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Abstract

Why did you model the data that way? How do we reproduce this plot? Programming for data
science or modeling is a highly valued skill today. Yet when data workers experiment with data
by coding — an intensely iterative process called exploratory programming — the details of what
they try along the way to a solution tend to get lost. Since experimentation underlies essential
workflows in data analysis, machine learning, AI, and visualization this is a serious flaw. Ask
any data worker today, and regardless of organization or years of experience, they have faced at
least some results that cannot be readily reproduced, or mysterious data decisions missing a
rationale. Modern best practices for managing experimentation take high human e. ort and still
leave considerable room for error. With rising demand for responsibility and accountability of
analyses and models, it is vital that people have proper support for documenting and answering
why things were built the way they were.

This dissertation explores history tooling to support exploratory programming data work. To do
this, we first conducted interviews, surveys, and design exercises with practitioners to learn
about their needs and current workflows for experimenting today. We contribute two studies: 1)
a study detailing the mix of tools and ad-hoc methods data workers use to manage their
experiments, and 2) an investigation of how data workers use computational notebooks for
iteration. Our results point to two key barriers: the manual e�ort needed to collect experiment
history today is unsustainable, and recovering semantic process information out of a pile of
history logs is far too cumbersome for practitioners to fit into their workflows today. We aim to
help practitioners record their experimentation without any manual e�ort, and moreover,
quickly recover history facts to answer rationale questions about their work.

Next in this dissertation, we design, build, and test new interactive tools to meet these design
goals, over a 5 year iterative human-centered design process. We contribute: 1) a series of 5
experiment history tool prototypes and 4 usability studies with practitioners, each of which
illuminates a di�erent aspect of the design space, 2) a set of novel visualization and interaction
techniques for concisely summarizing history, 3) a fully implemented experiment history tool
called Verdant, deployed in the wild as a computational notebook extension, and 4) an
observational study where data workers use Verdant during exploratory programming and
afterwards to answer rationale questions about the history of their experiments. With Verdant,
participants were able to answer 98% of history questions about their work in 1 minutes 26
seconds on average. All participants reported ways in which Verdant’s style of history support
would help in their own real life work practices. In the conclusions of this thesis we discuss the
broader design space of experiment support tooling that rich history data enables.
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Chapter 1: Introduction

With the wide availability of cheap sensing, metrics, and computational power today, data is
being collected continuously in nearly every facet of human society. With a tremendous amount
of data, people and organizations want the ability to use it in ways that generate value. Making
use of data today requires a lot of human e�ort [Terrizzano et al. 2015, Sambasivan et al. 2021].
From data collection to data cleaning, exploration to modeling, amidst the myriad of tools,
algorithms, and new techniques advancing all the time, there are humans at the center of every
data e. ort, applying their expertise and human judgement to create analyses and models that
work responsibly and well [Mittelstadt 2019, Arrieta et al. 2020]. Back in 2012, the Harvard
Business Review famously called the new burgeoning job title “data scientist” the “Sexiest Job of
the 21st Century” [Davenport & Patil 2012]. In reality, people across science, math, and almost
any domain had been computing with data since the very dawn of computers. Back in the 1940s
programmers were calculating ballistics analytics for the U.S. Army1. Now, the rise of
high-paying jobs like “data scientist” or “machine learning engineer” in the 2010s signified a
new demand and recognition of just how important skilled data work had become. Then in 2020
Forbes published “AutoML 2.0: Is The Data Scientist Obsolete?” [Fujimaki 2020] and alarmists
everywhere were projecting that society had advanced so far in machine learning (ML) that now
AutoML techniques could fully replace human data workers with automation. However, a flurry
of thought pieces and research articles [Wang et al. 2019, Xin et al. 2021] were quick to
demonstrate that this hype was not realistic. AutoML was another helpful tool in a data
worker’s toolbox, and a stop-gap for organizations that didn’t have enough human data
scientists, but even though AutoML can optimize over millions of possibilities, the guidance of
human intelligence was still needed [Wang et al. 2019, Xin et al. 2021]. Why is that?

In this research we focus on the human act of exploration and experimentation with data,
machine learning, AI, visualization, and everything under the umbrella of data work.
Exploration and experimentation are a vitally human e�ort, we argue, because no matter how
much automation we provide to assist in exploring a broad decision space, human sensibilities
such as domain knowledge, common-sense reasoning, social reasoning, and sensitivity to
context are required to guide which directions are the most promising. Rather than any one
specific task in any data or ML pipeline, experimentation is a cross-cutting attribute of many,
many, jobs. For instance, in Microsoft’s diagram of a data science team process (Figure 1.1),
nearly every step from feature engineering [Zheng & Casari 2018] to data cleaning [Kandel et al.
2011] requires experimentation to figure out what works and what doesn’t. Ultimately “what
works” is up to human discretion too, a goal post negotiated through the process of
experimentation.

1 https://www.computerhistory.org/revolution/birth-of-the-computer/4/78
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Figure 1.1. A diagram of the data science process for a team from Microsoft
[Microsoft 2020].

If data science is the “Sexiest Job of the 21st Century”, our research shows that experimenting
with data through code is decidedly not sexy. It’s often messy, hacky, and an assortment of code
organization practices and haphazard schemes to keep track of plots and model metrics and
analyses in some homegrown way so that someone might be able to find them later. “No,” you
might object: “certainly good data scientists are professionals and do their work well.” My first
research study with data scientists was an interview and survey study (Chapter 3) where, out of
personal and professional curiosity, I wanted to learn about how data scientists conduct and
manage their code explorations, at the very literal level of looking at their code, files, data, and
notes. It became apparent that no one has a satisfying solution when it comes to managing code
experimentation, no matter the experience of the practitioner or which organization they come
from. To illustrate, here is a portrait of a good data exploration workflow, based on the dozens of
data scientists we have spoken to in the course of this research from 2015-2021:

Kyoko is developing a machine learning model to predict whether a student is likely to
drop out of University W. She has a bunch of di�erent Python scripts for di�erent data
analyses of student data, as well as a script for her model. Kyoko is a skilled
programmer, and backs up her code on version control with Git. In addition, she also
has a folder of data versions: student_data_raw.csv, student_data_cleaned.csv,
student_data_norm.csv, which she keeps on DropBox because the data is too large to
version with Git.
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Similarly, Kyoko has a folder full of interesting plots she’s generated at various points
of her analysis, which she also keeps on DropBox. Some of the plots were generated a
long time ago, with older versions of the code.

Locally on her machine, Kyoko is currently busy experimenting with her model, so she
has multiple copies of her modeling script: model_v1.py, model_v2.py, model_v3.py,
model_trees.py, model_biases.py, model_sensitiveFeat.py. Kyoko is the only
person who knows what those file names mean and it’s not obvious what the changes
between them are. To keep model comparison principled, her model script log model
metrics to a csv file results.csv. This csv file is backed-up in version control with her
code in Git. In addition, Kyoko keeps detailed notes in a Google Doc describing her
experimentation and the di�erent possibilities she’s trying.

Now, Kyoko in this example is remarkably well-disciplined with managing experimentation
and still it is easy for us to say: this is not great. Project information is scattered across multiple
locations and it will take some coordination to figure out which data versions and which script
versions generated which plot versions. But, is it good enough? The very real consequences of
not keeping track of experimentation are lack of reproducibility and lack of explanation: plots
that can’t be reproduced, modeling rationale that no one remembers, data cleaning choices that
no one can really justify 6 months later. Even with a relatively disciplined process like Kyoko’s,
it’s never a question of all of her experimentation reproducing —some of her plots will almost
certainly mysteriously not have code that creates them because that specific version wasn’t
committed to Git. Data work includes so many fast paced changes that many iterations are left
unsaved by conventional tools like Git. The available best-practices leave plenty of room for
error. For instance, the fabulously pragmatic and oft-cited “Good enough practices in scientific
computing” [Wilson et al. 2017] suggests:

● Back up (almost) everything created by a human being as soon as it is created
● Keep changes small
● Share changes frequently
● Create, maintain, and use a checklist for saving and sharing changes to the project
● Store each project in a folder that is mirrored o� the researcher's working machine

Figure 1.2 “Keeping track of changes” from Good Enough Practices in
Scientific Computing [Wilson et al. 2017]

To follow Wilson et al.’s guidelines is a lot of extra e�ort that, importantly, slows a person’s
actual code iteration down (to stop and record and take notes) without helping them get any
closer to their goal (see the Exploratory Programming Study, Chapter 3). The tricky thing about
history for data exploration is that no person has the perfect foresight to predict what they will
later need to return to, reproduce, or explain. A data scientist could add an hour to their work
time carefully documenting every feature engineering variation they try, only to throw out the
whole model the next day and never touch that history again (see the Exploratory Programming
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Study, Chapter 3). There’s inherent risk and cost to following good history practices in
exploration. To prioritize doing the actual exploration work, we have found in multiple studies
(Chapter 3 & 4) and confirmed by prior work [Guo 2012, Rule et al. 2018], that most practitioners
are making rational compromises: get more work done by cutting corners on recording history,
and then accept the cost that from time-to-time they will need to completely re-code
something from scratch to reproduce it. Re-coding someone isn’t always bad. It’s possible that
with re-coding a prior analysis, a practitioner may reflect on it or improve code quality the
second time around. But re-coding is not an ideal safety-net, because it requires that a
practitioner actually remembers how they got a result in the first place.

We can do better. It is surprising that after decades of data work, such a low-level workflow
issue as managing experiments has such lackluster support. There has been no shortage of
articles [Zhang et al. 2020, Xin et al. 2018], workflows and tools [Amershi & Conati 2009, Patel
2010, Guo & Seltzer 2012, Pimentel et al. 2019, Kunal et al. 2019, Wang et al. 2020] proposed for
this issue, so why does the problem remain? We believe that what has been missing is a tight
pairing between technology design and behavioral understanding: it’s hard to design e�ective
history support when as a community we don’t really know how people do exploratory
programming for data work in the first place! Leveraging close behavioral study of real work
practices, we propose that an e�ective solution can be found by redesigning software version
control, into new history algorithms and interactions tailored for exploration and
experimentation. This brings us to the thesis of our current research:

Thesis Statement

Data work frequently involves exploratory programming which requires a new kind of
versioning for history and new interaction techniques for exploring that history, which
can help data workers more e�ectively answer their questions about what they explored.

To inform history tooling design, in this dissertation we investigate real practitioners’
current needs, beliefs, and workflows around experimentation in a series of studies:

● Exploratory Programming Study (Chapter 3): How do data workers do exploratory
programming today? In this study we interview and survey data practitioners about their
beliefs and practices around experimentation. We center our investigation around the
artifacts like code, data, files, and output that data workers create in their work, and how
they manage these over time. We find that exploration adds risk of investing in an idea
that may fail or be discarded. For this reason many practitioners prioritize “finding a
solution over writing high-quality code”. Practitioners commonly use “informal
versioning” practices like commenting or copying code to keep alternatives during
experimentation.
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● Notebook Usage Study (Chapter 4): Do computational notebooks change how people
experiment? We conducted one of the first studies investigating how real data workers
use computational notebook coding environments to experiment. We find that
notebooks help practitioners author a story of their experimentation, but ultimately
leave practitioners wanting more substantial history support. Notebooks are
incompatible with conventional history tools like Git, requiring special work-arounds.
Practitioners who try to narrate a record of everything they try into their notebooks end
up with a complex and unreadable document. Other practitioners turn to “informal
versioning” practices like duplicating their notebooks and cells to keep history.

● Query Design Exercise (Chapter 4): What kinds of information would data workers seek out
of their experiment history if they had it? To answer this, we have practitioners ideate
questions that they would want to ask a magical history oracle about their own work. In
this design exercise, we collected 125 history questions generated by data scientists. This
collection of history questions provides us a benchmark for how successful our design of
history support is: we hypothesize that genuinely good experiment history support
should allow data scientists to answer most if not all of these 125 questions.

Engaging closely with data scientists and their real practices allows us to find what data
scientists would want out of actually good experiment history, summarized below in Table 1.1.

Table 1.1  An overview of behavioral studies and the design requirements for
history systems we found in each.

Study Design Findings

Exploratory Programming Study
Chapter 3

+ Content smaller than an entire code file should
be considered for versioning. These smaller
snippets contain important content like plots,
models, and individual analyses.

+ Participants' copying and commenting behavior
suggests that it is valuable for practitioners to
have easy access to multiple versions of the
same thing in their workspace.

+ Experimentation involves code and non-code
artifacts, typically stored in seperate places.
Help users see how artifacts relate over time.

+ Experimentation is often too fast paced for
practitioners to reasonably record.
Automatically record what a user needs to
replicate their experiment.
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Notebook Usage Study
Chapter 4

+ History can provide a safety net for organizing
the notebook. Since practitioners often curate as
they work, removing less successful data work, a
clear value proposition for history support is that
we will be able to preserve these discarded parts
of work while letting users keep a tidy notebook
that contains just their most recent work.

- “Expand then reduce” cell iteration means that
cell-level versioning will be insu�cient. Since
practitioners develop code across multiple cells
before combining it into a single cell, a code
chunk may have provenance in multiple cells.

+ Most notebooks have a narrative cell structure
top to bottom. A historical cell’s location in the
notebook is likely to carry some semantic
information about what the cell is about.

- Explanatory notes are minimal during
exploration. Many practitioners do not take the
time to add markdown notes or comments at the
stage of active development

Query Design Study
Chapter 4

+ Practitioners recall di�erent kinds of textual,
visual, date, location, output related information
that is important to what they want to know
from history. Help users find history facts using
di�erent kinds of remembered cues

These behavioral study contributions only get us to the point of design hypotheses: what we
think actually good experiment history would look like. To test our hypotheses we also actively
create our history support ideas such that we can test them out with real practitioners.

Based on these findings, we design new technologies to A) provide e�ortless interactive
version control for data workers experimenting in code, and B) provide quick ways for people
to ask and answer questions about their past experiments. This design process involves:

● Paper prototyping to rapidly test out di�erent tool layouts and visualizations of history.

● 3 functional prototype history tools that each provide di�erent ways that a data
scientist might use their experiment history. These prototypes are engineered and
implemented to the point that they collect and display actual history data and can be
used for real programming tasks.
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● 5 usability studies to test the e�cacy of our history tooling designs by having real data
practitioners use our prototypes for exploratory programming tasks.

● A general history model for collecting fine-grained experiment history data from a
computational notebook.

● 1 deployed history tool, called Verdant, for quickly retrieving experiment history facts
in computational notebooks. Verdant is the culmination of several years of iteration and
engineering and focuses on providing quick ways for data scientists to answer questions
from their own experiment history.

Given the breadth and depth of design iterations we performed in this thesis, it is worth
previewing some of our findings on what makes this design space challenging and what are the
design barriers that make e�ective experiment management support so evasive in today’s
tooling. Design findings for each prototype tool are also summarized in Table 1.2.

The issue of recording history first appears quite amenable to automation. We might write a
script that automatically saves and commits a data scientist’s work to version control at regular
intervals. Even for Kyoko’s more complicated setup, we could write a script to save her plots to a
folder, scripts to git, and so on to ensure all her results are always reproducible. Would this
solve the problem? No. It turns out that recording history is just one requirement. After all,
there are plenty of data scientists who do a respectable job of manually recording their own
experiment history. Disappointingly, a pile of history is not necessarily usable or useful on its
own. More often, experiment history is used today as emergency backup for the rare case that
someone’s computer breaks and left untouched otherwise.

A key complication is that data science experimentation quickly generates a large number of
versions that can be too dense from which to draw information. For instance, an early test we
did was to record a version each time we achieved a new result while coding a python script for a
basic machine learning classification task. Within about 1 hour, the code had been edited and
run 302 times! Lists of versions are highly susceptible to the long repetitive list problem
[Ragavan et al. 2016]. Essentially, if there is a long list of similar variants of the same document,
it is a laborious process for the user to search through them [Ragavan et al. 2016]. For pure code
questions, a Git expert user may be able to use Git bisect or blame to track down where specific
code changed. However for visual artifacts like plots or fuzzier questions like “why did I discard
this data feature”, the user is pushed into a tedious brute force search, reviewing version after
version until they find the information they need. As a participant from our Notebook Usage
Study (Chapter 4) put it: “it’s just a lot of stu� and stu� and stu�.” If answering a quick historical
question would take a disproportionately long time, a data scientist will not do it (Chapters
3&4).

Therefore, beyond recording the history, we need to provide users with easy and e�ective tools to
examine or ask questions about their history. With this design goal, we first sketched some easy
interactions a user might do to quickly check something from history, and just as quickly return
to their actual experimentation. Although each systems chapter of this thesis (Chapters 6-12)
starts with paper prototyping, static prototyping is insu�cient in situations involving
complex dataflows. Since the history data itself, the amount of it and its dense and repetitive
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nature are a major part of the usability challenge for experiment management, we cannot
evaluate the viability of our design ideas without seeing them in action with the history data.
Thus Chapters 6-12 also include substantial engineering e�ort to create functional prototypes
that are viable to the degree of evaluation needed. In Chapter 9 we cover the technical details of
creating a history database of experimentation, and discuss a crucial point in this work, that
data too is also designed and iterated on. Instead of first collecting experiment history from
data workers and then designing user-interface support against a monolith history database, we
work in the opposite direction. We first sketched out what ideal user-interface design we would
like to support and what we would like data workers to be able to do in an imagined “actually
good experiment history tool”, and then designed how data needed to be collected and stored to
support those interactions in real time. Later in the design process, both data and the user
interface were iterated together, based on changing needs in the user interface and
performance constraints on the data side (Chapter 9).

Our early prototypes, Variolite and Verdant-1, are implemented just to the degree that history
data could flow through the user interactions of each tool, so that we could test these
interactions with real data workers. With our prototype Variolite (Chapter 7), we show that data
workers highly value the idea of interactive and in-situ version control. With our prototype
Verdant-1 (Chapter 10), we show that data workers value in-situ and interactive history that
gives context to experimentation by relating the history of code, outputs, and notes all
together. At this point we switched focus to tackling the issue of overly dense experiment
history at scale. This took substantially more design and engineering time to create an
experiment history tool suitable to function for days and weeks of experimentation work. The
fruits of this e�ort was Verdant-2 (Chapter 11), and in the Jupytercon Scavenger Hunt Study
(Chapter 11) we show that our interactive history visualizations allow data workers to quickly
answer history questions —even about someone else’s data work they are seeing for the first
time.

Next came further design iteration in Verdant-3 (Chapter 12) and a deployment pilot where we
used Verdant-3 in a classroom setting. The finale of this design process is a deployed history
tool Verdant-4 (Chapter 12). In order to evaluate to what extent Verdant-4 is in fact an “actually
good experiment history tool” we engineered Verdant-4 to the point that it can be used by data
scientists in the wild. Then, we conducted the Verdant Study (Chapter 13 & 14) where we have
data scientists do exploratory programming with Verdant-4, and then later in a separate
session, answer history questions using Verdant-4. Our results provide evidence that with
Verdant, data scientists can quickly answer history questions about their own analysis and
model work with low e�ort. In the final design, participants had a 98% success rate when using
Verdant to answer history questions (Chapter 14).

So: do we believe we have achieved an actually good experiment history tool? As the author and
lead researcher on this dissertation work I personally believe: yes. By today’s standards at least,
we contribute a variety of interactive history tooling with highly promising empirical results,
and contribute a detailed analysis of the problem space that carefully considers how real data
scientists work. However, of course we also believe that decent history management for data
work experimentation is really just the beginning of what experiment history could allow data
workers to do. Beyond just being able to e�ectively answer questions about your own past data
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work, in Future Work (Chapter 15) we discuss directions in experiment summarization,
experiment recommendation, collaboration, and a variety of ways history may be used to make
the human activity of experimenting with data more e�ective and more transparent.

Table 1.2  An overview of systems and design findings from each.

System Design Findings

Variolite

Chapter 7

+ Supports specific fine-grained versioning: allows
creation and access of multiple alternative versions of
individual snippets within a code editor.

- Keeping versions in UI tabs does not scale well: while a
tab interaction appeared easy-to-understand during
prototyping, we found we could only display 3-5 named
tabs in the available screen space, which is too few
versions for realistic usage.

+ Supports continually shifting focus: by watching people
work over time, we learned that regions of interest a user
wants to version continually shift over time as the user
tests out di�erent hypotheses and develops di�erent
ideas. History needs to be already available for whatever
content the user wants to look at.

+ Version all or nothing: in usability testing we found that
versioning just parts of a code file leads to A) an
overly-complex combinatorial code file and B) gaps in
history where users later want history of code that was
not versioned. We learned that the safest approach to
avoid these issues is to just version everything. If we
version all of a user’s code file for each experiment, we
can later retrieve the history of any specific portions of
the file the user wishes, while simplifying the structure
of the history we store.

Rose Quartz

Chapter 8

+ Helps users see the relationship between code and
non-code artifacts: An “experiment” is often a
combination of changes made to code, data, or input
parameters, with results in forms of output, data, or
notes.

+ Helps users detect what changed from one experiment
to the next: Experiment history is highly redundant
because often the di�erence between one experiment to
the next is only a small change.

+ Anticipate scale: experiment history is fast paced and
quickly accumulates dozens of versions at the rate at
which a data worker runs their code. Anticipate roughly 1
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version per minute of work time.

- Capturing “an experiment” from di�erent tooling
sources is extremely di�cult: Since data workers work
in a variety of languages, tooling environments, and
domain-specialized data analysis tools, instrumenting
every possible tool that a data worker might incorporate
into their analysis workflow is an enormous
undertaking. There are also major privacy and security
pitfalls. Alternatively, finding a central tool that already
combines a workflow is much more tractable. For this
reason, we focus on computational notebooks because
they o�er a rich workflow in a single tool.

Verdant-1

Chapter 10

+ Inline access of the history of any artifact is wonderful:
the ability to click on specific content and see its specific
history is consistently popular with users of our
prototypes. The appeal is that users are able to see the
history of the content in front of them without having to
search or skim through a bigger pile of history logs.

+ Help users reproduce results as a “recipe”: In our pilot
usability study and reception by the research
community, the metaphor of reproducing output as a
“recipe” was easy for users to understand.

- Inline history visualization makes it di�cult to see
how versions of di�erent artifacts relate: we found in
prototyping that showing all the versions of one artifact
A and elsewhere showing all versions of a di�erent
artifact B allows users to examine A and B individually
but tells the users very little about how the histories of A
and B relate. Di�erent UI approaches are needed to make
history relationships clear.

- Inline history visualization does not scale well: we
found that inline history visualization works best for
comparing just 2 versions of the same artifact side by
side.

Verdant-2,3,4

Chapter 11,12, 13, 14

+ An activity stream gives users confidence that their
experiment history is being preserved: users in the
summative Verdant Study found the activity “minimap”
view to be a helpful companion as they programmed,
because the visualization updated in real time to indicate
what parts of their experiments had been recorded. This
gave users confidence that the system was working.
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+ Give users the ability to switch between history detail
and history context to understand relationships: one of
the most successful interactions for finding history
information we observed in the Verdant Study was when
users paired the Artifact Detail view with the Ghost
Notebook view. Users browsed specific artifact history in
the detail view, and then used a side-by-side Ghost
Notebook to see how each version had occurred in
historical context with other artifacts and output.

+ Structure history to minimize scrolling through lists:
in our Jupytercon study, users became frustrated (and
often gave up!) if they believed that they needed to
examine every version in a list to identify the right one.

+ Give the user multiple ways to find the same thing
based on what they remember: since Verdant has
multiple ways of searching and visualizing history, there
is no single “right” way to find something. We saw this
benefit users in our study because regardless of which
avenues a participant tried, they were able to reach the
desired information.

+ Treat visual finding for visual artifact history
di�erently: In practice we found that plots often do not
have descriptive keywords in the code that accompanies
them, so they cannot be found with a textual keyword
search. It is worth designing search features specifically
for finding plots, images, and other visual-only artifacts.

19



Designing E. ective History Support for Exploratory Programming Data Work - Dissertation - Mary Beth Kery

Part I: Looking Closely at How Data
Scientists Use Programming to
Experiment with Data
INTRODUCTION TO PART I

In Part I of this dissertation, we first study the phenomenon of exploratory programming in
Chapter 2, and then how exploratory programming plays out in real life by real practitioners in
Chapters 3 & 4. From Chapter 2 we gain insights, primarily through a literature review, about
the specific ways in which exploratory programming is di. erent from normal software
development. This is important because conventional history support for code, e.g. Git or SVN,
is designed for software development. Exploratory programming departs from typical software
development by prioritizing fast iteration of a broad space of possibilities instead of careful
engineering upon fixed goals. This is reflected in how we design history support. For instance, a
commit in Git typically represents a version in which a specific engineering goal is achieved,
e.g., “fixed bug #456”. What would commits look like if instead versions represent specific
ideas explored?

To answer questions about what history support should look like, we engage with what
practitioners are dealing with today. In Chapter 3 we look at practitioners broadly engaging in
exploratory programming for analysis or modeling, and look at how they use, abuse, or craft
workarounds for history support available today. We find that conventional version control like
Git is missing support for many of the small fast-paced explorations practitioners do that
happen at units smaller than the whole file: for instance code snippets that represent models or
plots. Whereas conventional version tools like Git preserve full snapshots of a user’s work, this
isn’t the only viable approach to history. In Chapter 4 we look at computational notebooks, like
Jupyter notebooks, to see if practitioners are able to author narrative histories of the
experimentation they do. Beyond a conventional Python or R script file, we find that notebooks
do help users structure a narrative of the experimentation process – but only to an extent.
Notebook users typically curate their notebooks to show how they reach their final result, but for
clarity of storytelling, users typically discard less successful experimentation they do along the
way. Notebook users actually face more di�culty than conventional script users in that
conventional versioning tools like Git currently perform poorly with notebooks. So although
notebooks users gain storytelling as a history-keeping tool, they lose the benefit of a Git-model
of history, and ultimately use many of the same workarounds as ordinary script users to make
up for the missing history support they need. In both of these chapters, we detail how the
specific workaround users do can translate into design requirements for better history tooling.
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Chapter 2. Exploratory Programming as a
Phenomenon

Research done in collaboration with Brad A. Myers1

INTRODUCTION
In coding and in life in general, exploration is a basic human strategy for gaining new
understanding about a space of ideas. In a seminal paper on organizational learning, March
[March 1991] argued for a healthy balance between exploitation, the use of familiar knowledge,
and exploration:

“Exploration includes things captured by terms such as search, variation, risk taking,
experimentation, play, flexibility, discovery, innovation. Exploitation includes such
things as refinement, choice, production, e�ciency, selection, implementation,
execution.... Maintaining an appropriate balance between exploration and exploitation
is a primary factor in system survival and prosperity.” [March 1991]

The term “Exploratory Programming” was first popularized in a 1983 paper by Beau Shiel, a
manager at Xerox’s AI Systems, who struggled with applying rigid software development
lifecycles of the time to experimental AI code [Shiel 1983]. The trouble was that something so
experimental as an AI system could not be fully specified up-front: "no amount of interrogation
of the client or paper exercises will answer these questions; one just has to try some designs to see
what works" [Shiel 1983]. Before taking the long and expensive step of building software, it is
generally recommended to rapidly iterate ideas through discussions and paper prototypes
[Buxton 2010]. A simple paper-prototype of a user-interface can be shown to users to cheaply
test the proposed design before any code is written [Buxton 2010]. However, it is not always
feasible to test some ideas on paper [Yang et al. 2019]. When an idea relies on processing data,
or on computing a complex visual, sound, or motion e�ect, these behaviors can be di�cult or
even impossible to simulate in “low-fi” prototyping mediums like paper or a whiteboard.
Exploratory programming fills the crucial role of the medium when prototyping must occur in
code. This practice is key for situations where key attributes of exploration: “flexibility, discovery,
and innovation” [March 1991] are needed to understand how the program should behave.

At first glance, exploratory programming may seem di�cult to separate from normal
programming. Typical programming requires some experimentation and some creative
problem-solving to reach a goal [Green 1990, Ko & Myers 2008]. However, the practice of
designing the goal at the same time as experimenting in code is a defining feature of
exploratory programming. We extend Shiel’s definition: “the conscious intertwining of system

1 This chapter is based in part on the conference paper: Mary Beth Kery and Brad A. Myers,
"Exploring Exploratory Programming," 2017 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC'17), October 11 –14, 2017, Raleigh, NC, pp. 25-29.
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design and implementation” [Shiel 1983] to define exploratory programming as a task with two
properties:

1. The programmer writes code as a medium to prototype or experiment with
di. erent ideas.

2. The programmer is not just attempting to engineer working code to match a
specification. The goal is open-ended, and evolves through the process of
programming.

To further gain an intuition for the boundaries of exploratory programming, consider
debugging. Debugging often involves hypothesis testing and experimental code edits as a
programmer tries to make sense of an error [Ko & Myers 2008]. Debugging thus meets Property
1. However, the broad space of debugging is not exploratory programming. Consider that a
programmer knows how their program should be behaving, and finds an error. Through
problem solving the programmer finds the erroneous lines of code, and through further
experimentation, develops a fix. We do not label this as exploratory programming because at no
point is the programmer re-evaluating their system design or how their program should behave
(Property 2). Later, the programmer might decide that the system should perhaps behave in a
di�erent way, and then might engage in exploratory programming to try out new possible
behaviors.

Our observations are partly motivated by our prior studies of exploratory programming [Kery et
al., 2017], where we interviewed 10 researchers (2 female, 8 male) who self-identified as doing
exploratory programming, followed by a broader online survey which received 60 responses
from data scientists. Briefly, participants emphasized the trial-and-error nature of their
exploratory programming work, and they reported using a variety of simple methods such as
duplicating files, duplicating code snippets, or commenting out code snippets in order to keep
multiple versions of the same code visible at once. Full results are in Chapter 3.

In this chapter we seek to clarify and deepen the understanding of exploratory programming, by
synthesizing evidence of how exploratory programming is used in the wild and how exploration
a�ects a programmer’s behavior. Today, we see highly exploratory code tasks, such as data
science, learning through play, and computational art and design which need appropriate tool
support, not only for professional developers but also for the broader end-user developer (EUD)
audience. For example, programmers have a need to work with alternative versions and variants
of their exploratory code [Hartmann et al., 2008, Kery et al., 2017]. Our aim is to fuel future
research in exploratory programming by grounding the practice in 5 characteristics. These
characteristics are distilled from data from our own prior studies [Kery et al., 2017], as well as
prior literature. These are discussed at length in later sections of this chapter, along with related
terms:

A. Needs for Exploration: Certain scenarios call for exploration. This includes learning how
to do an unfamiliar task, working on creative tasks, or working on hard tasks where the
means to achieving a goal is not apparent without experimentation.

B. Code Quality Tradeo�s: Exploratory programming emphasizes iteration on the ideas
behind the code, so code quality is often deemphasized during exploration to allow for
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faster iteration. When the programmer reaches a final solution, they may then polish
and refine the code.

C. Ease or Di�culty of Exploration: Usability factors in the languages, libraries, and tools
that the programmers use a�ect a programmer’s ability to rapidly prototype. From
Green’s cognitive dimensions [Green & Petre 1996], we identify that high Closeness of
Mapping and low Viscosity are particularly helpful for exploration.

D. Exploration Process: Exploration is instantiated as repeated changes to parameters,
input data, or certain regions of code over time. This process also includes backtracking
and comparing current code to past attempts to decide what ideas to experiment with
next.

E. Group or Individual Exploration: Exploratory programming is often done on an
individual basis, but can become highly convoluted when a team needs to coordinate
their experimentation.

RELATED TERMS
Bergström and Blackwell discussed a number of programming practices, framing code as a
medium with a great many other uses than typical software engineering work [Bergström &
Blackwell 2016]. Some of these creative practices they discuss: bricolage, tinkering, sketching,
live coding, and hacking, we consider to be a subset of exploratory programming. What makes
“exploratory programming” a useful framing across many programming practices? From
bricolage to hacking, as well as other practices we discuss below, a common trait is that the
programmer’s goal is at least to some degree creative and open-ended. By examining
exploratory programming, we can study the consequences on programmer behavior of working
towards an open-ended goal, as well as tools that may benefit all of these practices that rely on
goal exploration. Below we define several other relevant terms:

Opportunistic programming
As defined by Brandt et al.:

“Programmers build software from scratch using high-level tools, often add new
functionality via copy-and-paste, [and] iterate more rapidly than in traditional
development…” [Brandt et al., 2008]

Past work on opportunistic programming has focused on web foraging as a way that
programmers rapidly iterate on their ideas in code, by largely patching together a program from
online examples. As the programmer is often exploring di�erent possibilities of their program,
Opportunistic Programming can be considered a subset of exploratory programming. However,
there are behaviors specific to this practice that do not strictly generalize to the broad range of
all exploratory programming tasks. Patching-together example code is one exploratory
programming tactic that may be specific to Opportunistic Programming.

Debugging into existence
Rosson and Carroll [Rosson& Carroll 1993] observed that Smalltalk programmers write partial
code and run it, so that the resulting errors could point them towards where to improve the
program. This style of programming is highly incremental and can be used for exploratory
programming, if the programmer has an open-ended goal.
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Rapid Prototyping
“The rapid production of a prototype” [Oxford English Dictionary] is commonly used in iterative
design to create and test a number of di�erent design possibilities early on. Note that rapid
prototyping may or may not involve programming, and the user may have a specific goal and
design in mind. Rapid prototyping in code is exploratory programming if the programmer is
exploring a variety of designs/goals rather than simply iterating on a single design.

CHARACTERISTICS OF EXPLORATORY PROGRAMMING

Needs for Exploratory Programming
Exploratory programming has been observed and purposefully supported in a wide variety of
applications which fundamentally require exploration, including:

● Learning programming through play: Environments for children such as Alice
[Kelleher et al., 2007] and Scratch [Resnick et al., 2009] encourage creating stories
through exploratory programming.

● Digital art and music: Digital art written in languages like Processing is created through
experimentation with code as a creative medium [Reas & Fry 2007, Montfort 2016].
Environments for generative music, often using live coding, involve impromptu
exploration of sounds through code [Brown & Sorensen 2009].

● Data Science: Tasks like data analysis are often done in code and are exploratory [Tukey
1977]. Other tasks, like modeling or building a machine-learning model, can also take
extensive exploration and iteration in code [Hill et al., 2016].

● Software Engineering: Exploratory programming has been found in programmer’s
backtracking, where the programmer tries and retries di�erent alternatives using
commenting or undo commands while trying to determine an appropriate algorithm
[Yoon and Myers 2014] or figuring out how an API should be used [Robillard 2009].

Code Quality Tradeo�s
Programmers frequently need to make a cost/benefit trade-o� between producing high-quality
code, and spending their time and e�ort on quick ideation. Historically, this has meant that
exploratory programming is associated with rough code: “Exploratory programming
techniques encourage code that is hard to read. It is tempting to make fix after fix to a piece of
code until it is impossible to understand. Hence, rewriting code is essential for producing
reusable code” [Sandberg 1988].

In our interview study (Chapter 3), even participants who had formal software engineering
backgrounds leaned towards messier practices when exploring. When participants were writing
code to be part of a maintained software system, or were simply more meticulous, they
sometimes strived to follow good coding practices. However, all participants mentioned some
way in which they preferred to reduce engineering e�ort while writing exploratory code,
whether ignoring modularity, skipping documentation, or avoiding software version control.
Some participants felt they wouldn’t use this code long-term. Others did not want to invest too
much time on code that may turn out to be a bad avenue that would need to be re-written later
anyway.
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In a study of game developers, Murphy-Hill et al. had similar findings [Murphy-Hill et al.,
2014]. Game development often requires exploratory programming due to evolving
requirements and the creative nature of building a game. Even though subjects were
professional game developers, they expressed this quality trade-o�: “there is a tradeo�
between improving maintainability early and the likelihood that this e�ort will result in waste
because the game will not be a success” [Murphy-Hill et al., 2014]. Programmers may choose
low-investment in their code quality due to time pressures and risks of their immediate work
later being thrown out for a new idea. Yet exploratory code faces the same problems with bugs
and logic errors as any program. Poor quality exploratory code can lead to serious problems,
such as incorrect data analyses or invalid scientific findings [Merali 2010].

Ease or Di�culty of Exploration
In the course of exploration, a programmer may need to significantly edit the design of their
program to try a new approach. All programming tasks, including exploratory changes, can be
made easier or more di�cult by the tools available to the programmer. Here we use some of
Green’s cognitive dimensions of programming languages [Green & Petre 1996] to discuss
particular usability features that support exploration.

First, languages that cost a programmer more time and e�ort to express a single idea will slow
down iteration. This relates to Green’s notion of Di�useness versus Terseness of a language,
which counts how many code symbols are required to express an idea. For exploratory
programming, high-level languages and libraries can be extremely helpful to provide a
higher-level vocabulary to make code more succinct. For instance, instead of coding the details
of a computer vision algorithm to detect contours in an image, a programmer can simply use a
one-line library call such as find_contours()2.

Green’s Closeness of Mapping is how directly a concept in the user’s task domain maps to a
code representation [Green & Petre 1996]. Good closeness of mapping for exploratory
programming will favor higher-level abstractions for all parts of a program that are not the
programmer’s primary focus. For example, find_contours() allows a programmer to use
computer vision without needing to understand its low-level algorithms. Green called side tasks
that only relate to programming, such as explicit memory management, “programming
games” [Green & Petre 1996]. We expand the “programming games” notion to encompass any
supporting domain that a programmer may want to make use of without having to care about
the details of that domain. The overall goal of close mapping and terse code is to help an
exploratory programmer spend more time and e�ort focused on their ideas rather than the
details required to enable them. Here, exploratory programming has certain overlap with
opportunistic programming, and is farther from standard software development which
prioritizes engineering goals such as e�ciency of execution, flexibility, maintainability, and
robustness over easy implementation. Close mapping also makes exploration more accessible to
novices and end-user programmers who may be missing certain skills. For experts, Closeness of
Mapping also implies that abstraction should be as fine or coarse-grain as is reasonable for the
task. For example, if a domain expert is exploring new algorithms for computer vision, a very
low level of abstraction may be appropriate.

2 scikit-image: image processing in Python http://scikit-image.org/
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Viscosity [Green & Petre 1996] refers to how easy or di�cult it is to make a change in a program
once it is written: “programmers will choose their style of working according to the particular
combination of information structure and editing tools. If the system is viscous, they will
attempt to avoid local changes and will therefore avoid exploratory programming” [Green
1990]. To avoid viscosity, highly modular programs may help programmers explore a single
component without needing to propagate changes across the entire system to make that change
run. High viscosity can also lead to errors. For example, an interview participant from our
Exploratory Programming Study [Chapter 3] discussed errors that resulted from re-using the
same block of code for multiple experiments. Editing the code for one exploration made it
di�cult to maintain or recover an earlier exploration. Here, viscosity must take into account
how easy it is both to create a change and to revert it. Exploratory programming environments
should lower the risk of making exploratory edits by providing clear ways to return to prior
versions. A simple undo is not su�cient when programmers make changes over time that they
would like to only partially revert [Yoon and Myers 2014]. Prior work has found end-user
programmers, even in visual programming, benefit from more sophisticated version control
support to help with reverting [Kuttal et al., 2011].

EXPLORATION PROCESS
The process by which exploratory programming is done can be characterized by backtracking,
the scale and duration of the changes, and history.

Backtracking
Yoon et al. [Yoon and Myers 2014] examined 1,460 hours of programming log data from 21
programmers. Yoon identified evidence of exploratory programming when a programmer
edited the same piece of code over and over between runs, sometimes backtracking to an earlier
iteration of the code. Following Yoon’s convention, we identify an instance of exploration as
two or more edit-run cycles that are close in time and a�ect the same code. Segmenting
exploratory changes to code by runs may often be appropriate, as a programmer is
experimenting with changes to the program, and must typically run the code in order to see the
e�ect of those changes.

Exploration scale
Identifying the scale of an exploratory section of code is helpful, as scale a�ects how a
programmer will interact with the variants of that code. In conventional software version
control tools, a set of changes on a source file is captured at the file level. However, in a practical
exploratory experiment, the programmer may be manipulating a much more focused set of
code than the entire file. At the smallest scale, a well-documented behavior is “tuning” a single
variable or parameter to many di�erent values to observe the e�ect [Yoon and Myers 2014,
Snoek et al., 2012]. An artist, for instance, may change a parameter in a program that generates
a complex geometric shape [Terry et al., 2004]. At the next largest scale, a programmer may be
rapidly iterating variations of a particular function. For instance, one of our interview
participants created two copies of the same function to try two di�erent approaches to an
analysis and still keep both approaches. At the next larger scale are loose snippets of code that
span multiple functions, or are not contained by a function at all. For example, one interview
participant ran a di�erent “configuration” of their file by commenting out certain lines across
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their file and uncommenting others to change what analysis was performed. Finally,
exploration may also occur at the file level.

Exploration duration
As a programmer shifts among di�erent tasks, the exploration scale may vary not only by code
size, but also by time spent. Exploration may be very transient or very long-term, depending on
the task. For instance, if a programmer is changing the color and size of a button, this may be
only of concern while the programmer is deciding which color and size is liked best. This
contrasts with cases of building computational models where the programmer is involved in
exploratory programming for weeks to months and must keep track of many explorations that
make up the components of their model [Hill et al., 2016]. Relating to Green’s cognitive
dimension of hard mental operations, the burden on a programmer will be greater for keeping
track of many attempts over a long period of time than keeping track of fewer code variations
over a short period of time [Green & Petre 1996]. All of our interview participants used notes,
code comments, or recorded output as external memory aids. However, in line with Code
Quality (Characteristic B above), most noted a high cost in e�ort to keep these manual records
up-to-date.

Using Exploratory History
In software engineering, history involves byproducts of the process such as code versions,
commit messages, and issue logs, as well as the code changes themselves. Prior work has found
that software engineers typically use code history to understand a change or bug [Codoban et
al., 2015]. On the exploratory end of the spectrum, exploratory programmers may use history
for typical software engineering needs, but they also commonly use code history as a record of
their experimentation. Abundant evidence for this is seen in scientific computing [Davidson &
Freire 2008]. Whereas a software engineer might ask a code-centered question like: “In which
version did this code appear?” [LaToza & Myers 2010], an exploratory programmer may frame
their question around an experiment: “When I tried a RandomForest algorithm, how did that a�ect
my model’s accuracy?” or “When I went through this loop 3 times, how did this a�ect the character’s
motion?”. Using history for this kind of question and answer was mentioned by several
interview participants. To facilitate answering these questions, a programmer during
exploration may need a variety of artifacts that can help them understand a past decision and
its e�ect. This includes past versions of images, notes, variable values, parameters, and graphs,
along with the code. In the Exploratory Programming Study (Chapter 3), we saw participants
keeping versions of code, jotting notes on ideas, and keeping versions of outputs. Of survey
participants, 72% manually copied versions of their files and 3 out of 10 interviewees and 52%
of survey participants used a software version control tool.

Sharing and Group Exploration
Group exploration on the same code can be challenging because the kind of informal coding
practices that appear in exploratory programming do not lend well to clear code. Due to
programmers’ reluctance to keep up-to-date notes during exploratory tasks, keeping a shared
understanding of an exploration’s progress across a team can be di�cult. Sharing and group
exploration also a�ects the viscosity of code edits, because where more than one person is
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making exploratory changes to the source code, this can easily lead to interfering changes.
Wang et al. observed many of these kinds of coordination and communication di�culties in
their study of data scientists synchronously editing the same computational notebook together
[Wang et al. 2019]. Based on their data Wang et al. suggest future work focus on facilitating
communication, such as through chats, or better hybrid management of which parts of an
exploration are “owned” by an individual author versus shared between collaborating authors.

CHAPTER CONCLUSIONS
Exploratory programming is a practice and a lens we can use to better understand and support
creative and open-ended programming tasks. Although exploratory programming is prevalent
across many applications today, there is currently a lack of tool support for experimentation,
including a lack of support for recording and sensemaking of exploration history, and a lack of
support for exploration by groups of people. Next in this dissertation we further investigate
specific practices of exploratory programming for data work and start the design process of
understanding how we might better support exploration history.
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Chapter 3. Informal Versioning Behaviors in
Data-centric Exploratory Programming

Research done in collaboration with Brad A. Myers and Amber Horvath3

INTRODUCTION
People have been using code to analyze data since the dawn of computing, and so despite its
surge in popularity in the last decade, one might think that exploratory programming with data
would have long-established best practices. This is not entirely the case. It turns out that
keeping track of ideas in experimental work remains an unsolved problem. Patel et al. observed
that many di�culties in applying machine learning techniques arose from the “iterative and
exploratory process” of using statistics as a software development tool [Patel et al., 2008]. Patel’s
interviews with machine learning developers emphasized the non-linear progression of this
work where “an apparent dead end for a project was overcome by revisiting an earlier point in their
process” [Patel et al., 2008]. Others who have studied data science and machine learning
developers, such as Hill [Hill et al., 2016] and Guo [Guo 2012] have described di�culties even
for experts, struggling to create understandable and reproducible models during a process
where they attempt many di�erent things. Both Hill and Patel called for advances in software
engineering methods and tools for dealing with this kind of programming. Similar arguments
have been made in the scientific computing community, where problems of understandability
and reproducibility during experimentation with code are often mentioned [Segal 2007,
Nguyen-Hoan et al., 2010, Merali 2010]. When even experts struggle with the exploratory
process, this lowers the accessibility to novices programming with data.

In this research, we sat down with data scientists using a combination of interviews and looking
at their code artifacts, followed by a broader survey, to better understand the barriers and
requirements of data scientists managing exploratory code.

METHODOLOGY

Interview Study
We conducted a series of semi-structured interviews with researchers across multiple
universities. Researchers were a convenience sample of our target population: people who do
significant exploratory work with data. We recruited individuals who had worked on at least one
major exploratory analysis project. Our 10 respondents were a mix of faculty, graduate and
undergraduate student researchers. Eight of interviewees did research in a computer
science-related field, one in computational chemistry, and one in computational neuroscience.
The gender ratio was 2 females to 8 males. Interviewees worked with a variety of programming

3 This chapter is based in part on the conference paper: Mary Beth Kery, Amber Horvath, and
Brad A. Myers. "Variolite: Supporting Exploratory Programming by Data Scientists." In CHI, vol.
10, pp. 1265-1276. 2017.
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languages, with Python and R being the most used. We intentionally oversampled people who
were experienced programmers with computer science training in order to better understand
the intent of their practices not simply arising from lack of awareness of available tools or lack
of skill with software development. Prior work has shown that many scientists are unaware of
good software development practices [Nguyen-Hoan et al., 2010].

All participants first signed a consent form. There was no monetary compensation for
participation in the study, and participants volunteered their time for a 45-60 minute
interview. In the first part of the interview, we asked participants to describe a recent
exploratory project at a high level: What were their goals in the project? What high-level steps
did they follow to meet those goals? All interviewees discussed projects that had spanned at
least several weeks of work. Due to the timespan of significant projects, we chose a
retrospective interview methodology rather than direct observation of their work [Brandt et al.,
2008]. Next, we asked participants, whenever possible, to show us artifacts from the project,
including source code, their folder structure, and data files. During this stage we asked
participants to discuss how their high-level ideas had been implemented in code and files.

Each interview was audio recorded and transcribed. Several participants gave us permission to
keep and share screenshots of their code and files, and these artifacts were used in our analysis.
As the interviews were focused on each participant’s research, there were large parts of the
transcriptions about an interviewee’s general research topic, rather than their work process. To
analyze the interviews, two coders first read all interviews and pulled out any quotes related to
the process, such as plans, code, notes, collaborators, etc. Following an a�nity diagramming
approach, coders grouped the quotes into higher-level themes, and separated out any quotes
that explicitly mentioned a di�culty or complaint.

Survey
We next sought to validate our observations from the interviews on a broader population. Using
an online survey, we recruited respondents from several websites for data scientists (e.g.,
kaggle.com and reddit.com groups for machine learning or data science), as well as emails to
acquaintances. A total of 77 people started the survey. However, not all participants answered
all of the questions, so here we analyze only the 60 people who answered the questions beyond
the demographic information. All 60 self-identified as having experience coding with data in an
exploratory way. The average age of participants was 34 (SD = 13), and the gender ratio was 21%
females, 74% males. The remaining 5% of participants chose not to disclose their gender.

We structured our survey such that it acted as a quantitative supplement to our interview. Using
the interview results, we drafted questions that built upon what issues a�ected participants
most, what design features in a tool they would want to address these concerns, and to see if our
findings generalize across a more diverse sample. First, we asked questions to determine the
background of our participants, summarized in Figure 3.1. We then asked questions about
coding practices and behaviors. We presented statements such as “I analyze a lot of di�erent
questions about the data in a single source file” with a 5-point Likert scale, going from “Never”
to “Very Often”. We then asked about the problems they encountered, such as “Distinguishing
between similarly named versions of code files or output files” with a 5-point Likert scale going
from “Not at all a problem” to “A very big problem”. We also gave a “don’t know / can’t
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answer” option in case participants had never encountered or could not recall encountering
such an issue.

Figure 3.1. Background statistics about 59 of the survey respondents. Most had
graduate degrees in computer science and work in research (one respondent

declined to answer).

RESULTS AND DISCUSSION
Interview and survey participants varied widely in their practices, and the kinds of projects they
worked on. Despite this, many participants had behaviors and beliefs in common. In the
following, participants in the interviews are identified with a “P”, and survey responses with
percentages for the di�erent answers.

Exploratory Process
The participants mentioned a variety of ways that their programming tasks were exploratory.
One of the most salient feelings expressed by participants was the trial-and-error nature of
their work, and the risk of investing in an idea that may fail or be discarded:

“I didn't always have a great idea of what would work up front, so I would try a lot of
di�erent things and then they wouldn't pan out and then you would disregard most of
that work, but maybe still want some of the small processing steps from that work, if
that makes sense, to apply to your next statistical model.” - P10

Of survey respondents, 43% “Agreed” on a Likert scale that they “prioritize finding a solution
over writing high-quality code”, while another 33% “Strongly Agreed” (totaling 76%).
Although some interviewees were distinctly more messy or meticulous as evidenced by their
code artifacts, all mentioned avoiding investment in some way, whether avoiding leaving
informational comments in their code, or avoiding taking notes or not using extra software
tools beyond the bare minimum needed for their analysis.

“I know how to write code. And I know that I could write functions to reuse functions
and I could try to modularize things better, and sometimes I just don't care because
why am I going to put e�ort in that if I'm not going to use it again?” - P06

This sentiment is common to how end-user developers prioritize goals [Ko et al., 2011]. While
“end-user developer” often refers to a programmer without formal training in computer
science, many of our participants did have formal training (Figure 3.1). Ko et al. distinguish
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end-user developers as having goals where a program is a means to an end, rather than
professional developers, whose goals are the code itself as a product [Ko et al., 2011]. Under this
definition, considering data scientists as end-user developers may be fruitful for leveraging
existing theories on programmers who write expendable code.

Yet such “throw away” data analysis attempts are often not really thrown away. While all
interviewees discussed accumulated failed attempts and earlier analyses that were less
informative, they also often talked about reusing that code. Interviewees mentioned they often
built o� code from an earlier attempt in order to try a new method. This is supported by the
survey, where 46% of survey participants reported reusing code from the same project at least
“Often”. Similarly, 47% reported reusing code snippets taken from di�erent projects at least
“Often”.

Informal Versioning
Data scientists we interviewed and surveyed faced challenges of trying out multiple alternatives
in their code, while trying to judge which code to keep in case that analysis or helper method
would be useful again later. Exploration can involve nonlinear iteration, so keeping code to
backtrack to or to reuse was important to interviewees. 4 of 10 participants discussed actively
keeping around old code they were no longer using, just in case some part of that code proved
helpful later on. Similarly, 65% of survey respondents reported leaving code snippets they were
not currently using in the code at least “Occasionally”, and 79% reported commenting out code
at least “Often”.

