
Modular Typestate Verification
of Aliased Objects

Kevin Bierhoff ∗ Jonathan Aldrich †

March 2007
CMU-ISRI-07-105

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Institute for Software Research, Carnegie Mellon University,kevin.bierhoff @ cs.cmu.edu.
†Institute for Software Research, Carnegie Mellon University,jonathan.aldrich @ cs.cmu.edu.

This work was supported in part by NASA cooperative agreement NNA05CS30A, NSF grant CCF-0546550, and
the Army Research Office grant number DAAD19-02-1-0389 entitled “Perpetually Available and Secure Information
Systems”.

Keywords: Protocol enforcement, typestates, aliasing, permissions.

Abstract

A number of type systems have used typestates to specify and statically verify protocol compli-
ance. Aliasing is a major challenge for these systems. This paper proposes a modular type system
for a core object-oriented language that leverages linear logic for verifying compliance to more ex-
pressive protocol specifications than previously supported. The system improves reasoning about
aliased objects by associating references with access permissions that systematically capture what
aliases know about and can do to objects. Permissions grant full, shared, or read-only access to
a certain part of object state and allow aliasing both on the stack and in the heap. The system
supports dynamic state tests, arbitrary callbacks, and open recursion. The system’s expressiveness
is illustrated with examples from the Java I/O library.

Contents

1 Introduction 1

2 Typestate Specifications 4
2.1 Protocols as State Machines . 4
2.2 State Refinements and Dimensions . 4
2.3 Access Permissions . 5
2.4 Linear Logic Specifications . 5

3 Verification Approach 6

4 Formal Language 8
4.1 Syntax . 8
4.2 State Spaces . 10
4.3 Access Permissions . 10
4.4 Permission-Based Specifications . 11
4.5 Handling Inheritance . 13
4.6 Behavioral Subtyping . 13

5 Modular Typestate Verification 14
5.1 Permission Tracking . 14
5.2 Packing and Unpacking . 17
5.3 Calling Methods . 18
5.4 Field Assignments . 19
5.5 Permission Splitting and Joining . 19

6 Breaking an Invariant in Java Buffered Input Streams 20

7 Soundness 23
7.1 Core Language Syntax . 25
7.2 Judgment Forms . 26
7.3 Preservation . 26
7.4 Progress . 34

8 Related Work 36

9 Conclusions 38

1 Introduction

In well–written software, different parts of the program interact with each other through abstrac-
tion boundaries (interfaces) that hide state and side effects from each other. Although interfaces

1

facilitate understanding and using software, clients of an interface cannot be oblivious to hidden
side effects. They typically have to follow a certainprotocolin using the interface that is intricately
tied to the implemented functionality. For example, clients of a stream interface are expected to
first read and then close streams and not vice versa. Conformance to such protocols is notoriously
hard to verify.

Typestates [30] offer a lightweight way of specifying interesting protocols [4] using abstract
state machines. Typestates refine the fixed types of objects with changing abstract states. Opera-
tions perform “state transitions” on objects that change their state from one to another. Fugue [11]
is the only existing typestate-based object-oriented protocol verification system that we know of.

This paper improves Fugue’s reasoning power on two fronts: (1) We propose a type system
that can verify compliance to more expressive specifications than previously supported. (2) We
improve modular reasoning about protocol compliance of aliased objects. Preliminary case studies
suggest that these improvements combined let us go beyond reasoning about objects in isolation
and capture object collaborations to some extent.

Expressive protocols.In earlier work we proposed to increase the expressiveness of existing
typestate-based protocols to better match object-oriented software [4]. In particular, we found the
need torefineprotocols in subclasses and to relate different objects to one another. The former
gives freedom in extending base classes; the latter captures common programming patterns such
as dynamic state tests and binary methods. Our proposal was based on a hierarchical notion of
state spaces similar to Statecharts [19] that can model orthogonal concerns separately and allows
protocol refinement with more fine-grained states. Specifications became logical expressions that
could relate objects.

This paper contributes a modular type system that can verify correct usage and implementation
of such expressive typestate protocols. Our verification approach is highly inspired by Fugue [11].
We extend state invariants, packing, and frames to work in our context. We improve support
for inheritance in comparison to Fugue by decoupling states of frames and reducing overriding
requirements. Details about our specification approach will be provided in sect. 2.

Reasoning about aliased objects.Modular verification of protocol compliance in the pres-
ence of aliasing is notoriously hard. It basically involves tracking the abstract state of all visible
objects and updating these states according to specified state transitions when methods are called.
The problem is that method calls could involve invisible manipulation of relevant objects through
aliases(i.e. other references to those objects). A simple remedy is to enforce that objects have only
one reference, ensuring theirlinearity [32]. Since no aliases exist, typestate changes through the
one available reference are straightforward to track.

Linearity is extremely restrictive in practice because even method calls (i.e. stack aliasing)
become a challenge, let alone storing references in fields (i.e. heap aliasing). Therefore, most
approaches to protocol verification allow some amount of aliasing (e.g. [10, 21, 8]). Ultimately,
however, permanent state changes require linearity (or at least all aliases to be in scope [10, 11,
15]). Many systems also supportsharing(i.e. heap aliasing [12, 15, 21, 8]) of objects, but sharing
fixes the state.Focusingconstructs allow temporarily leaving a state, but objects have to return
to their fixed state before other aliases access them [12, 15]. Some systems also permit harmless
read-only access [21, 8]. In summary, state changes are only permitted if linearity guarantees the

2

absence of unexpected callbacks.
This paper proposes to take the opposite route: as a first approximation, objects always have

to be prepared for callbacks. It is the object’s protocol that should govern when calls can occur,
not the object’s linearity. This work shows that such an approach is feasible. Our approach is
to use fine-grained access control to objects in order to constrain possible state changes through
invisible aliases; object linearity is no longer needed. Specifically, we useaccess permissions
to keep track of what a reference can do to and knows about the referenced object. A permission
grantsfull, shared, orpureaccess to a particular part of the object’s state. Other (possibly invisible)
permissions to the same object are guaranteed to be consistent: either a distinguished writer (full
permission) co-exists with many readers (pure permission) or many writers (shared) co-exist with
many readers (pure) of the same state.

Permissions express design intent by capturing very precisely what access a method needs to an
object. Since they are resources, we use linear logic [17] to combine permissions into expressive
protocol specifications. Correspondingly, linear logic reasoning is used to track permissions as
they flow through the program. Newly created objects have one full permission for the entire
object state. As aliasing occurs, permissions aresplit according what access each reference needs.
Fractions [5] keep track of splits so that they can bejoinedafter temporary aliasing. The flexibility
achieved with fractions was indispensable when specifying Java iterators [3]. Splitting and joining
is handled transparently to the programmer.

In summary, contributions to reasoning about aliased objects include the following. (1) Dif-
ferent references can be constrained to modify orthogonal parts of the referenced object without
knowing about each other. This relates state spaces to data groups [24]. (2) An object’s state can be
partially fixed, giving shared and read-only permissions the ability toassumea state. (3) Objects
can depend in their invariants on all other objects, even read-only ones. (4) Under certain condi-
tions, a fixed state can be left later even if the object was previously aliased in the heap. We point
out that (1) and (2) directly leverage our hierarchical notion of state spaces in access permissions.

Benefits.By allowing object aliasing with permissions and relating objects using linear logic,
our approach can capture protocols involving object collaborations such as iterators [3] and stream
pipes (sect. 2). Clients and implementations can be checked for compliance to such protocols.
To our knowledge, existing typestate-based verification systems lack expressive power needed for
these protocols. Furthermore, our approach helped expose a way of breaking an internal invariant
of a frequently used class in the Java standard library,java.io.BufferedInputStream .

Compared to global analyses [1, 20], our approach promises more scalability and less brit-
tleness. Since it operates modularly, it assists programmers like a compiler in using interfaces
correctly. At the same time we can handle arbitrary callbacks and open recursion, issues that are
difficult to handle in modular approaches. We can also verify correct usageand implementation of
dynamic state tests. Dynamic tests have received surprisingly little attention [8] considering how
common they are (e.g. for testing if a stream is open or a collection is empty).

Outline. The remainder of this paper is organized as follows. In the following section we
introduce our typestate specification approach. We give an overview of our formal verification
approach in section 3. Section 4 formally defines a object-oriented language with expressive type-
state specifications. We discuss protocol verification using this calculus in section 5. Section 6

3

76 5401 23open

read

KK

close //76 5401 23closed
76 5401 23within

read≥0

KK
read

−1
//

close
**76 5401 23eof

read=−1

KK

close //76 5401 23closed

Figure 1: Simple and refined input stream protocols

describes the problem inBufferedInputStream that we found. Soundness of our approach
for a core fragment of specifications is proven in section 7. Section 8 compares our approach to
related work. We conclude in section 9.

2 Typestate Specifications

2.1 Protocols as State Machines

Typestates define protocols as state machines. For example, a simple model of an input stream
would have two statesopen andclosed. The stream can be read as long as it isopen (fig. 1).
Notice that states have an intuitive meaning even though their concrete names are irrelevant.

In an object-oriented language we can associate a class with such a state machine. States
express abstractly what conditions an object satisfies at a given time (e.g., it is “open”). They
respect object encapsulation because states do not correspond to concrete fields in an implementa-
tion. Methods can be specified with the state transitions they can perform (e.g.,close transitions
from open to closed). In this approach, methods are specified independently from each other and
state transitions are reminiscent of traditional function types. This allows verifying typestate-based
protocol specifications in the manner of a type system.

2.2 State Refinements and Dimensions

Rather than defining the possible states of an object with a “flat” set of mutually exclusive states,
we modelstate spacesusing dimensions and refinements [4] that loosely correspond to AND- and
OR-states in Statecharts [19].

State refinementcan be used to distinguish more fine-grained conditions within a state. For
example, we could refineopen into two mutually exclusive stateswithin andeof to distinguish
whetherread returns a character or the “end of file” (EOF) token (fig. 1). The idea ofstate
dimensionsis to separate independent aspects of object behavior. For example, Java input streams
can be “marked” and later “reset” to the marked position [4]. This is possible independently of
the stream’s current position. Thus dimensions obviate the need for “combination” states such
as “marked and within” and allow specifications to focus on dimensions of interest. Technically,
dimensions are just independent refinements that start from a root state calledalive. At runtime, an
object will be in exactly one state in each applicable dimension. The state space of streams could

4

e.g. be specified as follows. Note that each dimension has a unique name.

stream = open, closed refines alive;
position = within, eof refines open;
mark = unmarked, marked refines open;

Subclassesinherit the superclass’s state space and are free to add their own refinements. This
conveniently ensures that states of subclasses always correspond to (possibly more coarse-grained)
states of superclasses [4]. Note that dimensions or states donot correspond to implementation
fields. Instead,state invariants tiefield values to states (see sect. 4.4).

2.3 Access Permissions

A major complication in verifying protocol specifications is that different variables couldalias the
same object. Care must be taken to keep the “views” of those aliases, i.e. what they assume about
the referenced object, consistent.

Our approach is to associate references withaccess permissionsthat are guaranteed to remain
consistent. A permissionperm(x, n,A) grants different levels of access to a partn of the state
space (e.g., a state dimension) to a variablex. Permissions optionally carry additional information
A about the exact state inside the part of the state space they cover (omitted otherwise). We use
the following access levels.

• full permissions give exclusive right to can change state.

• share permissions give shared modifying access. Manyshare permissions may be around,
but nofull permission. This is the de-facto access level in languages without aliasing control
such as Java or C#.

• pure permissions give read-only access. There may be otherpure permissions andeither
onefull permissionor severalshare permissions around.

For example,full(this, position, within) represents afull permission to change state in thepo-
sition dimension of an input stream namedthis that is currently in thewithin state. Permissions to
different dimensions of the same object do not interfere and can therefore be used to independently
change in “their” dimensions.

As a technical device, we use fractions [5] to keep track of permission splitting. This lets us e.g.
“collect” all share permissions to regain afull permission. We usually omit fractions in examples
but sect. 4.3 will make fractions precise. Unlike in existing work [5], we use fractions not to fully
avoid interference but to keep permissions consistent and to allow temporary aliasing.

2.4 Linear Logic Specifications

As input streams illustrate we need considerable flexibility in specifying methods. In particular, it
is crucial to relate states of method receiver, arguments and results to each other and allow non-
deterministic behavior [4, 3]. Both are exhibited by theread method that can transition towithin
or eof and indicates its choice by returning different values.

5

To achieve this expressiveness we specify methods with the decidable multiplicative-additive
fragment of linear logic [17] (MALL). Method pre- and post-conditions are separated with a linear
implication (() and use conjunction (⊗), internal choice (&), and external choice (⊕).

The following example specifies theread method for Java input streams. It requires ashare per-
mission for the receiver’sopen state. The post-condition on the right-hand side of the implication
is an external choice between conjunctions indicating that the caller has no influence on whether
read will return a character or EOF.

share(this, position) ((result≥ 0⊗ share(this, open))
⊕ (result= −1⊗ share(this, open, eof))

For a more complex example, consider the “pipe” implementation in the Java I/O library [4]. A
pipe is created by connecting aPipedOutputStream (called “source”) to aPipedInputStream
(called “sink”). Callingread on the sink will return the next character from a private buffer. The
source’swrite method deposits characters into that buffer using the sink’sreceive method.
The source signals that it is closed by invokingreceivedLast on the sink.

