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Abstract

Large language models pretrained on extensive web corpora demonstrate re-
markable performance across a wide range of downstream tasks. However, a grow-
ing concern is data contamination, where evaluation datasets may unintentionally be
contained in the pretraining corpus, inflating model performance. Not all contam-
ination manifests in the evaluation form when encountered within the pretraining
data; these contaminants may originate from altered versions of the test set, evading
detection during decontamination. Despite these concerns, how different types of
contamination impact the performance of language models on downstream tasks is
not fully understood. In this thesis, we present a taxonomy that categorizes the var-
ious types of contamination encountered by LLMs during the pretraining phase and
identify which types pose the highest risk. We analyze the impact of contamination
on two key NLP tasks— summarization and question answering— revealing how
different types of contamination influence task performance during evaluation. Our
findings yield concrete recommendations for prioritizing data decontamination for
pretraining.
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Chapter 1

Introduction

Advancements in machine learning have traditionally relied on benchmark datasets to evalu-
ate and compare model performance [17, 40]. With the surge of LLMs in recent years, these
benchmarks are now leveraged to showcase remarkable abilities across diverse tasks, including
open-ended text and code generation. Yet these static, publicly available benchmarks are typi-
cally sourced from the internet, and contemporary LLMs often integrate internet text into their
training datasets.

For natural language data, the most popular objective is causal language modeling [36]. In
general, pretrained large language models (LLMs) perform substantially better than models that
are solely trained on the downstream task [11, 34, 39].

Data contamination, also referred to as data leakage, occurs when test data is inadvertently
included in a model’s training dataset [28]. This can lead to the model exhibiting exceptional
performance on this leaked test data, often while failing to generalize effectively to new, unseen
data. This can result in misleadingly high performance metrics during testing, giving a false
impression of the model’s capabilities. The use of contaminated LLMs unknowingly in research
can lead to incorrect conclusions or misleading results.

Consequently, accurately assessing model performance and generalization capabilities be-
comes increasingly challenging, as the influence of test set contamination becomes more sub-
tle and difficult to discern. This not only undermines the reliability of model evaluation but
also poses significant implications for real-world applications where trustworthy predictions are
essential. Effectively addressing this issue is paramount to ensuring the robustness and trust-
worthiness of LLMs in practical scenarios, where accurate evaluation is crucial for informed
decision-making and reliable performance.

The pervasive use of webscraping to build pretraining corpora for LLMs introduces addi-
tional complexities and challenges for evaluating model performance. As LLMs increasingly
rely on vast amounts of unlabeled data scraped from the internet for pretraining, including evalu-
ation datasets, ensuring fair and unbiased evaluations becomes inherently challenging. Concerns
arise regarding LLMs simply memorizing test samples encountered during pretraining. The very
nature of scraping pretraining data from the internet raises fundamental questions about the fair-
ness and validity of evaluation scores obtained on such datasets. With potential overlap between
pretraining and evaluation data, there arises a concern regarding the model’s familiarity with
evaluation examples during pretraining, potentially leading to biased performance metrics. Con-
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sequently, the integrity of evaluation scores and our ability to truly comprehend the model’s capa-
bilities come under scrutiny. In essence, the presence of internet-sourced data in both pretraining
and evaluation datasets challenges the notion of fair evaluation, prompting critical reflection on
the methodologies employed to assess LLM performance and the extent to which we can glean
insights into the model’s true generalization abilities.

Due to the extensive size and diverse sources of pre-trained datasets used for LLMs, they are
particularly vulnerable to data contamination, which can be categorized into two main situations:

1. Existing Benchmark Datasets: These are more prone to leakage due to the inclusion of
extensive text excerpts, reused code, and synthetic data in the training data of LLMs.

2. Upcoming Benchmark Datasets: Newly constructed test data may unintentionally overlap
with the continuously evolving training data of LLMs, as users often lack awareness of the
specific composition of LLMs’ training datasets.

Consequently, preventing data contamination in LLMs presents significant challenges.
Both GPT-3 and the C4 training corpus were found to have high amounts of data contami-

nation for popular downstream task datasets [5, 12, 39]. Ensuring the absence of contamination
is challenging due to two potential sources of contamination: directly from consuming the of-
ficial version of a dataset (which is easier to manage), and indirectly through duplicated data
encountered on the web (which is nearly impossible to manage). This complicates the ability for
researchers to comprehensively evaluate the performance of models, especially the GPT-3/3.5
family [5] and GPT-4 [32], on downstream tasks and in turn raises concerns regarding the valid-
ity of current evaluations performed on these models [8, 26].

The impact of indirect and approximate test set contamination from Internet-scale pretraining
data is not well understood. In this thesis, we taxonomize data contamination from pretraining
and measure the impact of different contamination types on downstream performance. Specif-
ically, we explore contamination during pretraining for two case studies: summarization and
question & answering. For each case study, we design experiments to assess the effects of indi-
rect and approximate test set contamination on model performance. We observe that both Noise
(see Section 2.1.2) and Distribution (see Section 2.1.1) Contamination yield a similar perfor-
mance enhancement during evaluation as exposure to the entire test dataset during pretraining.
However, Mask Contamination (see Section 2.1.2) exhibits inferior performance compared to
simply fine-tuning on the training dataset.

Removing all sources of indirect and approximate contamination is challenging, and could
significantly limit the pretraining corpus. Due to computational limitations, we employ continued
pretraining as a surrogate for pretraining the model from scratch. For each type of approximate
contamination, we quantify the impact on performance downstream. This enables us to make
recommendations about what types of contamination are most important to exclude or check for
when using pretrained LLMs.
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Chapter 2

Taxonomy

Discussing data contamination can be challenging due to varying beliefs regarding what is con-
sidered contamination. To address this, we devised a taxonomy to distinguish between different
forms of contamination. By categorizing contamination types, we hope that researchers can
better understand and mitigate their effects on data quality and analysis outcomes.

Establishing a taxonomy for LLM pretraining data serves three main purposes. First, it fosters
standardization and consensus building, providing a common language and framework for the
research community. This enhances clarity and coherence in communication and collaboration
among researchers and practitioners.

Second, a well-defined taxonomy enables precise detection and characterization of contami-
nation in pretraining data, crucial for managing the vast volume and varied sources of data used
in training LLMs. By categorizing contamination, tailored detection strategies can be employed,
improving the reliability and generalization capabilities of LLMs.

Finally, the taxonomy informs the prioritization of mitigation efforts by categorizing contam-
ination based on its impact on model performance. This allows researchers to allocate resources
effectively, focusing on addressing the most critical sources of bias or error, thereby enhancing
the overall robustness and performance of LLMs.

We believe that the establishment of a systematic taxonomy for categorizing pretraining data
contamination in LLM will encourage the community to discuss and evolve standards to deal
with contamination in all forms. In particular, identifying the most detrimental types of contam-
ination outlined in our taxonomy enables the development of customized detection strategies for
effective decontamination.
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Jiang et al. [21], Ouchi et al. [33]

Prior Task Understanding
(§2.2.2)

Li and Flanigan [27]

Language Understanding
(§2.2.1)

]

Figure 2.1: Taxonomy of Contamination, with some example representative works in the litera-
ture that fit in each category.

Consider a model M : X → Y which, given an input of some type x ∈ X , outputs text
ŷ ∈ Y . While x can be of any format, we will restrict ourselves to cases where y is in the space
of the natural language (Y ⊆ Σ∗ for some alphabet in Σ). Let D be the test set, consisting of
|D| examples (xi, ŷi).

2.1 Contamination
We define contamination as any leakage of information that provides a signal for the correct
label for at least one example in the test set D. We characterize types of contamination by their
dataset-level and example-level properties.

