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Abstract

Genetic association studies have been used to examine the genetic basis of
many diseases. They have found genomic markers which contribute to risk for a
number of diseases. However, genetic association studies have failed to explain
the large genetic contribution to complex traits such as height.

In this report, we examine the feasiblity of using artificial selection exper-
iments on model organisms (specifically, Drosophila melanogaster) to improve
the performance of genetic association methods and understand the nature of
genetic associations better. We use simulated artificial selection experiments
on Drosophila melanogaster to generate genotype data and perform association
using sparse regression methods. We demonstrate that this approach improves
the accuracy of association methods at recovering causal polymorphisms for a
range of allele frequencies and effect sizes.
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1 Introduction

Many diseases (and other traits) are inherited familially. Genetic association
studies involve finding the polymorphisms in whole-genome genetic data that
are responsible for specific phenotypic traits (often diseases) [Consortium, 2007].
Many candidate polymorphisms in the genome have been found to have effect
in diseases such as diabetes [Saxena et al., 2007, Sladek et al., 2007], Crohn’s
disease [Libioulle et al., 2007], prostate cancer [Thomas et al., 2008], breast can-
cer [Antoniou et al., 2008, Eeles et al., 2008]. These and many other genome-
wide association studies have helped improve our understanding of many dis-
eases. However, they have been unable to explain the large fraction of genetic
contribution to phenotypic diversity of traits such as height.

In this report, we examine how artificial selection experiments on model or-
ganisms can be used to improve association studies. Section 2 examines the
the current status of association studies and the challenges they face. Section 3
describes the history of artificial selection experiments and summarizes existing
methods of genetic association. We explain the artificial selection approach in
more detail in Section 4. Section 5 contains the results of preliminary experi-
ments on simulated data from Drosophila melanogaster and Section 6 discusses
future work in this direction.

2 Genetic association studies

As outlined earlier, association studies have vastly improved our understand-
ing of many complex traits. Underlying these studies is the “common disease,
common variant” assumption, which hypothesizes that common diseases are
affected by common allelic variants present in more than 1-5 % of the popula-
tion [Collins et al., 1997, Pritchard, 2001]. Current SNP chips capture millions
of such variants and thus provide a convenient way of setting up such studies.

To analyze the utility of association studies, it is helpful to analyze quanti-
tative traits in terms of their heritability. The heritability of a trait is defined
as the fraction of the phenotypic variance of the trait that can be explained
by additive genetic factors [Hindorff et al., 2009]. Another important idea that
helps our understanding of association studies is the effect of a allele variant, or
the increase in the risk of having the disease due to the presence of the variant.
The aim of association studies is to find alleles that have some (large or small)
effect and account for as much of the heritability of the trait as possible.

2.1 Current status of genetic association studies

Genetic association studies are usually set up in one of three different ways:

Familial studies In familial studies, pedigrees with a known history of a
particular disease are genotyped. This avoids the problem of population strat-
ification (an important problem occuring in association studies that will be
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explained in more detail in Section 2.2). However, the restriction on the indi-
viduals that can be included in the study limits the power of the method in
finding associations.

Case-control design Case-control studies involve a comparison between the
genotypes of two sets of individuals characterized by presence or absence of
the phenotype of interest. Cases are a group of individuals who exhibit the
phenotype of interest (a diease or a complex trait). Controls are individuals
who do not show prevalence of the phenotype. The underlying assumption is
that genotypic differences (in terms of the frequency of certain allelic variants)
between cases and controls are likely to be at markers which are causally related
to the phenotype being studied.

In most recent studies, association studies are set up using a case-control
design.

Population cohorts Rather than designate two different sets of individuals
as cases and controls, population cohorts follow a single set of individuals over
a longer period of time, collecting phenotypic information for multiple traits.
This limits the number of “cases” for a particular disease that might be present
in the cohort, but the resulting data includes a lot of longitudinal information
about multiple phenotypes that can be useful for other studies of diseases. In
particular, environmental and lifestyle information about the cohort can also
be used to study the effect of epigenetic factors on various traits [Wong et al.,
2004]. It also allows for the study of pleiotropy [Cordell and Clayton, 2005],
which is the phenomenon by which a single allelic variant of a gene can affect
multiple traits, which may or may not be known to be functionally related.