Fig. 2 shows how the sink side of the pipe can be specified using our approach. (For simplicity,
we do not consider the sink as a subclass ofInputStream here.)

Connecting the pipe (using the sink’s constructor) creates two shared permissions to the sink.
One is used by the source for calls toreceive and is “consumed” by the sink when calling
receiveLast . Only then can the sink reacheof and join the two shared permissions (from the
source side and the sink’s client) to close the stream. We use explicit fractions (see sect. 4.3) to
ensure the presence of exactly two shared permissions. They allow us to permanently change the
sink’s state toclosed even though it was previously aliased in the heap. To improve readability,
the explicit fractions needed for this example are expressed withhalf permissions that represent
share permissions with “half” (1/2) fractions as detailed in section 4.

Notice how different kinds of permissions with different assumptions, e.g. inread , close ,
and isClosed , express design intentand allow aliasing: permissions capture what part of the
object’s state a method can affect. Aliasing is permitted because other permissions can exist while
a method executes.

The specification prevents several error conditions that cause runtime exceptions in the Java im-
plementation: (1) closing the sink before the source, (2) callingreceive afterreceiveLast ,
and (3) reading from a closed sink.

3 Verification Approach

In the remainder of the paper we formalize sound modular verification of typestate specifications
based on access permissions for a core object-oriented language based on Featherweight Java (FJ,
[22]). This section summarizes our verification approach before the following sections go into
more detail.

A set of expression checking rules track state and permission changes. The rules are syntax-
directed up to reasoning about permission requirements for e.g. method calls. The intuition is that a
method body “guides” the search for a proof that the method’s post-condition can be satisfied from

6

class PipedInputStream {
stream = open, closed refines alive;
position = within, eof refines open;
buffer = empty, nonEmpty refines within;
filling = partial, filled refines nonEmpty;
source = sourceOpen, sourceClosed refines nonEmpty;

public PipedInputStream(PipedOutputStream src) :
full(src, alive, raw) (half(this, open)⊗ full(src, alive, open)

void close() : half(this, open, eof) (unique(this, alive, closed)
boolean isClosed() : pure(this, alive) ((result= true ⊗ pure(this, alive, closed))

⊕ (result= false ⊗ pure(this, alive, open))

int read() : share(this, open) ((result≥ 0⊗ share(this, open))
⊕ (result= −1⊗ share(this, open, eof))

void receive(int b) : half(this, open)⊗ b ≥ 0 (half(this, open, nonEmpty)
void receivedLast() : half(this, open) (1

}

Figure 2: JavaPipedInputStream protocol (simplified)

its pre-condition by telling the checker which implications (i.e. methods) to apply in which order.
Resource management, i.e. decisions about which permission to use when, is handled transparently
with linear logic reasoning.

Behavioral subtyping.A state space is associated with each class. Subclasses inherit state
spaces and can define additional state refinements. Overriding methods are free to define their
own specifications, e.g. by using more fine-grained states. We devise a simple check that ensures
behavioral subtyping [26] between overridden and overriding methods.

Primitive Booleans.Booleans are primitive and a conditional construct allows us to statically
distinguish outcomes of Boolean tests. This lets us encode dynamic state tests and statically rea-
son about their correct implementation. Typestates donot need a runtime representation in our
approach. Protocol compliance is fully guaranteed at compile time.

Let-normal form.We syntactically distinguish pure terms (in particular of Boolean type) from
expressions. Terms cannot affect permissions while expressions can. We require arguments of
atomic expressions (such as method calls) to be terms in order to simplify permission reasoning.
Results of expressions can be bound to fresh variables using alet construct. It can be used to
simulate recursive expressions [27, 8].

Data groups.We map each field into a part of the class’s state space. Thus nodes in the state
space serve as data groups for object fields [24]. A modifying permission to a data group only

7

permits assignments to fields contained in it.
State invariants.State invariants define abstract typestates in terms of permissions to fields. For

example, a file-based stream, while open, could require a field to hold a valid file descriptor. Only
states within a field’s data group (and class) can depend on the field. State invariants serve as an
explicit abstraction function between class interface and implementation. They let us reason about
clients of a class fully separately from the class itself. They also let us verify that an implementation
is conforms to its interface.

Unpacking.Permissions are explicitlyunpackedin order to gain access to fields [11]. Access is
granted according to state invariants implied by the permission’s state assumption. Full and shared
permissions grant modifying access while pure permissions grant read-only access to fields. Be-
cause of inheritance, only permissions to the method receiver can be unpacked. After manipulating
fields, objects can be re-packed into a potentially different state.

Intermediate packing.The receiver must be fully packed before method calls. This guarantees
that objects are consistent in case of a callback. This is not a strong restriction because the object
can always be packed to an intermediate state. But it lets us enforce that only one permission is
unpacked at any time, allowing us to applyfocus[12] when unpacking shared permissions. Note
that we could avoid intermediate packing in the absence of callbacks.

Frame permissions.Objects are compartmentalized into frames [11]. Each frame corresponds
to a class in the object’s subclass hierarchy. The frame corresponding to the object’s runtime type
is calledvirtual frame. We associate each frame with a separateframe permission. A frame’s
abstract typestate can only depend on fields defined in the same frame and the abstract state of the
inherited frame.

Open recursion.A frame permission to an object’s virtual frame is calledobject permission.
Frame permissions are needed for unpacking and statically dispatched calls while object permis-
sions are needed for dynamic dispatch. Dynamic dispatch can treat object permissions (to the
receiver) as frame permissions (to the virtual frame). This only requires methods to be overridden
as in Fugue [11] if they need frame permissions but overriding is not required for methods that
only need object permissions.

Soundness.Intuitively, for every permission we maintain the invariant that the statically tracked
state assumption is a sound approximation of the referenced object’s runtime state (unless it is
unpacked). While an object is unpacked we ensure that field assignments do not affect other
permissions. Packing brings the object into a new state that is soundly approximated by other
permissions. Since at most one object is unpacked at any time we are guaranteed that objects are
consistent with the permission that is used for unpacking them. Using these intuitions, we prove
soundness of a core language fragment in section 7.

4 Formal Language

4.1 Syntax

Fig. 3 shows the syntax of a simple class-based object-oriented language. The language is inspired
by Featherweight Java (FJ, [22]); we will extend it to include typestate protocols in the following

8

programs PR ::= 〈CL, e〉
class decl. CL ::= class C extends C′ { F R I N M } I, N in fig. 5
field decl. F ::= f : T in n

method decl. M ::= T m(T x) : MS = e MS in fig. 5
refinements R ::= d = s refines s0

terms t ::= x | l | true | false atoms
| t1 and t2 | t1 or t2 | not t connectives

expressions e ::= t | f | assign f := t terms, fields
| new C(t) | t0.m(t) | super.m(t) construction, calls
| if(t, e1, e2) | let x = e1 in e2 condition, binding

values v ::= l | true | false
references r ::= x | f | l

types T ::= C | bool
nodes n ::= s | d

classes C fields f variables x methods m
locations l states s dimensions d

Figure 3: Base language syntax

subsections. We identify classes (C), methods (m), and fields (f) with their names. We use an
overbar notation to abbreviate a list of elements. For example,x : T = x1:T1, . . . , xn:Tn. Types
(T) in our system include Booleans (bool) and classes.

Programs are defined with a list of class declarations and a main expression. A class decla-
ration CL gives the class a unique nameC and defines its fields, methods, typestates, and state
invariants. A constructor is implicitly defined with the class’s own and inherited fields. Fields (F)
are declared with their name and type. Each field is mapped into a part of the state spacen that can
depend on the field (details in sect. 5.2). A method (M) declares its result type, formal parameters,
specification and a body expression. State refinementsR will be explained in the next section;
method specificationsMS and state invariantsN are deferred to sect. 4.4.

We syntactically distinguish pure termst and possibly effectful expressionse. Arguments
to method calls and object construction are restricted to terms. This simplifies reasoning about
effects [27, 8]. A translation from a more conventional syntax with recursive expressions into our
let-normal form is straightforward. Notice that neither field access nor assignment are prefixed
with a term. This syntactically restricts field access and assignment to fields of the receiver class.
Explicit “getter” and “setter” methods can be defined to give other objects access to fields. We
define the result of an assignment to be thepreviousfield value.

9

refinements(Object) = ·
class C extends C ′ { F R . . . } refinements(C ′) = R′

refinements(C) = R′, R

n in refinements(C)

C ` n wf
C ` A1 wf C ` A2 wf

C ` A1 ⊕ A2 wf
C ` A1 wf A1 # A2 C ` A2 wf

C ` A1 ⊗ A2 wf

d = s refines s ∈ refinements(C)

C ` si ≤ d C ` d ≤ s
C ` n wf

C ` n ≤ n
C ` n ≤ n′′ C ` n′′ ≤ n′

C ` n ≤ n′

d = s refines s∗ ∈ refinements(C) d′ = s′ refines s∗ ∈ refinements(C) d 6= d′

C ` d # d′

C ` n1 ≤ n′1 C ` n′1 # n′2 C ` n2 ≤ n′2
C ` n1 # n2

C ` A′ # A

C ` A # A′
C ` A1,2 # A

C ` A1 ⊗ A2 # A

C ` A1,2 # A

C ` A1 ⊕ A2 # A
C ` n′ ≤ n
C ` n′ ≺ n

C ` A1,2 ≺ n C ` A1 ⊗ A2 wf
C ` A1 ⊗ A2 ≺ n

C ` A1,2 ≺ n C ` A1 ⊕ A2 wf
C ` A1 ⊕ A2 ≺ n

C ` A ≺ n ∀n′ : C ` A ≺ n′ impliesn ≤ n′

C ` A � n

Figure 4: State space judgments

4.2 State Spaces

State spaces are formally defined as a list of state refinements (see fig. 3). A state refinement (R)
refines an existing state in a new dimension with a set of mutually exclusive sub-states. We uses
andd to range over state and dimension names, respectively. A noden in a state space can be a
state or dimension. State refinements are inherited by subclasses. We assume a root statealive that
is defined in the root classObject .

We define a variety of helper judgments for state spaces in fig. 4.refinements(C) determines
the list of state refinements available in classC. C ` A wf defines well–formed state assumptions.
Conjunctive assumptions have to cover orthogonal parts of the state space.C ` n ≤ n′ defines the
substate relation for a class.C ` A # A′ defines orthogonality of state assumptions.A andA′ are
orthogonal if they refer to different (orthogonal) state dimensions.C ` A ≺ n defines that a state
assumptionA only refers to states underneath a root noden. C ` A � n finds the tightest suchn.

4.3 Access Permissions

Access permissionsp give references permission to access an object. Permissions to objects are
uniformly represented withaccess(r, n, g, k, A) (fig. 5). (For simplicity, we omittedg andk in
section 2.) The components have the following meaning.

• Permissions are granted to referencesr. References can in general be variables, locations,

10

and fields (of the current receiver object) that are defined in the current scope.

• Permissions apply to a particularsubtreein the space space ofr. The subtree is identified
by its root noden. The root node is a state or dimension defined inC. Other parts of the
state space are unaffected by the permission. The type system can always assume that the
referenced object is in staten.

• The fraction functiong tracks for each node on the path fromn to alive a symbolic fraction
[5]. The fraction function keeps track of how often permissions were split at different nodes
in the state space so they can be coalesced later (see sect. 5.5).

• Thesubtree fractionk encodes the level of access granted by the permission.k > 0 grants
modifying access.k < 1 implies that other potentially modifying permissions exist. Frac-
tion variables range over fractions strictly greater than 0. The different access levels are
summarized in the following table.

Access level This permission Other permissions Subtree Fraction
full exclusive modifying access only read-only k = 1
share shared modifying access modifying and read-only 0 < k < 1
pure read-only access modifying and read-only k = 0

• An optional state assumptionA expresses additional state knowledge within the permis-
sion’s subtree. Modifying permissions can be used to change the current state within the
permission’s subtree. If other modifying permissions exist then the state assumption istem-
porary, i.e. lost on any effectful expression (because the object’s state may change without
the knowledge ofr). Thus onlyfull permissions can permanently make state assumptions
until they modify the object’s state themselves. If no state assumption is given then the object
is still guaranteed to be in staten.

As mentioned above, the subtree fractionk lets us recover our original three permission kinds
that we write asfull, share, andpure. They can be encoded as follows. Note that this equates
full(r, n, g, A) ≡ share(r, n, g, 1, A) which conforms with our intuition.

access(r, n, g, 1, A) ≡ full(r, n, g, A)
access(r, n, g, k, A) ≡ share(r, n, g, k, A) (k 6= 0)
access(r, n, g, 0, A) ≡ pure(r, n, g, A)

4.4 Permission-Based Specifications

Objects often dependent on each other. For example, we want to be able to express that an object
is in a particular state only if a Boolean value is true. Since permissions act as linear resources we
use a decidable subset of linear logic connectives to relate multiple objects (fig. 5).