2.1.1 Dataset-level properties
When contamination occurs, some subset of the pretraining data can be characterized as the
result of a function f(D). In the simplest case, f is the identity function; this is the leakage of a
full test set, e.g. from scraping a file containing the test set examples and labels.

• Selection: f(D) is a selection of some group of examples D′ ⊂ D, such that only a subset
of the test set is leaked. This is likely when the test data is drawn from several sources, only
some of which appear in the pretraining data; when some of the test data is more recent than
other data and the pretraining data contains an older snapshot of the contamination source;
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or when the data is contained in several documents and the cleaning of the pretraining data
only removes some of these documents. Figure 2.3 shows an example of Selection.

• Distribution: f(D) is a function which combines the contaminated data D with some ad-
ditional, non-contaminating documents, such that the examples from D are not all sequen-
tial in the pretraining data. This can occur during data shuffling, or if the contamination
comes from multiple documents. Practically, this means that the contaminated region of
the pretraining data f(D) contains more tokens. Figure 2.4 shows an example of Distribu-
tion.

2.1.2 Instance-level properties
We consider functions applied to each individual leaked example f((xi, ŷi)) for i ∈ |D|1. A few
representative examples in this class are enumerated below:

• Masking: A function that removes some or all of the input, e.g. f((xi, ŷi)) = ŷi. This only
qualifies as contamination for generation tasks; for a classification task, leaking the label-
space in advance may not be a concern if the labels don’t have inherent contextual value
without the input, such as binary labels like 0s and 1s or positives and negatives. However,
if the labels carry meaningful information on their own, their premature disclosure would
indeed constitute contamination. Figure 2.5 shows an example of Masking. Also note that
masking all of the output, leaving only the inputs from the test set, is generally considered
to be a type of transductive learning, not contamination; see 2.2 for more discussion.

• Noising: A function that modifies the surface form of the example, e.g. by paraphrasing
the inputs or outputs, or by using silver rather than gold labels for each example. Note that
this can also take the form of alternate correct answers being present in the pretraining
data: for instance, in book summarization, a different summary of the book being present
in the pretraining data is still contamination. Figure 2.6 shows an example of Noising.

• Augmenting: A function that adds additional context, which may or may not be relevant to
the example. For instance, for a task where the model must answer an open-ended question
at test time, an augmented contaminated example in pretraining would be a multiple-choice
test with the same questions. While this provides the correct answer, it also introduces
new (distractor) information that is not present at test time. Note the difference between
example-level augmenting and dataset-level distribution. Figure 2.7 shows an example of
Augmenting.

It’s worth noting that certain transformations may initially seem to fall under a different cate-
gory of contamination, but upon closer examination, they align more closely with either augmen-
tation or noising. For example, reformatting the order of inputs and outputs could be considered
noising, while converting a free-form question and answer format into a multiple-choice question
format would be considered augmentation. Therefore, while considering reformatting as a type

1Note that this is a strict subset of all functions applied to the leaked dataset, f(D); however, we distinguish this
set of functions that operate on individual examples.
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of contamination, it’s essential to carefully assess the specific transformation and categorize it
accordingly based on its effect on the example’s surface form and context.

Examples of Dataset and Instance Level Contamination

We will present illustrative instances of various contamination types delineated within the taxon-
omy, utilizing a sample drawn from the HumanEval dataset [9].

< HumanEval/0 >
< HumanEval/1 >
< HumanEval/2 >
def below_zero(operations: List[int]) -> bool:

/* You're given a list of deposit and withdrawal operations on a bank
account that starts with zero balance. Your task is to detect if at
any point the balance of account falls below zero, and at that point
function should return True. Otherwise, it should return False.
>>> below_zero([1,2,3])
False
>>> below_zero([1,2,-4,5])
True */

balance = 0
for op in operations:

balance += op
if balance < 0:
return True

return False
< HumanEval/3 >
...
< HumanEval/99 >

Figure 2.2: Example of Selection. First 100 samples of HumanEval are seen during pre-
training

< some web text >
def below_zero(operations: List[int]) -> bool:

/* You're given a list of deposit and withdrawal operations on a bank
account that starts with zero balance. Your task is to detect if at
any point the balance of account falls below zero, and at that point
function should return True. Otherwise, it should return False.
>>> below_zero([1,2,3])
False
>>> below_zero([1,2,-4,5])
True */

balance = 0
for op in operations:

balance += op
if balance < 0:
return True

return False
< some more web text >

Figure 2.3: Example of Distribution. Samples of the Human Eval Dataset are shuffled with
Open Web Text.
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from typing import List
def below_zero(operations: List[int]) -> bool:

/* You're given a list of deposit and withdrawal operations on a bank
account that starts with zero balance. Your task is to detect if at
any point the balance of account falls below zero, and at that point
function should return True. Otherwise, it should return False.
>>> below_zero([1,2,3])
False
>>> below_zero([1,2,-4,5])
True */
balance = 0
for op in operations:

balance += op
if balance < 0:
return True

return False

Figure 2.4: Sample HumanEval/3 from the HumanEval Dataset.

from typing import List
def below_zero(operations: List[int]) -> bool:

balance = 0
for op in operations:

balance += op
if balance < 0:
return True

return False

Figure 2.5: Example of Masking. The function specifications have been masked, present-
ing only the function itself

def below_zero(operations: List[int]) -> bool:
/* You're given a list of deposit and withdrawal operations on a bank
account that starts with zero balance. Your task is to detect if at
any point the balance of account falls below zero, and at that point
function should return True. Otherwise, it should return False.
>>> below_zero([1,2,3])
False
>>> below_zero([1,2,-4,5])
True */

balance, i, n = 0, 0, len(operations)

while i < n:
balance += operations[i]
if balance < 0:

return True
i += 1

return False

Figure 2.6: Example of Noising. This example demonstrates another function body that
accomplishes the same task.
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def below_zero(operations: List[int]) -> bool:
/* You're given a list of deposit and withdrawal operations on a bank
account that starts with zero balance. Your task is to detect if at
any point the balance of account falls below zero, and at that point
function should return True. Otherwise, it should return False.
>>> below_zero([1,2,3])
False
Explanation: balance = [1,3,6]
>>> below_zero([1,2,-4,5])
True
Explanation: balance = [1,3,-1,4]*/

balance = 0
for op in operations:

balance += op
if balance < 0:
return True

return False

Figure 2.7: Example of Augmenting. In this example, an explanation has been included
alongside the sample test cases in the specifications.

2.2 Phenomena that aren’t Contamination
For clarity, we describe several phenomena that lead to improved performance on test sets down-
stream but are not considered contamination under our taxonomy.

2.2.1 Language Understanding

Pretraining enables models to produce (generally) fluent text and encodes some representation of
meaning for words commonly used in task definitions; for instance, the model has some repre-
sentation of meaning for the labels “positive” and “negative” in sentiment analysis. While these
are both helpful for performing downstream tasks, this is clearly not contamination as long as
the pretraining text does not overlap with the test set.

2.2.2 Prior Task Understanding

We define prior task understanding as an ability to perform a task learned from non-contamination
sources. For instance, fine-tuning a model on a training dataset for the task is clearly not con-
tamination of the test set, although it generally improves performance on that test set; likewise,
pretraining on other related datasets is not contamination for a given test set. However, prior task
understanding does generally violate the assumption of “zero-shot” performance: that the model
has not seen training data for that task.

In tasks like closed-book question answering (QA) and those requiring world knowledge,
prior task understanding is essential. Closed-book QA tasks demand answering questions with-
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out external resources, relying solely on the model’s training. Models with prior task understand-
ing excel here, leveraging their training on similar question-answer pairs or related datasets. A
broad understanding of the world further enhances performance, ensuring more accurate and
contextually appropriate responses across various tasks and domains. However, careful consid-
eration of the training data’s sources and nature is crucial to maintain the model’s integrity and
generalizability.

