

The Architecture Centric Development Method

Anthony J. Lattanze

February 2005

CMU-ISRI-05-103

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Functionality is a measure of how well a system does the work it was intended to do, but
functionality is not all that matters in software development. Properties like
interoperability, modifiability, and portability also matter as much as functionality does.
These properties are determined primarily by the software structure – or the software
architecture. While many structures can satisfy functionality, few can satisfy the required
functionally and the quality attribute properties needed in a system. Achieving quality
attributes in a predicable way can only be accomplished by deliberately selecting the
appropriate structures early in the development process. This is a radical departure from
high speed, lightweight programming methodologies (e.g. XP) that focuses on
functionality and prescribes writing software until a product emerges – architectures also
emerge in this paradigm. Emergent architectural structures may or may not meet the
expectations of the broader stakeholders. Other methods espouse high ceremony
processes and heavy emphasis on document production. The Architecture Centric
Development Method (ACDM) can be differentiated from these extremes in that ACDM
places the software architecture at the center of a development effort rather than
software processes. Like architectures in the building and construction industries, ACDM
prescribes using the architecture design to drive not only the technical aspects of the
project, but also the programmatic issues of a development effort as well. ACDM weaves
together product, technology, process, and people into a cohesive lightweight, scaleable
development method.

 1

Keywords: Software Architecture, Software Design, Software Engineering, System
Architecture, System Engineering, System Design, Quality Attributes, Enterprise
Architecture, Software Development Methods, Software Development Process, Software
Development Lifecycle.

 2

Introduction

In the building construction industry, architects are hired very early in the conceptual
phase of construction. They provide models of the building they plan to build to potential
stakeholders based on their expectations of what they want and need in a building. The
architectural model is the basis from which the detailed designs (blue prints), work
breakdown structures, and ultimately construction schedules are derived. In essence,
the architect’s model drives the entire construction effort. For building architects, the
architecture is the intersection where requirements meet solution space; its where
builders, client stakeholders, and managers meet, huddle, and agree on what will be
built. This is the underlying philosophy of the Architecture Centric Development Method
(ACDM).

It has been over twenty years since the introduction of the first software process
framework, MIL-STD 2167. Since the introduction of MIL-STD 2167 a number of
software process frameworks have been introduced to the software engineering
community: CMM, SCRUM, RUP, and Agile methodologies. What the software
engineering community has learned over these twenty years is that disciplined software
processes are essential for building products in a predictable way. However, just having
good processes does not guarantee that a software intensive system will be fit for
purpose. Good software processes do not automatically mean that well designed,
technically innovative, and cost effective products will emerge. Despite the lessons
learned regarding software processes, there are still organizations that do not place
value in disciplined processes and holds gurus and technology in reverence. In these
environments code is cool, coding is an art form, and disciplined software development
processes are for sissies. These teams rely on virtuoso talent, individual heroics, and
long hours of overtime for success. This is not engineering nor is it sustainable behavior
at the individual or organizational level. Teams that operate this way build systems that
are unpredictable in terms of cost, schedule, and the quality built into their products.
Clearly there needs to be a balance between technological concerns and process
concerns. Striking this balance is what the ACDM is all about. ACDM is a scaleable
lightweight method for developing software intensive systems with a product focus that
prescribes flexible process activities and artifacts.

The Importance of Software Architecture

Functionality is a measure of how well a system does the work it was intended to do.
However, if functionality were all that mattered, any old chunk of code would do. System
properties like interoperability, modifiability, and portability also matter as much as
functionality does. These properties are quality attributes. The quality attributes of a
software-intensive system are determined primarily by the system’s software
architecture. While many structures can satisfy some given functionality, few can satisfy
the given functionally and the quality attribute properties needed in the system. Software
architectures must be designed to meet the functional and quality attribute needs of a
system.

Software architectures capture the gross partitioning of the system and expresses the
fundamental structural organization of the system elements and the relationships
between them. This organization is essential for meeting the functional and quality
attribute requirements on delivery day as well as throughout the life of the system. Every

 3

software intensive system has a software architecture regardless of whether there is a
representation of that architecture. However, having a software architecture emerge is
very different from deliberately developing one. If the architecture is not deliberately
designed; if the developers proceed to detailed design or code without an overarching
blueprint, the architecture of the system will emerge by happenstance. Similarly the
quality attribute properties the system possesses will also emerge by happenstance –
they might be the right ones, and they may not be. You will get an architecture, and you
might not like what you get.

Systems built without a well-designed and documented architecture will exhibit
unpredictable properties—the system might be modifiable, it might perform as required,
and it might interoperate with other systems as required. Software architects define the
external properties of the system elements, the topological arrangement of the elements,
and the interactions between them to achieve functional and quality attribute
requirements. Detailed designers focus on the internal details of the elements. The
architecture constrains the downstream designers, thus ensuring that the properties
promised by the architecture are advanced in the design and are present in the
implementation.

Architectures influence the structure of an organization as well. Teams are often
assigned to build the “parts” of the system. The division of labor in an organization
building a software intensive system will mirror an architecture with all of its strength and
weaknesses. For example, elements in an architecture that are tightly coupled, can
expect implementation teams that will exhibit high frequency communication patterns,
where as loosely coupled architectural elements can expect implementation teams that
will exhibit low frequency communication patterns. Managers can use the architecture as
a basis to structure teams, plan, track, and cost the effort accordingly.

Overview of the ACDM

Just as blueprints in the building construction industry guides the construction of a
building, the software architecture serves a blueprint that addresses technical concerns
and programmatic issues of a project. An architectural focus will:

 help refine the functional requirements, quality attribute requirements, and
constraints

 help set and maintain expectations in stakeholders
 define the team structure
 aid in creating more accurate project estimates
 establish the team vocabulary
 help identify technical risk early
 guide the creation of a more realistic and accurate production schedule and

assist in project tracking and oversight
 provide an early vision of the solution/system

A number of methods have been created by the Software Engineering Institute to help
practitioners create better architectures. Some of these methods include: Quality
Attribute Workshop (QAW) [1,2], Architecture Tradeoff Analysis Method (ATAM) [1,2],
Attribute Driven Design (ADD)[2]. These methods have provided great value to
practitioners trying to build better architectures. However, these methods have two main

 4

problems. First, they are intervention oriented. These methods were not designed with a
particular development philosophy (lifecycle or process) in mind. As such, they do not fit
neatly into existing development models or processes without significant tailoring. Little
guidance exists that describes how to tailor these methods to fit into an organization’s
development model. To maximize their effectiveness, these methods should be used
together and this requires significant tailoring. In order to tailor these methods, someone
in an organization has to know a great deal about each of them in order to tease them
apart, and reassemble them into a cohesive, usable development method/process. This
is a risky and difficult proposition in many organizations. The second problem with these
methods is that in their originally authored form they tend to be heavy-weight and
expensive for the smaller teams, projects, short deadlines, and iterative deliveries.
Overcoming these two hurdles has prevented many organizations in industry from
embracing these methods, and more importantly, adopting the entire body of work.

Organizations are constantly bombarded with emerging methods, tools, and techniques
and they must:

• figure out if they are useful
• how to use them
• how to make them fit together
• estimate the costs for adoption
• show return on investment

After 20 years of process model promises, this is a tough sell in most organizations. Just
as technological components can have mismatch, so can processes, methods, and tools
when we try to bring them together in an organization. Software development teams
need specific guidance about how to create software architecture in the context of a
product development lifecycle. ACDM brings together some of the best practices into a
lifecycle development model. The key goals of ACDM are to help software development
teams:

• Get the information from stakeholders needed to define the architecture as early as

possible.
• Create, refine, and update the architecture in an iterative way throughout the lifecycle

whether the lifecycle is waterfall or iterative.
• Validate that the architecture will meet the expectations once implemented.
• Define meaningful roles for team members to guide their efforts.
• Create better estimates and schedules based on the architectural blueprint.
• Provide insight into project performance.
• Establish a lightweight, scalable, tailorable, repeatable process framework.

The ACDM is geared toward organizations and teams building software intensive
systems and puts the software architecture “front-and-center” during all phases of the
project. The method prescribes creating a notional architecture as soon as the most
preliminary requirements work has been completed. The architecture is developed early
and iteratively refined as a central focus of the project. The architecture is refined until
the development team is confident that a system can be implemented and it will meet
the needs of the stakeholder community. In ACDM, the architecture is the locus for
defining all subsequent processes, planning, activities, and artifacts.

 5

Preconditions for beginning ACDM are defining roles for all of the team members. The
method describes several roles and their responsibilities. The ACDM essentially follows
seven prescribed stages briefly described below.

Stage Description Activities and Artifacts
1

Discover Architectural Drivers
Meet with client stakeholders to discover and
document architectural drivers: high-level
functional requirements, constraints and quality
attributes.

2
Establish Project Scope

Distill architectural drivers into an architectural
drivers specification. Create a Statement of Work
and Preliminary Project Plan.

3
Create Notional Architecture

Create the initial architecture which includes a
run-time view, code view, and physical view of the
system.

4 Architectural Review Review the notional architecture to discover and
document risks and issues.

5
Production Go/No-Go

Prioritize and list the risks and issues discovered
during the architecture review and decide whether
the architecture is ready for production
(production step 6) or whether it needs to be
refined (refine step 6).

Refine (No-Go) – Architecture needs to be refined
6

Experiment Planning

Team creates experiments to mitigate risks and/or
issues that were discovered during the review.
Experiments are targeted, planned, technical
prototypes that are for the purpose of exploring
technical issues associated with the architecture
or to further explore the architectural drivers.

7 Experiment Execution and
Architecture Refinement

The team carries out the experiments and
documents the results. The architecture is refined
based on the results of the experiments.

Return to Stage 4, Architectural Review to review the refined architecture.

Production (Go) – System or elements of the system are ready for construction
6

Production Planning

Team creates a detailed plan for the construction
of the system based on the refined architecture.
Each element of the architecture has an “owner”
and shepards the construction of the element to
completion. The plan schedules time and
resources for detailed element design, reviews,
construction, test, and so forth.

7

Production

The team executes the production plan and is
actively engaged in building the system.
Production includes construction of the elements
of the architecture, integration of the system, as
well as element and system test. Production may
result in producing the whole system, parts of the
system, or in deliverable increments of the
system.

Return to stage 1 and iterate stages as necessary.

 6

While ACDM emerged from small teams and projects (4 to 6 team members, 1 to 2 year
projects), it is designed to scale up to meet the needs of larger teams and projects as
well. In larger projects, the ACDM is used by a core architecture team to create and
refine the overall system architecture. The output from this ACDM cycle is an initial
partitioning of the system (or system of systems) into sub-elements (or subsystems) and
their interactions. Detailed architecting of the various elements is deferred to smaller
teams, each using ACDM to architect their part of the system (which may be another
system). Later integration of the entire system is undertaken in production stages 6 and
7. The ACDM has been evolved over a five year period (since 1999) on small projects
and is now being further refined for use on larger projects in industry.

Agile and ACDM

Its unclear what the term “agile” really means – although it is used frequently today to
describe software development where coding takes priority over design, documentation,
and high ceremony processes. In many agile development methodologies, the emphasis
is placed on writing code as soon as possible (as is the case in eXtreme Programming
[9]) and the code is “grown” over time. The underlying theory is that today, “the
exponential rise in the cost of changing software over time can be flattened or even
reversed given modern programming tools, technologies, and practices”1. What often
happens in organizations using an agile method is that after a few iterations of growth,
the code and the system become brittle and quickly show signs of wear. Since the
structures of such systems are not planned based on sound architectural drivers,
structures emerge as a consequence of writing code that may or may not meet future
expectations. When a point is reached where the system can’t be grown any longer to
meet functional and quality attribute needs, agile methods generally prescribe
refactoring – which is really redesign. While this approach might work on small scale
software products, it quickly breaks down as product, project, and quality attribute needs
scale up. In the extreme case, imagine an avionics system that is a couple of million
lines of code. Not only is changing the structure of such as system mid-lifecycle
impossible in terms of shear volumetrics, a good majority of the flight test would have to
be reflown to recertify the system as airworthy. This would be economically infeasible in
most cases. Another issue is the psychological impact of asking stakeholders for
resources to essentially redesign a system. It might be easy to get stakeholders to fund
the development of more functionality, but in practice it is difficult to get them to fund
restructuring the system. Restructuring is not visible to most stakeholders, functionality is
– which would you pay for if you were in the stakeholders’ shoes? This makes some
agile methods unsuitable for anything but small to mid-scale software development
projects or products where the structure of the system is well established and well
defined. For example, web page development occurs in an environment that is well
defined technically and operationally. Constraints might include HTML, support for
applets, and the structure provided by a browser. It becomes difficult to grow and
maintain systems of any size at all without a clearly defined software architecture that
establishes a framework within which the system will be built and grown overtime.
Clearly architects can’t design for every future change that might be needed. However,
spending a little time early in the development cycle to develop an architecture than can
delay, reduce, and in some cases preclude the need for refactoring until much later in
the lifecycle. This will lengthen the useful life of a system amortizing development costs

1 Beck, Extreme Programming Explained: Embrace Change, page 21

 7

before major redesign, upgrade, or replacement is needed. Despite the time spent early
in the ACDM to develop the software architecture, the method is lightweight and fits well
in an environment where short development cycles and small teams are the norm.

