
Type-Safe Web Programming in QWeS2T

Thierry Sans∗ Iliano Cervesato∗

June 2010
CMU-CS-10-125

CMU-CS-QTR-100

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Carnegie Mellon University, Qatar campus.
The authors can be reached at tsans@qatar.cmu.edu and iliano@cmu.edu.

Partially supported by the Qatar Foundation under grant number 930107.

mailto:tsans@qatar.cmu.edu
mailto:iliano@cmu.edu

Keywords: Web programming, Mobile Code, Remote code, Type safety.

Abstract

Web applications (webapps) are very popular because they are easy to prototype and they can in-
voke other external webapps, supplied by third parties, as building blocks. Yet, writing correct
webapps is complex because developers are required to reason about distributed computation and
to write code using heterogeneous languages, often not originally designed with distributed com-
puting in mind. Testing is the common way to catch bugs as current technologies provide limited
support. There are doubts this can scale up to meet the expectations of more sophisticated web
applications. In this paper, we propose an abstraction that provides simple primitives to manage
the two main forms of distributed computation found on the web: remote procedure calls (code
executed on a server on behalf of a client) and mobile code (server code executed on a client).
We embody this abstraction in a type-safe language with localized static typechecking that we call
QWeS2T and for which we have implemented a working prototype. We use it to express interaction
patterns commonly found on the Web as well as more sophisticated forms that are beyond current
web technologies.

Contents
1 Introduction 3

2 A Language for Programming the Web 4
2.1 Localized Computation . 5
2.2 Base Language . 6
2.3 Mobile Code . 8
2.4 Remote Code . 9
2.5 Metatheory . 14

3 Examples 15
3.1 Web Pages in QWeS2T . 16

3.1.1 Web Page without JavaScript Code . 16
3.1.2 Web Pages with Embedded JavaScript Code 16
3.1.3 Web Pages with External JavaScript Code 17
3.1.4 Web Page Redirection . 17

3.2 Web Services . 18
3.2.1 Web Service Definition . 18
3.2.2 Web Service API . 19

3.3 Advanced Web Service Interactions . 19
3.3.1 Customized API . 19
3.3.2 Customized Web Service . 20
3.3.3 Web Service Auto-Installer . 20
3.3.4 URL Transcriber . 21
3.3.5 Web Analytics . 22

3.4 Beyond Traditional Web Programming . 22
3.4.1 Remote Libraries . 23
3.4.2 Evaluation Service . 23

4 Prototype Implementation 24

5 Parallelism 27
5.1 Parallel Transitions . 27
5.2 Network Parallelism . 29
5.3 Explicit Parallelism . 31
5.4 Implicit Parallelism . 32

6 Related Work 34

7 Conclusions and Future Work 37

References 37

title-1

A Twelf Specification 42
A.1 Syntax . 42
A.2 Static Semantics . 43

A.2.1 Mobility . 43
A.2.2 Typing . 43

A.3 Dynamic Semantics . 44
A.3.1 Values . 44
A.3.2 Transition Rules . 44

A.4 Type Preservation . 45
A.4.1 Relocation Lemma . 46
A.4.2 Type Preservation Theorem . 48

A.5 Progress . 50
A.5.1 Not Stuck . 50
A.5.2 Progress Lemmas . 50

A.6 Progress Theorem . 53

List of Figures
1 Views from World w . 5
2 Typing Rules for L . 6
3 Evaluation Rules for L . 7
4 Additional Typing and Evaluation Rules for Lm 9
5 Mobile Types . 10
6 Additional Typing and Evaluation Rules for QWeS2T 12
7 Typing Rules for Service Repositories . 14
8 Prototype Implementation . 24
9 The Service Page as Seen by a User . 26
10 Parallel Network Evaluation Rules . 30
11 Linear Destination Passing Semantics for QWeS2T 33

title-2

1 Introduction
Web-based applications, also called webapps, are networked applications that use technologies
that emerged from the Web. They range from simple browser centric web pages to rich Internet
applications such as Google Docs to browserless server-to-server SOAP-based web services. They
make use of two characteristic mechanisms: remote execution by which a client can invoke com-
putation on a remote server, and mobile code by which server code is sent to a client and executed
there. Furthermore, communication happens over the HTTP protocol. Webapps are very popular
for two main reasons. From the user’s perspective, they are easy to deploy on clients: there is no
need to install a third party program on the end-user’s platform since everything happens through
the web browser. From the developer’s perspective, it is very easy to build a rich graphical user
interface by using HTML, JavaScript and other web-based technologies. Moreover, developers can
use external third-party web services as building blocks for their webapps (obtaining what is called
a mashup). So, webapps are very easy to prototype, yet web programmers know that development
gets much more complex as the application grows. Indeed, it is very hard to ensure correctness
(and security) when developing and maintaining large scale webapps.

