
Modeling the space of subcellular location patterns
using images and other sources of information

Luis Pedro Coelho

September 2011

CMU-CB-11-104

Publisher
Lane Center for Computational Biology

School of Computer Science

Carnegie Mellon University

Pisburgh, PA 15213

Thesis Committee

Robert F. Murphy (Carnegie Mellon University)

Takeo Kanade (Carnegie Mellon University)

Russell Schwartz (Carnegie Mellon University)

Chakra Chennubhotla (University of Pisburgh)

Hagit Shatkay (University of Delaware)

Submied in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computational Biology

Copyright 2011 Luis Pedro Coelho

is work has been funded by the Fulbright Program, NIH grant R01 GM075205, the Fundação Para a Ciência e a

Tecnologia (grant SFRH/BD/37535/2007), and the Siebel Scholars Foundation. ese organizations had no role in the

design or execution of this work.

Keywords: subcellular proteomics, bioimage informatics, topic models, semi-supervised learning, local image

features, cell nucleus segmentation, fluorescent microscopy.

ii

To Anna Teresa Coelho

iii

Acknowledgments

I wish to thank Prof. Robert F. Murphy, my advisor, for all his support and guidance in the work presented. I also

thank Prof. Hagit Shatkay for all her help and support in framing and developing the vision of the project. I also

thank Prof. Takeo Kanade, Prof. Russell Schwartz, and Prof. Chakra Chennubhotla for the several discussions and

advice that they offered.

I also thank all of the members of the Murphy Lab for the many discussions. Dr. Tao Peng with whom I worked

on paern unmixing and Aabid Shariff with whom I shared an office and worked on nuclear segmentation were

directly involved in the work in this dissertation. Josh Kangas, Armaghan Naik, and Jennifer Bakal were essential to

the RandTag project.

Outside of the Murphy Lab, Prof. Jon Jarvik, Prof. Peter Berget, and Dr. Margaret Furhman were an invaluable

part of the RandTag project and I thank them for their time, expertise, and patience in teaching me.

Finally, I thank the Fulbright Program and the Fundação Para a Ciência e a Tecnologia (grant SFRH/BD/37535/2007)

for their financial support.

v

Abstract

e study of proteins includes the study of protein location as one of its major areas of interest.

is study can be approached one protein at a time, or systematically, in a high-throughput fashion, an

approach that has been called location proteomics.

Subcellular location can either be predicted, based on the protein sequence, homology, or other cir-

cumstantial evidence such as interaction paerns; or determined by direct observation.

e prediction approach has the advantage that it requires less data (sometimes only the sequence).

On the other hand, its results are not as conclusive as those obtained from direct data. Furthermore, pre-

diction is, at least with the most widely used techniques, obtained from static data (sequence, functional

annotations, binding paerns,…). us, most systems will predict the same location independently of

cell type or cell state.

Direct data is normally in the form of images of fluorescently labeled proteins. e automatic anal-

ysis of such images has by now a decade long history. Most of the work has been done in the supervised

learning mode: the researcher specifies a set of interesting location classes (corresponding to the or-

ganelles of interest), finds a few examples of each, and trains a classifier to recognise them in unlabeled

data. Some work has shown usage of unsupervised learning methods for the problem. In this approach,

the different proteins are clustered together into an hierarchy or a set of groups.

is work shows that direct and indirect data can be combined into a single model and inferences

can be made which depend on all of it. In particular, the model can project multiple modalities into the

same space and return a label which is based on all its input data.

I will also propose new image representations for use with subcellular location images. ey are

adapted from Speeded-Up Robust Features (), but adapted to the seing where, in addition to the

protein channel, a reference channel (in the case under study, a  marker) is present. I will use

supervised classification as a validation problem and show that  outperforms traditional approaches

and that adding  information outperforms traditional .

vi

Contents

Contents vii

List of Figures x

1 Introduction 1

1.1 Location Proteomics . 1

1.2 Multiple Data Sources . 2

1.3 esis Statement . 2

1.4 Randomly Tagged Proteins . 3

2 State of the Art 7

2.1 Image Representations for Subcellular Location Analysis . 7

2.2 Large Scale Studies of Subcellular Location . 17

2.3 Prediction of Subcellular Location . 18

2.4 Integration of Multiple Sources of Information for Biological Inference 18

2.5 Topic Models . 18

2.6 Topic Models with Images . 20

vii

CONTENTS

3 Nuclear Segmentation 23

3.1 Introduction . 23

3.2 Segmentation Methods . 24

3.3 Evaluation Methods . 25

3.4 Results . 27

4 Subcellular Pattern Unmixing 29

4.1 Introduction . 29

4.2 Object Typing . 30

4.3 Basis Pursuit . 32

5 Local Features 41

5.1 Introduction . 41

5.2 SURF and Extensions . 41

5.3 Empirical Evaluation . 42

5.4 Conclusions . 56

6 Topic Modeling With Multiple Sources of Data 59

6.1 Extensions to LDA . 59

6.2 Sampling . 62

6.3 Multiple Data Modalities . 68

6.4 Conclusions . 72

7 Conclusions & Future Work 73

7.1 Conclusions . 73

7.2 Future Work . 75

A Soware 77

A.1 Waldo: Aggregating Subcellular Location Information . 77

A.2 jug . 79

A.3 mahotas . 83

A.4 milk . 87

A.5 elgreco . 90

B Image Processing and Filtering 91

B.1 Image Filtering . 91

viii

CONTENTS

B.2 Subcellular Location Features . 92

C Results 95

Bibliography 111

Index 125

ix

List of Figures

1.1 ExampleWidefieldMicroscope Image. Tagged gene is LaminA (Lmna, Uniprot accession number B3RH23).

Image is a false color image: red is a nuclear marker (Hoechst), while green is the -tagged protein.

e image has been contrast stretched for publication. 4

1.2 Example ConfocalMicroscope Image. Tagged gene is LaminA (Lmna, Uniprot accession number B3RH23).

Image is a false color image: red is a nuclear marker (Hoechst), while green is the -tagged protein.

e image has been contrast stretched for publication. 5

2.1 Approximate Gaussian Derivatives. On the le, are shown the smooth versions of ∂
2g
∂x2 and ∂2g

∂x∂y , where

g is the Gaussian function. In the middle, are shown the discretised version, in a small 11 × 11 patch.

Finally, on the right, the fully approximated version, with constant boxes. 15

2.2 Traditional Latent Dirichlet Allocation. is is a Bayesian network representation of the model described

by Blei, Ng, et al. (2003) and reviewed in the text. 19

2.3 Supervised Latent Dirichlet Allocation. Extends the pure  model with a label node ℓ, which is depen-

dent on z̄. 20

x

List of Figures

3.1 Two example images from the 2 collection. (a) shows nuclei that are well separated. Automatic

segmentation is expected to do well. (b) has many clustered nuclei and is expected to challenge segmen-

tation algorithms. Most images in the collection lie in between these two examples. Reproduced from

(Coelho, Shariff, et al., 2009). 24

4.1 Overview of unmixing methods. (a) e algorithms use a collection of images as input in which various

concentrations of two probes are present (the concentrations of the Mitotracker and Lysotracker probes

are shown by increasing intensity of red and green, respectively). Example images are shown from wells

containing only Mitotracker (b), only Lysotracker (c) and a mixture of the two probes (d). (e) Objects

with different size and shapes are extracted and object features are calculated. () Objects are clustered

into groups in feature space, shown with different colors. (g) Fundamental paerns are identified and

the fractions they contribute to each image are estimated. Adapted from (Coelho, T. Peng, et al., 2010). . 31

4.2 Example of Basis FoundWith Basis Pursuit. ese are the first images of the basis set, using basis pursuit

with B = 2. Images were contrast stretched for publication. 36

4.3 Average squared reconstruction error as a function of the number of paerns B for basis pursuit. is

is the value of
∑
i ∥ε∥2 in (4.2). For B = 0, we show the total variance, i.e.

∑
i ∥x̂(i)∥2. Adapted from

(Coelho, T. Peng, et al., 2010) . 37

4.4 Log-likelihood as a function of the number of fundamental paerns. Adapted from (Coelho, T. Peng,

et al., 2010). 38

4.5 Comparison of results for different unmixing methods. e inferred fraction of paern 1 is displayed

as different colors (dark purple corresponding to pure paern 1). e design matrix, which was kept

hidden from the algorithms is shown on the top le, for comparison; the other three panels are results

of computation for different algorithms. Adapted from Coelho, T. Peng, et al. (2010). 39

4.6 Estimated concentration as a function of the underlying relative probe concentration. Perfect result

would be along the dashed diagonal. Adapted from Coelho, T. Peng, et al. (2010). 40

5.1 Examples of RandTagWidefield Dataset. is shows an image from each of the 10 classes in the extended

widefield dataset. Images have been contrast stretched for publication. 44

5.2 Results of Classification As a Function of the Number of clusters k. Each dot is the result of one clus-

tering of the data (differing by a different number of clusters and a different initial set of clusters). Le

panels show the results of using only the local features, right panels the results of using local features

concatenated with global features. Different rows show different local feature sets. From top to boom:

, -ref, and -dist. 45

xi

List of Figures

5.3 Results of Classification As a Function of the Value of the Akaike Information Criterion (AIC). Each dot

is the result of one clustering of the data (differing by a different number of clusters and a different initial

set of clusters). Le panels show the results of using only the local features, right panels the results of

using local features concatenated with global features. Different rows show different local feature sets.

From top to boom: , -ref, and -dist. 46

5.4 Comparison With Locally Constrained Linear Coding. Results of classification with  features aer

clustering, for different values of k. e green crosses represent the results with , while the purple

dots, the results with hard assignment (the dots are the same as presented in Figure 5.2). 47

5.5 Value of Learning Codebook. Shown in solid purple are the accuracies of learning a codebook for each

value of k. e green dots reproduce the results from Figure 5.2 for comparison. 48

5.6 Illustrative Image of . is appears to be an endoplamic reticulum paern, which was misclassified. 52

5.7 Examples of ConfocalWidefield Dataset. is shows an image from each of the 10 classes in the extended

widefield dataset. Images have been contrast stretched for publication. 53

5.8 Example Image From Locate Dataset. is is an image of Calveolin I, which is annotated with the labels

“Cytoplasmic punctate” and “Plasmamembrane-like.” Originally, the image filewas named 01D7_01_60X_HeLa.

e image has been rescaled to fit the page. 55

6.1 Supervised Latent Dirichlet Allocation with Gaussian Mixture. Shown in grey are the nodes that are

observed. w represents the first type of word-like features,w′ the second (additional types are, naturally,

possible), f represents the numeric features, and ℓ the document labels. 61

6.2 Convergence of Collapsed and Uncollapsed Gibbs Sampling. Shown is ∆ logP ploed as a function

of the number of iterations (le panel) and the wall clock time (right panel) on the Associated Press

dataset from Blei, Ng, et al. (2003). ∆ logP is logP − max logP , where the maximum is for that sam-

pling model—likelihoods are not directly comparable as the collapsed model as fewer variables. e

uncollapsed sampler uses 8 processors. e number of iterations of collapsed sampling is the same in

both panels. 62

6.3 Images of Proteins Where ere is Disagreement Between the Topic Model and Uniprot. See Table 6.2.

Images have been constrast stretched for publication. 70

6.4 Proteins in Two Dimensional Projection. Topics were projected into two dimensions using multidimen-

sional scaling. e green crosses represent the proteins with only widefield images, the purple circles

only those with confocal images, and the beije triangles those with both types of images. 71

6.5 Proteins in Two Dimensional Projection. Topics were projected into two dimensions using multidimen-

sional scaling and close by lying proteins were separated for easier visualisation. 72

xii

List of Figures

A.1 Simple Dependency Structure for Example in the Text. is assumes that the directory had a collection

of images names 0.png, 1.png,… . 80

A.2 Output of jug status. e $ sign shown is the command line prompt, and the status subcommand was

run. At this point, nothing has been run. e output has been edited for space reasons (spacing columns

were removed). 81

A.3 Interaction with jug shell. 83

xiii

§1 Introduction

1.1 Location Proteomics

Subcellular location is one of themost important characteristics of a protein as evidenced by the fact that it is carefully

controlled and regulated by the cell. ere is, therefore, a need to study subcellular location at a proteome-wide level,

an enterprise that has been termed “location proteomics” (Murphy, 2005).

e best data source for location determination is fluorescent microscopy imaging of tagged proteins. Due to the

large datasets, automatic image analysis is required. Additionally, automated systems are more reproducible than

humans and achieve accuracies that are at least comparable if not beer (Murphy et al., 2003; Nakemper et al.,

2003).

Typically, the approach taken has been to pre-select a subset of the cell organelles as the set of locations of

interest and then aempt to visually or automatically classify each protein into one of these classes.

e disadvantage of this approach are twofold: (1) the set of classes is predefined by the researcher, and (2) many

proteins are present in more than one location, as many as one third of proteins localise in multiple locations (S.-C.

Chen, Zhao, et al., 2007; W.-K. Huh et al., 2003). e first problem can be mitigated by iteratively re-defining the set

of classes, but one would benefit from being able to automate the class discovery step as it could then be performed

in a more data-dependent fashion (i.e., classes would emerge from the images).

1

Introduction

ere have been some previous aempts at applying clustering or other forms of unsupervised learning to this

problem (García Osuna et al., 2007; Hamilton, J. T. H. Wang, et al., 2009).

1.2 Multiple Data Sources

In addition to the images, other sources of information can be available. Many proteins have had a previous location

characterisation by other researchers. We know the protein and gene sequence, we might have information about

homologues in related species, or about its function in the cell. All of these pieces of information can aid in the

determination of subcellular location. In fact, they have all been used in the prediction of subcellular location, an

active research field in its own right, whose goal is a system which can give the best estimate of where a protein will

localise in the absence of direct observations (see Section 2.3 and the references therein for more information).

Integration of multiple sources of data is a traditional problem in computational biology, particularly in areas

closer to bioinformatics, and several approaches have been proposed and contrasted (Section 2.4 contains a very

brief overview of this literature). ese efforts have, however, not handled image data. Image data is still processed

on its own.

In the computer vision literature, however, there have been many aempts at using image and other sources of

information, most oen associated text, structured or unstructured.

is dissertation bridges these two areas of research. I adapt and apply state-of-the-art computer vision tech-

niques to the problem of determining subcellular location from images and other sources of information.

Eventually, this research programwill result in reasoning systems that can integrate all known information about

a specific protein into a single, best, conclusion. Towards that goal, I propose a novel method to integrate images

with known annotations of location and function, as well as homology.

1.3 Thesis Statement

I make two claims that I will then defend.

1. ere are numeric representations of biological images that are an improvement on traditional sets of image-

level or cell-level features.

2. Image and non-image data can be integrated into a single representation of the protein location paern. is

can lead to semi-supervised methods that overcome disadvantages of both supervised and unsupervised ap-

proaches.

In particular, I show that graphical models derived from topic models can incorporate information from images

and from other sources into a single model leading to beer results that would be obtainable with images alone.

2

Randomly Tagged Proteins (1.4)

As part of the path towards the goal of integrating this image, I studied the problem of image representation and

made contributions to that research problem. With Tao Peng, I worked in unsupervised subcellular paern unmixing

and we proposed a method which can be shown to give good results in unmixing punctate paerns. In a parallel

effort, I used Speeded-Up Robust Features, , introduced by Bay, Ess, et al. (2008), for representing images. e

initial impetus for the use of such local features was that, with the use of clustering, the image can be seen as a

bag of visual words, a good representation on which to apply topic models. For validation of the features, I used a

classification problem where  obtains beer results than the state of the art.

1.4 Randomly Tagged Proteins

e main source of image data I used was data from the RandTag project. It was previously described by García

Osuna et al. (2007). Here I review the basic protocol behind the data generation.

CD Tagging

C tagging is a technique for inserting a peptide into existing proteins by genomic modification, developed by Jarvik,

Adler, et al. (1996). is allows for live-cell imaging (unlike with antibody staining methods).

An alternative to  tagging for live-cell imaging is to insert a plasmid with the protein of interest tagged (typi-

cally at one of the terminals). C tagging has the advantage that the genomic promoter is preserved and the regula-

tion of gene transcription is less affected than with other methods that are used such as plasmid insertion (there is

still the possibility the insertion disturbs a regulatory binding site in an intronic region of the gene). Further, plas-

mids are normally designed for over-expression of the protein. While this produces visually more appealing images,

it can lead to artifacts. Consider the case where a protein binds to another membrane-bound protein which resides

in a vesicular component. By over expressing it, the extra copies of the protein might not have binding partners and

become mislocalized.

By looking at proteins that had previously been characterized with respect to their subcellular locations, Jarvik,

Fisher, et al. (2002) showed that, in most cases, the modification to the protein does not change its location. In their

work 42 out of 49 proteins (86%) were in their “expected” location. Telmer et al. (2002) equally reported that 

tagging did not affect localization of human nucleolin.

Imaging

Before imaging, the medium is replaced by Optimem with Hoechst (at a concentration of 1µg/mL) for  labeling.

Imaging was performed on an 100 automated widefield microscope using 40× magnification. e resulting pixel

is 0.6µm wide.

3

Introduction

Figure 1.1: Example Widefield Microscope Image. Tagged gene is Lamin A (Lmna, Uniprot accession number
B3RH23). Image is a false color image: red is a nuclear marker (Hoechst), while green is the -tagged protein.
e image has been contrast stretched for publication.

In addition the the widefield images described above, some clones were imaged on a confocal microscope as well.

At the beginning of the project, only a few images were taken on that microscope due to time constraints. e set

of clones to image was selected by visual inspection of the wide-field clones. At the end of the project, automation

became available on the confocal microscope, allowing for imaging of full plates.

Figures 1.1 and 1.2 show examples of images obtained with these two technologies. Clearly, images are visu-

ally very different, with the confocal image having higher contrast between signal and background and appearing

crisper. e images are both examples of tagging the same protein, Lamin A, but different clones (i.e., these were

two independent insertions).

4

Randomly Tagged Proteins (1.4)

Figure 1.2: Example Confocal Microscope Image. Tagged gene is Lamin A (Lmna, Uniprot accession number
B3RH23). Image is a false color image: red is a nuclear marker (Hoechst), while green is the -tagged protein.
e image has been contrast stretched for publication.

5

Introduction

RandTag Collection

e RandTag collection thus contains images from 5475 different wells (more images were collected, these are num-

bers aer filtering of out-of-focus and empty images, see Appendix B). Of these, there are 5064 wells with widefield

images and 524 wells with confocal images (113 wells have both confocal and widefield images).

Unfortunately, for many of these, we do not know what the imaged protein is. Because the clones must be

sequenced to learn where the insertion took place, and because this step is not infallible, it can happen that, aer

having imaged the clone, we are unable to determine which protein was tagged. Of the wells with images, the

depicted protein is known for 208 of them. is corresponds to 144 distinct proteins.

e full dataset contains images that were collected by myself (the majority), some collected by Dr. Elvira Gárcia-

Osuna, Dr. Margaret Fuhrman, Armaghan Naik, and Joshua Kangas.

6

§2 State of the Art

is chapter reviews the state of the art in the several fields that are combined in this work. In particular, it surveys

past efforts at large-scale automated subcellular location determination with a special focus on the image represen-

tations that have been proposed. It also reviews the subcellular location prediction literature. is literature is very

vast and only the most important systems are presented. As in other problems in bioinformatics, integration of in-

formation is a common approach. As I have also proposed a systemwhich integrates information, I give an overview

of the family of technologies that have been used to achieve this. Finally, I present an overview of the technology I

chose for this work, namely topic models, and how they have been used for computer vision and image analysis.

2.1 Image Representations for Subcellular Location Analysis

Images can be processed simply as a two dimensional array of pixel values, of which I am aware of only one single

report for subcellular location determination (Danckaert et al., 2002).1

Traditionally, however, images are summarised by a smaller set of features. e simplest model is to use, for each

image, a fixed set of such pre-defined features that aempt to capture relevant visual properties of the image.

1Danckaert et al. (2002) used a shallow neural network, with a single hidden layer. I know of no reports of the
application of more recently developed, multi-layer, “deep” belief networks (Hinton, 2007; H. Lee et al., 2009). is
could be an interesting future research avenue.

7

State of the Art

Subcellular Location Features

Most prior work in subcellular location uses the feature representation of images, where a feature is a function that

can be computed on the image or parts of it. Well designed features capture important variation in the paerns,

while being insensitive to unimportant variations (e.g., rotation, illumination phenomena,…). Traditionally, fiy to

a few thousand features are used making this a medium-dimension representation when compared to the higher

dimension of the pixel space.

is approach for subcellular location has shown to be very effective in terms of both high accuracy and the

applicability to different datasets (Boland, Markey, et al., 1998; Boland and Murphy, 2001; S.-C. Chen, Zhao, et al.,

2007). e literature is quite vast, I will only review features that were used in this project.

Generally speaking, features are applicable either to an entire field (image) which can contain multiple cells

(Huang and Murphy, 2004a) or to segmented single-cell regions. Naturally, field-level features are easier to compute

as they do not depend on pre-segmentation. Most of the features presented below are of this type, except where

otherwise noted.

Haralick Texture Features

Texture features are one of themost powerful field-level feature sets (Boland,Markey, et al., 1998; Huang andMurphy,

2004a; Nanni, Brahnam, et al., 2010). A popular family of texture features are the Haralick features (Haralick et al.,

1973).

Haralick features are computed on the adjacency matrix, A, where A(i, j) is the number of times that a pixel

with the value i is observed next to a pixel of value j in a given direction. In the original definition, there are four

directions (North, South, North-west, and North-east) and the adjacency matrix is symmetric.2 e matrix can be

normalised to be a joint probability distribution P (i, j).

2A possible alternative is, if more than one channel is present in the image, to define A(i, j) as the number of
times that a pixel takes value i in the first channel and value j in the second channel. I know of no use of this
construct.

8

Image Representations for Subcellular Location Analysis (2.1)

Statistics are then computed on this matrix P . I first define a few standard aggregates:

Pi(k) =
∑
j

P (k, j), (2.1)

Px+y(k) =
∑
i,j

[[i+ j = k]] P (i, j), (2.2)

P|x−y|(k) =
∑
i,j

[[|i− j| = k]] P (i, j), (2.3)

µ =
∑
i

Pi(i), (2.4)

σ2 =
∑
i

(i− µ)2Pi(i). (2.5)

Based on these, I can define the first few features:

f1 =
∑
i,j

P (i, j)2 (2.6)

f2 =
∑
k

k2P|x−y|(k) (2.7)

f3 =
1

σ2

∑
i,j

ijP (i, j)− µ2

 (2.8)

f4 =
∑
i

(i− µ)2Pi(i) (2.9)

f5 =
∑
i,j

P (i, j)

1− (i− j)2
(2.10)

f6 =
∑
k

kPx+y(k) (2.11)

f7 =
∑
j

(k − f6)
2Px+y(k) (2.12)

f8 = H {Px+y(i, j)} (2.13)

f9 = H {P (i, j)} (2.14)

f10 = var {P (i, j)} (2.15)

f11 = H
{
P|i−j|(k)

}
(2.16)

f12 =
f9 −HXY 1

max(HX,HY)
(2.17)

f13 = (1− exp [−2.0(HXY 2− f9)])
1/2, (2.18)

9

State of the Art

whereH is the entropy operator H(P) = −
∑
i P (i) logP (i) and

HX = H(px) (2.19)

HY = H(py) (2.20)

HXY 1 = −
∑
i,j

P (i, j) log {px(i)py(j)} (2.21)

HXY 2 = −
∑
i,j

px(i)py(j) log {px(i)py(j)} (2.22)

e 14th features is the “maximal correlation coefficient,” defined as the square root of the second largest eigen-

value of Q, the matrix defined by

Q(i, j) =
∑
k

P (i, k)P (j, k)[∑
x P (x, i)

] [∑
y P (k, y)

] . (2.23)

is feature is oen not computed due to numerical issues or non-convergence in the computation (Boland, Markey,

et al., 1998).3 I have not used this feature either.

In addition to the features computed on the image, I computed the same feature set on down-sampled versions

of the image. is approach to multi-resolution has been reported to give good results in classification of subcellular

paerns (Chebira et al., 2007; J. Y. Newberg et al., 2009).

Local Binary Patterns

Local binary paerns are a recent proposal by Ojala et al. (2002), which have been reported to give good results when

applied to bioimage classification (Nanni and Lumini, 2008).

Local binary paerns consider each pixel individually and assign it a code. e overall features are the normalised

code histograms.

For each pixel, its neighbourhood is analysed by collecting p points, at a distance r of the central point (p and r

are parameters of the algorithm). e points are at equal angles from each other. e raw signature of the point

is then this p-long string of pixel values: p1, p2, · · · , pP . e sequence is binarised by considering the value of the

central point pc:

bi = [[pi > pc]] . (2.24)

ese binary signatures are further grouped in several ways, which depend on the desired invariance properties.

For rotational invariance, all of the strings which result from a cyclic string rotation are considered equivalent (i.e.,

3It is not clear to me whether the main issue is that determining the second eigenvalue is a fundamentally ill-
conditioned problem (for certain particular images of interest) or whether the reported issues are a limitation of the
algorithms that are typically used for this problem.

10

Image Representations for Subcellular Location Analysis (2.1)

0011001 is equivalent to its rotated form 1100100) and can be represented by the lowest valued element of the equiv-

alence class.

In this work, 8 pixels, evenly distributed, at an 8 pixel distance from the central point were considered the

neighbourhood.

Object Features

For object feature computation, objects (contiguous above-threshold regions) are first identified. e following fea-

tures can be computed on a protein field without cell-level segmentation:

1. number of objects,

2. Euler number of the image (this is the number of objects minus the number of holes),

3. average object size (in pixel units),

4. variance of the object sizes,

5. ratio of the sizes of the largest and smallest object sizes.

With cell-level segmentation, I can additionally compute the following three features:

1. average distance of the object centre to the center of fluorescence (),

2. variance of object distance to ,

3. ratio of largest to smallest distance to .

If a reference channel, such as a  channel, is present, I can additionally compute a few features, of which all but

the last two require cell-level segmentation:

1. average distance of object to  ,

2. variance of distances of objects to  ,

3. ratio of largest to smallest distance of object to  ,

4. distance of protein  to  ,

5. ratio of  area to protein area (aer thresholding),

6. fraction of protein image that overlaps with .

Additionally, the fraction of fluorescence that is not present in objects is also measured. ese and the edge

features presented below were designed by Boland and Murphy (2001) especially for subcellular location analysis.

11

State of the Art

Edge Features

ese features are based on edge filtering. In the original work, this was implemented using Canny (1986) edge

detection. In this work, I used Sobel edge detection (for ease of implementation).

e features include the fraction of pixels that are contained in edges as well as several measures of how homo-

geneous the edge directions and intensities are. See the work of Murphy et al. (2003) for more details.

Skeleton Features

Skeleton features are, again, based on individual objects. For each object, convex hull and skeleton are computed.4

Based on these, the following measures are taken:

1. e skeleton length ℓ,

2. the hull area h,

3. the object area a,

4. the total fluorescence on the object and the skeleton, f and s,

5. the number of branch points b.

e features for this object are the vector [ℓ, ℓ/h, ℓ/a, f/s, b/ℓ]. Values are averaged across a whole image to

obtain image-level features.

Subcellular Pattern Unmixing

Multiple copies of the same protein will not necessarily all locate in the same organelle type. In one large-scale study

of the yeast proteome, a third of proteins were annotated with multiple locations, which demonstrates that this is

not a problem confined to “special case” proteins (S.-C. Chen, Zhao, et al., 2007; W.-K. Huh et al., 2003).

e Murphy Lab has explored “paern unmixing” approaches to handle this problem (T. Peng, Bonamy, et al.,

2010). In that work, given examples of pure paerns (i.e., where a protein is known to localize to only a single type

of organelle), a model is learned that can assign a mixed paern to fractions of these pure paerns.

In Section 4 I will present details and extensions for working in the unsupervised seing. In this seings, pure

paerns are not defined a priori, but must be discovered automatically. is formulation is more appropriate for

large-scale imaging projects.

4ese operations were implemented as in the mahotas Python computer vision package described in Ap-
pendix A.3.

12

Image Representations for Subcellular Location Analysis (2.1)

Generative Models

Image-derived generative models are models that can generate images that are statistically similar to those on which

the model was learned. Generative models for cellular images is a new, but active research field (Lehmussola et

al., 2008; Zhao and Murphy, 2007). ey are useful as an input to systems biology simulation studies (by providing

a spatial map of protein locations), but can also be seen as a representation space. Particularly if a parametric

modeling approach is used, then the values of the learned parameters can be seen as features. For some classes of

models, these parameters even have a biological interpretation and fiing them to data yields useful information

about the underlying system. Initial work in this area has focused on modeling the nucleus, the cell shape, and

punctate organelles.

I will briefly describe the methods of Zhao and Murphy (2007) for punctate paerns. e method will model the

shape and apperance of the nucleus, the shape of the cell, and the location and shape of objects.

For modeling the nuclear shape, a medial axis model is built (the system is built for HeLa cells whose nuclei are

approximately spheroidal without major bifurcations, other cell types might not be amenable to this model).

e cell shape itself is dependent on the nucleus. To understand this model, picture rays emanating from the

center of the cell. A ray, pointing at an angle θ will cross the boundary of the nucleus at distance r1 and the boundary

of the cell at distance r2 > r1. e model assumes that the distance to the center from the nucleus or the plasma

membrane is a function of the angle, certain shapes cannot be modeled. By discretizing the angles to units of 1°,

one obtains 360 measurements of the ratio r2/r1. e average cell is recorded and the residuals are modeled by a

lower-dimensional principal component model.

e positions of objects are modeled relative to the position of the nucleus and the cell boundary.

Interestingly, the authors used classification as a validation problem. Using real data, the parameters of fied

generative models were used as features for classification. While the results were not directly competitive with the

current state of the art for classification on the same dataset, they were still good and showed that this model could

capture much of the important variation in cell images.