2.2.3 Transductive Learning
Transductive learning [49] involves incorporating an unlabeled test set into the training phase.
This means that during training, the raw text inputs of the test set can be utilized, although
the labels are never incorporated. The model, once trained, is then evaluated on the same test
set during the test phase. While simple, transductive LM fine-tuning has shown to consistently
improve neural models in both in-domain and out-of-domain settings [33].

Thus, we generally do not consider pretraining on the inputs of the test set to be contam-
ination, although we note that this will likely improve performance in the same manner than
pretraining on training set text improves downstream performance [18, 25]: by providing some
domain adaptation to the testing domain. Some previous work [21, 33] describes the presence of
inputs-only in the pretraining data as contamination for classification tasks; however, under our
taxonomy, we consider this a type of transductive learning.

A key exception is tasks where the input is not easily separable from the output. In tasks like
perplexity evaluation, where the input sequence also serves as the target output, pretraining on
text from the test set can introduce contamination into the training process. This contamination
arises from the model inadvertently memorizing sequences from the test set, leading to artificially
inflated performance metrics. Consequently, caution is warranted when applying transductive
learning techniques in such scenarios to maintain the integrity of the evaluation process.

Despite its potential benefits, transductive learning has sparked substantial discussion and
controversy within the machine learning community. It has been argued that by incorporating
unlabeled test data, transductive learning may inadvertently introduce biases or overfitting, com-
promising the model’s ability to generalize to unseen data [21]. Additionally, concerns have
been raised regarding the fairness and transparency of models trained using this approach, par-
ticularly in sensitive or high-stakes applications. Furthermore, ongoing debate surrounds the
extent to which transductive learning blurs the line between training and evaluation, challenging
traditional notions of model validation and performance assessment. Nonetheless, proponents
highlight its potential to improve model robustness and adaptability, particularly in scenarios
with scarce or unrepresentative training data [3, 33]. As the field navigates these nuanced con-
siderations, further research and discourse are necessary to elucidate the benefits and limitations
of transductive learning and its integration within the broader landscape of machine learning
methodologies.

2.3 Mapping Prior Work into this Taxonomy
Sainz et al. [43] establishes a taxonomy that delineates three types of data contamination: guide-
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line contamination, raw text contamination, and annotation contamination. Guideline contami-
nation occurs when the annotation guidelines for a dataset are exposed to the model, while raw
text contamination involves the model encountering the original, unannotated text. Annotation
contamination occurs when the annotations (labels) of the target benchmark are exposed to the
model during training. It is noteworthy that guideline and raw text contamination fall under
the transductive category of our taxonomy, whereas annotation contamination aligns with the
contamination category. However, while Sainz et al. [43] distinguish between broader levels
of contamination, they do not address the specific types of contamination that we define in our
taxonomy, highlighting the need for further exploration and clarification in this area.

Zhang et al. [53] explores selection by introducing the concept of counterfactual memoriza-
tion, which examines how a model’s predictions are affected by excluding specific documents
during training. Different subsets of the test data were viewed during pretraining. Through em-
pirical analysis, it identifies and explores memorized training examples in standard text datasets,
estimating their influence on the validation set and generated texts. It further reveals that the
model predictions for examples from both the validation set and the model-generated texts vary
significantly depending on the presence or absence of specific training examples with high mem-
orization.

Through running experiments by retraining GPT-2 from scratch, Jiang et al. [21] found that
ground-truth contamination during pre-training does not outperform input text contamination
(transductive learning) in text classification tasks, as these tasks predominantly depend on the
model’s comprehension of the input text. The ground truth contamination model they trained is
similar to our full contamination setting (3.2.2), which is essentially selecting all of the data in
the test dataset to be seen during pretraining.

Jiang et al. [21] explores distribution by investigating the impact of sample frequency in train-
ing data on model performance by contaminating the dataset with varying amounts of repetitions
and observing the subsequent changes in model performance. The test samples are shuffled in
with the Pile [14], which is defined as distribution under our taxonomy. The findings reveal that
while performance initially improves with increased contamination, it begins to decline once the
contamination factor reaches approximately 10 repetitions, suggesting a threshold effect in the
relationship between sample frequency and model performance.

Li and Flanigan [27] investigates the performance of GPT-3 series models and other recent
open-sourced LLMs on datasets released before and after their training data creation dates. The
study finds that there exists task contamination (prior task understanding) on zero-shot and few-
shot evaluation for datasets, leading to their improved performance. They also show that models
perform better on datasets created before the pretraining data was collected which is an example
of selection.

We can visualize how these research papers map into our existing taxonomy in Figure 2.1

2.3.1 Contamination Detection Methodologies
Yang et al. [52] demonstrate the limitations of existing decontamination methods by showcasing
their susceptibility to circumvention tactics, such as rephrasing multiple-choice questions (noisy
pretraining data) to evade n-gram overlap or embedding similarity checks. Additionally, the
authors propose a novel language model (LLM)-based decontamination method, which leverages
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embedding similarity search followed by scrutiny from a robust LLM, such as GPT-4, to identify
and mitigate instances of contamination effectively.

Through conducting zero-shot prompting experiments on the Codex model using Hacker-
Rank problems, Karmakar et al. [22] investigates the effects of full-sample prompting, prompts
with missing input/output specifications (masking), and prompts with altered objectives (aug-
menting). They observe clear signs of memorization in Codex, as it consistently produces com-
plete and accurate code even when essential information is absent from the prompts. Moreover,
when the problem objectives change, the model exhibits notably diminished performance, sug-
gesting challenges in generalization.

Recent studies have explored data contamination using domain specific features with Chang
et al. [7] using a name cloze membership inference query to infer book memorization in ChatGPT
and GPT-4. Cao et al. [6] distinguishes between ”contaminated data,” created before the models’
cutoff date, and ”cleansed data,” where countermeasures are applied. It assesses the effectiveness
of these countermeasures by examining the performance disparity of CLMs on contaminated
versus cleansed data resulting from various countermeasures.

Shi et al. [45] introduces a new detection method MIN-K% PROB based on a simple hypoth-
esis: an unseen example is likely to contain a few outlier words with low probabilities under the
LLM, while a seen example is less likely to have words with such low probabilities; a benefit
of this methodology being that it can be applied without any knowledge about the pretraining
corpus or any additional training.

Sainz et al. [44] attempts to calculate data contamination on LLMs with closed-source pre-
training corpora by operating with the underlying assumption that if an LLM can reproduce
dataset instances, it must have been trained using that particular split. Golchin and Surdeanu [16]
has seen success in identifying pretraining corpora contamination with their two step method-
ology: identifying potential contamination at the instance level using guided instruction, then
assessing wider contamination at the partition level by evaluating the difference between the av-
erage overlap score for guided instruction and the general instruction to the reference instances.
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Chapter 3

Methodology

We investigate the impact of data contamination by training models exposed to various forms of
contamination during pretraining and subsequently evaluating their performance.

3.1 Model
In all our experiments, we employ nanoGPT [24], a lightweight PyTorch re-implementation of
OpenAI’s GPT (Generative Pretrained Transformer) training. nanoGPT is designed to efficiently
train or fine-tune medium-sized GPT models, offering a straightforward and swift approach.
Derived from minGPT [23], nanoGPT emphasizes simplicity and speed. Although it remains a
work in progress, nanoGPT features a concise training loop of approximately 300 lines and a
similarly compact GPT model definition, making it user-friendly and adaptable.

The repository has been able to successfully train a GPT-2 (124M) model on OpenWebText
running on a single 8xA100 40GB node in about 4 days of training. For our experiments, we
will be loading the ‘gpt2-large’[38] weights from OpenAI as our initial weights. We will refer to
this model as our initial model.