Two factors contribute to this complexity. First, web application developers are required to
reason about distributed computation, which is intrinsically hard: they must ensure adequate in-
teraction between the code executed on the client and the code executed on the server — and it
gets more complicated when additional hosts are involved. Second, typical webapp development
orchestrates a multitude of heterogeneous languages: the client side code is often written in HTML
and JavaScript which are the standards implemented by all browsers, and the server side can be
written in any language, common choices being PHP, Java, ASP/.NET and Python. This disjoint-
ness of technologies ensures that implementations are platform independent and increases inter-
operability. However, now the developer must make sure that code written in different languages
will be correctly interfaced and work well together. In particular, data must be used consistently
across language boundaries: typechecking becomes heterogeneous and possibly distributed when
making calls to third-party web applications.

Until recently, web developers had few options besides extensive testing, an expensive propo-
sition that does not scale. Approaches to provide static assurance are nowadays emerging. The
now standard way to develop code that will interface with a remote application is to program it
against an API that lists the provided functionalities and their type. This is natively supported
in Java once the API has been copied locally (but APIs can change unexpectedly on the Web).
Language extensions that verify the correctness of service orchestration have also been proposed,
for example ServiceJ [19] which augments the type system of Java to take remote functions into
account at compile time. Additionally, standards have been proposed to ensure adequate interac-
tions between different services, for example WSDL [55] declares the type interface of a service
and BPEL [36] describes how services can be combined. However, these standards are not always
implemented by web service platforms and web service programming frameworks. One common
aspect of all these technologies is that they patch preexisting languages to permit web program-
ming, which helps reasoning about a webapp as a distributed computation only up to a certain
point. Instead, we propose to a language designed around the distributed nature of a web applica-
tion. A complementary approach that specifically targets client-server applications is to develop

3

them in a homogeneous language and then to compile them to the heterogeneous languages of the
Web (in particular HTML and JavaScript on the client). In this way, type mismatches between
client and server code are caught at compile time (rather than at execution time). One example
is Google’s Web Toolkit [24] where webapps are written entirely in Java. Another is Links [18].
One drawback with this approach is that the code is compiled statically into client and server roles,
which makes it difficult to use to install services dynamically on a third-party host.

In this paper, we present an abstraction of web development that highlights its distinguishing
features, remote code execution and mobile code. We realize this abstraction into a programming
language skeleton designed with web applications in mind. This language, that we call QWeS2T,
supports remote execution through primitives that allow a server to publish a service and a client
to call it as a remote procedure. It also embeds mobile code as a form of suspended computation
that can be exchanged between nodes in the network. QWeS2T is strongly typed and supports
decentralized type-checking. We show that it is type-safe and we use it to implement, in a few
lines, web interactions going from simple web page publishing to complex applications that cre-
ate services dynamically and install them on third party servers. We have developed a prototype
implementation of QWeS2T.

The main contributions of this work are 1) the definition of a simple language that succinctly
and naturally captures the principal constructs found in web programming; 2) the design of a
type-safe language supporting a localized form of typechecking; and 3) an abstraction that allows
specifying easily web interaction patterns that are difficult to achieve using current technologies.
We do not see QWeS2T as a replacement for existing languages for web programming, but as a
simple experimental framework that facilitates exploring formally ideas about web programming.
Indeed, we designed it as a stepping stone to study security mechanisms (specifically information
flow) for web programming.

This paper is structured as follows: Section 2 lays out some operating assumptions for QWeS2T,
defines its syntax and semantics, and shows that it is type-safe. In Section 3, we use it to express
some standard and some rather advanced web development efforts. Section 4 describes our pro-
totype implementation. Section 5 discusses introducing parallelism within QWeS2T. We review
related work from the literature in Section 6. We conclude in Section 7 with an outline of future
developments.

2 A Language for Programming the Web
The goal of this paper is to propose a type-safe programming language for web development. This
section describes this language, QWeS2T, and establishes its properties. We begin by laying out
the architecture of our intended system and the requirements that our design wants to address in
Section 2.1. For the sake of clarity, we then introduce QWeS2T in stages: Section 2.2 illustrates
the formal setup used in this paper on a handful of traditional constructs that we will use as our
base language; Section 2.3 extends it with support for mobile code, which in turn Section 2.4
augments with constructs that enable remote code execution. We conclude in Section 2.5 with a
metatheoretic investigation of the properties of QWeS2T, which culminates in a distributed safety
result.

