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Abstract

This thesis develops Monte Carlo algorithms based on the walk on spheres (WoS) method to reli-
ably solve fundamental partial differential equations (PDEs) like the Poisson equation on geomet-
rically complex domains. Elliptic PDEs are a basic building block of algorithms and applications
throughout science, engineering, and geometric computing. Yet despite decades of research on
methods for solving such PDEs, conventional solvers still struggle to deal with the level of ge-
ometric complexity found in the natural world. A constant challenge is the need for spatial
discretization, which traditionally involves dividing the domain into a high-quality volumetric
mesh or grid to perform PDE-based analysis. Unfortunately, this approach does not scale well
to modern computer architectures as it is inherently sequential and memory intensive. It also
falters when dealing with imperfect data containing poorly-shaped elements or self-intersections.
These shortcomings together hinder the ability of scientists, engineers and designers to analyze
geometric data and iterate on designs.

Walk on spheres makes a radical departure from conventional PDE solvers by reformulating
the problem in terms of recursive integral equations that can be solved using the Monte Carlo
method, allowing it to avoid volumetric mesh generation and function space approximation
altogether. Furthermore, since these integral equations closely resemble those found in light
transport theory, one can leverage deep knowledge from Monte Carlo rendering to build new
algorithms for solving PDEs.

In this work, we take inspiration from rendering to generalize WoS to solve a much broader
set of linear elliptic PDEs on solid regions of RN . We develop complete “black box” solvers
encompassing integration, variance reduction and acceleration. Our solvers share many benefits
with Monte Carlo methods from rendering: no volumetric meshing, trivial parallelism, output-
sensitive evaluation of the PDE solution and its gradient without the need to solve a globally-
coupled system of equations, and the ability to handle geometric data of size and complexity
that is essentially hopeless for grid-based techniques.
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Chapter 1

Introduction

Figure 1.1: Grid-free Monte Carlo methods developed in this work can significantly speedup the engineering design
cycle by eliminating the major bottleneck of discretization in conventional solvers for partial differential equations
(left). Lifting the dependence on discretization and global solves improves robustness, and like Monte Carlo ray
tracing allows computation effort to be focused entirely on local regions of interest (right).

1.1 Motivation

The ability to accurately model and analyze large amounts of geometric information is funda-
mental to many scientific and engineering disciplines, ranging from geology to medicine, and
autonomous driving to industrial design. Subtle differences in fine-scale geometry can have a
major impact on the large-scale behavior of many physical systems—consider, for instance, the
influence of millions of tiny alveolar air sacs on the dispersion of oxygen in the lungs, the impact
of intricate grille patterns on the acoustic performance of a microphone, and the role of all the
wiring and plumbing in a building information model on the thermal response of a structure.
At all scales, detailed and irregular geometry plays a crucial role in our ability to understand the
function of a physical system, evaluate its performance and predict its failure modes.

Techniques based on partial differential equations (PDEs) provide powerful tools for analyzing
many such physical phenomena. Unfortunately, despite the drastic increase in our ability to cap-
ture and generate complex geometric models in recent years, conventional methods for solving
PDEs are not yet at a stage where they “just work” on problems of real-world complexity. Basic
tasks involving PDEs still entail careful preprocessing or parameter tuning, and solvers regularly
exhibit poor scaling in time or memory. Even more broadly, models of real physical systems must
often integrate disparate phenomena, such as light transport and heat transfer, which classically
demand very different computational tools that do not “play well together”. For these reasons,
there remains a large divide between our ability to visualize and simulate the natural world, and
we tend to shy away from simulating it at its original level of complexity by either making gross
approximations via model reduction and homogenization—or by tempering our ambition.
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FEM: 14+ hours 

MC: ~1 minute MC: 20 minutes

Figure 1.2: Real-world geometry has rich surface detail (left) and intricate internal structure (center). On such
domains, FEM-based geometric algorithms struggle to mesh, setup, and solve PDEs—in this case taking more than
14 hours and 30GB of memory just for a basic Poisson equation. Our Monte Carlo solver uses about 1GB of memory
and takes less than a minute to provide a preview (center right) that can then be progressively refined (far right).

input boundary mesh

(used directly by WoS)

boundary of tetrahedral mesh

generated for FEM (via fTetWild)  

input model 

34 minutes

6.1GB RAM

PDE solution

cleanup/repair volume meshing FEM solve
bottleneck

Figure 1.3: The bottleneck in conventional PDE solvers
like FEM is often not the solve itself, but rather the cost
of meshing (top). Robust meshing algorithms [105] can
also sacrifice spatial detail–here destroying key features like
blood vessels (bottom).

BEM solution

FEM solution

WoS solution

BEM solution

FEM solution

WoS solution

boundary data

source term

di�usion coe�icient

boundary data

source term

di�usion coe�icient

Figure 1.4: Unlike FEM and Monte Carlo, traditional
BEM does not consider volumetric functions (e.g., coef-
ficients and source terms) that affect the PDE solution.

A significant issue with traditional numeri-
cal methods for solving PDEs, such as the finite
element method (FEM), is the end-to-end cost of
the pipeline: even if the FEM solver is fast, one
must first convert the boundary description of
the input geometry into a “simulation-ready”
volumetric mesh. Unfortunately, meshing is
brittle and often requires intervention from ex-
pert engineers: it can easily fail on data with
minor imperfections such as self-intersections,
and a few badly-shaped elements can spoil an
entire FEM solution. Furthermore, state-of-
the-art robust meshing algorithms can be ex-
tremely time consuming and memory inten-
sive on intricate geometric domains (e.g., Fig.
1.2, 8.1 & 8.4). Though performance can be im-
proved with more powerful processors, the in-
herently sequential nature of mesh generation
makes it difficult to truly leverage increasingly
parallel architectures. Moreover, even when
meshing succeeds, important geometric detail
can be lost in the discretization (Fig. 1.3 &
8.1), which results in aliasing artifacts in the
PDE solution (Fig. 8.9 & 8.15).

The cost and difficulty of mesh genera-
tion for conventional FEM sparked the devel-
opment of meshless FEM and boundary element
methods (BEM), though all of these approaches
suffer from a common problem: the need
to spatially discretize (e.g., mesh or point-
sample) the domain interior. BEM must be integrated with volumetric methods like FEM to han-
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adaptively sample globally smooth         build neighbor graph

Figure 1.5: So-called “meshless” methods still perform a process akin to global meshing, which can result in spatial
aliasing of fine features. One ends up with a mesh-like structure that must satisfy stringent sampling criteria to
avoid numerical blowup, and must solve a large globally coupled linear system. Figure adapted from [199, Figure 6].

dle interior terms (Fig. 1.4), while even so-called meshless methods must carefully place nodes
over the entire domain (Fig. 1.5). Furthermore, for problems with volumetric heterogeneities,
the discretization must be carefully adapted to regions where material coefficients exhibit fine
detail (Fig. 5.1 & 8.10). As a result, many engineering and scientific disciplines today suffer
from non-interactive workflows due to the bottleneck of needing to first convert large amounts
of geometric information into a form suitable for PDE-based analysis and simulation (Fig. 1.1,
left). This limits experts and non-experts alike from making sense of their data, and analyzing it
quickly to solve geometric problems.

1.2 Approach & Scope

Ω

∂Ω

∂Ωε

x0

x1
x2

xk xk

Figure 1.6: The basic idea behind walk on spheres is that at
any point x, the value of a harmonic function u(x) equals
the average over a sphere around x [9]. Hence we recur-
sively take a single Monte Carlo sample to estimate this
average until we hit the boundary. No spatial discretiza-
tion is needed since the largest empty sphere can be deter-
mined using a closest point query.

To address these challenges, this thesis makes
a major break from conventional PDE solvers,
and instead explores how to solve basic, yet
fundamental PDEs in geometric computing
with grid-free Monte Carlo methods based on
Muller’s walk on spheres (WoS) algorithm [174].
This shift mirrors an analogous development
in the 1990s for photorealistic rendering: for
reasons nicely summarized by Jensen et al.
[116], algorithms built around finite element ra-
diosity [85] gave way to Monte Carlo ray trac-
ing of the light transport equation [121]. A key
motivation was to simulate more complex illu-
mination, but the shift also made it possible to
work with scenes of extreme geometric com-
plexity—modern renderers today can handle
trillions of effective polygons [76] and, in stark
contrast to FEM, provide high-quality results without any preconditions on the input geometry.
As all geometric computation boils down to simple ray intersection queries, Monte Carlo render-
ers also work with representations other than polygon meshes. They exhibit excellent scaling,
offer a trivial parallel implementation, and allow for view-dependent evaluation. Collectively,
these features of Monte Carlo rendering have helped it revolutionize industries such as film,
architecture and industrial design by enabling practitioners to iterate on their designs quickly.
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Figure 1.7: As with Monte Carlo ray tracing, grid-free Monte Carlo methods like walk on spheres can solve PDEs
directly on a variety of geometric representations without needing to discretize the boundary or volume. Unlike
traditional PDE solvers, WoS also exactly captures discontinuous boundary conditions and provides a meaningful
solution even on geometry with poor element quality; the solution degrades gracefully in the presence of noise.

The Monte Carlo methods described in this work provide an analogous approach for geomet-
ric computing: the main idea is to express elliptic PDEs, arising in countless physical problems
such as the diffusion of heat, electrostatic potentials, and incompressible fluid flows, as recursive
integral equations that look a lot like the rendering equation [121]. This reformulation enables use
of Monte Carlo integration to solve these integral equations. Samples are generated by replacing
recursive ray tracing with the recursive walk on spheres algorithm (Fig. 1.6) and its generaliza-
tions, which use the uniform distribution over a sphere to exactly model large steps of continuous
random processes such as Brownian motion [191]. This approach shares a number of benefits with
Monte Carlo rendering:

• Geometric Flexibility. It can work directly with implicit surfaces, NURBS/subdivision
surfaces, constructive solid geometry, procedural/instanced geometry, etc., without explicit
tessellation (Fig. 1.7).

• Geometric Robustness. Geometry need not be watertight, manifold, nor free of self-
intersections; sharp edges, small details, and thin features are exactly preserved.

• Scalability. The main cost is a bounding volume hierarchy (BVH) for distance queries, which
is O(n log n) in time and memory with respect to the size of the boundary (Fig. 1.8).

• Parallelism. It is trivial to achieve near-perfect parallel scaling, and many operations are
easily vectorized.

• Correctness. Since there is no discretization of space or approximation of function spaces,
one obtains the exact solution in expectation, i.e., error is almost entirely due to the variance
of the Monte Carlo estimator, and can be reduced by simply taking more samples.

• Adaptivity. Adaptive sampling akin to radiance caching [266] can significantly reduce cost
in smooth regions (Fig. 7.7); progressive sampling enables rapid previews of PDE solutions
(Fig. 1.2 & 4.2).

• Output Sensitivity. The solution can be evaluated in local regions of interest, like a small
window (Fig. 1.9 & 6.1) or a slice (Fig. 8.6), without having to first perform a global solve.

• Compatibility. Monte Carlo methods fit easily into standard pipelines for geometric com-
puting, as they can be used as “black box” solvers that return reliable and accurate solution
values at any given query point (e.g., at mesh vertices).
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input
(Thingi10k #996816)

mesh w/ fTetWild
1 hour 25 minutes

build BVH for WoS
< 1 second

Figure 1.8: Finite element methods exhibit unpredictable performance, as models with simple geometry but poor
element quality (left) can confound even robust meshing algorithms (center, via Hu et al. [105]). The Monte Carlo
approach only needs to build a standard bounding volume hierarchy (right), which dramatically reduces precompu-
tation time for solving PDEs.

Monte Carlo methods are not, however, a silver bullet. On simple domains with smooth
boundary conditions, solvers like FEM are quite mature and hard to beat in terms of solve time;
here Monte Carlo can be slow to eliminate high-frequency noise (though see Ch. 7 for variance
reduction strategies). Yet for more complex problems, end-to-end performance depends on many
factors beyond just the rate of convergence of the core solve, such as mesh generation, parallel
scaling, and visualization; Ch. 8 provides an in-depth discussion on tradeoffs with conventional
PDE solvers. It may also not be straightforward to formulate a Monte Carlo estimator for any
given PDE. Here we do not strive for full feature compatibility with traditional solvers and all
the PDEs they can solve—we instead focus on a specific class of problems, namely 2nd order
linear elliptic equations (reviewed in Ch. 2), which power a large array of applications in geometric
computing such as surface reconstruction [129, 130] and shape optimization [204] (using mea-
surements of physical quantities like temperature [277]). Monte Carlo solvers are not limited just
to WoS [101, 134, 172, 217]—we compare against some of these techniques in Ch. 8.

On the whole, we find that Monte Carlo methods have a number of attractive computa-
tional features that make them well-suited to PDE-based geometric computing. By avoiding the
daunting challenge of mesh generation, these methods offer a framework that is scalable, paral-
lelizable, easy-to-tune, and numerically robust (Fig. 1.1, right). They also occupy a unique place
in the broader landscape of numerical solvers for PDEs, as they complement the strengths of
existing grid-based techniques (e.g., local versus global evaluation of solutions).

1.3 Related Work

The biggest issue preventing broader adoption of grid-free Monte Carlo methods like WoS (dis-
cussed in detail in Sec. 3.2) is that estimators have been developed only for a narrow set of PDEs
beyond the original Laplace Dirichlet problem studied by Muller [174]—these include the Pois-
son and screened Poisson equations [51, 61], the heat equation [48, 95], the biharmonic equation
[84, 154] and certain (mildly) nonlinear PDEs [28]. WoS has previously been used for specific
problems in, e.g., molecular dynamics [160], integrated circuit design [146], porous media [109],
and electrostatics [108]. A few variants of WoS have also been developed, such as walking on
rectangles [49, 216], on the boundary [217, 242], off-centered walks [110], and Green’s function
first passage (GFFP) methods [81, 107]; we draw on some of these techniques in this work.

Unfortunately, most prior work on grid-free Monte Carlo methods lacks thorough numerical
evaluation, and even then only considers very simple geometry such as a box or cylinder. More-
over, questions essential for real applications like how to solve larger classes of equations, deal
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with defective or highly detailed geometry, reduce variance and build high-performance systems
have not been sufficiently explored. Despite some very close analogs in photorealistic rendering
[147, 171], researchers and practitioners in high-performance computing also seem to be largely
unaware of grid-free methods for PDEs. It is for this reason that we find this approach exciting:
the computer graphics community has made Monte Carlo integration the workhorse of photo-
realistic rendering, and we believe that it can have a similar impact on PDE-based techniques
which are central to computer-aided design and engineering.

Since our initial publication which introduced WoS to computer graphics [221], we have
designed robust and efficient WoS estimators for a much broader set of fundamental PDEs [167,
223, 223, 224], which we will detail over the course of this text. Other graphics researchers have
followed suit, and concurrently expanded the capabilities of WoS to, e.g., support exterior and
time-dependent problems [47, 179], simulate fluids and the coupled physics of radiation and
diffusion [14, 211], solve inverse problems via differentiable formulations [272], and improve
estimation quality through variance reduction [11, 151, 206].

1.4 Contribution

We develop a holistic Monte Carlo framework encompassing integration, variance reduction
and accelerated geometric queries to solve linear elliptic PDEs in volumetric domains, i.e., an
N-dimensional solid region in RN (we focus on N = 2 and 3). In particular, we provide:

1. a unified discussion of previously developed WoS estimators for elliptic PDEs (Ch. 3).

2. a new grid-free method called walk on stars (WoSt), which generalizes WoS to solve PDEs
with any arbitrary mix of Dirichlet, Neumann and Robin boundary conditions (Ch. 4)—
these boundary conditions are a basic component of virtually every real physical system.

3. a new integral formulation and subsequent WoS estimators for PDEs with variable mate-
rial coefficients, by establishing a close connection with null-scattering techniques [188] for
rendering heterogeneous participating media (Ch. 5).

4. easy-to-implement estimators for spatial derivatives of PDE solutions (Ch. 3 & 5).

5. Efficient BVH-based geometric queries to accelerate the above estimators (Sec. 6.2).

6. several variance reduction strategies (Ch. 7), including:

a) importance sampling of source terms, adaptive sampling of the solution, and control
variates for spatial derivatives.

b) a boundary value caching (BVC) scheme, similar in spirit to virtual point light methods in
rendering [46, 132], that greatly amortizes the cost of long walks and suppresses the
typical salt-and-pepper noise characteristic of independent Monte Carlo estimates.

c) a reverse WoSt estimator that splats known boundary and source data to multiple
points in the interior of a domain, by extending the recently developed bidirectional
formulation of WoS [206] from PDEs with Dirichlet conditions to those with Neumann
and Robin conditions as well.

d) a weight window strategy from neutron transport [25, 102] that significantly reduces
noise and improves efficiency in problems with high-frequency material coefficients.
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Figure 1.9: Thermal analysis of NASA’s Curiosity Mars rover. Keeping temperatures within specified thermal limits
is critical to mission success—but thermal modeling is historically difficult to integrate into the design phase, due
to intricate geometry not easily captured via finite element models (Fig. 8.1). Here our walk on stars solver (Ch.
4) computes realistic temperature estimates quickly and progressively even for extremely complex geometry, without
needing to volumetrically mesh the domain. A “deferred shading” approach provides output-sensitive evaluation,
computing temperature values only at the points visible in screen space (top right). We can hence analyze temperature
in local regions of interest, without computing a global solution (bottom row).

Our approach connects to a large body of work on Monte Carlo rendering [203]. From the
PDE point of view, the major difference is that the differential equation governing radiative
transfer is first order in space, whereas the PDEs we seek to solve have second order, diffusive
terms that demand different numerical techniques. There are of course many parallels between
these problems from a mathematical, computational, and system design point of view, which
we explore throughout this text. More broadly, by framing PDE-based geometric computing in
terms of stochastic processes, we build a bridge to rich tools not just from Monte Carlo rendering,
but also reinforcement learning, stochastic control and mathematical finance. We evaluate the
capabilities of our solvers in analyzing physical systems with complex geometry (see e.g., Fig.
1.9) in Ch. 8, and end with a discussion on future directions in Ch. 9.
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Chapter 2

Background: Differential & Integral Equations

We rely on concepts from the theory of partial differential equations, integral equations and
stochastic calculus to develop Monte Carlo algorithms for solving PDEs. We provide essential
background here as few readers will be familiar with all of these topics, and scope out the specific
types of PDEs we will consider in this work. Chapter 3 then describes the Monte Carlo walk on
spheres algorithm, which is the starting point for the generalizations of WoS we develop in Ch.
4 - 7 for solving these equations.

2.1 Partial Differential Equations

Many natural phenomena are described by relating rates of change. An ordinary differential equa-
tion (ODE) describes how a quantity changes in time. For instance, d2 p(t)/dt2 = −g implicitly
describes the trajectory of a particle p(t) under the influence of a gravitational acceleration g.
Only by solving this ODE for p(t) do we obtain an explicit description of the trajectory. Like-
wise, a PDE implicitly describes a function via relationships between partial derivatives in space.
A prototypical example is the Laplace equation d2u(x,y,z)/dx2 + d2u(x,y,z)/dy2 + d2u(x,y,z)/dz2 = 0 (or more
compactly ∆u = 0), which describes the steady-state of a diffusion process, i.e., the way heat dif-
fuses smoothly from the domain boundary into the interior. Just like ODEs, we must ultimately
solve for an explicit function u satisfying this relationship. Since most PDEs do not have analyti-
cal solutions (including the Laplace equation), we rely on numerical methods to solve them.

Given the vast number of PDEs and the diverse phenomena they model such as thermody-
namics, electromagnetism, fluid mechanics, elasticity, quantum mechanics, and even the move-
ment of stock prices, numerical methods are often specialized to consider specific classes of
equations. PDEs can be classified based on their form and properties, as we describe below:

Order And Linearity. The order of a PDE refers to the highest-order degree of any derivative
appearing in the PDE. For instance, the Laplace equation is 2nd order as it involves spatial
derivatives no higher than degree two, whereas a biharmonic equation ∆2u = 0 is 4th order. A
PDE is linear if it is a linear polynomial in the function and its derivatives. The Laplace equation
is linear, but the inviscid Burger’s equation ∂

∂t u(x, t) = −u(x, t) ∂
∂x u(x, t) is nonlinear as it multiplies

the function by one of its derivatives. We will consider 2nd order linear PDEs in this text.

Ellipticity. Roughly speaking, elliptic equations are those whose solutions are captured by the
idea of “repeated local averaging”. These PDEs often describe steady-state processes, like the
distribution of temperature in a stationary object. The Laplace equation is elliptic, as its solution
at any point in a domain Ω equals the average value in some small neighborhood (i.e., the mean
value property, see Eq. 2.13). Parabolic PDEs instead describe time-dependent processes, like
the changing temperature in an object over time. The canonical example is the heat equation
∆u(x, t) = ∂u(x,t)/∂t, whose solution u becomes progressively smoother and eventually reaches an
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Figure 2.1: A non-negative Robin coefficient µ linearly interpolates between Dirichlet (µ = ∞) and Neumann
(µ = 0) boundary conditions, which prescribe solution values and derivatives on the boundary, respectively.

equilibrium described by the Laplace equation as t → ∞. Hyperbolic PDEs, on the other hand,
are often associated with processes that involve wave propagation, such as sound waves.

We will focus on elliptic problems in this work, as their solutions can be computed by taking
averages of local estimates via Monte Carlo integration (Sec. 3.1). Formally, a 2nd order linear
PDE with constant coefficients is elliptic if its principal symbol (i.e., the polynomial corresponding
to its highest-order term) is greater than zero away from the origin. For PDEs with variable
coefficients such as ∇ · (K(x)∇u) = 0, ellipticity requires the diffusion matrix K(x) : Ω 7→ RN×N

to be positive definite, i.e., ∑n
i,j=1 Kij(x)ηiηj > 0 for all non-zero η ∈ RN [64, 72].

Boundary Conditions. PDEs are often paired with an additional set of constraints called bound-
ary conditions. Boundary conditions can be used to specify various physical constraints such as
temperatures, voltages, forces and velocities on the boundary ∂Ω of a domain Ω ⊂ RN , and typi-
cally have a major impact on the solution of a PDE. They come in many flavors: for instance with
a Laplace equation, Dirichlet boundary conditions specify the solution value along ∂Ω (e.g., a
surface held at a fixed temperature), which uniquely determines the solution inside Ω. Neumann
conditions instead specify the value of the normal derivative of the solution along ∂Ω (e.g., the
heat flux across a surface); the solution inside Ω is determined only up to an additive constant.
Robin conditions linearly combine both solution values and their derivatives on ∂Ω, which means
that the PDE solution interpolates between the solution with pure Dirichlet conditions and pure
Neumann conditions inside Ω (Fig. 2.1), and is uniquely determined. More generally, one can
prescribe different boundary conditions on disjoint parts of ∂Ω. For a Laplace equation, this
yields a boundary value problem (BVP) of the form

∆u(x) = 0 on Ω,
u(x) = g(x) on ∂ΩD,
∂u(x)
∂nx

= h(x) on ∂ΩN,
∂u(x)
∂nx

+ µ(x)u(x) = ℓ(x) on ∂ΩR,

(2.1)

where the boundary is partitioned into a Dirichlet part ∂ΩD with prescribed values g : ∂ΩD → R,
a Neumann part ∂ΩN with prescribed derivatives h : ∂ΩN → R, and a Robin part ∂ΩR with
prescribed right hand side ℓ : ∂ΩR → R. Here nx is the unit outward normal to ∂Ω at x, and
µ ∈ R≥0 is a non-negative Robin coefficient that can vary over ∂ΩR (negative values of µ occur
less frequently in natural physical systems [86, Sec. 1], and we do not consider them here).
Since Robin conditions serve as general first-order boundary conditions, we recover Neumann
conditions when µ = 0, and Dirichlet conditions as µ → ∞. A function u is harmonic if it
satisfies Eq. 2.1 on Ω. We will provide Monte Carlo estimators for BVPs with any combination
of Dirichlet, Neumann and Robin boundary conditions in Ch. 3 & 4.
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Exterior Problems, Open Domains And Double-Sided Boundary Conditions. One may also
solve PDEs in the exterior of a domain, i.e., RN\Ω. The domain Ω need not be closed/watertight,
and can have different boundary conditions prescribed on either side of ∂Ω. We will describe
how to handle such generalizations with our method in Sec. 3.2.4 and App. B.

2.1.1 Linear Elliptic Equations

Beyond a basic Laplace equation which essentially interpolates boundary values, 2nd order linear
elliptic PDEs can also model rich spatially varying material properties of a medium. In thermo-
dynamics, for example, PDEs with variable coefficients model how heterogeneous composite
materials conduct or insulate heat—much as early algorithms for photorealistic rendering were
motivated by predictive lighting design [144], such models can be used to predict and improve
thermal efficiency in building design [276]. Likewise, variable permittivity in electrostatics im-
pacts the design of antennas [194] and the simulation of biomolecules [66]; in hydrology, variable
transmissivity of water through soil impacts remediation strategies for groundwater pollution
[269]. More directly connected to our work, variable coefficients in the light transport equation
are used to model heterogeneity in participating media [188]. Beyond spatially varying materials,
variable coefficients can also be used to model curved geometry by using PDE coefficients on a
flat domain to encode an alternative Riemannian metric (Fig. 8.8). Below, we discuss generaliza-
tions of the Laplace equation we will consider in this text:

Source term. Continuing with the heat analogy for a Laplace equation, a source term f : Ω→ R

adds additional “background temperature” to a PDE (Fig. 2.2, center left). For instance, a Poisson
equation has the form

∆u(x) = − f (x) on Ω (2.2)

subject to Dirichlet, Neumann or Robin boundary conditions.

Diffusion. The rate of diffusion in a spatially varying medium is modeled by replacing the
operator ∆ with ∇ · (κ(x)∇), where κ : Ω→ R>0 is the diffusion coefficient (Fig. 2.2, center).

Drift. A drift coefficient, given by a vector field #»ω : Ω→ RN , models the motion of a material in
a particular direction. For instance, the steady-state advection equation #»ω(x) · ∇u(x) = 0 describes
a quantity u that is unchanged as it flows along #»ω; adding this term to a Poisson equation causes
heat to drift as it diffuses (Fig. 2.2, center right).

Absorption. An absorption (or screening) coefficient σ : Ω→ R>0 models “cooling” of the solution
due to the background medium; larger coefficient values dampen the solution more. E.g., a
screened Poisson equation (seen in Fig. 2.2, far right) is given by

∆u(x)− σ(x)u(x) = − f (x) on Ω, (2.3)

again subject to boundary conditions.
Combining all these terms and coefficients then yields a linear elliptic equation of the form

∇ · (κ(x)∇u(x)) + #»ω(x) · ∇u(x)− σ(x)u(x) = − f (x) on Ω. (2.4)

Here we do not require the source term f : Ω → R to be continuous, but we will assume the
diffusion coefficient κ : Ω → R>0 is twice-differentiable, the drift coefficient #»ω : Ω → RN is a
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Figure 2.2: Effect of each spatially-varying term of Eq. 2.4 on the PDE solution.

vector field expressible as the gradient of a scalar field, and the absorption coefficient σ : Ω →
R≥0 is continuous (C0). Though these coefficients can be generalized further (for instance, κ
can be any arbitrary positive definite matrix and σ can be negative), the conditions we impose
on them are sufficient to ensure ellipticity [64, 72]. Moreover, these conditions will enable us
to derive Monte Carlo estimators for variable-coefficient equations in Ch. 5 that do not have
to resort to numerical homogenization [52], and can directly resolve the original, detailed solution
(see, e.g., Fig. 5.1).

2.1.2 Fundamental Solutions

G (x , y) ∂G (x , y) / ∂ny

Figure 2.3: The Green’s function and its normal derivative
are singular at the point they are centered on, but decay
smoothly and fall-off quickly away from the singularity.

A Green’s function captures the influence of the
source term f on the solution of a linear el-
liptic equation with constant coefficients. In par-
ticular, it describes the (fundamental) solution
when the source is a Dirac delta distribution
δx centered at a single point x ∈ Ω. For in-
stance, in the case of Eq. 2.2, the Green’s
function GΩ(x, y) is the solution to the Pois-
son equation ∆u(y) = −δx(y). In general,
Green’s functions will depend on the shape
of the domain Ω and the choice of boundary
conditions—as a result, they are typically not known in closed-form. However, explicit expres-
sions are available for important special cases, e.g., the free space Green’s function GRN

on Ω = RN ,
and the Green’s function GB for a ball Ω = B with zero-Dirichlet boundary conditions (App. A).
The walk on spheres and walk on stars algorithms we describe in the following chapters will
effectively provide a bridge between closed-form Green’s functions on special domains, and so-
lutions to PDEs on more general domains.

The Poisson kernel likewise captures the influence of the boundary conditions on the solution,
e.g., when the Dirichlet function g is a Dirac delta distribution δx centered on a single boundary
point x ∈ ∂Ω. At any point y ∈ Ω with associated normal ny, it can be expressed as the normal
derivative of a Green’s function:

PΩ(x, y) := −∂GΩ(x, y)
∂ny

. (2.5)

As with Green’s functions, common Poisson kernels are known explicitly in RN and for a ball.
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2.2 Boundary Integral Equation

One can often reformulate linear elliptic PDEs as recursive integral equations, akin to the classic
rendering equation [121]. As in rendering, these equations can be solved without discretizing
space, by recursively applying Monte Carlo integration (as will be discussed in Ch. 3). In this
section, we provide a boundary integral formulation for PDEs with constant coefficients (e.g., Eq.
2.2). Section 2.3 then describes a stochatic integral formulation for Eq. 2.4 with varying coefficients.

Derivation. The solution u to a Poisson equation ∆u = − f can be expressed via an integral
involving the associated Green’s function and Poisson kernel. Assume for now that the domain
Ω is watertight with smooth boundary ∂Ω, and let x be an evaluation point in the interior of Ω.
We first multiply the Poisson equation with its Green’s function GΩ, and integrate over Ω to get

0 =
∫

Ω
GΩ(x, y) ∆u(y)dy +

∫
Ω

GΩ(x, y) f (y)dy. (2.6)

Applying integration by parts to the first integral, we have

0 =
∫

∂Ω
GΩ(x, z)

∂u(z)
∂nz

dz −
∫

Ω
∇GΩ(x, y) · ∇u(y)dy +

∫
Ω

GΩ(x, y) f (y)dy. (2.7)

Applying integration by parts again to the second integral, and rearranging terms then yields∫
Ω

u(y) ∆GΩ(x, y)dy =
∫

∂Ω

∂GΩ(x, z)
∂nz

u(z) − GΩ(x, z)
∂u(z)
∂nz

dz

−
∫

Ω
GΩ(x, y) f (y)dy. (2.8)

From the definitions ∆GΩ(x, y) = −δΩ
x (y) and PΩ(x, z) = −∂GΩ(x,z)/∂nz, we arrive at

u(x) =
∫

∂Ω
PΩ(x, z) u(z) + GΩ(x, z)

∂u(z)
∂nz

dz

+
∫

Ω
GΩ(x, y) f (y)dy. (2.9)

This equation determines the solution u at x entirely through the solution values u(z) and normal
derivatives ∂u(z)/∂nz on the boundary ∂Ω, and the source values f (y) inside the domain Ω. From
Eq. 2.1, the Dirichlet, Neumann and Robin parts of the boundary have prescribed values g, h and
k, respectively, while f is specified inside the domain for a Poisson equation. To use Eq. 2.9, we
must then determine unknown solution values u(z) on the Neumann boundary ∂ΩN, unknown
derivative values ∂u(z)/∂nz on the Dirichlet boundary ∂ΩD, and either u(z) and ∂u(z)/∂nz on the
Robin boundary ∂ΩR, via the relation ∂u/∂n + µu = ℓ when µ > 0.

2.2.1 General Setting

∂ΩD

∂ΩR

∂ΩN

∂A
A

C

In practice, Eq. 2.9 cannot be used directly since the Green’s function
and Poisson kernel for an arbitrary domain Ω are unknown. Fortu-
nately, this equation can be generalized to the boundary integral equa-
tion (BIE) [41, Section 2] where these functions are no longer tied to the
domain Ω. Instead one may use, e.g., the closed-form Green’s function
and Poisson kernel for a ball or for RN . Moreover, while we ultimately
seek a solution on Ω, the BIE applies to arbitrary subdomains in Ω:
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Boundary Integral Equation

For any two sets A ⊂ Ω and C ⊂ RN , and for any point x ∈ RN , the solution to a Poisson
equation satisfies

α(x) u(x) =
∫

∂A
PC(x, z) u(z) + GC(x, z)

∂u(z)
∂nz

dz

+
∫

A
GC(x, y) f (y)dy, (2.10)

where

α(x) :=


1, x ∈ A,
1/2, x ∈ ∂A,
0, x /∈ A.

(2.11)

Hunter and Pullan [106, Chapter 3.3] provide a derivation. We note that if ∂A is a non-smooth
curve in the plane, then α = 1− θ/2π at a corner with interior angle θ. To keep things simple,
we will assume ∂A is smooth, letting α = 1/2 at all boundary points.

Though we focus on Poisson equations for simplicity, the BIE extends immediately to screened
Poisson equations ∆u − σu = − f with constant absorption coefficient σ ∈ R≥0: the only mod-
ification to Eq. 2.10 is to replace the Green’s function and Poisson kernel with their screened
counterparts (App. A.2). Likewise, for a constant diffusion coefficient κ ∈ R>0, the Green’s
function simply scales by a factor κ. Constant drift along a fixed direction #»ω ∈ RN can be cap-
tured via the von Mises–Fisher distribution [75, 215]. Boundary integral equations are also readily
available for a variety of other PDEs not directly considered in this work, such as the Helmholtz
equation [106, Chapter 3], linear elasticity [106, Chapter 4] and the biharmonic equation [111].
Below, we discuss a few special cases of Eq. 2.10 with different choices for the sets A and C, and
describe how the BIE can be generalized to support double-sided boundary conditions in closed
and open domains.

Boundary Element Formulation

Conventional numerical solvers like the boundary element method integrate Eq. 2.10 over the
PDE domain (A = Ω) using free-space kernels (C = RN). BEM does not directly support source
terms f , leading to the integral

α(x) u(x) =
∫

∂Ω
PRN

(x, z) u(z) + GRN
(x, z)

∂u(z)
∂nz

dz. (2.12)

To determine the unknown data u and ∂u/∂n on ∂Ω, BEM uses a finite basis of functions (asso-
ciated with mesh nodes on a discretized boundary) to solve a dense linear system—resulting in
the tradeoffs discussed in Sec. 8.2.1.

Mean Value Property Of Harmonic Functions

Monte Carlo methods like walk on spheres (Sec. 3.2) instead integrate the BIE over a ball
B(x, R) ⊂ Ω of radius R centered at x, adopting kernels from the ball (A = C = B(x, R)).
At points z ∈ ∂B, these kernels then simplify to GB(x, z) = 0 and PB(x, z) = 1/|∂B| (i.e., 1 over
the surface area of the ball boundary), yielding the mean value property of harmonic functions
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Pσ,B(x , z )Gσ,B(x , y)
Figure 2.4: Left: As σ is increased, the Green’s function Gσ,B(x, y) for a screened Poisson equation becomes more
localized around the point x, and the magnitude of the Poisson kernel Pσ,B(x, z) shrinks. These functions revert to
the harmonic Green’s function and Poisson kernel as σ→ 0. Right: The functions Gσ,B and Pσ,B are not rotationally
symmetric when the point x does not coincide with the center of the ball.

when f = 0:

u(x) =
1

|∂B(x, R)|

∫
∂B(x,R)

u(z)dz (2.13)

This setup greatly simplifies the BIE by eliminating dependence on ∂u/∂n. Unlike BEM, a non-zero
source term f is accounted for by adding the integral∫

B(x,R)
GB(x, y) f (y)dy. (2.14)

More importantly, WoS evaluates 2.13 by recursively estimating u(z) on ∂B. It therefore does not
need to discretize the domain Ω or its boundary ∂Ω, nor solve a global system of equations.

