
An Expressive, Scalable Type Theory for Certi�ed

Code

Karl Crary Joseph C. Vanderwaart

May 1, 2001

CMU-CS-01-113

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present the type theory LTT, intended to form a basis for typed target languages, providing an internal
notion of logical proposition and proof. The inclusion of explicit proofs allows the type system to guarantee
properties that would otherwise be incompatible with decidable type checking. LTT also provides linear
facilities for tracking ephemeral properties that hold only for certain program states.
Our type theory allows for re-use of typechecking software by casting a variety of type systems within a
single language. We provide additional re-use with a framework for modular development of operational
semantics. This framework allows independent type systems and their operational semantics to be joined
together, automatically inheriting the type safety properties of those individual systems.

This material is based on work supported in part by ARPA grant F-19628-95-C-0050 and NSF grant CCR-

9984812. Any opinions, �ndings, and conclusions or recommendations in this publication are those of the authors
and do not re
ect the views of these agencies.

Keywords: Certi�ed code, logical frameworks, type theory, linear logic

1 Introduction

Certi�ed code is a general strategy for providing safety assurances to extensible systems without utilizing
hardware-based protection mechanisms. In a certi�ed code architecture, the supplier of any extension code
accompanies his or her code with some sort of checkable evidence that the code is safe to execute. Then the
consumer of that extension code veri�es that safety evidence, thereby establishing the code's safety.

A variety of certi�ed code architectures exist, di�ering in the kind of code that is certi�ed and in the form
that the safety evidence takes. For example, the SPIN system [2] certi�es source-level Modula-3 programs,
and the Java Virtual Machine architecture [11] certi�es intermediate-level, bytecode programs. Recently,
there has been considerable interest in certi�ed code architectures that operate at the level of executables,
thereby eliminating the need for the code consumer either to trust the correctness of a just-in-time compiler,
or to incur the performance cost of an interpreter.

Two main directions have been explored for executable-level certi�ed code: the proof-oriented approach
exempli�ed by Proof-Carrying Code (PCC) [15, 1], and the type-theoretic approach exempli�ed by Typed
Assembly Language (TAL) [14]. In the proof-oriented approach, executable programs are accompanied by
explicit proofs of safety expressed in a formal logic. Safety is then veri�ed by checking the correctness of
the proof. In the type-theoretic approach, executable programs are presented in a strongly typed executable
language, for which a type safety theorem ensures safety. Safety is then veri�ed by typechecking.

In fact, the two approaches work out to be more similar than this might suggest, as the proof-oriented
approach tends to be rather type-theoretic in practice. PCC safety proofs are usually structured using types,
and existing implementations of PCC all use the Edinburgh Logical Framework (LF) [7] as their formal logic,
in which proof checking boils down to type checking. Nevertheless, there is an important di�erence between
the extrinsic safety evidence of the proof-oriented approach, and the intrinsic safety evidence of the type-
theoretic approach.

Although the proof-oriented and type-theoretic approaches each have various strengths and weaknesses
we will not discuss here, the proof-oriented approach has had two main advantages not enjoyed by the
type-theoretic approach:

First, the proof-oriented approach has been able to provide greater expressive power than has the type-
theoretic approach. This has been a direct result of the insistence in TAL on tractable typechecking, which
has limited the allowable complexity of the type system. In contrast, in PCC safety arguments can (in
principle) be arbitrarily complex, because they are backed up by explicit proofs that the code consumer need
not be able to reproduce.

Second, although both approaches have been shown to be scalable to more powerful type systems [13, 5,
16, 1, 4], the proof-oriented approach enjoys much greater internal scalability in the following sense: Each
new extension to TAL requires a new type system, and therefore requires a new typechecker and a new type
safety proof. In contrast, extensions to PCC do not change the logic in which proofs are expressed, so the
proof checker need not change. In addition, although new types in PCC certainly must be proven sound, in
Appel and Felty's PCC implementation [1] those proofs are done within the logic and often do not interact
with each other, making it possible to develop them in a modular fashion. Thus, PCC has been scalable
from within the system, while TAL has been scaled from without.

In this paper we present a type theory devised to incorporate these advantages of the proof-oriented
approach. Our type theory contains an explicit notion of logical proposition and proof (encoded in types
and terms using the propositions-as-types correspondence) and allows such propositions to stand in function
domains and codomains, thereby allowing arbitrarily complicated preconditions and postconditions. This
introduction of propositions and proofs as citizens of the type theory provides a natural and direct solution
to the expressiveness problem.

Although our ultimate interest is in certi�ed code, in this paper we present a high-level core language;
this allows us to abstract from the idiosyncrasies of Typed Assembly Language that are not pertinent our
present purposes. Our type theory, called LTT (for \logical type theory"), is structured as a (higher-order)
polymorphic lambda calculus, augmented with the constructs of LF. We chose LF for the logical fragment of
our language because it was speci�cally designed for encoding type systems; it has been used very e�ectively
in certi�ed code already; excellent tools exist for constructing, manipulating and checking LF proofs; and it
�ts very nicely into our type theory. LTT is designed in such a way that existing results and tools pertaining

1

to LF can be taken o�-the-shelf, without any substantial modi�cation.
Just as LF is instantiated to various di�erent logics by the choice of a signature (which provide kinds

for proof types and types for proof terms), LTT is instantiated to di�erent type theories by the choice of
a signature, specifying ordinary types and terms as well as proof types and terms. This provides internal
scalability, as scaling LTT requires only changes to the signature, not changes to the typechecker.

In addition, to further improve scalability, we present a framework for modular development of operational
semantics. This framework allows for fragments of a signature to be given operational semantics and shown
type-safe independently, in such a way that those independent semantics can ultimately be glued together
into a full semantics and safety proof. Consequently, when a new component is to be added to a type system,
its safety proof can be done alone, without any need to re-do other safety proofs.

Adding the logical power of LF alone provides substantial expressive power for extensions to the type
theory. As an example, we show how LTT can, by appropriate choice of a signature, express a type system
for arrays without automatic bounds checking, following the ideas of Xi, Pfenning, and Harper [21, 20]. In
this example, a well-typed array subscript operation must be supplied with a proof that the subscript is
within the appropriate bounds. This example is typical of mostly functional extensions.

In the intuitionistic type theory of LF, once a fact holds, it holds forever. Accordingly, there is never a
need for proofs to go away. This is satisfactory for purely functional programming, and it also suÆces for
some stateful type systems as well. For example, the references of Standard ML [12], once created, never
disappear. However, we can provide considerably more expressive power for stateful programming by going
beyond just intuitionistic proofs and adding linear proof constructs from Linear LF [3] as well. This allows
the proof of facts that hold for the current state, but may later cease to hold; any operation that may falsify
such a fact will arrange to consume that fact's proof. As an example, we show how to support revocable
capabilities in the style of Crary, et al.'s region type system [5].

This paper is organized as follows: We begin in Section 2 by presenting the intuitionistic fragment of
LTT. In Section 3 we give a sample application of LTT to arrays. In Section 4 we present the full language
for linear, stateful programming and show its application to revocable capabilities. In Section 5 we give
an example of the application of linearity to stateful programming. These sections are primarily interested
in the static semantics of LTT and treat its operational semantics only informally. We then present the
framework for modular development of operational semantics in Section 6.

This paper assumes familiarity with linear logic [6, 18] and with the propositions-as-types correspon-
dence [9]. Additional familiarity with LF and logical frameworks in general will be helpful, but is not
required.

2 Intuitionistic LTT

The LTT type theory consists of two parts: a proof sub-language, and a computational programming language
built around it. LTT is structured with a syntactic division between the proof language and the surrounding
programming language, allowing the proof language to be precisely unmodi�ed LF. This design allows
us to reuse a considerable body of existing LF results|particularly metatheoretic proofs|and tools. The
surrounding programming language is in
uenced by the proof language, but not vice versa.

2.1 The Proof Language

The proof language (given in Figure 1) consists of three syntactic classes: objects (M), which are the terms
of the proof language; families (A), which are the types and type constructors; and proof kinds (K), which
are the \types" of families. As in LF (and as we illustrate by example below), objects implement individuals
of the logic, inference rules, and complete proofs.

Families of kind P are the types of objects, these specify classes of individuals and logical assertions.
Families of a higher kind �u:A:K are functions mapping objects in family A to families in kind K, where
u stands for the argument and may appear free in K. The family constructs are variables a, constants
Ak , lambda abstractions �u:A1:A2, applications of functions AM , and dependent function spaces �u:A1:A2

(where u again stands for the argument and is permitted to appear free in A2). When u does not appear

2

proof kinds K ::= P j �u:A:K
families A ::= a j Ak j �u:A1:A2 j AM j

�u:A1:A2

objects M ::= u j Mk j �u:A:M jM1M2

Figure 1: Proof Language Syntax

kinds k ::= T j k1 ! k2 j �a:K:k j �u:A:k
constructors c ::= � j ck j

��:k:c j c1c2 j �a:K:c j cA j �u:A:c j cM j

c1 ! c2 j c1 � c2 j

��:k:c j ��:k:c j �a:K:c j �a:K:c j �u:A:c j �u:A:c
terms e ::= x j ek j

�x:c:e j e1e2 j he1; e2i j �1e j �2e j
��:k:e j e c j pack hc; ei as ��:k:c j let h�; xi = e1 in e2 j

�a:K:e j eA j pack hA; ei as �a:K:c j let ha; xi = e1 in e2 j

�u:A:e j eM j pack hM; ei as �u:A:c j let hu; xi = e1 in e2
contexts � ::= � j �; �:k j �; x:c j �; a:K j �; u:A

Figure 2: Programming Language Syntax

free in A2, we will often write �u:A1:A2 as A1 ! A2, and similarly for kinds. The object constructs are
variables u, constants Mk , lambda abstractions �u:A:M , and function applications M1M2.

Constants are drawn from an unspeci�ed in�nite set. As in LF, the kinds of family constants and the
families of object constants are given by a signature, which is simply a mapping from constants to their kinds
or families. Unlike LF, we permit signatures to be in�nite (and therefore we do no provide syntactic rules
for them), but this causes no complication to the metatheory, as only �nitely many constants can appear in
any given expression.

Our proof language also di�ers from LF in that it includes family variables (which LF omits). This di�er-
ence also does not complicate the metatheory of the proof language since it provides no binding construct for
family variables, and therefore the proof language may consider variables simply to be additional constants.
However, family variables will be useful in the full language.

Example To illustrate the use of the proof language, we provide the following example (abbreviated from
Harper et al. [7]) of a fragment of �rst-order logic. Suppose we wish to reason about natural numbers t given
by the syntax

t ::= u j 0 j succ(t)

and �rst-order propositions over the natural numbers given by the syntax:

' ::= t1 = t2 j '1 � '2 j 8u:'

We �rst implement the syntax by introducing into the signature the constants:

i : P

z : i

s : i! i

o : P

eq : i! i! o

impl : o! o! o

all : (i! o)! o

The family i contains the individuals of the logic (the natural numbers in this case), and o contains the
propositions. Note that each syntactic form other than variables has its own constant to represent it. In

3

the LF methodology, variables in the logic are always represented simply by variables in LF; this allows for
a very elegant treatment of binding. For example, the proposition 8u: u = u is represented by the object
all (�u:i: equu).

With syntax taken care of, we next wish to implement judgements and proofs. The relevant judgement
in this case is truth of propositions, which is implemented by the constant tr : o! P . For any proposition
' implemented by M , trM will be inhabited exactly when ' is true. It remains to give proof terms
(representing inference rules of the logic) inhabiting the tr family. A few examples of these are:

eqrefl : �u:i: tr (equu)
implelim : �u:o:�v:o: tr (implu v)! tru! tr v

allintro : �f :i! o: (�u:i: tr (f u))! tr (allf)

For example, the judgement that 8u: u = u is true is implemented by the family tr (all (�u:i: equu)), and is
proved by the object allintro (�u:i: equu) (�u:i: eqrefl i). Note that here, unlike the usual propositions-
as-types correspondence, judgements are types and propositions are merely terms (not types). A full account
of �rst-order logic in LF appears in Harper et al. [7].

2.2 The Programming Language

The LTT programming language is the higher-order polymorphic lambda calculus augmented with products,
and with dependent products and sums over proof kinds and families. The syntax appears in Figure 2 and
consists of three classes: terms (e), type constructors (c, usually called \constructors" for short), and kinds
(k). Constructors of kind T are the types of terms; we will often use the metavariable � for constructors
intended to be types. Contexts are used to assign a type, kind, or family to each variable.

The types are ordinary functions and products (�1 ! �2 and �1 � �2), dependent products over kinds,
proof kinds and families (��:k:� , �a:K:� , and �u:A:�), and dependent sums over the same classes (��:k:� ,
�a:K:� , and �u:A:�). When the variable being bound does not appear in the body, we will often write
dependent products with an ! and dependent sums with a �. The types ��:k:� and ��:k:� are also often
rendered with the quanti�ers 8 and 9 in place of � and �, and we will sometimes do so as well.

The higher-kind constructors are lambda abstractions over kinds, proof kinds and families and have the
usual elimination forms. Functions abstracting over proof kinds and families have the dependent product
kinds �a:K:k and �u:A:k (which we write using an! when the variable does not appear free in k). Functions
abstracting over kinds have the usual kind (no dependency is necessary since constructors cannot appear
within kinds).

At the term level, dependent products are introduced and eliminated using the usual abstraction and
application constructs. Dependent sums are introduced using pack expressions (e.g., pack hM; ei as �u:A:�)
generating the indicated type, and eliminated through pattern matching using let expressions. Functions
and products are introduced and eliminated in the usual ways.

As in the proof language, constructor and term constants (ck and ek) are drawn from an unspeci�ed
in�nite set, and are assigned kinds and types by a signature. Signatures are formalized in Section 2.3.

An extended example of the use of LTT in practice is given in Section 3.

2.3 Static Semantics

To begin de�ning the static semantics of LTT, we must hammer down the notion of a signature. Signatures,
since they may be in�nite, are not given by expressions within the type theory. They are de�ned as follows:

De�nition 2.1 An (intuitionistic) signature S is a mapping1 of constructor constants (ck) to kinds, term
constants (ek) to constructors, family constants (Ak) to proof kinds, and object constants (Mk) to families,
together with a well-founded ordering on the non-term constants in the domain of the mapping. We write
<S for the ordering associated with S.

1We de�ne a mapping from B to C to be a function from some subset of B into C, and thus it may be unde�ned on some

members of B. However, a set-theoretic function from B to C is de�ned on all members of B, as usual.

4

Judgement Interpretation

� `S k kind k is a valid kind
� `S c : k c is a valid constructor of kind k

� `S e : � e is a valid term of type �
� `S K pkind K is a valid proof kind
� `S A : K A is a valid family of kind K

� `S M : A M is a valid object of family A

`S � context � is a valid context

� `S k1 = k2 kind k1 and k2 are equal kinds
� `S c1 = c2 : k c1 and c2 are equal constructors
� `S K1 = K2 pkind K1 and K2 are equal proof kinds
� `S A1 = A2 : K A1 and A2 are equal families
� `S M1 =M2 : K M1 and M2 are equal objects

Figure 3: Intuitionistic LTT Judgements

The judgement forms for LTT's static semantics are given in Figure 3. Equality judgements are required
for all classes except terms (which alone cannot appear inside of types). The typing rules for LTT are
the expected ones, and are given in Appendix A (for full LTT, including linearity). As usual, we consider
alpha-equivalent expressions to be identical. We write the simultaneous capture-avoiding substitution of
E1; : : : ; En for X1; : : : ; Xn in E as E[E1 � � �En=X1 � � �Xn].

All LTT judgements are predicated over a signature, and are to be considered meaningful only when that
signature is well-formed. For any (non-term) constant sk 2 Dom(S), we write S � sk for the restriction of S
to constants less than sk (by <S). We also write TLP(S) for the termless portion of the signature S. Then
we can de�ne well-formedness as follows:

De�nition 2.2 An intuitionistic signature S is well-formed if:

� for all Ak 2 Dom(S), `S�Ak S(Ak) pkind, and

� for all Mk 2 Dom(S), `S�Mk S(Mk) : P , and

� for all ck 2 Dom(S), `S�ck S(ck) kind, and

� for all ek 2 Dom(S), `TLP(S) S(ek) : T .

Typechecking may be shown decidable for intuitionistic LTT, but we will defer discussion of typechecking
to Section 4.4 where we discuss it for full LTT. We discuss the operational semantics of LTT and its type
safety properties in Section 6.

3 Example: Integers and Array Bounds

In this section we will develop a detailed example of an LTT signature, namely one that uses a theory of
integer arithmetic to eliminate safely the dynamic checking of array bounds.

In order to verify statically that any given operation is safe, we will require that the client of our
array module exhibit a proof that the index she wishes to access falls within the proper range. In order
to represent such proofs in LTT, we must de�ne a family of objects to represent integer expressions and
establish a correspondence between those expressions and run-time integer values. Once we have an LF-style
representation of a theory of arithmetic | any suÆciently expressive theory that may be encoded in LF
will do | we use the correspondence we have set up to declare special versions of the array operations that
require certain facts to have been proven about their arguments before they may be called.

5

The basic families and types required for this task are as follows:

o : P
tr : o ! P

Int : P
array : Int ! T ! T

int : T
SInt : Int ! T

As in the shorter example given earlier, o is the family of propositions, while tr maps any proposition to the
family of proofs that that proposition is true. Int is the family of objects that represent integer formulae in
the theory of arithmetic, and for any integer object N and any type � , array N � is the type of arrays of size
N with elements of type � . The type int classi�es integer values about which nothing is known | integers
that are computed based on user input, for example. SInt is used to construct singleton types corresponding
to particular objects of family Int ; if N : Int , then SInt N is a type containing exactly one value, namely the
integer represented by N .

Our theory of arithmetic is represented in LTT by a collection of several object constants including:

z : Int
s : Int ! Int

neg : Int ! Int

plus : Int ! Int ! Int

eq : Int ! Int ! o

lt : Int ! Int ! o

not : o ! o

and : o ! o ! o

and-i : �u:o:�v:o:tr u! tr v ! tr (andu v)

As in the earlier example of our proof language, z represents zero, and (sM) represents the successor of
the integer represented by M . The proposition eqMN states that the integers represented by M and N

are equal, and the proposition ltM N states that the value of M is less than the value of N . We mention
here just one proof constructor (rule of inference), and-i, which corresponds to the and-introduction rule of
propositional logic and which we will use in an example later; the other proof-building constants are omitted
to save space.

Now that we can express and prove properties of numbers using an LF-like representation of arithmetic,
the types of the array operations are not surprising:

mkarray : ��:T:�u:Int :
tr (not (ltu z))! SInt u! �! array u�

aget : ��:T:�u:Int :�v:Int :
tr (and (not (lt v z))(lt v u))!
array u�! SInt v ! �

aset : ��:T:�u:Int :�v:Int :
tr (and (not (lt v z))(lt v u))!
array u�! SInt v ! �! array u �

Each operation enforces its precondition by requiring the client to pass a proof of the appropriate fact before
the term-level function may be applied. In particular, the mkarray function requires a proof that the size
of the array to be created is non-negative, and the aget and aset functions each require a proof that the
index being accessed is at least zero but less than the size of the array.