Description of the Method

As mentioned earlier, ACDM was inspired by some of the essential techniques that
made ATAM, QAW, and ADD successful as well as a number of best practices. ACDM
was refined by practitioners building real systems. After 4 years of use, ACDM is still
maturing, but balances the technical and process aspects of a development project into
a single lightweight development method that scales to meet the needs of small and
large teams and projects. ACDM is prescriptive in terms of what is done, yet allows
flexibility in how various steps are executed and in what artifacts are created.

The following picture, provides an overview of the method.

 8

Discover Architectural Drivers

 Establish Project Scope

Raw list of high level
functional requirements,
constraints, and quality
attributes.

Artifact(s)

Legend

Statement of Work
Architecture Drivers Spec
Preliminary Project Plan
Architecture views

Risks and Tradeoffs

 Create Notional Architecture

Architectural Review.

Production Go or
No-Go Decision

Refine

Production Planning

 Plan Experiments

Production

R
i
m

Stage Activity(s) Dec
Experiment/Research Plans
Refined Project Plan
Refined Requirements Spec
Production and
Test Plans
Execute Expe
Refine Archite

eturn to the appropriate stage and
terate as necessary for production,

aintenance, or enhancement

ision ProdNext Step
. 1.
4.
6.
6.
riments
7.
2.
cture

Experiment results.
Refined architecture
Updated initial plans.
uce
7.
5.
3.
Detailed Designs
Product
s

9

ACDM Preconditions

A precondition to beginning step 1 of ACDM is to establish the team roles for project.
The recommended roles and responsibilities for ACDM are listed in the table below:

Role General Responsibilities
Requirements
Engineer

Act as lead in gathering and documenting functional requirements;
Coordinate quality attribute discovery and documentation;
Coordinate creation of the Statement of Work (SOW); Serve as
customer liaison; Coordinate test planning and execution.

Chief Architect Coordinate creation of the notional architecture and refining it as
necessary; Coordinate architectural reviews; capture and document
architectural risks and tradeoffs; Coordinate creation and
maintenance of architecture documentation.

Chief Scientist Coordinate the creation and documentation of the experiments and
research studies. Coordinate test planning, documentation of the
test plan, and test execution.

Managing
Engineer

Coordination of the overall development effort. Coordinate the
creation and documentation of the preliminary and production plans
and schedules. Conduct project tracking and oversight.

Support
Engineer

Set up and maintain development support tools (development
environments, CM, and so forth). Establish and maintain web
presence as necessary. Ensure that the ACDM is followed, record
deviations from the method, document changes to the ACDM as
required. Establish and maintain a defect logging and tracking
processes.

Software
Engineer

These are team members whose focus is detailed design and coding
of the architectural elements of the system. In small teams, all team
members will be software engineers. Assist with responsibilities of
other roles as necessary and assigned by the Managing Engineer.

Notice that there are six roles listed here. All team members are responsible for
configuration management and quality assurance (led by the Managing Engineer). For
each role listed, general responsibilities are listed here – specifics are provided for each
stage of ACDM. If your group has less than six members, you will have to assign two or
more roles to one or more persons on your team. The managing engineer will coordinate
all of the activities that follow. If tools need to be installed and configured before the
project begins, the support engineer should do this before the ACDM begins if possible.

The ACDM also assumes that the functional requirements and constraints exist but does
not discuss in detail how to get them, document them, and organize them. This may
seem somewhat naive but this is intentional since requirement gathering, documenting,
and organization varies widely even in our small studio projects. While ACDM does not
address the gathering of initial requirements and constraints, it will help refine them,
clarify them, as the architecture is designed and matures. The relative completeness of
the functional requirements varies from project to project and may have to be discovered
and refined as a consequence of building the system. Some clients provide a
documented list of functional requirements; others just bring ideas to the team. The initial
gathering of functional requirements is assumed to have occurred prior to beginning step
1 of ACDM. The requirements engineer will coordinate the gathering and documenting

 10

of functional requirements. The term “constraints” as applied in this context can be
confusing. A “constraint” is an imposed design decision or a design decision that the
architect is not at liberty to make or change. Example constraints include being forced to
use a particular operating system, use a particular commercial off-the-shelf product,
adhere to a particular standard, or build a system using a prescribed implementation
framework.

Instantiating ACDM

While there are prescriptive elements, ACDM has a great deal flexibility that has been
intentionally built into it. Prior to beginning the project, the development team must plan
how they will carry out ACDM. They must in effect, instantiate an ACDM strategy for the
project. It is difficult to discuss the detail strategic elements of ACDM since the reader is
not yet familiar with the method. However some factors that will impact how ACDM is
instantiated include:

Project/Product Scope Size of the project in terms resources such as the size of

the stakeholder community, the number of developers, and
the amount of software that must be written among others.
The scope of the effort will dramatically influence many
aspects of how ACDM is instantiated.

Volatility of Requirements Requirements volatility will heavily influence the way that
ACDM is instantiated in terms of Stage 1, 2, and 3 activities
where the architectural drivers are discovered and the
notional architecture is created.

Distributed-ness of the
Stakeholder Community

In nearly all software development projects, it is impractical
to assume that stakeholders will be readily available at a
moments notice. Highly distributed stakeholder
communities will influence the manner in which the
architecture drivers are discovered in Stage 1.

While there are other factors that will influence how ACDM is instantiated, these will be
discussed throughout the document as each stage is introduced.

 11

Stage 1: Discover Architectural Drivers

Preconditions ACDM roles defined.
Who System Stakeholders, Development Team
Activities Business Goals Presentation, Construction of the Quality Attribute

Characterization Table.
Outputs Key architectural drivers: functional requirements, constraints, and

quality attributes. Prioritized attribute characterization.
Role Stage 1 Recommended Responsibilities
Requirements
Engineer

Plan, coordinate, and facilitate the Stage 1 Architectural Drivers
Discovery meeting. Configuration of the raw architecture drivers
documentation garnered during stage 1.

Managing
Engineer

Ensure that the activities of Stage 1 are executed thoroughly and
completely. Assist the Requirements Engineer in coordinating stage 1
meeting logistics. Assist requirements engineer in capturing
architectural drivers during the Probe and question stakeholders to
explore their needs and expectations.

Chief Architect

Chief Scientist
Support
Engineer

Software
Engineer

Assist requirements engineer and managing engineer in capturing
architectural drivers during the stage 1 meeting. Probe and question
stakeholders to explore their needs and expectations.

In stage 1, the development team will meet with the system stakeholders to discover,
define, and document the architectural drivers. The architectural drivers include: high
level functional requirements, constraints, and quality attributes. Collectively, they will
shape the structure of the system. During this meeting, the development team will gain a
better understanding of the context for the system and the primary business drivers
motivating its development. This meeting will also help in development environments
where the requirements are highly volatile, inexact, or exploratory in nature. The goals of
this meeting are for the stakeholders to describe the business and/or mission goals for
building the system. This stage has 4 primary steps:

Step 1 – Client business context presentation
Step 2 – Distillation
Step 3 – Define quality attributes
Step 4 – Prioritize attribute scenarios

Step 1 – Client Business Context Presentation

In this step, the client presents an overview of the system from a business or mission
perspective. The presentation should describe:

- brief history of the organizations
- who the major stakeholders are

 12

- the current need, time to market expectations, and how the system will meet the
need

- the business goals and context as they relate to the project
- any relevant technical, managerial, economic, business, or political constraints
- the architectural drivers: the high level functional requirements, constraints and

quality attribute requirements that will shape the architecture

Step 2 – Distillation

The goal of this step is to create a concise list of business and architectural drivers. The
development team should pay close attention during the client’s business context
presentation so that after their presentation, the team can distill the presentation into a
concise list of business drivers and architectural drivers. The list of business drivers will
include a list of business needs and goals that the system is intended to satisfy. Next,
the development team lists the architectural drivers. The architectural drivers includes:
the high level functional requirements, the primary system constraints, and a list the
important quality attributes of the system. The team should publicly list a distillation of
the stakeholders’ business goals. For example:

Business Goals:
• Create a reliable, reuseable

framework for building
unmanned space craft and
mobile robots.
:

Next the team should publicly list of the essential high level functional requirements for
the system. These should be broad general statements of functionality. For example:

Functional Requirements:
• The framework will provide

standard interfaces to motor
controllers, navigation, and
flight propulsion systems.
:

If it is more helpful, use cases can be used to describe the high level functional
requirements for the system, however, the team should not spend lots of time defining
functional use cases during this meeting. The focus should be general and at a high-
level of abstraction.

 13

Next the team should publicly list the constraints for the system. Recall that constraints
are design decisions, tools, schedule and resource demands for which there is no
flexibility. For example:

Constraints:
• The framework must utilitize the

existing hardware and
operating systems.

• The framework must be ready
for system developers in 6
months.
:

During this step, the developers should not simply list what they heard. It is critical that
the developers work with the broader stakeholder community during the meeting to
ensure consensus for the content of each list. If there are differences of opinion, they
should be noted and their resolution taken up at a later date (stage 2).

Step 3 – Define Quality Attributes

Clarifying and refining the list of quality attributes is the next focus for the team. The
team should refer to the list of business goals and functional requirements and invite the
stakeholders to offer quality attributes that they deem to be of importance to the success
of the system. Referring to the distilled business goals and functional requirement lists
above, a list of quality attributes might include:

Quality Attribute
Reliability
Portability
Modifiability

Next the team must ask stakeholders to characterize each of these quality attributes
more fully. Recall that any of these quality attributes by themselves really doesn’t mean
anything and must be cast into the context of the system that is being built. For example:

Quality
Attribute

Attribute
Characterization

Reliability Ability to anticipate and
recover from failure

Portability Support for the current
family of operating
systems (CE, VxWorks)

Modifiability Ability to add new
hardware with minimal
impact to the framework.

While this table shows a one-to-one correspondence between quality attributes and
attribute characterizations, this need not be the case. For each quality attribute there

 14

must be at least one attribute characterization, but there might be more than one. As the
group develops attribute characterizations for the quality attributes, it may be the case
that duplicate/redundant quality attributes are discovered. This is a normal part of the
quality attribute refinement and a desired outcome. The stakeholders should agree on a
name and characterization for the redundant quality attributes and/or attribute
characterizations. This helps all stakeholders understand and agree upon what is meant
by each quality attribute name.

After the attribute characterizations have been established, the next task is to develop
attribute scenarios. The attribute scenarios are short statements that describe an
interaction with the system. Attribute scenarios can be differentiated from use case
scenarios in that use case scenarios focus on functional responses to stimuli and
attribute scenarios focus on quality attribute responses.

Quality
Attribute

Attribute
Characterization

Attribute Scenarios

Reliability Ability to anticipate and
recover from failure

A hardware failure causes the
operating system to “hang” during
mid-flight operations. The defect is
automatically detected, the backup
system is switched to primary and the
faulty system is rebooted. All occurs
within 5 minutes.

Portability Ability to support current
family of operating
systems

A mobile robot is initially implemented
using the CE operating system. The
robot is scaled up and the operating
system is changed to VxWorks to
support the new mission. The
framework is able to run under
VxWorks with no modification to the
CE applications or framework.

Modifiability Ability to add new
hardware with minimal
impact to the framework.

A new servo controller is needed for
planetary robot application. The
framework is able to support the new
hardware with no modifications to the
framework and within 24 staff hours.

The addition of the attribute scenarios completes the quality attribute characterization
table. Again, while this table shows a one-to-one correspondence between attribute
characterizations and attribute scenarios, this need not be the case. For each attribute
characterization there must be at least one quality attribute scenario, but there might be
more than one to describe various interactions with the system. The scenarios will
represent the concerns of the stakeholders. Ensure that each scenario has a well formed
stimulus, environment, response, and response measure where:

• The stimulus is the event, demand, or condition affecting the system.
• The environment is the condition under which the stimulus takes place.
• The response is the desired response of the system to the event, demand, or

condition.
• The response measure is the measure by which the response will be evaluated.

 15

As an example, consider the reliability scenario from the table above:

• Stimulus: A hardware failure causes the operating system to “hang.”
• Environment: During mid-flight operations.
• Response: The defect is automatically detected, the backup system is switched

to primary and the faulty system is rebooted.
• Response Measure: Occurs within 5 minutes.

Note that this scenario explains what it means for the system to be reliable. It replaces
the vague notion of “reliability” with a clear, short, and measurable description of how a
reliable system will behave.

Every attribute characterization will have at least one scenario. Again, it is OK if
redundancies emerge and the group of stakeholders decides to merge or remove quality
attributes, attribute characterizations, and/or attribute scenarios as they refine the quality
attribute characterization table.

