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Abstract
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1 Introduction

By now, execution-preserving relationships between (fragments of) linear logic and (fragments
of) process algebras are well-established (see [S] for an overview). Abramsky observed early on
that linear cut elimination resembles reduction in CCS and the m-calculus [21], thereby identifying
processes with (some) linear proofs and establishing the process-as-term interpretation [1]. The
alternative process-as-formula encoding, pioneered by Miller around the same time [20], maps
process constructors to logical connectives and quantifiers, with the effect of relating reductions in
process algebra with proof steps, in the same way that logic programming achieves computation
via proof search. Specifically, it describes the state of an evolving concurrent system as a linear
logic context. Transitions between such process states are therefore modeled as transitions between
linear logic contexts. As a member of a context, a formula stands for an individual process in the
process state. On the right-hand side of an intuitionistic derivability judgment, it is a specification
that a process state can satisfy. The process-as-formula interpretation has been used extensively in
a multitude of domains, in particular in the fields of programming languages [4, 5, 20] and secu-
rity [3]. For example, [5] developed it into a logically-based rewriting formalism that subsumes
and integrates both process-based (e.g., the m-calculus) and transition-based languages (e.g., Petri
nets) for specifying concurrent systems.

Not as well established is the relationship between the rich set of notions and techniques used
to reason about process specifications and the equally rich set of techniques used to reason about
(linear) logic. Indeed, a majority of investigations have attempted to reduce some of the behavioral
notions that are commonplace in process algebra to derivability within logic. For example, Miller
identified a fragment of linear logic that could be used to observe traces in his logical encoding
of the m-calculus, thereby obtaining a language that corresponds to the Hennessy-Milner modal
logic, which characterizes observational equivalence [20]. A similar characterization was made
in [17], where a sequent I' - A in a classical logic augmented with constraints was seen as process
state I" passing test A. Extensions of linear logic were shown to better capture other behavioral
relations: for example, adding definitions allows expressing simulation as the derivability of a
linear implication [[19]], but falls short of bisimulation, for which a nominal logic is instead an
adequate formalism [26].

This body of work embeds approaches for reasoning about process specifications (e.g., bisim-
ulation or various forms of testing) into methods for reasoning with logic (mainly derivability).
Little investigation has targeted notions used to reason about logic (e.g., proof-theoretic defini-
tions of equivalence). More generally, techniques and tools developed for each formalism rarely
cross over — and may very well be rediscovered in due time. Tellingly, process-based definitions
and proofs are often coinductive in nature, while techniques based on proof-theory are generally
inductive.

This report outlines one such relationship — between the inductive methods used to reason
about logic and the coinductive methods used to reason about process calculi. On the linear logic
side, we focus on the inductively-defined notion of logical preorder (obtained by forsaking sym-
metry from derivability-based logical equivalence). On the process-algebraic side, we consider
an extensional behavioral relation adapted from the standard coinductive notion of contextual pre-
order. We prove that, for two fragments of linear logic and matching process calculi, these notions
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Figure 1: Dual intuitionistic linear logic

coincide. Our proofs rely on other standard process algebraic notions as stepping stones, namely
simulation and labeled transition systems.

The rest of the report is organized as follows. In Section [2] we briefly review the general
fragment of linear logic we are focusing on and define the logical preorder. Then, in Section
we recall the standard process-as-formula interpretation for a sublanguage without exponential
and define the notion of contextual preorder. In Section 4, we prove their equivalence through
the intermediary of a simulation preorder defined on the basis of a labeled transition system. In
Section [5] we extend our results and proof techniques to accommodate exponentials. We conclude
in Section [6] by anticipating future development enabled by this work.

2 First-Order Intuitionistic Linear Logic

The starting point for our investigation will be intuitionistic linear logic [12] sans disjunction AG B
and its unit 0. The formulas of this fragment of propositional intuitionistic linear logic are defined
by the following grammar (a is an atomic formula):

ABC = a|1| ARB | A—B | T | A&B | A



Intuitionistic derivability for this fragment is expressed by means of sequents of the form
IMAFA

where the unrestricted context I" and the linear context A\ are multisets of formulas. We define
contexts by means of the following grammar:

LA == - | AJA
where “-” represents the empty context, and “,” denotes the context extension operation: A, A is
the context obtained by adding the formula A to the context A. As usual, we will tacitly treat “;” as
an associative and commutative context union operator “A;, A,” with the unit “-”, which indeed
allows us to think of contexts as multisets.

Derivability in intuitionistic linear logic is defined by the inference rules in Figure (1} which
follow a standard presentation of propositional intuitionistic linear logic, called Dual Intuitionistic
Linear Logic (or DILL) [2,5]. A sequent I'; A - A is derivable if there is a valid derivation with
I';A F A asits root. A DILL sequent I'; A = A corresponds to !'I'; A - A in Girard’s original
presentation [12]. In the first part of this report, we will be working with the sublanguage of linear
logic where the unrestricted context I" is empty and there are no occurrences of the formula ! A.
We will then abbreviate the purely linear sequent -; A - A as A - A.

The remainder of the section is as follows: in Section 2.1l we discuss the fundamental metathe-
oretic results for dual intuitionistic linear logic — the core of the “proof theorist’s toolkit.” In
Section [2.2] we introduce the logical preorder, a natural semantic relationship between contexts
that will be our connection to the exploration of the “process calculist’s toolkit” in future sections.
In Section we reveal the nice connection between these two approaches. In Section [2.4] we
give a purely inductive characterization of the logical preorder.

2.1 Metatheory of linear logic

Dual intuitionistic linear logic is sound (there is no closed proof of a contradiction) and complete
(we can use an assumption of A to prove A). This is proved using Gentzen’s methodology, the
aforementioned standard toolkit of a working proof theorist [[11, 22]. The relevant theorems are
these:

Proposition 2.1 (Weakening). If I'; A+ A, then ', T"; A+ A for any I".

Proof. By induction on the structure of the given derivation. [

Proposition 2.2 (Identity). I'; A = A for all formulas A and unrestricted contexts .

Proof. By induction on the structure of the formula A. 0
This proposition entails that the following “identity” rule is admissible:

T AF A



Proposition 2.3 (Cut admissibility). IfT; A+ Aand T"; N, A+ C, then T',T; A/, A+ C.

Proof. We generalize the induction hypothesis by proving the statement of the theorem together
with the statement “if I';- = Aand I, A; A"+ C, then I, T'; A’ = C.” Then the proof proceeds by
mutual, lexicographic induction, first on the structure of the formula A, and second by induction
on the structure of the two given derivations. O

Proposition [2.3|is called the “cut admissibility” theorem because the proof indicates that these
two “cut” rules are admissible:
AFA THAVAREC ) ;A TVAANEC
TN AFC ' T;A'F C

cut!

From the proof theory perspective, Propositions [2.2]and [2.3| are canonical and establish funda-
mental properties of the logic; any system of rules not validating the identity and cut admissibility
theorems can hardly be called a logic. One relevant point about the proofs of Propositions
and[2.3]is that they are quite modular with respect various sublanguages of linear logic. Essentially
any syntactic restriction of the language of formulas, and certainly every restriction considered in
this report, preserves the validity of the identity and cut properties. They also hold for larger frag-
ments of linear logic, for example with additive disjunction or quantifiers (this latter case requires
upgrading the derivability judgment with a context X of first-order variables and therefore the
statements of these properties).

2.2 The logical preorder

The study of process calculi is primarily concerned with the relationships between different pro-
cesses, but the only judgment that we have so far for linear logic is the derivability judgment
[ A A, which expresses the judgment that the process state (I'; A) satisfies the formula or
specification A.

In the formulation of logics for process calculi, a central judgment is P = ¢, which states that
the process P satisfies some formula ¢. This leads to a natural definition of a logical preorder,
where P <; Q) if P |= ¢ implies (Q = ¢ for all ¢; in other words, if the set of formulas satisfied by
the former is included in the set of formulas satisfied by the latter. See e.g. [14] for an example in
classical process algebra and [8} 6] in probabilistic process algebra. Our goal is to give a definition
of P <; () where P and () are process states.

If we choose to look at the derivability judgment I'; A = A as analogous to the judgment
P = ¢, then it gives us an obvious way of relating process states: a specific process state
(D specific; Aspecific) 18 generalized by a general process state (I'yenerar; Agenerar) if all formulas A
satisfied by the specific process are also satisfied by the general process. In other words, we can
define a preorder (I'specific; Aspecific) =1 (I generat; Dgenerat), Which we will also call the logical pre-
order, which holds if I'pccific; Aspecific = C implies I' jeperar; Agenerar = C forall C.

This is an intuitively reasonable definition, but, as we explain below, that definition requires us
to assume some specific properties of the logic. By giving a slightly more general (but ultimately
equivalent) definition of the logical preorder, we can avoid making a priori assumptions about the
relationship between logical derivability and the logical preorder.
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Definition 2.4 (Logical preorder). The logical preorder is the smallest relation <; on states such
that (I'1; A1) =, (To; Ag) if, for all TV, A, and C, we have that T, I'1; A’ Ay = C implies
F,, FQ, A,, AQ FC.

The only difference between our informal motivation and Definition [2.4]is that, in the latter, the
specific and general process states must both satisfy the same formula C' after being extended with
the same unrestricted context I'” and linear context A’.

Because the — R and ! L rules are invertible (for each rule, the conclusion implies the premise),
this definition is equivalent to the definition that does not use extended contexts. This is because,
if IV = Ay,..., A, and A" = By,..., B, then the judgment I, I"; A’ A = C can be derived
if and only if the judgment I'; A - 1A; — ... —0lA, — B} —o ... — B,,, —o (' can be derived.
However, the proof of invertibility relies on the metatheory of linear logic as presented in the
previous section. The more “contextual” version of Definition [2.4] allows us to talk about the
relationship between the derivability judgment and the logical preorder without baking in any
assumptions about invertibility.

Altogether, we are taking the view, common in practice, that the context part of the sequent
(I'; A) represents the state of some system component and that the consequent A corresponds to
some property satisfied by this system. Then, the logical preorder compares specifications on the
basis of the properties they satisfy, possibly after the components they describe are plugged into a
larger system.

Theorem 2.5. The logical preorder =<, is a preorder.
Proof. We need to show that <; is reflexive and transitive.

Reflexivity: Expanding the definition, the reflexivity statement, (I'; A) =<; (I'; A) for all A as-
sumes the form “for all T, A" and A if U, T"; A, A’ + A, then T",T"; A, A’ - A”. This holds
trivially.

Transitivity: We want to prove that if (Ay;T1) =<, (Ag; 1) and (Ag;Ty) =, (As;T'3) then
(A;T) =, (As;T3). By the definition of =<;, we know that for any IV, A’ and A’, if
I, 1A, A" = A then T'y, T7; Ay, A = A’ Similarly, for any I, A” and A”, if
[y, T Ay, A" = A” then '3, 17 Az, A” = A”. If we choose I, A” and A” to be pre-
cisely IV, A" and A’ respectively, we can chain these two implications, obtaining that for any
IV, A"and A, if [',T"; Ay, A" B A’ then I's, IV; A3, A’ = A’. This is however exactly the
definition of logical preorder: therefore (A1;T'1) =; (Ag; T'3).

Therefore =<, is indeed a preorder. O

Observe that this proof is independent of the actual rules defining derivability. Indeed, it follows
only from the definition of this relation and the fact that informal implication is itself reflexive and
transitive. This means that =<; is a preorder for any fragment of linear logic we may care to study.