Recently, T. Peng and Murphy (2011) presented an extension of this model to generate three-dimensional images.

ese methods are for punctate paerns only as they generate objects that are independent Gaussians. Shariff et

al. (2010, 2011); Shariff, Rohde, et al. (2009) presented an approach for microtubular paerns, but there is no currently

general approach which can capture all possible paerns.

Local features

Unfortunately, the word feature is used with two different meanings in the computer vision literature. It can be used

as above, to mean a value derived from the image (this usage is most like the machine learning usage). Alternatively,

13

State of the Art

it can be used to mean a particular point of interest in the image (for example, corners).

Local features are, in fact, values computed on small regions of the image, which oen also correspond to points

of interest in the second sense. In the computer vision literature, they have become the method of choice for many

application.

ere are several ways to select the locations to use for local features. e simplest method is to form a grid, a

variation that is normally referred to as “dense” sampling (Dalal and Triggs, 2005; Fei-Fei and Perona, 2005).

Another way is to pick points randomly. ese methods are sometimes known as “patch-based” methods (Nowak

and Jurie, 2006; JamesWang and Y. Chen, 2004), particularly if then traditional “whole image” features such as texture

features are computed on the small region. Patch-based methods have already been used, with success, for bioimage

analysis. Bhaacharya et al. (2005) defined “Vivos,” a basic element of a biological image as being a representative

patch. S. Huh et al. (2009) used patch-based methods for subcellular location (see also the work by Marée et al. (2007)

for an earlier implementation of a similar idea).

Finally, local features can be computed at points determined automatically to be “interest points.” e most well

known method is the  (scale invariant feature transform) from Lowe (1999). S includes both a interest point

detector and a local feature descriptor which can be used independently in dense or random-sample mode.

For interest point detection, there are several methods (Tuytelaars and Mikolajczyk (2007) provide an excellent

review of the literature). Given that I am going to extend  (for Speeded-Up Robust Features), I will present that

method here.5 S was designed with the express purpose of being computationally fast so many approximations

are made for speed. In particular, integral images (Crow, 1984) are used for most of the computations.

If an image is defined as a table of pixel values V (i, j), the integral image is defined by

I(i, j) =
∑

x≤i,y≤j

V (x, y). (2.25)

is enables very fast computation of the sum of a rectangular area of the image

∑
A<x≤B

∑
C<y≤D

V (x, y) = I(A,C) + I(B,D)− I(A,D)− I(B,C), (2.26)

which is independent of the size of the rectangle.

e  interest point detector is a blob detector. Given a point in the image x, y and a scale σ2, the Hessian

matrix H is defined as

H(x, y, σ2) =

 Lxx Lxy

Lyx Lyy

 , (2.27)

5e presentation and the figures were naturally heavily inspired by the original presentation of  by Bay
(2006); Bay, Ess, et al. (2008); Bay, Tuytelaars, et al. (2006).

14

Image Representations for Subcellular Location Analysis (2.1)

(a) Smooth (b) Discretised (c) SURF

(d) Smooth (e) Discretised () SURF

Figure 2.1: Approximate Gaussian Derivatives. On the le, are shown the smooth versions of ∂
2g
∂x2 and ∂2g

∂x∂y , where
g is the Gaussian function. In the middle, are shown the discretised version, in a small 11× 11 patch. Finally, on the
right, the fully approximated version, with constant boxes.

where Lxx is the convolution of the image with partial second derivative ∂2g
∂x2 , where g is the Gaussian g(x, y, s) =

(2πσ2)½ exp
{
−(x2 + y2)/σ2

}
; Lyy and Lxy = Lyx are defined analogously. e determinant of the Hessian, |H|,

can be used to measure how well a Gaussian blob of size σ2 matches at point x, y.

Other detectors had used this principle before (Lindeberg, 1998; Mikolajczyk and Schmid, 2002). What was in-

novative about  was the approximation that is used for computing the Hessian. As depicted in Figure 2.1, the

true smooth derivative is never used for convolution with the image. Rather, a discretized version is used. S

takes this process one step further and uses a version which is discretized to contain just constant values. e main

advantage is that one can then take advantage of the integral image to compute the convolutions in time independent

of the scale σ2.

If Dxx, Dxy and Dyy are the responses of the box filters, then |H̃|

|H̃| = DxxDyy − w2D2
xy (2.28)

is used in place of |H|. e correction factor w is presented as 0.9 in the original paper, with the justification that

this is an approximation to
∥Lxy∥F ∥Dxx∥F
∥Lxx∥F ∥Dxy∥F

= 0.9129 . . . ≈ 0.9, (2.29)

where ∥A∥F =
√∑

ij A
2
ij (the Frobenius norm). e above is valid for σ2 = 1.2, corresponding to an approximated

box of side 9. For other values of σ2 (and the corresponding approximations), the factor would be slightly different,

but one can use this constant as an approximation.

Interestingly, however, the factor is elsewhere presented as 0.6 (e.g., in the review by Tuytelaars and Mikolajczyk

(2007), whose first author is also a author in the  papers). e OpenSURF implementation also uses 0.6, which

15

State of the Art

its author claims beer matches the output of the closed-source  implementation.6 Unfortunately, given that no

source code was provided, it is impossible to know whether the good published results with  were computed

using w = 0.9 or w = 0.6. In the current work, I used w = 0.6.

e above procedure, then gives a value for each point in x, y, σ2 space. An interest point is then defined as

those points which are simultaneously above a specified threshold and which are local maxima (in both spatial and

scale dimensions). e sub-pixel location of the point is determined by fiing a quadratic curve locally and finding

its maximum.

Interest points are finally assigned an orientation (this step can be skipped if rotational invariance is not neces-

sary). In regions of size 4σ2 at a distance below 6σ2 away from the point, one computes the strength and angle of a

Haar wavelet filter (which again can be done in constant time using the integral image). ese response are further

multiplied by a Gaussian of size 2σ2 centred on the interest point. e result is a collection of vectors. One sums all

of the vectors in π/3 windows. e angle of the longest resulting vector is chosen as the angle of the interest point.

Aer interest points have been determined (or at any point otherwise chosen), a  descriptor is computed. It

is a vector of 64 values, measuring the local gradients (as Haar wavelet responses).

Models Based on Local Features

Most models were presented as a bag of visual words model, in which images are seen as an unordered collection of

salient features (the visual words). Extracted features are oen obtained by k-means clustering on the space of local

features (Moosmann et al., 2008). ese methods only take into account local features and can only represent the

presence or absence of certain features. Concepts that depend on the location of the object (such as the distinction

between multiple punctate paerns) cannot be easily represented or captured by these models.7

However, some work has taken into account the geometrical relationships between sub-objects that co-occur in

an image (Lazebnik et al., 2006; Philbin et al., 2008). Most of the approaches presented so far, learn from labeled data

(i.e., the images are grouped into predefined categories), but there is some tentative work in learning from unlabeled

data (Ahuja and Todorovic, 2007). To my knowledge, these methods have not yet been applied to cell image data.

Other Methods

Grammar based methods for representation of images were first proposed in the 1970’s (Kanade, 1977), but have

had a resurgence in recent years (S.-C. Zhu and Mumford, 2006). is framework is inspired by natural language

6Personal communication.
7A trick around this is to “sneak in” location information into the feature set. Zhao and Murphy (2007) used

distance to the  center of fluorescence as an object feature in their object-based generative models. A similar
technique could be applied here.

16

Large Scale Studies of Subcellular Location (2.2)

techniques. Images are represented as a collection of visual words, which appear in defined relationships (e.g., “next

to” or “above”). e grammatical approach is not a continuous approach, but it can be a sparse approach.

Eigenvector based representations aempt to capture the principal modes of variation in a collection of images.

is leads to methods that perform principal component analysis. e representations are, in general, not sparse,

but sparsity can be imposed (Chennubhotla and Jepson, 2001). ese methods operate on modeling the pixel value

directly and are therefore not directly applicable to images of cells. However, it is possible to apply the model to

transformed spaces to obtain a more applicable version. For example, Zhao and Murphy’s (2007) generative model

of cell shape is an eigenvector model in a space of shape features (see also Pincus and eriot (2007) for a review of

several methods many of which employ component analysis in the space of shape descriptors—a form of eigenshape

analysis even if the authors do not use that terminology).

Diffeomorphic models have a long history in the biomedical research field (Miller and Qiu, 2009), but have only

recently started to be applied to modeling cell images (Rohde et al., 2008). In this framework, shapes are deformed

to one another. It can naturally model shapes such as nuclear or cell shape and characterize and catalog them.

2.2 Large Scale Studies of Subcellular Location

Large scale imaging studies for subcellular location determination have been performed in several organisms. W.-K.

Huh et al. (2003) worked with fusion proteins in yeast (S. cerevisiae). S.-C. Chen, Zhao, et al. (2007) worked with this

dataset and processed automatically using supervised learning methods. ey obtained high accuracy (81%) and,

most importantly, led to a reconsideration of some of the human labels.

e Human Protein Atlas () project is another high-throughput imaging project (Barbe et al., 2008). Again,

the Murphy Lab is collaborating with this group to automatically process and analyse the images (J. Newberg and

Murphy, 2008; J. Y. Newberg et al., 2009).

e Berkeley Drosophila Transcriptional Network Project has collected images of fruit fly (Drosophila) embryos

showing spatial gene expression paerns (Luengo Hendriks et al., 2006). e public availability of this resource has

led to many researchers aempting to aempt to extract information from the data computationally (Keränen et

al., 2006; Pan et al., 2006; H. Peng, Long, et al., 2006; H. Peng and Myers, 2004; Zhou and H. Peng, 2007). Although

the driving biological problem is different, some of the techniques employed for large scale mining of unsupervised

image data can be applicable to subcellular location studies.

Several authors have presented results of applying clustering algorithms to large collection of images exhibiting

different subcellular paern (X. Chen and Murphy, 2005; X. Chen, Velliste, et al., 2003; Hamilton, J. T. H. Wang, et al.,

2009).

17

State of the Art

2.3 Prediction of Subcellular Location

ere is a vast literature in predicting subcellular location from sequence information or associated data. Different

representations of the amino-acid sequence have been explored and oen used together.

In the field of subcellular location prediction from multiple data sources there are many examples of data in-

tegration. An early work by Drawid and Gerstein (2000) combined both sequence motifs and expression data for

an analysis of the yeast proteome (Kumar et al., 2002, see also). SherLoc is one more recent system whose current

version (SherLoc2) integrates sequence properties, text properties (from published literature mentioning the protein

of interest), and gene ontology terms (predicted from the sequence) (Briesemeister et al., 2009; Shatkay et al., 2007).

Other notable systems include Proteome Analyst (Lu et al., 2004). Its recent version also parses abstracts with the

aid of background knowledge given by the Gene Ontology (Fyshe et al., 2008). Protein-protein interaction data has

also been shown to improve results under the assumption that binding partners will tend to co-localize (Mintz-Oron

et al., 2009).

2.4 Integration of Multiple Sources of Information for Biological
Inference

For subcellular prediction, data integration is common. Other fields of computational biology have also explored the

problem of aggregating information.

Integration of different types of biological data has been explored in different problems, with many authors

proposing different solutions such as integrating the prior knowledge as a Bayesian prior for gene expression analysis

(Bernard and Hartemink, 2005), hierarchical clustering across multiple data-types (Segal and Koller, 2002), generative

models for predicting protein function (Segal, Taskar, et al., 2001; Troyanskaya et al., 2003), amongst many others

(Troyanskaya, 2005).

ere is less work that uses image data. e efforts by K. Lee et al. (K. 2008) are the most advanced. eir work

analyzed the results from the  yeast dataset as well as protein–protein interaction network. Still, in their work,

the images are not analyzed computationally; only the results of visual image tagging are used.

In the biomedical image field, G. Lee et al. (G. 2009) recently present a system for simultaneously representing

image (pathology images) and non-image (mass spectrometry output) data for a medical application.

2.5 Topic Models

Topic modeling was first proposed for latent semantic discovery in text by Blei, Ng, et al. (2003) as a Bayesian version

of the earlier probabilistic latent semantic indexing technique (Hofmann, 1999), itself derived from latent semantic

18

Topic Models (2.5)

..θ. z. w.

α

.

Ψ

.

β

.

N

.
M

.

K

Figure 2.2: Traditional Latent Dirichlet Allocation. is is a Bayesian network representation of the model described
by Blei, Ng, et al. (2003) and reviewed in the text.

indexing (Deerwester et al., 1990).8

Latent Dirichlet Allocation

Latent Dirichlet allocation is the basic text-based topic model. It is a generative model, using a bag-of-words repre-

sentation (i.e., it can generate word lists, but not their ordering). It is best explained as a generative process.

e number of topics K is fixed and given in advance as are the hyperparameters α > 0, β > 0, and the total

number of possible words W . Topics are described by a categorical distribution over words Ψk (which is sampled

from a symmetric Dirichlet distribution with parameter β). Each document is sampled in a multi-stage process. First,

the document’s topic distribution θi is sampled from the Dirichlet distribution parameterized byα. Secondly, for each

word, first its topic and then its value are sampled (the number of words per document is assumed to be known—

in practice it is always fixed, given in the data). e topic of a word is sampled from the categorical distribution

parameterized by θi. Given a topic zij , I sample the word from the categorical distribution parameterized by Ψzij .

In summary,

Ψk ∼ DW(β), (2.30)

θi ∼ DK(α), (2.31)

zij ∼ C(θi), (2.32)

wij ∼ C(Ψzij), (2.33)

where DN is the Dirichlet distribution with N dimensions and C is the categorical distribution.

e model is, of course, rarely used in its generative mode. Rather, given data, parameters are fit to it. Sev-

eral methods have been proposed for this. In the original work of Blei, Ng, et al. (2003), a variation expectation-

maximisation () algorithm is derived. An alternative is Gibbs sampling, normally using a collapsed variation,

8An earlier work of Pritchard et al. (2000) had used the same probabilistic model for another problem but it did
not use the interpretation of topic.

19

State of the Art

..θ. z. w.

ℓ

.

α

.

Ψ

.

β

.

γ

.

N

.
M

.

K

Figure 2.3: Supervised Latent Dirichlet Allocation. Extends the pure  model with a label node ℓ, which is depen-
dent on z̄.

where θ and Ψ are integrated out (Griffiths and Steyvers, 2004). Several variations have been presented for both of

these techniques (Asuncion et al., 2008).

Supervised Latent Dirichlet Allocation

e representation of  (the θ vector for each document) can certainly be used for classification or regression.

However, it has not been optimised for this usage. e supervised  (s), proposed by Blei and Mcauliffe (2007),

extends the  model to directly incorporate an output label (see the work of Shao et al. (“Semi-Supervised Topic

Modeling for Image Annotation”) for an alternative extension). e model is generic and can be used for either

regression or classification. Given my usage, I describe a classification model.

e output label ℓ is assumed to be given in the training examples and is dependent on all of the z values through

their normalised histogram:

z̄
(i)
k =

∑
j [[z

(i)
j = k]]

Nr of words in document i
. (2.34)

ℓ can be defined in several ways, the simplest of which is that, if it is a binary value, logP (ℓ|z̄, γ) = z̄T γ. By

depending on the observed z values, when the model is fit to training data, a relationship is learned between the

model words and the label.9 In Section 6.1, I will describe a slightly more complex model for generating the label.

For learning γ, one can maximise the likelihood, set a prior, or even use a max-margin approach (J. Zhu et al.,

2009).

2.6 Topic Models with Images

Although proposed initially for use in text documents, topic models were soon being applied to image data (Blei

and Jordan, 2003). In recent years, the computer vision community has actively and profusely explored the use of

9is would not be the case if the dependency was directly on θ, even though E[z̄] = θ. is point was made to
me by Sean Gerrish in a personal communication.

20

Topic Models with Images (2.6)

topic modeling with images (or models which should perhaps be referred to as being “derived from topic models,” as

the modeling of topics is oen no longer the major concern) (Du et al., 2009; Li et al., 2009; Moosmann et al., 2008;

Philbin et al., 2008; Porway et al., 2008; L. Zhu et al., 2009; S.-C. Zhu and Mumford, 2006).

Some of these models also make use of other sources of data. Of particular inspiration to the model I developed is

the model of Li et al. (2009) which incorporated images and tags, the short text-based annotations, popular in many

online services, such as flickr, (http://www.flickr.com).

21

http://www.flickr.com

§3 Nuclear Segmentation

Most of the material in this chapter first appeared in Nuclear Segmentation in Microscope Cell Images: A Hand-

Segmented Dataset and Comparison of Algorithms by Luis Pedro Coelho, Aabid Shariff, and Robert F. Murphy; in

Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 518–521, 2009, [DOI].

3.1 Introduction

Some of the features used below are cell-level features and require that the field be segmented into single cell regions.

We perform this segmentation as a two-step process: first we segment in the nuclear region using only the nuclear

channel and, subsequently, the individual nuclei serve as seeds for seeded methods, such as watershed (Beucher and

Lantuéjoul, 1979). is is a standard procedure (Glory and Murphy, 2007; Jones et al., 2005; Velliste and Murphy,

2002).

For nuclear segmentation, we tried severalmethods and evaluated them quantitatively. For that, we built a dataset

of hand-segmented images. e dataset is composed of two different collections (Table 3.1). e first collection is of

2 cells, originally created for a study of paern unmixing algorithms (T. Peng, Bonamy, et al., 2010). Figure 3.1

shows two images from this collection. An initial set of 50 images from this collection was chosen, but 2 images

were rejected as containing no in-focus cells.

23

http://dx.doi.org/10.1109/ISBI.2009.5193098

Nuclear Segmentation

2 33

Size in Pixels 1349× 1030 1344× 1024
Nr. Cells 1831 2178
Avg. Cover 23% 18%
Min Nr. Cells 24 29
Max Nr. Cells 63 70

Table 3.1: Main Properties of the Two Collections. Avg. cover denotes the percentage of pixels covered by cells. e
minimum and maximum are over all the images in each collection.

(a) “Easy” image (b) “Difficult” image

Figure 3.1: Two example images from the 2 collection. (a) shows nuclei that are well separated. Automatic seg-
mentation is expected to dowell. (b) hasmany clustered nuclei and is expected to challenge segmentation algorithms.
Most images in the collection lie in between these two examples. Reproduced from (Coelho, Shariff, et al., 2009).

e second collection is of 33 cells, from the RandTag project (see Section 1.4). Nuclei in this group are

further apart and there is less clustering. ey are also more homogeneous in shape and size (data not shown). On

the other hand, nuclei in single images vary greatly in brightness and images oen contain visible debris. erefore,

we consider this a more challenging dataset for automated methods. Fiy images were initially chosen, but one was

rejected as containing no in-focus cells.

Manual segmentation was performed by outlining nuclei with a computer mouse. Only the nuclear marker image

was used for this process. All images were segmented by me and a subset of 10 images (5 from each collection) were

independently segmented by Aabid Shariff.

3.2 Segmentation Methods

Thresholding

Weconsidered 3 thresholdingmethods: Ridler-Calvard (1978), Otsu (1979), andmean pixel value. All above-threshold

contiguous regions are considered objects. To remove some noise, we filter the thresholded image with a median

24

Evaluation Methods (3.3)

filter (window of size 5).

To remove small non-nuclear objects, we filter out objects smaller than 2500 pixels, circa 64 square microns. is

post-filtering was applied to all segmentation results in this section.

Seeded watershed

We implemented two versions of seeded watershed, both run on a thresholded version of the image (using the mean

as threshold, which, as we show below, is the beer thresholding method for these images). One operates directly

on a blurred version of the image,1, while the second one operates on the gradient of the image. In both cases, seeds

are regional maxima of the blurred image.

Active masks

Active masks are a recent proposal by Srinivasa, Fickus, Gonzalez-Rivero, et al. (2008); Srinivasa, Fickus, Guo, et al.

(2009). e algorithm assumes that there are two classes of objects, foreground and background. Its only parameters

are the mean value and standard deviation of the background region.2

Manual tuning led to the following semi-automatic procedure for parameter seing: the value of the background

mean is assumed to be the histogram peak plus 3, while the background standard deviation is set to 0.5.

Merging Algorithm

G. Lin et al. (2003) described an algorithm that is based on merging multiple regions obtained from watershed seg-

mentation, using shape information learned from a labeled dataset. We have implemented a slight variation of their

algorithm, but retained the structure. In particular, we use the mean thresholding method for segmentation, and as

shape features: fraction of area that is contained in the convex hull, roundness, eccentricity, area, perimeter, semi-

major, and semi-minor axes (all, except the first, computed on the convex hull). Apart from these minor changes,

the algorithm is unchanged.

For the studies below, the set segmented by Aabid Shariff was used for training and the set segmented by me

(except the images that are common to both segmentations) were used for testing.

3.3 Evaluation Methods

Several metrics have been proposed for evaluation of segmentation results against a hand-labeled standard. Some

approaches stem from viewing segmentation as a form of clustering of pixels. is allows the use of metrics devel-

1We used a Gaussian blur with a width of 12 pixels.
2e active mask framework is more general than this, but we restrict ourselves to the original proposal.

25

Nuclear Segmentation

oped for the evaluation of clustering results. From this family of approaches, we used the Rand and Jaccard indices

(Rand, 1971; Saporta and Youness, 2002).

e disadvantage of such metrics is that they do not take into account the spatial characteristics of segmentation.

In fact, the exact location of the border between foreground and background is oen fuzzy. An algorithm that returns

a nucleus which almost matches the gold-standard except for a one-pixel-wide sliver around the border should be

judged very highly even if that sliver contains a large number of pixels. Previous work on evaluation of bright-field

microscopy images by Bamford (2003) used the Hausdorff metric, which is a worst-case metric. Here, we propose a

new metric, normalised sum of distances, whose value depends on the mean distance rather then the worst-case.

The Rand and Jaccard Indices

Let S be a (binary) segmented image and R be a (binary) reference image. Let i and j range over all pairs of pixels

where i ̸= j, then each pair falls into one of four categories: (a) Ri = Rj and Si = Sj , (b) Ri ̸= Rj and Si = Sj , (c)

Ri = Rj and Si ̸= Sj , (d) Ri ̸= Rj and Si ̸= Sj . If we let a, b, c, d refer to the number of pairs in its corresponding

category, then the Rand index is defined as:

RI(R,S) =
a+ d

a+ b+ c+ d
. (3.1)

at is, the Rand index measures the fraction of the pairs where the two clusterings agree. e Rand index ranges

from 0 to 1, with 1 corresponding to perfect agreement. Note that it not necessary that the number of clusters be the

same for the metric to be meaningful.

Based on the same definitions for a, b, c, d, the Jaccard index is defined as:

JI(R,S) =
a+ d

b+ c+ d
. (3.2)

e Jaccard index is not upper-bounded, but higher values correspond to beer agreement.

Error Counting

Each object in the segmented image is assigned to the object in the reference image with which it shares the most

pixels. Based on these assignments, we can define the following classes of errors: split: two segmented nuclei are

assigned to a single reference nucleus; merged: two reference nuclei are assigned to a single segmented nucleus;

added: a segmented nucleus is assigned to the reference background; and missing: a reference nucleus is assigned

to the segmented background.

Spatially-Aware Evaluation Methods

We implemented two spatially-aware evaluation metrics. Both are based on assigning segmented nuclei to reference

nuclei as above, as they are computed between pairs of matched objects.

26

Results (3.4)

Algorithm RI JI Hausdorff NSD (×10)

AS Manual 95%/93% 2.4/3.4 9.7/12.0 0.5/0.7
RC reshold 92%/77% 2.2/2.1 34.8/26.4 1.2/2.6
Otsu reshold 92%/74% 2.2/2.1 34.9/36.7 1.2/3.5
Mean reshold 96%/82% 2.2/1.9 26.5/24.4 1.0/2.3
Watershed (direct) 91%/78% 1.9/1.6 34.9/19.3 3.6/3.7
Watershed (gradient) 90%/78% 1.8/1.6 34.6/21.7 3.0/3.8
Active Masks 87%/72% 2.1/2.0 148.3/98.0 5.5/5.0
Merging Algorithm 96%/83% 2.2/1.9 12.9/15.9 0.7/2.5

Algorithm Split Merged Spurious Missing

AS Manual 1.6/1.0 1.0/1.2 0.8/0.0 2.2/3.2
RC reshold 1.1/1.0 2.4/2.4 0.3/1.9 5.5/22.1
Otsu reshold 1.1/0.8 2.4/2.1 0.3/1.7 5.6/26.6
Mean reshold 1.3/1.4 3.4/5.1 0.9/3.1 3.6/4.8
Watershed (direct) 13.8/2.9 1.2/2.4 2.0/11.6 3.0/5.5
Watershed (gradient) 7.7/2.6 2.0/3.0 2.0/11.4 2.9/5.4
Active Masks 10.5/1.9 2.1/1.5 0.4/3.9 10.8/31.1
Merging Algorithm 1.8/1.6 2.1/3.0 1.0/6.8 3.3/5.9

Table 3.2: Comparison of Segmentation Algorithms. Result of various segmentation approaches are compared
against the hand-segmented standard. Each entry contains two values corresponding to the statistic for two datasets
used, 2 and 33, respectively. e top half shows the numeric quality measures, while the boom half shows
the average number (per image) of each possible type of error.

For each pixel, we compute its distance to the reference border. e normalised sum of distances is then defined

as:

NSD(R,S) =

∑
i [[Ri ̸= Si]] ∗D(i)∑

iD(i)
, (3.3)

where the sum index i ranges over pixels in the union of both objects andD(i) is the distance of pixel i to the border

of the reference object. From the equation, it is obvious that NSD(R,S) ∈ [0, 1], with 0 corresponding to perfect

agreement and 1 to no-overlap. We note that the sum of distances is not a metric as it is neither symmetric nor does

it satisfy the triangle inequality.

e Hausdorff metric is computed as described by Bamford (2003). In the notation above it can be defined as:

H(R,S) = max {D(i) : Si ̸= Ri} . (3.4)

3.4 Results

Table 3.2 summarises the results obtained.

Both manual segmentations are in general agreement. Disagreements can be traced down to an image where the

authors differed on whether some small bright objects should be marked as nuclei or debris.

Both Otsu and Ridler-Calvard thresholding score poorly, missingmany cells, particularly in the 33 collection.

In this collection, the presence of very bright cells leads the algorithm to set a threshold between the very bright

27

Nuclear Segmentation

cells and the rest of the cells, instead of seing it between the foreground and background. e mean thresholding

is beer suited for these images, which consist mainly of background with objects of very different intensities.

Watershed results in fewer merges than mean-based segmentation, but more split nuclei and spurious objects.

Activemasks score poorlymainly due to nuclei over-segmentation andmissing objects. Lin et al.’s merging algorithm

obtains very good results, dominating other algorithms in almost all metrics.

We also notice the Rand and Jaccard indices while distinguishing the alternative manual segmentation from the

automatic ones are not good measures for this data as they fail to distinguish between the beer and the worse

algorithms. Both the Hausdorff and the NSD measures capture the relationships between the algorithms well.

Since this work was presented, C. Chen et al. (2011) presented another algorithm, based on supervised learning,

whose results are competitive with the merging algorithm on this same dataset.

28

§4 Subcellular Pattern Unmixing

Most of the material in chapter section is joint work with Tao Peng and first appeared in antifying the distribution

of probes between subcellular locations using unsupervised paern unmixing by Luis Pedro Coelho, Tao Peng, and

Robert F. Murphy, in Bioinformatics, vol. 26 (12), pp. i7–i12, 2010 [DOI].

A preliminary version had been presented at the  2009 Workshop on Automated Interpretation and

Modeling of Cell Images (Cell Image Learning) as Unsupervised Unmixing of Subcellular Location Paerns, by Luis

Pedro Coelho and Robert F. Murphy.

4.1 Introduction

In Section 2.1, I reviewed the principles behind subcellular paern unmixing, in its supervised mode: given images

of pure paerns, the goal is to represent images of mixed paerns as being composed of different fractions of the

pure paerns.

However, the supervised approach still requires the researcher to specify the fundamental paerns of which

other paerns are composed. For example, for the quantitative analysis of translocation experiments as a function

of time or drug concentration, the extreme points could be easily identified as the paerns of interest. However,

they are still inapplicable to proteome-wide studies where it would be a difficult (and perhaps impossible) task to

identify all fundamental paerns that are present. We note that the set of fundamental paerns that can be identified

29

http://dx.doi.org/10.1093/bioinformatics/btq220

Subcellular Paern Unmixing

depends both on the specific cell type and the technology used for imaging, high resolution confocal microscopes

being able to distinguish paerns that lower resolution systems cannot.

erefore, it is necessary to tackle the unsupervised paern unmixing problem: Given a large collection of

images, where none has been tagged as being a representative of a fundamental paern, map all images into a set of

mixture coefficients automatically derived from the data.

4.2 Object Typing

Overview

All themethods developed for this problem so far are based on a bag of objectsmodel, where an image is interpreted as

a collection of regions of above-background fluorescence (Zhao, Velliste, et al., 2005). Each object is then characterized

by a small set of object features, and objects are clustered into groups (object types). Paerns are then defined as

distributions over these groups. is is illustrated in Figure 4.1.

e intuition is to capture paerns such as the fact that lysosomes are small mostly circular objects, while mito-

chondria consist of stringy objects. emethods need to be robust to stochastic variation, however, as mitochondrial

paerns are also observed to contain circular objects and agglomerations of lysosomes may appear as a single stringy

object. In fact, the algorithms need to capture not only the fact that mitochondrial paerns are composed of stringy

objects, but that the proportions of different types of objects are present in statistically different proportions.

Image Preprocessing and Segmentation

Images are first preprocessed to remove uneven illumination. e illumination bias is estimated by fiing a plane to

the average pixel intensity at each location across the whole collection of images. Every image pixel is then divided

by this illumination estimate to regularize across the whole image.

Images are segmented by using the model-based method of G. Lin et al. (2003) on the nuclear channel (see

Section 3). e segmentation is extended to the whole field by using the watershed method with the segmented

nuclei as seeds.