Off-Centered Mean Value Property

The point of evaluation x in Eq. 2.13 need not coincide with the center c ∈ Ω of a ball B(c, R).
With a screened Poisson equation, this leads to the following more general off-centered formula-
tion [55, 110] of the mean value property:

u(x) =
∫

∂B(c,R)
Pσ,B(x, z) u(z)dz +

∫
B(c,R)

Gσ,B(x, y) f (y)dy. (2.15)

We provide explicit expressions for off-centered versions of the functions Gσ,B and Pσ,B in App.
A.2.2. As shown in Fig. 2.4, the Poisson kernel Pσ,B(x, z) reduces to 1/|∂B(x,R)| when x = c and
σ = 0, recovering the usual mean value property. In Sec. 5.2.2, we will use Eq. 2.15 to design a
WoS estimator for solving variable-coefficient PDEs.

Double-Sided Boundary Conditions

The BIE for double-sided boundary conditions in an open domain Ω ⊂ RN is given by [41]

α(x) u(x) =
∫

∂Ω
P+(x, z)

[
u+(z)− u−(z)

]
+ G(x, z)

[
∂u+(z)

∂n+
z
− ∂u−(z)

∂n−z

]
dz

+
∫

Ω
G(x, y) f (y)dy, (2.16)

where n+ and n− denote unit normals on either side of ∂Ω (respectively), u+ and u− represent
corresponding solution values on ∂Ω, and P+(x, z) := −∂G(x,z)/∂n+

z . Since all points are either on
the boundary or the domain interior, α = 1/2 on ∂Ω and 1 otherwise. In App. B, we discuss how
to apply the walk on stars algorithm for BVPs with Dirichlet, Neumann and Robin boundary
conditions (Ch. 4) to open domains and double-sided boundaries.
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2.3 Feynman–Kac Formula

In general, we do not have boundary integral representations of PDEs with variable coefficients
(like Eq. 2.4), due to the unavailability of Green’s functions in RN , on a ball, or elsewhere.
However, the solution to an elliptic PDE can also be described in terms of continuous stochastic
processes such as Brownian motion, via the Feynman–Kac formula from stochastic calculus [191,
Ch. 8]. This formula will provide a critical starting point in Ch. 5 for solving variable-coefficient
equations, as it is more general than the BIE from the previous section. Moreover, it has close
parallels with volume rendering, providing us with key techniques for numerical integration.

Here we provide essential background on stochastic processes (Sec. 2.3.1) and their associated
integral representations of PDEs (Sec. 2.3.2), which at present are not widely used in computer
graphics (we refer to Øksendal [191] for a more comprehensive introduction). In particular, the
central object that we would like to simulate is Brownian motion, as it captures the phenomenon
of diffusion described by elliptic equations through the Feynman–Kac formula. Unfortunately,
simulating Brownian motion directly is both expensive and introduces statistical error, especially
in domains with complex geometry. We will see later that walk on spheres and its generalizations
(Ch. 3 - 5) enable a far more efficient simulation with significantly less statistical error.

2.3.1 Stochastic Processes

A stochastic process is a collection of random variables Xt that represents the evolution of a
system over time t ≥ 0. The process is continuous if it can be observed continuously with time.
A key characteristic of a stochastic process is that it incorporates some form of randomness or
unpredictability, which means that even if the initial state X0 = x is known, the future evolution
of a process cannot be predicted with certainty. Such a process is therefore typically modelled
by a probability density function (PDF) that is non-negative everywhere, and integrates to 1 over
the domain on which it is defined. We can use a PDF to calculate the probability with which
future random states Xt>0 of the process take on a permissible range of values. In particular, for
a real-valued random variable Xt, integrating the PDF p over an arbitrary interval [a, b] gives the
probability that Xt lies inside the interval:

P{a ≤ Xt ≤ b} =
∫ b

a
p(x)dx. (2.17)

A cumulative density function (CDF) P(x) represents the probability that Xt takes on a value less
than or equal to x, i.e., P(x) := P{Xt ≤ x}.

For our purposes, we will consider a continuous time-parameterized family of RN-valued
random variables Xt on a domain A with PDF pA. The expected value—or mean of all possible
values—of any L1-integrable function ϕ : A→ R is then given by

E [ϕ(Xt)] =
∫

A
ϕ(x) pA(x)dx. (2.18)

Throughout, we will informally refer to a realization of a stochastic process as a random walk.

Brownian Motion

The central example of a continuous stochastic process is Brownian motion, which is more for-
mally known as a Wiener process. Intuitively, a Wiener process describes a random walk by
repeatedly taking small Gaussian steps, and letting the variance of the Gaussian go to zero (Fig.
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Figure 2.5: Brownian motion can be thought of as the limit of taking small, normally distributed steps.

2.5). This motion is hence isotropic, i.e., there is no preferred direction, and it has no “memory”,
i.e., the direction of motion at each point in time is independent of all past motion. More formally,
a (multidimensional) Wiener process starting at a point x0 ∈ RN is a time-parameterized family
of RN-valued random variables Wt characterized by the following criteria:

• W0 = x0

• The process has Gaussian increments, i.e., for all t, s ≥ 0, the increments Wt+s −Wt ∼
N (0, s) are normally distributed with mean 0 and variance s.

• These increments are independent of all previous random variables Wr for 0 ≤ r ≤ t.

• The process is almost surely continuous with respect to t, i.e., random walks have continu-
ous paths in RN .

Diffusion Process

Just as Brownian motion will help us model isotropic diffusion, we will use more general stochas-
tic processes to model diffusion that is anisotropic or exhibits drift in a particular direction (Fig.
2.6, center). Such processes can be defined by combining a deterministic velocity with stochastic
“noise”, modeled via Brownian motion. In particular, the stochastic differential equation (SDE)

dXt =
#»ω(Xt)dt + dWt (2.19)

describes a stochastic process whose increments dXt behave exactly like Brownian increments
dWt, offset by a deterministic vector #»ω (for a more formal treatment of the notation dXt, see
Øksendal [191, Ch. 5]). More generally, a diffusion process is any stochastic process of the form

dXt =
#»ω(Xt)dt + K(Xt)dWt, (2.20)

where for each time t and location Xt, #»ω(Xt) ∈ RN gives a direction of drift, and K(Xt) is a
symmetric positive definite N × N matrix that controls the rate and directional bias of diffusion
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κ (x) ⃗ω (x) σ (x)
Figure 2.6: Components of a diffusion process. Note that a diffusion process starting at x will not in general have
a uniform exit distribution over a sphere, as it is not isotropic like Brownian motion. Left: the diffusion coefficient
κ(x) modulates the size of random increments. Center: the drift coefficient −→ω (x) adds deterministic offsets to the
trajectory. Right: the screening coefficient σ(x) > 0 describes the probability of a random walk being absorbed,
whereas σ(x) < 0 essentially describes emission of new random walks (which we do not consider in this work).

(i.e., the variance and covariance of the random increments). In our setting, we will typically
consider a simpler special case, namely

dXt =
#»ω(Xt)dt +

√
κ(Xt)dWt, (2.21)

where κ : RN → R>0 is a scalar- rather than matrix-valued function that determines the standard
deviation of the normal distribution associated with Wt (Fig. 2.6, left). We assume that neither #»ω
or κ depend on time.

Killed Diffusion Process

We can enrich our model of stochastic processes by also allowing a diffusion process to be prob-
abilistically killed—intuitively, a random walk realized from such a process can be absorbed into
the background medium (Fig. 2.6, right). This process will be essential for making the connection
to PDEs with an absorption coefficient σ ∈ R≥0. We assume that the probability with which a
random walk is absorbed is exponentially decaying for any value of σ. Then p(t) = σe−σt gives
the probability density of a killed diffusion process, and for a total time T, the corresponding
probability is [203, Sec. 13.3.1] ∫ T

0
σe−σt dt = 1− e−σT. (2.22)

Here a larger value of σ yields a higher probability of absorption.

Restriction To Bounded Domains

So far we’ve assumed that a diffusion process Xt is free to wander around all of RN , but suppose
we are interested in a particular domain Ω ⊂ RN . A common question we might ask is, “where
does Xt first exit the domain Ω?” In other words, what is the probability that Xt first hits any
given point on the boundary ∂Ω. This information will be central to our approach to solving
PDEs, as it corresponds to the Poisson kernel discussed in Sec. 2.1.2.
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∂ΩD ∂ΩR
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Figure 2.7: A random walk terminates when it hits an absorbing Dirichlet boundary ∂ΩD (left), but is pushed back
into the domain along the normal to a reflecting Neumann ∂ΩN (center) or Robin boundary ∂ΩR (right). The walk
continues forever with ∂ΩN, but is eventually absorbed on ∂ΩR.

In the study of stochastic processes [27], the presence of a boundary ∂Ω is often described
by using another random variable τ called stopping time, which is a path-dependent quantity
describing when a diffusion process starting at x ∈ Ω first hits the boundary, i.e., τ := inf{t ≥
0 : x + Xt ∈ ∂Ω}. Then, the corresponding exit location Xτ on ∂Ω is a random variable as well,
and the probability density of an associated random trajectory of the process in Ω is given by
the Poisson kernel PΩ [191, Ch. 7]. One could also consider the distribution of exit times on
R≥0: though the exit time density is well-defined for time-independent elliptic PDEs [68, 95], it
is generally not needed to estimate their solution.

As we will discuss in Sec. 2.3.2, PDEs with Dirichlet boundary conditions require simulating
random walks that are stopped when they first hit ∂Ω (Fig. 2.7, left). Hence from the perspective
of stochastic processes, Dirichlet conditions model absorbing boundaries. However, a random
walk need not always stop when it hits the boundary—as shown in Fig. 2.7, Neumann and
Robin boundary conditions instead require random walks to reflect off ∂Ω in the normal direction
[86, 87]. Walks eventually stop on Robin boundaries, as they are both reflecting and absorbing.

Discretized Random Walks

The standard approach for simulating a diffusion process in RN is to use explicit time stepping
[101, 134, 172], akin to ray marching [248] or forward Euler. The Euler-Maruyama method, for
instance, uses the following update rule to integrate the SDE in Eq. 2.21 with time step h > 0:

Xk+1 = Xk +
#»ω(Xk)h +

√
κ(Xk) (Wk+1 −Wk) , Wk+1 −Wk ∼ N (0, h) (2.23)

Ω
X0

X1
X2 X3

X4

X̃1
X̃2

Figure 2.8: Discretized ran-
dom walks can leave the do-
main, biasing results.

Unfortunately, this approach introduces several sources of error in
bounded domains. E.g., random walks can easily leave a domain Ω
and must be clamped to the boundary (Fig. 2.8); shrinking h reduces
discretization error, but significantly slows down computation from
needing to take many small steps inside Ω. Error is exacerbated in
problems with variable diffusion and drift coefficients, which implic-
itly modify the ideal step size. Though there exist integration schemes
with better convergence properties [42, 148, 155, 168], SDE integrators
are fundamentally not well-suited for simulating continuous random
processes in bounded domains—in Sec. 8.3.1, we will demonstrate
that techniques based on WoS offer a much more favorable runtime-to-bias tradeoff for both
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boundary-dominated and variable-coefficient problems, as they exactly model large steps of a
Brownian random walk.

2.3.2 Stochastic Representation of PDEs

Notice that parameters κ, #»ω and σ of a diffusion process resemble the coefficients of the PDEs
from Sec. 2.1.1. The Feynman–Kac formula makes this relationship explicit by expressing the
solution to Eq. 2.4 as an expectation over random trajectories of Xt. We refer to Øksendal
[191, Sec. 8.2] for a derivation of this result (via a fundamental tool in stochastic calculus called
Ito’s lemma [191, Ch. 4]). Here we build up to the Feynman–Kac formula by starting with the
important special case of Kakutani’s principle, which effectively tells us how to solve a Laplace
equation with Dirichlet boundary conditions by taking many random walks to the boundary.

Kakutani’s Principle

Consider the Laplace equation

∆u(x) = 0 on Ω,
u(x) = g(x) on ∂Ω

(2.24)

on a domain Ω ⊂ RN , and let Wt be a Brownian process starting at a point W0 = x ∈ Ω. In this
case, Kakutani’s principle [122] states that

u(x) = E[g(Wτ)], (2.25)

where as before τ is the (random) time when Wt first hits the domain boundary ∂Ω. In other
words, the solution to a Laplace equation is just the average boundary value “seen” by random
walks starting at x.

Connection To Mean Value Property. Kakutani’s principle can be viewed as a generalization of
the mean value property (Eq. 2.13), since in the special case where the domain Ω is a ball B(x, R)
of (any) radius R centered at the start of a random walk, the exit distribution of Brownian motion
is uniform over the boundary sphere ∂B (i.e., it equals 1/|∂B|). Hence, Kakutani’s principle in this
case gives just the mean value integral

u(x) = E[g(Wτ)] =
1

|∂B(x, R)|

∫
∂B(x,R)

g(z)dz. (2.26)

Source Term

For PDEs with a source term f , such as the Poisson equation ∆u = − f , the solution u additionally
picks up a term capturing the average heat “felt” by a random walk along its path [191, Ch. 9]:

E

[∫ τ

0
f (Wt)dt

]
. (2.27)

Connection To Green’s function. The solution to a Poisson equation can also be expressed by
convolving f with the Green’s function GΩ of the domain, if we assume the domain boundary
∂Ω only has zero Dirichlet conditions (g = 0), and GΩ = 0 on ∂Ω. In this case, the BIE in Eq. 2.9
simplifies to

u(x) =
∫

Ω
GΩ(x, y) f (y)dy. (2.28)
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Comparing against Eq. 2.27, we thus have

E

[∫ τ

0
f (Wt)dt

]
=
∫

Ω
GΩ(x, y) f (y)dy, (2.29)

which implies that the Green’s function in fact describes the locations where a Brownian random
walk is likely to spend time within the domain Ω [191, Sec 9.2].

Screening Term

To model the effect of absorption, as in a screened Poisson equation ∆u− σu = − f , we incorpo-
rate the absorption coefficient σ ∈ R≥0 into the boundary and source terms to get

E
[
e−στg(Wτ)

]
and E

[∫ τ
0 e−σt f (Wt)dt

]
, (2.30)

respectively [191, Ch. 8]. Notice that larger values of σ yield smaller contributions. This expo-
nential downweighting of the solution is accounted for in the boundary integral equation for a
screened Poisson equation through its Green’s function and Poisson kernel (App. A.2). For a
spatially varying coefficient σ(x), we simply replace −στ with −

∫ τ
0 σ(Wt)dt in both terms.

Feynman–Kac

Finally, to account for spatially varying diffusion κ(x) ∈ R>0 and drift #»ω(x) ∈ RN , we replace the
Brownian motion Wt with a general diffusion process Xt from Eq. 2.21. Combining expressions
for the boundary, source, and absorption terms from Eqs. 2.25–2.30, we then arrive at:

The Feynman–Kac formula

For any point x ∈ Ω, the solution to Eq. 2.4 with Dirichlet boundary conditions satisfies

u(x) = E

[
e−

∫ τ
0 σ(Xt)dtg(Xτ) +

∫ τ

0
e−

∫ t
0 σ(Xs)ds f (Xt)dt

]
. (2.31)

With Dirichlet conditions, a random walk terminates when Xτ ∈ ∂ΩD. With Neumann and Robin
conditions, the primary change to the Feynman–Kac formula is that Xt must be reflected off ∂ΩN
and ∂ΩR (Fig. 2.7). We refer to Morillon [172] for details on how to augment Eq. 2.31 with
contributions from non-zero Neumann and Robin data h and ℓ respectively (Eq. 2.1).

Direct Estimation Using Discretized Random Walks. To approximately compute the solution
to an elliptic PDE, one can use, e.g., Euler-Maruyama with step-size h to simulate M random
walks in Ω starting from x (Eq. 2.23). We can then estimate each walk’s contribution by discretiz-
ing Eq. 2.31, and averaging results as follows:

1
M

M

∑
i=1

Yi, where Yi := e−h·∑N−1
k=0 σ(Xk)g(XN) + h ·

N−1

∑
k=0

e−h·∑k−1
l=0 σ(Xl) f (Xk). (2.32)

Here N is the number of steps a random walk takes before it terminates on ∂ΩD. In addition
to the inefficiencies of discretized walks described in Sec. 2.3.1, a direct summation of this kind
introduces further discretization error into the solution. Error also arises from naive estimation
of the function exp(−

∫ τ
0 σ(Xt)dt), since nonlinear functions ϕ do not in general commute with

expectations (E [ϕ(X)] ̸= ϕ(E [X])). We briefly turn to volume rendering next, as it will inspire
techniques for solving variable-coefficient PDEs with WoS that avoid discretization entirely.
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⃗ω

Le(xt, ⃗ω ) Ls(xt, ⃗ω )
f (xt, ⃗ω , L)

g (xd, ⃗ω , L)x = X0

f (Xt)

g (Xτ)

Figure 2.9: Left: The Feynman–Kac formula describes how a source term f and boundary data g contribute to the
solution of an elliptic PDE with spatially varying coefficients along the trajectory of a random process Xt. Right:
The volume rendering equation likewise describes the radiance L(x,−→ω ) as a function of scattering, emission f , and
the radiance g leaving the boundary, but along a straight light path rather than a random walk.

Similarity To The Volume Rendering Equation. In computer graphics, the radiative transport
equation (RTE) [35] is used to describe the behavior of light in heterogeneous media that absorb,
scatter and emit radiation (Fig. 2.9, left). Unlike Eq. 2.4, the RTE is only 1st order in space. It
states that the radiance L(x, #»ω) at each point x ∈ Ω and in each direction #»ω ∈ Rn satisfies

#»ω · ∇L(x, #»ω)− σ(x)L(x, #»ω) = − f (x, #»ω, L) on Ω,
L(x, #»ω) = g(x, #»ω, L) on ∂Ω.

(2.33)

This equation is recursive, since the source term f (x, #»ω, L) depends on the radiance Ls(x, #»ω) in-
scattered at x (as well as any emission Le(x, #»ω)); likewise, the function g(x, #»ω, L) describes radiance
leaving the boundary. The spatially varying extinction coefficient σ(x) specifies the density of
scattering or absorbing particles at x.

The integral representation of the RTE is called the volume rendering equation (VRE) [203, Ch.
15.1]. The VRE gives the radiance L(x, #»ω) as an integral along a ray xt := x− #»ωt of length d:

L(x, #»ω) = e−
∫ d

0 σ(xt)dtg(xd, #»ω, L) +
∫ d

0
e−

∫ t
0 σ(xs)ds f (xt, #»ω, L)dt. (2.34)

It shares a close resemblance with the Feynman–Kac formula (Eq. 2.31).

Delta tracking. The VRE is typically solved using volumetric path tracing (VPT) [141], but a spa-
tially varying σ(x) presents challenges akin to those for the Feynman–Kac formula: approximat-
ing the transmittance function exp(−

∫ d
0 σ(xt)dt) via explicit steps along xt can yield significant

error. Delta tracking [207, 270] instead rewrites Eq. 2.33 so that all spatial variation in the extinc-
tion coefficient σ(x) is captured by a source term on the right-hand side—leaving only a constant
absorption coefficient σ := max(σ(x)) [74, 139]:

#»ω · ∇L(x, #»ω)− σL(x, #»ω) = −( f (x, #»ω, L) + (σ− σ(x))L(x, #»ω)︸ ︷︷ ︸
=: f ′(x, #»ω ,L)

). (2.35)

Conceptually, fictitious null matter is added to the initially heterogeneous medium so that it has
a constant density (Fig. 2.10, left). Eq. 2.35 then has the integral representation

L(x, #»ω) = e−σdg(xd, #»ω, L) +
∫ d

0
e−σt f ′(xt, #»ω, L)dt. (2.36)
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σ = max(σ (x))

⃗ω

σa(x)

σs(x)

σn(x)

σ (x)

x
x

null events 

scattering event 

Figure 2.10: Left: The delta tracking method in volume rendering artificially fills a heterogeneous medium with
fictitious null matter (indicated by σn(x)) so that the combined density σ is constant everywhere. Right: With VPT
[70, Algorithm 2], we then re-weight the radiance by σ − σ(x) to account for the original heterogeneity in σ(x),
which corresponds to probabilistically sampling null-events inside the medium. Likewise in Sec. 5.2.1, our delta
tracking WoS estimator will solve variable-coefficient PDEs by introducing null-events into the random walk.

This representation is more amenable to Monte Carlo integration, since the transmittance func-
tion e−σt can be evaluated in closed form. Spatial variations in σ(xt) are accounted for by weight-
ing the radiance L by σ− σ(xt) inside the modified source term f ′.

In Ch. 5, we will derive a generalized mean value expression for the variable-coefficient PDEs
from Sec. 2.1.1 by applying the delta tracking transformation to the Feynman–Kac formula. This
will lead to an integral representation amenable to walk on spheres.
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Chapter 3

Basic PDE Estimators

From here on, we use the Monte Carlo method to solve the PDEs from the previous chapter,
via their integral formulations. In this chapter, we first explain how we can use Monte Carlo
to numerically evaluate integrals that do not have analytic solutions. We then introduce Muller
[174]’s walk on spheres algorithm for simulating Brownian motion (Sec. 2.3.1) in bounded do-
mains, which allows us to apply Monte Carlo integration to mean value expressions (Sec. 2.2)
for constant-coefficient PDEs with Dirichlet boundary conditions.

3.1 Background: Monte Carlo Integration

We review elementary facts about Monte Carlo integration, and refer to Veach [251, Chapter
2] and Pharr et al. [203, Chapter 13] for a more thorough introduction. The basic idea is that
an integral can be estimated by simply sampling the integrand at randomly-chosen points, and
averaging results from several trials. This makes Monte Carlo easy to implement and generally
applicable to a wide variety of integrands, including those containing discontinuities or singular-
ities. It is also the only practical numerical integration technique for high-dimensional integrals,
since the performance of quadrature schemes becomes exponentially worse as dimensionality
increases [251, Sec. 2.2]. As a randomized algorithm, Monte Carlo gives different results de-
pending on the random numbers used, but on average the results are statistically close to the
true answer. In particular, let ϕ be an L1-integrable function on a domain A. Then the integral

I :=
∫

A
ϕ(x)dx (3.1)

can be approximated by the Monte Carlo estimator

ÎN := |A| 1
N

N

∑
i=1

ϕ(xi), xi ∼ U (A), (3.2)

where N is any positive integer, xi ∼ U (A) indicates that xi are independent random samples
drawn from the uniform distribution on A, and |A| denotes A’s volume. In this text, we will
express all PDE estimators as single-sample estimators Î (dropping the subscript N = 1 for brevity),
with the expectation that their values will be averaged over many trials to improve accuracy.

Importantly, although ÎN is called an “estimator”, it does not provide merely an estimate—
rather, a well-designed estimator will give the exact value of the integral, in expectation. More
precisely, an estimator is unbiased if its expected value equals the true value, E[ ÎN ] = I, for any
number of samples N. We quantify the accuracy of an estimator using its expected squared error
E[( ÎN − I)2], which for an unbiased estimator equals its variance

V[ ÎN ] := E[( ÎN −E[ ÎN ])
2]. (3.3)

Assuming independent samples xi, variance goes to zero at a rate of O(1/N), irrespective of the
dimensionality of the integral. This means that Monte Carlo algorithms converge at the rate of
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Figure 3.1: An importance sampling estimator concentrates samples where the integrand ϕ is large (left), often by
using an easy-to-sample approximation of ϕ as its PDF p (right).

O(1/
√

N) to the correct result, i.e., to cut error in half, we require four times as many samples.
We must therefore apply variance reduction techniques, discussed next, to reduce noise in the
estimated results given a fixed sample budget. In practice, we use Welford’s online algorithm [267]
to compute to a numerically stable estimate of the sample variance

V̂[ ÎN ] =
1

N − 1

N

∑
i=1

[
xi −

(
1
N

N

∑
j=1

xj

)]2

, (3.4)

which is an unbiased estimator of Eq. 3.3. We say that two Monte Carlo estimators are correlated
if they use the same set of independent samples to compute their respective sums.

3.1.1 Variance Reduction

Designing efficient estimators is of central importance to the adoption of Monte Carlo algorithms
in downstream applications. The efficiency of an estimator E[ ÎN ] is determined not just by its
variance V[ ÎN ], but also by the time T[ ÎN ] needed to compute its value. Together, V and T define

E[ ÎN ] :=
1

V[ ÎN ] T[ ÎN ]
, (3.5)

which states that one estimator is more efficient than another if it either takes less time to produce
the same variance, or if it produces less variance in the same amount of time.

Here we review variance reduction strategies from the broader Monte Carlo literature, which
we will adapt to our setting in the next few chapters (but primarily in Ch. 7). This list is not
exhaustive, as there likely exist other strategies for improving efficiency we do not consider here.

Importance Sampling

Let pA be any PDF on the domain A that is nonzero on the support of the function ϕ. Then the
integral of ϕ in Eq. 3.1 also equals the expected value of the estimator [203, Sec. 13.2]

Î IS
N :=

1
N

N

∑
i=1

ϕ(xi)

pA(xi)
, xi ∼ pA. (3.6)

Importance sampling refers to concentrating samples in regions where ϕ has large values, by sam-
pling from a density pA that is similar to the integrand ϕ (Fig. 3.1). The theoretical best choice is
to set pA = cϕ, where the constant of proportionality c equals 1 over the unknown value I of the
integral

∫
Aϕ(x)dx we are estimating. In this case, the expected squared error is zero, since the

importance sampling estimator Î IS
N equals I. In practice, variance is reduced even when pA only

approximately matches ϕ, with importance sampling becoming especially helpful if integrands
are localized or have singularities. In the remainder of this text, we will use Eq. 3.6 as the default
estimator for all the PDEs we consider, and drop the superscript on ÎIS for brevity.
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Control Variates

ϕ (x)

ϕ̃ (x)
(ϕ − ϕ̃)(x)

Suppose we want to estimate the integral
∫

Aϕ(x)dx, and have a func-
tion ϕ̃(x) with known integral c. A control variate strategy then is

Î CV
N := c +

1
N

N

∑
i=1

ϕ(xi)− ϕ̃(xi)

pA(xi)
, xi ∼ pA (3.7)

i.e., estimate the difference between ϕ and ϕ̃, and shift by c. Intuitively, if ϕ̃ is similar to ϕ, then the
difference is a nearly constant function that will have smaller variance than ϕ itself (inset). This
strategy will be useful for reducing noise when estimating derivatives of PDEs (Sec. 7.2).

Antithetic Variates

Antithetic variates are most useful when the integrand ϕ is smooth and approximately linear.
The basic idea is to add two estimators that use the same random samples and are negatively
correlated, as the variance of the estimators together is smaller than if the samples are inde-
pendent. Assume for simplicity that we want to estimate

∫ 1
0 ϕ(x)dx. Then, an antithetic variate

strategy is

Î AV
N :=

1
N

N

∑
i=1

ϕ(ui) + ϕ(1− ui)

2
, xi ∼ U ([0, 1]). (3.8)

This estimator has zero variance when ϕ is a linear function, and extends easily to unit hyper-
cubes [0, 1]s of dimension s using sample pairs {ui

1, . . . , ui
s} and {1− ui

1, . . . , 1− ui
s}. It can also

be used on more general domains via a transformation between distributions [203, Sec. 13.5]. We
will apply antithetic variates in conjunction with control variates to estimate PDE derivatives.

Stratified Sampling

Random sampling Stratified samplingVariance can also be reduced by subdivid-
ing the integration domain A into n nonover-
lapping subdomains a1, a2, . . . , an, such that
∪n

i=1ai = A. Samples are then generated in
each subdomain ai using probability densities
pai . Compared to randomly sampling over all
of A, this sort of stratified placement ensures
that samples are more evenly distributed and
do not clump together as much (see inset),
making them less likely to miss important fea-
tures of the integrand. A number of sophisticated sample placement schemes have been de-
veloped [251, Sec. 13.8] such as Latin hypercube sampling, orthogonal array sampling, and
quasi-Monte Carlo (QMC) methods. QMC generally demonstrates asymptotically faster rates of
convergence than standard Monte Carlo, but often at the cost of increased computation. We will
stratify samples in the interior and on the boundary of a PDE domain in Sec. 7.5.

Adaptive Sampling

While importance sampling concentrates samples in regions where the integrand is large, adap-
tive sampling instead places samples in regions where the estimator has most variation. This
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information can be computed directly from the estimated variance V̂[ ÎN ] in Eq. 3.4 to inform
placement of future samples. One can then change the sampling PDF as more information about
the integrand is gathered while taking more samples. Unlike importance sampling, the main
disadvantage of adaptive sampling is that it can produce biased results. However, bias can be
justified if cost is significantly reduced—in Sec. 7.4, we will demonstrate that this is the case in
regions where the integrand is smooth.

Sample Reuse And Caching

Generating samples from a probability density pA can be expensive. For instance, when eval-
uating high-dimensional integrals with random walks (as we will see in Sec. 3.2), each sample
depends on a sequence of nested decisions constituting k steps of a walk. In situations where
several similar integrals need to be evaluated at nearby points in a domain, one can improve
efficiency by reusing the same set of independent samples to evaluate more than one integral.
Sample reuse introduces correlations between results which slow down the rate of convergence,
but it can also greatly amortize the cost of generating expensive samples corresponding to, e.g.,
long walks. Reuse may require storing samples in a cache, before their contribution can be shared
between different estimators. We will develop a caching strategy for PDEs in Sec. 7.5.

Russian Roulette And Splitting

In particle transport [26, 102], Russian roulette and splitting are closely related techniques that
improve the efficiency of an estimator by controlling the sample density in a domain. Unlike
adaptive sampling, they do not introduce any bias, and ensure that each sample makes a signifi-
cant contribution to the result.

Russian Roulette. Russian roulette provides an unbiased mechanism to discard samples that
are expensive to evaluate but make little contribution to the estimator, e.g., a random walk in
a highly absorbing medium (Sec. 2.3.2). Russian roulette skips these samples by replacing the
single-sample estimator Î with a new estimator of the form

Î RR :=

{
Î/q with probability q,
0 otherwise.

(3.9)

Here the survival probability q can be determined in any number of ways. For instance, q for a
killed diffusion process (Sec. 2.3.1) can be based on the value of the exponential e−στ in Eq. 2.30.
The estimator Î RR then has the same expected value as Î:

E[ Î RR] = q · 1
q

E[ Î] + (1− q) · 0 = E[ Î], (3.10)

implying that it is free from bias whenever Î is unbiased. Though Russian roulette does not
reduce variance, it can improve efficiency by reducing the average time spent evaluating Î.

Splitting. Splitting on the other hand places more samples in important or high-contribution
regions of the domain. In the context of random walks, this amounts to splitting a single walk into
M new independent walks, each with 1/M’th the contribution of the original walk. Concretely,
the splitting estimator replaces Î with

Î split :=
1
M

M

∑
i=1

Îi, (3.11)
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P (x) = ∫
x

0
p (x’) dx’

u

x’

x’= P−1(u)
u ∼ ([0,1])

Figure 3.2: To generate samples from a probability density p, inverse transform sampling requires computing and
inverting the cumulative density function P.

where the M estimates Îi are independent from Î but have the same expectation. Like Russian
roulette, this decomposition leads to an unbiased estimator Î split via linearity of expectations.
Since splitting promotes better exploration of the domain, variance is reduced but at the expense
of increased runtime.

To improve efficiency, we will use Russian roulette to terminate random walks in domains
with absorbing media (Sec. 3.2.2) and Robin boundary conditions (Sec. 4.3.4). In Sec. 7.7, we
will also combine Russian roulette and splitting into a unified weight window strategy for PDE
estimators with variable coefficients.

3.1.2 Sample Generation

To evaluate any of the Monte Carlo estimators from the previous section, we need to be able to
draw random samples from a probability density. Here we describe a few standard sampling
procedures which we will use later to sample from Green’s functions. In the next section, we
then turn to walk on spheres, which at its core is a sample generation algorithm as well, but
specifically for generating realizations of Brownian motion in bounded domains.

Inverse Transform Sampling

Inverse transform sampling uses the following recipe to sample from a real-valued PDF p:

1. Compute the cumulative density function P(x) =
∫ x

0 p(x′)dx′.

2. Compute the inverse CDF P−1(y).

3. Generate a uniform random number u ∼ U ([0, 1]).

4. Generate a random sample x′ = P−1(u).

As shown in Fig. 3.2 (right), the intuition behind this technique is that a value in [0, 1] on
the vertical axis maps uniquely to the probability of an “outcome” x′ on the horizontal axis—
outcomes chosen for a set of uniform random numbers will therefore be distributed according
to the PDF p. As an example, consider the PDF p(x) = σe−σx of a killed diffusion process from
Sec. 2.3.1, and its corresponding CDF P(x) = 1− e−σx. This CDF is easy to invert, P−1(y) =
−ln(1− y)/σ, and thus easy to generate samples from, x′ = ln(1− u)/σ for u ∼ U ([0, 1]).

For discrete outcomes, we can compute a CDF by summing up the known probability of each
outcome, and using steps 3 and 4 to generate samples. The main challenge with using inverse
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transform sampling on continuous PDFs is that it is not always possible to compute and invert
CDFs. Rejection and weighted importance sampling relax these requirements.

Rejection Sampling

cg (x)f (x)Rejection sampling draws samples from non-negative functions f (x)
that need not be normalized, i.e., f does not have to integrate to 1,
and hence is not necessarily a PDF. Assume we have access to a PDF
g that is easy to sample from (via, e.g., inverse transform sampling),
and a constant c such that f (x) ≤ cg(x). We then repeat the following
procedure till it returns a correctly distributed sample x′:

1. Generate a uniform random number u ∼ U ([0, 1]).

2. Generate a sample x′ ∼ g(x).

3. Return x′ if u < f (x′)/cg(x′).

Intuitively, when the PDF g is uniform, more samples are rejected in regions where f is small.
Tighter bounds cg(x) can therefore significantly improve performance.

Weighted Importance Resampling

Assume we want to again sample according to an unnormalized function f (x), but only have
access to a stream of samples {x1, x2, . . .} generated using a PDF g(x). We can choose a represen-
tative sample distributed proportionally to f by processing the stream one element at a time, and
selecting—from the M samples seen so far—an xi with probability w(xi)/ ∑M

j=1 w(xj), where the
weight w(x) := f (x)/g(x) [23, Alg. 3]. The next stream sample xM+1 replaces xi with probability
w(xM+1)/ ∑M+1

j=1 w(xj). The stream length M need not be known ahead of time.

3.2 Walk On Spheres

Suppose we want to evaluate the solution to a basic Laplace equation ∆u = 0 with Dirichlet
boundary conditions g (Eq. 2.24) at some point x0 ∈ Ω. The mean value property (Eq. 2.13) says
that u(x0) is equal to the average of u over the boundary of any ball B(x0, R) ⊂ Ω. Alternatively,
Kakutani’s principle (Eq. 2.25) says that u(x0) equals the expected value of u where continuous
Brownian random walks first hit the ball boundary ∂B. We therefore have

u(x0) =
1

|∂B(x0, R)|

∫
∂B(x0,R)

u(z)dz = E[u(Wτ)], (3.12)

xk

xk

xk−1

∂ΩεD

where by symmetry a random walk Wt starting at a point x0 is equally
likely to exit through any point on ∂B—independent of how long the
walk takes, or where it goes inside B (Fig. 3.3).