2.3 Relating cut, identity, and the logical preorder

We have now defined two judgments. The derivability judgment of linear logic, written as I'; A
A, declares that the process state (I'; A) meets the specification set by A. The logical preorder
(T'1; A1) = (T'g; Ag), says that the process state (I'y; Ay) can act as a specific instance of the
more general process state (I'y; A,). Recall from the introduction that linear logic formulas have
two natures: they are both 1) the specifications that a process state can satisfy and 2) the atomic
constituents of a process state. By the convention that (-; A) can be written as A, we can also think
of the formula A as synonymous with the singleton process state (-; A).

The derivability judgment ['; A A says that A is one specification that the process state
(I'; A) satisfies; of course it may satisfy many other specifications as well — interpreted as a
specification, the formula A is specific, and the process state (I'; A) is general. We relate a specific
and general process states with the logical preorder: (I'specific; Aspecific) =1 (I generat; Agenerar)- This
suggests that, if the two natures of a formula are in harmony, we can expect that I'; A - A exactly
when (-; A) <, (I'; A), a suggestion that is captured by the following proposition:

Proposition 2.6 (Harmony for the logical preorder). T'; A - A if and only if A <, (T'; A).
Proof. This will be a simple corollary of Theorem [2.7|below — read on. O

Proposition should be seen as a sort of sanity check that the logical preorder’s notion of
“more specific” and “more general” makes sense relative to the derivability judgment’s notion. A
result that initially surprised us is that this sanity check is exactly equivalent to the classic sanity
checks of the proof theorists: identity and cut admissibility.

Theorem 2.7. Proposition 2.6\ holds if and only if Propositions [2.2]and [2.3| hold.

Proof. This theorem establishes the equivalence between two propositions; both directions can be
established independently.

Assuming harmony, prove identity and cut. For the identity theorem, we must show A
A for some arbitrary formula A. By harmony, it suffices to show A =<; A, and =, is reflexive
(Theorem [2.5)).

For the cut admissibility theorem, we are given ['; A - A and I"; A’; A - C and must prove
I T;A’, A = C. By harmony and the first given derivation, we have A =<; (I'; A). Expand-
ing Definition this means that, for all IV, A/, and C, we have that I"; A’ A + C implies
T'.,I';A,A + C. Soby letting I” = I", A’ = A’, and C' = C and applying the second given
derivation I'; A, A+ C, we get I", I'; A’, A = C, which was what we needed to prove.

Assuming identity and cut, prove harmony. For the forward implication, we are given I'; A
A and we need to prove A <; (I'; A). Expanding Definition this means that, for an arbitrary
I, A/, and C, we are given I'; A’ A + C and need to prove I'',T'; A, A = C. The statement of
cut admissibility, Proposition isthatif A F Aand T; A, A C o then TV, T A A R C
We have the two premises, and the conclusion is what we needed to prove.



For the reverse implication, we are given A =<; (I'; A) and we need to prove I'; A + A.
Expanding Definition this means that, for all I/, A/, and C, we have that I"; A/, A + C
implies IV, T; A/, A - C. So by letting [" = -, A’ = -, and C' = A, we have that A - A implies
I'; A+ A. The conclusion is what we needed to show, and the premise is exactly the statement of
identity, Proposition [2.2] so we are done. [

It is critical to note that Theorem holds entirely independently of the actual definition of
the derivability judgment I'; A = A. This means, in particular, that it holds independently of the
actual validity of Propositions [2.2] and [2.3| as they were presented here, and that it holds for any
alternative definition of the derivability judgment that we might present. Furthermore, because
Propositions and do, of course, hold for dual intuitionistic linear logic, Proposition
holds as a simple corollary of Theorem[2.7]

The proof theorist’s sanity checks are motivated by arguments that are somewhat philosophi-
cal. In Girard’s Proofs and Types, cut and identity are motivated by an observation that hypotheses
and conclusions should have equivalent epistemic strength [[13]]. Martin Lof’s judgmental method-
ology gives a weaker sanity check, local soundness (18], which was augmented by Pfenning and
Davies with a sanity check of local completeness [23]. Local soundness and completeness take
the verificationist viewpoint that the meaning of a logical connective is given by its introduction
rules in a natural deduction presentation of the logic. This means that the elimination rules must be
justified as neither too strong (soundness) nor too weak (completeness) relative to the introduction
rules. The surprising (at least, initially, to us) equivalence of Proposition to the critical sanity
checks of sequent calculi suggests that the process state interpretation of linear logic can actu-
ally be treated as fundamental, that is, as a philosophical organizing principle for sequent calculus
presentations of logic.

2.4 Re-characterizing the logical preorder

In the previous section, we have argued for the canonicity of the logical preorder by motivating
harmony and showing that harmony is equivalent to the canonical properties of cut and identity.
However, it is not obvious, given our discussion so far that it is easy or even possible to prove
interesting properties of the logical preorder. In this section, we show that there is an alternate
characterization of the logical preorder for DILL directly in terms of the existing derivability judg-
ment ['; A = A. This re-characterization makes it more obvious that the logical preorder is a
fundamentally inductive concept.

This re-characterization depends on the auxiliary concepts of the tensorial product of a linear
context A, written & A, and exponential linearization of an unrestricted context I', written T,
which are defined as follows:

() 1 10 =
R(A,4) = (@A) ©A4 (T, 4) =(T),!4
The main result of this section is given by the following theorem.

Theorem 2.8. (Fl, A1> jl (FQ, AQ) lﬁv F27 AQ F ®A1 ®®'F1
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Proof. (=) Assume that (I';; A;) =; (I'2; Ay). Then, by definition, for every I', A and A such
that I'y,I'; Ay, A F A is derivable, there is a derivation of I';, I'; Ay, A+ A. Take ' = A = - and
A=QA; ®@Q!I'. If we can produce a derivation of I'1; A F @ A; ® @!I'y, then our desired
result follows. Here is a schematic derivation of this sequent:

I'; Ci = G i
T FC clone
1 7 'R
R,1R, id Ly 16 " 9R,1R
Fl,A1|_®A1® ’ » ¢ F1,|_®'F1 ® ’
Fl; Al F ® Al X ®'F1
Here, we assume that 'y expands to C, ..., C;, ..., C, for an appropriate n > 0.

(<) Assume now that I'y; Ay F &) Ay @ @!T'; with derivation D. To show that A; <; A,, we
need to show that, given I', A, A and a derivation D; of I';,I"; A1, A F A, we can construct a
derivation of 'y, I'; Ay, A F A.

To do so, we start by weakening D with [' and D; with I'y; by means of Proposition 2.1 Let
D’ and D] be the resulting derivations of 'y, I'; Ay F @ A; @ Q!T'; and 'y, ', T A, A A
respectively. We then build the desired derivation schematically as follows:

Dy
Iy Ty T:ALAF A
D T, A 0, AR AL
Tol:Ak @A OQT, QMo Ar 4 2h1k
T,T A, AF A cut 0

This replaces an extensional test that considers arbitrary contexts and goal formulas with an
existential test that only requires exhibiting a single derivation. This makes it evident that the
logical preorder is a semi-decidable relation. It is interesting to specialize this result to the fragment
of our language without exponentials nor permanent contexts. We obtain:

Corollary 2.9. Ay <; Ag iff Ao = @ A

For this language fragment, it is decidable whether A F A has a derivation. Therefore, the
logical preorder relation is decidable too: given A; and A,, it is decidable whether A; <; As.

3 Process Interpretation and the Contextual Preorder

The remainder of this paper will explore the relationship between the logical preorder just intro-
duced and a second relation, the contextual preorder, that emerges from trying to directly under-
stand transitions on linear logic process states. We will do so gradually. Indeed, this section and
the next will concentrate on a fragment of intuitionistic linear logic as presented in Section[2] This
language is given by the following grammar:

Formulas ABC = a|1]| A®B |a—B | T | A&%B

8



This fragment is purely linear (there is no exponential ! A) and the antecedents of linear implica-
tions are required to be atomic. Our derivability judgment will always have an empty unrestricted
context. Therefore, we will write it simply A - A. As a consequence, the definition of logical
preorder simplifies to “A; <; Ay iff, for all A and A, if A;, A+ Athen Ay, A - A.

This section is written from a process calculus perspective; we will forget, for now, that we
presented a sequent calculus in Figure (1] that assigns meaning to the propositions of this fragment
of linear logic. In that story, the meaning of propositions is given by the definition of derivability
A + A which treats A as a specification that the process state A satisfies. In this story, we will
try to understand propositions directly by describing their behavior as constituents of a process
state directly. The result is somewhat analogous to a fragment of CCS [21]] with CSP-style internal
choice [[15]:

a atomic process that sends a
1 null process
A® B process that forks into processes A and B
a—o B process that receives a and continues as B
T stuck process
A& B process that can behave either as A or as B

According to this interpretation, a process state A is a system of interacting processes repre-
sented by formulas. Then, the empty context “-” is interpreted as a null process while the context
constructor “,” is a top-level parallel composition. This structure, which makes contexts commuta-
tive monoids, is interpreted as imposing a structural equivalence among the corresponding systems
of processes. We write this equivalence as = when stressing this interpretation. It is the least

relation satisfying the following equations:

A = A
A, Ay = Ag, Ay
Ay, (A27A3) = (A17A2)> Ag

We will always consider contexts modulo this structural equality, and therefore treat equivalent
contexts as syntactically identical.

The analogy with CCS above motivates the reduction relation between process states defined
in Figure 2] A formula A ® B (parallel composition) transitions to the two formulas A and B in
parallel (rule ~~®), for instance, and a formula A & B (choice) either transitions to A or to B (rules
~+&1 and ~~§&2). The rule corresponding to implication is also worth noting: a formula a — B
can interact with an atomic formula a to produce the formula B; we think of the atomic formula a
as sending a message asynchronously and @ — B as receiving that message.

Proof theory interlude A proof theorist might recognize the strong relationship between the
rules in Figure [2| and the left rules from the sequent calculus presentation in Figure I} This rela-
tionship has been studied in details in [S]]. It is made explicit in the current setting by the following
proposition:

Proposition 3.1. If A ~~ A" and A' F C, then A + C.

9



(A1) ~ A (~1)

(A, A® B) ~ (A, A, B) (~®)

(A,A&B) ~ (AA) (~&1)

(AJA& B) ~ (A,B) (~&2)

(Aaa—B) ~ (AB)  (w—o)
(No rule for T)

Figure 2: The transition formulation of a fragment of linear logic

Proof. This proof proceeds by case analysis on the reduction A ~» A’. Most of the cases are
straightforward, we give two. If we have a reduction by ~~&;, then we have A, A - C and must
prove A, A& B + C, which we can do by rule &,. Alternatively, if we have a reduction by ~»—o,
then we have A = B and must prove A, a,a — B - C. We can prove a - a by init, and therefore
the result follows by —o;.. [

This theorem can also be understood as demonstrating the admissibility of the following rules:

A~A AFA o
AF A transition

Let ~~* be the reflexive and transitive closure of ~+. Then an easy induction proves a variant of
Proposition |3.1] that strengthens ~» to ~»*. It yields the following admissible rule.