This is not all we need, however, since we as yet have no way of obtaining any values of type SInt M for
any integer expression M , and we have no mechanism allowing information the program discovers at run
time to play a role in proving that any precondition is satis�ed. We will address these two issues one at a
time.

To begin, we add a new constant to the signature for each integer, to function as a \singleton literal." More
precisely, for any integer n we will have a constant n : SInt (s

n z). These singleton constants may be used in

6

place of ordinary integer constants whenever we need to prove something about a particular, statically avail-
able, number. For example, if M is a proof that �ve is positive then the expression (mkarray int (s5 z)M 5 0)
is well typed and produces a 5-element array of integers, initially set to all zeroes.

Next, we declare special versions of the arithmetic operations that act on values of singleton types, for
example:

+ : �u:Int :�v:Int :SInt u! SInt v ! SInt (plusu v)

The idea here is that if we know the values of the two operands of an addition, then we know the result.
The last things we need in order to perform simple manipulation of singleton integers are a few coercions

| operations that are not intended to have any run-time signi�cance but exist only to change the type of a
value.

focus : int ! �u:Int :SInt u
blur : �u:Int :SInt u! int

convert : �u:Int :�v:Int :tr (equ v)! SInt u! SInt v

The �rst two of these allow arbitrary integer values to be temporarily manipulated as singletons. The
focus operator turns an integer into a singleton whose value is hidden in a dependent sum, which can then
be unpacked to give an object-level name to that integer. The blur operator turns any singleton into an
ordinary integer, e�ectively forgetting any information that had been proved about it. The last, convert,
validates the intuition that if two integer expressions are known to have the same value, then elements of
the corresponding singletons should be interchangeable.

Now we address the issue of incorporating information discovered by the program at run time into our
proof system. Intuitively, we want a special form of conditional expression that introduces a proof of the
condition into its then-branch and a refutation of the condition into its else-branch. To accomplish this, we
replace ordinary booleans with special values whose types associate them with the truth or falsehood of a
particular proposition, and we replace the ordinary integer comparison operators with versions that return
the new kind of \boolean" values. The constructor and term constants necessary to do this are as follows:

So : o ! T

= : �u:Int :�v:Int :SInt u! SInt v ! So (equ v)
< : �u:Int :�v:Int :SInt u! SInt v ! So (ltu v)

test : ��:T:�u:o:So u! (tr u! �)!
(tr (notu)! �)! �

For any proposition p, the sole value of type So p is one that encodes the truth or falsehood of p at run time.
Values of this sort of type are obtained by applying the special comparison operators = and < to singleton
integers; when an application of one of these operators is evaluated, it will produce the appropriate \truth
value." This value may then be examined using the test function, which takes a value representing the truth
of some proposition and selects one of two values of some type � accordingly. The functions that are passed
to test may use their proof arguments to certify the safety of array operations: these arguments constitute
\empirical evidence" that the given statements are true or false. (An alternative design, using a disjoint
union type, is to de�ne So to mean �u:o:(tr u� unit) + (tr (notu)� unit), implement test appropriately,
and leave only = and < as primitive.)

To illustrate this mechanism, the following code fragment will return the ith element of an array provided
that i is in the correct range, 0 if i is too small, and 10 if i is too large. We will assume that u is a variable
of family Int , a is an array of type array u�, n is the size of the array, having type SInt u, and i has type
int .

let hv; i0i = focus i in

test int (lt v z) (< v z i0 0)
(�p:tr (lt v z): 0)
(�p:tr (not (lt v z)):

test int (lt v u) (< v u i0 n)
(�q:tr (lt v u):

aget int u v (and-i (not (lt v z))
(lt v u) p q) a i0)

(�q:tr (not (lt v u)): 10))

7

families A ::= � � � j A1 (A2 j A1 &A2 j >

objects M ::= � � � j Mlk j �̂u:A:M jM1^M2 j

hM1;M2i j �1M j �2M j hi

linear contexts � ::= � j �; û:A

Figure 4: Linear Proof Language Syntax

This code is well-typed (with type int), and is therefore safe to execute for any integer i. Although initially
nothing is known about the value of i, we can attach an object-level name to that value using focus. The
outcome of each comparison is then re
ected back into the proof system by way of the proof terms introduced
by test in each branch.

4 Linearity and State

Thus far, we have concerned ourselves with proofs of persistent facts|ones that, once proved, remain true.
For example, if a given integer lies between two other given integers, it will not later �nd itself outside that
range. This is satisfactory for stateless programming, but if we introduce state into our language, we will
also �nd it pro�table to deal with ephemeral facts|ones that hold for the current state but perhaps not for
some other state.

Proof of ephemeral facts is incompatible with intuitionistic LF; once a proof is constructed, there is no
way to make it go away. To add support for ephemeral facts, we introduce linearity into the proof language.
With linearity at our disposal, we can make all ephemeral facts into linear resources, and craft stateful
operations to ensure that they consume any ephemeral facts that they invalidate.

4.1 Linear Proofs

In keeping with our design so far, we use Linear LF [3] as our proof language in the presence of state. To
obtain Linear LF, we add the additional constructs in Figure 4 to the proof language.

The principal di�erence in Linear LF is the existence of linear variables. Linear variables represent scarce
resources that must be used exactly once. We do not distinguish between linear and intuitionistic variables
syntactically; instead, any object variable bound by a linear context or a linear abstraction (discussed below)
is considered linear, while an object variable bound by an intuitionistic construct (such as an ordinary
context) is considered intuitionistic. Intuitionistic variables may be duplicated or discarded even in Linear
LF. For convenience, we do not distinguish between linear contexts that di�er only in the order variables are
declared. We also provide linear object constants (Mlk), whose types are given by a linear signature; these
too must be used exactly once. We refer to linear variables and object constants jointly as linear resources.

Linear LF provides three new types: linear functions (A1 (A2), \with" (a.k.a. alternative or additive

conjunction, A1 &A2), and top (>). Linear functions are introduced by a linear abstraction form (�̂u:A:M)
and eliminated by a linear application form (M1^M2). The de�ning characteristic of a linear function is
that it is guaranteed to use its argument exactly once. Thus, linear functions may be applied to objects
containing linear resources; ordinary function make no such guarantee, so they may not be applied to objects
containing linear resources.

With types are introduced by pairs (hM1;M2i) and eliminated by projection (�iM). The de�ning char-
acteristic of additive conjunction is that each component consumes all available resources. Consequently,
A1 & A2 provides a choice of either A1 or A2 but not both. The choice is determined by which projection
operation is used. Top is the unit for with; it has the introduction form hi and no elimination form. When
hi is used, it consumes all available resources. This is useful in some circumstances for collected unused
resources.

Note that the linear function type is non-dependent. This is because linear resources are not permitted
to be used in families (nor, by implication, in proof kinds, kinds, or constructors). Thus, families, type

8

constructors c ::= � � � j A(c

terms e ::= � � � j �̂u:A:e j e^M

Figure 5: Linear Programming Language Syntax

constructors, kinds and proof kinds are never scarce resources.
Two types common in linear logic but not provided in Linear LF are tensor (a.k.a. simultaneous or

multiplicative conjunction,
), and \of course" (!). Tensor is provided in LTT in a restricted way, which
we discuss below in Section 4.3. \Of course," which indicates an intuitionistic (and therefore duplicatible)
object, is subsumed by the structure of the language. On the left, the intuitionistic variables are precisely
those given by the ordinary (non-linear) context. On the right, an object is considered intuitionistic if and
only if it consumes no resources (i.e., it is well-typed in an empty linear context). No facility is provided for
functions with types such as (A(!B) that consume resources yet return intuitionistic results.

4.2 Linearity in Programming

The surrounding programming language is extended to support linearity by adding one additional type. The
type A (� contains functions that consume the resource A (using it exactly once), and return a value of
type � . This type is introduced and eliminated by similar constructs as in the proof language, as shown in
Figure 5.

With the introduction of linearity, terms are typechecked within a linear context, just as objects are.
(The new judgement forms are given in Figure 7.) However, there is an important di�erence between the
use of resources in objects and in terms. An object can contain resources, and very often will, even when
in canonical form. In term language, however, resources are consumed in process of evaluation, never by
constructing a value. This is because the entire purpose of resources is to express ephemeral facts, which
may change during evaluation.

This fact leads to some typing rules for terms that are unusual in linear type systems. Two examples serve
to summarize. First, values must never consume resources. Since values are freely duplicatible, duplication
of a value would duplicate a resource, which we cannot permit. Moreover, values survive as the state changes
during evaluation, so resources appearing in values could preserve ephemeral propositions that were no longer
true. This means that the type system must insist that values be well-typed only in empty linear contexts,
as in the following rule for linear functions:

�; û:A ` e : �

�; � ` �̂u:A:e : A(�

Second, non-value terms may always consume resources, even though the type system never makes any
guarantees regarding the number of uses of a term. This can be seen by considering the previous argument
in conjunction with the subject reduction property:2 by the time terms are reduced to values, they will no
longer contain any resources. Thus, function application is typed by the rule

�;�1 ` e1 : �1 ! �2 �;�2 ` e2 : �1

�; (�1;�2) ` e1e2 : �2

even though e1 is permitted to use its argument multiple (or zero) times.
Interestingly, these facts often lead stateful programming into a closure-passing, continuation-passing

style. Since functions must be closed (with respect to linear variables), they must always take resources as
arguments, even when those resources were actually available when the function was created, resulting in a
closure-passing style (with respect to resources). (The desire to include multiple resources is what leads to the
need for tensor (Section 4.3).) Conversely, since functions can never return resources|to do so would involve

2Although we have not discussed it yet, the property does in fact hold.