Step 4 – Prioritize Attribute Scenarios

After attribute scenarios have been generated for each attribute characterization, the
group must prioritize the attribute scenarios. Each scenario is rated according to how
important it is for the system to satisfy the requirement. Stakeholders prioritize each
scenario as follows:

Rating Importance Description
High If this scenario can’t be satisfied by the system, the system will be considered

a failure.
Medium It would be highly desirable for the system to satisfy this scenario, however, if

this scenario can’t be satisfied by the system, the system will NOT be
considered a failure.

Low Satisfying this scenario would be a “nice to have.”

Once the attribute scenarios are prioritized, the meeting can conclude. The average
meeting time for stage 1, will be between 4 and 8 hours. Stakeholder groups should not
exceed 20 or so, otherwise it will be difficult to complete the Stage 1 meeting in a single
day.

If the stakeholder community is large and or geographically distributed, it may be the
case that the development team will need to carry out multiple Stage 1 meetings with the
various stakeholder groups. The output of the multiple Stage 1 meetings can be
consolidated in step 2.

In the development environments where the requirements are highly volatile, inexact, or
exploratory in nature it may be necessary for the development team to iterate between
Stage 1 and Stage 2 with the stakeholders. This will help the development team
coalesce the architectural drivers enough so that a notional architecture can be rendered
in stage 3.

 16

Stage 2: Establish Project Scope

Preconditions Stage 1 complete. Raw architectural drivers captured.
Who Development Team
Activities Refine, clarify, and consolidate the raw architectural information.
Outputs Key architectural drivers: functional requirements, constraints, and

quality attributes. Prioritized attribute characterization.
Preliminary Project Plan.
Statement of Work.
Architectural Drivers Specification.

Role Stage 2 Recommended Responsibilities
Requirements
Engineer

Coordinate the efforts the team to clarify and refine the architectural
drivers. Coordinate the creation and configuration of the architecture
drivers specification document and the statement of work.

Managing
Engineer

Provide tracking and oversight of Stage 2 activities. Ensure that
architecture drivers documentation is complete. Assist in coordinating
logistics. Assist architect in the creation of the architecture and its
representation. Update, refine, and disseminate planning information
as necessary. Coordinate the creation and configuration of the
Preliminary Project Plan.

Chief Architect

Chief Scientist
Support
Engineer

Software
Engineer

Assist requirements engineer and managing engineer in capturing
architectural drivers during the stage 1 meeting. Probe and question
stakeholders to explore their needs and expectations.

In stage 2, the development team will utilize the information gathered in stage 1 to
establish the scope of the development effort. The goal for the development team is to
refine, clarify, and consolidate stage 1 information so that a notional architecture can be
created. At a bare minimum, the development team will analyze the architectural drivers
and document what the stakeholders expect in the product. While stage 1 is a divergent
process where lots of information about the system is collected, stage 2 should be a
convergent process that refines and structures information gathered in phase 1. The
following sections are listed:

• Consolidation of Information
• Clarification and Quantification
• Structure and Prioritization
• Defining Constraints
• Documentation

While these sections appear below, the reader should not assume that these are explicit
temporally ordered steps that must be followed. In practice, all of these activities will
occur randomly, iteratively, and some parts will be carried out simultaneously depending
upon the project and the nature of the development team. It is also important to note that
as you proceed through these steps the architectural drivers will mature – that means

 17

change as you further explore them and refine them. This is normal and a desired
outcome.

Consolidation of Information

The first task is to gather all of the information regarding the architectural drivers
collected in stage 1 as well as any other available requirements information. If stage 1
was carried out iteratively with multiple stakeholder groups, the information gathered will
have to be consolidated. Duplicate functional requirements, constraints, and attribute
scenarios should be consolidated into a single statement and/or source. Conflicting
information must be resolved with the stakeholders – this will require more interaction
with the stakeholder community and is discussed further in the following sections.

Clarification and Quantification

The development must scour the raw information collected thus far from the system
stakeholder searching for unclear, incomplete, missing, and conflicting requirements.
Each architectural driver must be clarified and quantified so that they are understandable
by all stakeholders and development team members. Each must be measurable and the
collection of architectural drivers must be structured: grouped according to importance,
difficulty, and/or hierarchy. This is especially critical and most problematic where quality
attribute requirements are concerned. The quality attribute characterization table
developed in stage 1 helps to clarify the quality attribute requirements. Likewise, each
functional requirement must clearly describe

• what is needed
• which stakeholders need it
• how much (functionality) is needed
• how urgently is it needed
• how likely is it to change and how quickly

As the architectural drivers are clarified and refined, the development team may need to
reengage stakeholders to elicit more information. As the development team iterates with
the stakeholders in stage 2 the amount of information should begin to converge. This
means that the information obtained is consistent and there is very little new information
added to what is already known about the system. Iteration with stakeholders at times
may be slow and difficult. However, if the development team finds that there are lots of
new requirements and/or new information about requirements is inconsistent with earlier
information, this may be a sign of divergence. It may be the case that stage 1 was
unsuccessful, that is, the team derived the wrong architectural drivers. There are many
potential causes for this: the development team may have engaged the wrong and/or
different stakeholders in stage 1 and stage 2; there may have been changes in the
system environment, technology, or organization between stage 1 and stage 2.

Part of clarification and quantification includes identifying quantifiable measures for the
architectural drivers. Again, this is most problematic where quality attribute requirements
are concerned; however, the quality attribute characterization table developed in stage 1
will help to quantify quality attribute requirements. Each functional requirement must be
checked to ensure that they are clearly qualified and are measurable. We must be able
to prove that a product satisfies a requirement – this is impossible if there is not a

 18

common understanding of what it means to satisfy a particular requirement. If the
development team fails to quantify any architectural driver, they are setting the stage for
failure.

Structure and Prioritization

Functional requirements should be structured. This might be based on priority,
dependencies, or both. Some requirements may be more important than others and
therefore, it is necessary that they are satisfied first. In an ideal world, key requirements
would be independent of one another. Unfortunately, this is usually not the case – before
one requirement can be met, another must be satisfied first. Sometimes the
dependencies are obvious. It is the responsibility of the development team to make all
assumptions explicit – this includes functional requirements priorities and dependencies.

The development team prioritized the attribute scenarios according to importance in
stage 1. If stage 1 was done iteratively with multiple stakeholder groups, then the
development team will have to resolve the inevitable conflicting priorities with the
stakeholder communities. In stage 2, the development team must add a second
dimension to the prioritization. The development team must prioritize each attribute
scenario in terms of difficultly. For each attribute scenario, the development team must
estimate and reach consensus on the relative difficulty of satisfying the scenario in terms
of:

Rating Difficulty Description
High The developers are unsure about how to satisfy this scenario or if they can

satisfy this scenario.
Medium The developers understand how to satisfy this scenario, and they know that it

will be hard to do.
Low The developers understand how to satisfy this scenario, and they know that it

will be easy to do.

After prioritizing each attribute scenario, the development team will have a two-
dimensional rating for each attribute scenario according to their relative importance and
difficulty. Those attribute scenarios that rate high importance and high difficulty will be
highest priority scenarios for the team to focus on in subsequent stages. Structure and
prioritization of the architectural drivers is essential for setting stakeholder expectations,
reasoning about technical options, and planning the work.

Defining Constraints

The constraints of the system must be evaluated for their impact on the system.
Constraints may be technological or programmatic (cost/schedule/man power) in nature.
Each constraint and its anticipated impact on the overall system must be spelled out in
explicit detail. For example:

 19

Type of Constraint Constraint Impact

Technical The system must CORBA
middleware.

Performance will be hampered. No
control of middleware evolution.

Programmatic
(Schedule)

The system must be ready
to field in 6 months.

Not all functional elements will be
ready.
Test may not be as thorough.
Cost will be high due to necessary
staff overtime hours.

: : :

If the set of constraints being imposed on the system seem to be overly restrictive, the
development team may seek to relax specific constraints and/or prioritize constraints into
three groups.

Rating Flexibility Description
Not
Flexible

The stakeholders are inflexible in relaxing this constraint. If the system does
not adhere to this constraint, the system will be deemed unfit/unusable by
the stakeholder community.

Some
Flexibility

The stakeholders are somewhat flexible in relaxing this constraint however it
is highly desirable and preferred that the system adhere to this constraint. If
the system does not adhere to this constraint, system fitness/usability will
suffer.

Nice-to-
have

The stakeholders are flexible in relaxing this constraint. It would be desirable
if the system adhered to this constraint, but the overall system
fitness/usability will not suffer if the constraint is not adhered to.

Documentation

The documentation that the development team produces as a result of their stage 2
efforts includes:

• Architectural Drivers Specification
• Preliminary Project Plan
• Statement of Work

Architectural Drivers Specification

More important than what an Architectural Drivers Specification document is, is what is it
not. This should not be a heavy weight, super detailed, requirements specification that is
called for in traditional water fall oriented software development (e.g. MILSTD 2167A).
This document is basically a description of what was discovered in stage 1 and refined,
clarified, prioritized, and organized in stage 2. One suggested organization follows:

Project Overview: Describe the business and/or mission drivers for the system.

High Level Functional Requirements: Describe what the system must do to satisfy the
business and/or mission drivers. Traditional use cases and/or “the system shall”
statements can be used to describe the high level functional needs.

 20

Constraints: Describe the key system constraints and their relative priorities as derived
in stage 2 as well as the potential impact of each constraint on the system.

Quality Attributes: Describe the consolidated and/or refined list of quality attribute
requirements. Include the two dimensional priorities of importance and difficulty – make
sure that the difficulty rating is thoroughly explained.

Preliminary Project Plan

A primary tenant of ACDM is that the architecture drives all aspects of a project including
the structure of the system, plans of the project, structure of the team, and the artifacts
created. Early in any project (before there is an architecture) there is not enough
information to create a high fidelity estimate for the entire project. However, the team
must provide the client stakeholder with an estimate of how long it will take the team to
create and refine the architecture. After the architecture is refined and created a more
detailed plan called a Production Plan (stage 6) will be created using the architecture as
a basis to create the plan. These plans are shown graphically below to illustrate their
place on an ACDM project timeline.

Notice that this illustration shows an ACDM timeline where stage 5 is roughly on the mid-
point. Those activities prior to stage 5 are discovery oriented where developers gather
information to build, refine, and baseline the architecture. Since not much is known
about the product, project, or client stakeholders; this period of time is characterized as
the Period of Uncertainty. ACDM activities prior to stage 5 are designed to overcome the
Period of Uncertainty as quickly as possible. Those activities occurring after stage 5 are

Production
go decision

(Stage 5)

Period of Uncertainty Period of Certainty

Stage 1
time

Preliminary Planning

Focuses on
• how long it will take to discover the

architectural drivers
• create the notional architecture
• how many experiments
• refining the architecture for

production

Production Planning
(Production-Stage 6)

Focuses on
• mapping architectural elements to

tasks, schedules, and personnel
• how long it will take to design,

construct, and test each element
• how long it will take to integrate the

elements of the architecture into a
system

 21

detailed design and construction oriented. The architecture is baselined and should
embody the needs and desires of the stakeholders; this period of time is characterized
as the Period of Certainty. The focus of the Preliminary Project Plans is determining how
long the team will spend creating and refining the architecture NOT on building the final
product. Philosophically speaking, ACDM works best when the team defines the notional
architecture, reviews it, and baselines the architecture as quickly as possible. The
benefit of this approach is that the Period of Uncertainty is shortened, and the Period of
Certainty is reached earlier. Once the Period of Certainty is reached, more accurate
estimates for production can be made.
The cost, duration, and other resources required for the following activities should be
estimated:

Stage Stage Description Considerations

1 Working with client stakeholders,
development team discovers and
documents the architectural
drivers.

How many client stakeholder meetings?
Travel to client stakeholder locations?
Venues and facilities?
Materials?
Duration?

2 Consolidating the data garnered
from stage one. Creating the
architectural drivers specification
document.

Amount of raw data from stage 1?
Need to revisit client stakeholders?
Technical writer support?
Review of documentation?
Duration?

3 Creating the notional architecture. Size and scope of system?
Size of architecture team?
Duration?

4 Reviewing the architecture Travel to client stakeholder locations?
Venues and facilities?
Materials?
Reproduction costs?
Duration?

5 Production Go/No-Go decision. Duration?
6 Architectural Refinement.

Reviewing risks and issues from
architecture review; devising and
documenting experiment plans to
address them.

Number of experiments planned?
Duration of each experiment?
Amount of experimentation concurrency
possible?
Documenting the plans?
Duration?

7 Executing experiment plans;
documenting results; revising the
architecture.

Tools?
Environments?
Engineering talent?
Amount of rework on architectural
representations?
Duration?