AN NEAL
A- A ransition

Another statement that we could prove is that, given the transition rule or the transition™ rule, all
the left rules of the sequent calculus are admissible. Such a proof would be straightforward; the
only interesting case is proving —oL admissible. However, we will not discuss this property any
further in this report. (This concludes our proof theory interlude.)

We will now define the contextual preorder in Section [3.1]and explore some of its properties in
Section[3.21

3.1 The contextual preorder

As we once again forget that we know anything about the proof-theoretic notion of derivability,
we turn to the following question: what does it mean for one process state to behave like another
process state?' Any relation R which declares A; R A, when A;’s behavior can be imitated by

I'The following discussion is intended to be a gentle introduction to some core ideas in process calculus. We want
to stress that, with the exception of partition preservation, this section discusses standard and elementary concepts in
the process calculus literature.

10



A, will be called a behavioral preorder,> and we will describe a set of desiderata for what makes
a good behavioral preorder.

The most fundamental thing a process can do is to be observed; observations are called “barbs”
in the language of the process calculists. We’ll start with the idea that we can observe only the
presence of an atomic proposition in a context. Therefore, if we want to claim (A1, a) is imitated
by A, (that s, if (A1, a) R A, for some behavioral preorder R), then we should be able to observe
the presence of a in A,. But it is not quite right to require that Ay = (A}, a); we need to give
the process state A, some time to compute before it is forced to cough up an observation. For
this reason we introduce the auxiliary notation A |},, which says that A ~»* (A’  a) for some A'.
This auxiliary notion lets us define our first desiderata: behavioral preorders should be barb-
preserving. That is, if we say that (A1, a) can be imitated by As, then it had better be the case that
Ag ba'

The next two desiderata do not require any auxiliary concepts. If a process A; is imitated by
Ay, and Ay ~» Al, then we should expect A, to be able to similarly evolve to a state that imitates
Al. In other words, behavioral preorders should be reduction-closed. The third desiderata has
to do with surrounding contexts. If A, is imitated by A, then if we put both A; and A, in parallel
with some other process state A’, then (A,, A’) should still imitate (A;, A’). In other words,
behavioral preorders should be compositional.

These three desiderata — barb-preservation, reduction-closure, and compositionality — are
standard ideas in what we have been calling the “process calculist’s toolkit,” and it would be possi-
ble to define behavioral preorders entirely in terms of these three desiderata. To foreshadow the de-
velopments of the next section, we will eventually want to show that the logical preorder A; <; A,
is sound — that it is a behavioral preorder according to these desiderata. This would be provable:
the logical preorder is barb-preserving, reduction-closed, and compositional. However, the logical
preorder is incomplete with respect to these three desiderata. Here is a sketch of the reason why:
there is a barb-preserving, reduction-closed, and compositional behavioral preorder which would
say that the process state (a —o 1, b —o 1) is imitated by the process state (a — b—o 1).> However,
(a—1,b—1) A, (a—b—o01) because a —o1,b—o1 F (a—1)®(b—1) buta—b—1 t/
(a—1)® (b—o1).

The logical preorder is, to a degree, fixed and canonical due to its relationship with the standard
metatheory of the sequent calculus, so if we want the logical preorder to be complete with respect
to our desiderata, we’re going to have to add additional desiderata. The culprit for incompleteness,
as we identified it, was the derivation rule for A ® B, which requires us to partition a process
state into two parts and observe those parts independently. The nullary version of this is 1, the

That is a convenient misnomer: while the largest behavioral preorder (which we will name the contextual pre-
order) will turn out to be a true preorder, we will not stipulate that every behavioral preorder is a proper preorder, and
indeed many of them are not reflexive — the empty relation will satisfy all of our desiderata for being a behavioral
“preorder.”

3The proof that there is a barb-preserving, reduction-closed, and compositional relation R such that
(a—1,b—1) R (a—b—o1) is complex. The simplest way we know how to establish this is to define a labeled
transition system which is equivalent to the largest barb-preserving, reduction-closed, and compositional relation. We
can then show that, according to this labeled transition system, (a —1,b—o 1) is related to (a —ob—o1). This is
essentially the same development we will perform in Section [4] for <., the largest barb-preserving, reduction-closed,
compositional, and partition-preserving relation that we are about to define.
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unit of ®, which requires us to split a process state into zero pieces; that is only possible if the
process state’s linear context is empty. Motivated by this possibility, we added a fourth desiderata,
that behavioral preorders should be partition-preserving. In the binary case, this means that, if
(A1q, Ayp) is imitated by Ao, then it must be the case that Ay ~~* (Ag,, Agy) where Ay, is imitated
by A,, and Ay, is imitated by Agy. In the nullary case, this means that, if - is imitated by A, then
it must be the case that Ay ~»* -4

Formally, these desiderata are captured by the following definition. In that definition, we use
the more traditional notation from process calculus and say that A |, if A = (A’, a) for some A'.

Definition 3.2. Let R be a binary relation over states. We say that R is

e barb-preserving if, whenever Ay R Ay and A, |, for any atomic proposition a, we have that

Ag ),

e reduction-closed if Ay R A, implies that whenever Ay ~» A, there exists A, such that
Ay ~* AL and A} R Al

e compositional if Ay R Ay implies (A, A1) R (A', Ay) for all A
e partition-preserving if Ay R Ay implies that

1. if Ay = -, then Ay ~* -,

2. forall Ay, and Ayy, if Ay = (Aqq, Ayy) then there exist Ay, and Aoy, such that Ay ~~*
(Asy, Aoy) and furthermore A1, R Aoy and Ay R Aoy,

These desiderata are useful in letting us conclude that one processes does not imitate another.
Barb-preservation lets us conclude that @ is not imitated by (b, b, b), and reduction-closure fur-
thermore lets us conclude that (b, b—o a) is not imitated by (b, b, b). Partition-preservation lets us
conclude that (a, a) is not imitated by a. Compositionality lets us conclude that (@ — b,b— ¢) is
not imitated by (a —o ¢), because if we put both process states in parallel with the process state b,
then we would be able to step, in the former case, to (a —o b, ¢) and then observe that (a — b, ¢) |.;
the process (a —o ¢, b) is unable to keep up.

Concluding that (a — 1,b—o 1) is not imitated by (a — b — 1) — as is required by our goal of
completeness relative to the logical preorder — requires compositionality and partition-preservation.
If (a—1,b—1) is imitated by (a —ob— 1), then by partition preservation (and the fact that
(a — b —o 1) can make no transitions), we must be able to split (a — b —o 1) into two parts, A and
A’ so that a — 1 is imitated by A and b —o 1 is imitated by A’. That necessarily means that A = -
and A" = (a —b—o 1) or vice-versa. Because of compositionality, if (a — 1) were imitated by -
then (a, a — 1) would be imitated by a, but (a,a — 1) ~~* - and a * -. Therefore, (a — 1) can-
not be imitated by -, and by a similar argument (b —o 1) cannot be imitated by -. This furthermore
refutes the proposition that (a — 1, b — 1) is imitated by (a — b —o 1), as we had hoped.

4A concept reminiscent of this notion of partition-preservation have recently been given in probabilistic process
algebras [[7]; the similar concept goes by the name Markov bisimulation in that setting.
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Our desiderata allow us to define the most generous behavioral preorder by coinduction; we call
this relation the contextual preorder. The definition has an innocent-until-proven-guilty flavor: un-
less there is some reason, arising from the desiderata, that one process cannot imitate another, then
the contextual preorder declares the two process states to be in relation. This coinductive definition
is standard from process algebra (modulo our additional requirement of partition-preservation).

Definition 3.3 (Contextual preorder). The contextual preorder, denoted by <., is the largest rela-
tion over process states which is barb-preserving, reduction-closed, compositional, and partition-
preserving.

Contextual equivalence, which is the symmetric closure of the contextual preorder, has been
widely studied in concurrency theory, though its appearance in linear logic seems to be new. It is
also known as reduction barbed congruence and used in a variety of process calculi [16, 124,10, [7].

3.2 Properties of the contextual preorder

Having defined the contextual preorder as the largest barb-preserving, reduction-closed, composi-
tional, and partition-preserving binary relation over process states, we will close out this section
by proving a few technical lemmas.

We start with three small “multistep” lemmas: the first lets us act like reduction closure was
defined exclusively in terms of ~~*, the second lets us act like barb preservation was defined exclu-
sively in terms of |}, and the third lets us do something similar for partition preservation. These
are used later on, and also help us prove that <, is actually a preorder. Theorem establishes
that <. is actually a preorder. We do not use this as a technical fact anywhere, but we are calling
it the contextual preorder, and after we’ve spoken inaccurately about “behavioral preorders,” you
should be distrustful of us. Finally, Lemma is a technical lemma about observations that we
need later on in the proof of Theorem and the atom renaming lemma (Lemma [3.8) is needed
to prove this technical lemma.

Lemma 3.4 (Multistep reduction closure). Suppose Ay <. Ao, If Ay ~* A, then there exists a
A} such that Ay ~~* AL and A} <. Al

Proof. We proceed by induction on the number of steps in A; ~~»* A.

e Suppose A; ~»* Al in zero steps (that is, A; = A’). Then Ay ~* A, in zero steps and
Al <. A, by assumption.

e Suppose A; ~» A ~»* Al. Since Ay <. Ay, there exists some A} such that Ay ~~* Af
and A} <. Af. The induction hypothesis then implies the existence of some A/, such that
A ~»* A} and A} <. AL. Since the relation ~»* is transitive, we have Ay ~»* A} as
required. 0

Lemma 3.5 (Multistep barb preservation). Suppose Ay <. Ay, If Ay}, then Ay .
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Proof. 1f Ay}, then there exists A} with A; ~~* A} and A/ |,. By multistep reduction closure
(Lemma [3.4), there exists A/, such that Ay ~~* A} and A} <. A}. The latter and A} |, together
imply A}, |}, i.e. there exists some AJ such that A}, ~~* Al and AJ | .. The transitivity of ~~* then
yields Ay ~* AZ. It follows that A, .. O]

Lemma 3.6 (Multistep partition preservation). Suppose Ay <. Ag. If Ay ~* - then Ay ~~* -,
and if Ay ~* (A1q, A1), then there exist Ao, and Aoy, such that Ay ~~* (Aogy, Agp), A1g <o Aoy,
and Ay, <. Agy.

Proof. In the first case, we assume A; ~~* - and have by multistep reduction closure (Lemma [3.4)
that Ay ~~* Al such that - <, Al. Then, by partition preservation, we have that A, ~~* -. The
result then follows by the transitivity of ~~*.

In the second case, we assume A; ~* (Aj,, Ayp) and have by multistep reduction closure
(Lemma that Ay ~~* Al such that (Ay,, A1) <. AL. Then, by partition preservation, we
have that A, ~»* (Ay,, Agy) such that Ay, <. Ay, and Ay, <. Ag,. The result then follows by

the transitivity of ~~*. 0

The following three proofs, of Theorem 3.7, Lemma 3.8 and Lemma 3.9} proceed by coinduc-
tion. We prove a property P of the contextual preorder <. by defining some relation R in such
a way that <. satisfies P if R C =.. Then we show that R is barb-preserving, reduction-closed,
compositional, and partition-preserving, which establishes that R C =<..

Theorem 3.7. <. is a preorder.

Proof. A preorder is a reflexive and transitive relation. It is straightforward to show that the identity
relation, R ;4 such that A R;; A for all A, is barb-preserving, reduction-closed, compositional, and
partition-preserving. Since <. is the largest relation with these properties, we have that R;; C <.
and therefore <. is reflexive.