The mean value and stochastic perspectives both point to the same
strategy for estimating u(x0): uniformly sample a point x1 on a sphere
around x0. If x1 is extremely close to the domain boundary (i.e., within
the ε-shell ∂Ωε

D), grab the boundary value g(x1) at the closest point
x1 ∈ ∂ΩD (inset). Otherwise, evaluate u(x1). Repeated evaluation of
Eq. 3.12 results in a random walk on the points x0 → x1 → . . . , where
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Kakutani’s Principle Mean Value Property

x x x x

x′ x′ ∂B(x)∂B(x)

u (x)

Figure 3.3: At any point x, the solution u to a Laplace problem is equal to the average boundary value reached
by random walks (left), and the average value of u over a sphere ∂B(x) around x (right). Both quantities can be
estimated by recursively sampling points x′ on a sphere.

for k ≥ 0, each point xk+1 lies on a sphere centered at the previous point xk. This reasoning leads
to the recursive WoS estimator by Muller [174]:

û(xk) :=

{
g(xk) xk ∈ ∂Ωε

D,
1

|∂B(xk ,R)|
û(xk+1)

p∂B(xk+1)
otherwise.

(3.13)

To achieve fast convergence to ∂ΩD, we draw a single point xk+1 from the uniform density
p∂B := 1/|∂B| on the largest sphere around xk with radius R = ∥xk − xk∥ (Fig. 1.6), which can
be computed efficiently via a closest point query (Sec. 6.1). In this case, one can show that
the number of steps needed to reach the ε-shell ∂Ωε

D is typically O(log 1/ε) [22], and that error
vanishes quickly as ε is decreased (Sec. 6.3). Alg. 1 provides pseudocode.

Unlike SDE integration schemes (Sec. 2.3.1), WoS provides an exact statistical simulation
of Brownian motion without introducing discretization error at every step of a random walk.
Moreover, numerical quadrature is not a practical alternative to Monte Carlo here, since the
recursively expanded integration domain is high-dimensional. In the remainder of this section,
we describe known extensions of WoS to other constant coefficient PDEs such as the Poisson and
screened Poisson equations. We also discuss estimation of derivatives, and treatment of reflecting
boundary conditions.

3.2.1 Poisson Equation

x0

x1

x2

y0

y1
y2

We can solve a Poisson equation (Eq. 2.2) by incorporating a source
term f : Ω→ R into the WoS estimator as follows:

û(xk) :=

g(xk) xk ∈ ∂Ωε
D,

1
|∂B(xk ,R)|

û(xk+1)
p∂B(xk+1)

+ GB(xk ,R)(xk , yk+1) f (yk+1)
pB(yk+1)

otherwise.
(3.14)

A good default strategy for the second term, shown in the inset, is to importance sample the
Green’s function GB at every step of a walk by drawing a single sample yk+1 ∈ B(xk, R) from
the density pB := GB(xk, yk+1)/|GB(xk)|. Here |GB(xk)| is the integral of GB over B (App. A.6).
We can use either rejection sampling or inverse transform sampling to generate samples from
GB (App. A.1.2), and can use more than one sample at each step to reduce variance if needed.
We refer to Delaurentis and Romero [51, Sec. 2] for a proof that this single-sample estimator
converges to the true solution u(x).
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ALGORITHM 1: WalkOnSpheres(x, ε)

Input: Starting position x ∈ Ω of random walk, and ε-shell.
Output: Single-sample MC estimate û(x) of Poisson equation with Dirichlet conditions.

1: d, x ← ClosestPt(∂ΩD, x) ▷Compute distance to absorbing boundary ∂ΩD (Sec. 6.1)
2: if d < ε then return g(x) ▷Return boundary value g at closest pt x if x ∈ ∂Ωε

D

3: v← SampleUnitSphere() ▷Sample direction v uniformly on unit sphere
4: p← x + d v ▷Set next walk position on sphere with radius d
5: Î f ← SourceEstimate(x, d) ▷Estimate contribution from source term f (Sec. 3.2.1)
6: return WalkOnSpheres(p, ε) + Î f ▷Repeat from next walk position p

3.2.2 Screened Poisson Equation

To incorporate a constant absorption coefficient σ ∈ R≥0 (Eq. 2.3), we simply replace the func-
tions 1/|∂B| and GB in the estimator for a Poisson equation with the corresponding Poisson
kernel Pσ,B and Green’s function Gσ,B for a screened Poisson equation [61]; App. A.2.2 provides
explicit expressions. As discussed in Sec. 2.3.2, a nonzero σ dampens the PDE solution, which
can also be observed through the following relation (from Eq. A.17) between Poisson kernels:

Pσ,B(x, y) =
1

|∂B(x, R)|Q
σ,B(x, y), (3.15)

where Qσ,B ∈ [0, 1) for σ > 0. Hence, if we use the uniform density pB = 1/|∂B| to sample the
next walk position xk+1, then the solution estimate û accumulates a throughput ∏k Qσ,B(xk, xk+1)
over k steps that downweights both the boundary and source contribution g and f , respectively.

We use the term throughput in analogy with the throughput of a light path in Monte Carlo
rendering [203]—in the context of a screened Poisson equation, the throughput of a walk equals
the probability with which a killed Brownian motion (Sec. 2.3.1) does not get absorbed in the do-
main Ω. With WoS, we can use Russian roulette (Sec. 3.1.1) to realize absorptions: we terminate
walks at step k with probability 1−Qσ,B(xk, xk+1), and cancel out the contribution Qσ,B(xk, xk+1)
in the walks that survive. This allows us to terminate walks early, instead of waiting for them
to reach ∂Ωε

D while their throughput continues to shrink. In practice, Russian roulette provides
large efficiency gains when solving screened Poisson equations with WoS.

3.2.3 Biharmonic Equation

Several algorithms in geometric computing require solving two or more PDEs that depend on
one another, e.g., computing deformations [240] and geodesic distances [45], solving eigenvalue
problems via power iterations. Here we consider the simpler example of a biharmonic equation

∆2u = 0 on Ω,
u = g on ∂Ω,

∆u = h on ∂Ω,
(3.16)

which can be formulated as a system of two 2nd order PDEs via the substitution v := ∆u:

∆u = v on Ω, ∆v = 0 on Ω,
u = g on ∂Ω, v = h on ∂Ω.

(3.17)
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Figure 3.4: A comparison of the “tree walking” strategy for a biharmonic equation to a naı̈ve nested strategy with
the same number of outer walks, and 1, 10, and 100 inner walks; for this example each outer walk takes about 15
steps. The tree walking result is slightly noisier, but many times more efficient.
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To evaluate u at a point x0 ∈ Ω, we can apply the standard Poisson
estimator (Eq. 3.14), using the Laplace estimator (Eq. 3.13) to estimate
v at each step of a walk. However, this naı̈ve strategy is quite expensive
since we now have to simulate whole walks inside each step (inset, top).
This requires O(SN2) steps, where N is the number of walks used for
the Poisson and Laplace estimators, and each walk takes O(S) steps.

To address the inefficiency above, we propose a “tree walking”
strategy that re-uses partial walks to reduce cost to O(SN) [221, Sec.
4.3]. In particular, at each step xk of the “outer” walk, we still use a
single point yk+1 to sample the source term. But rather than using the
basic WoS estimator for v(yk+1) (Eq. 3.13), we instead use the estimate
v̂(yk+1) = PB(yk+1, xk+1)h(xN), where PB is the off-centered Poisson ker-
nel for the ball B (Sec. 2.2.1), and xN is the final point in the walk used
to estimate u(x0). In other words, we connect a walk of length one (from yk+1 to xk+1) to the
longer walk from xk+1 to xN , then use the boundary value (inset, bottom). Though the walks are
now more strongly correlated due to reuse (xk+1 is connected to both xk and yk+1), they are also
significantly cheaper to compute—in practice, we get reduced variance for equal compute time
(Fig. 3.4). Similar strategies can in principle be applied to other nested sequences of PDEs.

3.2.4 Exterior Problems

The WoS estimators from the previous sections can be used to solve PDEs on the domain exterior,
i.e., the complement of Ω in RN . Unfortunately, there is a non-zero probability for a random
walk to wander off to infinity in an open domain, or in the exterior of a closed domain; this
corresponds to the non-recurrent behavior of Brownian motion in dimensions greater than 1 [27,
Ch. 2]. A simple strategy then is to apply Russian roulette to terminate walks that wander far
from the domain boundary—examples are shown in Fig. 1.7. Nabizadeh et al. [179] instead
propose an approach based on the spherical inversion of the domain via a Kelvin transformation,
and demonstrate that WoS solves exterior problems with significantly lower variance under this
inversion. We refer to their work for further details.

3.2.5 Spatial Derivatives

One often requires computing not just the solution to a PDE, but also its spatial derivatives for
tasks involving, e.g., shape optimization [204] and gradient flows (Fig. 8.5 & 7.10). Surpris-
ingly little has been said about estimating derivatives via WoS—one such work is by Elepov
and Mikhailov [61], which briefly discusses gradients but ignores other differential operators,
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higher-order derivatives, and variance reduction strategies (Sec. 7.2 & 7.5). We provide basic
estimators for spatial derivatives [221, Sec. 3] derived using harmonic analysis [9]. The more
general framework of Malliavin calculus [17] provides tools for also computing sensitivities with
respect to quantities such as PDE coefficients (termed Greeks in financial engineering [71]).

Gradient

We can express the gradient of a harmonic function u, with respect to an evaluation point x ∈ Ω,
via a mean value-like integral [221, App. A]

∇xu(x) =
1

|B(x, R)|

∫
∂B(x,R)

u(y) ny dy, (3.18)

where for a d-dimensional ball of radius R, ny := (y− x)/R is the outward unit normal at y. A
basic WoS estimator for the gradient then is

∇̂x0 u(x0) :=
d
R

û(x1) nx1 , x1 ∼ U (∂B(x0, R)), (3.19)

nx1
x0

x1

xk
i.e., just uniformly sample a point x1 on a ball around x0, and multiply
the normal nx1 by the usual WoS estimate for u(x1) (Eq. 3.13). The
coefficient d/R comes from the surface area to volume ratio for an d-
dimensional ball. We note that estimating the gradient adds virtually
no cost on top of computing the solution at x0, apart from a multipli-
cation with the normal. Eq. 3.19 also makes no assumptions about the
boundary conditions imposed on the domain boundary ∂Ω—it simply
requires access to an estimate of u at x1 ∈ Ω. However, Eq. 3.19 does
not apply when x0 ∈ ∂ΩD, since R = 0.

More generally, the gradient of the (off-centered) mean value property for a screened Poisson
equation (Sec. 2.2.1) is given by

∇xu(x) =
∫

∂B(c,R)
∇xPσ,B(x, z) u(z)dz +

∫
B(c,R)

∇xGσ,B(x, y) f (y)dy, (3.20)

where c is the center of the ball B. The WoS estimator for this expression requires only a single
sample for the second integral at the first step of a walk. We recover the spatial gradient for a
Poisson equation when σ = 0, and the gradient for the Laplace equation in Eq. 3.18 when f = 0
and c = x. App. A gives expressions for the functions ∇xP and ∇xG, while Ch. 7 provides
variance reduction strategies for gradient estimators.

First-Order Differential Operators

Given an estimate for the gradient ∇xu, an estimate of the directional derivative DZu along any
direction Z ∈ Rn is then given by

DZu(x) = Z · ∇xu(x). (3.21)

All other first-order differential operators, such as divergence or curl, can be expressed via the
partial derivatives ∂u/∂ei = Dei u along the coordinate directions e1, . . . , en.
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nudge into 
  domain

ε-shell

Figure 3.5: To simulate reflecting random walks with WoS, a standard approach [156, 160] is to offset a walk that
approaches the Neumann boundary back into the domain by a fixed distance along the inward normal n to the
boundary (left). This approach introduces discretization error into the reflecting walk simulation. Moreover, the
resulting walks tend to stick to the boundary as they are attracted to it, leading to long walk lengths (right).

Higher Order Derivatives

If u is the solution to a Poisson equation (Eq. 2.2), then its Hessian Hu can be expressed via the
integral formula

Hu(x) = d2

R4
1

|∂B(x,R)|
∫

∂B(x,R) u(y)(y− x)(y− x)T dy

− d
R2

1
|∂B(x,R)|

∫
∂B(x,R) u(y) I dy

+
∫

B(x,R) HG(x, y) f (y)dy,

(3.22)

where I ∈ Rd×d is the identity matrix. A single-sample WoS estimator could in principle be
written as

û(x1)

(
d2

R4 (x1 − x0)(x1 − x0)
T − d

R2 I

)
+ |B(x0, R)|HG(x0, y1) f (y1), (3.23)

where x1 ∼ U (∂B(x0, R)) and y1 ∼ U (B(x0, R)). Here we run into some difficulty as the Hessian
of the Green’s function HG involves terms that behave like Dirac deltas: without an importance
sampling strategy akin to those used for point sources (Sec. 7.1), important contributions will
be missed. However, we can apply integration by parts to obtain a different expression for this
term, namely∫

B(x,R)
f (y)(ψ(x, y)(y− x)(y− x)T − ϕ(x, y) I)−∇y f (y)∇xG(x, y)dy, (3.24)

where ψ and ϕ are functions that depend on the particular choice of Green’s function (see [221,
App. B.2.2]), and ∇y denotes the gradient with respect to y. This quantity can be estimated
via a single Monte Carlo sample, though we now also need access to the gradient of the source
function f . As with the gradient estimator (Sec. 3.2.5), other 2nd-order differential operators can
be estimated via a Hessian estimate. See Fig. 7.4 for a numerical example and convergence plot.

3.2.6 Reflecting Boundary Conditions

So far, we have presented WoS estimators for PDEs with absorbing Dirichlet boundary conditions.
For mixed boundary value problems containing reflecting Neumann conditions (Eq. 2.1), the
standard approach [160] is again to terminate walks when they reach the ε-shell ∂Ωε

D. However,
if a walk ever reaches a point x̃k in the ε-shell ∂Ωε

N around the Neumann boundary, then the
Neumann data h at the closest point xk ∈ ∂ΩN is approximated via finite differences, e.g.,

h(xk) ≈
u(xk + ζnxk)− u(xk)

ζ
, (3.25)
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Figure 3.6: For a Poisson equation with pure Neumann conditions, local details in the PDE solution are often
resolved by the first few steps of a Brownian random walk (simulated here using the walk on stars algorithm from
Ch. 4), with near-constant contributions from later steps (left). However, more steps are typically needed to resolve
lower frequency global details (right).

where ζ > ε is a constant. The solution estimate at xk is then

û(xk) := û(xk + ζnxk)− ζh(xk) ≈ u(xk). (3.26)

In other words, −ζh(xk) is added to the running estimate, and the walk continues as usual from
the point xk + ζnxk obtained by nudging xk back into the domain by a fixed distance ζ along the
inward unit normal (Fig. 3.5, left). Mascagni and Simonov [160] call this procedure a boundary
reflection; Maire and Tanré [156] and Zhou et al. [283] provide more sophisticated approximations
using higher-order differences. Similar approximations are also available for Robin boundary
conditions [236, 282].

Unfortunately, such reflections are often impractical for problems with a large Neumann
boundary ∂ΩN: the finite difference approximation introduces significant bias if ζ is much larger
than ε. Yet if ζ is only slightly larger than ε, then random walks “stick” to ∂Ωε

N, and take many
small steps before escaping toward the interior (Fig. 3.5, right). Fig. 8.16 (left) shows that,
in practice, boundary reflections yield both slow runtime and large accumulated bias. In the
next chapter, we develop a walk on stars estimator for BVPs with mixed boundary conditions
[167, 224]. WoSt avoids these issues by considering larger spheres that contain the Neumann and
Robin boundaries, which greatly improve both accuracy and efficiency.

Pure Neumann Conditions The solution to a Poisson equation with pure Neumann boundary
conditions is determined only up to an additive constant. From the random walk perspective,
there is no Dirichlet boundary to terminate on, hence contributions from the Neumann data h
accumulate forever. However, shorter walks tend to resolve high-frequency details in the solution,
whereas the contribution from independent longer walks is more spatially uniform (see Fig.
3.6). Based on this observation, Maire and Tanré [156] describe a WoS estimator that stops
the simulation once walks become longer than a certain length, implicitly pinning an additive
constant to the solution. For WoSt we will instead apply Tikhonov regularization, which makes the
solution unique by adding a small absorption coefficient σ to the PDE (resulting in a screened
Poisson equation). In particular, we will switch to this PDE when a walk gets longer than a user-
specified length (Fig. 7.5), which adds a small but controlled amount of bias. As described in Sec.
3.2.2, we can then terminate walks via Russian roulette, using a survival probability proportional
to the Poisson kernel of a screened Poisson equation.
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Chapter 4

Estimators For PDEs With Mixed Boundary Conditions

xk

xk

xk+1

refine

The original walk on spheres method solves Dirichlet problems by simulat-
ing random walks that ultimately get absorbed into the boundary. Rather
than simulate many small steps of an isotropic Brownian motion (Fig. 2.7,
left), this process is greatly accelerated by sampling the next point from the
largest empty ball around the current walk position (Fig. 4.1, left). In this
chapter, we take a basic but important step forward by developing practi-
cal strategies for incorporating Neumann and Robin boundary conditions
(Eq. 2.1), which are an essential component of virtually every real physical
model. To model these boundary conditions, one must additionally simu-
late reflecting random walks that “bounce” off the boundary (Fig. 2.7, center
& right) [86, 87]. In a half space, reflecting walks amount to just taking the
absolute value of Brownian motion in one coordinate direction. Hence, for
polyhedral domains, a naı̈ve strategy for simulating reflections is to sample
the largest ball that intersects only a single boundary face, and to perform
a reflection across the boundary plane if the sampled point falls outside the domain (see inset).
However, the efficiency of this strategy drops quickly as the boundary mesh is refined.

Our strategy, which we call walk on stars (WoSt) [167, 224], is both more efficient and more
general—it is a Monte Carlo estimator for the boundary integral equation of a Laplace problem
(Sec. 2.2). In short, we identify a large star-shaped region around the current walk position, and
sample a point on its boundary by picking a random direction (Fig. 4.1, center & right). Like
WoS, WoSt takes large steps inside the domain to quickly reach the Dirichlet boundary (these
techniques are in fact equivalent for pure Dirichlet problems). Yet unlike prior WoS schemes for
Neumann and Robin boundaries (Sec. 3.2.6), WoSt can also take large steps that are independent
of the level of tessellation near a reflecting boundary. In Sec. 8.3, we will demonstrate that this
strategy works reliably in both convex and non-convex domains without incurring large bias or
variance, unlike other grid-free Monte Carlo approaches [63, 217, 235, 236, 242].

To use WoSt, the only question that must be answered is: how do we find star-shaped regions?
We propose one strategy here, using the visibility silhouette, which is easy to implement efficiently
without much overhead (Sec. 6.2). Fundamentally, however, the WoSt approach relies only on
the use of star-shaped regions, and not on any particular method used to compute them, or
on any particular representation of the domain boundary. Importantly, WoSt requires only few
changes to an existing WoS implementation, and provides the same advantages as WoS such as
progressive and output sensitive evaluation, trivial parallelization, and robustness to defective
geometry, while being applicable to a broader class of problems (see, e.g., Fig. 1.9 & 4.2).

We first develop the WoSt estimator for Neumann problems in Sec. 4.2, and then describe
modifications for Robin conditions in Sec. 4.3. We limit the discussion to Poisson equations here,
and address more general linear elliptic PDEs in the next chapter. We also assume for simplicity
that the domain Ω is a compact subset of RN , and provide extensions to open domains and
double-sided boundary in App. B.
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Figure 4.1: WoSt solves BVPs with any combination of Dirichlet, Neumann and Robin boundary conditions. Left:
With a purely absorbing Dirichlet boundary ∂ΩD, WoSt is equivalent to WoS, which repeatedly jumps to a random
point on the largest sphere around the current walk location, and terminates when the walk enters an ε-shell ∂Ωε

D.
Center: For a reflecting Neumann boundary ∂ΩN, WoSt generalizes to using star-shaped regions—specifically a
sphere containing a subset of ∂ΩN. The next walk location is determined by intersecting a uniformly sampled ray
direction against the current sphere and the visible portion of ∂ΩN it contains, and picking the first hit point. Right:
For a Robin boundary that is both reflecting and absorbing, the walk can additionally terminate on ∂ΩR.

4.1 Star-Shaped Regions

x

x

∂ΩD

∂ΩN

R

∂StN

∂StB

St(x , R )

In lieu of balls, WoSt considers regions that are star-shaped with re-
spect to a point x ∈ Ω, i.e., regions whose boundary is visible from
x. Though in principle any star-shaped region could be used, we use
regions St(x, R) given by the intersection B(x, R) ∩ Ω containing x,
for a particular choice of radius R for the ball B (see Sec. 4.2.2). Sim-
ilar to Eq. 2.1, we partition the region boundary into a Neumann part
∂StN := ∂ΩN ∩ ∂St with prescribed normal derivatives ∂u/∂n = h, and a
spherical part ∂StB := ∂B∩ ∂St. For a Robin boundary ∂ΩR, we likewise
define ∂StR := ∂ΩR ∩ ∂St with prescribed values ∂u/∂n + µu = ℓ.

4.2 Walk On Stars With Neumann Conditions

Letting A := St and C := B in Eq. 2.10, the boundary integral for a Poisson equation becomes

α(x)u(x) =
∫

∂St(x,R)
PB(x, z)u(z)dz +

∫
∂StN(x,R)

GB(x, z)h(z)dz +
∫

St(x,R)
GB(x, y) f (y)dy. (4.1)

As with the mean value property used by WoS (Eq. 2.13), the solution value u(z) is the only
unknown in this equation: at points z ∈ ∂StN, the normal derivative ∂u/∂n is given by the fixed
Neumann data h along ∂ΩN, and is not needed at points z ∈ ∂StB where GB(x, z) = 0. Since only
one quantity is unknown, estimators for this equation need not branch.

Simonov [235], and later Ermakov and Sipin [63], take a parallel approach on domains Ω
with convex Neumann boundaries ∂ΩN. In particular, they use regions formed by intersecting Ω
with a ball B whose radius is the distance to the Dirichlet boundary, dDirichlet := ∥x− x∥. Hence,
B can contain a subset of the Neumann boundary ∂ΩN. In the convex case, such regions are
automatically star-shaped. To handle arbitrary domains, WoSt instead uses visibility information
to obtain star-shaped regions even near nonconvex Neumann boundaries (which in general can
yield a radius R ≤ dDirichlet), as we will see in Sec. 4.2.2.
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Figure 4.2: The walk on stars method handles mixed boundary conditions, enabling it to model a richer class of
problems than the original walk on spheres method. Here for instance we simulate conductive heat transfer from a
toaster with Dirichlet conditions to a piece of bread with Neumann conditions, by solving a Laplace equation (top and
bottom right), complementing the radiative transfer computed via ray tracing (bottom left). As with ray tracing, we
can simulate directly on the full high-resolution data (bottom center) without generating a volume mesh or forming
a global stiffness matrix. Since results are progressive, we can get a preview of how the toast will look faster than it
takes to toast a real piece of bread (top left).

4.2.1 Monte Carlo Estimation

The Walk On Stars Estimator With Dirichlet-Neumann Conditions
A single-sample Monte Carlo estimator for Eq. 4.1 is given by

û(xk) =
PB(xk, xk+1) û(xk+1)

α(xk) p∂St(xk ,R)(xk+1)
+

GB(xk, zk+1) h(zk+1)

α(xk) p∂StN(xk ,R)(zk+1)
+

GB(xk, yk+1) f (yk+1)

α(xk) pSt(xk ,R)(yk+1)
, (4.2)

where for k ≥ 0,

• the points xk+1 ∈ ∂St, zk+1 ∈ ∂StN, and yk+1 ∈ St are sampled from the probability
densities p∂St, p∂StN and pSt (respectively).

• R is chosen so that St(xk, R) is star-shaped.

The WoSt estimator is recursive as û appears on both sides of Eq. 4.2. Applying it iteratively leads
to a random walk from one star-shaped region to another—hence the name walk on stars. At a
high level, each step of WoSt accumulates contributions from the (non-recursive) Neumann data
h and source term f . For mixed Dirichlet-Neumann problems, the walk terminates when it enters
the ε-shell ∂Ωε

D, using the Dirichlet data g at the closest point xk ∈ ∂ΩD as the solution estimate,
i.e., û(xk) := g(xk). For pure Dirichlet problems, WoSt reduces to WoS; for pure Neumann
problems, we apply Tikhonov regularization to terminate walks at the expense of some bias (Sec.
7.3). We first discuss how to sample the next step xk+1 and choose the radius R (Sec. 4.2.2),
followed by sampling procedures for h and f (Sec. 4.2.3 & 4.2.4).
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Figure 4.3: Left: For a ball B(xk, R) whose radius R is the distance to the Dirichlet boundary ∂ΩD, the solution to a
Poisson equation has to be estimated at all ray intersections, sampled proportional to signed solid angle. Center and
right: WoSt instead restricts B∩Ω to be star-shaped relative to xk to avoid more than one intersection, and estimates
the PDE solution at the first intersection point xk+1 on either ∂B inside Ω, or the Neumann boundary ∂ΩN inside
B. The radius R of a star-shaped region St(xk, R) is the minimum of the distance to the closest silhouette point on
the Neumann boundary ∂ΩN and the closest point on the Dirichlet boundary ∂ΩD.

4.2.2 Random Walk On Star-Shaped Region

The next walk location is importance sampled from the Poisson kernel of a ball centered at the
current point xk, i.e., xk+1 ∼ p∂St = PB(xk, xk+1). For a Poisson equation in R3, this kernel equals

PB
3D(xk, xk+1) =

nxk+1 · (xk+1 − xk)

4π ∥xk+1 − xk∥3 . (4.3)

We use the same sampling density for a screened Poisson equation, as its corresponding kernel
simply multiplies PB by a constant in [0, 1) determined by the absorption coefficient (Eq. A.15).

Eq. 4.3 coincides with the signed solid angle subtended by ∂St at xk+1 with respect to xk
[12, 114]. In rendering, this term appears in the light transport equation (LTE) [203, Eq. 14.15].
Unlike the BIE, the LTE multiplies PB with a binary visibility V(x, y) that equals 1 if x and y are
mutually visible. Visibility ensures the product V(xk, y)PB(xk ,R)(xk, y) is nonnegative: positive if
y is visible from xk, and zero otherwise. Through a change of variables, this product can then
be importance sampled via directional sampling, i.e., cast a ray from xk in a direction v uniformly
sampled from the unit sphere, and find its first intersection with ∂St:

xk+1 := xk + t∂v, t∂ := min{t ∈ [0,+∞) : xk + tv ∈ ∂St(xk, r)}. (4.4)

We refer to Veach [251] for further details on the relationship between area and directional sam-
pling. If xk lies on the boundary, then the ray origin should be offset slightly along the inward
boundary normal to avoid self-intersections, as described in Wächter and Binder [257].

Non-Visible Regions

Since Brownian motion can effectively “walk around corners” (Fig. 2.7), the BIE has no visibility
term. Hence, the solution value at xk can depend on non-visible points xk+1, complicating use of
directional sampling. In particular, if the region around xk is nonconvex, then a naı̈ve strategy is
to estimate u at all intersections along a ray from xk (Fig. 4.3, left), yielding a branching walk that
increases in size exponentially. One could instead use just a single randomly selected intersection,
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Figure 4.4: WoSt uses balls with radius no smaller than ε to prevent walks from stopping near concave Neumann
boundaries. Left: We only sample parts of ∂ΩN directly visible to xk inside any ball B(xk, ε), implicitly assuming
the function u is zero elsewhere. Right: Hemispherical boundary sampling ensures the next walk location xk+1 does
not leave the domain, but also incurs a small bias in û when xk lies on a concave boundary.

but this approach yields extremely high variance (see Fig. 8.17 & 8.18), for two reasons. First, the
recursive solution estimate must be multiplied by the number of intersections to account for the
expected contribution from each intersection, causing a blowup in value as walk length increases.
Second, the Poisson kernel alternates sign between consecutive intersection points along a ray,
yielding unstable estimates due to cancellation [125, Ch. 4]. These issues are also the root cause
of high variance in the walk on boundary (WoB) method [217, 242], which we compare against in
Sec. 8.3.2. Moreover, using just the first intersection leads to a biased estimator, as the solution u
is then effectively assumed to be zero on non-visible parts of the boundary.

Sampling Star-Shaped Regions

To avoid these issues, some past work assumes the entire Neumann boundary ∂StN is convex
[63, 235], yielding only one intersection for any region B(xk, R)∩Ω where R := dDirichlet(xk). This
assumption of course limits the applicability of such estimators.

We instead let R be the minimum of the distance dDirichlet(xk) to the Dirichlet boundary, and
the distance dsilhouette(xk) to the closest point on the visibility silhouette of ∂ΩN. The connected
component of B(xk, R) ∩ Ω containing xk then defines a star-shaped region St(xk, R). Fig. 4.3
(center & right) shows several examples. We can thus sample points on the region boundary ∂St
by simply taking the first point along a ray from xk that intersects either ∂B(xk, R) or ∂ΩN. Like
the original WoS algorithm (and unlike the reflections in Fig. 3.5), WoSt can therefore take large
steps when far from the Dirichlet boundary. Though other star-shaped sets could be also used,
our approach is motivated by the fact that the closest silhouette point is easy to compute—as will
be discussed in Sec. 6.2.1.

Epsilon Clamp For Star-Shaped Regions ∂ΩN ∂ΩN ∂ΩN

R
R

Figure 4.5: The distance to the visibility silhouette shrinks
as a query point approaches a concave part on ∂ΩN.

Near concave parts of the Neumann bound-
ary, the distance to the closest silhouette point
on ∂ΩN shrinks to zero (Fig. 4.5), stalling the
progress of random walks. We hence limit the
radius R used to define St(xk, R) to be greater
than a user-defined ε, but still use only the first
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ALGORITHM 2: WalkOnStars(x, nx, ε)
Note: Changes to WoS from Alg. 1 are annotated with comments in blue.

Input: Starting position x ∈ Ω of random walk, normal nx at x (undefined if x /∈ ∂ΩN), and ε-shell.
Output: Single-sample MC estimate û(x) of Poisson equation with Dirichlet-Neumann conditions.

1: d, x ← ClosestPt(∂ΩD, x) ▷Compute distance to absorbing boundary ∂ΩD (Sec. 6.1)
2: if d < ε then return g(x) ▷Return boundary value g at closest pt x if x ∈ ∂Ωε

D

3: R← Max(StarRegionRadius(∂ΩN, x, d), ε) ▷Compute star region St radius, ε ≤ R ≤ d (Sec. 6.2.1)
4: v← SampleUnitSphere() ▷Sample direction v uniformly on unit sphere
5: if x∈∂ΩN and nx · v > 0 then v← −v ▷Ensure v is sampled on hemisphere with axis −nx if x ∈ ∂ΩN

6: hit, p, np ← Intersect(∂ΩN, x, v, R) ▷Intersect ∂StN with ray x + Rv, and get first hit
7: if not hit then p← x + R v ▷If there is no hit with ∂StN, set next walk position on ∂StB

8: Îh ← ReflectingBoundaryEstimate(x, R) ▷Estimate contribution from boundary term h (Sec. 4.2.3)
9: Î f ← SourceEstimate(x, p, v, R) ▷Estimate contribution from source term f (Sec. 4.2.4)

10: return WalkOnStars(p, np, ε) + Îh + Î f ▷Repeat from next walk position p (np undefined if x /∈ ∂ΩN)

ray intersection to sample the next point xk+1. This scheme incurs a small amount of bias when
St is not star-shaped, since we assume the solution u is zero on any piece of ∂St not visible
from xk (Fig. 4.4, left). As with the epsilon parameter for the Dirichlet shell ∂Ωε

D, a smaller ε
value reduces bias near concave regions of ∂ΩN at the expense of performance. We study this
performance-bias tradeoff in Sec. 6.3. In practice our star-shaped regions tend to be much larger
than ε, even slightly away from a concave boundary.

Hemispherical Sampling On The Neumann Boundary

xk

xk+1 ∉ Ω
v

∂ΩNΩ

nxk

When xk lies on ∂ΩN, sampling v from the unit sphere can yield points
xk+1 outside Ω (inset). Here we instead sample v from the hemisphere
around the normal nxk . This scheme effectively invokes the reflection
principle of Brownian motion [113], across the halfplane at the base of
the hemisphere. A useful consequence is that the α(xk) = 1/2 in the
denominator of the first term in Eq. 4.2 is canceled by the factor 1/2 we
get from sampling a hemisphere, rather than a sphere. This prevents
our recursive estimator from picking up a multiplicative factor of two each time a walk reaches
∂ΩN. Note that if ∂ΩN is concave at xk, we again incur a small amount of bias (Fig. 4.4, right).

4.2.3 Sampling Neumann Boundary Conditions

For problems with nonzero Neumann conditions, we must evaluate the second term in Eq. 4.2.
We could in theory use xk+1 to estimate both boundary terms, however, this approach yields
biased results, as direction sampling (Eq. 4.4) never samples a point xk+1 on a flat Neumann
boundary when xk ∈ ∂ΩN, even if h is non-zero there. This is because the Poisson kernel PB in
Eq. 4.3 is zero at points xk+1 where nxk+1 ⊥ (xk+1 − xk). Moreover, even for non-flat boundaries,
the ratio GB/p∂StN := GB/PB in the second term in Eq. 4.2 results in high-variance estimates, as the
Poisson kernel can take on both very large and small values.

Instead, we sample a point zk+1 uniformly on the Neumann boundary ∂ΩN, and add a con-
tribution h(zk+1) only if zk+1 is also contained in ∂StN. This estimate remains unbiased, since we
effectively integrate the same function (h restricted to ∂StN) over a larger domain. However, sam-
pling the entire Neumann boundary can lead to high variance in the estimator, as most samples
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will not lie on ∂StN. Likewise, rejection sampling (Sec. 3.1.2) can be prohibitively expensive since
∂StN can be much smaller than ∂ΩN. In Sec. 6.2.4, we hence describe a strategy for efficiently
generating visible samples zk+1 close to xk, which significantly reduces variance.

4.2.4 Sampling The Source Term

xk

xk+1

yk+1
v

∂ΩN

t

St(xk, R )

f

Finally, we sample a point yk+1 ∈ B(xk, R) to evaluate the third term
in Eq. 4.2. We reuse the ray direction v we sampled to generate xk+1
(Eq. 4.4), and set yk+1 := xk + t f v, where we sample the distance t f

proportionally to GB (App. A.1.2). If the sampled distance t f is greater
than t∂ := ∥xk+1 − xk∥, then the point yk+1 lies outside the star-shaped
region St(xk, R), and we reject it (inset). As in Sec. 4.2.2, (re)using a
hemispherical direction cancels α(xk) = 1/2 when xk ∈ ∂ΩN.

4.2.5 Final Estimator

Our final WoSt estimator is defined recursively as

û(xk) :=

{
g(xk), xk ∈ ∂Ωε

D,
û(xk+1) + Îh + Î f otherwise,

(4.5)

where xk+1 is the next walk location in Ω or on ∂ΩN, and Îh and Î f are non-recursive Neumann
and source contributions, respectively. This estimator maintains the general structure of a WoS
estimator, and thus introduces little implementation overhead. Alg. 2 provides pseudocode.

4.3 Walk On Stars With Robin Conditions

WoSt can take long walks when the boundary conditions are mostly Neumann: it must reflect off
the Neumann boundary, and can terminate only on the Dirichlet boundary (Fig. 4.1, center). This
is analogous to path tracing a scene where all materials have albedo one, such as a room of perfect
mirrors. Here we extend WoSt to support Robin conditions, which provide greater physical
realism in describing real-world thermal, electromagnetic, elastic and fluidic materials [86, 90,
94, 228] than purely absorbing or reflecting boundaries, corresponding to, e.g., a blackbody or
perfect insulator (respectively). Monte Carlo estimators for Robin problems are also, in general,
more efficient than estimators for Neumann-dominated problems, as random walks simulating
partially reflecting Brownian motion [86] can be absorbed on ∂ΩR (Fig. 2.7, right), whereas Neumann
walks may require many steps to reach ∂ΩD, resulting in high computation time.

To add support for Robin boundary to WoSt, our main modification is to change how we
select the radius R of the balls B(x, R) used to form star-shaped regions, leaving the rest of the
algorithm largely unchanged. As shown in Fig. 4.6, the Robin coefficient µ from Eq. 2.1 linearly
interpolates between Neumann conditions (µ = 0) and Dirichlet conditions (µ = ∞), which
means that as µ increases, a Robin boundary ∂ΩR becomes less reflecting and more absorbing.
Intuitively, we expect µ to have a similar interpolatory impact on R: in Fig. 4.7, we show R
achieves its maximal value R0 on a boundary when µ = 0 (i.e., ∂ΩR ≡ ∂ΩN), with B expanding
freely through ∂ΩN until it encounters a silhouette point. On the other hand, R equals its minimal
value R∞ when µ = ∞ (i.e., ∂ΩR ≡ ∂ΩD), as B cannot cross through ∂ΩD. Otherwise, R transitions
smoothly from R0 to R∞ as µ increases, with ∂ΩR becoming less “permeable” as B expands.
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Figure 4.7: By increasing the coefficient µ in Eq. 2.1, the radius of a star-shaped region for a Robin boundary reduces
continuously from the distance to the closest silhouette point on the Neumann boundary where µ = 0, to the distance
to the closest point on the Dirichlet boundary where µ = ∞.
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Figure 4.6: As µ increases and the boundary becomes less
reflecting, Russian roulette helps make WoSt more efficient
by probabilistically terminating walks on the Robin bound-
ary, which reduces the average number of steps per walk.

In the rest of this section, we formalize this
intuition for the ball size in three steps: in Sec.
4.3.1 & 4.3.2, we introduce a reflectance function
ρµ, which adds support for Robin conditions
to the BIE we use to design our WoSt estima-
tor. In Sec. 4.3.3, we explain why the intro-
duction of ρµ necessitates selecting a radius R
smaller than the one used with Neumann con-
ditions, and how to use ρµ to facilitate this se-
lection (Fig. 4.8). Finally in Sec. 4.3.4, we show
how ρµ allows random walks to be terminated
early through Russian roulette (Sec. 3.1.1) to
improve efficiency (Fig. 4.6). Alg. 3 highlights
these changes in green. Notably, this construc-
tion yields an estimator that demonstrates re-
liable Monte Carlo convergence with increas-
ing number of walks for any combination of
Dirichlet, Neumann and Robin conditions (Sec. 6.3). It also typically has orders of magnitude
less error than other grid-free techniques for BVPs, like the walk on boundary method (Fig. 8.18).

4.3.1 Boundary Integral Formulation

To derive a boundary integral that accounts for Robin conditions, we follow largely the same
derivation as that in Sec. 4.2. The main difference is that we use the Brakhage-Werner trick from
potential theory [182] to substitute ∂u/∂n = ℓ − µ · u (from the Robin condition in Eq. 2.1) on
∂StR := ∂ΩR ∩ ∂St. Rearranging terms then yields:

α(x) u(x) =
∫

∂St(x,R)
ρµ(x, z) PB(x, z) u(z)dz

+
∫

∂StR(x,R)
GB(x, z) ℓ(z)dz +

∫
St(x,R)

GB(x, y) f (y)dy, (4.6)
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where the spatially-varying function ρµ is defined as

ρµ(x, z) :=

{
1− µ(z)GB(x,z)

PB(x,z) , on ∂StR,

1, on ∂StB.
(4.7)

Eq. 4.6 is nearly identical to Eq. 4.1 for Neumann problems, and even reduces to it when µ = 0.
We will treat Neumann conditions as special case of Robin moving forward. Importantly, u is
the only (recursively-defined) unknown in this equation. Similar to Sec. 4.2.1, we can therefore
use single-sample Monte Carlo to derive a recursive WoSt estimator with Robin conditions.

4.3.2 Monte Carlo Estimation

The Walk On Stars Estimator With Robin Conditions
A single-sample Monte Carlo estimator for Eq. 4.6 is given by

û(xk) =
ρµ(xk, xk+1) PB(xk, xk+1) û(xk+1)

α(xk) p∂St(xk ,R)(xk+1)

+
GB(xk, zk+1) ℓ(zk+1)

α(xk) p∂StR(xk ,R)(zk+1)
+

GB(xk, yk+1) f (yk+1)

α(xk) pSt(xk ,R)(yk+1)
. (4.8)

Given how similar the integrands are in Eq. 4.1 and 4.6, we can sample the points xk+1 ∈ ∂St,
zk+1 ∈ ∂StR, yk+1 ∈ St using the same densities p∂St, p∂StR , pSt (respectively) as those in Sec. 4.2.1–
4.2.4. Apart from the introduction of ρµ, the WoSt estimator with Robin conditions is unchanged
from the estimator with Neumann conditions. Next, we show how to select a radius R for each
star-shaped region St(xk, R), and terminate random walks on ∂ΩR—these are the only two places
where estimation deviates from Sec. 4.2 (see Alg. 3). We treat Dirichlet conditions as separate
from Robin for algorithmic convenience, even though they are a special case with µ = ∞.

4.3.3 Using Reflectance To Select Ball Radius

As a first attempt, we could choose R to equal the distance dsilhouette to the closest silhouette
point on ∂ΩR from x, i.e., the radius R0 we use for Neumann problems (Fig. 4.8, center). To
understand why this is a bad choice for R, we must consider the values ρµ(x, z) (Eq. 4.7) assumes
on different parts of ∂St(x, R). In particular, irrespective of µ, ρµ(x, z) = 1 at points z ∈ ∂StB,
since GB(x, z) = 0. When µ = 0, ρµ(x, z) likewise simplifies to 1 at points z ∈ ∂StR, recovering
the original setup for Neumann problems. However, when µ > 0, ρµ in general varies between
−∞ and 1 if we use R = R0 ≡ dsilhouette(x). This choice of radius then leads to extremely high
variance in the recursive estimator in Eq. 4.8, for two reasons. First, the solution estimate û
accumulates a throughput1 ∏k ρµ(xk, xk+1) that becomes unbounded in magnitude as walk length
k increases. Second, the function ρµ, and thus throughput, can change sign along a walk, which
results in unstable estimates due to cancellations [125, Ch. 4]. In App. C, we provide an operator-
theoretic analysis of boundary integral equations to more formally explain the issues with naı̈ve
estimation of Eq. 4.6 and our solution to it, which we discuss below.

1Unlike the throughput of an estimator for a screened Poisson equation (Sec. 3.2.2), the throughput of a walk in
this setting represents the probability with which Brownian motion is reflected off (and hence not absorbed on) ∂ΩR.
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Figure 4.8: We use reflectance values ρµ on the Robin boundary ∂ΩR to help determine the radius R of a star-shaped
region St(xk, R). Left: For a ball B(xk, R) where R is the distance to the Dirichlet boundary ∂ΩD, the PDE solution
must be estimated at all ray intersections sampled proportional to signed solid angle. Center: WoSt with Neumann
conditions avoids multiple intersections by instead restricting B∩Ω to be star-shaped relative to xk, and estimating
the solution at a single intersection point xk+1 ∈ ∂St. Right: For Robin conditions with µ > 0, R is restricted
further to ensure that ρµ has a value between 0 and 1.

Shrinking The Radius

To ensure throughput remains positive and bounded regardless of walk length, we choose a
radius R ≤ R0 such that ρµ ∈ [0, 1]. To achieve this, we substitute expressions for the 3D Green’s
function and Poisson kernel of a ball B(x, R) (App. A.1.2) into Eq. 4.7. For any point z ∈ ∂StR,

ρµ(x, z) = 1− µ(z) r
cos θ

(
1− r

R

)
, (4.9)

where r = ∥z− x∥ and cos θ = nz·(z−x)/r. The terms 1− r/R and cos θ are both positive, since
r ≤ R and ∂StR is front-facing by construction (as St is star-shaped). To restrict ρµ ∈ [0, 1], we
therefore require

µ(z) r
cos θ

(
1− r

R

)
≤ 1. (4.10)

Rearranging terms then gives an upper bound on the radius R,

R ≤ r
1− cos θ

µ(z) r

when r >
cos θ

µ(z)
, (4.11)

which must hold at all points z ∈ ∂StR (Fig. 4.8, right). When r ≤ cos θ/µ(z), ρµ ∈ [0, 1] for any
r < R; in this case we set R equal to the distance dDirichlet(x) to ∂ΩD, or ∞ when ∂ΩD = ∅.

As µ increases from 0 to ∞ on ∂ΩR, the bound in Eq. 4.11 reduces continuously from R0 ≡
dsilhouette(x) to R∞ ≡ dDirichlet(x). It asymptotically recovers the radii R0 and R∞ WoSt uses
for pure Neumann and Dirichlet conditions as µ approaches 0 and ∞ (respectively). With this
bound for the star-shaped region radius R, we call ρµ the reflectance for the Robin boundary inside
St(x, R), as it encodes the probability with which a random walk is reflected off ∂StR. In Sec. 6.2.2,
we describe how to compute R efficiently on triangle meshes, with only small modifications to
how dsilhouette is computed for ∂ΩN (Sec. 6.2.1). App. D provides corresponding expressions for
the reflectance and radius bound in 2D domains.
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ALGORITHM 3: WalkOnStars(x, nx, ε)
Note: Changes to WoSt from Alg. 2 are annotated with comments in green.

Input: Starting position x ∈ Ω of random walk, normal nx at x (undefined if x /∈ ∂ΩR), and ε-shell.
Output: Single-sample MC estimate û(x) of Poisson equation with Dirichlet-Robin conditions.

1: d, x ← ClosestPt(∂ΩD, x) ▷Compute distance to absorbing boundary ∂ΩD (Sec. 6.1)
2: if d < ε then return g(x) ▷Return boundary value g at closest pt x if x ∈ ∂Ωε

D

3: R← Max(StarRegionRadius(∂ΩR, x, d), ε) ▷Compute star region St radius, ε ≤ R ≤ d (Sec. 6.2.2)
4: v← SampleUnitSphere() ▷Sample direction v uniformly on unit sphere
5: if x∈∂ΩR and nx · v > 0 then v← −v ▷Ensure v is sampled on hemisphere with axis −nx if x ∈ ∂ΩR

6: hit, p, np ← Intersect(∂ΩR, x, v, R) ▷Intersect ∂StR with ray x + Rv, and get first hit
7: if not hit then p← x + R v ▷If there is no hit with ∂StR, set next walk position on ∂StB

8: Îℓ ← ReflectingBoundaryEstimate(x, R) ▷Estimate contribution from boundary term ℓ (Sec. 4.2.3)
9: Î f ← SourceEstimate(x, p, v, R) ▷Estimate contribution from source term f (Sec. 4.2.4)

10: ρµ ← Clamp(1− µ(p)GB(x,R)(x, p)/PB(x,R)(x, p), 0, 1) ▷Compute and clamp reflectance to [0, 1]
11: if ρµ < SampleUniform(0, 1) then return Îℓ + Î f ▷Attempt to terminate walk using Russian roulette

12: return WalkOnStars(p, np, ε) + Îℓ + Î f ▷Repeat from next walk position p (np undefined if x /∈ ∂ΩR)

Epsilon Clamp

Irrespective of the value of µ, the radius R of a star-shaped region St(xk, R) shrinks to zero as xk
approaches concave parts of ∂ΩR (Fig. 4.5). As in Sec. 4.2.2, we clamp R ≥ ε to prevent walks
from stalling near ∂ΩR. As St(xk, ε) may no longer be star-shaped (Fig. 4.4), we additionally
clamp ρµ to [0, 1] to ensure throughput remains bounded (Alg. 3, line 10). This clamping is justi-
fied by the fact that as we make ε (and thus St) smaller, the value of ρµ automatically approaches
1. In Fig. 6.6, we use different ε values to empirically study the impact clamping has on bias and
performance.

4.3.4 Using Russian Roulette To Terminate Walks

Using direction sampling (Eq. 4.4) to select the next walk location xk+1 perfectly importance
samples (and hence cancels out) the Poisson kernel PB(xk, xk+1) in Eq. 4.8, but not the reflectance
ρµ(xk, xk+1). As our choice of R guarantees ρµ(xk, xk+1) ∈ [0, 1], we can also cancel out this term
using Russian roulette: we terminate walks at step k with probability 1− ρµ(xk, xk+1), and cancel
out the contribution ρµ(xk, xk+1) in the walks that survive (Alg. 3, line 11). Using Russian roulette
allows us to maintain a constant throughput of 1 in our walks and terminate them early, instead
of waiting for walks to reach ∂Ωε

D while their throughput continues to shrink. This often leads
to large efficiency gains, as we show in Fig. 4.6. We note that Russian roulette is not possible
with Neumann conditions, where reflectance always equals 1. In this case, a walk must continue
until it reaches ∂Ωε

D. Otherwise it never terminates when ∂ΩD = ∅, which necessitates using
Tikhonov regularization (Sec. 3.2.6).
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Chapter 5

Estimators For PDEs With Spatially Varying Coefficients

constant coe�icients

spatially varying coe�icients

In this chapter, we directly resolve detailed effects of spa-
tially varying material densities (inset)—without resorting
to homogenization of PDE coefficients (Fig. 5.1). WoS has
previously been applied to a limited set of problems with
piecewise constant coefficients [148, 155]; ours is the first
grid-free method [223] for fairly general continuously-
varying coefficients. Though the Monte Carlo estimators
we have developed till now cannot handle the variable co-
efficients κ(x), #»ω(x) and σ(x) from Sec. 2.1.1, they can
solve PDEs with a variable source term f (x). We hence
apply a series of transformations (Fig. 5.2) that convert
a variable-coefficient PDE such as Eq. 2.4 into an equiv-
alent constant-coefficient screened Poisson equation (Eq.
2.3); we then use the integral version of screened Poisson
(Eq. 2.15) to design modified walk on spheres algorithms.
From a stochastic perspective, these transformations are
equivalent to writing the Feynman–Kac formula purely in
terms of Brownian motion, rather than a generic diffusion process (Sec. 2.3).

Our method applies whenever the PDE

∇ · (κ(x)∇u(x))− σ(x)u(x) = − f (x) on Ω,
u(x) = g(x) on ∂ΩD

(5.1)

is elliptic—which holds if the diffusion coefficient κ(x) is strictly positive and the absorption
coefficient σ(x) is nonnegative [64, 72]. For brevity, we omit the drift term #»ω(x) · ∇u(x) in Eq.
2.4 here, though the approach remains unchanged for equations with drift (see App. E). We focus
on Dirichlet boundary conditions, and discuss extensions to reflecting conditions in Sec. 5.3.2.
For readers not interested in the derivation, Eq. 5.9 gives the final integral formulation of Eq. 5.1
and Sec. 5.2 discusses algorithms, which we will evaluate in Ch. 8.

5.1 Transformations

Second order. We first expand the 2nd order term ∇ · (κ(x)∇u) in Eq. 5.1 via the product rule.
We then divide the resulting equation by κ(x), and apply the identity ∇ ln(κ(x)) = ∇κ(x)/κ(x)
to get

∆u(x) +∇ ln(κ(x)) · ∇u(x)− σ(x)
κ(x)

u(x) = − f (x)
κ(x)

. (5.2)

At this point the 2nd order term ∆u no longer has variable coefficients, but spatial variation in
the lower order terms remains.
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temperature (K) 60000

Figure 5.1: Distribution of heat (inset) radiating from infinitely many blackbodies—about 600M effective boundary
vertices are visible from this viewpoint alone (we visualize a 2D slice of the full 3D solution). Our Monte Carlo
PDE solver (Sec. 5.2.1) directly captures fine geometric detail and intricate spatially varying coefficients without
volumetric meshing, sampling, or homogenizing the 3D domain, by building on techniques from volume rendering.

First order. A Girsanov transformation re-expresses a random process under a change of proba-
bility measure, e.g., from a generic diffusion process Xt to an ordinary Brownian motion Wt [191,
Ch. 8]. As shown in App. E, applying this transformation to Eq. 5.2 eliminates the 1st order
operator from Eq. 5.2, shifting all spatial variation into the 0th order term:

∆U(x)− σ′(x)U(x) = − f ′(x) on Ω,
U(x) = g′(x) on ∂ΩD.

(5.3)

Here,

U(x) :=
√

κ(x) u(x), g′(x) :=
√

κ(x) g(x), f ′(x) :=

√
κ(x)

κ(x)
f (x),

and σ′(x) :=
σ(x)
κ(x)

+
1
2

(
∆κ(x)
κ(x)

− |∇ ln(κ(x))|2
2

)
.

Equation 5.3 is equivalent to our original PDE with variable coefficients in Eq. 5.1, which can be
verified by substituting the expressions for U, g′, f ′ and σ′ back into this equation.

Unlike the Feynman–Kac formula in Eq. 2.31 which involves a diffusion process Xt, the
stochastic formula for Eq. 5.3 uses only simple Brownian motion Wt:

U(x) = E

[
e−

∫ τ
0 σ′(Wt)dtg′(Wτ) +

∫ τ

0
e−

∫ t
0 σ′(Ws)ds f ′(Wt)dt

]
. (5.4)

Zeroth Order. The only remaining term on the left-hand side of Eq. 5.3 with a spatially varying
coefficient is the 0th order screening term σ′(x)U. We hence apply a transformation inspired by
delta tracking (Eq. 2.35) to shift this heterogeneity to a source term on the right-hand side. In
doing so, we introduce a coefficient σ > 0 by subtracting σU from both sides of Eq. 5.3. The
result is a PDE with the same basic form as a screened Poisson equation:

∆U(x)− σU(x) = − f ′(x, U) on Ω, (5.5)
U(x) = g′(x) on ∂ΩD,
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Figure 5.2: An overview of the transformations we apply to the variable-coefficient PDE in Eq. 5.1 to derive an
integral formulation amenable to Monte Carlo estimation with WoS.

where
f ′(x, U) := f (x) + (σ− σ′(x))U(x). (5.6)

Though only constant coefficients now appear on the left-hand side, no approximation of any kind
has been introduced. Unlike a typical linear PDE however, the solution U appears on the right-
hand side. As in volume rendering, we will account for this recursive dependence by applying
recursive Monte Carlo estimation (Sec. 5.1.2)—a strategy not available in the traditional setting
of, e.g., finite element methods.

Like the transformed VRE in Eq. 2.36 and the stochastic formulas in Eq. 2.30, the stochastic
expression for Eq. 5.5 also has a transmittance function e−σt that no longer varies spatially:

U(x) = E

[
e−στg′(Wτ) +

∫ τ

0
e−σt f ′(Wt, U)dt

]
. (5.7)

5.1.1 Integral Representation

We can now express the solution to Eq. 5.5 using the integral form of the constant coefficient
screened Poisson equation (Eq. 2.15):

U(x) =
∫

∂B(c,R)
Pσ,B(x, z) U(z)dz +

∫
B(c,R)

Gσ,B(x, y) f ′(y, U)dy. (5.8)

Recall that x can be any point inside the ball B(c, R)—not just its center. Finally, we make the
substitution U(x) =

√
κ(x) u(x) from Eq. 5.3 to write this integral in terms of the original

function u:

u(x) =
1√
κ(x)

(∫
∂B(c,R)

Pσ,B(x, z)
√

κ(z) u(z)dz +
∫

B(c,R)
Gσ,B(x, y) f ′(y,

√
κ u)dy

)
. (5.9)

Unlike Eq. 2.15, we now have an integral equation that has unknown solution values u both in
its boundary and volume terms. We will evaluate this integral via recursive application of Monte
Carlo integration.

5.1.2 Monte Carlo Estimator

A single-sample estimator for Eq. 5.9 at a point xk ∈ B(c, R) is given by

û(xk) :=
1√

κ(xk)

( evaluate boundary term with probability P∂B︷ ︸︸ ︷
Pσ,B(xk, xk+1)

√
κ(xk+1) û(xk+1)

p∂B(c,R)(xk+1) P∂B(c,R)
+

evaluate volume term with probability PB︷ ︸︸ ︷
Gσ,B(xk, yk+1) f ′(yk+1,

√
κ û)

pB(c,R)(yk+1) PB(c,R)

)
,

(5.10)
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Figure 5.3: Left: Unlike WoS for constant coefficient problems, the delta tracking variant jumps to a random point
either inside or on the boundary of the largest ball B(xk) centered at xk. As in volume rendering (center left),
null-events sampled inside B re-weight the solution estimate to account for spatial variations in the PDE coefficients.
Center right: The next flight variant of WoS resolves variability in PDE coefficients by evaluating off-centered
versions of the Green’s function and Poisson kernel of a ball B(xl

k) in a random walk. Any walk inside B terminates
at a point x0

k+1 ∈ ∂B(x0
k) to avoid branching, similar to the next flight method for volume rendering which estimates

transmittance along a ray with a predetermined endpoint (right).

x0

y1
x1

where xk+1 and yk+1 are points sampled on the surface of and inside
B(c, R) according to probability densities p∂B and pB (respectively).
Values P∂B, PB ∈ (0, 1] control the probability of sampling the bound-
ary and volume terms. Letting P∂B = PB = 1 yields exponential growth
in the number of steps, since each walk branches into two (see inset),
and walks do not terminate until both xk+1 and yk+1 are contained in
∂Ωε

D. In the next section, we develop two WoS algorithms that avoid
branching via a careful choice of P∂B and PB .

5.2 Algorithms

Due to the diversity of heterogeneous phenomena in nature, different algorithms for solving the
volume rendering equation (Eq. 2.34) adopt different strategies to trade off between variance,
bias, and computational cost [188]. Likewise, an algorithm for solving elliptic PDEs will be more
effective when it is well-matched to the way coefficients are distributed in space. We provide a
unified framework, based on Eq. 5.10, which enables us to explore variants of WoS appropriate
for different problems—akin to the unidirectional estimator in Georgiev et al. [77, Eq. 14]. In
particular, we devise two estimators inspired by the delta tracking [207, 270] and next flight [44]
methods from volume rendering (Fig. 5.3). We also describe how to estimate the spatial gradient
of the solution to Eq. 5.1 in Sec. 5.3.1.

5.2.1 Delta Tracking Variant Of Walk On Spheres

To avoid branching, our delta tracking variant of WoS uses a special property of the Poisson
kernel Pσ,B of a screened Poisson equation when xk is at the ball center. Assuming σ > 0, and
letting |Gσ,B(x)| be the integral of Gσ,B over B(x, R) (Eq. A.14), we have

Pσ,B(xk, xk+1) =
1− σ|Gσ,B(xk)|
|∂B(xk, R)| . (5.11)

Since σ|Gσ(xk)| ∈ (0, 1) (see Eq. A.18), we can sample the boundary and volume terms with
probabilities P∂B := 1− σ|Gσ,B(xk)| and PB := 1−P∂B, yielding a non-branching estimator:
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ALGORITHM 4: DeltaTrackingWoS(x, ε)

Input: Starting position x ∈ Ω of random walk, and ε-shell.
Output: Single-sample MC estimate û(x) of Eq. 5.1 with Dirichlet conditions.

1: d, x ← ClosestPt(∂ΩD, x) ▷Compute distance to absorbing boundary ∂ΩD (Sec. 6.1)
2: if d < ε then return g(x) ▷Return boundary value g at closest pt x if x ∈ ∂Ωε

D

3: y ∼ Gσ,B(x, y)/|Gσ,B(x)| ▷Sample point y from Gσ,B inside ball B(x, d) (Sec. A.2.2)
4: Î f ← |Gσ,B(x)| · f (y)/

√
κ(x)κ(y) ▷Estimate contribution from source term f (Eq. 5.3)

5: if SampleUniform(0, 1) ≤ σ|Gσ,B(x)| then ▷Sample volume term

6: return
√

κ(y)
κ(x) ·

(
1− σ′(y)

σ

)
·DeltaTrackingWoS(y, ε) + Î f ▷Repeat from next walk position y

7: else ▷Sample boundary term
8: z ∼ 1/|∂B(x, d)| ▷Sample point z uniformly on ∂B(x, d)

9: return
√

κ(z)
κ(x) ·DeltaTrackingWoS(z, ε) + Î f ▷Repeat from next walk position z

The Delta Tracking Estimator

û(xk) :=


g(xk), xk ∈ ∂Ωε

D,
1

σ
√

κ(xk)
f ′(yk+1,

√
κ û), u ∼ U (0, 1) ≤ σ|Gσ,B(xk)|,√

κ(xk+1)/κ(xk) û(xk+1) otherwise.

(5.12)

σ′ (x)
σ

This estimator importance samples xk+1 and yk+1 via the densities
p∂B := 1/|∂B(xk, R)| and pB := Gσ,B(xk, yk+1)/|Gσ,B(xk)|, respectively.
Use of constant-coefficient kernels Pσ,B and Gσ,B is critical, as kernels
for the varying coefficient σ′(x) from Eq. 5.3 are not known in closed
form. However, spatial variation in σ′(x) is still accounted for by the
recursive source term f ′ (Eq. 5.6), which corresponds to probabilisti-
cally sampling null-events (Fig. 5.3, left). Alg. 4 provides pseudocode.

The coefficient σ is the only free parameter in this algorithm, and must be strictly positive to
ensure that PB > 0. In volume rendering one typically lets σ = max(σ(x)), which enables closed-
form sampling of volumetric events (absorption, scattering, or null scattering) and boundary
reflections. We instead let σ = max(σ′(x)) −min(σ′(x)), since in general σ′(x) can have both
positive and negative values at different points x ∈ Ω. More recent volume rendering research
treats σ as a control variate rather than a bound [77, 188], to reduce variance based on the profile
of the coefficients. In conjunction with clever choices for p∂B and pB, these strategies can be more
efficient than delta tracking; we leave such extensions to future work.

5.2.2 Next Flight Variant Of Walk On Spheres

The delta tracking variant of WoS takes more steps as σ increases (Fig. 5.4, left), since the Green’s
function becomes more localized (Fig. 2.4) and it becomes more likely that we sample a point in
the volume than on the boundary (PB > P∂B). Longer walks are ultimately more expensive, as
distance queries are usually the bottleneck for WoS (much like ray intersections in path tracing).

We hence propose a variant based on the next flight scheme of Cramer [44], which takes big
steps even when σ is large (Fig. 5.3, right). As usual we walk along points x0

0, x0
1, . . . sampled

from successive spheres ∂B(xk−1, R), always estimating both boundary and volume terms (P∂B =
PB = 1). But rather than start a new walk to the boundary for the volume term, we take a “short
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Figure 5.4: Left: As σ increases, the delta tracking variant of WoS requires more distance queries which reduces
run-time performance, while the number of queries for the next flight strategy remain unchanged. Right: For smaller
coefficients σ(x), next flight exhibits higher variance due to greater correlation among samples. For larger coefficients
σ(x) + 10, delta tracking exhibits more variance at equal compute time due to more distance queries.

off-center walk” x1
k , x2

k , . . . , xM
k within each ball B(x0

k , R), and re-use the estimate of the boundary
contribution at x0

k+1 for all steps in this short walk. An expression for this estimator is obtained
by recursively expanding the definition of û in the volume term of Eq. 5.10:

The Next Flight Estimator

û(x0
k) :=

1√
κ(x0

k)

(√
κ(x0

k+1) û(x0
k+1) T̂(x0

k , x0
k+1) + Î f (x0

k)

)
,

where T̂(x0
k , z) :=

M

∑
j=0

Pσ,B(xj
k, z)

p∂B(z)

j−1

∏
l=0

W(l),

Î f (x0
k) :=

M

∑
j=1

f (xj
k)√

κ(xj
k) (σ− σ′(xj

k))

j−1

∏
l=0

W(l),

W(l) :=
Gσ,B(xl

k, xl+1
k ) (σ− σ′(xl+1

k ))

pB(xl+1
k )

. (5.13)

For each point xl
k, the subscript k indexes steps in the walk; the superscript l indexes points

along the short walk in B(x0
k , R). The number of terms M is determined by using the throughput

∏
j−1
l=0 W(l) as a probability for Russian roulette. Parameters σ, pB and p∂B are the same as in

Sec. 5.2.1, but the Green’s function Gσ,B and Poisson kernel Pσ,B must now be either evaluated or
sampled using general off-centered formulas (App. A.2.2). Alg. 5 provides pseudocode.

A key benefit of next flight is that additional distance queries are not needed to evaluate T̂ and
Î f within B(xk, R). However, decreased computation comes at the cost of increased correlation
and variance in T̂ from reuse of û(xk+1) and evaluation of off-centered kernels; see Fig. 5.4 (right).

5.3 Extensions

5.3.1 Spatial Gradient

Applications often require computing not just the solution to a PDE, but also the spatial gradient
of the solution. Fortunately, estimating the gradient of Eq. 5.9 adds virtually no cost on top of
estimating the solution itself. In particular, either of our variable-coefficient WoS algorithms can
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ALGORITHM 5: NextFlightWoS(x, ε)

Input: Starting position x ∈ Ω of random walk, and ε-shell.
Output: Single-sample MC estimate û(x) of Eq. 5.1 with Dirichlet conditions.

1: d, x ← ClosestPt(∂ΩD, x) ▷Compute distance to absorbing boundary ∂ΩD (Sec. 6.1)
2: if d < ε then return g(x) ▷Return boundary value g at closest pt x if x ∈ ∂Ωε

D

3: T̂ ← 0, Î f ← 0, W ← 1 ▷Initialize series from Eq. 5.13
4: z ∼ 1/|∂B(x, d)| ▷Sample point z uniformly on ball boundary ∂B(x, d)
5: xc ← x ▷Initialize temporary variable xc to track walk position
6: while True do ▷Perform “off-center walk” inside B
7: T̂ ← T̂ + |∂B(x, d)| · Pσ,B(xc, z) ·W ▷Accumulate boundary contribution
8: PRR ← min(1, W) ▷Compute survival probability (Sec. 3.1.1)
9: if PRR < SampleUniform(0, 1) then break ▷Attempt to terminate walk using Russian roulette

10: W ←W/PRR ▷Update path throughput with survival probability
11: xl ∼ 1/|B(x, d)| ▷Sample next walk position xl inside B
12: W ← |B(x, d)| · Gσ,B(xc, xl) · (σ− σ′(xl)) ·W ▷Update path throughput
13: Î f ← Î f + f (xl) ·W/

√
κ(xl) · (σ− σ′(xl)) ▷Accumulate source contribution

14: xc ← xl ▷Update current walk position
15: return 1√

κ(x)

(√
κ(z) ·NextFlightWoS(z, ε) · T̂ + Î f

)
▷Repeat from next walk position z

be used to evaluate the following integral expression for ∇xu(x) in a ball B(x, R):

∇xu(x) =
1√
κ(x)

(∫
∂B(c,R)

∇xPσ,B(x, z)
√

κ(z) u(z)dz +
∫

B(c,R)
∇xGσ,B(x, y) f ′(y,

√
κ u)dy

)
− u(x)

2κ(x)
∇xκ(x). (5.14)

Similar to Sec. 3.2.5, the value of ∇xu(x) only needs to be estimated for the first ball in any
walk—the solution values u, on ∂B and inside B, that the gradient estimate depends on can be
computed recursively using the delta tracking or next flight estimator. The parameters σ, pB, p∂B,
PB and P∂B remain unchanged from Sec. 5.2 with either estimator.

5.3.2 Reflecting Boundary Conditions

It is straightforward to show how reflecting boundary conditions change under a Girsanov trans-
formation. For instance, assume the normal derivative ∂u/∂n = h is prescribed in Eq. 5.1 on a
Neumann boundary ∂ΩN. Moreover, from Eq. 5.3, we know that the function U(x) =

√
κ(x)u(x)

solves a variable screened Poisson equation. Computing its normal derivative yields

∂U(x)
∂nx

+ µ′(x)U(x) = h′(x), (5.15)

where µ′(x) := −1
2

∂ ln(κ(x))
∂nx

and h′(x) :=
√

κ(x) h(x).

A delta tracking or next flight variant of the walk on stars estimator from Ch. 4 could in prin-
ciple deal with the Robin boundary conditions in Eq. 5.15, and simultaneously resolve spatial
variability in the PDE coefficients (repeating the derivation in Sec. 5.1 gives an integral expres-
sion similar to Eq. 5.9). However, the Robin coefficient µ′ in this scenario is not a strictly positive
function, which is a key assumption made with the WoSt estimator in Sec. 4.3. We leave a general
treatment of variable-coefficient PDEs with reflecting boundary conditions to future work.
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Chapter 6

Solver Implementation & Tuning

Similar to a scene in a renderer, a PDE is encoded by a description of the domain boundary ∂Ω,
boundary conditions g, h, ℓ (Eq. 2.1), source term f , and PDE coefficients κ, #»ω, σ (Sec. 2.1.1 &
App. E). We implement inputs as arbitrary callback routines that return a value for any query
point x ∈ Ω. Unlike conventional solvers such as FEM and finite differences, problem inputs need
not be discretized or approximated in a finite-dimensional basis. The gradient and Laplacian of
the coefficients κ(x) and #»ω(x) (Eq. 5.3 & E.8) can be evaluated via any standard technique
(e.g., automatic differentiation), while the bounding parameter σ := max(σ′(x))−min(σ′(x)) is
computed as in volume rendering [188], e.g., by regular, random or progressive sampling [169].

Figure 6.1: Bézier curves with two-
sided boundary conditions and a
source term (left) define a diffusion
curve image (right). Monte Carlo
allows us to zoom in on a region of
interest without computing a global
solution; there is no loss of fidelity,
as curves are not discretized.

In this chapter, we describe how
to efficiently implement the geomet-
ric queries on ∂Ω needed by the walk
on spheres and walk on stars algo-
rithms (Sec. 6.1 & 6.2). In Sec. 6.3,
we detail the impact of the ε-shell pa-
rameter on the estimated PDE solu-
tion with Dirichlet, Neumann or Robin
conditions, and discuss convergence
with increasing number of walks. We
also provide a reference implementa-
tion of these PDE estimators in an
open-source solver called Zombie [222]
(in homage to “random walks”).

All estimators can evaluate the so-
lution and its gradient at arbitrary
points in the domain without a global
solve. Since values are estimated inde-
pendently at each point, the implemen-
tation is embarrassingly parallel and output-sensitive, i.e., the solve can be performed at any reso-
lution locally (Fig. 1.9, 6.1, 8.4 & 8.6), rather than always on the entirety of a background grid.
Moreover, as in rendering, we can progressively increase the number of walks per point to gen-
erate a “preview” that can be subsequently refined (Fig. 1.2, 1.9 & 4.2). This approach provides a
fast iteration cycle (Fig. 6.2 shows an example where the geometry and boundary conditions are
edited interactively), and is especially valuable when working with massive models (Sec. 8.1).

6.1 Closest Point Queries For Walk On Spheres

To find an empty ball B(x, R) around a given point x ∈ Ω for the WoS algorithms in Sec. 3.2
and Ch. 5, we need only determine the distance R to the closest point x ∈ ∂Ω, or a conservative
underestimate of this distance. As detailed here, such distances are easily computed for a wide
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ALGORITHM 6: ClosestPt(T ← Bvh(∂ΩD), x, x ← null, d← ∞, dmin
T ← 0)

Input: Bounding volume hierarchy T, query point x ∈ R3, closest point x to be determined,
current estimate d for distance, and minimum distance dmin

T to T’s axis aligned bounding
box from x (dmin

T = 0 when x ∈ T.aabb).
Output: Distance to ∂ΩD, and closest point on ∂ΩD.