9

returning a value containing resources|any function that wants to provide new resources must provide them
as arguments to a continuation function. Fortunately this is no hardship, as our intended application, Typed
Assembly Language, depends essentially on closure- and continuation-passing style anyway.

Example Suppose A and B are ephemeral propositions, and suppose f is a stateful function that requires
A to be true, but then falsi�es it and causes B to be true instead. For example, A could say that storage
cell 1 is valid, B could say that storage cell 2 is valid, and f could deallocate 1 and allocate 2.

Suppose further that A holds in the current state, and consequently there is a available a linear variable
û:A. Then we can give f the type (B (�)!A(� and call it with the code f (�̂v:B:e)̂ u, where e is some
continuation expression requiring a state satisfying B.

Alternatively, suppose f requires A but does not invalidate it. For example, f might read from storage
cell 1. Then we can give f the type (A (�)! A (� and call it with the code f (�̂u:A:e)^u, where e is
some continuation expression requiring a state satisfying A.

4.3 Tensor

Linear LF provides alternative conjunction, in which both conjuncts consume all available resources, making
one or the other conjunct available to the receiver, but not both. Another useful form of conjunction is tensor
(or simultaneous conjunction). In tensor (written A1
A2), the available resources are divided between the
two conjuncts, making both of them simultaneously available to the receiver.

Unfortunately, Cervesato and Pfenning [3] show that inclusion of tensor would invalidate important
metatheoretic properties of LF and Linear LF (such as the existence of canonical forms and all known proofs
of decidability of typechecking), and consequently tensor is omitted from Linear LF. Cervesato and Pfenning
show that this is no major hardship for logical frameworks, one can always work around the absence of tensor
in a systematic way. Sadly, this is not so for LTT.

Since term functions are required to be closed with respect to linear variables, it is impossible for a
term function to take multiple linear arguments by currying. A partial solution would be to provide multi-
argument linear functions primitively, with a type like A1
 � � �
An (� . This turns out to be inadequate
because it provides insuÆcient support for polymorphism.

Consider a higher-order function such as apply : 8�;
:T:(�!
) � �!
. In LTT, it is essential to be
able to provide linear resources to the argument function, otherwise the argument function is crippled for
stateful computation. This can be solved using polymorphism over families:

apply : 8a:P:8�;
:T: (�! a(
)� �! a(

but this solution only works when a can be instantiated with tensor. A multi-argument function would
not suÆce here, because it cannot be known how many linear arguments are to be passed to the argument
function.

We overcome this problem with a trick: tensor is added with a typing rule that prevents it from interacting
with the proof language. For convenience, we include tensor among the syntactic class of families, but we
give it a new proof kind P+. The typing rules for the other constructs of the proof language do not recognize
families in P+, so as far as they are concerned tensor is ill-formed and might as well not exist. This preserves
the desirable properties of Linear LF.

To make use of tensor, we add a construct eliminating it to the term language. The construct lethhu1; u2ii =
M in e decomposes an object M : A1
 A2 and adds new variables u1̂:A1 and u2̂:A2 to the linear context.
Tensor objects are introduced by hhM1;M2ii. We also include a type 1, the unit for tensor, which is elimi-
nated by a similar term-level construct and introduced by ?. In contrast to hi, which consumes all resources,
? consumes no resources. These developments are summarized in Figure 6 (with signatures omitted for
brevity).

The apply function given above is certainly a trivial example of a higher-order function. Another com-
plication arises when a function passed as an argument might have to be applied more than once, as in
the familiar function map : 8�;
:T: (�!
)! list� ! list
. While it makes sense for the argument of
map to require some resources to be present, in order to for map to be able to apply that function more
than once, map must require that those resources not be consumed. As discussed at the end of the previous

10

proof kinds K ::= � � � j P+

families c ::= � � � j A1
A2 j 1
objects M ::= � � � j hhM1;M2ii j ?

terms e ::= � � � j let hhu1; u2ii =M in e j

let ? =M in e

� ` Ai : P
+

� ` A1
A2 : P
+ � ` 1 : P+

� ` A : P

� ` A : P+

�;�i `Mi : Ai

�; (�1;�2) ` hhM1;M2ii : A1
A2 �; � ` ? : 1

�;�1 `M : A1
A2 �; (�2; u1̂:A1; u2̂:A2) ` e : �

�; (�1;�2) ` let hhu1; u2ii =M in e : �

�;�1 `M : 1 �;�2 ` e : �

�; (�1;�2) ` let ? =M in e : �

Figure 6: Tensor

Judgement Interpretation

�;� `S;R e : � e is a valid term of type �
�;� `S;R M : A M is a valid object of family A

�;� `S;R M1 =M2 : K M1 and M2 are equal objects
� `S � context � is a valid linear context

Figure 7: Linear LTT Judgements

section, expressing the presence of resources in the \post-condition" of a function requires that programs
be written in continuation-passing style. Speci�cally, if the argument to map is intended to have the type
� !
, and if the variable a stands for the family of the resources it needs, then that argument must the
type 8Æ:T: � ! (
 ! a (Æ)! a (Æ in continuation-passing style. Using a similar transformation, and
quantifying over the resources required by the argument function, we obtain:

map : 8a:P+
:8�;
; Æ:T:

(8":T: �! (
! a(")! a(")! list�! (list
! a(Æ)! a(Æ

4.4 Static Semantics

The principal change to the static semantics of LTT with the addition of linearity is the addition of linear
contexts to the judgement forms for terms, objects, and object equality. No linear context is required for
the other judgements since, as discussed above, types, families, kinds, and proof kinds are not permitted to
contain resources. The new judgements are shown in Figure 7. These three judgements also add a linear
signature R. A linear signature assigns families to linear object constants, and is treated similarly to the
linear context in that it is divided among subterms to ensure that each linear object constant is used exactly
once.

De�nition 4.1 A linear signature R, is a mapping of linear object constants (Mlk) to families. A linear
signature R is well-formed (relative to an intuitionistic signature S) if for all Mlk 2 Dom(R), `S R(Mlk) : P .

11

The full typechecking rules for LTT appear in Appendix A. The version of Linear LF contained within
LTT di�ers from that of Cervesato and Pfenning in two signi�cant ways. Cervesato and Pfenning's version
of Linear LF requires that all objects and families be written in canonical form whereas ours has no such
restriction. Also, Cervesato and Pfenning omit the lambda abstraction construct at the family level. Those
restrictions were required for their proof of decidable typechecking for Linear LF, and were rarely a real
burden in practical use. However, they do substantially complicate the presentation of the type system, so
we have removed them here. Accordingly, decidability of LTT typechecking is based on a new proof [17] of
decidable typechecking for Linear LF.

As is often the case, typechecking in LTT boils down the problem of deciding equivalence of types. In
LTT this proves to be easy, provided it is possible to decide equivalence of families and objects (apart from
which, LTT type constructors are just terms of the simply typed lambda calculus).

Theorem 4.2 Suppose S and R are well-formed, `S S context, and � `S � context. Then it is decidable

whether or not � `S A1 = A2 : K is derivable, and whether or not �;� `S;R M1 =M2 : A is derivable.

The proof [17] is based on a logical relations argument modeled after the analogous proof of Harper and
Pfenning [8] for intuitionistic LF. From this it is easy to show decidability of LTT typechecking:

Corollary 4.3 Suppose S and R are well-formed, `S S context, and � `S � context. Then it is decidable

whether or not �;� `S;R e : � .

5 Example: Memory Management

In this section we present a strategy for using the linear constructs of LTT to implement safe, explicit
allocation and deallocation of memory. The signature we will give here is essentially a simple fragment of
the capability calculus of Crary et al. [5].

Our simpli�ed memory management signature provides a type of ephemeral reference cells, which resemble
those of ML except that they may be explicitly deallocated. Allocation of a new reference cell will result in
the creation of a linear resource witnessing that the cell is valid | that is, that it is available to be read
from, written to or destroyed. The family and type constants we need are these:

cell : P
valid : cell ! P

ref : T ! cell ! T

As these declarations show, reference cells are represented in the proof language by objects of family cell ;
for a cell C, valid C is a proof family that we will arrange to be inhabited when and only when there exists
an actual cell associated with C. The storage cell itself will be a term-level value of type ref � C, where � is
the type of the cell's contents.

The operations available on reference cells have the following types:

new : 8a:P+
:8�:T:8
:T:

� ! (�c:cell : ref � c! (valid c
 a)(
)!
a(

deref : 8a:P+
:8�:T:8
:T:

ref � c! (� ! (valid c
 a)(
)!
(valid c
 a)(

assign : 8a:P+
:8�:T:8
:T:

ref � c! � ! ((valid c
 a)(
)!
(valid c
 a)(

free : 8a:P+
:8�:T:8
:T:

ref � c! (a(
)! (valid c
 a)(

As these types reveal, programs that wish to use references must be written in continuation-passing style
in order to manage their resources properly. The functions rely on tensor to allow the caller to pass extra

12

resources; these resources are then forwarded to the continuation along with any others the operation makes
available. This allows more than one cell to be valid at a time. Since the variable a in the tensor family is
universally quanti�ed, these operators may be instantiated and used regardless of the contents of the linear
context.

The e�ect of each operation may be guessed by looking at the di�erence between the family of the
resource passed to the function and the family of the resource the function passes on to its continuation.
The new operation allocates a new cell and creates a new validity resource to pass on; free destroys a cell
and consumes the corresponding resource. The deref and assign functions require that the cell they are
accessing be valid, but they do not cause it to become invalid, and so the resource asserting its usability
is passed on untouched to the continuation. The result of all this is that at any point in the program, the
linear context will contain validity resources in one-to-one correspondence with the cells that are available
to be accessed.