Furthermore, it’s important to acknowledge potential data contamination when initializing
with OpenAI’s GPT-2 weights. The GPT-2 pretraining corpus is not publicly released, which
raises concerns about the integrity of the training data used by the model. Consequently, the
outcomes of our experiments will serve as a conservative estimate or lower bound on the effects
of data contamination, highlighting the need for transparency and caution in model evaluation
and deployment.

3.2 General Setup

3.2.1 Data Split
To mitigate potential bias in model performance stemming from dataset diversity, a consistent
approach was employed in dataset preparation for both training and testing phases. Specifically,
the train and test datasets were curated to contain an identical number of samples. This was
achieved by randomly selecting a subsample from the training dataset, using a fixed seed to
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ensure reproducibility, matching the size of the test dataset. This uniform sampling strategy was
applied across all datasets examined in the experiments, aiming to establish a fair and comparable
evaluation environment for model performance assessment.

In the context of continued pretraining for the models under evaluation, each dataset incor-
porates a specific split of the Open AI’s WebText dataset [38]. To mitigate any potential recency
bias associated with continued pretraining, we incorporate an additional 10,000 samples of Web-
Text into the continued pretraining data. This split plays a crucial role in assessing the impact of
distribution (§2.1.1) on model performance. For model’s testing the impact of distribution, dur-
ing continued pretraining, the WebText split is interleaved with the evaluation dataset to assess
the model’s adaptability to varying data distributions.

However, for models that undergo continued pretraining without a specific focus on distri-
bution, WebText data split is partitioned into two distinct sets. The first set is presented to the
model at the beginning of continued pretraining, while the second set is reserved for later stages.
This approach enables a systematic exploration of model performance across different types of
contamination, while maintaining consistency and comparability across experiments.

3.2.2 Training Settings
The following methodology is applied to each of the datasets to calculate how different types of
contamination affect model performance on test data. The following are the types of settings that
will be used in our experiments:

1. Zero Shot Setting: This zero-shot experimentation will help us establish a baseline in
terms of the models ability to perform the task without having seen the task structure or
any data related to the evaluation dataset.

2. Baseline Setting: The baseline setting for our experiment is a straightforward approach
that involves training a language model without any introduced contamination during pre-
training. The model with this setting is initialized with ‘gpt2-large’ weights and is then
fine-tuned exclusively on the training dataset without any additional modifications. By us-
ing this baseline, we aim to establish a foundational understanding of model performance
under standard training conditions, serving as a reference point for evaluating the impact
of contamination on subsequent training settings.

3. Cheating Setting: The cheating setting represents an extreme scenario where the model
is fine-tuned directly on the test data of the evaluation dataset, bypassing the standard
training process. This approach aims to assess the upper bound of model performance by
leveraging information directly from the evaluation dataset, thereby providing insight into
the model’s potential when given access to unseen data during training.

4. In Domain Setting: The in-domain setting adopts a specialized training approach by con-
ducting continued pretraining on data that specifically belongs to the domain of interest,
sourced from the evaluation dataset but distinct from the datasets used for other settings.
Following this continued pretraining, the model is fine-tuned on the established training
split of the dataset used in our experiment. This variation aims to evaluate the impact of
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domain-specific continued pretraining on model performance and generalization capabili-
ties within the targeted domain.

5. Contaminated Setting: The contaminated setting explores the effects of various types
of contamination introduced during the pretraining phase. Through experimentation with
different forms of contamination as defined by our taxonomy, the model with this setting
undergoes continued pretraining on the contaminated data. Subsequently, it is fine-tuned
on the designated training data, allowing us to assess how different types of contamination
affect the model’s performance and robustness across diverse tasks and domains.

3.2.3 Training Strategy

Current State of the Art (SOTA) models are being trained on one or a few epochs as they are
typically trained on a large corpus of text data (trillions of tokens) in an unsupervised manner
[10, 20, 48]. To replicate the nature of pretraining LLMs while optimizing for efficiency and
computational resources, we decided to perform continued pretraining on nanoGPT models over
one epoch of our dataset. This approach is motivated by the desire to strike a balance between
model training comprehensiveness and computational resources.

For each setup, three different models trained on data with varied shuffling schemes were
evaluated to mitigate the impact of data ordering randomness on model performance.1

For fine-tuning our models, we employed a training strategy that involved training the models
over 10 epochs to facilitate comprehensive adaptation to the target task or dataset. To manage
computational resources efficiently and prevent overfitting, we incorporated early stopping into
our training process. Early stopping was employed to halt training if the model’s performance
on a validation set ceased to improve, thereby preventing unnecessary computation and ensuring
that the model generalized well.

In our training process, we implemented a mechanism to save the best-performing model
based on its performance on the validation dataset.

3.3 Contamination Ratio

We introduce a novel metric that calculates the ‘ratio of approximate contamination to full con-
tamination performance,’ aimed at providing a standardized measure for evaluating model per-
formance across diverse datasets. This metric offers a normalized comparison of model per-
formance by considering the full contamination setting, typically regarded as achieving optimal
results during evaluation, and the baseline setting specific to each dataset. By normalizing all
metrics relative to these benchmarks, our metric facilitates a comprehensive assessment of each
setting’s efficacy across datasets.

Contamination Ratio =
contaminated setting − baseline

full contamination− baseline

1Thesis Repository: https://github.com/medhap02/nanoGPT-case_studies
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We devised the metric wherein the full contamination setting is assigned a score of 1, while
the baseline setting is rated 0. Setting that achieved negative scores perform worse than the
baseline, whereas those exceeding 1 outperform the full contamination setting.

This normalization process enables direct comparisons of metrics across datasets, shedding
light on the relative performance of the model under varying types of contamination.
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Chapter 4

Case Study: Summarization

Summarization models aim to generate concise summaries that capture the main ideas and im-
portant details of the original text, often leveraging techniques like extractive (selecting and
rearranging existing text) or abstractive (generating new text) summarization methods.

Regarding specific datasets used in NLP summarization research, prominent datasets like
XSum, SAMSum, and CNN/Daily Mail have been instrumental in advancing the state-of-the-
art in summarization. XSum [31] is a large-scale dataset specifically designed for the task of
extreme summarization, consisting of articles paired with single-sentence summaries that cap-
ture the most salient information from the source text. SAMSum [15] focuses on abstractive
dialogue summarization, providing conversations paired with human-generated summaries. The
CNN/Daily Mail dataset [30] comprises news articles paired with multi-sentence summaries, fa-
cilitating research in large-scale document summarization. These datasets serve as benchmarks
for evaluating summarization models across different domains and summarization types, con-
tributing to advancements in NLP research and applications.

4.1 Experimental Setup
For this case study, we ran the baseline setting, full contamination setting, in-domain setting,
zero-shot setting, and 5 different contaminated settings.

• Full Contamination Setting: The model underwent continued pretraining on 1 epoch of
the test split, maintaining the format encountered during evaluation, followed by 10 epochs
of fine-tuning on the established train split.

• Distribution Contaminated Setting: The model underwent continued pretraining on 1
epoch of the test split, which included data mixed with open web text, before proceeding
to 10 epochs of fine-tuning on the established train split.

• Masked Contaminated Setting: The model underwent continued pretraining only on the
outputs of 1 epoch of the test split, focusing solely on summaries without considering the
associated documents. It was subsequently proceeded by 10 epochs of fine-tuning on the
established train split.
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• Noised Contaminated Setting: The model, underwent continued pretraining on 1 epoch
of the test split, encountering summaries generated by prompting Chat GPT-3.5, rather
than the ground truth summaries. This was then proceeded by 10 epochs of fine-tuning on
the established train split.