4

w1 w wn w1 w wn

Σ Ω1 · · · Ω · · · Ωn

}
∆

Γ

e e

τ

Typechecking: Σ | Γ `w e : τ Evaluation: ∆ ; e 7→w ∆′ ; e′

Figure 1: Views from World w

2.1 Localized Computation
We consider a model of networked computation consisting of a fixed but arbitrary number of hosts,
denoted w possibly subscripted (we also call them worlds or nodes). These hosts are capable of
computation and are all equal, in the sense that we do not a priori classify them as clients or
servers (instead, we use these terms based on their pattern of communication). They communicate
exclusively through web services, which can be seen as a restricted form of message passing (each
request is expected to result in a response). Since we are less interested in the communication
resources (channels and messages) than on the computation performed at the various nodes, we do
not need to rely on the machinery of traditional process algebras such as the π-calculus [30, 45].
Our model is not concerned either with the topology of the network: indeed, just like we normally
view the Web, we assume that every node can invoke services (including humble web pages) from
every other node that publishes them. In this paper, we do not address any security or information
flow issues (see Section 7).

The design of QWeS2T espouses a node centric view of web programming, which to a large
extent matches current development practices. Computation happens locally with occasional invo-
cations of remote services. This intuition is depicted on the right-hand side of Figure 1: from node
w’s stance, it is executing a local program e and has access to a set of services ∆ available on the
Web, with each node wi providing a subset Ωi of these services. This will translate in an evaluation
judgment ∆ ; e 7→w ∆′ ; e′ localized at node w, where each step of the computation of e with
respect to ∆ will yield a new expression and possibly extend ∆ with a new service.

We want QWeS2T to be globally type-safe and support localized type-checking. “Globally
type-safe” means that if every service on the network is well-typed with respect to both its own
declarations and any other web service it may invoke, then execution will never go wrong — this is
a special case of conformance testing in web services [3, 4, 11, 14]. “Local type-checking” implies
that each node w will be able to statically verify any locally written program e by itself as long as
it knows the correct types of the remote services it uses. This is illustrated on the left-hand side of
Figure 1: the API of the services (of interest to w) on the Web is represented as Σ, while Γ and τ

5

Σ | Γ, x : τ `w x : τ
of var

Σ | Γ, x : τ `w e : τ ′

Σ | Γ `w λx : τ. e : τ → τ ′ of lam

Σ | Γ `w e1 : τ ′ → τ Σ | Γ `w e2 : τ ′

Σ | Γ `w e1 e2 : τ
of app

Σ | Γ, x : τ `w e : τ

Σ | Γ `w fix x : τ.e : τ
of fix

Σ | Γ `w e1 : τ Σ | Γ `w e2 : τ ′

Σ | Γ `w 〈e1, e2〉 : τ × τ ′
of pair

Σ | Γ `w e : τ × τ ′

Σ | Γ `w fst e : τ
of fst

Σ | Γ `w e : τ × τ ′

Σ | Γ `w snd e : τ ′ of snd

Σ | Γ `w () : unit
of unit

Figure 2: Typing Rules for L

are the typing context and type of the expression e. In the following, this localized static form of
typechecking will be captured by the typing judgment Σ | Γ `w e : τ . The idea of localization,
both for typing and evaluation, is inspired by Lambda 5 [34, 33], a programming language for
distributed computing.

2.2 Base Language
The interesting features of QWeS2T are mobile and remote code, discussed in Sections 2.3 and 2.4,
respectively. We will introduce them as extensions of a base language, which we call L. The exact
ingredients of this base language are unimportant for the overall discussion, as long as they interact
nicely enough with mobility and remote code execution so that the overall language can be proved
type safe. Therefore, for the sake of brevity, we choose L to be a very simple language featuring
just functions, products and the unit type, with their usual constructors and destructors, as well as a
fixed point operator. We do not foresee any difficulty in extending it with other common constructs.
The syntax of L is summarized in the following grammar:

Types τ ::= τ → τ ′ | τ × τ ′ | unit

Expressions e ::= x | λx : τ. e | e1 e2 | fix x : τ.e
| 〈e1, e2〉 | fst e | snd e | ()

Local typing context Γ ::= · | Γ, x : τ

Here, x ranges over variables. As usual, we identify terms that differ only in the name of their
bound variables and write [e/x]e′ for the capture-avoiding substitution of e for x in the expression
e′. Contexts (and similar collections that will be introduced shortly) are treated as multisets and we
requires variables to be declared at most once in them — our rules will rely on implicit α-renaming
to ensure this.

In preparation for our extension, we localize both the static and dynamic semantics of L at
a world w, which represents the computing node where an expression will be typechecked or

6

() val
val unit

λx : τ. e val
val lam

e1 val e2 val

〈e1, e2〉 val
val pair

∆ ; e1 7→w ∆′ ; e′
1

∆ ; e1 e2 7→w ∆′ ; e′
1 e2

step app1

v1 val ∆ ; e2 7→w ∆′ ; e′
2

∆ ; v1 e2 7→w ∆′ ; v1 e
′
2

step app2

v2 val

∆ ; (λx : τ. e) v2 7→w ∆ ; [v2/x] e
step app3

∆ ; fix x : τ.e 7→w ∆ ; [fix x : τ.e/x] e
step fix

∆ ; e1 7→w ∆′ ; e′
1

∆ ; 〈e1, e2〉 7→w ