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Abstract

Differential privacy is a relatively recent development in the field of privacy-preserving data min-

ing, which was formulated to give a mathematically rigorous definition of privacy. The concept has

spawned a great deal of work regarding the development of algorithms which are privacy-preserving

under this definition, and also work which seeks to understand the fundamental limitations of such

algorithms. When the goal is statistical inference it is important to understand what set of analyses

may be carried out in the privacy-preserving framework with reasonable accuracy, and which data

summaries and results may be reported.

In this work we begin by examining fundamental limitations of differentially private procedures

when the goal is to release a sparse histogram, or a contingency table. We also describe error

bounds when the goal is model selection for a private contingency table. Through examples we will

demonstrate the implications of these lower error bounds for statistical analysis with datasets of

different sizes and dimensions.

Thus far, differentially private algorithms appear to be restricted to the release of finite dimen-

sional vectors (e.g., regression coefficients, point estimates, SVM parameters). We next develop

methods for releasing functional data while preserving differential privacy. Specifically, we show

that when the function of interest lies inside a reproducing kernel Hilbert space, then it satisfies

differential privacy to release the function plus a Gaussian process noise term. As examples we

consider kernel density estimation, kernel support vector machines, and suitably smooth functions

which lie in a particular Sobolev space.

Finally we propose a relaxed privacy definition called random differential privacy (RDP). Differ-

ential privacy requires that adding any new observation to a database will have small effect on the

output of the data-release procedure. Random differential privacy requires that adding a randomly

drawn new observation to a database will have small effect on the output. We show an analog of the

composition property of differentially private procedures which applies to our new definition. We

show how to release an RDP histogram and we show that RDP histograms are much more accurate

than histograms obtained using ordinary differential privacy. We finally show an analog of the global

sensitivity framework for the release of functions under our privacy definition. We demonstrate that

an extension of this idea and describe how it relates to other looser privacy definitions that have

begun appearing in the literature.
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Chapter 1

Differential Privacy

1.1 Introduction

Over the last decade, a great deal of activity in machine learning and related fields focused on

“privacy preserving data-mining” (see e.g., Vaidya et al. [2005]; Dwork [2008]) which spawned

regular meetings and workshops (e.g., Privacy and Statistical Databases) and journals of its own

(e.g., the Journal of Privacy and Confidentiality). As statistical analyses of large scale databases

become more commonplace, and as results of such analyses are made available to interested parties,

it has become increasingly important to respect the privacy of the individuals who’s information

comprises the data. The field of privacy preserving datamining seeks to build methods which

approximate the answers that a statistical analysis would give—that is, to maintain some “utility”

to the analysts, but in a way which may be deemed to protect the individuals in the data. Evidently

a non-private technique has full utility in the sense that it gives the exact answer, whereas to

maintain full privacy may preclude the data owner from releasing anything at all. Thus there is

often a tradeoff between utility and privacy (see e.g., Fienberg et al. [2008, 2010]; Lebanon et al.

[2006]; Yang et al. [2012]).

An orthogonal concern within the same field is the research in cryptographic protocols (see e.g.,

Goldreich [1998, 2004]; Lindell and Pinkas [2002, 2009]). There the goal is to allow multiple parties

to perform a computation on the union of their data, but in a way which messages passed during the

computation do not reveal information about the input. In this setting the output is not inherently

protected, it is given to all parties upon termination of the protocol. Whether or not the output

reveals information about the input depends on the nature of the function which was computed.

Examples for regression and classification are given in e.g., Vaidya et al. [2005]; Fienberg et al.

[2006, 2009].

During the 1980s and 1990s, the statistics community took interest in privacy preserving methods
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(see e.g., Duncan and Lambert [1986, 1989]; Duncan and Pearson [1991]; Hwang [1986]). However

as Dwork noted in Dwork and Smith [2010] the criteria used to judge whether a method was deemed

“private” or not were ad-hoc or otherwise inadequate. This lead to the development of “Differential

Privacy” beginning in around 2002. Just as cryptographers use the notion of “semantic security”

(see e.g., Goldreich [1998, 2004]) to judge whether an encryption scheme is secure, the differential

privacy gives a mathematically rigorous framework for privacy of data releases. Since its inception

there has been a great deal of interest in differential privacy, with numerous surveys already written

(see e.g., Dwork [2008]; Wasserman and Zhou [2010]; Dwork and Smith [2010]). What’s more

a great many statistical methods have been instantiated in this framework and demonstrated to

have good theoretical properties (e.g., good utility as the size of the data increases). Examples

include point estimation (Smith [2008]; Dwork and Lei [2009]), classification (Chaudhuri et al.

[2011]; Rubinstein et al. [2010]), regression (Dwork and Lei [2009]), contingency table estimation

(Rudelson et al. [2010]; Hardt et al. [2010]; Barak et al. [2007]; Fienberg et al. [2010]), histogram

estimation (Wasserman and Zhou [2010]; Smith [2009]), density estimation by means of expansion

into a truncated basis (Wasserman and Zhou [2010]), as well as modern machine learning methods

such as recommendation systems (McSherry and Mironov [2009]) among others.

Nevertheless there remains something of a divide that between the theoretical literature on the

differential privacy, which is located mostly in the computer science community, and the statistical

analyses faced by researchers in e.g., the U.S. Census Bureau, who seek to apply these techniques

to real problems. For example, to employ the techniques of differential privacy in the task of

synthetic data generation it was necessary to relax the privacy criteria in order to maintain any

utility (Machanavajjhala et al. [2008]). Likewise, Fienberg et al. [2010]; Yang et al. [2012]; Charest

[2012] noted that for sparse contingency tables that the techniques suggested in e.g., Barak et al.

[2007] tend to destroy utility of the data.

In essence it appears that the theory of differential privacy remains mired in the regime of the

classical statistics of the early 20th century. That is, the setting in which the goal is to release

(or estimate) a vector of fixed dimension, where the sample size is allowed to grow to infinity. In

these cases the additional noise required to achieve differential privacy is often on the same order

as the sampling error Smith [2008]. It is theoretically satisfying that the asymptotics of the private

estimator and of the non-private one have the same behavior, however with modern problems it

is more common that the number of data samples is small relative to the dimension of the object

being estimated, for example in the case of large sparse histograms and contingency tables . In

these cases the noise required by the proposed techniques tends to swamp whatever utility was in

the data. This occurs both in practise and also in the theory, when the dimension of the released

vector is allowed to grow as the number of samples increases.

Our purpose is to bridge some of the apparent gap between the theoretical side of differential pri-
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vacy research and the practical problems faced by agencies who wish to perform privacy preserving

analyses.

1.1.1 Outline

We begin by recalling basic definitions and methods from the differential privacy literature, then

we investigate the noise levels required for differential privacy in a number of statistical settings.

Thereupon we may determine what questions may be answered appropriately while preserving

privacy. To do so we use known and novel lower bounds for error levels. We start out with some

discrete problems, such as the release of histograms and contingency tables. We give an analogue

of the minimax risk for these types of releases. We also demonstrate that in the modern situation

of a large sparse table or histogram, that the minimax rate may be lower. We also give methods

which achieve these lower rates in practise.

We then describe how differential privacy may be applied when the goal is to release a function

itself. The main types of functions we envision are kernel density estimates and the regression

functions of support vector machines. We give techniques based on truncating an expansion of these

functions in an orthonormal basis. We demonstrate that since these functions lay in a reproducing

kernel Hilbert space, the basis of eigenfunctions are a natural choice for the expansion. In this

case differential privacy is demonstrated even for the full (non-truncated) expansion, and we find

that the resulting method corresponds to the addition of a certain Gaussian process to the private

function.

Although these techniques work well they use a relaxation of differential privacy which might

be unappealing in certain situations (for example, De [2011] calls this relaxation “much weaker”

than the standard definition). Therefore we build up a second method for kernel density estimation

which does not require this relaxation. We show that the basic technique of adding noise to the

coefficients of the function in some orthonormal basis fails to maintain the convergence rate of

the unadulterated kernel density estimator. We instead use an alternative technique based on the

geometry of the underlying space of coefficients, which may be treated as a novel application of

the method of Hardt and Talwar [2010]. Under this method we find that the convergence rate is

preserved up to a logarithmic factor.

We then present some weakenings of differential privacy and explain how they can lead to better

accuracy at the expense of a weaker privacy guarantee.

1.1.2 Related Work

Research into privacy preserving datamining began in the 1980s in both statistics and computer

science. Most of the early work may be regarded as providing methods for database access which
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preserved privacy either through randomization of the response, or by explicitly limiting the kinds

of queries which may be asked of the database.

It was long argued that the superior method for privacy protection was to grant users only

selective or partial access to the data (see e.g., Conway and Strip [1976]). Thereupon, at the

discretion of some administrator, sensitive variables in the data were obscured, either by the addition

of noise, through partitioning (e.g., replacing values which fall in some range with a unique identifier

for that range), or by disassociating values from the individuals to whom they correspond. More

recently a similar idea has been used in order to permit access to a medical database via a web

portal curated by an administrator (see e.g,. O’Keefe and Good [2008]; Sparks et al. [2008]; Reiter

[2003b]). There, a user is allowed to perform an analysis (e.g., a linear regression, survival analysis

etc) through a web interface, whereupon the server either sanitizes the returned model (for example

through the addition of noise), or returns nothing if the model is deemed too disclosive of individuals’

data. The determination of which type of response is appropriate for a given analysis is made on

the basis of some heuristic rules.

Another family of techniques may be regarded as replacing the data itself with something “sim-

ilar” but different to the private database, and then allowing full access to that data. Reiss [1984];

Liew et al. [1985] replace the data with samples drawn from some distribution. More recently Re-

iter [2003a] applied a similar technique, which built a decision trees model of the sensitive variables

based on the non-sensitive ones, and Reiter [2004] similarly built a mixture of Gaussians. In either

case the private data was replaced by samples from the learned models. Here since the released

data did not expressly correspond to individuals in the original data (since the released data were

samples from some distribution) it was regarded as private. Other techniques perform data masking

via the addition of e.g., normally distributed noise (e.g., Duncan and Pearson [1991]; Duncan and

Stokes [2009]). In order to perform statistical inferences on the resulting data, measurement error

models are typically used (see e.g., Fuller [1993]; Duncan et al. [2001]). The tradeoff between the

disclosure risk and the accuracy of the inference was considered in Trottini et al. [2004].

Finally we note that another set of techniques are the so-called matrix masking of e.g., Ting

et al. [2008]; Duncan and Pearson [1991]; Duncan et al. [2011]. When the database is regarded

as a matrix of real values, then matrix masking refers to the family of techniques which multiply

said matrix on either side by two different potentially random matrices (which may e.g., select

particular rows and columns of the data) and finally adding a third matrix to the result. Ting et al.

[2008] chose these random matrices specifically to preserve the sufficient statistics to a multivariate

Gaussian model of the data, while masking the actual values themselves. Thus these techniques are

well suited to statistical analysis of the private data.

In parallel to the development of methods for preserving privacy, was a line of work focused on

determining appropriate measures of privacy protection. Agrawal and Srikant [2000] determines the
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level of privacy by the sizes of the confidence intervals that may be determined for the individual

data elements (for example when adding noise to the data itself, or to the result of some statistical

analysis). Reiter [2005] considered the probability that a unique individual in the sanitized data

may be linked to some external file (thus revealing his sensitive information).

Motivated by the prospect of such “linkage attacks” on sanitized data, Sweeney [2002] proposed

the “k-anonymity” criteria. This was a standard of privacy with a parameter which controlled the

probability that a correct linkage could be made. Eventually it was determined that there was still

the prospect for sensitive information to leak from such methods, leading to the creation of further

improvements (see e.g., Kifer and Gehrke [2006]; Li and Li [2007]). In hindsight, these criteria

may be regarded as reactionary in that they each prevented only certain kinds of “attacks” on the

sanitized data which had appeared in the literature.

Dinur and Nissim [2003] first attempted to quantify the privacy of data release. There, the

type of analyses permitted on the database were restricted to counting queries (e.g., to determine

how many individuals meet a certain criteria). Privacy was determined by whether an adversary

with access to the answers of such queries can reconstruct a non-trivial fraction of the database.

This eventually lead Blum et al. [2005] to conceptualize privacy as rendering the private database

indistinguishable from hypothetical similar databases. If an attacker cannot distinguish between a

large set of input databases, any of which may have produced the same results to his queries, then

he cannot with confidence claim to have uncovered anything beyond the characteristics intrinsic to

all the elements of that set. This lead Dwork [2006] to develop differential privacy .

Since the inception of differential privacy the overwhelming majority of computer science re-

search in privacy preserving datamining has adopted that notion of privacy. Blum et al. [2005]

demonstrated that enough linear queries of a database may be answered with sufficient accuracy to

perform machine learning on the data, and Dwork et al. [2006a] extended this to secure multiparty

protocols. These may be regarded as predominantly theoretical constructions which asserted the

learnability of important classes of functions under the differential privacy criterion. The work

which immediately followed these was concerned with the constructions of differential privacy pre-

serving methods which are useful in practise. The first set of methods involved noise addition in

which the magnitude of the additive noise depended on the “sensitivity” of the released function

(Dwork [2006]). After this there were attempts to reduce the amount of noise either through more

complicated measures of the sensitivity (Nissim et al. [2007]), or through more elaborate treatments

of the functions themselves (Dwork et al. [2006b]). In order to permit statistical inferences of a

type which may not admit the requisitely bounded sensitivity, Dwork and Lei [2009] proposed to

employ the methods of robust statistics. The non-private versions of the robust estimators may be

intuitively seen to be less disclosive, since the affect of an individual data point on the output is

reduced.
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1.2 Differential Privacy

Here we recall the definition of differential privacy and introduce some notation. LetD = (d1, . . . , dn) ∈
D be an input database in which di represents a row or an individual, and where D is the space of

all such databases of n elements. For two databases D,D′, we say they are “adjacent” or “neighbor-

ing” and write D ∼ D′ whenever they differ in one element. That is, D′ is constructed from D by

removing one element and inserting a different element. Thus D ∼ D′ means that |D| = |D′| and

that the size of the symmetric difference is 2. In some other works databases are called “adjacent”

whenever one database contains the other together with exactly one additional element.

We may characterize a non-randomized algorithm in terms of the function it outputs, e.g.,

θ : D → Rd. Thus we write θD = θ(D) to mean the output when the input database is D. Thus,

a computer program which outputs a vector may be characterized a family of vectors {θD : D ∈
D}. Likewise a computer program which is randomized may be characterized by the distributions

{PD : D ∈ D} it induces on the output space (for example some Euclidean space Rd) when the

input is D. Since the non-randomized algorithms are in essence degenerate forms of randomized

algorithms (in which the distributions concentrate to single points in the output space), we only

consider randomized algorithms, which are also referred to as “mechanisms.” We define differential

privacy using this characterization of randomized algorithms.

Definition 1.2.1 (Differential Privacy). A mechanism P = {PD : D ∈ D} on (Ω,A) is called

(α, β)-differentially private whenever

∀D ∼ D′, ∀A ∈ A : PD(A) ≤ eαPD′(A) + β, (1.1)

where α, β ≥ 0 are parameters.

Typically the above definition is called “approximate differential privacy” whenever β > 0, and

“(α, 0)-differential privacy” is shortened to “α-differential privacy.”

1.2.1 Interpretation

The definition is strong because it protects the data against an imagined adversary who has access

to a great deal of side information. Specifically, an adversary who knows all but one element of

D, and who observes the output of some private algorithm (which we treat as a sample from PD)

cannot with confidence determine the values of the other data element. We may formulate the

guarantee given by differential privacy in terms of the hypothesis test that may be performed by

said adversary.

Proposition 1.2.2. For D = {x1, . . . , xn}, a ∼ PD where PD is from some (α, β)-differentially
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private mechanism, when testing the hypothesis

H : D = DH , vs V : D = DV ,

where

DH = {x1, . . . , xi−1, x, xi+1, . . . , xn}, DV = {x1, . . . , xi−1, x
′, xi+1, . . . , xn},

any test function Ψ(a) with size γ has power smaller than eαγ + β.

Proof. Note that the rejection region of the test R(Ψ) = {a : Ψ(a) = 1} is a measurable set and so

R(Ψ) ∈ A. Also DH ∼ DV and so∫
R(Ψ)

dPDV (a) ≤ eα
∫
R(Ψ)

dPDH (a) + β,

since PDH is the distribution corresponding to the null hypothesis and PDV corresponds to the

alternative, these integrals give the power and size of the test respectively, leading to the stated

result.

The above proposition is a modified version of Lemma 2.4 of Wasserman and Zhou [2010] – the

modification being to incorporate the parameter β and simplify the proof. Note that the extension to

the case V : xi 6= x is straightforward, and the bound on the power holds uniformly throughout the

alternative hypothesis (since the differential privacy condition holds uniformly for all neighboring

data sets). Also note that in the proof xj for j 6= i could take on any values whatsoever. The

interpretation is that the adversary when constructing the test Ψ may indeed know the exact values

of these xj . Whether he does or not, he is still unable to reliably decide the value of xi. Therefore

the adversary can be seen as having almost complete data, in the language of cryptography this

is his “side information.” When the xi correspond to individuals the above is equivalent to the

adversary knowing the identity of all but one individual in the database, but still being unable to

decide the identity of the unknown one.

There is a second interpretation of differential privacy which is in the context of individuals

deciding whether to deliberately misreport their values in some database. For example, deciding

whether to give truthful responses in some survey, knowing that the responses will be made public

via some differentially private method. As remarked in McSherry and Talwar [2007], differential

privacy ensures that individuals have very little incentive to misreport values, where the incentive

is controlled by the parameter α.
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1.2.2 Approximate Differential Privacy

We note that the approximate differential privacy may be regarded as permitting the failure of the

exact differential privacy criteria, with probability at most β, where the probability is due to PD.

Proposition 1.2.3. Suppose that, for all D ∼ D′, there exists a set A?D,D′ ∈ A such that, for all

S ∈ A,

S ⊆ A?D,D′ ⇒ PD(S) ≤ eαPD′(S) (1.2)

and

PD(A?D,D′) ≥ 1− β. (1.3)

Then the mechanism {PD} achieves the (α, β)-DP.

Proof. Let S ∈ A. Then,

PD(S) = PD(S ∩A?) + PD(S ∩A?C) ≤ PD(S ∩A?) + β

≤ eαPD′(S ∩A?) + β ≤ eαPD′(S) + β.

The first inequality is due to (1.3), the second is due to (1.2) and the third is due to the subadditivity

of measures.

Thus the set A?D,D′ may be regarded as a set on which α-differential privacy holds, for β = 0

then this is evidently a set of measure one and thus the complement of A?D,D′ has measure zero

under both PD and PD′ so the α-differential privacy condition holds everywhere, rather than almost

everywhere. Note that the above is called “pointwise differential privacy” by Kasiviswanathan and

Smith [2008].

The converse of the above is evidently not true. Consider a pair of distributions P,Q over 0, 1

with

P (0) = Q(1) =
1

2

(
1 +

eα − 1

eα + 1

)
, P (1) = Q(0) =

1

2

(
1− eα − 1

eα + 1

)
,

and so
P (0)

Q(0)
=
Q(1)

P (1)
= eα,

then perturbing these distributions to e.g.,

P ′(0) = Q′(1) =
1

2

(
1 +

eα − 1

eα + 1

)
+

β

eα + 1
, P ′(1) = Q′(0) =

1

2

(
1− eα − 1

eα + 1

)
− β

eα + 1
,

gives a pair of distributions which fulfil the (α, β)-differential privacy but for which there is no

non-empty set of the output space in which the ratio of probabilities is bounded by eα on each
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subset. Therefore the interpretation of approximate differential privacy as having some “failure

probability” given by β is not generally true. The above proposition is thus only helpful in that it

gives a way to construct private methods.