1: if dmin
T > d then return d, x ▷Ignore current BVH node if it is further than d

2: if T.isLeaf then
3: for t in T.triangles do
4: dt, xt ← ClosestPt(t, x) ▷Compute closest pt xt on triangle t from x [62, Sec. 5.1.5]
5: if dt < d then d, x ← dt, xt ▷Update d and x if xt is closer than d
6: else
7: visitLeft, dmin

left , dmax
left ← Intersect(T.left, x, d) ▷Check if left aabb intersects ball B(x, d)

8: if visitLeft then d← min(d, dmax
left ) ▷d cannot be greater than max distance to left aabb

9: visitRight, dmin
right, dmax

right ← Intersect(T.right, x, d) ▷Check if right aabb intersects ball B(x, d)
10: if visitRight then d← min(d, dmax

right) ▷d cannot be greater than max distance to right aabb

11: if visitLeft and visitRight then
12: if dmin

left < dmin
right then ▷Visit closer node first

13: d, x ← ClosestPt(T.left, x, x, d, dmin
left )

14: d, x ← ClosestPt(T.right, x, x, d, dmin
right)

15: else
16: d, x ← ClosestPt(T.right, x, x, d, dmin

right)
17: d, x ← ClosestPt(T.left, x, x, d, dmin

left )

18: else if visitLeft then d, x ← ClosestPt(T.left, x, x, d, dmin
left ) ▷Visit left node

19: else if visitRight then d, x ← ClosestPt(T.right, x, x, d, dmin
right) ▷Visit right node

20: return d, x

variety of shapes; multiple shapes can be combined by taking the minimum over all per-shape
distances, or more generally, by applying Boolean operations (discussed below).

Closest point queries (CPQs) can be accelerated via a spatial hierarchy [203, Ch. 4]. Relative
to ray tracing [197, 259], there has been little work on high-performance CPQs [138, 232, 273, 287],
though recent GPUs provide opportunities for massive acceleration [260]. We employ an axis-
aligned boundary value hierarchy built using the surface area heuristic (SAH) [261], via the FCPW
library [220]—unlike ray tracing, oriented bounding volumes [62, 143] can provide more effective
culling, and hence further speedups. Alg. 6 provides pseudocode for closest point traversal
with a binary BVH containing triangle primitives. The queries described in Sec. 6.2 for WoSt
will follow the same basic traversal strategy (Alg. 9), but will use slightly modified criteria to
determine whether a node in the hierarchy should be visited (Alg. 10).

Polygon Soup. Real-world geometry is often given as a list of polygons without explicit con-
nectivity, and which satisfies no special conditions (manifold, orientable, etc.). We can solve PDEs
with Dirichlet conditions directly on such “polygon soups” by taking the closest point among all
polygons. Rather than attempt to fix cracks, holes, and self-intersections [8, 233], we simply solve
an exterior problem (Sec. 3.2.4), as shown in Fig. 1.7 (right). Note that in contrast to generalized
winding numbers [114], the input need not meet any special conditions on orientation.
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Parametric Curves & Surfaces. We use the method of Chen et al. [37] to compute closest points
on 2D cubic Bézier curves. Such a representation is attractive for illustration tools (e.g., Illustrator
or Inkscape), as it avoids mesh generation and quantization error (consider Fig. 6.1 & 8.7). Closest
points can also be computed directly for NURBS and subdivision surfaces [58, 158, 249].

Implicit Surfaces. Many shapes are concisely described by the zero level set of a function
ϕ : RN → R. When ϕ is a signed distance function, the size of the largest ball around x is
simply |ϕ(x)|. More generally, conservative estimates of the distance to an implicit surface can
be obtained by bounding the gradient |∇ϕ|, which in turn gives a Lipschitz constant for ϕ [97,
Theorem 1]. A rich variety of shapes can be described this way [97, Table 1]; Fig. 1.7 (left) shows
a smooth blend between two tori.

edit 1: geometry & boundary edit 2: PDE coe�icients

solution

Figure 6.2: Our Monte Carlo approach operates directly
on the original scene representation (here, signed distance
fields composed via CSG operations), and provides instant
feedback after updates to the scene geometry and boundary
conditions (edit 1) or PDE coefficients (edit 2).

Booleans. Boolean operations are used to
concisely encode complex models, via con-
structive solid geometry (CSG) [209]. Tremen-
dous effort has been put into developing ro-
bust mesh booleans [19, 200, 281], but they gen-
erally remain expensive and error prone, can-
not be mixed with other geometric representa-
tions, and still require meshing of the domain
interior. In contrast, ray tracing can evaluate
booleans via simple arithmetic on intersection
distances [212]. We can likewise combine clos-
est point distances to solve PDEs with Dirich-
let boundary conditions directly on boolean
arrangements (Fig. 1.7 & 6.2). We refer to Hart
[97, Table 1] for operations on distances needed for both hard booleans and soft “blends”.

6.2 Accelerated Geometric Queries For Walk On Stars

In general, WoSt works with any boundary representation that supports the following queries:

1. closest point queries on ∂ΩD,

2. closest silhouette point queries on ∂ΩN,

3. star region radius queries on ∂ΩR,

4. ray intersection queries against ∂ΩN and ∂ΩR, and

5. point sampling queries on ∂ΩN and ∂ΩR.

Since none of these queries require the boundary to have a well-defined inside and outside, ∂Ω
need not be watertight, and can have cracks, holes, or self-intersections—see in particular App.
B for a discussion of open domains and double-sided boundary conditions.

In principle, these queries could be evaluated for, say, spline patches or implicit surfaces
(as in Sec. 6.1); we focus exclusively on triangle meshes here. In particular, ray intersections
are standard in computer graphics, and can be accelerated using a BVH (just like CPQs). Sec.
6.2.1 describes the closest silhouette point query for Neumann boundaries. The star region radius
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Figure 6.3: Left: An optimized procedure for finding silhouettes should avoid visiting finely-tessellated geometry that
is entirely front- or back-facing relative to the query point. Right: A SNCH tests for a pair of mutually orthogonal
directions in a view cone and a node’s normal cone to determine whether the node contains a silhouette edge on the
Neumann boundary. The geometry inside the node can be skipped if no such pair of directions is found.

query for Robin boundaries, detailed in Sec. 6.2.2, functions as a CSPQ when the Robin coefficient
µ = 0, and as a CPQ when µ = ∞. For intermediate values of µ, this query has additional aspects
unique to Robin conditions, which we highlight in green in Alg. 8 & 10. The point sampling
query (Alg. 11) is designed to sample known Neumann data h and Robin data ℓ on reflecting
boundaries, and is discussed in Sec. 6.2.4.

All queries use a spatial hierarchy to visit only a small fraction of the triangles on the bound-
ary of the input domain; our basic approach is to build a spatialized normal cone hierarchy (SNCH)
[119] by adding normal information to the BVH already used by WoS. In particular, we use a
standard BVH to perform CPQs on the Dirichlet boundary, and a separate SNCH for queries on
the Neumann and Robin boundaries, using normal information only for queries 2 & 3. In prac-
tice, all queries needed to implement WoSt on triangle meshes are supported by the open-source
FCPW library [220]; see also App. F for pseudocode.

6.2.1 Closest Silhouette Point Query For Neumann Boundaries

The silhouette of a triangle mesh, relative to a given direction v, occurs along a set of edges e that
satisfy a local silhouette condition. In particular, e is a silhouette edge if for each distinct pair of
triangles containing e,

(v · n1) · (v · n2) ≤ 0, (6.1)

ee e

e e

silhoue�e

not silhoue�e

n1 n2

where n1, n2 are consistently oriented normals (see inset). Note in par-
ticular that every boundary edge is a silhouette edge. A naı̈ve strategy
for finding the closest silhouette edge is to use a BVH to locate the
closest point to x on all edges, skipping edges not contained in the sil-
houette. However, this strategy is highly inefficient when BVH nodes
contain large, finely-tessellated regions that are all front- or back-facing
(Fig. 6.3, left): here each edge is examined (and rejected) exhaustively,
whereas ideally the whole node should simply be culled.

Spatialized Normal Cone Hierarchy

To improve scaling, we hence augment our BVH with information about the orientation of the
geometry inside each node. In particular, we adopt the spatialized normal cone hierarchy of
Johnson and Cohen [119]. Each node of a SNHC stores not only an axis-aligned bounding box
(AABB), but also a normal cone. The cone axis is the average normal of all triangles in the node,
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and the cone half angle θ is the maximum angle between the axis and any triangle normal (Fig.
6.3, right). Normal cones can be assembled during BVH construction. We use the surface area
heuristic; performance could possibly be further improved via the surface area orientation heuristic
(SAOH) of Conty Estevez and Kulla [39, Sec. 4.4], which clusters primitives according to both
proximity and alignment.

Closest Silhouette Point Traversal

To perform a silhouette query on ∂ΩN, we traverse the SNCH in depth-first order (Alg. 9). For
each node in this traversal we build a view cone rooted at x. The cone’s axis points toward the
center of the node, and its half-angle tightly bounds the AABB (Fig. 6.3, right); we then check if
the view cone and the node’s normal cone contain a pair of mutually orthogonal directions. If
this test fails, all triangles in the node must be front- or back-facing relative to the query point,
and the node can be skipped. In the context of WoSt, an upper bound on the size of a star-shaped
region St(x, R) is given by the distance dDirichlet from x to the Dirichlet boundary (Sec. 4.2.2). To
further improve query efficiency we can hence restrict the search to the radius Rmax = dDirichlet.

6.2.2 Star Region Radius Query For Robin Boundaries

The naı̈ve approach for computing the radius of a star-shaped region on ∂ΩR is to first perform
a CSPQ relative to a query point x, and then to loop over all triangles within the radius returned
by the CSPQ, estimate the upper-bound on the radius for each triangle t (Eq. 4.11), and take
the minimum of these bounds. Before we describe how to accelerate this computation using an
SNCH, we observe that the radius bound does not have to be approximated numerically for any t.
We can instead compute a tight bound using the maximum coefficient value µmax := max(µ(z))1

over all points z ∈ t, and a distance h from x to the plane t lies on. In particular, letting r = h/cos θ

in Eq. 4.11, we have:

R ≤ µmax h2

µmax h cos θ − cos3 θ
when cos θ ≤

√
µmax h. (6.2)

We now minimize this equation by taking its derivative with respect to cos θ, and setting it to
zero. This gives an analytical expression

√
µmaxh/3 for the cosine. We clamp this expression

between the minimum and maximum cosine values achieved at the closest and farthest points
on t (respectively), and plug it back into Eq. 6.2 to compute the radius bound for t. Alg. 8

provides pseudocode.

6.2.3 Accelerating Star Region Queries

Not every triangle in a mesh needs to be visited to compute the radius of a star-shaped region.
In fact, as we search for the minimum upper-bound on the radius over all triangles, we can skip
over large parts of ∂ΩR where the geometry is entirely front- or back-facing relative to the query
point x (akin to a CSPQ). The only alteration we make to the SNCH from Sec. 6.2.1 is to also
store minimum and maximum Robin coefficient values over all triangles in a node.

1Using µmax to compute the radius bound for a triangle does not alter the original problem description—the WoSt
estimator will still treat µ(z) as spatially-varying over the triangle when computing reflectance in Alg. 3, line 1.
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Query Traversal. Similar to Eq. 6.2, we compute conservative radius bounds for the nodes we
visit during traversal, using the spatial, angular, and coefficient information available in a SNCH
node (Alg. 10, lines 7-10). We also build a view cone rooted at x to compute the bounds, via Eq.
4.11. We then decide whether a node with only front or back-facing triangles can be skipped, by
checking if our minimum bound for the node is larger than the current estimate of the radius for
the star-shaped region (Alg. 9, line 1). We also use our maximum bound for the node to shrink
the radius estimate (Alg. 9, lines 7 & 9). If instead the node contains a geometric silhouette
(Alg. 10, line 4), we must traverse the node just as with a CSPQ, since Eq. 4.11 only applies to
star-shaped regions which can be no larger in size than the distance returned by a CSPQ.

6.2.4 Point Sampling Query

Recall that for problems with nonzero Neumann and Robin conditions, we sample points on
∂ΩN and ∂ΩR respectively (Sec. 4.2.3). To increase the likelihood that these points lie on ∂StN
and ∂StR, we adopt a hierarchical importance sampling strategy used in rendering to accelerate next-
event estimation [39]. In particular, during each step of a BVH traversal, we select only a single
random child whose AABB intersects St(x, R). To give preference to nodes closer to the query
point x, we sample according to the free-space Green’s function GRN

(Alg. 12, lines 11-14), rather
than the Green’s function for a ball (which becomes negative outside St(x, R)). Once we reach a
leaf node, we uniformly sample a point from the leaf triangles with respect to surface area (Alg.
11, line 3). This point is not guaranteed to lie on ∂StN or ∂StR, but is much more likely to do so
compared to uniformly sampling all of ∂ΩN or ∂ΩR (respectively). Conty Estevez and Kulla [39,
Sec. 5.4] describe further improvements to this traversal strategy.

6.3 Epsilon Parameter & Convergence Of Estimators

Our solvers use a single parameter to control the thickness of the epsilon shell ∂Ωε, irrespective
of the type of boundary condition prescribed on ∂Ω. This parameter trades bias in the solution
estimate with the number of steps in a random walk, and in general requires little-to-no hand-
tuning, as bias drops predictably with decreasing values of ε.

Dirichlet Boundary. Early stopping extends boundary values into an epsilon-neighborhood
∂Ωε

D, and the solution in turn exhibits a small bias toward these values. Dirichlet boundary
conditions are hence still enforced with the given data, but the location of enforcement may be
off by a tiny distance ε. Though in principle bias can be completely eliminated via a Green’s
function first passage approach [81, 159], a pragmatic solution is to simply use a small value of ε.

In practice, an accurate solution is obtained for fairly large ε values, even in the presence of
tiny features (Fig. 6.4). Importantly, arbitrarily small geometric features will always appear in
the solution, since there will always be evaluation points x in their Voronoi region, independent
of ε. Moreover, such features will still have a global effect on the solution, since a random walk
has a nonzero probability of reaching any boundary component of finite size. The only potential
problem is if spacing between features is smaller than ε, which is easily avoided by (universally
or adaptively) using a small ε. Note that shrinking ε by a few orders of magnitude does not
significantly increase cost due to the exponential shrinking of balls [22]. In contrast, mesh-
based solvers can eliminate small features entirely, and their time/memory cost often blows up
dramatically with smaller tolerances ε (Fig. 1.3, 8.1, 8.4 & 8.10).
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steps/walk: 1.00 steps/walk: 1.05 steps/walk: 3.08
ε = 10−1 ε = 10−2 ε = 10−3

steps/walk: 10.5 steps/walk: 13.8      steps/walk: 17.2
ε = 10−4 ε = 10−5 ε = 10−6

Figure 6.4: Tiny features are preserved for any value of ε. For very large values of ε, WoS algorithms jump to
the closest point, producing a Voronoi-like solution (left). Decreasing ε quickly eliminates any bias. Since small ε
values do not significantly increase the average number of steps per walk, it is generally unnecessary to hand-tune
this parameter. (Note that if the box above represents a domain 1 meter in width, then 10−4 is about the width of a
human hair; small bacteria are on the order of 10−6.)
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Figure 6.5: WoSt uses an ε-shell to also ensure that ran-
dom walks make progress near concave parts of a reflect-
ing boundary. Walks generally converge faster with larger
values of ε, with run-time improvements outweighing the
relative increase in bias.

Neumann And Robin Boundaries. Enforc-
ing a minimum radius on the size of a star-
shaped region (Sec. 4.2.2) also incurs bias near
concave parts of ∂ΩN and ∂ΩR. This bias man-
ifests as a global darkening of the estimated
solution as ε is increased. Fig. 6.5 exam-
ines the effect of this parameter on a Neu-
mann problem—compared to Dirichlet con-
ditions, here the performance-bias tradeoff is
more sensitive to values of ε. However as
before, the relative rate at which bias grows
with increasing ε values is outweighed by the
performance improvement from walks taking
larger steps on ∂ΩN, and terminating faster
on ∂ΩD. Adaptively picking ε based on local
boundary curvature should yield better per-
formance and lower bias.

Fig. 6.6 examines the impact of ε on
a Robin problem with both more absorbing
(µ > 1) and more reflecting (µ < 1) bound-
ary conditions—in the limit, we recover the affect of ε on pure Dirichlet and Neumann problems
respectively. In all other experiments, we scale models to fit in a unit sphere, and use ε = 0.001
with all boundary conditions.

Convergence. All PDE estimators from Ch. 3–5 exhibit the expected O(1/
√

N) Monte Carlo
rate of convergence with respect to the number of walks N (Sec. 3.1), suggesting that any bias
from the sole ε-shell parameter has little impact on overall accuracy; see Fig. 5.4, 6.6, 8.2, 8.14,
8.16 & 8.17. In general, variance tends to be larger (but still predictable) with recursive estimation
of higher-dimensional integrals, i.e., it is larger in regions where walks are longer—examples
include Neumann dominated problems (Fig. 8.17, bottom center), and PDEs with high spatial
variability in their coefficients (Fig. 7.20). We describe variance reduction strategies for these
estimators in the next chapter, which do not increase the rate of convergence, but they do lower
the magnitude of the error in the estimated results (e.g., Fig. 7.4, 7.17 & 7.20).
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Figure 6.6: Top two rows: For more reflecting Robin boundaries with smaller coefficients µ, bias manifests as a
global darkening in the solution estimate for large ε. Bottom row: For more absorbing Robin boundaries with larger
coefficients µ, a large ε-shell extends prescribed boundary values further into the domain interior, similar to the bias
observed with pure Dirichlet problems.
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Chapter 7

Variance Reduction

Like any other Monte Carlo method, we can reduce the noise in our PDE estimators by simply
taking more samples, i.e., by performing more random walks from an evaluation point. However,
in many application scenarios, the solution must be estimated within a fixed time constraint, or
using a given sample budget. Therefore, it is often not enough to just design Monte Carlo
estimators—we must also look for ways to make them more efficient (Eq. 3.5).

In this chapter, we develop several variance reduction strategies for the estimators developed
in Ch. 3–5, by leveraging the special structure of integral equations corresponding to elliptic
PDEs. Some of these strategies are inspired by analogous methods in Monte Carlo rendering as
the integrals share similarities (e.g., Sec. 7.1, 7.4, 7.5 & 7.6), while others are specifically designed
for elliptic equations (e.g., Sec 7.2, 7.3 & 7.7). Most strategies are complementary to each other
(and can hence be used in conjunction), as they target different facets of our estimators. Though
we achieve noticeable improvement in estimation quality here, there remains significant scope
for further variance reduction—as will be discussed in Ch. 9.

7.1 Importance Sampling Of Source Terms

x
y

Figure 7.1: Uniform (left) vs
importance sampling (right)
of the Green’s function.

Recall that the integral formula for a Poisson equation involves a term∫
B(x,R) GB(x, y) f (y)dy, where GB is the harmonic Green’s function on

B(x, R). One way to importance sample this term is to simply draw
y from the distribution pB := GB/

∫
B(x,R) G(x, y)dy, as previously dis-

cussed in Sec. 3.2.1. Such samples can be generated via standard
techniques, e.g., rejection sampling (App. A.1.2 & A.2.2); in 3D we use
Ulrich’s polar method [54, Section 9.4]. In principle, one could extend
this strategy to PDEs where the Green’s function can only be tabulated
numerically, akin to importance sampling of measured BRDFs [145].

We can also sample the source term f . An important case is a point source fz := cδz, where
c ∈ R is a constant, and δz is the Dirac delta centered at a point z ∈ Ω. If a single δz is inside the
current ball B(x, R), we can use an importance density pB = δz, yielding the estimator

GB(x, y) f (y)
pB(y)

=
GB(x, y) cδz(y)

δz(y)
= cGB(x, z), (7.1)

i.e., just use a single sample at y = z. Similarly, consider a curve source fγ := cδγ, where δγ is the
(1-Hausdorff) measure of a curve γ ⊂ Ω, and c is a function along γ. When γ intersects B, we
can sample points y1, . . . , yM uniformly from γB := γ ∩ B, and use the estimator

|γB|
1
M

M

∑
i=1

c(yi)G(x, yi). (7.2)

Alternatively, one can just uniformly sample the whole curve γ, and drop the contribution of
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Figure 7.3: Here we use multiple importance sampling [252] of the Green’s function Gσ,B and source term f to
robustly sample screened Poisson equations for different coefficient values σ with area sources of varying size.
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Figure 7.2: Source terms can be importance sampled by
randomly picking points on the source where it is non-zero,
restricted to the current ball in a random walk. Without
importance sampling, only the area source fA would ap-
pear on the right; the point source fz and curve source fγ

would never get sampled.

points outside B. This strategy is easily gen-
eralized to any m-dimensional subset; Fig. 7.2
shows an example.

The importance sampling strategies de-
scribed above, with GB and f as the sampling
densities, can also be combined using multiple
importance sampling [252], as in Fig. 7.3. We
note that Monte Carlo is often better suited
than quadrature methods for integrands with
singularities—importance sampling can be ap-
plied to handle such integrands effectively,
even in situations where there is no analytic
transformation to remove the singularity.

7.2 Control Variates

B(x , R )

x0ϕ

ϕ − ϕ̃

Suppose we let ϕ̃ be a low-order Taylor approximation of ϕ in Eq. 3.7
around some point x0. Then the function ϕ − ϕ̃ will look “flat” in a
small neighborhood of x0, and estimating it will yield low variance.
This control variate is useful for WoS estimators, which seek to inte-
grate a function over a typically small sphere or ball. It also applies
to WoSt if we use an empty ball, in place of a star-shaped region, for
just the first step of a random walk. Though we do not know the
terms of the Taylor series a priori, we can use running derivative estimates to get an increasingly
good guess. In fact, when both the solution and gradient strategies decribed below are used in
conjunction, they reinforce each other: the variance of the solution estimator is reduced by the
gradient estimate, and vice versa. In practice, we use these two strategies for all PDEs.

Control Variate For Solution

For a PDE with solution u, let ∇̂uk(x0) be the running estimate of the gradient for the first k
walks at x0 (computed as in Sec. 3.2.5). Since the linear term ∇u(x0) · (x− x0) in the Taylor series
for u(x0) integrates to zero over any ball around x0 (i.e., c = 0 in Eq. 3.7), we can replace an
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Figure 7.4: Control variates provide modest variance reduction for the solution, but become more important for higher
derivatives of the solution. Here we plot the Hessian’s principal values and axes as ellipses; notice that variance is
higher near the boundary, and axes are harder to estimate in regions where the Hessian has small magnitude.

existing WoS estimator û with

1
N

N

∑
i=1

û(xi
1)− ∇̂ui−1(x0) · (xi

1 − x0), xi
1 ∼ U (∂B(x0, R)), (7.3)

where xi
1 denotes the first step in the ith walk. Note also that the estimate ∇̂ui−1 is statistically

independent of the ith walk. In practice even this simple strategy can help reduce variance—see
for example Fig. 7.4.

Control Variate For Gradient

Variance reduction for derivatives is especially important, since differentiation amplifies high
frequencies. Our control variate strategy for the gradient is complementary to the one for the
solution: let ûk(x0) be the running estimate of the solution u(x0) for the first k walks. Then we
can replace the gradient estimate for the boundary term (Eq. 3.18) with

d
R

1
N

N

∑
i=1

(û(xi
1)− ui−1(x0)) · nxi

1
. (7.4)

Since by symmetry the normal nxi
1

integrates to zero over a sphere, the expected value of the
estimator is unchanged (i.e., c = 0), but the variance is typically lower as the control variate
approaches the true value of u(x0). Likewise, if fk := 1

k ∑k
i=1 f (yi) is the running average of

source values sampled from the initial ball, then we can subtract this value from f (y) in our
estimator for the initial source term in Eq. 3.14.

This strategy parallels methods used in reinforcement learning [245, Section 13.4], and is
related to techniques used on discrete grids [183]. We refer to Rioux-Lavoie et al. [211, Sec. 4] for
an antithetic variate strategy (Sec. 3.1.1) for the gradient estimator, which can be used alongside
our control variate to reduce variance even further. Both strategies are particularly effective when
estimating the gradient in the vicinity of the domain boundary, where the ball size is smaller.
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Control Variate For Hessian

Control variates can also be applied to higher-order derivatives. For example, in the ith term of
our Hessian estimator for the boundary integral (Eq. 3.23), we can replace û(xi

1) with

û(xi
1)− ûi−1(x0)− ∇̂ui−1(x0) · (xi

1 − x0). (7.5)

Alanko and Avellaneda [3] discuss a similar approach for grids. Note that both running sums
have already been computed for the source and gradient control variates—these could now be
further improved via the Hessian estimate. Fig. 7.4 shows the effect on variance, which is about
7x lower than the baseline estimator from Eq. 3.23.

7.3 Tikhonov Regularization

Neumann

-1.5 +1.5
  avg. steps:1890   avg. steps:189   avg. steps:19

    Tikhonov
regularization     25 unbiased steps

     before Tikhonov
       regularization

reference
 solution

σ = 0.1 σ = 1 σ = 10

Figure 7.5: Top: A small Tikhonov parameter σ yields
long walks and high variance, while larger σ values pro-
duce shorter walks with less noise but more bias. Bot-
tom: Since the solution is often well-resolved by short
walks, we apply regularization only to walks longer
than a given length—yielding lesser noise and bias.

The solution to a Poisson equation with pure
Neumann conditions is determined only up to
an additive constant. When we solve such a PDE
with WoSt, we observe that high frequency de-
tails in the PDE solution are often resolved by
the first few steps of a random walk, while the
contribution from later steps is closer to con-
stant; see Fig. 3.6. As mentioned in Sec. 4.2,
we use Tikhonov regularization (Sec. 3.2.6) to
more effectively handle such problems—Fig. 7.5
shows this approach provides estimates without
much noise or bias even with substantial regu-
larization, while ensuring walk length is not un-
bounded.In general, the number of steps needed
to resolve the solution is problem-dependent,
and more steps are typically needed when the
solution has low-frequency global features.

7.4 Adaptive Sampling And Denoising

Elliptic PDEs have highly regular solutions away from the source and boundary. Conventional
methods exploit this behavior by interpolating over a mesh; we can likewise interpolate over
scattered samples to dramatically reduce cost. For instance, in Fig. 7.7 (center), we use simple
Poisson disk sampling [30] and moving least squares (MLS) interpolation [181]. To avoid “bleeding”
artifacts, we shoot rays to exclude neighbors not visible from sample points. There are plenty of
opportunities for improvement and acceleration (e.g., via fast multipole methods [244]); note that
all interpolation schemes introduce bias (including standard nodal interpolation in FEM).

We can also use adaptive sampling to concentrate effort on interesting regions. For instance,
Fig. 7.7 (right) applies a simple scheme in the spirit of irradiance gradients [265]: we first estimate
the solution and gradient at a set of seed points. Then, for any candidate sample x, we evaluate
a 1st-order Taylor approximation û(yi) + ⟨∇̂u(yi), x− yi⟩ for the k nearest neighbors y1, . . . , yk of
x. If the sample variance (Eq. 3.4) divided by the mean is above a threshold α > 0, we estimate
the value and gradient at x and add it to the set. More sophisticated strategies from rendering
provide ample inspiration for future work [288].
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boundary conditions sampling pa�ern (uniform) sampling pa�ern (adaptive)

reference solution uniform (100x fewer samples) adaptive (100x fewer samples)

Figure 7.7: Just as mesh-based methods interpolate solution values at a few sparse points, we can rapidly visualize
solutions to PDEs via scattered data interpolation. Here we solve a Laplace problem using either uniform or adaptive
sampling and simple MLS interpolation. Adaptive sampling better resolves high-frequency boundary conditions.

4wpp denoising
(<1s)

reference

Figure 7.6: Even for a small number of walks per pixel
(left), techniques for denoising renders (center) closely
match the reference solution (right), further increasing
efficiency—especially for PDEs with smooth solutions.

Techniques for denoising rendered images
[123, 137, 189, 190, 213, 226] also translate well
to the PDE setting. For instance, in Fig. 7.6,
we apply Intel’s deep learning-based Open Im-
age Denoise algorithm [112], using the bound-
ary value at the closest point in place of the
albedo map (no other results in this work use
denoising). Training such a network on PDE
data, rather than rendered images, should fur-
ther reduce bias and improve performance.

7.5 Boundary Value Caching

Grid-free Monte Carlo methods such as walk on spheres independently estimate the solution at
every point, and hence do not take advantage of the high spatial regularity of solutions to elliptic
problems. Here we describe a fast caching strategy [166] for the boundary integral

α(x) u(x) =
∫

∂Ω
PRd

(x, z) u(z) + GRd
(x, z)

∂u(z)
∂nz

dz︸ ︷︷ ︸
=: u∂Ω(x)

+
∫

Ω
GRd

(x, y) f (y)dy︸ ︷︷ ︸
=: uΩ(x)

(7.6)

of a (screened) Poisson equation in a domain Ω, where PRd
and GRd

are free space functions,
rather than functions for the ball. To make use of this BIE, one must somehow determine the
unknown boundary data: Dirichlet values u on the Neumann boundary ∂ΩN, Neumann values
∂u/∂n on the Dirichlet boundary ∂ΩD, and both, or one of, u and ∂u/∂n on the Robin boundary ∂ΩR.
Schemes such as the boundary element method use a finite-dimensional space of functions on the
boundary (e.g., basis functions associated with mesh nodes), and solve a dense, globally-coupled
linear system for the best approximation to the true solution.
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Figure 7.8: We obtain far smoother results with BVC com-
pared to directly using pointwise estimators like WoSt at
equal time. BVC uses the same boundary samples to de-
termine the PDE solution across the domain.

reference BVC WoSt

Neumann Dirichlet

gradient equal time

Figure 7.9: BVC gradients have considerably less noise
compared to pointwise estimates, as they use known val-
ues of ∂u/∂n on the Neumann boundary. In contrast, WoSt
gradients become noisier away from the Dirichlet bound-
ary, as estimation requires longer random walks.

BVC takes a completely different ap-
proach, and instead uses WoSt to compute the
unknown boundary values. It hence avoids
global solves, boundary remeshing, and ap-
proximation of the function space; unlike
BEM, it also handles the source term f . More-
over, as random walks can be expensive (espe-
cially in problems with predominantly Neu-
mann boundaries), we cache these boundary
values at a collection of random sample points
along ∂Ω. We then use a Monte Carlo estimate
of Eq. 7.6 for cheap, output-sensitive evalua-
tion of the solution (or its gradient) at any in-
terior point x ∈ Ω, without taking any further
random walks (Sec. 7.5.1).

Overall, this scheme is easy to parallelize,
and can be computed progressively (e.g., for
interactive preview). It can handle imperfect
geometry (e.g., with self-intersections) and de-
tailed boundary/source terms without repair-
ing or resampling the boundary representa-
tion (Fig. 8.15). We can also focus computation
on a region of interest by caching points only
on the boundary of a small subdomain Λ ⊂ Ω
(Sec. 7.5.2)—unlike BEM which must perform
a global solve over the entire boundary ∂Ω.

In practice, we obtain far smoother results
across the domain compared to directly using
pointwise estimators like WoS or WoSt (Fig.
7.8, 7.9 & 7.10). This behavior can be attributed
to correlations in the solution estimates at interior evaluation points that use the same boundary
and source samples. On the flip side, error is now more global akin to traditional PDE solvers
such as FEM and BEM (Fig. 7.16 & 7.17). Unlike pointwise estimators, we also observe boundary
artifacts (Fig. 7.15), as samples are no longer generated in proportion to the singular functions
PRd

and GRd
. We show how to mitigate such artifacts in Sec. 7.5.3.

Sample Reuse In Rendering. Popular sample reuse schemes in rendering such as virtual point
lights [46, 132], photon mapping [91, 92, 115] and ReSTIR [23, 193] share samples across pixels to
amortize the cost of long ray traced paths, and inject global information into per-pixel radiance
estimates. As a result, they are often more efficient at rendering scenes with complex geometry
and lighting than brute-force path tracers.

BVC shares similarities with VPLs and photon mapping, in that samples generated and de-
posited on the scene (for us ∂Ω) determine the radiance (i.e., the solution u) over the image plane
(which for us is either the entire domain Ω or a subset thereof). Unlike photon mapping how-
ever, BVC does not require an additional data structure like a kd-tree to store samples; instead
we opt for a progressive formulation that discards boundary and source samples after splatting
solution and gradient estimates in Ω. Similar to VPL methods, Monte Carlo noise is visually
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boundary value caching walk on stars (same time)
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exploded
   view
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inflow

Figure 7.10: Boundary value caching dramatically reduces the total number of random walks needed to solve PDEs
relative to pointwise Monte Carlo estimators. Here we show streamlines of a potential flow in a simulated wind tun-
nel, computed directly from a low-quality surface mesh originally intended for visualization rather than simulation.

suppressed [46, Fig. 1] from a combination of introducing correlations between estimates in Ω,
and the smooth decay of the functions PRd

and GRd
away from the boundary (Fig. 2.3). VPLs are

also prone to singularities, as sharing samples requires sacrificing perfect importance sampling
[46, Sec. 5 & Fig. 9]; our artifact correction schemes take inspiration from similar techniques
for VPLs [135]. Unlike VPL methods, we do not require testing for occlusion between deposited
samples and evaluation points as the BIE contains no visibility term.

Techniques based on lightcuts [152, 264, 275] render scenes containing thousands of VPLs
in real time. These methods cluster VPLs spatially in a tree, and then probabilistically select a
subset of the VPLs that make the largest contribution at a given point. Akin to Fast Multipole
and Barnes-Hut schemes [88, 202] for BEM, a lightcuts-based strategy should asymptotically
reduce the quadratic complexity of evaluating the BIE with BVC. We leave development of such
a strategy to future work.

7.5.1 Monte Carlo Estimation

We estimate the solution u∂Ω + uΩ in Eq. 7.6 at a set of evaluation points evalPts := {xk ∈ Ω}K
k=1

in a closed domain Ω ⊂ Rd by creating two caches, boundarySamples := {zi, û(zi), ∂̂u/∂n(zi)}N
i=1

and sourceSamples := {yj, f (yj)}M
j=1, where N and M are user-specified cache sizes. The points

zi and yj are sampled on the boundary ∂Ω and inside the domain Ω using probability densities

p∂Ω and pΩ respectively. The pointwise estimates û(zi) and ∂̂u/∂n(zi) are computed using WoSt
(Ch. 3, Sec. 3.2.5 & 7.2), while f (yj) are evaluations of the known source term.

Dirichlet-Neumann conditions. For BVPs with mixed Dirichlet and Neumann conditions, BVC
then uses the two caches to form correlated Monte Carlo estimates of Eq. 7.6 at all points in evalPts:

û∂Ω(xk) :=
1
N ∑N

i=1

PRd
(xk, zi) û(zi) + GRd

(xk, zi)
∂̂u
∂n (zi)

p∂Ω(zi)
, (7.7)

ûΩ(xk) :=
1
M ∑M

j=1

GRd
(xk, yj) f (yj)

pΩ(yj)
. (7.8)
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ALGORITHM 7: A boundary value caching strategy to evaluate a d-dimensional boundary
integral equation inside a closed user-defined boundary ∂Λ

1: struct BoundarySample

2: z, nz ← null ▷Sample location and unit outward normal on ∂Λ

3: û, ∂̂u
∂n ← 0 ▷Estimates of solution and normal derivative

4: struct EvaluationPoint

5: x ← null ▷Location for evaluating the BIE
6: ûsum

∂Λ , ûsum
Λ ← 0 ▷Running sums for solution evaluation

7: N, M← 0 ▷Boundary and source sample count
8: function GetSolution()
9: return ûsum

∂Λ
/

N + ûsum
Λ
/

M

Input: A set of evalPts, boundary and source cache sizes N and M, nWalks for pointwise estimation, and
PDFs p∂Λ and pΛ for sample generation.