• Reformatted Contaminated Setting: The model underwent continued pretraining on 1
epoch of the test split. During continued pretraining, it experienced the summary before
the document, deviating from the standard document-summary order. Subsequently, it was
fine-tuned on 10 epochs of the established train split.

Sample

Conversation:
Anita: I’m at the station in Bologna
Jenny: No problems so far?
Anita: no, everything’s going smoothly
Tomy: good!

Summary: Anita is at Bologna station.

Distribution

⟨ some open web text ⟩

Conversation:
Anita: I’m at the station in Bologna
Jenny: No problems so far?
Anita: no, everything’s going smoothly
Tomy: good!

Summary: Anita is at Bologna station.

⟨ some more open web text ⟩

Masking Summary: Anita is at Bologna station.

Noising

Conversation:
Anita: I’m at the station in Bologna
Jenny: No problems so far?
Anita: no, everything’s going smoothly
Tomy: good!

Summary: Anita confirms her location at the Bologna station to Jenny and Tomy,
reassuring them that everything is running smoothly.

Reformatting

Summary: Anita is at Bologna station.

Conversation:
Anita: I’m at the station in Bologna
Jenny: No problems so far?
Anita: no, everything’s going smoothly
Tomy: good!

Table 4.1: Applying the different contamination techniques to a sample from the SAMSum
dataset.
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4.2 Results and Analysis

Dataset Model
Contaminated Contaminated

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSUMPretraining Fine-tuning
Data Data

CNN

Zero-Shot - - 21.98 ± 0.26 5.076 ± 0.01 13.63 ± 0.10 18.51 ± 0.10
Baseline - × 27.22 ± 0.53 7.436 ± 0.03 18.15 ± 0.43 24.90 ± 0.36
Cheating - ✓ 33.60 ± 0.58 10.198 ± 0.06 20.52 ± 0.33 29.61 ± 0.32

In-Domain × × 29.81 ± 0.48 9.277 ± 0.04 18.93 ± 0.25 26.88 ± 0.31
Full Contamination ✓ × 29.84 ± 0.48 9.488 ± 0.04 19.50 ± 0.38 26.98 ± 0.40

Distribution ✓ × 29.73 ± 0.33 9.557 ± 0.03 19.50 ± 0.22 27.12 ± 0.26
Masked ✓ × 28.34 ± 0.22 8.326 ± 0.03 18.01 ± 0.29 25.96 ± 0.20
Noised ✓ × 31.31 ± 0.52 8.821 ± 0.05 19.19 ± 0.32 28.85 ± 0.30

Reformatted ✓ × 29.21 ± 0.28 8.887 ± 0.03 18.88 ± 0.29 26.27 ± 0.30

SAMSum

Zero-Shot - - 11.73 ± 0.14 1.357 ± 0.01 8.377 ± 0.19 9.33 ± 0.16
Baseline - × 32.95 ± 0.57 10.22 ± 0.05 25.83 ± 0.32 25.59 ± 0.29
Cheating - ✓ 36.36 ± 0.53 12.31 ± 0.04 28.41 ± 0.33 28.48 ± 0.33

In-Domain ✓ × 33.61 ± 0.46 10.27 ± 0.09 26.39 ± 0.30 26.46 ± 0.35
Full Contamination × × 34.34 ± 0.45 10.76 ± 0.06 26.98 ± 0.40 27.04 ± 0.38

Distribution ✓ × 33.73 ± 0.51 10.32 ± 0.05 26.48 ± 0.31 26.56 ± 0.33
Masked ✓ × 33.05 ± 0.46 10.46 ± 0.05 25.77 ± 0.30 25.81 ± 0.28
Noised ✓ × 33.62 ± 0.43 10.27 ± 0.06 26.50 ± 0.37 26.49 ± 0.38

Reformatted ✓ × 33.63 ± 0.39 10.25 ± 0.05 26.37 ± 0.31 26.46 ± 0.34

XSum

Zero-Shot - - 12.52 ± 0.11 2.059 ± 0.00 9.035 ± 0.16 10.27 ± 0.17
Baseline - × 26.28 ± 0.48 6.424 ± 0.02 19.80 ± 0.32 19.81 ± 0.33
Cheating - ✓ 29.87 ± 0.41 8.334 ± 0.03 22.97 ± 0.43 22.98 ± 0.42

In-Domain × × 26.43 ± 0.52 6.745 ± 0.05 19.99 ± 0.39 19.99 ± 0.40
Full Contamination ✓ × 26.53 ± 0.51 6.820 ± 0.02 20.08 ± 0.33 20.03 ± 0.37

Distribution ✓ × 26.61 ± 0.42 6.885 ± 0.03 20.12 ± 0.37 20.11 ± 0.37
Masked ✓ × 24.50 ± 0.46 5.677 ± 0.02 18.16 ± 0.29 18.39 ± 0.31
Noised ✓ × 26.16 ± 0.39 6.599 ± 0.02 19.72 ± 0.35 19.72 ± 0.35

Reformatted ✓ × 26.27 ± 0.43 6.623 ± 0.02 19.86 ± 0.29 19.86 ± 0.30

Table 4.2: Results for all nine models trained on XSum, SAMSum, and CNN/Daily Mail
Datasets. The table showcases evaluation metrics, with the best-performing model scores bolded
and the second best italicized.

In this section, we consider the overall performance of each contamination method across
summarization datasets.

Consistently, the cheating setting outperforms all others; this is expected, given that deliber-
ately finetuning on the test data is an extreme form of contamination.

Overall, continued pretraining with the approximate contamination methods improves per-
formance above the baseline, often by several standard deviation. This suggests that exposure to
these forms of contamination during pretraining can impact the reliability of evaluations on this
data downstream.

The distribution, full contamination, and noised settings generally outperform the in-domain
setting. This suggests that the boost when pretraining on contaminated splits is not merely from
seeing in-domain data, but specifically from seeing the test data.

However, it is important to note that while the majority of these settings have metrics the fall
within one standard deviation of each other, there are exceptions. For instance, in the case of the
XSum dataset, the noised setting fails to surpass the baseline. This discrepancy can be attributed
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Figure 4.1: Barchart of all models compared for each metric
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Figure 4.2: Ratio of Contamination Ratio to full contamination performance for the contaminated
models.

to the idiosyncrasies of the XSum dataset, where ground truth summaries may deviate signif-
icantly from typical summaries, thus posing a challenge for the model in generating accurate
outputs. The summaries generated by GPT-3.5 for the XSum dataset have lower Rouge scores
than the other two datasets.

We observe that the reformatted setting demonstrates improved performance compared to the
baseline, but it doesn’t perform as well as the full contamination setting. This observation could
be due to GPT models, whose training objective involves next token prediction, highlighting the
importance of capturing sequential dependencies in text generation tasks like summarization.
Effectively capturing these dependencies is crucial for the model to perform better on down-
stream tasks, emphasizing the significance of order information processing in natural language
processing.

Additionally, underperformance of the mask contamination setting relative to the baseline
across all datasets warrants attention. This disparity suggests that exposure solely to summaries
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Dataset Rouge-1 Rouge-2 Rouge-L Rouge-Lsum

CNN 38.70 14.14 24.90 32.11
SAMSum 37.92 13.78 28.73 28.75

XSum 24.21 4.89 16.60 16.60

Table 4.3: Rouge scores for summaries generated by GPT-3.5

during the pretraining phase may impose limitations on the model’s learning capacity, hindering
its ability to effectively capture and generalize from diverse textual inputs.

