Configurable Security Protocols for Multi-party Data
Analysis with Malicious Participants

Bradley Malin, Edoardo Airoldi, Samuel Edoho-Eket, and Yiheng Li
September 2004
CMU-ISRI-04-132

Data Privacy Laboratory
Institute for Software Research International
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Standard multi-party computation models assume semi-honest behavior, where the majority of participants
implement protocols according to specification, an assumption not always plausible. In this paper we intro-
duce a multi-party protocol for collaborative data analysis when participants are malicious and fail to follow
specification. The protocol incorporates a semi-trusted third party, which analyzes encrypted data and pro-
vides honest responses that only intended recipients can successfully decrypt. The protocol incorporates
data confidentiality by enabling participants to receive encrypted responses tailored to their own encrypted
data submissions without revealing plaintext to other participants, including the third party. As opposed to
previous models, trust need only be placed on a single participant with no data at stake. Additionally, the
proposed protocol is configurable in a way that security features are controlled by independent subproto-
cols. Various combinations of subprotocols allow for a flexible security system, appropriate for a number of
distributed data applications, such as secure list comparison.



Keywords: multiparty computation, confidentiality, configurable security, secure list comparison, mali-
cious behavior, quasi-commutative cryptography, communication protocols



Contents

1 Introduction

2 Quasi-commutative Encryption
3 Basic Communication Protocol

4 Security and Integrity
4.1 Extensions to Basic SCAMD

4.1.1 Checks Performed by the Central Authority . . . . . .. ... ... ... ....
4.1.2 Checks Performed by the Single Locations . . . . . ... ... .........
4.1.3 Locking Out Malicious Locations . . . . . . . ... ... ... ... ... ...
4.2 ComputationalOverhead . . . . . . . . . . . .. . . . e 11
4.2.1 Encryptions/Decryptions . . . . . . . . oo e e

4.2.2 Bandwidth. .. ...

4.2.3 Integrity Checkvs. Bandwidth. . . . . . . .. ... ... ... ... ... ...

5 Protocol Application

5.1 Configurability of the SCAMD Protocol . . . . ... ... ... ... ... ........
5.2 Example: Distributed Data Union. . . . . . . . . . . . . . . .. ... e
5.3 Security Concernsand Future Research . . . . . . ... ... ... ... ... .....
5.3.1 TraitorsLostintheCrowd . . . . . . . . . . .. ...
5.3.2 The Semi-Trusted Assumption. . . . . . . . . . . .

6 Conclusions



1 Introduction

As technologies for collecting information infiltrate society, the ability to record and store personal infor-
mation about specific individuals continues toward ubiquity. Knowingly and unknowingly, individuals shed
data to a number of data collectors both within, as well as beyond, the confines of one’s home. The infor-
mation collection can be overt and apparent to the individual, such as when a consumer visits a retail store
and completes a purchase with a personal credit card. Or data gathering can be less discernable, as when
an individual's image is captured by an unforeseen video surveillance system. Regardless, the collection,
storage, and sharing of personal information is becoming more widespfgad. [

In many instances, it is the interest of disparate data collecting locations to combine their data to learn
more robust knowledge. Though locations wish to collaborate, it is preferable not to reveal information
which may compromise proprietary or strategic knowledge, overstep the boundaries set forth by legal
statutes, or negatively affect individuals from whom the data was derived. Researchers in the@ré&tidhl [
and application-based multi-party computatiéng] have proposed methods to allow locations to collabo-
rate by communicating only encrypted data. While the current techniques are useful for enabling encrypted
data comparisons, they are hindered in their general applicability due to certain assumptions regarding the
honesty of participating parties.

Most secure multi-party computation schemes are designed under an expectation that the majority of
participating parties areemi-honestin the semi-honest model, participants are expected to follow proto-
col specifications, but record intermediate values observed during the protocol which can be employed to
compromise security. This is a widely used assumption in multi-party system analysis, however, it does
not cover the space of adversarial models. When locationsalieiousor corrupt, they can attempt any
number of techniques to gain an advantage over other locations, influence results, or simply wreak havoc.
For example, consider multi-party protocols which require all locations to perform some action over every
location’s datasetq]. When participating locations receive different data analysis results, a malicious par-
ticipant can drop out of the protocol once it learns the contents of its results, thus preventing other location’s
from learning their own results. In previous multi-party models such problems were attended to by limiting
the data analysis to a single global result which was broadcast to all participants. Yet, as will be shown, such
limitations are unnecessary.

Over the past several years, various multi-party computation schemas have been applied to demonstrate
how certain data mining endeavors, such as association rule learning, decision-tree construction, and ba-
sic machine learning methods can be achieved in an encrypted setfing. 9} 8] The specific type of
multi-party computation this research generalizes is based on quasi-commutative cryptography, shown to be
applicable for distributed association rule mining, T] Though encrypted data analysis is achieved, it has
been depicted in a proof of concept manner, rather than from a security perspective. Thus, in this paper we
develop a protocol to perform distributed data analysis in a manner which adheres to more stringent security
requirements. In addition to making the previous multi-party computation more secure, we provide intuition
into how such a protocol can be configured for a number of different distributed data analyses. Most impor-
tantly, the protocol herein permits for each participating location to receive a differential response, which
can be tailored to their data submissions.

In this paper, we extend current methods and introduce a protocol named secure centralized analysis of
multi-party data, or SCAMD, to cope with malicious participants. We provide proofs of additional security
and integrity features which are not guaranteed in prior multi-party computation methods once semi-honest
assumptions are relaxed. From a general perspective, the SCAMD protocol allows for several new security
features which garner special attention. First, the protocol is guaranteed to be collusion resistant. No
location can collude with another location to bound or learn exactly the plaintext values in another location’s
dataset. Second, our model protects the integrity of every participating location’s dataset. No location



can maliciously target another location’s dataset and tamper with values without being detected. This is
a concern in previous models as will be discussed later. Third, we incorporate a component for a locking
mechanism to prevent any location from observing plaintext data until all locations can correctly decrypt
their own results. The level of protection afforded in the latter two features are probabilistic, but are specific
to each location, such that each participant determines the appropriate amount of security necessary for their
own data.