As noted in De [2011], the approximate differential privacy is much weaker than the unadulter-

ated differential privacy in some situations.

1.2.3 Composition

Note that the α-differential privacy has the property that it “composes” nicely.

Proposition 1.2.4. Let P = {PD : D ∈ D} on (Ω,A) be α-differentially private, and let Q =

{QD : D ∈ D} on (Ω′,A′) be α′-differentially private. Then the mechanism RD on the product

space (Ω× Ω′,A⊗A′) given by

RD(A×A′) = PD(A)QD(A′), ∀A×A′ ∈ A⊗A′,

satisfies α + α′-differential privacy. Here A ⊗ A′ is the smallest σ-field which contains the sets of

the form A×A′ for all A ∈ A and A′ ∈ A′.

Proof.

RD(A×A′) = PD(A)QD(A′) ≤ eαPD′(A)eα
′
QD′(A

′) = eα+α′RD′(A×A′).

Evidently a similar property holds for approximate differential privacy. This demonstrates first

that the differential privacy guarantee given above degrades gracefully (rather than completely

failing) when multiple programs are all producing output regarding the same dataset. Thus some

burden is taken off the practitioner, since he does not have to determine what other privacy preserv-

ing analyses have taken place on his input data. Second it demonstrates that differentially private

procedures may be constructed from differentially private sub-procedures. For example if the goal

is to perform a regression, it may be necessary to choose the regularization parameter. However

this choice itself depends on the data (and hence has the capability to leak information about the

dataset). In light of the above proposition, one method is to perform the regression say k times,

each time with a different value of the regularization parameter (e.g., the values taken from some

grid which spans a few orders of magnitude), use some α/k-differentially private method to estimate

the risks, and then choose the minimizer among those to be output. The procedure will then have

the overall α-DP guarantee.
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1.2.4 Post-Processing

Another appealing characteristic of the differential privacy is that arbitrary “post-processing” by

the recipient of the output does not alter the privacy guarantee.

Proposition 1.2.5. Let {PD : D ∈ D} on (Ω,A) achieve the (α, β)-differential privacy, and let

f : Ω→ S be some arbitrary measurable function, then the induced measures on (S,B) given by

QD(B) = PD
(
f−1(B)

)
, B ∈ B

also achieve the (α, β)-differential privacy.

Proof. Due to measurability of f , f−1(B) ∈ A for all B ∈ B and so

QD(B) = PD
(
f−1(B)

)
≤ eαPD′

(
f−1(B)

)
+ β = eαQD′(B) + β.

Note that the σ-field B may be taken as the one generated by f acting upon A.

1.3 Basic Methods

Here we summarize some of the basic methods which have been used in the literature for the differ-

entially private release of finite dimensional vectors. Many types of statistical analysis and machine

learning methods are characterized by finite dimensional vectors, for example point estimation of

finite dimensional models Smith [2008], histograms Dwork and Smith [2010], logistic regression co-

efficients Chaudhuri et al. [2011], parameters to a linear support vector machine Rubinstein et al.

[2010]; Chaudhuri et al. [2011], contingency tables Barak et al. [2007] and others. For all these

types of analysis we may interpret the non-private method as outputting a vector, depending on

the input database. Thus we may characterize a particular analysis as a set of vectors

{θD : D ∈ D} ⊆ Rp, θD = θ(D),

in which θ(D) is the result of the non-private algorithm on input D, and we note that the dimension

of each θD is the same. In the case that they are not, but the maximum dimension of θD over all

D is bounded above, then this constraint may be worked around by embedding the vectors into

some appropriate higher dimensional space. In moving to private versions of these vectors it will

be important that they all have the same dimension, since otherwise the dimension itself would

potentially reveal information about D.
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When the goal is the differentially private output of some vector, the standard approach is to

devise a randomized algorithm which outputs something “close” to the requisite vector with high

probability. Thus, to construct a set of measures PD over Rp which fulfil the differential privacy

and for which the “risk” ∫
Rp

∥∥∥θD − θ̃D∥∥∥2

2
dPD(θ̃D),

is small. We examine the risk in greater detail in the next chapter. Next we proceed with some

comparisons of three methods for constructing the measures PD which have appeared in the litera-

ture.

1.3.1 Noise Addition

The prototypical differentially private procedures are the addition of Laplace (also called Double-

Exponential) noise when β = 0, and Gaussian noise, when β > 0. Sometimes these techniques

are called “perturbation” (see e.g., Wasserman and Zhou [2010]). Thus each PD is constructed

by centering the appropriate noise distribution at θD. In each case the noise is calibrated to the

“sensitivity” of the vector in question. If one element of D can potentially have a large impact on

the vector, then a large amount of noise may be required.

Proposition 1.3.1. The mechanism with output space Rd defined by

dPD(x) ∝ exp

{
− α

∆1
‖x− θD‖1

}
, (1.4)

achieves the α-differential privacy whenever

sup
D∼D′

‖θD − θD′‖1 ≤ ∆1. (1.5)

Proof. The result follows directly from the subadditivity property of norms. This proof is from

Dwork [2008]. First note that since all PD range over Rd, they all have the same normalizing

constant and so

dPD(x)

dPD′(x)
= exp

{
α

∆1
(‖θD′ − x‖1 − ‖θD − x‖1)

}
≤ exp

{
α

∆1
‖θD − θD′‖1

}
≤ exp {α} .
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Finally since the ratio of densities is bounded we have

PD(A) =

∫
A
dPD ≤

∫
A
eαdPD′ = eαPD′(A),

which is the desired result.

The densities (1.4) correspond to the Laplace or double exponential pdf. This is a location

family with the location given by θD. Thus the release of θ̃ ∼ PD may be achieved by taking

θ̃ = θD + L where L is drawn from the Laplace distribution having mean zero and scale parameter

∆1/α.

The quantity ∆1 above is referred to as the “global sensitivity” of the function θ. Note that

it typically depends on n, the size of the input database. When for example θ is the mean of the

data, and the data lay in a compact set, then the global sensitivity of θ is on the order O(n−1). In

light of the above remark, evidently the average magnitude of the added noise will be proportional

to the sensitivity and inversely proportional to α.

Note that in the above proof the norm ‖ · ‖1 could be replaced by any norm whatsoever (in

both the density and the sensitivity), since the triangle inequality (i.e., the subadditivity property

of the norm) was the entirety of the proof. This is the basis for the “K-norm” method due to Hardt

and Talwar [2010] which is described below, but first note that we may replace the norm with a

Euclidean norm and the resulting algorithm is still characterized by noise addition from a certain

parametric family. For some fixed covariance matrix Σ denote the Euclidean norm

‖x‖2Σ = ‖Σ−1/2x‖22 = xTΣ−1x, (1.6)

we have

Proposition 1.3.2. The mechanism defined by

dPD(x) ∝ exp

{
− α

∆Σ
‖x− θD‖Σ

}
, (1.7)

fulfils the α-differential privacy whenever

sup
D∼D′

‖θD − θD′‖Σ ≤ ∆Σ. (1.8)

Sampling such a density is equivalent to taking

θ̃ = θD +X, X ∼ dP (x) ∝ exp
{
− α

∆
‖x‖Σ

}
.
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Noise Generation

We turn to the generation of such a random variable as suggested above. Denoting by ‖ · ‖2 the

usual Euclidean norm, we note that it suffices to generate

y ∼ 1

Z
exp

{
− α

∆Σ
‖y‖2

}
,

where Z is the normalization constant, since x = Σ1/2y has distribution

x ∼ |Σ
−1/2|
Z

exp

{
− α

∆Σ
‖Σ−1/2x‖2

}
=

1

Z|Σ|1/2
exp

{
− α

∆Σ
‖x‖Σ

}
.

We decompose y = rθ in which θ is a vector having ‖θ‖2 = 1 and being distributed uniformly over

the unit sphere in Rd, whereas r ≥ 0 is a scalar having density

f(r) ∝ Sd(r) exp

{
− α

∆Σ
r

}
, Sd(r) =

2πd/2rd−1

Γ(d/2)
,

the latter being the surface area of the sphere of radius r in d dimensions. We recognize this to be

the Gamma distribution, having “shape” parameter d and “scale” parameter ∆Σ/α. Therefore we

have

r ∼

(
α

∆Σ

)d
Γ(d)

rd−1exp

{
− α

∆Σ
r

}
.

1.3.2 Noise Addition for Approximate Differential Privacy

Likewise approximate differential privacy may be achieved by the addition of an appropriately scaled

Gaussian vector.

Proposition 1.3.3. Under condition (1.8) the mechanism defined by the densities

dPD(x) ∝ exp

{
−1

2

(
α

c(β)∆Σ

)2

(x− θD)T Σ−1 (x− θD)

}

achieves (α, β)-differential privacy whenever

c(β) ≥
√

2 log
2

β
. (1.9)
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Proof. Consider the ratio of the densities

dPD(x)

dPD′(x)
= exp

{
α2

2c(β)2∆2
Σ

[
(x− θD′)Σ−1(x− θD′)− (x− θD)TΣ−1(x− θD)

]}
.

This ratio exceeds eα only when

2xTΣ−1(θD − θD′) + θTD′Σ
−1θD′ − θTDΣ−1θD ≥ 2

c(β)2∆2
Σ

α
.

We consider the probability of this set under PD, in which case we have x = θD + c(β)∆Σ

α Σ1/2z,

where z is an isotropic normal with unit variance. We have

c(β)∆

α
zTΣ−1/2(θD − θD′) ≥

c(β)2∆2

α2
− 1

2
(θD − θD′)TΣ−1(θD − θD′).

Multiplying by α
c(β)∆Σ

and using (1.8) gives

zTΣ−1/2(θD − θD′) ≥
c(β)∆Σ

α
− α∆Σ

2c(β)
.

Note that the left side is a normal random variable with mean zero and variance smaller than ∆2
Σ.

The probability of this set is increasing with the variance of said variable, and so we examine the

probability when the variance equals ∆2
Σ. We also restrict to α ≤ 1, and let y ∼ N (0, 1), yielding

P

(
zTM−1/2(θD − θD′) ≥

c(β)∆Σ

α
− α∆Σ

2c(β)

)
≤ P

(
∆Σy ≥

c(β)∆Σ

α
− α∆Σ

2c(β)

)
≤ P

(
y ≥ c(β)− 1

2c(β)

)
≤ β

where c(β) is as defined in (1.9). Thus proposition 1.2.3 gives the differential privacy, the final

inequality arises from the Gaussian tail inequality.

In principle the above technique will typically add “less noise” than the former, in the sense

that the noise variable will have a small magnitude with high probability, however this comes at

the price of a weakened privacy guarantee.

1.3.3 The K-norm Mechanism

Here we give a modified version of the “K-norm” method due to Hardt and Talwar [2010]. It was

originally proposed for the specific task of the release of some linear function of a database which

was regarded as a vector of counts (i.e., a histogram). Here we modify the approach so that it
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applies to the release of an arbitrary statistic.

Recall that associated with any convex body K ⊂ Rd is a seminorm

‖x‖K = inf {r > 0 : x ∈ r ·K} ,

where

r ·K = {rv : v ∈ K},

is the scaling of the set K by some real number r. Whenever K is centrosymmetric ‖ · ‖K is a norm

since it also has the property that ‖v‖K = 0 holds only for v = 0. Evidently this seminorm has the

requisite subadditivity needed for the usual construction of a differentially private mechanism (i.e.,

in the proof of Proposition 1.3.1), and therefore we have

Proposition 1.3.4. The mechanism defined by the densities

dPD(x) ∝ exp

{
− α

∆K
‖θD − x‖K

}
,

achieves the α-differential privacy whenever

∆K ≥ sup
D∼D′

‖θD − θD′‖K .

When we have for example

{θD : D ∈ D} ⊆ K ⊂ Rd,

for some convex set K, then evidently ∆K ≤ 2. Note that when K is a unit sphere in the Euclidean

norm then the K-norm method is the same as (1.7) with Σ = I. Likewise when K is the unit ball

in the `1 norm then the K-norm method becomes (1.4).

Finally we note the difference in the above presentation of the K-norm mechanism versus the

presentation given in Hardt and Talwar [2010]. There the task at hand was specifically the release

of a linear function of the database, where the latter was regarded as a vector of integers (the

coordinates corresponding to the number of each “type” of individuals present in the database).

Thus they considered the convex set given by the image of the appropriately dimensioned `1-ball

under the requisite linear function. Evidently in this situation ∆K may be taken as 1, which leads

to their method.

What remains to be seen are a method for performing the sampling according to the above

measures, and to determine the expected error due to this approach in the general case. Since the
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PD(x) are clearly a location family having location θD, sampling these is equivalent to sampling

θ̃ = θD +X, X ∼ dP (x) ∝ exp

{
− α

∆K
‖x‖K

}
.

In Hardt and Talwar [2010] it is demonstrated that the latter distribution may be treated as a

composition of two parts just as in the sampling of (1.7), namely to take

X = rV, r ∼ Γ

(
d+ 1,

∆K

α

)
, V ∼ Uniform(K),

where the latter means the uniform distribution over K.

1.3.4 The Exponential Mechanism

Note that the above techniques all result in the output of real values. In some types of problems the

output is a discrete structure rather than a real vector (for example, histograms, counts, contingency

tables, and decision trees). In such cases the addition of real valued noise to the output might spoil

some important properties of the output (for example, to cause the histogram to sum to some

quantity other than n), or may be meaningless (for example to add noise to a decision tree). To

address such problems the Exponential Mechanism was introduced by McSherry and Talwar [2007].

The basic idea may be regarded as introducing some metric to the discrete output space, and then

applying a discrete analogue of the Laplace noise addition.

Proposition 1.3.5. Let Ω be some set and g : Ω × Ω → R0+ the latter meaning the non-negative

real numbers. Then for output ωD ∈ Ω the probability distributions

PD(ω) ∝ exp

{
− α

2∆g
g(ω, ωD)

}
,

provide α-differential privacy whenever

∆g ≥ sup
ω∈Ω

sup
D∼D′

|g(ω, ωD)− g(ω, ωD′)| .

Proof. Define

PD(ω) =
QD(ω)

ZD

with

QD(ω) = exp

{
− α

2∆g
g(ω, ωD)

}
,
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and the normalization constants

ZD =

∫
Ω
dQD(ω).

Then for each ω ∈ Ω, when D ∼ D′

e−α/2 ≤ QD(ω)

QD′(ω)
≤ eα/2,

and so

e−α/2 ≤ ZD
ZD′

≤ eα/2,

Thus finally

e−α ≤ QD(ω)/ZD
QD′(ω)/ZD′

≤ eα.

Note that if g is a metric then it suffices to take

∆g ≥ sup
D∼D′

g(ωD, ωD′),

in the case Ω = R and g(a, b) = |a − b|, then the similarity to the Laplace noise addition is clear.

The difference is that in general the normalization constants may be different (for example when Ω

is some interval in R), which leads to the factor of two in the exponent of the probability density.

1.3.5 Optimal Discrete Mechanisms via Linear Programming

Suppose θ(D) takes on a finite number of values, for simplicity consider the counting queries θ(D) ∈
N = {1, . . . , n} given by

θ(D) =

n∑
i=1

1 {xi ∈ B} ,

for some set B. The extension to various other discrete structures is straightforward. Under the

above condition, note that a differentially private method for the release of θ(D) may be character-

ized by a set of n discrete probability distributions over N , since we lose nothing (see Gupte and

Sundararajan [2010] appendix A) by regarding the set of probability distributions as being indexed

by θ(D) rather than the D themselves, namely

PD(i) = Pθ(D)(i) = Q(i, θ(D)).
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Here Q may be regarded as a n× n matrix Q = qi,j of real numbers. The constraints that the PD

all obey differential privacy, and form valid probability distributions take the form

m∑
i=1

qi,j = 1, ∀j ∈ N, (1.10)

qi,j − eαqi,j+1 ≤ 0, qi,j+1 − eαqi,j ≤ 0, ∀j = 1, . . . ,m− 1,∀i ∈ N, (1.11)

qi,j ≥ 0, ∀i, j ∈ N.

Regarding Q as a vector in Rm2
(e.g., by stacking the columns together) the above constraints form

a bounded closed convex polyhedron with a non-empty interior. It is bounded due to e.g. (1.10)

which ensures that the interior is a subset of the n-fold cartesian product of n-dimensional simplices.

It is clearly a convex polyhedron since all the constraints are linear inequalities, finally it certainly

has a non-empty interior because differentially private methods exist for this problem (for example,

take the Q given by the exponential mechanism).

As noted in Hardt and Talwar [2010] and also expanded in Gupte and Sundararajan [2010],

these constraints may be used along with linear programming in order to give methods which

are “optimal” in the sense of minimizing a certain Bayes’ risk. We specify some loss function

` : N ×N → R, which characterizes how bad it is when θ(D) = i and the private method outputs

j. Also we specify some prior distribution Λ on N , then we may minimize the resulting Bayes’ risk,

which is given by a the expectation of the pointwise risks under the prior distribution

R(Λ) =

n∑
i=1

Λ(i)

n∑
j=1

`(i, j)Pi(j).

As this function is linear for fixed ` and Λ, and the above constraints are also linear, determination

of the minimizer may be achieved via linear programming. Note that this technique yields an

optimal method for the counting problem, in time polynomial in n. Therefore it may be applicable

for problems of a small size.

1.4 Relationship to Cryptographic Protocols

Part of the literature on privacy preserving data mining concerns the construction of cryptographic

protocols Vaidya et al. [2005]; Lindell and Pinkas [2009]; Goldreich [2004, 1998]. A cryptographic

protocol is in essence a method to compute a particular function of the data (or in the language

of cryptography a “functionality,” which assigns a possibly different output to each user) in a way

which prevents leakage of sensitive information during the computation. Cryptographic protocols
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mainly apply to data mining in cases when the input data is split between two or more agencies

(parties). An example is the analysis of the data held by the census bureau, combined with tax data

held by the IRS. In this case since the parties involved are precluded from sharing the information

with each other they may perform a cryptographic protocol which will yield the same response as

though they had shared their data, but in a way which maintains the appropriate privacy.

A protocol for computing the functionality is just a sequence of steps, consisting of parties

performing local computations, and sending intermediate messages to each other. There are various

cryptographic models which are used to judge the level of security afforded by a protocol. One

which is popular in the privacy preserving data mining literature is the so-called “semi-honest” (or

“honest but curious”) model. In this model it is assumed that parties will obey the protocol (and do

not try to e.g., inject malformed data or otherwise subvert the protocol) but keep a transcript of all

the messages they receive. Intuitively, a protocol is secure in this setting whenever the intermediate

messages give no information about the secret inputs of other parties.

Formally, a protocol is secure so long as there exists a set of polynomial time algorithms (on

for each party involved) which, when given only the input and output of party to that party out-

puts a random transcript of message which is computationally indistinguishable from the transcript

generated by a real run of the protocol. See Goldreich [2004] for a definition and discussion of com-

putational indistinguishability. In essence, if the distribution of the sequence of messages depends

only on the private input and output of that party then we can simulate messages by drawing from

this distribution (so long as the random number generator returns samples which are computation-

ally indistinguishable from draws from the distribution). The existence of a simulator shows that

intermediate messages do not depend on the private input of other parties, and so the protocol is

secure in the sense that parties gain no more information about each other’s private inputs than

that revealed by the output of the protocol.

An example of a protocol which does not achieve this definition of security is one where all

parties send their data to party 1, who computes the analysis locally on the combined data and

then sends it back to all other parties. In this case the messages received by party 1 consist of the

data of other parties, in general it is impossible to simulate these messages given only the input and

output belonging to party 1. Examples of protocols for regression which achieve the security under

the semi-honest model are given in Hall et al. [2011]; Fienberg et al. [2012].