Interviewees were cautious about deleting code. Yet this introduced code complexity, as some
attempts could not simultaneously exist in the same namespace, or used overlapping code. As
quick workarounds, data scientists relied on informal versioning such as commenting:

“I guess this is kind of my own personal version of version control. A lot of times I'll,
like, comment out a whole big section that was there, and then I'll rewrite it so that it's
di�erent but I'll keep the original one exactly as is in case the new version kind of
sucks.” - P09

Code that is commented out does not run. Using comments to store code has been observed in
prior studies [Hartmann et al., 2008, Segal 2007]. Ko et al. [Ko et al. 2005], when studying
experienced programmers, found that 60% of edits using comments were for temporarily
commenting code during maintenance tasks.

Comments to keep track of attempts
44% of survey takers reported using comments to keep track of what they have tried, and 70%
keep commented code to reuse later. This allowed data scientists to keep multiple versions of an
idea for reference, with only the relevant one running.

Comments to manipulate execution
Comments were used not only to store chunks of code, but also to mutate the meaning of
existing code, sometimes in complex ways. In the survey, 56% of the respondents reported
using comments explicitly to control execution.
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P03’s code, shown in Figure 3.2, shows an example of this, in which several alternatives for
outputting the analysis result are present in the comments. An active chunk of Python code
graphs the output, but this code has several commented-out statements. There is also a second
graphing section of code lower down that is fully commented out.

Figure 3.2. Comments used to keep alternatives. Above, print statements are
commented out using the single-line comment token #. Each prints out a
di�erent statistic about the data. The one print statement on line 537 remains
uncommented, meaning that statistic will be outputted when the program is
run, and that statistic is the one P03 is currently interested in seeing. Similarly,
comments on lines 549 and 551 toggle what data is plotted in P03’s plot. The
block comment syntax on likes 559-562 toggle a di�erent plot, that P03 has
currently turned o�.

Duplicating snippets, function and files
Copying code was another popular way of versioning. Shown in Figure 3.3 is P01’s file structure,
where many versions of the same script were kept to track major attempts at improving a
machine learning model. On average, 72% of the respondents in the survey said they at least
“Occasionally” do this, and 58% at least “Often” said they named the new file copies based on
the original one. Survey respondents reported making an average of 3-4 versions based on one
file. Interviewees also demonstrated multiple versions and copies of functions and smaller code
snippets.
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Figure 3.3. Folder from a data analysis project of P01

Di�culties
As interviewees did not overly invest in notes, comments, or trying to write clear code more
than they felt necessary, they had to rely on their mental map of their code to understand it.
Here are some di�culties that interviewees mentioned, and responses from the survey that
show that these issues are indeed widespread:

Why did I name my file that?
Participants discussed having files or methods with ambiguous names or that they often had
multiple files with similar names, making it di�cult to distinguish between versions (see
Figure 3.3). 7 out of 10 participants expressed confusion when talking about the names they
chose for di�erent methods and files. 83% of survey takers reported that closely named
artifacts had caused them at least minor problems in their work.

How do I keep track of everything in my project?
Participants struggled to keep track of the relationships between files (source code, input data,
output data), code snippets, and their analysis progress. 5 out of 10 participants expressed
having di�culty in keeping track of the high-level aspects of a project and how it related to the
lower-level code. Furthermore, as their code evolved, the code that originally produced a
particular result may be changed or obfuscated. 4 out of 10 reported losing track of their mental
map of code, especially if the code was messier or had parts commented out. Interviewees
discussed understanding their code in the short term, but having trouble understanding the
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code when they returned to it later. 85% of survey takers reported that this caused them at least
minor problems in their work, with 44% reporting significant problems.

What was I doing in this old project?
Participants wanted to go back to old projects to lift code, but had di�culty remembering and
understanding the structure and details of these old projects. 5 out of 10 participants expressed
di�culty reorienting themselves with older projects. 67% of survey takers reported that
visiting old projects was a significant problem.

What do I do with all this old code?
Participants expressed an interest in “hoarding” code through commenting out code snippets
and refusing to delete old source code files in case their exploration did not pay o�. However,
this led to confusion with keeping track of multiple similar copies as well as commented versus
not-commented code.

This file is huge! What’s in it?
A script file is a kind of code file that can be directly run/executed and typically directly outputs
print results or file results. Participants often had large script files that served a variety of
purposes, resulting in confusing code dependencies and relationships among various parts of
the script. This resulted in an overall di�culty discerning the purpose of a script, which 4 of the
10 participants mentioned. Some reported the problem extending across multiple files, where
cluttered directories were composed of confusing relationships between files.

These alternatives are inconsistent!
P01 faced problems in which she fixed a bug in one alternative of her code, and then when she
needed to backtrack to an earlier alternative, she had lost track of which alternatives had the
bug fix, and which did not. 74% of survey takers reported that inconsistent alternatives had
caused them at least minor problems, with 35% reporting that this was a significant problem.

Why aren’t people using version control systems?
Data scientists face di�culties with informal versioning for multiple overlapping ideas over
time. This might seem to be well within the realm of problems that software version control
systems (VCSs) are designed to solve. VCSs reduce code clutter by separating out versions. They
give order to versions and preserve history, so that older versions and analyses can be
reproduced in the future.

However, only 3 out of 10 of interviewees chose to use software version control for their
exploratory analysis work, even though 9 of 10 did actively use VCSs such as Git or SVN for other
non-exploratory projects they worked on. A benefit of over-sampling from individuals with a
computer science background in the interview study is that this provides a more nuanced
picture than previous work, which has studied version control usage by scientists who lack
training in computer science [Nguyen-Hoan et al., 2010]. Nguyen-Hoan et al., in a survey of
scientists, found that 30% of their sample used VCS [Nguyen-Hoan et al., 2010]. Despite our
oversampling of people with CS backgrounds in our survey (see Figure 3.1), we found that 48%
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of participants, just under a half, did not use version control for their exploratory data analysis
work.

A few survey takers did not know how to use software version control, but the most common
reasons for not using a VCS were 1) it was too heavy-weight for what they needed, 2) they were
not concerned about code collaboration, and 3) they were not concerned about reverting code.
This final reason “No need to revert code” was cited by interviewees as well, and appears
contradictory to their demonstrated interest in hoarding old code for later reuse. In fact, some
interviewees, when pressed to explain, reasoned that because their code was copied and
commented in many places, there was no need to “backtrack” or “revert” in the sense that all
old code they needed was present in one of their code files.

“I guess because I’m doing like this copy and pasting thing, I also have lots of old
versions of stu� everywhere, like other projects and things like that” - P05

It is clear that many data scientists do not perceive VCS as having enough benefit over their
current practices to invest e�ort in using these tools. Furthermore, while using informal
versioning can be problematic, we argue there is functionality of these interactions that
conventional VCS does not gracefully support:

● Versions are easily accessible and comparable because they are all available in the user’s
immediate files.

● It is easy to see what code you have available to reuse.

● There is a smaller learning curve, since this should not be much more complicated than
the commands it takes to comment or copy something.

● It is easy to temporarily create a version of the code, and then remove the version if not
wanted later.

● It is easy to keep alternatives of an arbitrary size. While conventional version control
operates only at the file level, programmers make use of commenting and copying to
version at the level of functions, code snippets, lines, or even single values.

In order to make exploratory programming less prone to confusion, we aim to inform new
interactions for software version control tools based on how data scientists naturally use
versioning.

CHAPTER CONCLUSIONS
The study described in this chapter contains key hints about what makes history for exploratory
programming hard and what better history tooling would need to resolve those pain points:

1. First, participants’ commenting behavior suggests that content smaller than an entire
code file should be considered for versioning. These smaller snippets contain
important content like plots, models, and individual analyses.

2. Second, participants' copying and commenting behavior suggests that it is valuable for
practitioners to have easy access to multiple versions of the same thing in their
workspace. This is a key di�erence from conventional version control where a
programer would have just their single immediately previous version to compare to.
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3. Third, participants faced a lot of di�culty remembering which versions were which,
especially after a long time when they needed to re-orient themselves to an older project
or file. History support will need to help users understand what content is in the
versions they have and tell the di�erence between similar versions.

Finally, it should be acknowledged that some of the di�culties faced by practitioners in this
chapter may not be fixed directly by history support. For instance, in “  This file is huge! What’s in
it?” participants had enormous script code files that were di�cult to navigate. While history
tooling may not assist that problem directly, we hope that practitioners will not feel the need to
keep so much clutter within their files or folder structures, if they know that they can rely on
good history support to manage that alternative content for them.
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Chapter 4. Usage of Notebooks in Data-centric
Exploratory Programming

Research done in collaboration with Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.
Myers4

INTRODUCTION
As discussed in Chapter 3, currently even experts struggle to keep track of the experimentation
they do. Insu�cient documentation of data work over time can lead to lost work, confusion over
how a result was achieved, and di�culties e�ectively ideating [Hill et al., 2016]. Literate
programming has recently arisen as a promising direction to address some of these problems
[Knuth 1984]. It originates from a 1984 paper by Donald Knuth:

“Time is ripe for significantly better documentation of programs, and that we can
achieve this best by considering programs to be works of literature.” [Knuth 1984:1]

Knuth’s philosophy held that humans should write code foremost as a natural language prose
expression of their reasoning, which a literate programming tool facilitates by allowing
formatted text annotations to be rendered inline with plain code. The actual computer code
would be a secondary translation of these essay-like annotations [Knuth 1984]. Knuth’s
intended audience, mainstream software engineering, largely did not adopt the idea. Arguably,
literate programming is a poor fit to software engineering, as documentation quickly gets out of
date and is costly to maintain [Lethbridge et al., 2003, Parnas 1994]. Heavy annotations also
conflict with the idea in software engineering that well-structured code should “speak for
itself” and be understandable with minimal documentation [Martin 2009].

Yet in a di�erent community, programming for math and sciences, literate programming has
thrived since 1988 in tools such as Mathematica5. For a biologist, physicist or financial analyst
who codes an analysis, there may be theories and equations embodied in their source code
which could benefit from additional explanation as formatted equations or images [Xie 2014].
By allowing the mix of any media needed to understand domain-rich code, literate
programming has gained an important role in the sharing and reproducibility of computational
analyses [Xie 2014, Kluyver et al., 2016]. Today, open source literate programming tools like
Jupyter notebooks and knitr6 have become hugely popular, with millions of users across a wide
range of expertise and subject domains.

6 Knitr tool, http://yihui.name/knitr/

5 Wolfram Research Inc. Mathematica, https://www.wolfram.com/mathematica/

4 This chapter is based in part on the conference paper: Mary Beth Kery, Marissa Radensky,
Mahima Arya, Bonnie E. John, and Brad A. Myers. "The story in the notebook: Exploratory data
science using a literate programming tool." In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, pp. 1-11. 2018.
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Although literate programming currently aids a programmer to communicate an analysis [Shen
2014], data science tasks are known to be highly iterative and exploratory [Shen 2014]. For every
useful model feature or insightful visualization data scientists create, there may be many
less-successful features, plots, or analyses they have tried. In order for the original
programmer or another person to improve and build upon their work, knowledge of this
exploration is important. Data scientists need to keep track of what they have attempted,
including failed approaches, to justify why they choose certain approaches over others and to be
more e�ective in their ideation [Hill et al., 2016]. Current approaches, including traditional
version control, have been found to be ine�ective or require high amounts of tedious manual
note taking on part of the data scientist (Chapter 3). With the increased ability to keep code,
data, input, and output together in one document, we wondered if literate programming helps
data scientists retain the story of their in-progress exploration. Some in the scientific
computing literature say yes. An article in Nature says that a literate programming tool like
Jupyter notebooks “helps researchers to keep a detailed lab notebook for their computational
work” [Shen 2014]. However, although literate programming is an essential and distinct kind of
programming in data computing today, there have been no studies on how literate
programming a�ects programmers. In this chapter we present two studies that investigate how
data scientists explore ideas as they develop code, how and why they develop a narrative
structure in a literate programming tool.

In our first study, we interviewed 21 professional data scientists who use Jupyter notebooks, a
popular literate programming tool in data science with over 2 million users as of 2015 [Perez &
Granger 2015]. We found that although notebooks are limited in how they can be used to keep a
detailed record of all explorations, several patterns of curatorial behavior emerged during
iteration to build narrative.

In a second study, we probed how future tools may improve data scientists’ interactions with
exploration history. We surveyed 45 data scientists and asked how they might use historical
records of their analyses if they had a magical oracle to deliver any prior analyses content to
them. These results revealed highly varied ways of interacting with history. Finally, we discuss
implications for future research.

BACKGROUND & RELATED WORK

Notebook programming environments
A “notebook” environment is one particular genre of literate programming tools that is
supported by many data-centric literate programming tools such as Jupyter Notebooks,
Mathematica7, Databricks8, Apache Zeppelin9, and Sage Notebooks10. Although here we
specifically study Jupyter Notebooks, we report on the usage of core features like cell structure,

10 The Sage Mathematics Software System had a notebook interface predating Jupyter
Notebooks, appearing in 2005 https://www.sagemath.org/index.html

9 Apache Zeppelin https://zeppelin.apache.org/

8 Databricks (2018) https://databricks.com/

7 Wolfram Research Inc. Mathematica https://www.wolfram.com/mathematica/
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cell layout, and cell types, which are common features to this entire genre of tools and should
allow our findings to generalize more broadly.

Figure 4.1. Excerpt from a Jupyter notebook11

A notebook environment supports chunks of content, called “cells.” A cell can contain code,
output, a table, a plot, formatted “Markdown” text, or other kinds of media. For example, the
first cell in Figure 4.1 contains formatted Markdown text (indicated by no background color and
no number in the left margin), the second cell contains python code (labeled In [4]:), and the
third contains the textual and graphical output of that code, which is updated each time the
code in that cell is run. With a notebook, a programmer can produce a literate program that fits
Knuth’s ideal definition: a chronological progression of Markdown cells, code cells, and output
cells, explaining everything from top to bottom. However, the notebook environment does not
enforce this structure. A programmer is not forced to add Markdown explanations or any code
comments. A notebook also allows each code cell to be edited and run individually at any time in
any order, so rather than running the entire file from top to bottom, or only editing at the end of
the notebook, programmers can pick and choose which code cells they would like to edit and
run. As notebooks do not actually enforce a literate style, the programmers’ situational needs
are likely what motivates them to create a coherent literary-style document or not.

Literate programming tool developers ask their users for feedback. For example, in 2015, the
Jupyter Project surveyed over 1000 users on general usage, pain points, and feature requests
[Jupyter Notebook UX Survey 2015]. They reported a quantitative analysis of all data, including

11 Maik Riechert. 2016. Repairing Bad Pixels. Retrieved January 6, 2018 from
https://github.com/letmaik/rawpynotebooks/blob/master/bad-pixel-repair/bad-pixelrepair.ip
ynb
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keyword frequency counts on free-text responses. Version control was the most highly
requested feature, although what the respondents meant by “version control” and what pain
points it was intended to resolve was not probed. In addition to these data, there are many
public examples of Jupyter notebooks online (for instance, a simple search on GitHub yields
over 89,000 notebooks). However the artifacts themselves do not provide enough detail about
small-grained iterations and intention [Yoon et al., 2013] to answer our research questions,
requiring us to use di�erent methods to understand how data scientists explore ideas.

Lab notebooks and scientific documentation
Lab notebooks are a log of scientific activity that contain enough detail for a scientist to later
reproduce their experiments [Klokmose & Zander 2010]. Lab notebooks are ideally immutable
logs once written, in order to serve as legal evidence of discovery in patent cases or questions of
scientific validity [Klokmose & Zander 2010]. Lab notebooks take the form of paper, digital
note-taking tools, and hybrids between paper and digital notes [Tabard et al., 2008]. Prior
studies have explored the design needs that scientists have for their lab notebooks and their
struggles with searching and maintaining scientific records [Klokmose & Zander 2010, Oleksik
et al. 2014, Tabard et al. 2008]. Notebook programming, like any digital tool that can record
text, can be used as a lab notebook [Shen 2014] but can also serve many other purposes. Prior
studies have largely focused on wet-lab scientists, whereas a chief di�erence in our current
behavioral study is our sample of computational analysts who primarily work through code.
Thus our investigation is not just on the record keeping, but on the iteration of their primary
work through code.

NOTEBOOK USAGE STUDY

Method
To get as unbiased a view as possible of data scientists working with a literate programming
environment, we followed the Grounded Theory Method (GTM) described by Corbin and Strauss
[Corbin & Strauss 1990] for data collection and analysis. We had the opportunity to collect data
at the inaugural conference for Jupyter Notebook users (JupyterCon 2017). This provided a
concentrated sample of people who have experience using Jupyter notebooks for real-world
professional data analysis programming. Participants were recruited through conference
speakers announcing the activity and organizers tweeting about it.

We interviewed 25 participants, but 4 were removed from our analysis because these
interviewees turned out to be managers or otherwise did not personally do data analysis in
notebooks. The final 21 interviewees held job titles shown in Table 4.1 and reported gender
identity as 19 men and 2 women. Interviews lasted 10 to 30 minutes, based on the participant’s
availability.
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Table 4.1. Interview participants’ primary job roles

Role Participant

College teacher & researcher N01, N02, N10, N15, N17

Financial analyst N05, N06

Computational Biologist N08

Software Developer N19

Data visualization designer N03, N04, N21

Data Scientist N07, N09, N11, N12, N13, N14,
N16, N18, N20

The interviews were planned around a few open-ended questions, beginning with an overview:
“Please tell me briefly what you use Jupyter notebooks for?”. The next probe asked for details of
what the interviewees did in notebooks to develop their ideas from inception to final result
(over 60% of the interviewer’s utterances were on this topic). If participants had their laptop
with them, they were invited to show the interviewer their actual notebook documents, and four
of the participants did. Our other planned questions involved sharing with other people, the use
of markdown cells and code comments, the size of code cells and notebooks, and version
control. Specific questions were generated on the fly in response to interviewees’ answers: e.g.,
“You mentioned that you've used version control, and you've also used a sort of numbering scheme. Is
there any reason why you do one or the other?” Due to time constraints and which topics a
participant expressed the most details on, not all interviews touched on all topics.

Analysis
After transcribing the 21 interviews, I did a line-by-line open coding on a random sample of six
transcripts and produced a coding guide. For example, codes for prototyping, experimenting,
testing, and iterating were abstracted into Testing Ideas. Following the advice in [Corbin and
Strauss 1990] about avoiding bias through allowing scrutiny of the analysis by others, we used
inter-rater reliability as an indication that these codes were meaningfully defined. Our
collaborator Bonnie E. John used the guide to code one of the transcripts, disagreements were
discussed and the definitions improved. Both Bonnie and I coded another transcript with the
new guide and attained a Cohen’s Kappa of 0.82. Bonnie E. John then coded all transcripts using
the new guide. Codes continued to evolve, primarily in sub-topics, e.g., “Annotating” became
“Annotating with Markdown” and “Annotating with Code Comments”.

Limitations of the Data Collection and Analysis Method
Interviewing attendees at JupyterCon2017 is an example of “convenience sampling”, as target
participants were congregating at a single place, for a short period of time, and we could obtain
permission and physical space from the conference organizers. Interviewing was a condensed
and intense activity, with no time in between interviews in which to interweave analysis as is
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normal in GTM. Therefore, this study should be considered the first step in a research program
and we provide recommendations for theoretical sampling at the end of the chapter. Although
four participants showed us examples of their work, subsequent data collection should consider
doing field-based contextual inquiry [Beyer & Karen Holtzblatt 1997] to better ground the data
in observable behavior.

Results and Discussion
Interview participants will be referred to as N01 to N21 (see Table 1). First we discuss
participants’ use cases in the notebook environment, and then their iteration behaviors.

Use Cases
Our data revealed three use cases for notebooks: (1) preliminary “scratch pad” work, (2) work
that ends up extracted out of the notebook for use in a production pipeline, and (3) work
intended to be shared in di�erent ways. These use cases are not disjoint. Pieces of code from a
scratch pad can be extracted out into a script for use in a production pipeline. Code extracted for
production is sometimes also shared with others via a notebook complete with graphics and
detailed explanation.

Scratch Pad Use Case
Almost half our participants (10) used notebooks as scratch pads; 6 explicitly used that term. By
this they meant they wrote code cells that they expected to be preliminary and short-lived.
Scratch pads were used to answer a specific question, such as how to debug a piece of code, test
out example code from the internet, or test if an analysis idea was worth pursuing further.

“I was just testing to make sure I had the syntax right on these tuples.” - N13

“OK so can we do k-means on this dataset and like does it make sense” - N11

Scratchpad use appeared on two levels. “Scratch cells” were used within a notebook during
exploration.

“only the last [cell] you did is actually useful so you get rid of some of this sort of trial
and error-y things” - N18

At a higher level, some participants had whole notebooks that they used only for scratch work.

“In fact, I have a whole scratch directory where I just run a Jupyter server there and
make a notebook, do something real quick and that’s easier than just about anything
else.” - N17

Since scratchpad work was intended to be short-lived, participants did not spend time
annotating it. However, when the results of scratchwork were successful, that code was
extracted out to a permanent place or transitioned from a scratchpad to a substantial literate
document.

Production Pipeline Use Case
Seven participants reported that finished code was incorporated into a bigger code base.
Finished code had to be extracted out of the notebook and placed in a plain-text code file when
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it was needed in a larger production pipeline because the extra metadata in a notebook file made
it unusable by automated processes.

Sharing Use Case
Almost all our participants (20 of 21) shared the results of the analysis in a notebook, or the
notebook itself, with someone else. These notebooks were typically significant explorations,
including developing a model, conducting computational research, or creating a comprehensive
analysis. Participants iterated on these analyses over the span of days to months, and generally
took care in adding structure to these notebooks, as we will discuss later. Five participants were
teachers who gave notebooks to their students for structured assignments:

“We do all of our teaching through notebooks. This includes lectures... in notebooks...
then we give them projects to work on... in the form of notebooks.” - N17

Two other participants shared notebooks with clients:

“not only for the actual data exploration myself but then to communicate the results of
that e�ectively back to the person that asked me to do the work.” - N08

Twelve shared with collaborators or teammates:

“I think the reason I use Jupyter is because it actually allows me to share the process by
which I arrive at results with people who I want to convince of something, both so that
they can spot any errors I may have made and also that they can use similar
techniques in their own work.” - N18

Two referred to sharing with their future selves:

“And the idea is to comment them enough… [if you] came back next year would you
understand exactly what the notebook was supposed to be doing.”- N13

If any sharing was anticipated, including with a future self, participants reported putting extra
care into making sure the notebook was clear to read.

Although notebooks themselves were shared, especially by teachers, many other formats for
sharing were mentioned. For example, both financial analysts said they shared results in Excel.
Other participants mentioned JPGs, HTML, PDFs, and slides. Today, this is often a necessity:

“most of my clients don't have Jupyter installed on their machines so I can't just give
them a notebook file.”- N08

On the other hand, five participants were enthusiastic about sharing “interactive widgets”
which can be added as extensions to a cell to allow a reader to tune variables:

“Being able to have them… play with things will be a huge step forward… that would
definitely have to be a centrally hosted kind of thing, because we're not going to expect
anyone to download Jupyter”- N08
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Iteration Behaviors

Organizing the notebook while iterating
Participants reported di�erent strategies for organizing their notebooks while iterating on the
code. For example, the bottom of the notebook was used in idiosyncratic ways: two participants
reported coding top-to-bottom so the most recent code was always at the bottom; one did all
debugging at the bottom and often left it there; one put previously-written functions in a
section at the bottom labeled with a “big markdown title” (N11). Two participants put function
definitions at the top whereas another used the top to import data. One participant took care to
put all cells that loaded external packages in the same place, whereas another participant
loaded external packages throughout the notebook.

Another repeated theme about notebook organization was adding new cells directly to where in
the notebook the original analysis took place (mentioned by 4 participants):

“if I have to iterate a part of it then obviously I tried to do it close to the place where I
inserted it previously, so either in the cell above or below” - N09

This created implicit thematic regions of the notebook where an idea and alternatives to that
idea were clustered.

Notebook constraints encourage “expand then reduce” behavior: 8 of the 21 participants
explicitly mentioned that they tried to organize their notebooks so each code cell represented a
logical unit in the analyses. However, this structure usually came about after cleanup.
Participants reported a range of 1-70 lines of code in a single cell, but during active exploration,
programmers instead favored creating many small code cells, often only 1-2 lines of code at a
time, to incrementally test and build up functionality. This “expand then reduce” pattern was
reported by six participants.

“So at the beginning it's usually a lot of little code cells that are one at a time... just
making things work... I end up with this huge mess where there are several threads in
sort of the same series. So I usually go back and start deleting things or combining
cells” - N17

After expanding on an idea, the reduce step is where participants talked about actively
“cleaning” up code cells (6 participants) by deleting those they did not need anymore and
consolidating working cells into one code cell that represented a logical unit.

Why was the expand step necessary? First, expanding an idea into many small code cells
enabled a programmer to pick and choose which cells to run, and thus quickly test di�erent
approaches to the same problem. Second, having small code cells allowed a programmer to view
cells of intermediary output after each code cell, making it easier to view and reason about their
iteration. Third, some participants, although experts in their own domains, were not expert
programmers. One participant (N16) referred to the notebooks as a “crutch”, because as a
programming novice he felt the notebook had much more support for debugging one line at a
time than a standard code editor.
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Although generating small code cells was common, it became impractical to leave them all
there for the long term. Participants complained that many loose code cells made the notebook
a “mess” (a term used by five participants) and more di�cult to understand:

“I’ll clean up as I go because otherwise it would be very di�cult to be remembering all
that stu�” – N5.

The expand-reduce behavior was often talked about in context of fairly low-level exploration,
such as building up a working function, or figuring out appropriate library calls. Participants
also talked about cleaning up after more significant explorations. For example 11 of 21
participants actively “reduced” their experimentation history by deleting alternatives of an idea
from the notebook, or even deleting entire analyses that ultimately proved less fruitful.
Although it would be less e�ort by the programmer to leave prior work in the notebook
untouched and only add new work below, instead, programmers took active e�ort to
continually delete scratch work from the notebooks. The attention to cleanup stands in contrast
to prior work in non-notebook environments that has reported that programmers have
low-investment in tidying code during exploratory data science programming [Brandt et al.,
2008].

Notebook constraints encourage managing the length of notebooks: Although a Jupyter
notebook does not stop a programmer from adding unlimited content, for pragmatic reasons
participants reported that the notebook interface does not work well with long documents. Four
participants said that a long notebook was di�cult to manage with scrolling up and down. Two
others said that when code cells were distantly separated, the code was hard to comprehend.

Because programmers kept di�erent alternative analysis code in the notebook at the same time,
they did not want to press the “run all” button to execute all code cells. Instead, participants
ran analyses by picking and choosing individual code cells to run. This sometimes required
going to the top of the notebook to rerun their standard code cells that import libraries and read
in the data, and then scrolling back down to their current work. Scrolling to the top and down
repeatedly over a long notebook became a burden.

The practical limit of a notebook, one participant (N16) said, was about 60 code cells. After the
notebook got too long or too cluttered, participants would either stop and curate the notebook
by deleting alternatives no longer needed or start a new “fresh” notebook, copying in the most
successful parts of the old notebook.

“when I open a notebook and I have to scroll for a long time… I just move on to a new
notebook” - N03

It is unclear if this is a flaw or a benefit of the notebook design, because the de facto length limit
encouraged data scientists to curate which ideas to retain moving forward.

Reuse, reduce, recycle (code)
Almost all participants (19) talked about reusing code. Of those, 11 simply used copy-and-paste.
Four reported copying code cells within a notebook to keep code dependencies next to new code.
Eight participants copied code into a di�erent notebook:
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“I'll be like, I remember I did this for this project but I can't remember exactly how to
do it. So I'll go find the project and look at my code and copy paste into the other one.”
- N05

In addition to copy-and-paste to reuse functionality, five participants defined functions and six
extracted code into an external script that could be imported into any notebook. For instance,
N11 created a new utils.py file for each notebook he worked with, in order to put reusable
functions in a special place and reduce the size of the notebook. This practice has been
encouraged in some science literature:

“As the code gets longer and more stable, it should be split out into Python modules to
keep the notebook short and readable.” [Stevens et al. 2013]

However, this routine practice of extracting notebook code out into a plain Python (or Ruby,
Scala, etc.) file for reuse is akin to “throwing the baby out with the bathwater” in that by
discarding the notebook’s metadata, the data scientists are also discarding their annotations,
graphical output, and richness of exploration that shows how they derived that chunk of
analysis code.

Narrative Structure of Notebooks
As in literature, the narrative structure of a notebook that tells the story of the analysis can be
linear or nonlinear. A pure linear structure would be akin to paper laboratory notebooks that
keep a complete record of every thought, mistake, deadend, and conclusion, in chronological
order, often to preserve dates for patent purposes [Tabard et al. 2008]. A non-linear structure
could present the story of the analysis as a straightforward progression, recording only
important decisions and rationale rather than the circuitous path that actually occurred. This
would produce a curated document optimized for comprehensibility over completeness and
chronology. A minority of our participants (4) attempted to keep a linear structure, e.g.,

“I have the sort of history of the development upstairs in the notebook.” - N01

On the other hand, most of our participants produced a curated document, e.g.,

“I put the right code where it's supposed to be and delete the other cells, get rid of it to
clean up my code.” - N09

It is important to note that these two goals were contrasting situational goals, and not only
individual preferences. Two participants who attempted to create complete records for the
purpose of their research also created curated story notebooks. They created curated stories
when the goal of that work was to present a specific analysis to an audience, and created
detailed research records when research, not communication, was their primary goal.

We now turn our attention to how narrative structures appeared in the notebooks.

Explanation Annotations are Rarely Used in the Exploration Phase of Work
Only six participants spoke about annotating their code during the exploration phase of their
work. Of these, three used markdown cells primarily as headers to separate sections of the code.
Using markdown only for structural organization, rather than explanation woven throughout
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the program, is inconsistent with the definition of literate programming. However, three
participants did use markdown during exploration to record their thoughts as they went along.

“I just put the [markdown] on some key changing points of the thought” - N06

“I'll use markdown cells to put any notes I notice like. ‘OK. Here's a common way that
you make a mistake’” - N17

One person used code comments (not markdown cells) as

“a way for me to track my process of going along and to keep thinking through the
problem… comments help me think.” - N16

In contrast, after the process of exploratory programming was done, if a participant had a
long-term purpose for their notebook such as sharing it or keeping it for a record, they would
then add more explanatory documentation to the notebook that is more consistent with literate
programming. Nine participants reported this behavior:

“If it's a notebook that... has to be rerun by me or by somebody else, I'll try to explain
the data sources, where it comes from... And just the di�erent major steps in the
analysis,” - N05

“[When] I'm doing research, it's almost like a source code. And then when I really
want to clean it up and show it to someone else, then I put in annotation.” - N10

Mechanisms used to provide narrative structure: The interweaving of input code and output is a
primary mechanism of narrative structure of any notebook.

“it's nice because all of the images are right there and all the code is right there.” -
N02

In addition, participants talked about how they used the code itself to provide narrative
structure, through which code cells they chose to keep and delete.

“if you read my notebook from top to bottom you see the evolution of my thought. You
see that I first do some... small part of the function, then… the universal functions…
And finally... the conclusions that are made using the functions.” - N06

During the dissemination phase, participants used markdown to create a narrative structure:

“If I'm putting together a script notebook for someone else to use [I’m] making it nicer
and adding markdown and everything.” - N03

Sometimes markdown was used to tell a linear story:

“Not only do I just say [in markdown] what I… removed, but sometimes I show those
intermediate steps so that they can see the progression from raw uncleaned data to
the final product.” - N08

Other times, markdown was used to curate the story in concert with deleting less important
code to make the key points of the exploration more apparent:
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“I end up with a really messy notebook and I might end up… opening another one and
just doing the clean version… The stu� that worked. And just with more comments and
just you know, nicely formatted.” - N05

One participant felt that the narrative structure emerged as he cleaned up his code:

“I usually go back and start deleting things or combining cells or shifting things
around… so the eventual form with the notebook only gradually emerges” - N17

In contrast, participants who used a linear narrative structure made earlier cells in their
notebook historical and immutable by avoiding overwriting code cells that had already
produced output, and added new code cells only to the bottom of the notebook. This meant a
series of code cells that perform a data transformation might be duplicated at di�erent
locations in the notebook, enabling the author to keep di�erent output for each variation and
retain a chronological record. This completeness came at the cost of a hard to read narrative:

“I can't get an overview of what's going on in my notebook… it's just a lot of stu� and
stu� and stu�... with all these random outputs that never get cleaned up.” - N01

Although these participants achieved a more detailed record by avoiding curation, it should be
noted that they necessarily curated each time they decided whether to overwrite and re-run a
cell or create a new cell.

Version Control
The vast majority of participants spoke about iterating extensively on their code (only 2 of 21
said their code development progressed in a straightforward fashion). However, all this
exploration was generally thrown away. Participants identified why current means of
versioning with literate programming notebooks is fairly dysfunctional. Recall that improved
version control was the most requested feature in the Jupyter Project 2015 UX Survey [Jupyter
Project UX Survey 2015].

While 11 of our 21 interview participants did use a version control tool like Git for their
notebooks, the metadata included in the file format of notebooks currently makes Git utilities
such as di� (viewing the di�erences between two source code versions) unusable because
utilities were not designed to treat metadata di�erently from source code.

“di�ng is so hard...I develop until I'm happy and then I'm going to put it in a file and
then I'm going to version control the file not the notebook.” - N15

Although a technical annoyance, two participants’ workplaces had scripts to extract the code
out of a notebook and just version that, enabling a normal Git workflow.

Some participants appreciated the conditions under which formal version control like Git or
SVN is important:

“If it's an application, usually there's all sorts of dependencies. And that's when
version control becomes important. Also if… I have to release this in concert with
something else… then you have to do some sort of version control” - N12
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Because of the e�ort involved in using formal versioning tools, participants often used informal
versioning. Consistent with our prior observations of informal versioning practices (Chapter 3),
4 of 21 participants relied on di�erent file names for version control:

“The stupidest possible version control… you rename the notebook to something like
V0 or V3.” - N18

This informal method has its own problems:

“...we have like 500 di�erent files all variations of the same thing and they're all
numbered in a way that's completely useless because I don't remember whether it was
two weeks ago or two months ago I was at this stage of the iteration.” - N12

Also consistent with Chapter 3, participants used local versioning inside their notebook. For
instance, two participants said they had code cells containing alternative approaches
simultaneously in view to be able to compare them. However placing alternative code and
output cells directly above or below the original was a problem due to screen space. With large
code or output cells, authors could not see everything they needed at once in a single notebook
window. Two participants reported workarounds in order to see alternatives side by side, for
example opening two di�erent windows of the same notebook to place the windows side by side
on their screen.

QUERY DESIGN EXERCISE

We drew inspiration from the “grounded brainstorming” procedure described in [Beyer &
Holtzblatt 1997] to design a short computer survey to elicit data scientists’ versioning needs.
The survey first grounded them in their real experience by asking them to describe a recent
exploratory data analysis they had performed (Q1). The survey then primed them to think of an
imagined future with a “magical perfect record of every analysis run you did in this project. You also
have a magic search engine that can retrieve for you any code version, parameters used or output from
the past.” After this preparation, we asked people to brainstorm by typing “as many queries as
you can think of that could be helpful to you to retrieve a past experiment. Don't worry about
feasibility.” We asked participants to “phrase [your query] in natural human language like
you're talking to a colleague” both to discourage the participant from assessing feasibility and
to provide phrases we were likely to understand (Q2). Finally, we probed for the types of real
world problems such future magic technology might be able to solve: “Has **not** being able to
find a past experiment ever caused you problems? If yes, what happened?” (Q3).

The survey was conducted at JupyterCon 2017 on a laptop (27 participants) and online (18
participants), advertised through posts on the first author’s social media inviting data scientists
to participate.

Analysis
Treating the participants’ answers to Q2 as brainstorming ideas, we used a�nity diagramming
to cluster the imagined queries into di�erent categories (Table 4.2). We performed a separate
a�nity diagramming to cluster participants reported problems (Q3) into categories.
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Table 4.2. A�nity diagramming groups for 125 queries. A query can appear in
multiple groups.

Referenced analysis attribute # Queries

Analysis (e.g., “convolutional model”) 46

Output (e.g., “training accuracy”) 25

Time period (e.g., “go back 5 hours”) 17

Dataset (e.g., “previous test result for this particular
dataset”)

15

Plot (e.g., “how did I generate plot 5”) 11

Specific variable 10

Library 4

Running time of the program (e.g., “How long did it take to
process country X”)

3

Results
All survey participants will be referred to as SP01 to SP45. In Q2, 45 participants generated a
total of 125 queries12 for the “magic search engine”. Participants’ queries referred to many kinds
of contextual details, including libraries used, output, plots, data sources, parameters used,
running time of an analysis, time periods, version numbers, and specific dates (Table 4.2).
Participants did not limit themselves to imagining only prose queries, e.g., SP13 submitted
"Here's a visualization I produced, let me right click on it to give me the script to produce it".

In addition, some queries required semantic or conceptual understanding of the programmer’s
task, for instance “Show me all the di�erent ways I oversampled the minority class” (SP21), or
“What was the state of my notebook the last time that my plot had a gaussian-ish peak?”
(SP17). Some participants also asked for properties of an analysis relating to process or
rationale, for example: “Find me how I cleaned the data from start to finish” (SP08) or “What
questions did I ask that didn’t pan out?” (SP12).

For Q3, 31 of the 41 participants who answered said they had experienced problems being unable
to find prior analyses versus 10 who had not. The most-mentioned problem was the need to
rewrite code (20 participants). This need had several sources, including losing the code because
that part of the work had not been saved or losing the rationale behind the code because it had
not been recorded. Without the code that produced a result, 7 participants no longer trusted that
result. The second most frequently reported problem was time delays (12 participants) caused
by excessive time searching for code, having to re-run code, or having to rewrite code. Two
participants reported having to consult with a colleague to solve the problem.

The answers to Q3 validate prior findings [Klokmose & Zander 2008, Tabard et al. 2008] that
past analyses can be hard and sometimes impossible for data scientists to find. In notebooks,

12 A full list of queries generated by participants can be found in Appendix B
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version control is currently poor enough that records of prior iterations often do not exist. Yet
even with improved version control, it should be noted that some ‘magic’ queries from Q2
cannot easily be translated into traditional text search-engine queries, e.g., “the last time that
my plot had a gaussian-ish peak”.

LIMITATIONS
Our data analysis has produced accounts of three types of use cases, a variety of mechanisms for
narrative structure and version control, and several design directions. As mentioned, these
results can be viewed as hypotheses in a longer research program and future studies should
consider using theoretical sampling in the following three ways.

First, our convenience sampling did not screen for profession or domain of study, and our data
suggest that di�erent professions do di�erent things. For example, the financial analysts used
Excel for dissemination; the computational biologist said clients do not have Jupyter; and
teachers shared notebooks, but tended not to create production code. Future research should
sample from di�erent professions, especially if designers want to produce tools for specific user
groups.

Second, we studied only Jupyter Notebooks and the iteration behaviors we observed may have
been influenced by specific UI details. Future studies may want to sample other tools to find
which behaviors generalize.

Finally, perhaps most importantly, the data about participants’ behaviors was self-reported,
not observed, so future studies should seek to verify these hypotheses through direct
observation e.g.,

[Beyer & Holtzblatt 1997] or fine-grained logging that could confirm behaviors like
expand/reduce.

CHAPTER CONCLUSIONS
By talking with practitioners directly, in this chapter we learned more about the iterative
process behind developing notebooks. Here I’ll summarize some of the key design ideas that
this chapters’ studies contribute to our history tool goals of this dissertation.

Importantly, we learned not just about the notebooks people author for sharing (of which there
are many examples shared on the web), but also messy scratchpad notebooks for quick
experiments, and those notebooks intended for later integration with a production pipeline.
These use cases likely have di�erent needs for history support:

● In the case of the scratchpad, just like its physical pen-and-paper counterpart, much of
what is done in a scratchpad notebook is assumed to be temporary and disposable.
Participants did not express any need for history support for such a notebook. However,
for scratch cells in a more substantial work notebook, or for scratchpads that evolve into
more substantial work notebooks, history may be helpful to demonstrate where more
permanent work came from.

● In the case of notebooks that develop model or analysis components intended for use
in a production pipeline, the notebook itself won’t be used in production. Instead, we
might think of history in terms of provenance support: keeping ties between a model in

52



Designing E�ective History Support for Exploratory Programming Data Work - Dissertation - Mary Beth Kery

production and the notebooks that demonstrate how that model was created, tested, or
debugged.

● In the case of notebooks intended for sharing, we need to consider the history of a
notebook as something that will be shared too. How might history support someone else
in understanding what the original author tried? How might history be summarized or
displayed in such a way to support someone else gaining an overview of what work was
done?

The iterative behaviors we found in notebook development also impact how history support
should be designed:

● History can provide a safety net for organizing the notebook. Since practitioners often
curate as they work, removing less successful data work, a clear value proposition for
history support is that we will be able to preserve these discarded parts of work while
letting users keep a tidy notebook that contains just their most recent work. The small
number of participants we interview who “keep everything” in their notebooks may feel
more flexibility to organize and curate their document if they don’t have to worry about
losing content.

● “Expand then reduce” cell iteration means that cell-level versioning will not be
su�cient. Since practitioners develop code across multiple cells before combining it
into a single cell, the history of a given code chunk will have provenance in multiple
cells. As compared to seeing the history of a single cell, this is a more complex history
structure that we need to support users tracing and understanding.

● Most notebooks have a narrative cell structure top to bottom. This means that a
historical cell’s location in the notebook is likely to carry some semantic information
about what the cell is about.

● Explanatory notes are minimal during exploration. Since many participants do not
take the time to add markdown notes or comments at the stage of active development
work, we should not depend on users to take the time out during active development to
annotate their history. Just like some users use comments and markdown to mark
important ideas in their thoughts, users may want to label a version of their history if it
is particularly important…, but we should not rely on having semantic version labels
provided by users for most versions.

Finally, the Query Design Exercise provides us with hints on how practitioners recall versions
that are important to them, and how they might go about finding those versions. These
di�erent categories of memory queues are shown in Table 4.2, and each will likely need a
di�erent tooling approach. For instance, runtime information will need to be originally
recorded in some way for it to be searchable in history. For visual queries about plots, either
some machine vision processing will be needed to make plots searchable by text or we will need
to design a UI such that it is easy for a user to manually skim through the historical plots to look
for a certain attribute.

Overall, our study of notebooks demonstrates that notebooks are indeed a powerful tool for
organizing and structuring exploratory programming data work – it is just that notebooks and
narrative structure alone are not su�cient forms of history-keeping to meet practitioners'
needs. Participants used notebooks to keep “the sort of history of the development upstairs in the
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notebook.” but notebooks as history were not particularly usable: “it's just a lot of stu� and stu�”.
This is an important lesson for development of history tool support. In taking on the role of
holding the “history of development,” how will a history tool avoid similarly becoming just a pile
of “stu� and stu�”? Supporting search and comprehension of history will be just as important
as e�ectively storing history for users.
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Part II:  Designing Better Support for
Experiment History
INTRODUCTION TO PART II

In Part II of this dissertation, we prototype a series of di. erent approaches to history support
for exploratory programming data work. First in Chapters 5 we survey history support tools and
techniques in prior work, and then in Chapter 6 describe our overall design process. Chapters
7-12 detail a series of 6 prototype history systems, all of which sit directly in a data worker’s
active editor as they work. Through each iteration, we illuminate new characteristics of the
design space and push our understanding further around what practitioners need for e�ective
history support. The final series of 4 prototypes develop a tool, Verdant, which we release as a
history extension for the JupyterLab computational notebook environment. This final deployed
version of Verdant we then test in Part III of the dissertation.
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Chapter 5: Related Work on History Systems

In software engineering, version control (also known as revision control, source
control, or source code management) is a class of systems responsible for managing
changes to computer programs, documents, large web sites, or other collections of
information.

- Wikipedia: Version control, retrieved June 2020

INTRODUCTION

In this chapter we cover a variety of system approaches to history and version control. We first
cover fundamental models of history and interaction in popular source code management tools
like Git. Next we cover what history support (currently) exists for notebooks. Finally we cover
alternative visualizations and models of history from HCI research systems. Many of the
systems covered in this chapter directly inspire UI or technical design patterns that we adopt in
our own history systems in this dissertation.

GIT & SOFTWARE ENGINEERING VERSION CONTROL
In this research we heavily draw inspiration from standard version control systems (VCS) to
adapt their benefits into exploratory programming. In contemporary software development,
VCSs such as Git, SVN, or Mercurial are so ubiquitous that ignoring their pre-established
conventions in our design would be ill advised. We may improve adoption by developers if our
designs fit with, rather than conflict with, the common Git/Mercurial/SVN version control tools
they are used to. We can also avoid redundant e�ort for technical issues not specific to
exploratory programming that standard VCSs already solve. Git is the most popular VCS in the
world for code (at least among open-source repositories since 20181), and is our primary
inspiration for how versioning works in all VCS prototypes of this dissertation. To help the
reader better situate design choices we make in our own VCS designs for exploratory
programming with data, we briefly cover some of the conventions we adopt or adapt from Git:

● Change/revision/edit/modification: are all terms used interchangeably to
describe what an author changed in a specific document to create a new version.

● Commit: we call a specific version of the project a “commit” and use the two
terms interchangeably. A commit is a collection of specific changes across all
documents in the project.

● Branch: a sequence of commits make up a branch.

1 The popularity of di�erent version control systems is hard to measure. People have used
metrics like google search ranking, count of questions on stack overflow, large public developer
surveys, and counts of publicly available software projects to estimate popularity:
https://softwareengineering.stackexchange.com/questions/136079/are-there-any-statistics-t
hat-show-the-popularity-of-git-versus-svn
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● Di. : a visualization that shows the text edit di�erences between two versions
(commits). Some special di� techniques can show the perceptual visual
di�erences between two images, but a di� in Git is typically plaintext only.

Below in Figure 5.1 is a typical Git history graph. A history graph, or “revision tree”, visualizes
all of the branches and commits of a project. The numbers at the top of the graph denote dates,
from the end of June to July 23rd. Each bolded color line on the graph represents a di�erent
branch of the project, with the black branch being the master branch. Each dot along the branch
lines is a commit. The arrows denote when branches were merged to combine their parallel
histories. Although it may look chaotic, this graph shows a typical project workflow. Focussing
on the end of June and July 1st, the following actions happened:

● (Prior to June 29th) Alice is working on a new software feature so she began a new
branch (blue)

● (Prior to June 29th) Bob also started a major update and began a new branch (purple)
● (June 30th) Bob merges a fix from his branch back to master (purple → black)
● (July 1st) Bob merges a fix from his branch back to master (purple → black)
● (July 1st) Terry also starts a new feature and so begins a new branch (green)
● (July 1st) Alice pulls Bob’s fix from master to use with her feature (black → blue)
● (July 1st) Alice merges her changes into the master branch (blue → black)
● (July 1st) Terry pulls Alice’s updates to the master into their branch (black → green)
● (July 1st) Bob pulls from Terry’s branch to continue work on his branch (green → purple)

Figure 5.1 GitHub’s visualization of commits and branches of a project during a
period from June to July. Github is the most popular platform today for hosting
Git projects.

Di�erent branches can generally be thought of as side-projects or sub-tasks of the overall
software development process that are developed outside of the master branch and then
eventually merged with it. Branches allow developers to experiment with new ideas that might
temporarily introduce new buggy behavior while ensuring the main code on the master branch
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remains safely stable and untouched. In this dissertation we scope our e�orts and do not deal
with branching nor with collaboration due to the complexities those introduce.

User Interfaces for Git
Here we cover the three major settings where a user will interact with their Git history, each of
which has its own ecosystem of user interaction conventions.

First and foremost, a user interacts with Git through a command line interface (CLI) in their
terminal shell. The terminal CLI (provided by the Git program itself) remains the dominant
setting where most programmers first learn Git and is almost always what is taught in any
educational material on Git. Figure 5.2 below shows a typical Git interaction, which is purely
textual. CLI commands are extremely powerful for Git, but many programmers know only the
most basic everyday Git commands2. The CLI does not provide much flexibility to visualize
alternative versions or visualize history at all, as we discussed as a user need for exploratory
programming in Chapter 3. It is worth noting that in addition to Git, other common version
control systems like SVN or Mercurial are all CLI based.

Figure 5.2  A terminal showing a git CLI command git status and its output

Next, for those programmers that use integrated development environments (IDEs), most IDEs
have built-in tooling for version control. Below, Figure 5.3 depicts a variety of version control
features available in the popular IDE Visual Studio Code by Microsoft. Within the editor, these

2 There is no data I am aware of that depicts how much an average programmer knows about Git
or version control, but it is a matter of “common knowledge” that Git is hard to learn and
understand, as evidenced by this popular xkcd comic https://xkcd.com/1597/
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version control interactions are primarily about di�ng to compare the current code a person is
working on to some other version or else about choosing which branch or version to work on in
the editor. Many of these interaction features we can partially imitate in an exploratory
programming use case, but not exactly copy. The chief di�erence in our exploratory use case is
that the user needs to interact and work with many versions of something at the same time in their
working environment, whereas in the Git workflow, a person has only one version in their
working environment at a time. Like the command line interface, note that these code editor UI
features are not exclusive to Git. For instance in Fig 5.3, these interactions appear almost the
same in VS Code regardless if the user is working with Git, SVN, or Mercurial.

Figure 5.3 In-editor Git interaction types in Visual Studio Code3 in 2021. At (1)
if the user clicks a section of their code that they have changed, but not yet
committed to Git, they can trigger a pop-up in-line view that shows a di� of
how that section has changed from the last Git version. At (2) ambient
indicators show brown-colored folders and dots to indicate that something in
that folder has been changed since the last Git version, with a brown “M” next
to the file date-selection.tsx to indicate the file was modified. At (3) the user
can click the versioning icon in the navigation bar to see a list view of all files
that have been changed since the last version. At (4) the user can click on the
versioning icon to see a full side-by-side di� view of their currently open file
versus the prior version.

Finally, the web browser is a critical location for interacting with the more project management
side of software version control (Figure 5.4). Providers such as GitHub, GitLab, or Bitbucket
provide graphical tools for the entire team to view and collaborate on projects. The purpose of
most of this graphical tooling is for navigating a large collaborative project and project
management. Open source projects often live on GitHub as public projects where anyone on
earth can join the project team as a contributor and where anyone can look up any other public
project. This means that the remote copy of the project is stored on GitHub’s servers. Open
source projects are a critical core part of our contemporary technical infrastructure for the
entire world. However private projects or companies with their own internal servers to store

3 Visual Studio Code https://code.visualstudio.com/
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their own remote projects still often use GitHub’s graphical user interface because of all the
valuable project management features that come with the web interface for a Git project. Again,
comparable tools exist for the other version control systems like Mercurial or SVN.

Figure 5.4  The GitHub main page for a project, here the Verdant tool project
from this thesis. The left side of the screen shows all folders and files in the
project, as well as their latest commit message and a time indicator of when
they were last updated.

There are graphical user interface equivalents to the CLI tools, for example GitHub Desktop,
which o�er a small subset of the CLI’s commands but also a subset of GitHub’s rich di�
visualization tools found on the web platform.