The SCAMD protocol itself is not completely devoid of trust requirements. In order to achieve the
aforementioned properties, a semi-trusted third pastyncorporated to perform honest data analysis. Yet,
the use of a third party requires no more trust than in previous models, and actually permits the protocol
to be more trustworthy. In comparison to previous models, where each participant must be viewed with a
certain amount of skepticism, the third party model allows for participants to place their trust in a single
party. This is especially useful, since the lone trustworthy party has no data of its own at stake.

The remainder of this paper is organized as follows. In the next section, relevant concepts from multi-
party computation and encryption are reviewed. In section 3, we present the basic communications and data
transfers which comprise the core of the protocol. In section 4, we develop protocol extensions particular
to security and integrity, as well as prove their protective properties. Computational and bandwidth require-
ments of the protocol and its extensions are also addressed. In section 5, we demonstrate how the modular
design of the protocol addresses computational concerns and permits different types of data analysis, such as
differential encrypted response and centralized broadcasting. As an example, we map previous distributed
analyses into the architecture of our protocol. Finally, limitations and possible extensions to this work are
discussed.

2 Quasi-commutative Encryption

The protection protocol described below makes use of an interesting concept from secure multi-party com-
putation known as the one way accumulator, or OWK]| [In related research, OWAs were applied to a
variety of distributed secure computations. For example, ZacHdiydemonstrates OWAs provide the
necessary features for securely testing membership of nodes in distributed sensor networks. From another
perspective, Faldella and Prandiii2] make use of OWAs for certificate authentication in a distributed
public-key infrastructure. Most recently, and the work this research is closest to, Kantarcioglu and Clifton
[5, 7] apply OWAs for data mining distributed association rules.

The protocol herein also employs OWAs for computation in a distributed environment. With respect to
this research, the reader should view an OWA as a function to empower disparate locations, using different
encryption keys, with the ability to reveal encrypted information from their local datasets, such that an
encrypted piece of data is an equivalent primitive across locations. The OWA applied in this manner permits
analysis and protection strategies to be executed over encrypted data. Plaintext information need not be
revealed, unless it is desired by the owner of the data.

First, we review the general concepts of OWAs, then their transformation into keyed cryptosystems.
Basically, an OWA is a hash functidn: X x Y — X that satisfies thguasi-commutativeroperty. In
equation {), the following property holds for an arbitrary number and ordering; of

h‘(h(mvyl)va) = h(h(xva)vyl) (1)

Benaloh and de Mare note that the modular exponentiation funetian y;) = z¥mod(n), as defined
in RSA encryption, is an OWA.10, 13] For appropriately chosen, wheren is the product of two large
prime integer®, ¢, computingz from e, (z, y;) andy can not be accomplished in polynomial time. Since

1The third party is trusted to receive and analyze encrypted data only.

3



repeated use af, may reveal hash collisions, values:ofare further restricted to be chosen from the set
of rigid integers defined as products of tweafeprimesp, g. A prime numberp is safe ifp = 2p’ + 1,
wherep’ is an odd prime. Additional information about the featureg @nd ¢, such as congruency and
collision-resistance requirements, can be found.l) fnd [14]. To provide some intuition, a safe prime is
a large prime number which makes collisions of hashed values very unlikely to occur.

While other types of accumulators exidty], with an RSA basis, the quasi-commutative accumulator
allows for trapdoor recovery of plaintext values. As a result, OWAs can be converted into asymmetric
keyed cryptosystems. In order to do so, each encryptionykéy paired with a decryption key;, where
yi * z; = 1mod(p(n))?, for some functiony(-). Wheny; andz; are defined in this manner, decryption of
an encrypted value can proceed over. independent locations as

x=(h...h(h(v,21),22),...2m) (2)

Again, the ordering of the decryption keys zo, .. ., 2., iS 0f no consequence. Thus, the encrypted value
can be decrypted in a sequential manner using the same hash function as = z*mod(n).

3 Basic Communication Protocol

In this section, we introduce a protocol for the secure transfer and analysis of distributed data. The protocol
is called SCAMD for secure centralized analysis of multi-party data. As the name implies, the current
implementation requires a central authority, which we assume is semi-trusted. More specifically, it is trusted
to receive and analyze encrypted data, but not plaintext. The central party will collect encrypted data from
each of the data releasing locations and is expected to return honest responses, to known questions and/or
analyses, to each location. In previous research, others have proven that the responsibilities of a trusted
third party can be distributed among the participants of the proto2pB, ] However, when such a feat

is achieved, it usually occurs via the sacrifice of computational complexity, such that the protocol may
be infeasible to compute given temporal constraints. Moreover, most protocols deficient of a third party
assume participants to act semi-honestly, which requires they follow the specifications of the protocol. With
the incorporation of a semi-trusted third party, the central authority, the SCAMD protocol can account for
any number of malicious locations. Though a certain amount of trust is still necessary with respect the
central authority, the protocol shifts trust from each of the participating locations, to a single location with
no data of its own at stake in the process.

We begin with a general overview of the protocol. A more in-depth description and formal treatment
follows. First, each location encrypts every other location’s datasets. Then, the central authority is provided
with the encrypted datasets. The central authority performs some function over the submitted datasets and
returns a list of encrypted values to each location. The encrypted values are decrypted by the set of locations,
such that the final decrypter is the location the list was destined for.

More formally, the SCAMD protocol is defined as follows. Let there exist two types of participants,
data locationd, = {l1,1ls,...,l 1|} and a single central authority. Each location € L maintains three
pairs of encryption-decryption key$y?, 22), (y7, 27'), (y", z"), for an agreed upon quasi-commutative
hash functiom as defined above. The functians made public, however, all keys are kept private to each
location. The first two key pairs are used for blinding purposes only by locatith its own dataset, akin
to the blind signature process defined in Chaum'’s original description of untraceable payment sysiems. [
The first key pair blinds (superscriptthe data so that it can be digitally signed by every location with their
multi-party encryption key (superscript). The second key pair blinds the data after the central authority

2The termy(n), Euler’s totient function, specifies the number of relatively prime positive integers lesa than



Central
Location, Location, Authority

» h(D ")

\ 4

h(h(D,y)y) vy

<

84 h(h(D,y7)y7)

>

Centralized
h(h(return y)yr) || Data Analysis

&
<

Y1 Vh(h(return y7)y)y D

h(h(return y})y;) b

«

z{" ,Vl]"

Figure 1: Basic SCAMD protocol as executed by location 1, for scenario with two locations and central
authority.

has returned its computation. Thus, this key pair serves for recollection (super3aiphe plaintext data
via decryption with every party’s multi-party decryption key.