6 Modular Semantics

We are now ready to begin discussing the operational semantics of LTT. The operational semantics consists
of two parts: a small operational semantics for the built-in constructs of LTT, and the semantics of whatever
term constants are supplied by the signature. As discussed earlier, it is advantageous for ease of scalability
for the semantics of term constants to be de�nable in a modular fashion, so that independent constructs
can independently be given semantics and those semantics proven sound, without any need for an overall
soundness proof. We present such a framework for modular semantics here.

A semantic module consists of two parts, a static module and a dynamic module. A static module
speci�es the set of constants that the module supplies, and a dynamic module gives the transition rules
implementing the constants of a static module. We show that if two static modules are compatible (in the
sense that they provide di�erent constants) then they can be safely joined together, and that two dynamic
modules implementing them can be joined together to form a single dynamic module implementing the join
of the static modules. A full operational semantics is then assembled simply by joining together dynamic
modules implementing compatible static modules.

Before we make this rigorous, we require some preliminary results regarding operational semantics. Then
we proceed to formalize the notion of static modules and then dynamic modules. We will ignore state for
the time being, but pick it up again in Section 6.4.

6.1 Operational Semantics

Core evaluation (that is, evaluation of built-in LTT constructs) is de�ned as in Figure 8. We also de�ne a
transition system to be a mapping from terms to terms. We intend transition systems to account for the
semantics of terms not covered by core evaluation. Given a transition system, we can de�ne a semantics for
LTT:

De�nition 6.1 Suppose T is a transition system and let values and evaluation contexts be de�ned as in
Figure 9. Then E[e] 7!T E[e0] if and only if either e 7! e

0 or T (e) = e
0. A term e is T -stuck if it is not a

value and there exists no e0 such that e 7!T e
0.

In order to prove any nice properties about this semantics, we will need to constrain the transition system:

De�nition 6.2 Suppose S is a well-formed signature, Z is a set of term constants and T is a transition
system. Let frames be de�ned as in Figure 10. Then T implements Z relative to S if:

� for all e 2 Dom(T), e is of the form F [ek], for some ek 2 Dom(Z), and

� for all frames F , ek 2 Z, and types � , if `S F [ek] : � , then F [ek] 2 Dom(T) and `S T (F [ek]) : � .

The �rst clause will be helpful later on in showing determinacy when we join transition systems together
(Lemma 6.5); it says essentially that transition systems implementing disjoint sets of constants do not
con
ict. The second clause essentially provides the Progress and Subject Reduction properties; it says that

13

(�x:�:e)v 7! e[v=x]

let hx1; x2i = hv1; v2i in e 7! e[v1; v2=x1; x2]

(��:k:e)c 7! e[c=�]

let h�; xi = (pack hc; vi as : : :) in e 7! e[c; v=�; x]

(�a:K:e)A 7! e[A=a]

let ha; xi = (pack hA; vi as : : :) in e 7! e[A; v=a; x]

(�u:A:e)M 7! e[M=u]

let hu; xi = (pack hM; vi as : : :) in e 7! e[M; v=u; x]

(�u:A:e)^M 7! e[M=u]

let hhu1; u2ii = hhM1;M2ii in e 7! e[M1;M2=u1; u2]

let ? = ? in e 7! e

Figure 8: Core Evaluation

values v ::= x j ek j �x:c:e j hv1; v2i j
��:k:e j pack hc; vi as ��:k:c j
�a:K:e j pack hA; vi as �a:K:c j
�u:A:e j pack hM; vi as �u:A:c j

�̂u:A:e
eval contexts E ::= [] j E e j v E j �1E j �2E j

E c j let h�; xi = E in e j

E A j let ha; xi = E in e j

EM j let hu; xi = E in e j

E^M

Figure 9: Values and Evaluation Contexts

frames F ::= [] v j let hx1; x2i = [] in e j
[] c j let h�; xi = [] in e j
[]A j let ha; xi = [] in e j
[]M j let hu; xi = [] in e j
[]^M

Figure 10: Evaluation Frames

14

for any well-typed operation on a constant being implemented (where frames specify operations), a transition
is de�ned and its result is well-typed.

We will say that T implements S if it implements some Z containing the term constants of Dom(S)
(relative to S). When T implements S, then we enjoy the type safety property:

Lemma 6.3 (Type Safety) Suppose T implements S. Then:

� (Determinism) If e 7!T e
0 and e 7!T e

00 then e
0 = e

00.

� (Subject reduction) If `S e : � and e 7!T e
0 then `S e

0 : � .

� (Progress) If `S e : � then e is not T -stuck.

Finally, we can de�ne what it means to join two transition systems together and when it is permissible
to do so:

De�nition 6.4 Suppose T1 and T2 have disjoint domains. Then the join of T1 and T2 (written T1 ./ T2) is
T1] T2.

Lemma 6.5 If T1 implements Z1 relative to S, T2 implements Z2 relative to S, and Z1 and Z2 are disjoint,

then T1 ./ T2 is well-de�ned and implements Z1] Z2 relative to S.

6.2 Static Modules

A static module must specify the complete set of constants necessary to compute with the module, including
any term values. For example, a static module for arrays must supply a term constant for every possible
array. However, in the presence of modularity, it cannot be clear a priori what constants are necessary, since
values can be built from values from other modules, as yet unknown. Thus, we de�ne a static module to
have two parts: a termless portion, and a function that provides all the necessary term constants given a
signature that summarizes all the modules being included. Later, we will extract the �nal signature from a
collection of static modules using a �xed point construction.

De�nition 6.6 A static module SM is a pair (S; ') where:

� S is a termless signature (i.e., a signature providing no term constants), and

� ' is a function from signatures to term signatures (i.e., signatures providing only term constants).

De�nition 6.7 A static module (S; ') is well-formed if:

� S is well-formed, and

� for all S0 � S, if S0 is well-formed then '(S0)] TLP(S0) is well-formed, and

� ' is monotone, and

� for all S0 and ek 2 Dom('(S0)), either:

{ '(S0)(ek) has the form ck E1 � � �En for some ck 2 Dom(S), or

{ the outermost operator of '(S0)(ek) is !, �, �, �, or(.

The �rst two clauses specify basic well-formedness conditions for a static module. The third ensures that
the eventual �xed point construction will work. The fourth ensures the existence of useful canonical forms
by prohibiting static modules from adding new constants to the types of other modules. We will exploit this
clause in Lemma 6.20.

Next we can de�ne compatibility and the joining of static modules:

De�nition 6.8 Static modules (S1; '1) and (S2; '2) are compatible if S1 and S2 have disjoint domains, and
for all S, '1(S) and '2(S) have disjoint domains.

15

'array(S) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

mkarray : ��:T:�u:Int:

tr (not (lt u z))!

SInt u! �! array u�

mkarray� : �u:Int:

tr (not (lt u z))!

SInt u! � ! array u � (for all `S � : T)

mkarray�;M : tr (not (ltM z))!

SInt M ! � ! arrayM � (for all `S � : T , `S M : Int)

mkarray�;M;M0 : SInt M ! � ! array M � (for all `S � : T , `S M : Int , `S M 0 : tr (not (ltM z)))

mkarray�;M;M0;v : � ! arrayM � (for all `S � : T , `S M : Int , `S M 0 : tr (not (ltM z))

`S v : SInt M)

[v1; : : : ; vn] : array (snz) � (for all n � 0, `S � : T , `S vi : �)

n : int (for all integers n)

n : SInt(s
nz) (for all n � 0)

n : SInt(neg(s
�nz)) (for all n < 0)

.

.

.

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;

Figure 11: A Static Module for Arrays

De�nition 6.9 Suppose SM 1 = (S1; '1) and SM 2 = (S2; '2) are compatible. Then the join of SM 1 and
SM 2 (written SM 1 ./ SM 2) is (S1]S2; '1]'2), where the disjoint union of functions is computed pointwise.

Lemma 6.10 Joining of static modules is associative, commutative, and has a unit.

Lemma 6.11 If SM 1 and SM 2 are well-formed and compatible, then SM 1 ./ SM 2 is well-formed.

Finally we can de�ne the �xed point construction that extracts a signature from a static module:

De�nition 6.12 Suppose SM = (S; ') is a static module with ' monotone. Then the �xed point of SM
(written �x(SM)) is the least �xed point of f , the monotone operator on signatures de�ned by:

f(S0) = S] '(S0)

Lemma 6.13 If SM is well-formed, then �x(SM) is a well-formed signature.

Proof

Let SM = (S; ') and let f be de�ned as above. Observe that if S0 is well-formed and its typeless portion
is S then f(S0) has the same property. Also, the property holds for f(;), since '(;) is contained in '(S),
which is well-formed (when combined with S). Finally, the property is preserved by unions of chains.
The result follows by trans�nite induction.

We conclude with a de�nition that will be convenient in the next section:

De�nition 6.14 Suppose SM is well-formed. Then S completes SM (written S B SM) if there exists a
well-formed SM 0 compatible with SM such that S = �x(SM ./ SM 0).

Example To make this concrete, we give a static module corresponding to the arrays of Section 3. The
non-term constants are exactly those given in Section 3, so we will devote our attention to the term portion
of the static module, 'array. Our static module, given a signature, must return three sort of term constants:
the actual term constants from Section 3, partially evaluated forms of those constants, and value forms for
each type the module provides (in this example, array, int, Sint , and So). We give an illustrative fragment in
Figure 11. Now let SM array = (Sarray; 'array), where Sarray contains the non-term constants from Section 3.
It is easy to check that all the conditions for well-formedness are satis�ed.

16

6.3 Dynamic Modules

A dynamic module will be de�ned to be a function from signatures to transitions systems, the idea being
that it is applied to a �xed point built over its static module, and returns a transition system implementing
all the term constants its static module provides.

De�nition 6.15 A dynamic module DM is a function from signatures to transition systems.