In summary, the observed trends underscore the multifaceted impact of different contamina-
tion methodologies on model performance. These findings not only contribute to our understand-
ing of model robustness and generalization but also highlight the distribution, full contamination,
and noisy data have a positive impact on model evaluation scores.
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Chapter 5

Case Study: Question and Answering

Question answering (QA) models are designed to automatically generate responses to questions
posed in natural language. These models come in various forms, catering to different types of
questions and tasks. Some QA models focus on answering multiple-choice questions, where
they select the most appropriate answer from a set of options. These models typically employ
techniques such as machine learning and natural language processing to analyze the question
and candidate answers before making a selection. On the other hand, there are QA models that
tackle free-response questions, where they generate textual answers based on the input question.
These models often use sophisticated language generation algorithms, including transformer-
based architectures, to produce coherent and contextually relevant responses. Overall, question
answering models play a crucial role in automating information retrieval and comprehension
tasks, facilitating efficient access to knowledge and insights from large volumes of textual data.

The Stanford Question Answering Dataset (SQuAD) [41] stands as a benchmark dataset
in the field of question answering, renowned for its rich collection of context-question-answer
triples sourced from a diverse range of articles. SQuAD is structured as a freeform question
answering task, where models are tasked with generating precise answers to questions based on
a given passage of text.

In contrast, Children’s Book Test (CBT) [19] was meticulously crafted to gauge the ability
of language models to grasp the nuanced meaning embedded within children’s literature. Un-
like conventional language modeling benchmarks, CBT goes beyond merely predicting syntactic
function words by also assessing the comprehension of lower-frequency words, which convey
richer semantic content and play a pivotal role in understanding text. CBT adopts a multiple-
choice question answering format, wherein models must select the correct answer from a set of
options provided for each comprehension question.

This distinction underscores the varied nature of question answering tasks, with SQuAD em-
phasizing open-ended response generation and CBT focusing on selecting the most appropriate
answer among predefined choices. By encompassing both free-response and multiple-choice
question answering paradigms, SQuAD and CBT offer complementary perspectives on the chal-
lenges and nuances inherent in understanding and processing textual information.
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5.1 Experimental Setup
For this case study, we ran the baseline setting, full contamination setting, in-domain setting,
zero-shot setting, and 6 different contaminated settings.

• Full Contamination Setting: The model underwent continued pretraining on 1 epoch of
the test split, maintaining the format encountered during evaluation, followed by 10 epochs
of fine-tuning on the established train split.

• Distribution Contaminated Setting: The model underwent continued pretraining on 1
epoch of the test split, which included data mixed with open web text, before proceeding
to 10 epochs of fine-tuning on the established train split.

• Masked Contaminated Setting: The model underwent one epoch of continued pretrain-
ing on the established test split where context sentences were masked, allowing the model
to only observe questions and answers, followed by 10 epochs of fine-tuning on the estab-
lished train split.

• Noised Contaminated Setting: The model underwent one epoch of continued pretraining
on the established train split, viewing answers generated by GPT-3.5 in response to context
and questions, before proceeding to 10 epochs of fine-tuning on the established train split.

• Reformatted Contaminated Setting: The model underwent one epoch of continued pre-
training on the established test split. For the SQuAD dataset, free-form QA was converted
to multiple-choice QA with GPT-3.5’s assistance, while the CBT dataset was converted
into free-form QA with the answer options not being presented. It then underwent 10
epochs of fine-tuning on the established train split.

• Augmented Contaminated Setting: The model underwent one epoch of continued pre-
training on the established test split. Additional information was included in the context
preceding the question and answers by prompting GPT-3.5 to generate related information,
before proceeding to 10 epochs of fine-tuning on the established train split.
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Sample

Context:
The Bey Hive is the name given to Beyoncé’s fan base. Fans were previously titled “The Beyontourage”,
(a portmanteau of Beyoncé and entourage). The name Bey Hive derives from the word beehive, purposely misspelled
to resemble her first name, and was penned by fans after petitions on the online social networking service Twitter and online
news reports during competitions.

Question: Beyonce has a fan base that is referred to as what?
Answer: The Bey Hive

Distribution

⟨ some open web text ⟩

Context:
The Bey Hive is the name given to Beyoncé’s fan base. Fans were previously titled “The Beyontourage”,
(a portmanteau of Beyoncé and entourage). The name Bey Hive derives from the word beehive, purposely misspelled
to resemble her first name, and was penned by fans after petitions on the online social networking service Twitter and online
news reports during competitions.

Question: Beyonce has a fan base that is referred to as what?
Answer: The Bey Hive

⟨ some more open web text ⟩

Masking Question: Beyonce has a fan base that is referred to as what?
Answer: The Bey Hive

Noising

Context:
The Bey Hive is the name given to Beyoncé’s fan base. Fans were previously titled “The Beyontourage”,
(a portmanteau of Beyoncé and entourage). The name Bey Hive derives from the word beehive, purposely misspelled
to resemble her first name, and was penned by fans after petitions on the online social networking service Twitter and online
news reports during competitions.

Question: Beyonce has a fan base that is referred to as what?
Answer: Bey Hive

Reformatting

Context:
The Bey Hive is the name given to Beyoncé’s fan base. Fans were previously titled “The Beyontourage”,
(a portmanteau of Beyoncé and entourage). The name Bey Hive derives from the word beehive, purposely misspelled
to resemble her first name, and was penned by fans after petitions on the online social networking service Twitter and online
news reports during competitions.

Question: Beyonce has a fan base that is referred to as what?
Options:
A) The Beehivers
B) The Bey Hive
C) The Beyontourage
D) The Bey Flock

Answer: The Bey Hive

Augmenting

Context:
The Bey Hive is the name given to Beyoncé’s fan base. Fans were previously titled “The Beyontourage”,
(a portmanteau of Beyoncé and entourage). The name Bey Hive derives from the word beehive, purposely misspelled
to resemble her first name, and was penned by fans after petitions on the online social networking service Twitter and online
news reports during competitions. This fervent fan base actively engages with Beyoncé’s music, performances, and
philanthropic endeavors.

Question: Beyonce has a fan base that is referred to as what?
Answer: The Bey Hive

Table 5.1: Applying the different contamination techniques to a sample from the SQuAD dataset.
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5.2 Results and Analysis

Dataset Model Contaminated Contaminated Exact Match F1 ScorePretraining Data Fine-tuning Data

SQuAD

Zero-shot - - 0.178 ± 0.01 4.180 ± 0.01
Baseline - × 41.76 ± 0.31 55.72 ± 0.35
Cheating - ✓ 55.73 ± 0.34 66.47 ± 0.30

In-Domain × × 52.44 ± 0.29 64.52 ± 0.30
Full Contamination ✓ × 53.38 ± 0.24 65.07 ± 0.26

Distribution ✓ × 52.76 ± 0.29 64.92 ± 0.28
Masked ✓ × 38.77 ± 0.26 51.93 ± 0.28
Noised ✓ × 52.72 ± 0.29 64.65 ± 0.28

Reformatted ✓ × 48.08 ± 0.31 61.85 ± 0.28
Augmented ✓ × 53.58 ± 0.28 65.51 ± 0.28

CBT

Zero-shot - - 0.192 ± 0.01 3.290 ± 0.01
Baseline - × 19.41 ± 0.29 33.11 ± 0.30
Cheating - ✓ 54.27 ± 0.25 71.20 ± 0.26

In-Domain × × 44.19 ± 0.24 62.12 ± 0.26
Full Contamination ✓ × 52.06 ± 0.28 69.20 ± 0.29

Distribution ✓ × 25.49 ± 0.27 41.45 ± 0.27
Masked ✓ × 46.51 ± 0.24 64.34 ± 0.23
Noised ✓ × 49.59 ± 0.26 67.06 ± 0.26

Reformatted ✓ × 51.46 ± 0.23 68.82 ± 0.26
Augmented ✓ × 27.51 ± 0.30 44.08 ± 0.29

Table 5.2: Results for all 10 models trained on the SQuAD and CBT dataset. The table showcases
evaluation metrics, with the best-performing model scores bolded and the second best italicized.