It remains to be shown that <, is transitive. Consider the relation

R = {(A1,A3) | thereis some Ay with A; <. Ay and Ay <. As}.

It will suffice to show that R C =, because in that case, given A; <. A and A, <. Az, we
have A; R Agj and consequently A; <. As. We can show that R C <. by showing that R is
barb-preserving, reduction-closed, compositional, and partition-preserving. Suppose A; R Ag,
that is, Ay <. Ay and Ay <, Az for some As.

Barb-preserving We assume A; |, for some arbitrary a and must show that A3 |},.

(1 A, by assumption
2) Aql, by definition of barb-preserving on A; <. A, and (1)
3) Az, by multistep barb preservation (Lemma[3.5) on Ay <. Aj and (2)

Reduction-closed We assume A; ~» A for some arbitrary A} and must show that there exists
A% such that Ag ~»* Af and A] R Af.
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(1) Ay~ A} by assumption

(2) Ay ~* Al by definition of reduction-closed on A; <. A, and (1)
3) A} = A (same)
4) Az ~* Al by multistep reduction closure (Lemma[3.4) on A; <. Az and (2)
(5) AL <. Al (same)
6) A} R A, by definition of R on (3) and (5)

Compositional We must show (A, Ay) R (A, As) for arbitrary A.

(D) (A A]) 2. (A AY) by definition of compositional on A; <. A,
2) (A, Ar) <. (A, A3) by definition of compositional on Ay <. Az
3) (AA) R (A, A3) by definition of R on (1) and (2)

Partition-preserving We first assume A; = - and must show that Ag ~~* -.

(1) A =- by assumption
(2) Ay ~*. by definition of partition-preserving on A; <. A,
(3) Ag~~*. by multistep partition preservation (Lemma [3.6)) on (2)

We next assume A; = (Ay,, Ayp) and must show that Az ~~* (Ag,, Agp) such that Ay, R

Aga and Alb R Agb.
() A= (A, Ayp) by assumption
(2) Ag ~* (Agy, Agp) by definition of partition-preserving on A; <. A, and (1)
(3) A =2 Agg (same)
4) Ay = Ay (same)
(5) Az ~* (Asa, Asp) by multistep partition preservation (Lemma [3.6) on (2)
(6) A2a jc ASa (Same)
(7) A = Agy (same)
B) A R As, by definition of R on (3) and (6)
9 AR A3 by definition of R on (4) and (7)
This suffices to show that R C <., which concludes the proof. O]

Lemma 3.8 (Atom renaming). If p is a bijective function substituting atomic propositions for
atomic propositions, then pA; <. pAs implies Ay <. Ay

Proof. We will use throughout this proof two extra lemmas. The first, the transition renaming
property, is that A ~» A" iff pA ~~ pA’. This is shown by case analysis on the given reduction.
The second, the multistep transition renaming property, is that A ~~* A" iff pA ~~* pA’. This is
shown by induction on the structure of the given reduction and the transition renaming property.
Consider the relation
R = {(A1, Q) [ pA; Zc pAs}.
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It will suffice to show that R C <, because in that case, given pA; <. pA,, we have A; R A,,
which will in turn imply A; <. A,. We can show R C <. by showing that R is barb-preserving,
reduction-closed, compositional, and partition-preserving. Suppose A; R A, that is, pA; =,
pAQ.

Barb-preserving We assume A; |, for some arbitrary a and must show that A, |},.

M A, by assumption
(2) pA1d,, by definition of |, and (1)
(3) pAxl,, by definition of barb-preserving on pA; <. pA, and (2)
@ Aqxl, by definition of |}, and (3)

Reduction-closed We assume A; ~» A for some arbitrary A} and must show that there exists
Al such that Ay ~* A, and A} R A. We let A, be p~! A*; the renaming p is invertible by
virtue of being total and bijective.

(1) Ap~ Af by assumption
(2) pA; ~ pA] by transition renaming property on (1)
(3) pAgy ~* A¥ by definition of reduction-closure on pA; <. pA, and (2)
4) pA] <. A* (same)
(5) AR A, by definition of R and A, on (4)

Compositional We must show (A, A;) R (A, As) for arbitrary A.

(D) (pA, pAy) =, (pA, pAy) by definition of compositionality on A; <. A,
2) (AA) R (A, A) by definition of R on (1)

Partition-preserving We first assume A; = - and must show that Ay ~~* -.

(1) Ar=pA=- by assumption
(2) pAg ~~* - by definition of partition-preservation on A; <. A,
(3) Ay~ by multistep transition renaming property on (2)

We next assume A; = (Ay,, Ayp) and must show that Ay ~»* (Ag,, Agg) such that Ay, R
Ao, and Ay, R Agy,. We let Ay, be p~'AX and let Ay, be p~ 1 AS.

() Ay = (A, Av) by assumption
() pAL = (pAra, pA1b) by (1)
(3) pAy ~* (AXAF) by definition of partition-preservation on pA; <. pA, and (1)
@) pAi, 2 A (same)
(5) pAy = AZ (same)
(6) Ay ~* (Agy, Agy) by multistep transition renaming property on (3)
(7) A1a R Agq by definition of R on (4)
8 AR Ay by definition of R on (5)
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This suffices to show that R C <., which concludes the proof. ]

Lemma 3.9 (Fresh atom removal). If (A1, a) <. (As, a), where a occurs neither in Ay nor in As,
then Al =e Ag.

Proof. Consider the relation
R = {(A1,Ay) | there exists a & (A1 U Ay) with (Ay,a) <. (Ag,a)}.

It will suffice to show that R C =<, because in that case, given (Ay,a) <. (Ay,a) for some a
that occurs neither in A; or As, we will know that A; R As, which will in turn imply A; =,
A,. We can show R is barb-preserving, reduction-closed, compositional, and partition-preserving.
Suppose A; R A,, that is that (A, a) <. (As,a) for some arbitrary a such that a ¢ A; and
a & A,

Barb-preserving We assume A; |, for some arbitrary b and must show that A, |,. It cannot be
the case that A; ,, so we have a # b. Pick another fresh atomic proposition ¢ & (A; U Ay).

(1 A, by assumption
2) A =ALb by definition of |, and (1)
3) (b—oa—oc,Aj,a) <. (b—oa—oc,Ag,a)

by definition of compositionality on (Aq,a) <. (As, a)

4) (b—oa—oc,Aj,a) ~ (a—oc, Al a) by rule ~»—o
(5) (a—oc, Al a) ~ (Al c) by rule ~»—o
6) (b—oa—oc,Ay,a). by definition of |}.., (4), and (5)
(7 (b—oa—oc,Ag,a)l. by multistep barb preservation (Lemma [3.5) on (3) and (6)
(8) (b—oa—oc,Ag,a) ~* (A c) by definition of |}, on (7)

By induction on the structure of (8), b — a —o ¢ must be consumed to produce ¢, meaning
that Ay ~~* (AL, b) and, consequently, As |},

Reduction-closed We assume A; ~» A} for some arbitrary A} and must show that there exists
A such that Ay ~* Al and A} R Al.

(1) A;~ Af by assumption
2) (Aq,a) ~ (Al a) consequence of (1)
3) agA] (same)
4) (Ag,a) ~* A* by definition of reduction-closure on (Aq,a) <. (As,a) and (2)
3) (A}, a) 2. A* (same)
6) A*= (Al a) by induction on the structure of (4)
(7) a¢g A (same)
8) (Al,a) =2 (A),a) by rewriting (3) using (5)
9) AR A, by definition of R on (8), (3), and (7)
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Compositional We must show (A, A;) R (A, Ay) for arbitrary A. Pick another fresh atomic
proposition b & (A; U Ay U A).

(1) (Aq,b) =, (Ay, D) by atom renaming (Lemma 3.8) on (A, a) <. (Ay, a)
2) (A,A1,D) =, (A, Ao, b) by definition of compositional on (1)
3) (AA) R (A, A) by definition of R on (2)

Partition-preserving We first assume A; = - and must show that Ay ~~* -.

() a=.(Aya) by (Ay,a) 2. (Ag,a), Ay =

2) (a,a—1) =, (Ag,a,a—1) by definition of compositionality on (1)
3) (a,a — 1) ~*- by rule ~»—o, rule ~»1, and transitivity of ~~*
4) (Ag,a,a—o1) ~~*- by multistep partition preservation on (2) and (3)
(5) Ay~ by induction on the structure of (4)

We next assume Ay = (Ay,, Ayp) and must show that Ay ~»* (Ag,, Agy) such that Ay, R
Ay, and Aj, R Ag,. Pick another fresh atomic proposition b & (A; U As).

(1) (A, A, a,b) <. (A, a,b) by definition of compositional on (Aq,a) =, (As, a)
2) (Ag,a,b) ~* (AL, AL) by definition of partition-preserving on (1)
3) (A, a) e A, (same)
@ (A, b) <. AL, (same)
S) AL, by definition of barb-preserving on (3)
6) AL, = (Ag,a) by induction on the reduction steps in (5)
(7) a ¢ Ay, by induction on the structure of (2)
®) A, R Ay, by definition of R on (3), (6), (7)
9 AL, by definition of barb-preserving on (4)
(10) A, = (A, b) by induction on the reduction steps in (9)
(11) b & Ay, by induction on the structure of (2)
(12) A1y R Ay by definition of R on (4), (10), (11)
This suffices to show that R C <., which concludes the proof. O]

Note that Lemma is invalid if @ is not fresh with respect to A; and A,. For example, we
have
a=.(a—a,a) but (:)A.(a—a)

This will be easy to check when using the results in Section 4.5}
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Figure 3: Visual Summary of Equivalence Proofs in Sections [3|and {4

4 Labeled Transitions and the Simulation Preorder

We will now show that, for the restricted fragment of linear logic given in Section [3| the logical
preorder and the contextual preorder coincide. The key idea is to coinductively define a third
preorder, the simulation preorder, that acts as a stepping stone between the two contexts. It is hard
to use the contextual preorder to show that one process actually imitates another; the simulation
preorder will be more useful for this purpose.

The overall structure of the relevant proofs up to and including this section is shown in Fig-
ure 4] In Sections we will present our stepping stones: a labeled transition system and the
simulation preorder, and in Section we will prove some properties of this preorder. Then, in
Section 4.5| we show that the simulation and contextual preorders coincide, and in Section {.6| we
show that the simulation and logical preorders coincide; it is an obvious corollary that the logical
and contextual preorders coincide.

4.1 Labeled transitions

We will characterize the contextual preorder as a coinductively defined relation. For that purpose,
we give a labeled transition semantics for states. Labels, or actions, are defined by the following
grammar:

Non-receive actions o == 7 |la

Generic actions g = «al’a

We distinguish “non-receive” labels, denoted «, as either the silent action 7 or a label !a represent-
ing a send action. Generic labels 5 extend them with receive actions ?a.

19



lts! lts?

?

(A, a) =% A (A, a— B) =% (A, B)

——— [ts1 . Its®
(A1) -5 A (A, A® B) - (A, A, B)

lts &1 = lts &2
(A, A& B) -5 (A, B)

(A, A& B) -5 (A, A)

A =5 AL A, S A
(No rule for T) (Ar, As) — (A, Ah)

tsl?