Universal Di� Notation
To conclude our primer on version control conventions, a word on di� notation. Showing the
di�erence between two documents (di�ng) has style conventions that are universal to
versioning tools, and thus appear in our own system designs (see Figure 5.5). First, the color
green and a ‘+’ plus sign always denote text that was added. The color red and the minus sign
‘-’ denote text that was removed. The color blue does not typically show up in the di� itself, but
is commonly used in version control UI, sometimes with the symbol ‘M’ as in Figure 5.3, to
denote a change or modification in general.
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Figure 5.5. A screenshot of GitHub’s split di� view of a commit

Figure 5.6. A screenshot of a di� in the Git command line interface

There are two standard ways to show a di�. A “split” or “side-by-side” di� view as in
Figure 5.5 puts each version of the document to one side. Conventionally in a split view,
the older version of the document will show all deleted changes and the new version of
the document will show all added changes. In an “inline” or “unified” view as in Figure
5.6, added and deleted changes are shown together.

VERSION CONTROL FOR NOTEBOOKS

Git used as-is with notebook documents works poorly due to the amount of metadata and
output data in a notebook file. Although many functions of Git still work as intended, di�ng or
merging two notebooks fails. When Git attempts to do its line-level di� on output or metadata
that cannot and should not be split into lines, Git ends up creating a nonsensical and broken
jumble of text. Since our research began in 2016 several tools have emerged to handle this issue.
Project Jupyter added the nbdime4 tool to show a web-based di� of notebooks. A commercial
startup ReviewNB5 o�ers similar di�ng to nbdime as well as tools for commenting and code
review on notebooks. Other notebook platforms like Google Collab (see Figure 5.7) have their
own built-in di� viewer for notebooks. All of these tools o�er approximately the same thing: a
custom app on top of Git to make comparison work correctly for notebooks.

5 ReviewNB https://www.reviewnb.com/

4 nbdime by Project Jupyter https://nbdime.readthedocs.io/en/latest/
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Figure 5.7 Notebook comparison tool in Google Colab

Our own research overlaps, but has a di�erent focus than “Git for notebooks”. While borrowing
many conventions from Git, our goal is to see if we can break history down into smaller, more
actionable parts to be directly used during experimentation.

A di�erent side of history is the run history. A run history tells a person what code they have run
in what order in a given session. In tools like R Studio6 a data scientist can see a list of code they
have run so far. In a Jupyter notebook the user can run the magics command %history to see the
same thing. This kind of history is kept in the tool just for a single session.

OTHER RESEARCH SYSTEMS FOR HISTORY

Dealing with alternatives
Several other research tools have explored interactions for alternatives of code. Juxtapose
(Figure 5.8) [Hartmann et al., 2008] is a research tool that provides interaction designers with
di�erent alternatives of their code, in order to compare among di�erent parameters of the look
and feel of their interface designs. This tool used Linked Editing, a technique for editing two
alternative pieces of code simultaneously, previously developed by Toomim et al. [Toomim et
al., 2004]. Juxtapose also built o� of prior work such as Set Based Interactions [Terry et al.,
2004] and Subjunctive Interfaces [Lunzer & Hornbæk 2008], which explored general techniques
for exploring multiple alternatives in parallel. These were not specific to writing programs.
Originally, we were heavily inspired by Juxtapose and Set Based Interactions in the design of our
UI for Variolite (Chapter 7), for instance by the tab-based interface design in Juxtapose.

6 R Studio https://www.rstudio.com/
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However ultimately we found that the specific designs of these systems work best with just a
few alternatives. For instance, the tab interface and side-by-side view of Juxtapose in Figure 5.8
show just 2 alternatives. Through experience with our own designs, we found that for history
purposes, the user may be easily considering a dozen alternatives (e.g., alternatives of a
visualization), which cannot be so easily displayed in side-by-side or tabs layouts.

Figure 5.8 Juxtapose [Hartmann et al., 2008]

On the side of professional software engineering, software product lines are a method used in
industry to adapt one piece of software to be customizable for di�erent clients or devices
[Clements & Northrop 2001]. Software product line research aims to handle much more
complex versions and interdependencies across an entire software project, with commensurate
complexities in the developer’s interface. Ultimately this research informs our versioning work
as a kind of cautionary tale. Dealing with alternatives, which delightful in just a few alternatives
in systems like Juxtapose [Hartmann et al., 2008] or Parallel Pies [Terry et al., 2004], quickly
devolves into confusion at scale.

Within a code editor, Yoon and Myers created Azurite [Yoon & Myers 2015] for selectively
undoing past actions in code using a timeline visualization. Other interactions for versioning
have been developed for End-User Programmers, such as for Mashups where Kuttal et al.
showed that versioning helped programmers work more e�ciently in Yahoo! Pipes visual
programming tool [Kuttal et al., 2011]. All of these history systems use a timeline visualization.
While a timeline is a classic and easily recognizable visualization for history, we initially tried
but later abandoned the use of timelines in our own designs. This is because in our form of
history support, we are more focused on representing how multiple specific artifacts (e.g., plots
and models) are changed over time, and a timeline abstracts away most information about
content. Later in our design of an activity view (Chapter 11) we create an activity stream
visualization, which serves the same purpose as a timeline, but shows more descriptive text and
visualizations of content changed as opposed to the simple red and green block visualizations in
Yoon’s edit timeline.

Interactive History for Data Experimentation
Specifically for machine learning models, ModelTracker [Amershiet al., 2015] visualized a
timeline of data scientists’ iteration over time (Figure 5.9). Similarly, Patel [Patel 2013] created
a research tool called Hindsight, which keeps a history of di�erent parameters used in a
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programming task for machine learning classification. Hindsight also allows users to combine
di�erent alternatives of steps in the classification, such as which data is loaded and which
algorithm is used (Figure 5.10). Although ModelTracker and Hindsight serve as inspiration for
our own systems, our own visualization design choices look very di�erent since we are aiming
to support any exploratory programming tasks. Both ModelTracker and Hindsight are
task-specific interfaces, and have more features specifically tailored to machine learning
modeling tasks.

Figure 5.9: Model Tracker [Amershiet al., 2015]

Figure 5.10 Hindsight [Patel 2013]
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Figure 5.11 Burrito activity feed [Guo & Seltzer 2012]

Guo and Seltzer [Guo & Seltzer 2012] produced a research system called Burrito (Figure 5.11),
which displays a GUI activity feed of things like outputs, save events, and notes relevant to a
given project. The Burrito tool collects much more detailed provenance information by working
at the operating system level in Linux. The major benefit of Burrito’s approach is that it is able
to listen for experiment activity across di�erent tools in a user’s workflow, which can be very
di�cult to do since separate software exposes di�erent information about what a user is
working on. By capturing information across multiple tools, Burrito is able to capture a full
picture of a realistic data workflow. The major drawback to Burrito’s approach is that it works at
the operating system level. Access to the operating system level is too invasive to be viable in
most real usage situations, due to security and privacy issues. The way that Burrito “listens” to
a user’s computer activity, while very helpful for tracking experiment history, is most similar to
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spyware or malware. Thus it remains an open challenge how to make interoperable data
workflows across multiple tools in a way that preserves security and privacy.

APPROACHES FOR HISTORY AS CURATION

So far, all of the systems and approaches we’ve discussed focus around versions: some notion of
checkpointed copies of the user’s work over time. However, that isn’t the only way to
conceptualize history. There are many formats for summarizing or storytelling what work was
done. For instance Datasheets [Gebru et al. 2018] is a report format that describes the key
properties of how a dataset was derived and how it should be used. Similarly Model Cards
[Mitchell et al. 2019] promote a similar short-form report that describes how a model was
developed and can be used. As we saw in Chapter 4, computational notebooks like Jupyter
notebooks are often used to create computational narratives [Rule et al. 2018], which is an
interactive report that walks a reader through how a model or analysis is derived. A key attribute
of all of these report-style forms of history is that they are typically reporting on the final
outcome of experimentation and exploration, and typically omit all the other ideas explored
that were less successful or did not contribute to the final outcome. A report has a level of
curation that makes it a more semantically rich form of history than a pile of unlabeled version
copies, however at the cost of being selective about what experiments are included. On the other
end of the spectrum, a classic lab notebook from wet lab sciences like chemistry or biology is a
report format that documents every experiment done. The high level of careful documentation
in a lab notebook is due to principles of scientific rigour and pragmatic legal reasons7. In
practice (Chapter 3 & 4) we have not observed this level of note taking or motivation to maintain
this level of note taking by practitioners doing programming experimentation.

CHAPTER CONCLUSIONS
Of the systems discussed in this chapter, none addresses the same set of issues that we aim to
address in our history tooling design. Classic tools like Git provide extremely helpful technical
and UI design patterns, but are missing the ability to work with many, fast paced versions of
small content within files at once (Exploratory Programming Study Chapter 2). Research tools
like Hindsight or Juxtapose demonstrate compelling visions for letting users switch between
alternatives of their work, but lack design patterns for scaling to dozens or hundreds of
versions. Finally, tools like Modeltracker or Burrito show exciting visualizations for showing
analysis work over time, but again, are not about quick access of versions of specific small
content. In our approach to history tooling to support experimentation, we aim to allow users to
quickly access specific alternatives of small snippets of their work, but also scale that access to
dozens or hundreds of versions that may occur over longer periods of work.

7 See the United States National Institute of Health’s training on lab notebooks for
government-funded research “Keeping a Lab Notebook”
https://www.training.nih.gov/assets/Lab_Notebook_508_(new).pdf
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Chapter 6. Design Process Overview

INTRODUCTION

Moving into the system design portion of this dissertation, our storyline maps well onto the
classic “Double Diamond” design process model, moving from the first diamond into the
second (Figure 6.1).

In Part I we began by broadly investigating exploratory programming as a phenomenon, before
narrowing our research e�orts to focus on data scientists as a particularly critical group today
who do exploratory programming. From there we converged on a clear need and opportunity for
HCI system research: data scientists need (and lack) good history support for doing exploratory
programming data. This need for better version control was validated and elaborated on in our
research of data scientists working in a variety of code environments (Exploratory
Programming Study, Chapter 3), in notebook programming environments (Notebook Usage
Study, Chapter 4), as well as prior research by others.

Figure 6.18 “Double Diamond” design process model, popularized by the
British Design Council, has two parts. The first need-finding phase is all about
investigating what to design that will best make a positive impact in the
problem space. Once the design goal is set at the problem definition, the second
phase is all about prototyping towards an e�ective design.

8 Double Diamond Process Diagram by Digi-ark - Own work, CC0,
https://commons.wikimedia.org/w/index.php?curid=94113884
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Our problem statement for Part II of this thesis is: design a better interactive version control
for doing data science exploratory programming.

On the onset, it’s not clear what makes a good interactive version control for doing data science
programming. How will we know if we’ve achieved a good design? To address the uncertainty of
this design space, we actively prototype, build, and test interactions with data scientists. Since
we are designing for a data-intensive and very specific technical context (history in data
science exploratory programming), we found early on that there’s a limit to how richly a
person can imagine themselves in that situation. Thus our design process includes a mix of
paper-prototypes (where the onus is on the participant’s imagination) and more costly
interactive functional prototypes where we actively place participants in a simulated data
science context to observe what happens.

Figure 6.2 Progression of Systems

SYSTEM OVERVIEW
The “diamond” in this design process framing is characterized by an initial broad exploration,
followed by a narrowing as the design team converges on which ideas best address the problem.
Duly, early in the design process we prototyped Variolite (2016-2017) and Rose Quartz (2017)
systems, which imagine very di�erent workflows for how a person might interact with their
experiment history. We then combine ideas from each to create Verdant, which we then iterate
on in a product development process.

Shown in the table below, each prototype conceptualizes our design goal in di�erent ways:

Scope
Where is the user working?

Version Target
What are we versioning?

Variolite
Chapter 7

1 Python script file in Atom editor Code snippets
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Rose Quartz
Chapter 8

2+ script files in Atom editor, an
instrumented bash terminal, and a Rose
Quartz desktop app to display history

Code snippets
Data files
Parameters
Outputs
Notes

Verdant
Chapter 10-12

Jupyter notebook (running in Jupyter Lab
platform)

Code cells
Outputs
Markdown cells

Initially in Variolite we aimed to formalize what we had observed of “informal versioning”
where data scientists experiment with ideas by generating alternative versions of specific code
snippets (Exploratory Programming Study, Chapter 3). Thus Variolite is built to help users
manage code snippet versions in-situ within a Python script. Variolite’s conceptualization of
history is extremely specific to the mechanics of how data scientists version during exploration.

In a usability study of Variolite (Chapter 7), we found that although Variolite’s interactions were
well-received by users, the system’s design was insu�cient to capture the full picture of what
experimenting with code and data meant to users. What a data scientist considers as an
“experiment” is really more about cause-and-e�ect, i.e., when I make this change to code, data,
or input parameters, how does that change the resulting output? Our research goals shifted from
supporting a specific kind of version interaction (informal versioning), to more broadly seeing if
we can serve the underlying need of users to capture the key semantic information about their
experimentation.

In Rose Quartz (Chapter 8) we took inspiration from Guo and Seltzer’s Burrito system [Guo &
Seltzer 2012] and tried to collect experiment history from the user’s workflow across their entire
computer. Our primary goal in Rose Quartz was to collect the full picture of code
experimentation cause-and-e�ect, whether it be a change to data, input parameters, or code
snippets, and whatever output might result. Moreover, we sought to find ways to visually
summarize all of this experiment log data in a way that could boil down the key semantic details
of experiments to a user. This idea, in concept, is similar to summarizing models as Model Cards
[Mitchel et al. 2019] or summarizing data as Datasheets [Gebru et al. 2018] (see Chapter 5) in
that Rose Quartz attempts to form loose log streams into easily digestible snapshots.

When that idea proved too lofty and unwieldy (Rose Quartz was subsequently abandoned), we
narrowed to designing for a computational notebook context for our next prototype, Verdant
[Kery & Myers 2018].

Although we needed to scale back our ambitions from Rose Quartz, a computational notebook
scope allowed us in Verdant (all 4 versions discussed in subsequent chapters 10, 11, 12) to draw
relationships among code changes, notes, output, and runtime information to form a
reasonably solid view of a data scientist’s experimentation.

Although a computational notebook contains roughly the same content as a normal code script,
a notebook breaks down that content into smaller cell chunks and makes the whole document
interactive. Similarly, we were inspired to create an interactive version of familiar history
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dynamics from Git, adapted to work at the level of cells and output rather than files and folders.
The design framing of a kind of “miniature interactive Git” provided us with a rough
expectation of how Verdant history should operate on the back end. By leveraging those familiar
version control system design patterns, we were able to focus on designing interactive
visualizations more specific to helping data scientists understand their experimentation.

Verdant went through many iterations (Verdant-1, Verdant-2, Verdant-3, and Verdant-4) over
a period of 3 years. During this time, the first two iterations were research prototypes allowing
us to explore a variety of di�erent research ideas for how to support data scientists with history
data. As we built and tested these prototypes and our designs matured, the later Verdant-3 and
Verdant-4 refined these ideas into a more robust and reliable functional prototype for the real
world.

CHAPTER CONCLUSIONS
Ultimately Verdant, and all our tool work in this thesis, are designs imagining a particular
future: “What would happen if data scientists had excellent history support for
experimentation? What would it look like? What would it enable them to do?” Our designs are
hypotheses around what an excellent history support might look like and how it might function.

Crucially, since we are designing user interactions on top of complex data flows (history data),
these data elements make for a more complex design process. Whereas a classic simple user
interface design process espouses low-fidelity sketches and mockups to get user interactions
right before functional prototype, in this setting we must design the history data and history
backend approach in tandem to UI. Real history data is complex and messy. As covered in the
following chapters, we use a combination of paper prototyping, mockups, and functional
prototypes to design with active history data flows. During this iteration, the nature of the
history data we collect and how it is collected, stored, and presented, all evolve as engineering
e�orts needed to match our evolving UIs. Due to the high cost of implementing designs into
functional prototypes, each of our systems covered are engineered just to the point that they can
be tested with real data practitioners to verify that our designs are going in the right direction.
Often, at the point of these studies, designs that had tested well as mockups hit usability tangles
in real usage, leading us to need to dramatically reconfigure design details for our next
iteration.

Finally, to test our hypotheses, we ultimately invest in a substantial product development
period with Verdant, beyond the demands of a research prototype, so that Verdant could
withstand the stress of real exploratory programming work over a sustained amount of time. In
Chapters 10 to Chapter 12 we describe in-depth the progression of Verdant. Finally in Section III
of this thesis we conduct an exploratory study of how data scientists work in experimentation
with Verdant, and how well Verdant achieves our goals for supporting easy-to-use experiment
history.
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Chapter 7. Interactive Snippet Versioning
Featuring Variolite

Research done in collaboration with Brad A. Myers and Amber Horvath9

INTRODUCTION
This chapter we present our first system design, Variolite, which attempts to capture the same
value people find “informal versioning” of code snippets.

DESIGN GOAL: CAN WE MAKE INFORMAL VERSIONING OF CODE SNIPPETS MORE ROBUST?
How do people ideate through code? We found (see Exploratory Programming Study, Chapter 3)
that individuals working with data often rely on informal versioning to keep track of alternative
ideas they try. Informal versioning behaviors include copying code, keeping unused code, and
commenting out code to repurpose older analysis code while attempting to keep those older
analyses intact. Unlike conventional version control, these informal practices allow for fast
versioning of any size code snippet, and quick comparisons by interchanging which versions are
run. A simple use case is shown below:

model =  RandomForestClassifier()

#model =  LogisticRegression()

model.train(x_train)

model.fit(x_test)

score(model)

Above, the code author uses comment syntax # to toggle between two di�erent model types.
In terms of “good” programming style notions from software development, this would broadly
be considered a sloppy way to test out model types. In better practice, data scientists can write a
function that parametrizes the model elements the author wants to experiment with:

def do(model):

model.train(x_train)

model.fit(x_test)

score(model)

9 This chapter is based in part on the conference paper: Mary Beth Kery, Amber Horvath, and
Brad A. Myers. "Variolite: Supporting Exploratory Programming by Data Scientists." In CHI, vol.
10, pp. 1265-1276. 2017.
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However, we observe that authors often don’t use this level of formality during exploratory
work, where quickly navigating a broad decision space of possibilities takes precedence over
neatness (Exploratory Programming Study, Chapter 3). The comment # toggle and other,
admittedly slapdash, means of informal versioning are often used in exploration for speed.
Instead of asking authors to never write sloppy code (which we argue is unrealistic), can we
intervene in place of where authors would use a comment toggle, to provide a robust
experiment pipeline for free? This is our design goal for Variolite.

PROTOTYPING PROCESS

Prototyping was conducted at the HCII at Carnegie Mellon University with the help of Amber
Horvath and Brad Myers who contributed to the design.

We decided to focus on designing in-editor version support, since commenting and keeping
code are both in-editor informal versioning methods. For inspiration we reference a rich
ecosystem of in-editor version interactions for Git. For instance in Figure 7.1, the popular
interactive development environment (IDE) Visual Studio (VS) Code has a variety of very nicely
designed ways a programmer can interact with their Git versions in the editor. Although these
well-established interactions already exist for Git, versioning for exploration presents a
di�erent enough use case that we cannot adapt those directly. Instead of dealing in the editor
with many changes between just two versions (the current and prior), in experimentation
practitioners deal with relatively few changes among many versions. In experimentation a user
may want to see 12 di�erent versions of parameters for their machine learning
model—something which may constitute only a few very small text edits yet many versions
they want to browse at once. In Git, a programmer typically only works with one version at a
time (versus one other prior version) but typically makes larger edits across multiple files to
constitute a single commit.

Figure 7.1 An interaction in VS Code uses a box display to highlight changes
around a specific code snippet since the last commit. This display inspired our
variant box metaphor for managing many alternatives of a code snippet, rather
than the most recent di� change.
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To explore the design space, we first sketched a number of possibilities for interacting with
versioning for experimenting within a code editor. We showed these to a convenience sample of
6 data scientists. Between each informal 15-30 minute session we iterated on the drawings
based on the open-ended feedback we received. Earlier sketches focused on comment # toggle
itself. For instance, in Figure 7.2 below, we proposed a code annotation approach, where users
could label commented code with an experiment name like “RandomForest with x” and our
system would automatically log usage of that code as that particular experiment.

Figure 7.2 An early concept sketch focused on the idea of informal versioning
via commenting and uncommenting chunks of code. We used a “layer”
interaction metaphor: like the layers of an image can be toggled
visible/invisible in a drawing program like Photoshop10, a user could use the
layer pane to toggle which versions of their code were active as
commented/uncommented. This idea was discarded because it scales poorly
when there are more than a few versions involved. It also still leaves the clutter
of commented-out code in the user’s source file, which is arguably a major
flaw of informal versioning via commenting in the first place.

However, in practice we found that, since the comment # toggle is considered a sloppy form
of hack-y versioning, some data scientists were not a fan of exacerbating its usage. Based on
feedback and the issue of scaling up to 10 or so versions per chunk of code, we narrowed towards
designs that more closely resemble the in-line version box view in VS Code in Figure 7.1(1).

10 Adobe Photoshop https://www.adobe.com/products/photoshop.html
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From there we iteratively designed and implemented our adaptation of a version box in a
prototype tool called Variolite11.

Variolite is implemented in Co�eeScript (a Python-esq dialect of Javascript), using the Atom
editor’s package framework12. Atom is an open-source code editor developed by GitHub, first
released in 2015. It has over 1 million active users, and is close in style to other more mature
editors such as Sublime Text, which are popular among Python programmers. Like most version
control tools, Variolite is language agnostic and can be used with any programming language or
plain text. Here we show examples in Python, as it is a popular language for data science tasks.

Figure 7.3 Variolite’s “variant box” interaction. In (1) the user highlights a
region of code with their cursor that they are interested in experimenting with.
In a right-click menu option they select “wrap in variant”, and in (2) a variant
box appears above their selected code. The user now has the option of adding
variants to this code, which they do by clicking on the variant box header and
selecting “new branch” (3). In (4) the user has created a new variant for their
code. They can switch between their variants by clicking the variant’s title.

12 Atom editor https://atom.io/

11 Stands for: Variations Augment Real Iterative Outcomes Letting Information Transcend
Exploration. Variolite is a kind of volcanic rock.
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SYSTEM: VARIOLITE
Our core interaction in Variolite is intended to be (nearly) as lightweight as commenting code,
while providing much more power and robustness. Users of Variolite draw “variant boxes”
around regions of code (analogous to a block comment), where the code within the box can then
be locally versioned or branched (Figure 7.3). As with commenting, where a user can use the
comment symbol as a switch to control execution, users can control which version is run by a
simple switch of the active tab on the variant box. This is similar to the tab-based versioning
shown in Juxtapose [Hartmann et al., 2008]. However, whereas Juxtapose shows alternatives of
a file in the code editor, we extend this interaction to encompass any amount of code. A user can
draw a variant box to create alternatives of a file, a group of functions, or a single line of code.
Multiple variant boxes can exist in a file and they can be nested (Figure 7.4 b,c). Variant boxes
can be created or dissolved back into flat code as needed. Variant boxes are always present and
visible in the document structure. In order to not impede code readability, when a variant box is
selected the full box appears more sharply with a menu of buttons (7.4 c) and when not selected
it fades to faint labels (7.4 b).

Figure 7.4 Variolite with labels for di�erent features. (a) the top level variant
box that wraps the entire file and also acts as the tool menu. (b and c) two
di�erent variant boxes, one nested within the other. (d) a search bar for
finding outputs and versions. (e) the output pane and (f) where the user has
given an output and its commit a custom tag.

Like informal versioning, our intention for Variolite is to provide a simple structure that is
su�ciently flexible so programmers can leverage versioning in whatever way they need during
their exploratory process. Similar to a more formal experiment pipeline, a user can put variant
boxes around features, options or other parameters included in a model. Now, by simply
interchanging which versions of each of those alternatives are run, they can explore di�erent
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combinations of the di�erent things they have tried. Instead of a purely linear iteration, they
can re-try features they used in the past with new versions of the algorithms’ parameters.

Logging Experiments for Reproducibility
In order to provide a full experiment logging pipeline for the user, we add UI elements that
allow users to run code directly from the Atom editor (Fig 7.4 a & e) such that Variolite can
collect inputs and outputs.

Each time the code is run, Variolite creates a snapshot of the code file and automatically records
the parameters used, variants used, and all inputs/outputs from the run. This provenance data
is saved in JSON format separately from the code. Variolite visualizes experiment results in the
output pane (Figure 7.4 e). To help users find interesting results among many runs, a user can
add custom tags to versions that are promising (Figure 7.4 f). Finally, to help recover results
from longer sessions, Verdant includes a search bar to search for results by keyword or tag
(Figure 7.4 d).

Double-clicking a given output in the output pane (Fig 7.4 e) causes Variolite to set the entire
code back to the past version of the file and the past version of each variant box that produced
that result. If a new variant box was created later in time after that output, it will not appear in
this view. While viewing an earlier commit, the user cannot edit the code, but they can re-run it,
copy it, or create a new branch from that point in time. Variolite keeps past commits as
immutable to preserve the output history. If a user creates a branch from a past commit,
however, they can continue editing from that point.

Figure 7.5 Variolite showing an earlier version of the entire code file. When a
user double-clicks a given output (outlined in orange) Variolite shows a
read-only view of the code that generated that output. The entire editor is
framed in orange to indicate that this is a past view of the file.

STUDY: TESTING THE USABILITY OF VARIANT BOXES
Our goal at this stage of the design was to create a reasonable alternative for informal
versioning interactions, such that in tool form, issues around informal versioning become more
tractable to design interventions. Thus, we conducted a usability study. To test if our core
interaction for Variolite is sound, we only tested the variant box interactions, and did not have
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participants engage with interacting with past output, search, or other features. Some specific
visualizations, described below, were added following the study based on participant feedback.

We recruited 10 participants, a mixture of undergraduate and graduate students (7 male, 3
female). Participants had on average 5 years of programming experience and 1.5 years of
experience with data analysis. The pilot study was conducted in our lab, using a designated
MacBook computer. After signing a consent form, each participant was given a brief tutorial on
Variolite, showing how to wrap code in a variant box and create a new version. Next,
participants were given an Excel file dataset and a set of “exploratory questions” to answer
about the data using the tool and a Python script. We gave participants fixed questions, instead
of allowing them to freely explore the data, because this allowed us to focus their work on
questions that built o� of previous questions and required some versioning. After the coding
task, each participant filled out an online questionnaire to give feedback on the tool, and was
compensated $20 for their time.

9 of 10 participants were able to successfully wrap code in variant boxes, create new versions,
and switch between versions during the coding task. The one participant who struggled with the
tool became confused when instead of manually selecting all the code in a function, she only
selected the function name before using the command “wrap in variant”. She expected the tool
to then wrap the entire function in a variant, but instead it only wrapped that single line. By
adding language-specific static analysis checks to Variolite, a future iteration of the tool could
include scoping rules such that if the user wraps the line def foo(): in Python, this would
appropriately wrap the whole function.

As recommendations for new features, the participants requested better ways to distinguish
di�erent versions. Several mentioned the ability to name their versions was a very useful
feature, but more automatic techniques were requested. This motivated some of the features we
added to Variolite next, including ways to navigate and search the branches and commits, and
cues such as tags. One participant was concerned with becoming overwhelmed with too many
versions of a part of the code, which motivated the branch view (Figure 7.6).

Overall, 9/10 participants reported on the questionnaire that they liked the tool and found it
easy to use. All 10 wrote that they would consider using it in real life, and one participant even
emailed us after the study asking when the tool would be released to use.

DESIGN ITERATION

Although participants reacted favorably to the variant box interaction and idea of Variolite,
scale was an issue that worried participants (and us too as designers). The tab layout at the
header of a variant box is not manageable to switch among more than 3 to 4 di�erent branches
because of the limited space. A list of 10 to 20 branches in a variant box may look overwhelming.

We began prototyping more advanced visualizations to help users navigate through possible
versions and variants in a variant box. Shown below, by clicking on the revision tree icon, the
user can access a larger revision tree showing all the branches of that box (Figure 7.6), such that
they can control which 3 or 4 branches are actively showing. See Chapter 5 for a detailed

79



Designing E� ective History Support for Exploratory Programming Data Work - Dissertation - Mary Beth Kery

overview of the revisions tree visualization, which we borrow from classic software version
control systems like Git.

Figure 7.6 Navigating branches

If a user wishes to backtrack a single variant box to an earlier state, they can also navigate its
commit data by clicking the clock icon (Figure 7.7). This activates a timeline slider, where
(similar to video editing software) a user can scroll the slider back to view the code at di�erent
commits. The user can use this form of time travel both at the file level and with individual
variant boxes. The same backtracking can be achieved by clicking on individual commit nodes in
the revision tree view in Figure 7.6.

Figure 7.7 Navigating to a past commit. The orange color of the variant box
indicates that the code is showing a past state.

Although in Variolite, users can name di�erent versions, our study of data scientists suggests
that this is not always done, and even if so, they might use similar names which can be hard to
distinguish. Furthermore, Variolite cannot force users to pick names that are logical or easy to
distinguish. Thus, to address the problem of distinguishing versions, we use metadata to
provide users with a variety of di�erent context clues. This decision is informed by prior work
by Ragavan et al. [Ragavan et al. 2016] who used an information foraging theory approach to
study how programmers distinguish between similar versions. Distinguishing versions can be a
di�cult task, and participants in that study leveraged a variety of code cues such as file name,
output, data, and code features.

Some metadata is similar to what is provided by a VCS. For example, a user can name each
branch. Each commit and each branch shows a date when it was last edited. Each variant box
can show a revision graph, so the user can see the order and relationships among branches.
Variolite also gives additional cues:

● The ability to tag any branch or commit with a custom tag, for example “Paper version”,
“Nice graph!”, or something task-specific like “Crows distance” (Figure 7.4 f).
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● The ability to search in past outputs, branches, and commits and not just in the current
file (Figure 7.4 d).

Ultimately, however, we began to worry that these new interactions, while mitigating the
complexity of interacting with variant boxes, were a “bandage” over a more serious underlying
problem. Local versioning techniques, like the venerable comment # toggle, don’t scale well
when used in abundance littered all over a code file for long periods of time. This problem
framing of local versioning as a kind of configurable experiment pipeline within a code file is
close to Software Product Lines used in industry to mark multiple configurations of code within
a code file. These are known for their complexity [Clements & Northrop 2001] and having files
with variability is a known usability challenge.

LIMITATIONS OF HISTORY MODEL

During design we recognized that it is insu�cient to log a code experiment as just the snippets
the user changes in a variant box. These code snippets (e.g., if computerNorm(p2[0]... ) are
typically not complete programs to run in isolation and depend on other parts of the code file.
To be able to log an experiment such that the user can later reproduce it, we need to represent
the entire code file. Here we heavily borrow from conventions in Git, and record a full commit of
the code file each time the code is run. The chief di�erence we introduce in Variolite (and
continue to use in the rest of this thesis) is the idea of a hierarchical file history. That is: we
record a whole code file in a series of commits as v1, v2, v3 … but that code file contains specific
parts of interest, here the variant boxes, which themselves have history. In Variolite, each
variant box has its own revision tree of commits and branches, like a typical VCS. However,
rather than a single revision tree existing for the entire code file, Variolite models the file as one
revision tree that points to child revision trees for each variant box in the code. Variolite keeps a
revision history for the file, and then links this revision tree to child trees of any variant boxes
that are created in the code.

As demonstrated in Fig 7.8, having di�erent entities, each of which has their own history, leads
to a complex history datastore. This datastore is based on the history structure shown in
Variolite in Figure 7.4. The file driverTest.py contains variant box (b), while variant box (b)

contains variant box (c). However, variant box (c) only occurs in the Distance1 branch/tab
of variant box (b) and wasn’t actually added by the code author until commit 1 of the Distance1
branch/tab of variant box (b), which happens at the same time as commit 3 of driverTest.py.
Meanwhile the timestamp, outputs, and other metadata recorded for an experiment by Variolite
maps onto specific combinations of commits/branches of all the constituent program parts.
Su�ce to say, even with only a few commits logged, this history datastore is complex and
unwieldy.
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Figure 7.8 A diagram showing how variant box histories relate to each other
and the history of the entire code file driverTest.py.

The model for history relationships in Variolite is problematic and can quickly devolve into a
combinatorial nightmare. However, we nonetheless believe that finding e� ective ways to model
detailed relational histories between specific code snippets, input, data, and output is worth
continued research, which we carry forward in this dissertation.

CHAPTER CONCLUSIONS
In this chapter we designed Variolite from paper prototypes up to a functional prototype, tested
it’s usability, and then iterated further on the system design up to a point at which we decided
that the core interaction model Variolite uses is unsustainable. Although this design cycle ended
with the need to pivot to new history ideas, the work we did in Variolite was still ultimately
extremely helpful in pushing forward our understanding of what history tooling should look
like for experimentation. Here I try to summarize these design findings:

+ Support specific fine-grained versioning: Allow creation and access of multiple
alternative versions of individual snippets within a code editor. Although we posed this
need for support as a hypothesis back in Chapter 3, highly positive feedback on Variolite
from both users and the broader research community gave us validation that
practitioners want this functionality.

- Keeping versions in UI tabs does not scale well: While a tab interaction appeared
compelling and easy-to-understand during prototyping, we found during usability
testing that users felt overwhelmed as more versions and more tabs were added. Due to
limited screen space, we could only display 3-5 named tabs, depending on how long a
name each version had. While we proposed work-arounds like the revision tree
visualization shown in Figure 7.6, we no longer feel that tabs are the best interaction
metaphor for realistic version situations.

+ Support continually shifting focus: In prototyping Variolite we had this idea that
participants would have specific regions of their code that they would want to vary. This
assumption came from our Exploratory Programming Study in Chapter 3, where we
observed practitioners informally version specific important regions of their code.
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However, a limitation of that study is that we saw practitioners’ artifacts from just one
point in time. In the Variolite usability study, by watching people work over time, we
learned that these regions of interest a user wants to version continually shift over time as
the user tests out di�erent hypotheses and develops di�erent ideas. Also importantly,
the regions that a user wants to version are not necessarily continuous regions of code,
but could be related to snippets scattered around the file. Variant boxes in Variolite were
designed to provide history to a specific fixed code region, and we learned that a more
flexible history model is needed.

+ Version all or nothing: The issue of practitioners continually shifting focus in their file
means that they want history of unpredictable regions of code for which we may or may
not have collected historical data in a variant box. Additionally, as discussed in our
limitations section, versioning just parts of a code file leads to an ugly combinatorial
problem. Versioning just parts of a code file thus gives us an overly complex history
model that still cannot meet participants’ constantly shifting history needs. From this
we learned that the safest approach to avoid these issues is to just version everything.
If we version all of a user’s code file for each experiment, we can later retrieve the
history of any specific portions of the file the user wishes, while simplifying the
structure of the history we store.
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Chapter 8: Capturing the Full Picture of an Experiment
Featuring Rose Quartz

Research done in collaboration with Brad A. Myers, Marissa Radensky, Mahima Arya13

INTRODUCTION
In this chapter we switch focus to a di�erent part of the design space of history tooling. Instead
of looking at editor interactions to support history as someone experiments, we zoom out to
prototype interactions to capture the full workflow of an experiment that may occur across any
number of tools a practitioner uses for their work. The system of this chapter, Rose Quartz,
ultimately reaches a dead-end, but still provides important insights into the design space.

DESIGN GOAL: CAN WE CAPTURE A FULL DATA EXPERIMENTATION PROCESS?

As we continued to iterate on Variolite, it became evident that while we could create a polished
incarnation of Variolite that overcame the limitations of original variant boxes, we would still
be capturing just a piece of experimentation rather than the whole workflow. For code
experiments, data scientists work in code editors, but also data files, terminals where they
execute scripts, personal note files, spreadsheets, and more. How do we capture the cause and
e�ect of, for instance, a model experiment, if its inputs and outputs are beyond what we can
record in a code editor? While Variolite’s run button and imitation-terminal UI su�ced for a
prototype, it was more a UI “patch” to allow us to experiment with designs including
input/output data, rather than a realistic solution.

We aimed to push our research further. Rather than focusing on specific informal versioning
mechanics like the comment # toggle, which are more symptoms of an underlying user need,
we began to pivot into understanding “an experiment”. We reframed our design goal from
providing users with interactions “to achieve experiment versioning” to instead providing
users with interactions “to understand and learn from their experiments”, with an increased
technical focus on automatic version collection and how to present versions to users in a
usefully synthesized way.

Our next system design, Rose Quartz14, did not make it past the paper prototyping and early
prototyping phase of implementation, but is worth mentioning here for lessons we learned
from it.

14 Rose Quartz is named for a type of quartz and stands for: Recollection Of Serial Experiments:
Quiet Utility Always Recording Tree-structure Zen.

13 Work is this chapter was never published.
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DESIGN PROCESS & LIMITATIONS

Prototyping was conducted at the HCII at Carnegie Mellon University with the help of Marissa
Radensky, Mahima Arya, and Brad Myers who all contributed to the design.

Rose Quartz is heavily inspired by Guo and Seltzer’s Burrito system [Gou & Seltzer 2012]. The
spirit of this work also aligns with formats for summarizing models such as Model Cards
[Mitchel et al. 2019] or formats for summarizing data such as Datasheets [Gebru et al. 2018]
although that related work had not yet been published at the time of our design process. The
main idea of Rose Quartz is to take information about an experiment coming in from multiple
sources, and summarize that workflow in one place as a “card”. For instance: a data scientist
uses a terminal to run a python script, which outputs a plot in an external plot viewer. There are
at least three sources involved in that workflow: 1) the command and parameters in the
terminal, 2) the python script in a file, and 3) the plot in an external tool. Rose Quartz could
stitch back together those bits of information into a coherent “experiment card”. A similar idea
had been broached in the Burrito system [Gou & Seltzer 2012] in the Computational Context
Viewer shown below in Figure 8.1.

Figure 8.1 A view from the Burrito system that attempts to summarize code
experimentation [Gou & Seltzer 2012]

We believe there is much more design work to be explored in this space, and we were
particularly interested in how users might understand a series of experiments connecting
together into a coherent narrative. Ways of automatically connecting workflows among the
many disparate systems a data scientist uses is also of interest to the broader community [Kim
et al. 2017]. However, these ideas we leave to future work, due to major data and technical
barriers to the design process, discussed next.
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Figure 8.2 The main interface of Rose Quartz which, unlike Variolite, was
meant to sit in a separate window from a practitioners’ code editor and
passively and automatically collect versioning information from any code
editors or tools the practitioner was using in their workflow (shown on the
right). Rose Quartz uses a motif of cards, where each single experiment is
shown as a card, and a series of experiments recorded over time is shown as a
stack of cards. The card shown at left details the code file run, the specific
change made within the code, the output of the experiment, and any user
created notes on the experiment.

The technical requirements of Rose Quartz quickly became a barrier, since to automatically
collect all changes and outputs relevant to an experiment would require instrumenting di�erent
kinds of tools in the user’s workspace to collect all relevant information. While not impossible,
this had a high engineering time cost. A related kind of automatic experiment feed had been
done in Gou et al.’s Burrito system [Gou & Seltzer 2012], which had required them to instrument
the root of a Linux OS itself to gather the necessary experiment information from di�erent
tools. More crucially, we were also discovering a major barrier to iterating on our designs.
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The card design of Rose Quartz (Figure 8.2) represented one possible way to display the
summary of a single experimentation. However, to test with users whether or not our
visualizations e� ectively summarized experiments in a way that was helpful to users, we needed
real (or at least realistic) experiment data to show. Given our findings in our Exploratory
Programming Study (Chapter 3) that practitioners do not (and cannot realistically) capture
their experiment history data at the level of detail we sought to automatically collect for them,
it was not surprising that we were unable to obtain detailed experiment history from either
practitioners or from projects on Github. As a temporary work-around we generated some
experiment history as a design team by doing a simple data science project ourselves and
manually recording all experiment data after each and every run. However, this exercise only
exacerbated our need for real data, as it illuminated some challenging properties of what
realistic experiment version data looks like:

● Anticipate a High Volume of Versions: When you record how often a person runs their
code during exploratory iteration, even a simple task can accumulate hundreds of runs
per hour. Given this volume of small “experiments” it is crucial to design for scale.

● Anticipate High Version Redundancy: Given that experiments often constitute a small
change, there may be many experiments that are all related or overlapping in what the
experimental change was. Since versions may look alike, it is important to highlight
di�erences for the user.

● Highlight Relevant Versions: It turns out not all runs of code are worthy of the title
“experiment”, as the user may need to stop and debug code or write print statements
that do not carry much experimental value. It is important to surface which experiments
carry meaning to not overwhelm the user with noise. Unfortunately it can be very
challenging in practice to automatically identify meaningful edits, since importance is
task-dependent and subjective.

Without the data we needed to design with, and with too high an upfront engineering cost to
obtain it for Rose Quartz, we decided to pivot towards new system directions that would lower
data collection barriers and get us more quickly to designing with realistic data.

CHAPTER CONCLUSIONS

Later in this dissertation, with the implementation of Verdant iterations 1,2,3, and 4 we do
achieve e�ective data collection for realistic data, which opens back up Rose Quartz’s design
avenue for future work. Like the previous chapter 7 with Variolite, this chapter again concludes
on the point of needing to pivot our design process to a new approach. Again, though, we argue
that although this might be seen as a “failure” for the specific prototype, Rose Quartz’s design
cycle is nonetheless successful in moving forward our design agenda in this dissertation by
teaching us new important aspects of the design space. Some of these, what realistic version
data looks like, are already highlighted above. I will add a few more design takeaways here:

+ Help users see the relationship between code and non-code artifacts: An
“experiment” is often a combination of changes made to code, data, or input
parameters, with results in forms of output, data, or notes. While we know this to be true
from prior literature and our own studies (see Chapters 3 & 4), prototyping with Rose
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Quartz allowed us to see the code and non-code artifacts together that form an
experiment. It becomes apparent that simply showing all an experiment’s code,
parameters, notes, and output artifacts to the user is not always su�cient for a user to
actually understand what the experiment was about. It is important to point out for the
user cause and e�ect relationships by highlighting what about this experiment changed
in the inputs and outputs.

- Capturing “an experiment” from di�erent tooling sources is extremely di�cult, but
choosing a single central artifact-rich tool environment is far easier: Since data
workers work in a variety of languages, tooling environments, and domain-specialized
data analysis tools, instrumenting every possible tool that a data worker might
incorporate into their analysis workflow is a enormous undertaking. On the flip side,
listening to every tool raises serious privacy concerns and the major sensing issue: how
do we know when to record experiment history? Can we tell if the user is actually
experimenting versus doing other activities on their computer? These problems were
apparent early in the design of Rose Quartz. Although we moved forward prototyping
Rose Quartz with just a few representative tools (code editor, terminal, plot outputs), we
were also investigating tools or platforms that already contained multiple parts of a
workflow. A centralized “hub” type of tool allows us to scope what work our history
system is listening to. This is what led us to study computational notebooks in Chapter 4.
Computational notebooks provide a sandboxed workflow and are far more tractable for
sensing, since we can scope data collection to just what the notebook API provides us in
terms of the user’s code, output, and markdown. Generalizing this point, other tools
that encapsulate a workflow, or serve as a launch-pad for tools used by a company or
organization, could serve similarly as a centralized middleman for sensing what tooling
a data worker involves in their experimentation.

For those interested in pursuing the design of tools like Rose Quartz, the privacy and data
collection challenges remain the biggest barriers. In terms of design, our work in Verdant does
provide rich fine-grained data about experimentation. Although Verdant collects data inside of
a notebook, this data would still be an appropriate starting point for designers wanting to
prototype with what real experiment history looks like.
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Chapter 9. Collecting & Modeling History in Notebooks

INTRODUCTION

In terms of versioning, where does data science programming diverge from any other form of
code development? Typically in regular code development, the primary artifact that a
programmer works with is code [Codoban et al., 2015]. Data science programming relies on
working with a broader range of artifacts: the code itself, important details within the code
(Exploratory Programming Study, Chapter 3), parameters or data used as input by the code
[Patel 2010], visualizations, tables, and text output from the code, as well as notes the data
scientist jots down during their experimentation [Brandt et al., 2008]. The conditions under
which code was run and under which data was processed gives meaning to a version of code
[Patel 2010]. Data scientists need to ask questions that require knowledge of history about
specific artifacts, specific code snippets, and the relationships among those artifacts over time:
“What code on what data produced this graph?”, “What was the performance of this model
under these assumptions?”, “How did this code perform on this dataset versus this other
dataset?”, etc. Seeing relationships among artifacts allows a data scientist to answer
cause-and-e�ect questions and evaluate the results and the progress of their experimentation.

With an aim to explore experiment history from a HCI perspective, we care less about the
technical challenges of acquiring history data (see Chapter 8) and more about designing with
that data. For this reason, computational notebooks, like Jupyter notebooks, are an ideal
environment for us to prototype our ideas. Computational notebooks are interactive
environments where data scientists often conduct exploratory programming (Notebook Usage
Study, Chapter 4). Crucially, notebooks contain a variety of artifacts related to experimentation,
including code snippets, output both textual and visual, markdown notes, and the runtime
environment itself. For the purposes of modeling how a data scientist might better use
experiment history, notebooks provide us simple access to much of what might constitute an
experiment, as well as an already interactive setting to test out ideas for interactive history.

In this chapter, we detail the system specifics and trade-o�s of collecting detailed experiment
history data in a notebook. This history model is used in all following systems of the
dissertation, Verdant-1 through Verdant-4. Key design questions we cover are:

● How do we best structure history for answering users’ history questions?
● At what granularity should we collect history? Finer-grained history will allow our

system to answer more detailed history questions, but at the cost of more storage.
● What is a meaningful version of a user's work? Can we use clustering, filtering, and

heuristics to collect history in such a way to ensure versions have value to the user?
● How do we answer code questions? We discuss the tradeo�s between versioning at the

level of code cells versus the abstract syntax tree (AST) structure of the code.
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MAKING HISTORY CONTENT-ADDRESSABLE

To let data scientists ask cause-and-e�ect questions about their experimentation, we would
like to make history content-addressable. We envision a user directly clicking on an artifact in
their work (or another person’s work) to ask about its history: How did I reach this
hyperparameter value? What feature sets did the author try? What did this plot look like before with a
di� erent scaling?

To make history directly addressable by artifact, we want to decompose a notebook down into a
set of discrete artifacts that users can look up from our history database at runtime.
Alternatively, given a set of ordinary file versions, one could design a history system to infer the
history of specific artifacts (similar to Git blame) at runtime. We decided not to pursue this
inference approach because the computational cost at runtime might hamper interaction
speeds. Instead, we aim to design a reasonably e�cient history database that stores versions
such that history can be quickly retrieved relative to any artifact in the notebook.

Next we need to decide: what is an artifact anyway?

We would like an artifact to be a meaningful semantic unit of work within the user’s document. To
one extreme we could version at the character level (e.g., decomposing a word into letters ‘w’,
‘o’, ‘r’, ‘d’). However, there doesn’t seem to be any obvious use cases why a user would ever
want to look up the history of a letter. The finer granularity at which we segment the notebook,
the more history-having entities we need to keep track of in our database. Thankfully, to choose
granularity, notebooks o�er cells as a clear unit of meaning.

A computational notebook is a modular document structure composed of an ordered list of cells.
A typical notebook is shown below, that starts with a Markdown note (often used as the title and
a note about the purpose of the notebook), followed by some code cells and output:

Markdown cell 1 Code cell 1 Code cell 2 Output Code cell 3 Output

We define a notebook as N where cells are named by their type: M for markdown, R for raw15, C
for code. We name output by the cell that created them, e.g. C3.o1 refers to the 1st16 output of the
3rd code cell. At any point in time, the notebook holds a list of cells:

N = [M1, C1, C2, C2.o1, C3, C3.o1]

For the purposes of experimentation, we aim to allow users to look through history specific to
important pieces of the notebook document such as the code that sets up model parameters, that

16 Although we largely ignore this complication in the scope of our research, the output of a cell
is actually a list of outputs o1,o2,... on. In our prototypes we treat the full list of outputs as a
single output o1, however there are cases in which a user might want to treat outputs
individually. This is most apparent in long-running model processes for something like an
image model which will progressively append one image iteration after another to the output
over the duration of several minutes or longer.

15 Note that raw cells (R) are very rarely used or seen in real life usage, but Jupyter Notebooks
includes them as one of 3 core cell types. A raw cell is raw plaintext, that cannot be run or
compiled into anything else. Every single time a raw cell has appeared in our own user studies,
we observed it was created by the user by accident as a result of a mistyped keyboard shortcut.
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one plot, or the metrics for the model. To do this we want quick lookup of all versions of specific
artifacts. Just like we discussed hierarchical and relational history in Chapter 7, here we start
with a definition of artifact-based history, where a notebook’s history is comprised of cells and
outputs, each of which carry their own history:

Figure 9.1 A hierarchical history model where artifacts have their own history

In this diagram, to the left we see how the notebook grows and changes over time, and to the
right we see how specific artifacts change over time. There are some important relationships to
note. First, all artifacts have fewer versions than the notebook itself, because although the user
has changed the notebook 6 times (creating 6 versions), the user only changes specific cells in
each version. For instance, the user only ever changes Markdown cell 1 twice, so it has two
versions. Next, it’s important to observe that outputs have a many to many version relationship.
How does this happen? Take Code cell 3 as an example. C3 only ever has 1 version but has 3
di�erent output versions. How? This happens often when a code cell contains an operation like
df.head() which will output based on the value of an environmental variable (here df).
Although the variable is modified in code above in code cell 2, it will result in di�erent outputs
each time C3 is run: many outputs to one version of code. Similarly, we can end up with a one
output to many versions of code relationship. Here C2 has 4 di�erent versions, but only 3
versions of output. This can occur when, for instance, the code modification between C2.v3 and
C2.v4 doesn’t actually change the output (e.g., the user write a code comment), such that both
C2.v3 and C2.v4 share the same output C2.o1.v3.

The disadvantage of the history model in Fig 9.1 is that it adds much more complexity than
simply versioning the entire notebook document v1, v2,… v6. However the advantage is that
giving each artifact of interest its own history allows users to quickly look up and interact with
specific components of their analysis history.
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TRADE-OFFS TO AVOID COMBINATORIAL ISSUES

Another computational trade-o� design decision we make is over the issue of branching. As
shown in Variolite (Chapter 7), allowing the user to branch their history is dangerous when
we’ve already designed a tree structure for the document itself. In typical version control, a
branch allows a user to start completely di�erent parallel timelines of history from a common
point in time. So for instance, a user could backtrack to an earlier version of their notebook that
they like, branch, and then proceed to work from that point. The issue of doing this in a
hierarchical document is that it isn’t clear how branching would work, and the resulting
complexity of the history database could easily grow in a combinatorial and exponential
fashion.

To simplify things and avoid this complexity, we do not support branching in history models
used in this thesis. Instead, if the user wants to backtrack to an earlier version of their notebook
and start work from there, we allow them to export that notebook version out into a new
notebook file. So, notebook v73 (even though it is not the current version of the notebook) can
be exported as notebook_v73, and will contain all document history up to v73 from the original
document. Then this new notebook can have its own independent version history starting at
that point. This is a design choice open for consideration in future work. Note that having a file
named by version is eerily similar to one of the informal versioning practices reported on in
Chapter 3 that we are trying to get away from. However, this design choice is a slight
improvement over the informal versioning practice, since each copy of the original file will have
our history data attached that makes it clear how these file copies relate to each other as
versions.

HOW OFTEN TO RECORD HISTORY

Besides deciding the right granularity of what content to version, we need to decide the time
granularity of when or how often we record changes. To let data scientists explore their
experiment history we aim for our history store to be complete, and not missing any
experiments. By trial-and-error we found versioning every time a person runs their code or
changes their cell structure seems to work best. Versioning every time a person edits their
notebook is too frequent, since in practice it means we end up storing a lot of partially-written
code that doesn’t compile or is incorrect.