Object Detection

In our previous supervised unmixing work, objects were simply defined as contiguous pixel regions above a global

threshold. In the work described here, we use both a global threshold, using the Ridler-Calvard method (1978), and

a local threshold, the mean pixel value of a 15 × 15 window centered at the pixel. We have found that the global

threshold achieves a good separation of the general cell areas from the background, while, inside those regions, local

thresholding is beer at capturing detail.

30

Object Typing (4.2)

Figure 4.1: Overview of unmixing methods. (a) e algorithms use a collection of images as input in which various
concentrations of two probes are present (the concentrations of the Mitotracker and Lysotracker probes are shown
by increasing intensity of red and green, respectively). Example images are shown from wells containing only
Mitotracker (b), only Lysotracker (c) and a mixture of the two probes (d). (e) Objects with different size and shapes
are extracted and object features are calculated. () Objects are clustered into groups in feature space, shown with
different colors. (g) Fundamental paerns are identified and the fractions they contribute to each image are estimated.
Adapted from (Coelho, T. Peng, et al., 2010).

Objects that are smaller than 5 pixels are filtered out as they are likely to represent imaging noise.

Object Features

Each object is characterized by a set of features, previously defined as 1 (subcellular object features 1). is is a

combination of morphological features for describing the shape and size of the object and features which capture

the relationship to the nuclear marker (Zhao, Velliste, et al., 2005):

1. Size (in pixel units) of the object.

2. Distance of object center of fluorescence to  center of fluorescence.

3. Fraction of object that overlaps with .

4. Eccentricity of object hull.

31

Subcellular Paern Unmixing

5. Euler number of object.

6. Shape factor of convex hull.

7. Size of object skeleton.

8. Fraction of overlap between object convex hull and object.

9. Fraction of binary object that is skeleton.

10. Fraction of fluorescence contained in skeleton.

11. Fraction of binary object that constitutes branch points in the skeleton.

Object Clustering

In order to be able to reason about object types, objects are clustered into groups using k-means on the z-scored

feature space. Multiple values of k are tried and the onewith the resulting lowest  (Bayesian information criterion)

score is selected.

Based on this clustering, each object can be assigned a numerical identifier, its cluster index, which serves as its

type.

Aer this step, the algorithms diverge in how they handle the cluster indices.

4.3 Basis Pursuit

In this model, each image is represented by a vector x(i) such that entry x
(i)
ℓ represents the fraction of objects

in condition i that have type ℓ (if there are multiple images for the same condition, a common situation, they are

counted together). We have one vector per input condition (i.e., i = 1 . . . C , where C is the number of conditions),

and the dimension of this vector is the number of clusters that was automatically identified in the clustering step

(i.e., ℓ = 1 . . . k).

Using fractions instead of the direct object counts normalizes for the different number of cells in each image and

different cell sizes.

In this model, bases (fundamental paerns) are represented as a set of vectors in the same space and a mixture is

defined by a set of coefficients αj for each b(j) (j = 1 . . . B, where B is the number of basis vectors, and each b(j)

is of the same dimension as the x(i)s):

x(i) =
∑
j

b(j)α
(i)
j + ε(i), (4.1)

where ε(i) encapsulates both the stochastic nature of the mixing process and the measurement noise.

32

Basis Pursuit (4.3)

Given a set of observations, the task is to identify the bases b(j) and coefficientsα(i), whichminimize the squared

norm of the error terms
∑
i ∥ε(i)∥2.

Without additional constraints, principal component analysis is the simplest solution to this problem. However,

this is unsatisfactory as it could result in negative mixtures, which are not meaningful. Independent component

analysis suffers from the same problem. erefore, we add a non-negativity constraint on the vectorα and use non-

negative matrix factorization () possibly with sparsity constraints so solve the problem (Hoyer, 2004; D. D. Lee

and H. S. Seung, 1999; D. D. Lee and H. Seung, 2001).

As the result below show, an additional constraint can help obtain more meaningful results: require the basis

vectors to be members of the input dataset (i.e., for all j, there is some i, such that b(j) = x(i)). is condition,

which encapsulates the expectation that the input dataset is large enough to contain both fundamental and mixed

paerns, requires a search method.

Some preliminary results showed that this model was still too sensitive to the trend, i.e., to the average value

of xi,j across the dataset (data not shown). If one basis vector was allocated to handle this trend, good fits were

obtained but poor interpretability. We found that removing the mean from the data led to more meaningful results.

In this de-trended dataset, x̂(i)j may take negative values, but the mixing coefficients αi,j are still constrained to be

non-negative.

us the final optimization problem is the:

min
b(j),α

∥ε(i)∥2 (4.2)

x̂(i) = x(i) − x̄ (4.3)

ε(i) = x̂(i) −
∑
j

b(j)α
(i)
j (4.4)

Subject to the constraint, that for all j, there exists an i, such that b(j) = x(i). In order to find the best basis,

we resort to simulated annealing as an optimization method. In this class of methods, the number of fundamental

paerns B must be pre-specified by the user.

Principal and independent component analysis were also performed on detrended data, but  could not

be (as the detrended data contains negative numbers, it cannot be the product of two positive matrices). Before

applying , we therefore removed very frequent objects (those that appeared in more than 90% of the images).

e intuition is that very frequent objects also correspond to the background.

Latent Dirichlet Allocation

As described in more detail in Section 2.5, topic modeling of text corpura using latent Dirichlet allocation () is

a technique to solve an analogous class of problems (Blei, Ng, et al., 2003). In this framework, documents are seen

33

Subcellular Paern Unmixing

as simple “bags of words” and topics are distributions over words. Observed bags of words can be generated by

choosing mixture coefficients for topics followed by a generation of words according to: pick a topic from which to

generate, then pick a word from that topic.

In our seing, we view object classes as visual words over which to run . is is similar to work by other

researchers in computer vision which use keypoints to define visual words (Csurka et al., 2004; Philbin et al., 2008;

L. Zhu et al., 2009).

e process of generating objects in images to represent mixtures of multiple fundamental paerns follows the

Bayesian network in Figure 2.2 (page 19). e generative process is as follows: for each of M images, a mixture

θi is first sampled (conditioned on the hyper-parameter α). θi is a vector of fractions of the fundamental paern

distributions b. Ni objects are sampled for each image in two steps: select a basis paern according to θi and then

an object is sampled from the corresponding object type distribution.

To invert this generative process, we used the variational  algorithm of Blei, Ng, et al. (2003) to estimate the

model parameters of fundamental paerns β and mixture fractions θ. It should be noted that this is an approxima-

tion approach liable to geing trapped in local maxima and returning non-optimal results. erefore, we ran the

algorithm multiple times with different random initializations and chose the one with the highest log-likelihood.

We choose the number of fundamental paerns B to maximize the log-likelihood on a held-out dataset (using

cross-validation to obtain more accurate estimate).

Dataset

In order to validate the algorithms, we used a test set that was built to evaluate paern unmixing algorithms (T. Peng,

Bonamy, et al., 2010).

In this dataset,  cells were exposed to different concentrations of two fluorescent probes with differing

localization profiles (mitochondrial and lysosomal) but similar fluorescence. e probes were imaged using the same

fluorescence filter and therefore could not be distinguished. is simulates the situation in which a fluorophore is

present in two different locations. For each probe, eight concentrations were used, for a total of 64 combinations.

In parallel to themarker image, a nuclearmarker was imaged to serve as a reference point. A total of 12569 images

were collected. Figure 4.2 shows images from this collection.

Computation Time

Most of the computation time is dominated by segmenting the images (ca. 30s per image in our implementation) and

computing features (ca. 10s per image). However, this is an embarrassingly parallel problem and can be computed

on multiple machines simultaneously. e clustering takes increasing time for different numbers of clusters, but

we limited each clustering run to circa one hour (while relying on multiple initialization as a guard against local

34

Basis Pursuit (4.3)

Mitochondrial Lysosomal

Paern 0 99% 18%
Paern 1 1% 82%

Table 4.1: Unmixed coefficients for images of fundamental paerns and of mixed samples using basis pursuit with
B = 2. For the two fundamental paerns, we display the average coefficient for the inferred fundamental paerns.

minima). Again, we note that the runs for multiple k can be easily be run in parallel, a task for which the jug

framework, described in Appendix A.2, is particularly well suited. Both basis pursuit and  then take only on the

order of minutes to run.

Basis Pursuit

We measured how well the identified coefficients α(i)
j correlated with the underlying fractions, which were esti-

mated as linearly proportional to the ratio of the relative concentration of the mitochondrial probe to the sum of the

relative concentration of the mitochondrial and lysosomal probes (relative concentration is defined as fraction of the

maximum subsaturating concentration).

Using , the correlation coefficient between predicted fractions and the underlying relative concentrations was

0.20. Non-negative matrix factorization performed beer on this metric, achieving a correlation coefficient of 0.65.

Independent component analysis performed very poorly, returning correlations on the order of less than 0.10. is

is not unexpected as the independence assumptions that underly  fail to hold even as an approximation.

However, we are also interested in having the basis vectors line up with the underlying fundamental paerns

and, in this regard, non-negative matrix factorization performs poorly. One of the paerns corresponded roughly to

the total concentration and they did not align well with the fundamental paerns in the data (data not shown).

e fully constrained basis pursuit algorithm performed beer. It achieved a 0.90 correlation with the underlying

relative concentration. It identified as a basis a vector that has the maximal concentration of the mitochondrial

probe (and some lysosomal probe, at a relative concentration of 19%) and another that consists of the maximal

concentration of the lysosomal probe and 20% mitochondrial probe. Table 4.1 shows that the identified paern 0

matches the mitochondrial probe, while paern 1 matches the lysosomal probe. Figure 4.2 shows two images from

these paerns.

e results above were obtained by specifying B = 2 as an input to the algorithm. For different values of B, we

obtain decreasing reconstruction error as ploed in Figure 4.3. As it is clear in this figure, most of the contribution

to the reconstruction comes from the first two or three vectors. erefore, we can expect that a researcher would be

able to estimate B = 2 or B = 3.

35

Subcellular Paern Unmixing

(a)

(b)

Figure 4.2: Example of Basis Found With Basis Pursuit. ese are the first images of the basis set, using basis pursuit
with B = 2. Images were contrast stretched for publication.

36

Basis Pursuit (4.3)

0 2 4 6 8 10

B

0.00

0.05

0.10

0.15

0.20

0.25

R
ec

o
n
st

ru
ct

io
n

er
ro

r

Figure 4.3: Average squared reconstruction error as a function of the number of paerns B for basis pursuit. is
is the value of

∑
i ∥ε∥2 in (4.2). For B = 0, we show the total variance, i.e.

∑
i ∥x̂(i)∥2. Adapted from (Coelho,

T. Peng, et al., 2010)

Mitochondrial Lysosomal

Paern 0 0.0% 0.0%
Paern 1 8.8% 99.9%
Paern 2 91.2% 0.1%

Table 4.2: Unmixed coefficients for fundamental paerns and mixed samples for the discovered paerns (using 
method). For the two fundamental paerns, we display the average coefficient for the 3 discovered fundamental
paerns.

Latent Dirichlet Allocation

To estimate the number of fundamental paerns using the  approach, we measured the log likelihood of the

dataset for different numbers of bases using cross validation. e results are shown in Figure 4.4. We can see that

the best result is obtained for B = 3, although the underlying dataset only has two fundamental paerns.

Table 4.2 shows the average coefficients inferred for pure paern inputs aer the algorithm had been applied on

the whole dataset. Paern 1 obviously corresponds to the lysosomal component, while paern 2 corresponds to the

mitochondrial component. Paern 0 appears to be a “non-significant” paern capturing the new object types arising

in the mixture paerns. e overall correlation coefficient is 0.95 with paern 0 removed.

Using the  approach with B = 2, which is the ground truth, the overall correlation coefficient between

estimated and actual paern fractions was found to be 0.91.

37

Subcellular Paern Unmixing

0 2 4 6 8 10 12

k

−835

−830

−825

−820

−815

−810

−805

lo
g
L

Figure 4.4: Log-likelihood as a function of the number of fundamental paerns. Adapted from (Coelho, T. Peng,
et al., 2010).

Comparisons

Figure 4.5 shows the results of one inferred fraction as a function of the underlying concentrations (the plots for the

other fraction, not shown, are, of course, symmetric as they sum to 1). Figure 4.6 plots all the estimates in a single

plot as a function of the underlying concentration fractions.

38

Basis Pursuit (4.3)

700 411 242 142 83 49 29 0

mitotracker concentration

300

214

153

109

78

55

39

0

ly
so

tr
a
ck

er
co

n
ce

n
tr

a
ti

o
n

(a) ground truth

700 411 242 142 83 49 29 0

mitotracker concentration

300

214

153

109

78

55

39

0
ly

so
tr

a
ck

er
co

n
ce

n
tr

a
ti

o
n

(b) Basis pursuit

700 411 242 142 83 49 29 0

mitotracker concentration

300

214

153

109

78

55

39

0

ly
so

tr
a
ck

er
co

n
ce

n
tr

a
ti

o
n

(c) LDA, 2 topics

700 411 242 142 83 49 29 0

mitotracker concentration

300

214

153

109

78

55

39

0

ly
so

tr
a
ck

er
co

n
ce

n
tr

a
ti

o
n

(d) LDA, 3 topics

Figure 4.5: Comparison of results for different unmixing methods. e inferred fraction of paern 1 is displayed as
different colors (dark purple corresponding to pure paern 1). e design matrix, which was kept hidden from the
algorithms is shown on the top le, for comparison; the other three panels are results of computation for different
algorithms. Adapted from Coelho, T. Peng, et al. (2010).

39

Subcellular Paern Unmixing

0.0 0.2 0.4 0.6 0.8 1.0

ground truth

0.0

0.2

0.4

0.6

0.8

1.0

es
ti

m
a
te

d

(a) Basis Pursuit

0.0 0.2 0.4 0.6 0.8 1.0

ground truth

0.0

0.2

0.4

0.6

0.8

1.0

es
ti

m
a
te

d

(b) LDA, 2 topics

0.0 0.2 0.4 0.6 0.8 1.0

ground truth

0.0

0.2

0.4

0.6

0.8

1.0

es
ti

m
a
te

d

(c) LDA, 3 topics

Figure 4.6: Estimated concentration as a function of the underlying relative probe concentration. Perfect result would
be along the dashed diagonal. Adapted from Coelho, T. Peng, et al. (2010).

40

§5 Local Features

5.1 Introduction

As described in Section 2.1, the use of local features has led to many good results in various computer vision tasks.

However, most of bioimage analysis is still performed using global features, such as texture features. erefore, I

wanted to investigate the performance of local features on this task.

erefore, I adapted Speeded-Up Robust Features, , developed by Bay, Ess, et al. (2008). ey are designed to

be fast to run (inmy implementation, it takes only a few seconds per image) while having state of the art performance.

Given the large collection of images, the low computational cost was a significant advantage.

5.2 SURF and Extensions

As detailed in Section 2.1,  works as a two pass algorithm. In the first pass, interest points are detected by

using an approximate Gaussian blob detector. ese interest points are localised in both space (i.e., at a specific pixel

location), but also in scale (i.e., they have an automatically determined size).

SURF works on a single channel (a grey-scale image), while our images are multi-channel: in addition to the

protein channel, we have a nuclear reference. erefore, the traditional  can only be applied to the protein

channel. I created  variants which incorporate the reference channel information.

41

Local Features

e first variant I tried were based on the following idea: run the point detection on the protein channel and

compute feature descriptors on both channels. e feature descriptor for each point is then the concatenation of both

descriptors.

Another variation I implemented consisted of first thresholding the  channel, then computing its distance

map, and, finally, computing descriptors on the distance map. As above, the final descriptor for a point was the

concatenation of the descriptor computed on the protein image and the descriptor computed on the distance map.

For using all of these descriptors, we clustered the descriptor values (using k-means clustering, choosing the

number of clusters automatically by ). is process assigns each descriptor to a cluster index. We represent an

image as a normalized histogram of membership in the various clusters Willamowski et al., 2004. is is known as

the “bag of visual words” model.

An alternative way to add information about the relationship of the protein to the reference channel is to simply

add the field-level features. Aer clustering and summarisation of the image by a histogram, we concatenate the

field-level features to this histogram to form the final feature vector. is is a simple way to use the information in

the reference channel.

5.3 Empirical Evaluation

Although the overall goals of this work go beyond classification (namely unmixing and topic modeling as described

in Chapters 4 and 6), it is a task on which evaluation of the features is straight-forward. I will present results in four

different datasets. e first dataset will be explored in more detail while only single values will be reported for the

other datasets.

For the measurement of statistical significance, I employed a Bayesian approach. If I assume that each algorithm

has an underlying accuracy r, the question is then to ask what is the probability that one algorithm has a higher

accuracy than another, given the observed data. erefore, given two observed accuracies c0 and c1 on a dataset of

size n, I compute

P (r0 > r1|c0, c1, n) =
∫ 1

0

∫ 1

0
[[r0 > r1]] p(c0, n|r0)p(c1, n|r1)dr0dr1∫ 1

0

∫ 1

0
p(c0, n|r0)p(c1, n|r1)dr0dr1

. (5.1)

In this method, I assume that the performance of the algorithms is independent,

p(c0, c1, n|r0, r1) = p(c0, n|r0)p(c1, n|r1). (5.2)

And I will further assume that the individual probabilities can be accurately described by a binomial distribution:

p(c, n|r) = rc(1− r)n−c. (5.3)

In this framework, higher values are beer, which is the opposite of the traditional statistical practice. erefore,

I will report 1 − P (r0 > r1|c0, c1, n) as a significance value. If the assumptions (5.2) and (5.3) are accepted, this

42

Empirical Evaluation (5.3)

ER G UL NO N Mito Cyto PM Lyso Cytosk

3 3 12 5 14 9 10 3 4 9
50 63 254 113 255 200 155 51 69 197

Table 5.1: Properties of Labeled Dataset. Ten classes. Shown are number of wells (first line) and images (second line)
per class. Legend: ER: endoplasmic reticulum, G: Golgi, UL: unlabeled, NO: nucleoli, N: nuclear, Mito: mitochondria,
Cyto: cytoplasmic, PM: plasma membrane, Lyso: lysosome, Cytosk: cytoskeleton.

significance value is then directly interpretable as the probability of making a Type I error (i.e., falsily rejecting the

null hypothesis that r0 ≤ r1).

RandTag Widefield Images

e first dataset consists of wide-field images obtained as described in Section 1.4. e images were labeled by

three experts1 using a protocol where the experts first labeled the images independently and were then given an

opportunity to change their minds given the other labelings. Only images where all experts agreed aer this second

step were retained. ere were 51 proteins in the final dataset (4 proteins were rejected without any agreement, and

for 15 proteins only two of the experts agreed).

e basic metrics of the dataset are listed in table 5.1. Using global, field-level, features on this dataset achieves

61% accuracy (all reported accuracies are estimated using cross-validation, which is performed over clones—images

from the same clone never appear in both the training and testing sets of any fold). I extended this dataset by labeled

3 additional classes: ER, Golgi, and unlabeled.

e clustering of the local descriptors is done automatically using k-means, which takes two parameters: k, the

number of clusters; and an initial set of centroids (implemented simply by seing the random number generator seed

to different values and randomly selecting elements the input). In order to choose the overall best result, minimising

Akaike Information Criterion is oen used.

Interestingly, the accuracy obtained in classification was observed to be highly dependent on the clustering that

was used in a way that is not very consistent. K-means clustering depends on both k and the random initialisation.

As Figure 5.2 shows, there is a large variation in accuracy for different choices of the random seed even for the same

value of k. Furthermore, as Figure 5.3 shows, there is no relationship between the value of the Akaike information

criterion, which is oen minimised to choose a set of clusters, and the resulting classification accuracy.

Jinjun Wang et al. (2010) proposed locally constrained linear coding as an alternative representation for a feature

given a code-book (set of centroids). Instead of assigning a point to its nearest centroid, it is fractionally assigned to

multiple close-by points. I implemented the simple, slow, version of the method. Unfortunately, the results (shown

in Figure 5.4) were worse than those obtained from hard assignment. A weakness with that method is that there is a

1e experts were myself, Dr. Elvira Osuna-Highley, and Dr. Estelle Glory-Afshar.

43

Local Features

(a) ER (b) Cytoplasmic (c) P. Membrane

(d) Nuclear (e) Golgi () Mitochondria

(g) Nucleoli (h) Lysosome

(i) Cytoskeleton (j) Unlabeled

Figure 5.1: Examples of RandTagWidefield Dataset. is shows an image from each of the 10 classes in the extended
widefield dataset. Images have been contrast stretched for publication.

44

Empirical Evaluation (5.3)

0 100 200 300 400 500

k

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

0 100 200 300 400 500

k

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

0 100 200 300 400 500

k

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

0 100 200 300 400 500

k

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

0 100 200 300 400 500

k

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

0 100 200 300 400 500

k

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

Figure 5.2: Results of Classification As a Function of the Number of clusters k. Each dot is the result of one clustering
of the data (differing by a different number of clusters and a different initial set of clusters). Le panels show the
results of using only the local features, right panels the results of using local features concatenated with global
features. Different rows show different local feature sets. From top to boom: , -ref, and -dist.

45

Local Features

0 20 40 60 80 100 120

AIC (×1000)

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

0 20 40 60 80 100 120

AIC (×1000)

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

120 130 140 150 160 170 180 190 200 210

AIC (×1000)

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

120 130 140 150 160 170 180 190 200 210

AIC (×1000)

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

120 130 140 150 160 170 180 190 200 210

AIC (×1000)

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

120 130 140 150 160 170 180 190 200 210

AIC (×1000)

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

Figure 5.3: Results of Classification As a Function of the Value of the Akaike Information Criterion (AIC). Each dot
is the result of one clustering of the data (differing by a different number of clusters and a different initial set of
clusters). Le panels show the results of using only the local features, right panels the results of using local features
concatenated with global features. Different rows show different local feature sets. From top to boom: ,
-ref, and -dist.

46

Empirical Evaluation (5.3)

0 100 200 300 400 500

k

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

Figure 5.4: Comparison With Locally Constrained Linear Coding. Results of classification with  features aer
clustering, for different values of k. e green crosses represent the results with , while the purple dots, the
results with hard assignment (the dots are the same as presented in Figure 5.2).

free parameter, λ, which, for lack of guidance in the original paper, I set to 0.5. Given that my implementation was

very slow and the initial results were not encouraging, I did not experiment with other values.

An alternative approach I implemented was to learn the codebook. Under the assumption that there are beer and

worse codebooks (the alternative hypothesis is that the variation observed in Figure 5.2 is simply noise), it should

be possible to distinguish a good codebook through internal cross-validation. Figure 5.5 shows the result of testing

several codebooks for each value of k (16 different codebooks, generated from different random seeds; codebooks

are independent for different values of k).

A few qualitative conclusions are possible: local features clearly outperform the global features. is is the major

result of this chapter (further testing below will further strengthen this statement). Secondly, incorporating other

information improves the result. It seems that -dist performs slightly beer than the other methods of doing

so. However, when aempting to learn a codebook for these features is slightly less successful than for -ref.

erefore, these will be used for the rest of the current work.

e final method is thus the following: for several values of k and random initialisation, learn a codebook;

perform cross-validation to choose the best one. is is a computationally heavy procedure (several rounds of cross-

validation are used), but several of its steps can be run in parallel. Milk, the package described in Appendix A.4,

supports all of these operations with a simple interface.

47

Local Features

0 100 200 300 400 500

k

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

0 100 200 300 400 500

k

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

0 100 200 300 400 500

k

50

55

60

65

70

75

80

a
cc

u
ra

cy
(%

)

Figure 5.5: Value of Learning Codebook. Shown in solid purple are the accuracies of learning a codebook for each
value of k. e green dots reproduce the results from Figure 5.2 for comparison.

48

Empirical Evaluation (5.3)

 -dist -ref

Without field-level features 70% 71% 70%
With field-level features 63% 69% 70%

Table 5.2: Summary of Results for Widefield Dataset. Accuracies were estimated through 3 fold cross-validation.
Using field-level features alone achieves 61% accuracy (with the same classification system).

Cyto Cytosk Lyso PM Mito N NO

Cyto 115 10 3 15 8 4 0
Cytosk 14 147 3 2 30 1 0
Lyso 3 1 14 0 50 0 1
PM 31 6 2 9 2 1 0
Mito 22 30 15 0 126 6 1
N 25 1 0 1 0 219 9
NO 1 0 0 0 1 16 95

Table 5.3: Confusion Matrix for Widefield Seven Class Dataset. is was estimated using -ref and 3 fold cross-
validation. Legend: NO: nucleoli, N: nuclear, Mito: mitochondria, Cyto: cytoplasmic, PM: plasma membrane, Lyso:
lysosome, Cytosk: cytoskeleton.

 -ref

Without field-level features 61% 68%
With field-level features 69% 69%

Table 5.4: Summary of Results for Widefield Dataset. Accuracies were estimated through 3 fold cross-validation.
Using field-level features alone achieves 61% accuracy (with the same classification system).

e results of applying this method for the smaller dataset are summarised in Table 5.2. e full confusion matrix

is presented as Table 5.3. Because the smallest class (plasma membrane) only has 3 clones (but a total of 51 images),

estimates were obtained through 3 fold cross-validation.

Recall that the same classifier using only field level features achieves only 61% accuracy. All of the  variations

tried outperformed that method, by a wide-margin (except for  with field-level features, which has only a small

advantage).

For the full, ten class, dataset, using field-level features achieves 60%. e results are summarised in Table 5.4

and the full confusion matrix is displayed as Table 5.5. e difference between  and the field-level features is

not significant (P (r0 > r1|data) = 0.79), but the difference between  and -ref is significant at the 1.7 ×

10−5 level. e boost gained from adding the field-level features to -ref is not statistically significant (P (r0 >

r1|data) = 0.83).

As promised, -ref is also very efficient in terms of computational time. On average, on my implementation,

computation requires 7 sec. per image for both interest point detection and feature descriptor computation.

As part of interest point detection, each point is ranked according to a metric of how strongly it matches the

49

Local Features

ER G Cyto Cytosk Lyso PM Mito N NO UL

ER 27 0 1 0 12 0 6 4 0 0
Golgi 1 14 7 0 19 1 14 2 0 4
cytoplasmic 0 1 98 5 3 12 2 12 0 22
cytoskeleton 0 0 11 157 1 1 25 2 0 0
lysosome 0 7 6 0 26 0 28 0 0 2
membrane 0 0 22 5 3 15 4 1 0 1
mitochondria 7 2 17 27 13 0 125 5 0 4
nuclear 9 0 5 0 0 1 1 218 1 20
nucleoli 0 1 1 0 0 0 0 10 99 2
unlabeled 0 0 12 1 0 2 2 56 0 159

Table 5.5: Confusion Matrix for Widefield Seven Class Dataset. is was estimated using -ref and 3 fold cross-
validation. Legend: ER: endoplamic reticulum, G: GOlgi, Lyso: lysosomes, NO: nucleoli, N: nuclear, Mito: mitochon-
dria, Cyto: cytoplasmic, PM: plasma membrane, Lyso: lysosome, Cytosk: cytoskeleton.

approximate filter used—see the  paper for details (Bay, Ess, et al., 2008). Because of the large size of the datasets

that were being generated from the RandTag images, I limited the number of interest points per image to 1024 (which

are the 1024 highest matches according to the metric alluded to above). e traditional  consists of 64 descriptor

values. With the addition of some interest point related values (location, size, match strength), one needs to store

70 floating point values per interest point. Using 4 Byte floats, 1024 descriptors can be saved in 280 KiB (560 KiB for

-re). is is smaller than the average image file size. All of the results above are obtained with the number of

points limited to 1024 points per image.2

e classifier learned from this labeled dataset can be applied to the whole collection. In order to do so, I added

to the dataset a “unlabeled” class consisting of unlabeled control clones. e results of this operation are presented

as Table C.1, page 95.

Uniprot is a database of protein information. Among other facts, it annotates proteins with Gene Ontology ()

terms. Additionally, each annotation is meta-annotated with an evidence code, a term from a vocabulary also defined

by . Of these, the code which is expected to be the most reliable is : inferred from direct assay.

Table 5.6 shows the automatic classification and the -marked  terms for all proteins in our collection, for

which the system return a high-confidence location label (arbitrarily defined as greater than 65%), that was not

“unlabeled,” and that are tagged with an  term.

e unlabeled label is likely to correspond to proteins that are not present in high enough concentrations to be

distinct from auto-fluorescence in this cell type under these conditions.3 erefore, no subcellular assignment is

possible.

2e highest value interest points are the most well matched ones. One can expect that they will be the least
likely to be the result of the noise in the image. It is thus possible that limiting the processing to high value interest
point has a positive effect in the image characterisation.

3It is also possible that the chimeric protein, while present, is not fluorescent as the native portion quenches the

50

Empirical Evaluation (5.3)

Gene Recommended name Location (confidence) Uniprot   terms

LMNA Prelamin-A/C nuclear (96%) nucleus
LMNA Prelamin-A/C nuclear (92%) nucleus
LMNA Prelamin-A/C nuclear (92%) nucleus
LMNA Prelamin-A/C nuclear (92%) nucleus
HMGA2 High mobility group protein

HMGI-C
nuclear (91%) nucleus

PRRX1 Paired mesoderm homeobox
protein 1

nuclear (81%) nucleus

LMNA Prelamin-A/C nuclear (81%) nucleus
DHE3 Glutamate dehydrogenase 1,

mitochondrial
mitochondria (77%) mitochondrion

TERA Transitional endoplasmic
reticulum ATPase

cytoplasmic (72%) other membranes

ARPC2 Actin-related protein 2/3
complex subunit 2

mitochondria (72%) other cellular component,
plasma membrane

PRRX1 Paired mesoderm homeobox
protein 1

nuclear (66%) nucleus

Table 5.6: Uniprot Terms and Automated Classification Comparison. is table shows the results of our classifier
and the Uniprot annotations for proteins for which this annotation is available. Shown are the gene name and
recommended name fields from Uniprot. e original  have been replaced by the  -slim mapping (if multiple
terms mapped to the same term, only a single instance was retained). Lmna appears several times as different clones
in which this gene was tagged in our experiments. is table is a subset of Table C.1 where all the  terms and the
full well reference are shown.

Table 5.6 shows that for the high confidence labels (both Uniprot and the classifier having high confidence), there

is very good agreement with the Uniprot labels. e exception is . From visual inspection (see Figure 5.6), this

seems to be a classification mistake.

RandTag Confocal Images

As mentioned in Section 1.4, in addition to the wide-field images, confocal microscopy images were also collected as

part of the RandTag project.

We created a labeled dataset containing 217 images from 44 different clones divided into 6major classes: Nucleoli,

Mitochondria, Golgi, Cytoskeleton, Nuclei, Endoplasmic Reticulum (). e annotations were obtained by two

separate experts.4 Certain clones are annotated into subclasses (e.g., “Nuclei (uniform)” versus “Nuclei (without

nucleoli)”), but these were ignored in this work.

As above, I built an extended dataset by unlabeled, cytoplasmic, plasma membrane, and lysosomal paerns to

match the ten classes defined above. Table 5.7 shows the main statistics of this dataset.

When I blindly reannotated the same dataset (I had access to the set of labels that had been used and to the clone

images, but not to the assignments), I agreed with the existing annotations for 43 out of 44 clones (98% agreement).

fluorofore.
4e experts were Dr. Estelle Glory-Afshar and Armaghan Naik.

51

Local Features

Figure 5.6: Illustrative Image of . is appears to be an endoplamic reticulum paern, which was misclassified.

N NO G ER PM L UL M Cyto Cytosk

Nr. proteins 9 4 4 3 3 3 5 12 8 20
Nr. images 34 20 13 10 11 12 19 49 30 68

Table 5.7: Statistics of Ten Class Confocal Dataset. Shown are the number of different proteins and images for each
class. Legend: ER: endoplamic reticulum, G: GOlgi, Lyso: lysosomes, NO: nucleoli, N: nuclear, Mito: mitochondria,
Cyto: cytoplasmic, PM: plasma membrane, Lyso: lysosome, Cytosk: cytoskeleton.

52

Empirical Evaluation (5.3)

(a) ER (b) Cytoplasmic (c) P. Membrane

(d) Nuclear (e) Golgi () Mitochondria

(g) Nucleoli (h) Lysosome

(i) Cytoskeleton (j) Unlabeled

Figure 5.7: Examples of Confocal Widefield Dataset. is shows an image from each of the 10 classes in the extended
widefield dataset. Images have been contrast stretched for publication.

53

Local Features

 

Seven classes: Without field-level features 76% 70%
Seven classes: With field-level features 82% 76%

Ten classes: Without field-level features 72% 67%
Ten classes: With field-level features 70% 62%

Table 5.8: Summary of Results for Confocal Dataset With. Accuracies were estimated through 10 fold cross-
validation. e classifier used, as in other experiments, was based on lib with internal cross-validation for
parameter selection. Using field-level alone, achieves 72% and 53% accuracy (for seven and ten classes).

ER G Cyto Cytosk Lyso PM Mito N NO UL

ER 1 1 5 1 0 0 2 0 0 0
Golgi 0 7 0 3 0 0 3 0 0 0
cytoplasmic 1 0 25 0 0 2 0 0 0 2
cytoskeleton 0 1 1 64 0 0 1 0 0 1
lysosome 0 0 3 0 6 0 0 0 0 3
membrane 0 0 0 7 0 0 0 0 0 4
mitochondria 1 4 0 2 0 0 42 0 0 0
nuclear 1 0 3 0 0 0 0 24 6 0
nucleoli 0 0 2 0 0 0 1 6 11 0
unlabeled 1 0 3 0 2 2 0 0 0 11

Table 5.9: Confusion matrix of Ten Class Confocal Dataset. Legend: ER: endoplamic reticulum, G: GOlgi, Lyso:
lysosomes, NO: nucleoli, N: nuclear, Mito: mitochondria, Cyto: cytoplasmic, PM: plasmamembrane, Lyso: lysosome,
Cytosk: cytoskeleton.

Note that I evaluated one clone at a time, observing all of the images from that clone before assigning a label.

e results of classification for this dataset are summarized in Tables 5.8. Table 5.9 shows the confusion matrix

for the 10 class problem using . Using field-level features alone achieves 72% and 53% accuracy in the seven and

ten class problem, respectively.

S-ref achieves only 70% in the seven class problem, but this is not a statistically significant difference when

compared to the 72% accuracy obtained with field level features (P (r0 > r1 | data) = 0.76). e gain of a few

percentage points to 76% is also not significant (using either  or -ref and field-level features), but the jump

to 82% is, at the 0.01 level (compared with the 72% baseline).

In the ten class problem, the difference between 53% and 62% (the lowest local feature result compared with

the field-level features) is significant at the 0.02 level, while the difference to the best result (72%) is significant at

the 2 × 10−6 level. Adding field-level features results in a drop in accuracy, but the differences are not significant

(P (r0 > r1 | data) = 0.12, for the -ref case).

Locate Images

is subsection describes work with Ramanuja Simha (University of Delaware).

54

Empirical Evaluation (5.3)

Figure 5.8: Example Image From Locate Dataset. is is an image of Calveolin I, which is annotated with the labels
“Cytoplasmic punctate” and “Plasma membrane-like.” Originally, the image file was named 01D7_01_60X_HeLa. e
image has been rescaled to fit the page.

Aturaliya et al. (2006) presented a collection of mouse membrane bound proteins imaged with confocal mi-

croscopy. e images are available online in the  database.5 It consists of 6985 images of 2047 different

mouse proteins expressed in HeLa cells. Figure 5.8 shows an example image from this collection.

e images were visually annotated and most proteins are annotated with more than one location. In order to

deal with multiple labels, e system I built learns a binary classifier for each label and, at evaluation time, outputs

all the labels whose corresponding binary classifier returned a positive label. Each binary classifier was learned

independently.

Instead of accuracy, it is more meaningful to measure the F1 score, defined as:

p =
Tp

Tp + Fp
, (5.4)

r =
Tp

Tp + Fn
, (5.5)

F1 = 2
pr

p+ r
. (5.6)

5Available at http://locate.imb.uq.edu.au/.

55

http://locate.imb.uq.edu.au/

Local Features

Feature set Precision Recall F1

 79% 50% 62%
-means 81% 53% 64%
field-level 79% 57% 66%
field-level +  80% 60% 69%

Table 5.10: Results for Locate Dataset. Shown are precision, recall, and the F1 measure.

 

Without 7 90% 92%
With 7 94% 94%

Table 5.11: Summary of Results for Hela-2DDataset. Estimates obtained through 10 fold cross-validation for different
feature sets.

Where Tp stands for true positives, Fp for false positives, and Fn for false negatives (p and r are normally called

precision and recall).

Table 5.10 summarises the results obtained. One variation that is simple and achieved very decent results is to

simply average the  descriptors for each image (denoted as -means). S does not do as well as the field-

level features on this dataset. However, again, the combination with the field-level features leads to the best overall

results.

Murphy Lab HeLa 2D Dataset

e Murphy Lab HeLa dataset is by now a benchmark in this area, used by many researchers (Boland, Markey, et al.,

1998; Boland and Murphy, 2001; Chebira et al., 2007; Huang and Murphy, 2004b; Marée et al., 2007; Nanni, Brahnam,

et al., 2010; Rajapakse, 2008). is is a ten class problem. Nanni, Brahnam, et al. (2010) obtained the best reported

results results on this dataset, 96% accuracy, using a combination of texture and other features.

Images contain both a protein and a  channel. erefore, -ref can be applied. For these experiments, the

optimal codebook was learned through cross-validation. e same classification system was used.

Results are summarised in Table 5.11. e overall accuracy is 94%, comparable to the best reported results (the

different is significant at the 2.7% level). e full confusion matrix for this case is shown in Table 5.12. With 7

alone, and the same classifier set up, the overall accuracy is 87% (the difference to 94% is significant at the 10−7 level).

5.4 Conclusions

Local features (in particular,  and -re) outperform field-level features on four very different datasets. Addi-

tionally, there is value-added by including information related to the reference channel or combining these features

with field-level features.

56

Conclusions (5.4)

         

 86 0 1 0 0 0 0 0 0 0
 0 84 0 0 0 1 0 0 0 1
 0 0 84 2 0 1 0 0 0 0
 0 0 4 79 0 1 0 0 1 0
 0 0 1 0 72 0 1 0 10 0
 0 3 1 0 1 64 0 0 3 1
 0 0 1 1 0 0 78 0 0 0
 0 0 0 0 0 0 0 98 0 0
 0 2 3 0 5 1 0 0 79 1
 0 1 0 0 0 1 0 0 1 88

Table 5.12: Confusion Matrix for Hela-2D Dataset with -ref and 7 Features. Classifier is -based and
estimates were obtained through 10 fold cross-validation. Legend: : nuclear, : endoplasmic reticulum, :
Golgi  (giantin), : Golgi  (gpp130), : lysosomes, : mitochondria, : nucleoli, : actin, : endosomes, :
tubulin.

Interestingly, we observed a strong dependency on which clustering was used for forming the bag of words

model. However, I also showed that you can learn the best codebook by cross-validation. erefore, this is the

recommended method for supervised classification of these images.

In all of the datasets, the results of using field-level features could be improved by addition of the  variants.

Local features are also very fast, computationally (a few seconds per image); but do require pre-clustering before

use. is step can be slow, but one can work with a subset of the data for efficiency. erefore, the process can scale

to very large image collections. e space requirements for saving all of the detected keypoints can become very

large. Again, we used only part of the data (in this case, the most strongly detected keypoints) to keep the space

requirements below those of saving the input image data.

57

§6 Topic Modeling With Multiple Sources of Data

As discussed in Section 1.4, out of the RandTag project, there were over 5000 wells with images, of which 208 are of

known proteins (144 different proteins).

For these proteins, there is information available from online databases, which can inform subcellular assign-

ments. A small minority of proteins have previous assignments derived from direct assays, but the majority has

only predicted assignments or no assignments.

For modeling multiple sources of data, I used topic models derived from the basic  model reviewed in Sec-

tion 2.5. In particular, there were two goals: (1) to add labels to proteins and (2) to incorporate numeric features such

as the field-level features.

I will first present the model, validate it on a small test dataset for the supervised classification task, then apply

it to the larger dataset. Finally, I will show how the model can be used successfully in semi-supervised mode.

6.1 Extensions to LDA

Topic models, and in particular Latent Dirichlet Allocation, have been extended to incorporate multiple sources of

information, including numeric image features (Blei and Jordan, 2003). For example, Ahmed et al. (2009) developed

a model for biological images and their textual captions where the images were represented as a set of numeric

features. We use a similar model here.

59

Topic Modeling With Multiple Sources of Data

Images are represented by local features (see Chapter 5) and field-level features. e local features are clustered

into visual words. e field-level features are treated as numeric values, combined into an array F .

To sample each of numeric features, we first sample a topic indicator zf (which depends on θ, like the topic

indicator for words). For each topic, there is an associated pair (µk, σ2
k), which parameterizes a normal distribution.

e set of these parameters is F . us, given zf , we sample Ff from the corresponding normal:

P (F⃗ | F , θ) =
∏
f

N (Ff | Ff,zf)C(zf | θ). (6.1)

When compared to the corr-, we note that our model is being applied in a different seing. Blei and Jordan

(2003) were aempting to derive annotations from numerical features. erefore, the best results were obtained

when the annotation was dependent on the topics of the numerical features. In our case, there is no need to make

the word outputs be a stochastic function of the numeric outputs as they all constitute features of the image.

Multiple modalities of words are modeled as additional -like blocks, with independent multinomial param-

eters Ψi. In Figure 6.1, two modalities are shown, but more are possible (my current implementation uses three:

widefield images, confocal images, and gene ontology terms).

In order to model the possible labels that can be associated with an image, we implement a variation on the

supervised  (s) model described in Section 2.5. For each possible label, there is an associated γℓ weight vector

that gives: weight to each topic.

Unlike the model described in Section 2.5, the generation of the label is a two step process:

vℓ ∼ N (z̄T γℓ, 1)N (0, σ2
0), (6.2)

uℓ = [[v > 0]] . (6.3)

us, vℓ is z̄T γℓ plus some Gaussian noise with a zero-centered Gaussian prior, while uℓ is a deterministic function

of v. uℓ is observed, while vℓ is kept latent. is is a similar structure to the one that was used by Bae and Mallick

(2004) for gene selection.

e values of gamma are given a Laplacian prior, parameterised by λ. is is equivalent to seing an ℓ1 penalty

on γ (Park and Casella, 2008).

60

Extensions to LDA (6.1)

..θ.

α

.

Ψ1

.

K

.

β

. z. w.

N

.
M

. Ψ2.
K

.

z

.

w′

.

M ′

.

z

.

f

.

F

.

G

.

F

.

F ×K

.

v

.

ℓ

.

L

.

γ

.

λ

.

L

Figure 6.1: Supervised Latent Dirichlet Allocation with Gaussian Mixture. Shown in grey are the nodes that are
observed. w represents the first type of word-like features, w′ the second (additional types are, naturally, possible),
f represents the numeric features, and ℓ the document labels.

e full model is thus:

Ψak ∼ DW(β), (6.4)

Fk,f ∼ N/G(G), (6.5)

θi ∼ DK(α), (6.6)

zij ∼ C(θi), (6.7)

wij ∼ C(Ψzij), (6.8)

fij ∼ N (Fzij), (6.9)

γℓ ∼ L(0, λ), (6.10)

vi,ℓ ∼ N (z̄T γℓ, 1), (6.11)

where N − G is a normal-gamma distribution, L is a Laplacian distribution (as before, N represents the normal

distribution, DN a Dirichlet of size N , and C a categorical distribution).

A preliminary version of the model extended z̄ with a constant element (i.e., z̄0 = 1). is was a mistake, as can

be seen by the fact that for every γ, there is a γ′ defined by γ′k ̸=0 = γk + λ and γ′0 = γ0 − λ such that z̄T γ = z̄T γ′

(recall that
∑
z̄k = 1).1

1In fact, numerically, z̄T γ ̸= z̄T γ′ because of rounding errors. erefore, the optimisation will search for minor

61

Topic Modeling With Multiple Sources of Data

100 101 102 103

iterations

−300

−250

−200

−150

−100

−50

0

∆
lo

g
P

(×
1
0
0
0
)

10−1 100 101 102 103

time(sec)

−300

−250

−200

−150

−100

−50

0

∆
lo

g
P

(×
1
0
0
0
)

Figure 6.2: Convergence of Collapsed and Uncollapsed Gibbs Sampling. Shown is ∆ logP ploed as a function of
the number of iterations (le panel) and the wall clock time (right panel) on the Associated Press dataset from Blei,
Ng, et al. (2003). ∆ logP is logP − max logP , where the maximum is for that sampling model—likelihoods are
not directly comparable as the collapsed model as fewer variables. e uncollapsed sampler uses 8 processors. e
number of iterations of collapsed sampling is the same in both panels.

6.2 Sampling

For sampling, I initially used uncollapsed Gibbs sampling. Collapsed Gibbs sampling is normally preferred (Griffiths

and Steyvers, 2004). However, the uncollapsed version has two advantages that apply to our situation: (1) although

the standard collapsed  is easier to implement than the uncollapsed variant, more complex variations need to be

derived individually, slowing down progress when multiple variants need to be implemented; and (2) uncollapsed

Gibbs sampling is embarrassingly parallel (all of the documents are independent of each other, given the topic pa-

rameters), allowing us to take advantage of multi-core machines.

In Fig. 6.2 I show the log-likelihood of collapsed and uncollapsed Gibbs sampling as a function of the number

of iterations and of wall clock time, using 8 processors. Shown is the difference, at each point, to the best observed

model, so that the best observed model is defined to have ∆ logP = 0. While collapsed and uncollapsed sampling

can represent the samemodel, the log likelihoods are not directly comparable as themodels are in different parameter

spaces.

e convergence of collapsed sampling is faster in both terms of iterations and wall clock time, but the difference

is smaller in time. ere have been proposals to use distributed variation of collapsed sampling, notably by Newman

et al. (2009), but they rely on approximations and are harder to implement.

For simple , I do not need to save the value of all the z variables. e implementation samples each z, but save

only aggregate statistics in θi for each document. is makes the memory usage much beer per document as well

as the process slightly faster than the alternative where you save all of the zs. Unfortunately, for s variations,

we need to save the zs as, within the same document, they are not independent given θ, Ψ, F and vℓ.

Sampling is similar to in standard  for θ, z, w. Sampling f given z and F is trivial. e parameters F are

sampled from the Gaussians and Gamma distributions (for the mean and standard deviation, respectively).

gains obtained through rounding and result in very large absolute values for γ.

62

Sampling (6.2)

p(vℓ | Z̄, γ) is a truncated Normal distribution, which is sampled using the algorithm from Robert (1995).

In the current version, γℓ is not sampled. It is rather “solved for,” or equivalently, set to its highest likelihood

value. e following equation is solved

γℓ = argmin
γ

(
Z̄γ − vℓ

)2
. (6.12)

Collapsed Gibbs Sampling

As shown above, collapsed Gibbs sampling is much faster than the uncollapsed variation. erefore, aer the model

specification was finalised, I derived the collapsed sampler for this model.

In general, I wish to sample a particular z value (zi,j : the jth entry for document i) given the hyperparameters

and the values of the other z values, denoted by z−(i,j).

I start by showing a general equality, which will be used later. Assume the goal is to integrate away parameter ε,

which has priorP (ε | ξ) and leads to emissionP (e | ε). Now, further assume thatP (ε | ξ) has the form f(ε; ξ)/D(ξ)

and is the conjugate prior to P (e | ε).∫
ε

P (ε | ξ)P (e | ε)dε =
∫
ε

1

D(ξ)
f(ε; ξ)P (e | ε)dε, (6.13)

=
1

D(ξ)

∫
ε

f(ε; ξ)P (e | ε)dε, (6.14)

=
1

D(ξ)

∫
ε

k(e)f(ε; ξ′)dε. (6.15)

Here we used the property: P (ε | ξ)P (e | ε) = k(e)f(ε; ξ′), which is a consequence of conjugacy. Now, we can

multiply and divide by D(ξ′) inside the integral:∫
ε

P (ε | ξ)P (e | ε)dε = 1

D(ξ)
k(e)

∫
ε

D(ξ′)

D(ξ′)
f(ε; ξ′)dε, (6.16)

=
D(ξ′)

D(ξ)
k(e)

∫
ε

1

D(ξ′)
f(ε; ξ′)dε, (6.17)

=
D(ξ′)

D(ξ)
k(e)

∫
ε

P (ε | ξ′)dε, (6.18)

=
D(ξ′)

D(ξ)
k(e). (6.19)

erefore, integrating away the parameter ε results in the ratio of the posterior and the prior normalisation. We can

further simplify by remarking that neitherD(ξ) nor k(e) depend on the value of zi,j . e final result is P ∝ D(ξ′).

Given the particular form of this expression, there may be other terms that are independent of zi,j and the expression

may be simplified even further.

I am going to present a solution where γℓ is not integrated out (although vℓ is). Unfortunately, it was not clear

to me whether it is possible to also integrate this parameter away or whether it is impossible to do so in closed form

(or using standard numeric functions for which fast implementations are available).

63

Topic Modeling With Multiple Sources of Data

ere are actually two variations, Pw for when zi,j corresponds to a word emission, and Pf for when it corre-

sponds to a numeric one. I will start by presenting Pw . I will also assume a single label (the general case simply

multiplies all of the labels together):

Pw(zi,j | α, β, z−(i,j),w, γ) ∝
∫
θ

∫
ψ

∫
v

Pw(z, θ, w, v, ℓ | α, β)dθdψdv

∝
∫
θ

P (z | θ)P (θ | α)dθ×

×
∫
ψ

P (w | ψ)P (ψ | β, z)dψ×

×
∫
v

P (ℓ | v)P (v | z, γ)dv.

e first two integrals fit the framework above and are standard (Griffiths and Steyvers, 2004; Heinrich, 2009), but

the third is not. Assume that ℓ is true:∫
v

P (ℓ | v)P (v | z, γ)dv =

∫
v

[[v > 0]]N (v | z̄T γ, 1)dv = Φ(z̄T γ), (6.20)

where Φ is the cummulative distribution function for the Gaussian distribution. If ℓ is negative, then the above

becomes Φ(−z̄T γ). If we defined s = +1 if ℓ, and s = −1 otherwise, we obtain the expression Φ(sz̄T γ).

e final expression for Pw is thus

Pw(zi,j = k) ∝ (nki,j + α)
wk + β

Nk +Wβ
Φ(sz̄T γ), (6.21)

where nki,j is the number of words in document assigned to topic k,wk is the number of times that the corresponding

word was assigned to topic k,Nk is the number of times that topic k was assigned to anyword, andW is the number

of words. All of the these counts are excluding the current value zi,j and must be updated when zi,j is updated. To

sample zi,j , (6.21) is computed for all values of k and the resulting vector is normalised.

e case Pf is similar, but I am not aware of a published derivation, so I present it here.

Pf
(
zi,j | α, β, z−(i,j), γ,G

)
∝

∫
θ

∫
F

∫
v

P (z, θ, f, v, ℓ | α, β, γ,G) (6.22)

∝
∫
θ

P (z | θ)P (θ | α)dθ× (6.23)

×
∫
F
P (f | F)P (F | z,G)dF× (6.24)

×
∫
v

P (ℓ | v)P (v | z, γ)dv. (6.25)

e term in f is the single one that differs from the case for Pw . It fits the schema above:∫
F
P (f | F)P (F | G)dF ∝ D(G′)

D(G)
, (6.26)

where D(G) is the normalisation factor for the Gaussian-Gamma distribution, i.e.,

D(a, b, n0, µ0) =
ba
√
n0

Γ(a)
√
2π
. (6.27)

64

Sampling (6.2)

e posterior parameters are given by:

a′ = a+ n/2, (6.28)

b′ = b+
1

2

∑
i

(fi − f̄)2 +
1

2

nn0(f̄ − µ0)
2

n0 + n
, (6.29)

n′ = n0 + n, (6.30)

µ′ =
n0µ0 + nf̄

n0 + n
, (6.31)

where n is the number of observed elements and f̄ is the observed mean value. In order to implement this equation

efficiently, the algorithm needs to keep track of three variables for each topic and numeric output:

nj,k =
∑
i

[[zi,j = k]] , (6.32)

Fj,k =
∑
i

[[zi,j = k]] fi,j , (6.33)

F 2
j,k =

∑
i

[[zi,j = k]] f2i,j . (6.34)

All of these can be updated very fast aer each assignment to zi,j . Unfortunately, the expression does not lead itself

to further simplification:

D(a′, b′, n′) =
Γ(a′)

b′a′
√
n′. (6.35)

erefore, the full value of Pf is

Pf (zi,j | z−(i,j), a, b, µ0, n0, α, β) ∝ (nki,j + α)
Γ(a′)

a′b′
√
n′Φ(sz̄T γ). (6.36)

e implementation uses logarithmic space for the computation, but expensive to compute functions are unavoidable.

As mentioned above, γ must still be solved for explicitly:

γ∗ = argmax
γ

∑
i

logP (ℓ|γ, z̄i). (6.37)

In terms of the cummulative Gaussian function, Φ, the likelihood can be expressed as (assuming that ℓ is true):

P (ℓ|γ, b̄i) =
∫
u

P (ℓ|u)P (u|γ, z̄i)du (6.38)

=

∫
u

[[u > 0]]N (u|γT z̄i, 1)N (u|0, σ2
0)du (6.39)

∝ Φ(
σ2
0

1 + σ2
0

γT z̄i). (6.40)

If ℓ is false, the sign of argument to Φ is reversed. erefore, the full expression to maximise, including the prior, is:

γ∗ = argmax
γ

∑
i

logΦ
(
si

σ2
0

1 + σ2
0

γT z̄i

)
− λ∥γ∥1. (6.41)

65

Topic Modeling With Multiple Sources of Data

One possible way to do perform this minimisation is to use the Newton-Raphson method: starting with an initial

guess γ0, newer approximations are obtained by

γt+1 = γt −H−1(∇γt), (6.42)

whereH is the Hessian matrix and ∇γt is the gradient vector at γt. is maximisation can be quite costly (because

of the need to evaluate many calls to Φ, which is slow even if we approximate it2). erefore, I used a simple

approximation: at each iteration of the Gibbs sampler, only a single Newton-Raphson iteration is performed.

eDirichlet hyper-parametersα and β can be fit using similar techniques (Minka, 2000). I have not implemented

this, but set them to fixed values (0.01).

Currently, the  terms are output as independent words. erefore, the model can not learn good parameters

for rarer topics and I used a small subset of , a  slim. An alternative would be to model the structure of the 

so that information could flow from nearby terms for rare terms, but more precision would still be possible.

Possible Extensions

ere are a few possible extensions to the model. I present them here, but did not implement them.

Currently, the word emissions are parameterised byΨak , which has a flat Dirichlet priorβ = (β, β, · · · , β). ere

is no reason why there could not be separate values for different regions of the space (even for each individual word).

For example, all  terms could share β, whilst the visual words would share a different value β. ese could

either (1) be fit to the data or (2) be specified in a way as to encode prior information about which classes of data

should be valued the highest (smaller values of β correspond to higher confidence as they generate more peaked

distributions—normally this is evaluated over the word index of Ψi,k , but it is similarly true over the topic index k,

i.e., smaller values of β will generate values of Ψi,k , where for fixed i, one has more distinctions between different

topics).

Supervised Classification Results

Like for the case of validating -ref, a supervised classification task allows easy validation of the model. We used

the same RandTag widefield dataset as described in Section 5.3.

We used -ref features, with a k-means derived codebook to transform the features into visual words. Addi-

tionally, we used field-level features with the Gaussian emission model described above.

Similarly to what was done in Section 5.3, the codebook was learned using cross-validation. e field-level

features, when used, were first normalised to z-scores (i.e., first the training set mean was subtracted and the result

2My implementation uses a 4 term polynomial approximation. An initial implementation used the  scientific
library and its implementation ofΦ. With thismore exact implementationΦwas themost costly step in the sampling.

66

Sampling (6.2)

ER G Cyto Cytosk Lyso PM Mito N NO UL

ER 30 0 1 0 12 0 4 0 3 0
Golgi 1 18 6 1 10 1 16 3 3 3
cytoplasmic 1 0 94 15 4 12 2 11 2 14
cytoskeleton 0 0 7 161 3 1 23 1 0 1
lysosome 1 9 11 0 17 0 31 0 0 0
membrane 0 0 26 9 0 8 2 1 0 5
mitochondria 8 2 14 28 21 0 123 2 0 2
nuclear 7 2 2 2 4 2 2 218 9 7
nucleoli 0 0 0 0 0 0 0 21 88 4
unlabeled 1 5 12 7 7 0 10 21 6 163

Table 6.1: Supervised  Classification Results. is is the ten class widefield dataset described in Section 5.3.
Legend: ER: endoplasmic reticulum, G: Golgi, UL: unlabeled, NO: nucleoli, N: nuclear, Mito: mitochondria, Cyto:
cytoplasmic, PM: plasma membrane, Lyso: lysosome, Cytosk: cytoskeleton.

was divided by the training set empirical standard deviation). us, the prior on each topic exactly matches the

overall distribution.

When applying a learned model to a new example, the document is first projected into topic space. For this, a

small number of Gibbs sampling iterations (30) are run and the z̄ vector is observed. Finally, a single label is obtained

according to

ℓ∗ = argmax
ℓ

vℓ = argmax
ℓ

θT γℓ. (6.43)

is was done even if ∀ℓ, vℓ < 0 (i.e., no label was expected to be set) or if vℓ > 0 for more than one ℓ value (i.e.,

multiple labels were expected to be set). Both cases were observed. Implicitly, this gives us the most likely label.

Interestingly, the results obtained by including the numeric features are not as good as those using visual words

(-re) alone. I posit that this is due to the influence of non-informative features which could potentially be

removed in a feature-selection step.3

Full results are presented in Table 6.1, using 32 topics on the ten class dataset. e results were obtained using

only visual words and no field-level features. e overall accuracy is 66% which is lower than the 72% accuracy

obtained with support vector machines. e difference is significant at the 1% level.

Using field-level features results in slightly lower accuracy (64%). e difference is not significant, but I still

decided to use only visual words going forward. ere is a computational cost associated with using both types of

features.

As before, the main purpose of the supervised study is to validate the methods. e true value of this model is in

the ability to handle multiple data modalities and work in a semi-unsupervised mode. I discuss these aspects next.

3I have looked carefully for a calculus or coding error, which was my first hypothesis, but found none. e topics
for the numeric features also seem to have a similar distribution to the ones for the visual words.

67

Topic Modeling With Multiple Sources of Data

6.3 Multiple Data Modalities

e results presented in the previous section validate the general topic modeling, but are simply an alternative

technique to perform a supervised classification using images. e real gain from topic modeling comes from using

other sources of data and from going beyond simple supervised classification seings.

Sources of Data

I considered several sources of data:

1. Wide-field images from the RandTag project,

2. confocal images from the same source,

3. information from online databases on protein location,

4. information from online databases on protein function.

e two types of image are treated as separate types as they are visually different enough that we should not

expect the features to be directly comparable (see Figures 1.1 and 1.2).

e information from online databases was obtained in the form of gene ontology () terms (Ashburner et al.,

2000). With R. F. Murphy, H. Shatkay, S. inn, and J. Liddie, I developed a system specifically for aggregating this

information. Nicknamed “waldo,” it is described in Appendix A.1.