Figure 4: Labeled Transition System

The labeled transition semantics for our states, written using the judgment A NN, , 1s defined

by the rules in Figure 4| Since T is a process that is stuck, it has no action to perform. We write

== for the reflexive transitive closure of —, and A :6> A’ for A :T>i>:T> A if B #£ T,

Note that 7 transitions correspond to reductions, as expressed by Lemma 4.1}
Lemma 4.1. Ay —— A, ifand only if Ay ~» Do, and Ny == A, if and only if Ay ~* Ay

Proof. The proof of the first statement is by case analysis on the 7 transition rules in Figure 4| in
one direction and by case analysis on the reduction rules in Figure [2]in the other.
The second statement follows from the first by induction on the number of steps taken. [

Now we can use the labeled transition system to define a simulation relation; simulation is de-
fined by coinduction and echoes the definition of the contextual preorder in many ways. However,
it critically lacks the compositionality requirement that appears in the definition of the contextual
preorder.

Definition 4.2 (Simulation). A relation R between two processes represented as A, and N is a
simulation if A; R Ay implies

1. if A\ = -, then Ay == -

2. if Ay = (A, AY), then Ay == (AL, AY) for some Ab, A such that Ny R Ay and A" R
AVS

3. whenever Ay — A/, there exists Al such that Ny == A} and A} R Al

4. whenever A, —% A, there exists A} such that (Ay, a) == Ay and A} R A},

We write A1 =<, A, if there is some simulation R such that A1 R As.
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4.2 Examples

The contextual preorder was good at showing that one process was not imitated by another, but the
simulation preorder is useful for showing that a process state is simulated by another. We will give
a few examples, most of which implicitly utilize the following property:

Remark 4.3. Given a formula A and a context A, to check if A <, A holds, there is no need to
consider clause (2) in Definition 4.2 because it holds vacuously.

Proof. We are given that A = (A, A”) and we have to pick a A} and a A} such that A, ==
(AL, AL, AL =<, Al, and A <, AJ. Without loss of generality we can say that A] = A and
A = - — the other case, where A} = - and A = A, is symmetric. We pick A, to be A,, pick
A7 to be -, and we must show

o Ay == (A,, ) — this is immediate from the reflexivity of == and the definition of contex-
tual equivalence.

e A <, A; — this is what we initially set out to prove, so it follows immediately from the
coinduction hypothesis.

o - <, - — this follows from condition 1, none of the other conditions are applicable. [l

Given the remark above, we can show that T <, A for any A, because T is neither empty
nor able to perform any actions. Therefore, conditions 1, 3, and 4 are met vacuously. However,
1 A, T, because T cannot be reduced to - and 1 can (condition 1).

As another example, we have that (a — a) <, (-). Ignoring condition 2 as before, the only

possible transition for (a —o a) is (a —o a) % 4. We match this action, according to condition
4, by letting a == a; we then must show a =<, a, which again follows by reflexivity (Lemma
which we will be proving momentarily).

Finally, let us show that (a —o b — A) =<, (b — a —o A). The only transition possible for
the (purportedly) simulated process state is (a — b — A) BN (b — A), which means that we can
proceed by showing that (b — a — A, a) == (b —o a —o A, a) (immediate from the reflexivity
of ==) and that (b — A) =, (b — a —o A, a). To prove this, we observe that the only transition
possible for the (purportedly) simulated process is (b — A) LN A, which means that we can
proceed by showing that (b — a — A,a,b) == A (which can be done in two steps) and that
A <, A, which again follows from reflexivity (Lemma 4.8 again).

Another way of looking at this last example is that, in the case where A is 1, we have proved
that the binary relation

{(a—ob—o1,b—oa—1), (b—1,(b—oa—1,a)), (1,1), ()}

is a simulation. The simulation also works in the other direction — (b — a — A) <, (a — b —
A). Again in the case where A is 1, this is the same as proving that the binary relation

{(b—oa—o1,a—ob—1), (a—1,(a—ob—1,b)), (1,1), ()}
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is a simulation.

However, the two process states are not bisimilar according to the usual definition of bisim-
ilarity: there is no single relation that simultaneously establishes that b —a —1 is simulated
by a—b—1 and, if we flip the relation around, establishes that a —ob—o1 is simulated by
b—oa — 1. To see why, recall the argument that it had to be the case that (b—1,(b—oa—1,a))

the first of the two simulation relations above. But these two process states are not similar in both
la

directions: b—1 <, (b—oa—1,a) and (b—oa—1,a) A5 b—o1, because (b—oa—1,a) —

b—oa—1whileb—1 ;'é) (condition 3). Thus there is no way to construct a bisimulation.

4.3 Properties of labeled transitions

Towards the ultimate end of proving that the largest simulation, <, is actually a preorder, we will
need a few facts about labeled transitions.

Lemma 4.4 (Compositionality of labeled transitions).
LOIFA 25 Ay, then (A, A1) 255 (A, A).
2. IF AL =2 Ay, then (A, A)) =2 (A, A).

Proof. To prove the first statement, we proceed by induction on the derivation of A; N As.
There are 7 cases according to Figure dl All of them are immediate, except the case of [ts!?, which

we expand. Suppose A; = (A}, A7), Ay = (A, AZ), A} =% A% and A7 —% AZ. By induction,
we have (A, A)) ey (A, Al) for any A. Using rule /ts!? on this derivation and A} ey A, we
obtain (A, A, AY) T (A, AL AL e, (A A1) == (A A).

The second statement follows from the first by induction on the number of steps taken. [

Lemma 4.5 (Partitioning). If (A1, As) By A* then we must be in one of the following four cases:
1 A2 Al and A = (A, Ay);
2. Ay 55 AL and A = (A, A);
3N Y Al and A, LN A, for some a, such that 5 is T and A* = (A}, Al);
4. A -5 Al and Ay LN A, for some a, such that 5 is T and A* = (A}, A)).
Proof. There are three possibilities, depending on the forms of /.

e (3 =la for some a. Then the last rule used to derive the transition (A, Ay) 2, A* must be
Its! in Figure 4] So a is a member either in A; or in A,. Correspondingly, we are in case 1
or 2.

e [ =7a for some a. Then the last rule used to derive the transition (A, Ay) 25 A* must be
lts?. So a — B is a member either in A; or in A,. Correspondingly, we are in case 1 or 2.
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e (3 = 7. If the last rule used to derive the transition (A;, Ay) Py A% is not [ts!?, then the
transition is given rise by a particular formula, and we are in case 1 or 2. If [ts!? is the last
rule used, there is an input action and an output action happening at the same time. Either
both of them come from A1, or both of them come from A, or one action from A; and the
other from A,. Consequently we are in one of the four cases above. ]

In the next lemma, we write <<= for the reciprocal of ==
Lemma 4.6. <= is a simulation (and, consequently, \; == A, implies Ny <, A1).

Proof. We will show that the four conditions in Definition are satisfied by <=, which proves
that the relation is a simulation; the corollary follows immediately by virtue of < being the largest
simulation. Suppose Ay == A;.

1. If Ay = -, then obviously A, == Ay, = -.

2. If Ay = A} Al then A; == (A}, AY). Taking zero steps we have A, <= Al and
Al <= Al as required.

3. If Ay 25 A, then A} == Ay —%+ Al and therefore Ay == A}. Taking zero steps we
have A}, <= A, as required.

4. Now suppose A, BN AY. Then there are A} and A such that Ay = (A}, a— A) and
Al = (AY, A). From (Aq, a) we have the following matching transition:

(Ar,a) = (Ag,a) by compositionality (Lemma [{.4)
= (A},a— A a)
s (A4, A) by rule /ts!? in Figure d]
= A
Taking zero steps, we have A}, <= A} as required. N

4.4 Properties of the simulation preorder

It was relatively simple to prove that the contextual preorder was, in fact, a preorder. It is a bit
more difficult to show that the simulation preorder is, in fact, a preorder; our goal in this section is
to prove Theorem[4.TT] that the simulation preorder = is a proper preorder.

The structure of this section mirrors the structure of Section [3.2] (Properties of the contextual
preorder). First we will prove a technical lemma that lets us act as if simulation was defined exclu-

sively in terms of =2, rather than i> and then we prove that simulation is reflexive (Lemma l ,
compositional (Lemma{4.9)), and transitive (Lemma [4.10)), from which Theorem [4.11]is an imme-
diate result.

Lemma 4.7. If A <, A, then
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1. whenever A| == -, then Ay == -;

2. whenever Ay == (A, AY), there exist Al and Ay such that Ay == (A}, AY) and A =,
Al and furthermore A <, Al;

3. whenever A; == A, there exists N} such that Ay == A} and N} <, Ab.

Proof. We first prove a particular case of the third statement:
(1) If A} == A then there exists some A} such that Ay == A/, and A} <, AJ.

We proceed by induction on the length of the transition A; == A}.

o If Ay = A, then A, = A, by the reflexivity of s and Ay <, A, by assumption.

T

e Suppose A; == AY T+ A’ for some A”. Since A; =<, Ay, by the induction hypothesis
there exists Al such that Ay == A/ and A} <, A4. The latter implies the existence of some

T

Al such that Ay == A/, and A} <, Al,. The transitivity of == entails that Ay == A},
We are now ready to prove the lemma.

1. Suppose A; <, Ayand A; == -. By , there exists A such that Ay == A} and - <, Al,.
By Deﬁnition we have A, == -. By the transitivity of == entails Ay == -.

2. Suppose A; =, Ay and A, == (A}, AY). By , there exists A}’ such that Ay == AY'
and (A7, A}) <, AY. By Deﬁnition there exist A, and Af such that A}’ == (A}, AL),
Al =, AL and AY <, AY. By the transitivity of ==, we have Ay == (A}, Af).

3. Suppose A; == A’ where a # 7. Then there are A; and Ay, with A} == Ay ——
A, = A,. By , there is some Ay such that Ay == A, and Ay; <, As. By
Definition there is Aoy such that Ay; == Agy and Aqy <, Ass. By again, there is
Al with Ayy == A} with A} <, Al. Note that we also have Ay == A,

]
Lemma 4.8 (Reflexivity of <,). For all contexts A, we have A <, A.

Proof. Consider the identity relation R ;4. It will suffice to show that R;; C <, because A R;q A
always holds, which will in turn imply A <; A. We can show that R,;; meets the four criteria for
simulation. Suppose A R, for some A.

1. Assume that A = -. Then, in particular, A = ..

2. Assume that A = (A’, A”). Then, in particular, A == (A’, A”), and we also have A’ R4
A"and A" R4 A”.

3. Assume that A — A’. Then, in particular, A == A’ and we have A’ R;q A’.
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4. Assume that A —% A’, which entails that A = (a— B,A") and A’ = (B, A”). Because
A" Riq A (it is the identity relation!), it is sufficient to show that (A, a) == A/, i.e.,

that (a,a — B, A") == (B, A"). However, we know that a — - and (a — B, A”) —%

(B, A”) by the rules Its! and lts? in Figure EI, respectively. We can now combine them using

rule /ts!7 in the desired reduction for (a,a — B, A") — (B, A”).