There are normal runtime events in a Jupyter notebook that mark possible changes to the
notebook. Our system listens for these events using Jupyter’s APIs, and then checks for changes
in the notebook:

○ Save the notebook
○ Load the notebook
○ Run a cell
○ Delete cell
○ Add cell
○ Move cell
○ Modify cell type
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If any change has occurred, the system records a new version for the specific artifact(s) that
changed. Verdant also stores the time and date that version was created.

WHAT IS STORED & STORAGE CONCERNS

Shown in Figure 9.2 is a table breaking down the types of content for whose history we aim to
store. Currently, our system stores all textual history for a user in a single JSON file called
<notebook name>.ipyhistory which sits next to the user’s Jupyter notebook file <notebook

name>.ipynb. The benefit of history in a single file is that it is easily portable: a data scientist
can choose to share their notebook either with or without their history file. The downside is, of
course, that this isn’t at all e�cient. Currently, we keep the entire history JSON database in
memory at runtime, which allows for quick reading and writing of history but takes up a lot of
memory space. However, since the focus of this research is on design of user interactions with
experiment history, rather than databases, we leave more e�cient storage for future work. Per
our hierarchical history, each version of a notebook is represented only once in the JSON file,
distributed between the individual artifacts that form that version. To recreate v46 of a
notebook, for instance, the system combines snippets and cell content from individual artifact
versions to put back together the notebook as it existed at that time. Since most artifacts we
store are plaintext user generated code or markdown, the <notebook name>.ipyhistory JSON
file tends to remain reasonably small on disk.

Figure 9.2 Content in a Jupyter Notebook to consider for versioning

Issues arise with output, which are often not plaintext. In earlier versions of the history
database, we treated all output as plaintext, even when they were in fact image bit code. When
we piloted Verdant (Chapter 12) with real users, however, the JSON <notebook

name>.ipyhistory file quickly became several megabytes, and since the JSON history structure
stays in memory, this massively slowed down user interactions with Verdant. To solve this
problem, our system now splits output by media type, and plaintext and table/html output are
stored in the JSON structure with the rest of the textual artifacts. Image output is saved to file in
a specially named folder we generate called <notebook name>_output. We argue that this is a
reasonable approach, because it puts the user in control of images they generate. A data
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scientist can quickly access their images from the folder, or delete them if they believe certain
images are unhelpful or taking up too much space. For the purposes of our research prototypes,
we ignore interactive outputs17, and leave handling of versioning interactive content for
consideration in future work.

CLUSTERING & FILTERING OUT NOISE

Not every bit of code a person writes rises to the level of “an experiment”. People make syntax
errors. People mess around with a line of code to figure out the right function call. People debug
code that isn’t working. All of these activities are not what we would call exploratory
programming or experimentation, and are not likely particularly valuable to anyone later on.
Yet without adding more advanced analyses or heuristics, all coding activity looks the same to a
version control system.

Collecting “junk” or “noise” or lots of versions that aren’t terribly interesting or meaningful
directly hurts the usability of a history system, because the user will be faced with more work
sifting through more versions to find what they are looking for. For instance, during the
Jupytercon Scavenger Hunt Study (Chapter 11) we would find that participants spent far too
much time scrolling through versions. Through iteration, we include several strategies to make
the history we collect more meaningful.

Filtering
We attempt to not save results that contain programming errors by applying some filtering
heuristics. Code that is not syntactically correct does not trigger any of the history save events
when run, since the Jupyter API itself will not fire a “run event” if code is rejected by the
programming language’s parser. Code that is syntactically correct but generates an error will
display that error in output. If the output to new code is only of error types, we do not save
either the new code or output to history. If the output contains some errors, but still outputs
some not errors, we record to history as usual. Note that these heuristics still leave plenty of
edge cases where erroneous code might still end up in history. If the user types some
syntactically incorrect code and does not run it but does save the file, our heuristics will not
catch that there is any error and that incorrect code will be stored as a new version. Finally, note
that there may be cases in which a data worker may actually want to look at their past errors for
debugging purposes. We decided that it was a worthwhile trade-o� to not support that
debugging case in favor of curating history.

Clustering
Since history save events primarily occur when a single cell or output in the notebook has
changed, the resulting history tends to be many versions in which only one small thing changes.
In JupyterLab, autosaves occur every 2 minutes, and are not discernable from manual user saves
in Jupyter’s API. This means that history save events occur often, and often at rather arbitrary

17 Interactive outputs are HTML-type outputs in Jupyter Notebooks that can contain anything
from a simple slider widget to an entire webpage. It’s worth noting that most table display
outputs, due to their formatting, are also HTML-type outputs in Jupyter Notebooks. Without
further heuristics and analysis, one cannot rely on Jupyter’s built-in output types to tell what
kind of thing is being displayed or whether it is interactive or not.
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points in the user’s work. To create fewer and more information-rich versions, we cluster some
changes into the same version. If changes occur within the same few minutes (we set our
threshold to 3 minutes) and are non-overlapping in that they do not a�ect the same cells, we
combine them into the same notebook version. For instance, instead of the following log:

N V1 4:14pm user runs c14 generating a new output c14.o1.v2

N V2 4:14pm user runs c15 generating a new output c15.o1.v5

N V3 4:14pm user edits and run c16 generating a new cell version c16.r5

N V4 4:14pm user edits and runs c14 generating a new cell version c14.r2

We can combine events that happened in quick succession as:

N V1 4:14pm user edits c16 and runs c14,c15,16 to generate c16.r5,
c15.o1.v4, c14.o1.v2

N V2 4:14pm user edits and runs c14 generating a new cell version c14.r2

Note that the only change in numbering with this clustering is the notebook version number,
since a single notebook version V1 is given multiple events. The final event in this log cannot be
combined onto Notebook V1 and must remain in its own Notebook V2 because the two versions
conflict by a�ecting c14. Further clustering is done on the UI level, where we experiment with
visualizating similar events together, discussed later in Chapter 11.

CODE CELLS VERSUS CODE SNIPPETS AS UNITS OF MEANING

Cells are a helpful unit of work in notebooks, but flawed when it comes to our goal of tracking
the provenance of code over time.

At any point in time, a cell in the notebook will very likely contain one semantically specific
“job” within the user’s data analysis, much like a function has a specific “job” in a plain code
file. That is how notebook documents are designed to work. However, as we can see in Figure 9.1
Notebook versions 1-6, the cell structure of a notebook evolves over time as the user adds,
deletes, splits, merges, and moves around cells. Just as a programmer would rearrange and
refactor code as they develop it, notebook authors move content between cells or rearrange
which cells do what. Thus, to represent a notebook over time, cell-based versioning is risky,
because code cells are not guaranteed to be stable units of meaning over time.

To illustrate this problem, consider two users: Alice and Bob. Alice tends to create a lot of small
cells to test out ideas and one she has reached a good solution, she combines her finished code
into one cell (see Notebook Usage Study, Chapter 4). Bob, meanwhile, prefers to iterate in a
single cell for an idea over and over until he’s reached a good solution. Later, both Alice and Bob
ask: how did I reach that solution again? To retrieve the history of Bob’s idea, we can simply
show them v1...vn of that cell he iterated in. Alice’s history is much harder to retrieve, since that
iteration was scattered across many cells, since deleted or repurposed. To answer Alice’s
question we need to track the history between cells. In Bob’s case the history is contained at the
cell-level. In Alice’s case, history happened at the level of lines of code.
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To support both Bob and Alice, we can actually make our history more fine-grained and
consider code snippets as artifacts themselves moving between cell containers. This design
choice has significant pros and cons, discussed next.

Breaking down Code Cells into Code Snippets
To give a concrete example, consider the following code cell:

Figure 9.3 A code cell

As Python 3 code, we can break down this code into its semantically meaningful parts using
python’s ast module to convert it to an AST tree. An Abstract Syntax Tree (AST) is how the
compiler of code “sees” the structure and meaning of raw code:

Figure 9.4 Python AST structure of the code cell from Fig. 9.3. For our
purposes, “Module” is a placeholder type that just means the root of the tree.

As shown in Figure 9.1, a notebook can be described as a list of cell and output versions. Since
our goal is to add the AST to this history representation, we say that notebook N is the root node
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of an ordered tree structure describing the entire notebook. Cells and output artifacts are child
nodes, such that:

N = [M1, C1, C2, C2.o1, C3, C3.o1] means N’s direct children = [M1, C1, C2, C2.o1, C3, C3.o1]

We say any code cell C is the parent node for its own AST representation. So for the code shown
in Figure 9.4, this code cell’s direct children are the two Assign statements. The AST structure
shown in Figure 9.4 is a simplified printout of what Python 3’s built-in AST module will
generate out-of-the-box. However, our needs for versioning code with an AST are not the same
as a compiler’s needs for an AST, so we do additional preprocessing. For example, notice that
between the raw code in Figure 9.3 and the AST in Figure 9.4, the compiler “throws out” all the
syntax tokens like [ or = including all spacing and comments. Since the goal of our history
database is to preserve the user’s code in such a way that it can be recreated later, we don’t want
to throw out the user’s comments and code style! Thus our AST includes a representation for
syntax tokens and spaces so that the user’s code can be recreated precisely.

Figure 9.5 shows how we adapt the AST into our history tree for the entire notebook. Since the
dozens of component types in an AST are mostly language-dependent (e.g., the AST node type
for Python are di�erent from the AST node types for Julia, and even more annoyingly, AST node
types for Python 2 are di�erent from Python 3), we call any node of the AST a “Snippet”, and
record its specific type as a property ast_type. For example, the Assign statement in Figure 9.4
becomes Snippet S1.v1 in Figure 9.5. The final terminal leaves of the history tree are Snippet
artifacts of ast_type=Literal, which contain the actual textual values of the code. For history
purposes, we don’t distinguish between literal and primitive types like string, double, int, etc.
and treat all literal and primitive types as the same type Literal.

AST structure adds many additional artifacts to the versioning hierarchy. Ideally we would like
to version the “meaningful” parts of this code such as the two assign statements, such that if
Alice moves these assign statements across di�erent cells, Alice can still track the history of the
value of x and y over time. In Verdant 1 and 2 we version all elements in the AST rather than
attempting to infer “meaningful” parts, which we defer to future work.
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Figure 9.5 This is how the AST from Figure 9.4 translates into our hierarchical
history format. Note that for a small line of code x = df[[‘id’, ‘bedrooms’,

‘bathrooms’,‘sqft_living’]] this adds 12 Snippets and 8 syntax literals (e.g.,
“[”) to the hierarchy! Unlike the compiler’s representation of code, here we
represent spaces, code comments, and syntactical symbols to accurately
replicate the user’s work.

Versioning at the AST level
A crucial warning to readers interested in extending this work is that versioning an AST is hard: it is
both horrible to engineer and also NP-hard. The part of AST versioning that is NP-hard is the
challenge of matching two trees A and B to identify the transformation that describes how A
became B or else decide that A and B are completely di�erent trees (imagine if a user pastes new
code completely replacing all the contents of their code cell). Despite that dire warning, we do
attempt a “good enough” AST versioning in this work with the help of heuristics, including
heuristics described in prior work like variable type information, text edit position, or distance
between two tree configurations [Neamtiu et al. 2005, Koschke et al. 2006].

To version at the AST level, we use the following procedure in Verdant-1 and Verdant-2. In later
versions of Verdant we abandoned AST versioning for performance reasons.
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1. User makes an edit. Pick the most specific possible artifact that the user edited and mark
it with a ★. This marks the artifact as potentially changed.

2. When an event triggers the save of a new version (see next section about choosing save
events):

a. Update: For each artifact that is marked with a ★ estimate whether it has
changed using a simple textual equals:

i. if not changed: remove the ★, which will remove the artifact from further
consideration.

ii. if changed:
1. Generate the new artifact entry in the history. Process the new

code through a custom parser that uses Python 3’s built-in AST
module to generate a new artifact tree.

b. Match the new artifact against the artifact content prior to editing. For code, this
again requires program analysis using features like type, position in the AST, and
string distance to estimate how the old code artifact tree should be matched to
the new one. Any child-artifacts that the matching decides are either changed or
new are marked with a ★.

c. Commit: Starting from the leaves of the artifact tree for the entire notebook, all
artifacts marked with a ★ have a new version permanently recorded. Next, the
parents of those nodes, traversing up the tree to the notebook artifact, have new
versions committed to account for the new changes in their children. Finally all
markers are removed.

d. Save history to file. Write the new model to the .ipyhistory file as the latest
version of the user’s work.

The advantage of this approach is that adding AST history allows users to retrieve the history of
specific lines of code or specific parameters. Snippet history also helps users like Alice working
across cells: by listening for copy-paste events in the Jupyter notebook, we can trace the
provenance of individual snippets as they move from one cell to another.

The disadvantages are performance and tractability. Estimating the best match between two
AST trees is computationally hard at worst, and while tractable using heuristics, we found in
practice that this match step was too computationally expensive to be repeatedly executed in an
interactive environment. Due to these pros and cons, some iterations of Verdant discussed
below do use AST versioning, which allows for some highly promising user interaction concepts.
However, as we moved into higher fidelity and deploying our history system to users, we ended
up cutting AST history from Verdant due to its brittle nature and high runtime costs.
Nonetheless, we believe that some form of code snippet versioning is a worthwhile avenue to
tackle in future work, because it does add clear value to the user. In our final user study of
Verdant, versioning code in units of cells alone was a major limitation noticed by users (Chapter
14). In real practice, many users are like the fictional Alice, developing code across multiple
cells. This behavior is also a key part of code iteration with cells that we noted in the Notebook
Usage Study (Chapter 4). Thus we believe it is worthwhile to revisit the code snippet problem,
but also highly advise those who embark on this issue: what would be good enough from the user’s
perspective? The solution to performative code snippet versioning is, I believe personally, to
reframe the problem in such a way that avoids AST matching all together. Instead of trying to
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version at such a fine grain as AST nodes, the more pressing problem of versioning code as it
migrates between cells (Chapter 14) could be approached without ASTs at all.

CHAPTER CONCLUSIONS
In this chapter we’ve described our approach for the history model used in the remainder of this
dissertation. The key questions outlined in this chapter, such as how often to version, what
granularity to version at, and how to store history for fast retrieval are design questions that
have multiple viable answers and implementations. For a reader interested in building their
own history model for fine-grained relational history of artifacts, we encourage you to use this
chapter as a worked example for how we addressed each design question for Verdant, but these
design questions are worth revisiting for a new context. For instance, to adapt Verdant-style
history into something that works directly with Git requires re-considering the time units at
which history will be collected, and how a relational history structure will fit into Git’s own
idioms. To translate Verdant-style history into a normal Python script file instead of a notebook
file requires reconsidering what the units of an “artifact” should be in the absence of a cell
structure. One possibility is line-level or statement-level artifacts, in a similar fashion to Git
“blame” functionality. Finally, an important theme to take away from this chapter is that the
structure of history data, and all of these design choices for data collection, are first and
foremost about creating a user experience. In the case of history, the version data is the primary
thing that users will directly interact with, so getting the structure of versioning right cannot be
done in isolation as a “back-end” systems e�ort. Instead we encourage those implementing a
system like this to test early and often how the data being collected will appear and be used by
practitioners.
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Chapter 10:  Interactive Versioning within a Notebook
Featuring Verdant-1

Research in this chapter was done in collaboration with Brad A. Myers18

INTRODUCTION

This chapter combines our earlier work on Variolite (Chapter 7) and Rose Quartz (Chapter 8)
with our Notebook Usage Study from Chapter 4. In Verdant-1 we move our design goal to
capturing a full picture of a user’s experiment within a notebook. This new scoping of our design
goal is informed by our work in Rose Quartz. Unlike the di�culties we faced collecting
workflows between multiple tools with Rose Quartz, a Jupyter notebook serves as a sandboxed
environment where we can readily collect a semi-complete picture of a data worker’s
experiment workflow. We say “semi-complete” because a notebook encapsulates a user’s
notes, code, and output but does not hold the data itself that the user is working on. While we
leave the limitation of data history for future work, scoping to a notebook environment allows
us to start experimenting with far more types of designs driven by real experiment data. In
Verdant-1, we begin with interface design ideas very similar to what we had in Variolite.
Informed by the limitations of Variolite’s history model, we use the new history model
discussed in the prior Chapter 9. A complete and automated history of the user’s notebook with
that model allows us to refresh snippet versioning ideas from Variolite with new flexibility.
Having the history of everything opens up the possibility of giving the user history of anything at
a moment’s notice.

DESIGN GOAL: CREATE A BETTER HISTORY EXPERIENCE FOR EXPERIMENTING IN NOTEBOOKS

With a complete history of a data scientist’s work in a notebook (Chapter 9), we now have all the
data we need to prototype user interactions. Collecting the appropriate versioning is just one
end of the problem. Without carefully designed interactions, we know that a pile of log data is
not usable. A key problem is the sheer number of versions. Prior provenance research illustrates
that in real use, capturing history data produces a large number of versions with complex
dependency relationships and a convoluted mix of di�erent analysis intents that can become

18 This chapter is based in part on the conference paper: Mary Beth Kery, and Brad A. Myers.
"Interactions for untangling messy history in a computational notebook." In 2018 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 147-155. IEEE,
2018.
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overwhelming for a human to interpret [Pimentel et al. 2015]. Behavioral research has found
that it is both a challenging and tedious task for human programmers to pick out and adapt
relevant version data from long logs of code history [Ragavan et al. 2016]. Even when using
standard version control like Git, software developers often struggle with information overload
from many versions, all of which are rarely labeled or organized in a clear enough way to easily
navigate [Codoban et al., 2015]. In our own study (Chapter 3) we saw that even when data
scientists keep history of their exploratory code, e.g., v1...vn of a file, they struggle to recall
which versions contain what. We hypothesize that making experiment history fast and easy to
browse, search and interrogate is the key to making those past versions useful to data scientists.

In this prototype, we explore new interactions for providing easy-to-use history support for
data scientists in their day-to-day tasks. We explore the design space of fast and lightweight
interactions for tasks such as:

● The user wants to quickly get to the history of an artifact, for instance to backtrack.

● The user wants to compare between versions of di�erent artifacts including code, tables,
and images, which benefit from di�erent di�ng techniques.

● The user wants to reproduce a specific version of an artifact

PAPER PROTOTYPING

Prototyping was conducted at the HCII at Carnegie Mellon University with the help of Brad
Myers who contributed to the design.

In early sketches and mockups we were interested in visualizing history as a dimension of code.
Since the notebook document contains cells ordered top to bottom, we experimented with
displaying history right to left as a horizontal ribbon of versions overlaid on top of the code
(Figure 10.1).

Figure 10.1 Sketch of horizontal ribbon concept
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Figure 10.2 Sketch of origami folds concept

We also experimented with showing collapsed/hidden versions as ‘folds’ in the horizontal
history ribbon. This early paper prototype concept was nicknamed “Origami” for the paper
visual metaphor, but was eventually discarded for being too decorative (Figure 10.2).

SYSTEM: VERDANT-1

To test our designs, we developed a prototype tool called Verdant-119 (from the meaning “an
abundance of growing plants” [Wiktionary 2018]) as an extension for Jupyter notebooks.
Verdant-1 is built as an Electron app that runs a Jupyter notebook, and is implemented in
HTML/CSS and Node.js.

Note that Verdant-1 implements the history model discussed in Chapter 9. The underlying
naming scheme used in the history database from Chapter is not displayed to the user in this
prototype, but is still the same in Verdant-1’s back-end.

Although a notebook may contain many code, output, and markdown cells, prior work suggests
that data scientists work on only a small region of cells at a time for a particular exploration
(Chapter 4). First, we show how Verdant-1 uses inline interactions so that users can see versions
of the task-related artifacts they are interested in, and not be overloaded with unrelated version
information for the rest of the notebook.

Ambient Version Indicators
Following tried and tested usability conventions of other tools that support investigating
properties of code, such as linters, a version tool should be non-disruptive while the user is
focused on other tasks, while giving some ambient indication of what information is available to
investigate further. Linters often use squiggly lines under code and indicator symbols in the
margins next to the line of code the warning references. Verdant-1 takes the approach shown in
Figure 10.3, where a number in the right margin of the notebook cell indicates how many
versions exist for a given artifact. While a linter conventionally puts an icon on one line, we
decided instead for the height of the version indicator to stretch from the bottom to the top of
the text span it is referencing to more clearly illustrate which part of the code the information is

19 It was just named “Verdant” in the original paper [Kery & Myers 2018], but renamed in this
thesis to be Verdant-1 to distinguish it from subsequent versions.
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about. Finally, if the programmer clicks on the indicator, this will open the default active view,
the ribbon display (Fig 10.3, 4) with buttons for reading and working with the versions of that
artifact, as described next.

Figure 10.3 In (1) the user selects code of interest, here a code cell. Instead of
explicitly creating a variant box, in (2) a passive indicator to the right of the
selection indicates how many specific versions exist for that code. In (3), the
user selects a single line of code with their cursor, and the indicator changes to
show that there are just 4 versions of that code, despite 9 versions of the entire
code cell. If the user clicks on the indicator (3), a variant box and header
appears (4), that lists all versions of that code. Besides code, the variant box
interaction also works for markdown and output cells.

Navigating Versions
The “ribbon display” shown in Figure 10.4 is the default way Verdant-1 shows all versions for
an artifact, lined up side by side to the right of the original artifact. We struggled to fit versions
in the kind of standard hovering pop-up used by code linters or autocomplete to supply
information inline with code. Versioning data takes up a lot of screen space since it consists of a
long ordered list of information and is continuously updated as the data scientist runs their
code. So in the ribbon visualization, because code and cells in the notebook are read from top to
bottom, the version property of an artifact is visualized left to right, with the leftmost version,
which is shown in blue (Figure 10.4), always being the active version. Here “active version” will
always refer to the version of the artifact that is in the notebook interface itself and that is run
when the user hits the run button in the notebook. Since the ribbon is a horizontal display, it can
be navigated by horizontal scrolling, the right and left arrow keys, or by clicking the ellipsis bar
at the far right of the ribbon which will open a drop-down menu of all versions. The ribbon
display always shows the most recent versions first, making recent work fast to retrieve on the
intuition that recent work is more likely to be relevant to the user’s current task.
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Figure 10.4 Verdant-1 in-line history interactions. For the top code cell, a
ribbon visualization shows the versions of the third line of code. In the output
cell below, a margin indicator on the right shows that there are 5 versions of
the output.

Comparing Versions
Among many versions, it is important for a data scientist to quickly pick out what is important
about that version out of lots of redundant content. In Verdant-1, a di� is shown in the ribbon
and timeline views by highlighting di�erent parts of a prior version in bright yellow (Figure
10.4). For code, Verdant-1 runs a line-oriented textual di� algorithm consistent with Git, and
for artifacts like tables that are rendered through HTML, Verdant-1 runs a textual di� on the
HTML versions and then highlights the di�ering HTML elements. Di�ng can help a user
narrow down what they are looking for. If a data scientist Lucy opens a cell’s version and sees
that only a certain line has changed much over the past month, she can adjust the ribbon by
highlighting just that line’s code with her cursor to show only versions in which that line
changed, hiding all other versions that are not relevant to that change.
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Figure 10.5. Timeline view. By dragging the top orange bar side to side the user
can change the version shown. By dragging the lower orange bar, the user can
set the opacity of the historical version they are viewing, in order to see it
overlayed on top of the currently active output version.

Since an “artifact” can be a tiny code snippet or a gigantic table or a graph or a large chunk of
code, one-size-fits-all is not the best strategy for navigation and visualization across all these
di�erent types. For instance, for visual artifacts like tables or images, visualization research
[Gleicher et al. 2011] has found that side-by-side displays can make it di�cult to “spot the
di�erence” between two versions. In the menu bar that appears with the default ribbon, a user
can select a di�erent way of viewing their versions. For visual artifacts, overlaying two versions
is suggested, so a timeline view can be activated (Figure 10.5), by selecting the symbol. A data
scientist can navigate the timeline view by dragging along the timeline, or by using the
right/left arrow keys.

For visual di�ng, Verdant-1 again relies on advice from visualization research [Gleicher et al.
2011] and uses opacity so the user can change the opacity of a version they are looking at to see
it overlayed on top of their currently active version.

For all artifact types, there are multiple kinds of comparisons that could be made, each of
which optimizes for a di�erent (reasonably possible) task goal:

● What is the di�erence between the active version and a given prior version?
● What changed in version N from the version immediately prior?
● What changed in version N from version M, where M and N are versions selected by the

data scientist from a list of versions?

For an initial prototype of Verdant-1, we chose to implement the first option only, on the
hypothesis that spotting the di�erence between the data scientist’s immediate current task and
any given version will be most useful for spotting useful versions of their current task out of a
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list. We then used usability testing to probe through discussion with data scientists which kinds
of di� they expect to see, and what task needs for di�s they find important (see study below).

Searching & Navigating a Notebook’s Full Past
In-line versioning interactions allow users to quickly retrieve versions of artifacts present in
their immediate working notebook, but has the drawback that some versions cannot be
retrieved this way. The cell structure of a notebook evolves as a data scientist iterates on their
ideas and adds, recombines, and deletes cells as they work (Chapter 4). Suppose that Lucy once
had a cell in the notebook to plot a certain graph, but later deleted it once that cell was no longer
needed. To recover versions of the graph, Lucy cannot use the in-line versioning, because that
artifact no longer exists whatsoever in the notebook: she has no cell to point to and indicate to
“show me versions of this”. So to navigate to versions not in the present workspace, and to
perform searches, Verdant-1 also represents all versions in a list side pane (Figure 10.6).

Figure 10.6. In the list view, the user can select one or more versions to act
upon. With the search bar, the user can filter versions using keywords or dates.

The list pane can be opened by the user with a button, and is tightly coupled with the other
visualizations such that if the user selects an artifact in the notebook, the pane will update to
list all versions of that artifact, and stay consistent with the current selected version. If no
artifact is selected, the list shows all versions of the notebook itself. With a view of the entire
notebook’s history, the user can see a chronologically ordered change list beginning with the
most recent changes across all cells in the notebook. Say Lucy wants to retrieve a result she
produced last Wednesday that has since been deleted from her current notebook. Either by
scrolling down the list or by using the search bar to filter the list by date, she can navigate to
versions of her notebook from last Wednesday to try to pull out the relevant artifact when it last
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existed. Alternatively, she can use the search bar to look for the result by name. Note that Lucy
does not need to actually find the exact version she is looking for from this list. Using foraging,
if she can find the old cell in the list that she thinks at some point produced the result she is
thinking about, she can select that cell in the list to pull up all of its versions of code and output.
From there, she can narrow her view further to only show the output produced on Wednesday.
This method of searching relies on following clues across dates and dependency links among
artifact versions, rather than requiring the data scientist to recall precise information that
would be needed for a query in a language like Prolog [Pimentel et al. 2015].

Replay older versions
When data scientists produce a series of results, they may later be required to recheck how that
result was produced. Common scenarios include inspecting the code that was used to check that
the result is trustworthy, or reproducing the same analysis on new data (Chapter 4). Without
history, reproducing results is commonly a tedious manual process, where the data scientist
needs to find or re-create the original code from memory (Chapter 3).

To replay any older version of an artifact in the notebook, a user in Verdant-1 can make that
version the active version and then re-run their code. In any of the in-line or list visualizations
of an artifact’s versions, the data scientist can select an older version of an artifact and use the
symbol button to make that version the active one. The formerly active version for that artifact
is not lost, since it is recorded and added as the most recent version in the version list. If a data
scientist wants to replay a version of an artifact that no longer exists in the current notebook,
that artifact will be added as a new cell of the current notebook, located as close as possible to
where it was originally positioned.

Although this interaction can be used to make any older version the active one, it completely
ignores dependencies that the older version originally had. Our rationale behind this is clarity
and transparency: if Lucy clicks the symbol on a certain version, that changes only the artifact
the version belongs to. If instead Verdant-1 also updated the rest of the notebook, changing
other parts of the notebook to be consistent with the version dependencies, then Lucy may have
no understanding of what has changed. In addition, sometimes data scientists use versions
more as a few di�erent options for doing a particular thing (e.g., to try a few di�erent ways for
computing text-similarity) and are not interested in the last context the code-snippet-version
was run in, just in reusing the specific selected code-snippet-version. To work with prior
experiment dependencies, Verdant-1 provides a feature called “Recipes”, described next.
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Figure 10.7. In the recipe view, a user sees the output they selected first, and
then an ordered series of code cells that need to be run to recreate that output.

Output Recipes
What code should a data scientist re-run to reproduce a certain output? Once the data scientist

finds the output they would like to reproduce, they can use the symbol button (shown at
the top of Figure 10.7). Verdant-1 uses the chain of dependency links that it has calculated from
the output to produce a recipe visualization, shown in Figure 10.7. The “recipe” appears in the
side list pane as an ordered list of versions labeled “step 0” to “step N”. Consistent with all
other visualizations, the recipe highlights in yellow any code in the steps that is di�erent from
the currently showing code in the notebook. So, if a code cell is entirely absent from the
notebook, it will be shown entirely in yellow. If a matching code cell already exists in the
notebook and perfectly matches the active version, it will be shown entirely in grey in the recipe
with a link to navigate to the existing cell to indicate that the data scientist can just run the
currently active version of that code. Note this dependency information is imperfect, because
we do not version the underlying data files used, so if the dataset itself has changed, the newly
produced output may be still di�erent than the old one. We do not address the issue of
versioning datasets in the scope of this thesis.

Trust and Relevancy of versions at scale

A data scientist will try many attempts during their experimentation, many of which may be
less successful or flawed paths (Chapter 3) [Patel et al. 2008]. Thus, especially when
collaborating with others, it can be important for a data scientist to communicate which paths
failed (Chapter 4) [Codoban et al., 2015], and how they got to a certain solution. “Which path
failed” requires a kind of storytelling that it is unlikely automated methods can capture, thus it
would be most accurate for the data scientist to label certain key versions themselves. However,
we know from how software engineers use commits (often lacking clear organization or
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naming) that programmers can be reluctant to spend any time on organizing or meaningfully
labeling their history data [Codoban et al., 2015]. Under what circumstances would data
scientists be motivated to label trustworthiness and relevancy of their code? To experiment
with interactions for this purpose, Verdant-1 uses an interaction metaphor of email in the
version list. Like in email, the data scientist can select one or many of their versions from the
list (filtering by date or other properties through the search bar) and can “archive” these
versions so that they are not shown by default in the version list. Also, the data scientist can
mark the versions as “buggy” to more strictly hide the versions and label them as artifacts that
contain dangerous or poor code that should not be used. If an item is archived or marked buggy,
it still exists in the full list view of versions (so that it can be reopened at any time), but it is
hidden by being collapsed. If an item is archived or marked buggy and has direct output, those
outputs will be automatically archived or marked buggy as well. During the usability study,
discussed below, we showed the archive and “buggy” buttons to data scientists to probe how, if,
and under what tasks they think they would actively manually tag versions like this.

VERDANT-1 USABILITY PILOT
Verdant-1 is a prototype that introduces multiple novel types of history interaction in a
computational notebook editor. Thus it is necessary to test both the usability of these
interactions and also to investigate through interview probes how well these interactions seem
to meet real use cases to validate that our designs are on the right track.

For our study setup, we aimed to create semi-realistic data analysis tasks and history data. For
Verdant-1 to store and show data science history at scale and in realistic use, we anticipate a
later stage field study where data scientists would work on their own analysis tasks in the tool
over days and weeks. Here for an initial study, we avoid participants having to work extensively
on creating analysis code by instead asking them to use Verdant-1 to try to navigate and
comprehend the history of a fictitious collaborator’s notebook. To create realism, we chose this
notebook out of an online repository of community-created Jupyter notebooks20 that are
curated for quality by the Jupyter project [Jupyter Project 2018]. From this repository we
searched for notebooks that contained very simple exploratory analyses and that needed no
domain-specific knowledge to ensure the notebook content would not be a learning barrier to
participants. The notebook we chose does basic visualizations of police report data from San
Francisco21. Since currently detailed history data is not available for notebooks, we edited and
ran di�erent variations of the San Fransisco notebook code ourselves to generate a
semi-realistic exploration history.

Next, we recruited individuals who A) had data science programming experience, B) were
familiar with Python, and C) had at least two months experience working with Jupyter
notebooks. This resulted in five graduate student participants (1 female, 4 male) with an
average of 12 years of programming experience, an average of 6 years of experience working
with data, and an average of 3 years experience using notebooks. In a series of small tasks,
participants were asked to navigate to di�erent versions of di�erent code, table, and plot
artifacts using the ribbon visualization, di�s, and timeline visualization. The study lasted from

21 lmart, “SF GIS CRIME,” GitHub. https://github.com/lmart999/GIS.

20 https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
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30 to 50 minutes and participants were compensated $20 for their time. Participants will be
referred to as D01 to D05.

All participants were able to successfully complete the tasks, suggesting at least a basic level of
usability. Among even this small sample, we were surprised by the diverse use cases
participants expressed that they had for the tool. D01 and D05 expressed that they would like to
use the ribbon visualization of their versions about every 1-2 days to reflect on their
experiment’s progress or backtrack to a prior version. D02 was largely uninterested in viewing
version history, but instead was enthusiastic about using the ribbon visualization to switch
between 2 to 4 di�erent variants of an idea. D03 was less interested in viewing version history of
code cells, but greatly valued the ability to view and compare the version history of output cells.
D03 commonly ran models that took a long time to compute (so they only wanted to run a
certain version once), and currently to compare visual outputs, had to scroll up and down their
notebook. However, D03 did appreciate the ability to version a code cell, as a safe way of keeping
their former work in case they wanted to backtrack later. Finally D04 primarily used notebooks
in their classwork, and were very enthusiastic about using code artifact history to debug, revert
to prior versions, and to communicate to a teaching assistant what methods they had attempted
so far when they went to ask for help. D02, D03, and D04 expressed they would like to use the
inline history visualizations “all the time” when doing a specific kind of task they were
interested in, whether that be comparing outputs or code.

In this initial study, a participant’s imagined use case a�ected which features of Verdant-1 they
cared about most. When probed about the use of bookmarking, D02 felt strongly that
bookmarks would be useful for their use case of switching among a few di�erent alternative
versions, however the other participants who had more history-based use cases were neutral
about bookmarking. For the probe in which we showed email-like buttons for archiving or
marking code as buggy, participants had very divergent opinions. D01 said they would want to
mark versions as buggy and said that they would want to group a bunch of versions and leave a
note about what the problem was, but would never use the archive functionality. D02 said they
would likely mark versions as buggy, but would be wary of using the archive button to hide
older or unsuccessful content. D02 disliked the “archive” metaphor because they felt the
relevance of di�erent versions was too task dependent: a version that seems worth archiving in
one task context might be very relevant for a future task. All other participants were neutral
about the two options, and saw themselves using them to curate their work occasionally. While
participants said they would use the inline visualizations daily or every other day when working
within a notebook, they said they would use the list pane or recipe visualizations only once a
week or once a month. D05 said that although they imagined themselves tracing an output’s
dependency rarely, this feature was extremely valuable to them when needed, since currently
when D05 must recreate output with today’s tools, this was a tedious and error-prone manual
process of trying to recode its dependencies from memory.

In terms of di�ng, all five participants were familiar with and used Git, and all guessed that the
yellow-highlighted di� in Verdant-1, like Git, showed what had changed from one version to
the next. When we clarified that yellow highlighting showed the di� between any version and
the active version of the artifact, two participants said that was actually more helpful for them
to pick which other versions to work with. All participants wanted the option of multiple kinds
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of di�. D03, who primarily wanted to di� output, asked for more kinds of visual di�ng than the
timeline scroll such as setting opacity to see two versions overlayed (which we added into
Verdant-1) and a yellow-highlighting for image di�s. Finally, multiple participants disliked
horizontal scroll for navigating the ribbon visualization (horizontal scroll is not a gesture on
many mice devices) and prefered the ribbon’s dropdown menu to select versions.

DESIGN ITERATION

Following the usability study, we did another round of paper prototyping. In the following
several iterations we focused on sketching a more polished look that could integrate into
Jupyter Lab, as opposed to the Jupyter Notebook clone Verdant-1 is implemented as. We also
focussed on redesigning the UI layout to get rid of the ribbon visualization, since the horizontal
ribbon is problematic to scroll and did not scale particularly well. These designs were not
implemented, due to our shifting design focus, discussed next.

Figure 10.8. We moved ambient indicator v4 to the cell margin where the
runtime kernel number In[3] is shown. This fits the visual style of the Jupyter
notebook layout a bit better than the original indicators in Figure 10.3.
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Figure 10.9. Here we again experimented with showing versions as a pop-up
overlay similar to a code completion pop-up. However, this idea was discarded
because it scales poorly with large chunks of code or artifacts with many
versions.

Figure 10.10. To replace the ribbon display (Figure 10.3), here we show versions
in a side-by-side view with the user’s current code to the left and an older
version to the right. The downside of this display is that the user can only see
two versions at a time, and the side-by-side layout does not work so well for
large chunks of code/output/markdown when each version requires a lot of
horizontal screen space.
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Figure 10.11 The same side-by-side concept as Figure 10.10 but here we add di�
highlighting to the code and add in all of Verdant-1’s history features into the
cell header overlay.

Figure 10.12 Here we show the same ambient version indicators as Figure 10.8
and the same in-context header display as Figure 10.11, except this time for
output. Shown is a di� for textual output where the di� is inline, and the user
can pick which kind of output di� they want using the dropdown menu next to
the button labeled ‘di�’.
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LIMITATIONS OF SCALE

Our design explorations before and after the initial usability test of Verdant-1 all were dogged
by issues of scale. What do we do when each version of an artifact requires a lot of screen space?
Lots of possible designs look visually good with 2-3 versions of an artifact, but what happens
when each artifact has 30 versions on screen? Scale problems a�ect the visuals of our UI design,
but also user interactions. Verdant-1’s list pane, shown in Figure 10.6, works reasonably well
when there are not too many versions, however we know from prior work and our own
experiments with history modeling that a user can easily accrue hundreds of versions of their
notebook within a few hours of working on it.

Due to these limitations, we decided to pivot to tackling interacting with history at scale as our
next step of research, discussed in Chapter 11.

CHAPTER CONCLUSIONS
Verdant-1 was well received by both our pilot users and the research community. Even as we
move on to focusing on history at scale and di�erent research problems in the following
systems of this dissertation, parts of Verdant-1 remain exciting. With automatic history
collection going on silently in the background as a practitioner works, in-line version access in
Verdant-1 comes as a somewhat magical experience: click on anything in the notebook, it’s
specific history just appears. That’s it. The simplicity of having all of that information available
at a click is exciting in that all that history data would never have been available in ordinary data
work practice (Chapter 3), but simply appears without any e�ort at all in Verdant-1. While
in-line versioning on click does not scale to browsing large amounts of history, it is a feature
that has been consistently popular and requested by participants trying out our history tools in
the rest of this dissertation.

Next, I will try to tie together some of the major design takeaways from Verdant-1:

+ Inline access of the history of any artifact is a wonderful thing: We found that the
ability to click on specific content and see its specific history is consistently popular with
users of our prototypes, in Verdant-1 but also in subsequent studies of Verdant 2 and 4.
The appeal is that users are able to see the history of what content is right in front of
them without having to search or skim through a bigger pile of history logs. This
interaction is also similar to Git blame, although our history tools keep much more
detailed history.

+ Help users reproduce results as a “recipe”: In our pilot usability study and reception by
the research community, the metaphor of reproducing output as a “recipe” was easy for
users to understand. In Verdant-1, the recipe UI shows just the code steps needed to
recreate an output, but not the “ingredients” such as which data file needs to be run. To
fully realize the recipe UI metaphor, more data would need to be collected at runtime,
similar to the program slicing method used by Head et al. [Head et al., 2019]

- Inline history visualization makes it di�cult to see how versions of di�erent artifacts
relate: Inline history access is most beneficial for seeing a single artifact’s history. We
found in prototyping that showing all the versions of one artifact A and elsewhere
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showing all versions of a di�erent artifact B allows users to examine A and B individually
but tells the users very little about how the histories of A and B relate. With limited
screen space in an inline history visualization, and since A and B can be quite a distance
from each other in document placement, di�erent UI approaches are needed to make
history relationships clear.

- Inline history visualization does not scale well: Just like we found that tab UI in
Variolite works best with just 2-4 versions, we found that inline history visualization
works best for users when the user is comparing just 2 versions of the same artifact side
by side. In later designs we incorporate di�erent selection dropdowns so the user can
pick which 2 versions to compare, but due to screen space limits, usually just 2 versions
can be seen on screen without scrolling, regardless of whether we put versions
side-by-side horizontally or vertically.
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Chapter 11: Recovering Experiment History Facts at
Scale

Featuring Verdant-2

Research done in collaboration with Bonnie E. John, Patrick O’Flaherty, Amber Horvath, and Brad A.

Myers22

INTRODUCTION

Again in this chapter, we shift to look at a di�erent part of the design space. Verdant-1 in the
previous Chapter 10, like Variolite before it (Chapter 7), was focused on helping users access the
history of what they can see in front of them in their current document. Both Verdant-1 and
Variolite featured an interaction where a user could simply click on content to access its history.
For cells or code that no longer exist in the current document, both Verdant-1 and Variolite
deferred all of this other history to a side pane UI that simply lists all other history in
chronological order.

By the end of our testing in Verdant-1, we became confident that our designs really do address
the needs we identified back in our Exploratory Programming Study in Chapter 3, to let
practitioners quickly access versions of any specific content in their document. However, we
had, to this point, done very little to address the issue of scale. In our Exploratory Programming
Study, our Notebook Usage Study (Chapter 4), and in Rose Quartz (Chapter 8) we repeatedly
found that having history isn’t the same as it being usable or useful. Now in Verdant-2 we
decided to tackle this issue, and turn to focusing our design e�orts on making large amounts of
history data useful to practitioners.

DESIGN GOAL: SUPPORT FAST & EASY HISTORY RETRIEVAL AT SCALE

If a data scientist wants to answer a concrete question from their prior work, such as “why did I
discard this data feature from my model?”, they will need that:

1. The history is su�ciently complete: the experiments that led to each
particular choice must have been recorded in the first place in enough
detail to understand or replicate.

22 This chapter is based in part on the conference paper: Mary Beth Kery, Bonnie E. John, Patrick
O'Flaherty, Amber Horvath, and Brad A. Myers. "Towards e�ective foraging by data scientists to
find past analysis choices." In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, pp. 1-13. 2019.
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2. The cost of tracking down an answer is not prohibitive. History is
reasonably easy to search, compare, and understand.

Verdant-1 reasonably achieved (1) by automatically capturing checkpoints of a data scientist’s
notebook at regular intervals, such as every time a user runs their code or saves their notebook.
However, as we discovered in our initial user study, some of the user interactions in Verdant-1
don’t scale to dozens or hundreds of versions.

The cost of retrieving useful information out of long history logs typically is prohibitive, but we
have reason to believe that solving this problem could greatly benefit data scientists. If data
scientists and others could e�ectively interrogate the history of an analysis or model, it would
make the underlying choices an author made more transparent: why is the model this way? Why
not this way? Analysis and model interpretability, transparency, and robustness are currently of
great interest to society as a way of verifying the quality of the models and analyses that impact
the world.

Prior research provides some hints for foraging in history. Navigating corpuses of version data
and reusing bits of older versions has been shown to be di�cult for programmers, from
professional software engineers to novices [Codoban et al., 2015][Ragavan et al. 2016]. Srinivasa
Ragavan et al. have modeled how programmers navigate through prior versions using
Information Foraging Theory (IFT) [Ragavan et al. 2016] in which a programmer searches for
the information by following clues called “scents”. Information foraging theory (IFT),
developed by Pirolli and Card [Pirolli 2007], stems from the biological science concept of
optimal foraging theory as applied to how humans hunt for information. IFT includes certain
constructs adopted from optimal foraging theory: predators correspond to humans who are
hunting for information, their prey. They perform these hunts in parts of the UI, called patches.
In the context of foraging in software engineering, the programmer is the predator, the patch is
an artifact of the environment which can vary from a single line of code to a generated output or
a list of search results, and the piece of information that the programmer is looking for is the
prey. A cue is the aspect of something on the user’s screen that suggests a particular place that
they should look next.

IFT has been applied to source code foraging in a variety of domains including requirements
tracing, debugging, integrated development environment (IDE) design, and code maintenance
[Fleming et al. 2013, Lawrance et al. 2007, Lawrance et al. 2008, Perez & Abreu 2014, Piorkowski
et al. 2015]. The design of our tool builds upon this work by taking into account design
implications for how programmers forage for information [Guo Dissertation 2012, Lawrance et
al. 2007, Perez & Abreu 2014] by providing specific foraging cues such as dates, previews, and
di� highlighting.

Given these findings, we aim to support foraging and associative memory by providing plenty of
avenues for a data scientist to navigate back to an experiment version based on whatever tidbit
or artifact attribute they recall.
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DESIGN PROCESS

Unlike our prior prototypes, Verdant-2 was prototyped during a summer internship at
Bloomberg L.P. where Bonnie E. John, a researcher and UX designer, and Patrick O’Flaherty, an
interaction designer with a visual design background, both contributed greatly to the design.
Brad A. Myers gave design input as well. During the design process we received some feedback
from the UX team at Bloomberg as well as from data analysts and machine learning experts at
Bloomberg.

Usage Scenarios

Given the breadth of data science tasks, we first analyzed available data on specific questions
data scientists have articulated that they want to understand from their history (Query Design
Exercise, Chapter 4). We used these data to map out use cases to guide our design:

(1) A data scientist is working alone with their final results as the deliverable. Over a long
period of work, they use history as a memory aid to check their intermediary results. (Verdant-1
usability pilot participant, Chapter 10)

(2) A data scientist is communicating their in-progress experimentation to a colleague. For
instance, an analyst is using history to justify a model to her boss. (Exploratory Programming
Study participant, Chapter 3)

(3) History is sent along with a data science notebook for process transparency. For
instance, a professor can use history to understand how a student got to a specific result on an
assignment (“show your work”). (Verdant-1 usability pilot participant, Chapter 10)

For now, the collaborative examples above still assume history is coming from a single data
scientist. Given the new interaction space and the still understudied area of collaborative data
science, we argue starting with exploring how an individual data scientist can navigate history is
an important first step, and leave collaborative support for future work.

Sketches
In our initial design mockups, we focused on the problem of making a long list of versions of the
entire notebook readable such that a data scientist might quickly skim over the list and spot the
version they’re looking for.
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Figure 11.1. In this concept for a history side pane (left of the notebook)
notebook versions are organized in an “activity feed” by date and time. We
experimented with visualizing what changed in each version. For instance the
block with the minus sign in run #48 in the first entry at 4:23pm indicates that
the cell was removed. The block with the circle indicates code was changed,
with a label ++4 edits indicating that 4 characters were added to the code.
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Figure 11.2 Here we first introduce a notebook “minimap” as a way of
summarizing at-a-glance what happened in the notebook at a particular
version. In version #48 at 4:23 the horizontal row of 10 blocks represents the
10 cells in this notebook at that time. The fill color/icon of each block indicates
if that cell was changed in this version. In #48 the red block was a cell deleted
and the blue block was a cell edited. In #47 we show the user hovering their
cursor over the blue block in the minimap. An overlay popup appears that
previews what that particular cell looked like in version #47.
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Figure 11.3 In this progression of the “minimap” visualization, we remove the
original text summaries of each version (Figure 11.1) in order to fit more
notebook versions on the screen. We also replace the horizontal row of cubes
from Figure 11.2 with a more condensed minimap styled as underlines or
blocks if changed.

Figure 11.4 We explored a number of di�erent minimap styles. Our
requirements for the minimap were to: 1) fit as much information to
summarize the notebook version as possible, 2) scale up to a notebook
containing 60 cells (this number is from our study results in Chapter 4 as a
“max” reasonable size for a notebook), and 3) make minimaps between
versions align such that the user can visually compare between minimaps of
di�erent versions. Ultimately the scale issue was the most challenging, leading
us to choose a minimalist “tic” design (Figure 11.7) similar to a sparkline
visualization.
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Figure 11.5 Here we explore on-hover visualizations for the ambient version
indicator that sits in the margin of each cell (Chapter 10 Verdant-1). Ultimately
we did not implement the ambient version indicator and these interactions for
Verdant-2 due to engineering time and resource constraints. We felt that the
visualizations in the activity pane (sketches above) were more important to
prioritize for our research questions about foraging for versions.

125



Designing E� ective History Support for Exploratory Programming Data Work - Dissertation - Mary Beth Kery

Figure 11.6 A concept sketch for the Ghost Notebook. When the user clicks on
an older version of their notebook in the activity pane, a full read-only view of
that notebook version appears in a new tab, with di� notation to highlight
what content changed in that version. For this “Ghost Notebook” view we
explored visual ways (such as the blue background) to help users clearly
identify that they are looking at the past rather than their active notebook.
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Figure 11.7 Early ideas for di�erent features to help users search for artifacts: a
search bar in the upper left, the version inspector (discussed below), and a
table view summarizing cells and their versions (added later in Verdant-3).

SYSTEM: VERDANT-2

We began by recycling much of the same software design from Verdant-1, since the base need to
record history is the same. Verdant-1 was built as an Electron App containing a Jupyter
Notebook, which allowed a lot of freedom for hacking with designs but was at this point, not
robust enough to translate into a real tool for use in the wild. We freshly re-implemented
Verdant-1’s history collection and storage design in JupyterLab, and also improved on many
e�ciency details of history collection during the re-implementation. The goal of
re-implementing in a broadly available platform like JupyterLab is that we need Verdant-2’s
history functionality to be more robust to recording bigger projects and longer sessions that will
provide us with that realistic scale of lots of history data. JupyterLab also provides us with
side-pane screen space to test out UI designs situated in and side-by-side with the user’s
notebook.
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Figure 11.7 Overview of Verdant-2: the history interface is a side panel that sits
to the left of the user’s notebook in JupyterLab. Verdant-2 has two view tabs.
The activity view (A) shows ways to identify versions by date/time & location.
The artifact “inspector” view (B) allows the user to click an artifact in their
active notebook to see its full history.

Three key features in the Verdant-2 sidebar (Fig. 11.7 at A & B), support di�erent foraging
strategies users can employ to answer their questions. First, the Activity tab (Fig. 11.7 A)
visualizes history shown by time and event so that the user can forage based on their memory
about when and where a change occurred. A temporal representation of history is core to many
other history tools like a conventional undo pane or a list of commits in Git. Second, the
Artifacts Inspector tab (Figure 11.7 B) organizes history per artifact (cells & output artifacts) so
that a user can forage based on what artifact changed and how a certain artifact evolved over
time. Third, the search bar, shown in both tabs, o�ers a structured search through text queries
and filters, which is useful when the users have a search keyword in mind or when their
memories of when or where to start looking for an answer to their question are less precise.
Each interface is next described in detail.

When? Where? Foraging in the Activity tab
Consider a use case where a data scientist has been iterating for a few hours on code for a
regression, and asks “what were the beta values from the regression I ran earlier today?”
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(Query Design Study, Chapter 4). Each artifact version in Verdant-2 is tied to a global-level
event that triggered it, e.g., a run or save of the notebook. These are displayed in the Activity tab
as a chronologically ordered stream of events (Fig. 11.8) so that the user can visually scan down
to the rough date and time that constitutes “earlier today”.

Figure 11.8. Run activity visualization of a notebook. In (A) each version of the
notebook is visualized in a row with a timestamp and a minimap representing
what changed. The user can expand each event by clicking on the caret beside
the event’s row. In the expanded summary of an event (B) we show exactly
which artifacts were changed (C) and allow the user to add custom annotations
or bookmark that artifact’s version (D).

To give the visualization a bit denser information yield for foraging, run events that occur in
non-overlapping cells within the same 60 seconds are recorded onto the same notebook
version. This slightly reduces the granularity of notebook versions, but allows the user to see
activity at a glance by minute, rather than by seconds.