For simplicity, we represent locatidis dataset ag); and the set of encrypted values/ad;, y). In
addition, the number of records in a dataset is represented as the cardinafity,. e now step through
the basic protocol. A version of the protocol with two locations is shown in Figiure
Step 1. (Blinding for Encryption) Each locationl creates a dataset of “dummy” values and adds them
to datasetD;.2 Then,! encrypts each value ib, usingylb. After this initial encryption, a blinded dataset
h(Dy, yf’) exists for, and is in the sole possession of, each location.

Step 2. (Full Encryption) Each locationi € L shuffles and encrypts witlf™ its own blinded dataset and
sends it to other locations € L in a sequential fashion. Each locatisrencrypts the received dataset with
y2* and sends the dataset back tdnce every location has encrypted the dataset, locatiemoves the
blinding by decrypting Withzlb. As a result, each locatidris in the possession @f(h( ... h(R(Dy, "), y5")

).

Step 3. (Encrypted Analysis)Each location sends the resulting dataset to the central auttiorityho
performs data analysis over the set of datasets. The central authority rettuing; datasets to each
which specifies values of interest to location

Step 4. (Blinding for Decryption) Upon reception] blindsreturn; with the recollection encryption key .

Step 5. (Full Decryption: Return) As in Step 2, for each locatioh) the encrypted-eturn; datasets are
shuffled and sent to each locatiene L (including). Now, locationz decrypts the dataset witf]* and
sends the dataset backitoOnce every location has decrypted the dataset, locatiemoves the blinding
by decrypting withz;.

3The specifics of the dummy values will be made more clear below. However, for the curious reader, it should be noted that its
purpose is for the control of a particular probability.



4 Security and Integrity

In this section we present configurable subprotocols which can be added onto SCAMD for particular guar-
antees of security and integrity. We present the protocols, as well as several crucial proofs about the afforded
protections. The first aspect of SCAMD proven is its ability to prevent any set of independent locations from
learning the plaintext information of encrypted data held by honest locations through collusion. This aspect
is derived directly from the basic SCAMD protocol presented in the previous section.

Theorem 1 (Collusion Resistant) Given any locatiori € L, there exists no set of locatiohsC L — {l},
which can collude to determine the plaintext valuepf

Proof. In general, there are three ways by which plaintext valuds;afan be revealed. The first case is
whenD; is sent to a colluding location. Since plaintext values are only directly revealed vdheoses so,
this case never occurs. The second case is when both a hashed vei8jandfthe appropriate decryption
key is sent to a colluding location. Again, this never arises.

The third case is more subtle. It occurs by exploiting the definition of quasi-commutative encryption.
When a colluding locatiom € U is in the possession of a hashed versiobpfvhich has been hashed by
the same set of keys d3,, then it can learn certain features of the datdJin The collection of hashed
versions ofD; occurs during two points of the protocol: encryption and decryption. The first opportunity
is via the encryption process before the dataset is submitted to the central authority. During this process,
every version ofD; provided to colluding locations has been hashed with the innding;%ei]hus, for any
colluderu € U to compare his dataset, it is necessary ttetshesD,, with ylb. However this never occurs,
sincel only useSyf’ for his own dataset and no one else’s. The second opportunity is via the decryption
process, whet; is sent as theeturn, list. Yet, as during encryption, the colluding locations only receive
versions of-eturn; which have been hashed with the recollection kg€ywhich is only used fof's datasets.
O

Now that simple security with respect to semi-honest behavior has been established, we concentrate on
problems with respect to malicious adversaries.

4.1 Extensions to Basic SCAMD

The basic protocol prevents locations from making direct inferences about any particular location’s dataset.
However, the protocol is leaky in security, since colluding, or independently malicious, locations can influ-
ence the central authority’s analysis and subsequent response, in the formesithe datasets. Moreover,

a location can perform certain functions that will go undetected. In order to control data representation, the
malicious location must be able to make changes to another location’s data in a manner that is undetected.
Specifically, a malicious location can influence the central authority through several means. First, a location
can lie about which values exist in their data collection. While blatant dishonesty regarding one’s own data
is a concern, the SCAMD protocol does not address how to prevent such maliciotis acts.

Second, a malicious location can attempt to control how data is represented during the execution of the
protocol. In order to do so, the malicious location can employ a different multi-party key pair for another
location’s dataset. When a malicious location is using more than one multi-party key pair we term this
action akey switch We subclassify the key switch attack into two distinct, though related, types. The first
type, called &ull key switch, occurs when the malicious location applies a particular multi-party key pair

“Lying about one’s dataset exists in the analysis of plaintext data as well. One manner by which dishonesty can be discovered
is to validate data with external knowledge regarding the underlying truth. Yet, when dealing with proprietary knowledge, the
construction of such a litmus test will be dependent on the data in question and may be impossible. Thus, we consider this problem
beyond the scope of the current research.



to every value of a particular location’s dataset. The second type, cafladial key switch, occurs when
the malicious location partitions a location dataset infgarts and each part is encrypted/decrypted with a
different multi-party key.

Now we turn to extensions of the basic protocol for integrity checks which detect key switch behavior.
As will be proven, several extensions to the basic protocol guarantee that no set of malicious locations (even
one location) can tamper with the encrypted data they receive at any stage without being detected. We
analyze malicious data corruption in the form of both full and partial key switching. Theorem 2 covers the
case of full key switching, which will be detected by the central authority, whereas theorem 3 covers the
case of partial key switching, which is more easily detected by the data providing locations. Intuitively, the
probability that partial key switching is detected by a single location has a naturally low bound under general
conditions, whereas the probability that partial key switching is detected by the central authority requires
non-negligible effort (in terms of bandwidth, for example) to be controlled below the same bound.