The atoms of our predicate language are the permissionsp and factsq about Boolean values.
Facts about values have the same role as state information about objects although state information

11

permissions p ::= access(r, n, g, k, A) access perm.
facts q ::= t = true | t = false boolean values

assumptions A ::= n | A1 ⊗ A2 | A1 ⊕ A2 node, conj., disj.
fraction fct. g ::= z | n 7→ v variable, mapping

| g/2 | g1, g2 split, extension
fractions k ::= 1 | 0 | z | k/2 full, zero, variable, split

predicates P ::= p | q permissions, facts
| P1 ⊗ P2 | 1 conjunction
| P1 & P2 | > internal choice
| P1 ⊕ P2 | 0 external choice
| ∃z : H.P | ∀z : H.P fraction quantification

method specsMS ::= P (E
expr. types E ::= ∃x : T.P

state inv. N ::= n = P

initial state I ::= initially 〈∃f : T .P, s1 ⊗ . . .⊗ sn〉
fraction terms h ::= g | k
fraction types H ::= Fract | n → Fract value, function
fraction vars. z

Figure 5: Permissions, predicates, and specifications

A changes over time while factsq remain true. These atoms can be combined with the linear
operators multiplicative conjunction (⊗), additive conjunction (&), and additive disjunction (⊕).
We also include existential (∃z : H.P) and universal quantification of fractions (∀z : H.P) into our
permissions. Quantification of fractions alleviates the programmer from writing concrete fraction
functions in most cases. We will use an existential quantification over types to type all expressions
(E).

Method specifications.Methods are specified with a linear implication (() of predicates
(MS). This captures the intuition that a method “takes” a number of permissions and returns
potentially different permissions. The left-hand side of the implication (essentially the method
pre-condition) may refer to method receiver and formal parameters. The right-hand side (post-
condition) existentially quantifies the result (a similar technique is used in Vault [10]). We always
refer to the receiver withthisand usually call the return valueresult.

State invariants.We also use predicates to define state invariants. State invariants were pro-
posed in Fugue [11] as a generalization of class invariants. We decided to use linear logic predicates
for state invariants as well (N). In general, several of the defined state invariants will have to be
satisfied at the same time. This is due to the hierarchical nature of the state space and the exis-
tence of orthogonal state dimensions. Usually, state invariants will use existential quantification to
abstract from concrete fraction functions. Each class declares an initial state as a conjunction of
states (I). It must be established during object construction.

12

4.5 Handling Inheritance

Specifications of object behavior are usually not oblivious to inheritance, and our approach is no
exception. One of the problems is that each class in a class hierarchy defines its own fields and
manipulates them. Fugue proposed to compartmentalize objects intoframes[11]. Each frame
corresponds to a class in the object’s class hierarchy.

Unlike state refinements, state invariants arenot inherited by subclasses. Separate state invari-
ants for each class let us associate separate typestates with each frame. The state of the “virtual”
frame (that corresponds to the runtime type of the object) represents the overall state of the object.
Fugue essentially forced all frames of an object to be in the same typestate. Moreover, all methods
had to be overridden by all subclasses. Calls tosuperwere possible and essentially required in
order to keep frame typestates consistent.

Following previous work we allow subclasses to explicitly express their expectations of the
super-frame’s state, thereby decoupling typestates of different frames. This is for example neces-
sary for defining a buffered stream as a subclass of a “filter” that forwards calls to an “underlying”
stream, as implemented in the Java I/O library [4]. The filter’s state is always the same as the
underlying stream’s. But the buffered input stream caches characters internally and can therefore
still be in statewithin while the inherited filter is alreadyeof.

In order to realize this idea we allow the specification of permissions forsuper in state in-
variants. State invariants can refer to fields defined in the current class and typestates of the imme-
diately extended class. Thus all fields are “private” to a class frame.

references r ::= . . . | super | thisfr super frame, this frame

Thus permissions actually give access to a particular frame. Theobject permissionswe defined
in sect. 4.3 are permissions to the “virtual frame”. They can be used for “entering” an object
through a dynamically dispatched call. In method specifications we distinguish permissions for
the receiver’s “current” frame withthis fr from normal permissions.

Only methods that require frame permissions have to be overridden; this lets us treat object
permissions as frame permissions in dynamically dispatched calls. Permissions for the receiver’s
current frame are needed for methods that access fields. If a method merely forwards calls then
it only needs object permissions and need not be overridden.1 We believe that this distinction
significantly reduces overriding burden.

4.6 Behavioral Subtyping

Subclasses should be allowed to define their own specifications, e.g. to add precision or support
additional behavior [4]. However, subclasses need to bebehavioral subtypes[26] of the extended
class. Our system enforces behavioral subtyping in two steps. Firstly, state space inheritance con-
veniently guarantees that states of subclassesalwayscorrespond to states defined in superclasses
[4]. Secondly, we make sure that every overriding method’s specification implies the overridden

1A call can be forwarded to an argument or to the receiver itself. The latter occurs when base class methods
implement functionality in terms of other methods.

13

(z : H) ∈ Γ

Γ ` z : H Γ ` 1 : Fract Γ ` 0 : Fract
Γ ` k : Fract

Γ ` k/2 : Fract

Γ ` k : Fract (k 6= 0)

Γ ` n 7→ k : n → Fract
Γ ` g : n → Fract

Γ ` g/2 : n → Fract
Γ ` g : n → Fract Γ ` g′ : n′ → Fract

Γ ` g, g′ : n, n′ → Fract

Figure 6: Fraction typing

Γ ` r : C C ` A ≺ n
Γ ` g : upC(n) → Fract Γ ` k : Fract

Γ ` access(r, n, g, k, A) Permission

Figure 7: Well–formed permissions

method’s specification [4] using theoverride judgment (fig. 10) that is used in checking method
declarations (fig. 9). This check leads to method specifications that are contra-variant in the domain
and co-variant in the range as required by behavioral subtyping.

5 Modular Typestate Verification

5.1 Permission Tracking

This section shows how we check method implementations against the permission-based specifi-
cations introduced in the last section. What we describe here is a modular static typestate checking
technique that allows us to guarantee at compile-time that the behavioral specifications of a pro-
gram will never be violated at runtime. We emphasize that our approach does not require tracking
typestates at run time.

We permission-check an expressione with the judgmentΓ; ∆ `i
C e : ∃x : T.P \ E . This is

read as, “in valid contextΓ and linear context∆, an expressione executed within receiver class
C produces an object of type T and permissionsP and affects fields inE”. The permissions in
∆ are consumed in the process. We omit the receiverC where it is not required for checking a
particular syntactic form. The setE keeps track of fields that were assigned to, which is important
for the correct handling of permissions to fields. It is omitted when empty. The markeri in the
judgment can be 0 or 1 wherei = 1 indicates that states of objects in the context may change
during evaluation of the expression. This will help us reason about temporary state assumptions.
A combination of markers withi ∨ j is 1 if at least one of the markers is 1.

valid contexts Γ ::= · | Γ, x : T | Γ, z : H | Γ, l : C | Γ, q
linear contexts ∆ ::= · | ∆, P

effects E ::= · | E , f

14

(x : T) ∈ Γ

Γ ` x : T
T-VAR

(l : C) ∈ Γ

Γ ` l : C
T-LOC

Γ ` true : bool
T-TRUE

Γ ` false : bool
T-FALSE

Γ ` t1 : bool Γ ` t2 : bool
Γ ` t1 and t2 : bool

T-AND
Γ ` t1 : bool Γ ` t2 : bool

Γ ` t1 or t2 : bool
T-OR

Γ ` t : bool
Γ ` not t : bool

T-NOT
Γ ` t : C ′ C ′ extends C

Γ ` t : C
T-SUB

Figure 8: Term typechecking

Valid and linear contexts distinguish valid (permanent) facts (Γ) from resources (∆). Resources
are tracked linearly, forbidding their duplication, while facts can be used arbitrarily often. (In
logical terms, contraction is defined for facts only). The valid context types object variables,
fraction variables, and location types and keeps track of facts about termsq. Fraction variables
are tracked in order to handle fraction quantification correctly. The linear context holds currently
available resource predicates.

Fractions and fraction functions are formally typed in figure 6. Note that fraction function types
keep track of exactly which nodes are mapped. We use this to check that the fraction function of
a permission covers exactly the nodes between (and including) the permission’s root node and the
state space rootalive. Fraction typing lets us define permission validity (figure 7

The judgmentΓ ` t : T types terms (figure 8). It includes the usual rule for subsumption using
nominal subtyping induced by theextends relation. Term typing is used in expression checking.

Our expression checking rules are syntax-directed up to reasoning about permissions. Permis-
sion reasoning is deferred to a separate judgmentΓ; ∆ ` P that uses the rules of linear logic to
prove the availability of permissionsP in a given context. This judgment will be discussed in
sect. 5.5. Permission checking rules for most expressions appear in fig. 9 and are described in
turn. Packing, method calls, and field assignment are discussed in following subsections. Helper
judgments are summarized in fig. 10. The notation[t/r]e substitutest for occurrences ofr in e.

• P-TERM embeds terms. It formalizes the standard logical judgment for existential introduc-
tion and has no effect on existing objects.

• P-FIELD checks field accesses in a similar way to P-TERM.

• P-NEW checks object construction. The parameters passed to the constructor have to satisfy
initialization predicateP and become the object’s initial field values. The new existentially
quantified object is associated with a full permission to the root state (with full fraction) that
makes state assumptions according to the declared start stateA. Object construction has no
effect on existing objects.

15

Γ ` t : T Γ; ∆ ` [t/x]P

Γ; ∆ `0 t : ∃x : T.P
P-TERM

localFields(C) = f : T Γ; ∆ ` [fi/x]P

Γ; ∆ `0
C fi : ∃x : Ti.P

P-FIELD

Γ ` t : T init(C) = 〈∃f : T .P, A〉 Γ; ∆ ` [t/f]P

Γ; ∆ `0 new C(t) : ∃x : C.full(x, alive, {alive 7→ 1}, A)
P-NEW

(Γ, t = true); ∆ `i e1 : ∃x : T.P1 \ E1

Γ ` t : bool (Γ, t = false); ∆ `j e2 : ∃x : T.P2 \ E2

Γ; ∆ `i∨j if(t, e1, e2) : ∃x : T.P1 ⊕ P2 \ E1 ∪ E2
P-IF

Γ; ∆ `i e1 : ∃x : T.P \ E1 (Γ, x : T); (∆′, P) `j e2 : E2 \ E2

i = 1 implies no temporary assumptions in∆′ FieldsE1 do not occur in∆′

Γ; (∆, ∆′) `i∨j let x = e1 in e2 : E2 \ E1 ∪ E2
P-LET

(x : T , this : C); P `i
C e : ∃result : Tr.Pr ⊗> \ E E = ∃result : Tr.Pr

override(m, C,∀x : T .P (E)

Tr m(T x) : P (E = e ok in C
P-METH

. . . M ok in C M overrides all methods with frame permissions inC ′

class C extends C′ { F R I N M } ok
P-CLASS

CL ok ·; · `i
_ e : E \ E

〈CL, e〉 : E
P-PROG

Figure 9: Permission checking for expressions (part 1)

The judgmentinit (fig. 10) yields initialization predicate and initial state for a class. The start
state is a conjunction of states (fig. 5). The initialization predicate is the invariant needed for
the start state.

• P-IF introduces non-determinism into the system, reflected by the disjunction in its type. We
make sure that the predicate is of Boolean type and then assume its truth in checking thethen
branch (e1). Similarly, we assume the falsehood of the predicate in checking theelsebranch
(e2). This approach lets branches make use of the conditional.

• P-LET checks alet binding. Since variables are terms,let can be used to bind new ob-
jects, fields, or method results in subsequent expressions. The linear context used in check-
ing the second subexpression must not contain permissions for fields affected by the first
expression. This makes sure that old permissions to fields do not “survive” assignments and
packing. Moreover, temporary state information are dropped if the first subexpression has
side effects.

16

A program consists of a list of classes and a main expression (P-PROG, fig. 9). As usual,
the class tableCL is globally available. The main expression is checked with initially empty
contexts. The judgmentCL ok (P-CLASS) checks a class declaration. It checks fields, states,
and invariants for syntactic correctness (omitted here) and verifies consistency between method
specifications and implementations using the judgmentM ok in C. P-METH assumes the specified
pre-condition of a method (i.e. the left-hand side of the linear implication) and verifies that the
method’s body expression produces the declared post-condition (i.e. the right-hand side of the
implication). Conjunction with> drops excess permissions, e.g. for garbage-collected objects.
Notice that a method itself is not a linear resource since all resources it uses (including the receiver)
are passed in upon invocation.

5.2 Packing and Unpacking

We use a refined notion ofunpacking[11]: we unpack and pack a specific permission. Unpacking
a permission gives access to the part of the object covered by that permission. The access we gain
to fields reflects the kind of permission we unpacked. Full and shared permissions give modifying
access, while a pure permission gives read-only access to underlying fields.

To avoid inconsistencies, objects are always fully packed when methods are called. Thus at
any given time, only one method can unpack an object. To further simplify the situation, only
one permission can be unpacked at the same time. Intuitively, this approach “focuses” [12] on the
permission being unpacked. This lets us improve usability ofshare permissions by unpacking
them likefull permissions, gaining full rather than shared access to underlying fields (if available).
The syntax for packing and unpacking is as follows.

expressions e ::= . . . | unpack(n, k, A) in e unpacking
| pack n to A in e packing

Packing and unpacking always affects the receiver of the currently executed method. The
parameters to packing and unpacking express the programmer’s expectations about the permission
she is unpacking. In particular,n denotes the subtree in the state space the permission should cover.
A are the assumptions about states within that subtree that need to be satisfied. For simplicity, an
explicit subtree fractionk is part of packing expressions. It could be inferred from a programmer-
provided permission kind like “share”.