Minute by minute may serve to spot recent activity, but a data scientist looking for “earlier
today” will likely not recall the exact minute something occurred. However, a user might know
where in the notebook they were working. Perhaps the answer lies during a time when many
cells were added to the end of the notebook, or during a time when several cells in the middle
were being edited and consolidated. We explored many designs to succinctly visualize where in
the notebook activity occurred (Fig. 11.4), so that a user may rely on spatial familiarity with their
own work to visually rule out an entire series of activity where irrelevant areas of the notebook
were edited. Although it might be tempting to display textual labels, cells in a Jupyter Notebook
are (currently) anonymous. The bracketed numbers to the left of cells in Jupyter notebooks (Fig.
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11.7 C) are not stable and change as cells are added, deleted, or moved over time. To overcome
these problems with names and to provide a tighter visualization, we were inspired by both a
kind of tiny inline plot popularized by Tufte, called a sparkline [Tufte 2006], and a variation on
a common code editor navigation visualization called a minimap23. A conventional code
minimap shows a miniature shape of the code file with colorful syntax highlighting so that a
user can click based on spatial memory of where something occurs in their file, rather than
reading exact lines. Prior work has suggested that notebook navigation limits the typical
maximum number of cells in people’s notebooks to roughly 60 [Notebook Usage Study, Chapter
4, Rule et al. 2018]. In Verdant-2’s final minimap design (Figure 11.8 A), the notebook is flipped
counter-clockwise to show the series of cells horizontally to conserve space. Each series of
vertical lines after the notebook version number represents the entire notebook at that point in
time. Each vertical line represents a cell and a taller bold line indicates activity: blue for cell
edits, green for cell creation, red for cell deletion, and grey for running a cell without editing it.
This representation makes it easy to spot such common cues as where cells have been added, or
which portion of the notebook has undergone substantial editing.

Figure 11.9 Inspector tab in Verdant-2 showing all the versions of a table output

What? How? Foraging in the Inspector Tab
Consider the case where the artifact is still in the current document, but has been changed since
the older version the data scientist is looking for. Like preceding systems Variolite (Chapter 7),

23 The exact history of code minimaps is unclear, but the underlying visualization technique
appeared in the seminal 1992 software visualization paper Seesoft [Eick et al. 1992]. The code
minimap visualization is widely supported in modern code editors, e.g., Atom and VS Code
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Juxtapose [Hartmann et al. 2008] and Verdant-1 (Chapter 10), we assume that allowing a user to
directly interact with the artifact in question is the fastest way for them to start foraging for an
alternative version of that artifact. We adapt a design pattern from another context where there
is a rich relational document full of sub-components each with its own sets of properties: a web
page. With a browser’s style inspector, a developer can simply point to any element or
sub-element on the active web page, and a browser pane then displays its style properties. This
inspector interaction is tried and tested across all modern web browsers. We mimic this by,
when the user double-clicks an artifact in the notebook, Verdant-2 provides a list of unique
versions of that artifact (Fig. 11.9). The Inspector is its own tab in Verdant-2 (Figure 11.9), which
is changed in subsequent versions.

Figure 11.10. Search result for a history search of “scatter”

Searching with cues using the Search bar
Imagine that a data scientist is looking for all scatter plots generated within the last week. If
that output is no longer in the notebook, the user will not be able to point to it in the Inspector
(Figure 11.9). The Search bar is meant to give users a start when foraging for elements no longer
contained in the notebook by supporting searching backwards through the history [Yoon et al.
2013]. By searching for “scatter” (Figure 11.10), the user receives a list of the matching versions
of artifacts with that word in code, markdown, or textual outputs. The search mechanism
includes various filters to help the user narrow-down results by artifact type or bookmarked
artifacts.
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Figure 11.11. A past “ghost notebook” in side-by-side comparison with the
user’s current working notebook

Resurrecting full revisions for context
Although our design criteria for the history tabs in Verdant-2 was to boil down information into
small pieces for quick reference, more extended context is needed to answer some questions. If
a data scientist wants to ask “what data was used to generate this plot?”, the code importing
the data and how it was transformed to generate that plot may be spread across multiple
locations in the notebook. Although using the Inspector tab, the user can view the detailed
history of any artifact of cell/output size or smaller, we provide a di�erent UI for notebook
artifact versions, called a ghost notebook. This view allows the user to see a prior full notebook,
and also shows the context of how specific smaller artifact versions are related to each other in
that notebook. As shown in Fig.11.11, the ghost notebook is immutable, highlights where
changes were made in that notebook version, and has a di�erent background color from the
user’s active Jupyter notebook to avoid accidentally confusing the two. The two notebooks can
be viewed side-by-side, allowing the user to compare the older ghost notebook to their current
notebook. The user can also open multiple ghost notebooks to compare across multiple
historical states. An example use case for this would be to compare versions of a code file side by
side [Codoban et al. 2015] to figure out “what changed?” between an earlier working version of
the notebook and one that contains a bug.

JUPYTERCON SCAVENGER HUNT STUDY
The primary goal of our evaluation was to gather data about how the features of Verdant-2
assist or hinder data scientists in performing realistic foraging tasks. We had received positive
feedback about our ideas from data scientists throughout the design process, so in this
evaluation we sought task-based behavioral data to confirm or refute those positive opinions,
and provide guidance for redesign. As Verdant-2 is an extension to JupyterLab, we coordinated
closely with the Jupyter Project and ran our study at their JupyterCon2018 conference.
JupyterCon annually gathers a concentrated group of data scientists, from a variety of sectors,
with experience in computational notebooks, providing an opportunity to collect data from
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professionals with a range of experience in a short period of time. We conducted the Notebook
Usage Study (Chapter 4) in the same setting the previous year.

Challenges and Limitations of the Study
A conference setting presents considerable challenges to testing a complex tool intended for
long-term use by expert users on their own code. A major di�erence between the primary use of
a history tool, i.e., querying previous versions of your own code, and what we can study at a
conference, is that we had to ask participants to find things in another person’s code.
Examining other people’s code does happen in the real world, e.g., a manager of data scientists
told us that he would find Verdant-2 useful for understanding his employees’ thought
processes, and professors sometimes grade student code on the basis of the process they
employed as well as the end-product. Another di�erence is the skill with the tool itself that a
data scientist would build up through long-term use. Both of these problems could be overcome
through a longitudinal study. We conduct a longer-term study later in Part III of this
dissertation.

Nonetheless, we believe the lack of skill with the tool, no knowledge of the code, and limited
time to do the tasks can bring into stark relief any shortcomings in Verdant-2’s UI design. The
problems and virtues of Verdant-2’s UI uncovered through performing tasks here give us a
glimpse of how useful Verdant-2 would be at least for novice users and what we would need to
do to improve it.

Study Materials
In order to create a realistic data science notebook history that both contained substantial
experimentation and was simple enough for most participants to understand in a few minutes,
we looked at some of the many data science tutorial notebooks available on the web. I created a
notebook from scratch by following Kaggle’s24 machine learning tutorial level 1 on a housing
selling-price dataset, followed by copying in and trying out code from Kaggle community
notebooks from a competition with the same dataset25. Creating a notebook this way, relying
heavily on a variety of other programmers’ code, was intended to reduce any bias that the study
notebook history would be too specific to one programmer’s particular coding style. The
resulting 20 cell notebook contained over 300 versions.

The Tour.
We wrote eight instruction pages overviewing Verdant-2’s features and how they worked. Each
page contained a screenshot and annotation that drew attention to a feature and explained how
it worked. It took less than 3 minutes to read through this document, shown as a web page, and
participants could refer back to it at any time since both the tutorial and Verdant-2 were tabs in
the same web browser.

25 Tutorial: https://www.kaggle.com/learn/machine-learning, and competition:
https://www.kaggle.com/c/house-prices-advanced-regression-techniques.

24 Kaggle is a popular platform where learners can practice data science skills and compete in
data science competitions hosted by various companies and organizations.
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The Tasks
In our Query Design Exercise (Chapter 4), we asked data scientists “Given your own work
practices, type as many [questions] as you can think of that could be helpful to you to retrieve a
past experiment”. We converted some representative questions from the data scientists into
tasks for the current study. Since the participants did not write the notebook, we had to
substitute explicit goals for the memories a notebook author would have when setting foraging
goals. For instance: “how did I generate plot 5” became a task “Find a notebook version that
generated a plot that looks exactly like this [image shown]”, and “What data sources have I
been using over the last month?” became a task “How many di�erent data files has this
notebook been run on?”. We generated 15 tasks across 4 task categories (Table 11.1).

Participants
JupyterCon2018 provided a User Experience (UX) “Test Fest” room where four organizations set
up testing sessions and advertised its availability in the conference program, as slides in
meeting rooms between sessions, by some presenters in their talks, and on social media. We
recruited 16 participants who came to the UX room (referred to as J01 to J16). Due to equipment
issues that arose during J11’s session, J11’s data will not be considered for analysis, leaving 15
participants. As shown in Table 11.3, participants’ jobs involved data science work across a wide
range of domains.

Table 11.3. Work domain of data scientist participants.

Computational Domain Participant
GIS or Earth science J01, J08
Economics or Finance J02, J09, J12, J16
Healthcare J03, J04
Biology, Chemistry, or Physics J15
HCI or Computer Science J05, J14
Social Science J10
Not reported J06, J07, J13

Although all participants reported programming experience, one participant reported never
having used Python, and one other participant had never used a computational notebook tool,
although by attending Jupytercon they would have been exposed to such tools in the
presentations. Overall we argue that this is a fairly representative sample of data scientists,
except for gender (14 male, 1 female). Two participants had time constraints that interrupted
the study, so one attempted 5 tasks, another just 2 tasks, and the remaining 13 participants
attempted 6 tasks each.
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Table 11.1 Tasks and number of each task category used

Category # Tasks

Notebook event 3

A. Find the first version of the notebook

B. How many cells have been deleted from the notebook during its
history?

C. How many runs did the author leave a comment on?

Visual finding 3

F. Find a notebook version that generated a plot that looks exactly
like this [image1]

K. Find a notebook version that generated a plot that looks exactly
like this:  [image2]

L. Find a notebook version that generated a plot that looks exactly
like this:  [image3]

Code finding 3

H. At what time did the author last use a DecisionTreeRegressor?

J. Find the code the author used to check for duplicate houses.

N. How many di� erent data files e.g., “data.csv” has this notebook
been run on?

Relation between artifacts 6

D. Find the code in which the author explored compare mean
absolute error with di� ering values of max_leaf_nodes

E. In RandomForestRegressor(random_state=2), how many
di� erent values of random_state has the author tried?

G. What was the lowest mean absolute error achieved when the
author used a RandomForestRegressor?

I. What was home_features equal to when the
mean_absolute_error(val_y, val_predictions) was equal to or
below 20,000?

M. When “1stFlrSF” was not included in home_features, did that
lower the value of mean_absolute_error(val_y, val_predictions)?

O. When the author used DecisionTreeRegressor instead of a
RandomForestRegressor, what parameters did they try for the
decision tree?
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Procedure
When participants came to the UX room, they first filled out an online demographic survey. A
greeter asked how much time they had to spend testing and, if they had at least 1/2 hour, they
were told that a prototype of a JupyterLab history tool was available to test (among several
other types of available activities). When they chose this activity, they were shown to our
station and were seated in front of a 27” display, with a keyboard and mouse. If a prospective
participant agreed to sign our study consent form after reading it, the study began. They were
first given the on-line Tour document to read. They were then given tasks, one at a time,
written on index cards and asked to think aloud while working. The order of tasks was
randomized across participants using Latin square prior to the study. Screen-capture software
recorded the screen and an audio recording was made of their utterances as they worked. As
they completed each task, they were given the next card, until they ran out of time and had to go
back to the conference sessions. Participants completed no more than 6 tasks each, but all tasks
and categories had coverage.

QUANTITATIVE ANALYSIS
With an audio and screen recording of all sessions, I first reviewed the recordings to note
whether a participant had succeeded or failed each task, based on an answer key. During this
process, I eliminated two tasks from analysis: Task K (1 participant) became infeasible during
the experiment due to a bug in our prototype. The wording of Task H (5 participants) was
ambiguous and participants interpreted it di�erently. With the remaining 13 tasks, there were
80 foraging instances across the 15 participants.

We used success rate as an indication of how well Verdant-2 supported the users in
accomplishing tasks. The average success rate of the participants was 76% (median = 80%),
which puts the evaluated version of Verdant-2 close to the average task success rate of usability
tests across many domains [Sauro 2011]. Table 11.4 shows that more than half the participants
succeeded at greater than 80% of the tasks they attempted and 20% succeeded at all of their
tasks. Despite being asked to answer questions about a substantial notebook they did not write,
having to forage through over 300 versions of that notebook, and having no experience with
this complex tool, the majority of participants succeeded on the majority of tasks they
attempted. For comparison, data scientists interviewed in Chapter 3 reported making many
local copies of their notebook files. Imagine giving our participants over 300 files and asking
them to answer a series of detailed questions about them. Many participants would have run out
of time or given up. Even if our participants used Git, as discussed above, they would have had
to learn complex command-line search tools and tasks involving graphic output may have been
simply impossible. Thus we consider a median 80% success rate to be evidence that the design
of Verdant-2 has promise but could be improved.

At this stage of development the overall success rate is interesting, but the di�erential success
rate between tasks is more important for further design as it helps us focus on which tasks are
more problematic for users. Turning to task success by task category (Table 11.5), the most
di�cult kind of task, “relationship between two artifacts”, which required hunting down and
then relating versions of two or more separate artifacts, had the lowest success rate at 66%.
Otherwise, there was no clear relationship between specific tasks we had a priori considered to
be more “easy” or “complex” based on the number of steps required to accomplish the task. For
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instance, the tasks at which participants had 100% success were task N: “How many di�erent
data files e.g., ‘data.csv’ has this notebook been run on?” (easy, at 3 steps) and task I: “What
was home features equal to when the mean absolute error was below 20,000?” (complex, at 12
steps).

Table 11.4. Participant success by task category

Category (tasks) #  attempted mean success
Notebook event (A, B, C) 21 78%
Visual finding (F, L) 10 79%
Code finding (D, J, N) 17 81%
Relation between two artifacts (E, G, I, M, O) 30 66%

QUALITATIVE ANALYSIS
We turn now to a qualitative usability analysis that investigates which features of the evaluated
Verdant-2 UI were helpful and which may have hindered participants in accomplishing their
tasks.

To analyze the think-aloud usability data, we first determined the most e�cient method to do
each task and the UI features that were involved in those methods. We then watched the videos
and noted when participants followed or deviated from those methods, as well as positive and
negative comments about the features, and suggestions that the participants made. We used the
di�erential success rates discussed above to focus our attention on the tasks with the lowest
completion rate.

The data provided information at many levels, from comments on the tour, to buggy behavior,
to complaints about low-level UI features like labels or icons that users found inscrutable, to
issues with the high-level functionality. As an example of the latter, a data scientist in the
Healthcare industry (J04), was concerned that Verdant-2 saved outputs, saying “We avoid ever
checking data into a version control thing. If it was always saving the output, we wouldn’t be
able to use it.” For the purpose of this chapter, we focus on just three problems: confusion about
how to navigate within Verdant-2, the need for excessive scrolling, and participants resorting
to brute-force looking through ghost books.

For the tasks with the lowest success rate, O and G in Table 11.1, participants would often click
something and not know how to get back to where they had been. One-third of our participants
articulated the equivalent of “How do I get back?” in these two tasks alone (J01, J05, J09, J12,
J16). Looking more broadly, more than half of the participants (8/15) articulated this problem
across 9 of the 15 tasks, with many more clicking around trying to get back without explicitly
voicing their need.

To illustrate the scrolling problem, in Task F, the participants had to find a particular heatmap.
The heatmap had been added sometime during the 300 versions, had been changed several
times (the desired answer being one of those versions), then deleted. Of the 6 participants
attempting this task, 5 immediately selected the correct feature (Activity tab) and the correct
action (text search). J09 succeeded in 6 seconds because he had performed a graphic search task
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before and knew to keep scrolling through the results. Four others succeeded within 3 minutes,
but performed other actions in addition to the most e�cient method (all tried ghost books; 2
tried the Inspector Tab) and those actions provide clues to better design. Consistent with
Information Foraging Theory [Pirolli 2007], these detours suggest that having to scroll too long
before finding promising results causes people to lose confidence in the information patch and
abandon it.

At a higher level, we observed many participants resorting to a brute-force search. “It’s obvious
if I looked at all of these [ghost books], then I’d know the answer, but there’s got to be a smarter
way to do this.” (J06) They opened up one ghost book at a time until they reached the solution
or became so frustrated they switched to a di�erent foraging tactic (such as searching with a
di�erent term) [Piorkowski 2015] or else quit the task altogether: “I found 22 things… I can find
it, but I’m not sure I have the patience.” (J03). One participant (J10) to our surprise, sat for a full
6 minutes and read through 39 di�erent ghost books before reaching an answer. Although none
of the tasks actually required using brute-force search of ghost books, it is a problem that users
got to a point where they thought brute-force was the only solution available to them.

Our evaluation collected task-based behavioral data as well as opinions and suggestions from
professional data scientists. This left us with a trove of bugs to fix, UI elements to tweak, and
more areas to redesign than we could present here. Our next major priority in design was to try
and fix the navigation issues participants had encountered, while preserving the e�ective parts
of Verdant-2’s design.

CHAPTER CONCLUSIONS
In Verdant-2 we focused on designing features that enable practitioners to answer specific
questions from history at scale. The kinds of questions Verdant-2 supports are those we
collected from practitioners in the Query Design Exercise (Chapter 4), which we then
categorized into specific kinds of memory cues like visual appearance, datetime, location, or
keywords. Each cue has an accompanying feature in Verdant-2: minimaps for location, the
activity view for datetime, the artifact view for appearance, and the history search for keywords.

Ultimately the goal of Verdant-2 is: given a pile of “stu� and stu� and stu� ” (Chapter 4) users
can quickly grab useful experiment information out of that pile. Our Jupytercon Scavenger Hunt
Study showed that Verdant-2 comes reasonably close as an initial prototype. Many participants
were successful with Verdant-2 in retrieving substantive experiment information out of a long
history. However, there were design aspects, other than the memory cues we had carefully
designed for, that our study revealed that could make a history search much easier or more
di�cult for the user. Here I will list some of the key design takeaways in what worked and what
didn’t in our design for Verdant-2:

+ Structure history to minimize scrolling through lists: Consistent with prior work on
information foraging in programming, we saw in our usability study that users became
frustrated if they believed that they needed to examine every version in a list to identify
the right one. In prototyping (and redesign after this study) we have found that
strategies like binning, previewing just a snippet of a version, or being more careful
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about how history is collected in the first place can all reduce the amount of information
a user needs to visually browse through for a given view of history.

+ Give the user multiple ways to find the same thing based on what they remember:
since Verdant-2 has multiple ways of searching and visualizing history, there is no
single “right” way to find something. We saw this benefit users in our study because
regardless of which avenues a participant tried, they were able to reach the same
information. We also observed that di�erent users had di�erent preferences for relying
on di�erent search features.

+ Treat visual finding for visual artifact history di�erently: A missing memory
cuecuethat we did not explicitly design for in Verdant-1 is visual memory. We assumed
that textual artifacts like code and visual artifacts like plots could be found roughly the
same. However in practice we found that plots often do not have simple descriptive
keywords in the code that accompanies them, so they cannot be found with a textual
keyword search. In our usability study, visual finding was one of the least successful
kinds of tasks in Verdant-2. It is worth designing search features specifically for finding
plots, images, and other visual-only artifacts.
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Chapter 12: Design and Engineering Iterations for
Robustness

Featuring Verdant-3 & Verdant-4

Research done in collaboration with Brad A. Myers, Bonnie E. John, and Abhishek Vijayakumar

INTRODUCTION

Following our Jupytercon Scavenger Hunt Study, our next major research goal was to iterate
and then test out our history interactions with data scientists doing real exploratory
programming of their own. Putting Verdant to real usage would allow us to test major
hypotheses in this dissertation: Can automatic history tooling benefit a person’s experimentation?
Can we design history such that a person can quickly answer questions about their past
experimentation? To reach this goal required substantial investment into engineering hours and
design to make Verdant more usable and robust. Real usage for sustained programming activity
requires our history system to be less of a research prototype and much more a real product.
This chapter details the iteration we took on Verdant to prepare it for real deployment in our
next study.

VERDANT-3

First we list major usability issues from Chapter 11’s Jupytercon Scavenger Hunt Study that our
Verdant-3 redesign attempts to address:

1. Confusion about how to navigate between Verdant-2’s di�erent views & features.

2. The need for excessive scrolling through information.

3. Participants resorting to brute-force looking through many ghost books.

4. No names for artifacts or versions that users can write down or reference.

5. Unclear that the tabs in Verdant-2 are actually tabs.

To address Issue #1, much of this redesign attempts to “disentangle” all the views of Verdant-2
such that each major feature of Verdant has a clearly separate view, with clearer and easier
navigation connecting features. First, we change the top-level organization of the interface:

Verdant-2 Run & Save History tab Inspector tab

Verdant-3 Activity tab Artifact tab Search tab

The “Run & Save History” tab is renamed to “Activity” simply because Verdant collects history
at many di�erent notebook events (see Chapter 9) and not just run and save. The “Inspector”
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tab is renamed to “Artifact” so that the title is more about the content a user will see rather than
the specific “inspector” interaction used on that tab. Previously, the search bar “filtered” views
in the Activity and Artifacts tabs (Figure 11.10), but participants often got confused over whether
the search was on or o� (a mode error). To remove that confusion we separated search into its
own tab with its own view.

Other redesign details to address the other usability issues are detailed in the figures of
Verdant-3’s design below.

Screens

Figure 12.1 In (A) and (B) the user can search history using keywords and filters
as in Verdant-2. To reduce excessive scrolling, we clustered the search into
accordion bins by artifact type (C). In (D) we include links with clear names so
that the user can open up the Artifact Detail View or Ghost Notebook from a
search result.
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Figure 12.2 The Activity view is simplified from the one in Verdant-2 (Figure
11.8) to prioritize clarity. To reduce the need to scroll, we changed our history
model for event clustering such that more events refer to the same notebook
(e.g. #28 above has 2 events run and save). The date title takes less space (A),
and we add the particular event type to time descriptions in (B). Also in (B) we
show a version number for each notebook version for the user to reference and
more easily remember which version they are looking at. In (D) we also
simplify each event row so that it no longer previews changes in a dropdown
view. Instead, if users click the event row a Ghost Notebook opens up for that
notebook version, so that the user can see those same changes in context.
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Figure 12.3 To reduce the need to scroll, the Artifact Detail view’s text and
content layout is changed from Verdant-2 (Figure 11.9) in order to fit more
versions on screen. To help a user more clearly reference how hierarchical
artifact versions relate, we add explicit names for the cell number and
notebook version number (e.g. from Code Cell 12, Notebook #29 above). Finally,
for code artifacts we include the output versions of that code below, to reduce
the need for the user to navigate back and forth between output and code.
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Figure 12.4 When the user has not inspected a particular artifact, Verdant-2
showed a blank screen in the Artifact tab. Now the Artifact tab displays an
Artifact Table view (F) which summarizes all cells currently in the notebook
and how many versions each has. If the user clicks on a row in the table, that
opens the Artifact Detail View (Figure 12.3) which is the same end result as if
the user had used the inspector interaction (by clicking D then a place in their
notebook E) to get the Artifact Detail View of that artifact. This table is meant
to reduce unnecessary scrolling through the notebook. To do that, each row is
a preview of just the first line of a cell in the notebook, so that the user can get
a sense of which cell is which in a shorter format than the entire document.

To address the issues of users scrolling too much or brute-force searching through Ghost
Notebooks, we also made changes to the underlying history model. For instance, as discussed in
Chapter 9, we applied some clustering heuristics to combine versions and reduce the total
number of notebook versions Verdant produces in the first place, which in turn reduces how
many versions a user needs to view.

Where did those features go?
Finally, it is important to note that we removed multiple smaller features of Verdant between
Verdant-2 and Verdant-3. Search filters were removed, as was the ability to bookmark or take
notes on a particular feature. However, this is not because we had any evidence or belief that
these were bad features. Rather, again due to limited engineering resources we simply needed to
reduce the number of UI features that would be deployed with Verdant. We removed features
that we believed were secondary and not immediately critical for letting users e�ectively search
history in Verdant.

DEPLOYMENT PILOT

We conducted a pilot study of Verdant-3 in a classroom setting, where students in a
data-centric course were asked to install Verdant for use during a single homework assignment.
Verdant-3 was part of the assignment for the whole class, but students were given a consent
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form which allowed them to decide whether or not they consented to having their data used in
our research. Students were given instructions for installing Verdant-3 and JupyterLab on their
own computers, and were provided with support over Piazza or in person during o�ce hours for
any issues they encountered during installation. Students were given over a week to complete
the assignment, and at the end of the assignment were given the option of donating their
Verdant log data for our research study. There was no compensation or credit given for donating
log data. All students were given the same opportunity of a small amount of extra credit for
completion of a short feedback survey.

Although our logs indicate that students barely used Verdant-3’s UI, perhaps due to the brief
and constrained nature of the coding assignment, the history logs passively collected by
Verdant-3 appeared to work fairly well. The ease of installation and relatively few problems
reported were encouraging. This pilot did, however, uncover some data corruptions and bugs
that occured in unconstrained usage. We used data and history logs from this pilot to improve
Verdant’s robustness and design. Logs from these real users allowed us to further refine our
designs by being able to simulate real usage based on these logs rather than using the “toy”
histories we had created ourselves as a team for past design iterations. This led to some
significant design changes for Verdant-4, the final version of Verdant we created in preparation
for our next full study.

VERDANT-4

While the Jupytercon Scavenger Hunt Study discussed in Chapter 11 provided evidence that
Verdant does have promising visualizations and features, users struggled to understand the
relationships between di�erent artifacts and versions. While we attempted to simplify and
clarify the relationship between di�erent views in Verdant-3, further heuristic evaluation and
usability walkthroughs conducted within our research team demonstrated to us that Verdant
was still too confusing and di�cult to navigate. Thus the goals of Verdant iteration Verdant-4
were:

● Improve simplicity and clarity of all screens.
● Improve navigation and add more pathways among features.

We believed one more redesign was worth it before deploying Verdant, since the success of our
history tooling hinges on data scientists being able to quickly and e�ectively navigate history
with our tool. The following screens summarize changes made and the final version of Verdant
before deployment.
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Screens

Figure 12.5 We changed the button which opens Verdant to be a log icon
(circled with cursor) because JupyterLab updated its own style from text labels
to icons in the sidebar. We also further simplified the Activity view and added
more clustering of versions in order to fit more versions on screen to reduce
scrolling. Event text labels like “run” or “save” were removed, since they took
up space and were redundant information with the minimaps. We restyled the
minimaps to make them easier to see the colors of the tics and compare across
rows. Finally we restyled the notebook version labels to make it clearer to users
that they are versions with a v instead of a # prefix..
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Figure 12.6 To make it more obvious how to open a Ghost Notebook, we
changed notebook version labels to be blue hyperlinks that will open up that
Ghost Notebook on the right. We also added the same style of blue hyperlink in
the Ghost Notebook so that if a user clicks a cell (like code cell C6.r4 above) it
opens the artifact view of that cell to show all of its versions.
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Figure 12.6 We updated the Artifact Table View to add previews of outputs and
be overall easier to read. We iterated with paper prototypes to test how well
people could understand what this table is showing. To make things clearer we
added headers to the table “cell”, “revision”, and “preview” and added the cell
names “C1, M2, C2…”. The label “revision” was bolded because people
frequently missed the meaning of the revision numbers during paper
prototyping. Finally we made the title of the table a full phrase to better convey
that this is showing the contents of a specific notebook version (v129 above).
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Figure 12.7 We worked on making navigation between the Artifact Table View
(left) and the Artifact Detail View (right) more obvious. When the user clicks on
a row in the Artifact Table View OR clicks on an artifact using the Inspector
interaction in their current notebook OR clicks on an artifact in the Ghost
Notebook, the view switches to showing all versions of that cell in the Artifact
Detail View. To get back to the table view, we show a breadcrumb menu at the
top of the Artifact Detail View.
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Figure 12.8 We made the Inspector interaction button larger in an attempt to
make it more obvious to users. We also redesigned the Artifact Detail View to
make it more obvious how to get back and forth between code and its output.
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Figure 12.9 In Verdant-3 we had just put all versions of output underneath all versions of the
code that generated it, however this did not tell users which code versions go with which
output. To solve this problem we tried to add more informative labels so that a user can easily
link to what code generated which output. The user can also expand the history pane
horizontally to see code and output pairs side-by-side. Shown above, the first output version
is shown with its code side-by-side. Side-by-side view can be opened or closed by clicking on
the far right > button for each version.

New Features for Finding Visual Output
In the Jupytercon Scavenger Hunt Study, we saw that Verdant’s search feature did not work
particularly well for visual output such as plots, since it is a textual keyword search. To address
this issue su�ciently for our next study, we introduced 2 new features which are something of a
“hack”. First, we added a number of special keywords for the search, such that if the user types
in “plot”, “image”, “chart” or related words, we simply return all image outputs. This is not an
ideal approach since if the user types in “bar plot” the search will return all plots, however we
decided that a more advanced search was out-of-scope for our current research goals, and it
was preferable to have many false positive search results rather than any false negatives.
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Second, following our Deployment Pilot, we made a major performance improvement to have
all visual output saved in an external history folder (see Chapter 9 for details). Verdant-4 saves
all images in this folder with a particular naming convention for runtime retrieval. For instance
in Figure 12.10 below, output_10_33_0.png refers to the first output of the 33nd version of code
cell #10. As something of a navigation “hack” to browse through visual output, users can
browse plots in the external folder on their computer, and then search the file name of that
output in search to retrieve its history. This allows a data scientist to take an image, enter its file
name, and then access the historical code that generated that image to reproduce it.

Figure 12.10 The external output history folder Verdant-4 creates, shown here
in JupyterLab’s file browser.
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Figure 12.11 The user can search an image file name to retrieve its associated
history and the code and notebook that generated it.

System Deployment
Verdant-4 was deployed in January of 2021 as an npm package such that any JupyterLab user
can download and install Verdant directly from the extensions tab of JupyterLab. It has since
been downloaded by 1,689 people in the wild as of August 17, 2021. Although we included a
usability feedback survey in the link with Verdant, it has only gotten 2 responses from users,
who both rated Verdant high for usefulness on a Likert scale, and moderately positive for the
clarity and ease of use of Verdant.

https://github.com/mkery/Verdant

https://www.npmjs.com/package/verdant-history

CHAPTER CONCLUSIONS
At the conclusion of the systems design section of this dissertation, where have we ended up?
We started in Chapter 7 creating inline history access for just a few code snippets with Variolite.
By comparison, with Verdant-4 (some 5 years of research and iteration later) the user can
access specific history of any snippet of any kind of content in their document, and recover
information about their experimentation among hundreds of versions. Each iteration and new
system in this part of the dissertation moved forward our understanding of the design space.
Our design questions also evolved over time towards tackling more and more complex issues for
history support. Even in this chapter, while Verdant-3 and Verdant-4 appear as a cumulation of
many, many, small tweaks from the core design presented in Verdant-2, our design questions
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for Verdant-3 and Verdant-4 had crucially shifted since our design work in Verdant-2. In
Verdant-2 we were most concerned with retrieval of a specific version of a specific artifact: can a
user recover a specific thing from a messy pile of history? In our Jupytercon Study at the end of
Chapter 11, we observed that to actually answer history questions, users need to understand
experimentation from history logs and how artifact versions relate over time. Where
understanding the relationship between artifacts was the worst-performing kind of task in
Verdant-2, clarifying history relationships became the focus of design e�orts in Verdant-3 and
Verdant-4. Clarifying the relationship between features of Verdant, and between artifacts in
history also served to clean up some of the usability issues that had plagued users of Verdant-2.
Next, in the final part of this thesis work, we test Verdant-4 out with practitioners in realistic
usage to see how e�ective our designs are. Although we could have repeated the same protocol
from the Jupytercon Scavenger Hunt Study to test Verdant-4, all of our work in engineering and
the deployment pilot moved us to our next goal in research. In the Verdant Study, discussed
next, we put history support into action in realistic exploratory programming data work.
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Part III: Putting Experiment History into
Practice
INTRODUCTION TO PART III

How will we know if we’ve met our design goals? How will we know if our prototypes are
actually e. ective support for history of exploratory programming data work? First, we need to
more closely define “e�ective”. This dissertation explores multiple areas within the design
space of history support, but our furthest developed prototype, Verdant, is designed specially to
allow users to quickly recall specific information from their work history. So, we consider
Verdant to be e�ective if a data worker gets asked realistic questions about their work, and is
able to use Verdant to provide history evidence to answer those questions. Additionally, since
we know that recalling specific experiment facts out of real history logs can be slow and hard to
do (Chapter 10), we will consider Verdant to be e�ective if a data worker can answer realistic
analysis or modeling history questions quickly and with low e�ort.

In Chapter 14 we describe our study design to test Verdant in as realistic scenarios as possible.
Although Verdant is a publicly deployed tool and a field study would be possible, we opt instead
to do a more controlled “quasi-field study” in which we give data practitioners the same data
work prompt, dataset, and tool environment, which we strive to make as realistic as possible.
Controlling the environment and tasks gives us more consistency to compare how Verdant
performs between practitioners with di�erent domain expertise and experience levels. We
design a two-part study in which practitioners first do real exploratory programming data work
using Verdant, and then in a follow-up session, answer history questions using Verdant.

For our Results in Chapter 15, we find that all participants successfully found history evidence to
answer every question but one posed to them, for a 98% success rate. Moreover, on average
participants needed just 1 minute, 26 seconds to find the history information they were looking
for. We discuss interviews with participants in which we dig into areas for improvement for
Verdant. Finally, we discuss participants’ views on the value and viability of Verdant’s style of
history in their own data work practice.
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Chapter 13: Designing a Realistic Usage Study

INTRODUCTION

Ideally, to test Verdant, we would like to be a fly-on-the-wall observing real practitioners use
Verdant during their real daily analysis work, and then later ask those practitioners to answer
questions about their work using Verdant’s history. In real life, however, there are major
barriers to access to real data work: NDAs, confidential data, restricted data access, specialized
workflows and tooling, proprietary analyses, restrictions to recording audio or video in real
workplaces, and so on — the list of research barriers quickly piles up to make a field study, if
not impossible, then certainly questionably fruitful for this point in our research. On the other
end of the spectrum, a traditional lab study controlled evaluation of Verdant would be too
artificial to meet our research goals, since we seek to not only measure the e�cacy of Verdant,
but also its viability to help data workers in real world experimentation practice. To give
ourselves enough high-quality research data to test Verdant, we blend lab study and field study
approaches to create a “quasi-field study” where we provide practitioners with a fixed dataset
and environment, all while endeavouring to create as much realism and external validity as
possible in our study design.

TWO-SESSION DESIGN

We use a two-session study design to test the final version of Verdant, Verdant-4. These two
sessions, occurring on di�erent days separated by 10-14 days in between, allow us to simulate
the use of history in longer term projects.

Session 1 (S1). A data scientist does exploratory programming with Verdant available in Jupyter
Lab. This coding session generates history data. Although we expect history data to be most
helpful later on after a data scientist completes their initial analysis, we are looking out for any
naturally occuring use cases where the data scientist pauses to consult history during coding.

Session 2 (S2). Between 10-14 days following Session 1, a data scientist is asked history
questions about their analysis from S1. This is an opportunity to see how easy or di�cult it is for
data scientists to answer history questions about their own work using Verdant. We also aim to
learn more about when, why, and how data scientists might use history data in real life settings
though interview questions.

157



Designing E�ective History Support for Exploratory Programming Data Work - Dissertation - Mary Beth Kery

REMOTE STUDY SETTING

Due to the Covid-19 pandemic, this study needed to be fully remote. We conducted the study
over Zoom, with our own server running JupyterLab with Verdant. All study materials were
provided to participants via web links, so that the entire study could be conducted in a web
browser. To record data, we gained permission from each participant to record an audio/video
screenshare of their browser window while they worked on study materials.

PARTICIPATION

Using social media and our personal social networks, we recruited 11 participants (see Table
13.1) with a minimum of 1 year experience with each of: data science, Python programming, and
Jupyter notebooks. Genders represented were 6 male, 5 female with a mean age of 25 (SD = 3
years). We sampled for a variety of data science expertise levels: five participants were data
science professionals, while six were upper-level students. No two participants came from the
same organization.

Table 13.1 Summary of Participants

Profession Data Science
Years

Python
Years Notebook Usage Freq of data work

E01 Data Scientist 2 6 Daily Daily

E02 Postdoctoral Researcher 12 7 Occasionally A few time a week

E03 Graduate Student in HCI 7 9 A few time a week A few times a month

E04 Undergraduate in Computer
Science 1 5 A few times a month A few time a week

E05
Graduate Student in

Electrical and Computer
engineering

0.5 2 A few time a week Daily

E06 Graduate Student in
Astronomy 3 4 Daily Daily

E07 Undergraduate in Computer
Science 2 3 Daily A few time a week

E08 Senior Business Analyst 2 6 A few time a week Daily

E09 Graduate Student in
Computer Science 3 5 A few times a month A few time a week

E10 Research Software Engineer 2 3 A few time a week A few time a week

E11 Quantitative Strategist 8 5 Daily Daily
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SESSION 1 PROTOCOL

S1 was 2.5 hours, with 30 minutes for study setup, tutorial, and interview, and 2 hours for the
programming task. This is the maximum time commitment we felt able to recruit for, since our
professional participants scheduled with us for after-work evening hours and weekends.

Session 1 occurred as follows:

1. (5 min) Introduce the study and verify consent. Then help the participant setup
screen-sharing to their web browser, verify permission to record the Zoom call.

2. (13 min) Verdant Tutorial (https://marybethkery.com/Verdant/tutorial/tutorial.html)
3. (2 min) Interview break #1
4. (5 min) Introduce the programming tasks
5. (120 min or until 10 minutes remaining) Programming session
6. (10 min) Interview break #2 and schedule Session 2

We wanted to see if there are naturally occuring use cases where a data scientist pauses to
consult history during coding. To set up that scenario, we first have the participant do an
interactive tutorial where they use Verdant to uncover history facts from a pre-made notebook
and pre-made history — much like what we did in our initial Jupytercon Verdant study (see
Chapter 11). After completing the tutorial, the participant was free to consult the tutorial at any
point during the study as reference for Verdant’s features. After completing the tutorial, we
asked each participant:

Interview break #1: From what you’ve seen of this kind of history functionality, can
you see yourself finding this useful in your own workflow?

This question allowed us to gain participants’ initial impressions of how appealing the tool’s
idea was to them. During their actual programming session, we ask all participants to have
Verdant’s UI open as they work, but did not require them to interact with it:

If you could have the tool open, that will help us monitor that data is being collected. If
you should feel any reason to use the history functionality while you work, definitely
do. But if you don't, that's fine too.

The experimenter remained silent and on-mute during the programming session, unless a bug
occurred in Verdant where it was necessary to stop the participant: for instance to ask them to
refresh the webpage to get Verdant working again. Otherwise, we let the participant work as
they would normally and did not interrupt them. If we observed participants interacting with
Verdant during the programming session, we took note of it to discuss in Interview break #2.

Finally, we ended programming tasks approximately 10 minutes before the end of the session,
to wrap-up with Interview break #2. An open-ended conversation with participants started
with:

159

https://marybethkery.com/Verdant/tutorial/tutorial.html


Designing E�ective History Support for Exploratory Programming Data Work - Dissertation - Mary Beth Kery

How did you find the experience of having Verdant running to the side while you
worked during this session?

If a participant interacted with Verdant during the programming session, we prompted them to
describe what they were aiming to do in those moments, and whether they felt able to achieve
their intended goal with the tool.

CHOOSING PROGRAMMING TASKS & DATA

In this section we go through the design choices that went into our task design for the S1
programming session. For Session 1 our ideal programming task would:

- Fit a range of skill levels. Be something a novice data scientist can make reasonable
progress on within 2 hours, but also something that a senior data scientist will not run
out of things to do within 2 hours.

- Include plenty of exploration. Ensure a high likelihood of seeing exploratory programming
during the session.

Since exploratory programming is what we want to observe, we first narrow down to specific
types of data science work that require heavy exploration. Exploratory data analysis (EDA) and
initial machine learning model development are well documented to be exploratory in nature
[Tukey 1977][Wongsuphasawat 2019]. That is as close as we can get to a theoretical guarantee
within a user study that we will see exploratory programming if participants engage in EDA and
model development as defined. The di�culty level and time expectation of EDA and model
development, as any instructor who has written a homework for it can tell you, comes down to
the dataset [Kandel et al. 2011]. Here I rely on my experience creating homeworks to create
study tasks and choose appropriate data.

Choosing a Dataset
For our study, we need to choose (or create) a dataset that is “easy” enough that our
participants will be able to do plenty of exploration without getting caught in time-expensive
debugging or bug-related traps. Bugs will happen, but debugging is not an interesting behavior
for our research questions, so we want to minimize it. An “easy” dataset will be clean, tabular,
have relatively few columns, self-explanatory variables, and clear correlations between
variables. The easiest of datasets for study purposes would be a standard “toy dataset”, such as
the often-used titanic dataset1 or cars dataset2. However, there is such a thing as too easy a
dataset. We need to choose a dataset that is “hard” enough that a data scientist of unknown
skill-level will not run out of things to do within the few hours of a study. A “hard” dataset, like
the sort a data science professional sees in real life, will be messy, have strange formatting,
hundreds of columns, multiple data sources, unclear relationships between variables, hard to
interpret variables, and so on [Won et al. 2003, Kandel et al. 2011]. The ideal study dataset will

2 Cars make and model dataset 1985 https://archive.ics.uci.edu/ml/datasets/automobile

1 Titanic survival dataset 1999 https://www.openml.org/d/40945
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be just challenging enough to keep participants continuously busy exploring with minimal
debugging.

To choose a dataset, it is often recommended to pick a standard published dataset. Creating
your own dataset for data analysis study is risky, because it leaves room for doubt that perhaps
you somehow (even accidentally) constructed your dataset in such a way that will bias
participants’ behavior. A standard dataset that is publicly available and has been used by others
has a demonstrated range of things a data analyst can do with it. In practice, however, we found
that most common standard toy datasets, like the titanic, iris3, census4, or cars datasets, were
not suitable for a data science programming study. Toy datasets tend to be too “easy” to do
much with, and you run the risk that some data scientist participants will have already
encountered these toy datasets in common educational materials. A situation where a
participant has already analyzed your chosen dataset in the past might invalidate that
participant entirely from being a valid research subject.

My current favorite place to find datasets suitable for both homework assignments and studies
is Kaggle (also used in Jupytercon Scavenger Hunt Study, Chapter 11). Besides the competitions,
Kaggle is a place where individuals or organizations post datasets and then data scientists post
notebook analyses of those datasets. For our purposes, Kaggle has all the benefits of a standard
dataset in that by browsing the publicly available notebooks that data scientists of a range of
skills have posted for that data set, we can still preview the range of analyses and modeling that
is possible for that dataset. Like other public dataset repositories, Kaggle has a catalogue of
datasets searchable by licensing, topics, popularity, and so on. Finding a dataset ideal for your
study does take a bit of digging. For this study I searched for a dataset that was:

- Tabular. This is important for our study because although some data scientists will be
more familiar than others with other kinds of datasets like text, pictures, sensors, etc.,
we can expect all data scientists to be familiar with tabular data since it is what is first
taught. This is a way of controlling for expertise across participants, since we don’t want
to pick a data format where some participants will approach the data very di�erently
than others due to their expertise.

- Appropriate licensing that allows academic use and appearance in publications.
- Small enough to quickly compute locally on any commodity computer but large enough

to allow for splitting the dataset for machine learning and di�erent ways of slicing the
data for analysis. As a rough heuristic, I looked for 10-20 columns and tens or hundreds
of thousands of rows, under 2GB. Like debugging, processing time is time taken away
from the actual kinds of behaviors we hope to observe for research purposes, so an
overly large dataset can undermine a programming study.

- Approachable topic matter. An everyday topic like food, weather, houses, or cars we can
expect all participants to roughly have the same expertise with. Again, specialty topics

4 Census income dataset 1994 http://archive.ics.uci.edu/ml/datasets/Census+Income

3 Iris classification dataset 1936 https://archive.ics.uci.edu/ml/datasets/iris
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like finance or Pokémon™ can cause issues if some participants have a lot more domain
knowledge than others, since they will know to do certain things with that data that
those without domain knowledge will not.

- Self-explanatory columns. Column names that mean something obvious, such as
“product name” or “zipcode” will be easier for a data scientist to quickly start working
with in a study.

- A variety of insights that take a bit of work. In looking at the publicly posted analyses
accompanying a dataset you can see how much code or work it takes for a person to
reach a particular insight. In looking across analyses for a dataset, you can get a sense
for the range of insights people reach about that data. An example of a bad fit for our
study is the Titanic dataset. After a few lines of code most analyses conclude class and
gender are the features that determine survival on the Titanic. Subsequent analyses can
refine indicators in the dataset of class and gender, but there’s really only so much you
can do with the dataset. The amount and variety of work in the posted analyses is a kind
of preview of the amount and variety of work you may see from participants in your
study.

- Amenable to common Python libraries. This generally comes for free. If you have
already found small-ish tabular data, it will almost always be amenable to today’s
standard libraries like pandas or scikit-learn. Avoid datasets where most analyses use a
specialized library or tool, because again, learning a new library can distract significant
time away from the behaviors we’re hoping to observe during the study session.

From this search we chose a dataset of Kickstarter crowdfunding projects collected by Mickaël
Mouillé and available at https://www.kaggle.com/kemical/kickstarter-projects. The Kickstarter
data is available under a Creative Commons license and is tabular, with a nice variety of
nominal, categorical, date, and textual columns within a small set of just 15 columns. 13 of 15
columns represent real-world concepts like “title” or “country” that are easily explained. The
variety of data types among the 15 columns/features leave room for interesting feature creation.
The data has 1 unique row per Kickstarter project, and a single column “state”that contains the
variable for a model to predict. This means that the data is already in a format that can be easily
inputted into a machine learning model as-is. With 375,765 rows, the dataset has enough data
to work with most models and analyses, but since the data is all tabular, the whole dataset is
under 56mb, which is small enough to quickly process on a commodity personal computer.
Finally, our examination of the publicly available analyses for this dataset confirmed that there
are a variety of insights people can discover about Kickstarter data, and that there are no models
that can predict Kickstarter project success with high certainty. This means that we do not
anticipate any data worker to be “done” with the dataset under 2 hours of our programming
session.

The Programming Task
The full prompt given to participants is shown below:
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Verdant Usage Study: Session 1 Tasks

Goal Overview

Kickstarter is an online platform where people contribute money to crowdfund a project such as
a book, game, or music. With this startup funding from the crowd, the project team is able to
produce their idea as a real-world product.

You are given a dataset of over 300,000 Kickstarter projects. As Kickstarter explains it:

“Every project creator sets their project's funding goal and
deadline. If people like the project, they can pledge money to make
it happen. If the project succeeds in reaching its funding goal, all
backers' credit cards are charged when time expires. Funding on
Kickstarter is all-or-nothing. If the project falls short of its funding
goal, no one is charged.”

Example of a typical Kickstarter project. Image Source: Kickstarter, screenshot of
https://www.kickstarter.com/projects/thesmilebook/the-sm-e-book

Client: You are being hired by a business school professor who wants to teach students about
crowdfunding in their “Internet Entrepreneurship” course where students will create their own
Kickstarter startup pitches for a class project.

Goals:
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1. Create an exploratory data analysis that can inform your client about what makes a
successful Kickstarter project. A successful crowdfunding project reaches its complete
financial goal.

2. Your client would also like you to communicate any interesting patterns about what
might make a Kickstarter project fail.

3. Your client wants to know if you can build a machine learning model such that a student
can input data about their project idea and your model will output how successful that
project is likely to be. However, they would also accept if Kickstarter projects are not
that easy to predict. The professor wants you to tell them if such a model is actually
impractical.

Packages: To install a missing package, type and run %pip install <package> in a cell in your
active notebook

Deliverables: In Session 2 (roughly a week from this study session 1), you will be asked to
present & discuss your work for this client in a Jupyter notebook format.

Note that this study is not evaluating your level of coding, statistics, or machine learning skills.
Please work as you normally would.

Note the dataset for this study comes from kaggle.com. You are free to use the internet to help
you code, just do not go to kaggle.com or any place you believe will directly give you the
“answers” for the client’s requests about this dataset

Figure 13.1 Session 1 Programming Prompt

To help control for domain expertise among participants, the data is introduced with a short
summary of crowdfunding and Kickstarter for participants. We invent a fictional client (rather
than ourselves being the client) to help position the experimenter as a neutral observer. If
participants attempt to refine or discuss the client’s goals e.g., “So did they mean X?” the
experimenter replies that they don’t know what the client meant. This is to ensure all
participants receive exactly the same task information. We also kept the goals of the client
somewhat open-ended and high-level, consistent with the common characterization of client
requests of data scientists [Passi & Jackson 2018, Hou & Wang 2017].
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SESSION 2 PROTOCOL

Session 2 occured between 10-14 days after S1 in our attempt to replicate a key use case for
experiment history where a data scientist is asked about or needs to return to past work. Our
primary goal was to test how easy or di�cult it is for data scientists to answer history questions
using Verdant. The setup is very similar to both our Session 1 tutorial and our earlier usability
test with Verdant at Jupytercon 2018 (see Chapter 11) in that we design a “scavenger hunt” for
each participant to answer questions about their analysis using history.

Session 2 occurred as follows:

1. (5 min) Setup: Introduce the study and verify consent. Then help the participant setup
screen-sharing to their web browser, verify permission to record the Zoom call.

2. (10 min) Recall: each participant starts S2 by looking over their notebook from S1 for up
to 3 minutes. When they are ready, participants are asked to go top to bottom in their
notebook and describe out-loud what they did during S1. This recall step is meant to
mimic the time a data scientist might have to briefly skim over their work before a
meeting. This recall step is also designed to help control for individual di�erences
among participants with di�erent base memory abilities, by giving all participants the
same refresher time before beginning the scavenger hunt.

3. (20 min) Scavenger Hunt: each participant is given the tutorial webpage from S1 to use
as reference. Next, each participant is given their scavenger hunt questions one at a time
pasted as text into Zoom’s chat feature. Participants are asked to answer the questions
out-loud. The experimenter is silent, intervening only in case of a bug with Verdant or
JupyterLab.

4. (15 min) Interview: After the scavenger hunt, participants are interviewed about their
opinions of Verdant as well as their normal data science and data science history
practices.

5. (5 min) Debrief: Finally, participants are given a few minutes at the end to ask any
questions they have about the study, the tool, and the research itself.

Following Session 2, participants were compensated $20 for their time.

GENERATING SCAVENGER HUNT QUESTIONS

Given that S1 involves exploratory programming for exploratory analysis and model
development, we knew that each participant would develop their analysis and ideas in di�erent
ways, requiring us to personalize the history questions we ask each participant. This presents a
major study design challenge, especially since we still want to compare question answering
between participants. Thus, although each participant is given a unique set of questions, we
created a detailed question-generation protocol to help us create as consistent question sets as
possible across all participants. This includes first labeling the participant’s history and then
following the question generation criteria, as discussed next.