Output: An updated solution estimate at each evaluation point.
10: function UpdateSolution(evalPts, N, M, nWalks, p∂Λ, pΛ)
11: boundarySamples ← BoundarySample[N] ▷Initialize N boundary samples
12: parallel for b in boundarySamples do
13: b.z, b.nz ∼ p∂Λ ▷Generate boundary sample from PDF p∂Λ

14: b.û, b. ∂̂u
∂n ←WalkOnStars(b.z, b.nz,nWalks) ▷Use nWalks to estimate u and ∂u/∂n with WoSt

15: for b in boundarySamples do
16: z, nz ← b.z, b.nz
17: parallel for e in evalPts do ▷Splat boundary contribution from b to all evalPts

18: e.ûsum
∂Λ +=

(
PRd

(e.x, z, nz)b.û + GRd
(e.x, z)b. ∂̂u

∂n

) /
p∂Λ(z)

19: e.N += 1
20: for j in Range(M) do
21: y ∼ pΛ ▷Generate source sample from PDF pΛ

22: parallel for e in evalPts do ▷Splat source contribution from y to all evalPts
23: e.ûsum

Λ += GRd
(e.x, y) f (y)

/
pΛ(y)

24: e.M += 1

In App. A, we provide expressions for PRd
and GRd

for the Poisson and screened Poisson equa-
tions. Alg. 7 provides pseudocode, and App. B.2 discusses the extension to open domains and
double-sided boundary conditions.

Robin conditions. For BVPs with Robin conditions, we need not estimate both u and ∂u/∂n with
WoSt. Instead, substituting ∂u/∂n = ℓ− µu on a Robin boundary ∂ΩR in Eq. 7.6 gives

α(x) u(x) =
∫

∂ΩR

(
PRd

(x, z)− µ(z)GRd
(x, z)

)
u(z)dz

+
∫

∂ΩR

GRd
(x, z) ℓ(z)dz +

∫
Ω

GRd
(x, y) f (y)dy, (7.9)

for which only the solution u needs to be estimated on ∂ΩR. As an alternative, we could also
make the substitution u = (ℓ− ∂u/∂n) /µ when µ > 0, and instead solve for unknown values of
∂u/∂n on ∂ΩR. We observe that estimating ∂u/∂n typically works better when µ is large. This is
because BVC does not importance sample the term P− µG in Eq. 7.9 when generating its cache
samples on ∂ΩR, which means that a large µ amplifies noise in estimated values of u on ∂ΩR.
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Gradient Estimation. We can reuse the same cached boundary and source samples to also form
Monte Carlo estimates of the solution gradient at each evaluation point (Fig. 7.9):

∂̂u∂Ω

∂x
(xk) :=

1
N ∑N

i=1

∂PRd

∂x (xk, zi) û(zi) + ∂GRd

∂x (xk, zi)
∂̂u
∂n (zi)

p∂Ω(zi)
, (7.10)

∂̂uΩ

∂x
(xk) :=

1
M ∑M

j=1

∂GRd

∂x (xk, yj) f (yj)

pΩ(yj)
. (7.11)

We provide expressions for the derivatives of PRd
and GRd

in App. A.

Sampling. We can use a discrete cumulative density function (CDF) table [203, Sec. 13.3] with
stratified random numbers to generate boundary samples over elements (e.g., triangles) of a
polygonal mesh. Faster sample generation is possible with an alias table [262, 263]. Source
samples can likewise be generated uniformly inside Ω with stratified sampling [203, Sec. 13.8].
We use this sampling setup for all BVC figures in this text except Fig. 7.10, where we find that
results improve significantly if the boundary samples in Eq. 7.7 & 7.10 are weighted by the area
of their associated Voronoi cell. Similar area weighting strategies have proven effective for surface
reconstruction [12, Fig. 5], and yield a consistent Monte Carlo estimator that provides provably
better convergence [89].

Progressive Evaluation. BVC is progressive in two ways. First, we can improve estimation
quality at a set of evaluation points, by generating new caches and using them to update ex-
isting estimates (Alg. 7, UpdateSolution). Second, we can compute solution estimates at new
evaluation points by iterating over existing caches.

Bias. Assuming the pointwise estimates û(zi) and ∂̂u/∂n(zi) are unbiased, the estimators in Eq.
7.7–7.11 are also unbiased via the linearity of expectation. In reality, most pointwise estimators
have a small amount of controllable bias from the ε-shell (Sec. 6.3). Unlike MLS interpolation
and adaptive sampling (Sec. 7.4), BVC does not introduce any additional bias, while improving
efficiency noticeably (Fig. 7.8).

7.5.2 Boundary Specification

Neumann Dirichlet Virtual boundary
reference solution

+1-1

boundary
samples

source
samples

Figure 7.11: We can focus computation on a region of in-
terest by caching points on the region boundary.

When the solution needs to be evaluated
within a localized region Λ inside the domain
Ω (Fig. 7.11), we specialize the BIE to this re-
gion by generating source samples in Λ and
boundary samples on ∂Λ (Alg. 7, lines 13 &
21). We use uniform densities pΛ = 1/|Λ| and
p∂Λ = 1/|∂Λ| for sample generation, though
we could use densities specialized to a specific
PDE to reduce variance further. The solution
integrates to 0 outside Λ by construction.

When the solution needs to be evaluated
within the entire domain Ω (i.e., Λ ≡ Ω), we
incorporate the known boundary data ∂u/∂n =
h on ∂ΩN directly into our sample estimates,
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Neumann Dirichlet -1 +1

referenceζ = 0.1 × ε ζ = 1 × ε ζ = 5 × ε

c = 0.1 c = 100 c = 1000 reference

Figure 7.12: Top: Setting the ζ offset parameter to 0.1× ε effectively sets each Dirichlet boundary sample’s ∂u/∂n

estimate to zero, as balls centered at each sample point are contained entirely inside the epislon shell—this biases the
solution estimate inside the domain. Bias diminishes with increasing offset values. Bottom: Smaller values of the
clamp c for the Poisson kernel (Eq. 7.12) suppress singular artifacts near the boundary but bias interior estimates
without our correction strategy, shown here on a model scaled to fit inside a unit sphere.

rather than estimating it from scratch. Unfortunately, estimating ∂u/∂n on the Dirichlet boundary
∂ΩD is challenging, as WoSt requires a ball with a non-zero radius to estimate the solution
gradient (Eq. 3.18). Instead of dealing with ∂ΩD directly, we define a closed region bounded by
the Neumann boundary ∂ΩN and an offset Dirichlet boundary ∂Ωζ

D where ζ > ε (Fig. 7.13). We
then generate boundary samples on ∂Ωζ

D, and estimate both u and ∂u/∂n. Moreover, we separately
use WoSt to compute the solution at any evaluation point that is within a distance ζ to ∂ΩD, as
random walks typically terminate quickly when started close to the Dirichlet boundary.

∂ΩD

∂ΩN

Neumann Dirichlet Dirichlet o�set boundary

o�set regionsample reuse region -shellε

∂Ωζ
D

Figure 7.13: To evaluate the BIE inside Ω, BVC generates
samples on the Neumann boundary ∂ΩN and an offset
Dirichlet boundary ∂Ωζ

D where ζ > ε.

There are two considerations involved in
choosing an offset ζ: the minimal feature size
of the domain Ω, and the amount of bias that
can be tolerated in the estimate for ∂u/∂n on
∂Ωζ

D, based on its proximity to the epsilon
shell ∂Ωε

D. We do not define sample reuse re-
gions in the vicinity of thin features—instead,
we create multiple disconnected regions inside
Ω where boundary and source samples are
cached, while using WoSt to estimate the so-
lution pointwise elsewhere. We use ζ = 5× ε
in our implementation to balance between bias
and variance in our estimates for ∂u/∂n on ∂Ωζ

D
(Fig. 7.12, top shows an ablation). We leave a
more principled unbiased estimation of this quantity directly on ∂ΩD to future work.
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7.5.3 Singularities

NeumannDirichletgradient
clamped unclamped

BVC WoStreference

Figure 7.14: Naı̈vely clamping singular kernels near the
boundary suppresses noise, but introduces bias.

Though the free space Green’s function and its
derivatives decay smoothly, they are singular
at the point they are centered on (Fig. 2.3).
Therefore, BVC can suffer from local artifacts,
especially near the boundary, as it uses uni-
formly distributed boundary and source sam-
ples to evaluate Eq. 7.7–7.11. In contrast, such
artifacts do not arise with WoSt as the corre-
sponding functions for a ball are importance
sampled, i.e., p∂B ∝ PB and pB ∝ GB.

Similar artifacts are often suppressed in
virtual point light methods by clamping the
singular geometry term in the rendering equation [46, Sec. 5 & Fig. 9]. However, clamping can
introduce noticeable bias in the solution estimate with both VPLs and BVC (Fig. 7.12). Likewise,
clamping derivative norms in Eq. 7.10–7.11 leads to smoothly-varying but biased gradients near
the boundary (Fig. 7.14). Below, we extend Kollig and Keller [135]’s bias correction strategy for
VPLs to the functions PRd

and GRd
, and leave the extension to gradient estimators to future work.

Removing Bias From Clamping PRd
. The function PRd

has a large value when the points x and
z are close to each other. To mitigate artifacts that arise from not importance sampling points z
from PRd

, we rewrite the first term in Eq. 7.6 over a user-defined region Λ as follows:∫
∂Λ

PRd

c (x, z) u(z)dz +
∫

∂Λ

[
PRd

(x, z)− PRd

c (x, z)
]

u(z)dz, (7.12)

where c is a positive user-specified clamping parameter, and PRd

c := max(−c, min(c, PRd
)). As

before, we use uniformly distributed boundary samples on ∂Λ to estimate the first integral in
Eq. 7.12 at any evaluation point x ∈ Λ. We choose the bound c based on the scale of the scene
(Fig. 7.12, bottom shows an ablation), though strategies for automatically setting this parameter
can likely be adapted from the VPL literature [135, Sec. 2.3].

Neumann

Dirichlet

-0.5 0.3 reference solution unclamped

clamped (biased) correction

Figure 7.15: Our clamping correction strategy (bottom
right) effectively suppresses local artifacts from singular
kernels near the boundary without bias (top right).

To estimate the second integral, we can use
direction sampling to importance sample new
boundary samples on ∂Λ, since the free space
Poisson kernel PRd

defines a signed solid an-
gle over the boundary just like the Poisson ker-
nel PB for a ball (see Sec. 4.2.2 and App. A.1
for details). We then use WoSt to estimate un-
known solution values u at intersection points
z (of which there might be more than one if ∂Λ
is nonconvex). However, we only need to esti-
mate u when PRd

c (x, z) ̸= PRd
(x, z), i.e., when

the evaluation point x is in close proximity to an intersection point z ∈ ∂Λ. This is typically not
the case for most evaluation points inside Λ, as PRd

(x, z) falls off quickly (Fig. 2.3). As shown in
the inset, we can estimate Eq. 7.12 in both an artifact- and bias-free manner by running only a
few random walks for the second integral.
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Removing Bias From Clamping GRd
. We follow a similar recipe to mitigate localized artifacts

arising from not importance sampling the Green’s function in the BIE. In particular, we rewrite
the source integral over a region Λ as follows:∫

Λ
GB

c (x, y) f (y) dy +
∫

Λ

[
GB(x, y)− GB

c (x, y)
]

f (y) dy, (7.13)

where rather than the free space Green’s function GRd
, we now use the Green’s function of a

ball GB, and GB
c := min(−c, max(c, GB)). We use GB in place of GRd

since it can be importance
sampled for points y (Sec. 7.1). Moreover, both the clamping and sampling described in the
previous section remain unchanged, as −∂GB/∂n =: PB ≡ PRd

. We choose the ball B(x, R) to be
centered at the evaluation point x such that it contains the region Λ inside it. The first integral in
Eq. 7.13 is then estimated as usual with uniformly distributed source samples in Λ. The second
integral is estimated by drawing y from GB, and setting f = 0 if y /∈ Λ.

7.5.4 Convergence
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0 0.5

0 0.1

Figure 7.16: Akin to traditional PDE solvers, BVC
demonstrates a global error in the solution profile that van-
ishes with more boundary samples.

In Fig. 7.8 & 7.17, we show that even in 2D,
BVC provides up to an order of magnitude er-
ror reduction at equal time compared to WoSt
for mixed boundary value problems. The rea-
son is twofold. First, runtime efficiency im-
proves as we do not perform independent ran-
dom walks for interior evaluation points. Sec-
ond, boundary samples inject global informa-
tion about the solution into interior estimates.
The overall result is that BVC reduces the di-
mensionality of a PDE solve. In contrast, BEM
trades not discretizing the domain with solv-
ing a much denser linear system.

Similar to traditional PDE solvers requir-
ing global solves, error in the interior now de-
pends on the number of boundary and source samples used. Fig. 7.16 & 7.17 show that error
vanishes with more samples, though we note that Eq. 7.7–7.11 provide unbiased estimates even
with just a single sample. We also observe lower interior error with more accurate estimates for
u and ∂u/∂n on the boundary. As derivative estimates are typically noisier than solution estimates
(Fig. 7.4), we perform more random walks for ∂̂u/∂n on an offset Dirichlet boundary ∂Ωζ

D (Sec.
7.5.2), compared to û on ∂ΩN. As the default, we take 10× more walks for boundary samples on
∂Ωζ

D than on ∂ΩN. In general, the overhead of taking more walks is small, as walks starting close
to the Dirichlet boundary are usually much shorter.

7.6 Reverse Random Walks

In place of estimating u or ∂u/∂n on the boundary as with BVC, Qi et al. [206] derive a bidirectional
formulation for WoS that can simulate random walks in “reverse”. These reverse walks splat
known Dirichlet and source data into the interior of the domain Ω. Like bidirectional algorithms
for light transport [140, 253], reverse walks can be more efficient than typical “forward” walks to
the boundary (Sec. 3.2), as a single reverse walk contributes to the solution estimate at multiple
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Figure 7.17: BVC amortizes the cost of long walks in Neumann dominated problems (top two rows) and hence
improves efficiency over point estimators like WoSt. However, in more Dirichlet dominated problems with higher
frequency boundary conditions (bottom row), efficiency drops due to shorter walk lengths, not importance sampling
the singular kernels in the BIE, and noise in the estimates of ∂u/∂n on the boundary.
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Figure 7.18: BVC can have higher variance than Qi et al.
[206]’s specialized approach for Dirichlet conditions.

points in Ω. Compared to BVC, we observe
empirically that Qi et al. [206]’s approach can
also have lower variance at equal time for pure
Dirichlet problems (see inset), as it avoids the
need to estimate ∂u/∂n on the boundary and
evaluate PRd

during BIE estimation. We refer
to Qi et al. [206] for further details.

Here we generalize reverse walks to Robin
(and Neumann) problems [167]. We first sub-
stitute ∂u/∂n = ℓ− µu into Eq. 2.10 as in Sec.
4.3, but use the sets A = Ω and C = Ω instead.
This yields

α(x) u(x) =
∫

∂ΩR

GΩ(x, z) ℓ(z)dz +
∫

Ω
GΩ(x, y) f (y)dy, (7.14)

where the Green’s function of the domain GΩ is the fundamental solution to the PDE

∆GΩ(x, y) = δx(y) on Ω,
∂GΩ(x,y)

∂ny
+ µ(y)GΩ(x, y) = 0 on ∂ΩR.

(7.15)

Compared to Eq. 4.6 or Eq. 7.9, there are no unknown values u or ∂u/∂n in the boundary integral
in Eq. 7.14, as the Robin boundary condition on GΩ cancels them out. However, to compute the
solution u anywhere in Ω, we must now solve for GΩ at points z ∈ ∂ΩR and y ∈ Ω. We describe
how to estimate GΩ with WoSt next—and use the resulting reverse walks starting from z or y to
improve solution estimates at points x ∈ Ω. As with BVC, we observe smoother results, albeit
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with slightly more local correlation artifacts at low sample counts (see Fig. 7.19), and less control
over where the solution is evaluated inside Ω.

Estimating GΩ with WoSt. We require an integral expression for GΩ on a star-shaped region St
to use WoSt. Following Sec. 4.3, we have for any two points x ∈ Ω and z ∈ ∂ΩR,

GΩ(x, z) =
∫

∂St(x,R)
ρµ(x, z′) PB(x, z′) GΩ(z′, z)dz′ +

∫
St(x,R)

GB(x, y) δz(y)dy

=
∫

∂St(x,R)
ρµ(x, z′) PB(x, z′) GΩ(z′, z)dz′ + GB(x, z)

=
∫

∂St(z,R)
ρµ(z, z′) PB(z, z′) GΩ(z′, x)dz′ + GB(z, x), (7.16)
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Figure 7.19: Like BVC, reverse walks provide smoother
results with lesser noise on Robin problems than WoSt.

where the third equality follows from GΩ be-
ing symmetric. This expression can be used to
define random walks that start from randomly
sampled points on ∂ΩR with known Robin
data ℓ; for the source term f , walks will in-
stead start from Ω. However, unlike the “for-
ward” estimator from Eq. 4.8 which gathers
information about boundary conditions and
sources during a walk, a “reverse” WoSt es-
timator for GΩ will instead allow for a single
walk to splat ℓ and f values at more than one
point inside Ω (similar to Qi et al. [206]’s re-
verse WoS walks for pure Dirichlet problems).
In more detail, for k ≥ 0, we estimate GΩ us-
ing the following recursive single-sample estimator for Eq. 7.16:

ĜΩ(x, zk) = ρµ(zk, zk+1) ĜΩ(zk+1, x) + GB(zk, x). (7.17)

Here GB(zk, x) > 0 when x ∈ St(zk, Rk), and zero otherwise. As in Sec. 4.2.2, we use direction
sampling to determine the next walk location, i.e., zk+1 ∈ ∂St(zk, Rk) ∼ PB(zk, zk+1). We also use
Russian roulette to terminate walks with probability ρµ(zk, zk+1), as described in Sec. 4.3.4.

To then solve Poisson equations with Robin conditions, we estimate Eq. 7.14 using

û(x) =
ĜΩ(x, z0) ℓ(z0)

α(x) p∂ΩR(z0)
+

ĜΩ(x, y0) f (y0)

α(x) pΩ(y0)
, (7.18)

where we are free to sample points z0 ∈ ∂ΩR and y0 ∈ ΩR from densities p∂ΩR and pΩ (respec-
tively) of our choosing. Finally, we use Eq. 7.18 and the random walks defined by Eq. 7.17 to
evaluate û at points x, as long as these points are contained inside star-shaped regions St(zk, Rk)
centered at walk locations zk. This approach also applies to Neumann conditions when µ = 0.

7.7 Weight Window

For variable coefficient problems, we can design specialized variance reduction strategies based
on the specific form of the Monte Carlo estimator in Eq. 5.10, where the value of the estimate
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Figure 7.20: Weight windows significantly reduce variance for problems with large variation in coefficients, as seen
here for the problem ∇ · (κ(x)∇u) = − f (x) with two different diffusion functions κ1(x), κ2(x).

û(xk) is multiplied by a weight in [0, ∞) at every step xk of a walk. For instance, in the delta track-
ing variant of WoS, û is scaled either by (1− σ′(yk+1)/σ) ·

√
κ(yk+1)/κ(xk) or

√
κ(zk+1)/κ(xk),

based on whether we sample the volume or the boundary term respectively (see Alg. 4). These
weights serve as a source of variance in the estimator (Fig. 7.20). This is especially true for large
values of the bounding parameter σ, since a high average number of steps per walk can result in
a walk throughput that is either very small or very large. We use a commonly employed variance
reduction strategy from neutron transport [102] called a weight window to address this issue, as it
keeps throughput roughly constant for any walk.



split

roule e

pass through 

w w+

w−

A weight window achieves variance reduction though a combi-
nation of Russian roulette and splitting (Sec. 3.1.1). The former
terminates walks with small weights, as it is often not worthwhile
completing walks whose likely contribution to the estimator is small.
The latter splits walks with large weights into multiple new equally
weighted walks. This prevents any single walk from accumulating a
large throughput, while encouraging better exploration of the domain
through newly spawned walks. We employ a simple version of this
strategy that uses a static window size [w−, w+], where w− and w+ are the minimum and maxi-
mum throughput values allowed for any walk (we use [0.5, 1.5] in our implementation). A walk
whose throughput w at any step lies within the window is allowed to continue without modifi-
cation. The walk is then terminated using a Russian roulette survival probability of w/w− when
w < w−. Otherwise, it is split into m := w/w+ new walks, each with a weight of w/m, when
w > w+. Since m is generally not an integer, we apply the expected value splits approach of Booth
[25] which uses n := ⌊m⌋ walks with probability n + 1−m, and n + 1 walks otherwise.

Fig. 7.20 highlights the effectiveness of a static weight window in reducing variance in prob-
lems with high frequency coefficients and a large bounding parameter σ. In the neutron transport
literature, specifying the window size adaptively has been shown to provide improvements in
computational efficiency over a static window by up to an order of magnitude [26, 256, 258]. We
leave this optimization to future work.
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Chapter 8

Evaluation & Comparisons

As noted in Ch. 1, a key motivation for developing grid-free Monte Carlo methods is to push
simulation methods closer to the geometric complexity seen in photorealistic rendering—and
in nature. In Sec. 8.1, we mock up example problems from scientific, geometric, and visual
computing to stress-test our solvers. Importantly, these examples do not aim to model exact
physics or make quantitative predictions—we seek only to examine solver performance in the
presence of (i) complex geometry, (ii) different boundary conditions, and (iii) varying material
coefficients, all of which are ubiquitous in real physical problems.

In Sec. 8.2, we then contrast the Monte Carlo approach with more conventional grid-based
techniques for linear elliptic PDEs. The literature on solving these problems is vast, so we only
discuss broad classes of solvers such as finite element methods and finite differences, rather
than specific algorithms. Given the complementary strengths and tradeoffs, a likely outcome in
the long run is that there are problems and algorithms from the FEM/FD setting that do not
naturally translate to Monte Carlo methods, and likewise, paths that can easily be taken via
Monte Carlo but not via traditional PDE solvers. We conclude this chapter with Sec. 8.3, wherein
we demonstrate that solvers like WoS and WoSt can have orders of magnitude less error in their
solution estimates than other grid-free Monte Carlo strategies for linear elliptic PDEs.

8.1 Geometric Robustness, Scalability & Flexibility

We use a multicore CPU-based implementation for the majority of the experiments described
below, and achieve essentially linear scaling—developing an optimized GPU implementation is
an important avenue of future work. Unless otherwise noted, all experiments used a 64-core 3rd
Generation Intel Xeon workstation with 64 GB RAM.

8.1.1 Heat Transfer And Thermal Analysis

Heat transfer is a central topic in thermal engineering, with three basic modes: radiation, conduc-
tion, and convection. Thermal radiation is well-captured by 1st-order Monte Carlo light transport
simulation, whereas conduction and convection involve diffusion, which must be simulated via
a 2nd-order method like WoS or WoSt [14]. Thermal convection can also include turbulent ad-
vection, i.e., Navier-Stokes, which is not considered here but can be solved in part via WoS [211].

Accurate thermal analysis of complex geometry is central to the success of a wide variety
of engineering problems, ranging from the design of printed circuit boards [32] and residential
architecture [126] to spacecrafts and robotics. For instance, NASA advocates for use of detailed
thermal analysis throughout the design process—instructing its engineers that “thermal modeling
is required beginning at the project conceptual design stage and continuing through preliminary and
detailed design stages ... simplified calculations and rules of thumb are useful at this stage, but a computer
model ... provides the ability to evaluate and respond quickly to proposed system trade-offs.” [180]. Just as
computer graphics has long enjoyed the ability to iterate on illumination for virtual environments
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(via Monte Carlo rendering), the solvers we develop in this work can help engineers achieve the
same kind of fast and quantitatively reliable feedback during the design process—rather than
waiting on bottlenecks like mesh generation (Fig. 1.1).

Input boundary mesh
used by WoSt

Boundary of tetrahedral mesh
generated w/ f TetWild

Out of 
memory

8 hours, ε = 1e-4 2 hours, ε = 2e-4 30 min, ε = 1e-3  

Figure 8.1: Generating tetrahedral meshes for accurate
FEM simulation can be challenging, as meshing tools ei-
ther fail to capture important detail in the input model,
or routinely run out of memory at finer tolerances. Here,
we run fTetWild [105] on the Mars Rover from Fig. 1.9.
TetGen [234] is unable to tetrahedralize this model as it
contains self-intersections.

Mars Rover. Fig. 1.9 mocks up a represen-
tative use case of our method in a geomet-
rically complex scenario: thermal analysis of
NASA’s Curiosity Mars rover. In particular,
we compute the steady-state temperature on
the rover surface by solving a Laplace equa-
tion with Robin boundary conditions. Robin
boundary data is given by thermal radiation
from the sun, computed via ordinary ray trac-
ing. Since we do not have access to origi-
nal NASA schematics for Curiosity, we use an
artist-generated model, using texture values to
set Robin boundary conditions. From the per-
spective of simulation, however, there is noth-
ing special about this model—it could triv-
ially be swapped out with the true engineer-
ing model (or any other candidate design).
The use of partially-absorbing Robin condi-
tions provides the opportunity for far more ac-
curate physical modeling than purely absorb-
ing (Dirichlet) or reflecting (Neumann) condi-
tions alone. More accurate simulation might be obtained by coupling our WoSt solver with one
that models, e.g., convective heat transfer [14], though the low density of the Martian atmosphere
makes this term largely negligible [255].

Fig. 1.9 (top right) illustrates a deferred shading approach [50] which is quite natural in the
Monte Carlo setting, but has not been considered in prior work on walk on spheres methods.
Rather than evaluating the solution at every point of a regular grid, or every vertex of the bound-
ary mesh, we first render the Cartesian xyz coordinates of the model as seen from a viewpoint
of interest (Fig. 1.9, top center of top right). Each pixel in this coordinate image is then used as the
starting point for random walks via WoSt. In this way, we only spend time computing the solu-
tion at points that actually need to be inspected for analysis—Fig. 1.9 (bottom) shows a collection
of closeup viewpoints solved in the same fashion. Moreover, since Monte Carlo accumulates a
running sum, we can immediately visualize a rough estimate of the solution that progressively
improves over time (Fig. 1.9, bottom row of top right). Across all four viewpoints, we compute the
solution at 793k points in each image; for this model, each walk took about 0.48 milliseconds.

Attempting to capture the domain geometry with a finite element mesh leads to extreme
compute times and, ultimately, failure, even with state-of-the-art robust meshing software (Fig.
8.1). Overall, the use of deferred shading, plus the fact that we avoid volumetric meshing, makes
this approach orders of magnitude faster than any finite element approach—offering a qualitative
shift in the approach to engineering design.

Toast. Inspired by toast-darkening experiments of Myhrvold and Migoya [178], Fig. 4.2 mod-
els heat transfer from a toaster to a piece of bread, represented by a CT scan with 3.9 million
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Figure 8.3: Like Monte Carlo ray tracing, WoSt enables flexible modeling of scenarios that are geometrically and
physically complex. Center: Here an ectotherm (anolis carolinensis) warms itself on a rock, which in turn is heated
by the sun. Left: WoSt can mix and match different geometric representations—here a polygon mesh and a signed
distance function. In this case, it is also easily combined with ray tracing used to determine Dirichlet boundary
conditions for the heat transfer problem. Right: Unlike grid-based PDE techniques, WoSt can handle highly-detailed
boundary conditions without needing to resolve them on a mesh—here the lizard’s texture controls the rate of heat
absorption via Neumann boundary conditions, yielding stronger warming along the dark stripes.
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Figure 8.2: WoSt exhibits the expected rate of convergence
for a Monte Carlo estimator, shown here for 8 fixed points
on examples from Sec. 8.1. Reference solutions are also
computed via WoSt with 216 walks per point, as there is no
analytical solution and no feasible alternatives to compute
it. Timings were taken on an 8 core M1 MacBook Pro.

boundary elements. To model diffusive con-
duction, we solve a Laplace equation with
large and small Dirichlet values on the heating
elements and toaster cavity (respectively), and
Neumann conditions on the bread. The solu-
tion is evaluated at roughly 2 million bound-
ary points, using 1 walk per point for fast
preview and 256 walks for the final solution;
on average, WoSt takes 0.166 milliseconds per
point for each walk (Fig. 8.2 plots error ver-
sus time). A simple phenomenological model
is used to translate surface temperature into
color (though more principled models of Mail-
lard browning could be used here [36]). We observe a marked difference between the temperature
distribution resulting from radiation and conduction—emphasizing the necessity of 2nd-order
models for accurate thermal predictions.

Ectothermic Lizard. Fig. 8.3 shows another heat transfer experiment, where Dirichlet condi-
tions induced by solar radiation are used to determine heat absorbed by an ectothermic lizard,
modeled via detailed spatially-varying Neumann inflow conditions. Unlike FEM or BEM (Sec.
8.2) where boundary data must be evaluated ahead of time, Dirichlet data is evaluated on demand
via sphere tracing [97]. Scene geometry is represented by a 1.2 million element boundary mesh
(for the lizard) and implicit signed distance functions (for the rocks), highlighting the ability of
WoSt to work with mixed boundary representations without global meshing. The solution is eval-
uated at 285k boundary points using 1024 walks per point, taking on average 0.121 milliseconds
per point for each walk. As in Monte Carlo rendering (and unlike FEM/BEM), scene setup re-
quired no model conversion or cleanup—even though data was pulled directly from the internet.
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Figure 8.4: Where will oxygen flow at the beginning of a breath? Here we use WoSt to simulate gas exchange via
Laplacian transport [86], directly on a detailed lung model with thin features (center). The output-sensitivity of
our method enables us to focus computation purely on the slice planes used for visualization (right), rather than
needing to solve over the whole domain. Attempting simulation on the same model using traditional solvers leads to
significant problems, either because meshing destroys critical details (top left), or takes more than 25 hours to produce
a mesh that captures the original geometry (bottom left). In contrast, WoSt provides near-immediate feedback that
reliably reflects the true geometry and solution.

Blackbody Emitters. Monte Carlo methods are popular in rendering because they provide im-
mediate feedback that can be progressively improved, enabling artists and engineers to iterate on
designs quickly. We explored this modality for variable-coefficient PDEs by implementing a GPU
version of our delta tracking WoS estimator (Sec. 5.2.1) in the Unity game engine, where domain
geometry is encoded by a signed distance function (SDF), and visualized via sphere tracing.
This setup allows us to interactively explore problems of immense geometric complexity—for
instance, Fig. 5.1 shows a scene with an infinite, aperiodic arrangement of detailed models
(achieved via instancing [53, 238]) and high-frequency material coefficients, which would be im-
practical or impossible for conventional PDE solvers. In fact, as shown in Fig. 8.10, generating
a volume mesh for even a small region of this scene is prohibitively expensive. Fig. 6.2 shows
interactive editing via CSG operations, which are performed easily on SDFs. The solution is
visualized only on parts of a 2D slice visible from the camera, and samples are accumulated
progressively until the scene changes—in this case our solver runs at 60 frames per second.

8.1.2 Laplacian Transport

Fig. 8.4 models oxygen diffusion in the lungs, one of many Laplacian transport phenomena with
mixed boundary conditions [86] (other examples include electric transport in electrolytic cells
[67, 218], diffusion of reactive molecules towards catalytic surfaces in heterogeneous catalysis
[219], and diffusion of spins in confining porous media in nuclear magnetic resonance [87]). We
make a simplification by using Neumann rather than Robin boundary conditions, though the
latter are easily supported with WoSt. While conventional methods can solve such problems,
meshing is both a major performance bottleneck and a hindrance for end-to-end robustness. In
this case, even a state-of-the-art method [105] yields badly broken geometry; tweaking parame-
ters to capture the correct geometry incurs a full day of compute time, eliminating any advantage
of a fast solve. With WoSt we get feedback reliably and immediately in an output-sensitive fash-
ion, here restricted to a cross section. In particular, we evaluate the solution on a 512× 512 grid
using 1024 walks per point; WoSt takes on average 0.021 milliseconds per point for each walk.
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Figure 8.5: Helmholtz decomposition on 2D (left) and 3D (right) domains. Here we decompose an input vector field
X given by a closed-form, analytic expression into its curl-free, divergence-free, and harmonic components. With the
Monte Carlo approach, each streamline can be traced independently in parallel, without having to discretize X on a
background mesh, or solve a linear system.

8.1.3 Vector Field Processing

A vector-valued solution X can be visualized using very sparse sampling. For instance, to draw
a standard quiver plot, we need only compute one solution value per arrow—rather than solving
the PDE over the entire domain. We can also draw streamlines γ, obtained by numerically
integrating the ordinary differential equation d

dt γ(t) = X(γ(t)) starting at some collection of
seed points. Once again, the value of X need only be estimated at the sparse sample points used
by the ODE integrator—examples computed via Huen’s method are shown in Fig. 7.10 & 8.5.

Helmholtz Decomposition. A powerful tool in flow processing and visualization is the Helmholtz
decomposition, which expresses a given vector field X as the sum of a curl-free, divergence-free,
and harmonic part. In computer graphics, such decompositions have been considered on meshes
[247, 279] and point clouds [210], both of which entail discretizing space and solving large linear
systems. On a domain Ω ⊂ R3, one possible decomposition is

X = ∇u +∇× A + Y, (8.1)

where u is the solution to the scalar Poisson equation ∆u = ∇ · X, A is the solution to the vector
Poisson equation ∆A = ∇× X (which is just three componentwise scalar equations), and Y is
the remaining part. Setting u and A to zero along ∂ΩD yields standard normal-parallel boundary
conditions [21, Sec. 4.2], which ensure the decomposition is unique [20]. In 2D we get an
analogous decomposition by replacing A with a scalar potential a : Ω→ R, and replacing ∇× A
with J∇a, i.e., a 90-degree rotation of the gradient of a.

To compute this decomposition via Monte Carlo, we compute the necessary derivatives (Sec.
3.2.5) of the solution to the two Poisson equations. Basic 2D and 3D examples are shown Fig. 8.5,
where we trace streamlines by applying a standard ODE integrator to the derivative estimates.
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Potential Flow. Given the spatial smoothness of solutions to elliptic problems, a key strength
of the boundary value caching method from Sec. 7.5 is its ability to suppress the salt-and-pepper
noise characteristic of independent Monte Carlo estimates. In Fig. 7.10, we observe noticeably
smoother results from correlated sample estimates of the gradient, where we solve for stream-
lines of a potential flow with Dirichlet boundary conditions of -1 and 1 at the front and back of
the tunnel respectively, and Neumann conditions of 0 elsewhere. Similar to the Helmholtz de-
composition, we use Huen’s method to draw streamlines along the estimated gradient direction.
Steamlines start at a collection of random seed points in the domain, and can be regenerated
cheaply once estimates for u and ∂u/∂n have been computed on the boundary. Notably, we do not
require a high-quality simulation mesh for this task.

8.1.4 Diffusion Curves and Surfaces

Figure 8.6: Left: a 3.3M triangle mesh with fine features,
from a CT scan of hemisus guineensis (courtesy Blackburn
Lab). To visualize the solution to a volumetric PDE, we
can significantly reduce cost by computing only a 2D slice
of the full 3D solution (right). Inset: fine features are per-
fectly preserved as we work with the exact input geometry.

FEM mesh (TriWild)
3m 21s

input Bézier curvesinput Bézier curves

Figure 8.7: Even in 2D, robust meshing algorithms can
distort small geometric detail.

To examine the ability of our solver to han-
dle complex boundaries and boundary con-
ditions, we implemented diffusion curves (Fig.
6.1) and diffusion surfaces (Fig. 8.6), which en-
code a resolution-independent 2D image or
volumetric texture as the solution to a Pois-
son equation with two-sided Dirichlet bound-
ary conditions. A nice feature of Monte Carlo
is that we can directly compute the solution on
a zoom-in or cross section to evaluate points of
interest, rather than precomputing a global so-
lution (as in Orzan et al. [192]). Moreover, the
Monte Carlo approach completely decouples
signal frequency from geometric resolution—
e.g., Fig. 7.7 shows highly oscillatory bound-
ary conditions on just two cubic Bézier seg-
ments. In contrast, traditional methods must
explicitly refine a background grid or mesh to
even encode such boundary conditions (much
less compute the solution).