In order for pack to work properly we have to “remember” the permission we unpacked.
Therefore we introduceunpacked as an additional linear predicate.

permissions p ::= . . . | unpacked(n, g, k, A)

The checking rules for packing and unpacking are given in fig. 11. Notice that packing and
unpacking always affects permissions tothisfr, the frame of the receiver in which the surrounding
method is defined. (We ignore substitution ofthis with a location at runtime here.) P-UNPACK

first derives the permission to be unpacked. The helper judgmentinv determines a predicate that
describes the receiver’s fields based on the permission being unpacked. It is used for checking the

17

body expressione. An unpacked predicate is added into the linear context that lets field assign-
ments and packing work correctly. We can prevent multiple permissions from being unpacked at
the same time using a straightforward dataflow analysis [9] (omitted here).

P-PACK does the opposite of P-UNPACK. It derives the field predicate necessary for packing
the given permission and then assumes that permission in checking the body expression. Notice
how P-PACK verifies that the receiver was unpacked before. The state assumptionA can differ
from before only if a modifying permission was unpacked. Finally, the rule ensures that field
permissions do not “survive” packing.

Invariant transformation.The judgmentinvC(n, g, k, A) essentially determines what it means
to possess an atomic permissionaccess(thisfr, n, g, k, A) for an object of (runtime) classC. It is
defined in fig. 12. It uses thepurify function (fig. 13) that converts all atomic permissions intopure
permissions. Unpacking a full or shared permission with root noden yields purified permissions
for nodes “above”n and includes invariants following from state assumptions as–is. Conversely,
unpacking a pure permission yields completely purified permissions.

Example: Dynamic State Tests.A dynamic state test for a states is a method with a type like
∀g : alive → Fract.pure(this , alive, g) (∃b : bool.(b = true ⊗ pure(this , alive, g, s))⊕
(b = false ⊗pure(this , alive, g, s′)) that can be implemented as follows. This example makes
the simplifying assumption that the object contains a Boolean fieldflag that is true iff the object is
in states.

unpack (alive, 0, alive) in let x = flag in
if (x, pack alive to s in true , pack alive to s′ in false)

5.3 Calling Methods

We distinguish virtual calls and calls to inherited methods. Checking any method call expression
involves proving the method’s pre-condition. The expression is typed with the corresponding post-
condition. Unfortunately, calling a method can result into callbacks. In order to ensure that objects
are always consistent when called we require them to be fully packed before method calls. This
can be ensured with a simple dataflow analysis [9].

While this rule may seem unnatural at first, it reflects that aliased objects have to be prepared
for callbacks. Note that the packing requirement is not a strong limitation. We can always pack
to some intermediate state. Moreover, intermediate packing removes the need for adoption as in
existing work [12]. Instead, the intermediate state represents the situation where an adopted object
was taken out of the adopting object. Inferring intermediate states as well as identifying where
callbacks are impossible are areas for future research.

Virtual calls. Virtual calls are dynamically dispatched (rule P-CALL). In virtual calls, frame
and object permissions are identical because object permissions simply refer to the object’s virtual
frame. This is achieved by substituting the receiver for boththisandthisfr.

Super calls.Super calls are statically dispatched (rule P-SUPER). We substitutesuper only
for thisfr. Recall thatsuper is used to identify permissions to the super-frame. We omit a substi-
tution of this for the receiver (thisagain) for clarity.

18

5.4 Field Assignments

Assignments to fields change the state of the receiver’s current frame. We point out that assign-
ments to a field donot change states of objects referenced by the field. Therefore reasoning about
assignments mostly has to be concerned with preserving invariants of the receiver. Again,un-
packed predicates help us with this task.

Our intuition is that assignment to a field requires unpacking the surrounding object to the point
where all states that refer to the assigned field in their invariants are revealed. Notice that the object
does not have to be unpacked completely in this scheme. For simplicity, each field is annotated
with the subtree that can depend on it. Thus we interpret subtrees as data groups [24], and every
field is mapped into one of them.

The rule P-ASSIGN(fig. 11) assigns a given objectt to a fieldfi and returns the old field value
as an existentialx′. This preserves information about that value. It verifies that the new object is of
the correct type and that a suitablefull or share permission is currently unpacked. By recording an
effect onfi we ensure that information about the old field value cannot flow around the assignment
(which would be unsound).

5.5 Permission Splitting and Joining

Our permission checking rules rely on the ability to prove a permission with the current resources,
written Γ; ∆ ` P (figure 14). We use standard rules for the multiplicative-additive fragment
of linear logic (MALL) with quantifiers that only range over fractions. This fragment has been
proven decidable [25]. Following Boyland [6] we add a rule SUBST that introduces a notion of
substitution into the logic. It allows to substitute a set of linear resources with an equivalent one.

Γ; ∆ ` P ′ P ′ V P

Γ; ∆ ` P
SUBST

The judgmentP V P ′ defines legal transformations similar to a subtyping judgment in con-
ventional type systems. We use substitutions for splitting and joining permissions with the rules
shown in fig. 15. The symbolWV indicates that transformations are allowed in both directions.
We explain each rule in turn.

SYM symmetrically splits a permission into two equivalent permissions. Notice how fractions
are split. ASYM asymmetrically splits apure permission off a given permission. Here, the subtree
fractionk is untouched, reflecting the asymmetric split. Both transformations can be inverted.

F-SPLIT-⊗ splits a full permission with a conjunctive state assumption into a conjunction of
full permissions. F-JOIN-⊗ inverts F-SPLIT-⊗ but requires the fraction on the new root node to
be1. This guarantees that no additional full or shared permissions exist in the new permission’s
subtree. F-⊕ splits and conjoins full permissions with a disjunction of state assumptions. Since
only one of the two state assumptions can be true at a given time we do not need to split fractions.

F-DOWN limits a full permission to a smaller subtree by moving the root node down in the
state space. The fraction function is appended with additional1 fractions for nodes that are above
the moved root. Notice that this operation is only allowed if any state assumptions of the original
permission can be preserved. F-UP does the opposite but like F-JOIN-⊗ it requires the fraction on

19

the new root node to be1. Similarly, P-UP can be used to weaken a pure permission by moving its
root up in the state space. Finally, FORGET allows a permission to “forget” its state assumption.
This rule is used to drop temporary state assumptions.

Our splitting and joining rules will maintain a consistent set of permissions for each object.
Permissions to a subtree in the state space of a runtime object are consistent if there exists at most
one full permission and an arbitrary number ofpure permissions to the subtree. Moreover, an
arbitrary number ofshare permissions is allowed to exist if and only if nofull permission exists.
Fractionsk of all permissions to the subtree must sum up to (at most) 1. Furthermore, all other
permissions to the object refer to parts of the state space that are orthogonal to the subtree (e.g. in
a different state dimension). Finally, fraction functions of all permissions to an object sum up to
(at most) 1.

6 Breaking an Invariant in Java Buffered Input Streams

To illustrate how verification proceeds, figure 16 shows a simplified version of thefill method in
java.io.BufferedInputStream written in our core language.BufferedInputStream
buffers characters from an underlying stream to make reading more efficient. In Sun’s current Java
standard library implementation (Java 5 and 6),fill is responsible for retrieving more characters
from the underlying stream if its character buffer is depleted.

As can be seen we need an intermediate statereads and a marker fieldreading that indicate
an ongoing call to the underlying stream. We also need an additional state refinement to specify
the internal methods that implement reading from the underlying stream. (We assume thatthisfr

permissions can be used for calls toprivate methods.)
Maybe surprisingly, we have to re-assign field values aftersuper.read() returns. The

reason is that when callingsuper we loose temporary state information forthis. Assignment
re-establishes this information and lets us pack properly before callingdoFill recursively or
terminating in the case of a full buffer or a depleted underlying stream.

It turns out that these re-assignments arenot just an inconvenience in our method but point to
a real problem in the Java standard library implementation. It is possible to break an invariant in
BufferedInputStream through a reentrant callback. In a nutshell, if an underlying stream
calls back into the buffer to read then the following happens:

1. The underlying stream is called again, potentially overriding buffer content. If the underlying
stream keeps calling back then the program goes into an infinite loop.

2. The second call into read advances the buffer’sposfield to pos > 0. Later, the buffer’s
countfield will be set aspos+ buffer.length, thereby violating the invariant thatcount <
buffer.length. Ultimately, the buffer will try to read behind the end of its buffer array, causing
an undocumentedArrayIndexOutOfBoundsException .

The following implementation of an underlying stream exposes this problem (tested with Java
6, build 1.6.0_b105, and two versions of Java 5).

20

package test.java.io;

import java.io.IOException;
import java.io.InputStream;
import java.io.BufferedInputStream;

/ **
* @author Kevin Bierhoff

*
* /

public class MaliciousStream extends InputStream {

private BufferedInputStream loop;
private int callCount = 0;

public MaliciousStream() {
super();

}

@Override
public int read() throws IOException {

// never called
return -1;

}

@Override
public int read(byte b[], int off, int len) throws IOException {

int calls = ++callCount;
if(calls < 2) {

System.out.println("Recursive read: " + loop.read());
}
System.out.println("Fill " + calls + " to " +

b.hashCode() + "[" + off + ".." + (off+len) + "]");
if(b[0] != 0)

System.out.println("Overriding content");
for(int i = off; i < off + len; i++) {

b[i] = (byte) (calls & 0xFF);
}
return len;

}

public void setLoop(BufferedInputStream loop) {

21

this.loop = loop;
}

public static void main(String[] args) {
MaliciousStream h = new MaliciousStream();
BufferedInputStream b = new BufferedInputStream(h);
h.setLoop(b);

int i = 0;
try {

int c, oldc = -1;
for(; i < 30000; i++) {

c = b.read();
if(c != oldc) {

System.out.println("Character " + i +
" switches to " + c);

oldc = c;
}

}
}
catch (Exception e) {

System.err.println("Exception in iteration " + i);
e.printStackTrace();

}
}

}

Running themain method will terminate the program with anArrayIndexOutOfBoundsException
and produce the following output:

Fill 2 to 17523401[0..8192]
Recursive read: 2
Fill 1 to 17523401[0..8192]
Overriding content
Character 0 switches to 1
Exception in iteration 8191
java.lang.ArrayIndexOutOfBoundsException: 8192

at java.io.BufferedInputStream.read(BufferedInputStream.java:239)
at test.java.io.MaliciousStream.main(MaliciousStream.java:57)

The buffer array is filled twice, first with 2’s and then with 1’s. The buffer’s client (themain
method) never sees the 2’s because they are immediately overridden with 1’s. The exception is
thrown when all characters from the buffer array were read and the buffer attempts to read the first

22

cell behind the end of the array. The buffer attempts to read behind the end of the array because its
field count—which indicates how many characters are currently buffered—is larger than the length
of the buffer array, as explained above. We submitted this issue to Sun on 9 March 2007.

In our approach, this problem is avoided. Becausefill operates on ashare permission, our
verification approach forces taking into account possible field changes through reentrant calls with
othershare permissions. (This is precisely what our malicious stream does.) We could avoid field
reassignments by havingread require afull permission, thereby documenting that (modifying)
reentrant calls are not permitted for this method.

7 Soundness

This section proves soundness for a fragment of the system presented in the previous sections. To
this end, we define a simple core language with an instrumented dynamic semantics that tracks
fractions for references and states for objects. Since our approach guarantees protocol compliance
at compile time it is not actually necessary to track fractions or states during execution; we only
do this for the purpose of proving soundness.

The dynamic semantics is given as a small-step evaluation semantics that modifies a heap.
Heaps track fractions for references and states for objects. In order to properly manipulate heaps
we need to include fractions into our expressions, e.g., when passing an object as an argument to a
method. It is assumed that typechecking ensures that the used fraction is available according to the
current permission set. One could actually insert fractions into expressions based on typechecking.

Heaps track fractions both for stack and field references. Objects are represented ask · o 7→
C(f = k · o)@S, which is read as, “objecto of classC with field valueso for its fieldsf . f are the
fields defined in classC. The initialk indicates the fraction that is currently available on the stack
for accessingo. The fractionsk are fractions of the referenced objects that are held byo’s fields.

Compared to the full system, the fragment proven sound has the following limitations.

• Inheritance and subtyping are not supported.

• Only permissions for objects as a whole are supported and expressed ask ·r@s. The fraction
k distinguishes pure (k = 0), shared (0 < k < 1) and full (k = 1) access. Thus, permissions
for dimensions are not supported. Therefore, we do not include state dimensions into the
formal system as they can be easily encoded with separate states for each element of the
cross product of states from different dimensions.

• Specifications are deterministic.

• We assume that all expressions can have effects. This means that temporary state information
is almost immediately forgotten.

In future work we plan to extended this fragment to support structural subtyping, non-deterministic
specifications, and effect tracking for expressions similar to the formal system presented in pre-
ceding sections. We plan to encode inheritance, state dimensions, and permissions for subtrees of
the state space of an object in this extended fragment.

23

Despite the simplified syntax, typing rules of the core language are largely unchanged. The
invC judgment discussed before is dramatically simplified in the absence of permissions for sub-
trees. To simplify the dynamic semantics we assume thatinvC(s, k) refers to fieldsf with this.f .
(As before, ifk = 0 then the state invariant is purified, see figure 13.) We allow unpacking arbi-
trary objects, not just the receiver as in the system presented before. We keep insisting that only
one object is unpacked at a time and that objects be packed before any methods are called. This
ensures that effects are only collected for one object at a time (proven in a separate lemma). In
order to so, the typechecking judgment for our core system keeps track of what object is currently
unpacked in a separate context.