For certain diseases such as age-related macular degeneration, it has been
found that only a few common variants having large effects account for most of
the heritability of the trait. Scenarios such as these are conducive to analysis
by genome-wide association studies. In many other diseases, most common
variants only add small increments to the disease risk and explain only a small
percentage of heritability. An example of such a trait is human height, with an
estimated heritability of 80%. Genome-wide association studies have indicated
∼40 loci that might be associated with human height, but they explain only
5% of the phenotypic variance of human height. Similar problems have been
encountered when trying to explain the heritability of other complex traits using
association studies. Below we discuss some more of the challenges that are faced
when performing association studies.

2.2 Challenges in genetic association studies

Population stratification Case-control studies are based on the assumption
that genotype differences between cases and controls are likely to be causually
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related to the phenotype. However, if there is unidentified population stratifi-
cation between the cases and controls, this assumption does not hold true. If
the cases disproportionately represent a genetic population in comparison to
the controls, then any SNP with allele frequencies differing between the cases
and controls will (incorrectly) be found to be associated with the phenotype,
when it is only truly associated with distinguishing case or control status. A
variety of methods have been proposed to identify and correct for population
stratification in association studies [Price et al., 2006, Pritchard et al., 2000,
Puniyani et al., 2010, Roeder et al., 1998].

Insufficient sample size It has been suggested that the partial success of
genetic association studies could be a result of not sampling enough individuals.
Small sample sizes could result in rigorous tests of statistical significance failing
to identify variants of small or moderate effects as causal. Recent work by
Yang et al. [2010] suggests that increasing sample sizes identifies new SNPs
that allow us to explain up to 40% of the heritability of human height. While
this is a significant improvement, it still accounts for only half of the estimated
heritability of the trait.

Single locus association statistics Many traditional tests for association
are single-locus tests for statistical significance. Due to the large number of
statistical tests that have to be performed for all genotyped SNPs, a correction
factor must be applied to the test statistic to avoid false positives. A commonly
used correction is the Bonferroni correction, by which the test statistic is reduced
by a factor of the number of SNPs. This assumes that all the tests performed are
independent. However, due to linkage disequilibrium, SNPs are correlated and
therefore the tests are not independent of each other. The Bonferroni correction,
therefore, is too conservative and ignores weak associations.

Effect size distribution The early genome-wide association studies have
been able to identify candidate SNPs that have large effects. The undiscovered
causual variants are likely to have smaller effects. Therefore finding newer can-
didate loci in association studies is likely to be a harder problem [Park et al.,
2010].

Comon disease, rare variants Current SNP chips capture variation only
at loci where the minor allele frequency (MAF) is between 1-5%. However, low
frequency (MAF ≤ 1%) variants and rare variants (MAF ≤ 0.01 %) are not
captured. Since many traits are multifactorial, a relatively small number of rare
variants with moderate effect could account for a large percentage of the trait
heritability.
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3 Related work

Genetic association and artificial selection have both been widely studied. Be-
low, we briefly describe some of the related work in both these areas.

Historically, breeding of plants and animals after domestication can be con-
sidered to be artificial selection. The first recorded artificial selection experi-
ments were performed only after 1945 [Hill and Caballero, 1992]. They were used
to show that almost any quantitative trait could be altered, that the response
was due to change in gene frequencies and that many genes must be involved.
Artificial selection experiments have been used for understanding trait variation,
estimating genetic covariances, correlations among traits [Garland Jr, 2003, Hill
and Caballero, 1992].