On the surface, differential privacy may be regarded as “orthogonal” to cryptographic proto-

cols, in the sense that it prevents the output from leaking sensitive information whereas the other

protects the computation itself. Thus for a multiparty setting in which multiple agencies each have

private data, it may be beneficial to make use of both privacy models. That is, one could build

protocols which admit both differential privacy and cryptographic security, for example by adding

appropriately scaled noise to the output in a secure way. Examples of methods which achieve this
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are given in the original paper by Dwork and coauthors Dwork et al. [2006a].

On the other hand, differential privacy may yield an alternative to the cryptographic protocols.

For example, if the messages to be sent during the protocol have appropriately bounded sensitivity,

then noise could be added to those in order to ensure that they admit differential privacy. Then

the entire protocol would achieve differential privacy due to the composition property. This may

be an attractive alternative to cryptographic protocols, since it sidesteps the need for homomorphic

encryption which is sometimes too computationally burdensome in practice (especially when dealing

with large data). Beimel et al. [2011] discuss this explicitly.

1.5 Summary

In this section a few of the basic techniques for achieving differential privacy were reviewed. We

summarize the applicability of the methods in table 1.1 below. We note that in principle these

techniques all follow a very similar pattern. First the output space is metrized, then the sensitivity

of the output vector is bounded, and finally an output is sampled from the output space, from a

measure which depends on both the input and the choice of metric. The difference between the

methods listed above is simply the metric used (except for the exponential mechanism which is the

discrete analog to the other methods).

Name Output Space Metric Privacy Guarantee

Laplace Mechanism Euclidean space `1 distance α-DP.
“Gamma Mechanism” Euclidean space `2 distance α-DP.
Gaussian Mechanism Euclidean space `2 distance (α, β)-DP.
K-norm Mechanism Euclidean space Minkowski norm α-DP.

Exponential Mechanism Discrete space Arbitrary α-DP.

Table 1.1: Applicability of the basic techniques of Differential Privacy.

We note that table 1.1 leaves out some plausible methods which have so far not appeared in use.

Namely the (α, β)-DP equivalents of the K-norm and Exponential Mechanisms. For example, it

seems plausible that by squaring the metric where it appears in the resulting probability distribution,

would lead to something similar to the Gaussian mechanism and which would admit the approximate

differential privacy.

20



Chapter 2

Differential Privacy and Minimaxity

in Discrete Problems

Evidently the techniques of the preceding section will output a random variable, having mean equal

to the requisite quantity. We may characterize the “risk” of a differentially private procedure in

terms of the expected deviation from the requisite output. This parallels the same concept in

statistical estimation, where estimators with small risk are favored. There the goal is to output a

quantity of interest about a particular probability distribution, and the noise is due to the random

nature of the data. We note that we are not referencing the “disclosure risk” which arises in

the so-called “risk-utility tradeoff” Fienberg et al. [2010]. We suppose that differential privacy

has addressed the problem of disclosure risk, and simply ask what utility may be expected of the

resulting procedures. In this sense, our risk is the opposite of the normal notion of “utility.” Some

concepts in this chapter have been considered before in the differential privacy literature, namely

in De [2011] and Hardt and Talwar [2010]. We mention similarities to these works as they arise.

2.1 Risk and Minimaxity

We define the risk as the expectation of the error introduced by the private procedure, relative to

the output of the corresponding non-private procedure.

Definition 2.1.1 (Risk). For some function θ : D → Z where Z is the output space equipped with

some metric `, and some set of distributions P = {PD : D ∈ D} define the risk

R(θ, P,D) =

∫
Z
`(θD, z) dPD(z). (2.1)

For some procedure P we consider the maximum of the risk as D ranges over D. This is the
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risk of the “hardest” input for that particular procedure

R?(θ, P ) = max
D∈D

R(θ, P,D).

In designing a procedure P , it is useful to understand the theoretical best possible performance

we may anticipate in terms of R?. This quantity is exactly the analog of the “minimax” risk from

statistics. Here the constraint on the family P is that imposed by differential privacy (1.1). Define

by DP (α, β) the set of all P that satisfy the (α, β)-DP, then we define the minimax risk as

R?α,β(θ) = inf
P∈DP (α,β)

R?(θ, P ).

It is useful to understand the dependence of the quantity on:

• the number of samples n,

• the dimension of the output d,

• the specific metric (or “loss function”) `,

• the parameters α, β.

Note that the first two of the above are implicitly “baked” into the definitions of D and Z respec-

tively. In the remainder of this chapter we undertake the determination of the above quantity when

θ corresponds to some statistical analysis of the data. We recall and present some novel as well as

known lower bounds in the minimax risks faced by differentially private procedures, and conclude

with some experiments which demonstrate the impact of such noise on the analysis itself.

2.1.1 Risk Decomposition

From the perspective of statistical analysis, the input database D may be regarded as a sequence

of draws from a probability distribution. Note that such a supposition does not change the privacy

guarantee established by differential privacy, but will be used in the construction of weaker privacy

models below. In statistics the data are regarded as a sample from some unknown distribution F ,

and the goal is typically to estimate some features of F . For example, the mean and variance of the

distribution, the shape of its density function, or the relationship between different variables in a

multivariate setting. When the computed function θ : D → Z of Definition 2.1.1 corresponds to an

estimation of a functional of the distribution F , then there is already a concept of risk associated

with the measurement. Overloading notation to let θ(F ) ∈ Z correspond to the requisite property

of the unknown distribution, the risk is defined by:
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R(θ, F ) =

∫
D
`(θ(D), θ(F ))dF (D)

Here the randomness is due to the unknown measure F , and is taken over the space of databases

arising from F . Here ` is some metric on the output space Z. Sometimes this quantity is described as

the “sampling error” inherent to the procedure θ, as it represents the average amount of inaccuracy

in determining θ(F ) on the basis of a random sample. When the procedure is also required to fulfil

differential privacy the risk may be written as

R(P, θ, F ) =

∫
D

∫
Z
`(z, θ(F )) dPD(z) dF (D)

≤
∫
D

∫
Z
`(z, θ(D)) + `(θ(D), θ(F )) dPD(z) dF (D)

≤ sup
D∈D

∫
Z
`(z, θ(D)) dPD(z) +

∫
D
`(θ(D), θ(F )) dF (D)

= R?(θ, P ) +R(θ, F ).

Where the first inequality is the triangle inequality. Typically minimax risks are known (sometimes

only up to constant factors) for the latter term, therefore the effect of requiring differential pri-

vacy is considered benign whenever the former term grows no faster than the latter. This means

that (at least asymptotically) the requirement of differential privacy does not drastically effect the

performance of the estimator.

In order to understand which statistical tasks are amenable to privatization, and which are

rendered impossible by the noise requirements of differential privacy, we turn to the construction

of lower risk bounds for the term R?(θ, P ). In this section we first recall some useful inequalities

which are used in statistics for the purpose of lower bounding the risks inherent in certain estimation

problems. We then demonstrate how these types of inequalities may be applied to give lower bounds

on the added risk due to differential privacy when the problem is the release of a histogram. We

note the similarities and differences compared to the method of Hardt and Talwar [2010] and De

[2011] also.

2.2 Information Theoretic Inequalities from Statistics

We recall some inequalities from information theory and statistics, see Yu [1997] for a more detailed

account. These will be used to give the lower risk bounds. First is an inequality due to Fano.

Suppose we have n probability distributions on any space whatsoever, say Pi as i = 1, . . . , n on Z
(the σ-field is not important). On the basis of one sample z ∼ Pj from one of these distributions we
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try to identify j, thus we have some function δ : Z → {1, . . . , n} which is our estimator. Evidently if

all the distributions were close together in some statistical distance this becomes difficult. Suppose

we incur some loss `(Pi, Pj) = `(i, j) whenever the observation arises from Pj and we have the

estimate δ(z) = i. Define the risk as

R(j, δ) =

∫
Z
`(j, δ(z)) dPj(z),

then Fanos inequality gives

inf
δ

max
k∈{1,...,n}

R(k, δ) ≥ 1

2
min
i 6=j

`(i, j)

(
1−

maxi 6=jK(Pi, Pj) + log 2

log n

)
, (2.2)

thus no matter the choice of δ, the maximum risk it attains over the set {1, . . . , n} is bounded

below. Typically, in using this inequality we do not take all possible distributions in whatever our

parameter space, but rather try to construct some kind of packing. That is, we try to determine

a subset of the distributions over which the term mini 6=j `(i, j) is sufficiently large. In doing so

it is important that the set also has a small diameter in the KL divergence, and a size which is

exponentially large, in order to make the parenthetical term non-negative. Note that restricting to

a subset of all available distributions makes the lower bound no stronger, and hence is still valid for

the complete problem. The reason is in essence that the larger problem is at least as hard as the

hardest sub-problem.

We now describe how this kind of inequality apply to the problem of risk lower bounds for

differentially private methods. We restrict attention to the (α, 0)-differential privacy, since it make

the resulting techniques amenable to an information theoretic analysis. The reason is that with

β = 0 the distributions PD must all be absolutely continuous with respect to one another. What’s

more, whenever densities dPD exist (i.e., whenever there is a dominating measure), quantities such

as the KL divergence exist, and so for D ∼ D′ ∈ D we have

K(PD, PD′) =

∫
Z

log
dPD(z)

dPD′(z)
dPD(z) ≤ α.

What’s more, denoting by dH the Hamming distance between databases of equal size, so that

dH(D,D′) gives the length of the shortest path between D and D′ in which each step is to a

neighboring database, then

K(PD, PD′) ≤ αdH(D,D′).

Thus the requisite KL term of (2.2) is dealt with. The use of the function δ may seem to have

no analogue in the setting of privacy. After all, we try to determine the set of distributions Pi, in

order to have small risk, whereas in statistics the distributions were given and we sought the best
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estimator. Nevertheless the theory still applies, note that in our setting we may consider δ as some

kind of post processing procedure which “cleans up” the output of some generic private procedure.

For example when the PD are the functions arising from noise addition then δ may be interpreted

as the function which projects the resulting real vector onto some discrete lattice (in the case of

count queries) for example. What’s more, in Gupte and Sundararajan [2010] such forms of post

processing were explicitly considered.

2.3 Lower Bounds for Counting Queries

First consider the simple case of counting queries, of the form

θ(D) =

n∑
i=1

1 {xi ∈ B} ,

where D = {x1, . . . , xn}, xi ∈ X and B ⊆ X . These type of statistics could be used for e.g., the

estimation of a binomial proportion parameter for some statistical model.

2.3.1 A Minimax Lower Bound

If we evaluate a private method for counting queries using the absolute value loss function, we have

the following bound on the minimax risk

Proposition 2.3.1. For α < 2 any α-differentially private family PD = Pθ(D) over 0, . . . , n must

obey

sup
D
R(θ, P,D) ≥ e−2

α
≈ 0.135

α
.

Proof. Suppose it were possible to have risk everywhere upper bounded by e−2/α, then we may

take any value τ and through Markov’s inequality find that for all values i that the counting query

may return

Pi([i− τ/2, i+ τ/2− 1]) ≥ 1− e−2

ατ
,

and so due to the α-differential privacy

Pi([i− τ/2 + tτ, i+ τ/2 + tτ − 1]) ≥ e−αtτ
(

1− e−2

ατ

)
.

Hence

Pi([i− τ/2, i+ τ/2− 1]C) ≥ Pi([i− 3τ/2, i− τ/2− 1]∪ [i+ τ/2, i+ 3τ/2− 1]) ≥ 2e−ατ
(

1− e−2

ατ

)
,
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taking τ = 2/α we may lower bound the risk at θ(D) = i by

R ≥ τ

2
Pi([i− τ/2, i+ τ/2− 1]C) ≥ 2e−2

α

(
1− 2e−2

)
>
e−2

α
,

which is a contradiction.

2.3.2 Uniform Lower Bounds for Counting Queries

The above minimax result demonstrates that for every α-differentially private method for a count

query, there is at least one input for which the risk is growing in the order shown. However the

prospect exists that at many other inputs the risk is much lower. In other words, our use of the

minimax risk may be giving too conservative a view of the difficulty of this problem. Here we

demonstrate that this is in fact not the case. We show that for large enough n, any procedure which

achieves the minimax risk up to a constant also has risk everywhere lower bounded away from zero,

in fact bounded within a constant factor of the minimax risk itself.

It is important to note that for general (i.e., non-minimax) methods it is impossible to give a

uniform lower bound to the risk, for example consider the method which always outputs 0. This

is differentially private for any α, and the output in fact gives no information whatsoever about

the input database, however in the case that the actual count was zero then this method achieves

zero risk leading to only the trivial uniform lower bound. In fact this phenomenon is not specific

to counting, the same kind of counterexample may be constructed irrespective of the output space.

The basic idea of the proof is to note that if the minimax risk is sufficiently small, then the

released histogram will – with high probability – be contained in a ball around the true histogram.

Since the probability that the output is in such a ball is not allowed to change much when the input

changes, we see that for a particular input, there is some non-zero probability that the output is in

the ball around a different true histogram, leading to non-zero risk.

Proposition 2.3.2. Any α-differentially private method PD which achieves

sup
D

n∑
i=0

∣∣∣θD − θ̃∣∣∣PD(θ̃) ≤ c

α
,

for some constant c and for all n, also obeys

inf
D

n∑
i=0

∣∣∣θD − θ̃∣∣∣PD(θ̃) ≥ c

2α
e−2c−α.

Proof. Note that for any D due to the uniform upper bound on the risk Markov’s inequality gives
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that for any integer τ

PD

(
[θD −

τ

2
, θD +

τ

2
]
)
≥ 1− c

ατ
,

and so due to differential privacy

PD′
(

[θD −
τ

2
, θD +

τ

2
]
)
≥ exp {−α|θD − θD′ |}

(
1− c

ατ

)
.

Thus for any D′ whatsoever we may find a D having |θD − θD′ | = τ , and so

n∑
i=0

∣∣∣θD′ − θ̃∣∣∣PD′(θ̃) ≥ τ

2
PD′

(
[θD′ −

τ

2
, θD′ +

τ

2
]C
)

≥ τ

2
PD′

(
[θD −

τ

2
, θD +

τ

2
]
)

≥ τ

2
e−ατ

(
1− c

ατ

)
.

Taking

τ =

⌈
2c

α

⌉
,

leads to
n∑
i=0

∣∣∣θD′ − θ̃∣∣∣PD′(θ̃) ≥ c

2α
e−2c−α.

Since D′ was arbitrary this bound holds uniformly.

2.3.3 Computation of Minimax Methods

For counting queries a differentially private method which is minimax may be explicitly constructed

for whatever the loss function.

First recall the technique of Section 1.3.5 which gave a linear programming technique for the

construction of the exact minimizer of a Bayes’ risk for this problem. Here it was seen that the

differentially private methods for discrete problems correspond to a certain bounded convex poly-

hedron.

Note that also in these discrete problems the risk function may be regarded as a vector, for each

differentially private method, since

R(D,P ) = R(θ(D), P ) =

n∑
i=1

`(i, θD)Pθ(D)(i),
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we may take the vector R(P ) ∈ Rn+1 with

Ri(P ) = R(i+ 1, P ).

We may consider the “risk body” associated with the set of differentially private methods

B(n, α, β) = {R(P ) : P ∈ DP (α, β)} ,

an example of these structures in the two dimensional case (i.e., when n = 1 and the output is either

zero or one) where the loss function is the absolute value loss is shown in Figure 2.1. Evidently

for whatever the dimension and whatever the loss function the risk body will be a closed convex

polyhedron in Rn+1, this is clear since it is simply a linear transformation of the closed convex

polyhedron corresponding to the parameters of the valid differentially private methods.

Minimax Equalizer Rules

In the case that we use the absolute value loss function i.e.,

`(i, j) = |i− j|,

then one way to construct a minimax procedure for these problems is to restrict to the methods with

Ri(P ) = Rj(P ) for all i, j, namely the “equalizer rules” who’s risk is a constant function. Then,

the rule which minimizes the Bayes’ risk under any prior, subject to the constraint of constant risk

will be minimax. Equivalently we could search for a particular prior under which the minimizer of

the Bayes risk is an equalizer rule, however it is more straightforward to amend the linear program

of Section 1.3.5 to include the constraints∑
i

`(i, j)qi,j =
∑
i

`(i, 1)qi,1, j ∈ 2, . . . , n.

First to see that a differentially private method exists which satisfies these constraints consider

Pi(j) =

1
2 j = 0 or j = n

0 o/w
,

since this method is oblivious to the input (the distribution over outputs are the same) it clearly

satisfies differential privacy for any choice of α, β. Also the risk is

R(i, P ) =
1

2
|i− 0|+ 1

2
|i− n| = n

2
,
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Figure 2.1: The risk body (shown as a shaded polygon) for the counting query for n = 1, the
x-axis is the risk for θ = 0 and the y-axis is the risk when θ = 1. The four plots correspond to
α ∈ {0.05, 0.5, 1, 5} respectively, the risk body becoming larger as α increases. Note that the lower
left edge of each polygon correspond to the Bayes’ rules computed in section 1.3.5.

which is constant. Hence the addition of the constraint above to the linear program leaves intact

the non-emptiness of the feasible region, for the case of absolute value loss.

To see that the resulting methods will be minimax, note that if it were not then it would be

uniformly dominated, i.e., there would be a different rule having everywhere smaller risk. Since the

risk body is symmetric about the ray R1 = R2 = · · · = Rn+1, for every two dimensional coordinate

projection to Ri+1, Rn−i (due to the symmetry present in the loss function), we could thus construct

a new equalizer rule having everywhere smaller risk than the above one, which is a contradiction.

In Figure 2.2 a plot is shown of the computed minimax risk for the count query with n = 70

over a range of α. We compare this to the curve 1/α and see that while the minimax risk lies

underneath the latter curve, as α decreases towards zero the two curves are brought closer together.
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Figure 2.2: The minimax risk for the counting query with n = 70. The solid line is the explicitly
computed minimax risk, whereas the dashed line corresponds to 1/α. The choice n = 70 is great
enough that for all displayed α the risk is no longer increasing with n. For small enough α the risk
appears to be very close to 1/α.

Therefore there is some effect for small α which the minimax lower bound of section 2.3.1 failed to

acknowledge.

2.4 Lower Bounds for Histograms

A similar lower bound also applies to the release of a histogram, this consists of a function of the

form

θ : D → Np, θj(D) =
n∑
i=1

1 {xi ∈ Bj} ,

where xi ∈ X , and the sets Bj form a partition of X . This means that each point xi contributes

to exactly one coordinate θi. Hence the release of a histogram is “easier” than the release of p

arbitrary counts (i.e., counts of non-disjoint sets).
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First we restate a technical lemma which may be found in Yu [1997], which is extremely useful

in simplifying the construction of a suitable packing for this problem.

Lemma 2.4.1. In dimension m ≥ 6, there exists a set of points S ⊆ {0, 1}m having

min
a6=b∈S

‖a− b‖1 ≥
m

3
,

and

|S| ≥ exp {c0m} ,

for some universal constant c0 > 0.

Note that this set is a binary error correcting code with minimum distance m/3. We will now

use this to demonstrate the following lower bound for the risk of differentially private histograms.

Proposition 2.4.2. For the loss function `(x, y) = ‖x− y‖1, for p > 6 and when

n ≥ c0(p− 1)

α
,

then the risk is bounded as

R?α,0(θ) ≥ c1
p− 1

α
,

for some universal constant c1.

Proof. Let τ > 0 be some integer and consider the subset of histograms defined by

A =

{(
σ1τ, . . . , σp−1τ, n−

p−1∑
i=1

σiτ

)
: σi ∈ {0, 1}

}
,

this set is evidently a hypercube of dimension p − 1, and so by the above lemma whenever p > 6

we may construct B ⊂ A having

min
a6=b∈B

‖a− b‖1 ≥
(p− 1)τ

3
, |B| ≥ exp {c0(p− 1)} .