I used data from Uniprot. Uniprot provides, for each protein, a list of  terms in all three domains (cellular

component, molecular function, and biological process). In order to improve the ability of the model to learn, I

used the -slim provided by Mouse Genome Informatics () (Blake et al., 2011). A -slim is a subset of  and

a mapping from the full  to the -slim. Unlike , there is no standard -slim. Given that these are mouse

proteins, I decided to simply adopt the one developed by . Compared to using the full , there are fewer terms

for which a parameter value must be learned.4

For orthology information, I relied on the egg database (Muller et al., 2010). is database groups proteins

across several species into ortholog groups () defined by sequence similarity. To obtain an ortholog, I query the

database for the  containing the gene of interest and return the found genes in the target species.5 If a matching

protein is found, then its  terms are brought in as words. ese are different words than the corresponding mouse

term (i.e., there is both a “nuclear-mouse” and a “nuclear-human” term), but they share the same multinomal Ψ.

From the modeling and implementation point of view, there are only three types of information:

4An arguably beer solution would be to reflect the graph structure of  as a prior on the parameters. erefore,
one could fit a set of parameters for each term, but still benefit from information from terms adjacent in the graph.
is is outside the scope of the current work, but would be an interesting extension.

5is operation is a single function call to the waldo .

68

Multiple Data Modalities (6.3)

words ese are both visual words and the gene ontology terms. ese are modeled as w above.

real Real numbers, such as the field-level features, are modeled as f above.

label ese are modeled as ℓ above. e only labels available are those from human annotation.

Finally, I will note that there is no issues in modeling missing data. If a protein is not mapped to an ortholog,

then there will not be any orthologous  term words associated with that protein. If there is only widefield data,

then only widefield features will be present and no value need be imputed to the confocal image features. is would

not be the case if I had just proposed to concatenate feature vectors.

Results

Supervised Results

A single topic model was learned using both labeled and unlabeled data. e unlabeled data can then be labeled from

the rest of the model (this is a form of transductive learning).

All the features for a single protein from different images (even different clones) were grouped together as a single

bag of words. is results in 137 different document for topic modeling, each document consisting of all information

about a protein.

As above, the label assigned is the one which obtains to the highest response. An estimate of confidence is

obtained by subtracting the second largest response. is value does not have a direct correspondence to a fraction,

but higher values correspond to higher confidence.

Table 6.2 shows the results of this label assignment for proteins with Uniprot cellular component annotations

marked as “inferred from direct assay” (it is analogous to Table 5.6). Shown are the 10 highest confidence proteins

for which the label was not “unlabeled.” Appendix Table C.2 shows results for all RandTag proteins.

Figure 6.3 shows images from each of the proteins where the algorithm and Uniprot disagree. In the cases of RL7

and PTRF, the paern is outside of the vocabulary that the algorithm uses (RL7 is a rybosomal protein, which exhibits

a mixture of nucleoli and cytoplasmic; while PTRF locates to the caveola, which was not part of the vocabulary).6

In the cases of ACTN4, CAZA1, and SND1, Uniprot contains a cytoplasmic annotation (agreeing with our labeling).

is label is, however, of lower quality than . Our results are thus validation for these.

Semi-supervised Results

e true result of the topic model is a topic-distribution for each protein. One visualization of this structure is

defining a proximity relationship between the proteins. One could simply use the Euclidean distance between the

6ese and similar statements in this paragraph can be sourced to Uniprot, version 104.

69

Topic Modeling With Multiple Sources of Data

Gene Location Uniprot   terms

PRRX1 nuclear nucleus
LMNA nuclear nucleus
PTRF cytoskeleton plasma membrane
SUH nuclear nucleus
ACTN4 cytoplasmic cytoskeleton, other cellular com-

ponent
CAZA1 cytoplasmic cytoskeleton, other membranes
DREB cytoskeleton cytoskeleton
SND1 cytoplasmic mitochondrion
RL7 mitochondria cytosol
DHE3 mitochondria mitochondrion
TERA membrane other membranes

Table 6.2: Comparison of LDA Results and Uniprot. Comparison of results reported obtain from the topic model
with  annotation in Uniprot. Only proteins with a confidence value higher than 1 are shown.

(a) RL7 (b) ACTN4 (c) CAZA1

(d) PTRF (e) SND1

Figure 6.3: Images of Proteins Where ere is Disagreement Between the Topic Model and Uniprot. See Table 6.2.
Images have been constrast stretched for publication.

70

Multiple Data Modalities (6.3)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

x1

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

x
2

widefield

confocal

both

Figure 6.4: Proteins in Two Dimensional Projection. Topics were projected into two dimensions using multidimen-
sional scaling. e green crosses represent the proteins with only widefield images, the purple circles only those
with confocal images, and the beije triangles those with both types of images.

topic vectors, but a more appropriate measure is the symmetric Kullback-Leibler divergence (Ds) as the distance

measure for two topic distribution:

Ds (θ1, θ2) = DKL (θ1∥θ2) +DKL (θ2∥θ1) , (6.44)

where DKL is the more widely used non-symmetric variant, defined by:

DKL (P∥Q) =
∑
i

P (i) log
P (i)

Q(i)
. (6.45)

is construction allows one to navigate the space of subcellular location by looking at proteins that are close

to any protein of interest (it is easy to imagine a graphical interface which would allow the user to perform this

operation).

In order to evaluate whether the different modalities had been projected into the same space, I used multidi-

mensional scaling to project to a two-dimensional space. Figure 6.4 shows where the proteins are projected using

different symbols for the modalities that were available for chat protein. As can been seen, there is mixing of the

modalities.

I also aempted to train a classifier to distinguigh among the modalities in this label space. e accuracy of

the model was statistically indistinguishable from that of a model which classifies all its inputs as coming from the

majority class (158 out of 255, when the majority class, widefield, contains 155 proteins). is shows that even in

the higher dimensions not depictable on paper, the modalities are not separated.

Figure 6.5 is in the same space as Figure 6.4, but instead of markers, there are single images for each protein. e

positions were slightly shied to separate closely lying points7 so that individual images can be seen beer.

7e final position is computed to minimize the weighted sum of the distance to the initial position and the
sterical interactions with other thumbnails. e parameters of this were chosen by visual tuning.

71

Topic Modeling With Multiple Sources of Data

Figure 6.5: Proteins in Two Dimensional Projection. Topics were projected into two dimensions using multidimen-
sional scaling and close by lying proteins were separated for easier visualisation.

6.4 Conclusions

e current chapter presented a model which can use several sources of information in a semi-supervised way:

while some proteins may be annotated with one of a predefined set of labels, others need not be and all are modeled

together. e labels constrain the learned representation.

Although our goal was not supervised classification, it is an easy task on which to validate the system. In this

task, I obtained beer results than the support vector machine classification. Interestingly, the addition of numeric

features was a pessimisation as the results were not as good.

e semi-unsupervised results are more difficult to evaluate. Unfortunately, even though all of the sources are

brought into the same space, the topic results for each protein still dependend on the data modality that was used.

However, once the transformation to label space is performed, that connection is lost. is would have been impos-

sible in a purely unsupervised topic modeling, which shows the necessity and power of adding the labeled data.

72

§7 Conclusions & Future Work

7.1 Conclusions

In this work, I made two interconnected claims: (1) that there were beer numeric image representations than a

feature vector and (2) that inference would benefit from other sources of information (besides images).

e underlying goal was to analyse images from the RandTag collection. Technically, this meant that methods

needed to scale to many images and proteins, with a small computational cost per image.

When applied to the RandTag images, my methods were able to reproduce known location assignments, in the

few cases where these were available, with high accuracy. Most importantly, this project was able to assign locations

to many proteins for which no quality assignment existed before.

In addition to the assignments, the topic model has an unsupervised component in that it maps the proteins into

a low dimensional space, the space of topic distributions.

Image Representations

I explored two different alternative representations for bioimages: (1) subcellular paern mixtures and (2) local

features.

Subcellular paern mixtures were an existing method, but there were no methods to derive the mixture for an

unannotated collection of images. For the context of this work, it was necessary to extend them to unsupervised

73

Conclusions & Future Work

methods. e methods I proposed with Tao Peng work well for this task, with results comparable to the supervised

mode. is is a very good result and makes the methods applicable to large collections.

Local features are very good representation for biological images over a variety of datasets achieving performance

comparable to or beer than feature sets specifically designed for this problem. ey can be combined with existing

features and the best results are combinations. In fact, on the four datasets that I used, which have very different

characteristics, the combination of field-level and -ref (where applicable) always outperformed our previous

methods. e methods were also fast.

erefore, I recommend that local features become part of the standard toolkit for bioimage analysis.

Topic Modeling

Topic modeling was used twice in this work. First, in Section 4.3, it was used as part of an unmixing solution. en,

in Chapter 6, they were the basic technology enabling the use of multiple sources of data in different modalities.

In that chapter, I showed that topic models could work very well even for the task of supervised classification.

is slightly outperformed the support vector machine based system using only -ref. Together, this shows that

topic models can be very useful for bioimage analysis. e computer vision field has explored this area and it is

natural that some of the advances there will be helpful to bioimage analysis aer suitable adaptation.

Modeling With Multiple Sources of Data

e topic model discussed in Chapter 6 was therefore developed to be modular so that multiple sources of data could

be used and more cold be plugged-in in the future. e goal, which was achieved by the topic model was to be able

to bring several data sources into a single topic space (which is a sparse, low-dimensional, representation of the

proteins).

One source of data that I made use of was online databases. e online databases that i have relied on, and

that some systems have even used as training data, are not so helpful at answering the question “where will this

protein localise?” In fact, that is not the question they answer. Rather, they answer the question “where are all of the

places where this protein has been observed?” ey do not register the cell type, the conditions (were this “normal

conditions” or were the cells subject to an external stimulus?) in which the observation took place. It is typically

impossible, without further study to know whether which of the several annotations present will be applicable in

any given cell type.

However, to disregard the information that is provided would also be a mistake as there is valid information (for

many cases, the protein will localize in the same compartment in different cell types and conditions). e model I

presented can reason probabilistic and will therefore assign weights to each possible input datum.

74

Future Work (7.2)

e current system can alsomake use of functional annotations (even from homologous proteins). ismodel can

thus bridge the gap between the field of subcellular location determination and that of subcellular location prediction

as it incorporates both direct and indirect data. In the topic space, data from different modalities is brought together

in a way that it becomes impossible to distinguish what data was available for each protein.

Models similar to the one presented had been used before for images and text in other contexts, but not for the

problem of biological image understanding.

7.2 Future Work

e system here could be improved in many small ways, several of which were alluded to in the text. is is natural,

given that it was the first system proposed with as much flexibility.

e system demonstrated here collected information from several sources of information, but it was not exhaus-

tive and it is desirable to extend it. For example, the inclusion of the free text from scientific publication mentioning

a protein has shown good results in enhancing prediction systems (Briesemeister et al., 2009; Shatkay et al., 2007).

Another system in which I worked during my PhDwas the Structure Information Literature Finder, , (Coelho,

Ahmed, et al., 2010). is system aggregates the images inside scientific publications. us, it can go one step further

than just integrating the free-text of a document, but also integrate its images. Potentially, one could “peek over the

shoulder of the researchers” and even provide a reinterpretation of the data.

e system as designed assumes that all cells in an image display the same paern. It cannot properly handle

heterogeneity in the population. An additional level of modeling, which took into account the spatial distribution of

protein would likely be necessary to capture this variation. If cell-level segmentation of sufficient quality is available,

then the modeling could be performed at the cell level, taking into account the spatial relationships. e work of

S.-C. Chen, Gordon, et al. (2008) could serve as starting point.

I will finish, as I started, by describing my long term vision of a system which can integrate all of the information

that is publicly available, automatically weigh its strength (by a measure of internal consistency), and output the

very best structured conclusions about the location of proteins. My work was but a step in that direction.

75

§A Soware

is chapter describes the soware that was produced as a result of the work for this dissertation. All of this soware

is available as open source soware.

A.1 Waldo: Aggregating Subcellular Location Information

is section describes joint work with S. inn, J. Liddie, H. Shatkay, and R. F. Murphy.

Introduction

e first step towards the integration of information is its aggregation. We were not aware of any active subcellular

information database that was up to date and comprehensive (many projects have not been updated in many years).

Generic protein information resources such as Uniprot and Mouse Genome Informatics () also list subcellular

location annotation by annotating proteins with terms from the cellular component branch of the gene ontology (

terms).

We implemented a system, nicknamed “waldo,” for aggregating and normalising this information. e basic

question that waldo answers is of the form: “Where is protein P?”

Waldo supports three interaction modes:

1. It can be used as a Python library.

77

Soware

2. It can be accessed with a web browser; this -based interface is geared towards human users.

3. It can be accessed as a web-based service, returning  (Javascript Object Notation) formaed answers; this

interface is geared towards programmatic access. Currently, only a few functions are exposed through this

interface.

Architecture

e current architecture has a loading step which must be run before the data can be accessed. is step involves

downloading information dumps from the online services and then parsing them into a local database. Henceforth,

all information is served from this local copy of the information.

We envisioned the system being used for large scale studies where many queries are performed. erefore, we

avoided online querying of the original databases for both performance reasons and to avoid overstepping any usage

limits that these databases impose.

Onemajor issue with dealing with many databases is the handling of identifiers, as each database chooses its own

internal format. For a well-studied organism, such as mouse, there are, though, mappings between these identifiers.

In Waldo, we chose to use Ensembl gene and peptide ids as the major internal identifiers of a protein.

Interface

e library is structured using object-oriented principles. Each information source implements the following func-

tions:

load Load from the corresponding database dump.

retrieve.from_ensembl_peptide_id Translate to the source’s internal identifier.

retrieve.retrieve_go_annotation Given an identifier, retrieve a list of  terms.

For example, here is how to retrieve and print all of the information from both  and uniprot relevant to the

protein 00000116259 (a.k.a. Serine/threonine-protein kinase SRPK1, a splicing regulator):

import waldo.uniprot.retrieve

import waldo.mgi.retrieve

from waldo.go.go import id_to_term

for source in [waldo.uniprot.retrieve , waldo.mgi.retrieve]:

internal = source.from_ensembl_peptide_id('ENSMUSP00000116259')

ids = source.retrieve_go_annotations(internal)

78

jug (A.2)

terms = map(id_to_term , ids)

for t in terms:

print t

You can see that we used the fact that both source implement the same interface by looping over the sources. We

also used one of the other support mechanisms in waldo, namely the waldo.gomodule which provides functionality

for generic  processing, in this case, mapping from an ID (which is a numeric string, such as :0005634 to its

corresponding term, nucleus).

Other functionality is in generic identifier translation and implementation of the   slim (a  slim is a subset

of  and a mapping from the full  to this subset). Additionally, it has information on homogology relationships

and retrieval of amino-acid sequences (Muller et al., 2010)

Discussion

Awidely reported problem in the provision of online databases is that they oen become unavailable aer publication

(Veretnik et al., 2008; Wren, 2004, 2008). Our system implementation is designed to overcome this problem. e

source code is available and will run immediately on a modern Linux server. It requires only packages that are part

of the debian distribution and its derivatives (the same is likely to be true of other distributions, but the system was

developed on Ubuntu, a debian derivative).

Furthermore, for heavy usage, it is recommended that the user use a local installation to avoid saturating network

links.

A.2 jug

Jug is a task-based framework for Python, which supports saving and sharing of intermediate results and paralleli-

sation on computer clusters (or multi-core machines).

Task Based Architecture

Jug is designed around tasks. A task is defined as a Python function and a set of arguments, which may be Python

values or the output of other tasks. A task should be a pure function, but there is no way of mandating this in the

language.

from jug import Task

def count(imname):

...

79

Soware

..

mean

.

count('0.png')

.

count('1.png')

.

count('2.png')

. …

Figure A.1: Simple Dependency Structure for Example in the Text. is assumes that the directory had a collection
of images names 0.png, 1.png,…

return value

def mean(args):

return sum(args)/float(len(args))

images = glob('*.png')

counts = [Task(count, im) for im in images]

final = Task(mean, counts)

is defines the task dependency structure represented in Figure A.1. As we can see, all of the count operations

can be run in parallel, while the mean operation must wait the result of all of the other computation. e dependency

structure is always a  (directed acyclic graph). Only by bypassing the normal use mechanisms is it even possible

to construct a cycle.

e code above has the construct Task(f, args) repeated several times. Using the decorator TaskGenerator

decorator this can be simplified to a more natural syntax.

from jug import TaskGenerator

@TaskGenerator

def count(imname):

...

return value

@TaskGenerator

def mean(args):

return sum(args)/float(len(args))

80

jug (A.2)

$jug status images.py
Task name Waiting Ready Finished Running
--
images.mean 1 0 0 0
images.count 0 20 0 0
..
Total: 1 20 0 0

Figure A.2: Output of jug status. e $ sign shown is the command line prompt, and the status subcommand
was run. At this point, nothing has been run. e output has been edited for space reasons (spacing columns were
removed).

images = glob('*.png')

counts = map(count, images)

final = mean(counts)

As the reader can appreciate, this is identical to a traditional Python script, except for the @TaskGenerator dec-

orators.

By default, jug looks for a file called jugfile.py, but any filename can be used. Generically, we refer to the script

being run as the jugfile.

Jug subcommands

Jug is structured as a series of subcommands, the most important of which are execute, status, and shell.

Execution is the command used for running the tasks. In broad terms it performs the loop below.

tasks = alltasks in topological sort order

while tasks:

next = task.pop()

if not next.has_run() and not next.is_running():

while not next.can_run():

wait a while

with locked(next):

next.run()

If run on a single processor, this will just run all of the tasks in order. It is most interesting when it is run on

multiple processors. ere it executes all of the tasks that can be executed in parallel.

Of course, the actual code is more complex than what is shown above, particularly to make sure that the locking

is performed correctly and that the waiting step eventually times out (in order to handle the situation where another

process is hung).

81

Soware

e status command prints out a summary of the status of all of the tasks. Figure A.2 shows the output of this

command using the example jugfile above. We assume that the jugfile was called images.py on disk and that there

were 20 images in the directory. We can see that there are 20 tasks ready to run, while the mean task is still waiting

for the results of the other tasks.

Backends

A basic feature of jug is its ability to save and load results. Each task Task(f, args) is represented by a hash of f

and args in a way that uniquely identifies it.

A jug backend must then support four basic operations:

save Saving a Python object by its hash name.

load Loading a Python object by its hash name.

lo Creating a lock by hash name. Naturally, this lock must be created atomically.

release Releasing the lock.

A few other operations, such as deletion and listing of names are also supported.

e filesystem can support all of the above operations if coded correctly to avoid race conditions. is is the

default backend, identified simply by a directory name. Inside this directory, files named by a hexadecimal repre-

sentation of their hashes. Objects are saved using Python’s pickle module with zlib compression. As a special case,

numpy arrays are saved to disk directly. For functionality, there was no need for this inelegant special case, but numpy

arrays are a very common data type in scientific programming and saving them directly allows for very fast saving

and loading (they are represented on disk as a header followed by the binary information they contain).

Another backend currently included with jug is a redis backend. Redis a name-key database system.1 Redis is

particularly recommended for the case where there are many small objects being saved. In this case, keeping each

as a separate file on disk would incur a large space penalty, while redis keeps them all in the same file.

Finally, there is an in-memory backend. is was initially developed for testing, but can be useful on its own.

Results can be obtained from jug in two ways: (1) One can simply write a task that outputs the desired format.

(2) ey can be inspected interactively using the shell subcommand.

e shell subcommand, invokes an IPython instance with all the objects in the jugfile loaded. IPython is an

enhanced interactive shell for Python (Perez and Granger, 2007). A few functions are added to the namespace, in

particular, value can load the results of a task object if necessary.

1See the redis webpage, at redis.io, for detailed information about redis.

82

http://redis.io

mahotas (A.3)

$jug shell images.py

=========
Jug Shell
=========

Available jug functions:
- value() : loads a specific object
- load_all() : loads all objects

Enjoy...

In [1]: value(final)
Out[1]: 7.5

In [2]: value(counts)
Out[2]: [7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]

Figure A.3: Interaction with jug shell.

Figure A.3 shows a possible interaction session with jug shell. While having to explicitly load all the results is a

bit bothersome, it has some advantages versus the alternative of pre-loading all. It is much faster at startup. Consider

too that the user might not load more than a few objects. In some cases, loading all of the objects simultaneously

might even be impossible due to memory constraints. Further, this allows exploration of the task structure for

debugging.

Jug includes a full test suite. ere are no known bugs.

Jug has been available in the Python Package Index2 since May 2009 and has been downloaded over 6000 times

(some of these downloadsmay, of course, represent upgrades, and users which downloaded it from some other source

will not be counted).

A.3 mahotas

Mahotas is a computer vision library for Python. It operates on numpy arrays, but its inner loops are implemented

in C++ for speed and ease of implementation.

Functionality and Interface

e interface is a procedural interface, with most functions working independently of each other (there is code

sharing at the implementation level).

2e Python Package Index, PyPI, is accessible at http://pypi.python.org.

83

http://pypi.python.org

Soware

features Some feature descriptors. In particular, Haralick texture features, Zernike moments, local binary paerns,

threshold adjacency statistics.

morphological functions Erosion and dilation, as well as some more complex operations.

watershed seeded watershed.

thresholding some thresholding methods.

polygon operations convex hull, polygon drawing.

 Speeded-up Robust Features.

ere are a few interface conventions which apply to many functions.

When meaningful, a structuring element is used to define neighbourhoods or adjacency relationships (some

functions which use this concept are: watershed, erosion, and median filtering). Generally, the default is to use a

3 × 3 cross as the default if no structuring filter is given (the exception to this rule is the median filter, where the

default is a 3× 3 square).

Oen, functions take an argument named output where the output will be stored. is argument is oen much

more restricted in type. In particular, it must oen be a contiguous array.3 Since this is a performance feature, it is

natural that the interface is less flexible (accessing a contiguous array is much more efficient than a non-contiguous

one).

Implementation

Mahotas is wrien in C++, but almost always, the user calls a Python function which checks types and then calls the

internal function. is is slightly slower, but it is easier to develop this way.

e main reason that mahotas is in C++ (and not in pure C) is to use templates. Almost C++ functionality is split

across 2 functions:

1. A py_function which uses the Python C API to get arguments and check them. is is almost always pure C.

2. A template function<dtype> which works for the type dtype performing the actual operation.

So, for example, this is how erode is implemented. py_erode consists mostly of boiler-plate code:

PyObject* py_erode(PyObject* self, PyObject* args) {

PyArrayObject* array;

3Numpy supports non-contiguous arrays, which are most oen slices into other, larger, contiguous arrays (e.g.,
given a 128× 128 contiguous array, one can build a 64× 128 non-contiguous array by taking every other row).

84

mahotas (A.3)

PyArrayObject* Bc;

if (!PyArg_ParseTuple(args,"OO", &array, &Bc)) {

return NULL;

}

PyArrayObject* res_a = (PyArrayObject*)PyArray_SimpleNew(

array->nd,

array->dimensions ,

PyArray_TYPE(array));

if (!res_a) return NULL;

PyArray_FILLWBYTE(res_a, 0);

switch(PyArray_TYPE(array)) {

#define HANDLE(type) \

erode<type>(numpy::aligned_array<type>(res_a), \

numpy::aligned_array<type>(array), \

numpy::aligned_array<type>(Bc));

HANDLE_INTEGER_TYPES();

#undef HANDLE

...

ese functions normally contain a lot of boiler-plate code: read the arguments, perform some sanity checks,

perhaps a bit of initialisation, and then, the switch on the input type with the help of the HANDLE_INTEGER_TYPES(),

HANDLE_FLOAT_TYPE(), and HANDLE_TYPES()macros, which call the right specialisation of the template that does the

actual work. In this example erode implements (binary) erosion:

template<typename T>

void erode(numpy::aligned_array<T> res,

numpy::aligned_array<T> array,

numpy::aligned_array<T> Bc) {

gil_release nogil;

const unsigned N = res.size();

typename numpy::aligned_array<T>::iterator iter = array.begin();

filter_iterator<T> filter(res.raw_array(), Bc.raw_array());

const unsigned N2 = filter.size();

T* rpos = res.data();

85

Soware

for (int i = 0;

i != N;

++i, ++rpos, filter.iterate_both(iter)) {

for (int j = 0; j != N2; ++j) {

T arr_val = false;

filter.retrieve(iter, j, arr_val);

if (filter[j] && !arr_val) {

goto skip_this_one;

}

}

*rpos = true;

skip_this_one: continue;

}

}

e template machinery is not that complicated and the functions using it are very simple and easy to read.

e only downside is that there is some expansion of code size when the compiler instanciates the function for the

several integer and floating point types. Given the small size of these functions, this is not a big issue.

In the snippet above, you can see some other C++ machinery:

gil_release is is a “resource-acquisition is object initialisation” ()4 object that release the Python global

interpreter lock ()5 in its constructor and gets it back in its destructor. Normally, the template function will

release the  aer the Python-specific code is done.

array is is a thin wrapper around PyArrayObject that knows its data type and has iterators which resemble the

C++ standard library.

filter_iterator is is taken from scipy.ndimage and it is useful to iterate over an image and use a centered filter

around each pixel (it keeps track of all of the boundary conditions).

e inner loop is as direct an implementation of erosion as one would wish for: for each pixel in the image, look

at its neighbours. If all are true, then set the corresponding output pixel to true (else, skip it as it has been initialised

to zero).

4R is a design paern in C++, or other languages with scope linked deterministic object destruction, such as D,
where a resource is represented by an object, whose constructor acquires it and whose destructor releases it. is
guarantees that the object is correctly released even if the scope is le through an exception (Stroustrup, 1994).

5In the CPython interpreter, the most commonly used implementation of Python, there is a global lock for many
Python related functionality, which limits parallelism.

86

milk (A.4)

Most of the functions follow this architecture.

Mahotas includes a full test suite. Every function has at least one corresponding test case. ere are no known

bugs.

It has been available in the Python Package Index since April 2010 and has been downloaded over 5500 times.

Mahotas is available as a FreeBSD package and is under evaluation for inclusion in the Debian distribution (which

will cause it to be available as a native package for its derivatives, most famously Ubuntu).

Acknowledgements

Mahotas includes code ported and incorporated from other projects. In particular, the  implementation is a port

from the code from dlib,6 a very good C++ library by Davis King. I also gleaned some insight into the implementation

of these features from Christopher Evan’s OpenSURF library and its documentation (evans2009).7 e image loading

code, which interfaces with the FreeImage library, was wrien by Zachary Pincus and some of the support code was

wrien by Peter J. Verveer for the scipy.ndimage project. All of these contributionswere integratedwhile respecting

the soware licenses under which the original code had been released. RobertWebb, a summer student, worked with

me on the local binary paerns implementation (see Section 2.1 for a definition of ). Finally, I thank the several

users who have reported bugs and submied small fixes and participated on the project mailing list.

A.4 milk

Milk, short formachine learning toolkit is a collection of Pythonmachine learning utilities. Like mahotas, it is wrien

in a mix of Python and C++. ere are two main submodules: the supervised and the unsupervised modules.

In the unsupervised module, the interface is functional with the following major features:

kmeans k-means. is is a version of k-means optimised for medium-sized datasets (millions of data points, but

fiing in memory).

Self organising maps Simple implementation of self-organising maps.

Non-negative matrix factorisation Implementation of the algorithm by D. D. Lee and H. Seung (2001) for non-

negative matrix factorisation and the extension of Hoyer (2004), which includes sparsity constraints.

Affinity propagation is is an implementation of the message passing algorithm of Frey and Dueck (2007). e im-

plementation in milk was taken from scikit.learn, where it had initially been wrien by Alexandre Gramfort

6Dlib’s webpage is at http://dlib.net.
7OpenSURF is available at http://www.chrisevansdev.com/computer-vision-opensurf.html, where

several documents describe details of the implementation.

87

http://dlib.net
http://www.chrisevansdev.com/computer-vision-opensurf.html

Soware

and Gaël Varoquaux. My changes were all space optimisations. Python using numeric libraries leads to a very

expressive and flexible language. Still, one must be careful to take into account the memory usage and inter-

mediate object allocations.

e supervisedmodules have a compositional object-oriented interface. ere is a basic division between learners

and models. A learner is an object that, given labeled data, can learn a model. A model can then be applied to new

data to return a label. e word “classifier” is avoided as it is oen used to refer to either a learner of a model.

e basic learner interface is the following function:

train Takes features and labels and returns the appropriate model.

Models have two functions:

apply Given a single example, return its label.

apply_many Given a sequence of examples, return a list of their labels. e default implementation of model.apply_many(exs)

is simply map(model.apply, exs). In some cases, however, it can be slightly more efficient to directly imple-

ment several applications at once.

Most other machine learning packages combine this functionality into a single object. I find that interface to

be inferior (I used it in the first versions of milk partly following the examples I had observed). Normally the

implementation looks something like the following:

class classifier(object):

def __init__(self):

self.trained = False

def train(self, features, labels):

perform training

self.trained = True

def apply(self, f):

if not self.trained:

raise Exception(...)

else:

perform actual computation

e need to always verify the trained aribute is error prone and is inelegant. e type system is a beer place

to check this functionality (this would be even more valuable in a statically typed language, where the mistake of

88

milk (A.4)

aempting to call apply before train would be impossible; in Python, the check is still at runtime). Furthermore,

while writing code in the above model (e.g., the multi-class adaptors described below), there is a need to use factory

objects. While in Python they can simply be implemented with a callable such as a lambda function, it is still a more

awkward interface and less composable than the current architecture.

Simple learners are combined to form more complex ones. For example, there are several strategies which take

a binary classifier and transform it into a multi-class classifier. ey are implemented as different adaptors that take

a binary learner as input and return a multi-class learner. All adaptors have a base aribute which points to a base

learner which they adapt.

e supervised module supports the following features:

Support vector maines Support vector machines, based on lib (Chang and C.-J. Lin, 2001).

Random forests Simple binary random forests (Breiman, 2001).