To further examine tradeoffs with grid-
based approaches, we generated triangular
and tetrahedral meshes (respectively) for these
two domains using TriWild [104] and fTetWild
[105], which are state-of-the-art robust mesh-
ing algorithms. In addition to needing significant time and memory just for mesh generation,
the default tolerances in these methods were not sufficient to capture fine-scale details. Tuning
such tolerances is expensive since a mesh must be regenerated each time, which is hard to do in
an automatic fashion. Moreover, tolerances that are too tight can lead to an explosion in cost—for
instance, even just lowering fTetWild’s default tolerance of 10−3 to 10−4 used up 22GB of memory
and failed to generate a volume mesh for Fig. 8.6 after 14 hours of wall clock time.

In contrast, the ε tolerance for Dirichlet problems with WoS has very little effect on cost and
accuracy (Sec. 6.3): for very loose tolerances small features can get rounded out, but cannot
disappear (Fig. 6.4). Even tiny tolerances add only a few steps to each walk, due to the log(1/ε)
behavior of the WoS algorithm, i.e., computation cost does not blow up dramatically.
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Figure 8.8: Variable coefficients enable us to extend WoS
to curved domains (not previously possible). Here we di-
rectly resolve intricate boundary conditions for diffusion
curves—without generating a fine surface mesh that con-
forms to boundary curves or a spatially-adaptive grid in
the parameter domain.

U

max

min

ℝ2λ (x) f

Walk on Curved Surfaces. A basic hypothe-
sis of the original WoS algorithm is that a ran-
dom walk exits every point on the boundary of
a ball with equal probability (Sec. 2.2.1). How-
ever, on surfaces with non-constant curvature
this hypothesis no longer holds: intuitively,
more walks will escape through the “valleys”
than through the “mountains”. As a result,
standard WoS cannot be used for many algo-
rithms in geometric and scientific computing
that need to solve equations on a surface.

Our variable-coefficient scheme enables
WoS to be applied to curved surfaces for the
first time. In particular, consider any sur-
face expressed as a conformal parameterization
f : R2 ⊃ U → R3; conformal means that f
distorts the surface by a positive scaling λ(x)
at each point x ∈ U, i.e., JT

f J f = λ(x)I, where I
is the identity and J f is the Jacobian of f . The
Laplacian ∆ f of the curved surface is then re-
lated to the ordinary Laplacian via ∆ = λ∆ f .
Hence, we can solve PDEs on the curved sur-
face by replacing the usual diffusion coeffi-
cient κ(x) with λ(x). Fig. 8.8 shows several examples; for periodic domains (like the torus)
our walks simply “wrap around.” In theory, every surface admits a conformal parameterization
(by the uniformization theorem [2]), but in practice many important surfaces used in engineering
(such as NURBS or other spline patches) are expressed in non-conformal coordinates. To directly
handle such patches, we would need to extend our method to anisotropic diffusion coefficients—
an important topic for future work.

8.2 Comparison With Traditional Grid-Based PDE Solvers

There are many methods for solving linear elliptic PDEs—far too many to review and com-
pare with here. Instead, we examine the unique benefits of Monte Carlo in terms of the basic
properties shared by all grid-based methods within each major class. Since our goal is to directly
resolve fine details in the boundary conditions and coefficients, we omit discussion of homogeniza-
tion schemes, which approximate fine-scale behavior via coarse-scale models [1, 56, 57, 60, 157];
Monte Carlo methods like ours may in fact help to accurately determine parameters for such
schemes. We also do not consider recent learning-based approaches such as Physics-informed neu-
ral networks [208], but note that one could use our solvers to generate synthetic data for training,
or design hybrid strategies for supersampling and denoising [151].

8.2.1 Finite Element Methods

All finite element methods (including BEM and meshless FEM which we discuss below) adopt
a common framework: for a linear PDE Lu = f , find the best approximation to u in a finite-
dimensional function space. E.g., standard Galerkin FEM uses an approximation û := ∑n

i=1 uiϕi
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Figure 8.9: With both FEM and meshless FEM, local alias-
ing of high-frequency boundary data yields large global er-
rors in the solution, demanding significant refinement. In
contrast, WoS methods always capture the global solution
(even with very few samples); error instead manifests as
high-frequency noise.

in a basis ϕ1, . . . , ϕn : Ω → R, where ui ∈ R

are unknown coefficients. Letting ⟨u, v⟩ :=∫
Ω u(x)v(x)dx denote the L2 inner product,

one then seeks a û satisfying

⟨Lû, ϕj⟩ = ⟨ f̂ , ϕj⟩, j = 1, . . . , n, (8.2)

i.e., such that û agrees with the true solu-
tion u when restricted to the subspace V :=
span({ϕi}). To solve Eq. 8.2, one rewrites it as

∑n
i=1 ui⟨Lϕi, ϕj⟩ = ∑n

i=1 fi⟨ϕi, ϕj⟩. (8.3)

The inner products on the left- and right-hand
side define mass and stiffness matrices, and
are often further approximated via numerical
quadrature. From this perspective, the only
difference between flavors of FEM is the choice
of basis functions ϕi (and the difficulty of in-
tegrating them). Otherwise, all finite element
methods share a common set of challenges:

• They must all solve a globally coupled system of equations.

• They are all prone to spatial aliasing in the geometry, solution, boundary conditions, source
terms, and/or coefficients, since any finite basis {ϕi} provides limited spatial resolution.

• They all demand spatial discretization (meshing or sampling) to define bases ϕi, which can
be costly and error prone.

In contrast, Monte Carlo methods like WoS can directly evaluate the solution at any point
without meshing or global node placement, and without a global solve. Moreover, they do not
suffer from aliasing in the solution or problem data, since functions are not restricted to a finite-
dimensional subspace V (see Fig. 8.9). Though sharing information between nodes (via a linear
system) with FEM improves efficiency, it is difficult to make an exact performance comparison
between WoS algorithms and traditional solvers in terms of target accuracy, since performance
is contingent on several factors beyond just rates of convergence. Crucially, the basic O(1/

√
N)

convergence rate of Monte Carlo provides a measure of error relative to other methods that estimate
integrals (such as Gauss quadrature)—and not those that solve PDEs, where factors like the cost
of mesh generation and refinement, parallel communication overhead and the need for local
versus global evaluation of the solution are far more significant in practice.

Mesh-Based FEM

The basic premise of FEM is to reduce a PDE to a finite dimensional system of equations. Con-
structing this system necessitates sampling or tessellating the domain or its boundary, making
discretization error inevitable. Most often, FEM bases ϕi are defined via polyhedral mesh el-
ements. Quickly and robustly meshing large, detailed and/or imperfect geometry (e.g., with
self-intersections) is an ongoing “grand challenge,” where even the most advanced methods
[103, 104, 105] can struggle (Fig. 1.2, 1.3, 8.1 & 8.4). This problem gets harder if the mesh must also
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Figure 8.10: Even when starting with a coarse approxima-
tion of just a single blackbody from Fig. 5.1, FEM takes
immense time and memory to resolve detailed variations
due to PDE coefficients. Here, initial coarse meshing by
fTetWild [105] takes about 1.5 hours to produce a mesh
that cannot resolve fine details in the solution or geome-
try. After 1 hour more of AMR via Anderson et al. [4],
the solution is better resolved, but the mesh size has blown
up. Our CPU-based WoS implementation takes about 10
minutes total, on the same machine.

finite di�erence finite element Monte Carlo

Figure 8.11: Grid- and mesh-based algorithms (left, cen-
ter) consume significant memory since they explicitly dis-
cretize even simple geometry, and must use gradual grad-
ing to maintain good element quality. Monte Carlo meth-
ods (right) concisely represent smooth geometry and small
features via a BVH, providing excellent memory scaling.

be refined for spatially varying coefficients:
even with intelligent adaptive mesh refinement
(AMR) [285, 286], meshing quickly becomes
prohibitive (Fig. 8.10). More recent a priori
p-refinement does not help, since it considers
only element quality, and not spatial frequen-
cies in the solution or problem data [227].

On the other hand, a key feature of grid-
free Monte Carlo methods is that solution ac-
curacy has nothing to do with the quality of
mesh elements, which greatly improves ro-
bustness. WoS algorithms bypass meshing en-
tirely and need only a BVH-based spatial hi-
erarchy for geometric queries (Ch. 6), which
uses little memory (Fig. 8.11) and can be built
in a fraction of a second (Fig. 1.8), even for
totally degenerate geometry (Fig. 1.7, right);
sharp edges, small details, and thin features in
the geometry are preserved exactly. These sav-
ings are compounded for problems with dy-
namic geometry, where one can just update or
re-fit the BVH [136]. As with rendering, we
can achieve extreme geometric complexity at
low memory cost via techniques like instanc-
ing [238] or procedural modeling [53].

Moreover, proving consistency with FEM
is challenging even for fairly common equa-
tions [59, 241]. Schemes that are consistent in
a weak sense can still give unreliable pointwise
derivatives [221, Fig. 26], which are needed
for tasks like curvature evaluation [165]. Us-
ing higher-order elements can also signifi-
cantly inflate degree—on triangle meshes, for
instance, 5th-order polynomials are needed to
get even C1 continuity [195], and standard
subdivision bases are not C2 at irregular vertices [201, Sec. 1.8]. In addition, FEM convergence
can slow down in the presence of features like reentrant corners [82, Eq. 2], which are common
in real-world geometry. Since WoS algorithms exactly simulate stochastic processes that model
smooth PDEs, such issues simply do not arise, but one must contend with noise instead.

Meshless FEM

Though meshless FEM (MFEM) seems like a natural alternative to grid-free Monte Carlo methods,
the term “meshless” is a bit of misnomer: MFEM does not need a polyhedral mesh, but must
still discretize the domain by carefully arranging a collection of nodes (Fig. 1.5). Nodes are then
associated with bases ϕi, such as radial basis functions (RBFs), to build mass and stiffness matrices.
To couple bases with overlapping support, one must identify neighbors, and form a global graph
structure similar in size and complexity to a polyhedral mesh. Node locations must satisfy
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Figure 8.12: In practice, it can be difficult to find reliable
parameters for MFEM, e.g., increasing neighborhood size
can increase error in unpredictable ways. In contrast, WoS
algorithms require little-to-no parameter tuning.
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Figure 8.13: MFEM must solve a much denser linear sys-
tem than even standard FEM, whereas WoS avoids solving
a global system altogether.

criteria that can be just as difficult and deli-
cate to enforce as mesh quality criteria [149,
Ch. 3], and often require global optimization
akin to mesh smoothing [237]. Moreover, just
as one bad element can ruin an FEM solution,
bad node placement can lead to catastrophic
failure (e.g., NaNs in the solution; see Fig.
8.14, left). One can adaptively sample nodes
to mitigate spatial aliasing, but unlike mesh-
based FEM, adaptive refinement for MFEM
is poorly understood and lacks rigorous con-
vergence guarantees. Typical MFEM bases
are also approximating rather than interpolating,
complicating enforcement of boundary condi-
tions [73, 185]; some methods hence modulate
bases by distance-like functions [229], but still
effectively discretize functions on the interior
by choosing a finite basis {ϕi}.

As shown in Fig. 8.14, a more serious chal-
lenge with MFEM is stagnation: only until re-
cently [15, 16, 69], MFEM might fail to con-
verge without careful problem-specific tuning
of parameters like neighborhood size. Un-
fortunately, increasing neighborhood size does
not always make the solution better (see Fig. 8.12). Moreover, whereas convergence of adaptive
FEM is rigorously understood [162], there is a dearth of corresponding results for adaptive MFEM
schemes, which is especially important for problems with detailed geometry and coefficients. In
practice, MFEM also requires denser matrices (Fig. 8.13) than those used in mesh-based FEM,
while often providing less accurate results. For instance, methods such as RBF-FD with polynomial
augmentation [69], which converge under refinement, require at least order-2 bases.

On the whole, MFEM is not known for its reliability. In stark contrast, the WoS algorithms
we develop here guarantee that the expected solution equals the true solution of an elliptic PDE
with minimal parameter tuning. Moreover, unlike MFEM, these Monte Carlo methods are truly
“meshless”: at no point does one require a global sampling or meshing of the domain. Finally,
though MFEM has been around for a long time, it has not seen nearly as much use in practice as
mesh-based methods (e.g., with very few open-source or commercial packages available).

95



Boundary Element Methods

B
EM

B
V

C
 

Input boundary conditions Input boundary meshes

Dirichlet
Neumann0

1-1

Singular matrix 

 non-invertible

Figure 8.15: Even for problems with relatively simple
boundary conditions and no source term (left), finite ele-
ment technology like BEM suffers from large global errors
in the PDE solution without significant mesh refinement,
due to local aliasing of boundary data. It can also fail com-
pletely on domains with irregular elements. In contrast,
Monte Carlo methods solve PDEs without any aliasing ar-
tifacts irrespective of tesselation quality, as they decouple
the problem inputs from the boundary representation.

BEM approximates the solution using basis
functions ϕi associated only with elements of
a boundary mesh (such as free-space Green’s
functions). BEM draws a natural comparison
with grid-free PDE solvers like WoS and BVC,
since it is specifically designed to solve BIEs
(Sec. 2.2), and need not discretize the interior
of the domain. However, there is a significant
difference in capabilities: whereas WoS eas-
ily handles problems with source terms and
spatially varying coefficients on the domain
interior, basic BEM ignores these terms alto-
gether (see Fig. 1.4). In order to handle gen-
eral interior terms, one must couple BEM with
a second interior solver such as FEM, meshless
FEM, or finite differences—inheriting all the
same challenges [38, 41, 198]. Moreover, even for problems involving only boundary terms, BEM
must discretize the boundary geometry, leading to spatial aliasing in the boundary data (Fig.
8.15). Unlike FEM/meshless FEM, BEM must solve a globally coupled dense system of equations,
demanding special techniques like hierarchical matrix approximation [93] to obtain reasonable per-
formance. And unlike Monte Carlo, BEM does not allow for progressive or output-sensitive
evaluation, as u and ∂u/∂n must always be determined on the entire boundary.

8.2.2 Finite Difference Methods

The main conceptual difference between finite difference and finite element methods is that de-
grees of freedom now represent point samples of the unknown function at nodal points, rather
than coefficients in a finite basis. Derivatives are likewise evaluated via Taylor series approxima-
tion (e.g., using finite difference formulas), rather than by taking derivatives of basis functions.

On the one hand, FD schemes are attractive due to the simplicity of implementation on a reg-
ular grid. However, a major challenge is spatial adaptivity: for many elliptic PDEs, refining the
whole domain (with cubic growth in the number of grid cells) is overkill. Hierarchical structures
like octrees can be used to adaptively refine solutions [78, 153], yet come with their own challenges
(e.g., less coherent memory access, and increased complexity of implementation). Enforcement
of boundary conditions may also not be straightforward, since cell boundaries are typically axis
aligned [33]. FD is also less than ideal for PDEs with nonuniform coefficients, where the uni-
formity of grid cells can lead to significant numerical diffusion [250], spurious negative values
[230], and locking/stagnation [10].

On the whole, finite differences suffer from the same basic challenges as finite element meth-
ods: one must spatially discretize the domain, boundary conditions, source term, and coefficient
functions, leading to either aliasing or oversampling. Moreover, one must solve a globally cou-
pled system of equations over the entire domain, rather than concentrating computational effort
only at points or regions of interest (as with Monte Carlo).

Material Point Methods. Material point methods [118], such as PIC [96], FLIP [29, 284], APIC
[117], and MPM [243] are popular for time-dependent computational mechanics problems in-
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Figure 8.16: Left: for equal number of walks, WoSt is significantly more efficient than both WoS with discretized
boundary reflections (Sec. 3.2.6) and SDE methods (Sec. 2.3.1). Right: our delta tracking WoS estimator correctly
resolves the boundary conditions for any value of ε; shrinking the ε-shell reduces bias in the solution in a predicable
manner, with little impact on performance. Solving the same PDE with an SDE estimator (Eq. 2.32) eventually
resolves the boundary conditions with a finer step-size, but at the detriment of runtime performance. All timings
were taken on an 8 core M1 MacBook Pro.

volving large-scale deformation (fluids, plasticity, etc.). These methods are also sometimes re-
ferred to as “meshless”, but they are not (in general) meshless FEM schemes, as defined in Sec.
8.2.1. Rather, these methods use particles to approximate advection, and a background grid to
solve elliptic problems (such as pressure projection in fluids). Critically, for the problems we
consider here (time-independent PDEs), there is no advection component, and MPM reduces to
simply solving elliptic equations on a grid—with the same trade-offs discussed above.

8.3 Comparison With Alternative Grid-Free Monte Carlo Solvers

Not all PDE solvers need to discretize space—the notable exception are Monte Carlo methods
based on continuous random processes like Brownian motion. The stochastic approach centers on
the simulation of random walks that in aggregate solve a large class of elliptic and parabolic PDEs
[191]. Pointwise evaluation of PDE solutions has allowed this formulation to find extensive use in
scientific disciplines such as mathematical finance [24, 43, 163, 164], computational physics and
chemistry [80, 87, 160, 161] and optimal control [124, 127] (albeit on simple geometric domains).

8.3.1 Discretized Random Walks

As discussed in Sec. 2.3.1 & 2.3.2, the standard Monte Carlo approach simulates random walks
with explicit time stepping, akin to ray marching in rendering. These integration schemes for
stochastic differential equations [101, 172] are generally not well-suited for solving PDEs in com-
plex domains, as a fixed time step either means slow runtimes due to a large number of steps
inside the domain, or large bias in the estimated solution from discretizing walks.

As shown in Fig. 8.16 (left), WoSt is both significantly faster and less biased for mixed
boundary-value problems with comparable parameter settings: epsilon value ε = 0.001 for WoSt,
reflection offset ζ = 0.01 for WoS, and step size h = 0.0001 for the SDE-based method. As dis-
cussed in Sec. 3.2.6, WoS with boundary reflections suffers from bias buildup due to long walks
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that stick to the Neumann boundary. Methods based on reflecting SDEs perform even worse [42],
as they incur bias not only on the boundary, but also in the interior. In contrast, the star-shaped
regions used by WoSt enable one to take large steps without incurring significant bias.

Similar to ray marching [133], discretized walks still exhibit fairly predictable variance, as
long as some bias in the solution is tolerable. Fig. 8.16 (right) shows that bias is exacerbated with
SDE-based methods for variable-coefficient problems, as the diffusion and drift coefficients in Eq.
2.23 implicitly modify the ideal step size. In contrast, the ε-shell in WoS incurs only minuscule
bias at the very end of a walk, leading to far less error overall.

8.3.2 Continuous Random Walks

A few grid-free Monte Carlo methods do not require any spatial or temporal discretization to
simulate random walks. The chief example is WoS, which uses closed-form distributions to
exactly model large steps of Brownian motion. Variants include walk on rectangles (WoR) [49]
and walk on boundary (WoB) [217]. In the case of simple polygonal domains, WoR has been
shown to converge faster to the boundary than WoS and without any bias, but it currently lacks
accelerated geometric queries for finding the largest rectangle and has not been evaluated on
complex geometric domains. WoB solves Laplacian BVPs with Dirichlet, Neumann and Robin
boundary conditions by recursively evaluating single and double layer potentials using rays that
reflect off the boundary. Unlike WoS and WoSt, WoB does not require any distance queries, but as
we describe below, it currently suffers from very high variance and bias in non-convex domains.
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Figure 8.17: Here we solve for a known reference func-
tion, using its normal derivatives to specify Neumann
conditions on an increasingly large part of the bound-
ary. WoSt exhibits the expected Monte Carlo convergence
rate, whereas estimators based on multiple ray intersec-
tions (Sec. 4.2.2), like walk on boundary, quickly blow up.

The Walk On Boundary Method. Similar to
WoSt, WoB uses direction sampling to deter-
mine the next walk location xk+1, but uses the
entire boundary ∂Ω as its sampling domain.
This means that it must estimate the solution
at all ray intersections with ∂Ω, as each inter-
sected point contributes to the solution esti-
mate at xk (Fig. 4.3, left). To avoid a branching
walk that increases exponentially in size, WoB
instead uses just a single randomly selected
intersection. As shown in Fig. 8.17 & 8.18,
this results in extremely high variance even in
domains that are mostly convex, as the recur-
sive solution estimate must be multiplied by
the number of intersections to ensure the ex-
pected contribution from each intersection is
correctly accounted for. Moreover, the Pois-
son kernel alternates sign between consecutive
intersections in the WoB estimator [242, Sec.
4.1.1], which further results in unstable esti-
mates due to cancellation [125, Ch. 4]. Sug-
imoto et al. [242, Sec. 4.1.2] therefore propose truncating walk length to reduce variance, but
this approach introduces significant bias in non-convex domains (see Fig. 8.18, fist column). In
contrast, WoSt has much more manageable variance and bias, as it only ever intersects ∂St once
to select xk+1, and uses an ε-shell that requires little-to-no hand-tuning.
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Figure 8.18: While the walk on boundary method suffers from an extreme bias-variance tradeoff, WoSt demonstrates
reliable Monte Carlo convergence with increasing sample count (i.e., number of walks) for any combination of
Dirichlet, Neumann and Robin boundary conditions. First three rows: Even in mostly convex domains with simple
boundary conditions, WoB has noticeable bias in its solution estimate when walk length is truncated too aggressively
(first column). Otherwise, WoB experiences an exponential increase in variance with longer walk lengths (second
and third column), and requires an enormous number of samples to suppress error. RMSE remains high even for
problems with a constant solution, whereas WoSt has no estimation error in this case as walk throughput is always
bounded between 0 and 1 (second row). Fourth row: For more non-convex domains, variance in the solution estimate
explodes with WoB even for a truncated walk length of 2—in contrast, estimation with WoSt is equally stable in
both convex and non-convex domains.
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WoB has even more trouble with Robin problems (Fig. 8.18, third and fourth rows), as it
has no mechanism to deal with the reflectance term ρµ = 1− µG/P in its integral expressions
(e.g., via importance sampling). As a result, walk throughout typically grows even faster with
Robin conditions, especially as µ is increased—here, standard variance reduction techniques
from rendering cannot help bound throughput. Our WoSt estimator, on the other hand, ensures
ρµ remains bounded between 0 and 1 on ∂St. Therefore, we do not truncate walk length to a
predefined value like WoB, and instead use Russian roulette to terminate walks without any bias.

Fig. 8.18 provides equal-time comparisons between WoB and WoSt for a Laplace equation,
where we run the reference WoB implementation from Sugimoto et al. [242] on an Nvidia RTX
3090 GPU, and use a 12 core CPU machine for WoSt. WoSt demonstrates stable convergence
with little bias for Dirichlet, Neumann and Robin boundary conditions. Though WoSt takes
more steps on average per walk than WoB (see table on bottom left), the relative mean-squared
error values illustrate that WoB is extremely sensitive to the choice of walk length, and requires
an enormous number of samples to converge, even to a solution with large bias. This suggests
that the example problems we used in Sec. 8.1 to stress-test WoSt are essentially intractable for
WoB, due to the significant nonconvexity and complexity of their geometry.
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Chapter 9

Future Directions

The goal of this work was to set the groundwork for Monte Carlo Geometry Processing by
building on Muller [174]’s walk on spheres algorithm and fleshing out practical estimators for
some of the most basic, yet fundamental partial differential equations in scientific, geometric
and visual computing. In particular, we leveraged inherent properties of Brownian motion and
drew on insights from rendering to consolidate the treatment of general first-order boundary
conditions with WoSt (Ch. 4), provide the first estimators for fairly general continuously-varying
coefficients (Ch. 5), and develop a number of variance reduction strategies for both the solution
and its derivatives (Ch. 7). The key strength of our approach is its ability to function reliably
in complex geometric domains without any preprocessing or volumetric meshing (Ch. 8); error
decreases predictably with more samples and essentially no parameter tuning (Ch. 6).

As we discuss below, clearly a great deal more remains be done to enhance the efficiency of
our solvers (Sec. 9.1), and broaden their applicability to a wider array of problems (Sec. 9.2).
Yet, even within the class of PDEs presented here, geometric scalability will likely pay dividends
in well-chosen scientific and engineering contexts—just as it has for Monte Carlo simulation of
light transport. In general, the very different capabilities of grid-free Monte Carlo methods for
solving PDEs are still largely unexplored in scientific, geometric and visual computing, with
many unique benefits and attractive use cases yet to be discovered.

9.1 Enhancing Solver Efficiency

reflecting

absorbing

origin
termination

(avg. steps: 214) (avg. bounces: 219)WoSt path tracing 

Figure 9.1: Random walk methods such as WoSt and path
tracing require many steps or bounces to make their way
through a key hole.

Though our estimators exhibit a much more
favorable speed-bias tradeoff compared to
other random walk methods (Sec. 8.3), they
still require highly redundant computation
compared to grid-based techniques, and can
suffer from long walk lengths and noise. For
instance, Fig. 9.1 replicates a classic “key-
hole problem” using both 2D path tracing (as-
suming perfectly diffuse reflections) and WoSt
(with a Neumann-dominated boundary). In
both cases, several independent walks must
make their way through the same narrow gap
in the domain (with average walk length greater than 200), highlighting a general challenge faced
by forward random walk estimators. Likewise, as in rendering, PDE coefficients with large spa-
tial variation can result in small step-sizes and hence increased runtimes and variance—unlike
rendering, large variations in σ′(x) (Eq. 5.3) typically stem from derivatives of the diffusion and
drift coefficients, which make it difficult to deal with very sharp changes in material density.
Here we outline techniques that might broadly help improve efficiency by either taking less time
to produce the same variance, or producing less variance in the same amount of time.
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Geometric Queries. The dominant cost of our estimators is evaluating geometric queries (Sec.
6.1–6.2). While ray-intersections are well-optimized [259, 260], distance queries typically face
bigger workload imbalance. For instance, depth first traversal provides good pruning near the
domain boundary with CPQs, but becomes less effective for query points near the medial axis
of the domain. This is because depth first traversal undergoes wasteful backtracking in regions
equally close to different parts of the boundary. Further research and engineering effort is there-
fore required to perform millions of such queries in a cache-friendly fashion in parallel, while
minimizing thread divergence amongst independent random walks with different walk lengths—
possibly via a wavefront (rather than a megakernel) implementation on the GPU [142, 173].

Basic opportunities for accelerating CPQs and CSPQs include, e.g., better tree construction
heuristics [39, Sec. 4.4], use of oriented bounding volumes, and intelligent caching of silhouette
edges. One might also extend silhouette queries to (neural) implicit surfaces by building on
recent range analysis techniques [231]. Likewise, point sampling queries (Sec. 6.2.4) could be
optimized by using accelerations developed for many-lights sampling [39, Sec. 5.4] to ensure that
Neumann and Robin boundary samples lie inside star-shaped regions.

Next-Event, Path-Space And Hybrid Estimators. Random walk estimators may take many
steps before obtaining a Dirichlet contribution, resulting in high computation time without a
commensurate decrease in variance. This situation directly parallels rendering algorithms that
produce long light paths in scenes with primarily non-absorbing or highly-scattering materials.

In rendering, next-event estimation reduces noise by adding a direct illumination contribution
at each bounce [40, 268]. One could likewise try adding a Dirichlet contribution at each step
of WoSt, by allowing subdomains to contain a subset of the Dirichlet boundary. Such a scheme
would simply need some way to estimate ∂u/∂n at Dirichlet points (Eq. 4.1). More generally, a
path-space formulation [203, Ch. 14] of the BIE may lead to estimators that make more global sam-
pling decisions by connecting arbitrary evaluation points with difficult-to-sample boundary and
source data (e.g., via Markov chain Monte Carlo [131, 251] or path guiding [100, 175, 176, 177]).
Moreover, the performance of our variable coefficient PDE estimators can likely be improved by
adapting further techniques from volume rendering, such as local or progressive bounds on coef-
ficient functions [169, 246, 274], and adaptive weight windows (as discussed in Sec. 7.7). It seems
wise to also consider hybrid strategies that combine Monte Carlo estimation with information
sharing, perhaps by way of temporal difference methods in reinforcement learning [245, Ch. 6].

Sample Reuse. When problems require dense evaluation, sample reuse strategies like BVC
greatly reduce redundant computation by performing random walks only from the boundary
(Sec. 7.5). We can improve BVC in a number of ways: principled and unbiased pointwise esti-
mation of ∂u/∂n on the Dirichlet boundary should reduce global error in the estimated solution
noticeably. Though sharing samples necessitates a lack of importance sampling, we can take fur-
ther inspiration from VPL methods [46, Sec. 5] to suppress artifacts near the boundary, especially
for gradients. We can also asymptotically reduce the quadratic complexity of evaluating the BIE
by adapting clustering techniques such as Barnes-Hut and lightcuts [88, 152, 202, 264, 275].

Looking ahead, we can develop domain decomposition strategies [34] to more effectively han-
dle domains with, e.g., thin features where pointwise estimators struggle, as BVC can evaluate
PDEs locally inside arbitrary bounding regions. BVC might even help speedup pointwise esti-
mators by terminating walks early in regions where samples have previously been cached. More
broadly, we can look for ways to unify boundary and mean value caching [11, 166], bidirectional
random walks [167, 206] and neural caches [151] into a single caching framework for greater vari-
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ance reduction, without compromising on the scalability, progressivity, and output sensitivity of
the underlying estimators. Other reuse schemes from rendering for dynamic geometry such as
ReSTIR [23, 193] and recursive control variates [186] provide similar opportunities.

Concave Reflecting Boundaries. To take large steps near silhouette points (Fig. 4.5), we can
replace the fixed parameter ε with an adaptive radius based on local curvature estimates [205].
Alternatively, one might apply multi-level Monte Carlo [79] to reduce bias by aggregating estimates
obtained via progressively smaller values of ε. Even more generally, we can look for subdomains
other than star-shaped regions to take larger steps while keeping throughput bounded.

Denoising and Geometric Prefiltering. Since elliptic PDEs have very regular solutions, high-
frequency noise in WoSt estimates can be nicely mitigated via denoising (Fig. 7.6); here again
methods from rendering provide a wealth of opportunities [137, 189, 190, 226, 288]. Another
interesting challenge is how to detect—or even define—silhouettes for geometry with intricate
microstructures [184], perhaps through some form of geometric prefiltering [271]. In particular,
the SNCH (Sec. 6.2.1) itself provides a form of prefiltering: nodes higher than the leaves can
provide conservative or approximate bounds on dsilhouette that effectively amount to smoothing
out fine-scale geometry (at the cost of bias). Likewise, SNCH nodes could be built by sampling a
distribution (e.g., a microflake model [99]) rather than bounding explicit geometry.

9.2 Broadening Solver Applicability

Extending our Robin estimators to support both positive and negative coefficients should enable
us to solve not just variable coefficient PDEs with reflecting boundary conditions (as discussed
in Sec. 5.3), but also exterior problems via the method of Nabizadeh et al. [179]—here the Kelvin
transform converts Neumann conditions into Robin. With Robin conditions, our WoSt estimator
can be used alongside a ray tracer to more accurately model physics that couples conduction,
convection and radiative transfer [14]. The next logical extension for the variable coefficient es-
timators from Ch. 5 is to generalize the isotropic diffusion coefficient κ(x) to be matrix valued,
possibly through the Lamperti transform [170]: such anisotropic coefficients currently present sig-
nificant challenges for conventional PDE solvers due to the need for anisotropic mesh generation
[10, 230, 250], which is an even harder problem than isotropic meshing [214]; this extension will
also enable simulation of random walks on more general curved surfaces than those in Fig. 8.8.

Though we have developed our WoS and WoSt estimators in the context of linear elliptic
PDEs like the Poisson equation, the basic algorithmic strategy should apply more broadly: fun-
damentally, these estimators depend on the structure of the BIE, and BIE formulations are readily
available for a variety of other important PDEs in scientific computing, including the heat [95],
Helmholtz [18, 106, Ch. 3] and biharmonic equations [111], as well as linear elasticity [106, Ch.
4]. Stochastic integral formulations are known for Navier-Stokes [31, 211], while other nonlinear
PDEs can be handled by, e.g., simulating branching diffusion [28], or by applying forward-backward
stochastic differential equations [196]. We did not touch on the possibility of solving higher dimen-
sional problems in this work, or PDEs with unknown, random variables (as often arise when
working with measured data), which also seem quite natural in the Monte Carlo setting.

Lastly, as with differentiable rendering [83, 150, 187, 278], an exciting direction of future
work, and a likely source of many applications, is to develop differentiable variants of WoS
that optimize parameterized descriptions of geometry, boundary conditions and coefficients for
inverse tasks like impedance tomography [272] and thermally aware circuit board design [32].
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Appendix A

Green’s Functions & Their Derivatives

We provide expressions for the Green’s function and its derivatives, in free space and over a ball
in 2D and 3D, for the Poisson and screened Poisson equations. The PDE estimators we describe
in Ch. 3 - 7 require these functions. We also discuss how to draw samples from the Green’s
function of a ball to reduce noise associated with the source term in these estimators.

A.1 Poisson Equation

A.1.1 Free Space Expressions

The free space Green’s functions in 2D and 3D for two points x and y equal

GR2
(x, y) = − log(r)

2π
, GR3

(x, y) =
1

4πr
, (A.1)

where r := ∥y− x∥. The corresponding Poisson kernels equal

PR2
(x, y) =

ny · (y− x)
2πr2 , PR3

(x, y) =
ny · (y− x)

4πr3 , (A.2)

where ny is the unit normal at y. The gradients of G with respect to x are

∂GR2
(x, y)

∂x
=

x− y
2πr2 ,

∂GR3
(x, y)

∂x
=

x− y
4πr3 . (A.3)

Expressions for ∂2G/∂x ∂ny are given by

∂2GR2
(x, y)

∂x ∂ny
= 2

ny · (y− x)
2πr4 (y− x) −

ny

2πr2 ,

∂2GR3
(x, y)

∂x ∂ny
= 3

ny · (y− x)
4πr5 (y− x) −

ny

4πr3 . (A.4)

A.1.2 Expressions For A Ball

For a ball B(x, R) centered at x and with radius R, we can derive 2D and 3D Green’s functions
from the corresponding free space expressions using the method of images [55]. This gives

GB
2D(x, y) =

log(R/r)
2π

, GB
3D(x, y) =

1
4π

(
1
r
− 1

R

)
. (A.5)

These functions integrate over B to

|GB
2D(x)| :=

∫
B(x,R)

GB
2D(x, y)dy =

R2

4
,
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Figure A.1: To importance sample the Green’s function of the Poisson and screened Poisson equations, we need
to sample from densities that depend only on the radius r (shown here for 2D functions, and for several values of
the screening parameter σ). Although Green’s functions G have singularities at r = 0 (left), the associated radial
distributions rG are nonsingular due to a change in measure (right).

|GB
3D(x)| :=

∫
B(x,R)

GB
3D(x, y)dy =

R2

6
. (A.6)

The corresponding Poisson kernels are the same as their free space counterparts. For any point
z ∈ ∂B with normal nz = (z− x)/R, the Poisson kernels simplify to

PB
2D(x, z) =

1
2πR

, PB
3D(x, z) =

1
4πR2 . (A.7)

Finally, gradients of G and P with respect to x are given by

∂GB
2D(x, y)

∂x
=

(y− x)
2π

(
1
r2 −

1
R2

)
,

∂GB
3D(x, y)

∂x
=

(y− x)
4π

(
1
r3 −

1
R3

)
,

∂PB
2D(x, z)

∂x
= 2

(z− x)
2πR3 ,

∂PB
3D(x, z)

∂x
= 3

(z− x)
4πR4 . (A.8)

Sampling

As discussed in Sec. 4.2.2, we can use direction sampling to importance sample the Poisson kernel
of a ball PB ≡ PRN

. To generate samples from the probability density pB := GB(x, y)/|GB(x)|
associated with the Green’s function of the ball B(x, R), we first pick a direction v uniformly
on the unit sphere [5], and then use rejection sampling (Sec. 3.1.2) to sample a radius r from
the density 2πrpB in 2D or 4πr2 pB in 3D. The extra terms in front of pB account for the change
of measure between polar and Cartesian coordinates (Fig. A.1). We use 1.5/R as our rejection
sampling bound for the radial density. The final sample point inside B is then given by y = x+ rv.
In 3D, we can instead use Ulrich’s polar method [54, Sec. 9.4] to more efficiently sample the radius
r via inversion (Sec. 3.1.2)—we refer to Mossberg [173, Sec. 2.5] for further details.
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A.2 Screened Poisson Equation

A.2.1 Free Space Expressions

Let In and Kn (for n = 0, 1, . . .) denote modified Bessel functions of the first and second kind,
respectively—routines to efficiently evaluate these functions are available in numerical libraries
such as Boost [225] and SciPy [254]. The free-space Green’s functions in 2D and 3D for a screened
Poisson equation with a positive screening coefficient σ then equal

Gσ,R2
(x, y) =

K0(r
√

σ)

2π
, Gσ,R3

(x, y) =
e−r
√

σ

4πr
. (A.9)

The corresponding Poisson kernels are

Pσ,R2
(x, y) = Qσ,R2

(x, y) PR2
(x, y),

Pσ,R3
(x, y) = Qσ,R3

(x, y) PR3
(x, y), (A.10)

where

Qσ,R2
(x, y) := K1(r

√
σ) r
√

σ,

Qσ,R3
(x, y) := e−r

√
σ
(
r
√

σ + 1
)

. (A.11)

The gradients of Gσ with respect to x are

∂Gσ,R2
(x, y)

∂x
= Qσ,R2

(x, y)
∂GR2

(x, y)
∂x

,

∂Gσ,R3
(x, y)

∂x
= Qσ,R3

(x, y)
∂GR3

(x, y)
∂x

. (A.12)

Applying the product rule to the expressions above yields ∂2Gσ/∂x ∂ny.