Proposition 4.9 (Compositionality of <). If A1 <, Ay, then (A, A1) <5 (A, Ay). =

Proof. Consider the relation
R = {((AaAl)7 (AaAQ)) | A1 js AQ}

It will suffice to show that R C=,, because in that case, given A; =<, Ay, we have that (A, A;) R
(A, Ay) for any A, which will in turn imply (A, Ay) <5 (A, Ay). We can show that R;; meets
the four criteria for simulation. Suppose (A, A;) R (A, A,), which means that we also have
Al js A2~

1. Let us show that if (A, A;) R (A, Ay) with (A, A;) = -, then (A, Ay) == -

If (A,A;) = -, then A = -. Moreover, by definition of R, we have that - <, A,. Now,
because =, is a simulation, we have that Ay == -. Since (A, Ay) = A,, we conclude that
(A, Ay) == -, as desired.

2. Let us prove that if (A, A;) = (A}, AY), then (A, Ay) == (A}, AY) such that A} R Al
and A7 R Af.
If (A, A;) can be decomposed into (A}, A7) for some A} and A}, we need to find some
A, and A} such that (A, Ay) == (A}, AY) with A" R A, and A} R AY. Without loss
of generality, assume that we have the decomposition of (A, A;) with A = (A%, A®) and
Ay = (A7, Ab) such that A} = (A% AY) and A} = (A’ AY). Since A; =, Ay, there
exists some transition Ay == (A%, Ab) such that A? <, A% and A’ <, Ab. It follows by
compositionality (Lemma[4.4) that

(A, A9) = (A", A" AG, A7) = (A", A3, A% A))
Let AL = (A% A%) and Ay = (Ab, AY). We observe that A} R A, and AY R Al, as
required.

3. Let us show that if (A, A;) — A/ then there is A}, such that (A, Ay) == Al and A} R
A, and if (A, A1) =% A/ then there is A} such that (A, Ay, a) = A} and A} R A). It
is convenient to prove both these parts of Definition 4.2]together.

Assume that (A, Ay) P A*. There are four cases, according to Lemma
(@) (A, AY) N (A’, A1) because of the transition A NN f = a, then by
Lemmal4.4| (1) we also have (A, Ag) -2 (A, Ag) and clearly (A, A}) R (A, Ay).

If 3 =7a, then (A,a) — A’ and thus (A, Ay, a) — (A, As). Again, we have
(A" A1) R (A, Ay).
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(b) If (A, Ay) SN (A, A}) because of the transition A, SN A, since A; <, A, there
are two possibilities. If 3 = « , then there is a matching transition Ay == A} and
Al =<, Al It follows that (A, A}) == (A, A}) by Lemma (2) and (A, A]) R
(A, AL). If 3 =?a, then Ay, a == A, for some A}, with A} <, A}. We also have
(A, Ay, a) = (A, Ay) by Lemma4.4](2) and (A, A}) R (A, Ab).

(c) If (A, A;) 5 (A’, A}) because of the transitions A % Aland A; =% A/, since
Ay <, Ay there is a transition A, N A, with Ah <, AL, Tt follows that (A, Ay) ==
(A’; AL) and we have (A", A7) R (A", A)).

@) If (A, A;) I (A’, A)) because of the transitions A —%» A’ and A, —% A/, then
this can be simulated by a transition from (A, Ay). The reason is as follows. In order

for A to enable the transition A —s A/ , it must be the case that A = A’ a. Since
A; =, Ay we know that (Ay, a) == A, for some A, with A} <, Al,. Therefore, we
obtain that (A, Ay) = (A, a, Ay) == (A’, A}) and (A, A}) R (A, A)).

In summary, we have verified that R is a simulation. O]
Lemma 4.10 (Transitivity of <,). If A1 <, Ay and Ay <, Ag, then A1 <, As.
Proof. Consider the relation

R = {(A1,A3) | there exists Ay with A; <, Ag and Ay <, Az}

It will suffice to show that R C =, because in that case, given A; <, Ay and Ay <, As, we will
know that A; R Ag, which will in turn imply A; <, Az. We can show that R meets the four
criteria for simulation. Suppose A; R Ag, thatis A; <, Ay and Ay <, Ag for some As.

1. If Ay = -, then Ay = -. By Lemma we have Ay = .

2. If Ay = (A}, AY), then A, == (A}, A}) for some Al and Afj such that A} <, A} and
A <, AJ. By Lemma 4.7} there exist A} and AZ such that Ay == (A}, Al), A) <, A}
and A5 <, Af. Therefore, A} R A} and A7 R Af.

3. If Ay - A/, there exists Al such that Ay == A/, and A} <, A}. By Lemma there
exist A} such that Ay == A} and A} <, A}, thus A} R Aj.

4. Tf Ay —% A, there exists Al such that (Ay, a) == A} and A} <, A). By Proposition

we have (Ay,a) =<, (As,a). By Lemma 4.7, there exists A} with (As,a) = A} and
A <5 AL, It follows that A} R Af. O]

Theorem 4.11. =, is a preorder.

Proof. = is reflexive (Lemmaf4.8) and transitive (Lemma [4.10). O

26



4.5 Equivalence of the contextual and simulation preorders

We are now in a position to fill in the rightmost portion of the proof map (Figure ) from the
beginning of this section. In this section, we show the equivalence of the largest simulation <
and the contextual preorder. With the compositionality of < (Lemma at hand, the soundness
proof is straightforward. For the completeness proof, we crucially rely on fresh atom removal

(Lemma[3.9).
Theorem 4.12 (Soundness). If Ay <, Ao, then Ay <. Ao.

Proof. We show that all aspects of the definition of the contextual preorder are satisfied.

Barb-preserving We show that <, is barb-preserving. Suppose A; <y Ay and A, |,. Then
Ay = (Al a) for some A, thus A, N Al. Since A; =5 A, there exists A/, such that
Ay =% Al ie. Ay == Al N Al,. Note that A7 must be the form (AY’, a) for some AY'.
It follows that A, {,,.

Compositional By Lemma4.9) <, is compositional.

Reduction-closed If A; ~» A’, thus A; — A} by Lemma By the third condition of
Definition |4.2] there exists A} such that Ay, == A and A} <, A). By Lemma again,
we have Ay ~~* Al.

Partition-preserving

If A; = -, by the first condition of Definition we have Ay == -. By Lemma this
means Ag ~* -,

If Ay = (A}, AY), by the second condition of Definition there are A, and AJ with
Ay =5 (AL, AL), A} <, A, and AY <, AJ. By Lemma.1|this means A, ~* (A}, AY),

O
Theorem 4.13 (Completeness). If A1 <. Ay then Ay =<, Ao.

Proof. Assume that A; <. A,. We need to show that <, is a simulation. By Definition [4.2] this
decomposes into four parts.

1. Let us show that if A; <, Ay and A; = - then Ay == -. Suppose A; <, Ay and A; = -,
then A, ~* - as <, is reduction closed. By Lemmawe have Ay = -.

2. Let us show that if A; <. Ay and A, = (A, A)) then Ay == (A}, AY) for some Al and
AY such that A <. A} and A} <. A7,
Suppose A; <. Ay and A; = (A}, AY), then Ay ~* (A}, A7) such that A} <. A} and
A <, AJ as =, is reduction-closed. By Lemma 4. 1] we have Ay == (A}, AY).

3. Letus show thatif A; <. Ay and A; — A then there exists A such that Ay == A/, and
A} <. Al Suppose Ay <, Ay and A — AL
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e o =7.By Lemmathis means A; ~~ A. Since <. is reduction-closed, there exists
A such that Ay ~* Ay and A} <, A}. By Lemma4.1|again, we have Ay == A,

e o = la for some a. Note that A; must be in the form (A, a). Since =<, is partition-
preserving, there exist A, and A, such that

(2) Ay " (A3 A,)

with A} <. AL anda <. A,. Then (a —1,a) =, (a— 1, A,) by the compositionality
of <.. Since (a—1,a) ~* -, by Lemma 3.6 we have (¢ — 1, A,) ~»* -. Then there
exists some A/ such that A, ~~* (A! a) and A/, ~* -, thus

3) A, ~"a

by transitivity. It follows from (2) and (3) that Ay, ~* (A),a). By Lemma [4.1] this
means A, == A, which is the desired transition.

4. Let us show that if A; <. Ay and A; —% A then there exists A}, such that (A,, a) == A,
and A} <, Al.

Suppose A; <. Ag and A, ey Al. Let b be a new atomic proposition. Then (A4, a, b) LI
(A}, b), thus (A1, a,b) ~» (A}, b) by Lemma4.1] Since A; <. A, we know (A, a,b) =,
(Ay, a,b) by the compositionality of <.. So there exists A* such that (A, a,b) ~* A*
and (A, b) <. A*. Note that A* must be in the form (A**,b) because b does not occur in
A, and there is no communication between b and A,. It follows that (A, a) ~»* A*™. By
Lemmathis means (Ay,a) == A**. By Lemmaand (A],b) <. (A*,b) we know
that A} <. A*™. O

4.6 Equivalence of the logical and simulation preorders

We will now start to fill in the remaining portions of the proof map (Figure ) from the beginning of
this section. First, we prove the soundness and completeness of derivability relative to simulation,
and then we use this to prove the soundness and completeness of the contextual preorder relative
to the logical preorder.

Theorem 4.14. If A = A, then A <, A.
Proof. We proceed by rule induction, where the rules are given in Figure I]

e (rule TR) If AF T then we have T <, A vacuously, as T is a nonempty process state that
can make no transitions.

e (rule 1R) If-F 1thenitis trivial to see that 1 <, -.

e (rule init) If at athen a <, a follows from the reflexivity of <.
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e (rule —R) Suppose A - a—o A is derived from A, a - A. By induction, we have
“4) A= (A a)

The only transition from a — A is (a — A) % A. Tt is matched by the trivial transition
(A,a) == (A, a) in view of .

e (rule —L) Suppose (A1, Ay,a— A) - B is derived from A; - a and (A, A) - B. By
induction, we have

(5) a js A1 and B js (A27 A)

By the first part of (5) we know that there is some A} such that A; N Al and - <, AL Tt
is easy to see that A; == (A, a) and A}, == -. Then

(Al,AQ,a—OA) :T> (A&,G,AQ,G—OA>
I (A, Ay, A)
= (Ay,4)

In other words, we have (Aj, Ay, a— A) == (Ay, A). By Lemma it follows that
(Ag, A) =<4 (A, Ay,a— A). By transitivity (=, is a preorder, Theorem {4.11)), we can
combine this with the second part of (5)), yielding

B js (Al,AQ,a—OA).

e (rule ®R) Suppose (A1, As) H A® B is derived from A; - A and A, F B. By induction,
we have

(6) A js A1 and B -_<s AQ

Now the only transition from A® B is A® B — (A, B). It can be matched by the trivial
transition (A1, Ay) == (Ay, Ay) because the by compositionality of <, (Lemma and
(6) we know that

(A,B) =, (A1, B) = (A1, Ay).