The differential privacy gives the requisite bound on the KL-divergence which is

max
D,D′:θ(D),θ(D′)∈B

K(PD, PD′) ≤ (p− 1)τα.

Finally using (2.2) we have

R?α,0(θ) ≥ (p− 1)τ

6

(
1− τα(p− 1) + log 2

c0(p− 1)

)
,
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Taking τ = c0/α leads to the desired result.

Note that the condition p > 6 may be removed by using Assouad’s lemma rather than Fano’s

inequality (see Yu [1997]). The condition imposed on n in the statement ensures that the hypercube

exists for our choice of τ . It may be regarded as a mild requirement since the statement is essentially

that for each α, there is some n0 above which the result holds. On the other hand if we treat α = α(n)

as a quantity which changes with n, where n is growing more slowly than p/α(n), then we cannot

construct A as above for our choice of τ , instead we may take a hypercube having dimension nα/c0,

which leads to a risk bound on the order of n. This is (up to a constant factor) the same risk as

choosing a histogram uniformly at random from all the possible histograms having n observations

in p bins (for any p), and implies that in such a regime only trivial risks are attainable.

Note that a straightforward method for differentially private histogram output is simply to add

the Laplace noise to each bin (i.e., to use the technique of Proposition 1.3.1, with ∆1 = 2). In this

case the risk is on the order of p/α, and hence equals the minimax risk up to a constant. This

means that through the construction of more elaborate methods we may only improve the risk by

some constant factor – it will never grow at a slower rate than the risk of the noise addition.

Relationship to Previous Work

We note some similarities and advantages as compared with the technique of Hardt and Talwar

[2010]. The two are quite similar in that both required a packing of exponential size, and with

distance appropriately bounded, however Hardt and Talwar [2010] were forced to make an impor-

tant relaxation to the problem. Namely their lower bound holds only for the differentially private

mechanisms which admit a kind of smooth extension. Consider a mechanism for histograms to be

characterized by distributions indexed by the integer lattice points of Rp, then their method only

applies to mechanisms for which one may “fill in” the extra space, i.e., add further distributions at

the non-integer lattice points, subject to the condition that

PX(A) ≤ eα‖X−Y ‖1PY (A),

as noted in De [2011] it is unclear how much of a restriction this represents. What’s more in the

appendix of Hardt and Talwar [2010] they give a relaxation which removes this requirement but

which only holds as α is decreasing appropriately as n increases.

2.4.1 Lower Bounds for Sparse Histograms

The above mimimax arguments held over the entire space of histograms, in some cases we may

be more concerned with performance in particular subsets of this space instead. For example we
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may expect that the true histogram based on the database is sparse (that is, most of the cells are

unoccupied), we ask if it is possible to improve the risk on these types of databases, possibly at the

expense of minimaxity over the whole space.

The case of differentially private sparse contingency tables was considered in Cormode et al.

[2011]. Contingency tables may be regarded as histograms with some additional structure, but for

this section that structure is immaterial. They proposed various schemes in order to preserve the

sparsity of the released table, since noise addition for example results in a table in which every

cell has a non-zero value almost surely. The reason for their interest in this problem is that sparse

tables may be much smaller data structures and therefore be more practical to e.g., share with

other researchers, as well as allowing more efficient inference procedures. Here we take the simplest

of their procedures and analyze it from the perspective of risk, and demonstrate that for sparse

histograms the risk may be brought much lower than the linear function of p we had above.

We consider the differentially private release technique which is to add Laplace noise to each

cell of the histogram and then to truncate to zero any cell with a resulting value that is below some

predetermined threshold τ , namely we release

θ̃i =

0 θi(D) + Li ≤ τ

θi(D) + Li o/w,
(2.3)

where Li are iid Laplace variables with rate parameter α/2. That such a method achieves the

differential privacy is seen through Proposition 1.3.1, combined with Proposition 1.2.5, since the

method may be regarded as post processing the result of Laplace noise addition. We now show that

for a particular choice of τ which only depends on the dimension p and the parameter α, the error

may be brought sublinear in p. Namely the error depends only logarithmically on p, and linearly

on the number of occupied cells, which we denote by q.

Proposition 2.4.3. The mechanism defined by (2.3) for a p dimensional histogram with

τ = τ(p, α) =
2

α
log p, (2.4)

has risk smaller than
2q + 1

α
(log p+ 1) ,

whenever at most q cells of the input histogram are non-zero.
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Proof. Consider the error in each cell, suppressing dependence on D in the interest of space

E|θi − θ̃i| =

E[Li
∣∣Li > τ ]P (Li > τ) θi = 0

E[|Li|
∣∣Li > τ − θi]P (Li > τ − θi) + θiP (Li ≤ τ − θi) θi > 0

In words, for θi = 0 error is only made when Li is sufficiently large. For θi > 0 the value will be

truncated to zero – resulting in error θi – unless Li is large enough, in which case the error is given

by the conditional expectation of Li. We upper bound the error in the latter case by τ + 2/α. The

reason is that in the event the thresholded value was originally negative, then the thresholding has

certainly decreased the error, by moving the output value towards whatever the input positive value

was. Likewise whenever the thresholded value was positive, the thresholding has moved it by no

more than τ . Finally taking τ as in (2.4) leads to

P (Li > τ) =
1

2
e−τα/2 =

1

2
e− log p =

1

2p
,

and memorylessness of the exponential distribution leads to

E[Li
∣∣Li > τ ] = τ +

2

α
,

and so, since q gives the number of occupied cells we have

E‖θ − θ̃‖1 ≤
p− q

2p
(τ +

2

α
) + q(τ +

2

α
)

≤ 2q + 1

α
(log p+ 1) .

Thus we find that although this technique is not minimax (since the risk is on the order p log p

for a dense histogram), it attains a far lower risk when the number of occupied cells is much smaller

than p. We performed a two small experiments which are shown in Figure 2.3 and Figure 2.4. The

first uses the “Edwards” dataset (see e.g., Charest [2012]) which has about one third of the cells

populated, but mostly with low counts, thus the improvement due to using the sparse method is

small. In the second experiment we used the National Longterm Care Survey data1. This is a

very large histogram in which only 5% of the cells are occupied, and one cell in particular contains

the majority of the counts. In this case the thresholded sparse histogram massively improves the

error rate when compared to the naive noise addition method. It is interesting that this procedure

yields a smaller error than Laplace noise addition for the first histogram we experimented with,

1available at http://lib.stat.cmu.edu
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even though for that particular p and q the upper bound shown above is much larger than the 2p/α

error rate we get from the Laplace noise addition. In both examples we used datasets with large

numbers of zero cells. We do not envision these methods to be successful for histograms which do

not have this property.
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Figure 2.3: An experiment with the “Edwards” dataset Charest [2012]. This is a histogram having
p = 64 cells of which q = 22 are occupied and n = 70. Displayed are the empirical errors over 15000
trials, for Laplace noise addition (in red) and the sparse histogram method (in blue). In both cases
negative values resulting from noise addition were replaced with zeros.

We now construct a minimax lower bound for this problem. We thus restrict attention to the

set of sparse histograms

Θp,q =

{
θ ∈ Np :

p∑
i=1

θi = n,

p∑
i=1

1{θi > 0} ≤ q

}
.

Proposition 2.4.4. For sufficiently large n and p, any α-differentially private method has

sup
θ∈Θp,q

EPD
∥∥∥θ(D)− θ̃

∥∥∥
1
≥ cq log [(p− 1)/q]

α
,
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Figure 2.4: An experiment with the National Long Term Care Survey dataset . This is a histogram
having p = 216 cells of which q = 3152 are occupied and n = 21574. Displayed are the empirical
errors over 1000 trials, for the sparse method and for the non-sparse method. In both cases negative
values resulting from noise addition were replaced with zeros.

for some universal constant c > 0.

Proof. As in the previous lower bound, consider a set of histograms

A =

{
(ησ1, . . . , ησp−1, n− η

p−1∑
i=1

σi), σi ∈ {0, 1}, ‖σ‖1 = q

}
,

this set contains (p− 1)/q hypercubes of dimension q (by partitioning the coordinates into disjoint

sets of size q and constructing the hypercube on each one). Then by using the hypercube packing

of Lemma 2.4.1 and Fano’s inequality we have

R ≥ qη

6

(
1− αηq + log 2

c0q log [(p− 1)/q]

)
,

where c0 is the constant from Lemma 2.4.1. Thus taking

η =
c0 log [(p− 1)/q]

α
,
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Leads to the desired result.

Note the similarity between the above bound and the minimax risk bound for estimation of a

sparse normal mean vector given in Johnstone [2011] (section 8.6).

Note that the bound given above is smaller than the risk of the thresholding method by an

amount of the order q log q. This may not be problematic since we suspect q to be small, but

nevertheless illustrates an apparent gap between the lower bound and the error which was achievable

using the basic technique. We note that in the case that q is somehow known ahead of time (which

appears unlikely in practise) that the lower bound above may in fact be achieved. Namely if we

take the thresholding estimator with

τ =
2

α
log

p

q
,

then the error is upper bounded by

E‖θ − θ̃‖1 ≤
q(p− q)

2p
(τ +

2

α
) + q(τ +

2

α
)

≤ 3q

α

(
log

p

q
+ 1

)
.

Note that while in principle this method achieves the correct error rate, in practise q is not known

a-priori, and since τ is fixed prior to the data being observed, this method is not applicable except

in rare occasions. Thus we prefer the original threshold since it does not depend on this unknown

quantity and has an error rate within a small amount of the best available one.

2.4.2 Linear Functions of Histograms

A large body of the differential privacy literature concerns the release of a linear function of a

histogram. Namely for some m×p matrix M we may be interested in releasing the quantity Mθ(D),

where θ produces some p-dimensional histogram as considered above. Evidently a simple method

to apply to this problem is to construct a sanitized histogram θ̃ which preserves the differential

privacy, and then to releases Mθ̃ (or equivalently to release θ̃ itself whereupon any linear function

whatsoever may be computed by the recipients). As we may imagine however, this simple approach

may introduce much more error into the requisite output vector than is strictly necessary. Here we

consider a few kinds of matrices which are interesting to statisticians and determine the minimax

risks available for the output of these linear functions.
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Margins of Contingency Tables

First consider the case of one-way margins of a contingency table. A table corresponding to k binary

attributes may be regarded as a histogram with 2k cells. The one way margins are specified by a

vector of length k, in which the ith coordinate gives the number of elements in the table having

value 1 for the ith binary attribute. Thus in this case M is the k× 2k matrix in which each column

corresponds to a different binary vector.

Since Mθ(D) is a k-dimensional vector of counts, an immediate way to perform a private release

of this function is to use the minimax counting method from above for each coordinate. If we

maintain α/k-differential privacy on each coordinate, then the composition property ensures that

the overall release is α-differentially private. In this case in each element we have expected absolute

value loss on the order of k/α, and since there are k coordinates and each is independent the overall

expected `1 loss is on the order of k2/α. We now show that this is the minimax rate, as above we

first use the technical lemma about packing a hypercube, and then use Fano’s inequality.

Proposition 2.4.5. An α-differentially private method for the release of all the one way margins

of a 2k contingency table, has

sup
D

∫
‖MθD −m‖1dPD(m) ≥ c1

k2

α
.

Proof. Let T be the packing set of lemma 2.4.1, the elements of T correspond to columns of M .

For each element of T construct a histogram having τ elements in the cell corresponding to that

column, and the remainder of the elements in the cell corresponding to all zeros. Then there are ec0k

such histograms, and the differential privacy ensures that the KL divergence between distributions

over the output space at any pair of these histograms is at most ατ . The `1 distance between

the requisite linear functions of a pair of these histograms is evidently at least τk/3, thus Fano’s

inequality gives

R ≥ kτ

8

(
1− ατ + log 2

c0k

)
,

and so taking

τ =
c0k

2α
,

leads to the stated result.

Thus for the one way margins it is only possible to improve the naive method by at most a

constant factor. Note that using the packing we construct along with the method due to Hardt and

Talwar [2010] yields the same result.
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2.5 Summary

In this chapter we addressed the difficulty inherent to certain differentially private procedures, which

we characterized by the minimax risk. Similar work was undertaken before in e.g., Hardt and Talwar

[2010]; De [2011]. We restricted attention to the release of histograms and contingency tables, and

were able to demonstrate a technique which achieves good accuracy in the case that the table is

sparse. This is the typical situation when dealing with large scale tables. We also demonstrated

lower bounds for errors for these problems and found our methods to be close to these lower bounds.

Finally note that the minimax risk is not the only way to characterize the hardness of a private data

release. We could also have considered the analog of the Bayes’ risk from statistics. This would

be similar to the minimax risk we use, but rather than concentrating on the worst case input, we

would take a weighted average of the risks on different inputs, where the weights are specified by

some distribution on the input space (the analog of the “prior” in Bayesian statistics).

39



Chapter 3

Differential Privacy in Spaces of

Functions

When the goal is to release a function, we are presented with new challenges. For example, although

the definition of differential privacy still makes sense, the techniques outlined in section 1.2 will not

work since they operate over finite dimensional output spaces. What’s more, since the function

spaces are without a σ-finite dominating measure, even the techniques used to prove the differential

privacy will not carry over. In this section we build a framework for differentially private release of

functions, by considering limits of sequences of privacy preserving techniques on finite dimensional

vectors.

We consider the family of functions over T = Rd (where appropriate we may restrict to a

compact subset e.g., a unit cube of d-dimensions)

F = {fD : D ∈ D} ⊂ RT .

We will release some f̃D ∼ PD where PD is a measure on RT which depends on the input

database. Following the techniques of Section 1.3, we may anticipate that a solution would be given

by e.g., taking some distance function on the function space (for example, the uniform norm) and

then sampling a distribution over RT where the density at a point is given by the exponentiated

negative distance to the input point. However there is a problem with this approach, which is that

there is no analog of the Lebesgue measure in an infinite dimensional space (in fact there are no non-

trivial sigma finite measures that are translation invariant). Thus we cannot construct mechanisms

from densities as before, since the demonstration implicitly relied on the translation invariance of

the underlying dominating measure. A workaround is to discretize the function space somehow and

then define densities over the discretized version, but sampling sill still be problematic simply due
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to the presumably fine level of discretization required for reasonable results.

In this chapter we propose two types of techniques for the release of functions, both may be

regarded as the release of a finite dimensional quantity which somehow approximates the function.

In the first case we expand the function in some basis, and add noise to the coefficients. Then the

expansion may be truncated to a finite vector and released. In the second case we implicitly maintain

a fully infinite dimensional representation of the function, add appropriate infinite dimensional noise,

and then permit the user to repeatedly issue points at which to evaluate the function. This is a

kind of on-line scenario but unlike those typically considered in the differential privacy literature,

since in this case there will be no limit to the number of “queries” which can be answered, since

the entire function is privacy preserving.

3.1 Finite Dimensional Techniques

We first consider a technique which represents the function fD as a finite vector. This way, private

release of the vector may be achieved via the techniques of Section 1.3, at which point a private

version of the function may be reconstructed.

Thus we consider some mapping θ : RT → Rm, and denote the image of F under this mapping

as

θ(F ) = {θ(fD) : fD ∈ F} .

The techniques of section 1.3 may evidently be used to release a vector θ̃ with the requisite privacy

guarantee, through the addition of a Gaussian vector in the case of approximate differential privacy,

or the Gamma construction in the case of differential privacy.

Having released such a vector privately, we may consider a mapping back to the original function

space

ξ : Rm → RT ,

and reconstruct a function

f̃D = ξ(θ̃(fD)).

3.1.1 Expansion in an Orthonormal Basis

A natural choice for θ(f) are the coordinates of f in some orthonormal basis of RT . Examples are

the Fourier basis, the wavelet basis and the Hermite basis (see e.g., Wasserman [2006]). Denoting

by {ψi}∞i=1 a set of orthonormal basis functions with∫
T
ψi(x)ψj(x) dλ(x) = 1 {i = j} ,
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then we may take the coordinates

θi(f) =

∫
T
f(x)ψi(x) dλ(x),

when f ∈ span{ψi} we have

f(x) =

∞∑
i=1

θi(f)ψi(x),

and so we may define the function resulting from the truncation of θ to an m-dimensional vector as

ξ(θ)(·) =
m∑
i=1

θi(f)ψi(x).

The remaining questions are which orthonormal basis to use, and how to choose m – the dimension

of the finite vector θ. Clearly, the overall error in this approach decomposes into two parts, one due

to the approximation error and one due to the noise addition

E
∫
T

(
fD(x)− f̃D(x)

)2
dλ(x) =

∫
T

(fD(x)− ξ[θ(fD)](x))2 dλ(x)+E
∫
T

(
ξ[θ(fD)](x)− f̃D(x)

)2
dλ(x).

(3.1)

The choice of m allows a tradeoff between approximation error (which will tend to zero as m

increases to infinity) and the privacy error (which will increase with m).

3.2 Differential Privacy in a Reproducing Kernel Hilbert Space

Whenever we have that F ⊆ H(K) where H(K) is an RKHS having reproducing kernel K : T×T →
R, we may make use of the additional structure in order to simplify both the correct determination

of m as well as to bound the sensitivity of the finite dimensional vectors. First we recall some

properties of RKHSs, then show how the particular kernel leads naturally to a particular choice

of orthonormal basis into which to expand the functions (namely the eigenfunctions of the kernel

itself).

3.2.1 Reproducing Kernel Hilbert Space Basics

We give some basic definitions for RKHSs below, and refer the reader to Bertinet and Agnan [2004]

for a more detailed account. We first recall that the RKHS is generated from the closure of those

functions which can be represented as finite linear combinations of the kernel:

H0(K) =

{
n∑
i=1

ηiKxi

}
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for some sequence ηi ∈ R, xi ∈ T , and where Kx = K(x, ·). For two functions

f =
∑
i

ηiKxi , g =
∑
j

µjKyj ,

the inner product is given by:

〈f, g〉H(K) =
∑
i≥1

∑
j≥1

ηiµjK(xi, yj)

and the norm of f is

‖f‖2H(K) = 〈f, f〉H(K) .

This gives rise to the “reproducing” nature of the Hilbert space, namely,

〈Kx,Ky〉H(K) = K(x, y).

The functionals 〈Kx, ·〉H(K) correspond to point evaluation:

〈Kx, f〉H(K) =
∑
i≥1

θiK(xi, x) = f(x).

The RKHS H(K) is then the union of H0(K) with the limit points of the Cauchy sequences with

respect to the norm induced by the inner product.

3.2.2 Privacy via the Spectral Decomposition in an RKHS

Recall that the reproducing kernel K may be written in terms of its eigenfunctions

K(x, y) =
∑
i≥1

λiψi(x)ψi(y),

in which the eigenfunctions and their respective eigenvalues are the solutions to the integral equation

λiψi(a) =

∫
T
ψi(b)K(a, b) dλ(b),

and where we order the eigenvalues so that

λ1 ≥ λ2 ≥ λ3 ≥ · · ·
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Likewise a function f ∈ H(K) may be uniquely written in terms of coordinates in the same basis

f =
∑
i≥1

θi(f)ψi(·)

where θi(f) = λi〈f, ψi〉H(K), and the inner product itself is represented as

〈f, g〉H(K) =
∑
i≥1

θi(f)θi(g)

λi
.

Evidently the functions
√
λiψi(·) form an orthonormal basis of H(K). What’s more, by defining λi

appropriately, the ψi form an orthonormal basis for L2(T ) (cf. Mercer’s theorem).

We consider the release of the finite vector defined by the truncation to the first m terms of the

spectral representation of the function. Thus we use the notation

θm = (θ1, . . . , θm),

and construct the functions ξ[θm(f)] as above. Examples of these functions are given in Figure 3.1.