24

7.1 Core Language Syntax

terms t ::= x variable
| o object

expressions e ::= k · t term
| new C(k · t) object construction
| k · t.m(k · t) method call
| let x = e1 in e2 binding
| unpack k · t@s in e unpack
| pack t to s in e pack
| k · t.f field read
| t1.f := k · t2 assignment

expr. types E ::= ∃x : C.P

class decls. CL ::= class C { states s refine alive; C f I N M }
methods M ::= Cr m(C x) : P (∃result : Cr.P = e

initialization I ::= initially 〈∃f : C.P, s〉
invariants N ::= s = P
references r ::= t terms

| t.f fields
predicates P ::= k · r@s permission

| P1 ⊗ P2 conjunction
valid contexts Γ ::= · | Γ, x : C

stores Σ ::= · | Σ, o : C
linear contexts ∆ ::= · | ∆, P

heaps µ ::= · | µ, k · o 7→ C(f = k · o)@S
object states S ::= s packed in state

| Unpacked(k) unpacked modifying
| Unpacked(s) unpacked read-only in state

packing flags u ::= − no object unpacked
| k · t@s unpacked object

effects E ::= ∅ | {t.f} | E1 ∪ E2

fractions k ∈ [0, 1]
class names C

method names m
variable names x

field names f
state names s

object locations o

25

7.2 Judgment Forms

Judgment Judgment form Explanation
Evaluation e|µ 7−→ e′|µ′ In heapµ, expressione evaluates toe′, changing

the heap toµ′, in one step.
Expression typing Γ|Σ|∆|u ` e : E \ E|u′ In variable contextΓ, storeΣ, linear context∆,

and unpacking flagu, expressione has typeE
and may assign to fields inE and and changes
unpacking tou′.

Store typing (defini-
tion 1)

Σ|∆|u ` µ With storeΣ, linear context∆, and packing flag
u, heapµ is well-typed.

Linear logic entail-
ment (figure 14)

Γ|Σ|∆ ` P In variable contextΓ and storeΣ, linear context
∆ provesP .

Runtime property
check (definition 5)

µ|k · o ` P Heapµ restricted to stack permissionsk · o sat-
isfies propertyP .

7.3 Preservation

Definition 1 (Store Typing) If

• dom(Σ) = dom(µ)

• If u = − then all objects inµ are packed and no permissions in∆ refer to fields

• If u = ku · ounp@su thenko · ounp 7→ C(. . .)@S is the only object unpacked inµ and all per-
missions to fields in∆ refer to fields ofounp and either (a)ku = 0 andS = Unpacked(s′),
wheres′ ≤ su, or (b) ku > 0 andS = Unpacked(ku).

• ∀o ∈ dom(Σ): If k · o 7→ C(f = k · o)@S ∈ µ then

– (o : C) ∈ Σ

– Either S = Unpacked(k) or S = Unpacked(s) and [o/this]invC(s, 1) is satisfied by
o’s fields orS = s and[o/this]invC(s, 1) is satisfied byo’s fields

– w(o, ∆) ≤ k

– If ·|Σ|∆ ` k′ · o@s′ ⊗> thenS ≤ s′ andk′ ≤ k.

– If ·|Σ|∆ ` k′i ·o.fi@s⊗> thenk′i ≤ ki (ando = ounp) andko ·oi 7→ Co(. . .)@so ∈ µ and
so ≤ s and eitherS = Unpacked(s′), which impliesk′i = 0, or S = Unpacked(k′)

thenΣ|∆|u ` µ

Definition 2 (Heap Manipulations) For a given heapµ,

• µ[k · o 7→ C(f = k · o)@S] replaces the entry foro in µ with the information given in[. . .]

• If k′ · o 7→ C(. . .)@S ∈ µ then

26

– If k′ − k ≥ 0 thenµ− k · o = µ[(k′ − k) · o 7→ C(. . .)@S

– If k′ + k ≤ 1 thenµ + k · o = µ[(k′ + k) · o 7→ C(. . .)@S

Definition 3 (Object Weight) For anyo, µ, and∆:

• w(o, µ) =
∑

k·o∈µ k

• w(o, ∆) =
∑

k·o∈∆ k

• w(o, u) =

{
k if u = k · o@s
0 otherwise

Definition 4 (State Ordering) The relationS ≤ S ′ is defined with the following rules:

S ≤ S S ≤ alive Unpacked(s) ≤ s s ≤ Unpacked(s)

Note: These rules equate any states with read-only unpacking in that state (Unpacked(s)).
Moreover, modifying unpacked (Unpacked(k)) is considered a substate ofalive. This convention
simplifies store typing because it makes a state informationalive about an object valid even if that
object is unpacked.

Definition 5 (Property Satisfied at Runtime) If

• k′ · o 7→ C(. . .)@s ⊆ µ

• ·|o : C|k · o@s ` P (an instance ofΓ|Σ|∆ ` P)

• k ≤ k′

thenµ|k · o ` P

Lemma 1 (Inversion) If Γ|Σ|∆|u ` e : E \ E|u′ then

• If e is new C(k · t) thenE = ∅ andE = ∃x : C.1 · x@s andΓ|Σ|∆ ` [o/f]P andu = u′.

• If e is k · t.m(k · t) thenE = ∅ andE = E ′ andΓ|Σ|∆ ` [t/this][t/x]P andΓ|Σ ` t : C and
Γ|Σ ` t : C andmtype(C, m) = ∀x : C.P (E andx : C, this : C| · |P |− ` em : E \ ∅|−,
wherembody(C, m) = x.em, andu = u′ = −.

• . . .

Lemma 2 (Substitution) If Γ, x : C|Σ|∆, P |u ` e : E \ E|u′, where variablesx do not occur in
∆ andE , and these exists∆′ and objectso such thatΓ|Σ|∆′ ` [o/x]P thenΓ|Σ|∆, [o/x]P |u ` e :
E \ E|u′.

Lemma 3 If Γ|Σ|∆|u ` e : E \ E|u′ then either (a)u = − andE = ∅ or (b) u = k · t@s andE
contains only fields oft.

27

Proof: (a) u = − is not a valid precondition for producing effects (using assignment or packing).
(b) By induction on typing derivations, using (a). Only one object can be unpacked at a time,
permission for unpacked object is needed for assignments and packing, and effect ofunpack
expression is∅.

Lemma 4 (Compositionality) If Σ|∆|u ` µ and∆ = ∆1, ∆2 thenΣ|∆1|u ` µ andΣ|∆2|u ` µ.

Proof: Immediate from the definition of store typing.

Our preservation theorem is strengthened to preserve a “frame” of potential additional per-
missions around the expression being evaluated. This frame property is needed when appealing
to the induction hypothesis. Since expressions are in let-normal form, only one case, E-LET-C,
represents a congruence rule that appeals to the induction hypothesis.

The dynamic semantics relies on fractions being part of expressions in order to modify the
heap accordingly, e.g., when reading a field. In typechecking expressions, we tacitly assume that
permissions used for typechecking an expression have the fractions prescribed in the expression.
A surface syntax could omit fractions in expressions and instead insert them automatically based
on the permissions used in typechecking.

Theorem 1 (Preservation) If

• ·|Σ|∆|u ` e : E \ E|u′′ and

• Σ|∆, ∆∗|u ` µ, where∆∗ are extra permissions that contain no temporary state information
and no permissions for fields inE , and

• e|µ 7−→ e′|µ′

then there exists

• Σ′ ⊇ Σ and

• u′ and

• E ′, where either (a)e|µ 7−→ e′|µ′ unpacks an objecto, i.e., u = − andu′ = k · o@s and
E ′ − E only mentions fields ofo or (b) E ′ ⊆ E and

• ∆′, where∆′ contains no permissions for fields inE − E ′

such that

• ·|Σ′|∆′|u′ ` e′ : E \ E ′|u′′ and

• Σ′|∆′, ∆∗ ` µ′ and

• ∀o ∈ dom(µ) : w(o, µ)− w(o, ∆)− w(o, u) ≤ w(o, µ′)− w(o, ∆′)− w(o, u′).

28

Proof: By structural induction on the derivation ofe|µ 7−→ e′|µ′.
CASE E-NEW

µ|k · o ` [o/f]P µ′′ = µ− k · o init(C) = 〈∃f : C.P, s〉 (o∗ 6∈ dom(µ))

new C(k · o)|µ 7−→ 1 · o∗|µ′′, 1 · o∗ 7→ C(f = k · o)@s

Thus,e is new C(k · o), e′ is 1 · o∗, andµ′ = µ′′, 1 · o∗ 7→ C(f = k · o)@s.

·|Σ|∆|u ` e : E \ E|u′′ Assumption
Σ|∆, ∆∗|u ` µ Assumption
u = u′′ andE = ∅ andE = ∃x : C.1 · x@s and·|Σ|∆ ` [o/f]P Inversion
DefineΣ′ = (Σ, o∗ : C) andu′ = u andE ′ = ∅ = E and∆′ = 1 · o∗@S
Σ′ ⊇ Σ By definition
·|Σ′|∆′|u ` 1 · o∗ : ∃x : C.1 · x@s \ ∅|u By rule T-LOC

∀o ∈ dom(µ) : w(o, µ)− w(o, ∆)− w(o, u) = w(o, µ′)− w(o, ∆′)− w(o, u)

k · o move from stack to memory
Σ′|∆′, ∆∗|u′ ` µ′

∆′ only holds permission too∗, existing objects do not change state, fractions in∆∗ remain valid

CASE E-CALL

mbody(C, m) = x.em mtype(C, m) = ∀x : C.P (E ′

µ|k · o, k · o ` [o/this][o/x]P all objects packed inµ

k · o.m(k · o)|µ 7−→ [o/this][o/x]em|µ

Thus,e is k · o.m(k · o), e′ is [o/this][o/x]em, andµ′ = µ.

·|Σ|∆|u ` e : E \ E|u′′ Assumption
Σ|∆, ∆∗|u ` µ Assumption
E = ∅ andu = u′′ = − andE = E ′ and·|Σ|∆ ` [o/this][o/x]P Inversion
x : C, this : C| · |P |− ` em : E \ ∅|− Inversion (cont.)
DefineΣ′ = Σ andu′ = − andE ′ = ∅ = E and∆′ = ∆
·|Σ|∆|− ` [o/this][o/x]em : E \ ∅|− Substitution
Σ|∆, ∆∗|− ` µ Given
∀o ∈ dom(µ) : w(o, µ)− w(o, ∆)− w(o, u) = w(o, µ)− w(o, ∆)− w(o, u) No changes

CASE E-LET-C
e1|µ 7−→ e′1|µ′

let x = e1 in e2|µ 7−→ let x = e′1 in e2|µ′

Thus,e is let x = e1 in e2 ande′ is let x = e′1 in e2.

29

·|Σ|∆|u ` e : E \ E|u′′ Assumption
Σ|∆, ∆∗|u ` µ Assumption
∆ = (∆1, ∆2) andE = E1 ∪ E2 and no temporary states or fields fromE1 in ∆2 Inversion
·|Σ|∆1|u ` e1 : ∃x : C.P \ E1|u2 andx : C|Σ|∆2, P |u2 ` e2 : E \ E2|u′′ Inversion (cont.)
Σ|∆1|u ` µ andΣ|∆2|u ` µ Compositionality
Apply induction hypothesis, using(∆2, ∆

∗) as additional linear context.
Ex. Σ′ ⊇ Σ andu′ andE ′1 and∆′

1, where fieldsE1 − E ′1 do not occur in∆′
1 From i.h.

Either (a)u = − andu′ = k · o@s andE ′1 − E1 only contains fields ofo or (b)E ′1 ⊆ E1 i.h. (cont.)
·|Σ′|∆′

1|u′ ` e′1 : ∃x : C.P \ E ′1|u2 andΣ′|∆′
1, ∆2, ∆

∗|u′ ` µ′ i.h. (cont.)
∀o ∈ dom(µ′) : w(o, µ)− w(o, ∆1)− w(o, u) ≤ w(o, µ′)− w(o, ∆′

1)− w(o, u′) i.h. (cont.)
DefineΣ′ = Σ andE ′ = E ′1 ∪ E2 and∆′ = (∆′

1, ∆2)
FieldsE − E ′ do not occur in∆′ E − E ′ ⊆ E1 and fieldsE1 do not occur in∆2

Σ′|∆′, ∆∗|u′ ` µ′ From i.h.
∀o ∈ dom(µ) : w(o, µ)− w(o, ∆)− w(o, u) ≤ w(o, µ′)− w(o, ∆′)− w(o, u′)

From i.h.: fractions in∆2 unchanged
SUBCASE: u = − andu′ = k · o@s andE ′1 − E1 only contains fields ofo

∆2, ∆
∗ do not contain permissions for fields ofo Definition ofΣ|∆, ∆∗|u ` µ

∆2, ∆
∗ do not contain permissions for fields inE ′1 E ′1 − E1 contains only fields ofo

·|Σ|∆′|u′ ` e′ : E \ E ′|u′′ By rule T-LET

SUBCASE: E ′1 ⊆ E1

∆2, ∆
∗ do not contain permissions for fields inE ′1 E ′1 ⊆ E1

·|Σ|∆′|u′ ` e′ : E \ E ′|u′′ By rule T-LET

CASE E-LET-V
k′ · o 7→ C(. . .)@S ∈ µ k ≤ k′

let x = k · o in e2|µ 7−→ [o/x]e2|µ
Thus,e is let x = k · o in e2, e′ is [o/x]e2, andµ′ = µ.