De�nition 6.16 Suppose SM = (S; ') is well-formed. Then DM implements SM if for all S0 B SM ,
DM (S0) implements Dom('(S0)) relative to S0.

When dynamic modules implement compatible static modules, they can be joined together:

De�nition 6.17 Suppose that for all S, DM 1(S) and DM 2(S) have disjoint domains. Then the join of
DM 1 and DM 2 (written DM 1 ./ DM 2) is the pointwise join of DM 1 and DM 2.

Lemma 6.18 If DM 1 implements SM 1, DM 2 implements SM 2, and SM 1 and SM 2 are compatible, then

DM 1 ./ DM 2 is well-de�ned and implements SM 1 ./ SM 2.

Proof

Let SM 1 = (S1; '1) and SM 2 = (S2; '2). Suppose SM is well-formed and compatible with SM 1 ./ SM 2,
and let S0 = �x (SM 1 ./ SM 2 ./ SM). Then SM 1 is compatible with SM 2 ./ SM so S

0 B SM 1. Thus
DM 1(S

0) implements Dom('1(S
0)) relative to S0. Similarly DM 2(S

0) implements Dom('2(S
0)) relative

to S0. Hence, by Lemma 6.5, DM 1(S
0) ./ DM 2(S

0) implements Dom('1(S
0))] Dom('2(S

0)) relative to
S
0.

Finally, a dynamic module applied to its static module's �xed point, implements that �xed point (and
consequently the type safety theorem applies):

Lemma 6.19 If DM implements SM then DM (�x (SM)) implements �x(SM).

Proof

Let SM = (S; ') and S
0 = �x (SM). Observe that S0 B SM . Then DM (S0) implements Dom('(S0))

relative to S0. Since S0 = S] '(S0), the term constants of S0 are exactly those of '(S0). Hence DM (S0)
implements S0.

With these tools established, the primary proof burden in using modular semantics is to prove the
dynamic module's implementation theorem, which corresponds to the usual type safety theorem in non-
modular semantics. The following lemma is very useful in proving such implementation theorems. It insulates
the implementation theorem from the gory details of completion and the �xed point construction, thereby
making the proof little more complicated than the usual non-modular safety proof.

Lemma 6.20 (Canonical Forms) Suppose SM = (S; ') and S
0 B SM . Then:

� If `S0 ek : ck E1 � � �En for some ck 2 Dom(S), then ek 2 Dom('(S0)).

� If `S0 Mk : A where A is canonical and contains some Ak 2 Dom(S), then Mk 2 Dom(S) (and

consequently Mk 62 Dom(S0) nDom(S)).

Proof

We show the �rst part, the second is similar. By construction, S0(ek) has the form ck 0 E0
1 � � �E

0
m
, and

by inspection of the typing rules, `S0 S
0(ek) = ck E1 � � �En. Thus ck = ck 0 and m = n. By de�nition of

completion, S0 = S] S2] '(S0)] '2(S
0), for some well-formed (S2; '2) compatible with SM . Suppose

ek 2 Dom('2(S
0)). Since (S2; '2) is well-formed, it follows that ck 2 Dom(S2). However, S2 is disjoint

from S (by compatibility), so ek must lie in Dom('(S0)) instead.

17

Let DM array(S) = TS, where TS is given by:

TS(mkarray �) = mkarray
�

TS(mkarray� M) = mkarray
�;M

...
TS(mkarray�;M;M 0;v

v
0) = [

n

z }| {

v
0
; : : : ; v

0] (if v = n)
...

(for mkarray
�
; mkarray

�;M;M 0;v
; : : : 2 Dom('array(S)))

Figure 12: A Dynamic Module for Arrays

Example To make this concrete, we give a dynamic module implementing the static module for arrays
from the previous section. An illustrative fragment is given in Figure 12.

It remains to show that DM array implements SM array. Suppose S B SM array. Note that, by construction,
Sarray � S. We wish to show that DM (S) implements Z relative to S, where Z = Dom('array(S)) =
fmkarray; mkarray

�
; : : :g. It is easy to show that the �rst clause of implementation is satis�ed.

For the second, suppose `S F [ek] : � for some ek in Z. We wish to show that TS(F [ek]) is de�ned and
`S TS(F [ek]) : � . We proceed by case analysis on ek .

Suppose ek is mkarray. Since F [ek] is well-typed, F must be of the form []c where `S c : T . Then
TS(mkarray c) = mkarray

c
, and mkarray

c
has the desired type. Similar reasoning applies to all the partially

evaluated forms of mkarray except the last.
The interesting case is when ek is mkarray

�;M;M 0;v
. Since F [ek] is well-typed, F must be of the form

[]v0 where `S v
0 : � . We wish to show that (for some n) v = n and n � 0. Since mkarray

�;M;M 0;v
2

Dom('array(S)), we know that `S M : Int and `S M
0 : tr (not (ltM z)) and `S v : SInt M .

Certainly v must be an object constant, and by Lemma 6.20, it must be drawn from 'array(S). Thus
v = n. Suppose n < 0. Then, since n : SInt M , it follows that `S M = neg(s�nz) : Int . Hence `S
M

0 : tr (not (lt (neg(s�nz)) z)). Again by Lemma 6.20, M 0 must be built exclusively from object constants
appearing in Sarray. Therefore, assuming Sarray contains only appropriate proof terms, we may prove by
induction over the structure ofM 0 thatM 0 represents a valid proof of :(�(�n) < 0). (This fact is analogous
to the usual adequacy theorem used in LF [7].) Since no such proof can exist, n � 0.

Thus TS(F [ek]) = [v0; : : : ; v0]. It remains only to show that `S [v0; : : : ; v0] : arrayM � , and this holds
provided that `S snz =M : Int . The latter follows from `S n : SInt M .

6.4 Modular Semantics and State

Since a particular notion of state (or lack thereof) is often central to the design of a programming language,
it is not clear that being able to modularize a stateful semantics is as pro�table as for a stateless semantics.
Moreover, it appears that generalizing the preceding framework to account for state complicates it severely.
Instead, we intend that users of LTT construct a particular operational semantics (depending on their desired
notion of state), but predicate that construction over an unspeci�ed collection of semantic modules.

We will not construct a full example here; instead we summarize the key points. First, one de�nes a
notion of a type for the state. (For example, the heap types of Typed Assembly Language.)

Second, one de�nes a static module parametrized over state types. Its termless portion is invariant, but
its term portion uses the heap type to determine what references to the state are permissible. (In TAL's case,
the permissible references are the currently allocated pointers, as indicated by the state type.) Very often
state types will contain ordinary types, so well-formedness of a state type cannot be de�ned independently
of a signature, and therefore the static module cannot assume its argument state type to be well-formed.
However, it is not diÆcult to de�ne that static module so that any ill-formed components of the state type
are ignored.

Third, one de�nes a function (call it R̂) from state types to linear signatures. This provides resources
to the program that are usable only for the current state, and need not be monotone. (There is no analog

18

of this in TAL, but for the memory management language of Section 5, state types would track which cells
had been deallocated, and the function would provide linear constants for every valid cell.)

Finally, the static module is joined with some other static module SM and their �xed point is taken to
produce a signature. The resulting signature (call it Ŝ) is parametrized over state types, since it is built
from a parametrized static module. The two parametrized signatures Ŝ and R̂ are used to type machine
con�gurations using a rule like

` � : 	 `Ŝ();R̂() e : �

`Ŝ;R̂ (�; e) : �

where � ranges over states and 	 ranges over state types.
For the operational semantics, a stateful transition system can be constructed deferring to the dynamic

module implementing SM for any unknown components. In the safety proof we take advantage of the
above constructions as follows: When a linear object constant appears in a well-typed term, then it must be
supplied by R̂(�), which provides information about the current state and may show that an operation being
performed is permissible. Similar information is gleaned from appearances of term constants from Ŝ(�).

7 Conclusion

LTT provides the power for very expressive type systems by allowing operations to demand proofs of arbitrary
propositions (thereby escaping the usual restrictions of decidable typechecking), and by allowing operations
to demand linear resources, accessible only in current states. In this paper we have given some examples of
how these facilities can be used separately; by combining them one can obtain even greater expressive power.
For example, the Capability Calculus of Crary et al. [5] is similar to the memory management example in
Section 5 in that it provides revocable access to memory cells, but it goes further with an algebra over
capabilities and an ability to declare some constraints between capabilities. Those facilities can easily be
encoded in LTT by an appropriate choice of propositions (represented equivalences and constraints) and
proof terms. Beyond this, we conjecture that the security automata type system of Walker [19] and the
alias-tracking type system of Smith et al. [16] can easily be encoded in LTT as well.

The casting of all these type systems into one uniform framework by itself promotes one sort of re-
use, that of the typechecking software. In order to be able to re-use safety proofs as well (which can be
just as burdensome to produce as typechecking software), we provide a theory for modular development of
operational semantics and the safety proofs thereof. To our knowledge, this is the only such account.

A similar e�ort to LTT, as far as its re-usability goals are concerned, is the TinkerType meta-language of
Levin and Pierce [10]. Unlike LTT, which casts everything in a common language, TinkerType emphasizes
modular development of comparatively dissimilar type systems (such as F , F�, F! , etc.). TinkerType
provides for modular development of typechecking software, but not of safety proofs. However, TinkerType's
main feature is support for inheritance; for example F� inherits from F and adds subtyping. LTT makes no
e�ort at supporting inheritance; each semantic module to be combined must be fully developed on its own.
Adding this is an interesting avenue for future work.

Acknowledgements

We would like to thank Robert Harper and Frank Pfenning for many useful conversations and suggestions.

A Typing Rules

Convention In rules having an antecedent of the form (�; X1:E1; : : : ; Xm:Em); (�; Xm+1:Em+1; : : : ; Xn:En) `
J , there is an implicit side-condition that each Xi is distinct and not contained in Dom(�) or Dom(�). A
similar side-condition applies in rules with only an intuitionistic context.