Traditional methods for genetic analysis of diseases used techniques such
as linkage analysis of candidate markers or genes and quantitative trait lo-
cus (QTL) mapping using one marker and one phenotype at a time [Easton
et al., 1993], followed by a correction for multiple hypothesis testing [Benjamini
and Hochberg, 1995, Storey and Tibshirani, 2003]. Recently, methods have
been developed that enhance power by allowing analysis of multiple markers
at once [Balding, 2006]. Methods such as eigenanalysis [Price et al., 2006] and
regression [Cordell and Clayton, 2002] can perform simultaneous analysis of
multiple markers for associations. Mixed models such as EMMA [Kang et al.,
2008] extend the regression framework to model the association problem (with
confounding variables) as a linear mixed model.

Model organisms have been used to finding genetic associations in many
earlier studies, using various experimental methods such as developing trans-
genic animals or gene knock-out experiments. Artificial selection experiments
have also attempted to use allele frequency data to find markers associated with
traits. To our knowledge, this work represents the first attempt at using artifi-
cial selection experiments to perform genetic association using genotype data.
Potentially, this will allow us better control over the data, and avoid problems
such as low causal allele frequencies or population stratification.

4 Proposed approach

We propose an artificial selection setup for finding genetic associations. Artifi-
cial selection experiments belong to a class of experiments know as laboratory
selection [Hill and Caballero, 1992]. Laboratory selection experiments are a
useful tool for studying evolution. They can be used to answer questions about
adaptations, trait associations, etc [Garland Jr, 2003]. In artificial selection
experiments, individuals are chosen to propagate the next generation if they
express particular values of a desired phenotypic trait. These experiments allow
the experimenter more control over the selection experiment.

The artificial selection experiment setup involves two sets of individuals, a
selected group and a control group. The control group is a set of individuals
on which no selection is performed. The selected group undergoes selection
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according to a regime of selection strength and consistency as chosen by the
experimenter. As described earlier, individuals from the selected group are
chosen to reproduce to form the next generation if they express particular values
of a phenotypic trait. For most traits, selection can be performed to obtain
either high values of the trait or low values of the traits. Artificial selection
experiments therefore often have two selected sets of individuals, one group
selected for high values of the traits and the other selected for low values of the
trait. To ensure that the experiment results are due to selection and not due to
genetic drift, the experiment is often performed with more than one replicate.

The steps in an artificial selection experiment are:

1. Begin with an initial population of individuals as the current generation.

2. Measure the value of the phenotypic trait chosen for selection in all indi-
viduals in the current generation.

3. Individuals whose phenotype value matches a prespecified criterion for
the phenotype (for example, trait value larger than an absolute or relative
threshold) are chosen to be the parents for the individuals in the next
generation.

4. The chosen parents are allowed to mate to produce a new generation of
individuals. The number of individuals created is the same as that in the
original population.

5. Repeat steps 2-4 with the new population.

Steps 2-5 are performed for the number of generations chosen by the experi-
menter.

We propose to set up an artificial selection experiment by breeding Drosophila
melanogaster for a trait of interest. We can then genotype (some of) the gen-
erations of individuals created during the artificial selection experiment. The
sequenced genotypes and measured phenotypes can then be used for performing
association between genotype and phenotype.

4.1 Technical Approach

We will use sparse linear regression from the genotypes on to the phenotypes
to recover associations. As described in Section 3, sparse regression methods
have previously been successfully used in association studies. The association
problem is modeled as a regression problem, with the the genotypes at each
locus being the covariates and the phenotype as the dependent variable. The
regression coefficients then allow us to estimate the significance of the association
between the locus and the phenotype.

We used the lars package by Efron et al. [2004] to perform the sparse regres-
sion. For computational efficiency, lars was only run for 10 steps, thus recovering
the 10 loci that have maximum association with the phenotype.
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5 Preliminary results

For simulating the artificial selection experiment, we used the code provided
by Dr. Hudson (personal communication). In the setup, selection and recom-
bination is assumed to occur on females only. We assume that there are no
dominance effects and that loci have only additive effects. The parameters to
the code are the recombination rate between the ends of the chromosome, the
number of ancestors, the number of segregating sites and the number of ances-
tors, the positions, frequencies and heredities of the QTLs. The recombination
probability (between the ends of the chromosome) is set to 0.25 across all ex-
periments, and the number of ancestors is set to 100. Each generation has 400
individuals. From the simulation code, we can extract genotype and phenotype
data from any generation of the selection experiment.