4.1.1 Checks Performed by the Central Authority

The first type detection for key switching is performed by the central authority. It accounts for the situation
of “full” key switching, which occurs when Sally encrypts all of Alice’s dataset with the “bad” keys. The
extension works as follows. The central authority sends the same “dummy” aliceevery participating
location. Prior to Step 1 of the SCAMD protocol, every location adds the value to their dataset. The
subprotocol for dummy data transfers and encryptions is shown in fiyure

Central
Location, Location, Authority

dummy

<
<

dummy

Basic
SCAMD

h(h(dummy.y™ .y

Basic
SCAMD h(h(dununy,y’l"),y’z"l

Distributed
Integrity Check

Figure 2:Full key switch detection performed by central authority.

Let us call the switching location Sally and the owner of the switched dataset Alice. We consider the

i i m i — /,bad bad
case when Sally uses two multi-key pairs. Insteady@f,;,, . 25y, Sally will usebad = (yg,, » 25an,)

andgood = <yg‘(’§fy, zgfjfy), respectively. The latter key pair is used with every location’s dataset, except for

Alice for whom Sally uses the previous.

Theorem 2 (Full Key Switch Integrity). The central authority is guaranteed to detect Sally’s full key
switch.

Proof. Assume Sally useggff;fly for all values in Alice’s dataset. The only way that the full encrypted
version ofve, or any other value common to all datasets, will appear the same in all datasets is if Sally

usesy4.s, for every location’s dataset including her own. Furthermore, if Sally only yg&H, during

encryption, she must usg}, with every location’s dataset for decryption. However, if the latter is true,
then Sally has only used one multi-party key pair and no key switching has occlurred.
If the central authority does not detect a value that is the same at all locations this does not necessarily

imply key switching. Rather, it may imply that a location failed to addto its dataset. Regardless, when

7



the latter is true then the central authority still detects that something has gone wrong during the execution
of the protocol.

4.1.2 Checks Performed by the Single Locations

In addition to full key switching, Sally can perform “partial” key switching. In a partial key switch, Sally
uses theéad multi-party key pair with a fraction of Alice’s dataset and th@d multi-party key pair with

the remainder. In order to prevent the partial key switch Alice introduces her own dummy data and uses an
additional blinding keyy5icck, zGieck).

Prior to Step 1 of the protocol, Alice addsdummy values to her dataset. After the final location
has encrypted her data and prior to submitting the data to the central authority, Alice performs the following
integrity check. After decrypting the data with the initial blinding '@Mce- she re-encrypts her dataset with
the new “check” key<¢*, and then sends the dataset back to the other locations for decryption. If Sally
is not performing a partial key switch, then she can correctly decrypt Alice’s dataset without any problems.
However, if Sally did perform a partial key switch then the probability she can correctly decrypt Alice’s
dataset is extremely small. In fact, Theorem 3 proves this happens with a naturally low probability, which
can be further reduced by increasifig Moreover, even if Alice believes that Sally randomly guessed the
correct values to change, she can repeat the integrity check an arbitrary number, whichayéroals. For
each repetition, Alice uses a new check key pair, again reducing at will the probability that Sally’s cheating
goes undetected. This process is depicted in fiGure

Location1 Location2

» h(D,,dummy,] ")

h(h([D,,dummy,].y?).y3) -

<

zb, ycheck | h(h(ID,,dummy, 107‘1""""‘)1}"2")’

h([D,dummy,],y5"¥) oo

zclx eck

Local
Integrity Check

Figure 3:Partial key switch detection as performed by location 1.

Theorem 3 (Partial Key Switch Integrity). The probability Alice does not detect Sally’s partial key switch
isat mostP, g := 1 — (|Datice| + 3) ™.

Proof. Assume Sally chooseg values in Alice’s data to encrypt Witpg‘jl‘fly. Now that Sally has
performed her key switch, she must find those values in Alice’s dataset during the decryption process. Yet,
when Sally encrypted Alice’s dataset, it was blinded/y;.., but now the data is blinded witf{i¢?*. As a
result, unless Sally knows the new blinding key pair, Sally must selegttbeords which need be decrypted
with zggc;ly at random. The probability of successful guesses in our setting follows a hyper-geometric

ood

distribution with parameters — f (records encrypted by Sally wit@ga”y) and f (records encrypted by



Sally with %7, ) and can be written as:

key switch /

Pr< undetected) _ < ; ) ( Z_§ ) B f!(nff)!

This probability is maximized af = 1 or f =n — 1. In Figure4 this is demonstrated for = 25. As a
result, Sally’s best probability of remaining undetected is equéfto

-2

-6 4

101 4

—12} 4

log—Probability of f Successful Guesses

14} 4

-16
0

pad 20 25

5 10 15
f — Number of Records Encrypted with ySally

Figure 4: Sample probabilities of exactly successful guesses for the case of 25 recdrgdg1(/25) ~
—3.219).

While f is chosen by Sally to maximize the probability of a partial key-switch being undetected, Alice
can controln = |Dyyee| + 3, the size of the dataset, to maximize the probability of detecting partial
key switches. In particular, increasing the number of dummy recoydirectly increases the probability
of Sally’s misbehavior being detected. However, Alice may wishes to decfetmssave bandwidth during
communication or total time necessary to complete decryption of the dataset. In this case she can still control
the probability of detecting Sally’s misbehavior by simply increasing the number of times that the decryption
check is performed. Each decryption check is performed independently, since Alice uses a different blinding
key for each check. Thus, the probability that Sally’s partial key switch is detected by Alikgds= 1 -

(DAlice + ﬁ)ia or less> [J

In combination, the integrity checks performed by both Alice and the central party guarantee that the
probability Sally performs a key switch is arbitrarily small. Both Alice and the central party are required
to perform key switch detection. Appendix A provides proof that a) Alice can not perform full key switch
detection as efficiently as the central authority and b) the central party can not perform partial key switch
detection as Alice.

5There are two possible scenarios. First, Alice choesése number of checks to be performed) beforehand. In this scenario,
the fact that the probability of detection is less thans is due to the fact that Sally’s misbehavior can be detected before all
checks are performed. Second, Alice keeps on performing checks until the probability that a partial key switch was performed by
Sally and was not detected falls below a certain threshold. In this latter scenario, the probability of detection is always equal to
P, s;in fact, Alice computed?, s after every check is performed and decides to stop when this probability is low enough.