In this section, we consider the overall performance of each contamination method across
Question Answering datasets

Consistently, the cheating setting outperforms all others by a noticable margin; this is ex-
pected, given that deliberately finetuning on the test data is an extreme form of contamination.

Furthermore, with the exception of the masked setting for the SQuAD dataset, all contami-
nated settings exhibit better performance compared to the baseline setting. Particularly notewor-
thy are the full contamination and noised settings, which outperform the baseline by a consider-
able margin across both datasets. It is important to note that while the difference in performance
of these contaminated settings compared to the cheating setting is statistically significant, it is
small.

Dataset Exact Match F1 Score

SQuAD 74.56 88.15
CBT 77.21 87.78

Table 5.3: Exact Match and F1 scores for answers generated by GPT-3.5

Note that the noised setting performs almost as well as the full contamination setting. This
can be attributed to the exact match and F1 scores of the answers generated by GPT-3.5 being
fairly high.

Exposure to in-domain data during pretraining appears to improve model performance. How-
ever, our results show that the different contaminated setting such as noise, full contamination,
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Figure 5.1: Bar Chart of all SQuAD and CBT models compared for each metrics
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and reformatting tend to outperform the in-domain setting during evaluation. This suggests that
seeing data from the test set, even if it isn’t in the correct format, can positively impact model
performance for question answering tasks.

Reformatting free-form questions from SQuAD into multiple-choice answers during pre-
training appears to have a detrimental effect on model performance, albeit not to the extent of
matching the baseline. Conversely, converting multiple-choice questions from CBT into free-
form questions during pretraining yields positive results, with the reformatting setting outper-
forming most other contaminated settings.

Furthermore, we observe variations in the performance of augmented and distribution settings
across the two datasets. While these settings perform well for SQuAD, their performance is
not as impressive for CBT. For the augmentation setting, this discrepancy may be attributed to
the nature of data augmentation, where the additional information provided for SQuAD is more
relevant and beneficial to the wikipedia paragraphs compared to the irrelevant introductions, such
as ‘once upon a time’ style introductions generated by GPT-3.5 for these book excerpts, added to
CBT stories. It is important to note that since this information doesn’t significantly contribute to
the task, this form of augmentation falls in a blurry space between distribution and augmentation
sections of the taxonomy. It could also be viewed as unrelated information being added between
samples during pretraining, complicating its categorization.

Overall, our findings highlight the significant impact of exposing the model to test data during
pretraining on their performance during evaluation. Regardless of the contamination type, the
mere exposure to test data appears to substantially enhance model performance compared to the
baseline setting, underscoring the importance of careful consideration of dataset characteristics
and contamination methodologies in model training and evaluation.
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Chapter 6

Analysis

In this analysis, we explore the performance of the summarization and QA model for all of the
training settings across diverse datasets.

We consistently observe that the cheating setting outperforms the baseline in summarization
and QA tasks, emphasizing the risk of overfitting and inflated metrics when fine-tuning on the
test dataset. This underscores the importance of adhering to best practices in model training for
reliable performance.

Most contaminated settings exhibit performance levels that lie between those of the cheating
and baseline settings. This suggests that exposure to evaluation data during pretraining indeed
enhances model performance. Specifically, the full contamination setting consistently outper-
forms the baseline across all datasets, indicating that exposure to pretraining data in the exact
format as evaluation data leads to better performance during evaluation. Similarly, the distribu-
tion setting performs well, implying that interleaved test data with other irrelevant information
still benefits model performance during evaluation.

Furthermore, we find that noisy data tends to contribute to improved performance, primarily
due to the high evaluation metric values of GPT-3.5 generated summaries/answers compared
to ground truth summaries/answers. This incorporation of noisy labels during pretraining aids
in the model’s correct understanding of the task, reflected in its improved performance during
evaluation.

The consistent outperformance of the in-domain setting compared to the baseline under-
scores the advantages of exposure to related samples in the correct format during pretraining
[25]. However, one potential reason behind this performance disparity could be attributed to the
fact that the model with the in-domain setting sees a more diverse set of data during its overall
training process. Unlike the established train split used for the baseline setting, the in-domain
pretraining split introduces additional diversity, potentially enriching the model’s understanding
and adaptability. However, it is noteworthy that despite experiencing similar diversity in sample
data during training, some contaminated settings outperform the in-domain setting during evalu-
ation. This highlights the significant impact of exposure to test split data on model performance
and tells us that contamination can play a crucial role in enhancing model effectiveness during
evaluation.

Some types of contamination have task-dependent effects. For example, the masked setting
boosts the model’s evaluation scores more in the QA task than in the summarization task. The
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disparity may arise from the fact that during pretraining for the summarization task, the model
is exposed solely to summaries, whereas during evaluation, it encounters complete documents.
However, in the QA task, the model observes both questions and answers during pretraining
and receives context along with a question during evaluation. This overlap enables the model to
better recall memorized answers when presented with questions.

Note however, that the model with the masking setting generally performs around the same
or worse than the baseline setting. This unexpected outcome suggests that contamination may
potentially degrade model performance during evaluation rather than enhance it, contrary to
prevailing expectations in the field of pretraining large language models. However, it is possible
that this observed phenomenon is merely a characteristic of the datasets or tasks under scrutiny
and may not hold true across the board.

In summary, our comprehensive analysis sheds light on the intricate interplay between con-
tamination methodologies and model performance in both summarization and QA tasks. These
insights underscore the importance of careful consideration in model training and evaluation
processes to ensure reliable and robust performance across various datasets and tasks.
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Chapter 7

Related Work

7.1 Detecting Data Contamination
Over the past three years, research into data contamination has increased significantly. Among
the early research exploring data contamination in LLMs, most primarily adopt a methodol-
ogy similar to using high-order n-grams to detect overlapping content between the pre-training
data and the evaluation dataset [5, 37, 48, 50]. The primary limitations to this methodology,
however, is that the pretraining data must be open-source and may require substantial computa-
tional resources or manual labor. [44] attempts to calculate data contamination on LLMs with
closed-source pretraining corpora by operating with the underlying assumption that if an LLM
can reproduce dataset instances, it must have been trained using that particular split. [16] has
seen success in identifying pretraining corpora contamination with their two step methodology:
identifying potential contamination at the instance level using guided instruction, then assess-
ing wider contamination at the partition level by evaluating the difference between the average
overlap score for guided instruction and the general instruction to the reference instances.

The shelf life of benchmarks is incredibly low with [42] demonstrating that newer models
with updated training cutoff dates are iteratively rendering existing benchmarks stale. Utilizing
OpenAI’s GPT-3.5 and GPT-4, [1] revealed that these models have been globally exposed to
approximately 4.7 million samples from 263 benchmarks within the first year after their release.

Data sketching, storing compressed or approximate views of large datasets, has long been
used to enable efficient analysis of large datasets [4]. In attempt to reason over large pretraining
copora, [29] created Data Portraits, a document artifact that performs datasketching on the Pile
[13] using membership inference with a strided Bloom filter [2] and enables answering questions
about test set leakage and model plagiarism. Search engines, such as the ROOTS Search Tool
[35] allow users to search over the entire ROOTS corpus offering both fuzzy and exact search
capabilities, allowing for qualitative analysis over pretraining data.