5.1 Design of experiments

With the artificial selection experiment setup described above, there are many
questions that must be answered when analyzing the utility of the experiment
with respect to recovering genotype-phenotype associations. The primary ques-
tions we address are:

• What is the effect of using data from different generations on the recovery
of associations?

• What is the effect of varying the amount of total heredity of the pheno-
type?

• How much data do we need to recover associations correctly?

• What is the effect of per-locus heredity on the recovery?

• What is the effect of changing the total number of segregating sites on the
recovery?

We will design our experiments to address these questions. The question of
effects of heredity is crucial to all our analyses and therefore heredity will be a
parameter in all the experiments we design. To address the question of effect of
number of segregating sites on recovery, each experiment will be performed at
two different settings, with number of segregating sites set to 2,000 and 50,000
in the two cases. The number of QTLs affecting the phenotype is set to two,
with heredity shared equally, unless specified otherwise. At each experimental
setting, 20 independent selection runs are used to compute the score statistics.
To quantify how well associations are recovered, we define a measure of accuracy
below.

5.2 Evaluation measure

Association studies generally use p-values as a measure of evaluating how well
associations are recovered. P-values are usually computed using permutation
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tests, with many (105 − 106) permutations. However, since we are performing
a very large number of simulations, this would be computationally prohibitive.
Instead, we define a new measure for evaluating recovery based on our knowledge
of the ground truth about the QTLs that affect the phenotype.

Since we use a sparse-regression based approach with only 10 steps, the
regression output is a list of 10 loci. The loci are ordered in non-increasing
order of their association with the phenotype. Therefore, we use the rank of the
known QTLs in this list as an accuracy measure. In particular, the evaluation
measure is given by the sum of the ranks of the known QTLs in the list of loci
output by the regression. Thus, in a case with two QTLs, the ideal regression
output would have the two QTLs ranked 1 and 2 in the output list, thus giving
an error measure of 3. Similarly, for a case with three QTLs, the error measure
would be at least 6. If a known QTL is not found the the regression output list,
a penalty of 10 is added to the score measure.

5.3 Effect of generations

First, we will analyze the effect of using data from various generations on the
recovery of associations. Two natural choices are:

• Use data only from the final generation of the artificial selection.

• Use data from the initial and final generation of the artificial selection.
This has the advantage of having double the number of individuals (com-
pared to the previous option) and also having large variation in the phe-
notypes and genotypes of the two generations.

To examine the effect of using data from various generations on the recovery of
associations, we will use variations of the second scheme described above. We
will use data from generation X (X = 1/7/13/19) and the final generation to
do the regression. We will also compare the results to using data from only the
final generation.

Figures 1(a) and 1(b) show the results of using data from different genera-
tions on the recovery. For easy visual interpretation, we have shown only the
mean value of the score at each experimental setting.

From the figures, we can see that using data from two generations is almost
always better than using data from just the final generation. The only exception
is when data from the 19th and 20th generations is used for the regression. In
this case, the behavior is almost identical to that seen when using data only
from the final generation. Both these observations suggest that genotypic and
phenotypic diversity in the data is important for the regression to work well.
However, this could also be in part due to the larger number of individuals that
the regression involved. We will examine how the number of individuals chosen
has an effect on association recovery later.

Another interesting effect we observe is that the performance of the regres-
sion with only data from the final generation becomes worse as the total heredity
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Figure 1: Effect of changing the initial generation on the recovery of associations.
The solid line shows results when only data from the final generation is used for
regression. The dashed line shows results when data from an initial generation
and the final generation is used. The different colors indicate different choices
of initial generations 1,7,13,19.

of the phenotype increases. This could be because the increased correlation be-
tween genotype and phenotype results in reduced variance in the phenotype in
the data used for regression. We are still exploring this effect and more analysis

9



is needed to explain this behavior satisfactorily.
We also observe that the results are not significantly affected even when the

number of sites is increased to 50000. There are minor effects on accuracy as
seen in the mean scores, but the overall behavior is nearly the same. This is an
encouraging sign since the real data will be quite large in size.