4.1.3 Locking Out Malicious Locations

The implementation of the integrity checks performed in the previous section guarantee that no location
can achieve a malicious action in the form of a key switch without being detected. In effect, the integrity
of the cryptographic features are guaranteed, such that it is known that every location has both proper
encryption and decryption multi-party key pair. However, the existence of such key pairs, does not imply
that such key pairs will always be used. Neither the basic SCAMD protocol, nor the extensions for integrity
discussed above, prevent Sally from achieving what we tegralazand-go Basically, Sally can recover the
plaintext values ofeturngq, while simultaneously stopping Alice from recovering the plaintext values in
return aiice. 1his occurs when Alice decrypts Sally’s dataske(gral), but Sally refuses to decrypt Alice’s
datasetthe g9.

In this section, we introduce a security feature that functions as a locking mechanism to prevent the
grab-and-go. Basically, the central authority will guarantee that no location can recover their own values
without acting honestly on behalf of all other locations datasets. Furthermore, the central authority will
perform this validation without inspecting the plaintext values of any location’s dataset.

The protection manifests in the form of a locking mechanism as follows. The central authi@rngates
a dummy dataseb at the very beginning. He then acts like an extra location performing Steps 1 and 2 of
the SCAMD protocol, in other words, sendsD¢ around through every location in L for full encryption,
while all actual locations still perform the original Steps 1 and 2 with their own datasets. The lockout
subprotocol is depicted in figute

. ) Central
Location, Location, Authority

‘h(h([D(,retuml].y’l”),y’z")yz,)

h(DyY)
| h(h(ID return,|.y2).y3) %)
h(D %)
Basic
SCAMD Correct Decryption
Basic
SCAMD Correct Decryption

F

Figure 5:Locking protocol.

For each location € L, C chooses a blinding key pajy’,, z4), blinds the mixture withy},, and sends
h(...h(h([De, returny], y2)yi) ---»y[f)) back to locationi. In addition,C sends the blinded plain-
text dummy dataset values(D¢, y4), tol. Next, each location performs full decryption as specified in
SCAMD, and each location now possesses the central authority’s blinded dad3et return,], y). If
the blinded dataset includé$Dc, y%.), theni tells C that decryption was performed honestly. Once all lo-
cation report honest decryptions, the central authority sends/eadhthe appropriate blinding decryption
key zL,. With the decryption key in hand decrypts the returned mixture and removas.

Theorem 4 (Honest Decryption)The probability Sally achievesgrab-and-goagainst Alice (A) is at most
|returnal| ! (|returna| + |Dcl).

10



Proof. We assume that both Aliced) and the central authority{) have verified that no key switching
behavior exists. Since Alice does not return the full decrypted datasget tive detection of an attempted
grab-and-go is the sole responsibility of Alice. When Sally performs a grab-and-go, she needs to correctly
decrypt D¢, while leavingreturn 4 in an encrypted state. Lgt be the number of values Sally selects
for a false decryption. Assuming Sally chooses to correctly decrypt a minimumgfvalues (otherwise
it is guaranteed her malicious behavior is detected with probability 1), the probability of an undetected
grab-and-go is the equal to the probability ANalues are selected fronaturn 4:

|Dc| |return |
Pr( undetected ) _ 0 S

grab-and-go/ <|DC|+|returnA]>
f

|returna|\(|Dc| + |returna| — f)!

(Ireturnal — HY(|Dc| + |returna|)!
The probability is monotonic and is maximized whégn= 1. An example of this is shown in Figui@
for |return4| = 10. When maximized, the probability Sally’s action is undetected becomesrn 4| /
(|returna| + |D¢|). O

100 10 i

¢

Figure 6:Probability Sally’s grab-and-go attack against Alice is succesBfediirn 4;;..| = 10. D¢ is the
size of dummy dataset used by the central authofiig.the number of values Sally targeted.

In this locking mechanism, the central authority could initiate an extra integrity checkfoin or-
der to detect partial key switch attack by a malicious location. However, this type of attack (even a full
key switch against the whol®¢) can be detected in later comparisons between what is supposed to be
h([Dc, returny), y¢), andh(D¢,y¢), by each location € L. As a result, a standalone integrity check for
D¢ is not necessary.

4.2 Computational Overhead
4.2.1 Encryptions/Decryptions
For the following analyses, we assume each encryption or decryption operation on a dataset costs constant

time (or can be bounded by it).

11



As described in section 3, in the basic protocol, each locadt®rl maintains three pairs of encryption
and decryption keys. The first two pairs are only applietlstown dataset, while the third pair is applied to
every location’s dataset.

The number of encryptions/decryptions that a specific locdtioeds to perform is:

O(encryption - basig= 2(1 + 1+ |L|) = O(|L])

The total number of encryptions/decryptions performed by the whole syster(jig?@ However, the
encryption/de-cryption process for all locations is done in parallel, such that the total time necessary to
complete this process remaing| D).

In the protocol with integrity check, each locatibs L is asked to performa decryptions for integrity
check initiated by eacH € L respectively, i.e., totally|L| decryptions.l would also havex pair of keys
applying to its own dataset for encryption and decryption. Now, the number of encryptions/decryptions that
I needs to perform becomes:

O(encryption - with integrity) = 2(1+ 1+ |L|) + oy|L| + 20y = O(ey|L|)

As a result, the total number of encryptions and decryptions for the whole system bec@g@éaﬁl?).
Yet, akin to the basic protocol, the integrity checks are performed in parallel, so the total time necessary for
completion is Q27 oy |L]|).

When taking into account the locking mechanism to prevent the grab-and-go, the following additional
encryptions and decryptions are needed due to dummy ddbaset

1. Each location needs to perform related encryption one time to create the fully encrypted version of
D¢

2. The central authority needs to perform blinding encryptions for each location, tptaliynes;

3. Eachlocation needs to apply a decryption key provided by the central authority, to restore its returning
dataset.

However, the encryptions/decryptions associated with recollection keys are spared at each location.
Thus, the total time necessary is still;0}"«;|L|) because of parallelism of the protocol.