165



Designing E�ective History Support for Exploratory Programming Data Work - Dissertation - Mary Beth Kery

Prep work: Labeling Programming Session Activity
Following S1, we took each participant’s history data generated by Verdant. I used Verdant’s
Ghost Notebook feature to look through each version of a participant’s session, one at a time,
and manually annotate what happened in that version. Besides labeling each version with a
brief description, for each version, I assigned a category of activity based on changes the
participant had made in the version. The category set, shown in Table 13.2, emerged through
open coding, drawn from common data science activity types.

Table 13.2 Scavenger Hunt Task Categories

Data Cleaning &
Filtering

Modeling &
model pipeline

Feature creation
& selection

Tables &
Summary

Stats
Visualization

Storytelling &
Notebook

Organization

Note that due to the quick turn-around time needed to do all data labeling between sessions, we
did not do a collaborative coding approach, where 2 or more people separately label the data,
typically done in thematic analysis for reliability [Charmaz 2006]. I labeled all data myself for
consistency, such that my personal biases in deciding labels a�ected all participants evenly. Due
to the iterative nature of coding, codes shifted a bit during the initial 3 participants of the study
E01, E02, and E03. For instance, “Data Cleaning & Filtering” was originally combined with the
category “Tables & Summary Stats”. By E03 I had coded enough data that the category set was
finalized for the rest of the study. I then re-coded the first 3 participants’ activity to ensure
their activity labels were consistent with the final category set.

An example of this version coding is shown below. Where a change could belong in multiple
categories from Table 13.2, I conservatively assigned one or two categories that fit best to what
resulted in a version. So, for instance, in the example below, the participant removes a plot that
had been in version 47, but since there is no plot in version 48, I did not assign the
“Visualization” category. I just assigned the “Tables & Summary Stats” category since the result
of the participant’s change is a new table showing, replacing the plot.

Table 13.3 Example of a version categorization & description from S1 activity

Version # Timestamp Activity Category Description

48 2021-03-22
18:45:55

Tables & Summary
Stats

erases plot and shows merged in table instead

Prep work: Generating Realistic Scavenger Hunt Questions

What makes for a realistic Scavenger Hunt Question? A realistic question ought to be one that a
boss, team member, paper reviewer, or the data worker themselves would reasonably ask about
the data woker’s analysis and modeling from S1. To guide realism, we grounded questions in the
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history queries we obtained from practitioners in the Query Design Exercise (Chapter 4). I also
leveraged my own domain experience with data science and as a teacher of data science course
materials. Finally, as an intervention check, we asked participants during the interview portion
of S2 to discuss how realistic the questions were, and how often they got questions like that in
their real life practice. Participants largely a�rmed the realism of the scavenger hunt
questions, which give us higher confidence in our study results. Participant feedback also gave
us important clues for improving the study protocol. For instance, we learned from our first two
participants, E01 and E02, that questions about something they did not do in their analysis was
actually an important kind of question they are asked in real life. From this feedback we added a
rule to our question generation procedure below, to ensure all participants are asked this type of
question.

To generate scavenger hunt questions for each participant:

1. For each of the 6 activity categories (Table 13.2 above) I generated 1 question pulled from
participants’ versions that fit that category. This creates 6 questions, with a minimum of
4 questions because in some cases, a participant did not do anything for a specific
category. For instance, several participants ran out of time before they did anything
related to modeling, and thus had no versions labeled with “Modeling & model
pipeline”.

2. We included 1 question (of any category) about something the participant did not do in
their analysis, but could have plausibly done given their analysis history.

3. We structured each question in the following way to help ensure consistency between
participants:

a. First, each question has a “find” clause, asking the participant to locate a
specific thing in history.

b. Second, each question has an “explain” clause, asking the participant to explain
something about the artifact they were asked to find.

Question examples below demonstrate the overall flavor of the question sets:

E10 Q1: (Visualization category)

a. Find: Go back to when you had a plot for comics
b. Explain: Are there any categories of comics that are substantially more

successful than others?

E08 Q3 (Feature Creation & Selection category)

a. Find/Explain: What different features did you try in the model?

E04 Q8: (Feature Creation & Selection category)

a. Find: What kind of performance change did you see in including the smaller
categories feature in your model?

b. Explain: What is your intuition about how helpful the categories feature is?

E06 Q2 (Table & Summary Stats category, something they did NOT do)
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a. Find/Explain: Having no country as Country N,0” seems to be highly
predictive of a project failing. Did you ever do anything with Country N,0” or
filter those projects out of the dataset? Why or why not?

In total, we originally planned for each participant to do 10 questions, however in practice we
could not fit 10 questions into the planned time. Most participants completed 6 questions,
although one participant E11 completed only 4 questions in the given time period.

The question order was then shu�ed using Python’s random.shu�e. Finally, we took the first 3
questions and assigned them to a specific feature the participant would start their search at,
between Artifact Summary, Search, and Inspector. Since the first 3 questions were random, we
did not assign the start feature randomly, but rather matched the 3 questions so that there were
one-each of Artifact Summary, Search, and Inspector based on which feature made the most
sense for each question.

From the 4th question til the rest, the participant was told that they could use any features in
Verdant. The goal of assigning participants to start at specific features for the first few
questions was to ensure they were exposed to all features of the tool enough to know about
them. Note that we did not assign participants to start at the Activity Pane because we did not
ask any time-based questions. The reason we did not ask time-based questions (e.g., “what was
your model result at 4pm last Thursday?”) is that we only had a single two hour session of work
per participant. With only one small chunk of time to refer to, I believed asking participants to
return to a specific timestamp would be unrealistic. However, although Activity Pane was not
assigned for S2, note that all participants were asked to have the Activity Pane open during their
work in S1, so the feature did see usage during the S1 coding session.

PROTOCOL EVOLUTION

During the study we did encounter some circumstances that led us to adjust the protocol or
Verdant.

Since Verdant is a prototype tool, we did encounter bugs during the study that we needed to
repair mid-study. These caused some data loss or corrupted data. Most critically, participant 5
did not continue on to S2 due a data collection failure during S1. Meanwhile participant 6 and
participant 7 had corrupted data such that their history data from S1, while otherwise valid, has
incorrect timestamps. Thus participants 5, 6, and 7 will be excluded from some (but not all) of
the analyses below in cases where their data is not fit to be analyzed. Additionally, since Verdant
needed to be fixed mid-study, there are some usability issues arising from software bugs that
a�ected participants early in the study, but not those later in the study. These are discussed in
our usability findings. Overall, we did not include a standard usability survey, like SUS, to
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compare across participants, because participants early, mid, and late in the study experienced
substantially di�erent levels of bugginess impacting the usability of Verdant.

Second, we discovered through recruitment that some participants are too junior for our study
protocol. While every participant we recruited was familiar with data science, programming,
Python, and Jupyter Notebooks, we found that some participants demonstrated less practical
experience with doing Python data science. These more novice participants spend considerable
time debugging library calls or figuring out how to do routine data transformations, which for
our logs resulted in more debugging than exploration. To ask realistic scavenger hunt questions
for S2, we need participants to do enough exploration in 2 hours for us to ask at least 5 di�erent
history questions about. For two participants, their logs did not contain enough di�erent
analysis, models, or visualizations to ask about, leading us to come up with questions that
sound a lot more like something a course instructor or TA might ask:

E07 Q2 (Data Cleaning & Filtering category)

a. Find/Explain: There’s df2, df2_onehot, and onehot in the notebook, which
are all variables that appear to have to do with onehot encoding but don’t
end up in the model later in the notebook. Please use history to explain
what these were used for.

We still hold that this type of question is valid, since a student answering questions about their
work is one of the usage scenarios in Chapter 10 that we designed Verdant to support. By
midway through the study we put more work into our recruitment e�orts to recruit more
experienced practitioners.

Finally, the first three participants of S2 did not find the Inspector feature on their own – even
when prompted to use it for the scavenger hunt and provided with the tutorial that describes it.
This lack of discoverability for the Inspector led us to explicitly intervene for the rest of the
participants, and verify that participants could identify the Inspector tool before starting the
scavenger hunt.

LIMITATIONS

This study has several key limitations, some of which are limitations of the study design and
some of which are results of unforeseen mishaps that occurred during the study.

First, we do not include a control condition in this study design. Since much of our work in the
Exploratory Programming Study (Chapter 3) and the Notebook Usage Study (Chapter 4) has
already examined how data workers work in the absence of good history support, we did not
believe that having programmers follow the S1 and S2 protocol without history support would be
a helpful exercise. One reasonable control condition might be to have participants answer the
scavenger hunt questions from S2 using the versions collected by Verdant as files
(notebook_v1.ipynb, notebook_v2.ipynb, notebook_v3.ipynb, …). However, on average
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participants in this study generated 135 versions, and we have good reason to believe from our
prior studies and others’ [Ragavan et al. 2016] that manually searching through 135 files for
answers would be time consuming and unpleasant for participants. For instance Ragavan et al.
in their 2016 study had participants do a series of just 3 coding tasks over 700 file versions, and
participants spent the vast majority of their 50 minutes foraging through files looking for the
right information. The downside of omitting a control condition is that we cannot say Verdant is
measurably better or faster than a baseline. This study is not a controlled evaluation study.
Instead, at this stage of research we are conducting an exploratory study to understand the
observable benefits and pitfalls of our proposed designs for making history easier to use. This is
the first time data scientists are conducting exploratory programming and answering questions
about their own history using Verdant. Thus our design includes a mix of programming,
interviews, and structured history tasks to gain rich qualitative and quantitative data on not just
how Verdant performs, but how Verdant performs and fits into a data scientist’s existing workflows
and practices.

In all, 11 data scientists were recruited for the study. Although we attempted to recruit a
representative sample of participants and construct tasks representative of common real-world
data science programming, there is no guarantee that results from this small exploratory study
will generalize. Since participants volunteered to participate in a study about history-keeping
for data science, our participants may have higher than average interest in history tools.

CHAPTER CONCLUSIONS

Since the Verdant Study is a somewhat elaborate setup to rigorously simulate real exploratory
programming data work, it did not come as a surprise that we experienced some study hiccups,
data loss, and software bugs. The data we collected still meets our goals of proving a
measurement of Verdant’s performance with high external validity. With an emphasis on
realism and rich qualitative data on top of quantitative measures, we have data to develop our
understanding of how e�ective history support could serve data work practices in real life. The
next chapter includes the results.
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Chapter 14: Results & Discussion

Analysis done in collaboration with Brad A. Myers and Xinyi Zheng

INTRODUCTION

This chapter will be broken down into first quantitative results from session 1 and 2 tasks, and
then qualitative discussion of our interview and observation data. For specific analysis, we
detail each result on how it was analyzed and achieved. Participants will be referred to as E01,
E02… E11. Sessions 1 and 2 will be abbreviated as S1 and S2 respectively. Overall, both
quantitative and qualitative results are highly promising in support of Verdant as an e�ective
addition to an exploratory programming data workflow.

PARTICIPANTS ARE FAST TO ANSWER HISTORY QUESTIONS USING VERDANT

For each participant, we labeled the S2 audio and video data with the timestamp where each
scavenger hunt question starts and ends. Recall that each scavenger hunt question has two
parts: a find clause and an explain clause, so we also labeled where each part starts and ends.
The find clause ends when the participant reaches the specific historical evidence needed to
answer the question – or else concludes that no such evidence exists. In most cases participants
found historical evidence and then explained it. However in a few cases, especially when
participants are searching for something they, in fact, did not do, explanation and search
completely overlap as the participant searches and discusses at the same time, until they finally
give up the search and conclude that no historical evidence exists. How long participants took
per question is summarized in Table 14.1.

To determine success on scavenger hunt questions, we marked a question as successful if the
participant found specific historical evidence (a specific artifact and version) that appropriately
answers the question, or else correctly concluded that no such evidence exists. If a participant
pointed out something not specific enough, like vaguely referencing all the history results from
the search pane, we prompted them to continue on to find a specific artifact/version. Note that
we only graded the success of the find part of questions. We chose not to grade participants'
explanations. For the purposes of this study, we are not attempting to grade participants’ data
science skill or ability to e�ectively explain their work, although this could be done in future
follow-on analyses of the data.

Every participant was successful with every question they attempted, except for 1 case where a
participant gave up on 1 question.
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Table 14.1 Scavenger Hunt Question Completion Times

Question Type Question Count Average Time to Answer (in min:sec)

Find 64 1:26 (SD=1:01)

Explain* 64 1:02 (SD=0:40)

Data Cleaning &
Filtering

9 1:12 (SD=0:34)

Feature
creation/selection

17 1:26 (SD=1:02)

Modeling 12 1:28 (SD=1:01)

Storytelling & Notebook
Organization

4 1:37 (SD=1:42)

Tables & Summary Stats 9 1:12 (SD=0:59)

Visualization 13 1:40 (SD=1:08)

Of the 64 scavenger hunt questions attempted across all participants, 60 were successfully
answered using Verdant. For those not answered using Verdant, 3 questions were simply
answered by participants from memory without consulting Verdant, and for 1 question the
participant gave up on finding an answer in Verdant after it was taking too long to find. This is a
success rate overall of 98%.

Timing by if/how a question was answered is shown below:

Table 14.2 Scavenger Hunt Question Completion Times By Answer

Answer Question Count Average Time to Answer

Successful 63 1:23 (SD=0:58)

Failed 1 4:03

Successful - Verdant 60 1:25 (SD=0:58)

Successful - from Memory 3 0:49 (SD=0:38)
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How do these results compare with our prior Jupytercon Scavenger Hunt Study?
To get a sense of how these results compare, we would like to compare against how participants
did in the Jupytercon Scavenger Hunt Study. There’s a clear limitation to this comparison:
participants in the Jupytercon hunt answered questions about someone else’s analysis history,
while participants in this hunt answered questions about their own history. So, we won’t be able
to separate the e�ect of our UI changes from the e�ect of memory on participants’
performance. Nonetheless, the comparison may be a helpful benchmark.

To make a valid comparison, we needed to do a bit of re-analysis of our Jupytercon Scavenger
Hunt Study data because the study described in Chapter 10 originally used di�erent measures of
“success” and also tested participants on scavenger hunt questions that are di�erent in nature
from the scavenger hunt questions in this study. To make the two studies comparable:

1. We retrieved the time it took participants to answer each question. This timing was
recorded but not reported in the original Jupytercon study analysis.

2. We took a subset of 10 of the original 13 scavenger hunt questions from the Jupytercon
study that, like our scavenger hunt questions in this study, were realistic history analysis
questions that might be asked in a real work scenario. This meant throwing out the 3
questions A, B, and C from the study which had been designed as artificial questions
purely to test UI elements. The discarded questions are:

A. Find the first version of the notebook
B. How many cells have been deleted
C. How many runs did the author leave a comment on

To ground in realism, the remaining 10 questions from the Jupytercon study were based
on real history queries by data scientists in the Query Design Exercise (Chapter 4). The 10
questions match the format of the “find” type questions in this current study. Since
participants in the Jupytercon study were looking at someone else’s work, we did not
have any “explain” follow-up questions like in this study.

After this reanalysis, participants in the Jupytercon Scavenger Hunt Study have 44 of 57 tasks
successful for a 77% total success rate. Note that in Chapter 10 we reported 60 of 81 tasks
successful for a 74% total success rate, so this is not a major shift despite the change in analysis
approach. Interestingly, just as our single failure case in the current study was from a
participant giving up, giving up out of frustration accounted for 9 of the 13 failure cases in the
Jupytercon Scavenger Hunt. For us, this lends evidence once again reinforcing the idea we’ve
seen throughout this dissertation (Chapter 3, Chapter 10) that when retrieving history facts is
di�cult to do, data workers simply won’t do it.

For timing, we found that participants in the Jupytercon Scavenger Hunt completed questions
in an average of 2:40 (SD=2:10). In contrast, participants in this study successfully completed
63 of 64 finding tasks for a 98% success rate in an average time of 1:26 with a much lower
standard deviation of 1:01. This is a major improvement.
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EVERYONE TAKES A DIFFERENT PATH IN EXPLORATORY PROGRAMMING

Verdant’s logs allow us to analyze how S1 programming sessions unfolded.

Recall that for S2, we manually assigned each version in a programming session to one of 6
possible activity types (Table 14.1). Below (Figure 14.1), we plot each participant’s versions on a
timeline by activity type. Timelines for each participant are shorter or longer depending on how
many minutes they spent programming. This chart allows us to visualize the sheer variety of
approaches participants took on the same data and same tasks. For instance, we observe that
E04, E10, and E11 are particularly meticulous about tidying and writing detailed markdown in
their notebook, as indicated by the large proportion of brown bars in their timelines. We see that
E05 and E08 favor visualizing their data early on to get an overview, as indicated by blue bars.
E02, E03, E10, and E11 prefer to start by looking at tables, as indicated by green bars at the start
of their sessions.

Although we can spot some similar activity patterns between participants, the degree to which
these timelines do not look alike, given the same dataset and same prompt, is an interesting
indication of how personal exploration is.

Figure 14.1 Colored blocks show the type of data science activity each
participant engaged in over the duration of the programming session. The
length of rows vary based on the total time of each participant’s programming
session.
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Next, we compared version counts across participants (Figure 14.2). Although we planned for 2
hour coding sessions, intro materials often took longer than expected, and participants worked
for 100 min on average (SD=7 min). Only 1 participant ever declared themselves done with all
analysis tasks, and all other participants ran out of time as expected. Participants generated an
average 135 versions (SD=33 versions) or roughly 1 version per minute. We did not find any
correlations between a participant's years of experience with data science and the total number
of versions they generated.

Figure 14.2 Rows show the rate of how many versions are recorded per minute
over each participant’s coding session, with the total number and average per
minute labeled at the end of each row. Participants 6 and 7 are excluded due to
timestamp errors in their log data, as discussed above.

PARTICIPANT EXPERIENCE USING VERDANT

We have positive evidence to suggest that practitioners engaged in substantial exploratory
programming with Verdant, and were overall successful in later recalling the history of their
work using Verdant. Next, we use a combination of log data and qualitative analysis to dig
deeper into the experience of using Verdant, and how participants perceived Verdant’s form of
history support.

Qualitative Thematic Analysis
For all interview data in this study, we conducted a thematic analysis [Braun & Clarke 2012,
Charmaz 2011]. First, we transcribed all interview audio from S1 and S2 for each participant. To
prepare transcripts for qualitative coding, I segmented the transcript for each participant into
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small chunks of 1-10 sentences that share the same topic. This segmentation was organized in a
spreadsheet for each participant. This initial segmentation would later be refined during the
coding process, as we chose which sentences grouped best together in a participant’s speech.
Next, as the researcher most familiar with the data since I was present at all study sessions, I
conducted the first stage of open-coding on the data to create our initial code book. Another
researcher, Xinyi Zheng, then did her own round of open-coding on a sample of the data, using
these initial codes and adding her own. Each participant quote was allowed multiple codes if it
touched upon multiple topics. Through a collaborative discussion, we then finalized the code
book with 55 codes. Finally, both researchers split the data and each coded half of participants.
With initial coding complete, both researchers then iterated groupings of 55 codes through
discussion to decide on 11 axial code “themes” [Braun & Clarke 2012, Charmaz 2011]. All 55
codes are included in Appendix F.

All quotes reported have been trimmed and lightly edited for grammar and clarity.

Working alongside a history tool
During the programming session, we observed 3/10 participants pause while working to use
Verdant to look up some history. At the end of the programming session, as an intervention
check we asked all participants “How was the experience of working alongside the history tool? Did
you find yourself looking at it or just tuning it out?.” From these questions we found that 4/10 said
they passively watched the activity visualizations updating as they worked, because it let them
know that their work was being saved. For E03 it helped them appreciate the work they were
doing: “it just makes me in awe of how much I've typed”. E02 used the activity view during
programming to debug:

“I was bugging out down here. I looked at my tracker and realized that I hadn't
actually edited one of the early code blocks, which meant that the pre‑processing
hadn't pushed itself through. Um, and so this was super, that was super helpful for me
to kind of see, um, where I had been in the code.” - E02

For the rest of participants who did not interact with history, we heard from participants that
this is largely because in a short initial programming session, users had a good memory of what
they had done so far:

“I didn't rely much on the history to be honest, because this was just one sitting, but, if
I were to revisit the code at periodic intervals, then I might have actually looked at my
code and see where I stopped at... because that would allow me to make my future
decisions on that basis. But yeah, because it was one sitting I didn't end up using much
of the history tool.” - E07

Between the tutorial and programming session in S1, we asked all participants: From what
you’ve seen of this kind of history functionality, can you see yourself finding this useful in your own
workflow? 7/10 participants were enthusiastic about Verdant’s usefulness, answering “Oh my
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gosh, yes.” [E03] or “I can see it being extremely useful.” [E09], while 3/10 participants had
specific reservations about Verdant’s style of history. For one participant, E08, their primary
reservation was simply that they preferred R and RStudio, and couldn’t see themselves working
in Jupyter notebooks often enough to justify using Verdant. Meanwhile, E01 had reservations
about cell-based history and E11 had concerns over automatic versioning. Later, after using
Verdant for their own work for the S1 programming session and S2 scavenger hunt, E01 and E11
expressed more positive feedback: “I think this is definitely a useful tool” [E11]. However, for E11
and E08, Verdant still was mismatched to their preferred work practices. E11 primarily works
with super computers and large-scale analyses, so they don’t tend to use Jupyter for long
periods of work where history would be as needed. E08 prefers data programming with R, and
was also confident and content in their history practices as-is. E08 did acknowledge, however,
that although they are satisfied with their own history practices without Verdant, they would
appreciate Verdant when they need to understand data work code written by someone else.
From beginning to end of the study, we did not observe any participants switch their beliefs
from positive to negative on Verdant’s usefulness after using Verdant.

All participants described specific use case needs for the history in their own experimentation
work practices, shown in Table 14.3. The most popular need, expressed by 7/10 participants, was
for easy collection and access to history of outputs, especially plots and images. This likely
stood out to participants because Verdant includes full output histories linked to code but this is
a rarity in today’s version control tools.

Table 14.3 Participants’ Use Cases for Verdant-Style Experiment History

Expressed use case for their own work Participants

History of Outputs, Images, & Plots E01, E02, E03, E04, E06, E09, E11

Model & model metric history E02, E03, E04, E09

Describing history of data work to someone else E01, E02, E10

Generally referring back to code history E07, E09, E10

Refamiliarizing yourself with an older project E02, E06

Using history to keep a more clean “current” notebook E02, E08

Trying to understand the history of data work started
by someone else

E08

The next most popular need, mentioned by 4/10 participants, is the ability to easily record and
access model history. Since Verdant records every run of code, each run of the model under
di�erent conditions and parameters is all recorded. In real data work practice, Verdant’s style of
history keeping will likely be most handy for the early exploratory stages of model

177



Designing E�ective History Support for Exploratory Programming Data Work - Dissertation - Mary Beth Kery

development, because at later stages of development individuals or teams typically build a more
formal logging pipeline for model experimentations.

Many of the other use cases for history were about communication. 3/10 participants talked
about wanting to use history to describe the process of their data work to someone else –
including answering other people’s history questions like our S2 scavenger hunt questions. 3/10
participants talked about using history to reorient themselves to their own past work, and 1
participant talked about using history to orient themselves to data work started by a colleague.

Finally, 2/10 participants wanted history as an alternative to their personal practice of keeping
all work in the notebook (see Chapter 4 for a discussion of this practice), which tended to result
in cluttered notebooks. With the ability to rely on history, these participants felt that they would
feel safe deleting old work from their current notebook, to keep a more curated notebook of just
their end results (see Chapter 4 for a discussion of notebook curation). One of these participants
in fact, later said that they did keep a more clean “current” notebook during the S1
programming task because they trusted history was being saved.

Cell-based history requires a certain workflow
6/10 participants brought up how the cell-based notebook history would either a�ect or conflict
with their current workflow. This was surprising to us because we were not expecting trade-o�s
of cell based history (described in Chapter 10) to be so salient to first-time users. As E04
describes:

“You need to learn to keep all your similar things happening in one cell if you want to
be able to trace it back.” - E04

Since many participants (6/10) worked in the expand-then-reduce pattern we observed in
Chapter 4 where they created lots of small cells and later combined them, this meant that
Verdant wouldn't work as well, since either history of a topic like “the model” would be
distributed between lots of tiny cells or history would be lost when content snippets were moved
and combined between cells. As discussed in Chapter 10, maintaining provenance of code
snippets moved between cells is a challenge Verdant does not currently support. All history in
Verdant can be retrieved through the search bar, but still, making history more flexible is an
important area for future improvement. It was actually E04, who was very aware of this
limitation, who was also the single participant to give up on a question: they found that the
history they were looking for was scattered between multiple cell histories and decided that it
was not worth their time to try to piece together code snippet history needed to answer the
question.

What Features did Participants Use in the Scavenger Hunt?
To answer these questions, we analyzed S2 video and audio for each participant and labeled the
feature of Verdant a participant is using for each second during a question. We determine a
participant is using a feature by the following criteria: the user is actively typing, pointing,
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clicking, or scrolling within that feature. Since the user’s cursor can only be in one section of the
screen doing one activity, we assigned only 1 feature per second based on the most precise
feature we could say a user’s cursor was touching.

Figure 14.3 below depicts the percentage of time out of the scavenger hunt that each participant
spent using each feature. Note that some participants favor certain features (for instance E11
seems to spend most of their time in Artifact Detail while almost never using the Ghost
Notebook), but overall some features are clearly more popular than others.

Figure 14.3 Percentage of scavenger hunt time that each participant spent
using each feature. Main Notebook indicates time spent in the user’s regular
Jupyter Notebook, rather than in any of Verdant’s history features.
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Figure 14.4 Cumulative number of minutes spent using each feature across all
participants.

Overall, in Figure 14.4 we can see the total time spent in each feature is: #1 Artifact Detail, #2
Ghost Notebook, #3 Main Notebook, #4 History Search, #5 Artifact Summary, #6 Inspector,
and #7 Activity Pane. Note that we just have timing here for feature usage during the S2
scavenger hunt, so this excludes, for instance, participants’ usage of the Activity view during S1.
This same ranking holds if we consider feature usage in terms of number of times visited instead
of time spent at each feature. A participant visits a feature if, from a di�erent feature or the
question starting point, they switch to using that feature. Considering visits allows us to dig into
feature usage further by characterizing the pathways users take through Verdant and their
notebook to answer history questions. Below, feature node size indicates the number of times
that feature was visited, across all participants. The arrows below indicate a user going from
one feature to another, where the darkness and boldness of the arrow indicates the number of
times that path was taken across all participants. Thus the bold paths and the biggest nodes
show the most common feature usage across all participants. The [Start] meta node indicates
which features participants visited to start their search for each scavenger hunt question.
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Figure 14.4 Nodes in this graph represent a feature of Verdant (with the
exception of “Start” which is the user’s starting point for each question). Node
size indicates the total number of visits to that feature, and edge size &
darkness indicate how many times participants took that path.

Individual paths are shown below in Table 14.4, which also demonstrates how participants
tended to retrace their path through the same set of features to answer multiple questions.
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Table 14.4 Feature Pathways For Each Participant. Breakdown of Figure 14.4

E01 E02

E03 E04

E06 E07
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E08 E09

E10 E11
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The boldest edges indicate several notable pathways:

1. Artifact Detail and Ghost Notebook are frequently used together. In this usage we
observe that participants find an artifact version of interest in the Artifact Detail view,
and then open up a Ghost Notebook side-by-side to see that particular artifact version
in context of the full notebook as it existed at that time.

2. A cycle between Artifact Detail, Main Notebook, and Inspector indicate a common
usage we observed. If a user is in Artifact Detail looking at a particular artifact’s version
that is not the artifact they’re looking for, the user returns to their main notebook to find
where in the current notebook that history might be. Next, they use the Inspector to
click on an artifact in the current notebook, taking them back to the Artifact Detail,
which now shows all versions of that selected artifact.

3. Artifact Detail and Artifact Summary are frequently used together. This is to be
expected, since they both share the same UI container of the Artifact tab and contain
navigation links between each other.

4. Participants most often start their search at Artifact Detail, Main Notebook, Search, or
Ghost Notebook. Note that for the first 3 questions of each scavenger hunt participants
were requested to start their search at a specific assigned feature: Artifact Detail,
Search, or Inspector. Despite that priming, in reality participants started in other places
and almost never started at the Inspector. The Inspector situation can be easily
explained: in order to “inspect” an artifact with the Inspector, participants first
searched in their main Jupyter notebooks to pick out the artifact they wanted to inspect.
Sometimes, after browsing the notebook, participants became distracted and moved on
to using di�erent Verdant features to answer the question.
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What did participants think about Verdant’s features?
Following the scavenger hunt, we conducted an open-ended interview. We asked participants
for feedback about Verdant: how helpful the tool was, which parts of the tool they liked and
didn’t like, or any parts they found confusing. Feedback is summarized in Table 14.5.

Although usage logs (Figure 14.3 & 14.4) indicate that the Ghost Notebook and Artifact Detail
features were the features participants used the most, only 5 participants [E01, E03, E04, E08,
E11] explicitly discussed these in their feedback. Interestingly, participants were enthusiastic
about Search and Inspector features.

Table 14.5 Overview of Feedback For Specific Features

Verdant Feature Feedback Participants

Ghost Notebook Very useful for seeing outputs and surrounding
notebook

E01, E04, E08

Artifact Detail The feature to see code and output pairs
side-by-side is really helpful

E08

Artifact Detail Seeing the full history of output is super helpful E03

Artifact Detail Really convenient E11

Search Very useful, especially for questions with specific
keywords or code snippets involved

E01, E02, E03, E04,
E06, E07, E10

Search Overwhelming, returns too many irrelevant
results, could use better relevance sort

E08, E09

Inspector Very useful for quick history access E01, E03, E06, E07,
E08, E09, E10

Activity View The grouping of activity made it very readable E02

Activity View I liked looking at it and having it there E02, E03, E04, E08,
E11

7/10 participants highlighted the Search feature as being particularly useful [E01, E02, E03, E04,
E06, E07, E10]. E01 found search best when they could imagine what “code for that snippet would
probably look like.” However, the Search had some pitfalls due to its basic search algorithm. E08
found the search overwhelming in returning too many results. This is because one of E08’s
scavenger hunt tasks involved finding how a variable “x” had been used. When they searched
for “x”, Verdant’s search returned every occurrence of the character x in all text in all the
history of the notebook — a massive number of results, very few having to do with the variable
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“x”. This is a usability flaw in the current search implementation, which is overall a very basic
textual search. E09 also suggested that it would be helpful to order results by relevance. It
would also be easy to add word or variable search, as in most real tools.

6/10 participants highlighted the Inspector feature as being particularly useful [E01, E03, E06,
E07, E08, E10]. As E03 put it: “if I have the cell, click on it and it'll tell me exactly what the history
was for that thing”.

Although participants didn’t use the activity tab during the scavenger hunt, four participants
explicitly brought it up as a feature they would want to use in the future:

“On a longer‑term project that would actually be really meaningful to be able to say
like, Oh yeah. What was it that I did last week? Or how does this look at the end of
Friday?” - E09

How was the usability of Verdant?
Two participants called Verdant “pretty straightforward” and : “If I want something I can quickly
get to it” [E03]. Our scavenger hunt results do support that participants were reasonably
e�cient and successful using Verdant to find history facts. There was an overall consensus,
however, that Verdant has a lot of features and content to look at, with something of a learning
curve [E01, E02 E04, E10, E11]:

“I do see in retrospect, the usefulness of all the di�erent features, but definitely on first
use, I think you ignore a lot of them.” - E04

Although in S1 every participant completed an interactive tutorial that had them use all the
major features of Verdant – and were given this same tutorial to reference in S2 – participants
tended to forget about features. Two participants [E01, E04] re-discovered the Ghost Notebook
feature only after having done some tasks without it. The Inspector tool was a popular feature
among participants, as discussed above, but we had to add to our protocol to verify that
participants knew what the Inspector was before the scavenger hunt, as described in Chapter 13.
The Artifact Detail view and Ghost Notebook both had more advanced functionality that most
participants never encountered. We are less concerned that there is a learning curve for the
details like the side-by-side option, and more concerned with making key features like the
Ghost Notebook and Inspector easier to discover.

Our logs and interviews together highlighted three additional areas for design improvements: 1)
Navigation, 2) Naming conventions, and 3) Horizontal screen space.

Usability: Navigation

Navigation was the core usability problem in our Jupytercon Scavenger Hunt Study (Chapter 11),
and the topic of two separate design iterations to make navigation easier (Chapter 12). My
impression from observing both studies was that navigation was far smoother in the current
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study, with less observed frustration than what we saw in the Jupytercon Scavenger Hunt Study.
However, navigation was still not perfect. While 3/10 participants reported that navigation was
easy, another 4/10 reported navigation was “a little bit hard” in that they tended to accidentally
switch screens without understanding how they got there or how to get back:

“A couple of times I seem to accidentally move from artifacts to activity, just now, and
I couldn't possibly tell you how I did that.” - E02

“I will see the link... but I don't know, I click what's fully going to happen all the time
and whether it's something that's gonna pop up or not or when it's supposed to link
me somewhere or not.” - E10

“There's not a direct back button, is there? I think that would have been useful for me
sometimes. Cause I like would want to go exactly back to the page that I was on, but I
couldn't.” - E04

Usability: Naming Conventions

Naming of artifacts and versions in Verdant is again, a design issue we have been grappling with
since the Jupytercon Scavenger Hunt Study. The key problem is that each cell in a Jupyter
Notebook has a corresponding number in brackets next to it, called the kernel number:

Figure 14.5 The troublesome kernel number, here 219 in brackets

This number [219] does not mean that this code cell is “code cell 219”. This cell is actually the
10th cell in order from top to bottom in the notebook, and the 13th code cell the user created
chronologically. Rather, the kernel number [219] indicates that the last time this cell was run, it
was the 219th run executed on the kernel (the Python 3 runtime) —which may not actually be
the current kernel. Every time the user starts a new session or restarts the kernel, the execution
count resets, but the kernel number next to each cell does not change until that cell is run again.
Essentially, this number is useless as an identifier: constantly changing, not unique, and
frequently outdated. Unfortunately, this is the only number users see next to their cell, and
many users don’t know what it means. Repeatedly during the study, participants mistook the
kernel number for meaning “code cell 219”.

Since cells are anonymous in Jupyter notebooks and do not expose a unique identifier or name
to the user, we originally followed this design and avoided explicitly naming cells or notebooks
for the user in Verdant-1 and Verdant-2. One feedback from the Jupytercon Scavenger Hunt
Study was that this was too confusing: users wanted names to refer to, search for, and recall so
that they could more navigate history. In Verdant-3 and Verdant-4 we showed the user
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something fairly close to how our history identifies artifacts and versions internally. Figure 14.6
below shows how Verdant’s naming scheme corresponds to the notebook.

Figure 14.6 Naming in the Artifact Table view. C13 corresponds to the user
selected cell in the notebook, and has 16 versions.

The trouble that users encountered in this study is that there is no correspondence between the
naming used in Verdant and the kernel number in the Jupyter notebook:

“I was never quite clear about this, this number versus this number. And I kind of just
wished that they matched, even though I know that I haven't made 27 updates to block
C 11, or I haven't made 139 updates, I've made 27 or whatever. I kind of just wished
that it was like, this is C 11 in version 159, rather than two numbers.” - E02

6/10 participants reported being confused by the naming conventions. Another source of
confusion was the di�erent labeling schemes between artifacts:

“The naming is a little confusing to me. Um, like I said, kind of as we were
going through the, like, "C", I guess I just thought that meant cell or
something? I don't know what this "R" is, does it mean run?” - E08

From these issues, our current design recommendation is to simplify the naming scheme used
in Verdant and then add back in the idea of ambient version indicators in the cell margin
(Verdant-1, Verdant-2 Sketch 11.5). Although we cannot change the kernel number design of
Jupyter Notebooks, we could add our own number indicator to the margin of each cell that
matches the history naming. This number indicator may also give us a solution for improving
the version inspector interaction: instead of activating a version inspector button then clicking a
cell (Figure 12.8), the user could instead click on the history number besides each cell to inspect
its full history.
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Figure 14.7 Cell naming conventions in Artifact Detail view. Here C13.r16
means the 16th version (r for “revision”) of the 13th code cell that the user
created. In practice this was confusing to users.

Finally, two participants [E02, E10] requested ways to override the naming scheme and give
custom names for notebook versions and cells important to them.

Usability: Horizontal screen space

Again, horizontal screen space has been a challenge since the very first iterations of Verdant,
simply because code/output/markdown content takes up a lot of space. For instance in Figure
14.7 above, note that the Artifact Detail pane only fits part of the overall code snippet width. Due
to the scroll bar design on many contemporary browsers and operating systems, it is not
visually obvious that the user can actually horizontally scroll Verdant’s pane. As a workaround,
the user can expand the Verdant side panel horizontally, which we observed 8 participants did a
total of 20 times during the scavenger hunt.
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What Went Wrong When Users Struggled?

Figure 14.8 Distribution of Time Participants Took to Answer Scavenger Hunt
Questions

In the distribution of task times to find the correct point in the history, shown above, we
observe a bump around the 4 minute mark. We hypothesize that this bump, and the long tail of
task times, indicates possible failure cases with Verdant. We took the 8 questions that ran
longer than 1 SD away from the mean (> 156 seconds), and did a further detailed analysis of
what may have gone wrong in those questions.

In 3/8 slow questions, video and log data shows software bugs in Verdant as the culprit.
Throughout the study we fixed software bugs in Verdant as quickly after they were observed as
possible, but in these cases, features in Verdant not responding correctly slowed participants
down.

In 1 slow question that ran over 4:29, a bad wording in the question sent the participant looking
for the wrong thing. In the question “Find: Go back to the plot where you had x = usd goal bin, y =
project count, and hue = main category” the actual variable name for y was Num_samples, not
“project count”, although Num_samples did indeed semantically represent the count of projects.
While this was our own study design error, it does hint that history search may be brittle to a
participant fixating on specific keywords that represent a concept.

In 1 other slow question, the concept a participant was looking for had too many possible
keywords or locations. The question was: “Which variable combinations did you try looking at the
relationships between?” After 4:01, the participant concluded that they had probably identified
“most” of the variable combinations they had analyzed, but they had no way of knowing for
sure. We believe the question is the culprit. To find all variable combination analyses would
require exhaustively searching each variable and browsing through all results –a situation very
similar to the “brute force” search scenario we encountered in the Jupytercon Scavenger Hunt
Study (Chapter 11).
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2/8 slow questions appear to stem from some bigger usability issues already discussed above. In
1 question, the horizontal width of the screen was too narrow such that the user couldn’t see the
di� change highlighting in an artifact’s code, leading them to initially miss the change they
were looking for. Instead, they continued scrolling up and down through the artifact’s versions
for much longer than needed before they horizontally scrolled to see the di� marking the
correct version. As previously discussed, in 1 question E04 gave up on answering the question all
together, because the history of a particular variable was spread across multiple cell histories,
since that code had been moved around.

Finally, the last slow question was caused by a gap in Verdant’s history model, that we frankly
had not expected to see in this study. Verdant does not capture any kind of runtime information
currently, or do any kind of dynamic analysis to trace the exact runtime provenance of results in
the notebook. The question E03 attempted to answer is: “Find: What was the best accuracy score
you got for logistic regression?”. E03 quickly found the spot in history that contained their
accuracy scores. However, the accuracy scores were listed for a variable called model, and there
were two di�erent cells containing two entirely di�erent models, both using the same variable
name model. Which model had actually been run to produce the accuracy score? Participant E03
took an educated guess, but without knowing the actual value of the variable model at the time
accuracy was calculated, there is no way to know for sure in Verdant. To fix this issue would
require Verdant doing additional dynamic analysis to record runtime provenance. There are
multiple existing tools that demonstrate solutions for this problem in notebooks, e.g., [Head et
al. 2019] or [Macke et al. 2020].

PARTICIPANT BELIEFS & VALUES OVER AUTOMATIC EXPERIMENT HISTORY

One value of versioning automatically on behalf of a data scientist is that it provides a safety net
such that a user never loses their work. 8/10 participants mentioned recovering deleted content as
an important benefit of Verdant. It is normal in the process of experimentation that people drop
unsuccessful ideas as they work towards a solution. In our first study of notebooks (Chapter 4)
we observed that notebook authors prefer to tidy notebooks as they work, keeping only the
content that tells a clear story [Rule et al. 2018, Head et al. 2019]. A minority of authors try to
keep a record of everything they try in their notebooks (Chapter 4). Here 3/10 participants said
they normally write exploratory notebooks with the “keep everything” [E02] mentality, but
despite that self-report we observed that those participants did not actually keep everything. A
crucial distinction is that, whether through notebook structure or Git or other history-keeping
methods, data scientists keep what they think is valuable at the time (Chapter 3 & Chapter 4).
Dead-ends, disproven hypotheses, failed experiments, variable relationships with no
correlation, etc., are reliably and routinely deleted.
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Should we care about deleted content? Our observations suggest that deleted dead-ends and
discarded hypotheses can be important later, even if only to let a data scientist explain why they
didn’t go with a certain approach as discussed next.

Data scientists cannot always anticipate what will be useful

As reported in prior studies [Yoon & Myers 2012], programmers are not perfect at anticipating
what they might need later, especially in exploratory situations where ideas are rapidly
evolving:

“Um, and that's something that particularly bothers me when I go back to a notebook
a couple of months later, because I'll be like, Oh, I think I have this thing, but then go
back to the notebook and realize that you've erased it, replaced it with something
else.... Or if I remember, I'll try to save the graphs into a separate folder so that when I
want to look back at it, at least I have it. But honestly, whenever I remember to do
that, chances are that I don't need the previous history. It's only cases when I don't
remember to save the plots that I need the history.” - E03

When something is lost, the solution is usually to recreate it from scratch:

“And then of course I ended up later, like two weeks later being like, "Oh, but actually I
need to look at that question again" and then I have to rewrite it.” - E01

The need to recreate lost work was also the most reported pain-point due to lack of
history in our Query Design Survey from Chapter 4.

Why was that a dead-end again? Recalling details is hard without history

Per our study design, we spaced out S1 and S2 of the study by 10-14 days with the aim for
participants to forget just enough about their S1 work that they wouldn’t be able to answer all of
the history questions just from memory. Besides analysis questions about what the participant
did during S1, we also mixed in a question about something the participant didn’t explore during
S1. As reported above, in all but 3 of 64 scavenger hunt questions, data scientists used history
data to answer questions rather than answering from memory alone. We did not observe any
di�erences between participants answering questions about something they did do versus
something they did not do. When asked about something they did not do, e.g., “Did you use or
look at the country feature at any point?” participants often expressed uncertainty such as “I don’t
think I actually did… but maybe” [E10] before searching in Verdant for the answer. However,
importantly, participants would respond in the same way to something they had done in S1, that
they had deleted and then forgotten about.

We heard from 4 participants, who are all professional data scientists rather than students, that
in real data science practice they do get plenty of questions from team members or clients about
possibilities not included in the final cut of their analysis. Questions such as “What’s the
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relationship between <T> and <Q>?” or “Have you tried <such and such a plot>?” or “Why did
you not include <M> as a feature in the model?” or “What was the performance like with <this
model>?”. If there was no interesting relationship between variables <T> and <Q> in the data,
it’s possible that the data scientist deleted that investigation.

“I can see [Verdant] being super helpful too for describing process. Or, you know, six
months later when a reviewer wants a revise-and-resubmit, and you're like, what did
I do? You know, it's really common for a reviewer to have a question of “did you try
this?” And, you know, the answer is sometimes yes, so I can definitely see the merit of
[Verdant] there.” - E02

History is a collaboration tool

We asked participants to describe more about the social contexts in which they would or
wouldn’t use history.

One unexpected idea we heard from participants was that a data scientist gets more use out of
examining history in team settings than if they are working alone:

“So essentially the more people involved that are questioning your decisions or your
questioning theirs, I think that's where it's the most useful. Because if I am doing it on
my own, then I may not even be aware of what I'm missing, right? Like some
questions I may not even ask, but it's when, whenever more people are involved in the
project, that's where I think it would be the most useful. And, especially if newcomers,
you know, come and look at it and don't have much of a context and it's a little bit,
"why didn't he do this or that?" And if you want to say, ‘Oh, maybe I did try it. Let me
check back,’ then that would be useful to like onboard newcomers.” - E10

Participants who worked in settings where other people besides them were involved in data
analysis reported getting history questions in their daily work, whereas participants who did
solo data work less so. The key users for history were collaborators or newcomers to a project
who needed onboarding. In contrast, E01 reported that they would not use history, even to
answer history questions, in front of clients due to professionalism:

“I don't think I'd pull up the history in front of a client. Um, because honestly for a
client, I think the better thing to do there would be to answer to the best of your ability
just verbally or with the stu� you already have up. Then you can always send a
followup afterward that's polished. I wouldn't want to get into something that you got
to fumble around a bit. For internal project meetings that might be doable, to bring
up, especially like past plots or something. It really honestly depends on who the
people I'm presenting to are and what level of polish I need to have.” - E01

In terms of onboarding, E08 talked about wanting to use history to understand what their
teammates had done in their work:
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“Everyone kind of structures their analysis in slightly di�erent ways so that,
you know, figuring out what they did is really hard. I spent a little bit of time
emphasizing this point of like, I go do a bunch of things, but then only some of
it makes it to the final cut. Being the person who does that, I know what I've
excluded. Um, but if I'm picking up something that someone else has done, I
have no idea what else they've looked at.” - E08

However, E08 also cautioned that since understanding the final-cut of someone else’s analysis
is hard enough, exploring their history might just be too challenging.

These quotes are encouraging clues that collaborative history for data science history, and
summarizing one person’s history to be examined by another, are interesting areas for future
work [Zhang et al. 2020, Wang et al. 2020].

Most important history? Model metrics & Plots

Many of our participants had history keeping habits in their data science practice. 8/10
participants used Git to store their notebooks and another 5/10 participants talked about saving
images, plots, or model metrics to external folders or files. For code, community best-practice
dictates a clear solution: store code history in Git. However, for other things like plot images,
notes, or model metrics, participants stored those in a various assortment of seperate places.
For a single project model metrics might be stored in a csv (E10), code in GitHub, plot images on
Google Drive or Dropbox (E02, E10), then loose notes and results jotted down in a Word
document (E04). The di�culty with history and artifacts spread to so many places is that
they’re harder to tie back together. The benefit of a cohesive relational history like Verdant is
that context is preserved. 6/10 participants explicitly talked about Verdant’s style of history
being beneficial for preserving plots with a clear way to reproduce them. 5/10 participants
explicitly talked about Verdant’s style of history being beneficial for preserving a history of
model metrics. Once modeling reaches a more mature phase of iteration, best-practice suggests
model metrics be automatically logged, such as E10’s reported normal workflow where each
model’s settings and metrics are logged to a csv file. However at the earlier exploratory phase,
where less formality is warranted, Verdant’s style of automatic history gives users quick access
to flip through model metrics in the history of a cell output.

Careful, don’t collect junk!

Although our results suggest that automatic relational versioning such as Verdant provides
substantial benefits to data scientists, there are tradeo�s. The drawbacks of versioning
automatically are 1) storage costs and 2) potentially more versions than are helpful. These
issues and details of Verdant’s versioning implementation are discussed in Chapter 9. Two
participants in our study were overall hesitant about the idea of automatic versioning, both
worrying that it would store many more versions than necessary. Both participants thought that
Verdant should not store history in cases of syntax errors or debugging, which Verdant actually

194



Designing E�ective History Support for Exploratory Programming Data Work - Dissertation - Mary Beth Kery

does use some heuristics to avoid storing. For these data scientists, they preferred a model
closer to Git, where a user could manually check in more semantically meaningful versioning of
their notebook. It’s worth noting that Verdant’s user interface and interactivity would work the
same for a manual version without automatic history. This is a possibility worth exploring in
the future. Finally, one participant with these reservations did later shift more favorably after
working with Verdant:

“I really like it. I think it is helpful. Um, and it's, it's one of those tools that as a user, it
seemed very cheap. It seemed like it wasn't really slowing down my computer, it
wasn't making anything worse or slower or di�cult. It wasn't hindering me in any
way. And the potential benefit is pretty big. Um, if I did want to go back and check that
out. So it's definitely something that I would kind of just happily leave running, for the
day that I did need it. Yeah, I think that'd be a really nice safety net to have.” - E02

CHAPTER CONCLUSIONS

For us as researchers, this study served to show that Verdant is e�ective at what it is designed to
do, and also served to crystalize what exactly the value of experiment history is to practitioners.
All along we have been designing Verdant and its prior history tools with the hypothesis that a
more complete and easy-to-use history support would be helpful to practitioners. We saw in
these results that practitioners were able to answer real history questions successfully with
Verdant in 98% of cases in an average of 1:26. This is highly encouraging evidence that Verdant
is a practical design for data workers to ask questions about their experiments in short enough
time to fit appropriately within a meeting or programming session. Moreover, in qualitative
results we heard what a complete history enables practitioners to do. History means that plots
aren’t lost. History means that a data worker can more easily onboard a colleague to their
project. History means that a data worker can just as easily show evidence for why an
experiment failed as for why an experiment succeeded. With no upfront e�ort from the user to
collect any history, Verdant provides an e�ortless safety net to ensure that experimentation
people do is preserved and can be easily interrogated later. Like all our prior studies, this
current study revealed areas for improvement and further design work. However, we consider
these results to be validation that our design research can serve as a solid foundation for future
work in experiment history.
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Part IV: Future Work & Conclusions
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Chapter 15: Future Work

INTRODUCTION

So where does this leave us? The work in this dissertation has been iterating towards a vision
where a data scientist e. ortlessly has the history of their experimentation at a moment’s
notice, and can e�ectively use their history to explain their prior work. We believe that our most
recent results in the Verdant Usage Study suggest we’ve come close to achieving this.
Practitioners in our study were able to locate an answer for 98% of the history questions we
posed in an average of 1 minute 30 seconds per question, using a fully automatic history tool.
While certainly we believe that these results can be improved with further iteration, to us this
demonstrates the value and viability of interactive and automatic versioning for experiments.

The Future Work will be split to address two major avenues: 1) what next steps does
Verdant-style history tooling need to be maximally viable in the real world? and 2) what
research avenues does Verdant-style history tooling open up? We believe that the most exciting
open research questions start once we can assume that data scientists have a complete history.
If every practitioner and team has a wealth of data about their iteration and practice, this data
may be used in the future for higher-level automation support.

Verdant in the Real World: Design Considerations for In-Situ Interactive Fine-Grained Versioning

Verdant may be able to directly benefit practitioners today, which is why we released Verdant as
a JupyterLab extension. However, realistically Verdant and Verdant’s style of interactive history
support will need improvements in order to support wider adoption, as discussed next.

Storage & E�ciency
First, fine-grained in-situ versioning, like Verdant provides, needs to be more e�cient. In this
work we engineered Verdant such that it was performant enough to work in real time without
slowing down the user’s environment on a high-end personal computer. However, Verdant is
certainly not as e�cient as it would need to be to support long term usage and large outputs.
During runtime, Verdant needs to quickly access any version of any artifact to display
summative visualizations and quickly respond to user requests to examine the history of a
certain artifact. Verdant also needs to support search over the history. Meanwhile, Verdant is
recording new history of text and mixed-media output in realtime as the user edits and runs
their notebook. Our approaches for storage are discussed in detail in Chapter 9, and would need
revisiting to make Verdant performant in real usage. Similarly, as discussed in Chapter 9, we
originally included versioning at the granularity of code snippets instead of just code cells, but
ended up removing this feature due to performance. Feedback from participants in our Verdant
Usage Study suggests that history of code snippets is actually quite important for many users.
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Often users move code between cells or by combining cells, in which case Verdant currently does
not track the provenance of those code snippets and their history is lost. Thus, further research
is needed to find an e�cient way of incorporating back in some level of code snippet versioning
to meet this need.