5.4 Effect of number of individuals

A possible reason for the good performance of using data from two different gen-
erations could be the increase in the number of individual samples. To examine
whether the number of individuals has an impact on accuracy, we replicated
the experiments using only half the number of individuals (200) from each gen-
eration. Figures 2(a) and 2(b) show the results of those experiments. In this
case, we show the boxplot of the score statistics for each experimental setting.
A small random jitter has been added to the scores for ease of visualization.

From the figures, we can see that accuracy is not affected even if the data
size is halved. This suggests that the improved performance earlier is not just
due to an increase in data size. Another thing to note is that accuracy is not
significantly affected even if the number of sites is increased to 50000, though
there are more errors than in the case with 2000 sites.

5.5 Effect of phenotype values

The previous experiment suggests that phenotypic/genotypic diversity, and not
the number of individuals, is the important factor in determining the accu-
racy of the regression. To understand this, we need to examine whether the
actual phenotypic values are important for accuracy or if it suffices to replace
the phenotype by a dummy variable indicating the generation it comes from.
In particular, we will replace the phenotype of individuals in the initial gen-
eration by a ‘0’ and the phenotype of individuals from the final generation by
a ‘1’, and perform the regression on the modified data. We also perform the
regression using half the data to examine the effect of the number of individuals
simultaneously.

Figures 3(a) and 3(b) show the results of the experiments. We can see
that the associations are still recovered correctly, even when using only half the
data from each generation. This suggests that the important factor affecting
accuracy is phenotypic diversity, rather than number of individuals. However,
the experiment suggests that just the presence of phenotypic diversity, rather
than the actual phenotype values, are important for accuracy. We should note,
though, that this could be due to our particular choice of a rank-based evaluation
measure, and that a more sensitive evaluation measure that actually measures
the strength of the association (through a regression coefficient) might show
that phenotypic values do have an effect on accuracy.

From the figures, we can also see that the accuracy is higher in the case with
2000 sites than in the case with 50000 sites, as suggested by the larger number
of high error values in Figure 3(b). Similarly, the higher error values in the red
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Figure 2: Effect of number of individuals on the recovery of associations. The
green boxplot shows results with full data - 400 individuals from the initial
generation and 400 from the final generation. The red boxplot shows results
with only half the number of individuals from each generation. The blue line
shows the ideal score.

boxplot (half data per generation) compared to the green boxplot (full data per
generation) suggests that the number of individuals does have a small effect on
the accuracy.
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Figure 3: Effect of replacing phenotype values by a dummy variable on the
recovery of associations. The green boxplot shows results with full data - 400
individuals from the initial generation and 400 from the final generation. The
red boxplot shows results with only half the number of individuals from each
generation. The blue line shows the ideal score.

5.6 Effect of total heredity and number of QTLs

All the previous experiments involved two QTLs determining the phenotype. In
this experiment, we shall examine the effect of changing the number of QTLs
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that contribute a fixed value of heredity. For this experiment, we shall vary
(total) heredity values from 0.1 to 0.5 in steps of 0.1. The number of QTLs
will vary from 2 to 7. For each (total heredity value,number of QTLs) pair,
the heredity will be shared equally among the QTLs. Figure 4 shows the ideal
score graph for the various experimental settings. In the ideal case, the score
measure will be constant for a particular number of QTLs regardless of the total
heredity.
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Figure 4: The ideal score graph for varying the number of QTLs and total
heredity. The score increases as the number of QTLs increases regardless of the
total heredity.

For the two cases of 2000 and 50000 sites, we shall report the error as the
deviation of the mean score from the ideal score. The deviations will therefore
be non-negative, and a lower deviation would be desirable. Figures 5(a) and 5(b)
show the results of the experiment for the two cases.