4.2.2 Bandwidth

Each locatiori provides a dataset of sizg To be encrypted by another location, the dataset needs to be sent
from the originating location to the destination locatiol, and sent back tb after encryption. A similar
process is performed during the decryption phase. In addition, all datasets must be sent to central authority
for analysis; then a corresponding returning dataset ofrsigesent back to the appropridte

In the basic protocol, each dataset proceeds throldgh () encryptions and decryptions by locations
other than the originating one, and communicates with the central authority once, so the total bandwidth
required for a specific locatianis:

O(bandwidth - basip = 2s,(|L| — 1) + 2r(|L| — 1) + s, + 1, = O((s; + )| L)),

wheres; = | D;| andr; = |return;|. Because of parallelism, the total bandwidth required to finish the protocol
is O(J25" (51 + )| L)

12



In the protocol with integrity checks; equals (D;| + 5; + 1), whereg; is the number of dummy value
added byl and “1” accounts for the dummy value provided by the central authority. Each location needs
extraa; rounds of decryption from other locations, so the total bandwidth becomes:

O(bandwidth - with integrity) = 2s;(|L| — 1) +2r(|L| — 1) + s, + 1 + 2oqs(|L] — 1),  (3)

wheres; =|D;| + 3 + 1 andr; = |returny|. Thus, an upper bound on the bandwidth $X¢ a; (s; +77)|L]|).

When we consider the additional locking mechanismequals (D¢| + |return,|) and the central
authority sends an extra version of blind®gd- to [. Assuming the full encryption oD« is performed in
parallel, the total bandwidth required for a specific locatios

O(bandwidth - with integrity & locking)= 2s;(|L|—1)+2r;(|L|—1)+s;+7+|De|+2aqs,(| L] —1), (4)

wheres; = |D;| + §; + L andr; = |D¢| + [returny|. Similarly, an upper bound is @ oy (s; + 77)|L]).

4.2.3 Integrity Check vs. Bandwidth

According to Theorem 3, the lower bound of the probability of locafiatetecting a partial key switch
attack isl — (|D;|+ 6; + 1)~“ (1 dummy value provided by the central authority considered). Assume each
location! requires the protocol to satisfy a certain confidence requireren this lower bound. In order

to achieve the lowest bandwidth cost, we are actually solving a special non-linear optimization problem.
Specifically, we need to solve far;’'s and 5;'s as integers, when minimizing equatiod) @nd satisfying
constraints on confidence in honesty for eaehL:

L—(|Dy| + B +1)"% > A,

as well as bandwidth and computational constraints.

Similarly, if the locking mechanism is also required, we need to simultaneously solug$@andg;’s,
as well as D¢ | as integers, while minimizing equatiod)(and satisfying additional constraints according
to Theorem 4.

5 Protocol Application

The distributed operations the SCAMD protocol enable us to carry out in a secure manner are very different
in nature. This has an impact on the format of the data needed for centralized data analysis, for example, a
certain application may require plaintext data to be broadcasted Igethitrustedhird-party to the par-
ticipating locations, whereas another application may require an analysis on the union of the encrypted data
sets and only few sensitive records, still encrypted, may need be returned to the single locations. Thus, dif-
ferent scenarios require slightly different definitionssemi-trustedwhich we now discuss. In the original
definition, semi-trusted requires the central authority is never permitted to know the plaintext values it was
analyzes. However, if plaintext values need to be broadcast, the definition of semi-trusted can be relaxed. In
the relaxed definition, the third-party is not allowed to know which participating location submitted which
specific values, though it is permitted to see the plaintext values of the records it is going to broadcast.

In addition, other aspects must change to fit the SCAMD protocol to different scenarios. For example, in
order to allow the central authority to have broadcasting powers, we would modfiylitdecryptionsection
of the protocol. Instead of sending-aturn; dataset to each locatidnthe central authority only needs to
send a single dataset, which we refer taragirnc, around for decryption. Briefly, the central authority
performs Steps 4 and 5 of SCAMD with it's own recollection key gaj¥, z¢-). The central authority blinds
and sends(returnc, y;) to each of the locations, for full decryption. Once fully decrypted, the central
authority removes its blinding and broadcasts the plaintext data to all participating locations.

13



5.1 Configurability of the SCAMD Protocol

The SCAMD protocol provides security with provable probabilistic guarantees in carrying out distributed
data mining tasks. The main ideas that enable functionality in a diversity of applications include: (a) the
incorporation of dummy data, which allows for control over the detection of integrity tampering, (b) data
shuffling, along with (c) forcing a malicious location to compete against its own behavior by decrypting its
own encryption, and (d) a locking mechanism, which prevents malicious locations from learning informa-
tion the protocol does not prescribe. Given a variety of practical tasks, we believe it was always possible
to combine these basic security enabling addenda to fit the SCAMD protocol to the specific scenario at
hand. This is achieved without any assumptions about semi-honest behavior on the part of the participating
locations. Hence, we say that SCAMD protocot@nfigurableto fit an ample spectrum of distributed data
mining computations.

In this light, removing certain parts of the protocol harms neither the functionality, nor the security of our
protocol. For example, when the definition of semi-trusted is relaxed to provide the central authority with
plaintext broadcasting capabilities the locking mechanism is not needed. It can be validated that removal of
the locking mechanism security component does not affect the overall security of the protocol. Rather, it is
not necessary to carry out the specific distributed computation task.

The SCAMD protocol is the first step towards a formal modular architecture for secure, distributed data
mining, with provable guarantees in environments where semi-honest behavior on the part of participating
locations can not safely be made. The next step in the development of a modular protocol is to feature
a description of distributed data mining tasks along relevant dimensions, and map them into a sequence
of primitive sub-tasks, which the various modules of our protocol can address in a secure way. A major
portion of the single modules will address primitive sub-tasks, whereas others will provide provable security
guarantees that the modules will produce the expected results, even in the presence of malicious participating
locations.

5.2 Example: Distributed Data Union

To illustrate SCAMD’s flexibility and security, we map a distributed association rule learning algorithm
[5, 7] into the SCAMD architecture. The previously defined algorithm is based on semi-honest assumptions,
which we refer to asSemiSecureUnigror SSU is presented to find the secure union of distributed data
without revealing which itemsets belong to a given location. The underlying mech&8tlis as follows.
Each locatiorl sendsD; to all locations inL for encryption, such that another locatioen# [, receives the
full encryptedD,;. Once completed, each location holds another location’s full encrypted dataset. Next, two
locations collect and union half the full encrypted datasets. Then, one location sends its union to the second
location, who again performs a unions. Finally, the locations, send the dataset around for full decryption,
such that a third location, not one of the previous two, broadcasts the plaintext union.