·|Σ|∆|u ` e : E \ E|u′′ Assumption
Σ|∆, ∆∗|u ` µ Assumption
∆ = (∆1, ∆2) andE = E1 ∪ E2 Inversion one
·|Σ|∆1|u ` k · o : ∃x : C.P \ E1|u2 andx : C|Σ|∆2, P |u2 ` e2 : E \ E2|u′′ Inversion (cont.)
·|Σ|∆1 ` [o/x]P andu = u1 andE1 = ∅ thusE2 = E Inversion onk · o
DefineΣ′ = Σ andu′ = u andE ′ = E and∆′ = ∆
·|Σ|∆|u ` e′ : E \ E|u′′ Substitution
Σ|∆, ∆∗|u ` µ Given
∀o ∈ dom(µ) : w(o, µ)− w(o, ∆)− w(o, u) = w(o, µ)− w(o, ∆)− w(o, u) No changes

CASE E-UNPACK-MODIFYING

k′ · o 7→ C(. . .)@s′ ∈ µ 0 < k ≤ k′ s′ ≤ s

unpack k · o@s in e′|µ 7−→ e′|µ[(k′ − k) · o 7→ C(. . .)@Unpacked(k)]

30

Thus,e is unpack k · o@s in e′ andµ′ = µ[(k′ − k) · o 7→ C(. . .)@Unpacked(k)].

·|Σ|∆|u ` e : E \ E|u′′ Assumption
Σ|∆, ∆∗|u ` µ Assumption
∆ = (k · o@s, ∆′′) andu = u′′ = − andE = ∅ Inversion
·|Σ|∆′′, [o/this]invC(s, k)|k · o@s ` e′ : E \ E ′|− Inversion (cont.)
DefineΣ′ = Σ andu′ = k · o@s and∆′ = (∆′′, [o/this]invC(s, k))
o was unpacked u = − andu′ = k · o@s
E ′ − E = E ′ only contains fields ofo Lemma 3
∆′ does not contain fields inE − E ′ E − E ′ = ∅
·|Σ|∆′|u′ ` e′ : E \ E ′|− From above
Σ|∆′, ∆∗|u′ ` µ′ o was unpacked,∆′ differs from∆ in [o/this]invC(s, k)
∀o ∈ dom(µ) : w(o, µ)− w(o, ∆)w(o, u) = w(o, µ′)− w(o, ∆′)− w(o, u′)

k · o moves fromµ to u′

CASE E-UNPACK-READONLY

k′ · o 7→ C(. . .)@s′ ∈ µ s′ ≤ s

unpack 0 · o@s in e′|µ 7−→ e′|µ[k′ · o 7→ C(. . .)@Unpacked(s′)]

Thus,e is unpack 0 · o@s in e′ andµ′ = µ[k′ · o 7→ C(. . .)@Unpacked(s′)].

·|Σ|∆|u ` e : E \ E|u′′ Assumption
Σ|∆, ∆∗|u ` µ Assumption
∆ = (0 · o@s, ∆′′) andu = u′′ = − andE = ∅ Inversion
·|Σ|∆′′, [o/this]invC(s, 0)|0 · o@s ` e′ : E \ E ′|− Inversion (cont.)
DefineΣ′ = Σ andu′ = 0 · o@s and∆′ = (∆′′, [o/this]invC(s, 0))
o was unpacked u = − andu′ = 0 · o@s
E ′ − E = E ′ only contains fields ofo Lemma 3
∆′ does not contain fields inE − E ′ E − E ′ = ∅
·|Σ|∆′|u′ ` e′ : E \ E ′|− From above
Σ|∆′, ∆∗|u′ ` µ′ o was unpacked,∆′ differs from∆ in [o/this]invC(s, 0)
∀o ∈ dom(µ) : w(o, µ)− w(o, ∆)− w(o, u) = w(o, µ′)− w(o, ∆′)− w(o, u′)

No changes: 0 fraction unpacked

CASE E-READ

ko · o 7→ C(. . . , f = k′ · o′@s′, . . .)@Unpacked(k′′) ∈ µ k ≤ k′

k · o.f |µ 7−→ k · o′|(µ + k · o′)[ko · o 7→ C(. . . , f = (k′ − k) · o′@s′, . . .)@Unpacked(k′′)]

Thus, e is k · o.f and e′ is k · o′ and µ′ = (µ + k · o′)[ko · o 7→ C(. . . , f = (k′ − k) ·
o′, . . .)@Unpacked(k′′)].

31

·|Σ|∆|u ` e : E \ E|u′′ Assumption
Σ|∆, ∆∗|u ` µ Assumption
u = u′′ = k · o@s, wherek > 0, andE = ∅ andE = ∃x : Cf .P and·|Σ|∆ ` [o.f/x]P Inversion
DefineΣ′ = Σ andu′ = u andE ′ = ∅ = E and∆′ = [o′/x]P
·|Σ|∆′|u ` k · o′ : E \ ∅|u By rule T-LOC

Σ|∆′, ∆∗|u ` µ′ ∆′ = [o′/o.f]∆
∀o ∈ dom(µ) : w(o, µ)− w(o, ∆)− w(o, u) = w(o, µ′)− w(o, ∆′)− w(o, u)

k · o′ moves from field to stack

CASE E-READ-PURE

ko · o 7→ C(. . . , f = k′ · o′@s′, . . .)@Unpacked(s′′) ∈ µ

0 · o.f |µ 7−→ 0 · o′|µ

Thus,e is 0 · o.f ande′ is 0 · o′.

·|Σ|∆|u ` e : E \ E|u′′ Assumption
Σ|∆, ∆∗|u ` µ Assumption
u = u′′ = k′ · o@s andE = ∅ andE = ∃x : Cf .P and·|Σ|∆ ` [o.f/x]P Inversion
k′ = 0 Store typing
DefineΣ′ = Σ andu′ = u andE ′ = ∅ = E and∆′ = [o′/x]P
·|Σ|∆′|u ` 0 · o′ : E \ ∅|u By rule T-LOC

Σ|∆′, ∆∗|u ` µ ∆′ = [o′/o.f]∆, µ is unchanged
∀o ∈ dom(µ) : w(o, µ)− w(o, ∆)− w(o, u) = w(o, µ)− w(o, ∆′)− w(o, u) No changes

CASE E-ASSIGN

k1 · o1 7→ C(. . . , f = k′ · o′, . . .)@Unpacked(k′′) ∈ µ k2 · o2 7→ C(. . .)@S2 ∈ µ k ≤ k2 k′′ > 0
µ′ = ((µ− k · o2) + k′ · o′)[ko · o 7→ C(. . . , f = k · o2, . . .)@Unpacked(k′′)]

o1.f := k · o2|µ 7−→ k′ · o′|µ′

Thus,e is o1.f := k · o2 ande′ is k′ · o′.

·|Σ|∆|u ` e : E \ E|u′′ Assumption
Σ|∆, ∆∗|u ` µ and no permissions for fields inE in ∆∗ Assumption
E = {o1.f} andu = u′′ = ku · o1@su, whereku > 0, and∆ = (∆1, ∆2) Inversion
E = ∃x′.P ′ ⊗ [o1.f/x]P Inversion (cont.)
·|Σ|∆1 ` [o1.f/x′]P ′ and·|Σ|∆2|u ` k · o2 : ∃x : Cf .P |u Inversion (cont.)
DefineΣ′ = Σ andu′ = u andE ′ = ∅ ⊂ E and∆′ = [o′/x′]P ′ ⊗ [o1.f/x]P
∆′ does not contain permissions forE − E ′ = {o1.f} By definition of∆′ and assumption above
·|Σ|∆′|u ` e′ : E \ ∅|u By rule T-LOC

Σ|∆′, ∆∗|u ` µ′ ∆′ = [o1.f/o2]([o
′/o1.f]∆) and no permissions foro1.f in ∆∗

∀o ∈ dom(µ) : w(o, µ)− w(o, ∆)− w(o, u) = w(o, µ′)− w(o, ∆′)− w(o, u)
k · o2 andk′ · o′ move between field and stack

32

CASE E-PACK-MODIFYING

ko · o 7→ C(f = k · o)@Unpacked(k) ∈ µ invC(s) is satisfied by o’s fields

pack o to s in e′|µ 7−→ e′|µ[(ko + k) · o 7→ C(f = k · o)@s]

Thus,e is pack o to s in e′ andµ′ = µ[(ko + k) · o 7→ C(f = k · o)@s].

·|Σ|∆|u ` e : E \ E|u′′ Assumption
Σ|∆, ∆∗|u ` µ and no temporary states or permissions forE in ∆∗ Assumption
u = k · o@s′ andu′′ = − andE = {o.f} and∆ = (∆′′, ∆′′′) Inversion
No temporary states or permissions foro.f in ∆′′′ Inversion (cont.)
·|Σ|∆′′ ` [o/this]invC(s, k) and·|Σ|∆′′′, k · o@s|− ` e′ : E \ ∅|− Inversion (cont.)
DefineΣ′ = Σ andu′ = − andE ′ = ∅ ⊂ E and∆′ = (∆′′′, k · o@s)

No permissions for fields inE − E ′ = {o.f} in ∆′ No permissions for{o.f} in ∆′′′ from above
·|Σ|∆′ ` e′ : E \ ∅ From above
Σ|∆′′′|u ` µ Compositionality
Σ|∆′′′|− ` µ′ ∆′′′ not affected by packing since no temporary states
Σ|∆′, ∆∗|− ` µ′ k · o@s comes fromu, no temporary states or permissions forE in ∆∗

∀o ∈ dom(µ) : w(o, µ)− w(o, ∆)− w(o, u) = w(o, µ′)− w(o, ∆′)− w(o, u′)
k · o moves fromu to µ′

CASE E-PACK-READONLY

ko · o 7→ C(f = k · o)@Unpacked(s) ∈ µ invC(s) is satisfied by o’s fields

pack o to s in e′|µ 7−→ e′|µ[ko · o 7→ C(f = k · o)@s]

Thus,e is pack o to s in e′ andµ′ = µ[ko · o 7→ C(f = k · o)@s].

·|Σ|∆|u ` e : E \ E|u′′ Assumption
Σ|∆, ∆∗|u ` µ and no temporary states or permissions forE in ∆∗ Assumption
u = k · o@s′ andu′′ = − andE = {o.f} and∆ = (∆′′, ∆′′′)

No temporary states or permissions foro.f in ∆′′′ Inversion
·|Σ|∆′′ ` [o/this]invC(s, 0) and·|Σ|∆′′′, k · o@s|− ` e′ : E \ ∅|− Inversion (cont.)
k = 0 ands′ = s Store typing, inversion
DefineΣ′ = Σ andu′ = − andE ′ = ∅ ⊂ E and∆′ = (∆′′′, 0 · o@s)

No permissions for fields inE − E ′ = {o.f} in ∆′ No permissions for{o.f} in ∆′′′ from above
·|Σ|∆′|− ` e′ : E \ ∅|− From above
Σ|∆′′′|u ` µ Compositionality
Σ|∆′′′|− ` µ′ Only packing changes
Σ|∆′, ∆∗|− ` µ′ 0 · o@s replacesu, no temporary states or permissions forE in ∆∗

∀o ∈ dom(µ) : w(o, µ)− w(o, ∆)− w(o, u) = w(o, µ′)− w(o, ∆′)− w(o, u′)
No changes: 0 fraction packed

33

7.4 Progress

Lemma 5 (Canonical Form) If e is a value thene has the formk · o.

Let-normal form for expressions simplifies proving progress: In closed terms, arguments to
atomic expressions (new, method call, field read, etc.) are automatically values. We reflect this
directly in the cases we prove.

Theorem 2 (Progress)If ·|Σ|∆|u ` e : E \ E|u′—i.e.,e is closed and well-typed—then eithere
is a valuek · o or else, for any heapµ st. Σ|∆|u ` µ, there exists an expressione′ and a heapµ′

with e|µ 7−→ e′|µ′.