From the figure, we can see the effect of changing the total heredity and
number of QTLs. In this experiment, we can clearly see the effect of the total
number of sites on the association recovery. In the absence of such an effect,
both effects would be identical, or at least similar, but we see a significant
difference between them, with accuracy being noticeably worse in the case with
more sites.

In both figures, we can see that the deviation increases (accuracy decreases)
as either the number of QTLs increases or the total heredity decreases. It is
also interesting to note that total heredity and the number of QTLs are both
important here, rather than just the heredity per QTL. This can be seen in
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Figure 5: Effect of changing total heredity and number of QTLs. The effect is
measured as a deviation from the ideal score, and a lower deviation is desirable.
Each color value indicates a particular numerical value of the deviation. Both
graphs are plotted with the same color scale for ease of comparison. Red colors
indicate low deviation and lighter colors indicate higher deviation.

Figure 5(b) by observing that the deviation is different for the cases of (total
heredity=0.4,number of QTLs=6) and (total heredity=0.2,number of QTLs=3).
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6 Discussion

The above experiments suggest that regression methods are effective in recov-
ering associations for a considerable range of heredity values and number of
QTLs, though we must be careful when we believe that the total heredity is
low and the number of QTLs is high. Phenotypic diversity is the important
factor in recovering associations accurately, though the number of individuals
and the total number of sites also have an effect of the accuracy. The current set
of experiments suggest that we could use regression methods for quantitative
traits believed to have additive interactions between loci.

Below we list some of the questions we will try and address with experiments
on real and simulated data.

Identifying causative SNPs The goal is to develop a method for identify-
ing causative SNPs contributing to a complex (fitness-related) trait. Artificial
selection experiments require more labor than conventional GWAS or QTL map-
ping studies. However, the benefit would be increased control over confounding
factors such as population structure, as well as higher resolution than can be
obtained in other settings.

Power across a range of initial allele frequencies In QTL mapping, only
those sites that actually differ between the two lines in the cross have the po-
tential to be identified. In GWAS, low frequency alleles are nearly impossible to
identify - the bias is strongly towards intermediate frequency alleles. The ability
to identify these causative SNPs across a spectrum of initial allele frequencies
would therefore be an important one. We would need to evaluate, through more
simulations, how statistical power varies across a range of initial causative allele
frequencies.

The distribution of effects Yang et al. [2010] suggest that effect sizes vary
across a large spectrum. We would need to examine how well the method works
for different effect sizes of the causal SNPs.

Modeling epistasis Many studies have indicated that epistasis (interaction
between SNPs) might have an important effect on complex traits. Epistasis has
also been suggested as a possible cause for the modest success of GWAS in un-
derstanding complex traits [Balding, 2006, Manolio et al., 2009]. Extending the
method to allow for epistatic effects would therefore be an important technical
question.

We will address these questions through large-scale simulations at data sizes
comparable to that from genome-wide sequencing in Drosophila melanogaster .
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G. Llort, R. L. Milne, J. Beńıtez, U. Hamann, F. B. L. Hogervorst, P. Man-
ders, M. J. L. Ligtenberg, A. M. W. van den Ouweland, S. Peock, M. Cook,
R. Platte, D. G. Evans, R. Eeles, G. Pichert, C. Chu, D. Eccles, R. Davidson,
F. Douglas, A. K. Godwin, L. Barjhoux, S. Mazoyer, H. Sobol, V. Bourdon,
F. Eisinger, A. Chompret, C. Capoulade, B. Bressac-de Paillerets, G. M.
Lenoir, M. Gauthier-Villars, C. Houdayer, D. Stoppa-Lyonnet, G. Chenevix-
Trench, and D. F. Easton. Common breast cancer-predisposition alleles
are associated with breast cancer risk in BRCA1 and BRCA2 mutation
carriers. American journal of human genetics, 82(4):937–948, 2008. URL
http://www.ncbi.nlm.nih.gov/pubmed/18355772.

D. J. Balding. A tutorial on statistical methods for population associ-
ation studies. Nature Reviews Genetics, 7(10):781–791, 2006. URL
http://www.ncbi.nlm.nih.gov/pubmed/16983374.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal Statistical
Society Series B Methodological, 57(1):289–300, 1995. ISSN 00359246. doi:
10.2307/2346101. URL http://www.jstor.org/stable/2346101.