7.2 Self Pretraining
In [25], the idea of self-pretraining, where models are trained directly on downstream cor-
pora using self-supervised objectives, is explored. Research has indicated that additional self-
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supervised pretraining on downstream data can yield further gains [18, 25]. The advantages of
self-pretraining cannot be ascribed to knowledge transfer from the upstream corpus since the
data required for self-pretraining is the same as that for finetuning in the evaluated downstream
tasks. The gains from this approach stem solely from the pretraining objective, which may be
more effective at capturing certain inductive biases than the finetuning objective, such as linguis-
tic knowledge [47]. Additionally, it is possible that self-pretraining simply sets up the network
parameters in a way that results in superior optimization during finetuning [51]. Self-pretraining
also offers advantages in structured output prediction tasks, including question answering and
commonsense inference, frequently yielding over a 50% enhancement in performance compared
to conventional pretraining [25].
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Chapter 8

Conclusion

In conclusion, our research has provided valuable insights into the performance of contaminated
summarization and QA models across diverse datasets and contamination methods. Through a
comprehensive analysis, we have observed notable trends that highlight the impact of various
contamination methodologies on model efficacy. It is increasingly evident that assessing mod-
els on these benchmarks undermines our capacity to accurately compare and evaluate modern
models.

Our findings reinforce the widely accepted notion that fine-tuning on the test dataset, as
exemplified by the cheating setting, can lead to overfitting and inflated evaluation metrics. This
underscores the importance of adhering to best practices in model training to ensure robust and
reliable performance.

Moreover, our analysis uncovered that exposure to evaluation data during pretraining im-
proves model performance, as indicated by the performance of the model with the contaminated
settings falling between those of the cheating and baseline settings. The performance of the full
contamination setting and noisy setting emphasizes the significance of exposure to evaluation
data in enhancing model performance.

Additionally, our research highlighted the significant impact of exposure to test split data
on model performance. The observed performance disparity between the in-domain setting and
some contaminated settings suggests that contamination can play a crucial role in enhancing
model effectiveness during evaluation, particularly when considering the diversity of sample
data during training.

Our analysis revealed the positive impact of exposure to test data in the correct format on
model performance. Notably, for all summarization datasets, reformatting the data resulted in
poorer performance during evaluation compared to the full contamination setting. Our findings
indicate that the format of contaminated data during pretraining influences the model’s perfor-
mance during evaluation, highlighting the importance of meticulously decontaminating properly
formatted contamination data from datasets.

Additionally, our findings highlight the task-specific nature of model performance. For in-
stance, the distribution contaminated setting exhibits better performance in the summarization
task compared to the QA task during evaluation. This indicates that the effectiveness of cer-
tain contamination methods varies depending on the specific task requirements, emphasizing the
importance of tailoring decontamination strategies to the characteristics of the task at hand.
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Finally, the unexpected outcome of masking out context during continued pretraining high-
lights the potential risks of contamination in degrading model performance during evaluation,
contrary to expectations in the field.

In addition to our research findings, it is essential to acknowledge the current limitations
and gaps in existing decontamination practices for pretraining data used in LLMs. While efforts
such as those employed in decontaminating the Dolma corpus [46] utilize techniques such as
paragraph-based decontamination, our results from the summarization case study reveal that
contaminated data distributed throughout the dataset can have a comparable impact to instances
where all contaminated data is grouped together, as in a paragraph. This highlights a critical gap
in current decontamination practices, particularly in identifying and mitigating instance-level
contamination effectively.

The recognition of this gap underscores the need for further advancements in decontamina-
tion techniques tailored to address specific types of contamination at the instance level. Future
research in this area could focus on developing more sophisticated decontamination strategies
that take into account the nuanced nature of contamination and its diverse manifestations in
pretraining data. By addressing these gaps and developing more effective decontamination tech-
niques, researchers can enhance the reliability and robustness of LLMs and minimize the poten-
tial adverse effects of contamination on model performance and generalization capabilities. This
avenue of research represents a promising direction for advancing the field of decontamination
and ensuring the integrity of pretraining data for future LLM development and deployment.

In summary, our research sheds light on the intricate interplay between contamination method-
ologies and model performance in both summarization and QA tasks. These insights underscore
the importance of careful consideration in model training and evaluation processes to ensure re-
liable and robust performance across various datasets and tasks. Moving forward, our findings
provide valuable guidance for practitioners and researchers in the development and evaluation of
language models for natural language understanding tasks.
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Chapter 9

Limitations

Several limitations warrant consideration. First, due to constraints in computational resources
and time, our investigation focuses solely on continued pretraining. Consequently, we cannot
investigate the impact of encountering contaminated data randomly throughout pretraining; in-
stead, we consistently encounter contaminated data towards the pretraining’s conclusion. This
may influence our findings, potentially introducing a recency bias.

Additionally, this study primarily examines the performance of a single language model, lim-
iting the generalizability of our findings to other models. Therefore, caution should be exercised
when extrapolating our results to different language models, as variations in architecture, training
procedures, and dataset characteristics may lead to different results. Further research involving
multiple models and comprehensive evaluations is necessary to establish more robust conclu-
sions regarding the impact of different types of contamination across diverse language models
and tasks.
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Chapter 10

Future Work

Our results suggest several avenues for future investigation. We hope that our work, in combina-
tion with future work in this direction, will advance our understanding of the effects of contam-
ination during pretraining, refine model development practices, and enhance the reliability and
robustness of language models across a multitude of tasks and domains.

Pretraining from Scratch

One avenue for future research involves pretraining the model with different settings from scratch
rather than initializing from GPT-2 weights and conducting continued pretraining. By starting
from scratch, researchers gain greater control over the pretraining corpora, allowing for a more
comprehensive examination of the effects of different types of contamination during pretraining.
Additionally, pretraining from scratch eliminates potential recency bias associated with con-
tinued pretraining, where contaminated data encountered last may disproportionately influence
model behavior.

Exploration Across Model Architectures

Extending our methodology to other types of models with different architectures is another
promising direction for future investigation. Exploring whether the effects observed extend be-
yond the GPT family can provide valuable insights into the generalizability of our findings and
the impact of contamination across diverse model architectures.

Expansion to Diverse Tasks

Furthermore, future research should explore the impacts of different types of contamination on
a wider range of tasks. While our study focused on summarization and question answering,
language models are applied to various tasks beyond these domains. Investigating how models
perform with different types of contamination during pretraining across diverse tasks can offer a
more comprehensive understanding of contamination effects and inform best practices for model
development and evaluation in real-world applications.
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[1] Simone Balloccu, Patrı́cia Schmidtová, Mateusz Lango, and Ondrej Dusek. Leak, cheat,
repeat: Data contamination and evaluation malpractices in closed-source LLMs. In Yvette
Graham and Matthew Purver, editors, Proceedings of the 18th Conference of the European
Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), pages
67–93, St. Julian’s, Malta, March 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.eacl-long.5.

[2] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. ACM 13(7),
pages 422–426, 1970. URL https://dl.acm.org/doi/10.1145/362686.
362692.

[3] Arthur Brazinskas, Mengwen Liu, Ramesh Nallapati, Sujith Ravi, and Markus Dreyer.
Transductive learning for abstractive news summarization. CoRR, abs/2104.09500, 2021.
URL https://arxiv.org/abs/2104.09500.

[4] A.Z. Broder. On the resemblance and containment of documents. In Proceedings. Com-
pression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171), pages 21–29, 1997.
doi: 10.1109/SEQUEN.1997.666900.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners, 2020.

[6] Jialun Cao, Wuqi Zhang, and Shing-Chi Cheung. Concerned with data contamination?
assessing countermeasures in code language model, 2024.

[7] Kent K. Chang, Mackenzie Cramer, Sandeep Soni, and David Bamman. Speak, memory:
An archaeology of books known to chatgpt/gpt-4, 2023.

[8] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen,
Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu,
Qiang Yang, and Xing Xie. A survey on evaluation of large language models, 2023.

39

https://aclanthology.org/2024.eacl-long.5
https://dl.acm.org/doi/10.1145/362686.362692
https://dl.acm.org/doi/10.1145/362686.362692
https://arxiv.org/abs/2104.09500


[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto,
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