Git Integration
We believe that the key interaction concepts in Verdant could be readily adapted to work in
other coding environments and with other history back-ends — including integration with Git.
The ability to interactively look at history in-situ in an active code editor is a familiar concept
with contemporary tools like Git and Visual Studio Code. Where Verdant makes a substantial
improvement is that we design new interaction forms specifically tailored to using data
experimentation history. The key integration hurdle for layering Verdant’s style of interactive
visualizations on top of a Git back-end is that Verdant breaks down a user’s file into
sub-component artifacts, tracked over time. There are a number of ways this could be adapted
to work with Git, with the simplest likely being to let Verdant keep it’s own supplemental
history file. Verdant currently has one single big history file .ipyhistory where all history is
kept. It would be storage-ine�cient to commit the .ipyhistory file as a normal Git user’s file,
since that would copy Verdant’s database again and again across commits. Instead, it may scale
better for Verdant to keep a single .ipyhistory file per Git commit, that just contains the
fine-grained Verdant history of that specific commit.

Manual vs. Automatic History
One question that comes up almost every time we have presented this research to a research
audience or our study participants is: do we really need an automatic history of everything?
Clearly, automatically collecting all of a data scientist’s experimentation, including code, notes,
and output, incurs storage costs. In Chapter 14 we discuss the pros and cons of automatic
versioning from a user’s perspective. Ultimately, however, we are of the opinion that the
benefits and safeguards which automatic versioning provides to users outweigh the storage
costs. That said, there are ways in which better balances between manual and automatic history
could better suit users’ individual needs.

First, as in most software tools, configuration is important. Verdant collects output, code, and
everything in a user’s notebook because we have consistently found in user feedback across our
design iterations that di�erent practitioners want di�erent things stored. For some data workers,
the ability to automatically capture output, and the code needed to reproduce it, is the biggest
value added by Verdant. For other practitioners, they are not interested in output for their
particular project, or cannot have output captured for legal reasons, such as United States health
data laws. So configuration around what is captured by automatic versioning would be
beneficial. Configuration around how often content is captured, or the ability to turn o� and on
automatic versioning as needed, may help data workers feel like they are capturing more
semantically useful history. All of the visualizations and interactions provided by Verdant will
work the same regardless of how much historical data is captured.

Next, users should have the ability to manually annotate the automatic history. Practitioners
frequently requested the ability to name or annotate important versions, instead of having to
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remember the system-generated name for a version they know will be useful later. Throughout
our iterations of Variolite and Verdant 1 and 2, we implemented di�erent forms of favoriting,
pinning, naming versions, or letting users leave comments on versions themselves. These
features were dropped from later iterations of Verdant (Chapter 12) due to limited engineering
resources, because tagging and annotating seemed less critical to our research goals at the time.
In our final version of Verdant, we believe the most obvious form of annotating history would be
to let users add something like a commit message to be shown as the title of a version. There is a
breadth of possibilities for manual annotation, manual pruning, manual organization, and
meta-analysis we could let users do to manage their own histories. Future work is needed to
understand what forms of annotation and curation would provide the most value to users.

Collaborative Authoring & More Complex Histories
Verdant and all of our prototypes were designed for the use case of a single individual writing
code, and potentially showing their work to others. We did not address collaboration in
authoring, simply because we needed to scope our research for this dissertation. However, in
real practice, collaboration is an important part of data work [Zhang et al. 2020]. Collaboration
is also an important part of traditional version control systems like Git. Unfortunately,
collaboration not only adds social aspects to system design, but also adds much more
complexity to history. Where multiple people can be authoring and modifying the same
document asynchronously in parallel, just like Git, Verdant will need to model and visualize
multiple contributors and multiple branches. Existing visualizations from Git demonstrate clear
design patterns that a fine-grained experiment version control like Verdant could readily adapt.
It is less clear how the overall usability of Verdant would be impacted by branching
multi-author histories, since a complex history structure was already a major usability design
challenge in Verdant. Users in the Jupytercon Scavenger Hunt Study (Chapter 11) and users in
the Verdant Study (Chapter 14) all reported navigation issues. Since Verdant breaks down the
history of specific artifacts, it can be challenging for users to interpret how histories of di�erent
artifacts relate to each other over time. Navigation, and navigation of more complex histories,
will need to be addressed in additional design and visualization research. Recent work by
Weinman et al. in “Fork It” tested displaying branching points in the notebook as side-by-side
lanes of work in the notebook [Weinman et al. 2021]. However, this design faced similar
navigation problems to what we faced in our designs in that horizontal screen space limits users
to seeing just 2 alternatives side-by-side in most cases [Weinman et al. 2021].

Relating Histories of Artifacts Outside of Notebooks
A chief motivation for us scoping our research in this dissertation to computational notebooks
is the barrier of relating histories of artifacts coming from di�erent tool sources in a data worker’s
environment (see our failed Rose Quartz prototype in Chapter 8 for discussion). Even though
Verdant captures many of the artifacts that contribute to a user’s experiment within a
notebook’s environment, we do not even attempt to capture the history of the user’s data. Our
reason for not dealing with the versioning of datasets, is that data versioning requires its own
set of specialized tools and approaches, e.g., DVC1. With Verdant we chose not to coordinate with
other tooling outside of a notebook’s internal environment. Coordinating history between

1 DVC Data Version Control https://dvc.org/
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di�erent tooling, di�erent media-specific repositories, and recording workflow relationships
between disparate histories is a major barrier for future work.

Beyond Verdant: Using History Data for Higher-Level Forms of Support

The practitioner use cases that Verdant serves stay quite close to the history data itself: how to
help practitioners e�ortlessly store experiment history, and how to let users e�ectively retrieve
what they need out of their histories. There’s much more that can be done beyond storage and
retrieval, once we have a base system like Verdant collecting rich datasets of experiment history
data. This is somewhat another argument in favor of automatic history collection over cheaper
manual history commits: more data collected allows us to do more powerful analysis and
modeling on that history data. Next, we will discuss several promising avenues that use analysis
on top of history data to provide higher-level forms of support.

Detecting & Communicating Story and Rationale out of History Logs
The logs and visualizations we provide in Verdant are low-level in that they are at the level of
the exact edit logs we record from the user. Although we use interaction and visualization
techniques to help users extract semantic history facts from these logs like “What happened
when X feature was tried?”, this is not the same as summarizing history. Also, as we discuss in
Chapter 9, not every version of a programmer's code can truly be described as “an experiment”.
Some very typical programming work, like debugging or fiddling with syntax, do not actually
contribute to the narrative of how an analysis was done, but nonetheless clutter Verdant’s logs.
While we apply some filtering and heuristics to improve log quality (Chapter 9), the fact is that
Verdant’s logs record nearly verbatim everything the user does.

Another motivation is that in our Verdant Study, multiple practitioners were excited about
using Verdant’s style of history to onboard newcomers to a project, or to attempt to understand
someone else’s work. Recent work on collaboration in data science [Piorkowski et al. 2021,
Zhang et al. 2020] has also stressed the need for better and easier forms of communication
about the rationale behind data work. When the rationale behind an analysis or model decision
is held only by the original author of that work, information is easily lost when data workers
move companies or want to reuse analyses outside of their original context. Zhang et al. found
that among professional data workers at IBM, 84.6% of notebook users expected that their
notebook code would be reused by someone else [Zhang et al. 2020]. History data contains much
of the information needed to understand the process behind data work, in a permanent format.
How might we support summative understanding of a chunk of history?

Recent work has made progress in using machine learning to summarize data analysis work. For
instance Wang et al. used modeling to automatically suggest markdown documentation to data
workers in notebooks [Wang et al. 2021]. Meanwhile Ge Zhang et al. showed promising results in
being able to automatically label the category of data science activity going on in a notebook
code cell [Zhange et al. 2020]. We are optimistic that as these techniques advance, Verdant’s
style of history logs might be better clustered, categorized, and summarized to provide users
with a high-level overview of what went on in the development of data work.
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Higher-level History Question Asking & Answering
In addition to history summarization, this same kind of automatic detection of semantic
information from activity may also support better history search. Currently in Verdant, our
interactions and visualizations serve to help users find the history of particular artifacts based
on memory cues like time, location, keywords, or visual features they might recall (see Chapter
11 for discussion). However, it is really up to the user to operationalize their actual question into
specific versions and artifacts that let them answer that question.

Recalling our Query Design Exercise from Chapter 4, we find that Verdant reasonably serves just
over half 56% of all history tasks practitioners articulated (Appendix G). Why only 56%?
Verdant works well for finding specific things. Many of the remaining questions Verdant does
not cover are too high-level to answer with a specific version of a specific artifact. For instance:
“List of all significant predictors of [insert name of variable Y]” requires a semantic understanding
of which features out of all the analyses an author tried were “predictive”. Now it may be for
some of these high-level questions that the practitioner might be able to articulate the same
question into a finding task that Verdant can achieve. However, from the raw text of
participants’ history questions alone, there are 35% of them that require some understanding
Verdant does not have.

With better machine semantic understanding of history, future work may be able to answer
higher-level questions for the user directly. For instance, a user might ask “Why did we choose
this parameter?” by pointing at the spot in the code, similar to the interaction in Whyline [Ko &
Myers 2004]. Currently Verdant could deliver the history of that particular spot of the code, but
would not deliver other relevant information needed to answer the user’s question if it were not
contained in the history of that specific artifact. Better semantic processing, including static
and dynamic data flow analyses and built-in knowledge about what methods do may be used to
help users understand the entire scope of artifacts and versions needed to answer their
questions.

Highlighting gaps in the user’s exploration
One of our earliest ambitions in this research was: can we use the practitioner's history of their
work so far to suggest what to try next or otherwise make the experiment process more robust?
With a poverty of available history data, this avenue was not viable to us at the time, but an
actualized tool like Verdant makes it possible to collect su�cient data. Recently in the research
community there has been a lot of interest about data science experimentation, analysis or
model building workflows [Lee et al. 2020, Sanchez et al. 2021]. In our own studies, we have
observed that the data science exploratory process is nothing terribly precise: at any point in
time a data scientist will try the most promising avenue at the time, in a kind of
greedy-algorithm style walk through of an immense decision space. In our Verdant Study, we
saw that when we gave 11 data scientists the same data and the same task prompt, they varied in
the approaches they took and number of insights they found. Liu et al. similarly found in a study
of published research analyses, that experimentation decisions tended to be very personally
driven by the researcher doing the analysis [Liu et al. 2020]. They proposed helping researchers
visualize the multiverse of their analyses: essentially show in a visualization what path of
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decisions they took through a much bigger decision space of approaches they could have taken
[Liu et al. 2020].

On the one hand, a human data scientist’s domain knowledge and common-sense reasoning
guides their exploration more e�ectively than a machine alone. On the other hand, techniques
like parameter optimization and AutoML approaches can do much more experimentation
covering more of the decision space than a human alone [Xin et al. 2021]. Many researchers
estimate that the future of data work and machine learning will be a collaborative process of
programming between the human and automated methods (like AutoML) to reach the best
results [Wang et al. 2019, Wang et al. 2021, Xin et al. 2021]. Can we make the process of
experimentation with data more rigorous by bootstrapping human data scientists’ e�orts with
automation support?

History logs of experimentation are a promising ingredient in this envisioned collaborative
future, because based on the history of what a person has done so far with their data, automated
approaches could more e�ectively assist appropriately with the context of what a person is
attempting to do. History logs could also be used in the visualization style of Liu et al. [Liu et al.
2020] to semi-automatically chart the decisions a data scientist has made so far, and highlight
possible gaps. Importantly, this usage of history logs rather depends on the research direction
presented in the prior section, in being able to extract semantic decisions and motivations out
of raw edit logs.

CHAPTER CONCLUSIONS
This chapter outlines some specific avenues for future research related to experiment history,
but broadly we expect that the data provided by rich experiment coding history may enable
many more new types of visualizations and user interactions that we have not yet anticipated.
Zooming out even further to thinking about experiment history data as a form of programming
logging and worker logging, we expect that fine-grained history data like this will be part of a
broader conversation and research agenda into how sensing of worker activity should be
handled. Like any activity sensing data, our experiment logs have the potential to be misused to
invade data worker privacy or invasively monitor a data worker’s programming practices. While
policy is outside of the scope of this dissertation, we want to acknowledge our work as falling
under that societal concern, as more and more data is collected about workers.

Finally, we hold hope that Verdant and our body of design work in this dissertation will inspire
future systems of this kind in the real world. The design ideas and findings we uncover in this
dissertation may apply to history in a broader set of data related work, or even help inform
avenues in other forms of experiment-driven work like design or engineering iteration
histories.

202



Designing E�ective History Support for Exploratory Programming Data Work - Dissertation - Mary Beth Kery

Chapter 16: Conclusion

In this dissertation we have described a detailed investigation of history support for exploratory
programming data work, carefully aligned with practitioners’ real world needs. We conducted
two interview and survey studies in di�erent contexts to document data workers’ current
practices around code and data experimentation. We designed and engineered a series of 5
prototype history tools, culminating in Verdant-4, released as an extension for the JupyterLab
notebook environment. During the design process we conducted a series of four usability
studies to test that our proposed design interventions were usable and closely aligned with
practitioner needs. Finally, in an observational study of Verdant’s use in exploratory
programming practice by data workers, we showed that our history tooling design allows users
to collect all of their experiment history without any e�ort, and successfully find semantic
information about their work history in an average of 1 minute 26 seconds.

Our thesis statement at the beginning of this dissertation was:

Data work frequently involves exploratory programming which requires a new kind of
versioning for history and new interaction techniques for exploring that history, which
can help data workers more e�ectively answer their questions about what they
explored.

This thesis was achieved by developing new history interaction techniques and approaches,
which we then validated in usability studies. Although we cannot say that the problem of good
history support for exploratory programming data work has been solved by this dissertation, we
have demonstrated substantial progress. Of all the queries generated by data practitioners
(Chapter 4), our final system Verdant-4 can help practitioners answer 56% of them (Appendix
G), which represents all history tasks that do not require history of a dataset and can be solved
by finding a particular historical artifact. As shown in our final Verdant Study, (Chapter 14)
practitioners can answer questions fairly quickly (1:26 on average) with precise history
evidence.

As a whole this research contributes to the interdisciplinary field of Human-Centered Data
Work as well as to the field of Human-Computer Interaction (HCI). Our studies of practitioner
work practices (Chapters 2,3,4) have been broadly cited across interdisciplinary research
communities interested in data science workflows and human-centered tooling for data work.
Our findings show that real data work is more messy, experimental, and iterative than had been
depicted in prior work:

● Exploration adds risk of investing in an idea that may fail or be discarded. For this reason
many practitioners prioritize finding a solution over writing high-quality code.
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● Practitioners commonly comment-out code they want to preserve but don’t want to run.
Keeping alternative code through commenting, duplicating code snippets or functions in
the same file, or duplicating files are all forms of “informal versioning” tactics
practitioners use.

● Many otherwise active users of version control software like Git choose not to use
version control for managing their experimentation and choose to rely on informal
versioning tactics instead because they need fast access to multiple versions of parts of
their experiment at once.

Additionally, our Notebook Usage Study is one of the very first published studies documenting
how real practitioners use notebooks for active data work, and thus has more broadly informed
new research on computational notebooks. Key findings from this study include:

● Besides their usage as a shareable document for communication, notebooks are also
used as scratchpads for testing out quick ideas, and testbeds for models that are then
transitioned into production.

● Adding, deleting, combining, and organizing notebook cells is a natural part of iteration
cycles in authoring notebooks. Cell patterns include “expand-then-reduce” where an
author creates many tiny new code cells to piecemeal build up some functionality, and
then “reduces” all of those cells into just a few condensed final cells that encapsulate
the final result.

● Whether they use markdown to create narrative is a matter of personal style, but most
data workers use minimal markdown headings or code comments to document their
in-progress data work. This is in contrast to other usages of notebooks, such as for
interactive textbooks or tutorials, where heavy narrative markdown positions a
notebook as a literate programming document.

● Using cells, notebook users have their own informal versioning tactics for managing
their experimentation, just like non-notebook users.

As HCI system contributions, our tools Variolite and Verdant demonstrate novel functionality
that substantially improves user experience with experiment history, and may also be useful in
other contexts for exploring versions. Where previously practitioners had very limited ways to
interact with their experiment history, restricted to viewing older commits or older copies of
their work, our designs contribute:

● An automatic history model which passively records all of a user’s experimentation in
the background while they work, providing data workers a full history record without
any manual e�ort or noticeable computation time overhead.

● A history UI sidebar allows a practitioner to quickly retrieve the history of any specific
part of their code, notes, or output, displayed side-by-side with their active
computational notebook.
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● A stream of “minimaps” concisely shows users at-a-glance what happened in each
version of their work, and how their notebook has evolved over time.

● A “Ghost Notebook” provides a full historical view of any notebook version so that a
practitioner can see a particular artifact version in its original context, or compare older
notebooks to their current active notebook side-by-side.

● A history search bar allows users to run text searches across their history, for when
users recall keywords for work they are trying to recover.

● A Version Inspector provides easy point-and-click access to the full history of any cell or
output. This is most helpful when practitioners know the location in their notebook that
likely contains the history they are trying to recover.

Overall, the research approaches and trajectory of projects undergone in this dissertation also
carry some broader takeaways. First, our investigation of history for experimentation engages
with practitioners’ “messy” programming practices, poor organization, time-pressure,
forgetfulness, and other elements of human fallibility within data workflows. Many data
workers we interviewed definitely did not follow all best-practices for managing their
experiment history or engineering their analyses and models in a robust way (even when they
were familiar with these techniques and practices). As research in areas such as end-user
programming (EUP) have argued for a long time, programmers are people too [Ko et al. 2011,
Myers et al. 2016]. For data work specifically, we believe that a key element of ensuring our
societal values for responsible AI, ethical data work, transparency, etc., are met is ensuring that
human data workers are adequately supported. An empathetic HCI lens can help us use the
practices that people actually follow to identify important design directions where practitioners
actually need more support.

A second theme of this dissertation is the amount of iteration it takes to get from a compelling
proof-of-concept research prototype to a design that can actually withstand the stresses of real
substantial usage. Consider that our early prototypes Variolite (Chapter 7) and Verdant-1
(Chapter 10) were both positively received by participants in our studies, and the research
community who gave awards to both systems’ papers. Both systems were important steps, and
contributed design elements we carried on to later iterations, but ultimately both systems were
still quite far from achieving our design goal in reality. Subsequent iterations Verdant 2, 3, and 4
required substantially more engineering investment, but also far more close and detailed
consideration into how our history interactions would work in practice. Truthfully, the years of
work in Verdant 3 and 4 felt oftentimes less like research and more like product development.
Ultimately, however, only through the maturation of our designs and engineering were we able
to put Verdant into realistic usage with real practitioners to provide evidence that: Yes, usable
experiment history is achievable through this design direction. Yes, given a usable form of
experiment history, practitioners do actually find history data useful for justifying and
explaining their work. Much of our research in this dissertation operated on faith in the
hypothesis that if data workers had easy access to history then they would find history useful. In
the end, it was highly encouraging to finally see actual evidence in the Verdant Study in support
of this claim.
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In conclusion, we hope that others find this dissertation informative and useful groundwork for
their own ideas in experiment support. We estimate that experimentation will only become
more important over time as programming becomes more advanced. With further automation,
more and more of a human’s role may be to make decisions and weigh options for how data
work should be done out of a set of promising options a machine (e.g., AutoML) can come up
with. Understanding e�ective experimentation, and understanding which decision paths people
take and why in data work, is an area that may benefit substantially more tool support than we
have today.
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Appendix A: Exploratory Programming Study Materials

This study is described in Chapter 3

INTERVIEW PROTOCOL

Introduction
● Explain one person will mainly be talking and one person taking notes
● Tell the user that the session will be (optionally) recorded
● Explain that comments user makes may show up in published research
● Caution participants not to discuss other people in any way that could identify them,

such as their name. Also ask participants to not discuss sensitive information about
other people.

● Establish open-ended partnership

[Make introductions, thank them for participating in interview. ] Today we’re going to ask you
some questions about your process for doing programming work, especially work that is
exploratory. [From here on, “[the exploratory programming activity]” will indicate the specific kind
of programming task they talk about, whether that be data analysis or some other kind of exploratory
programming work]

[confirm permissions interviewee gave on the consent form, reiterate that their identity will not be
revealed] Also, if there are certain projects that you specifically do not want to be shared with
the public, we will be happy to accommodate that either by pausing video recording or making
sure that any comments and images associated with the project will not show up in published
research.

Also, you see here are some pieces of paper and a [pencil/pen] in front of you. [If this meeting is
over the internet, ask them to either a) have a piece of paper in front of them to show on the screen or
b) use the note-taking program of their preference over screen-share to show sketches] If any time
during the interview it’s easier for you to sketch a diagram or snippet of code, please feel free to
do that. If we need clarification for anything during the interview, we may ask you to sketch
something. This is completely optional. [confirm optional permissions interviewee gave on the
consent form, reiterate that their identity will not be revealed]

We also ask you, for confidentiality, please avoid identifying any other person in this interview,
particularly anything that could be used to identify that person, like their name. Please also
avoid anything that’s sensitive information about another person.

[If this rule is broken during the interview, interviewer will stop recording and rewind to erase that
information. Remind the interviewee of this rule.]
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Finally, you are in the driver’s seat for this interview. You do not have to answer any questions
that make you feel uncomfortable and you can choose not to perform any tasks that we ask you
to do. Do you have any questions before we begin?

Background

How much of your time do you spend on [the exploratory programming activity]? How long
have you been doing [the exploratory programming activity]? What tools do you use? How long
have you been using these?

Stories

Can you tell us about some [the exploratory programming activity] that you’ve worked on
recently? If you are alright with it, we would like you to show us some of your code and project
pieces as we continue the interview, so that as you discuss your work practice, you can point out
some concrete examples. In code you show us, I will also ask you questions about your coding
practices and what motivates you to make certain coding decisions.

How long is your [the exploratory programming activity] process for a project? How much code
do you write for this task? How long does it take to run?

Programming Practice

How much do you code using the console versus scripts?

How do you organize your [scripts or console, depending on response to previous question]?
How is all the code you generate for this project organized into di. erent files? Do you put
multiple kinds of code tasks in one file? If so, how do you tell what code does what in the file?

How do you organize the output or results?

How often do you return to old code? How readable is this code later on?

How often do you share your code with someone else? Does this a�ect how you program?

How often do you communicate the incremental results of your work to someone else? How do
you communicate this?

Exploratory Programming

Can you describe a time where you tried out several di�erent avenues to produce an e�ective
program? How often does this happen? How often do you try di�erent possibilities while
developing code? How often do you compare between two pieces of code? What do these
comparisons look like?
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Do you use version control? How do you manage versions of your code? Are there any challenges
you’ve encountered with versioning, like wanting to return to an earlier version of the program?

How much of your work would you consider exploratory? What parts of your work are
exploratory? How often do you work on exploratory programming?

Wrap Up

Do you have any thoughts on how the tools you use can be improved? We are interested in the
[the exploratory programming activity] process, especially programming practices for
exploring ideas. Can you think of ways to improve either or both?

Do you have anything else you think we should know about the [the exploratory programming
activity] process?

Thank you for your time.
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SURVEY QUESTIONS

This survey is part of a research study from the Natural Programming Group at the
Human-Computer Interaction Institute at Carnegie Mellon University.

For any questions/concerns, please feel free to contact the research team:
Investigator: Mary Beth Kery mkery@cs.cmu.edu
Faculty Advisor: Prof. Brad Myers bam@cs.cmu.edu

The purpose of this survey is to understand your programming practices, when you are writing
code to do exploratory data analysis. Here, “exploratory data analysis” includes asking
questions of data, building models from data, writing code to filter, “clean” and/or visualize data,
and data mining. “Exploratory data analysis” includes any computational-focused research
where you are working with data to achieve some goal, but the exact means to that goal is
unknown to you without trying different approaches and ways of manipulating data (and hence
you must “explore” what code will work)..

Participation in this research is voluntary, and you have the right to withdraw from the survey at
any time. Also, you must be at least 18 years old to participate. You responses to this survey will
be used in research: this means that your responses may be included with all our results from
this survey in published research, but your responses will be de-identified first (we will remove
any reference to your job, age, email, and remove other information that could be used to
directly identify you). The sponsor of this research, the National Science Foundation, may
access our research records including the full survey data.  We will take caution to keep your
information securely, and all identifying information confidential. That said, there is a risk of
breach of confidentiality. There are no other risks outside those of normal internet browsing.
There are no benefits either, besides gaining a better sense of your own practices.

At the end of the survey you will have the option to enter in a raffle for a $25 Amazon gift card.

I am 18 years or older.
- Yes
- No (will end the survey)

I have read and understand the information above.
- Yes
- No (will end the survey)
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I do, or have done exploratory data analysis as part of my job, and would like to participate in
this survey.

- Yes (will begin the survey)
- No (will end the survey)

Survey page 1

First, we will ask you some basic questions to get a sense of your work. The entire survey is 30
questions.

1. Gender
a. Male
b. Female
c. Other
d. Prefer not to say

2. Age
____ years

3. What is your occupation?
__________________

4. How long have you been working in your field?
___ years

5. When you work with data, how often does this require you to do exploratory data
analysis?

a. Always
b. Very Often
c. Often
d. Occasionally
e. Rarely
f. Never [survey will end with this option]

6. Please describe your current or most recent project that involved some form of
exploratory data analysis. If the details of your project are confidential, feel free to give
only a brief high-level description of what you did:
[Open-ended text response_____________________________________________]

7. When you work with data, how often do you write code to do this work?
a. Always
b. Very Often
c. Often
d. Occasionally
e. Rarely
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f. Never

8. How much formal training in computer science or related field (e.g., software
engineering, information systems, etc.) do you have?

a. None: self-taught
b. A few classes
c. A bachelor's major or minor in CS
d. Graduate degree

Survey page 2
Please answer all the following questions in this survey about projects you have done that
involved exploratory data analysis.

How much do you agree or disagree with the following statement:
9. “I analyze a lot of different questions about the data in a single source code file”

a. Strongly disagree
b. Disagree
c. Neither disagree nor agree
d. Agree
e. Strongly agree

How much do you agree or disagree with the following statement:
10. “When I am doing exploratory programming, I prioritize finding a solution over writing

high-quality code”
a. Strongly disagree
b. Disagree
c. Neither disagree nor agree
d. Agree
e. Strongly agree

11. Of the code you write for data analysis, what percent of all of that code is seen by other
people? (Please estimate)

Percent of your code is only seen by you: __ %
Percent of your code which is shared with your collaborators/team: __ %
Percent of your code which is shared with the public (e.g., on an open source):
__ %

12. How often do you copy a file to make a new variant of that code?
a. Always
b. Very Often
c. Often
d. Occasionally
e. Rarely
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f. Never

13. [If answered more frequently than Never] When you create such a file, how often do you
name it based on the name of the original file (for example, you start with a file called
“myfile.py” and then create a “myfile_v2.py” or “myfile_2016-July_9”)?

g. Always
h. Very Often
i. Often
j. Occasionally
k. Rarely
l. Never

14. How often do you copy-and-paste pieces of code to reuse in different places?
m. Always
n. Very Often
o. Often
p. Occasionally
q. Rarely
r. Never

15. How often do you keep old functions or snippets in your code that your analysis is not
currently using?

a. Always
b. Very Often
c. Often
d. Occasionally
e. Rarely
f. Never

16. How often do you comment out sections of code to make that code inactive?
a. Always
b. Very Often
c. Often
d. Occasionally
e. Rarely
f. Never

17. [If answered more frequently than Never] What do you do with these commented out
pieces of code? (check all that apply)
❏ Delete them once I decide I won’t need them anymore
❏ Keep them in the code to keep track of what I have attempted
❏ Keep them in the code in case I need to use them again

What are some other reasons that you comment out code: __________________
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18. Check all of the following for how you document your code by writing comments during
exploratory data analysis?
❏ I put comments in on most function/methods
❏ I put comments in most source code files
❏ I put comments for confusing parts of the program
❏ I add in comments when I’m sharing the source code
❏ I add in when I’m refactoring code (cleaning up the code)
❏ I add in comments occasionally when I remember to
❏ I pretty much never enter comments during exploratory data analysis
❏ Other: __________________________________

19. Within the past 6 months, how often have you gone back to revisit or copy code from a
previous project or a previous version in your current project?

a. Never
b. Once
c. About twice
d. About once a month
e. About every two weeks
f. About every week
g. More often

20. When you are going back to look at previous code, what information might be useful in
helping you find the right older code? (check all that apply)
❏ A preview of its output
❏ An image of any graphs it produced
❏ The time and date it was created
❏ The time and date it was last run
❏ The time and date of the last modification/edit
❏ Code diff between versions
❏ User-defined version number
❏ Comments or annotations you added
❏ Other: _________

When working on an exploratory data analysis project, do you ever run into issues with any of
the following…

21. Distinguishing between similarly named versions of code files or output files
a. Not at all a problem
b. A minor problem
c. A Significant problem
d. A very big problem
e. Cannot answer / don’t know
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22. Keeping track of your exploratory data analysis at a high-level; that is, what you have
already tried or not tried for your analysis

a. Not at all a problem
b. A minor problem
c. A Significant problem
d. A very big problem
e. Cannot answer / don’t know

23. Keeping track of the data, scripts, or parameters that produced a particular result
a. Not at all a problem
b. A minor problem
c. A Significant problem
d. A very big problem
e. Cannot answer / don’t know

24. When you go back to a project you haven’t looked at in a while, in general how easy is it
to re-orient yourself with that project?

a. Not at all a problem
b. A minor problem
c. A Significant problem
d. A very big problem
e. Cannot answer

25. When you are writing code to explore a research question, do you have any other
difficulties or barriers besides what are listed above?
______________________________________________

Survey page 3
Now, for the next few questions, please consider only one recent or current exploratory
data analysis project. Ideally this would be a relatively large project, but still one you
remember well.

26. On your recent project, what tools did you use?  (select all that apply)
❏ Text Editors
❏ Console
❏ iPython Notebooks/Markdown
❏ Spreadsheets
❏ MatLab
❏ RStudio
❏ Other(s)____________

27. What programming languages were you working in for analysis on this recent project?
(select all that apply)
❏ R
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❏ Python
❏ Fortran
❏ Ruby
❏ Scala
❏ Java
❏ C++
❏ Excel
❏ Google Spreadsheets
❏ Other(s)_____________

28. For a project with exploratory data analysis, do you use any version control tool?
❏ Github
❏ SVN
❏ Bitbucket
❏ Other Version control tool: _________________
❏ I don’t use version control for this

29. [If they do Not use a version control tool above] If not, why? (check all that apply)
❏ I don’t know what version control is
❏ I know what it is, but do not know how to use it
❏ Too complicated or too heavy-weight for what I need
❏ I don’t collaborate
❏ I keep backups of files in a different way
❏ I am not concerned about reverting to older versions of my code
❏ Other___________________

30. When you were developing code on your last project, how often did you need to revert to
code you had before?

a. ___ times per project

Final Page
Thank you for participating in this survey!

If you are interested in being put into a raffle for a $25 Amazon gift card, please provide your
email address below.
[__________________________]

[ ]  Optional: I am okay with researchers possibly contacting me by email about a follow-up
interview that is part of a different, but related study.
[ email if not provided above ]

Finally (totally optional), if you have any feedback about this survey, feel free to let us know what
you think!
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[ ]

For any questions/concerns, please feel free to contact the research team:
Investigator: Mary Beth Kery mkery@cs.cmu.edu
Faculty Advisor: Prof. Brad Myers bam@cs.cmu.edu
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Appendix B: Notebook Usage Study & Query Design
Study Materials

Both of these studies are described in Chapter 4, and were run at the same time and setting

STUDY SETUP

Jupytercon 2017 industry/researcher conference for users of the Jupyter tools ecosystem. This
study was conducted at one table in the User Study Room, hosted by Project Jupyter and
Bloomberg L.P. at the conference. All participants were conference attendee walk-ins, with the
exception of the Query Design Exercise, which additionally was open as a survey online to
remote participants during the duration of the conference.

Screening
Screening check [said aloud]: This table is recruiting people who actively use notebooks for
doing data work.

Design Activities & Interview
We set up stations at a table, with di�erent activities going on at the same time:

● Design Activity: Query Exercise
● Notebook Usage Interview Study

After completing part 0 and part 2, a participant was invited to take a seat at any open station.
Participants were encouraged to do all stations at our table, but could complete as many as they
wished to or had time for.

NOTEBOOK USAGE INTERVIEW

Supplies

● Audio recorder device
● Paper consent forms & pens
● Experimenter’s laptop for note taking during the interview

Protocol

1. Participant reads through and signs a paper consent form.
2. Interviewer asks participant to give optional oral consent for their interview to be

recorded. If the participant agrees, the Interviewer starts audio recording. If not, the
Interviewer opens an empty notes doc to type interview notes.
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3. Interviewer asks participant: If you have a laptop on you, and are willing to pull up a past
significant data project on your computer, please do.

4. Interviewer asks the opening question: “First, can you briefly describe what you use Jupyter
notebooks for?”

5. Depending on participant’s answers and time limit, the interviewer conducts
open-ended conversation touching upon required topics, and any questions from the
question list, both shown below.

Required Topics
● What kinds of things do you use Jupyter notebooks for?
● How long, in terms of hours, days, or weeks, is your typical project?
● In your Jupyter notebook, how do you deal with history?
● For what kind of project do you care about keeping older versions of your code or older

output? For what kind of projects do you not?
● How do you currently keep any old experiment information?
● Do you use version control?

Possible Questions List
1. (data science practice) Do you collaborate in your data science work, if so how? Do you

collaborate using notebooks in particular, and if so how?
2. (literate programming) How literate is literate programming ie how much do people

write descriptions or break up their analyses into small pieces? (probably it depends)
3. (literate programming) How messy do notebooks get? Does the block organization lead

to inherently more cleanly structured code than what people do without the notebooks?
Or not?

4. (literate programming) How do people debug in a literate programming context and is it
really any di�erent from debugging a plain program?

5. (literate programming) How easy is it to change around functions or restructure a
notebook as compared to a normal program? For example, the block structure, while it
has benefits for organization, might make changing the program harder.

6. (literate programming) How is literate programming used in di�erent contexts, and for
di�erent purposes?

7. How does exploratory programming fit in with your work practices?
8. How much exploratory programming do you do using Jupyter notebooks or some other

tools instead?
9. How do you deal with versioning with Jupyter notebooks?
10. How long (something similar to lines of code) are your notebooks? How many notebooks

do you typically have?
11. How often do you share your notebooks?
12. At what stage of “polish” or how much e�ort do you take in organizing/adding notes to

your notebook before sharing it or showing it to others?
13. How do you handle an iterative process in a notebook?
14. What do you not do in notebooks? What do you think they’re not great for and why?

233



Designing E�ective History Support for Exploratory Programming Data Work - Dissertation - Mary Beth Kery

15. While working on a notebook, how much e�ort do you put into note-taking or
organization? Why?

16. When you were a novice doing data science for X what was the hardest thing to learn
about programming for data science?

17. How often do you use version control? Do you need it? Why or why not.
18. How often do you consult or copy examples from other people’s notebooks? Other

people’s code?
19. How do you keep track of the things you try? Do you need to?
20. What is currently the most challenging thing for you as a data scientist? With

programming tools?
21. What programming languages/tools do you use and why? Is this your company’s choice

or your own?
22. How often do you share in-progress data science work with someone else? Why?
23. How long do you typically use a given notebook for?
24. How often do you refer to old notebooks or adapt content from prior notebooks?
25. Before notebooks what did you use? Are there any parts of your prior practice that you

prefered to what you do now?
26. What do you do to understand your data? How does programming play a role in that?

How often are you visualizing your data?
27. What are you doing with data? How long does it take you to achieve something? Are you

doing short simple analyses, like visualizing a distribution, or something more long and
complex? How do notebooks compare for short simple analyses versus long complex
tasks?

28. Is your analysis later incorporated into some kind of software system? If so, how do you
transition from exploratory analyses in notebooks to a more formal software
engineering setting?

QUERY DESIGN EXERCISE

The following is the survey delivered to participants both in person (on a laptop) and remotely via the
internet:

Journey to the past (of your data work)

The purpose of this survey is to understand your programming practices, when you are writing
code to do exploratory data analysis. Here, “exploratory data analysis” includes asking
questions of data, building models from data, writing code to filter, “clean” and/or visualize
data, and data mining. “Exploratory data analysis” includes any computational-focused
research where you are working with data to achieve some goal, but the exact means to that
goal is unknown to you without trying di�erent approaches and ways of manipulating data (and
hence you must “explore” what code will work)..

To participate in this study you must be at least 18 years old.
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As described above, do you do exploratory data analysis as part of your job and are at least 18?
[yes, no --- no ends survey]

----------------------------- next page -------------------------------------

Take a moment to recall a data project that you did recently.

Briefly, what was this project about?

[long answer text entry]

----------------------------- next page -------------------------------------

Imagine you have a magical perfect record of every analysis run you did in this project. You also
have a magic search engine that can retrieve you any code version, parameters used or output
from the past.

What would you like to type in to find an item from the past?

[short answer text entry]

Given your own work practices, type as many queries as you can think of that could be helpful to
you to retrieve a past experiment. Don't worry about feasibility. Phrase it in natural human
language like you're talking to a colleague.

[long answer text entry]

----------------------------- next page -------------------------------------

Has **not** being able to find a past experiment ever caused you problems? Is yes, what
happened?

[long answer text entry]

In a project, how often do you want to look back at prior experiments you've done?

[Likert scale: Never ---> Very Often]

----------------------------- next page -------------------------------------

Thank you wonderful human! If you'd be willing for us researchers from Jupyter or Carnegie
Mellon University to possibly interview you later about your data science practices, please enter
your email.

[short answer text entry]
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Appendix C: Variolite Usability Study Materials

This study is described in Chapter 7

STUDY SETUP

The goal of this study is to test the usability of variant box interactions for managing in-situ
versioning of code. We include a control condition where participants have no extra tool support to
compare e�cacy and timing.

Conditions 4x4 matrix:

Tool condition 1st Control condition 1st

Titanic questions 1st Tool/Titanic,
Control/Animal-Shelter

Control/Titanic,
Tool/Animal-Shelter

Animal-Shelter questions 1st Tool/Animal-Shelter,
Control/Titanic

Control/Animal-Shelter,
Tool/Titanic

Control/Animal-S
helter,
Tool/Titanic
Condition 1

P1, P5, P9, P13

Tool/Animal-Shelt
er, Control/Titanic
Condition 2

P2, P6, P10, P14

Control/Titanic,
Tool/Animal-Shelt
er
Condition 3

P3, P7, P11, P15

Tool/Titanic,
Control/Animal-S
helter
Condition 4

P4, P8, P12, P16

Research Questions

RQ1: Can people successfully use variant boxes? What kinds of barriers do they encounter?
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RQ2: Can people more successfully (finding section, then acting upon that code), compared to
anything they might try, return to previous versions in order to

a) Read the code

b) Run as is

c) Edit into a new version

Controls

● Two datasets of similar kinds of data.

● We shortened the animal shelter dataset to match the number of rows of the titanic
dataset and shortened the number of columns in the titanic dataset to match the number
of columns of data in the animal shelter dataset. The importance of having each dataset
equivalent size is A) time participants needs to look over the dataset (#columns) and B)
time their program takes to run on that data (#rows)

● Tasks of equivalent format and di�culty across conditions

Study Protocol

Time total: 90 minutes approximately = $15 pay

1. Consent form and study setup (10 minutes)

2. Tutorial for Condition 1 (5 minutes) & Tutorial where we show them the terminal and
how to run Python (5 minutes)

3. Condition 1 questions  (30 minutes)

4. Tutorial for Condition 2 (5 minutes)

5. Condition 2 questions (30 minutes)

6. Post-study survey (10 minutes)

Question format

In each question set, the participant will have a series of 20 questions. Questions will be put in
Google forms so that they are delivered 1 by 1. The reason for this is that some later questions
will ask the participant to backtrack to previous tasks and change them to ask something
slightly di�erent.

For each question set, the participant will be given 1) the Atom editor open, 2) a folder with the
dataset, and 3) a starter script that loads in the data and explains what all the columns in the
dataset are. The reason to provide them with a starter script is to save time figuring out how to
properly load the data, and to get them to the stage of exploratory data analysis more quickly.
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The drawback is, if they are unfamiliar with the libraries we use to load in data, this may throw
them…. Though participants are free to modify the starter script to use whatever libraries they
are used to.

USABILITY STUDY PROGRAMMING TASKS

Participants completed one of two possible question sets.

Question set 1: Titanic
The Titanic is a famous ship that sank on its first voyage in 1912, killing over half of those on
board. One reason for so few survivors was that there were not enough lifeboats on the ship to
hold all passengers and crew. You are on a team of marine archaeologists studying the Titanic.
The team has asked you to do some data analysis on the ship records to help them better
interpret their archaeological findings from this shipwreck at the bottom of the ocean.

In each task, you will have a set amount of time. Your goal is to answer each question as
quickly as possible. Once you have an answer, ask the experimenter if your answer is correct.
(30 minutes total)
(Each task is 5 minutes. As soon as the person, gets an answer, they can get the experimenter
to tell them if it is correct, and if it is not, try to correct it within the 5 minutes. If the person gets
stuck and is not able to get a correct answer after 5 minutes, the experimenter will try to help
them get the right answer to move on?
You have just joined a team of marine archaeologists as an intern. A previous intern began a
number of data analyses for the team, and your boss has asked you to use the old intern’s code
and pick up where they left off.

----------------------------- next page -------------------------------------

You may notice in the old code there are calls to a library underwaterViz. This library will help
divers visualize data on underwater helmet screens to direct their search…. but really, just
ignore this library! Please don’t delete the old intern’s code that uses it, but you don’t need to
add it to your code.

1. [RQ2 a & c] In titanic.py, change the marriageStats() function to instead count the
survival rate of BOTH married women and married men. Your boss no longer cares if the
passenger's husband/wife was actually onboard or not, so please count any married
person.

2. [RQ2 a & c] Did children on the Titanic with more siblings faire better? Please change
the function familySizeStats() to count only child passengers (under the age 18.) Also,
please don't count the child's parents (the "Parch" field) in the total family size count.

3. [RQ2 b] Oops. --- Your boss realized he's forgot to record the answer to "What portion of
married women survived the Titanic who also had spouses onboard?". Please go back to
marriageStats() original code and run it again to get the answer.
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4. [RQ2 b] ...Well of course you boss also forgot to record the answer to "What was the
survival rate of passengers by their family size?". Please go back to familySizeStats()
original code and run it again to get the answer.

5. [RQ2 a & c] We know that more women and children survived the Titanic. Did having a
larger family improve the survival likelihood of men too, or just women and children?
Change familySizeStats() to count the ratio of adult men that survived per each family
size.

6. [RQ2 a & c] Now, how many married women or married men were on board who were
also traveling with children? (Estimate the “Parch” field in the data to be the total number
of children that passenger had.) Please change marriageStats() to answer this question
when it is called.

7. Your team notes that some passengers were French. "Mrs" in french is "Mme" and "Mr"
in french is "M". Please give the team new answers to all the previous marriage related
questions you answered for the team to count french passengers. (portion of married
women that survived, portion of married men/women that survived, portion of married
women with children that survived)

----------------------------- next page -------------------------------------

1. What percentage of female passengers survived the titanic? (5 minutes)
Pilot time: ??

2. What percentage of passengers of each class survived the titanic? (5 minutes)
Pilot time: 7 minutes

3. (go back, overlapping) Out of all female passengers under the age of 20, what
percentage survived the titanic? (5 minutes)
Pilot time: 1:30 minutes

4. (go back, overlapping) Now, out of all child passengers (passengers under the age of
18), what percentage survived the Titanic from each class? Eg. 90% from 1st class, 90%
from 2nd class, 90% from 3rd class (5 minutes)
Pilot time: 5:30 minutes

5. (overlapping) Consider the age ranges child: 0-17, young adult: 18-26, adult: 27-45,
middle-aged: 46-65, and elder: 65+. For each age group, find the percentage of
passengers who survived of that age group. (5 minutes)
Pilot time: 7:30 minutes

----------------------------- next page -------------------------------------

Comprehension question:
Look at a Titanic analysis file, that either uses the tool or does not use the tool, depending on
the condition.
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6. Another member of your team has been analyzing different questions to do with the
titanic. One question they answered was “How many married women on the titanic
survived?”. However, your team noticed an issue with their analysis. They only counted
passengers with the title “Mrs.” as married women, but several French passengers would
have used the title “Mme” which would identify them as married women. Your team
member is on vacation! Please fix their code to give the correct answer to “How many
married women on the titanic survived”, this time counting both “Mrs” and “Mme”. (5
minutes)
Pilot time: 2:00 minutes

Question set 2: Animal Shelters
This dataset is from the Austin Animal Center, a large animal shelter in Texas. Shelter workers
would like to better understand trends in animal adoption, in order to better help those pets who
are less likely to find homes.

----------------------------- next page -------------------------------------

In each task, you will have a set amount of time. Your goal is to answer each question as
quickly as possible. Once you have an answer, ask the experimenter if your answer is correct.
(30 minutes total)

1. [RQ2 a & c] In shelter.py, change the catsAdoptedStats() function to count BOTH dogs
and cats. Also, the shelter workers point out that while adoption is ideal, transfer to a
partner facility is also a good outcome. Change the catsAdoptedStats() function to count
cats and dogs that are adopted or transferred (in Outcome field of data) to a partner (in
OutcomeSubtype field of data).

2. [RQ2 a & c] It is a popular belief that pets with black fur are adopted less often than pets
with any other color fur. With cats, this may be because of a superstition that black cats
bring bad luck. Change the furColorStats() function to give the adoption percentage of
black cats (whose fur color is simply “Black”) and ALSO the adoption percentage of all
non-black cats so that shelter workers can see if this belief holds in this dataset.

3. [RQ2 a & c] Shelter workers note that animals in the dataset are described by different
related colors. So, black cats may include the fur color “Black”, but also the fur colors like
“Black Smoke” and any fur color that includes the word black. Revise furColorStats() so
that it counts these different color variants as “Black”.

4. [RQ2 b] Shelter workers are interested in your findings! But, they would like you to move
the analysis on black cats to a new function blackCatStats() and return furColorStats() to
what it originally: the adoption rate of animals of each individual color.

5. [RQ2 b] Oh, since shelter workers are now discussing cats, they would also like the
answer to "What was the adoption-only rate of cats in general?". Please go back to
catsAdoptedStats()
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6. [RQ2 a & c] Now, what was the adoption-only rate of cats who were neutered, versus
those who were not? Revise catsAdoptedStats() to give the adoption percentage of
neutered cats (“Neutered Male” or “Spayed Female” in the data) and the adoption
percentage of non-neutered cats (“Intact Male” or “Intact Female” in the data)

7. The shelter workers have been arguing about what a “good outcome” is, but now they’ve
definitely decided that Adoption OR Transfer to a Partner are good outcomes they’d like
to count pretty much as equivalent to adoption. Please update all the answers you’ve
given them about fur color to count the pets transferred to a partner, not just adopted.
(Questions are: Adoption rate by fur color, Adoption rate of cats with plain “Black” fur
versus non-black cats, Adoption rate of cats with any type of “Black” fur versus non-black
cats)

----------------------------- next page -------------------------------------

1. What percentage of cats were adopted/transferred?(5 minutes)
Pilot time:

2. Some pets in the data are named, some not. Were pets who were named more or less
likely to be adopted? (5 minutes)
Pilot time: 2:00 minutes

3. What percentage of cats were adopted into Foster care? (5 minutes)
Pilot time: 1:30 minutes

4. Out of all cats that were adopted (in general), what percentage of these cats were
neutered? (“Neutered” or “Spayed” means neutered, while “Intact” means not neutered)
(5 minutes)
Pilot time: 3:15 minutes

5. In the dataset, there are some animals that were euthanized due to rabies. Most
household pets are given yearly rabies vaccines to prevent this dangerous disease. One
possibility is that perhaps these animals that got rabies were feral or neglected, and may
have been missing other normal medical procedures. Out of all the pets who were a
“Rabies risk” (meaning they had rabies symptoms), what percentage of these pets were
neutered? (5 minutes)
Pilot time: 2:00 minutes

----------------------------- next page -------------------------------------

Comprehension question:
Look at a shelter analysis file, that either uses the tool or does not use the tool, depending on
the condition.

6. An intern worked on this data analysis before you started on this project. Previously, they
looked at how often dogs with black colored fur are adopted, compared to how often a dog with
any fur color is adopted. There is a common superstition that black cats are unlucky, and shelter
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workers would like to know: are black cats less likely to be adopted? Please change the intern’s
previous analysis to answer this question about cats. (5 minutes)

Feedback Survey

Your age?

[short text answer]

Your gender:

[male, female, other, prefer not to say]

Your occupation? If student, please say "masters student in history" or "undergraduate in bio"
etc.

[short text answer]

How many years of programming experience do you have?

[short text answer]

How many years of experience do you have programming to do data analysis or machine
learning?

[short text answer]

How often do you program to work on data analysis?

[Several times a day, Several times a week, Several times a week, Every few months, For occasional
projects, Never]

When you do data analysis, how often is that exploratory data analysis?

[Always, Very Often, Often, Sometimes, Rarely, Never, I don't typically work on data analysis]
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  How familiar are you with a software version control system? (For example Git, SVN, or
Mercurial)

[Very Familiar, Somewhat Familiar, Somewhat Unfamiliar, I don't know how to use software version
control, I don't really know what software version control is]

----------------------------- next page -------------------------------------

Tool Feedback

Please rate the tool you used

Ease of learning how to use it:

[Very di�cult ---> Very Easy]

Overall, how did you like the tool?

[Strong Dislike ---> Strong Like]

Is there any particular feature you liked in the tool? Why?

[Long text answer]

Is there any particular feature you disliked like in the tool?  Why?

[Long text answer]

If you were to use this tool in real life, what other things should the tool be capable of to meet
how you would want to use it?

[short text answer]

Would you consider using it in real life? Why or Why not?

[long text answer]

Finally, do you have any other feedback about the tool or the study itself?

[long text answer]
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Appendix D: Jupytercon Scavenger Hunt Study
Materials

This study is described in Chapter 11

STUDY SETUP

Jupytercon 2018 industry/researcher conference for users of the Jupyter tools ecosystem. This
study was conducted at one table in the User Study Room, hosted by Project Jupyter and
Bloomberg L.P. at the conference. All participants were conference attendee walk-ins.

User testing goals
We want to be able to measure how e�ectively (if at all) a user can get back to a past state. We
want design feedback to improve the tool. This is the 2nd user study of this tool. The 1st was a
very basic click-through on an early prototype for potential adoption feedback and design
feedback.

1. Is the tool su�cient to allow a user to get back to prior states and do so e�ectively?

2. Do the users understand the various visualizations, and/or can we get some actionable
feedback on how to improve them?

3. Are users of the tool able to e�ectively use the various interactions (checkpoint list,
filters, ghost book, inspector) together, or do they really only use one part of the tool at a
time?

4. Which parts of the tool, if any, do the users go to most often to try to find a past state,
when they are free to use any of the interactions?

5. Are there any parts of the tool that users just don’t notice or don’t think to use?

Observation goals

1. What path does the user follow, what series of states in the tool do they go to before (if)
getting to the correct destination?

2. Are there any confusions that the user voices, where they are not sure how to interpret
something they see on the screen?

3. When given free choice of where in the tool to start looking for something, where is the
first state they go to?

4. In open-ended feedback, how do users feel about the tool? Do they see themselves
adopting something like this, why not, or if so, in what situations?
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Protocol
Participants complete all steps on a provided mouse, keyboard, and large monitor connected to
a Macbook Pro. Open-ended feedback is captured using an audio recording device, if the user is
comfortable with recording, otherwise the interviewer takes notes on another laptop.