Another critical consideration for the Preliminary Project Plan is estimating how many
refinement iterations will be required. Recall that after the architecture is refined (stage
7), it will be reviewed again (stage 4). In theory, more risks and issues can be found
requiring another refinement (stage 6), experimentation (stage 7), and review (stage 4)
iteration. The number of iterations should be estimated. In nearly all cases, at least two

 22

iterations will be required. Experience thus far has shown that more than three
refinement iterations are probably too many and an indication that requirements are
diverging or that some other programmatic or systemic problem is present.

The Preliminary Project Plan does not include detailed construction and delivery
schedules that are called for early in many other development methodologies. The sad
truth is that when complete production schedules and cost estimates are made early in
the development lifecycle (before any architecting), the chance that the estimates are
even remotely close to the actual production cost and schedule is very slim indeed
(some studies have indicated deviations of 500%). This is because there is no way for
the development team to know enough about the solution space to predict the resources
and time required to build the product. The more unknowns in the architectural drivers,
the riskier it is that pre-architectural estimates of the total production of the system will
be wrong – very wrong. For this reason, ACDM has teams budget time to explore the
solution space vis-à-vis the architecture to better define the architectural drivers. This
iterative refinement sets the expectations of the client stakeholders. The development
team should not define the architectural drivers to freeze them. Certainly we need to
know what architectural drivers are clearly understood, defined, and are not volatile.
However we also need to identify volatility in the system and understand how that
volatility will affect the underlying structures (e.g. the architecture) of the system.

In the building construction industry, cost and schedule is derived from the architecture
and the ensuing detailed blueprints of the building – not before [13], [14]. Essentially the
architecture is a model that embodies the specification of the thing being built. It is
unreasonable to believe it could be any different in the production of software. However,
everyday, organizations attempt to create detail production schedules for complex
software intensive systems based on vague requests-for-proposals (RFPs) listed in
magazines and newspapers far removed from any real stakeholders. The danger is that
these early estimates set unrealistic expectations in the client stakeholders. Sometimes
(and unfortunately) the need for complete early estimates cannot be avoided for a
variety of reasons. If forced to make complete production estimates during the inception
of product development, the development team cannot be held responsible for
inaccurate schedule and cost estimates. After the architecture of the product has been
refined as ACDM prescribes, the accuracy of production estimates increases greatly.
The production planned is discussed in Production - Stage 6.

Statement of Work

The statement of work (SOW) formally documents the relationship between the
development team and the client stakeholders, their respective obligations and
responsibilities, and sets the context of the project. This is a slightly different definition
than those that might be found in industry – especially in defense contracting domains.
Often the SOW becomes more like a requirements document than the definition
provided here. The purpose of the SOW in the context of ACDM is put formal bounds on
the project that both the development team and the client stakeholders can agree to.
The SOW establishes boundaries on what the development team is responsible for so
that when these bounds are breeched, the development team and stakeholders can
renegotiate the boundary and possibly their relationship. The SOW sets the general
expectations of all of the participants in the project. The SOW (as intended within
ACDM) does not list the detailed requirements, but rather describes the project in
general terms, general deliverable products, and general schedules. Though non-

 23

specific with respect to details, the SOW must clearly define responsibilities of the
development team and the stakeholder community. If this sounds like a precarious
balancing act – that’s because it is.

The following is a suggested outline for the statement of work.

Front matter

• Name of producing organization and authors
• Document version and revision history
• Approval signatures
• Table of contents
• List of figures
• List of tables
• Applicable documents and references
• Executive summary

Project Overview

• Introduction
• Definition and purpose of this document
• Intended audience
• Description of the client stakeholders and their organization
• Description of the development organization
• Product overview
• Description of product/project scope – clearly define what is in scope and what is

out of scope.
• Assumptions
• Project strategy – describe general approach for getting requirements, designing

product, implementation, test, delivery, support, training, and so forth (as
applicable)

Deliverables and Responsibilities

• General description of deliverables including technical artifacts, documentation,
and services.

• Development team responsibilities.
• Client stakeholders responsibilities such as payment schedules, access to

environment and necessary technological elements, access to stakeholders, and
so forth

• Criteria for success
• Minimal acceptable delivery – the minimal amount of product that can be

delivered and the project would still provide value to the client stakeholder.
• Consequences of failure – late fees, penalties, contract termination conditions.
• Approval process and authority for project scope changes

 24

Stage 3: Create the Notional Architecture

Preconditions Stage 2 Outputs
Who Development Team
Activities Create the notional architecture.
Outputs System context, Notional architecture vis-à-vis three views (run-time,

code view, physical view), Updated preliminary project plan.
Role Stage 3 Recommended Responsibilities
Chief Architect Lead the team in the creation of the architecture and in creating the

representation of the architecture. Configuration of the architecture
documentation.

Managing
Engineer

Provide tracking and oversight of Stage 3 activities. Ensure that
architecture documentation is complete. Assist in coordinating stage
logistics. Assist architect in the creation of the architecture and its
representation. Update, refine, and disseminate planning information
as necessary.

Requirements
Engineer
Chief Scientist
Support
Engineer

Software
Engineer

Assist in the creation of the architecture and its representation.

In Stage 3 the development team uses the architectural drivers as a basis to create a
first rough draft of the architecture or the notional architecture. Again, the underlying
philosophy of ACDM is to use the architecture as the blueprint for the entire project not
just technical aspects of the project. Just as architects that design buildings create a
model of the building they plan to build early in the project and use it as a basis for all
planning, construction, and oversight, the architect of a software intensive system must
do the same. A key concept behind ACDM is not to spend too much time getting the
architectural drivers and creating the notional architecture. This might seem to contradict
ACDM’s underlying dependency on software architecture for guiding all other aspects of
the project. However, ACDM prescribes iterating on the architecture until it is deemed to
be fit for purpose (according to guidelines that will be explained later). The idea here is
not to spend an inordinate amount of time developing the notional architecture – assume
that it is a rough draft and that it will need some refining.

Partitioning

The architect should use the architectural drivers obtained in stage 1 and refined in
stage 2 to guide the partitioning of the system – especially the quality attribute
requirements. In some cases, architects will partition the system to promote modifiability,
in other cases a system may be partitioned to make it faster. Constraints may dictate
partitioning as well, however those attribute scenarios whose importance is rated as
most important will have the most influence on system partitioning. Those rated as
important and difficult (H,H) will be the attribute scenarios that the development team
must pay the closest attention to.

 25

The term portioning means that we have to divide the system into smaller parts that
perform some function in the overall system. Each architect approaches the problem of
partitioning differently based on the intuition that they have acquired from years of
system design and development. Recall that a software intensive system can be viewed
from a run-time perspective, code oriented perspective, or a physical perspective. Each
architect will approach the design problem from a unique perspective. Some architects
initially think about the system as a set of interacting processes, others will think about
the code oriented modules that make up the system, some architects prefer to start with
the physical hardware that will make up the system. The perspective that the architect
takes is not fixed, nor is it important. What is important is that the architect is aware of
the perspective that they are taking as they design the system and that they define the
system in terms of the other perspectives.

Structures and Views

Structures and views are often confused – there is an important distinction to be made
between them. Structures are real things that are manifested in implemented systems or
that will be implemented in system such as processes, threads, data, hardware, source
code and so forth. Representations (in the simplest case think of a picture) of these
structures are called views. Views represent structures from the three perspectives
mentioned earlier.

Run-time views: depict runtime elements and structures of the system.
Code views: depict code oriented elements and structures of the system.
Physical views: depict physical elements and structures of the system.

The term element here is used to refer to a part of the system. Elements and their
relationships to other elements form structures. Representations of the elements and
their relationships are views. The collection of views is the architectural representation.
This is a very important distinction: views of the architecture represent elements and
their relationships that will be the structures of the system to be built, or of the system
that has been built. Recall that all systems have architectures whether they have been
explicitly developed and documented or not. In cases where an implemented system has
no documented architecture, its underlying structures will have to be discovered and
documented. Imagine if a building contractor had to move a wall but had no way of
understanding if the wall was a load bearing wall or not. This is the challenge that faces
the architect that must modify a system or must build a new system that must
interoperate with a legacy system whose architecture is unknown. Architectural
discovery will be discussed later – but be forewarned, this is a painful and time
consuming process.

A SIDE NOTE: This highlights an important distinction between ACDM and agile
methods that prescribe writing code as soon as possible. If code is written without a
guiding architecture, the underlying structures of the system will emerge at random and
the quality attribute properties that they system promote will likewise emerge at random.
Agile methods have a place in small system development or where overall system
structure is established (e.g. web oriented applications). While a “code first” philosophy
will produce some kind of product faster, subsequent changes may be more difficult to
accommodate. Essentially, extreme agile methods do not scale up to meet the needs of
modestly large system development. While refactoring (redesign) is prescribed by many

 26

agile methods, in even modestly large systems, wholesale redesign is impractical. When
we think of changes to a system, functionality comes to mind first. However, sometimes
we must make a system more secure, fit into a smaller footprint, make it mobile, make it
faster, and so forth. These changes are very difficult to accommodate if they impose
structural changes to the system. Random designs result in systems that may or may
not be able to accommodate these changes. Obviously it is impossible to anticipate
every change we will want to make to a system throughout its lifecycle, but if we have an
architecture that is deliberately designed and documented, we can predict how difficult
changes will be – that is, how much it will cost and how long it will take. The ACDM tries
to address the structural needs of the system early to provide an enduring framework for
downstream detailed designers and developers, thereby deferring the need for redesign
as long as possible.

Context Diagram

The context diagram establishes what is part of the system, or internal to the system
being developed and what is external. Note that elements external to the system can
impose design constraints. External elements are typically out of the purview of the
developers and might include external stakeholders, devices, networks, and/or entire
systems. Context drawings are typically box-and-line drawings or cartoons showing the
system boundary (those elements within the system, and those outside the system).
There are a variety of methodologies for creating context diagrams such as UML,
Yourdon and Jackson Structure Analysis among others.

Partitioning and Creating the Views

The act of design (which is what the architect does) involves creativity and intuition. This
makes the task explaining how to architect very difficult. Once the context diagram is
established, the development team will need to create the notional architecture, led by
the chief architect. Here is some general guidance for partitioning the system into
elements and creating the necessary views of the system. While this information is
presented as discrete steps, it would be naïve to believe that these are always fixed,
predetermined steps. This is merely guidance for the development team.

Select an overall pattern for the system.

Some kinds of problems suggest well known, well established architectural patterns.
Rarely does a real system exhibit one pattern – typically real systems are comprised of
ensembles of patterns. However, many systems have a predominant architectural
pattern. Assume that a client needs to sell widgets on the internet – what kind of
architectural pattern does this kind of problem lend itself to? The answer is obviously an
n-tiered architecture where one tier is a browser, the middle tier contains business rules,
and the final tier is a web server. While this seems to be a trivial bit of reasoning, it can
be very powerful in that it provides an initial partitioning based on the experiences of
many other architects. More implicitly, we can assume that any architectural pattern will
promote certain quality attributes while others will be inhibited. For example, n-tier is a
special case of client-server. This family of patterns allows clients to be added (scaled)
in a very flexible way provided that clients adhere to defined protocols. However,
security and performance are inhibited in this pattern. This doesn’t necessarily mean that
the selection of n-tier is bad; it means that the architect must weight the tradeoffs

 27

between promoting scalability at the cost of security and performance. Recall that quality
attributes represent business goals or what is needed in a system to achieve a business
goal. The “goodness” of any architectural decision must be weighed in the context of
business goals and quality attributes. Quality attributes that may be undermined by the
selection of a pattern can be offset by the selection of other mechanisms that can be
applied to and refine the initial pattern selection. For example, firewalls or encryption can
be applied to offset the security issues exposed by the initial selection of the n-tiered
pattern. However, these mechanisms will help promote some quality attributes and will
further inhibit others. Obviously while firewalls and encryption will help with security
issues introduced by the selection of an n-tiered pattern, performance is further
undermined by the use of these mechanisms. Once a pattern is selected the team
should document the architectural decision, why it was selected (criteria), rejected
alternatives and why they were rejected.

Verify the perspective

It is essential that we explicitly recognize what perspective by which we are beginning to
decompose the system. When we selected a pattern, we are implicitly bound to a
starting perspective. The n-tier (or any client-server oriented) pattern represents a run-
time oriented perspective. Each perspective allows us to reason about various quality
attributes of the system. For example, run-time views of the n-tiered system allow us to
reason about the performance of the system; however, we are unable to say anything
about how modifiable the server element of the n-tiered system is. To reason about
modifiability qualities, we will have to change our perspective to a code oriented
perspective and decompose the system from this perspective. Again, we must consider
our system from run-time, code-oriented, and physical perspectives.

Decompose

If you selected a pattern already, then you have already begun to decompose. Imagine
starting decomposition with a box labeled as “system.” Assume that this system
represents a particular perspective of the system. The “system” must satisfy all the
constraints, functional, and quality attribute requirements.