F. S. Collins, M. S. Guyer, and A. Charkravarti. Variations on a theme: cat-
aloging human DNA sequence variation. Science New York NY, 278(5343):
1580–1581, 1997. URL http://www.ncbi.nlm.nih.gov/pubmed/9411782.

T. W. T. C. C. Consortium. Genome-wide association study of 14 , 000 cases
of seven common diseases and. Nature, 447(June), 2007. doi: 10.1038/na-
ture05911.

H. J. Cordell and D. G. Clayton. A unified stepwise regression proce-
dure for evaluating the relative effects of polymorphisms within a gene us-
ing case/control or family data: application to HLA in type 1 diabetes.
The American Journal of Human Genetics, 70(1):124–141, 2002. URL
http://www.ncbi.nlm.nih.gov/pubmed/11719900.

H. J. Cordell and D. G. Clayton. Genetic association studies. Lance, 366(9491):
1121–1131, 2005. URL http://www.ncbi.nlm.nih.gov/pubmed/16182901.

16



D. F. Easton, D. T. Bishop, D. Ford, and G. P. Crockford. Genetic linkage
analysis in familial breast and ovarian cancer: results from 214 families. The
Breast Cancer Linkage Consortium. The American Journal of Human Ge-
netics, 52(4):678–701, 1993.

R. A. Eeles, Z. Kote-Jarai, G. G. Giles, A. A. A. Olama, M. Guy, S. K.
Jugurnauth, S. Mulholland, D. A. Leongamornlert, S. M. Edwards, J. Mor-
rison, H. I. Field, M. C. Southey, G. Severi, J. L. Donovan, F. C. Hamdy,
D. P. Dearnaley, K. R. Muir, C. Smith, M. Bagnato, A. T. Ardern-
Jones, A. L. Hall, L. T. O’Brien, B. N. Gehr-Swain, R. A. Wilkin-
son, A. Cox, S. Lewis, P. M. Brown, S. G. Jhavar, M. Tymrakiewicz,
A. Lophatananon, S. L. Bryant, A. Horwich, R. A. Huddart, V. S. Khoo,
C. C. Parker, C. J. Woodhouse, A. Thompson, T. Christmas, C. Ogden,
C. Fisher, C. Jamieson, C. S. Cooper, D. R. English, J. L. Hopper, D. E.
Neal, and D. F. Easton. Multiple newly identified loci associated with
prostate cancer susceptibility. Nature Genetics, 40(3):316–321, 2008. URL
http://www.ncbi.nlm.nih.gov/pubmed/18264097.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least an-
gle regression. The Annals of Statistics, 32(2):407–499, 2004.
ISSN 00905364. doi: 10.1214/009053604000000067. URL
http://projecteuclid.org/Dienst/getRecord?id=euclid.aos/1083178935/.

T. Garland Jr. Selection experiments: an under-utilized tool in biomechanics
and organismal biology, chapter 3, pages 23–57. BIOS Scientific Publishers,
2003.

W. G. Hill and A. Caballero. Artificial Selection Experiments. An-
nual Review of Ecology and Systematics, 23(1):287–310, 1992.
ISSN 00664162. doi: 10.1146/annurev.es.23.110192.001443. URL
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.es.23.110192.001443.

L. A. Hindorff, P. Sethupathy, H. A. Junkins, E. M. Ramos, J. P.
Mehta, F. S. Collins, and T. A. Manolio. Potential etiologic and
functional implications of genome-wide association loci for human dis-
eases and traits. Proceedings Of The National Academy Of Sciences
Of The United States Of America, 106(23):9362–9367, 2009. URL
http://www.ncbi.nlm.nih.gov/pubmed/19474294.

H. M. Kang, N. A. Zaitlen, C. M. Wade, A. Kirby, D. Heckerman, M. J.
Daly, and E. Eskin. Efficient control of population structure in model
organism association mapping. Genetics, 178(3):1709–1723, 2008. URL
http://www.ncbi.nlm.nih.gov/pubmed/18385116.