A similar approach was considered in Wasserman and Zhou [2010] in which the function to release

was itself the truncation of the function defined by the empirical distribution of some sample data.

It was also considered by Rubinstein et al. [2010] and Chaudhuri et al. [2011] in which a kernel

SVM was truncated in the spectral expansion in order to obtain privacy. The difference here is that

we assume explicitly that the functions are in the RKHS, which makes assessment of the sensitivity

easier.

If we define the “RKHS sensitivity” of the family F of functions as

∆K = sup
D∼D′

‖fD − fD′‖H(K) , (3.2)

then this leads to a valid upper bound for the “Mahalanobis sensitivity” of the finite vectors, where

the covariance matrix is given by the diagonal matrix of eigenvalues λi corresponding to the first

m eigenfunctions of the kernel.

Proposition 3.2.1. Let Σ ∈ Rm×m be diagonal with Σi,i = λi, then

sup
D∼D′

‖θm(fD)− θm(fD′)‖Σ ≤ ∆K , (3.3)

for any m.
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Figure 3.1: An example of the error due to finite truncation of a function in an RKHS. Here
H(K) is the RKHS over [0, 1] with the Gaussian kernel. The black (solid line) function is being
approximated by 5, 10, and 15 basis functions in the three plots, and the approximate function is
shown as a dashed blue line. Evidently the approximation improves as the dimension increases.

Proof. For each D ∼ D′ we have

‖fD − fD′‖2H(K) =
∞∑
i=1

(θi(fD)− θi(fD′))2

λi

≥
m∑
i=1

(θi(fD)− θi(fD′))2

λi

= ‖θm(fD)− θm(fD′)‖2Σ .
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3.2.3 (α, β)-Differential Privacy in an RKHS

In light of Propositions 1.3.3 and 3.2.1 we find that for the (α, β)-differentially private release of fD

it suffices to take

f̃
m,(α,β)
D (·) =

m∑
i=1

(
θi(fD) + c(α, β,∆K)

√
λiZi

)
ψi(·), Zi ∼ N (0, 1), (3.4)

where we define

c(α, β,∆) =

√
2 log

2

β

∆

α
. (3.5)

We find

E
∫
T

(
fD(x)− f̃m,(α,β)

D (x)
)2

dλ(x) =
∞∑

i=m+1

θ2
i (fD) + c2(α, β,∆K)

m∑
i=1

λi,

note that now as m is increased, the first term on the right side vanishes, whereas the second term

approaches

∑
i≥1

λi =
∑
i≥1

λi

∫
T
φi(x)φi(x) dλ(x) =

∫
T

∑
i≥1

λiψi(x)ψi(x) dλ(x) =

∫
T
K(x, x) dλ(x),

where the middle equality is due to the monotone convergence theorem. For kernels such as the

Gaussian and exponential kernels, K(x, x) = 1 and so this quantity is simply λ(T ). Thus we may

consider in a sense the limit of this technique as m tends to infinity, since the error (as measured

in the integrated square error) will remain bounded. We note that the resulting function is

f̃
∞,(α,β)
D (·) = fD(·) +

∞∑
i=1

√
λiZiψi(·),

and recognize the second term of the sum as the Karhunen-Loève expansion of a Gaussian process

having mean zero and covariance function given by the reproducing kernel K (see e.g., Bertinet and

Agnan [2004]).

A Gaussian process indexed by T (see e.g., Adler [1990]; Adler and Taylor [2007]) is a collection of

random variables {Xt : t ∈ T}, for which each finite subset is distributed as a multivariate Gaussian.

A sample from a Gaussian process may be considered as a function T → R, by examining the so-

called “sample path” t → Xt. The Gaussian process is determined by the mean and covariance
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functions, defined on T and T 2 respectively, as

m(t) = EXt, K(s, t) = Cov(Xs, Xt).

For any finite subset S ⊂ T , the random vector {Xt : t ∈ S} has a normal distribution with the

means, variances, and covariances given by the above functions.

Thus we may suspect that the addition of a Gaussian process to the function fD will preserve

privacy. Below we make this precise with a straightforward limiting argument.

Proposition 3.2.2. For a family of functions {fD : D ∈ D} ⊆ H(K) which satisfies

sup
X∼X′

‖fX − fX′‖H(K) ≤ ∆K , (3.6)

then it satisfies (α, β)-DP to take each PD to be the Gaussian process measure having mean function

fD and covariance function c(α, β,∆K), with c defined as in (3.5).

Proof of proposition 3.2.2. Denote an arbitrary measurable set of the infinite sequence of coefficients

θ1(fD), θ2(fD), . . . by A =
⋂
i≥1Ai where Ai is a set of infinite sequences in R in which the ith is

restricted to lie in some measurable set. Since A is the limit of a decreasing sequence of sets

Bm =
⋂m
i=1Ai, we have PX(A) = PX(limm→∞Bm) = limm→∞ PX(Bm), and since differential

privacy holds for each finite m, a simple limiting argument leads to the requisite privacy of the

Gaussian process.

We remark that under the restriction that T be compact, the error incurred due to privacy, when

measured in mean L2 error, is given by the expectation of the square norm of the Gaussian process

which is λ(T )c(α, β,∆) supx∈T K(x, x), where we use λ to mean the Lebesgue measure (namely

λ(T ) = 1 for T = [0, 1]d).

3.2.4 Alternate View of Gaussian Process Noise

The preceding section gave a demonstration of the differential privacy obtained via Gaussian process

noise addition which was based on the spectral decomposition of the RKHS and correspondingly of

the Gaussian process itself. In this section we remark that there is a second way to arrive at the

same conclusion, by considering the release of finitely many function values (e.g., corresponding to

evaluation on a grid of points) and allowing the size of the grid to grow to infinity.

Suppose the goal is to output function values at the points specified in some finite set {x1, . . . , xm},
then we may consider the output of the vector

(fD(x1), . . . , fD(xm)) .
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Evidently if the sensitivity of the resulting family of vectors could be bounded then the noise addition

techniques of Section 1.3 could be used to release a private version of these vectors. It turns out

that as above when the functions fD lay in some RKHS then to upper bound the sensitivity is made

simple. If we measure the sensitivity in a Euclidean norm in which we use the “Gram matrix” for

the reproducing kernel and the set of points xi then we have the following.

Proposition 3.2.3. For f ∈ H(K), m <∞ and x1, . . . , xm distinct points in T , we have∥∥∥∥∥∥∥∥∥


K(x1, x1) · · · K(x1, xm)
...

. . .
...

K(xm, x1) · · · K(xm, xm)


−1/2

f(x1)
...

f(xm)


∥∥∥∥∥∥∥∥∥

2

2

≤ ‖f‖2H.

To summarize the proof, the quantity in the statement of the theorem is just the square RKHS

norm of the orthogonal projection of f to the subspace of H(K) spanned by the functions Kxi =

K(xi, ·).

Proof. Note that invertibility of the matrix is safely assumed due to Mercer’s theorem. Denote by

M the matrix having elements Mij = K(xi, xj). Denote by P the operator H(K)→ H(K) defined

by

P =
n∑
i=1

Kxi

n∑
j=1

(M−1)i,j
〈
Kxj , ·

〉
H(K)

We find this operator to be idempotent in the sense that P = P 2:

P 2 =
n∑
i=1

Kxi

n∑
j=1

(M−1)i,j

〈
Kxj ,

n∑
k=1

Kxk

n∑
l=1

(M−1)k,l 〈Kxl , ·〉H(K)

〉
H(K)

=

n∑
i=1

Kxi

n∑
j=1

(M−1)i,j

n∑
k=1

〈
Kxj ,Kxk

〉
H(K)

n∑
l=1

(M−1)k,l 〈Kxl , ·〉H(K)

=
n∑
i=1

Kxi

n∑
j=1

(M−1)i,j

n∑
k=1

Mj,k

n∑
l=1

(M−1)k,l 〈Kxl , ·〉H(K)

=

n∑
i=1

Kxi

n∑
l=1

(M−1)i,l 〈Kxl , ·〉H(K)

= P.
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P is also self-adjoint due to the symmetry of M , i.e.

〈Pf, g〉H(K) =

〈
n∑
i=1

Kxi

n∑
j=1

(M−1)i,j
〈
Kxj , f

〉
H(K)

, g

〉
H(K)

=

〈
n∑
i=1

〈Kxi , g〉H(K)

n∑
j=1

(M−1)i,jKxj , f

〉
H(K)

=

〈
n∑
j=1

Kxj

n∑
i=1

(M−1)i,j 〈Kxi , g〉H(K) , f

〉
H(K)

=

〈
n∑
j=1

Kxj

n∑
i=1

(M−1)j,i 〈Kxi , g〉H(K) , f

〉
H(K)

= 〈Pg, f〉H(K) .

Therefore,

‖f‖2H = 〈f, f〉H(K)

= 〈Pf + (f − Pf), Pf + (f − Pf)〉H(K)

= 〈Pf, Pf〉H(K) + 2 〈Pf, f − Pf〉H(K) + 〈f − Pf, f − Pf〉H(K)

= 〈Pf, Pf〉H(K) + 2
〈
f, Pf − P 2f

〉
H(K)

+ 〈f − Pf, f − Pf〉H(K)

= 〈Pf, Pf〉H(K) + 〈f − Pf, f − Pf〉H(K)

≥ 〈Pf, Pf〉H(K)

= 〈f, Pf〉H(K) .

The latter term is nothing more than the left hand side in the statement.

The proposition above demonstrates that the sensitivity of the vector of function values is less

than the RKHS sensitivity of the family of functions. Therefore for any finite collection of points

the approximate differential privacy may be achieved by the addition of an appropriately scaled

Gaussian vector, where the covariance matrix is given by the Gram matrix of the reproducing

kernel.

As above, this method exhibits a strong connection to Gaussian processes. Namely, the distri-

bution of the noise added to the vector is exactly a finite dimensional distribution of the Gaussian

process having mean zero and the covariance function given by the reproducing kernel.
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3.2.5 Algorithms

There are two main modes in which functions fD could be released by the holder of the data D to

the outside parties. The first we describe as a “batch” setting in which the parties would designate

some finite collection of points x1 . . . , xn ∈ T . The database owner would compute f̃D(xi) for each

i and return the vector of results. At this point the entire transaction would end with only the

collection of pairs (xi, f̃D(xi)) being known to the outsiders. An alternative is the “online” setting

in which outside users repeatedly specify points in xi ∈ T , the database owner would reply with

f̃D(xi), but unlike the former setting he would remain available to respond to more requests for

function evaluations. We name these settings “batch” and “online” for their resemblance of the

batch and online settings typically considered in machine learning algorithms.

The batch method is nothing more than sampling a multivariate Gaussian, since the set x1, . . . , xn ∈
T specifies the finite dimensional distribution of the Gaussian process from which to sample. The

released vector is simply
f̃D(x1)

...

f̃D(xn)

 ∼ N



fD(x1)
...

fD(xn)

 ,
c(β)∆

α


K(x1, x1) · · · K(x1, xn)

...
. . .

...

K(xn, x1) · · · K(xn, xn)


 .

In the online setting, the data owner upon receiving a request for evaluation at xi would sample

the gaussian process conditioned on the samples already produced at x1, . . . , xi−1. Let

Ci =


K(x1, x1) · · · K(x1, xi−1)

...
. . .

...

K(xi−1, x1) · · · K(xi−1, xi−1)

 , Gi =


f̃D(x1)

...

f̃D(xi−1)

 , Vi =


K(x1, xi)

...

K(xi−1, xi)

 .

Then,

f̃D(xi) ∼ N
(
V T
i C

−1
i Gi, K(xi, xi)− V T

i C
−1
i Vi

)
.

The database owner may track the inverse matrix C−1
i and after each request update it into C−1

i+1

by making use of Schur’s complements combined with the matrix inversion lemma. Nevertheless

we note that as i increases the computational complexity of answering the request will in general

grow. In the very least, the construction of Vi takes time proportional to i. This may make this

approach problematic to implement in practise.
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3.3 Examples

We now give some examples in which the above technique may be used to construct private versions

of functions in an RKHS.

3.3.1 Kernel Density Estimation

Let fD be the kernel density estimator, where D is regarded as a sequence of points xi ∈ T as

i = 1, . . . , n drawn from a distribution with density f . Let h denote the bandwidth. Assuming a

Gaussian kernel, the estimator is

fD(x) =
1

n(2πh2)d/2

n∑
i=1

exp

{
−‖x− xi‖22

2h2

}
, x ∈ T.

These functions reside in the RKHS with kernel

K(x, y) = exp

{
−‖x− y‖22

2h2

}
,

thus the RKHS sensitivity is

‖fD − fD′‖2H =

(
1

n(2πh2)d/2

)2 (
K(xn, xn) +K(x′n, x

′
n)− 2K(xn, x

′
n)
)

≤ 2

(
1

n(2πh2)d/2

)2

.

We find the noise level to be on the same order as the noise due to the sampling of the points,

therefore the privacy does not disrupt the rate of convergence of the estimator. In figure 3.2 we

show the curve resulting from the application of the above method for the one-dimensional kernel

density estimation.

3.3.2 A Sobolev Space of Functions

Consider the Sobolev space

H1[0, 1] =

{
f ∈ C[0, 1] :

∫ 1

0
(∂f(x))2 dλ(x) <∞

}
.
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Figure 3.2: An example of a kernel density estimator (the black curve) and the released version (the
blue curve). This uses the method developed in Section 3.3.1. Here we sampled n = 100 points
from a mixture of two normals centered at 0.3 and 0.7 respectively. We use h = 0.1 and have α = 1
and β = 0.1. The Gaussian Process is evaluated on an evenly spaced grid of 1000 points between
0 and 1. Note that gross features of the original kernel density estimator remain, namely the two
peaks.

This is a RKHS with the kernel K(x, y) = exp {−γ |x− y|} for some parameter γ > 0. The norm

in this space is given by

‖f‖2H =
1

2

(
f(0)2 + f(1))2

)
+

1

2γ

∫ 1

0
(∂f(x))2 + γ2f(t)2 dλ(t). (3.7)

See e.g., Bertinet and Agnan [2004]; Parzen [1961]. Thus for a family of functions in one dimen-

sion which lay in the Sobolev space H1, we may determine a noise level necessary to achieve the

differential privacy by bounding the above quantity for the difference of two functions.

For functions over higher dimensional domains (as [0, 1]d for some d > 1) we may construct an

RKHS by taking the d-fold tensor product of the above RKHS (see, in particular, Parzen [1963];

Aronszajn [1950] for details of the construction). The resulting space has the reproducing kernel

K(x, y) = exp {−γ‖x− y‖1} ,

and is the completion of the set of functions
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G0 =
{
f : [0, 1]d → R : f(x1, . . . , xd) = f1(x1) · · · fd(xd), fi ∈ H1[0, 1]

}
.

The norm over this set of functions is given by:

‖f‖2G0
=

d∏
j=1

‖fi‖2H. (3.8)

The norm over the completed space agrees with the above on G0. The explicit form is obtained

by substituting (3.7) into the right hand side of (3.8) and replacing all instances of
∏d
j=1 fj(xj) with

f(x1, . . . , xj).

Thus the norm in the completed space is defined for all f possessing all first partial derivatives

which are all in L2. In figure 3.3 we repeat the example of figure 3.2, but using the above method

instead. The kernel density estimator is an element of the Sobolev space, and therefore we once

again may bound the sensitivity and add the appropriate Gaussian process. Note that the sample

paths for the corresponding Gaussian process are no longer smooth.
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Figure 3.3: An example of a kernel density estimator (the black curve) and the released version
(the blue curve). The setup is the same as in Figure 3.2, but the privacy mechanism developed
in Section 3.3.2 was used instead. Note that the released function does not have the desirable
smoothness of released function from Figure 3.2.
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3.3.3 Minimizers of Regularized Functionals in an RKHS

The construction of the following section is due to Bousquet and Elisseeff [2002], who were interested

in determining the sensitivity of certain kernel machines (among other algorithms) for the sake of

bounding the generalization error of the output classifiers. Rubinstein (in e.g., Rubinstein et al.

[2010]) noted that these bounds are useful for establishing the noise level required for differential

privacy of support vector machines. They are also useful for our approach to privacy in a function

space.

We consider classification and regression schemes in which the datasets D = {z1, . . . , zn} with

zi = (xi, yi), where xi ∈ [0, 1]d are some covariates, and yi is some kind of label, either taking

values on {−1,+1} in the case of classification or some taking values in some interval when the goal

is regression. Thus the output functions are from [0, 1]d to a subset of R. The functions we are

interested in take the form:

fD = arg min
g∈H

1

n

∑
zi∈D

`(g, zi) + λ‖g‖2H (3.9)

where H is some RKHS to be determined, and ` is the so-called “loss function.” We now repeat a

definition from Bousquet and Elisseeff [2002] (using M in place of their σ to prevent confusion):

Definition 3.3.1 (M -admissible loss function Bousquet and Elisseeff [2002]). A loss function:

`(g, z) = c(g(x), y) is called M -admissible whenever c it is convex in its first argument and Lipschitz

with constant M in its first argument.

We will now demonstrate that for (3.9), whenever the loss function is admissible, the minimizers

on adjacent datasets may be bounded close together in RKHS norm. Denote the part of the

optimization due to the loss function:

LD(f) =
1

n

∑
zi∈D

`(f, zi).

Using the technique from the proof of lemma 20 of Bousquet and Elisseeff [2002] we find that since

` is convex in its first argument we have:

LD(fD + η(fD′ − fD))− LD(fD) ≤ η(LD(fD′)− LD(fD)).

This also holds when fD and fD′ swap places. Summing the resulting inequality with the above

and rearranging yields:

LD(fD′ − η(fD′ − fD))− LD(fD′) ≤ LD(fD)− LD(fD + η(fD′ − fD)).
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Due to the definition of fD, fD′ as the minimizers of their respective functionals we have:

LD(fD) + λ‖fD‖2H ≤ LD(fD + η(fD′ − fD)) + λ‖fD + η(fD′ − fD)‖2H
LD′(fD′) + λ‖fD′‖2H ≤ LD′(fD′ − η(fD′ − fD)) + λ‖fD′ − η(fD′ − fD)‖2H.

This leads to:

0 ≥ λ
(
‖fD‖2H − ‖fD + η(fD′ − fD)‖2H + ‖fD′‖2H − ‖fD′ − η(fD′ − fD)‖2H

)
+ LD(fD)− LD(fD + η(fD′ − fD)) + LD′(fD′)− LD′(fD′ − η(fD′ − fD))

≥ 2λ‖η(fD′ − fD)‖2H − LD(fD′) + LD(fD′ − η(fD′ − fD)) + LD′(fD′)− LD′(fD′ − η(fD′ − fD))

= 2λ‖η(fD′ − fD)‖2H +
1

n

(
`(z, fD′)− `(z, fD′ − η(fD′ − fD)) + `(z′, fD′)− `(z′, fD′ − η(fD′ − fD))

)
Moving the loss function term to the other side and using the Lipschitz property leads to:

‖fD − fD′‖2H ≤
M

λn
‖fD − fD′‖∞

What’s more, the reproducing property together with Cauchy-Schwarz inequality yields:

|fD(x)− fD′(x)| = | 〈fD − fD′ ,Kx〉H(K) | ≤ ‖fD − fD′‖H
√
K(x, x).

Combining with the previous result gives:

‖fD − fD′‖2H ≤
M

λn
‖fD − fD′‖H

√
sup
x
K(x, x)

which gives

‖fD − fD′‖H ≤
M

λn

√
sup
x
K(x, x).

For a soft-margin kernel SVM we have the loss function: `(g, z) = (1 − yg(x))+, which means the

positive part of the term in parentheses. Since the label y takes on either plus or minus one, we

find this to be 1-admissible.

In figure 3.4 we give an example of our method to the release of a kernel support vector machine.