`S � context

19

`S � context

`S � context � `S k kind

`S �; �:k context
(� 62 Dom(�))

`S � context � `S � : T

`S �; x:� context
(x 62 Dom(�))

`S � context � `S K pkind

`S �; a:K context
(a 62 Dom(�))

`S � context � `S A : P

`S �; u:A context
(u 62 Dom(�))

� `S k kind

� `S T kind

� `S k1 kind � `S k2 kind

� `S k1 ! k2 kind

� `S K pkind �; a:K `S k kind

� `S �a:K:k kind

� `S A : P �; u:A `S k kind

� `S �u:A:k kind

� `S k1 = k2 kind

� `S T = T kind

� `S k1 = k2 kind � `S k01 = k02 kind

� `S k1 ! k01 = k2 ! k02 kind

� `S K1 = K2 pkind �; a:K1 `S k1 = k2 kind

� `S �a:K1:k1 = �a:K2:k2 kind

� `S A1 = A2 : P �; u:A1 `S k1 = k2 kind

� `S �u:A1:k1 = �u:A2:k2 kind

� `S k kind

� `S k = k kind

� `S k2 = k1 kind

� `S k1 = k2 kind

� `S k1 = k2 kind � `S k2 = k3 kind

� `S k1 = k3 kind

� `S c : k

� `S � : k
(�(�) = k)

� `S ck : k
(S(ck) = k)

� `S k1 kind �; �:k1 `S c : k2

� `S ��:k1:c : k1 ! k2

� `S c1 : k1 ! k2 � `S c2 : k1
� `S c1c2 : k2

� `S K pkind �; a:K `S c : k

� `S �a:K:c : �a:K:k

� `S c : �a:K:k � `S A : K

� `S cA : k[A=a]

� `S A : P �; u:A `S c : k

� `S �u:A:c : �u:A:k

� `S c : �u:A:k �; � `S;; M : A

� `S cM : k[M=u]

� `S �1 : T � `S �2 : T

� `S �1 ! �2 : T

� `S �1 : T � `S �2 : T

� `S �1 � �2 : T

� `S k kind �; �:k ` � : T

� `S ��:k:� : T

� `S k kind �; �:k ` � : T

� `S ��:k:� : T

� `S K pkind �; a:K ` � : T

� `S �a:K:� : T

� `S K pkind �; a:K ` � : T

� `S �a:K:� : T

� `S A : P �; u:A ` � : T

� `S �u:A:� : T

� `S A : P �; u:A ` � : T

� `S �u:A:� : T

� `S A : P+ � `S � : T

� `S A(� : T

� `S c : k � `S k = k0 kind

� `S c : k0

� `S c1 = c2 : k

� `S � = � : k
(�(�) = k)

� `S ck = ck : k
(S(ck) = k)

�; �:k1 `S c1 = c2 : k2
� `S k01 = k1 kind � `S k001 = k1 kind

� `S ��:k01:c1 = ��:k001 :c2 : k1 ! k2

� `S c1 = c2 : k1 ! k2 � `S c01 = c02 : k1

� `S c1 c
0

1 = c2 c
0

2 : k2

�; a:K `S c1 = c2 : k
� `S K1 = K pkind � `S K0

2 = K pkind

� `S ��:K1:c1 = ��:K2:c2 : �a:K:k

20

� `S c1 = c2 : �a:K:k � `S A1 = A2 : K

� `S c1 A1 = c2 A2 : k[A1=a]

�; u:A `S c1 = c2 : k

� `S A1 = A : P � `S A2 = A : P

� `S �u:A1:c1 = �u:A2:c2 : �u:A:k

� `S c1 = c2 : �u:A:k � `S M1 = M2 : A

� `S c1M1 = c2M2 : k[M1=u]

� `S �1 = �2 : T � `S � 01 = � 02 : T

� `S �1 ! � 01 = �2 ! � 02 : T

� `S �1 = �2 : T � `S � 01 = � 02 : T

� `S �1 � � 01 = �2 � � 02 : T

� `S k1 = k2 kind �; �:k1 `S �1 = �2 : T

� `S ��:k1:�1 = ��:k2:�2 : T

� `S k1 = k2 kind �; �:k1 `S �1 = �2 : T

� `S ��:k1:�1 = ��:k2:�2 : T

� `S K1 = K2 pkind �; a:K1 `S �1 = �2 : T

� `S �a:K1:�1 = �a:K2:�2 : T

� `S K1 = K2 pkind �; a:K1 `S �1 = �2 : T

� `S �a:K1:�1 = �a:K2:�2 : T

� `S A1 = A2 : P �; u:A1 `S �1 = �2 : T

� `S �u:A1:�1 = �u:A2:�2 : T

� `S A1 = A2 : P �; u:A1 `S �1 = �2 : T

� `S �u:A1:�1 = �u:A2:�2 : T

� `S A1 = A2 : P
+ � `S �1 = �2 : T

� `S A1 (�1 = A2 (�2 : T

� `S c1 = c2 : k � `S k = k0 kind

� `S c1 = c2 : k
0

�; �:k1 `S c1 : k2 � `S c2 : k1

� `S (��:k1:c1) c2 = c1[c2=�] : k2

�; a:K `S c : k � `S A : K

� `S (�a:K:c)A = c[A=a] : k[A=a]

� `S A : P �; u:A `S c : k � `S M : A

� `S (�u:A:c)M = c[M=u] : k[M=u]

� `S k1 kind �; �:k1 `S c1 � = c2 � : k2

� `S c1 = c2 : k1 ! k2

� `S K pkind �; a:K `S c1 a = c2 a : k

� `S c1 = c2 : �a:K:k

� `S A : P �; u:A `S c1 u = c2 u : k

� `S c1 = c2 : �u:A:k

� `S c : k

� `S c = c : k

� `S c2 = c2 : k

� `S c1 = c2 : k

� `S c1 = c2 : k � `S c2 = c3 : k

� `S c1 = c3 : k

�;� `S;R e : �

�; � `S;; x : �
(�(x) = �)

�; � `S;; ek : �
(S(ek) = �)

� `S �1 : T �; x:�1; � `S;; e : �2

�; � `S;; �x:�1:e : �1 ! �2

�;�1 `S;R1
e1 : �1 ! �2 �;�2 `S;R2

e2 : �1

�; (�1;�2) `S;R1]R2
e1e2 : �2

�;�1 `S;R1
e1 : �1 �;�2 `S;R2

e2 : �2

�; (�1;�2) `S;R1]R2
he1; e2i : �1 � �2

�;� `S;r e : �1 � �2

�;� `S;R �ie : �i
(i = 1; 2)

� `S k kind �; �:k; � `S;; e : �

�; � `S;; ��:k:e : ��:k:�

�;� `S;R e : ��:k:� � `S c : k

�;� `S;R e c : � [c=�]

� `S c : k �; �:k `S � : T �;� `S;R e : � [c=�]

�;� `S;R pack hc; ei as ��:k:� : ��:k:�

�;�1 `S;R1
e1 : ��:k:�

(�; �:k; x:�);�2 `S;R2
e2 : �

0

�; (�1;�2) `S;R1]R2
let h�; xi = e1 in e2 : �

0

� `S K pkind �; a:K; � `S;; e : �

�; � `S;; �a:K:e : �a:K:�

21

�;� `S;R e : �a:K:� � `S A : K

�;� `S;R eA : � [A=a]

� `S A : K �; a:K `S � : T �;� `S;R e : � [A=a]

�; � `S;R pack hA; ei as �a:K:� : �a:K:�

�;�1 `S;R1
e1 : �a:K:�

(�; a:K; x:�);�2 `S;R2
e2 : �

0

�; (�1;�2) `S;R1]R2
let ha; xi = e1 in e2 : �

0

� `S A : P �; u:A; � `S;; e : �

�; � `S;; �u:A:e : �u:A:�

�;� `S;R e : �u:A:� �; � `S;; M : A

�;� `S;R eM : � [M=u]

�; � `S;; M : A

�; u:A `S � : T �;� `S;R e : � [M=u]

�;� `S;R pack hM; ei as �u:A:� : �u:A:�

�;�1 `S;R1
e1 : �u:A:�

(�; u:A; x:�);�2 `S;R2
e2 : �

0

�; (�1;�2) `S;R1]R2
let hu; xi = e1 in e2 : �

0

� `S A : P+

�;�; û:A `S;; e : �

�; � `S;; �̂u:A:e : A(�

�;�1 `S;R1
e : A(�

�;�2 `S;R2
M : A

�; (�1;�2) `S;R1]R2
e^M : �

�;�1 `S;R1
M : A1
A2

�; (�2; u1 :̂A1; u2 :̂A2) `S;R2
e : �

�; (�1;�2) `S;R1]R2
let hhu1; u2ii = M in e : �

�;�1 `S;R1
M : 1 �;�2 `S;R2

e : �

�; (�1;�2) `S;R1]R2
let ? = M in e : �

�;� `S;R e : � � `S � = � 0 : T

�;� `S;R e : � 0

� `S K pkind

� `S P pkind � `S P+ pkind

� `S A : P �; u:A `S K pkind

� `S �u:A:K pkind

� `S K1 = K2 pkind

� `S K pkind

� `S K = K pkind

� `S K2 = K1 pkind

� `S K1 = K2 pkind

� `S K1 = K2 pkind � `S K2 = K3 pkind

� `S K1 = K3 pkind

� `S A1 = A2 : P �; u:A1 `S K1 = K2 pkind

� `S �u:A1:K1 = �u:A2:K2 pkind

� `S A : K

� `S a : K
(�(a) = K)

� `S Ak : K
(S(Ak) = K)