1. Participant will read over a consent form <link> and sign. At the end of the form, they
will also enter their secret code to link the data back.

2. Participant will get a brief introduction to the tool they’re going to user test
(standardized as a html page with a set of GIFs)

3. Participant gets instructions to think-aloud

4. Participant gets the first finding task. Each task is a scavenger hunt task on a piece of
paper, which will first be read aloud by the experimenter and then be given to the
participant as reference

5. After each finding task, the participant can choose to do another task or not

6. Finally, ask them for open-ended feedback on the tool

Recording
Screen recording, optional audio recording according to participant’s comfort

TUTORIAL

Verdant is an extension for

JupyterLab
It is an experimental prototype tool for recording and showing history back to the user of

their work in the notebook
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open Verdant with the history

button
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The history panel appears

This shows the last 4 runs of

the notebook
Each vertical dash represents a cell in the notebook. The matchstick-looking ones are the

cells that were run.
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Open the run listing for more

detail
This previews what the code and output looked like at the time when they were run
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Click on code preview...
for yet more detail about this cell’s history

This takes us to the inspector

pane
The inspector gives a full list of the different versions a cell. Clicking around the notebook

“inspects” the cells you click
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The inspector shows output

history too
If you click on output, its hististory will show up listed in the inspector as well
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In the Run & Save pane click on

a run...
This opens a full reproduction of the entire notebook as it existed at that point in history

Now your turn!

🔥 this is a prototype, so please don’t worry if a bug or break occurs when you’re

using the tool

📘 feel free to refer back to this overview document at any time
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SCAVENGER HUNT TASKS

The following task sets come directly from the survey we ran at Jupytercon 2017, on what
people want to retrieve from the past. So these, while challenging, are trying to test the tool's
usability on real-life tasks:

● tasks F and L are visual finding tasks such as looking for plots
● tasks D, G, M, I, O, E are coordination tasks which are the hardest, and involve

cross-referencing history information about 2 di�erent artifacts eg. what was X when Y
was equal to 2?

● tasks H, J, N are code finding tasks which are simpler, involve finding the correct version
of just 1 code artifact

Video of best path for each task: https://www.youtube.com/watch?v=sZpJNh8qlCU

Intended solution path and features included as arrow bullet points under each question:

A. Find the first version of the notebook
→ scroll to the bottom of the main run map

pane

B. How many cells have been deleted from the
notebook during its history?
→ open up filters and click the cells deleted
filter

C. How many runs did the author leave a
comment on?
→ click on the comment filter in the top right

D. Find the code in which the author explored
compare mean absolute error with differing
values of max_leaf_nodes
→ search box search for max_leaf_nodes
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E. In RandomForestRegressor(random_state=2),
how many different values of random_state has
the author tried?
→ search box search for
randomForestRegressor and then open up the
inspector view from the results
→ OR click the cell in the current notebook that
sets random forest regressor to open it up in
the inspector view

F. Find a notebook version that generated a plot
that looks exactly like this:

→ search box search for heatmap

G. What was the lowest mean_absolute_error
achieved when the author used a
RandomForestRegressor?
→ search box search for
randomForestRegressor and then open up the
inspector view from the results
→ OR click the cell in the current notebook that
sets random forest regressor to open it up in
the inspector view
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→ Then, once the versions for random forest
regressor have been found, open up the results
of that cell in the inspector and look at the
values of mean_absolute_error that occured in
the time frame since random forest regressor
was first used

H. At what time did the author last use  a
DecisionTreeRegressor?
→ search box search for
DecisionTreeRegressor and then open up the
inspector view from the results
→ OR click the cell in the current notebook that
sets random forest regressor (and imports
DecisionTreeRegressor) to open it up in the
inspector view
→ once in the inspector view scroll to the date
when decision tree regressor was last used

I. What was   home_features equal to when the
mean_absolute_error(val_y, val_predictions)
was equal to below  20,000?
→ find mean_absolute_error and open it up in
the inspector. Find the 1 value that’s below
20,000 and click ‘these runs’ to see the runs it
was used in. From there, open up the ghost
book for those runs and scroll (or ctrl-f) to
where home_features was set in that notebook

J. Find the code the author used to check for
duplicate houses.
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→ history search box search for the term
“duplicate”. Open the resulting code into a ghost
book

K. Find a notebook version that generated a plot
that looks exactly like this:
→ THROWN OUT

L. Find a notebook version that generated a plot
that looks exactly like this:

→ history search “heat map”
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M. When “1stFlrSF” was not included in
home_features, did that lower the value of
mean_absolute_error(val_y, val_predictions)?
→ use inspector to look at the history of home
features in the current notebook. Find the 1
version in which 1stFlrSF was not included
→ click “these runs” and open up each ghost
book to check the value of
mean_absolute_error
→ OR note the version time in home_features
for the version that did not include 1stFlrSF, and
using the inspector to check the history of the
cell that sets mean_absolute_error, check what
it’s value was at that timestamp

N. How many different data files eg. “data.csv” has
this notebook been run on?
→ use inspector to check history cell that sets
data file
→ OR use history search to search for “.csv”
and check what .csv files have been used

O. When the author used DecisionTreeRegressor
instead of a RandomForestRegressor, what
parameters did they try for the decision tree?
→ search box search for
DecisionTreeRegressor and then open up the
inspector view from the results
→ OR click the cell in the current notebook that
sets random forest regressor (and imports
DecisionTreeRegressor) to open it up in the
inspector view
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PARTICIPANT TASK ASSIGNMENT

We used a Latin Square assignment for participants and tasks. However, since participants had
di�erent amounts of time available, not all participants completed the same number of tasks.

Table of tasks completed by each participant ID number in green. Task letters
in grey were not completed.

1 A O B N C M

2 B A C O D N

3 C B D A E O

4 D C E B F A

5 E D F C G B

6 F E G D H C

7 G F H E I D

8 H G I F J E

9 I H J G K F

10 J I M H L G

11 N J L I M H

12 L O M J N I

13 M L N A O J

14 N M O L A B

15 O N A M B L

16 A O B N C M

Table of success/fail on tasks by participant ID number. Number 1 indicates
success while number 0 indicates failure on a given task. Task letters crossed
out in pink indicate that task was discarded.

A B C D E F G H I J K L M N O

1 1 1 0 1 1 0

2 1 1 1 1 1 1

3 0 1 1 0 0 0

4 1 1 0 1 1 1

5 1 1 1 1 1 0

6 1 1 1 0 1

7 1 1 1 0 1

8 1 1 1 1 1
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9 1 0 1 1

10 1 1

12 1 1 1 0 1 1

13 0 0 0 0 1 1

14 1 1 1 1 1 0

15 1 0 1 1 1 0

16 1 1 0 1 1 0
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Appendix E: Classroom Deployment Pilot Materials

This study is described in Chapter 12

STUDY SETUP

This pilot study for Verdant was conducted alongside a homework assignment in an AI related
course I co-taught. This homework assignment happened to be a programming assignment in
Jupyter notebooks, so it was a good opportunity to test out Verdant in real life. Students were
required to install Verdant, but not required to interact with it. Students could opt-in to
donating their research data logs from Verdant if they chose to consent to our research study.
We primarily used data from this pilot to refine and test Verdant’s designs using the history logs
generated by students.

Protocol

First, students will be introduced to the assignment by the non-researcher instructor and read a
verbal script describing that research will be conducted on this assignment. Students will be
instructed to install the study tool for this assignment, and be given multiple outside-of-class
help sessions at the beginning of the assignment where the researchers will help students
install the tool if needed and answer any questions about the study. Students will have the
opportunity at the end of the assignment to opt-in to submit their data to the research study. A
student who opts out can freely use the tool or not without impacting their grade, and their data
will not be kept for research.

During the assignment, the tool in their editor will be passively logging just the student’s code
experimentation in the code editor and their tool use. The student may freely consult the tool or
not as they choose during the assignment. During the assignment, a Piazza thread will be
available for students to ask any questions about the study or report any issues with the tool.
This thread, as well as email, will be closely monitored by the research team to promptly answer
any questions or concerns.

At the end of the assignment, students will be asked to fill out a survey about the assignment,
which will ask about the assignment di�culty, experience with the tool, and basic information
about their prior programming experience. Students will also be given a consent form at this
point to opt-in to the study. Students will submit their log data file along with their code to
finish the assignment. If a student has opted out at any point, their log, survey, or grade data
will not be given to the research team.
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Study Intro Verbal Script

For this assignment, Mary Beth is conducting research on how students explore ideas in code
during data or machine learning tasks. We will be providing a new experimental support tool to
use with your Jupyter Notebooks for this assignment. Our study involves you completing the
assignment as usual, and using the support tool we’ll be providing for your experimentation.
You are free to use the support tool however you like. Since this tool is new, we will be asked
about your experience with this assignment and the tool at the end of the assignment, to
improve it for future class use. You will not be asked to do anything above and beyond the
normal activities that are part of the course.

For the research study, at the end of the assignment Mary Beth will collect the logs of your code
experiments in the Jupyter notebook for this assignment, as recorded by the tool. She will also
collect your survey responses and final grade on the assignment, so that we can analyze how
well the tool helped or not. Please note we will ask your permission before using any of your
data for the study. At the time you submit your homework, you will be given a consent form
where it is your choice to submit your assignment data to this study or not. You are free to not
participate in this research and your participation will not impact your grade in this course or
the assignment. There is no compensation for participation in the study. Finally, if you are
under age 18, even if you wish to participate we cannot legally use any of your data for this
research.

The analysis is to better understand how to better help students and understand how students
work when dealing with machine learning or data programming tasks. For the analysis, the data
and course name will be anonymized, and if reported, only reported in aggregate so that it does
not tie back or reflect on you as a student.

If you have any questions please contact <other professor> or Mary Beth (contact options in the
syllabus). There will also be a place to ask questions on Piazza.
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Homework Assignment
Human-AI Interaction, Fall 2019

Assignment #5
The goal of this assignment is to give you hands-on experience with various techniques for
generating images using computer vision + machine learning (CVML) techniques… with dogs.

A husky, poodle, and husky-poodle fusion mix generated by BigGan, Assignment #5

Part A: tool setup (15pts)
This assignment requires quite a bit of tool installation, so we will compensate you for your time
and effort with 15 points just for getting everything running. Remember: Piazza and Office hours
are you friend if you hit installation errors, don’t suffer alone!

JupyterLab
Since you’ll be using a mix of Jupyter notebooks, text files, and python files, we ask you use
JupyterLab, which is kinda like a more built up developer environment that can handle more than
just notebooks.

- If you have Anaconda installed, you already have JupyterLab installed. Open the Anaconda
Connect interface and click JupyterLab to start it.

- If you already have JupyterLab, run jupyter lab --version. If your version is less than
1.2.2, update it.

- Otherwise, install JupyterLab fresh following these instructions. You will need either the pip
or conda (comes with anaconda or miniconda) Python package managers to do this.

Verdant Log
VerdantLog is an extension for JupyterLab to track the history of your code and output. This is
handy since you’ll be generating a bunch of images using different parameters.
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1. Install NodeJS using these instructions. You can check if your machine already has node by
running node --version. If possible, update to the latest node version.

2. Install the extension by running jupyter labextension install verdant-log. This
should take a minute. If it fails the first time, just try the command again.

3. Refresh the JupyterLab app if you had it open. If all works, you should see a log icon in
the leftmost sidebar of the JupyterLab app. Go to a notebook file HW5.ipynb and click the
log icon to start up the history app for that notebook. In your computer’s directory, you’ll
see the history app creates to files: HW5.ipyhistory and HW5.ipylog. These are where
the history of your notebook is stored.

**** warning: We’ve noticed after generating > 40 images or so, the Verdant Log app can
bog down JupyterLab so that it runs super slowly. If that happens to you, go into your
directory and dump your HW5.ipyhistory and HW5.ipylog files into the “Old Logs”
folder but do not delete them (for grading purposes). Then refresh the JupyterLab app in
your browser. This will reset the Verdant Log history starts recording only new history from
that point on, and will fix the slowdown. If it’s not fixed right away, shut down and restart
the JupyterLab app completely. If that fails to fix things (due to dumb memory caching on
your machine) restart your computer (sorry!).

Python 3 + TensorFlow 1.15
The models in this homework need Python 3 and TensorFlow 1.15 (not TensorFlow 2) to run.

- To check that you have python 3, try python --version This should print out something
that starts with 3.

- When you open JupyterLab, check that the kernel in the top right corner is set to Python 3:

. If not, click it and change it to Python 3.
- TensorFlow 1.15 can be installed with these instructions, but essentially you should be able

to just run pip install tensorflow==1.15

Part B: Dog Generation (75 pts)
Finally ready to go! Open up the Assignment 5 folder and then HW5.ipynb in JupyterLab and
follow the instructions in the notebook to generate some seriously cute (and weird) fake pups.

Turn it in
1. Zip up your entire Assignment 5 folder and submit it to Canvas.
2. Read and fill out the Research Consent Form so we can record whether or not you wish to

have your homework data included in a research study. Saying yes or no does not impact
your grade whatsoever, and not consenting does not prevent you from completing the
assignment; but we need a response from everyone.
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Extra credit: Feedback (5 pts)
How well did this assignment go? Fill out the Feedback Survey to get extra credit and help us
improve for next year.

Post-Assignment Feedback Survey

The following Survey will be given to students as the final step of their assignment, in a web
form format. Participation is optional for extra credit.

Your Name: ______________________________

How much programming experience did you have before you started this class?
- Less than 6 months
- 6 months to 1 year
- 2 - 3 years
- 4 - 5 years
- 6 - 9 years
- 10+ years

How much Python experience did you before you started this class?
- Less than 6 months
- 6 months to 1 year
- 2 - 3 years
- 4 - 5 years
- 6 - 9 years
- 10+ years

How much experience did you have with programming for data science or machine learning
tasks before you started this class?

- Less than 6 months
- 6 months to 1 year
- 2 - 3 years
- 4 - 5 years
- 6 - 9 years
- 10+ years

In the following questions, we are looking for feedback on the assignment itself. For each task,
please rank how difficult the task was:
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(This will be a table of choices, where the rows are each task on the assignment, and the
columns are a Likert scale ranging from very easy to very difficult)

In the following questions we are looking for feedback on your use of Verdant:
(The following questions are an adapted System Usability Scale (SUS), with non-SUS questions
bolded. These will have a Likert scale ranging from Strongly Disagree to Strongly Agree)
I think that I would like to use this system frequently.
I found the system unnecessarily complex.
I thought the system was easy to use.
I found the system useful for this assignment
I found the various functions in this system were well integrated.
I thought there was too much inconsistency in this system.
I would imagine that most people would learn to use this system very quickly.
I found the system very cumbersome to use.
I felt encouraged to explore more code options by using this system
I found prior versions of my code in the system easily

The following question is an open free text response
Finally, please let us know any feedback of how the system should be improved for future
students. Thank you for participating in the study!
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Appendix F: The Verdant Study Materials

This study is described in Chapter 13 & 14

STUDY PROTOCOL

A detailed description of the study design is given in Chapter 13. Here are all the accompanying
materials to execute the study.

Preflight checklist

1. Send the participant a zoom link

Procedure checklist Session #1

1. In this study we are researching potential roles for experiment history in a data
science workflow. We’ve built a tool that records a lot of log history information
while you program. And we’re going to see how that information may or may not
introduce value to your workflow.

2. Verify payment details and time commitment

3. Verify permission to record the session and START RECORDING

4. Tutorial

a. Introduce think aloud instructions

b. Ask them to do all of the questions with the black hidden-answer boxes

c. https://marybethkery.com/Verdant/tutorial/tutorial.html

5. Give link to server: <link>

6. End tutorial

a. From what you’ve seen of this kind of history functionality, can you see
yourself finding this useful in your own workflow?

7. Introduce the tasks

a. Introduce that they can use the internet to help with syntax and such just
don’t go to kaggle

b. <Kaggle tasks>

c. Get them set up with Verdant, Jupyterlab

Ending procedure
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1. How did you find the experience of having Verdant running to the side while you
worked during this session?

2. Schedule session 2

Procedure checklist Session #2

1. In this study we are researching potential roles for experiment history in a data
science workflow. In the last session we had you do data science coding with
our history tool logging what you did. In this session we’re going to ask you to
use that history to explain aspects of what you did in the first session. We are
interested in the usability of our tool as well as how the presence of history data
might affect your explanations.

2. Verify permission to record the session and START RECORDING

3. Open back up notebook from last time
4. Tutorial from last time

a. https://marybethkery.com/Verdant/tutorial/tutorial.html

5. Open back up client prompt from last time

Narrative Overview

1. In the last session, how did you approach the client’s goals? I’d like you to walk
me through what kinds of things you tried and what you found in Session 1.

Tasks: History Finding Questions

1. Explain in this section there will be 10 questions. Each has two parts and the
participant will be using the Verdant tool features to answer the questions. In the
first 3 they will be instructed with a specific feature of Verdant to start their
search on, and after that training phase they can use any feature they choose in
Verdant.

2. This is a tool prototype so you could encounter some bugs or issues

3. Instruct the participant to THINK ALOUD and confirm that they understand

4. Give questions 1 at a time, and 1 piece at a time into Zoom chat

Interview: Explaining History Access Questions

1. In answering those tasks you just answered, did you personally think looking at
the history artifacts was more helpful or more unnecessary?

2. Compared to real questions you might be asked about in a meeting, did you find
the questions you just answer more realistic or more contrived?
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3. What do you see as the use of returning to earlier parts of your experimentation?
In what circumstances do you believe the history of your analysis work is useful?
In what circumstances do you believe that the history of your analysis work is
unnecessary.

4. Are there any parts of the data analysis or modeling process that you think
would be benefited by better engagement with the history of what you’ve
experimented with so far and why?

Interview: Verdant Usability

5. What do you think about the overall usability of the Verdant tool? What do you like
about it? What do you not like about it?

6. Are there features that you wish it included? Are there any parts of the features
you found confusing?

7. How easy do you think it is to get back to a prior part of your experiment history
using Verdant?

8. How easy do you think it is to get back to a prior part of your work without
Verdant? What barriers might make it harder to get back to a prior part of your
work?
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Tutorial
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Programming Task

Verdant Usage Study: Session 1 Tasks
Goal Overview

Kickstarter is an online platform where people contribute money to crowdfund a project
such as a book, game, or music. With this startup funding from the crowd, the project
team is able to produce their idea as a real-world product.

You are given a dataset of over 300,000 Kickstarter projects. As Kickstarter explains it:

“Every project creator sets their project's funding goal and
deadline. If people like the project, they can pledge money to
make it happen. If the project succeeds in reaching its
funding goal, all backers' credit cards are charged when time
expires. Funding on Kickstarter is all-or-nothing. If the project
falls short of its funding goal, no one is charged.”

Example of a typical Kickstarter project

Client: You are being hired by a business school professor who wants to teach
students about crowdfunding in their “Internet Entrepreneurship” course where
students will create their own Kickstarter startup pitches for a class project.

Goals:

1. Create an exploratory data analysis that can inform your client about what
makes a successful Kickstarter project. A successful crowdfunding project
reaches its complete financial goal.
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2. Your client would also like you to communicate any interesting patterns about
what might make a Kickstarter project fail.

3. Your client wants to know if you can build a machine learning model such that a
student can input data about their project idea and your model will output how
successful that project is likely to be. However, they would also accept if
Kickstarter projects are not that easy to predict. The professor wants you to tell
them if such a model is actually impractical.

Packages: To install a missing package, type and run %pip install <package> in a cell in
your active notebook

Deliverables: In Session 2 (roughly a week from this study session 1), you will be asked
to present & discuss your work for this client in a Jupyter notebook format.

Note that this study is not evaluating your level of coding, statistics, or machine learning
skills. Please work as you normally would.

Note the dataset for this study comes from kaggle.com. You are free to use the internet
to help you code, just do not go to kaggle.com or any place you believe will directly give
you the “answers” for the client’s requests about this dataset

Scavenger Hunt Questions

Part
icip
ant

Ord
er

Question
Type Question Text 1 Question Text 2

Required
Start
Feature

Answ
ered?

Answer
ed using
history?

P01 1 Modeling

Find: Did you test
different alpha values for
the lasso for each new
feature you added?

Explain: why or why
not?

Inspector TRUE TRUE

P01 2 Visualization

Find: Go back to the plot
where you had x = usd
goal bin, y = project

Explain: What might a
plot like this potentially
tell you that a table of

Artifact
Summary TRUE TRUE
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count, and hue = main
category.

the mean usd goal bin
might not?

P01 3

Feature
creation/sele
ction

Find: Did you use or look
at the country feature at
any point?

Explain: Do you
hypothesize the
country feature would
be helpful or not as an
addition to the model? Search TRUE TRUE

P01 4

Feature
creation/sele
ction

Find: when you were first
creating the binning for
usd_goal_real

Explain: What did you
look at or how did you
decide on your binning
function for
usd_goal_real? TRUE TRUE

P01 5 Modeling

Find: at some point, you
had the output from the
LAsso print for each
feature true/false
whether its coefficient ==
0

Explain: what kind of
information did this
true/false tell you?
Why did you later
choose to filter out
some features from
being displayed in the
model output based on
this information? TRUE TRUE

P01 6

Data
Cleaning &
Filtering

Find: where you
originally used project ID
as the index for
df_finished

Explain: why did you
initially choose to use
the project ID as the
index, and then why
did you later switch to
a different indexing? TRUE TRUE

P01 7

Storytelling
& Notebook
Organization

Find: some point in time
where your notebook
contained a to-do note

Explain: how is this
to-do note similar or
different from the kind
of note taking you
might normally do in
your data science
coding work? TRUE TRUE

P01 8

Feature
creation/sele
ction

Find: an earlier version
of df_finished_dummies,
where you included year

Explain: What was the
effect on the predictive
accuracy of your
model when you TRUE TRUE
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as a dummy categorical
variable

counted year as a
categorical variable
versus a numerical
variable?

P01 9

Feature
creation/sele
ction

Find: earlier when you
used usd_goal_real as a
plain numerical feature
rather than a binned
feature

Explain: comparing
binning and not
binning usd_goal_real,
what was the effect of
binning on the model
performance? TRUE TRUE

P01 10 Visualization

Find: got to when the plot
with x = num samples, y
= main category, hue =
usd goal bin was a table
before it was a plot

Explain: several of
your plots seem to
develop this way, first
as tables that you then
turn into plots. Is this a
common workflow for
you and do you use
the plot or the table or
both when you need to
debug a plot’s design? TRUE TRUE

P02 1 Modeling

Find: the last notebook in
which you used a
decision tree classifier as
your model.

Explain: What
prompted your
decision to switch from
the decision tree
classifier to random
forest? Inspector TRUE TRUE

P02 2

Data
Cleaning &
Filtering

Find: In an earlier
version, due to a spelling
typo, dfFiltered contains
just kickstarter projects
that failed, and not those
that succeeded. Find the
heatmap for dfFiltered
correlations when
dfFiltered only contained
failed projects, and later
when it contained both
failed + successful
projects.

Explain: how does the
correlations for the
feature pledged
change between the
heatmap showing
failed projects only
versus the heatmap
showing both failed +
successful projects?

Artifact
Summary TRUE TRUE
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P02 3

Data
Cleaning &
Filtering

Find: When the variable
freqTable_f was first
created

Explain: What was
your purpose for
freqTable_f as a print
statement for your
model output? Search TRUE TRUE

P02 4 Visualization

Find: In the scatter plot
for x = DaysOpen and y
= goal, you initially had a
few outliers skewing the
whole plot. Find the
scatter plot back when it
showed the outlier points

Explain: Approximately
how many days open
were the outlier
kickstarter projects.
Can you hypothesize
why kickstarter project
creators would choose
such an high value? TRUE TRUE

P02 5

Tables &
Summary
Stats

Find: Go back to when
the categPiv pivot table
contained raw counts
instead of percentages

Explain: By raw count,
which 3 categories had
the fewest live project
campaigns running
when this data was
collected? Compare to
the historical
percentage of that
category that is
successful. If a student
were to launch a
kickstarter project in
one of those 3
categories, which
category would you
advise has the best
chance of success? TRUE TRUE

P02 6

Feature
creation/sele
ction

Find: Did you ever use
OverGoal as a predictive
feature?

Explain: What was
your intention in
creating df[“OverGoal”]
and what did you want
to use it for? TRUE TRUE

P02 7

Feature
creation/sele
ction

Find: when StartMonth
and Deadline month
were included as
features in the model

Explain: Why had you
chosen to try adding
these features to the
model? What was the
apparent effect of each
of these features on TRUE TRUE
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the performance
metrics of the model?

P02 8 Modeling

Find: the result you got
from adding the feature
OneHotCurrencyName
to the model

Explain: What was
your hypothesis about
why this feature might
matter for a kickstarter
project’s success? TRUE TRUE

P02 9 Visualization

Find: some point in the
notebook’s history at
which you had a
visualization of the
decision tree model
output

Explain: What kinds of
things did you attempt
in visualizing the
decision tree and what
kind of barriers did you
run into? TRUE TRUE

P02 10 Modeling

Find: when you switched
the max depth of the tree
from 2 to 5

Explain: What were
your motivations in
changing the max
depth and what kinds
of results did you see? TRUE TRUE

P03 1 Modeling

Find: Did you do any
hyperparameter tuning
on either the logistic
regression or the random
forest?

Explain: Do you feel
you reached a place
with the models that
you wanted to be
doing hyperparameter
tuning? Why or why
not? Inspector TRUE TRUE

P03 2 Modeling

Find: What was the best
accuracy score you got
for logistic regression?

Explain: Why did you
decide to switch away
from logistic
regression? Search TRUE TRUE

P03 3

Tables &
Summary
Stats

Find: Go back to when
you had a table showing
each possible project
state (failed, successful,
live, canceled, etc.)
grouped by the project’s
currency

Explain: At the time
this dataset was
collected, which
currencies had the
most live projects on
Kickstarter? Artifact

Summary TRUE TRUE
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P03 4 Visualization

Find: Earlier when you
had the name length plot
as a violin plot and when
you had it as a bar chart

Explain: You tend to
use bar, box, and violin
plots a lot in this
notebook. Is there
something different in
what the different chart
styles tell you about
the name length
feature? TRUE TRUE

P03 5

Feature
creation/sele
ction

Find: You created a days
until deadline feature.
Did you ever use it in
your model?

Explain: Do you think
this feature could help
predictive accuracy,
why or why not? TRUE TRUE

P03 6

Storytelling
& Notebook
Organization

Find: You noted that
projects launched on the
1st or 31st of the month
may have higher
success rates. I see you
have a plot comparing
success/fail across each
date. Did you ever
calculate the percentage
success rate for each
day of the month or are
you basing your
hypothesis on just the
chart?

Explain: Do you have
any intuitions about
why picking the right
day of the month might
help a project’s
success?

TRUE FALSE

P04 1

Feature
creation/sele
ction

Find: Where you
compared the values of
the duration days feature
between success/fail, if
you did explore that.

Explain: Did you have
any insights about the
difference between
success and failure in
terms of duration of
the project campaign? Search TRUE TRUE

P04 2 Visualization

Find: There doesn’t
appear to be a pairplot in
the current notebook. Did
you at any point have a
pairplot showing?

Explain: What were
you hoping to visualize
with the pairplot? Artifact

Summary TRUE TRUE
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P04 3

Feature
creation/sele
ction

Find: Go back to when
you initially created
drop_fields.

Explain: Initially you
had just a few features
listed, and then added
a whole bunch of
features. What
prompted that and how
did you choose what to
drop? TRUE TRUE

P04 4

Tables &
Summary
Stats

Find: In your notebook,
all the data frame table
displays appear to be
you transform the data
somehow and then use
the head() function to
show the transform’s
effect. Did you use tables
in other ways, such as
showing summary stats
for your data frames or
group-by tables?

Explain: How much do
you typically use table
displays as opposed to
visualizations to
explore datasets in
your data science
practice?

TRUE FALSE

P04 5

Storytelling
& Notebook
Organization

Find: In a markdown
note you note that since
most of the currency is
USD, it might not tell us
much about
success/failure. At the
same time, you use the
one hot encoding of the
categorical currency
feature in the model. Did
you make this hypothesis
before or after trying
currency in the model,
i.e. did you test this
hypothesis?

Explain: What is your
current intuition about
how helpful the
currency feature is?

FALS
E

P04 6 Modeling

Find: Go back to when
initially you had 99%
accuracy on your model.

Explain: As you
developed the model,
over time its accuracy
went down, why is
that? TRUE TRUE
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P04 7

Data
Cleaning &
Filtering

Find: Your notebook
contains a validation set.
Did you ever run the
model using it?

Explain: At what point
of your model
development process
would you have used
the validation set? TRUE TRUE

P04 8

Feature
creation/sele
ction

Find: What kind of
performance change did
you see in including the
smaller categories
feature in your model?

Explain: What is your
intuition about how
helpful the categories
feature is? TRUE TRUE

P06 1

Feature
creation/sele
ction

Find: Did you ever try a
different feature set than
'category',
'main_category',
'country', 'currency', goal,
delta_t?

Explain: What reasons
do you have for
including all of the
category variables
when those overlap
with main_category? Inspector TRUE TRUE

P06 2

Tables &
Summary
Stats

Find/Explain: Having no
country as Country N,0”
seems to be highly
predictive of a project
failing. Did you ever do
anything with Country
N,0” or filter those
projects out of the
dataset? Why or why
not? Search TRUE TRUE

P06 3 Modeling

Find: What effect did
scaling the variables
log_goal and log_delta_t
have on the overall
model performance?

Artifact
Summary TRUE TRUE

P06 4

Feature
creation/sele
ction

Find: Go back to when
variable s was first
created

Explain: What was the
purpose of s and was
it ever used for
anything? TRUE TRUE

P06 5 Visualization

Find: Go back to the plot
of df['usd pledged'] /
df['usd_pledged_real']

Explain: What were
you trying to find out
about df['usd pledged'] TRUE TRUE
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before you made the plot
log scale

/ df['usd_pledged_real']
by playing around with
the scale of the plot?

P06 6 Visualization

Find: the version of the
pairplot before log scale
was applied

Explain: In the pairplot
some comparisons
become much more
visible when the log
scale is added while
others are much more
visible without the log
scale. What can you
hypothesize about
backers x pledged
from the pairplot? Or
goal x usd_goal_real? TRUE TRUE

P07 1

Feature
creation/sele
ction

Find/Explain: What did
you try in your analysis
with the “state feature” Inspector TRUE FALSE

P07 2

Data
Cleaning &
Filtering

Find/Explain: There’s
df2, df2_onehot, and
onehot in the notebook,
which are all variables
that appear to have to do
with onehot encoding but
don’t end up in the model
later in the notebook.
Please use history to
explain what these were
used for.

Artifact
Summary TRUE TRUE

P07 3

Tables &
Summary
Stats

Did you do any
exploration of the
“main_category” feature? Search TRUE TRUE

P07 4

Tables &
Summary
Stats

Find/Explain: During the
notebook’s history, what
was the variable “j” used
for? TRUE TRUE

P07 5 Visualization
Find: Go back to when
the histogram of

Explain: What were
you aiming to do in TRUE TRUE
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“category” feature was
brown-green

changing around the
colormap from blue to
brown to red?

P08 1 Modeling

Find: Go back to when
you had a scatter plot of
x = live_time, y =
backers, hue =
success/fail

Explain: What, if
anything, can you
hypothesize about the
relationship between
live_time and
success/fail from this
plot? Inspector TRUE TRUE

P08 2

Feature
creation/sele
ction

Find: Go back to when
Coefficient of
determination: 0.95.

Explain: What caused
such a high coefficient
of determination? Also
why 0.95 rather than
1.0?

Artifact
Summary TRUE TRUE

P08 3 Visualization

Find/Explain: What
different features did you
try in the model? Search TRUE TRUE

P08 4

Data
Cleaning &
Filtering

Find/Explain: You have
this nice analysis looking
at the percentage
success of projects by
main_category. Did you
apply that analysis to
“category” or any of the
other categorical
features? TRUE TRUE

P08 5 Modeling

Find/Explain: How did
you decide to handle
projects with other states
than success/failed, such
as canceled? TRUE TRUE

P09 1

Feature
creation/sele
ction

Find/Explain: Which
variable combinations
did you try looking at the
relationships between?

Artifact
Summary TRUE TRUE
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P09 2

Data
Cleaning &
Filtering

Find/Explain: Can you
walk through what you
tried for the df where
df.country is N,0" data
filter Inspector TRUE TRUE

P09 3

Tables &
Summary
Stats

Find: What the variable
“countries” was used for
in the history of the
notebook

Explain: What kind of
analysis were you
seeking to do with the
country feature? Search TRUE TRUE

P09 4

Feature
creation/sele
ction

Find/Explain: How did
you use the feature
cat_code? TRUE TRUE

P09 5 Modeling

Find: Back when you had
y = pledged x = category
what model result did
you get?

Explain: What did that
tell you about the
relationship between
pledged and category? TRUE TRUE

P10 1 Visualization

Find: Go back to when
you had a plot for comics

Explain: Are there any
categories of comics
that are substantially
more successful than
others? Search TRUE TRUE

P10 2

Storytelling
& Notebook
Organization

Find/Explain: Did you
have any insight into why
Hiphop is such an
unpopular kickstarter
project category? Inspector TRUE TRUE

P10 3

Tables &
Summary
Stats

Find: Did you look at the
distribution of monetary
goal for successful
projects versus failed
projects?

Explain: Do you have
any hypothesis about
how helpful monetary
goal would be as a
feature?

Artifact
Summary TRUE TRUE

P10 4 Visualization

Find: Go back to when
you had a plot of the
feature
duration_in_seconds

Explain: Do you see
any trends about
duration_in_seconds
between successful or
failed projects? TRUE TRUE
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P10 5

Data
Cleaning &
Filtering

Find: Go back to when
you had a dataframe
named was_successful

Explain: Before you
found the state
feature, how were you
calculating
success/failure? TRUE TRUE

P11 1 Visualization

Find: Go back to when
you had a plot showing
the amount of each
main_category project
across all states,
including states like
undefined or canceled

Explain: Do you see
any differences in how
these “other” states
are distributed across
different categories,
such as some
categories having
more cancelled
projects than others? Inspector TRUE TRUE

P11 2

Data
Cleaning &
Filtering

Find: When you did a
visualization with the
country feature

Explain: What is your
hypothesis about how
helpful a feature
country is? Search TRUE TRUE

P11 3

Feature
creation/sele
ction

Find: You include
category as a predictive
feature for the model.
Did you do any analysis
of the category feature
and if so what did that
tell you?

Explain: Do you think
categories may have
additional predictive
power than just using
the main category? Artifact

Summary TRUE TRUE

P11 4

Tables &
Summary
Stats

Find: Go back to when
you had an analysis of
projects with the country
value N,0"

Explain: You ended up
not filtering projects
with the country of
N,0" out of the
analysis? Why did you
decide to keep them
in? TRUE TRUE

Thematic Analysis Qualitative Codes

1. Search Feature
2. Inspector Feature

3. Activity Feature
4. Ghost Notebook Feature
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5. Artifact Table Feature
6. Artifact Detail Feature
7. Navigation troubles
8. Navigation is easy
9. Unsure how Verdant works
10. Verdant usability
11. Information overload
12. Horizontal width of Verdant pane
13. Naming/numbering in Verdant
14. Feature suggestion
15. Using Verdant post-study
16. History in other notebook systems
17. Computation overhead
18. History is helpful
19. History is more important for

collaboration/onboarding
20. Verdant-style history is not useful for

team work
21. Notebook is hard for collaboration
22. History of plots/output
23. History for model performance
24. Using/checking history while working
25. Using history to debug
26. History changes my notebook practices
27. NOT using history while working
28. Cell-based history requires a certain

workflow
29. Data work you don't remember
30. I can just answer this from memory
31. Keep track of deleted content

32. Something is lost
33. Re-code something lost
34. Automatic history keeping
35. Github with notebooks
36. Output history kept in folders locally or

in the cloud
37. Code/non-code history live in di�erent

places
38. Automatically log model metrics to

somewhere
39. Manually creating a logging pipeline
40. Using tools to automate logging pipeline
41. Use external notes doc to keep history
42. Informal versioning: keep multiple

copies
43. Organizing notebook to keep history
44. History is unorganized
45. Hard to connect outcomes with version

of notebook that generated it
46. Pruning notebook
47. show you my thought process
48. When I don't keep history
49. How often I check history
50. When I get history questions
51. What I use notebooks for
52. Data analysis tasks are

realistic/unrealistic
53. How long I would need to do this data

analysis
54. Other programming languages
55. When I do exploratory work like this
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Appendix G: Query Design Exercise Results
This study is described in Chapter 4

Summary Table of Results

Does Verdant address this? Count Percentage

A little 29 24%

Fully 37 30%

N/A 12 10%

Not at all 13 11%

Partially 32 26%

Grand Total 123 100%

Full list of Queries

Raw text of question How would a user answer
this in Verdant?

Does Verdant
address this?

This one time, I got an output of <x>. What
parameters was I using to generate that?

Verdant: from output <x>
open ghost book to see code
that generated it

Fully

When I found a correlation matrix in which <x>
was positively correlated with <y>, 0.41.... and
<q> was negatively correlated with <z> -0.03,
...what correlation measure was I using?

Verdant: first find that
specific correlation matrix,
then find the code that
generated it

Fully

Also, how had I operationalized measures <b>
and <c> at that point? Is it the same
operationalization as I'm using now, or
different. I.e., do I have to do this over again?

Verdant: look at ghost book
at that time in history to
figure out the
operationalization

Partially

What results did I get when I tried using
analysis/algorithm <a> on <this exact
dataset>. (did I even do that already, or am I
imagining things?)

Verdant: look for where <a>
occured. Depending on the
file and variable name, it
may or may not be possible
to look up the exact dataset

Partially

293



Designing E�ective History Support for Exploratory Programming Data Work - Dissertation - Mary Beth Kery

How the fuck did I end up with this
intermediate value of 0.43 for this one
parameter? No seriously. This is the worst.
Looks like I hardcoded it in here at some
point... so at some point, I must have done
some sort of analysis to arrive at this value,
and then subsequently plugged it in to my
future analyses... and then like, deleted that
intermediate analysis? UGH. What
assumptions was I making in whatever
analysis I did to get that. What algorithm was I
even using? Is this even... is this like
supposed to be here? Or was it an unrelated
analysis, and I plugged in 0.43 from the wrong
place. I was kind of sleepless when I was
doing this.

Verdant: search history for
the value of 0.43 and that
should point to where in
history it occured. This may
be able to get you back to
the analysis but won't tell you
what assumptions you were
making

Partially

How many different ways did I run [a particular
regression] (e.g. what variables left in, left
out)?

Verdant: get history of that
particular regression, see all
combinations it was run with

Fully

When did I run the same thing (e.g. the same
regression model), but get different results?
[<-- sometimes i would changes something
about the underlying data, as it was just in
CSV format, and then forget I had done
that...].

Nope: a regression may
output something a little
different each time, so it may
be hard to tell where the data
changed if the data changed
outside of the notebook.
There might be some
evidence of the data
changing in the output of the
notebook, it depends

A little

When did I make changes to the underlying
data, and what is the list of analyses I ran prior
to and post making changes?

Again, it depends if they
made changes to the
underlying data in the
notebook or outside of it. If
the changes were made in
the notebook, this should be
partially doable to get a date
and time of that change. But
even so, Verdant can't
collate a nice list of analyses
after a certain time. Verdant
might give enough hints to

A little
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solve this question, but
cannot answer it directly

What were all the different statistical functions
I used, and how many times did I use each
one? [<-- might use this to remember what
kinds of analyses I was doing since I've kind of
forgotten, and then might query further based
on the results]

No Not at all

Show me the last regression I ran

Verdant: search for the term
"regression" or if you recall
the name of the regression.
If the regression has a really
specific name, it may be
harder to find.

Partially

Show me the settings I used for that last
analysis

Verdant: first locate that last
analysis. Then look at the
surrounding code with the
ghost notebook

Fully

Show me the last four crosstabs

Verdant: search for
"crosstabs". Again, if the
crosstabs are named
something different or not
named the same thing, this
may be hard to find

Partially

Show me results from feature extraction on XX
date

Verdant: since they have a
specific date and specific
analysis in mind, this should
be pretty easily searchable
using the activity and search
features

Fully

Revert model to parameters used in trial XX

Verdant: since they have a
specific model and iteration
in mind, should be easily
searchable

Fully

Effects of [insert name of variable X] on [insert
name of variable Y].

Verdant: this will probably be
searchable by variable
name, but the user will need

Partially
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to do some searching.
Verdant can't just answer
that question in it's current
format

Effects of [insert names of variable X1,
variable X2, and variable X3] on [insert name
of variable Y]

Same as above Partially

Effects of [insert names of variable X1, X2,
and X1*X2] on [insert name of variable Y]. Same as above Partially

List of all significant predictors of [insert name
of variable Y]

Verdant: they can probably
figure this out by looking
through all analyses, but it
will take some time. Verdant
cannot answer this question
directly

A little

The most significant predictor of [insert name
of variable Y]. Same as above A little

Best fitting linear regression model.

Verdant: in practice this is
probably one of the later
regressions they did, so it
should be reasonably easy
to search for. However, it
may take quite a bit of
search if there are a lot of
different models

Partially

List of all non-significant predictors of [insert
name of variable Y].

Verdant: they can probably
figure this out by looking
through all analyses, but it
will take some time. Verdant
cannot answer this question
directly

A little

Find me how I cleaned the data from start to
finish

Verdant: they can probably
figure this out by looking
through all analyses, but it
will take some time. Verdant

A little
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cannot answer this question
directly

What analyses did I run using <this> variable?

Verdant: this question seems
pretty searchable by looking
up the variable name,
Verdant should return all
analyses pretty directly

Fully

What analyses did I run where the difference
was significant/marginal?

Verdant: they can probably
figure this out by looking
through all analyses, but it
will take some time. Verdant
cannot answer this question
directly

A little

Does the ordering of the main independent
variable and the covariate matter, for this
function call (used in finding main result)?

No, need to test that
hypothesis? If they have
already tested the
hypothesis maybe?

N/A

What interaction analyses did I run?

Verdant: they can probably
figure this out by looking
through all analyses, but it
will take some time. Verdant
cannot answer this question
directly

A little

what were all the versions of that notebook? Verdant can deliver directly Fully

what were the last 3 outputs of that cell?
(output is a list, then you can recover the code
from the output you select)?

Verdant can deliver directly Fully

show me the logistic regression analysis I ran
without any interaction variables

Verdant: if they have a
specific logistic regression in
mind, this should just be a
matter of searching the
history of that regression

Partially

show me a histogram of the residuals from the
first linear regression analysis I ran

Verdant: since they have a
specific regression in mind
(the first one) it should be

Partially
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doable to search that
regression and then locate a
histogram from that point in
time. It may take a little doing
though

what were the beta values from the regression
I ran earlier today

Verdant: find the regression,
check the beta values Fully

what were the distributions of my variables
when I ran the boosted decision tree algorithm

No, this requires history but
then also another analysis
on top of that, to show the
distribution. If they had the
distribution back then, it may
be just a matter of retrieval,
but if not, this won't be
doable because we can't
garuntee the data will be the
same even if they rerun that
past analysis.

Not at all

what was the final thing I did for this project? Verdant: activity pane, sure Fully

what did I try along the way?

Verdant: skim through ghost
books using activity pane.
Can't do summarization
though

Partially

hmm ok I was trying a bunch of queries with
different features and different options - what
was my search path through these?

Verdant can show all those
queries, but the user would
need to look through each to
figure out the path
themselves

A little

what questions did I ask that didn't pan out?

Verdant has all this history,
but this would be really hard
to do, take brute force
search

A little

which of these csv files, sql queries, and Rmd
files are, like, on the ""right"" path, and which
ones were mistakes?

No... Verdant might be able
to provide some evidence,
but especially because we;re
talking about data that might

Not at all
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be outside of the notebook
and summarizing it, no

Show me the previous test result for this
particular dataset.

Yes, so long as the dataset is
easily searchable by name in
a notebook, not possible
otherwise

A little

What was the most recent test result for this
table?

Yes, if the table is something
searchable, the most recent
test result should be a quick
retrieval. Saying partially
because again... with data
there's a chance history isn't
there of the table at a certain
point in time

Partially

Show me the tests that failed for March 2016
data. Same as above Partially

Here's a visualization I produced, let me right
click on it to give me the script to produce it. Verdant, inspector sure Fully

What were the parameters I used to create the
summary plots, so I can run different
summaries and make sure the plots can be
compared.

Verdant, inspector sure Fully

Show me the analysis I did using Fiona, not
the other one where I used GeoPandas.

Should be searchable using
keywords for that library, but
may take a long search to
narrow down

Partially

Show me the quick analysis, not the one that
runs for 6 hours. No Not at all

How long did it take to process country X, so I
can estimate the time it will take for another
one.

No Not at all
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What was the state of this when the data
frame in <some part of the notebook> had
more than 10,000 rows

Verdant, can look at the
history of that data frame,
but if you didn't record the
row count, additional
analysis on top of history
might be needed

A little

What was the state of my notebook the last
time that my plot had a gaussian-ish peak?

May be doable if they can
browse the history of the plot
and decide for themselves
what looks "gaussian-ish"

Partially

Show me, visually, a history of the plots in this
notebook over the last few weeks

Sure, just search plot to
retrieve them all Fully

What data sources have I been using over the
last month?

Again, since it involves data,
this is dicy A little

What are the model parameters I used for the
random forest I ran on July 5, 2017?

Look at the model history,
should be searchable from
date and model

Fully

Show me the histogram I ran for the elastic net
I ran on July 5 2017.

Should be searchable by
model and date Fully

Show me what my model accuracy looked like
before I downsampled to 60Hz.

Should be searchable by the
specific 60Hz Fully

Show me the highest accuracy model I ran on
July 5, 2017.

Can show all the models
from that date, but they will
have to look through them all

Partially

What was the AUC of my model named
'model65'?

Should be directly
searchable Fully

Show me the data frame that had the following
pieces of informations?

May be searchable by
keywords to find that
dataframe

Partially
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which of the analyses had the best ROC?
Will need to look through all
the models manually to
decide this

Partially

Show me all the different ways I oversampled
the minority class

This entirely depends on
how searchable the
oversampling is

A little

WHich train/test split resulted in the best P-R?
May need a pretty
exhaustive search through
P/R and split

Partially

restore the version of data from August 5th No, it's data Not at all

redo the code from August 4th, but using new
data

This should be just a matter
of retrieving a specific
version to rerun

Fully

How many notebooks did I collect from
GitHub?

It depends on if they have
this number readily available
in history, which they
probably would?

Partially

What is the average size of code cells in
Python notebooks? What about Julia
notebooks?

If this is an analysis they did,
sure... if not no A little

What is the repository of the notebook that has
the biggest amount of cells?

If this is an analysis they did,
sure... if not no A little

What date did miscorrelations happen?

No, would take exhaustive
search through way too
many things, and even then
it depends on if
miscorrelation was
documented back in time

A little

How much miscorrelation was there? No Not at all
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For this interesting correlation result, what
were the input parameters.

Since they have a specific
result in mind, this should be
a simple history retrieval

Fully

patient treating system I don't know what this N/A

what was the series of functions I called (after
extensive debugging) that I used during the
first round of data analysis?

No, since we don't collect
execution order, if no output
was recorded this may be
impossible to find

Not at all

why didn't I save this in script so I could reuse
later?

No, this is a personal
question N/A

give me all lines where I used library x with
parameter y;

Seems searchable, but it
depends on how many
keywords it would take to
identify library x

Partially

have any of the libraries/ data sources I used
in this project been updated since I last used
them?

No Not at all

show me similar notebooks based on either on
code snippets or a sample notebook I provide
(locally or via URL);

Not a history Question N/A

who has used the same API or dataset in
Jupyter notebooks (either in public ones or
those that are part of the same environment,
e.g. within a JupyterHub instance);

Not a history Question N/A

show me the revisions that changed the most/
least number of lines/ characters (perhaps
distinguishing between code and comments);

No Not at all

give me a list of the most popular parameters
for a given library, along with usage examples; Not a history Question N/A
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give me punchcard stats as on GitHub
Yes, you can pretty easily
see this in the activity
visualization

Partially

Replicate the analysis from last Wednesday Partially, only because of the
data issue Partially

Which HTTP queries failed?

You could answer this by
looking at the history of
output from the HTTP
queries

Partially

Which JSON objects were not directly
readable? same as above Partially

Which records were paginated?
This entirely depends on if
pagination was recorded in
history

A little

Which records returned errors? same as above A little

Which records had missing values same as above A little

latitude longitude names previous groupings These seem like direct
keywords to search, so sure Fully

Show me all the (completed) previous analysis
results for this dataset

Partially, only because of the
data issue Partially

show me how cost/profit changed during the
years of a certain product

As long as this was an
analysis they did at some
point

A little

how did I generate plot 5 Sure, look at plot history Fully

how did I got student names Sure, look at history of
student name list Fully

why did this produce figure 5 and not 6 Sure, look at plot history Partially
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sniff the data Not sure what this is N/A

hdf5 Not sure what this is N/A

orders cancels Not sure what this is N/A

read_excel Not sure what this is N/A

glob Not sure what this is N/A

Pull up script, input data, output
visualizations/tables for a particular date or
version of a notebook

Yes this is what Verdant
does Fully

Please go back 5 hours Activity pane Fully

Please revert to the state prior to the crash Activity pane Fully

Please give me the last packages that worked
in this cell

Would need to look through
cell history to figure out Partially

compare teacher article views this year and
last year in the same time frame

As long as this was an
analysis they did at some
point

A little

do teachers use our app during school hours
or after school hours

As long as this was an
analysis they did at some
point

A little

How much student activity is independent,
versus assigned

As long as this was an
analysis they did at some
point

A little

how do articles assigned by teachers differ
from those that students choose for
themselves?

As long as this was an
analysis they did at some
point

A little
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Are there any specific teacher activities that
tend to predict license renewals

As long as this was an
analysis they did at some
point

A little

How can we tell when a teacher has
""churned"". that is disengaged

As long as this was an
analysis they did at some
point

A little

and are there any activities we can do to bring
them back?

As long as this was an
analysis they did at some
point

A little

Show me my experiment with the best results No, would need
summarization A little

show me my experiment from July 5th 2017 at
1:37pm

Yes, can retrieve that exact
result Fully

What did I change in the code before the
visualization broke?

Yes, backtrack using ghost
book with diff highlighting Fully

Are there any fields in the table that aren't
being used in the visualization? Not a history Question N/A

Which part of the analysis runs the longest? No Not at all

project bank credit model Yes, can retrieve history of
that model Fully

Show me the first version of the notebook Sure, Activity pane Fully

Training accuracy with one layer
Sure, get model history to
get back to that state and
look at the result

Fully

Testing accuracy with one layer same as above Fully

Accuracy of convolutional model same as above Fully
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Accuracy of recurrent model same as above Fully

When did I generate this plot? sure, get history of plot in
artifact detail pane or search Fully

show me the most recent analysis I published
on this topic. No Not at all

Show me the analysis that I published that got
the most engagements/comments from
colleagues.

No Not at all

Show me analyses I've done using X
framework (where X is e.g. folium, shapely,
etc).

May be hard to do, depends
on how many keywords it
takes to figure out which
framework was used

Partially

show the analysis with the bar chart Will need to search bar chart Fully

show me the analysis that used imshow Search for imshow Fully

show me the analyses that used data from
source X (which could be a table name, a csv,
etc).

It entirely depends on the
data, but here they are
referencing a name, so it
may be searchable

Partially

Show me the analyses of the different subsets It depends on how
searchable this analysis is Partially
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