A.2.2 Expressions For A Ball

Centered Expressions

For a ball B(x, R), the 2D and 3D Green’s functions are

Gσ,B
2D (x, y) =

1
2π

Vσ,B
2D (∥y− x∥), where Vσ,B

2D (r) :=
(

K0(r
√

σ)− I0(r
√

σ)
K0(R

√
σ)

I0(R
√

σ)

)
,

Gσ,B
3D (x, y) =

1
4π

√
2
√

σ

πr

(
K 1

2
(r
√

σ)−
K 1

2
(R
√

σ)

I 1
2
(R
√

σ)
I 1

2
(r
√

σ)

)

=
1

4π

(
e−r
√

σ

r
− e−R

√
σ

R

(
sinh(r

√
σ)

r
√

σ

R
√

σ

sinh(R
√

σ)

))

=
1

4π
Vσ,B

3D (r), where Vσ,B
3D (r) :=

(
sinh((R− r)

√
σ)

r sinh(R
√

σ)

)
. (A.13)

They integrate over B to

|Gσ,B
2D (x)| :=

∫
B(x,R)

Gσ,B
2D (x, y)dy =

1
σ

(
1− 1

I0(R
√

σ)

)
,
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|Gσ,B
3D (x)| :=

∫
B(x,R)

Gσ,B
3D (x, y)dy =

1
σ

(
1− R

√
σ

sinh(R
√

σ)

)
. (A.14)

The corresponding Poisson kernels at any point y ∈ B equal

Pσ,B
2D (x, y) = Qσ,B

2D (x, y) PR2
(x, y),

Pσ,B
3D (x, y) = Qσ,B

3D (x, y) PR3
(x, y), (A.15)

where

Qσ,B
2D (x, y) :=

(
K1(r
√

σ) + I1(r
√

σ)
K0(R

√
σ)

I0(R
√

σ)

)
r
√

σ,

Qσ,B
3D (x, y) := e−r

√
σ
(
r
√

σ + 1
)
+(

cosh(r
√

σ) r
√

σ− sinh(r
√

σ)
) e−R

√
σ

sinh(R
√

σ)
.

(A.16)

We note that Qσ,B ∈ [0, 1) for σ > 0. Since WoSt samples directions proportionally to PRN
(Sec.

4.2.2), we are left with a multiplicative weight of Qσ,B in the solution estimate for a screened
Poisson equation at every step of a random walk—as mentioned in Sec. 3.2.2, we can apply
Russian roulette on 1−Qσ,B to terminate walks early.

For any point z ∈ ∂B with normal nz, the Poisson kernels simplify to

Pσ,B
2D (x, z) =

1
2πR

(
1

I0(R
√

σ)

)
,

Pσ,B
3D (x, z) =

1
4πR2

(
R
√

σ

sinh(R
√

σ)

)
. (A.17)

Notice that in both dimensions, the Poisson kernel equals 1−σ|Gσ,B(x)|
|∂B(x,R)| , and

σ|Gσ,B(x)|+ |Pσ,B(x)| = 1, (A.18)

where |Pσ,B(x)| denotes the integral of the Poisson kernel over B. Intuitively, a random walk is
either absorbed inside the ball or it escapes through the boundary. We use these facts to develop
the delta tracking variant of WoS in Sec. 5.2.1.

Finally, gradients of Gσ and Pσ with respect to x are given by

∂Gσ,B
2D (x, y)

∂x
=

(y− x)
√

σ

2πr

(
K1(r
√

σ)− K1(R
√

σ)

I1(R
√

σ)
I1(r
√

σ)

)
,

∂Gσ,B
3D (x, y)

∂x
=

(y− x)
√

σ

4πr2

(
e−r
√

σ

(
1 +

1
r
√

σ

)
−

(
cosh(r

√
σ)− sinh(r

√
σ)

r
√

σ

) e−R
√

σ
(

1 + 1
R
√

σ

)
cosh(R

√
σ)− sinh(R

√
σ)

R
√

σ

 ,

∂Pσ,B
2D (x, z)

∂x
=

(z− x) σ

2πR

(
1

R
√

σ I1(R
√

σ)

)
,

∂Pσ,B
3D (x, z)

∂x
=

(z− x) σ

4πR2

 1

cosh(R
√

σ)− sinh(R
√

σ)
R
√

σ

 . (A.19)
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Off-Centered Expressions

The next-flight variant of WoS in Sec. 5.2.2 requires off-centered versions of the Green’s function
and Poisson kernel. In particular, let x be an arbitrary point inside a ball B(c, R) centered at c,
and let r− := min(|x − c|, |y− c|) and r+ := max(|x − c|, |y− c|). Furthermore, let θ define the
angle between the vectors x− c and y− c in 2D or 3D. Then the off-centered Green’s function is
given by the infinite series

Gσ,B
2D (x, y) =

1
2π

∞

∑
n=−∞

cos(nθ) In(r−
√

σ)

(
Kn(r+

√
σ)− Kn(R

√
σ)

In(R
√

σ)
In(r+

√
σ)

)
,

Gσ,B
3D (x, y) =

1
4π

∞

∑
n=0

(2n + 1) Pn(cos(θ))
(√

π

2r−
√

σ
In+ 1

2
(r−
√

σ)

)
√

2
√

σ

πr+

(
Kn+ 1

2
(r+
√

σ)−
Kn+ 1

2
(R
√

σ)

In+ 1
2
(R
√

σ)
In+ 1

2
(r+
√

σ)

)
,

(A.20)

where Pn denotes the recursively defined Legendre polynomials. The Poisson kernel can be
computed by evaluating nz · ∂Gσ(x,z)/∂z on ∂B. We recover the centered expressions for Gσ and Pσ

from the previous section when x coincides with c.
In practice, we observe that 100 to 200 terms are required to accurately approximate these se-

ries. To avoid this computational burden, we provide approximations for off-centered functions.
In particular, let u := x− c, v := y− c and w := y− x. Then in 2D and 3D we have

Gσ,B
2D (x, y) =

1
2π

(
Vσ

2D(|w|)−Vσ
2D

(
R2 − u · v

R

))
,

Gσ,B
3D (x, y) =

1
4π

(
Vσ

3D(|w|)−Vσ
3D

(
R2 − u · v

R

))
,

Pσ,B
2D (x, y) =

1
2π

(
Wσ,B

2D (|w|) |v|
2 − u · v
|w||v| + Wσ,B

2D

(
R2 − u · v

R

)
u · v
R|v|

)
,

Pσ,B
3D (x, y) =

1
4π

(
Wσ,B

3D (|w|) |v|
2 − u · v
|w||v| + Wσ,B

3D

(
R2 − u · v

R

)
u · v
R|v|

)
, (A.21)

where

Wσ,B
2D (r) :=

√
σ

(
K1(r
√

σ) +
K0(R

√
σ)

I0(R
√

σ)
I1(r
√

σ)

)
,

Wσ,B
3D (r) :=

√
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√
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σ
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K 3

2
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√

σ) +
K 1
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√
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√
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I 3

2
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√
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=

√
σ

r

(
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√

σ

(
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1
r
√

σ
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√

σ

sinh(R
√

σ)

(
cosh(r

√
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√
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r
√
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(A.22)

These expressions for Gσ and Pσ are exact when x coincides with c, but begin to diverge slightly
from the true values as x is moved closer to ∂B and the value of the coefficient σ is decreased, as
shown in Fig. A.2. In our experiments, we observed that these approximate expressions provide
sufficiently accurate results with the next-flight variant of WoS with far less compute, especially
when σ is large.
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| P series (x, z) − P approx (x, z) | | G series (x, y) − G approx (x, y) |σσ σ σ
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Figure A.2: The series and approximate expressions for Gσ,B and Pσ,B match exactly when x lies at the center of the
ball B (left), but begin to diverge as x is moved closer to ∂B (middle) and σ is decreased (right).

Sampling

We follow App. A.1.2 to generate samples from the probability density pσ,B := Gσ,B(x, y)/|Gσ,B(x)|,
but bound the radial density by the following case dependent function instead:

h(R, σ) :=

{
max(2.2 ∗max(1/R, 1/σ), 0.6 ∗max(

√
R,
√

σ)) R ≤ σ,
max(2.2 ∗min(1/R, 1/σ), 0.6 ∗min(

√
R,
√

σ)) otherwise.
(A.23)

Generating samples from the off-centered Green’s functions in App. A.2.2 is more challenging as
we do not have closed-form expressions for |Gσ,B(x)|. Though we could use a uniform density
pσ,B := 1/|B(c,R)| for unbiased estimation, we instead use weighted importance resampling (Sec.
3.1.2) to generate samples that approximately importance sample Gσ,B.
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Appendix B

Open Domains & Double-Sided Boundaries

Here we describe how to apply walk on stars (Ch. 4) and boundary value caching (Sec. 7.5)
to open domains, by adapting the boundary integral from Eq. 2.16 to use an appropriate set of
Dirichlet, Neumann and Robin conditions on either side of the domain boundary.

B.1 Walk On Stars

Let Ω ∈ RN be an open domain, and let n+ and n− denote unit “outward” and “inward” facing
normals on ∂Ω (respectively). We assume ∂Ω has a canonical orientation determined by n+,
and partition it into a Dirichlet part ∂ΩD with prescribed values g+ and g− on either side ∂ΩD,
and a Neumann part ∂ΩN with corresponding derivative values h+ and h− (which we will later
generalize to Robin conditions). We then restrict Eq. 2.16 to a star-shaped region St(x, R) to get

α(x) u(x) =
∫

∂StB(x,R)
PB(x, z) u(z)dz

+
∫

∂StN(x,R)
PB,∗(x, z) u(z) + GB(x, z) h∗(z)dz

+
∫

St(x,R)
GB(x, y) f (y)dy, (B.1)

xk+1 xk−1
n+

n−

qk

∂ΩN

where the Neumann data h∗ equals either h+ or h− depending on
where x is, and correspondingly PB,∗(x, z) := −∂GB(x,z)/∂n∗z . Contribu-
tions from the solution u(z) and derivative h∗(z) on non-visible parts
of ∂B and ∂ΩN for the region B(x, r) ∩Ω can be ignored, as they de-
fine a closed region that does not contain x and hence integrate to zero
(see Eq. 2.11). Inside a star-shaped region St, by construction we have
α = 1/2 if x ∈ ∂StN, and 1 otherwise.

The choice of which boundary conditions to use during a random
walk depends on whether the boundary is front- or back-facing relative
to the walk locations xk or xk−1 for k > 0, as well as the walk’s direction
of approach towards ∂Ω, qk := xk − xk−1 (see inset). For k = 0, we require q0 as input to the
algorithm from the user to determine the appropriate boundary conditions—for instance when
x0 ∈ ∂ΩD, we use the Dirichlet data g+ if q0 = n+

x0
, and g− if q0 = n−x0

. More generally:

1. we change line 2 in Alg. 2 to return g+ when qk · n+
xk

> 0, and g− otherwise. This dot
product determines whether the boundary is back-facing relative to xk−1.

2. before using hemispherical direction sampling in line 5 to determine the next walk location
xk+1, we flip the direction of the boundary normal nx in Alg. 2 from n+

xk
to n−xk

if qk · n+
xk
< 0.

This ensures that xk+1 will lie on the same side of the boundary as the direction from which
the walk approached ∂ΩN.
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3. for Neumann data:

a) when xk /∈ ∂ΩN, we use h+ at the sampled point zk+1 if (zk+1 − xk) · n+
zk+1

> 0, and h−

otherwise. The boundary orientation in this case is determined relative to xk.

b) when xk ∈ ∂ΩN, we use h+ as the Neumann data at zk+1 if the boundary normal nx
was flipped as described in change 2, and h− otherwise.

For Robin conditions with coefficients µ+, µ− ∈ RN
>0 on either side of ∂ΩR, the only change

to Eq. B.1 is to introduce a reflectance term ρ∗ := 1− µ∗GB/PB,∗ in front of PB,∗(x, z) u(z). Here
we use µ+ inside the reflectance if qk · n+

xk
< 0, and µ− otherwise.

B.2 Boundary Value Caching

For sample caching and reuse, we work directly with the boundary integral in Eq. 2.16. Similar
to Sec. 7.5, we generate uniformly distributed source samples over Ω, but now use two separate
sets of boundary samples associated with the normals n+ and n− on ∂Ω. We use WoSt to estimate
solution values u+ and u− by launching random walks on either side of a Neumann boundary
∂ΩN and Robin boundary ∂ΩR. We also generate boundary samples on two offset Dirichlet
boundaries ∂Ωζ

D and ∂Ω−ζ
D to estimate ∂u+/∂n+ and ∂u−/∂n−, respectively. With this setup, we can

compute a solution estimate at any evaluation point x ∈ Ω by directly estimating Eq. 2.16 with
all the source and boundary samples—for points that are within a distance ζ to ∂ΩD, we instead
use WoSt to compute pointwise solution estimates.
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Appendix C

Operator-Theoretic Analysis

In this appendix, we provide a formal justification for the convergence of the walk on stars
method (Ch. 4) with Dirichlet, Neumann and Robin conditions via an operator-theoretic analysis
of boundary integral equations. We draw inspiration from the seminal work of Arvo [6], who
pioneered the use of operator-theoretic techniques to analyze the convergence of integral equa-
tions in light transport—Arvo [7] and Veach [251, Ch. 4 & 7] provide a detailed treatment of this
topic, and Soler et al. [239] describe recent developments.

C.1 Background

The material in this section is based on results by Jörgens [120, Ch. 2] and Kato [128, Ch. 3]. To
simplify the discussion, we work with a Banach space L 2(Ω) of square-integrable functions on a
domain Ω, equipped with the usual functional norm ∥·∥L 2(Ω). I.e., for any function u ∈ L 2(Ω),

∥u∥L 2(Ω) :=
(∫

Ω
|u(x)|2 dx

) 1
2

and ∥u∥L 2(Ω) < ∞. (C.1)

Even though the solution of linear elliptic PDEs like the Poisson equation generally exits in more
restrictive spaces (e.g., spaces requiring differentiability), working with such spaces requires more
complicated techniques to arrive at the same results (e.g., using different inequalities to bound
operator norms).

Given a kernel function κ : Ω×Ω→ R and a boundary mapping A : Ω→P(Ω) (where P
denotes the powerset), we define an integral operator

C A
κ [u](x) :=

∫
A(x)

κ(x, y)u(y)dy. (C.2)

If the kernel and boundary mapping satisfy

sup
x∈Ω

∫
A(x)
|κ(x, y)|dy < C < ∞ (C.3)

for some constant C, then the integral operator C A
κ satisfies the following properties:

1. Its codomain is L 2(Ω), i.e., C A
κ : L 2(Ω)→ L 2(Ω).

2. It is bounded and in particular, for all u ∈ L 2(Ω),∥∥∥C A
κ [u]

∥∥∥
L 2(Ω)

≤ C ∥u∥L 2(Ω) . (C.4)
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These two properties together imply that the operator has a well defined operator norm

∥∥∥C A
κ

∥∥∥
Op

:= sup

{∥∥C A
κ [u]

∥∥
L 2(Ω)

∥u∥L 2(Ω)

, u ∈ L 2(Ω), u ̸= 0

}
, (C.5)

and spectral radius

r
(
C A

κ

)
:= lim

n→∞

∥∥∥C A
κ

∥∥∥ 1
n

Op
. (C.6)

It also follows that ∥∥∥C A
κ

∥∥∥
Op
≤ C and r

(
C A

κ

)
< C. (C.7)

Moreover, for an operator C A
κ , its unit resolvent is the operator

RA
κ :=

(
I − C A

κ

)−1
, (C.8)

where I : L 2(Ω) → L 2(Ω) is the identity operator. The unit resolvent RA
κ exists and is a

bounded operator L 2(Ω)→ L 2(Ω) if and only if r
(
C A

κ

)
< 1 (the inequality is strict).

C.2 Walk On Stars With Dirichlet-Neumann Conditions

To understand the convergence of WoSt with mixed Dirichlet-Neumann conditions, we will ex-
press the boundary integral in Eq. 4.1 in operator-theoretic form. We achieve this by defining
the convolutional kernel κ := PB, the mapping A : x 7→ ∂St(x, R), and the corresponding integral
operator C St

P (we leave the radius R unspecified for now, which means that the region St(x, R) is
not necessarily star-shaped). This allows us to rewrite Eq. 4.1 equivalently in operator form as

u = C St
P [u] + s, (C.9)

where we use s ∈ L 2(Ω) to denote the non-recursive terms on the right-hand side of Eq. 4.1.
Eq. C.9 is a Fredholm-Volterra equation of the second kind, whose solution exists only if the unit
resolvent RSt

P :=
(
I − C St

P
)−1 of C St

P exists and is bounded [13, 65]. If RSt
P is indeed bounded,

then by rearranging terms we can write the solution as

u = RSt
P [s]. (C.10)

To estimate Eq. C.9 using recursive Monte Carlo, we also require boundedness of RSt
P for any

estimator to be convergent and have finite variance [98]. Therefore, to ensure the WoSt estimator
is practical, we need to select a radius R for region St(x, R) that guarantees this condition on RSt

P .
To this end, we take advantage of the fact that the Poisson kernel PB is the signed solid angle

kernel (Sec. 4.2.2) that integrates to 1 over any closed region [12, 114]. We therefore have∫
∂St(x,R)

|PB(x, y)|dy ≥
∫

∂St(x,R)
PB(x, y)dy = 1. (C.11)

The inequality follows from basic properties of the absolute value and integration, and becomes
an equality in regions St(x, R) where the Poisson kernel is positive for all y ∈ ∂St(x, R), i.e.,
star-shaped regions where all points y are visible from x. By selecting R to be the minimum of the
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distance to the closest silhouette point on the Neumann boundary and the closest point on the
Dirichlet boundary, WoSt ensures that St(x, R) is star-shaped, and thus∫

∂St(x,R)
|PB(x, y)|dy = 1. (C.12)

Together with Eq. C.7, Eq. C.12 guarantees that the spectral radius r
(
C St

P
)
≤ 1. However, for

the unit resolvent to exist and be bounded, we require this inequality to be strict. This is achieved
through the ε-shell approximation, which effectively replaces the Poisson kernel with a kernel PB

ε

such that PB
ε (x, y) = 0 for y ∈ ∂St(x, R) ∪ ∂Ωε

D, and PB
ε (x, y) = PB(x, y) otherwise. Then,∫

∂St(x,R)
|PB

ε (x, y)|dy <
∫

∂St(x,R)
|PB(x, y)|dy = 1, (C.13)

ensuring the unit resolvent exists. Since WoSt reduces to WoS for pure Dirichlet problems, the
analysis in this section also applies to the latter as its spherical domains always satisfy Eq. C.12—
in particular, this analysis explains the need for the ε-shell approximation in WoS to achieve
convergence. In contrast, the WoSt estimator for pure Neumann problems does not converge to a
unique solution without Tikhonov regularization, as a lack of a termination criterion means that
the spectral radius r

(
C St

P
)

is not strictly less than 1.

C.3 Walk On Stars With Robin Conditions

Lastly, we consider WoSt with Robin conditions (Sec. 4.3). As above, we start by writing the
boundary integral in Eq. 4.6 in operator-theoretic form, but we now modify our kernel to include
the reflectance term, κ := ρµPB, and use the same mapping A. Using the corresponding integral
operator C St

ρµP, we rewrite Eq. 4.6 equivalently in operator form as

u = C St
ρµP[u] + s, (C.14)

As in the previous section, we need to select a radius R that ensures the unit resolvent RSt
ρµP :=(

I − C St
ρµP

)−1
of C St

ρµP exists and is bounded. This will guarantee that the solution

u = RSt
ρµP[s] (C.15)

can be estimated using recursive Monte Carlo. Using the radius for a Dirichlet-Neumann prob-
lem, we have∫

∂St(x,R)
|ρµ(x, y)PB(x, y)|dy ≤

∫
∂St(x,R)

|ρµ(x, y)|dy
∫

∂St(x,R)
|PB(x, y)|dy

=
∫

∂St(x,R)
|ρµ(x, y)|dy, (C.16)

where we used Hölder’s inequality and Eq. C.12. To ensure that∫
∂St(x,R)

|ρµ(x, y)|dy ≤ 1, (C.17)

we follow Sec. 4.3.3 to further restrict R such that |ρµ(x, y)| <= 1 for all y. If |ρµ(x, y)| < 1 for
any y, then the inequality becomes strict even before we consider the ε-shell approximation. This
explains why WoSt with Robin conditions can also terminate walks using Russian roulette (Sec.
4.3.4), which is not possible when the boundary conditions are Dirichlet and Neumann.
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Appendix D

Reflectance & Radius Bound In 2D Domains

To obtain an explicit expression for the reflectance in 2D, we substitute the 2D Green’s function
and Poisson kernel of a ball B(x, R) (App. A.1.2) into Eq. 4.7 to obtain

ρµ(x, z) = 1− µ(z) r
cos θ

(log(R)− log(r)) , (D.1)

where r = ∥z− x∥ and cos θ = nz·(z−x)/r. To restrict ρµ ∈ [0, 1], we require

µ(z) r
cos θ

(log(R)− log(r)) ≤ 1. (D.2)

Rearranging terms then gives us an upper bound on the radius R,

R ≤ r exp
(

cos θ

µ(z) r

)
, (D.3)

which must hold at all points z ∈ ∂StR.
Similar to Sec. 6.2.2, we can compute a tight radius bound for a 2D line segment l using the

maximum coefficient µmax := max(µ(z)) for all points z ∈ l, and a distance h from x to the plane
l lies on. In particular, letting r = h/cos θ in Eq. D.3, we have:

R ≤ h
cos θ

exp
(

cos2 θ

µ(z) h

)
. (D.4)

As before, we minimize this equation with respect to cos θ. This gives us an analytical expression√
µmaxh/2 for the cosine, which we clamp between the minimum and maximum cosine values

achieved at the closest and farthest points on l (respectively). We then plug the resulting cosine
value back into Eq. D.4 to compute the radius bound for l.
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Appendix E

Girsanov Transformation

30 paths of 
di usion process 

Same paths reweighed 
according to Girsanov

A Girsanov transformation allows one stochastic process to
be expressed in terms of another. The rough intuition is
to imagine that we sample paths from one stochastic pro-
cess Xt with uniform probability—by assigning a different
“weight” to these paths, we can then effectively model a
different stochastic process Yt. In our context this transfor-
mation allows us to realize more complex diffusion pro-
cesses in Ch. 5 via ordinary Brownian motion, which we
simulate using walk on spheres.

The idea is well-illustrated by considering the process

dXt =
#»ω(Xt)dt + dWt. (E.1)

We can then capture the probability that a pure Brownian process Wt takes the same trajectory
as the diffusion process Xt via the importance sampling weight [191, Ch. 8]

Z(Wt) := e
∫ t

0
#»ω(Ws)·dWs − 1

2
∫ t

0 |
#»ω(Ws)|2 ds. (E.2)

The inset shows an example, where samples of a Brownian process are colored according to the
probability that they agree with Xt.

E.1 Application To PDEs

The weighting function Z in turn enables us to re-write the Feynman–Kac formula from Eq. 2.31

(with diffusion coefficient κ = 1) in terms of a Brownian motion Wt. In particular, we now have
an equivalent stochastic representation

u(x) = E

[
e−

∫ τ
0 σ(Wt)dtZ(Wτ)g(Wτ) +

∫ τ

0
e−

∫ t
0 σ(Wt)dsZ(Wt) f (Wt)dt

]
. (E.3)

This version of Feynman–Kac can then be used to numerically estimate the solution to the PDE

1
2 ∆u(x) + #»ω(x) · ∇u(x)− σ(x)u(x) = − f (x) on Ω,

u(x) = g(x) on ∂ΩD,
(E.4)

but now using pure Brownian motion without drift—see Sec. 5.2 for further discussion.

E.2 Chain Rule Of Stochastic Calculus

The term
∫ t

0
#»ω(Ws) · dWs in Eq. E.2 is called a stochastic integral, as it is defined with respect

to variations of a Brownian process Ws (see Øksendal [191, Ch. 4] for a formal definition). To
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evaluate this integral, we turn to Itô’s lemma, which is the stochastic counterpart of the chain rule:
given a twice differential function γ(x) : Rn 7→ R, Itô’s lemma says that the differential dγ, as a
function of a Brownian process Ws, is given by

dγ(Ws) = ∇γ(Ws) · dWs +
1
2

∆γ(Ws)ds. (E.5)

Integrating over time and rearranging terms then yields∫ t
0 ∇γ(Ws) · dWs = γ(Wt)− γ(W0)−

∫ t
0

1
2 ∆γ(Ws)ds. (E.6)

This integrated version of Itô’s lemma allows us to re-express the importance weight Z without
a stochastic integral. In particular, if the drift coefficient takes the form #»ω(x) = ∇γ(x) for any
scalar field γ, then an alternative expression for Z is given by

Z(Wt) = eγ(Wt) − γ(W0) − 1
2

∫ t
0 (∆γ(Ws) + |∇γ(Ws)|2)ds. (E.7)

E.3 Derivation Of Eq. 5.3

With this new expression for Z, Eq. E.3 now takes the form

u(x) = e−γ(x) E

[
e−

∫ τ
0 σ′(Wt)dtg′(Wτ) +

∫ τ

0
e−

∫ t
0 σ′(Ws)ds f ′(Wt)dt

]
, (E.8)

where

W0 = x, f ′(x) := eγ(x) f (x), g′(x) := eγ(x)g(x),

and σ′(x) := σ(x) +
1
2
(
∆γ(x) + |∇γ(x)|2

)
.

Making the substitution U(x) := eγ(x)u(x), Eq. E.8 then provides the solution to the following
PDE without a 1st order drift term:

1
2 ∆U(x)− σ′(x)U(x) = − f (x) on Ω,

U(x) = g(x) on ∂ΩD.
(E.9)

This PDE is equivalent to Eq. E.4, and we obtain the PDE transformation from Eq. 5.2 to Eq. 5.3
by letting γ(x) = 1

2 ln(κ(x)).

137



Appendix F

Pseudocode: Accelerated Geometric Queries For Walk On Stars

Here we provide pseudocode for the geometric queries described in Sec. 6.2.

ALGORITHM 8: StarRegionRadius(t, x, Rmax ← ∞)
Note: Code annotated with comments in gray, blue and green corresponds to handling
of Dirichlet, Neumann and Robin conditions (respectively).

Input: Triangle t with Robin coefficients µmin and µmax, query point x ∈ R3, radius bound Rmax.
Output: Radius of star-shaped region for triangle t.

1: Rt ← Rmax ▷Initialize radius value for triangle t
2: dc

t , xc
t ← ClosestPt(t, x) ▷Compute closest pt xc

t on t from x [62, Sec. 5.1.5]
3: if dc

t > Rt then return Rt ▷t is outside radius bound, return the bound
4: if t.µmax ≡ ∞ then return dc

t ▷t has Dirichlet conditions, return distance to xc
t

5: nt ← Normal(t)
6: for e in t.adjacentEdges do ▷Compute distance to closest silhouette edge adjacent to t
7: pe ← ClosestPt(e, x)
8: v← pe − x
9: de ← ∥v∥

10: if de < Rt then
11: hasAdjacentTriangle, nadj ← AdjacentNormal(t, e)
12: isSilhouetteEdge← not hasAdjacentTriangle or (v · nt) · (v · nadj) ≤ 0
13: if isSilhouetteEdge then Rt ← min(Rt, de)

14: if t.µmin ≡ 0 then return Rt ▷t has Neumann conditions, return distance to closest silhouette edge
15: else ▷t has Robin conditions, compute radius bound for t (Eq. 6.2)
16: df

t, xf
t ← FarthestPt(t, x)

17: cosmax θ ← |nt · (x− xf
t)| / df

t
18: cosmin θ ← |nt · (x− xc

t )| / dc
t

19: h← DistancePlane(xc
t , nt)

20: µh← t.µmax · h
21: if

√
µh < cosmin θ then return Rt

22: cos θ ← Clamp(
√

µh / 3, cosmin θ, cosmax θ)

23: return min
(

Rt,
µh2

µh cos θ − cos3 θ

)
▷Return computed radius bound
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ALGORITHM 9: StarRegionRadius(T ← Snch(∂ΩR), x, R, dmin
T ← 0)

Input: Spatialized normal cone hierarchy T, query point x ∈ R3, current estimate R of radius,
minimum distance dmin

T to T’s aabb from x (dmin
T = 0 when x ∈ T.aabb).

Output: Radius of star-shaped region containing subset of reflecting boundary ∂ΩR.
1: if dmin

T > R then return R ▷Ignore current SNCH node if it is further than R
2: if T.isLeaf then
3: for t in T.triangles do
4: R← StarRegionRadius(t, x, R) ▷Compute radius bound for triangle t (Alg. 8)
5: else
6: visitLeft, Rmin

left , Rmax
left ← VisitNode(T.left, x, R) ▷Test whether to visit left node (Alg. 10)

7: if visitLeft then R← min(R, Rmax
left )

8: visitRight, Rmin
right, Rmax

right ← VisitNode(T.right, x, R) ▷Test whether to visit right node (Alg. 10)
9: if visitRight then R← min(R, Rmax

right)

10: if visitLeft and visitRight then
11: if Rmin

left < Rmin
right then ▷Visit closer node first

12: R← StarRegionRadius(T.left, x, R, Rmin
left )

13: R← StarRegionRadius(T.right, x, R, Rmin
right)

14: else
15: R← StarRegionRadius(T.right, x, R, Rmin

right)
16: R← StarRegionRadius(T.left, x, R, Rmin

left )

17: else if visitLeft then R← StarRegionRadius(T.left, x, R, Rmin
left ) ▷Visit left node

18: else if visitRight then R← StarRegionRadius(T.right, x, R, Rmin
right) ▷Visit right node

19: return R

ALGORITHM 10: VisitNode(T, x, R← ∞)
Note: Code annotated with comments in gray, blue and green corresponds to handling
of Dirichlet, Neumann and Robin conditions (respectively).

Input: Spatialized normal cone hierarchy node T with Robin coefficients µmin and µmax, query
point x ∈ R3, current estimate R of radius.

Output: Whether to traverse the node, with min and max bounds for the radius.
1: visit, dmin, dmax ← Intersect(T.aabb, x, R) ▷Check if T’s aabb intersects ball B(x, R)
2: if not visit then return false, 0, ∞ ▷Skip node as aabb does not intersect B
3: if T.µmin ≡ ∞ then return true, dmin, dmax ▷T contains only Dirichlet boundary, visit node
4: visit, | cosmin θ|, | cosmax θ| ← HasSilhouette(T.aabb, T.cone, x) ▷Sawhney et al. [224, Alg. 4]
5: if visit then return true, dmin, ∞ ▷Normal & view cones possibly contain orthogonal directions
6: if T.µmax ≡ 0 then return false, 0, ∞ ▷Neumann boundary in T is front-/back-facing, skip node
7: if dmax ≤ | cosmin θ| / T.µmax then Rmin ← ∞ ▷No min radius bound for Robin boundary in T
8: else Rmin ← dmin

/(
1− | cosmin θ|

T.µmax · dmax

)
▷Compute min radius bound (Eq. 4.11)

9: if dmin ≤ | cosmax θ| / T.µmin then Rmax ← ∞ ▷No max radius bound for Robin boundary in T
10: else Rmax ← dmax

/(
1− | cosmax θ|

T.µmin · dmin

)
▷Compute max radius bound (Eq. 4.11)

11: return true, Rmin, Rmax ▷Visit node
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ALGORITHM 11: PointSamplingQuery(T, x, R)

Input: Binary tree T, and sphere ∂B(x, R) with center x ∈ R3 and radius R.
Output: Point sample z ∈ ∂ΩR, unit outward normal nz, and pdfz. It is not guaranteed

z ∈ ∂B(x, R), but z is likely to be close to x. No sample is returned if ∂B is empty.
1: t, pdft ← SampleTriangle(T, x, R) ▷Sample triangle t inside or intersecting with ∂B (Alg. 12)
2: if t not null then
3: z, nz, pdfz ← SamplePoint(t) ▷Sample point z uniformly on t
4: pdfz ← pdfz · pdft
5: return z, nz, pdfz

6: return null, null, 0

ALGORITHM 12: SampleTriangle(T, x, R, t← null, pdft ← 0, pdfT ← 1)

Input: Binary tree T, sphere ∂B(x, R) with center x ∈ R3 and radius R, triangle t to be selected
and its sampling pdft, and the probability pdfT of traversing a random branch in T.

Output: Randomly selected triangle t inside or intersecting with ∂B(x, R), and its sampling
pdft. No triangle is selected if ∂B is empty.

1: if T.isLeaf then
2: totalArea← 0
3: for tT in T.triangles do ▷Use weighted importance resampling (Sec. 3.1.2) to select triangle
4: if Intersect(tT, x, R) then ▷Check if triangle tT is inside or intersects with ∂B(x, R)
5: totalArea← totalArea + Area(tT)
6: if Rand() · totalArea < Area(tT) then
7: t← tT
8: pdft ← pdfT ·Area(t)

9: if totalArea > 0 then pdft ← pdft / totalArea

10: else
11: wleft ← Intersect(T.left.aabb, x, R) ?
12: GR3

(x, Centroid(T.left.aabb)) : 0 ▷Weight left subtree by proximity to x
13: wright ← Intersect(T.right.aabb, x, R) ?
14: GR3

(x, Centroid(T.right.aabb)) : 0 ▷Weight right subtree by proximity to x
15: W ← wleft + wright
16: if W > 0 then
17: Pleft ← wleft / W ▷Compute probability of traversing left subtree
18: if Rand() < Pleft then
19: pdfleft ← pdfT ·Pleft
20: t, pdft ← SampleTriangle(T.left, x, R, t, pdft, pdfleft) ▷Traverse left subtree

21: else
22: pdfright ← pdfT · (1 − Pleft)

23: t, pdft ← SampleTriangle(T.right, x, R, t, pdft, pdfright) ▷Traverse right subtree

24: return t, pdft
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