Constraints

System

Functional

Requirements

Behavior
Properties

Quality
Attributes

 28

At the highest level of abstraction, all software intensive systems can be viewed in this
manner. Decomposition can begin with selecting a pattern or the system can be
decomposed without a particular pattern in mind. Again, the architect must keep in mind
what perspective of the system they are considering as they begin decomposing system
into its constituent parts. Decomposition is hierarchical and is iterative. The first level of
decomposition will by necessity be course grained and subsequent levels of
decomposition will add more detail to the architecture. Assume that the system above is
decomposed using the n-tiered pattern to guide the first level of decomposition.

Business
Logic

Browser Server

This particular perspective is a run-time perspective showing elements of the system as
they would appear during execution. For each element in the first level of decomposition,
we must define the externally visible services and data that the element provides. This is
largely determined by the constraints, functional, and quality attribute requirements the
element is responsible for satisfying. After this initial decomposition, the constraints,
functional, and quality attribute requirements must be assigned to elements above.

Functional
Requirements

Quality Attribute Constraint Responsible
Element(s)

Provide access (read
and modify) to user
account information

:

:

Browser, Business
Logic, Server

:

Ability to quickly
adapt to changes
in business
environment

:

Business Logic

: : Use Netscape Browser

Some functions, constraints, and quality attributes can be neatly assigned to an element
for satisfaction. Others will span across multiple elements. This is an important
distinction to recognize since a change in the function, constraint, or quality attribute that
spans multiple elements could impact all of the associated elements. Similarly, changes
in any one of the elements may impact the function, constraint, or quality attribute that
depends upon those elements. Once the initial decomposition is decided upon, the
development team should document the key decisions driving the decomposition, why it
was selected (criteria), rejected alternatives and why they were rejected.

Documenting Views

As the system is decomposed, each view must be documented by the development
team. The Chief Architect is responsible for keeping (configuration and control) of the
architecture. Again, the development must consider the system from three perspectives
at a minimum: run-time perspective, code oriented perspective, and a physical
perspective. Views from each perspective will comprise the architecture, they help
designers reason about the properties of the system, and will eventually help detailed
designers and developers build the system. The following is a contrived example of a

 29

system that shows three views, one for each perspective, illustrating how together they
describe the architecture of a system.

This view represents a runtime
perspective of the system showing
three processes X, Y, and Z.
Assume that the user expects
processes to be easily
interchanged and/or replaced with
new processes.

Note that each view supports different kinds of reasoning. The view from the run-time
perspective allows designers and implementers reason about run-time aspects such as
performance, process boundaries, data flow, and so forth. The code oriented view allows
architects to reason about properties such as modifiability and constrains how
downstream, detailed designers and implementers can structure the code. Note that at
the architectural level of abstraction, the details of what services and data are provided
and required are declared by the architect and details of implementation are left to
downstream designers. Finally, the view from the physical perspective shows the

This view represents a code oriented
perspective of the system showing three
processes the essential elements that make up
the processes. Common packages for streams,
input, and output inherited by the packages
that make up the process algorithms help
achieve the expected interchangeability
expected by the stakeholders

Process X Process Y Process Z

Byte Stream

Process

Process X
Algorithm

Process Y
Algorithm

Process Z
Algorithm

Input
Methods

Output
Methods

Steams
Packages

Code
Package

B Inherits
from A

A

B

Run-Time Perspective

Code
Oriented
Perspective

Physical Perspective
This view represents a physical perspective of the system showing three processors and
how the processes X, Y, and Z map to specific processors.

TCP/IP Network

Process Z

Process Z
Intel SGI Apple

Assigned to

Process

HW platform

Network

Process X Process Y

 30

physical hardware and how the elements from the run-time view map to physical
elements. This view is essential for deploying the system, testing the operational system,
allocation of resources, and so forth.

Interfaces

As the architecture is refined through successive decomposition (and ACDM iterations),
the element interfaces will need to be defined. Essentially, interfaces are agreements
between elements that define the rules for their relationship. A common question is,
“how detailed should the interfaces be?” The more detailed they are, the better it is. A
well defined interface codifies the element’s boundary, rules for interaction, as well as
what services and data it requires and provides. Not only is there is often a great deal of
confusion about how detailed interface descriptions should be, but when the interfaces
should be bound. The earlier they are defined the better it is. There are often dire
consequences for ill-defined interfaces. Here is an example:

Assume that there are two elements being produced by two different teams (or if you like
two different individuals). Let’s also assume that the two elements are dependent upon
one another and the architect did not define the detailed semantics of the interfaces for
the elements. Essentially this means that the agreement for how the two elements will
share data, services, control, and so forth has been deferred to downstream designers.
If this is the case, the architect will not be aware of the resulting interfaces that emerge.
As a consequence, the architect will not be able to guarantee that the properties
promised in the architecture will be fulfilled by the ensuing detailed design and
implementation. Again, the issue of the interface is less about functionality and more
about whether the emerging relationships (e.g. interfaces) between the two elements will
be able to support the quality attribute requirements (will it be fast enough, can it support
modifiability, and so forth). Ill-defined interfaces can also affect the organization as well.
Again, assume that we have two elements whose interfaces are ill-defined. The teams
now must haggle among themselves to define the semantics of the interfaces for the
elements. When this happens, teams usually spend inordinate amounts of time in
meetings trying to establish interfaces that they can agree upon. Sometimes this is easy,
other times it can be difficult or impossible – again as the number of people gets larger,
the problem becomes more difficult. In extreme cases, teams implementing components
will not want to yield for a variety of reasons such as a perceived loss of control or
autonomy, potential loss of funding, and so forth. Some of these reasons may be valid,
some may not be valid, but this behavior is always destructive to the organization and is
a drain on project schedules. More importantly, the resulting compromises may
undermine the original partitioning established by the architect, compromising quality
attribute characteristics expected in the implementation.

There are two general approaches that the architect can take when defining interfaces.
First, the architect can define interfaces themselves (working with their technical team of
course), or they can defer the definition of the interfaces to others – but guide their
definition. The first option is obvious, the second option is less obvious. In the second
case, the architect may choose to allow other engineers to define interfaces but they
must guide the effort and they must reserve the final say as to when they will be defined
and how. The architect then must place the interfaces under configuration control and
ensure that all of the properties promised by the architecture still hold. At this point, the
interfaces are no longer in the hands of the detailed designers or implementers.

 31

Changing the interfaces should be done only with great care and deliberation (such as
that provided by a configuration control body of some sort).

Subsequent Decompositions – When Are We Done?

After the initial decomposition, the team can begin to decompose each of the elements
in the first level of decomposition. Some elements require more detail; these elements
will require more decomposition. In many cases it is clear when more decomposition is
needed. In the example above, it may be the case that the browser element does not
need any further decomposition. However, clearly the server and business logic
elements will need to be further decomposed.

How much decomposition should a development team do, and when are they done
decomposing the system into its constituent elements? A software architecture is “done”
when it sufficiently constrains the downstream element designers. That is when

• The system is partitioned into elements with relationships between them and there

are run-time, code, and physical views documented describing the architecture of the
system.

• For each element, the responsibilities are defined and documented.
• For each element, the data and services required by the element to meet its

responsibilities are defined and documented.
• For each element, the data and services provided by the element are defined and

documented.
• The interface(s) for each element is defined.

Having defined the architecture, it can be based-lined and the detailed designers can
focus inward and design the details of how each element will work. Software architecture
design does not replace detailed designs; detail designs complement software
architectures and are the necessary next step in system development. Software
architectures help to ensure that the essential quality attribute requirements are
designed to be part of the system. The architecture becomes the framework in which the
detailed designs of elements are created. The detailed element designs must adhere to
the architecture to ensure that the properties promised by the architecture can be
realized in the implementations. Detailed design is done in the production stage (stage
6).

How Long?

The team should spend on the order of few days or weeks (depending upon the scope of
the system) creating the context diagram and notional architecture and at least three
views of the architecture. This assumes that architectural discovery is not needed for
legacy systems which will be discussed later. In addition to the architectural work, the
development team should review and refine their Preliminary Project Plans as necessary
based on this initial architectural work.

 32

Stage 4: Review the Architecture

Preconditions Notional architecture created – key views provided in slide

presentation. Slide presentations created summarizing business goals
and architectural drivers.

Who Development Team and Stakeholders (optional per discussion below)
Activities Review business goals and architectural drivers

Analyze the architecture
Outputs Problematic architectural decisions and tradeoffs.
Role Stage 4 Recommended Responsibilities
Chief Architect Present architecture (step 3 below), respond to architectural queries

(step 4 below).
Managing
Engineer

Facilitate review meeting. Present introductory material (step 1 below).

Requirements
Engineer

Present the architectural drivers overview (step 2 below).

Chief Scientist
Support
Engineer

Software
Engineer

Support review by asking probing questions during analysis (step 4)
and scribing.

In this stage we conduct a review of the architecture that involves the development team
and system stakeholders. The development team should plan sufficient time for the
development team and the stakeholder community to meet for a review of the
architecture. The purpose of the architecture review is to expose problematic
architectural decisions and explicitly identify tradeoffs between alternative architectural
approaches or decisions. Architectural reviews can be conducted internally or externally
and in most case both will occur. A development team may undertake an internal review
to refine the notional architecture and then perform a second review with the
stakeholders prior to committing to production of the system. It is strongly recommended
that at least one review be conducted with the stakeholders attending. In general, the
Managing Engineer should facilitate the proceedings however, various team members
will present during the review. The review meeting is conducted in four steps:

Step Description Responsible Role

1 Introductions and Expectations Managing Engineer
2 Review of business goals and architectural drivers

• high-level functional requirements
• constraints
• quality attribute characterization table

Requirements Engineer

3 Presentation of the notional architecture Chief Architect
4 Architectural analysis Managing Engineer

and
Chief Architect

 33

Step 1: Introductions and Expectations

The development team’s Managing Engineer should set the expectations of the
attendees by describing the intent of the architecture review meeting. The key points to
emphasize are:

The purpose of the review is to
• ensure that architectural drivers are clearly understood by all
• introduce attendees to the notional architecture
• identify problematic architectural decisions

The purpose of the review is NOT to
• fix problems or discuss detailed solutions
• criticize members of the development or stakeholder organizations
• discuss process or organizational problems.

It is important that the group of attendees (development team and stakeholders alike)
understand the purpose of the review. Of these concepts, it is critically important that
attendees understand the purpose of the review is to find problematic architectural
decisions, not fix them. It is the facilitator’s responsibility to stop nonproductive
discussions and move the review forward. When the discussion gets off track, the
facilitator should record the essential issue, offer to take up the issue at another time,
and move on with the agenda. After setting expectations, the facilitator should provide
an opportunity to formally introduce the stakeholders and members of the development
team. This is best conducted by a round robin opportunity for each member of the group
to introduce them selves. Invite each attendee to state:

• their name
• role in the stakeholder organization, or role in the development team
• how they will interact with the system
• what they hope to get out of the review

Step 2: Review of business goals and architectural drivers

The development team should provide a presentation of the business goals and
architectural drivers. This provides an opportunity for the development team to test and
demonstrate their understanding of the stakeholders’ wants and needs.

The development team’s Requirements Engineer will present the business goals that
were distilled in stage 1. This provides an opportunity to ensure that the motivation for
building the system are still valid and understood by the development team. After
reviewing the business goals, the development team will review the high level
requirements, constraints, and the quality attribute characterization table refined in stage
2. This should be a summary of what is in the Architectural Drivers Specification
Document. Reviewing the architectural drivers is an important step in four respects:

1. refreshes everyone’s understanding of the key constraints, functional, and quality
attribute scenarios that will shape the architecture

 34

2. ensures that no information was lost or miscommunicated during stage 2 when
the architectural drivers were refined

3. ensures that all of the information is still true and correct and hasn’t changed –
it’s a way to manage changes in key architectural drivers

4. this information will be used to drive analysis, so it is essential that it is correct,
relevant, and commonly understood

Each attribute scenario of the quality attribute characterization table should be reviewed
and stakeholders invited to refine the scenarios and/or add to the table as they deem
necessary. The scenario prioritization should also be reviewed to ensure that it is still
true and correct with respect to importance and any new additions should be prioritized
as well (recall that the determination of difficulty is the purview of the development
team). This is critically important to review these scenarios with the stakeholders since
these scenarios will be used to analyze architecture. If scenarios are added to the utility
tree, they will need to be prioritized according to the prioritization described in stage one
(importance) and stage two (difficulty).

Step 3: Presentation of the notional architecture

After the review of the utility tree, the chief architect will present the architecture to the
group. They will show each view of the system explaining the overall structure and
function of the system.

Step 4: Architectural Analysis

After the presentation, the group will analyze the architecture using the attribute
scenarios in the quality attribute characterization table. The group should focus on the
highest priority scenarios – those that are most important and most difficult (for example
those scenarios rated as H,H or at least M,H and H,M). Here is how the analysis of the
architecture proceeds.

• A high priority attribute scenario is selected by the group (stakeholders and

development team).