� `S A1 : P �; u:A1 `S A2 : K

� `S �u:A1:A2 : �u:A1:K

� `S A : �u:A0:K �; � `S;; M : A0

� `S AM : K[M=u]

� `S A1 : P �; u:A1 `S A2 : P

� `S �u:A1:A2 : P

� `S A1 : P � `S A2 : P

� `S A1(A2 : P

� `S A1 : P � `S A2 : P

� `S A1 &A2 : P � `S > : P

� `S A1 : P
+ � `S A2 : P

+

� `S A1
A2 : P
+ � `S 1 : P+

� `S A : P

� `S A : P+

� `S A : K � `S K = K0 pkind

� `S A : K0

� `S A1 = A2 : K

� `S a = a : K
(�(a) = K)

� `S Ak = Ak : K
(S(Ak) = K)

22

�; u:A `S A0

1 = A0

2 : K
� `S A : P � `S A1 = A : P � `S A2 = A : P

� `S �u:A1:A
0

1 = �u:A2:A
0

2 : �u:A:K

� `S A1 = A2 : �u : B:K � `S M1 = M2 : B

� `S A1M1 = A2M2 : K[M1=u]

� `S A1 = A2 : P �; u:A1 `S A0

1 = A0

2 : P

� `S �u:A1:A
0

1 = �u:A2:A
0

2 : P

� `S A1 = A2 : P � `S A0

1 = A0

2 : P

� `S A1 (A0

1 = A2(A0

2 : P

� `S A1 = A2 : P � `S A0

1 = A0

2 : P

� `S A1 &A0

1 = A2 &A0

2 : P

� `S A1 = A2 : P
+ � `S A0

1 = A0

2 : P
+

� `S A1
A0

1 = A2
A0

2 : P
+

� `S A1 = A2 : P

� `S A1 = A2 : P
+

� `S A : K

� `S A = A : K

� `S A2 = A1 : K

� `S A1 = A2 : K

� `S A1 = A2 : K � `S A2 = A3 : K

� `S A1 = A3 : K

� `S B : P
�; u:B `S A1 = A2 : K �; � `S M1 = M2 : B

� `S (�u:B:A1)M1 = A2[M2=u] : K[M1=u]

� `S B : P
�; u:B `S A1 u = A2 u : K

� `S A1 = A2 : �u:B:K

�;� `S;R M : A

�; � `S;; u : A
(�(u) = A)

�; û:A `S;; u : A �; � `S;; Mk : A
(S(Mk) = A)

�; � `S;fMlk:Ag Mlk : A

� `S A1 : P � `S A2 : P �; u:A1; � `S;R M : A2

�;� `S;R �u:A1:M : �u:A1:A2

�;� `S;R M1 : �u:A1:A2 �; � `S;; M2 : A1

�;� `S;R M1M2 : A2[M2=u]

� `S A1 : P � `S A2 : P �;�; u:A1 `S;R M : A2

�;� `S;R �̂u:A1:M : A1 (A2

�;�1 `S;R1
M1 : A1(A2 �;�2 `S;R2

M2 : A1

�; (�1;�2) `S;R1]R2
M1^M2 : A2

� `S A1 : P � `S A2 : P
�;� `S;R M1 : A1 �;� `S;R M2 : A2

�;� `S;R hM1;M2i : A1 &A2

�;� `S;R M : A1 &A2

�;� `S;R �iM : Ai

(i = 1; 2)
�;� `S;R hi : >

�;� `S;R M : A � `S A = A0 : P

�;� `S;R M : A0

�; � `S;; ? : 1

�;�1 `S;R1
M1 : A1 �;�2 `S;R2

M2 : A2

�;�1;�2 `S;R1]R2
hhM1;M2ii : A1
A2

�;� `S M1 = M2 : A

�; � `S;; u = u : A
(�(u) = A)

�; û:A `S;; u = u : A �; � `S;; Mk = Mk : A
(S(Mk) = A)

�; � `S;fMlk:Ag Mlk = Mlk : A

�; u:A `S;R M1 = M2 : B

� `S A1 = A : P � `S A2 = A : P

�;� `S;R �u:A1:M1 = �u:A2:M2 : �u:A:B

�;� `S;R M1 = M2 : �u:A:B �; � `S;; N1 = N2 : A

�;� `S;R M1N1 = M2N2 : B[N1=u]

�;�; û:A `S;R M1 = M2 : B
� `S A1 = A : P � `S A2 = A : P

�;� `S;R �̂u:A1:M1 = �̂u:A2:M2 : A(B

23

�;�2 `S;R2
N1 = N2 : A

�;�1 `S;R1
M1 = M2 : A(B

�; (�1;�2) `S;R1]R2
M1^N1 = M2^N2 : B

�;� `S;R M1 = M2 : A �;� `S;R N1 = N2 : B

�;� `S;R hM1; N1i = hM2; N2i : A&B

�;� `S;R M1 = M2 : A1 &A2

�;� `S;R �iM1 = �iM2 : Ai

(i = 1; 2)
�;� `S;R M1 = M2 : A

0 � `S A0 = A : P

�;� `S;R M1 = M2 : A

�;� `S;R M2 = M1 : A

�;� `S;R M1 = M2 : A

�;� `S;R M1 = M2 : A �;� `S;R M2 = M3 : A

�;� `S;R M1 = M3 : A

�; u:A; � `S;R M1 = M2 : B
� `S A : P �; � `S;; N1 = N2 : A

�;� `S;R (�u:A:M1)N1 = M2[N2=u] : B[N1=u]

�;�1; û:A `S;R1
M1 = M2 : B

� `S A : P �;�2 `S;R2
N1 = N2 : A

�; (�1;�2) `S;R1]R2
(�̂u:A:M1)^N1 = M2[N2=u] : B

�;� `S;R M1 = N1 : A1 �;� `S;R M2 = N2 : A2

�;� `S;R �ihM1;M2i = Ni : Ai

� `S A : P �; u:A; � `S;R M1 u = M2 u : B

�;� `S;R M1 = M2 : �u:A:B

� `S A : P �;�; û:B `S;R M1^u = M2^u : B

�;� `S;R M1 = M2 : A(B

�;� `S;R �1M1 = �1M2 : A

�;� `S;R �2M1 = �2M2 : B

�;� `S;R M1 = M2 : A&B

�;� `S;R M1 : > �;� `S;R M2 : >

�;� `S;R M1 = M2 : >

References

[1] Andrew W. Appel and Amy P. Felty. A semantic model of types and machine instructions for proof-
carrying code. In Twenty-Seventh ACM Symposium on Principles of Programming Languages, pages
243{253, Boston, January 2000.

[2] Brian Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Sirer, Marc Fiuczynski, David Becker, Craig
Chambers, and Susan Eggers. Extensibility, safety and performance in the SPIN operating system.
In Fifteenth ACM Symposium on Operating Systems Principles, pages 267{284, Copper Mountain,
December 1995.

[3] Iliano Cervesato and Frank Pfenning. A linear logical framework. In Eleventh IEEE Symposium on

Logic in Computer Science, pages 264{275, New Brunswick, New Jersey, July 1996.

[4] Christopher Colby, Peter Lee, George Necula, and Fred Blau. A certifying compiler for Java. In 2000

SIGPLAN Conference on Programming Language Design and Implementation, pages 95{107, Vancou-
ver, British Columbia, June 2000.

[5] Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a calculus of capabili-
ties. In Twenty-Sixth ACM Symposium on Principles of Programming Languages, pages 262{275, San
Antonio, Texas, January 1999.

[6] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.

[7] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logics. Journal of the

ACM, 40(1):143{184, January 1993.

[8] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type theory. Technical
Report CMU-CS-99-159, Carnegie Mellon University, School of Computer Science, September 1999.

24

[9] W. Howard. The formulas-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors, To
H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, pages 479{490. Academic
Press, 1980.

[10] Michael Y. Levin and Benjamin C. Pierce. Tinkertype: A language for playing with formal systems.
Technical Report MS-CIS-99-19, Dept of CIS, University of Pennsylvania, July 1999.

[11] Tim Lindholm and Frank Yellin. The Java Virtual Machine Speci�cation. Addison-Wesley, 1996.

[12] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The De�nition of Standard ML

(Revised). The MIT Press, Cambridge, Massachusetts, 1997.

[13] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed assembly language.
Journal of Functional Programming, 2000. To appear. An earlier version appeared in the 1998Workshop
on Types in Compilation, volume 1473 of Lecture Notes in Computer Science.

[14] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed assembly language.
ACM Transactions on Programming Languages and Systems, 21(3):527{568, May 1999. An earlier
version appeared in the 1998 Symposium on Principles of Programming Languages.

[15] George Necula and Peter Lee. Safe kernel extensions without run-time checking. In Second Symposium

on Operating Systems Design and Implementation, pages 229{243, Seattle, October 1996.

[16] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In European Symposium on Program-

ming, Berlin, Germany, March 2000.

[17] Joseph C. Vanderwaart and Karl Crary. A simpli�ed account of the metatheory of linear LF. Technical
report, Carnegie Mellon University, School of Computer Science, 2001.

[18] Philip Wadler. A taste of linear logic. In Mathematical Foundations of Computer Science, volume 711
of Lecture Notes in Computer Science. Springer-Verlag, 1993.

[19] David Walker. A type system for expressive security policies. In Twenty-Seventh ACM Symposium on

Principles of Programming Languages, Boston, January 2000.

[20] Hongwei Xi and Robert Harper. A dependently typed assembly language. Technical Report OGI-CSE-
99-008, Computer Science and Engineering Department, Oregon Graduate Institute, July 1999.

[21] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent types. In 1998

SIGPLAN Conference on Programming Language Design and Implementation, pages 249{257, Montreal,
June 1998.

25