The example is synthetic and operates on a two dimensional input space. We find that in areas

of the input space with many data points (and hence where the SVM is fairly confident in its

predictions) that the noise addition has not lead to catastrophically decreased accuracy. Where

the input points are sparser, the SVM is not confident about the predictions (i.e., the regression

function has a small absolute value) and so the noise addition leads to different predictions in these

areas. This will presumably lead to the excess error due to privacy being well-behaved, but we leave
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this for future work.

3.4 Summary

We have shown how to add random noise to a function in such a way that differential privacy is

preserved. Our method differs from previous techniques, since it does not resort to the release of a

finite dimensional projection of the function. It is interesting to note that our method only achieves

the weaker notion of approximate differential privacy. Whether an analogous construction exists for

the unadulterated differential privacy is a matter for future work, although we suspect it does not.
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Figure 3.4: An example of a kernel support vector machine. In the top image are the data points,
with the colors representing the two class labels. The background color corresponds to the class
predicted by the learned kernel SVM. In the bottom image are the same data points, with the
predictions of the private kernel SVM. This example uses the Gaussian kernel for classification.
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Chapter 4

Kernel Density Estimation

4.1 Introduction

In this chapter we seek to construct a method for the α-differentially private release of a kernel

density estimator which maintains the minimax rate of convergence enjoyed by the non-private

estimator (see e.g., Wasserman [2006]). We propose a technique which is similar in spirit to the

approach of Wasserman and Zhou [2010] in which the function is made private by perturbation of

its coordinates in some orthonormal basis. Note that the main difference between this section and

the private density estimator given above is that we require the strict α-differential privacy, rather

than the weaker (α, β)-DP which was achieved there.

There are myriad techniques which could plausibly be brought to bear to address this problem,

but we seek to preserve the rate of convergence enjoyed by the non-private kernel density estimator.

This is that rate at which the estimate converges to the true density (in mean integrated square

error) as the number of samples is increased. This restriction rules out some conceptually simple

methods such as e.g., moving the points into some grid and treating the problem as essentially a

histogram.

The approach we use is to truncate the fourier expansion of the kernel density estimate. We

determine the number of coefficients that are required in order for this truncation to preserve

the correct convergence rate. We then demonstrate that simply adding the Laplace noise to each

coefficient in the fourier basis – while maintaining privacy – fails to achieve the correct convergence

rate. However we also note that this type of noise addition is essentially overkill for this problem,

and we demonstrate a different method based on the K-norm mechanism. By tailoring the noise

addition to the underlying geometry of the problem we are finally able to achieve the correct rate

of convergence.
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4.2 Non Private Kernel Density Estimation

We begin by reviewing some basic facts about the non-private estimator, and set up some notation.

First we denote the one-dimensional Gaussian kernel

φ(x) =
1√
2π

exp

{
−x

2

2

}
,

and in the interest of compact equations we also denote

φσ(x, y) = σ−1φ

(
x− y
σ

)
.

In moving to d dimensions we make use of the isotropic Gaussian kernel which we denote

φd(x) =

d∏
i=1

φ(xi), φdσ(x, y) =

d∏
i=1

φσ(xi, yi)

for x, y ∈ Rd.
Recall the kernel density estimator based on some sample X = (x1, . . . , xn) (the superscript

being used to denote the index since we reserve the subscript for the components of each xi)

f̂X(x) =
1

nhd

n∑
i=1

φd
(
x− xi

h

)
= n−1

n∑
i=1

φdh(xi, x). (4.1)

When the data arrive iid from some underlying density f , and under suitable regularity conditions

on f (see e.g., Wasserman [2006]) then the estimator (4.1) enjoys the minimax rate of convergence

E
∫

[0,1]d

(
f̂X(x)− f(x)

)2
= c1h

4 +
c2

nhd
= O

(
n−4/(4+d)

)
, (4.2)

where the latter rate is attained by choosing

h = hn = O
(
n−1/(4+d)

)
. (4.3)

4.3 Fourier Approximation of the Kernel Density Estimate

We focus on the unit interval, in which the Fourier basis functions

ψ1(x) = 1, ψ2j(x) =
√

2 cos(2jπx), ψ2j+1(x) =
√

2 sin(2jπx), (4.4)

59



form an orthonormal basis for the periodic functions. We thus consider the periodic approximation

to the kernel

φ̃σ(x, y) =

∞∑
i=1

λiψi(x)ψi(y), (4.5)

in which

λ1 = 1, λ2j = λ2j+1 = exp
{
−2j2σ2

}
.

In d dimensions we use the d-fold tensor product of the basis considered above, namely by taking

φ̃dσ(x, y) =

d∏
j=1

φ̃σ(xj , yj) =

∞∑
a1=1

· · ·
∞∑

ad=1

 d∏
j=1

λaj

 d∏
j=1

ψaj (xj)

 d∏
j=1

ψaj (yj)

 .

We defined the λi so as to obtain the following result.

Lemma 4.3.1. ∫
[0,1]

φ̃σ(x, y)ψi(x) dx =

∫
R
φσ(x, y)ψi(x) dx, (4.6)

Proof. Since

cos(x) =
eix + e−ix

2
, sin(x) =

eix − e−ix

2i
,

where i is the imaginary unit, and the characteristic function of a Gaussian is∫
R
φσ(x, µ)eitx dx = exp

{
itµ− σ2t2

2

}
,

we have ∫
R
φσ(x, µ) cos(ax+ b) dx = exp

{
−a

2σ2

2

}
cos(aµ+ b),

and ∫
R
φσ(x, µ) sin(ax+ b) dx = exp

{
−a

2σ2

2

}
sin(aµ+ b).

From which the result is immediate.

Thus we anticipate that whenever the original functions φσ(·, y) concentrate mostly in the unit

interval (in the sense that their integral outside of this interval is small) that the above Fourier

approximation will be good in the sense of small `2 error (integrated square error). We now quantify

this error in the one dimensional case.

Proposition 4.3.2. For
√
σ < µ < 1−

√
σ, (4.7)
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we have ∫
[0,1]

(
φσ(x, µ)− φ̃σ(x, µ)

)2
dx = O (σp) , (4.8)

for any p.

Proof.

∫
[0,1]

(
φσ(x, µ)− φ̃σ(x, µ)

)2
dx =

∞∑
i=1

(∫
[0,1]

ψi(x)
[
φσ(x, µ)− φ̃σ(x, µ)

]
dx

)2

=

∞∑
i=1

(∫
[0,1]

ψi(x)φσ(x, µ) dx−
∫
R
ψi(x)φσ(x, µ) dx

)2

=
∞∑
i=1

∑
j 6=0

∫
[j,j+1]

ψi(x)φσ(x, µ) dx

2

=

∞∑
i=1

∑
j 6=0

∫
[0,1]

ψi(x)φσ(x− j, µ) dx

2

=

∫
[0,1]

∑
j 6=0

φσ(j, |µ− x|)

2

dx

the reasons for the equalities are (in order): Parseval’s identity, the equality (4.6), breaking up an

integral into pieces, periodicity of the bases, Parseval’s identity again along with making use of

symmetry. Under the condition (4.7) then |x− µ| < 1−
√
σ for whatever x ∈ [0, 1] and so

∑
j 6=0

φσ(j, |µ− x|) < φσ(1, |yµ− x|) +

∫
(−∞,−1]

φσ(j, |µ− x|) dj +

∫
[2,∞)

φσ(j, |µ− x|) dj

≤ 1√
2πσ

exp

{
− 1

2σ

}
+ 2σexp

{
− 1

2σ2

}
.

This quantity is clearly negligible in that it is eventually smaller than any polynomial in σ.

In Figure 4.1 the resulting approximations are shown. When the means are sufficiently far into

the interval, and when σ is small the kernel is approximately periodic already and so the error in

the approximation is small as demonstrated above.

In d dimensions (treating the dimension as fixed) we again have approximation error being
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Figure 4.1: The periodic approximation to the Gaussian kernel with σ = 0.1 In the left µ = 0.2 and
so the periodic nature of the approximation is noticeable on the right hand side of the interval. In
the right µ = 0.3 and since this kernel puts more “mass” on the inside of the interval, this effect is
reduced.

negligible as σ decreases to zero, since

∫
[0,1]d

(
φ̃dσ(x, µ)− φdσ(x, µ)

)2
dx =

d∏
j=1

∫
[0,1]

(
φ̃σ(xj , µj)− φσ(xj , µj)

)2
dxj .

We now consider conditions for the periodic approximation

f̃X(x) = n−1
n∑
i=1

φ̃dh(xi, x) (4.9)

to achieve the correct convergence rate (4.2). To avoid complications arising from the condition

(4.7) we could e.g., assume that f is supported in some subset of [η, 1− η] for some small constant

η > 0, but this is not necessary. An alternative is to transform the data so that it lies in such an

interval, do the density estimation there, then transform the resulting function back to the unit

interval. For fixed η this corresponds to a density estimator for which the bandwidth h is off by a

constant factor, and so does not affect the rate of convergence. Denote the transform as

π(x) = η + (1− 2η)x,
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then

φdσ (π(x), π(y)) = φd σ
1−2η

(x, y) ,

and so the transformed version of (4.1) corresponds to the choice of h′ = h/(1−2η) which evidently

achieves the correct rate since η is regarded as a constant. Then for sufficiently small h (sufficiently

large n) we find

∫
[0,1]d

(
n−1

n∑
i=1

φdh
(
π(xi), π(x)

)
− φ̃dh

(
π(xi), π(x)

))2

dx = O (hp) ,

for any p, due to Proposition 4.3.2. For h on the order prescribed in (4.3) we evidently may take

p = 4 in order to see that the correct rate is maintained. For the remainder of this document we will

suppose f to be supported within the interval [η, 1− η] rather than perform this transformation, in

order to save space, but note this comes at no cost to generality of the approach. Evidently∫
[0,1]d

(
fX(x)− f̃X(x)

)2
dx ≤ sup

µ∈[η,1−η]d

∫
[0,1]d

(
φdh(x,mu)− φ̃dh(x, µ)

)2
dx = O(hp),

for any p. Thus taking h as in (4.3) still leads to the correct rate under this approximation.

4.3.1 The Truncated Fourier Approximation

To reduce the kernel density estimator to a finite dimensional quantity we consider the truncation

to the first 2m+1 fourier coefficients (namely the constant basis function, and the sines and cosines

up to frequency m). In one dimension this corresponds to

f̃mX (x) = n−1
n∑
i=1

1 +
2m+1∑
j=2

λjψj(x
i)ψj(x)

 = 1 +
2m+1∑
j=2

λj

(
n−1

n∑
i=1

ψj(x
i)

)
ψj(x).

In higher dimension we similarly truncate to the first 2m+ 1 basis functions in each coordinate axis

and consider the tensor product

f̃mX (x) =

2m+1∑
a1=1

· · ·
2m+1∑
ad=1

 d∏
j=1

λaj

n−1
n∑
i=1

 d∏
j=1

ψaj (x
i)

 d∏
j=1

ψaj (x)

 . (4.10)

We quantify the error between the truncation and the full fourier approximation in the following

statement.
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Proposition 4.3.3.

sup
X

∫
[0,1]d

(
f̃X(x)− f̃mX (x)

)2
= O

(
2d

mhd
e−c1m

2h2

)
, (4.11)

for some universal constant c1.

Proof. We have

∫
[0,1]d

(
f̃X(x)− f̃mX (x)

)2
≤

 ∞∑
i=1

λ2
i +

∞∑
j=2m+2

λ2
j

d

−

( ∞∑
i=1

λ2
i

)d
.

By bounding the sum with an integral and using the Gaussian tail inequality we obtain

∞∑
j=2m+2

λ2
j = 2

∞∑
j=m+1

e−4j2h2 ≤ 2
√

2π

∫
[m,∞)

φ

(
j
1

2
√

2h

)
dj ≤ c1

mh
e−c2m

2h2
,

and likewise
∞∑
j=1

λ2
j ≤

c3

h
.

Thus ∫
[0,1]d

(
f̃X(x)− f̃mX (x)

)2
≤ c42d

mhd
e−c2m

2h2
.

In the original statement we rename c2 to c1 since it is the only constant to appear.

In light of the above, to ensure that the rate (4.2) is preserved it suffices to take h as in (4.3),

and

m = O

(
log n

h

)
= O

(
n1/(4+d) log n

)
. (4.12)

The reason is that the full expansion achieves the correct rate under this choice of h, and then the

above choice of m ensures that the right hand side of (4.11) is on the same order as the requisite

convergence rate. Note that we treat d as a constant.

So far then, we have a finite dimensional representation of the kernel density estimate, in which

the parametrization does not depend on the data itself, and which does not spoil the convergence

rate enjoyed by the unadulterated estimator.
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4.4 Differentially Private Versions of the Truncated Density Esti-

mator

We now turn to the construction of a private estimator based on the above.

4.4.1 Privacy via Laplace Noise Addition

To make a differentially private kernel density estimator it clearly suffices to add to each of the

O(md) coordinates of f̃mX a Laplace random variate having scale parameter O(nα/md). Denoting

the resulting random, private function

f̃m,αX (x) =

2m+1∑
a1=1

· · ·
2m+1∑
ad=1

 d∏
j=1

λaj

La1,...,ad + n−1
n∑
i=1

 d∏
j=1

ψaj (x
i)

 d∏
j=1

ψaj (x)

 ,

La1,...,ad
iid∼ Lap

(
0,

nα

(2m+ 1)d

)
.

Regarding α as a constant and taking m in the order prescribed by (4.12) leads to an error on the

order

E
∫

[0,1]d

(
f̃mX − f̃

m,α
X

)2
=

2m+1∑
a1=1

· · ·
2m+1∑
ad=1

 d∏
j=1

λaj

La1,...,ad = O

(
m3d

n2

)
= O

(
n
d−8
4+d (log n)3d

)
,

evidently this estimator fails to achieve the minimax rate in dimension greater than 3. We therefore

look for an alternative noise model to use for perturbation. Nevertheless we note that this technique

is reasonable to use for data up to 3 dimensions. We note that the technique described above is

essentially the analog of the “orthogonal series expansion” estimator in Wasserman and Zhou [2010].

There the same problem occurs when the dimension grows, however they only considered the case

of the one dimensional estimator which they found to enjoy the minimax rate.

That the possibility exists to construct a method with a faster convergence rate may be seen

by noting that the noise added above is “overkill” for the problem. These independent Laplace

draws would yield privacy even if the coordinate vectors of the functions for one dataset and all its

neighbors formed a hypercube (with side length constant as m increases). To see this note that we

treated each coefficient separately and made use of the composition property of differential privacy

along with the appropriately adjusted α in order to achieve privacy. However, while it is true

that neighboring datasets may differ in a constant fraction of the coordinates (e.g., by replacing

a data point with one in the center of the interval, which has magnitude 1 in every cosine basis),

the corresponding coefficient vectors do not fill up a hypercube as described above (e.g., they only
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fill up a hyper rectangle in which the side length decreases as the dimension increases). Thus we

anticipate that further study of these coefficient vectors will lead to an improved method. This is

exactly what we pursue in the remainder of this chapter.

4.4.2 Privacy via “Caratheodory Noise” Addition

In this section we apply the K-norm method (Hardt and Talwar [2010] and also section 1.3 of this

thesis) to the release of the truncated fourier approximation to the kernel density estimator. The

actual construction of the method is straightforward, the difficult problems are the demonstration

of the error rate (which involves the moments of inertia of a complicated convex body) and the

development of a sampling procedure for the resulting noise. We show that the coordinate vectors

lay in a convex body called the “Caratheodory Orbitope” Sanyal et al. [2009], and hence we name

the resulting noise “Caratheodory Noise.”

We first note that a Gaussian kernel in one dimension with mean µ, being approximated by the

first 2m+ 1 fourier coefficients corresponds to a point in R2m+1 with the coordinates

Ψm(µ) = (1, ψ2(µ), . . . , ψ2m+1(µ)) ,

with ψi as in (4.4). The release of (4.10) in the one dimensional case corresponds to the release of

an average of these points

Ψ̄ =
1

n

n∑
i=1

Ψm(xi).

Note that Ψm : [0, 1]→ R2m+1 defines a closed curve in space, which is inscribed upon the surface

of a hypersphere in dimension 2m having radius
√
m. Evidently Ψ̄ is a point in the convex hull of

this curve

Km = conv {Ψm(x), x ∈ [0, 1]} .

This body is known as the Universal Caratheodory orbitope, and has been studied in the algebraic

geometry literature (see e.g., Sanyal et al. [2009]). The volume (as measured in the 2m-dimensional

subspace in which it lies) of a particular scaling of this body is given by Schoenberg [1954], from

which we deduce the volume in question to be

Vol2m(Km) =
2mπmm!

(2m)!
≈ πm

2mm!
,

where the latter is due to Sterling’s approximation of the factorial function. Recall from Section 1.3

the “K-norm mechanism,” for a one dimensional estimator we instantiate that here where the body
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in question is Km, namely by releasing the vector of fourier coefficients

Ψ̃ ∼ pΨ̄(x) ∝ exp
{
− α

∆
‖Ψ̄− x‖Km

}
,

where

∆ ≥ 1

n
sup

a,b∈Km
‖a− b‖Km ,

evidently it suffices to take ∆ = 2/n. As demonstrated in Hardt and Talwar [2010], sampling this

distribution may be decomposed into two parts, and it suffices to release

Ψ̃ = Ψ̄ + ru, r ∼ Γ(2m+ 1,
2

nα
), u ∼ U(Km),

in which we use U(K) to mean the uniform distribution over K. For such a release the corresponding

function is given by

f̃m,KX = 1 +

2m+1∑
j=2

λjΨ̃jψj(x) = 1 +

2m+1∑
j=2

λj

(
ruj +

1

n

n∑
i=1

ψj(x
i)

)
ψj(x).

Since each λj ≤ 1 and since the ψj form an orthonormal basis in [0, 1], the overall error rate for this

approach is then

E‖f̃X − f̃m,KX ‖2 ≤ E‖Ψ̃− Ψ̄‖2 = Er2 · E‖u‖2 = O

(
m2

n2

)
E‖u‖2.

In d dimensions, the released function corresponds to a point in the convex hull of the d-fold tensor

product of the curve Ψm

Kd
m = conv {vec (Ψm(x1)⊗ · · · ⊗Ψm(xd)) , xi ∈ [0, 1]} ,

where we interpret ⊗ as the vector outer product, and the resulting body in R(2m+1)d as being

formed from the points obtained by stacking the resulting arrays into large vectors. Once again

the appropriate noise vector is obtained through the composition of a Gamma scalar and a uniform

vector from this convex body. We therefore release

Ψ̃ = Ψ̄ + ru, r ∼ Γ

(
(2m+ 1)d,

2

nα

)
, u ∼ U(Kd

m),

The overall error rate is

E‖f̃X − f̃m,KX ‖2 = O

(
m2d

n2

)
E‖u‖2, u ∼ U(Kd

m).
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The remaining questions of this chapter are therefore the rate at which this latter expectation

increases, and the feasibility of performing the requisite sampling.

The above expectation is sometimes called the “moment of inertia” of Km following the connec-

tion to the physics of rotating bodies. Here we determine the requisite quantity analytically. Note

that since the first coordinate of Ψm is the constant 1, we consider the coordinate projection of the

resulting body to the remaining 2m coordinates. Thus we define

K ′m = conv
{

Ψ′m(x), x ∈ [0, 1]
}
.

with

Ψ′m(θ) = (ψ2(θ), . . . , ψ2m+1(θ)) ,

and note that

E‖u‖2 = 1 + E‖w‖2, u ∼ U(Km), w ∼ U(K ′m).