• The facilitator should re-read the attribute scenario out loud to the group and

explicitly list them on a white board or flip chart:

o Scenario stimulus – is the event, demand, or condition affecting the system
o Source of the stimulus – the originating entity of the stimulus
o Environment under which the stimulus occurred – the condition under which

the stimulus takes place
o Element(s) of the system affected – The design elements that will be the

receptors of the stimulus
o Response – the response of the system to the event, demand, or condition.
o Response measure – the measure by which the response will be evaluated

.
• Once the scenario is listed in its entirety, the architect is asked, “Given this stimulus,

from this source, under this environmental condition, effecting artifact, show how the
architecture response within the response measure indicated by the attribute
scenario.

 35

• The chief architect must steps through the architecture using the views created in

stage 3 showing how the architecture responds to the stimulus. During this
explanation the development team and stakeholders may query the architect
regarding the architecture, with respect to the scenario being analyzed. During this
time, if the architect is unsure of some aspect of how the system will respond to the
stimulus or to a query, the development team should capture the issue as a risk. If
tradeoffs are discovered, they too should be documented as well.

This analysis will generate risks and tradeoffs. A risk is defined as an architectural
decision that may not fully satisfy an architectural driver. This could potentially
compromise the business goals (since architectural drivers are largely derived from
business goals). Tradeoffs are architectural decisions that will have a marked effect on
one or more quality attributes. Tradeoffs occur when an architectural decision is made
that promotes one quality attribute, but other quality attributes are adversely affected by
the decision. Using a back-up data store, for example, is an architectural decision that
promotes reliability. However, keeping the back up current consumes system resources,
and so affects performance negatively. The tradeoff here is between reliability and
performance. This tradeoff could easily be a risk. Whether this decision is a risk or a
tradeoff depends on which quality attribute (reliability or performance) is more important
to the stakeholders and whether impact to performance is too excessive. If the
stakeholders value performance and the impact to performance is greater than the
benefit from reliability, then this decision could be a risk. If the stakeholders value
reliability and deem the impact to performance acceptable, then this could be a
reasonable tradeoff. Sometimes stakeholders expect a certain level of performance and
reliability that isn’t easily resolved. This is a case where two quality attributes are said to
be in tension. Again, the architecture is the place to identify, reason about, negotiate
these contentious architectural drivers. It is impossible to easily identify these areas of
contention during detailed design and it is way too late to identify and negotiate their
resolution during implementation. When the analysis is complete, the evaluation team
will examine the full set of discovered risks and tradeoffs to look for over-arching themes
that identify systemic weaknesses in the architecture. If left untreated, these risk themes
will threaten the project’s business goals.

 36

Stage 5: Production Go or No-Go Decision

Preconditions Risks and Tradeoffs from Stage 4.
Who Development Team
Activities Evaluate review risks, tradeoff information
Outputs Decide to go forward with production or refine the architecture.
Role Stage 5 Recommended Responsibilities
Managing
Engineer

Facilitate review meeting. Present introductory material (step 1 below).

Chief Architect
Requirements
Engineer
Chief Scientist
Support
Engineer

Software
Engineer

Support Go/No-Go meeting

During this short but critical stage, the team decides whether the development team is
ready to begin producing the system or if they need to further refine the architecture.
Each risk discovered during stage 4 should be evaluated for severity and likelihood of
coming to fruition. Some risks may be subjective and difficult to quantify. In terms of the
go, no-go decision, the team must honestly assess the state of the architecture and the
course of the evaluation to determine whether the architecture needs more refinement.
In some cases, this need not be an all-or-nothing decision. Perhaps the overall structure
is sound, but more refinement is needed on particular elements of the system. In this
case, maybe it makes sense to advance the production of certain elements, while other
elements are further refined. Care should be exercised if this decision is made. If
potential refinements affect the underlying architectural structure or the elements
advanced to production, then chaos will ensue. Piecemeal production and architecture
refinement should be considered fully before undertaking this approach as ripple effects
can be devastating.

Are We There Yet?

Strong indications for making a decision to begin production might include the following:

• The architecture has matured to the point where the downstream designers are

sufficiently constrained such and they are able to use the architecture to guide their
design. This typically means that the boundaries of components are defined,
responsibilities of the architectural are clearly defined, and interfaces are defined.

• During the review, the architect was able to explain how the system would respond
for all of the high priority scenarios and all responses were within the response
measures specified by the scenarios.

• There were no major risks uncovered during the review of the architecture that would
put the development effort or the resulting implementation at risk.

 37

• No radically new architecture drivers, business goals emerged and no major
changes to existing architecture drivers, business goals emerged during the review
causing major changes to the fundamental architectural structures.

Strong indications for making a decision to continue to refine the architecture might
include the following:

• The architect was unable to answer probing questions regarding the architecture.

• There were conflicting answers to probing questions about the architecture.

• Key parts of the architecture are yet to be defined.

• The architect had to draw a significant number of supplemental pictures during the
evaluation to explain the architecture – this is an indication that the architecture
documentation is weak, therefore making it difficult for down-steam designers to
adhere to the architecture.

• Numerous risks were found

• Numerous architectural drivers and/or business goals changed between Stage 1
(discover architectural drivers) and Stage 4 (review).

If the team decides to refine the architecture, they will proceed to Refinement – Stage 6.
If the team decides to go to production, they will proceed to Production – Stage 6.

Refinement – Stage 6: Plan/Execute Experiments and Refine Architecture

Preconditions Risks and Tradeoffs from Stage 4, Architectural Views
Who Development Team
Activities Evaluate review risks, tradeoff information, plan experiments, execute

experiments, and refine architecture
Outputs Completed, documented, experiment Plans; Refined architecture,

updated architecture documentation; Updated project plans. Updated
architecture drivers specification

Role Stage 6 Recommended Responsibilities
Managing
Engineer

Coordinate the scheduling and planning of the experiment plans.
Update the project plans. OPTIONAL: Create experiment plans and
carry out experiments.

Chief Scientist Coordinate the development and planning of the experiment plans and
tracking of the experiment execution. Assist other responsible
engineers with their experiment planning and execution. OPTIONAL:
Create experiment plans and carry out experiments.

Chief Architect Create experiment plans and carry out experiments. Update the
architectural documentation based on the results of the experiments.

Requirements
Engineer

Update architecture drivers specification if necessary based on results
of the experiments. Create experiment plans and carry out
experiments.

Support
Engineer

Create experiment plans and carry out experiments. Ensure tools and
environments are available and ready to support the execution of
experiments.

Software
Engineer

Create experiment plans and carry out experiments.

 38

In this stage, the development team has decided to further refine the architecture. To
refine the architecture, the development team must create plans to address the risks that
emerged during the architecture review. These plans must be lightweight so that the
team may obtain the information that is needed as quickly as possible, so that the
architecture may be refined and reviewed as quickly as possible. Prototypes are nothing
new; however, the term “prototype” has been intentionally avoided here. The problem
with prototypes is that too often they become the product. A software intensive product
that evolved from a prototype will typically have architectural (structures) that evolve and
are unknown rather than possess structures that are designed and are well understood.
Rarely are prototyping efforts planned. Prototypes by definition do not include the same
level of quality as a production articles do. This highlights a key difference between
ACDM and methods that prescribe the use of prototypes to “grow” a product. In the
ACDM, after the notional architecture has been created it is reviewed and experiments
are planned and used to refine the architecture to mitigate risks. In essence, iteration
occurs on the architecture, not the product. This is vital since the architecture will be
used for all programmatic aspects of the project as well as the technical aspects. In
ACDM, the iteration on the architecture occurs as follows:

Production
Stage 6
Stage 7

Refine Stage 6 - Plan
Experiments

No Go

Go

Stage 5 - Review

Stage 4 - Create Notional
Architecture

Return to
Stage 1 for

maintenance
and

enhancement

Refine Stage 7 - Execute
Experiments

Refine Architecture
Architecture
Refinement

Iteration

Product
Refinement
Iteration

As this graphically illustrates, ACDM supports both product and architecture iteration and
differentiates between them. The value of architecture iteration is that architectures are
models of a system, and as such are abstractions of the real thing. However, by
identifying risky elements of an architecture and targeting experiments to address the
risk, a higher fidelity architectural model can be created. At the end of the architecture
refinement cycles, the architecture should not be a “paper tiger,” but a real artifact – that
is, a high fidelity model of the system – with examples and data that supports the
elements that comprise the architecture. This refinement may also provide insight into
the architecture drivers specification that will result in changes to the architecture. Any
changes to the architecture, will affect the project plans. Once the architecture has
reached stability there is also an opportunity to iterate during production, however, this is
covered in detail in production stage 7.

 39

Guidance on Planning Experiments

The purpose of using experiments is to systematically refine the architecture based on
findings from the review conducted in Stage 4. Experiments are used to explore
technological elements that are not well understood prior to committing them to the
architecture or to better understand an architectural driver. As the latter implies, this may
require further interaction with the client stakeholder communities as experiments are
planned and executed. The purpose of explicitly planning each experiment and
documenting the plan is to clearly state:

• The goal of the experiment
• How the experiment relates to the architecture
• The expected outcomes
• Duration of the experiment
• The resources required
• Description of the experiment
• Results of the experiment

 40

Experiment plans should be simple 1 or 2 page documents that include the following
elements:

Experiment Plan Title
Element Content Description
Experiment ID This is the title or something that uniquely identifies this

experiment.
Responsible
Engineer

This is the development team member that is responsible for this
experiment.

Purpose Describe the reason for conducting the experiment. It is strongly
advised that the author explain how the experiment will be used
to refine the architecture.

Expected Outcomes Describe what the responsible engineer expects the outcome or
outcomes will be of the experiment.

Resources Required List the resources required that include: compute resources
(software/hardware), people, time, money, and so forth.

Artifacts These are the artifacts that will be created as a result of
executing the experiment such as software, documentation, and
so forth.

Experiment
Description

Describe the experiment. This includes software that will be
written, research to be performed, studies to be carried out,
information that will be collected and how it will be collected and
so forth.

Duration The amount of time that it is expected to complete the
experiment. Must include an explicit start date, stop date, and
milestones as applicable. This should be a mini-schedule of
events that can be tracked by the Chief Scientist. The Managing
Engineer can roll up the durations and dependencies for all the
experiments.

Results and
recommendations

The responsible engineer must document the results of the
experiment. Describe deviations from the expected outcomes
and reasons for the deviations. Discuss and deviations from the
planned experiment description. Describe recommendations as a
result of conducting the experiment.

The experiment planning effort is led by the Chief Scientist. The responsibility for
developing the experiment plans and executing them can and should be delegated to
the development team members. Small teams can be assigned to experiments. The
Chief Scientist will circulate and review the experiment plans among the team members.
The Chief Scientist is responsible for ensuring that the experiment plans are created and
will work with the Engineering Manager for coordinating their execution in stage 7, and
tracking the results of the experiments. The experiment plans will be an integral part of
the risk mitigation plan for the team. These risks are real and need to be mitigated –
recall the pedigree of these risks:

 41

The implication illustrated here is that business goals motivate the architectural drivers.
Architectural drivers, especially the quality attribute requirements, are critical to shaping
the architecture and will drive the decisions that the architect will make. The architect
codifies their decisions in the notional architecture which we review. As a result of the
review we uncover risks that are inherent in the architecture. Note that tradeoffs also
share this pedigree as well and because of this lineage, the tradeoffs are more likely to
be the right tradeoffs to satisfy the business goals. The risks are only risks because they
impact or impede our ability to achieve the business goals. It is useful at this time for the
group to consider programmatic risks as well and combine the programmatic risks and
the technical risks discovered (and hopefully mitigated) into a more comprehensive risk
management plan. Experiments can be used to mitigate a variety of risks. Examples
include:

• Continuing to decompose various elements of the notional architecture to better

understand assumptions
• Creating and evaluating alternative architectural approaches
• Validating technologies that are not well understood
• Validating requirements that are not well understood
• Validating ensembles of elements whose quality attribute behaviors, functional

behaviors are not known or cannot be validated unless they are tested
• Market research for commercially available components
• Building and testing the architectural infrastructure

Executing the Plans

Based on the experiment planning, the Engineering Manager should update the
Preliminary Project Plan as necessary to reflect the experiments that will be executed
and coordinate with the client stakeholders (and if necessary approve the schedule and
budgets for the experiments). Finally, the experiments must be executed. The Chief
Scientist’s role is to track the progress of the experiments, identifying problem areas

Business Goals

Architectural
Drivers

Architectural
Decisions

Motivate

Form the
basis of

Notional
Architecture

Codified in

Has

Risks/Tradeoffs

I M P A C T S

 42

(technical, schedule, logistical, and so forth), and assisting other responsible engineers
in their experiments. Based on what the team learns from the collection of experiments
the team will advance their architecture, the team’s understanding of the problem, and
the stakeholders understanding of the product/solution.

Refining the Architecture

As the experiments are completed, the team will need to update the architecture based
upon results of the experiments. Updating the architecture can mean updating views,
documenting new structures, updating prose descriptions, and so forth.