TheSSUprotocol is susceptible to collusion, which suggests it may not be practical in real-world settings
- even in a semi-honest environment. Consider, for example, a situation where a regional association of
large-size retail stores wants to provide some aggregate statistics about the market, in the form of large
itemsets. Collusion is more likely to occur in such a network when several sites belong to the same umbrella
company or to the same chamg. Wal-Mart comprises 70% of the participating sites).

We present th€CAMD-SemiSecureUnigBCAMD-SS pseudocode provided in Algorithm 1, which
mapsSSuUinto the SCAMD architectureSCAMD-SSUachieves the same goal 8SUand provides and
in addition it 1) prevents each location from seeing other locations’ fully encrypted data, 2) prevents two
participating locations from performing the union of all fully encrypted data sets, and 3) prescribes for the
data to be broadcasted from a third party, not preseB8Shl that has no data at stake. In the semi-honest

14



Algorithm 1 SCAMD-SemiSecureUnion: Secure union of itemsets with SCAMD

Phase 0 Local plaintext association rule learning

for eachl € L do
Generate set of local association rutege; as defined in distributed association rule mining algorithm
(FDM) defined in [L7]

end for

Phase 1 Encryption by all sites
Eachl € L executes SCAMD encryption phase (Steps 1Ejch location possesses full encryptede;,
denotedfrule; }

Phase 2 Central itemset merge (Step 3 of SCAMD)
All I € L sendfrule; to C
C createsRuleSet = J;c;, frule

Phase 3 Central Broadcast

C setsreturnc = RuleSet

C executes SCAMD decryption phase (Steps 4-5)
C broadcasts full decrypted dataseturnc

environment, the main concern is collusion. Sis€@AMD-SSUs an implementation of the SCAMD pro-

tocol, collusion among participating locations is no longer a concern (as shown in Theorem 1). In addition,
SCAMD-SSUWsolves problems whicBSUis susceptible to once implemented with malicious locations. It

is interesting to note that whil8@SUis susceptible to collusion, it is partially protective against a key switch
attack. Again, consider the situation where Sally performs a key switch against Alice. When all of Alice’s
switched values are in any other location’s dataset, then the key switch has no real influence on the union.
In the alternative situation, if Alice’s switched values are not within another location’s submission, Alice
can claim the integrity of her data was tampered with. However, this is 38 provides only partial
protection. Once the plaintext union is broadcast, Alice can not add her dataset to the union without every
other location learning the unique values of her dataset. This problem is soh&GAMD-SSlbnce the
integrity checking is integrated.

5.3 Security Concerns and Future Research

In this section, we briefly discuss several concerns and challenges regarding the current design of the
SCAMD protocol. The first concern corresponds to the difficulty in detecting which location is malicious.
The second concern addresses assumptions regarding the central authority.

5.3.1 Traitors Lost in the Crowd

Theorems 2-4 prove it is possible to control the probability of malicious actions going undetected. Yet
despite these controls, we acknowledge it is not possible to detect the source of the irregularity. This is
mainly due to the usage of an accumulator based on quasi-commutative encryption. It is possible that more
complex schemas may be able to detect both mishaps, as well as their sources, however, this is beyond the
scope of the current research. We expect to look into such extensions in future research.

15



5.3.2 The Semi-Trusted Assumption

With respect to the central authority, many of the protections afforded by the SCAMD protocol are dependent
on the assumption that the central authority is honest; it neither collaborates with participating locations nor
answers locations dishonestly. First, consider a central authority which is merely semi-honest. In this case,
collusion resistance as proven in Theorem 1, no longer holds true. Specifically, locations which collude
with the central authority will be able to compare their full encrypted dataset against the full encrypted
datasets of every non-colluding location. When an encrypted vaisifound to be equivalent between the
colluding and non- colluding datasets, then the colluder can bound the set of plaintext value$vioen
multiple locations are colluding, the possibility exists that the colluder can learn the exact plaintext value
for v. This occurs when the number the values in common between a set of colluders datasets is equivalent
to the number of values in the non-colluders dataset.

Second, and of more grave concern, we consider a central authority which is actually malicious. When
such an event occurs, Theorem 4 can nullified in such a way that non-colluding locations fail to detect mali-
cious behavior. Basically, the central authority can supply corrupt locations with its blinding decryption key
regardless of if corrupt locations used the correct multiparty decryption keys with other locations. Moreover,
the central party can violate Theorem 1 in such a manner that a locatior, colluding with the central
authority can learn all plaintext values of a dataset for any arbitrary locatiolt without being detected.

This would occur if the central authority was to provide a colluder withurn, = D; and Steps 4 and 5 of
SCAMD proceed as specified.

Recent research in theoretical multi- computation proves that third parties can be removed from the
protocol while maintaining the same level of security8][However, the design of these systems are most
often inefficient to the point of being intractable for practical application. Thus, in future research we expect
to continue investigating models which incorporate third parties, but reduce the requirement of the semi-
trusted model.

6 Conclusions

This work introduced a novel protocol, termed secure centralized analysis of multi-party data, or SCAMD.
The protocol allows for multiple locations to conduct analyses over distributed data in a secure manner in
the face of malicious behavior. The protocol supports location-specific responses, such that each location
can learn information, of which other locations can not ascertain the contents. Moreover, parallelism of the
protocol allows for execution in linear time and bandwidth. The protocol is amenable to different types of
encrypted data analysis, of which we demonstrated how secure unioning can be made more secure. In future
research, we expect to demonstrate how the protocol can be used for a range of distributed computations in
malicious environments.

Acknowledgements
The authors thank the members of the Data Privacy Laboratory at Carnegie Mellon University for support

and encouragement, and Alessandro Acquisti for helpful discussions. This work was supported by the Data
Privacy Laboratory.

16



References

[1] L. Sweeney. Information explosion. In: L. Zayatz, P. Doyle, J. Theeuwes, and J. Lane (eds): Confi-
dentiality, disclosure, and data access: theory and practical applications for statistical agencies. Urban
Institute, Washington, DC, 2001.