Now it is immediate that (A, B) =< (Aj,As) by transitivity (=< is a preorder, Theo-

rem [4.TT).
e (rule ®L) Suppose (A, A® B) F C'is derived from (A, A, B) = C. By induction we have

(7 C = (A A B)

Since (A, A® B) - (A, A, B), we apply Lemma and obtain
(8) (AJA,B) <, (AJA® B)

By (7)), (8) and the transitivity of <, we have C' <, (A, A® B).
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e (rules 17, &L and & L5) Similar.

e (rule &R) Suppose A F (A& B) is derived from A - A and A - B. By induction we
have

9 A=<,A and B =<, A

The only transitions from A & B are (A & B) 3 Aand (A& B) -~ B. Both of them can
be matched by the trivial transition A == A in view of

O
Proposition 4.15. If A\; == A, and N\, - A, then Aq F A.
Proof. Immediate by Proposition[3.1)and Lemma.1] O
Theorem 4.16. If A <, A, then A - A.
Proof. We proceed by induction on the structure of A.
e A=T.Byrule TRwehave AF T.
e A =1. Then we also have A = -. Since A <, A, it must be the case that A == -. By rule

1R, we have - - 1. By Proposition 4.15]it follows that A + 1.
e A=ua. Since A <, Aand A a, -, there is A’ such that
(10) A=A and = A

From the first part of (10), we obtain A == (A" a) for some A” with A” == A’. From
the second part, we have A’ == .. Combining them together yields A == a. By rule init
we can infer a - a. Then it follows from Proposition d.15|that A F a.

e A=a—A. Since A<, Aand A =% A/, there is A such that (A,a) == A’ and
A" <, A’. By induction, we know that A" - A’. By Proposition it follows that
(A,a) = A’. Now use rule — R we obtain A = (a — A’).

e A=A, & As. Since A <, Aand A -5 A, there is Ay such that A == A; and A; <, A;.
By induction, we have A; - A;. By Proposition it follows that A + A;. By similar
argument, we see that A - A,. Hence, it follows from rule & R that A F (A & As).

e A=A ®A, Since A <, Aand A = (A}, Ay), we apply Lemma and derive some
transition A == (A, Ay) such that A; <, A; and A, <, A,. By induction, we obtain
A+ A;and Ay E A,. It follows from rule ® R that A, Ay F A1 ® Ay, thatis A - A.

Therefore A - A for all A and A. O]

The next important property is obtained mostly by applying Theorems [4.14]and .16]
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Theorem 4.17. A, <; Ay if and only if A1 =, As.

Proof. (=) Suppose A; =; A,. Ttis trivial to see that A; = @) A;. By the definition of logical
preorder, it follows that A, F &) A;. By Theorem we have

(1) QA =0 A,

Considering the formula () A, as a context, we have Q) A, == A, according to our reduc-
tion semantics. By Lemma4.6] it follows that

(12) A = QAL

By combining (IT)) and (12)), we obtain that A; <, A, because =<, is transitive by (=, is a
preorder, Theorem [4.TT)).

(<) Suppose that A; < A,. For any A and A, assume that (A, A;) - A. By Theorem we

have

(13) A =5 (A Ay).

Since A <5 A, and <, is compositional (Lemma[4.9), we obtain
(14) (AA]) =5 (A, Ay).

By (13), and the transitivity of <, we see that A <, (A, Ay). Then Theorem [4.16]
yields (A, Ay) - A. Therefore, we have shown that A; <; A,.
This concludes the proof of this result. [

Finally, we arrive at the main result of the section.
Corollary 4.18 (Soundness and completeness). Ay <; Aq if and only if A1 <. Ao.

Proof. By Theorems@.12|and we know that <. coincides with <. Theorem tells us that
=, coincides with <;. Hence, the required result follows. ]

5 Exponentials

In this section, we extend the investigation by adding the exponential modality “!”” from intuition-
istic linear logic, which will closely correspond to the replication operator of the w-calculus. Our
extension refers to the propositional linear language seen in Sections Specifically, the lan-
guage we will be working on is:

Formulas ABC = a| 1| A®B | a—B | T | A&B | A

Observe that this language still limits the antecedent of linear implications to be an atomic propo-
sition — this is a common restriction when investigating fragments of linear logic that correspond
to CCS-like process algebras [3, 14, S]]

The structure of this section is similar to our development for the language without exponen-
tials: we first present the extended language and a notion of states in our process interpretation in
Section[5.1] then we connect contextual preorder with logical preorder by making use of simulation
in Section 5.2
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5.1 Process interpretation and contextual preorder

The m-calculus reading of the language with exponentials is extended by interpreting the exponen-
tial ! as the replication operator !.

A any number of copies of process A

The structural equivalences seen in Section 3| are updated by adding an inert unrestricted con-
text ' and with the following rules:

(FlaFQ; A) = (F27F1; A)
(Fla (F2,F3)§ A) = ((F1>F2)>F3a A)
(DA, A; A) = (T, 4 A)

These rule entail that the unrestricted context behaves like a set.

The reductions in Figure [2] are upgraded with an inert context I', and the following two reduc-
tions are added:

(T, A; A) ~~ (TA; AJA) (~ clone)
(T; AJIA) ~ (T A5 A) (~1)

The composition of two states (I'1; Aq) and (T'y; Ag), written ((I'y; Aq), (I'y; Ay)), is defined as
the state ((I'1,T'2); (A1, Ag)). Recall that unrestricted contexts are set so that I'y, 'y may collapse
identical formulas occurring in both I'; and I'; (while linear contexts can contain duplicates).

A partition of a state (I'; A) is any pair of states (I'y; A1) and (I'g; Ag) such that (I'; A) =
((T'1; A1), (T3 Ag)).

We write (I'; A) |, whenever a € A, and A |}, whenever (I'; A) ~* (I"; A’) for some (I"; A)
with (I'V; A’) |,. The definition of contextual preorder given in Definition now takes the fol-
lowing form.

Definition 5.1 (Contextual preorder). Let R be a binary relation over states. We say that R is

e barb-preserving if, whenever (I'1; A1) R (I'g; Ag) and (I'y; Ay) |, we have that (I's; As) |},
for any a.

e reduction-closed if (I'1; A1) R ([y; Ag) and (I'1; A1) ~ (I'; AY) implies (T'g; Ag) ~~*
(95 Ay) and (I'y; A7) R (Iy; Ag) for some (T'y; A).

e compositional if (I'1; A1) R (I'g; Ag) implies ((I'1; A1), (I5A)) R ((Te; Ag), (I'; A)) for
all (T'; A).

e partition-preserving if (I';; A1) R (I'a; Ag) implies that

2. for all (T';; AY) and (T AY]), if (T'1; A1) = (T A, (TY; AY)) then there exists
(I'; AL) and (I'h; AY) such that (T'a; Ag) ~* ((I'y; AL), (I'; AL)) and furthermore
([ A1) R (Ty; Ay) and (I A7) R (I'; Ag),
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» Its! Its?
(T;A,a) — (I A) (I'; A a—oB) % (I'; A, B)
p- ltsl lts®
(T;A1) — (T A) (T;A,A® B) = (T; A, A, B)
ltS&l lts &2
(TA A& B) — (I, A A) (A A& B) — (I A, B)
p lts!A
(I ATA) — (T, A5 A) (No rule for T)
ItsClone
(T, A;A) = (T, A; A A)
(D3; A1) =5 (T A (Ta3 Ag) = (T AY) 417
(T1,Ta; Ap, Ag) — (T, Th; A, AY)

Figure 5: Labeled Transition System with Exponentials

The contextual preorder, denoted by <., is the largest relation over processes which is barb-
preserving, reduction-closed, compositional and partition-preserving.

Observe that this definition is structurally identical to our original notion of contextual preorder
(Definitions[3.2H3.3). Indeed, we have simply expressed the notions of composing and partitioning
states as explicit operations while our original definition relied on context composition, which is
what these notion specialize to when we only have linear contexts. The present definition appears
to be quite robust and we have used it in extensions of this work to larger languages.

5.2 Logical preorder and contextual preorder

The labeled transition semantics for our language with banged formulas is given in Figure [5| The
following is an updated version of Lemma[.1]

Lemma 5.2. (Fl, Al) :T> (FQ, AZ) lf(ll’ld only if(Fl, Al) ~ (FQ, Ag)
In the new semantics our definition of simulation is in the following form.

Definition 5.3 (Simulation). A relation R between two processes represented as (I'1; A1) and
(T'g; Ag) is a simulation if (I'1; A1) R (Fy; Ag) implies

1 if (P15 Ay) = (DY;-) then (Ty; Ag) == (T%;+) and (I';+) R (Ih; -).
2. 0f (T Ar) = (T AY), (T7; AY)) then (To; Az) == ((Ty; Ay), (T'5; A3)) for some (Iy; Ay)
and (T%; AD) such that (T'); A)) R (I'y; AY) and (T; AY) R (T'y; AL).
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3. whenever (I';; Ay) —= (T,; A)), there exists (I'y; AL) such that (T'y; Ay) == (I'y; AL) and
(I A7) R (I'5; A).

4. whenever (I'1; Aq) BN (I'); AY), there exists (Ty; Ab) such that (Ty; Ay, a) == (T'y; Ab)
and (T; A}) R (T A).

We write (I'1; A1) =5 (I'g; Ag) if there is some simulation R with (I'1; A1) R (Fa; Ag).

Example 5.4. We have mentioned before that | A intuitively represents any number of copies of A.
Then it is natural to identify !!A and A, as in some presentations of the w-calculus. For instance,
we have that

(15) (sla) 25 (la)  and  (5la) =5 (M)
To prove the first inequality, consider the two sets

S1 o= {(Na)}u{(a;(la)”) | n >0} U{(la,a; (la)",a™) | n >0, m >0}
Sy = {(;la)} U{a;a”) [n =0}

where we write A° for “-” and A™ for n copies of A wheren > 0. Let R be S| x Sy, the Cartesian
product of S and Ss. It can be checked that R is a simulation relation. In the same way, one can
see that Sy X Sy is also a simulation relation, which implies the second inequality in (I5).

By adapting the proof of Proposition 4.9 to the case with exponentials, we have the composi-
tionality of <.

Proposition 5.5. If (I';; A1) <5 (I'z, Ag) then (I'1,T; Ay, A) <5 (o, T Ao, A) for any process
state (', A).

Similar to Theorems§.12]and .13 it can be shown that the following coincidence result holds.
Theorem 5.6. (Fl, Al) jc (Fz, Ag) ifand only lf(l—‘l7 Al) js (FQ, Ag)

The rest of this subsection is devoted to showing the coincidence of <; and <, by following the
schema in Section We first need two technical lemmas whose proofs are simple and thus
omitted.

Lemma 5.7 (Weakening). (I'; A) <, (I, I); A) for any I
Lemma 5.8. If(Fl, Al) :T> (FQ, AQ) then (FQ, AQ) =s (Fl, A1>

We are now in a position to connect simulation with provability. First, we state a result akin to
Theorem .14

Theorem 5.9. IfI'; A+ Athen (I'; A) <, (I'; A).

Proof. As in Theorem .14} we proceed by rule induction. Here we consider three new rules.
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e (rule clone) Suppose I', B; A = A is derived from I', B; A, B = A. By induction, we have
(16) (I'B; A) =, (I', B; A, B).

From (T, B; A) we have the transition (I', B;A) — (I', B; A, B). By Lemma , we
know that

17) (I, B; A,B) =5 (I', B; A).

Combining (16), (I7), and the transitivity of similarity, we obtain (T, B; A) <, (', B; A).
e (rule 'L) Suppose I'; A, !B A is derived from I', B; A - A. By induction, we have

(18) (T, B; A) =, (I, B; A).

From (I'; A, !B) we have the transition (I'; A, !B) — (', B; A). By Lemma we know
that

(19) (I, B; A) 2 (I'; A!B).
By Lemma 5.7 we have
(20) (I 4) =5 (T, B; A).