Production – Stage 6: Production Planning

Preconditions Refined Architecture. Results of Experiments.
Who Development Team
Activities Create Production Plan.
Outputs Production plans, test plans, estimates, and schedules
Role Stage 6 Recommended Responsibilities
Managing
Engineer

Coordinate the scheduling of the production plans

Chief Scientist Assist the Managing Engineer in creating and documenting the
production plans focusing on element design tasks.

Chief Architect Assist the Managing Engineer in creating and documenting the
production plans focusing on element design tasks.

Requirements
Engineer

Assist the Managing Engineer in creating and documenting the
production plans focusing on element and integration testing.

Support
Engineer

Assist the Managing Engineer in creating and documenting the
production plans focusing on support tasks such as tool maintenance,
set up times, back-ups, and so forth.

Software
Engineer

Assist the Managing Engineer in creating and documenting the
production plans focusing on element development tasks. Some
software engineers will be assigned as the Responsible Engineers for
elements of the system.

If, after a stage 4 review, the team concludes that the architecture is sound and that all
of the inherent technical risks have been sufficiently addressed, they may decide to
begin planning for production. Production may mean that the team builds the whole
product, or it may mean that part of the system or some subset of the functionality is
produced. ACDM supports the notion of iterative product development and integration,
however care should be taken when building and deploying a system in a piecemeal
fashion. If the system is to be produced iteratively it is critical that the architecture
supports the changes anticipated for future production iterations. Even though
production may be iterative, the team should have sufficiently refined the architecture so
as to minimize production risks. If there are remaining risks, the team should be
confident that they are identified and isolated to a single element of the architecture,
thereby limiting potential ripple effects as the element is further refined. A critical part of
ACDM is creating a production plan that guides the implementation efforts of the team. A
crucial part of the production plan is the creation of higher fidelity estimates for the
production of the system elements. In addition to production plans, test plans are also
produced by the requirements engineer. This is a logical task for this role since the

 43

requirements engineer has documented the needs of the stakeholders vis-à-vis the
architectural drivers specification.

Task Estimation

ACDM prescribes using the architecture to derive estimates and plans. The purpose of
estimation is to predict

• how long it will take for the team to develop the product
• how much it will cost to develop the product
• what resources will be required

ACDM prescribes estimating the size, effort, and resources associated with designing,
producing, and testing each element of the architecture and then rolling up the element
estimates into an overall system production estimate. The underlying philosophy for this
approach to estimation is that since the emphasis in ACDM is to identify architectural
elements and iteratively refine them, then the architecture should be used to estimate
the effort and guide production. Each element of the architecture will be decomposed in
to scheduling elements, essentially creating another view of the architecture. This is
illustrated below:

Architectural
Element X Technical Architectural View

(Design Elements)

This illustration shows how each element of the architecture is decomposed into
schedule elements. Each element then is rolled up to create a system production
estimate.

ACDM recommends the use of Element-Wise Wideband Delphi Estimation which is a
tailored version of the traditional Wideband Delphi Estimation (WDE) [7]. Traditional
WDE is often used estimate the size of code level modules [6]. Rather than estimate the
detailed code units, Element-Wise Wideband Delphi Estimation is used to estimate the
relative size of the architectural elements. While not prescribed, the code oriented
perspectives (views) are the most useful for Element-Wise Wideband Delphi Estimation.

Detailed Element X Design
Element X Review
Element X Construction
Element X Test
Element X Rework

Activities

start - stop
start - stop
start - stop
start - stop
start - stop

Dependencies: Element X depends on Element Y
Responsible Engineer: Joe Guru

Duration

Production Schedule View
(Schedule Elements)

 44

The goal is to estimate how long it will take to produce each element of the architecture.
The team must decide how they will determine duration. They may estimate the amount
of time it will take to produce each element or they may derive if they choose. For
example an organization may feel more comfortable (or have a need to) estimate the
size of each element. In some cases, teams will estimate size (e.g. lines of code) and
derive effort, cost, and so forth from size estimates. In other cases, teams will estimate
effort in terms of time (staff hours) and derive cost from effort. Still other teams will
estimate both. In any case, the amount of time that it will take to produce each element
must be available (this will become clearer in stage 7). Once the team decides what they
will measure and how they will estimate (or derive) production time, they must estimate
production for each element. The estimating procedure follows.

1. For each architectural element, a responsible software engineer is assigned (if not

. An Element Estimation Form for each architectural element in the system is

Element Estimate Form

done so already).

2
produced by the responsible engineers. An example follows:

System Name: name of the system
Element Name: name of the element
Responsible Engineer(s): responsible engineer name of the element’s
Estimate: value of the estimate
Units: units of the estimate (if other than time)
Date: date the estimate was made
Rationale (optional) ns or discuss any issues engineer can list any reaso

influencing their design.

Note that the name of the estimator is intentionally omitted in the element estimator
form. This allows the participants to estimate without fear of reprisal or providing an
estimate that is deemed silly or wrong. The following activities should be considered
in the estimation of each element. The element estimate form can be enhanced to
have separate estimated for each, or they can be rolled-up into a single estimate by
the estimator.

 45

Detailed
Element Design

What resources (staff, material, money, etc) and how much
time will each element of the architecture take to design?

Element Review What resources (staff, material, money, etc) and how much
time will it take to review each element?

Element
Construction

What resources (staff, material, money, etc) and how much
time will it take to build each element?

Element
Integration

What resources (staff, material, money, etc) and how much
time will it take to assemble the elements into a system?

Deployment What resources (staff, material, money, etc) and how much
time will it take to install and otherwise deploy the functioning
system on destination system and environment?

Element Test What resources (staff, material, money, etc) and how much
time will it take to test each element of the system in isolation?
This includes building test harnesses for testing elements or
the architectural infrastructure so that elements “plugged in” for
testing the elements and the architectural infrastructure.

System Test What resources (staff, material, money, etc) and how much
time will it take to test the system in its entirety once the
elements are integrated? This test refers to testing the system
under laboratory conditions before it is deployed in an
operational environment.

Operational Test
and/or
Certification

What resources (staff, material, money, etc) and how much
time will it take test the operational system in the operational
environment and certify the system? In some cases, the
development team must demonstrate that the system performs
as required – or performs some subset of functionality
flawlessly under operational conditions. System certification is
the term used to refer this type of validation. System
certification is testing that is conducted with the system on the
operational hardware, software, and in the operational
environment.

Rework How much rework does the team anticipate? What resources
(staff, material, money, etc) and how much time will rework
consume?

3. Each element’s responsible engineer collects the element estimate forms from all of

the team members (including the responsible engineers) and computes the minimum
and maximum estimates, the average and standard deviation [8] (Presumably the
estimates are in time, but they could be in some other units as well. Eventually, time
of production for each element will have to be derived or estimated).

 46

4. After the first round of estimates, the team meets. Each element’s responsible
engineer presents the following for each element (note this form is called a
consolidated element estimate form).

Consolidated Element Estimate Form
System Name: name of the system
Element Name: name of the element
Responsible Engineer(s): name of the element’s responsible engineer
Min value of the smallest estimate
Max value of the largest estimate
Mean mean value of the estimates
Standard Deviation standard deviation of the estimates
Units units of the estimate
Date: date the estimate was made

The team should discuss the estimates for each element. A decision should be made for
each element as to whether the element will need to be re-estimated or whether the
estimate will stand. The team should agree what tolerance should be allowed in each
element’s estimate. The tolerance is the standard deviation from the mean estimate for
any given element. A low tolerance allows for very little deviation from the mean
estimate, a high tolerance allows for more deviation from the mean estimate. A tolerance
of 20% from the mean is reasonable value for most systems in most domains, but
experience is the best guide for establishing tolerance. The lower the tolerance, the
more at risk schedule and cost will be. For those elements that will be re-estimated, the
team members should plan to discuss the estimates. Engineers whose estimates are at
the high and low boundaries should be prepared to discuss the reasons and issues for
their estimates. Proceedings of these discussions should be captured and sent to all
team members or the next iteration of estimation. This process should repeat until all
element estimates are within the acceptable standard deviation established by the team.
With each iteration the estimates will begin to converge. Once the estimation is
complete, the Managing Engineer will use the estimates as a basis to create the project
schedules.

Creating the Production Schedule from the Architecture

The architecture should be used as the basis for creating the production schedule. For
each element, a responsible software engineer should be assigned whose responsibility
it will be to estimate the resources and time required to design, build, and test the
element. The element’s responsible software engineer will also coordinate the activities
of the developers assigned to build the product. Various views of the architecture, such
as a code oriented view, lend themselves well to establishing an initial task breakdown
to create the product schedule. Recall the views presented earlier in stage 3. Views such
as these should be used to create the production schedule and assign personnel to
develop the elements of the system.

 47

Consider the following example.

Process X
Algorithm

Process Y
Algorithm

Process Z
Algorithm

Input
Methods

Output
Methods

Streams
Packages

B

A

Package

B Inherits
from A

Element
assigned to

Developer

From this code oriented perspective we can see that each package will need to be
designed in detail and the partitioning of the architecture suggests a division of labor
where one developer is assigned to each package for process algorithm X, Y, and Z.
Two developers are assigned to the communication infrastructure embodied in the input,
output, and streams packages. The ACDM prescribes that a responsible engineer be
assigned to the each element of the system to lead the design and development of each
element of the system. From this information, work breakdown structures, Gantt Charts
and other similar scheduling artifacts can be derived as illustrated below.

 48

Representing the Production Schedule

The ACDM does not prescribe that any particular schedule representation format be
used, but rather that it is derived from the architecture as described above. The
illustration below is an example Gantt chart showing a production schedule for the
system.

Obviously this an incomplete Gantt chart, however, the previous two examples should
illustrate how the architecture can be used to guide the allocation of the workforce and
derive the project schedule. Again, the artifacts here are not meant to be prescriptions
for how to document the project schedule and workforce allocation, these are merely
examples of using the architecture to derive project schedule and allocate the workforce.
Using the architecture to drive the programmatic aspects of the project (as demonstrated
here) is prescribed by the ACDM, how it is documented is not. Each of the elements in
this schedule should be estimated by the engineers assigned to build the element and
coordinated by the element’s responsible engineer as described above. All of the
individual element estimates need to be rolled up to create the system production
schedule; dependencies must be identified and resolved; and the whole Production Plan
documented by the Managing Engineer. While the Managing Engineer is responsible for
the Production Plan, clearly all members participate in its creation.

Test Planning

During production planning, the Requirements Engineer must devise a specific plan for
testing the architectural elements of the system, the system itself, and certifying the
system. However, time must be budgeted for testing the elements and the system and
must be included in the estimation performed above, however this can be a catch-22
situation. Often it is helpful if the requirements engineer devises a draft plan before the
estimation is done to give the team a feeling of the scope and depth of the testing
required.

It is essential that the Requirements Engineer use the architectural drivers specification
to derive the test plans. Remember, the architectural drivers represent the business

Streams Package

Input Package

Output Package

Algorithm X

Algorithm Y

Interface
Design

 Design
Functional

Algorithm Z

Interface
Design

Functional
Design

Interface
Design

Functional
Design

Functional
Design

Functional
Design

Functional
Design

Review

 Code

Process X

Review

 Code

Review

 Code

 Review

 Code

 Review

 Code

 Review

 Code

 Integrate

 Test

 Test

 Test

 Test

 Test

 Test

: :

 49

goals of the client stakeholder. In addition to developing functional test through
demonstration, the constraints and quality attributes must also be tested as well. Testing
will occur through demonstration and/or inspection. For example, functionality can be
tested best through demonstrating the system functionality to stakeholders. Similarly
some quality attributes can be demonstrated through observing the system function as
well. Consider the case of a quality attribute scenario that describes a performance
response time of 15 milliseconds. This quality attribute scenario should be used as the
basis for creating test plans and procedures. Other architectural drivers will have to be
tested through inspection. For example, modifiability is a quality attribute that should be
clearly described through attribute scenarios. However, there is no way that an
operational system can demonstrate most facets of modifiability. Therefore, the architect
and/or developers will have to show the stakeholders interested in the aspect of
modifiability that the system will meet their modifiability expectations. Again, the
modifiability attribute scenarios should be used to drive the test of the system (vis-à-vis
inspection). Constraints may also be verified using demonstration and inspection
techniques as appropriate. A worthwhile exercise for the development team is to revisit
the architectural drivers specification before test planning. For each driver, the
development team should try to determine whether they can be tested through
demonstration or inspection. The requirements engineer can then begin to plan tests for
the elements, system, and for certification.

The test plan should be reviewed and approved by the client as soon as it is drafted.
This sets expectations for both stakeholders and the development team so there are no
surprises later for either party.