Logistic regression Gradient descent logistic regression. If the scipy.optimize module is present, it is used; oth-

erwise, milk falls back on a hand-wrien Python gradient descent routine, which is correct, but slow.

Adaptors e previously mentioned binary to multi-class adaptors, but also adaptors for multiple views on the data

(where the classification is obtained by combining the models in several ways).

Feature selection using stepwise discriminant analysis (Jennrich, 1977a,b).

For ease of use, the defaultlearner function returns a flexible multi-class learner that performs support vector

machine learning aer feature normalization and selection with with stepwise discriminant analysis. e kernel

used is a radial basis function. Both the width of the kernel and the penalty value (oen called C in the  lit-

erature) are learned using internal cross-validation (a simple algorithm will avoid computing more than is strictly

necessary to determine the best combination of parameters so that, it is likely that not all folds will be computed for

all combinations). is was the classifier used throughout this work.

e cross-validation support in milk is extensive. In particular, it support assigning each item an origin, so that

two elements which share an origin will never be separated (i.e., you will never test on an object if objects with

the same origin were part of the training set). I make use of this feature in the current work, when using cross-

validation over clones, while keeping the evaluation over individual images. e results are not exactly the same as

simply choosing different clones as the algorithm takes into account how many images are available for each clone

and aempts to balance the folds.

e learner which uses cross-validation to learn the best parameters, is itself a learner object, which returns a

model. erefore, it is trivial to perform two level cross validation, in the correct way (one outer level for accuracy

89

Soware

estimation and an inner level to estimate the parameters for each fold). In fact, calling the nfoldcrossvalidation

function without an explicit classifier defaults to this method.

Milk has support for parallel and distributed processing. It interfaces with jug to break up cross-validation into

tasks, which can be run on different machines (there are no dependencies between different folds). Additionally, the

inner cross validation for parameter estimation can be run on multiple cores on the same machine. Using these two

features in combination, one can obtain a very high degree of parallelism.

Milk includes a full test suite. ere are no known bugs.

Milk has been publicly available since April 2010. At the moment, it has been downloaded more than 9000 times.

Acknowledgements

Milk includes code from lib (Chang and C.-J. Lin, 2001) and scikits.learn,8 both projects available under the 

license. Several users have reported bugs and contributed fixes either on the public mailing list or by private email.

A.5 elgreco

e name El Greco originally stood for “Graphical Model Compiler” as the original implementation was as a Python

module which internally compiled the graphical model to C++ and loaded it. e particular strategy used did not

scale very well, however (for each node in the graph, a few lines of code were output: this means millions of lines of

code for even medium sized models). erefore, I abandoned this implementation strategy,9 but the name remained.

It is now a direct C++ implementation of Gibbs sampling for the graphical model depicted in Figure 6.1 (page 61),

in either collapsed or uncollapsed modes (using an objected oriented interface, so that it is easy to use either one or

the other). ere is a Python interface for convenience.

Unlike the modules presented above, this is very specific to the current project and, in its current form, likely

to not be directly applicable in other problem seings (although one can certainly use it as a good, direct, s

implementation). Even though it is publicly available10 (and has been available since the start), I have no report of it

being used by others.

8S.’s webpage is at http://scikit-learn.sourceforge.net/stable/
9A less naïve strategy for the compiler could certainly work well and result in a very good tool for Bayesian

machine learning, but developing and implementing one was outside of the goals of this work.
10e code can be obtained at http://github.com/luispedro/elgreco

90

http://scikit-learn.sourceforge.net/stable/
http://github.com/luispedro/elgreco

§B Image Processing and Filtering

B.1 Image Filtering

e first step in image processing is to remove out-of-focus or otherwise irrelevant images.

e image filtering pipeline is a standard image classification pipeline, with the following features used:

1. Haralick texture features (Haralick et al., 1973),

2. local binary paerns (Ojala et al., 2002),

3. some special purpose features.

e special purpose features are the following two:

1. e ratio of the average value of the morphological gradient to the average value of the input image.1

2. e ratio of the variance of adjacent pixel differences to the variance of the pixel values.

e two features aempt to capture the fact that empty or out-of-focus images are smooth white noise without

sharp constrasts, while the border between the nucleus and the background, as well as the texture inside a in focus

nucleus provides edges.

1I thank Ṭaráz Buck for suggesting this feature to me.

91

Image Processing and Filtering

Haralick LBPs Haralick+LBPs Haralick+Other All

Accuracy (%) 88 73 85 92 89

Table B.1: Out of Focus Detection. Shown are the estimated generalisation accuracies based on different sets of
features: (a) only the Haralick features, (b) only the  features, (c) Haralick and , and (d) Haralick and 
and our features. In all cases, a support vector machine classifier was used with a radial basis function kernel and
accuracy is estimated through cross-validation.

Classification is performed using the default method of the milk library described in Section A.4. All accuracies

reported in this work are estimated using cross-validation. In this case, 10 folds were used.

Results are shown in Table B.1. ere were 1244 blurred images and 1319 in-focus images in this dataset, so the

estimates are tight.

Using  brings down the accuracy and the best set is obtained by using Haralick texture features and our

specially designed features.

B.2 Subcellular Location Features

As described in Section 2.1, the most widely used representation for bioimages is as a set of features. I made some

contributions to this field.

One texture set that we used were reshold Adjacency Statistics () proposed by Hamilton, Pantelic, et al.

(2007). In the original work, there are two hard-coded values, both set to 30, but logically distinct. e first is the

image threshold, used to distinguish foreground from background, which we will call T . e second we call the

marginm. e general procedure is illustrated as Algorithm 1.

Algorithm 1: reshold Adjacency Statistics.
Input: An image img of size N ×M
Input: A threshold t
Input: A marginm
Output: TAS values in the λi array

1 µ :=mean(img > T);
2 bin :=µ−m < img < µ+m ;
3 the comparisons are to be interpreted as pixelwise operations;
4 for i ∈ {0 . . . 8} do
5 λi := 0;

6 for i, j ∈ {1 . . . N − 1, 1 . . .M − 1} do
7 c := 0;
8 for i′, j′ ∈ {0 . . . N, 0 . . .M | |i− i′| ≤ 1, |j − j′| ≤ 1} do
9 c := c+ binij
10 λi := λi + c;

11 for i ∈ {0 . . . 8} do
12 λi := λi/(N ∗M);

92

Subcellular Location Features (B.2)

ere are two variations on the algorithm, obtained by replacing line 2 by either

bin := img < µ+m

or

bin := µ−m < img.

In order to use  on our images, where the illumination is not perfectly constant (and a single threshold is

likely not possible), I wished to avoid the hard coded values. In a previous work, I had introduced parameter-free

versions (), defined by seing T by the automatic method of Ridler and Calvard (1978), and seingm to be the

standard deviation of the above threshold pixels (Coelho, Ahmed, et al., 2010). It is this version that I used and the

implementation in mahotas (Appendix A.3) defaults to it (the user must explicitly set a parameter in order to obtain

the older, version).

Overlap Features

A reference channel, imaged in addition to the protein one, can carry a large amount of information on the local-

ization of the protein. In our case, we imaged a nuclear marker (Hoechst), which is typical, although some research

has imaged more than one reference channel (Barbe et al., 2008). erefore, several features which use the reference

channel have been proposed (J. Newberg and Murphy, 2008). In this work, I used some of them and introduce others.

For the definition of these features, I use both the raw values of the protein (which we will refer to as pi) and

reference (ri), as well as binary versions, defined by:

B(pi) = [[pi > Tp]] . (B.1)

Where Tp is the automatically found threshold for the protein image. Tr and B(ri) are defined analogously. Addi-

tionally we make use of the distance map, where di is the euclidean distance to the nearest above threshold reference

pixel:

di = min {d(j, i) | B(rj)} . (B.2)

We define corr to be the correlation between two variables:

corr(p, r) =

∑
i(pi − p̄)(ri − r̄)

σ̂pσ̂r
, (B.3)

where σ̂p and σ̂r refer to the estimated standard deviation of p and r, respectively.

e first features are simply estimates of different overlap properties:

93

Image Processing and Filtering

prot/ref overlap =

∑
iB(pi)∑
iB(ri)

(B.4)

fraction bin prot in bin ref =

∑
iB(ri)B(pi)∑

iB(ri)

≈ P (B(pi)|B(ri)), (B.5)

fraction prot in bin ref =

∑
iB(ri) ∗ pi∑
uB(pi)

≈ E[pi|B(ri)], (B.6)

fraction of proc protein in bin ref =

∑
iB(pi)B(ri)pi∑

iB(pi)pi

≈ E[pi|B(ri) ∧B(pi)], (B.7)

fraction of binary prot in binary ref =

∑
iB(ri)B(pi)∑

iB(pi)

≈ P (B(ri)|B(pi)). (B.8)

I also measure correlations

correlation of bin protein and bin ref = corr(B(pi), B(ri)), (B.9)

correlation of proc protein and binary ref = corr(piB(pi), B(ri)), (B.10)

correlation of protein and ref = corr(pi, ri). (B.11)

e distance map is used in the last features:

median protein × distance to ref = med {diB(pi)pi | B(pi)} , (B.12)

mean protein × distance to ref = mean {diB(pi)pi | B(pi)} . (B.13)

94

§C Results

is appendix provides the output of running the various learning processes on the whole colllection.

Table C.1: Results of 10 Class Classification based on the widefield

dataset and local features as described in Section 5.3. Shown is the plu-

rality class (there were several images per clone) and the confidence

according to the rule c = (s + 1)/(n + 2), where s is the number of

images in the plurality class and n is the total number of images.

Well Uniprot name Location (confidence) Uniprot C. C. Terms

CW1G5 D3Z6I7_MOUSE cytoskeleton (96%)

CZ1C10 LMNA_MOUSE nuclear (96%) lamin filament, nuclear envelope, perinuclear

region of cytoplasm

CW1D10 AHSA1_MOUSE nuclear (96%) cytosol, endoplasmic reticulum

CW1G4 E9Q7Z2_MOUSE nuclear (96%)

CZ1C6 unknown nucleoli (96%)

continued on next page…

95

Results

Results of 7 Class classification (continued from previous page).

Well Uniprot name Location (confidence) Uniprot C. C. Terms

EZ3C3 Q8BMC5_MOUSE nuclear (96%)

CW1F8 CF064_MOUSE nuclear (96%) integral to membrane

EO2B7 PACN2_MOUSE unlabeled (96%) cytoplasmic membrane-bounded vesicle, cy-

tosol

BV1G6 ENOX1_MOUSE mitochondria (95%) extracellular space, plasma membrane

EO2F10 NDUA7_MOUSE unlabeled (95%)

EO3B5 PDLI1_MOUSE unlabeled (95%) cytoplasm, cytoskeleton, transcription factor

complex

BV2G6 A8Y5L4_MOUSE cytoplasmic (94%)

BT1C5 FND3B_MOUSE nucleoli (93%) integral to membrane

BM1B9 RS28_MOUSE unlabeled (93%)

CZ1F9 D6RE43_MOUSE nucleoli (92%)

EZ3E3 B3RH23_MOUSE nuclear (92%)

CZ1G5 LMNA_MOUSE nuclear (92%) lamin filament, nuclear envelope, perinuclear

region of cytoplasm

CZ1C2 LMNA_MOUSE nuclear (92%) lamin filament, nuclear envelope, perinuclear

region of cytoplasm

CW1E8 LMNA_MOUSE nuclear (92%) lamin filament, nuclear envelope, perinuclear

region of cytoplasm

EZ3C8 Q9ESU7_MOUSE unlabeled (92%)

FB1D3 CO5A2_MOUSE unlabeled (92%)

FB2B3 COSA1_MOUSE unlabeled (92%) basement membrane, collagen

CY1B11 TKT_MOUSE cytoplasmic (92%)

FX1D5 Q8BMC5_MOUSE nuclear (92%)

EZ3C10 Q7TMN5_MOUSE cytoskeleton (92%)

continued on next page…

96

Results

Results of 7 Class classification (continued from previous page).

Well Uniprot name Location (confidence) Uniprot C. C. Terms

DA1G11 SET_MOUSE nuclear (92%) cytosol, endoplasmic reticulum, nucleoplasm,

perinuclear region of cytoplasm

CW1B2 D3Z6I7_MOUSE cytoskeleton (92%)

EZ3F5 B3RH23_MOUSE nuclear (92%)

BM1G3 HMGA2_MOUSE nuclear (91%) chromatin, nuclear chromosome

EO2E10 CO5A1_MOUSE unlabeled (90%) basement membrane

CY1B5 Q3U741_MOUSE nucleoli (88%)

CW1C11 D3Z6I7_MOUSE unlabeled (88%)

CU1E5 E9Q5N9_MOUSE unlabeled (87%)

BU1E7 B9EIV2_MOUSE nuclear (86%)

CU1D10 Q8C6C1_MOUSE unlabeled (85%)

CZ1G8 MDGA2_MOUSE cytoskeleton (85%) anchored to membrane, plasma membrane

CZ1E9 D3Z6I7_MOUSE cytoskeleton (85%)

FB1C3 DHX57_MOUSE unlabeled (85%)

FX2F9 Q7TMN5_MOUSE cytoskeleton (85%)

FX2D2 Q7TMN5_MOUSE cytoskeleton (84%)

BV2B3 BTBD9_MOUSE cytoplasmic (83%)

BU1D8 SPAG7_MOUSE lysosome (82%) nucleus

FX2F11 Q8BMC5_MOUSE nuclear (82%)

BV1D6 FGL1_MOUSE nuclear (81%) extracellular space

EZ3E8 Q7TMN5_MOUSE cytoskeleton (81%)

FB1B8 PRRX1_MOUSE nuclear (81%) nucleus

CZ1E4 MDGA2_MOUSE cytoskeleton (81%) anchored to membrane, plasma membrane

CW1C5 LMNA_MOUSE nuclear (81%) lamin filament, nuclear envelope, perinuclear

region of cytoplasm

FX2B11 Q8BMC5_MOUSE unlabeled (80%)

continued on next page…

97

Results

Results of 7 Class classification (continued from previous page).

Well Uniprot name Location (confidence) Uniprot C. C. Terms

BW2D10 B2RUB9_MOUSE nuclear (80%)

EM1D10 B3RH23_MOUSE nuclear (79%)

EO2D7 Q3TKX9_MOUSE unlabeled (78%)

EZ3B3 F10A1_MOUSE unlabeled (77%) cytoplasm

FB1D10 DHE3_MOUSE mitochondria (77%) mitochondrial innermembrane, mitochondrial

matrix

CZ1B10 E9QKD6_MOUSE cytoplasmic (76%)

EZ3F11 SMD1_MOUSE unlabeled (76%) cytoplasm

BV2C8 NAA20_MOUSE nuclear (76%) cytoplasm, nucleus

EO3F6 WDR43_MOUSE unlabeled (76%) nucleolus

BM1D7 ARP2_MOUSE cytoplasmic (75%) cell projection, cytoplasm, cytoskeleton

CY1D8 Q8BG11_MOUSE unlabeled (75%)

EZ3E2 TPM4_MOUSE unlabeled (75%) cortical cytoskeleton, podosome

EZ3F7 PSA5_MOUSE unlabeled (75%) cytoplasm, nucleus, proteasome core complex,

alpha-subunit complex

EM1E7 B3RH23_MOUSE nuclear (75%)

EZ3D6 PDLI1_MOUSE unlabeled (74%) cytoplasm, cytoskeleton, transcription factor

complex

EZ3G10 KDM6B_MOUSE membrane (74%) nucleus

FB1E9 Q3UAM6_MOUSE unlabeled (73%)

EO2B6 RS26_MOUSE nuclear (73%) ribosome

EM1E9 DAP1_MOUSE unlabeled (73%)

FX1F3 Q8BMC5_MOUSE nuclear (73%)

BU2G3 E9QLD6_MOUSE cytoplasmic (72%)

FX2C8 TERA_MOUSE cytoplasmic (72%) cytosol, endoplasmic reticulum, microsome,

nucleus

continued on next page…

98

Results

Results of 7 Class classification (continued from previous page).

Well Uniprot name Location (confidence) Uniprot C. C. Terms

FX1E9 ARPC2_MOUSE mitochondria (72%) Arp2/3 protein complex, cell leading edge, cell

projection, focal adhesion

BU2C3 TPD53_MOUSE cytoplasmic (71%) perinuclear region of cytoplasm

EX1C5 PDLI1_MOUSE unlabeled (71%) cytoplasm, cytoskeleton, transcription factor

complex

EO2G7 Q3TVJ3_MOUSE nucleoli (70%)

EO3B7 ANXA5_MOUSE cytoplasmic (69%)

FB1C6 PRRX1_MOUSE nuclear (66%) nucleus

BT1B3 E9PVJ2_MOUSE cytoskeleton (66%)

BT1B10 E9PUR9_MOUSE cytoplasmic (66%)

BV1E8 GRM8_MOUSE nuclear (66%) integral to plasma membrane

FX2C10 Q8BMC5_MOUSE unlabeled (66%)

EM1G9 RAC1_MOUSE unlabeled (66%) cytosol, extrinsic to plasma membrane, lamel-

lipodium, melanosome, membrane fraction

EO2G4 Q9CQ38_MOUSE unlabeled (66%)

EO2F7 DDX3X_MOUSE nuclear (66%) cytoplasm, nuclear speck

EZ3E6 ALR_MOUSE cytoplasmic (66%) mitochondrial intermembrane space

FX1E2 Q7TMN5_MOUSE cytoskeleton (66%)

EO3F11 RL18_MOUSE unlabeled (66%) ribosome

CY1D9 CTP5C_MOUSE nuclear (65%) integral to membrane

EO2G9 LRC59_MOUSE unlabeled (64%) endoplasmic reticulum membrane, integral to

membrane, microsome

CY1G8 E9Q941_MOUSE cytoplasmic (62%)

FX2E7 Q7TMN5_MOUSE cytoskeleton (62%)

EZ3D10 Q9CRA2_MOUSE unlabeled (62%)

continued on next page…

99

Results

Results of 7 Class classification (continued from previous page).

Well Uniprot name Location (confidence) Uniprot C. C. Terms

EX1C4 PTRF_MOUSE lysosome (61%) caveola, cytosol, endoplasmic reticulum, mi-

crosome, mitochondrion, nucleus

CU1G4 Q8C6C1_MOUSE unlabeled (61%)

BU2G8 E2F3_MOUSE cytoplasmic (60%) transcription factor complex

FX1F4 SUH_MOUSE unlabeled (60%) cytoplasm, transcription factor complex

DA2C4 IF4B_MOUSE golgi (60%)

EO2F9 Q9CQL3_MOUSE cytoplasmic (60%)

CY1F6 B1ARS0_MOUSE cytoplasmic (59%)

BV2E5 Q8CG29_MOUSE cytoplasmic (58%)

BU2B10 HN1L_MOUSE cytoplasmic (56%) cytoplasm, nucleus

CZ1F10 E9QKV3_MOUSE cytoplasmic (55%)

CW1G10 PCKGM_MOUSE nuclear (55%) mitochondrion

FX2B3 ARPC2_MOUSE unlabeled (55%) Arp2/3 protein complex, cell leading edge, cell

projection, focal adhesion

CZ1F5 SRS10_MOUSE unlabeled (55%) nuclear speck

FX2B10 Q8R1B7_MOUSE unlabeled (55%)

BW2G3 PACN2_MOUSE unlabeled (54%) cytoplasmic membrane-bounded vesicle, cy-

tosol

BV1D7 A2A8Q4_MOUSE nuclear (53%)

CX1B6 D3YTP8_MOUSE unlabeled (52%)

EM3E7 Q7TMN5_MOUSE cytoskeleton (52%)

EO2E3 VIME_MOUSE mitochondria (52%) cell leading edge, cytoplasm, type III interme-

diate filament

CU1E2 Q8C6C1_MOUSE nuclear (50%)

DA1C10 E9QNV9_MOUSE unlabeled (50%)

continued on next page…

100

Results

Results of 7 Class classification (continued from previous page).

Well Uniprot name Location (confidence) Uniprot C. C. Terms

BM1F6 ARPC4_MOUSE cytoplasmic (50%) Arp2/3 protein complex, cell projection, cyto-

plasm

BU1G9 PCKGM_MOUSE cytoplasmic (50%) mitochondrion

BV2B10 PTHB1_MOUSE cytoplasmic (50%) cilium membrane, cytoplasm

BU1E10 D3Z6I7_MOUSE cytoplasmic (50%)

BW1D9 NUP93_MOUSE unlabeled (50%) nuclear pore

BM1C5 A2API5_MOUSE cytoplasmic (50%)

FY4C9 ACTN4_MOUSE membrane (50%) cortical cytoskeleton, pseudopodium, ribonu-

cleoprotein complex, stress fiber

BU2G5 ADK_MOUSE nuclear (50%) cytosol, nucleus

DA2G11 TIF1A_MOUSE unlabeled (50%) cytoplasm, nuclear euchromatin, perichro-

matin fibrils

EZ3D9 Q05CR3_MOUSE mitochondria (48%)

CW1D7 GSHR_MOUSE unlabeled (48%) external side of plasma membrane, mitochon-

drion

BV1D3 CK5P2_MOUSE unlabeled (48%) Golgi apparatus, microtubule, pericentriolar

material, perinuclear region of cytoplasm,

spindle pole

EM1D2 Q8BG13_MOUSE nucleoli (47%)

BV2B5 GRIP1_MOUSE unlabeled (46%) cell junction, cytoplasmic membrane-bounded

vesicle, endoplasmic reticulum, membrane

ra, postsynaptic membrane

CU1B2 Q8C6C1_MOUSE nuclear (45%)

FY4F10 HDGF_MOUSE membrane (44%) cytoplasm, extracellular space, nucleus

CZ1D11 LMNA_MOUSE cytoplasmic (44%) lamin filament, nuclear envelope, perinuclear

region of cytoplasm

continued on next page…

101

Results

Results of 7 Class classification (continued from previous page).

Well Uniprot name Location (confidence) Uniprot C. C. Terms

EO3G4 LPP_MOUSE cytoplasmic (44%) cytoplasm, nucleus

CZ1D7 D3Z6I7_MOUSE cytoplasmic (44%)

EM3G6 SC61B_MOUSE cytoplasmic (44%) endoplasmic reticulum membrane, integral to

membrane

FB1F10 SEPT9_MOUSE unlabeled (44%)

FX2E6 SND1_MOUSE cytoplasmic (44%) melanosome, mitochondrion, nucleus, RNA-

induced silencing complex

BV1D10 PIGU_MOUSE nuclear (44%) GPI-anchor transamidase complex

FX1C6 Q7TMN5_MOUSE cytoplasmic (43%)

DA1D10 E9QNV9_MOUSE unlabeled (42%)

EO3B4 Q3UCI5_MOUSE nucleoli (41%)

EX1B8 MCM2_MOUSE cytoskeleton (40%) MCM complex, nuclear origin of replication

recognition complex

CW1E4 AHSA1_MOUSE nuclear (40%) cytosol, endoplasmic reticulum

DA1C4 IF4B_MOUSE cytoplasmic (38%)

CZ1B3 E9QPA6_MOUSE unlabeled (38%)

CW1F10 LMNA_MOUSE unlabeled (37%) lamin filament, nuclear envelope, perinuclear

region of cytoplasm

EZ3F4 ENSMUSP00000020078 cytoskeleton (34%)

DA1D11 IF4B_MOUSE membrane (33%)

EO2G5 ACOD1_MOUSE golgi (33%) endoplasmic reticulum membrane, integral to

membrane

EZ3C9 Q3UUT0_MOUSE cytoskeleton (33%)

FB1C7 TIMP3_MOUSE cytoplasmic (33%) basement membrane

FX1E10 MACD2_MOUSE mitochondria (33%)

EO3D5 RL18_MOUSE golgi (31%) ribosome

102

Results

Table C.2: Results of 10 Class Classification based on the topic model

and both the widefield and confocal labeled datasets as described in Sec-

tion 6.2.

Well Uniprot name Location (confidence) Uniprot C. C. Terms

CW1G5 D3Z6I7_MOUSE cytoskeleton (96%)

CZ1C10 LMNA_MOUSE nuclear (96%) lamin filament, nuclear envelope, perinuclear

region of cytoplasm

CW1D10 AHSA1_MOUSE nuclear (96%) cytosol, endoplasmic reticulum

CW1G4 E9Q7Z2_MOUSE nuclear (96%)

CZ1C6 unknown nucleoli (96%)

EZ3C3 Q8BMC5_MOUSE nuclear (96%)

CW1F8 CF064_MOUSE nuclear (96%) integral to membrane

EO2B7 PACN2_MOUSE unlabeled (96%) cytoplasmic membrane-bounded vesicle, cy-

tosol

BV1G6 ENOX1_MOUSE mitochondria (95%) extracellular space, plasma membrane

EO2F10 NDUA7_MOUSE unlabeled (95%)

EO3B5 PDLI1_MOUSE unlabeled (95%) cytoplasm, cytoskeleton, transcription factor

complex

BV2G6 A8Y5L4_MOUSE cytoplasmic (94%)

BT1C5 FND3B_MOUSE nucleoli (93%) integral to membrane

BM1B9 RS28_MOUSE unlabeled (93%)

CZ1F9 D6RE43_MOUSE nucleoli (92%)

EZ3E3 B3RH23_MOUSE nuclear (92%)

CZ1G5 LMNA_MOUSE nuclear (92%) lamin filament, nuclear envelope, perinuclear

region of cytoplasm

CZ1C2 LMNA_MOUSE nuclear (92%) lamin filament, nuclear envelope, perinuclear

region of cytoplasm

continued on next page…

103

Results

Results of 7 Class classification (continued from previous page).

Well Uniprot name Location (confidence) Uniprot C. C. Terms

CW1E8 LMNA_MOUSE nuclear (92%) lamin filament, nuclear envelope, perinuclear

region of cytoplasm

EZ3C8 Q9ESU7_MOUSE unlabeled (92%)

FB1D3 CO5A2_MOUSE unlabeled (92%)

FB2B3 COSA1_MOUSE unlabeled (92%) basement membrane, collagen

CY1B11 TKT_MOUSE cytoplasmic (92%)

FX1D5 Q8BMC5_MOUSE nuclear (92%)

EZ3C10 Q7TMN5_MOUSE cytoskeleton (92%)

DA1G11 SET_MOUSE nuclear (92%) cytosol, endoplasmic reticulum, nucleoplasm,

perinuclear region of cytoplasm

CW1B2 D3Z6I7_MOUSE cytoskeleton (92%)

EZ3F5 B3RH23_MOUSE nuclear (92%)

BM1G3 HMGA2_MOUSE nuclear (91%) chromatin, nuclear chromosome

EO2E10 CO5A1_MOUSE unlabeled (90%) basement membrane

CY1B5 Q3U741_MOUSE nucleoli (88%)

CW1C11 D3Z6I7_MOUSE unlabeled (88%)

CU1E5 E9Q5N9_MOUSE unlabeled (87%)

BU1E7 B9EIV2_MOUSE nuclear (86%)

CU1D10 Q8C6C1_MOUSE unlabeled (85%)

CZ1G8 MDGA2_MOUSE cytoskeleton (85%) anchored to membrane, plasma membrane

CZ1E9 D3Z6I7_MOUSE cytoskeleton (85%)

FB1C3 DHX57_MOUSE unlabeled (85%)

FX2F9 Q7TMN5_MOUSE cytoskeleton (85%)

FX2D2 Q7TMN5_MOUSE cytoskeleton (84%)

BV2B3 BTBD9_MOUSE cytoplasmic (83%)

BU1D8 SPAG7_MOUSE lysosome (82%) nucleus

continued on next page…

104

Results

Results of 7 Class classification (continued from previous page).

Well Uniprot name Location (confidence) Uniprot C. C. Terms

FX2F11 Q8BMC5_MOUSE nuclear (82%)

BV1D6 FGL1_MOUSE nuclear (81%) extracellular space

EZ3E8 Q7TMN5_MOUSE cytoskeleton (81%)

FB1B8 PRRX1_MOUSE nuclear (81%) nucleus

CZ1E4 MDGA2_MOUSE cytoskeleton (81%) anchored to membrane, plasma membrane

CW1C5 LMNA_MOUSE nuclear (81%) lamin filament, nuclear envelope, perinuclear

region of cytoplasm

FX2B11 Q8BMC5_MOUSE unlabeled (80%)

BW2D10 B2RUB9_MOUSE nuclear (80%)

EM1D10 B3RH23_MOUSE nuclear (79%)

EO2D7 Q3TKX9_MOUSE unlabeled (78%)

EZ3B3 F10A1_MOUSE unlabeled (77%) cytoplasm

FB1D10 DHE3_MOUSE mitochondria (77%) mitochondrial innermembrane, mitochondrial

matrix

CZ1B10 E9QKD6_MOUSE cytoplasmic (76%)

EZ3F11 SMD1_MOUSE unlabeled (76%) cytoplasm

BV2C8 NAA20_MOUSE nuclear (76%) cytoplasm, nucleus

EO3F6 WDR43_MOUSE unlabeled (76%) nucleolus

BM1D7 ARP2_MOUSE cytoplasmic (75%) cell projection, cytoplasm, cytoskeleton

CY1D8 Q8BG11_MOUSE unlabeled (75%)

EZ3E2 TPM4_MOUSE unlabeled (75%) cortical cytoskeleton, podosome

EZ3F7 PSA5_MOUSE unlabeled (75%) cytoplasm, nucleus, proteasome core complex,

alpha-subunit complex

EM1E7 B3RH23_MOUSE nuclear (75%)

EZ3D6 PDLI1_MOUSE unlabeled (74%) cytoplasm, cytoskeleton, transcription factor

complex

continued on next page…

105

Results

Results of 7 Class classification (continued from previous page).