C. Libioulle, E. Louis, S. Hansoul, C. Sandor, F. Farnir, D. Franchimont, S. Ver-
meire, O. Dewit, M. de Vos, A. Dixon, B. Demarche, I. Gut, S. Heath,
M. Foglio, L. Liang, D. Laukens, M. Mni, D. Zelenika, A. Van Gossum,
P. Rutgeerts, J. Belaiche, M. Lathrop, and M. Georges. Novel Crohn disease

17



locus identified by genome-wide association maps to a gene desert on 5p13.1
and modulates expression of PTGER4. PLoS Genetics, 3(4):e58, 2007. URL
http://www.ncbi.nlm.nih.gov/pubmed/17447842.

T. A. Manolio, F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff, D. J.
Hunter, M. I. McCarthy, E. M. Ramos, L. R. Cardon, A. Chakravarti, J. H.
Cho, A. E. Guttmacher, A. Kong, L. Kruglyak, E. Mardis, C. N. Rotimi,
M. Slatkin, D. Valle, A. S. Whittemore, M. Boehnke, A. G. Clark, E. E.
Eichler, G. Gibson, J. L. Haines, T. F. C. Mackay, S. A. McCarroll, and
P. M. Visscher. Finding the missing heritability of complex diseases. Nature,
461(7265):747–53, Oct. 2009. ISSN 1476-4687. doi: 10.1038/nature08494.
URL http://dx.doi.org/10.1038/nature08494.

J.-H. Park, S. Wacholder, M. H. Gail, U. Peters, K. B. Jacobs, S. J. Chanock,
and N. Chatterjee. Estimation of effect size distribution from genome-wide
association studies and implications for future discoveries. Nature Genet-
ics, 42(7):570–575, 2010. ISSN 15461718. doi: 10.1038/ng.610. URL
http://www.ncbi.nlm.nih.gov/pubmed/20562874.

A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick,
and D. Reich. Principal components analysis corrects for stratification in
genome-wide association studies. Nature Genetics, 38(8):904–909, 2006. URL
http://www.ncbi.nlm.nih.gov/pubmed/16862161.

J. K. Pritchard. Are rare variants responsible for susceptibility to complex
diseases? American journal of human genetics, 69(1):124–137, 2001. URL
http://www.ncbi.nlm.nih.gov/pubmed/11404818.

J. K. Pritchard, M. Stephens, N. A. Rosenberg, and P. Don-
nelly. Association mapping in structured populations. The Amer-
ican Journal of Human Genetics, 67(1):170–181, 2000. URL
http://www.ncbi.nlm.nih.gov/pubmed/10827107.

K. Puniyani, S. Kim, and E. P. Xing. Multi-population GWA mapping
via multi-task regularized regression. Bioinformatics, 26(12):i208–
i216, 2010. ISSN 13674803. doi: 10.1093/bioinformatics/btq191. URL
http://www.bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btq191.

K. Roeder, M. Escoar, J. B. Kadane, and I. Balazs. Measuring heterogeneity
in forensic databases using hierarchical Bayes models. Biometrika, 85(2):269,
1998.

R. Saxena, B. F. Voight, V. Lyssenko, N. P. Burtt, P. I. W. de Bakker, H. Chen,
J. J. Roix, S. Kathiresan, J. N. Hirschhorn, M. J. Daly, T. E. Hughes,
L. Groop, D. Altshuler, P. Almgren, J. C. Florez, J. Meyer, K. Ardlie,
K. Bengtsson Boström, B. Isomaa, G. Lettre, U. Lindblad, H. N. Lyon,
O. Melander, C. Newton-Cheh, P. Nilsson, M. Orho-Melander, L. R̊a stam,
E. K. Speliotes, M.-R. Taskinen, T. Tuomi, C. Guiducci, A. Berglund,
J. Carlson, L. Gianniny, R. Hackett, L. Hall, J. Holmkvist, E. Laurila,

18
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