Other Elements of the Production Plan

In the real world, there are often many other elements that will have to be scheduled.
After the architectural elements are schedule, other elements should be weaved into the
plans such as:

• Training
• Subcontract/Subcontractor management
• Meetings
• Documentation (not mentioned thus far)
• Vacation
• Travel
• Installing and maintaining tools

The intent here is not to present a comprehensive list of other elements that will have to
scheduled, but rather provide a few common examples for the reader to consider.

 50

Production – Stage 7: Production

Preconditions Production Plan and Refined Architecture
Who Development Team
Activities Create detailed element designs; Review designs; Build elements; Test

elements; System integration; Test systems.
Outputs Completed reviewed element designs; Complete tested element

implementations; Integrated tested system;
Role Stage 7 Recommended Responsibilities
Managing
Engineer

Coordinate the scheduling of resources. Track efforts of the team to the
Production Plan.

Chief Scientist Coordinate design of elements. Coordinate reviews of elements.
Chief Architect Ensure elements are designed and built to the specifications

prescribed by the architecture.
Requirements
Engineer

Ensure that test plans are executed and that the elements are
produced to meet the architectural drivers specification.

Support
Engineer

Ensure that all the required tools for development, configuration
management, defect tracking, and so forth are installed and are
available to the development team.

Software
Engineer

Responsible for designing, developing, reviewing, and testing the
elements that comprise the system.

In the Production Stage, the development team will essentially design, build, and test the
system in its entirety or parts of the system in an iterative development approach. In
addition to the technical construction activities, the other essential activity of this stage is
the tracking of the team’s progress throughout construction. The Managing Engineer is
principally responsible for ensuring that the team is adhering to the production plan,
detecting deviations, and re-planning as necessary.

Detailed Design

Developing an architecture for a software product does not preclude the need for
detailed design. Once the elements of the architecture are defined and the architecture
has reached a point of stability, the elements will have to be designed by the Software
Engineers in greater detail so that implementation will possess the properties of the
architecture. Recall that an architecture is sufficiently complete when

• responsibilities have been defined for or assigned to the elements,
• the data and services provided by each element are defined
• the data and services required by each element has been defined
• the element interfaces are defined

The ACDM does not prescribe how to do detailed design of the elements. The
development team may use object oriented design methods, structured methods, black
box methods, and so forth. It is wise to peer-review designs to ensure that they adhere
to the architecture prior to constructing the elements.

 51

Construction

After design, the Software Engineers will construct the elements of the system. The
Support Engineer must ensure that development and test environments are available to
the Software Engineers as needed. The team may choose to perform Fagan style code
reviews [12] or pair programming [9] as desired or deemed necessary.

Element and Integrated Test

As elements are completed, the Software Engineers are responsible for testing each
element prior to their integration into a complete system. A myriad of strategies could be
used to perform construction, element, and integrated test. Testing must be closely
coordinated with the Requirements Engineer per the testing plan.

Tracking the Plan Using Earned Value

Earned Value is an objective measurement of how much work has been accomplished
on a project. Earned Value, Performance Measurement, Management by Objectives,
and Cost Schedule Control Systems are synonymous terms. The essence of Earned
Value is that each task is assigned a relative value and the project is credited with that
value when the task is completed in its entirety. Using the earned value process, the
team can readily determine how much work has actually been completed against the
amount of work planned to be accomplished. This helps to avoid the situation where the
last 10% of the project takes 150% of the schedule and budget. The ACDM uses the
schedule derived from the elements to track the progress of the production stage. This
approach works if the entire system is being built, or if it’s being built incrementally, or if
only elements are being built.

The procedure for using Earned Value follows:

• Once the schedule has been derived (in stage 6), the total project time has to be

calculated. The easiest way is to add up the sum of all the task times. Again, these
tasks were derived from the elements that comprise the architecture (in stage 6).

• For each element, we need to determine the earned value of the task. The earned

value is derived from the total project time and the estimated time each task takes.
For example, assume that we have a project whose rolled up estimate is 1000 hours
in duration. Next, assume that we have a task that is 15 hours in duration. The 15
hour task represents 1.5 percent of the 1000 hour total project duration – therefore
the earned value for this task is 1.5 [5]. Summarizing thus far [10]:

The total project duration = Σ (task durationT) for all tasks T
The earned value for task T = (task durationT) / (total project duration)

Tracking progress using Earned Value:

• When a task is completed, then it contributes its earned value to the cumulative

earned value of the total project.

 52

• No credit is given for partial completion of tasks. Earned value is only accumulated
when tasks are completed. This illustrates how important it is to decompose large
tasks into smaller tasks as prescribed in stage 6. Using earned value we can derive
a reliable measure of percentage of complete, how well the team is performing,
deviation from schedule, Summarizing thus far [10]:

Progress or Percentage Complete at time t = (summation of earned value at time t) /
 (total project duration)

• Performance can be measured by calculating the performance index. This is a
measure of how well the team is performing with respect to the schedule. A value
close to 1 indicates that the team is performing very well with respect to the schedule
[10]:

Performance Index = (total project duration) / (summation of earned value at time t)

• Schedule variance is the difference between the actual earned value at time t and
the planned earned value at time t. Ideally the difference should be zero indicating
that the team is not deviating from the planned schedule. A negative value indicates
that the team is behind schedule – the more negative the value, the more behind
schedule the team is. A positive value indicates that the team is ahead of schedule –
the more positive the value, the ahead of schedule the team is.

Schedule Variance= (actual earned value at time t) - (planned earned value at time t)

Tracking the effort to the plan is the responsibility of the Managing Engineer. The interval
(or granularity) that the Managing Engineer tracks the progress of the project will depend
upon the number of tasks comprising the project, number of persons on the
development team, and the duration of the project. A general rule of thumb is that project
progress should be checked, no less than at a two week interval.

Iteration

Iteration in the ACDM occurs at two levels. First there is iteration prescribed in the
creation of the architecture. Secondly, there could be iteration in the creation of
products. The ACDM could be instantiated with a one-pass production cycle or it could
be instantiated with multiple production cycles. In the event that the system will produced
in an incremental fashion (multiple production cycles), the team has several options for
iteration after a production cycle. Here are some things a team should consider as they
plan the next cycle through the ACDM.

• Stable Architectural Drivers: If there are no changes to the architectural drivers,

then it might be sufficient for the team to iterate on production stages only.

• Changing Architectural Drivers: If there are changes in stakeholders, the team

should plan to re-enter the ACDM at stage 1. Often we lament changes in
requirements, but requirements changes are the symptoms of a much larger
problem. The underlying problem is a change in stakeholders and their expectations.
The team should start with the existing Architectural Drivers Specification Document
and ask the client stakeholders for feedback on and changes to the architectural

 53

drivers. This should be followed up with a meeting that reviews the existing
Architectural Drivers Specification and invites the client stakeholder to publicly
discuss specific changes to the architectural drivers:

o High-level functional requirements – Are the use case scenarios still valid?

Are there any new functional needs? Is there any functionality that is no
longer needed?

o Constraints – Have there been any changes in the fundamental constraints

since the first cycle? Does new or emerging technology affect the existing
constraint assumptions?

o Quality attributes – Are the quality attribute requirements still valid? Are the

response measures for the quality attribute scenarios still relevant? Are there
any new quality attributes? Are there any quality attributes that are no longer
relevant?

After collecting any new information from the stakeholders, the development team
should continue with stage 2 to re-establish project scope. In stage 3, rather than create
a notional architecture, the team should refine the existing architecture to reflect the
changes in the architectural drivers. From here, the ACDM is followed as prescribed in
the initial cycle.

Postmortem

It is a good idea for teams using ACDM to conduct a postmortem at various points
throughout ACDM. This should not be an elaborate process, but a low ceremony
opportunity for the team to provide feedback on the ACDM instantiation to improve how
they are using the method. At the conclusion of each stage, the development team
should conduct a postmortem meeting that basically asks the team what went well, what
needs improvement, what should we change, what should we do different the next time
we execute this stage. The stage postmortem meeting should be coordinated and lead
by the Managing Engineer. The following table provides guidance for conduction a
postmortem meeting:

 54

Aspect Considerations

Did the product meet the expectations of the
stakeholders per the architectural drivers
specification?

Product Quality

How many defects were present in the product?
What was their relative severity?
How did the team perform with respect to the
schedule (actual vs. estimate)?

Program Schedule

Did the team have to compromise on deliverable
features, quality attributes, and so forth to meet cost
and schedule objectives?

Team Roles How suitable were the roles to the activities that the
team had to carry out? Are any other roles needed;
are there any superfluous roles?

ACDM Process Instantiation How well did the method work? What aspects of the
process worked particularly well; what did not work?
How would the team tailor the process?

ACDM and Legacy Systems

So far, ACDM has described green field or new system development. This is rarely the
case. Some projects are maintenance oriented and most others incorporate legacy
(existing) elements, or legacy systems. In these cases, it is strongly advised that the
development team first uncover, document, and review the legacy elements/systems
prior to modifying the elements/systems or building systems/elements that will
interoperate with the legacy elements/systems. Uncovering the as-built architecture of
an existing element or system is referred to as Architecture Reconstruction [11].
Guidelines for how to perform Architecture Reconstruction are outside of the scope of
this version of ACDM, but guidelines are provided in [11].

Often the need to interoperate with a legacy system or utilized an existing element is
discovered in stage 1 of ACDM. The need to interoperate with legacy systems and
elements are constraints for the project. In stage 2, the architecture for the legacy
system/element must be reconstructed as part of establishing project scope. Once the
as-build architecture of the element/system has been documented, the team can then
move forward with stage 3. In stage 3, if the team is building new elements/systems that
will interoperate with the legacy elements/systems then the development team should
create a notional architecture describing the new “stuff” and how it interoperates with the
legacy “stuff.” If the team is modifying the legacy “stuff,” they must show the as-build
architecture and the modified architecture. The team will then continue with the
architecture review in stage 4, and from here, the ACDM is followed as prescribed.

 55

ACDM – Architecture at the Center

At this point it should be obvious to the reader how the ACDM puts the architecture at
the center of the project from the technological standpoint, but also from the
programmatic aspects as well. Consider the following illustration.

`

This illustration shows how stakeholders provide business goals which are distilled and
refined by the architectural drivers that drive the structure of the architecture. The
architecture is iteratively refined, which can in-turn refine the architectural drivers as well
as the business goals. Once a baseline architecture is established, as shown thus far in
ACDM, it forms the basis of experiments, project plans, test plans, and staff allocation. In
the remaining stages, we will see how the architecture is used to create the product and
provide tracking and oversight for the project.

Business
Goals

Architectural
Drivers

stakeholders

provide distilled into

drives the structure of refines refines

Project
Plans

Test
Plans

Tracking
Oversight

Staff
Allocation

Experiments

basis of

basis of

basis of
basis of basis of

Product

Architecture

basis of

basis of

Detailed
Designs

 56

References:

[1] Clements P., Kazman R., Klein M., “Evaluating Software Architecture: Methods and
Case Studies,” Reading, MA: Addison-Wesley, 2002

[2] Bass L., Clements P., Kazman R.; “Software Architecture in Practice - 2nd Edition,”
Reading MA: Addison-Wesley, 2003

[3] Carnegie Mellon University/Software Engineering Institute, “The Capability Maturity
Model,” Reading MA: Addison-Wesley, 1995

[4] Humphrey, W., “Introduction to the Team Software Process,” Reading MA: Addison-
Wesley, 1999

[5] Humphrey, W., “A Discipline for Software Engineering,” Reading MA: Addison-
Wesley, 1995

[6] Humphrey, W., “Managing the Software Process,” Reading MA: Addison-Wesley,
1989

[7] Boehm, B., “Software Engineering Economics,” Englewood Cliffs NJ. Prentice Hall,
1981

[8] Singpurwalla, N., Wilson, S., “Statistical Methods in Software Engineering,” New
York. Springer, 1999

[9] Beck, K., “Extreme Programming Explained: Embrace Change,” Addison-Wesley,
1999

[10] Pressman, R., “Software Engineering: A Practitioners Approach 6th ed.,” Singapore.
McGraw-Hill, 2005

[11] Kazman, R., O’Brien, L., Verhoef, C., “Archtiecture Reconstruction Guidelines, Third
Edition,” SEI Technical report CMU/SEI-2002-TR-034,

 http://www.sei.cmu.edu/publications/documents/02.reports/02tr034.html

[12] Fagan, M., “Design and Code Inspections and Process Control in the Development
of Programs,” Technical Report TR 00.2763, IBM Corporation, Poughkeepsie, New
York, 1976.

[13] Heyer, P., “Architects on Architecture,” Walker, New Yorker, 1966

[14] Hamlin, A.D.F., “A History of Architecture,” Longmans, Green, and Company, 1909

I would like to thank Mel Rosso-Llopart, Dr. James Tomayko, Dr. Rod Nord for taking the
time to read my work and provide me with valuable feedback.

I would like to thank the many Carnegie Mellon University Master of Software
Engineering students who have applied ACDM on their software studio projects.

 57

http://www.sei.cmu.edu/publications/documents/02.reports/02tr034.html