Define the inertia matrix M(K ′m) with

Mij(K
′
m) =

1

Vol(K ′m)

∫
K′m

xixj ,

Evidently the term E‖w‖2 which appeared in the above error rate for the one dimensional den-

sity estimator is just the trace of this matrix. We present the result first along with its salient

consequences before dedicating some space to its demonstration.

Proposition 4.4.1.

Mij(K
′
m) =

 1
4m−3(i−1) i = j

0 i 6= j
.

This immediately leads to

E‖w‖2 ≤ 1, w ∼ U(K ′m),

where the inequality holds irrespective of m. Therefore in the one dimensional case, the above

private density estimator has the convergence rate

E‖fX − f̃m,KX ‖2 = O
(
n−4/5

)
+O

(
m2

n2

)
= O

(
n−4/5

)
,

taking m as prescribed above in (4.12). In d dimensions we note that

E‖u‖2 =
(
1 + E‖w‖2

)d ≤ 2d, u ∼ U(Kd
m), w ∼ U(K ′m). (4.13)

In light of (4.13) for a multidimensional density estimator made private in the above fashion we
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obtain the overall error rate of

E‖f̃X − f̃m,KX ‖2 = O

(
m2d

n2

)
,

where we once again treat d as a constant. Finally taking m as in (4.12) with h as in (4.3) leads to

E‖fX − f̃m,KX ‖2 = O

(
(log n)2d

h2dn2

)
= O

(
(log n)2d

n2d/(d+4)n2

)
= O

(
n−4/(d+4) (log n)2d

n4/(d+4)

)
= O

(
n−4/(d+4)

)
,

where the last equality is since every positive power of n is eventually larger than log n. Therefore

we find that the method described above maintains the correct convergence rate. In fact as evident

from the penultimate expression on the right, the rate at which the private estimator converges to

the non-private one is substantially faster than the convergence of the latter to the true density.

4.4.3 Inertia of the Caratheodory Orbitope

In Schoenberg [1954] it was demonstrated that for curves of a given length in R2m, the one which

maximizes the volume of the convex hull is given by an affine transform of Ψm. In this section we

use some ideas of this paper in order to get at the inertia of this body rather than the volume.

Following Schoenberg [1954] we proceed by approximating Km with a sequence of polytopes having

limit point K ′m. Thus we consider

Km,n = conv

{
Ψ′m

(
2π
k

n

)
: k = 0, . . . , n− 1

}
,

evidently the above body is a polytope and so is the union of a set of disjoint simplices. One such

representation Schoenberg [1954] is

Kn
m =

⋃
i1≤i2≤...≤im

Si1,...,im ,

where the simplices are

Si1,...,im = conv

{
0,Ψ′m

(
2π
i1
n

)
,Ψ′m

(
2π
i1 + 1

n

)
, . . . ,Ψ′m

(
2π
im
n

)
,Ψ′m

(
2π
im + 1

n

)}
.

Therefore we have

M(Km,n) =
1

Vol2m(Km,n)

∑
i1≤i2≤...≤im

Vol2m(Si1,...,im)M(Si1,...,im). (4.14)
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We first recall some basic geometric properties of simplices. Denote by ∆d the “standard” simplex

in d-dimensional Euclidean space, that is

∆d =

{
x ∈ Rd : min

i
xi ≥ 0,

d∑
i=1

xi ≤ 1

}
,

evidently we have Vold(∆d) = 1/d!, since the unit hypercube in d dimensions is the union of d! such

disjoint simplices, each being rotated and translated appropriately.

Proposition 4.4.2. The inertia matrix for the simplex is given by

Mij (∆d) =

 2
(d+1)(d+2) i = j

1
(d+1)(d+2) i 6= j

. (4.15)

The proof appears at the end of this section. Consider the convex hull formed by the origin and

d more points in Rd. We may denote such a body as

A∆d = {Ax : x ∈ ∆d} ,

in which A is the matrix having columns specified by the non-origin coordinates of the corners of

the body. Evidently we have

M(A∆d) = AM(∆d)A
T ,

since

1

Vold(A∆d)

∫
A∆d

xxT =
1

|A|Vold(∆d)

∫
∆d

(Ax)(Ax)T |A| = A

(
1

Vold(∆d)

∫
∆d

xxT
)
AT .

Returning to (4.14) and defining the matrix

Ai1,...,im =

(
Ψ′m

(
2π
i1
n

)
,Ψ′m

(
2π
i1 + 1

n

)
, . . . ,Ψ′m

(
2π
im
n

)
,Ψ′m

(
2π
im + 1

n

))
,

then we evidently have

Vol2m(Si1,...,im) =
1

(2m)!
|Ai1,...,im |,

and

M(Si1,...,im) = Ai1,...,imM(∆2m)ATi1,...,im .
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Passing into the limit as n→∞ we obtain

Mij(K
′
m) =

∫
θ1

· · ·
∫
θm

D(θ1, . . . , θm)

(2m+ 1)(2m+ 2)

6
m∑
k=1

ψi(θk)ψj(θk) + 4
m∑
l 6=m

ψi(θl)ψj(θm)

 (4.16)

in which we defined

D(θ1, . . . , θm) =
|B(θ1, . . . , θm)|∫

θ1
· · ·
∫
θm
|B(θ1, . . . , θm)|

,

where B is the matrix given by

B(θ1, . . . , θm) =

(
Ψ′m(θ1),

∂

∂θ1
Ψ′m(θ1), . . . ,Ψ′m(θm),

∂

∂θm
Ψ′m(θm)

)
.

Once more, following Schoenberg [1954] we write the determinant as a sum of appropriately signed

products of determinants of the 2 × 2 minors, in which each minor is made up of neighboring

columns of B which both involve the same variable θi. This way, the multiple integral of each

product decomposes into a product of integrals. What’s more, the only such integrals which are

non-zero are when each minor is made up of adjacent rows of the original matrix, involving functions

having the same frequency. After integrating, we find the following∫
θ1

· · ·
∫
θm

|B(θ1, . . . , θm)| = (2π)m(m!)2,

and ∫
θ2

· · ·
∫
θm

|B(θ1, . . . , θm)| = (2π)m−1(m!)2, (4.17)

the last integral required for the inertia matrix is∫
θ3

· · ·
∫
θm

|B(θ1, . . . , θm)| = (4.18)

(2π)m−2(m− 2)!
∑
j<i

m!

ij

(
2ij − (i+ j)2

2
cos[(i− j)(θ1 − θ2)] +

(i− j)2

2
cos[(i+ j)(θ1 − θ2)]

)
,

where we made use of the identity

cos[k(θ1 − θ2)] = sin(kθ1) sin(kθ2) + cos(kθ2) cos(kθ2). (4.19)

Evidently the integrals over the other sets of variables of the same sizes as the above will be equal

due to the symmetry (or equivalently, by re-ordering columns in B which does not change the

determinant).
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Substituting (4.19) back into (4.18) and then inserting into (4.16) clearly leads to the demon-

stration that the requisite inertia matrix is diagonal. Thus we concentrate on the diagonal terms.

We have ∫
θ1

· · ·
∫
θm

D(θ1, . . . , θm)ψ2
i (θ1) =

1

2
,

and ∫
θ1

· · ·
∫
θm

D(θ1, . . . , θm)ψi(θ1)ψi(θ2) =
−8m2 + (9di/2e − 3)m+ 3

m(m+ 1)(4m− 3di/2e+ 3)
,

which when substituted into (4.16) leads to the stated inertia.

Proof of Proposition 4.4.2. We determine the entry corresponding to x1, the other diagonal terms

being equal due to the symmetry of ∆d.

M11(∆d) = d!

∫ 1

0
x2

1

∫ 1−x1

0
· · ·
∫ 1−xd−1

0
dxd · · · dx2 dx1

= d!

∫ 1

0
x2

1(1− x1)d−1Vold−1(∆d−1) dx1

= d

∫ 1

0
x2

1(1− x1)d−1 dx1

= d

∫ 1

0

d+1∑
i=2

(−1)i
(
d− 1

i− 2

)
xi1 dx1

= d
d−1∑
i=0

(−1)i
(
d− 1

i

)
1

i+ 3
.

Denote

f(d) =

d−1∑
i=0

(−1)i
(
d+ 2

i+ 3

)
(i+ 1)(i+ 2),

then f(d) = f(d− 1) since

f(d) =

d−2∑
i=0

(−1)i
((

d+ 1

i+ 2

)
+

(
d+ 1

i+ 3

))
(i+ 1)(i+ 2) + (−1)d−1d(d+ 1)

= f(d− 1) +

d−2∑
i=0

(−1)i
(
d+ 1

i+ 3

)
(i+ 1)(i+ 2) + (−1)d−1d(d+ 1)

= f(d− 1) + d(d+ 1)
d−1∑
i=0

(−1)i
(
d− 1

i

)
= f(d− 1)
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and so since f(1) = 2,

M11(∆d) =
f(d)

(d+ 1)(d+ 2)
=

2

(d+ 1)(d+ 2)
.

The off diagonal terms are likewise equal due to the symmetry and so

M12(∆d) = d!

∫ 1

0
x1

∫ 1−x1

0
x2(1− x1 − x2)d−2 1

(d− 2)!

= d(d− 1)

∫ 1

0
x1

∫ 1−x1

0
x2(1− x1 − x2)d−2

= d(d− 1)

∫ 1

0

(
d−2∑
i=0

(−1)i
(
d− 2

i

)
(1− x1)d

1

i+ 2

)

= d(d− 1)

(
d−2∑
i=0

(−1)i
(
d− 2

i

)
1

i+ 2

)∫ 1

0
x1(1− x1)d

= d(d− 1)

(
d−2∑
i=0

(−1)i
(
d− 2

i

)
1

i+ 2

)(
d∑
i=0

(−1)i
(
d

i

)
1

i+ 2

)
.

Denote

g(d) =

d∑
i=0

(−1)i
(
d+ 2

i+ 2

)
(i+ 1),

then following the same steps as above for f we have g(d) = g(d− 1), also g(1) = 1 and so

M12(∆d) =
g(d− 2)g(d)

(d+ 1)(d+ 2)
=

1

(d+ 1)(d+ 2)
.

4.4.4 Sampling the Convex Body

The goal of this chapter is to demonstrate an approach for sampling uniformly from inside Km.

Evidently since Km is contained in the hypersphere of radius
√
m, one possibility is to sample

uniformly from the hypersphere, then to reject points which lay outside Km. However due to the

dramatic rate at which the volume of Km decays relative to that of the containing hypersphere,

this technique requires astronomical numbers of samples in order to be useful in high dimension.

For example, to generate one sample requires on average (2m)m−1 samples from the sphere.

We implement the “hit and run” approach of Vempala [2005]. This is a random walk inside

Km, where at each iteration a random direction is chosen, and a new point is chosen uniformly at

random from the line segment given by the intersection of Km with the ray passing through the

current point and having the chosen direction.
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All that is required to perform this sampling method efficiently is a technique to determine the

extents of this line segment at each iteration. Note that per Sanyal et al. [2009] (theorem 5.2) the

body Km is isomorphic to a certain Hermitian Toeplitz spectrahedron. We have

(s1, c1, . . . , sm, cm) ∈ Km ⇔


1 c1 + is1 · · · cm + ism

c1 − is1 1 · · · cm−1 + ism−1

...
. . .

. . .
...

cm − ism cm−1 − ism−1 · · · 1

 � 0

where the latter means that the matrix is positive semidefinite, and where i is the imaginary

unit. Note that this matrix is the sum of a real symmetric Toeplitz matrix and an imaginary

skew-symmetric Toeplitz matrix. Finally note the connection between this representation and the

so-called “trigonometric moment problem” described by Caratheodory. In this case it demonstrates

that points in this convex hull correspond to equivalence classes of Borel probability measures on

the interval [0, 1] (where equivalence means equality of the first 2m fourier coefficients). Denote by

A(x) the matrix corresponding to a point x, and B(x) = A(x)− I. Let u, v ∈ R2m and consider the

ray {u+ ηv : η ∈ R}. Assuming u ∈ Km then the intersection of this ray with Km corresponds to

{u+ ηv : A(u) + ηB(v) � 0} .

Since during the algorithm u is an interior point of Km, the matrix A(u) is non-singular, so we may

write the condition as

I + ηA(u)−1B(v) � 0,

the endpoints of this line segment are therefore

−1

λmin (A(u)−1B(v))
,

1

λmin (−A(u)−1B(v))

where λmin(·) gives the minimum eigenvalue of the matrix. Thus the “hit and run” MCMC ap-

proach may be readily implemented, only requiring subroutines to solve for maximum and minimum

eigenvalues of matrices, the dimension of which are of the order O(n1/(4+d)), which may be feasible

in many cases.

4.5 Summary

In this chapter we presented a technique for the differentially private release of a kernel density

estimator which did not spoil the convergence rate of the unadulterated non-private estimator.

First we showed the difficulty of porting the technique of the previous chapter to satisfy the α-
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differential privacy as opposed to the approximate differential privacy. We demonstrated that the

Laplace mechanism fails to maintain the minimax rate for this problem, and then gave a new

technique based on the K-norm mechanism which achieved the correct rate.

What remains to be seen is whether it is possible to sample the requisite uniform distribution

over the convex body associated with this new method. For the case of a one-dimensional density

estimator we gave an efficient MCMC scheme, however we did not give an efficient scheme for higher

dimensional estimators. We suspect that the MCMC technique may be extended, by way of a kind

of tensor product construction to represent the convex hull as another spectrahedron, however this

remains to be seen in future work.
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Chapter 5

Weaker Alternatives to Differential

Privacy

The goal of this section will be to demonstrate some modifications to the adversary in differential

privacy. We will then determine whether lower noise levels may be appropriate on certain statistical

tasks.

5.1 Random Differential Privacy

We may replace the global quantifier ∀D ∼ D′ in the definition of differential privacy with a

milder condition and thus obtain a weaker notion of privacy. One conceptually appealing way is to

view the dataset D as a random sample of an unknown distribution, and to require that the DP

condition holds with high probability. This leads to “random differential privacy.” First we regard

the database D = (x1, . . . , xn) as arising from independent draws from some unknown underlying

probability distribution

xi
iid∼ P,

where P is unspecified. We then define random differential privacy as “differential privacy with

high probability” with respect to this underlying probability measure.

Definition 5.1.1 ((α, β, γ)-Random Differential Privacy). We say that a family of distributions

P = {PD : D ∈ D} is (α, β, γ)-Randomly Differentially Private when:

P (∀A ∈ A, PD(A) ≤ eαPD′(A) + β) ≥ 1− γ

Where P is the n+ 1-fold product measure over x1, . . . , xn and also x′n which is the element in

D′ not in D.
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Although an α-DP procedure fulfils the requirement of (α, 0)-RDP, the converse is not true. The

reason is that the latter requires that the condition (that the ratio of densities be bounded) holds

almost everywhere with respect to the unknown measure, whereas DP require that this condition

holds uniformly everywhere in the space.

We next show an important property of the definition, namely, that RDP algorithms may be

composed to give other RDP algorithms with different constants.

Proposition 5.1.2 (Composition). Suppose P, P ′ are families of distributions over Z,Z ′ which are

(α, β, γ)-RDP and (α′, β′, γ′)-RDP respectively. The release of outputs of both procedures achieves

(α+ α′, γ + γ′)-RDP.

This result is simply an application of the union bound combined with the standard composition

property of differential privacy. As an example, suppose it is required to release k different statistics

of some data sample. If each one is released via a (α/k, γ/k)-RDP procedure, then the overall release

of all k statistics together achieves (α, γ)-RDP.

As we have relaxed the notion of differential privacy, our methods provide weaker guarantees

with respect to individual privacy.

5.1.1 Remarks about Random Differential Privacy

As we have proposed a loosened definition which is alternative to Differential Privacy, some remarks

are in order. First we explain how our definition may be thought of in words rather than symbols. We

present the weaknesses and then the strengths of our privacy criteria as compared with differential

privacy.

Recall that the condition of differential privacy is that the ratio of densities due to random-

ized algorithms on samples differing by one point, be bounded (or tends towards a bound super-

polynomially fast). The effect of this condition is that an adversary who has n − 1 of the data

points, cannot reliably test whether the nth data point was a particular datum, since the power of

his test would be bounded close to the level (Wasserman and Zhou [2010]). In essence if he wants

to ensure probability 0.05 of not rejecting the correct data point, then he will only be able to reject

about 5% of the candidates. In this regard he has failed to ascertain any information about the

identity of the remaining data point.

In our definition we treat the data points as independent and identically distributed samples,

which arise from an unknown distribution P. We require that the original differential privacy

condition holds with some probability (which we will take to be a high probability, for example

γ = 0.05). This definition admits a number of interesting possibilities which are discussed below,

but first we must be careful to describe the ramifications of our particular weakening of Differential

Privacy. A reasonable way to consider our definition is that the usual DP criteria doesn’t hold
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uniformly over the space of data sets, but rather holds on “most” pairs of neighboring datasets,

depending on γ. Although there are a number of ways to implement such a technique, a reasonable

mental image to keep in mind is of data arising from a normal distribution. Then, a scheme would

achieve RDP if it met the DP condition whenever none of the samples x1, . . . , xn, x
′
n are sufficiently

far into the tail of the distribution (i.e., if DP holds on a sphere of measure 1 − γ). This example

highlights what we envision to be the strongest criticism of the definition. Perhaps it is those

extreme individuals (for example, the extremely wealthy or extremely sick) that require the most

protection, and it is those individuals for which RDP expressly permits a lack of privacy. Therefore

care must be taken when deciding whether it is appropriate to use this particular privacy definition.

Finally we recall again that the size of the “tail” (and thus the number of exposed individuals in

the above example) is controlled by γ, and therefore the above concern may not be an issue is γ is

taken small enough.

Having presented what we foresee as the strongest criticism which could be leveled at our def-

inition, we now turn to what we see are the most striking benefits of this relaxation over classical

differential privacy. The first is that it may easily be applied in problems where the data lay in

unbounded sets (for example real valued measurements). For example the sensitivity based ap-

proaches to DP typically require knowledge of the set in which the data lies, and when not available

may lead to problems (although Dwork and Lei [2009] demonstrate some statistical applications

in which unbounded sets may be handled by projecting the data to a suitable confidence set). In

practise the absence of a bound on the data may lead the practitioner to e.g., use the most extreme

values he observed to specify the radius of the set. However it is easy to see that this method will

fail to achieve differential privacy.

The other advantage of RDP is that it gives some weak notion of privacy but while maintaining

more utility in the released statistics. Evidently it will fail to hold up to a strong adversary such as

the imagined adversary of section 1.2.1, however it may be suitable in certain conditions. What’s

more as shall be demonstrated below the noise magnitude required for RDP is often much smaller

than that required for differential privacy.

5.2 RDP For Discrete Random Variables

Consider the special case that xi ∈ {0, 1}. This situation also occurs when the function we release

first applies some transform to the data so that the points become binary RVs, for example when we

replace each xi with the value of the indicator of some set, evaluated at that point. We consider the

release of the mean of a set of such binary RVs. This statistic is given by p̂(x1, . . . , xn) = n−1
∑

i xi,

and is an estimate of the quantity p = P(xi = 1). Traditionally the Differentially Private approach

has begun by noting that:
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sup
x1,...,xn,x′n

|p̂(x1, . . . , xn−1, xn)− p̂(x1, . . . , xn−1, x
′
n)| = n−1

Which yields the approach of releasing p̃ = p̂ + 1
αnL where L is a standard double exponential

random variable. When p̂ is very close to 0 or 1, and when n is large, then we have evidence that

p itself is close to 0 or 1. When this is the case, then it is unlikely that p̂ 6= p̂′ (where we introduce

this shorthand to mean the evaluations of the function p̂ on the neighboring data samples. To see

this, note that:

P(p̂ 6= p̂′) = P(xn 6= x′n) = 2p(1− p)

The intent of this section is to demonstrate an approach that achieves RDP by releasing p̂ directly

whenever it is safe to do so (in the sense that the probability that a neighboring sample would result

in a different estimate is below γ).