Proof: By structural induction on the derivation of·|Σ|∆|u ` e : E \ E|u′.
CASE T-VAR N/A: Variable is not a closed term.
CASE T-LOC

(o : C) ∈ Σ Σ|∆ ` [o/x]P

·|Σ|∆|u ` k · o : ∃x : C.P \ ∅|u
k · o is a value.
CASE T-NEW

o : C ⊆ Σ init(C) = 〈∃f : C.P, s〉 ·|Σ|∆ ` [o/f]P

·|Σ|∆|u ` new C(k · o) : ∃x : C.1 · x@s \ ∅|u

Σ|∆ ` µ Assumption
k′ · o 7→ C(. . .)@s ⊆ µ such thatk ≤ k′ andµ|k · o ` [o/f]P Heap well-typed
Defineµ′ = (µ− k · o), 1 · o∗ 7→ C(f = k · o@s)@s (whereo∗ 6∈ dom(µ)) ande′ = 1 · o∗
e|µ 7−→ e′|µ′ By rule E-NEW

CASE T-CALL
(o : C) ∈ Σ o : C ⊆ Σ · |Γ|∆ ` [o/this][o/f]P

mtype(C, m) = ∀x : C.P (E

·|Σ|∆|− ` k · o.m(k · o) : E \ ∅|−

Σ|∆ ` µ Assumption
k′ · o 7→ C(. . .)@s ∈ µ andk′ · o 7→ C(. . .)@s ⊆ µ Heap well-typed
k ≤ k′ andk ≤ k′ andµ|k · o, k · o ` [o/this][o/f]P Heap well-typed (cont.)
Defineµ′ = µ ande′ as[o/this][o/x]em wherembody(C, m) = x.em

e|µ 7−→ e′|µ′ By rule E-CALL

CASE T-LET

·|Σ|∆1u ` e1 : ∃x : C.P \ E1|u2 x : C|Σ|∆2, P |u2 ` e2 : E \ E2|u′
No temporary states or permissions forE1 in ∆2

·|Σ|∆1, ∆2|u ` let x = e1 in e2 : E \ E1 ∪ E2|u′

34

Σ|∆ ` µ Assumption
Σ|∆1 ` µ Compositionality
SUBCASE: e1 is a value

e1 = k · o Canonical form
e|µ 7−→ [o/x]e2|µ By rule E-LET-V

SUBCASE: e1 makes a step
Ex µ′ st. e1|µ 7−→ e′1|µ′ From i.h.
e|µ 7−→ let x = e′1 in e2|µ′ By rule E-LET-C

CASE T-UNPACK

(o : C) ∈ Σ ·|Σ|∆ ` k · o@s ·|Σ|D′, [o/this]invC(s, k)|k · o@s ` e′ : E \ E|−
·|Σ|∆, ∆′|− ` unpack k · o@s in e′ : E \ ∅|−

Σ|∆ ` µ Assumption
k′ · o 7→ C(. . .)@s′ ∈ µ st. k ≤ k′ ands′ ≤ s Heap well-typed
SUBCASE k > 0

Defineµ′ = µ[(k′ − k) · o 7→ C(. . .)@Unpacked(k)]
e|µ 7−→ e′|µ′ By rule E-UNPACK-MODIFYING

SUBCASE k = 0
Defineµ′ = µ[(k′ − k) · o 7→ C(. . .)@Unpacked(s′)]
e|µ 7−→ e′|µ′ By rule E-UNPACK-READONLY

CASE T-READ

·|Σ|∆ ` [o.fi/x]P localFields(C) = f : T ku = 0 impliesk = 0

·|Σ|∆|ku · o@su ` k · o.fi : ∃x : Ti.P \ ∅|ku · o@su

Σ|∆ ` µ Assumption
ko · o 7→ C(. . . , fi = ki · oi, . . .)@S ∈ µ st. k ≤ ki Heap well-typed
Defineµ′ = (µ + k · oi)[ko · o 7→ C(. . . , fi = (ki − k) · oi, . . .)@S] ande′ ask · oi

SUBCASE ku > 0
S = Unpacked(ku) Heap well-typed
e|µ 7−→ e′|µ′ By rule E-READ

SUBCASE ku = 0
k = 0 Implied by typing rule
S = Unpacked(s) Heap well-typed
µ′ = µ Moved fraction is 0
e|µ 7−→ e′|µ By rule E-READ-PURE

35

CASE T-ASSIGN

·|Σ|∆ ` k · o : ∃x : Ci.P · |Σ|∆′ ` [o′.fi/x
′]P ′

localFields(C ′) = f : C (o′ : C ′) ∈ Σ k′ > 0

·|Σ|∆, ∆′|k′ · o′@s′ ` o′.fi := k · o : ∃x′ : Ci.P
′ ⊗ [o′.fi/x]P \ {o1.f}|k′ · o′@s′

Σ|∆ ` µ Assumption
k′o · o′ 7→ C(. . . , fi = ki · oi, . . .)@Unpacked(k′) ∈ µ Heap well-typed
ko · oi 7→ Ci(. . .)@S st. k ≤ ko Heap well-typed
Defineµ′ = ((µ− k · o) + ki · oi)[k

′
o · o′ 7→ C(. . . , fi = k · o, . . .)@Unpacked(k′)] ande′ aski · oi

e|µ 7−→ e′|µ′ By rule E-ASSIGN

CAST T-PACK

·|Σ|∆ ` [o/this]invC(s, k) · |Σ|∆′, k · o@s|− ` e′ : E \ ∅| − k = 0 impliess′ = s

localFields(C) = f : C (o : C) ∈ Σ No temporary states or permissions foro.f in ∆′

·|Σ|∆, ∆′|k · o@s′ ` pack o to s in e′ : E \ {o.f}|−

Σ|∆ ` µ Assumption
SUBCASE k > 0

ko · o 7→ C(. . .)@Unpacked(k) ∈ µ Heap well-typed
o’s fields satisfy[o/this]invC(s, k) ·|Σ|∆ ` [o/this]invC(s, k) and heap well-typed
Defineµ′ = µ[k · o 7→ C(. . .)@s]
e|µ 7−→ e′|µ′ By rule E-PACK-MODIFYING

SUBCASE k = 0
ko · o 7→ C(. . .)@Unpacked(s′′) ∈ µ Heap well-typed
s′′ ≤ s ando’s fields satisfy[o/this]invC(s′′, 1) Heap well-typed
Defineµ′ = µ[k · o 7→ C(. . .)@s′′]
e|µ 7−→ e′|µ′ By rule E-PACK-READONLY

8 Related Work

In previous work we proposed more expressive typestate specifications [4] that can be verified
with the approach presented in this paper. We also recently proposedfull andpure permissions
and applied our approach to specifying full Java iterators [3]. Verification of protocol compli-
ance has been studied from many different angles including type systems, abstract interpretation,
model checking, and verification of general program behavior. Aliasing is a challenge for all these
approaches.

The system that is closest to our work is Fugue [11], the first modular typestate verification
system for object-oriented software. Methods are specified with a deterministic state transition of

36

the receiver and pre-conditions on arguments. Fugue’s type system tracks objects as “not aliased”
or “maybe aliased”. Leveraging research on “alias types” [29] (see below), objects typically remain
“not aliased” as long as they are only referenced on the stack. Only “not aliased” objects can
change state; once an object becomes “maybe aliased” its state is permanently fixed although
fields can be assigned to if the object’s abstract typestate is preserved. There exists no soundness
proof for Fugue.

Our work is greatly inspired by Fugue’s abilities. Our approach supports more expressive
method specifications based on linear logic [17]. Our verification approach is based on “access per-
missions” that permit state changes even in the presence of aliases. We extend several ideas from
Fugue to work with access permissions including state invariants, packing, and frames. Fugue’s
specifications are expressible with our system [4]. Fugue’s “not aliased” objects can be simulated
with unique permissions foralive and “maybe aliased” objects correspond to shared permissions
with state guarantees. There is no equivalent for state dimensions, temporary state assumptions,
full, immutable, andpure permissions, or permissions for object parts in Fugue. We prove a core
fragment of our system sound.

Verification of protocol compliance has also been described as “resource usage analysis” [21].
Protocol specifications are based on very different concepts including typestates [30, 10, 23], type
qualifiers [15], size properties [8], direct constraints on ordering [21, 31], and effective refinements
[27]. None of the above systems can verify implementations of object-oriented protocols like our
approach and only one [31] targets an object-oriented language. Temporary state information,full,
andpure permissions are not supported. Effective type refinements [27] employ linear logic rea-
soning but cannot reason about protocol implementations and do not support aliasing abstractions.
Hob [23] verifies data structure implementations for a procedural language with static module in-
stantiation based on typestate-like constraints using shape analyses. In Hob, data can have states,
but modules themselves cannot. In contrast, we can verify the implementation of stateful objects
that are dynamically allocated and support aliasing with permissions instead of shape analysis.

Because programming with linear types [32] is very inconvenient, a variety of relaxing mech-
anisms were proposed. Uniqueness, sharing, and immutability (sometimes called read-only) [6]
have recently been put to use in resource usage analysis [21, 8]. Alias types [29] allow multi-
ple variables to refer to the same object but require a linear token for object accesses that can be
borrowed [6] during function calls. Focusing can be used for temporary state changes of shared ob-
jects [12, 15, 2]. Adoption prevents sharing from leaking through entire object graphs (as in Fugue
[11]) and allows temporary sharing until a linear adopter is deallocated [12]. All these techniques
need to be aware of all references to an object in order to change its state.

Access permissions allow state changes even if objects are aliased from unknown places. More-
over, access permissions give fine-grained access to individual data groups [24]. States and frac-
tions [5] let us capture alias types, borrowing, adoption, and focus with a single mechanism. Shar-
ing of individual data groups has been proposed before [6], but it has not been exploited for rea-
soning about object behavior. In Boyland’s work [5], a fractional permission means immutability
(instead of sharing) in order to ensure non-interference of permissions. We use permissions to keep
state assumptions consistent but track, split, and join permissions in the same way as Boyland.

Global approaches are very flexible in handling aliasing. Approaches based on abstract inter-

37

pretation (e.g. [1, 18, 13]) typically verify client conformance while the protocol implementation
is assumed correct. Sound approaches rely on a global aliasing analysis [1, 13]. Likewise, most
model checkers operate globally (e.g. [20]) or use assume-guarantee reasoning between coarse-
grained static components [16]. The Magic tool checks individual C functions but has to inline
user-provided state machine abstractions for library code in order to accommodate aliasing [7].
The above analyses typically run on the complete code base once a system is fully implemented
and are very expensive. Our approach supports developers by checking the code at hand like a
typechecker. Thus the benefits of our approach differ significantly from global analyses. It is inter-
esting to note that protocols found by typestate inference in the presence of aliasing [28] are very
similar to what we can enforce. These research directions could be fruitfully combined.

Finally, general approaches to program verification such as ESC/Java [14] and Boogie [2] can
be used to specify and verify protocols. Our approach is strictly less expressive but supports pro-
tocols more directly, includes special-purpose aliasing abstractions, and therefore promises better
automation.

9 Conclusions

This paper proposes a modular type system for verifying usage and implementation of typestate
protocols that supports several forms of aliasing. It allows different references to control separate
parts of an object’s state, leveraging hierarchical state spaces based on state refinement. Multiple
references can have access to the same part of the state either by uniformly sharing access or by
giving one reference full access while the other references can only read but not change the state.
We support expressive typestate protocols as previously proposed [4] and specify protocols from
the Java standard library that were previously hard to capture [3].

We develop these ideas in a type system that tracks “access permissions” to objects with linear
logic [17]. Permissions can be flexibly split and joined using fractions [5]. We extend ideas from
Fugue [11] to connect protocol specifications to implementations. Other novel features include
a principled approach to callbacks and dynamic tests and the interpretation of typestates as data
groups.

In future work we hope to develop a practical system that avoids user annotations in method
bodies. A challenge in this effort will be efficient reasoning about linear logic propositions. Like
any sound static reasoning system, our approach will reject protocol-compliant programs due to
reasoning imprecisions. Sharing and dynamic tests can be used to recover from imprecisions,
but an interesting empirical question will be how often programmers will have to resort to these
mechanisms.

Acknowledgments

We thank John Boyland, Frank Pfenning, Nels Beckman, Sebastian Bossung, and Jason Reed for
fruitful discussions on this topic. The presentation of linear logic follows lecture notes by Frank
Pfenning.

38

References

[1] T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of interfaces.
In Proc. of the Eighth SPIN Workshop, pages 101–122, May 2001.

[2] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification of object-
oriented programs with invariants.Journal of Object Technology, 3(6):27–56, June 2004.

[3] K. Bierhoff. Iterator specification with typestates. In5th Int. Workshop on Specification and
Verification of Component-Based Systems, pages 79–82. ACM Press, Nov. 2006.

[4] K. Bierhoff and J. Aldrich. Lightweight object specification with typestates. InJoint Euro-
pean Software Engineering Conf. and ACM Symp. on the Foundations of Software Engineer-
ing, pages 217–226, Sept. 2005.

[5] J. Boyland. Checking interference with fractional permissions. InInternational Symp. on
Static Analysis, pages 55–72. Springer, 2003.

[6] J. T. Boyland and W. Retert. Connecting effects and uniqueness with adoption. InACM
Symp. on Principles of Programming Languages, pages 283–295, Jan. 2005.

[7] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software compo-
nents in C. InInt. Conference on Software Engineering, pages 385–395, May 2003.

[8] W.-N. Chin, S.-C. Khoo, S. Qin, C. Popeea, and H. H. Nguyen. Verifying safety policies
with size properties and alias controls. InInt. Conference on Software Engineering, pages
186–195, May 2005.

[9] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. InACM Symp. on Principles of
Programming Languages, pages 238–252, 1977.

[10] R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level software. InACM
Conf. on Programming Language Design and Implementation, pages 59–69, 2001.

[11] R. DeLine and M. Fähndrich. Typestates for objects. InEuropean Conference on Object-
Oriented Programming, pages 465–490. Springer, 2004.

[12] M. Fähndrich and R. DeLine. Adoption and focus: Practical linear types for imperative
programming. InACM Conf. on Programming Language Design and Implementation, pages
13–24, June 2002.

[13] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate verification in the
presence of aliasing. InACM Int. Symp. on Software Testing and Analysis, pages 133–144,
July 2006.

39

[14] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata. Extended static
checking for Java. InACM Conf. on Programming Language Design and Implementation,
pages 234–245, May 2002.

[15] J. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. InACM Conf. on Pro-
gramming Language Design and Implementation, pages 1–12, 2002.

[16] D. Giannakopoulou, C. S. Păs̆areanu, and J. M. Cobleigh. Assume-guarantee verification
of source code with design-level assumptions. InInt. Conference on Software Engineering,
pages 211–220, May 2004.

[17] J.-Y. Girard. Linear logic.Theoretical Computer Science, 50:1–102, 1987.

[18] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for building system-
specific, static analyses. InACM Conf. on Programming Language Design and Implementa-
tion, pages 69–82, 2002.

