LISP functions that define each primitive

constraint, extracts the test expressions, and joins them together to form

the system of equations represented by the constraints as a group. Once

the transformation has been completed, the various derived expressions

are converted back to LISP notation and pieced together as a new func-

tion. Thus the new function performs as well as any hand-written LISP
function.
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