[2] A. Yao. How to generate and exchange secret87th IEEE Symposium on Foundations of Computer
Science1986, pp. 162-167.

[3] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game - or - a completeness theorem
for protocols with honest majority. I9** Symposium on Theory of Computitew York, NY, 1987,
pp. 218-229.

[4] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively secure multi-party computatiaf®"in
ACM Symposium on Theory of Computit§96, pp. 639-648.

[5] M. Kantarcioglu and C. Clifton. Privacy-preserving data mining of association rules on horizontally
partitioned datalEEE Transactions on Knowledge and Data Engineerirgrthcoming.

[6] Y.Lindelland B. Pinkas. Privacy preserving data minidgurnal of Cryptology2002; 15(3): 177-206.

[7] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed data mining of association rules on
horizontally partitioned data. IACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge DiscoveryMadison, WI, 2002.

[8] J. Canny. Collaborative filtering with privacy. IREE Conference on Security and PrivaGakland,
CA, 2002, pp. 238-245.

[9] J. Vaidya and C. Clifton. Privacy-preserving k-means clustering over vertically partitioned data. In
ACM SIGKDD International Conference on Knowledge Discovery and Data Mikfaghington, DC,
2003.

[10] J. Benaloh and M. deMare. One-way accumulators: a decentralized alternative to digital signatures
(Extended Abstract). In: Hellsuth, T. (ed.): Advances in Cryptology (EUROCRYPT '93). LNCS 765.
Springer-Verlag New York 1994, pp. 274-285.

[11] J. Zachary. A decentralized approach to secure group membership testing in distributed sensor net-
works. InMilitary Communications ConferencBoston, MA, Oct 2003.

[12] E. Faldella and M. Prandini. A novel approach to on-line status authentication of public-key certificates. In
16" Annual Computer Security Applications Confereridew Orleans, LA, Dec 2000.

[13] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 1978; 21(2): pp. 120-126.

[14] N. Baric. and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without téeks. In
vances in Cryptology: Proc. EUROCRYRINCS 1233. Springer-Verlag, New York 1997, pp. 480-494.

[15] T. Sander. Efficient accumulators without trapdoor. In: Varadharajan, V.and Mu, Y. @dsliternational
Conference on Information and Communications Security - ICICS.BZS 1726. Springer-Verlag, New York,
1999, pp. 252-262.

[16] D. Chaum. Blind signatures for untraceable payments. Advances in Cryptography, Crypto 1982. Plenum Press.
1983, pp. 199-203.

17



[17] D. Cheung, J. Han, V. Ng, W. Fu, and Y. Fu. A fast distributed algorithm for mining association rules. In
International Conference on Parallel and Distributed Information Systéismi Beach, FL, 1996, pp. 31-42.

[18] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Adaptively secure multi-party computatia’inSympo-
sium on Theory of Computinfjlew York, NY, 2002, 494503.

Appendix A: Necessity of Multiple Key Switch Detectors

Here we prove two facts: a) Alice can not perform full key switch detection as efficiently as the central
authority and b) the central party can not perform partial key switch detection as efficiently as Alice.

Proof. For (a) we show that Alice, a honest location, cannot detect full key switch performed by Sally,

a malicious location. In fact, if Sally performs a full key switch on Alice’s data prior to submission to
the central authority. No matter how many times Alice performs her own integrity check, Sally correctly
decrypts all of Alice’s dataset with probability 1.

For (b) recall that in sectiof.1.1the central authority requires Alice (and all other locations) to add one
dummy record to its dataset to detect full key switching. The mechanism that allows the central authority
to detect partial key switching follows the same logic: the central authority requires Alice (and all other
locations) to add additional, say,dummy records, and then counts the number of identical records shared
by the fully encrypted datasets it receives in step 3 of the SCAMD protocol. Now, the general idea that
drives the proof is that the probability that partial key switching is detected by Alice has a naturally low
bound under general conditions, whereas the probability that partial key switching is detected by the central
authority requires non-negligible effort (in terms of bandwidth, for example) to be controlled below the
same low bound. This happens since Alice starts and ends with its own fully decrypted dataset, whereas
the central authority starts by imposiagminimumnumber of identical recordsy] and ends observing a
number of identical encrypted values which may include some real records that appear multiple times in all
datasets.

Recall from sectiomt.1.2that Alice (and similarly for other locations) addsdummy records to its
dataset so that the probability of successfully detecting partial key switching &duals= 1 — (| D asice| +
B)~1. Assume that there areidentical records which appear in the dataset of each location (not including
those contributed by the central authority), and that Sally decides to entrgpbrds with the multi-party
key yg%‘fly and|D ajice| + v — f with the multi-party keyygfgfy. The central authority is able to detect that
a partial key switching has occurred only when the number of encrypted identical records shared by the
datasets of all locations is less than In order for this to happen Sally must pigk > r records that it
encrypts Withyg‘yfly among ther + ~ identical records. The probability of successfully detecting a partial
key switch can be computed, again, using a hypergeometric distribution with parametergthe total
number of identical records shared by the datasets of all locationsand. | — r (the number of different
records in Alice’s dataset), and is equal to:

0 if f<r

(’Y'i_r > < |DAlice‘_r)
" i f—i
1—
iz; ( ‘DAlice‘ +’Y >
f

where the summation takes into account the fact that Sally must pick atmexgirds (of thef she is going
to encrypt withyg‘gfly) among they + r identical ones in order to fool the central authority.

6Assume for simplicityer = 1.

18



According to the SCAMD protocol the central authority fixelsefore step 1 is performed, then is Sally’s
turn to choose how may records to encryp} ith the bad multi-party key. For = 0 the summation

reduces to:
( ‘DAlice’ )
f

( |D Agice| + v >
f

which is maximized ajf = 1 and entails that when Alice usgs= v dummy records, Sally is more likely
to fool the central authority than Alice since

|DAlice‘ 1
|DAlice‘ + ‘DAlice’ + 7

Itis easy to verify that, asincreases, Sally is still more likely to fool the central authority than Alice, when
Alice usess = v dummy records as the central authorify.

19