[19] D. Harel. Statecharts: A visual formalism for complex systems.Sci. Comput. Programming,
8:231–274, 1987.

[20] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. InACM Symp. on
Principles of Programming Languages, pages 58–70, 2002.

[21] A. Igarashi and N. Kobayashi. Resource usage analysis. InACM Symp. on Principles of
Programming Languages, pages 331–342, Jan. 2002.

[22] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java
and GJ. InACM Conf. on Object-Oriented Programming, Systems, Languages & Applica-
tions, pages 132–146, 1999.

[23] V. Kuncak, P. Lam, K. Zee, and M. Rinard. Modular pluggable analyses for data structure
consistency.IEEE Transactions on Software Engineering, 32(12), Dec. 2006.

[24] K. R. M. Leino. Data groups: Specifying the modification of extended state. InACM Conf.
on Object-Oriented Programming, Systems, Languages & Applications, pages 144–153, Oct.
1998.

[25] P. Lincoln and A. Scedrov. First-order linear logic without modalities is NEXPTIME-hard.
Theoretical Computer Science, 135:139–154, 1994.

[26] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping.ACM Transactions on
Programming Languages and Systems, 16(6):1811–1841, Nov. 1994.

[27] Y. Mandelbaum, D. Walker, and R. Harper. An effective theory of type refinements. InACM
Int. Conf. on Functional Programming, pages 213–225, 2003.

40

[28] M. G. Nanda, C. Grothoff, and S. Chandra. Deriving object typestates in the presence of inter-
object references. InACM Conf. on Object-Oriented Programming, Systems, Languages &
Applications, pages 77–96, New York, NY, USA, 2005. ACM Press.

[29] F. Smith, D. Walker, and G. Morrisett. Alias types. InEuropean Symposium on Programming,
pages 366–381. Springer, 2000.

[30] R. E. Strom and S. Yemini. Typestate: A programming language concept for enhancing
software reliability.IEEE Transactions on Software Engineering, 12:157–171, 1986.

[31] G. Tan, X. Ou, and D. Walker. Enforcing resource usage protocols via scoped methods. In
Int. Workshop on Foundations of Object-Oriented Languages, 2003.

[32] P. Wadler. Linear types can change the world! InWorking Conf. on Programming Concepts
and Methods, pages 347–359. North Holland, 1990.

41

class C {. . . M . . .} ∈ CL Tr m(T x) : P (∃result : Tr.P
′ = e ∈ M

mtype(m,C) = ∀x : T .P (∃result : Tr.P
′

C extends C ′ mtype(m,C ′) = ∀x : T .MS ′ implies(x : T , this : C); · ` MS (MS ′

override(m, C,∀x : T .MS)

class C {. . . n = P . . .} ∈ CL

predC(n) = P

P =
⊗

n′≤n′′<n predC(n′′)

predC(n′, n) = P

class C . . . {F . . .} ∈ CL

localFields(C) = F

class C extends C ′ {. . .} ∈ CL

C extends C ′ init(Object) = (1, alive)

class C extends C ′ {f : T in n S initially 〈∃f ′ : T ′, f : T .P ′ ⊗ P, A〉 . . . }
init(C ′) = (∃f ′ : T ′.P ′, A′) ·; (P, full(super, alive, [alive 7→ 1], A′)) ` invC(A)⊗>

init(C) = 〈∃f ′ : T ′, f : T .P ′ ⊗ P, A〉

invC(A) = P ⇒ n′

invC(n, A) = P ⊗ predC(n′, n)⊗ predC(n) invC(n) = 1⇒ n

invC(Ai) = Pi ⇒ ni predC(n1, n) = P ′
i n1 ⊗ n2 � n (i ∈ 1, 2)

invC(A1 ⊗ A2) = P1 ⊗ P ′
1 ⊗ P2 ⊗ P ′

2 ⇒ n

invC(Ai) = Pi ⇒ ni predC(ni, n) = P ′
i n1 ⊕ n2 � n (i ∈ 1, 2)

invC(A1 ⊕ A2) = (P1 ⊗ P ′
1)⊕ (P2 ⊗ predC(n2, n)) ⇒ n

onlypure permissions inP
effectsAllowed(P) = 0

existsshare or full permission inP
effectsAllowed(P) = 1

Figure 10: Protocol verification helper judgments

42

Γ; ∆ `C access(thisfr, n, g, k, A) receiver packed
k = 0 impliesi = 0 Γ; (∆′, invC(n, g, k, A), unpacked(n, g, k, A)) `i

C e : E \ E
Γ; (∆, ∆′) `i

C unpack(n, k, A) in e : E \ E P-UNPACK

Γ; ∆ `C invC(n, g, k, A)⊗ unpacked(n, g, k, A′) k = 0 impliesA = A′

Γ; (∆′, access(thisfr, n, g, k, A)) `i
C e : E \ E localFields(C) = f : T in n f 6∈ dom(∆′)

Γ; (∆, ∆′) `i
C pack n to A in e : E \ f

P-PACK

Γ ` t0 : C0 Γ ` t : T Γ; ∆ ` [t0/this][t0/thisfr][t/x]P
mtype(m, C0) = ∀x : T .P (E i = effectsAllowed(P) receiver packed

Γ; ∆ `i t0.m(t) : [t0/this][t0/thisfr][t/x]E
P-CALL

Γ ` t : T Γ; ∆ ` [super/thisfr][t/x]P C extends C ′

mtype(m, C ′) = ∀x : T .P (E i = effectsAllowed(P) receiver packed

Γ; ∆ `i
C super.m(t) : [super/thisfr][t/x]E

P-SUPER

Γ; ∆ ` t : ∃x : Ti.P ⊗ p Γ; ∆′ `C [fi/x
′]P ′ localFields(C) = f : T in n

ni ≤ n p = unpacked(n, g, k, A), k 6= 0

Γ; (∆, ∆′) `1
C assign fi := t : ∃x′ : Ti.P

′ ⊗ [fi/x]P ⊗ p \ fi
P-ASSIGN

Figure 11: Permission checking for expressions (part 2)

invC(n, g, k, A) = invC(n, A)⊗ purify(aboveC(n))

invC(n, g, 0, A) = purify (invC(n, A)⊗ aboveC(n))

whereaboveC(n) =
⊗

n′:n<n′≤alive predC(n′)

Figure 12: Invariant construction

p = access(r, n, g, k, A)

purify(p) = pure(r, n, g, A)

purify(P1) = P ′
1 purify(P2) = P ′

2 op ∈ {⊗, &,⊕}
purify(P1 op P2) = P ′

1 op P ′
2

unit ∈ {1,>, 0}
purify(unit) = unit

purify(P) = P ′

purify(∃z : H.P) = ∃z : H.P ′
purify(P) = P ′

purify(∀z : H.P) = ∀z : H.P ′

Figure 13: Permission purification

43

Γ; P ` P
L INHYP

Γ; ∆ ` P ′ P ′ V P

Γ; ∆ ` P
SUBST

Γ; ∆1 ` P1 Γ; ∆2 ` P2

Γ; (∆1, ∆2) ` P1 ⊗ P2
⊗I

Γ; ∆ ` P1 ⊗ P2 Γ; (∆′, P1, P2) ` P

Γ; (∆, ∆′) ` P
⊗E

Γ; · ` 1 1I
Γ; ∆ ` 1 Γ; ∆′ ` P

Γ; (∆, ∆′) ` P
1E

Γ; ∆ ` P1 Γ; ∆ ` P2

Γ; ∆ ` P1 & P2
&I

Γ; ∆ ` P1 & P2

Γ; ∆ ` P1
&EL

Γ; ∆ ` P1 & P2

Γ; ∆ ` P2
&ER

Γ; ∆ ` > >I no> elimination

Γ; ∆ ` P1

Γ; ∆ ` P1 ⊕ P2
⊕IL

Γ; ∆ ` P2

Γ; ∆ ` P1 ⊕ P2
⊕IR

Γ; (∆′, P1) ` P
Γ; ∆ ` P1 ⊕ P2 Γ; (∆′, P2) ` P

Γ; (∆, ∆′) ` P
⊕E

no0 introduction
Γ; ∆ ` 0

Γ; (∆, ∆′) ` P
0E

(Γ, z : H); ∆ ` P

Γ; ∆ ` ∀z : H.P
∀I

Γ ` h : H Γ; ∆ ` ∀z : H.P

Γ; ∆ ` [h/z]P
∀E

Γ ` h : H Γ; ∆ ` [h/z]P

Γ; ∆ ` ∃z : H.P
∃I

Γ; ∆ ` ∃z : H.P (Γ, z : H), (∆′, P) ` P ′

Γ; (∆, ∆′) ` P ′ ∃E

Figure 14: Linear logic for permission reasoning

44

A = A′ = A′′ or (A = A′ andA′′ = n) or (A = A′′ andA′ = n)

access(r, n, g, k, A) WV access(r, n, g/2, k/2, A′)⊗ access(r, n, g/2, k/2, A′′)
SYM

A = A′ = A′′ or (A = A′ andA′′ = n) or (A = A′′ andA′ = n)

access(r, n, g, k, A) WV access(r, n, g/2, k, A′)⊗ pure(r, n, g/2, A′′)
ASYM

n1 # n2 A1 ≺ n1 ≤ n A2 ≺ n2 ≤ n
pi = full(r, ni, {g, nodes(ni, n) 7→ 1}/2, Ai)

full(r, n, g, A1 ⊗ A2) V p1 ⊗ p2
F-SPLIT-⊗

n1 # n2 A1 ≺ n1 ≤ n A2 ≺ n2 ≤ n
pi = full(r, ni, {g, n 7→ 1, nodes(ni, n) 7→ 1}/2, Ai)

p1 ⊗ p2 V full(r, n, {g, n 7→ 1}, A1 ⊗ A2)
F-JOIN-⊗

A1 # A2

full(r, n, g, A1 ⊕ A2) WV full(r, n, g, A1)⊕ full(r, n, g, A2)
F-⊕

A ≺ n′ ≤ n

full(r, n, g, A) V full(r, n′, {g, nodes(n′, n) 7→ 1}, A)
F-DOWN

A ≺ n′ ≤ n

full(r, n′, {g, n 7→ 1, nodes(n′, n) 7→ 1}, A) V full(r, n, {g, n 7→ 1}, A)
F-UP

n′ ≤ n

pure(r, n, {g, nodes(n′, n) 7→ k}, A) V pure(r, n′, g, A)
P-UP

access(r, n, g, k, A) V access(r, n, g, k, n)
FORGET

Figure 15: Splitting and joining of access permissions

45

class BufferedInputStream extends FilterInputStream {
states ready, reads refine open;
states within, eof refine ready;
states depleted, filled refine within;
states partial, complete refine filled;

reads := reading= true
ready := reading= false
depleted := pos ≥ count⊗ unique(super, alive, within)
partial := pos< count⊗ count< buf.length⊗ unique(super, alive, open)
complete := pos< count⊗ count= buf.length⊗ unique(super, alive, open)

private boolean reading = false;
private int[] buf = new byte[8192];
private int pos = -1, count = 0;

public int read() : ∀g : {alive, open} 7→ Fract.∀k : Fract. . . . =
unpack (open, k, open) in

let r = reading in if(r == false, ... fill() ...)

private bool fill() : ∀g : {alive, open} 7→ Fract.∀k : Fract.
share(thisfr, open, g, k, depleted⊕ eof) (

share(thisfr, open, g, k, available⊕ eof) =
unpack (open, k, depleted⊕ eof) in

assign count = 0 in assign pos = 0 in
assign reading = true in
pack to reads in

let b = super.read() in
unpack (open, k, open) in

let r = reading in assign reading = false in
assign count = 0 in assign pos = 0 in
if(r, if(b = -1, pack to eof in false,

pack to depleted in doFill(b)),
pack to eof in false)

private bool doFill(int b) : ∀g : {alive, open} 7→ Fract.∀k : Fract.
share(thisfr, open, g, k, depleted⊕ partial) (

share(thisfr, open, g, k, partial⊕ complete) =
unpack (open, k, depleted⊕ partial) in

let c = count in let buffer = buf in
assign buffer[c] = b in assign count = c + 1 in
let l = buffer.length in
if(c + 1 >= l, pack to complete in true,

assign reading = true in pack to reads in
let b = super.read() in unpack (open, k, open) in

let r = reading in assign reading = false in
assign count = c + 1 in assign pos = 0 in
pack to partial in

if(r == false || b == -1, true, doFill(b))

Figure 16: Fragment ofjava.io.BufferedInputStream in core language

46

	1 Introduction
	2 Typestate Specifications
	2.1 Protocols as State Machines
	2.2 State Refinements and Dimensions
	2.3 Access Permissions
	2.4 Linear Logic Specifications

	3 Verification Approach
	4 Formal Language
	4.1 Syntax
	4.2 State Spaces
	4.3 Access Permissions
	4.4 Permission-Based Specifications
	4.5 Handling Inheritance
	4.6 Behavioral Subtyping

	5 Modular Typestate Verification
	5.1 Permission Tracking
	5.2 Packing and Unpacking
	5.3 Calling Methods
	5.4 Field Assignments
	5.5 Permission Splitting and Joining

	6 Breaking an Invariant in Java Buffered Input Streams
	7 Soundness
	7.1 Core Language Syntax
	7.2 Judgment Forms
	7.3 Preservation
	7.4 Progress

	8 Related Work
	9 Conclusions