Well Uniprot name Location (confidence) Uniprot C. C. Terms

EZ3G10 KDM6B_MOUSE membrane (74%) nucleus

FB1E9 Q3UAM6_MOUSE unlabeled (73%)

EO2B6 RS26_MOUSE nuclear (73%) ribosome

EM1E9 DAP1_MOUSE unlabeled (73%)

FX1F3 Q8BMC5_MOUSE nuclear (73%)

BU2G3 E9QLD6_MOUSE cytoplasmic (72%)

FX2C8 TERA_MOUSE cytoplasmic (72%) cytosol, endoplasmic reticulum, microsome,

nucleus

FX1E9 ARPC2_MOUSE mitochondria (72%) Arp2/3 protein complex, cell leading edge, cell

projection, focal adhesion

BU2C3 TPD53_MOUSE cytoplasmic (71%) perinuclear region of cytoplasm

EX1C5 PDLI1_MOUSE unlabeled (71%) cytoplasm, cytoskeleton, transcription factor

complex

EO2G7 Q3TVJ3_MOUSE nucleoli (70%)

EO3B7 ANXA5_MOUSE cytoplasmic (69%)

FB1C6 PRRX1_MOUSE nuclear (66%) nucleus

BT1B3 E9PVJ2_MOUSE cytoskeleton (66%)

BT1B10 E9PUR9_MOUSE cytoplasmic (66%)

BV1E8 GRM8_MOUSE nuclear (66%) integral to plasma membrane

FX2C10 Q8BMC5_MOUSE unlabeled (66%)

EM1G9 RAC1_MOUSE unlabeled (66%) cytosol, extrinsic to plasma membrane, lamel-

lipodium, melanosome, membrane fraction

EO2G4 Q9CQ38_MOUSE unlabeled (66%)

EO2F7 DDX3X_MOUSE nuclear (66%) cytoplasm, nuclear speck

EZ3E6 ALR_MOUSE cytoplasmic (66%) mitochondrial intermembrane space

FX1E2 Q7TMN5_MOUSE cytoskeleton (66%)

continued on next page…

106

Results

Results of 7 Class classification (continued from previous page).

Well Uniprot name Location (confidence) Uniprot C. C. Terms

EO3F11 RL18_MOUSE unlabeled (66%) ribosome

CY1D9 CTP5C_MOUSE nuclear (65%) integral to membrane

EO2G9 LRC59_MOUSE unlabeled (64%) endoplasmic reticulum membrane, integral to

membrane, microsome

CY1G8 E9Q941_MOUSE cytoplasmic (62%)

FX2E7 Q7TMN5_MOUSE cytoskeleton (62%)

EZ3D10 Q9CRA2_MOUSE unlabeled (62%)

EX1C4 PTRF_MOUSE lysosome (61%) caveola, cytosol, endoplasmic reticulum, mi-

crosome, mitochondrion, nucleus

CU1G4 Q8C6C1_MOUSE unlabeled (61%)

BU2G8 E2F3_MOUSE cytoplasmic (60%) transcription factor complex

FX1F4 SUH_MOUSE unlabeled (60%) cytoplasm, transcription factor complex

DA2C4 IF4B_MOUSE golgi (60%)

EO2F9 Q9CQL3_MOUSE cytoplasmic (60%)

CY1F6 B1ARS0_MOUSE cytoplasmic (59%)

BV2E5 Q8CG29_MOUSE cytoplasmic (58%)

BU2B10 HN1L_MOUSE cytoplasmic (56%) cytoplasm, nucleus

CZ1F10 E9QKV3_MOUSE cytoplasmic (55%)

CW1G10 PCKGM_MOUSE nuclear (55%) mitochondrion

FX2B3 ARPC2_MOUSE unlabeled (55%) Arp2/3 protein complex, cell leading edge, cell

projection, focal adhesion

CZ1F5 SRS10_MOUSE unlabeled (55%) nuclear speck

FX2B10 Q8R1B7_MOUSE unlabeled (55%)

BW2G3 PACN2_MOUSE unlabeled (54%) cytoplasmic membrane-bounded vesicle, cy-

tosol

BV1D7 A2A8Q4_MOUSE nuclear (53%)

continued on next page…

107

Results

Results of 7 Class classification (continued from previous page).

Well Uniprot name Location (confidence) Uniprot C. C. Terms

CX1B6 D3YTP8_MOUSE unlabeled (52%)

EM3E7 Q7TMN5_MOUSE cytoskeleton (52%)

EO2E3 VIME_MOUSE mitochondria (52%) cell leading edge, cytoplasm, type III interme-

diate filament

CU1E2 Q8C6C1_MOUSE nuclear (50%)

DA1C10 E9QNV9_MOUSE unlabeled (50%)

BM1F6 ARPC4_MOUSE cytoplasmic (50%) Arp2/3 protein complex, cell projection, cyto-

plasm

BU1G9 PCKGM_MOUSE cytoplasmic (50%) mitochondrion

BV2B10 PTHB1_MOUSE cytoplasmic (50%) cilium membrane, cytoplasm

BU1E10 D3Z6I7_MOUSE cytoplasmic (50%)

BW1D9 NUP93_MOUSE unlabeled (50%) nuclear pore

BM1C5 A2API5_MOUSE cytoplasmic (50%)

FY4C9 ACTN4_MOUSE membrane (50%) cortical cytoskeleton, pseudopodium, ribonu-

cleoprotein complex, stress fiber

BU2G5 ADK_MOUSE nuclear (50%) cytosol, nucleus

DA2G11 TIF1A_MOUSE unlabeled (50%) cytoplasm, nuclear euchromatin, perichro-

matin fibrils

EZ3D9 Q05CR3_MOUSE mitochondria (48%)

CW1D7 GSHR_MOUSE unlabeled (48%) external side of plasma membrane, mitochon-

drion

BV1D3 CK5P2_MOUSE unlabeled (48%) Golgi apparatus, microtubule, pericentriolar

material, perinuclear region of cytoplasm,

spindle pole

EM1D2 Q8BG13_MOUSE nucleoli (47%)

continued on next page…

108

Results

Results of 7 Class classification (continued from previous page).

Well Uniprot name Location (confidence) Uniprot C. C. Terms

BV2B5 GRIP1_MOUSE unlabeled (46%) cell junction, cytoplasmic membrane-bounded

vesicle, endoplasmic reticulum, membrane

ra, postsynaptic membrane

CU1B2 Q8C6C1_MOUSE nuclear (45%)

FY4F10 HDGF_MOUSE membrane (44%) cytoplasm, extracellular space, nucleus

CZ1D11 LMNA_MOUSE cytoplasmic (44%) lamin filament, nuclear envelope, perinuclear

region of cytoplasm

EO3G4 LPP_MOUSE cytoplasmic (44%) cytoplasm, nucleus

CZ1D7 D3Z6I7_MOUSE cytoplasmic (44%)

EM3G6 SC61B_MOUSE cytoplasmic (44%) endoplasmic reticulum membrane, integral to

membrane

FB1F10 SEPT9_MOUSE unlabeled (44%)

FX2E6 SND1_MOUSE cytoplasmic (44%) melanosome, mitochondrion, nucleus, RNA-

induced silencing complex

BV1D10 PIGU_MOUSE nuclear (44%) GPI-anchor transamidase complex

FX1C6 Q7TMN5_MOUSE cytoplasmic (43%)

DA1D10 E9QNV9_MOUSE unlabeled (42%)

EO3B4 Q3UCI5_MOUSE nucleoli (41%)

EX1B8 MCM2_MOUSE cytoskeleton (40%) MCM complex, nuclear origin of replication

recognition complex

CW1E4 AHSA1_MOUSE nuclear (40%) cytosol, endoplasmic reticulum

DA1C4 IF4B_MOUSE cytoplasmic (38%)

CZ1B3 E9QPA6_MOUSE unlabeled (38%)

CW1F10 LMNA_MOUSE unlabeled (37%) lamin filament, nuclear envelope, perinuclear

region of cytoplasm

EZ3F4 ENSMUSP00000020078 cytoskeleton (34%)

continued on next page…

109

Results

Results of 7 Class classification (continued from previous page).

Well Uniprot name Location (confidence) Uniprot C. C. Terms

DA1D11 IF4B_MOUSE membrane (33%)

EO2G5 ACOD1_MOUSE golgi (33%) endoplasmic reticulum membrane, integral to

membrane

EZ3C9 Q3UUT0_MOUSE cytoskeleton (33%)

FB1C7 TIMP3_MOUSE cytoplasmic (33%) basement membrane

FX1E10 MACD2_MOUSE mitochondria (33%)

EO3D5 RL18_MOUSE golgi (31%) ribosome

110

Bibliography

Ahmed, Amr, Eric P. Xing, William W. Cohen, and Robert F. Murphy (2009). “Structured correspondence topic mod-

els for mining captioned figures in biological literature”. In: Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining - KDD ’09, p. 39. [DOI] (cit. on p. 59).

Ahuja, Narendra and Sinisa Todorovic (Oct. 2007). “Learning the Taxonomy and Models of Categories Present in

Arbitrary Images”. In: 2007 IEEE 11th International Conference on Computer Vision October, pp. 1–8. : 1550-

5499. [DOI] (cit. on p. 16).

Ashburner, M, C A Ball, J A Blake, D Botstein, H Butler, J M Cherry, A P Davis, K Dolinski, S S Dwight, J T Eppig,

M A Harris, D P Hill, L Issel-Tarver, A Kasarskis, S Lewis, J C Matese, J E Richardson, M Ringwald, G M Rubin,

and G Sherlock (May 2000). “Gene ontology: tool for the unification of biology. e Gene Ontology Consortium.”

In: Nature genetics 25.1, pp. 25–9. : 1061-4036. [DOI] (cit. on p. 68).

Asuncion, Arthur, Max Welling, and Padhraic Smyth (2008). “On Smoothing and Inference for Topic Models”. In:

24.Ml, pp. 1–8 (cit. on p. 20).

Aturaliya, Rajith N, J Lynn Fink, Melissa J Davis, Melvena S Teasdale, Kelly a Hanson, Kevin C Miranda, Alistair

R R Forrest, Sean M Grimmond, Harukazu Suzuki, Mutsumi Kanamori, Chikatoshi Kai, Jun Kawai, Piero Carn-

inci, Yoshihide Hayashizaki, and Rohan D Teasdale (May 2006). “Subcellular localization of mammalian type II

membrane proteins.” In: Traffic (Copenhagen, Denmark) 7.5, pp. 613–25. : 1398-9219. [DOI] (cit. on p. 55).

111

http://dx.doi.org/10.1145/1557019.1557031
http://dx.doi.org/10.1109/ICCV.2007.4409039
http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1111/j.1600-0854.2006.00407.x

BIBLIOGRAPHY

Bae, Kyounghwa and Bani K Mallick (Dec. 2004). “Gene selection using a two-level hierarchical Bayesian model.” In:

Bioinformatics (Oxford, England) 20.18, pp. 3423–30. : 1367-4803. [DOI] (cit. on p. 60).

Bamford, P (2003). “Empirical comparison of cell segmentation algorithms using an annotated dataset”. In: Image

Processing, 2003. ICIP 2003. Proc. 2003 International Conference on. Vol. 2, [Online Version] (cit. on pp. 26, 27).

Barbe, Laurent, Emma Lundberg, Per Oksvold, Anna Stenius, Erland Lewin, Erik Björling, Anna Asplund, Fredrik

Pontén, Hjalmar Brismar, Mathias Uhlén, and Helene Andersson-Svahn (2008). “Toward a confocal subcellular

atlas of the human proteome.” In: Molecular & cellular proteomics : MCP 7.3, pp. 499–508. : 1535-9484. [DOI]

(cit. on pp. 17, 93).

Bay, Herbert (2006). “From Wide-baseline Point and Line Correspondences to 3D”. PhD. Swissh Federal Institute of

Technology, ETH Zurich (cit. on p. 14).

Bay, Herbert, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool (June 2008). “Speeded-Up Robust Features (SURF)”.

In: Computer Vision and Image Understanding 110.3, pp. 346–359. : 10773142. [DOI] (cit. on pp. 3, 14, 41, 50).

Bay, Herbert, Tinne Tuytelaars, and Luc Van Gool (2006). “SURF: Speeded Up Robust Features”. In: 9th European

Conference on Computer Vision. Graz: Springer, pp. 404–417. [DOI] (cit. on p. 14).

Bernard, Allister and Alexander J Hartemink (Jan. 2005). “Informative structure priors: joint learning of dynamic

regulatory networks from multiple types of data.” In: Pacific Symposium on Biocomputing. Pacific Symposium on

Biocomputing, pp. 459–70. [Online Version] (cit. on p. 18).

Beucher, Serge and Christian Lantuéjoul (Sept. 1979). “Use of watersheds in contour detection”. In: International

Workshop on Image Processing. Rennes: CCETT, pp. 2.1–2.12. [Online Version] (cit. on p. 23).

Bhaacharya, A., V. Ljosa, M.R. Verardo, C. Faloutsos, and A.K. Singh (2005). “ViVo: Visual Vocabulary Construction

for Mining Biomedical Images”. In: Fih IEEE International Conference on Data Mining (ICDM’05). IEEE, pp. 50–57.

: 0-7695-2278-5. [DOI] (cit. on p. 14).

Blake, Judith A, Carol J Bult, James A Kadin, Joel E Richardson, and Janan T Eppig (Jan. 2011). “e Mouse Genome

Database (MGD): premier model organism resource for mammalian genomics and genetics.” In: Nucleic acids

research 39.Database issue, pp. D842–8. : 1362-4962. [DOI] (cit. on p. 68).

Blei, DavidM. andMichael I. Jordan (2003). “Modeling annotated data”. In: Proceedings of the 26th annual international

ACM SIGIR conference on Research and development in informaion retrieval - SIGIR ’03, p. 127. [DOI] (cit. on pp. 20,

59, 60).

Blei, David M. and Jon D. Mcauliffe (2007). “Supervised topic models”. In: Neural Information Processing Systems,

pp. 1–8 (cit. on p. 20).

112

http://dx.doi.org/10.1093/bioinformatics/bth419
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1246871
http://dx.doi.org/10.1074/mcp.M700325-MCP200
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1007/11744023_32
http://www.ncbi.nlm.nih.gov/pubmed/15759651
http://cmm.ensmp.fr/~beucher/publi/watershed.pdf
http://dx.doi.org/10.1109/ICDM.2005.151
http://dx.doi.org/10.1093/nar/gkq1008
http://dx.doi.org/10.1145/860458.860460

BIBLIOGRAPHY

Blei, David M., Andrew Y. Ng, and Michael I. Jordan (2003). “Latent dirichlet allocation”. In: e Journal of Machine

Learning Research 3, pp. 993–1022. [Online Version] (cit. on pp. 18, 19, 33, 34, 62).

Boland, Michael V., Mia K. Markey, and Robert F. Murphy (Nov. 1998). “Automated recognition of paerns character-

istic of subcellular structures in fluorescence microscopy images.” In: Cytometry 33.3, pp. 366–75. : 0196-4763.

[Online Version] (cit. on pp. 8, 10, 56).

Boland, Michael V. and Robert F. Murphy (Dec. 2001). “A neural network classifier capable of recognizing the paerns

of all major subcellular structures in fluorescence microscope images of HeLa cells.” In: Bioinformatics (Oxford,

England) 17.12, pp. 1213–23. : 1367-4803. [Online Version] (cit. on pp. 8, 11, 56).

Breiman, Leo (2001). “Random Forests”. In: Machine Learning 45.1, pp. 5–32. [DOI] (cit. on p. 89).

Briesemeister, Sebastian, Torsten Blum, Sco Brady, Yin Lam, Oliver Kohlbacher, and Hagit Shatkay (Nov. 2009).

“SherLoc2: a high-accuracy hybrid method for predicting subcellular localization of proteins.” In: Journal of pro-

teome research 8.11, pp. 5363–6. : 1535-3907. [DOI] (cit. on pp. 18, 75).

Canny, John (Nov. 1986). “A Computational Approach to Edge Detection”. In: IEEE Transactions on Paern Analysis

and Machine Intelligence PAMI-8.6, pp. 679–698. : 0162-8828. [DOI] (cit. on p. 12).

Chang, Chih-Chung and Chih-Jen Lin (2001). “LIBSVM: a library for support vector machines”. In: Computer, pp. 1–

30. [DOI] (cit. on pp. 89, 90).

Chebira, Amina, Yann Barbotin, Charles Jackson, omas Merryman, Gowri Srinivasa, Robert F. Murphy, and Jelena

Kovacević (Jan. 2007). “A multiresolution approach to automated classification of protein subcellular location

images.” In: BMC bioinformatics 8.1, p. 210. : 1471-2105. [DOI] (cit. on pp. 10, 56).

Chen, Cheng, John a. Ozolek, Wei Wang, and Gustavo K. Rohde (2011). “A General System for Automatic Biomedical

Image Segmentation Using Intensity Neighborhoods”. In: International Journal of Biomedical Imaging 2011, pp. 1–

12. : 1687-4188. [DOI] (cit. on p. 28).

Chennubhotla, Chakra and Allan Jepson (2001). “Sparse PCA. Extracting multi-scale structure from data”. In: Pro-

ceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, pp. 641–647. [DOI] (cit. on p. 17).

Chen, Shann-Ching, Geoffrey J. Gordon, and Robert F. Murphy (2008). “Graphical Models for Structured Classifica-

tion, with an Application to Interpreting Images of Protein Subcellular Location Paerns”. In: Journal of Machine

Learning Research 9, pp. 651–682. [DOI] (cit. on p. 75).

Chen, Shann-Ching, Ting Zhao, Geoffrey J Gordon, and Robert F. Murphy (2007). “Automated image analysis of

protein localization in budding yeast.” In: Bioinformatics (Oxford, England) 23.13, pp. i66–71. : 1367-4811.

[DOI] (cit. on pp. 1, 8, 12, 17).

113

http://portal.acm.org/citation.cfm?id=944937
http://www.ncbi.nlm.nih.gov/pubmed/9822349
http://www.ncbi.nlm.nih.gov/pubmed/11751230
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1021/pr900665y
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1.1.20.9020
http://dx.doi.org/10.1186/1471-2105-8-210
http://dx.doi.org/10.1155/2011/606857
http://dx.doi.org/10.1109/ICCV.2001.937579
http://dx.doi.org/10.1145/1390681.1390704
http://dx.doi.org/10.1093/bioinformatics/btm206

BIBLIOGRAPHY

Chen, Xiang and Robert F. Murphy (2005). “Objective clustering of proteins based on subcellular location paerns.”

In: Journal of biomedicine & biotechnology 2005.2, pp. 87–95. : 1110-7243. [DOI] (cit. on p. 17).

Chen, Xiang, Meel Velliste, Shmuel Weinstein, Jon W. Jarvik, and Robert F. Murphy (2003). “Location proteomics-

Building subcellular location trees from high resolution 3D fluorescence microscope images of randomly-tagged

proteins”. In: SPIE. Vol. 4962, pp. 298–306. [Online Version] (cit. on p. 17).

Coelho, Luis Pedro, Amr Ahmed, Andrew Arnold, Joshua Kangas, Abdul-Saboor Sheikh, Eric P. Xing, William W.

Cohen, and Robert F. Murphy (Jan. 2010). “Structured Literature Image Finder: Extracting Information from Text

and Images in Biomedical Literature.” In: Lecture notes in computer science 6004, pp. 23–32. : 0302-9743. [DOI]

(cit. on pp. 75, 93).

Coelho, Luis Pedro and Robert F. Murphy (2009). “Unsupervised Unmixing of Subcellular Location Paerns”. In:

ICML-UAI-COLT 2009 Workshop on Automated Interpretation and Modeling of Cell Images (Cell Image Learning).

Montreal, Canada. [Online Version].

Coelho, Luis Pedro, Tao Peng, and Robert F. Murphy (2010). “antifying the distribution of probes between subcel-

lular locations using unsupervised paern unmixing”. In: Bioinformatics 26.12, pp. i7–i12. [DOI] (cit. on pp. 31,

37–40).

Coelho, Luis Pedro, Aabid Shariff, and Robert F. Murphy (2009). “Nuclear segmentation in microscope cell images:

A hand-segmented dataset and comparison of algorithms”. In: 2009 IEEE International Symposium on Biomedical

Imaging: From Nano to Macro. IEEE, pp. 518–521. : 978-1-4244-3931-7. [DOI] (cit. on p. 24).

Crow, Franklin C. (1984). “Summed area tables for texture mapping”. In: Computer Graphics SIGGRAPH proceedings

11.3, pp. 200–220 (cit. on p. 14).

Csurka, Gabriella, C Dance, Lixin Fan, Jua Willamowski, and Cédric Bray (2004). “Visual categorization with bags

of keypoints”. In: Workshop on Statistical Learning in Computer Vision, ECCV. Vol. 1. In Workshop on Statistical

Learning in Computer Vision, ECCV May. Citeseer, pp. 1–22 (cit. on p. 34).

Dalal, Navneet and Bill Triggs (2005). “Histograms of Oriented Gradients for Human Detection”. In: IEEE Computer

Society Conference on Computer Vision and Paern Recognition (CVPR’05). IEEE, pp. 886–893. : 0-7695-2372-2.

[DOI] (cit. on p. 14).

Danckaert, A., E. Gonzalez-Couto, L. Bollondi, N. ompson, and B. Hayes (2002). “Automated recognition of intra-

cellular organelles in confocal microscope images.” In: Traffic 3.1, pp. 66–73. [DOI] (cit. on p. 7).

Deerwester, Sco, Susan T. Dumais, GeorgeW. Furnas,omas K. Landauer, and RichardHarshman (1990). “Indexing

by Latent Semantic Analysis”. In: Journal of the American Society for Information Science 41.6, pp. 391–407. :

00028231. [DOI] (cit. on p. 19).

114

http://dx.doi.org/10.1155/JBB.2005.87
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.1415\&rep=rep1\&type=pdf
http://dx.doi.org/10.1007/978-3-642-13131-8_4
http://luispedro.org/papers/2009/lpc-unmixing-cil09.pdf
http://dx.doi.org/10.1093/bioinformatics/btq220
http://dx.doi.org/10.1109/ISBI.2009.5193098
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1034/j.1600-0854.2002.30109.x
http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9

BIBLIOGRAPHY

Drawid, Amar andMarkGerstein (Aug. 2000). “A Bayesian system integrating expression datawith sequence paerns

for localizing proteins: comprehensive application to the yeast genome.” In: Journal of molecular biology 301.4,

pp. 1059–75. : 0022-2836. [DOI] (cit. on p. 18).

Du, Lan, Lu Ren, David BDunson, and Lawrence Carin (2009). “A BayesianModel for Simultaneous Image Clustering,

Annotation and Object Segmentation”. In:Advances in Neural Information Processing Systems, pp. 486–494 (cit. on

p. 21).

Fei-Fei, Li and Pietro Perona (2005). “A Bayesian Hierarchical Model for Learning Natural Scene Categories”. In: 2005

IEEE Computer Society Conference on Computer Vision and Paern Recognition (CVPR’05). IEEE, pp. 524–531. :

0-7695-2372-2. [DOI] (cit. on p. 14).

Frey, Brendan J. andDelbert Dueck (2007). “Clustering by passingmessages between data points.” In: Science 315.5814,

pp. 972–976. [Online Version] (cit. on p. 87).

Fyshe, Alona, Yifeng Liu, Duane Szafron, Russ Greiner, and Paul Lu (2008). “Improving subcellular localization pre-

diction using text classification and the gene ontology.” In: Bioinformatics (Oxford, England) 24.21, pp. 2512–7.

: 1367-4811. [DOI] (cit. on p. 18).

García Osuna, Elvira, Juchang Hua, Nicholas W Bateman, Ting Zhao, Peter B. Berget, and Robert F. Murphy (June

2007). “Large-scale automated analysis of location paerns in randomly tagged 3T3 cells.” In:Annals of biomedical

engineering 35.6, pp. 1081–7. : 0090-6964. [DOI] (cit. on pp. 2, 3).

Glory, Estelle and Robert F. Murphy (2007). “Automated subcellular location determination and high-throughput

microscopy.” In: Developmental cell 12.1, pp. 7–16. : 1534-5807. [DOI] (cit. on p. 23).

Griffiths,omas L andMark Steyvers (Apr. 2004). “Finding scientific topics.” In: Proceedings of the National Academy

of Sciences of the United States of America 101 Suppl, pp. 5228–35. : 0027-8424. [DOI] (cit. on pp. 20, 62, 64).

Hamilton, Nicholas A., Radosav S. Pantelic, Kelly Hanson, and Rohan D. Teasdale (2007). “Fast automated cell phe-

notype image classification.” In: BMC bioinformatics 8, p. 110. : 1471-2105. [DOI] (cit. on p. 92).

Hamilton, Nicholas A., Jack T. H. Wang, Markus C. Kerr, and Rohan D. Teasdale (2009). “Statistical and visual differ-

entiation of subcellular imaging.” In: BMC bioinformatics 10, p. 94. : 1471-2105. [DOI] (cit. on pp. 2, 17).

Haralick, Robert M., Its’hak Dinstein, and K. Shanmugam (1973). “Textural features for image classification”. In: Ieee

Transactions On Systems Man And Cybernetics 3.6, pp. 610–621. [Online Version] (cit. on pp. 8, 91).

Heinrich, Gregory (2009). Parameter estimation for text analysis. Tech. rep. Fraunhofer IGD. [Online Version] (cit. on

p. 64).

115

http://dx.doi.org/10.1006/jmbi.2000.3968
http://dx.doi.org/10.1109/CVPR.2005.16
http://www.ncbi.nlm.nih.gov/pubmed/17218491
http://dx.doi.org/10.1093/bioinformatics/btn463
http://dx.doi.org/10.1007/s10439-007-9254-5
http://dx.doi.org/10.1016/j.devcel.2006.12.007
http://dx.doi.org/10.1073/pnas.0307752101
http://dx.doi.org/10.1186/1471-2105-8-110
http://dx.doi.org/10.1186/1471-2105-10-94
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4309314
http://www.arbylon.net/publications/text-est2.pdf

BIBLIOGRAPHY

Hinton, Geoffrey E. (2007). “To recognize shapes, first learn to generate images”. In: Computational Neuroscience:

eoretical Insights into Brain Function. Ed. by Trevor Drew Paul Cisek and John F. Kalaska. Vol. 165. Progress in

Brain Research. Elsevier, pp. 535–547. [DOI] (cit. on p. 7).

Hofmann, omas (1999). “Probabilistic latent semantic indexing”. In: Proceedings of the 22nd annual international

ACM SIGIR conference on Research and development in information retrieval - SIGIR ’99, pp. 50–57. [DOI] (cit. on

p. 18).

Hoyer, Patrik O. (2004). “Non-negative matrix factorization with sparseness constraints”. In: Journal of Machine

Learning Research 5, pp. 1457–1469. [Online Version] (cit. on pp. 33, 87).

Huang, Kai and Robert F. Murphy (2004a). Automated classification of subcellular paerns in multicell images without

segmentation into single cells. IEEE, pp. 1139–1142. : 0-7803-8388-5. [DOI] (cit. on p. 8).

— (2004b). “Boosting accuracy of automated classification of fluorescence microscope images for location pro-

teomics”. In: BMC Bioinformatics 5.1, p. 78. : 1471-2105. [DOI] (cit. on p. 56).

Huh, Seungil, Donghun Lee, and Robert F. Murphy (2009). “Efficient framework for automated classification of sub-

cellular paerns in budding yeast.” In: Cytometry. Part A : the journal of the International Society for Analytical

Cytology 75.11, pp. 934–40. : 1552-4930. [DOI] (cit. on p. 14).

Huh, Won-Ki, James V Falvo, Luke C Gerke, Adam S Carroll, Russell W Howson, Jonathan S Weissman, and Erin K

O’Shea (Oct. 2003). “Global analysis of protein localization in budding yeast.” In: Nature 425.6959, pp. 686–91.

: 1476-4687. [DOI] (cit. on pp. 1, 12, 17).

Jarvik, Jon W., S A Adler, C A Telmer, V Subramaniam, and A J Lopez (1996). “CD-tagging: a new approach to gene

and protein discovery and analysis.” In: BioTechniques 20.5, pp. 896–904. : 0736-6205. [Online Version] (cit. on

p. 3).

Jarvik, Jon W., G W Fisher, C Shi, L Hennen, C Hauser, S Adler, and Peter B. Berget (2002). “In vivo functional pro-

teomics: mammalian genome annotation using CD-tagging.” In: BioTechniques 33.4, 852–4, 856, 858–60 passim.

: 0736-6205. [Online Version] (cit. on p. 3).

Jennrich, R. I. (1977a). “Stepwise Discriminant Analysis”. In: Statistical Methods for Digital Computers. Ed. by K.

Enslein, A. Ralston, and H. Wilf. John Wiley & Sons (cit. on p. 89).

— (1977b). “Stepwise Regression”. In: Statistical Methods for Digital Computerss. Ed. by K. Enslein, A. Ralston, and

H. Wilf. John Wiley & Sons (cit. on p. 89).

116

http://dx.doi.org/10.1016/S0079-6123(06)65034-6
http://dx.doi.org/10.1145/312624.312649
http://arxiv.org/abs/cs.LG/0408058
http://dx.doi.org/10.1109/ISBI.2004.1398744
http://dx.doi.org/10.1186/1471-2105-5-78
http://dx.doi.org/10.1002/cyto.a.20793
http://dx.doi.org/10.1038/nature02026
http://www.ncbi.nlm.nih.gov/pubmed/8723939
http://www.ncbi.nlm.nih.gov/pubmed/12398194

BIBLIOGRAPHY

Jones, ouis R., Anne Carpenter, and Polina Golland (2005). “Voronoi-Based Segmentation of Cells on Image Man-

ifolds”. In: Computer Vision for Biomedical Image Applications. Ed. by Yanxi Liu, Tianzi Jiang, and Changshui

Zhang. Vol. 3765. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 535–543. : 978-3-540-

29411-5 (cit. on p. 23).

Kanade, Takeo (1977). “Model Representations and Control Structures in Image Understanding”. In: 5th International

Joint Conference on Artificial Intelligence, pp. 1074–1082 (cit. on p. 16).