Combining - (20), and the transitivity of similarity, we obtain (I'; A) <, (T'; A,!B).
e (rule 'R) Suppose I'; - - A is derived from I'; - = A. By induction we have
2D (I A) = (I5).

We now construct a relation ‘R as follows.

R = {((T;A,!4), (T;A)) | forany A}
U{((T', A; A), (I'; A")) | for any A, A’ and I"with (I'; A) <, (I"; A)}
U =

We show that R is a simulation, thus RC=,. Since (I'; !A) R (I;.), it follows that
(5 1A) =5 (T ).

To see that R is a simulation, we pick any pair of states from R. It suffices to consider the
elements from the first two subsets of R:

— The two states are (I'; A;!A) and (I'; A) respectively. Let us consider any transition
from the first state.

* The transition is (I'; A,!A) —— (T, A; A). This is matched up by the triv-
ial transition (I';A) == (I'; A) because (I';A) =<, (I'; A) and thus we have
(I, A;A) R (I A).

35



*

*

The transition is (I'; A, 14) -2+ (I'"; A’,1A) because of (I'; A) -~ (I'"; A"). Then
the latter transition can match up the former because (I"; A’ 'A) R (I A).
The transition is (I'; A 'A) % (I'; A',1A) because of (I'; A) —% (T'; A’). Then

we have (I'; A;a) — (I'; A’), which is a matching transition because we have
(T, A" TA) R (T A).

« If (I'; A, 1A) can be split as ((I'1; Aq), (I'g; Az)), then A occurs in either Ay or

As. Without loss of generality, we assume that ! A occurs in A;. That is, there is
some A such that A; = A],!A. Then (I'; A) = ((I'y; A}), (T'2; Ag)). It is easy
to see that (Fl, Al) R (Fl, All) and <F27 Ag) R (FQ, Ag)

— The two states are (I', A; A) and (I"; A') respectively with

(22)

(T; A) <, (T A",

Let us consider any transition from the first state.

*

If A = -, then (T';-) <, (I'"; A"). So there exists some I'” such that (I'; A') ==
(I'";-) and (I';-) <, (I';-). It follows that (I, A;-) R (I'; -) as required.

The transition is (T', A; A) — (T, A; A, A). We argue that it is matched up by
the trivial transition (I'; A’) == (I"; A’). By and the compositionality of <,
we obtain

(23) (T;A,A) <, (TG A).

By and (23)), together with the transitivity of similarity, it can be seen that
(I A A) =5 (I A'), which implies (I A;AA) R (T A

The transition is (I, A; A) — (I', A; A”) because of (I'; A) -+ (I'; A”). By
there exist some F”’,A”’ such that (I'; A') == (I'"; A" and (T'; A") =,
(I"; A"). Therefore, (I'; A; A”) R (I'"; A™) and we have found the matching
transition from (I"; A’).

The transition is (I', 4; A) — (T, A; A”) because of (I'; A) e, (I';A”). B
there exist some F’”, A" such that (T'; A, a) == (I'"; A") and (T'; A”) =,
(I, A"). Therefore, (I', A; A”) R (I'"; A") and we have found the matching
transition from (I'"; A’, a).

If (T, A; A) can be split as ((I'y; A1), (I'y; Ay)), then A occurs in either I'y or
I's. Without loss of generality, we assume that A occurs in I'y. That is, there is
some I} such that I’y = T}, A. Then (T;A) = ((T}; A1), (T'2; Ag)). By
we have the transition (I'"; A') == ((I's; A3), ([4; Ay)) for some (I'3; Az) and
(T'y; Ay) such that (I'}; A1) <, (I's; Ag) and (I'g; Ag) =<5 (I'y; Ay). It follows that
(Fl, A1> R (Fg, Ag) and (FQ, AQ) R (F4, A4)

]
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Corollary 5.10. IfI'; A+ A, then (; A) =<5 (I'; A).
Proof. By Lemma/5.7] Theorem[5.9] and the transitivity of <. O
Proposition 5.11. If(Fl, Al) :T> (FQ, Ag) and FQ, AQ = A then F17 Al F A
Proof. Similar to the proof of Proposition We now have two more cases:
e (rule lts!A) Suppose (I'; A, 1A) = (T, A; A) and T, A; A - B. By rule L, we infer that
T:AAF B.
e (rule ItsClone) Suppose (I', A; A) — (T, A; A, A) and T, A; A, A = B. By rule clone, we
inferthat ', A; A + B. O

Our next goal is to prove Theorem [5.16] the coincidence of logical preorder with simulation.
For that purpose, a series of intermediate results are in order.

Theorem 5.12. If (I'; A) <, (T'y; A) then T'y; A F A.
Proof. Asin Theorem.16| the proof is by induction on the structure of A. We now have one more

case.
e A =!A". By rule Its!A we have the transition (I';; A) — (I';, A’;-). Since (I'}, A) =,
(T'y; A) there is some T such that (T'y; A) == (I'}; -) and

(24) (T, A5 ) =25 (T;)

From (I';, A’;-) we have the transition (I'y, A’;-) — (I';, A’; A') by rule ItsClone. By
Lemma[5.8] we have

(25) ([, AL A) =5 (T, A )

It follows from (24)), (25), and the transitivity of similarity that
(26) (Ty, A AY) =, (T5; ).

Now by induction hypothesis, we obtain I',; - = A’ because A’ has a smaller structure than A.
By rule !R we infer that I',; - - A. Using Proposition we conclude that I'y; A - A O

We now have the counterpart of Theorem 4.1/
Theorem 5.13. (I'; A1) =, (I'; Ag) if and only if (T'; Ay) =5 (5 Ag).

Proof. (=) Suppose (I'; A1) =, (I'; Ay). Tt is trivial to see that I'; Ay = &) A;. By the definition
of logical preorder, it follows that I'; Ay - Q) A;. By Theorem we have

27) ([ A1) =, (T 4,).

According to our reduction semantics, we have (I'; @ A;) == (I'; A;). By Lemma 5.8} it
follows that

(28) (T;41) = (T3 A).
By combining and (28), we obtain that (I'; Ay) < (I'; Ay) because = is transitive.
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(<) Suppose that (I'; Ay) <, (I'; Ay). For any I'; A and A, assume that (I",I'; A, A;) - A. By
Theorem [5.9] we have

(29) (I, T; A) <, (T, T; A, Ay).
Since (T'; A1) =, (T'; Ay) and = is compositional, we obtain
(30) (T, T;A,A)) =, (T, T4, A,).

By (29), and the transitivity of <., we see that (I",I'; A) <, (I",I; A, A,). Then

Theorem yields IV, T'; A, Ay = A. Therefore, we have shown that (I'; A;) <; (T'; Ap).

[

In Theorem we compare two states with exactly the same unrestricted resource I'. The

theorem can be relaxed so that the two states can have different unrestricted resources. In order to
prove that result, we first need two lemmas.

Lemma 5.14. (I'; A) <, (5 T, A) and (4 'T; A) =, (T A).

Proof. For any I, A, it follows from rule lts!A that (I'"; A’,IT', A) == (I, T; A’, A). By Propo-
sition if I/ T;A,A + Athen I";A",'T',A + A, for any formula A. In other words,
(T;4) = (5 1T, A).

Suppose I'"; A’ I’ A + A for any IV, A’ and A. By rule induction on the derivation of
I AVIT, A+ At can be shown that IV, T, A’ A F A, thus (5 IT,A) <, (I A). H

Lemma 5.15. (I'; A) <, (5T, A) and (5T, A) <5 (T'; A).

Proof. Since (-; T, A) == (T'; A), we apply Lemma and conclude that (I"; A) <, (+; 'T', A).

To show that (-; I, A) <, (I'; A), we let R be the relation that relates any state (I'; 1Ay, ..., 14,,, A)
with the state (', Ay, ..., A,; A). The relation R is a simulation. Consider any transition from
(T;1A, .. 1A, A).

o If (1A, ..., 1A, A) %5 (I";1Ay, ..., 1A, AY) because of (I'; A) -2+ (I; A'), the transi-
tion can be matched up by (I', Ay, ..., Ap; A) = (I, Ay, ..., Ap; A).

o If (T;!A;, .. ,1A,; A) = (T, Ay; 1Ay, ..., 1A, A) then the transition can be matched up by
the trivial transition (I, Ay, ..., A,; A) == (T, Ay, ..., A, A).

o If (I';!Aq, ..., !A,,, A) performs an input action, it must be given by an input action from A.
Obviously, this can be mimicked by (', Ay, ..., A,,; A).

e It is easy to see that for any splitting of (I';!A44, ..., 1A4,, A) there is a corresponding splitting
of (T, Ay, ..., An; A).

We have shown that R is a simulation. Therefore, (I';1Ay,....14,,, A) <, (', 4y, ..., A,; A), and
as a special case (+;!I', A) <, (I'; A). O

Theorem 5.16. (Fl, Al) =i (F27 Ag) zfand Ol’lly lf(rl, Al) =5 (FQ, Ag)
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Proof. Suppose (I'1; A1) =; (I'2; Ag). By Lemma |5.14| we infer that
(10, A =0 (T Ar) =0 (Fay Ag) =4 (45109, Ag).

Since = is a preorder, its transitivity gives (-;!T'1, A1) =; (+;!T'2, Ay). By Theorem [5.13] we have
(+;1T1, A1) =5 (+;!1T'2, Ag). Then by Lemma we infer that

(T3 A1) =6 (510, A) =6 (51T, Ag) =5 (Tg; Ag).

By the transitivity of <, we obtain that (I'1; A1) < (I'g; Ag).
In a similar manner, we can show that (I';; A1) <, (I'y; Ag) implies (I'1; Ay) < (T'g; Ag). O

With Theorem [5.16] we can slightly generalize Theorem[5.12]
Corollary 5.17. If (I'1; A) <5 (I'2; A) thenTo; AF A® @T.
Proof. Suppose (I'1; A) <, (I's; A). By Theorem [5.16] this means that
(3D (T';4) = (T A)

By Theorem we have that T';; A H A® Q)!T';. Now, by applying the definition of logical
equivalence, yields I'y; A - A® Q!T. O

From Theorems [5.6] and we obtain the main result of this subsection.

Corollary 5.18. (I';; A1) =, (T'y; Ag) if and only if (I'1; A1) <. (Fy; As).

6 Concluding remarks

In this report, we have shown that the proof-theoretic notion of logical preorder coincides with
an extensional behavioral relation adapted from the process-theoretic notion of contextual pre-
order [[7]. The former is defined exclusively in terms of traditional derivability, and the latter is
defined in terms of a CCS-like process algebra inspired by the formula-as-process interpretation
of a fragment of linear logic. In order to establish the connection, a key ingredient is to introduce
a coinductively defined simulation as a stepping stone. It is interesting to see that coinduction,
a central proof technique in process algebras, is playing an important role in this study of linear
logic. This topic definitely deserves further investigation so that useful ideas developed in one field
can benefit the other, and vice versa.

We have started expanding the results in this report by examining general implication (i.e.,
formulas of the form A — B rather than a — B) and the usual quantifiers. While special cases
are naturally interpreted into constructs found in the join calculus [9] and the m-calculus [21} 25],
the resulting language appears to extend well beyond them. If successful, this effort may lead
to more expressive process algebras. We are also interested in understanding better the interplay
of the proof techniques used in the present work. This may develop into an approach to employ
coinduction effectively in logical frameworks so as to facilitate formal reasoning and verification
of concurrent systems.
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