5.2.1 Basic Technique

Although there are several ways to obtain the requisite random differential privacy behavior, in this

section we concentrate on one method which will be used twice. Therefore it is clearer to present

the approach beforehand. We consider the n + 1 samples x1, . . . , xn+1 and the sufficient statistics

x(1) < x(2) < · · · < x(n+1), whatever ordering is used here is not important, it is only required to

specify some unique ordering for all sets of n + 1 points. These order statistics are the sufficient

statistics since the distribution of the xi is not assumed to be known, or to fall within any specific

parametric family. Due to their sufficiency we may attain the correct 1 − γ coverage level even

without knowing the model which generates the data. We thus aim for γ-RDP conditioned on these

sufficient statistics. First in the interest of compact equations, we define a new binary random

variable which takes the value 1 whenever the DP criteria is met, and 0 otherwise. Denoting by Qn

the method which produces the private random output (the mechanism), we have

η(x1, . . . , xn+1, Qn) = 1 {∀Z ∈ Z : Qn(Z|x1, . . . , xn−1, xn) ≤ eαQn(Z|x1, . . . , xn−1, xn+1) + δ(n)} ,

we suppress the dependence on x1, . . . , xn+1, and Qn. We aim for the following behavior

P
(
η = 1|x(1), . . . , x(n+1)

)
≥ 1− γ,
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then we have

P(η = 1) =

∫
Xn+1

P(η = 1|x(1), . . . , x(n+1)) dP(x(1), . . . , x(n+1))

=

∫
Xn+1

1− γ dP(x(1), . . . , x(n+1))

= 1− γ,

thus arriving at the correct overall 1− γ coverage level. What is more, to attain RDP conditional

on the sufficient statistics is conceptually simple and computationally tractable. First observe that

the probability P (η = 1|x(1), . . . , x(n+1)) is due to the rearrangement of the order statistics into the

unordered sample x1, . . . , xn+1. There are (n + 1)! ways to do the re-ordering and each one has

equal probability. The reason for the latter is that the variables are assumed to be iid, and so the

ordering does not impact the probability of a sample. Thus we take the (n + 1)! re-labelings, and

ensure that Qn achieves the differential privacy criteria (namely η = 1) on at least d(1− γ)(n+ 1)!e
of the re-labelings. This is all that is required to achieve the RDP conditional on the sufficient

statistics. In the following sections, we apply this approach to both the estimation of a binomial

proportion and to the estimation of a sparse histogram.

5.2.2 Binomial Proportion Estimation

First consider the n+ 1 bernoulli random variables: x1, . . . , xn, xn+1 ∈ {0, 1}n+1. For a sub-sample

of size n we define the estimate of the binomial proportion as:

p̂(x1, . . . , xn) = n−1
n∑
i=1

xi

We consider the event that estimates based on the neighboring samples arrive at different values:

ξ(x1, . . . , xn+1) = 1 {p̂(x1, . . . , xn−1, xn) 6= p̂(x1, . . . , xn−1, xn+1)}

= 1 {xn 6= xn+1}

The probability of this event conditioned on the sufficient statistics is simply the fraction of ways

that the order statistics could be re-ordered which result in the last two samples taking different

values. We define:

s(x(1), . . . , x(n+1)) =

n+1∑
i=1

x(i)
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Note that this function could not be evaluated in a real invocation of the procedure, since it depends

on the neighboring sample which belongs to the supposed adversary. We have:

P(ξ = 1|x(1), . . . , x(n+1)) =
2s(n+ 1− s)(n− 1)!

(n+ 1)!
=

2s

n
− s

n(n+ 1)
≤ 2s

n
≤ 2(p̂+ n−1)

This leads to the technique:

p̃ =

p̂ 2(p̂+ n−1) ≤ γ

p̂+ 1
nαL o/w

(5.1)

The analysis begins by noting that the case in which the classical DP criteria fails to hold is either

when both estimators are released exactly, and they differ, or when one estimator is released exactly

whereas the other is released with the Laplace noise added to it. This is equivalent to the condition

that the estimates differ and that at least one is released exactly (since if they are equal then it is

impossible that only one is released exactly).

Proposition 5.2.1. The technique of (5.1) achieves (α, 0, γ)-RDP.

Proof. Define:

m = nmin{p̂(x1, . . . , xn−1, xn), p̂(x1, . . . , xn−1, xn+1)}

The condition that ξ = 1 leads to s = m + 1. The condition that at least one of the estimates be

released exactly leads to 2(m+ 1) ≤ nγ. Thus we have that η = 0 only when 2s ≤ nγ.

P
(
η = 0|x(1), . . . , x(n+1)

)
= P

(
ξ = 1, 2s ≤ nγ|x(1), . . . , x(n+1)

)
= P (ξ = 1|2s ≤ nγ)P

(
2s ≤ nγ|x(1), . . . , x(n+1)

)
= P (ξ = 1|2s ≤ nγ) 1

{
2s(x(1), . . . , x(n+1)) ≤ nγ

}
≤ nγ

n
= γ

5.2.3 Sparse Histograms

Computation of a histogram is via a function θ : D → Nd, with coordinates specified by
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θj(D) =
1

n

n∑
i=1

1{di ∈ Bj},

where the Bj are mutually disjoint sets of the input space.

Proposition 5.2.2. The release of θ̃D = θD + X achieves (α, 0, γ)-RDP, where X is the random

vector with coordinates given by

xj =

0 θj(D) = 0 and 2d ≤ γn
2
nαLj o/w

, (5.2)

where the Lj are iid standard Laplace random variables.

In demonstrating RDP, we take the sample x1, . . . , xn, xn+1 and denote: S = S(x1, . . . , xn) and

S′ = S(x1, . . . , xn−1, xn+1). We consider the output distribution of our method when applied to

each of the neighboring samples. The event that the ratio of densities fail to meet the requisite bound

is a subset of the event where either xn+1 ∈ S or xn ∈ S′, and when 2k ≤ γn. In the complement

of this event then the partitions are the same, and the differing samples both fall within the block

which receives the Laplace noise, so the DP condition is achieved. In demonstrating the RDP, we

simply bound the probability of the aforementioned event, conditional on the order statistics.

The basic idea is to partition the space into two blocks and to release a noise-free histogram

in one block, and use the classical differentially private histogram in the other. The partition will

depend on the data itself. We consider x ∈ {0, . . . , k} as in a k-way histogram.

We consider the unadulterated histogram values:

p̂j = n−1
n∑
i=1

1{xi = j}

For a sample x1, . . . , xn, we denote:

U = U(x1, . . . , xn) =

{
j : p̂j +

1

n
≤ γ

2k

}
Then we consider the release mechanism:

p̃j =

p̂j j ∈ U

p̂j + 2
nαL o/w

(5.3)

In demonstrating RDP, we take the sample x1, . . . , xn, xn+1 and denote:

U = U(x1, . . . , xn), U ′ = U(x1, . . . , xn−1, xn+1)
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The event that the DP criteria fails to hold is a subset of the event where either xn+1 ∈ U or xn ∈ U ′.
In the complement of this event then the partitions are the same, and the differing samples both

fall within the block which receives the Laplace noise, so the DP condition is achieved. We consider

the probability of the aforementioned event, in which DP fails:

P
(
η = 0|x(1), . . . , x(n+1)

)
≤ P(xn ∈ U ′ or xn+1 ∈ U |x(1), . . . , x(n+1))

Proposition 5.2.3. The technique of (5.3) satisfies the (α, γ)-RDP.

Proof. Take:

cj =
n+1∑
i=1

1{xi = j}

U?(x1, . . . , xn, xn+1) =
{
j : cj ≤

γn

2k

}
We have that irrespective of the ordering of the points, U,U ′ ⊆ U?. We see that j ∈ U?C implies

j ∈ UC since:

p̂j +
1

n
≥ cj
n
>

γ

2k

Thus U?C ⊆ UC and so we have U ⊆ U?. A symmetrical argument holds for p̂′j , which are the

histogram values when xn+1 is used in place of xn. We thus have:

P(xn ∈ U ′ or xn+1 ∈ U |x(1), . . . , x(n+1)) ≤ P(xn ∈ U? or xn+1 ∈ U?|x(1), . . . , x(n+1))

The latter probability is just the fraction of ways in which the order statistics may be rearranged

so that xn, xn+1 have the requisite property. Due to the construction of U?, we have the property:

u(x(1), . . . , x(n+1)) =

n+1∑
i=1

1{x(i) ∈ U?} ≤
γn

2

Therefore the number of rearrangements having at least one of xn, xn+1 ∈ U? is
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P(xn ∈ U? or xn+1 ∈ U?|x(1), . . . , x(n+1)) = 1− 2

(n+ 1)!

(
n+ 1− u

2

)
(n− 1)!

= 1− 2

(n+ 1)n

(
n+ 1− u

2

)
=

2un+ u− u2

n(n+ 1)

≤ 2u

n+ 1
+

u

n(n+ 1)

≤ nγ

n+ 1
+

γ

2(n+ 1)

<
(n+ 1)γ

n+ 1
= γ

Thus in summary we have:

P
(
η = 0|x(1), . . . , x(n+1)

)
≤ P(xn ∈ U ′ or xn+1 ∈ U |x(1), . . . , x(n+1))

≤ P(xn ∈ U? or xn+1 ∈ U?|x(1), . . . , x(n+1))

< γ,

which is the desired result.

We also find the above technique to have good accuracy when d is large relative to n.

Proposition 5.2.4. Suppose that 2d ≤ γn. Let θD = (θ1, . . . , θr, 0, . . . , 0) for some 1 ≤ r < k.

Then ||θD − θ̃D||1 = OP (r/αn).

We thus have a technique for which the risk is uniformly bounded above by O(k/αn) as with

the DP technique, and which also enjoys the coordinate-wise upper bound on the risk. However in

this regime, the risk is no longer uniformly lower bounded with a rate linear in k, since the upper

bound is linear in r in the case of sparse vectors.

5.3 RDP via Sensitivity Analysis

We next demonstrate that RDP allows schemes for release of other kinds of statistics (besides

histograms). We give the analog of the construction of proposition 1.3.1 for RDP. We consider the

family of distributions with densities given by
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Figure 5.1: An experiment demonstrating the improvement obtained when using RDP, when the
task is the release of a very sparse histogram.

dPD(z) ∝ exp

{
−α |z − g(D)|

2s(D)

}
. (5.4)

It is well known that when s is the constant function which gives an upper bound of the global

sensitivity Dwork et al. [2006b] of g, this method enjoys the α-DP. As we allow s to depend on the

data we may make use of the local sensitivity framework of Nissim et al. [2007]. Thus we require s

to be “smooth” in the sense of Dwork et al. [2006b] with high probability, and also to be an upper

bound on the sensitivity of g with high probability as g is given random inputs. Writing s(D) as

s(x1, . . . , xn) it follows from Nissim et al. [2007] that whenever

s(x1, . . . , xn) ≤ eβs(x1, . . . , x
′
n) (5.5)

and

sup
x′n

|g(x1, . . . , xn)− g(x1, . . . , x
′
n)| ≤ s(x1, . . . , xn), (5.6)

then the method (5.4) fulfils the (α, δ)-differential privacy (where δ = δ(β) is given below). In order

to get random differential privacy we allow both of these conditions to fail with some bounded

probability.

We consider a special subset of functions for which the sensitivity depends only on the points

that differ between the two samples. Namely we consider those functions g for which there exist
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some suitable h which obeys

sup
D∼D′

∣∣g(D)− g(D′)
∣∣ = n−1 sup

x,x′
h(x, x′).

Examples of functions satisfying this property are e.g., statistical point estimators Smith [2008] and

regularized logistic regression estimates Chaudhuri et al. [2011]. In particular in these cases it is

assumed that D is some compact subset of Rn and then e.g., supx,x′ h(x, x′) = ‖x − x′‖2 gives the

diameter of this set. We consider the empirical process based on h and the data sample D given by

F (D, t) =
2

n

n/2∑
i=1

1
{
h(xi, xi+n/2) ≤ t

}
this is exactly an empirical CDF for the distribution of the random variable h(x, x′), based on n/2

independent samples. We may anticipate that sample quantiles of this empirical CDF will be close

to the quantiles from the true CDF, which we denote by H(t) = P (h ≤ t). This is made precise by

the DKW inequality (see e.g., Massart [1990]), which in this case yields

P
(

sup
t
|H(t)− F (D, t)| ≥ ε

)
≤ 2e−nε

2
. (5.7)

The above concentration result gives a means to establish that s(D) may be a sensitivity bound

which holds with high probability. For the bound to be smooth with high probability requires that

sample quantiles of the above process will be close with high probability. Work due to Kiefer and

others (see e.g, Kiefer [1967]; Arcones [1996]) demonstrates that this is the case.

Evidently a quantile of h, say hθ leads to a quantile of the sensitivity of g since

P
(∣∣g(D)− g(D′)

∣∣ > τ
)

= P
(
h(x, x′) > nτ

)
,

thus using an appropriately scaled quantile of h as our function s will satisfy the probabilistic

relaxation of (5.6). When using a sample quantile there are in essence two ways that this property

will fail. The first is when the sample quantile is smaller than the true quantile, and the second is

when the data leads to neighboring g with difference outside of the quantile. The former probability

is obtained via DKW and the latter by selecting the appropriate quantile of the true distribution.

Namely we may take ĥθ to be the θ sample quantile of h, and likewise hθ to be the unknown true

quantile, then

P
(
h > ĥθ

)
≤ P

(
hθ > ĥθ

)
+ P (h > hθ)

Now we turn attention to the condition (5.5), that the functions s(D) = nĥθ based on samples
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differing by one sample be close. We examine the Bahadur-Kiefer representation for quantiles of an

empirical process

ĥθ − hθ =
F (D,hθ)−H(hθ)

∂H(hθ)
+Op(n

−1/2)

We desire the ratio
ĥθ(D)

ĥθ(D′)
≤ eβ,

with high probability. We also would like δ(β) to be negligible in n (a typical requirement when

working with the approximate differential privacy). From Nissim et al. [2007] we have

δ(β) = exp

{
− α

2β

}
,

thus for example if we take β = n−1/2 then we have that δ = e− α2
√
n which is negligible (since we

regard α as a constant which does not depend on n). We write

ĥθ(D)

ĥθ(D′)
≤ 1 +

|ĥθ(D)− ĥθ(D′)|
ĥθ(D′)

,

then

|ĥθ(D)− ĥθ(D′)|
ĥθ(D′)

=

|F (D,hθ)−F (D′,hθ)|
∂H(hθ) +Op(n

−1/2)

hp + F (D′,hθ)−H(hθ)
∂H(hθ) +Op(n−1/2)

the DKW inequality and the triangle inequality lead to

P(sup
t
|F (D, t)− F (D′, t)| ≥ ε) ≤ 4e−2ε2n,

therefore

|F (D,hθ)− F (D′, hθ)| = Op(n
−1/2).

What’s more, DKW directly gives

F (D′, hθ)−H(hθ) = Op(n
−1/2),

therefore since ∂H(hθ) is constant with respect to n we have

|ĥθ(D)− ĥθ(D′)|
ĥθ(D′)

=
Op(n

−1/2)

hθ +Op(n−1/2)
.

Thus we may achieve the approximate differential privacy with appropriately negligible δ in the

limit as n grows to infinity.
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5.4 Variants of Random Differential Privacy

The above variant of differential privacy arose from blindly wrapping the usual differential privacy

criterion in a probabilistic statement. As such it may not be a particularly useful definition to the

practitioners. Thus we may explore some closely related but different ideas in order to find weak-

enings under which meaningful statistical inferences are possible but which give a more appropriate

privacy guarantee.

One obvious extension arises by considering the following scenario. The data owner has n data

points which have arisen from some unknown distribution (e.g., due to some survey), the adversary

has m points from the same distribution (e.g., from a similar survey done historically by some

agency), and the overlap between the two sets is known to be at least k. This situation seems

prima facie reasonable in the context of governmental surveys and census data. What’s more due

to its similarity to RDP it will admit similar analyses, and allow the construction of methods via

a hypothesis testing construction (in which the size corresponds to the probability of a privacy

breach). The above method also should be noted for its similarity to the method outlined in an

upcoming paper due to Shlomo et. al.

What’s more there are other ways to involve the probability of the underlying sample in the

privacy statement. One possibility is “predictive differential privacy.”

Definition 5.4.1 (Predictive Differential Privacy). We say that P satisfies (α, γ)-predictive differ-

ential privacy if

PD(Z ∈ A) ≤ eαPD′Q(Z ∈ A) (5.8)

for all A and D ∼ D′ where D′ ∈ Ŝn(D) where the latter is a prediction interval for xi based on

dataset D, that satisfies P(x ∈ Ŝ(D)) ≥ 1 − γ (in which P is once again the n + 1-fold product

measure).

This definition is similar in spirit to random differential privacy, in that it admits a failure

of the differential privacy condition whenever the “neighboring data” is unlikely under the joint

distribution. In fact this is a strengthening of RDP in the sense that techniques which fulfill this

definition will also be randomly differentially private.

5.5 Summary

In this chapter we gave a new privacy definition which is a strict relaxation of differential privacy.

We showed how it can be applied to discrete problems like histogram estimation, and how it can be

applied to continuous problems via a kind of “empirical” sensitivity analysis. We also demonstrated

that accuracy is improved over a naive differentially private technique (the Laplace mechanism) for
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histogram estimation. We also demonstrated that it can be useful in the case when the input space

is not compact.

In our opinion the contributions of this section are obviated in light of the histogram release

techniques shown in Chapter 2. The current chapter is more of a historic footnote in our search for

improved accuracy out of differentially private techniques. After the development of these techniques

we also found that it is possible to relax the requirement of compact support via the techniques in

Dwork and Lei [2009], in some cases without sacrificing the convergence rate of the estimators in

question. What remains to be seen what class of estimators this is true for, besides the ones shown

in their paper.
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Chapter 6

Summary

In this thesis we dealt with a few new methods for useful statistical inferences which provide the

guarantee of differential privacy. A common thread was that we sought to preserve the statistical

performance of the various techniques, while maintaining privacy. Some of our constructions left

open avenues of work which may be pursued in the future.

First we demonstrated some techniques for discrete density estimators such as histograms and

contingency tables. There we showed that in the case of high dimensional data, we may take

advantage of sparsity in order to have some control over the breakdown in utility necessitated by

the privacy guarantee. Although we demonstrated that the technique is close to optimal in its

error rate, we hinted that the true optimal rate may be obtained by using a “False Discovery Rate”

method rather than the truncation we used there. This will be interesting to explore in follow-on

work.

Second we demonstrated how various function values estimators may be made private. We dealt

with the entire class of functions which live in Reproducing Kernel Hilbert Spaces and showed a

conceptually clean way to preserve the privacy of these. We gave essentially the natural extension

of the finite dimensional differential privacy methods into an infinite dimensional space with certain

structure. However the technique only gave a lesser privacy guarantee – that of the approximate

differential privacy. It will be interesting to see whether there exists any similar method which is

as easily applicable and which gives the proper privacy guarantee.

We then demonstrated for a specific task (kernel density estimation) how differential privacy

may be obtained without sacrificing the statistical convergence rate of the estimator. Here the

technique was more ad-hoc than the above, and it is not clear whether similar techniques will

apply to different problems like this one. However for estimators which are the pointwise means

of functions which lay sufficiently close to the span of the fourier basis, it seems likely that this

technique can be made to apply.
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Finally we gave a modification to the privacy criteria that allows for much greater utility but at

the expense of a weaker guarantee. In light of recent work the actual methods we gave may not be

so useful, but nevertheless we initiated an exploration into weaker but meaningful forms of privacy

which we hope to see continued in the future.
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