Keränen, Soile V. E., Charless C. Fowlkes, Cris L. Luengo Hendriks, Damir Sudar, David W. Knowles, Jitendra Malik,

and Mark D. Biggin (2006). “ree-dimensional morphology and gene expression in the Drosophila blastoderm

at cellular resolution II: dynamics.” In: Genome biology 7.12, R124. : 1465-6914. [DOI] (cit. on p. 17).

Kumar, Anuj, Seema Agarwal, John A Heyman, Sandra Matson, Mahew Heidtman, Stacy Piccirillo, Lara Umansky,

Amar Drawid, Ronald Jansen, Yang Liu, Kei-Hoi Cheung, Perry Miller, Mark Gerstein, G Shirleen Roeder, and

Michael Snyder (2002). “Subcellular localization of the yeast proteome.” In: Genes & development 16.6, pp. 707–19.

: 0890-9369. [DOI] (cit. on p. 18).

Lazebnik, Svetlana, Cordelia Schmid, and Jean Ponce (2006). “Beyond bags of features: Spatial pyramid matching for

recognizing natural scene categories”. In: CVPR (cit. on p. 16).

Lee, Daniel D. and H. Sebastian Seung (Oct. 1999). “Learning the parts of objects by non-negative matrix factoriza-

tion.” In: Nature 401.6755, pp. 788–91. : 0028-0836. [DOI] (cit. on p. 33).

Lee, Daniel D. and H.Sebastian Seung (2001). “Algorithms for non-negative matrix factorization”. In: Advances in

neural information processing systems. Vol. 13. 1. Citeseer, pp. 556–562. [Online Version] (cit. on pp. 33, 87).

Lee, George, Sco Doyle, James Monaco, Anant Madabhushi, Michael D. Feldman, Stephen R. Master, and John E.

Tomaszewski (2009). “A knowledge representation framework for integration, classification of multi-scale imag-

ing and non-imaging data: Preliminary results in predicting prostate cancer recurrence by fusing mass spec-

trometry and histology”. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

IEEE, pp. 77–80. : 978-1-4244-3931-7. [DOI] (cit. on p. 18).

Lee, Honglak, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng (2009). “Convolutional deep belief networks for

scalable unsupervised learning of hierarchical representations”. In: Proceedings of the 26th Annual International

Conference on Machine Learning - ICML ’09. New York, New York, USA: ACM Press, pp. 1–8. : 9781605585161.

[DOI] (cit. on p. 7).

Lee, Kiyoung, Han-Yu Chuang, Andreas Beyer, Min-Kyung Sung, Won-Ki Huh, Bonghee Lee, and Trey Ideker (2008).

“Protein networks markedly improve prediction of subcellular localization in multiple eukaryotic species.” In:

Nucleic acids research 36.20, e136. : 1362-4962. [DOI] (cit. on p. 18).

117

http://dx.doi.org/10.1186/gb-2006-7-12-r124
http://dx.doi.org/10.1101/gad.970902
http://dx.doi.org/10.1038/44565
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.6264\&rep=rep1\&type=pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.7566\&rep=rep1\&type=pdf
http://dx.doi.org/10.1109/ISBI.2009.5192987
http://dx.doi.org/10.1145/1553374.1553453
http://dx.doi.org/10.1093/nar/gkn619

BIBLIOGRAPHY

Lehmussola, Ani, Pekka Ruusuvuori, Jyrki Selinummi, Tiina Rajala, and Olli Yli-Harja (Aug. 2008). “Synthetic Im-

ages of High-roughput Microscopy for Validation of Image Analysis Methods”. In: Proceedings of the IEEE 96.8,

pp. 1348–1360. : 0018-9219. [DOI] (cit. on p. 13).

Li, Li-Jia, Richard Socher, and Li Fei-Fei (June 2009). “Towards total scene understanding: Classification, annota-

tion and segmentation in an automatic framework”. In: 2009 IEEE Conference on Computer Vision and Paern

Recognition. IEEE, pp. 2036–2043. : 978-1-4244-3992-8. [DOI] (cit. on p. 21).

Lindeberg, Tony (1998). “Feature Detection with Automatic Scale Selection”. In: International Journal of Computer

Vision 30.2, pp. 77–116 (cit. on p. 15).

Lin, Gang, Umesh Adiga, Kathy Olson, John F Guzowski, Carol a Barnes, and Badrinath Roysam (2003). “A hybrid

3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in

confocal image stacks.” In: Cytometry. Part A : the journal of the International Society for Analytical Cytology 56.1,

pp. 23–36. : 1552-4922. [DOI] (cit. on pp. 25, 30).

Lowe, David G. (1999). “Object recognition from local scale-invariant features”. In: Proceedings of the Seventh IEEE

International Conference on Computer Vision 2.[8, 1150–1157 vol.2. [DOI] (cit. on p. 14).

LuengoHendriks, Cris L, Soile V EKeränen, Charless C Fowlkes, Lisa Simirenko, Gunther HWeber, Angela HDePace,

ClaraHenriquez, DavidWKaszuba, BerndHamann,Michael B Eisen, JitendraMalik, Damir Sudar,MarkDBiggin,

and DavidWKnowles (2006). “ree-dimensional morphology and gene expression in the Drosophila blastoderm

at cellular resolution I: data acquisition pipeline.” In: Genome biology 7.12, R123. : 1465-6914. [DOI] (cit. on

p. 17).

Lu, Z., D. Szafron, R. Greiner, P. Lu, D.S. Wishart, B. Poulin, J. Anvik, C. Macdonell, and R. Eisner (2004). “Predicting

subcellular localization of proteins using machine-learned classifiers”. In: Bioinformatics 20.4, pp. 547–556. :

1460-2059. [DOI] (cit. on p. 18).

Marée, Raphaël, Pierre Geurts, and Louis Wehenkel (2007). “Random subwindows and extremely randomized trees

for image classification in cell biology.” In: BMC cell biology 8 Suppl 1, S2. : 1471-2121. [DOI] (cit. on pp. 14,

56).

Mikolajczyk, Krystian and Cordelia Schmid (May 2002). “An Affine Invariant Interest Point Detector”. In: pp. 128–

142. [Online Version] (cit. on p. 15).

Miller, Michael I. and Anqi Qiu (Mar. 2009). “e emerging discipline of Computational Functional Anatomy.” In:

NeuroImage 45.1 Suppl, S16–39. : 1095-9572. [DOI] (cit. on p. 17).

Minka, Tom (2000). Estimating a Dirichlet distribution. Tech. rep. Microso Research. [Online Version] (cit. on p. 66).

118

http://dx.doi.org/10.1109/JPROC.2008.925490
http://dx.doi.org/10.1109/CVPRW.2009.5206718
http://dx.doi.org/10.1002/cyto.a.10079
http://dx.doi.org/10.1109/ICCV.1999.790410
http://dx.doi.org/10.1186/gb-2006-7-12-r123
http://dx.doi.org/10.1093/bioinformatics/btg447
http://dx.doi.org/10.1186/1471-2121-8-S1-S2
http://portal.acm.org/citation.cfm?id=645315.649184
http://dx.doi.org/10.1016/j.neuroimage.2008.10.044
http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/

BIBLIOGRAPHY

Mintz-Oron, Shira, Asaph Aharoni, Eytan Ruppin, and Tomer Shlomi (June 2009). “Network-based prediction of

metabolic enzymes’ subcellular localization.” In: Bioinformatics (Oxford, England) 25.12, pp. i247–52. : 1460-

2059. [DOI] (cit. on p. 18).

Moosmann, Frank, Eric Nowak, and Frederic Jurie (Sept. 2008). “Randomized clustering forests for image classifica-

tion.” In: IEEE transactions on paern analysis and machine intelligence 30.9, pp. 1632–46. : 0162-8828. [DOI]

(cit. on pp. 16, 21).

Muller, J, D Szklarczyk, P Julien, I Letunic, a Roth, M Kuhn, S Powell, C von Mering, T Doerks, L J Jensen, and P

Bork (Jan. 2010). “eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised

orthologous groups, species and functional annotations.” In: Nucleic acids research 38.Database issue, pp. D190–5.

: 1362-4962. [DOI] (cit. on pp. 68, 79).

Murphy, Robert F. (June 2005). “Location proteomics: a systems approach to subcellular location.” In: Biochemical

Society transactions 33.Pt 3, pp. 535–8. : 0300-5127. [DOI] (cit. on p. 1).

Murphy, Robert F., Meel Velliste, and Gregory Porreca (Nov. 2003). “Robust Numerical Features for Description and

Classification of Subcellular Location Paerns in Fluorescence Microscope Images”. In:e Journal of VLSI Signal

Processing-Systems for Signal, Image, and Video Technology 35.3, pp. 311–321. : 0922-5773. [DOI] (cit. on pp. 1,

12).

Nanni, Loris, Sheryl Brahnam, and Alessandra Lumini (Jan. 2010). “Novel features for automated cell phenotype

image classification.” In: Advances in experimental medicine and biology 680, pp. 207–13. : 0065-2598. [DOI]

(cit. on pp. 8, 56).

Nanni, Loris and Alessandra Lumini (June 2008). “A reliable method for cell phenotype image classification.” In:

Artificial intelligence in medicine 43.2, pp. 87–97. : 0933-3657. [DOI] (cit. on p. 10).

Nakemper, TimW.,orsten Twellmann, Helge Rier, andWalter Schubert (Jan. 2003). “Human vs machine: evalu-

ation of fluorescencemicrographs.” In: Computers in biology andmedicine 33.1, pp. 31–43. : 0010-4825. [Online

Version] (cit. on p. 1).

Newberg, Justin and Robert F. Murphy (June 2008). “A framework for the automated analysis of subcellular paerns

in human protein atlas images.” In: Journal of proteome research 7.6, pp. 2300–8. : 1535-3893. [DOI] (cit. on

pp. 17, 93).

Newberg, Justin Y., Arvind Rao, Emma Lundberg, Fredrik Ponten, Mathias Uhlen, and Robert F. Murphy (2009). “Au-

tomated analysis of Human Protein Atlas immunofluorescence images”. In: 2009 IEEE International Symposium

on Biomedical Imaging: From Nano to Macro. IEEE, pp. 1023–1026. : 978-1-4244-3931-7. [DOI] (cit. on pp. 10,

17).

119

http://dx.doi.org/10.1093/bioinformatics/btp209
http://dx.doi.org/10.1109/TPAMI.2007.70822
http://dx.doi.org/10.1093/nar/gkp951
http://dx.doi.org/10.1042/BST0330535
http://dx.doi.org/10.1023/B:VLSI.0000003028.71666.44
http://dx.doi.org/10.1007/978-1-4419-5913-3_24
http://dx.doi.org/10.1016/j.artmed.2008.03.005
http://www.ncbi.nlm.nih.gov/pubmed/12485628
http://www.ncbi.nlm.nih.gov/pubmed/12485628
http://dx.doi.org/10.1021/pr7007626
http://dx.doi.org/10.1109/ISBI.2009.5193229

BIBLIOGRAPHY

Newman, David, Arthur Asuncion, Padhraic Smyth, and Max Welling (2009). “Distributed Algorithms for Topic

Models”. In: Journal of Machine Learning Research 10, pp. 1801–1828 (cit. on p. 62).

Nowak, Eric and F Jurie (2006). “Sampling strategies for bag-of-features image classification”. In: Computer Vision–

ECCV 2006 3954, pp. 490–503. [DOI] (cit. on p. 14).

Ojala, Timo, Mai Pietikäinen, and Topi Mäenpää (July 2002). “Multiresolution gray-scale and rotation invariant

texture classificationwith local binary paerns”. In: IEEE Transactions on PaernAnalysis andMachine Intelligence

24.7, pp. 971–987. : 0162-8828. [DOI] (cit. on pp. 10, 91).

Otsu, Nobuyuki (1979). “Areshold SelectionMethod fromGray-Level Histograms”. In: Ieee Transactions On Systems

Man And Cybernetics 9.1, pp. 62–66. : 00189472. [DOI] (cit. on p. 24).

Pan, Jia-Yu, André Guilherme, Ribeiro Balan, Eric P. Xing, Christos Faloutsos, and Agma Juci Machado Traina (2006).

“Automatic mining of fruit fly embryo images”. In: Proceedings of the 12th ACM SIGKDD international conference

on Knowledge discovery and data mining - KDD ’06. c. New York, New York, USA: ACM Press, p. 693. :

1595933395. [DOI] (cit. on p. 17).

Park, Trevor and George Casella (June 2008). “e Bayesian Lasso”. In: Journal of the American Statistical Association

103.482, pp. 681–686. : 0162-1459. [DOI] (cit. on p. 60).

Peng, Hanchuan, Fuhui Long, Michael B. Eisen, and Eugene W. Myers (2006). “Clustering gene expression paerns

of fly embryos”. In: Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI): Nano to Macro,

pp. 1144–1147. [DOI] (cit. on p. 17).

Peng, Hanchuan and EugeneW.Myers (2004). “Comparing in situmRNA expression paerns of drosophila embryos”.

In: Proceedings of the eighth annual international conference on Computational molecular biology - RECOMB ’04.

New York, New York, USA: ACM Press, pp. 157–166. : 1581137559. [DOI] (cit. on p. 17).

Peng, Tao, Ghislain M. C. Bonamy, Estelle Glory-Afshar, Daniel R. Rines, Sumit K. Chanda, and Robert F. Murphy

(2010). “Determining the distribution of probes between different subcellular locations through automated un-

mixing of subcellular paerns”. In: Proceedings of the National Academy of Sciences of the United States of America

107.7, pp. 2944–2949. [Online Version] (cit. on pp. 12, 23, 34).

Peng, Tao and Robert F. Murphy (May 2011). “Image-derived, three-dimensional generative models of cellular orga-

nization.” In: Cytometry. Part A : the journal of the International Society for Analytical Cytology 79.5, pp. 383–91.

: 1552-4930. [DOI] (cit. on p. 13).

Perez, Fernando and Brian E. Granger (2007). “IPython: A System for Interactive Scientific Computing”. In:Computing

in Science & Engineering 9.3, pp. 21–29. : 1521-9615. [DOI] (cit. on p. 82).

120

http://dx.doi.org/10.1007/11744085_38
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1145/1150402.1150489
http://dx.doi.org/10.1198/016214508000000337
http://dx.doi.org/10.1109/ISBI.2006.1625125
http://dx.doi.org/10.1145/974614.974636
http://www.ncbi.nlm.nih.gov/pubmed/20133616
http://dx.doi.org/10.1002/cyto.a.21066
http://dx.doi.org/10.1109/MCSE.2007.53

BIBLIOGRAPHY

Philbin, James, Josef Sivic, and Andrew Zisserman (2008). “Geometric LDA: A Generative Model for Particular Object

Discovery”. In: Proceedings of the British Machine Vision Conference. Leeds (cit. on pp. 16, 21, 34).

Pincus, Zachary and Julie A. eriot (Aug. 2007). “Comparison of quantitative methods for cell-shape analysis.” In:

Journal of microscopy 227.Pt 2, pp. 140–56. : 0022-2720. [DOI] (cit. on p. 17).

Porway, Jake, Benjamin Yao, and Song Chun Zhu (2008). “Learning CompositionalModels for Object Categories From

Small Sample Sets”. In: Object Categorization: Computer and Human Vision Perspectives. Ed. by Sven Dickinson,

Bernt Schiele Aleš Leonardis, and Michael J. Tarr. Cambridge University Press, pp. 1–17 (cit. on p. 21).

Pritchard, J K, M Stephens, and P Donnelly (June 2000). “Inference of population structure using multilocus genotype

data.” In: Genetics 155.2, pp. 945–59. : 0016-6731. [Online Version] (cit. on p. 19).

Rajapakse, Jagath C. (June 2008). “Protein localization on cellular images with Markov random fields”. In: 2008 IEEE

International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2127–

2132. [DOI] (cit. on p. 56).

Rand, William M. (1971). “Objective Criteria for the Evaluation of Clustering Methods”. In: Journal of the American

Statistical Association 66.336, pp. 846–850. : 01621459. [DOI] (cit. on p. 26).

Ridler, T. W. and S. Calvard (1978). “Picture resholding Using an Iterative Selection Method”. In: IEEE Transactions

On Systems Man And Cybernetics 8.8, pp. 630–632. : 00189472. [DOI] (cit. on pp. 24, 30, 93).

Robert, Christian P. (June 1995). “Simulation of truncated normal variables”. In: Statistics and Computing 5.2, pp. 121–

125. : 0960-3174. [DOI] (cit. on p. 63).

Rohde, Gustavo K., Alexandre J. S. Ribeiro, Kris N. Dahl, and Robert F. Murphy (2008). “Deformation-based nuclear

morphometry: capturing nuclear shape variation in HeLa cells.” In: Cytometry Part A 73A.4, pp. 341–50. :

1552-4930. [DOI] (cit. on p. 17).

Saporta, Gilbert and Genane Youness (2002). “Comparing two partitions : Some Proposals and Experiments”. In:

Compstat Proceedings in Computational Statistics 15th Symposium Held in Berlin Germany 2002. Physica Verlag,

pp. 243–248. : 3790815179. [Online Version] (cit. on p. 26).

Segal, Eran and Daphne Koller (2002). “Probabilistic hierarchical clustering for biological data”. In: Proceedings of the

sixth annual international conference on Computational biology - RECOMB ’02, pp. 273–280. [DOI] (cit. on p. 18).

Segal, Eran, Ben Taskar, Audrey Gasch, Nir Friedman, and Daphne Koller (Jan. 2001). “Rich probabilistic models for

gene expression.” In: Bioinformatics 17 Suppl 1.1, S243–52. : 1367-4803. [DOI] (cit. on p. 18).

Shao, Yuanlong, Yuan Zhou, Xiaofei He, Deng Cai, and Hujun Bao. “Semi-Supervised Topic Modeling for Image

Annotation”. In: Proceedings of the 17th ACM international conference on Multimedia. [DOI] (cit. on p. 20).

121

http://dx.doi.org/10.1111/j.1365-2818.2007.01799.x
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1461096\&tool=pmcentrez\&rendertype=abstract
http://dx.doi.org/10.1109/IJCNN.2008.4634090
http://dx.doi.org/10.2307/2284239
http://dx.doi.org/10.1109/TSMC.1978.4310039
http://dx.doi.org/10.1007/BF00143942
http://dx.doi.org/10.1002/cyto.a.20506
http://books.google.com/books?hl=en\&lr=\&id=YDD95HD-KE8C\&oi=fnd\&pg=PA243\&dq=Comparing+two+partitions+:+Some+Proposals+and\&ots=EgiIzPrqE3\&sig=IHY9YWIyEU07dZI7YTphMYVXvoc
http://dx.doi.org/10.1145/565196.565232
http://dx.doi.org/10.1093/bioinformatics/17.suppl_1.S243
http://dx.doi.org/10.1145/1631272.1631346

BIBLIOGRAPHY

Shariff, Aabid, Robert F.Murphy, andGustavo K. Rohde (May 2010). “A generativemodel ofmicrotubule distributions,

and indirect estimation of its parameters from fluorescencemicroscopy images.” In:Cytometry. Part A : the journal

of the International Society for Analytical Cytology 77.5, pp. 457–66. : 1552-4930. [DOI] (cit. on p. 13).

— (2011). “Automated Estimation of Microtubule Model Parameters from 3-D Live Cell Microscopy Images”. In:

Proceedings of the 2011 IEEE International Symposium on Biomedical Imaging (ISBI 2011), pp. 1330–1333 (cit. on

p. 13).

Shariff, Aabid, Gustavo K. Rohde, and Robert F. Murphy (2009). “Indirect learning of generative models for micro-

tubule distribution from fluorescence microscope images”. In: ICML-UAI-COLT 2009 Workshop on Automated

Interpretation and Modeling of Cell Images (Cell Image Learning). Montreal, Canada. [Online Version] (cit. on

p. 13).

Shatkay, Hagit, Annee Höglund, Sco Brady, Torsten Blum, Pierre Dönnes, and Oliver Kohlbacher (2007). “SherLoc:

high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data.” In:

Bioinformatics (Oxford, England) 23.11, pp. 1410–7. : 1367-4811. [DOI] (cit. on pp. 18, 75).

Srinivasa, Gowri, Mahew C. Fickus, Manuel N. Gonzalez-Rivero, Sarah Yichia Hsieh, Adam D Linstedt, and Jelena

Kovacevic (May 2008). “Activemask segmentation for the cell-volume computation and Golgi-body segmentation

of hela cell images”. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Vol. C.

IEEE, pp. 348–351. : 978-1-4244-2002-5. [DOI] (cit. on p. 25).

Srinivasa, Gowri, Mahew C. Fickus, Yusong Guo, Adam D. Linstedt, and Jelena Kovacević (2009). “Active mask

segmentation of fluorescence microscope images.” In: IEEE Transactions on Image Processing 18.8, pp. 1817–1829.

[Online Version] (cit. on p. 25).

Stroustrup, Bjarne (Jan. 1994). e design and evolution of C++. Addison-Wesley Professional. : 0-201-54330-3.

[Online Version] (cit. on p. 86).

Telmer, C. A., Peter B. Berget, B. Ballou, Robert F. Murphy, and Jon W. Jarvik (Mar. 2002). “Epitope tagging genomic

DNA using a CD-tagging Tn10 minitransposon.” In: BioTechniques 32.2, pp. 422–4, 426, 428–30. : 0736-6205.

[Online Version] (cit. on p. 3).

Troyanskaya, Olga G. (Mar. 2005). “Puing microarrays in a context: integrated analysis of diverse biological data.”

In: Briefings in bioinformatics 6.1, pp. 34–43. : 1467-5463. [DOI] (cit. on p. 18).

Troyanskaya, Olga G., Kara Dolinski, Art B. Owen, Russ B. Altman, and David Botstein (July 2003). “A Bayesian

framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cere-

visiae).” In: Proceedings of the National Academy of Sciences of the United States of America 100.14, pp. 8348–

53. : 0027-8424. [DOI] (cit. on p. 18).

122

http://dx.doi.org/10.1002/cyto.a.20854
http://cil09.wikispaces.com/file/view/aabid.pdf
http://dx.doi.org/10.1093/bioinformatics/btm115
http://dx.doi.org/10.1109/ISBI.2008.4541004
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2765110\&tool=pmcentrez\&rendertype=abstract
http://portal.acm.org/citation.cfm?id=193198
http://www.ncbi.nlm.nih.gov/pubmed/11848418
http://dx.doi.org/10.1093/bib/6.1.34
http://dx.doi.org/10.1073/pnas.0832373100

BIBLIOGRAPHY

Tuytelaars, Tinne and Krystian Mikolajczyk (2007). “Local Invariant Feature Detectors: A Survey”. In: Foundations

and Trends in Computer Graphics and Vision 3.3, pp. 177–280. : 1572-2740. [DOI] (cit. on pp. 14, 15).

Velliste, Meel and Robert F. Murphy (2002). “Automated determination of protein subcellular locations from 3D

fluorescence microscope images”. In: Proceedings IEEE International Symposium on Biomedical Imaging. IEEE,

pp. 867–870. : 0-7803-7584-X. [DOI] (cit. on p. 23).

Veretnik, Stella, J Lynn Fink, and Philip E Bourne (Jan. 2008). “Computational biology resources lack persistence and

usability.” In: PLoS computational biology 4.7. Ed. by Barbara Bryant, e1000136. : 1553-7358. [DOI] (cit. on

p. 79).

Wang, James and Yixin Chen (2004). “Image Categorization by Learning and Reasoning with Regions”. In: Journal of

Machine Learning Research 5, pp. 913–939 (cit. on p. 14).

Wang, Jinjun, Jianchao Yang, Kai Yu, Fengjun Lv,omasHuang, and YihongGong (June 2010). “Locality-constrained

Linear Coding for image classification”. In: 2010 IEEE Computer Society Conference on Computer Vision and Paern

Recognition. IEEE, pp. 3360–3367. : 978-1-4244-6984-0. [DOI] (cit. on p. 43).

Willamowski, Jua, Damian Arregui, Gabriela Csurka, Chris Dance, and Lixin Fan (2004). “Categorizing Nine Visual

Classes using Local Appearance Descriptors”. In: ICPR 2004 Workshop Learning for Adaptable Visual Systems.

Cambridge, United Kingdom (cit. on p. 42).

Wren, Jonathan D. (Mar. 2004). “404 not found: the stability and persistence of URLs published in MEDLINE.” In:

Bioinformatics (Oxford, England) 20.5, pp. 668–72. : 1367-4803. [DOI] (cit. on p. 79).

— (June 2008). “URL decay in MEDLINE–a 4-year follow-up study.” In: Bioinformatics (Oxford, England) 24.11,

pp. 1381–5. : 1367-4811. [DOI] (cit. on p. 79).

Zhao, Ting and Robert F. Murphy (2007). “Automated learning of generative models for subcellular location: building

blocks for systems biology.” In: Cytometry. Part A : the journal of the International Society for Analytical Cytology

71.12, pp. 978–90. : 1552-4930. [DOI] (cit. on pp. 13, 16, 17).

Zhao, Ting, Meel Velliste, Michael V. Boland, and Robert F. Murphy (Sept. 2005). “Object type recognition for au-

tomated analysis of protein subcellular location.” In: IEEE transactions on image processing : a publication of the

IEEE Signal Processing Society 14.9, pp. 1351–9. : 1057-7149. [Online Version] (cit. on pp. 30, 31).

Zhou, Jie and Hanchuan Peng (2007). “Automatic recognition and annotation of gene expression paerns of fly

embryos.” In: Bioinformatics (Oxford, England) 23.5, pp. 589–96. : 1367-4811. [DOI] (cit. on p. 17).

Zhu, Jun, Amr Ahmed, and Eric P. Xing (2009). “MedLDA: Maximum margin supervised topic models for regression

and classification”. In: Proceedings of the 26th Annual International Conference on Machine Learning - ICML ’09.

New York, New York, USA: ACM Press, pp. 1–8. : 9781605585161. [DOI] (cit. on p. 20).

123

http://dx.doi.org/10.1561/0600000017
http://dx.doi.org/10.1109/ISBI.2002.1029397
http://dx.doi.org/10.1371/journal.pcbi.1000136
http://dx.doi.org/10.1109/CVPR.2010.5540018
http://dx.doi.org/10.1093/bioinformatics/btg465
http://dx.doi.org/10.1093/bioinformatics/btn127
http://dx.doi.org/10.1002/cyto.a.20487
http://www.ncbi.nlm.nih.gov/pubmed/16190470
http://dx.doi.org/10.1093/bioinformatics/btl680
http://dx.doi.org/10.1145/1553374.1553535

BIBLIOGRAPHY

Zhu, Long, Yuanhao Chen, and Alan Yuille (Jan. 2009). “Unsupervised learning of Probabilistic Grammar-Markov

Models for object categories.” In: IEEE transactions on paern analysis and machine intelligence 31.1, pp. 114–28.

: 0162-8828. [DOI] (cit. on pp. 21, 34).

Zhu, Song-Chun and David Mumford (2006). “A Stochastic Grammar of Images”. In: Foundations and Trends in Com-

puter Graphics and Vision 2.4, pp. 259–362. : 1572-2740. [DOI] (cit. on pp. 16, 21).

124

http://dx.doi.org/10.1109/TPAMI.2008.67
http://dx.doi.org/10.1561/0600000018

Index

Akaike information criterion, 43

CD Tagging, 3

databases

egg, 68

Uniprot, 68

Dataset, 6

RandTag confocal, 6

RandTag confocal images, 51

RandTag widefield, 6

RandTag widefield images, 43

distance map, 93

features

edge features, 12

Haralick, 92

object features, 31

overlap, 93

skeleton features, 12

threshold adjancency statistics, 92

gene ontology, 68

GO Slim, 68

Generative models, 13

Gibbs sampling, 62

Haralick features, 8–10

integral images, 14

Latent Dirichlet Allocation, 19, 33, 59

corr-, 60

supervised , 20

, see Latent Dirichlet Allocation

Local binary paerns, 10–11

local features, 13–16, 60

Locally constrained linear coding, 43

125

INDEX

milk, 47

Mouse Genome Informatics, 77

Object clustering, 32

orthology, 68

RandTag, 3, 43, 51

segmentation, 23–28, 30

SherLoc2, 18

SIFT, 14

Speeded Up Robust Features, 14–16

subcellular paern unmixing

supervised, 12

unsupervised, 29

supervised LDA, 20

SURF

computational efficiency, 49

SURF-dist, 42

SURF-ref, 42

SURF-ref, 41–50

Uniprot, 50, 77

Waldo, 68, 77

126

Colophon

is dissertation was typeset with TEX, using the memoir class. e main text is typeset using Linux Libertine.

Chapter headers are typeset in Anaktoria. Section, subsection, and subsection headers are typeset in Lucida Bright,

Lucida Sans, and Lucida Sans Oblique; respectively.

	Contents
	List of Figures
	Introduction
	Location Proteomics
	Multiple Data Sources
	Thesis Statement
	Randomly Tagged Proteins

	State of the Art
	Image Representations for Subcellular Location Analysis
	Large Scale Studies of Subcellular Location
	Prediction of Subcellular Location
	Integration of Multiple Sources of Information for Biological Inference
	Topic Models
	Topic Models with Images

	Nuclear Segmentation
	Introduction
	Segmentation Methods
	Evaluation Methods
	Results

	Subcellular Pattern Unmixing
	Introduction
	Object Typing
	Basis Pursuit

	Local Features
	Introduction
	SURF and Extensions
	Empirical Evaluation
	Conclusions

	Topic Modeling With Multiple Sources of Data
	Extensions to LDA
	Sampling
	Multiple Data Modalities
	Conclusions

	Conclusions & Future Work
	Conclusions
	Future Work

	Software
	Waldo: Aggregating Subcellular Location Information
	jug
	mahotas
	milk
	elgreco

	Image Processing and Filtering
	Image Filtering
	Subcellular Location Features

	Results
	Bibliography
	Index

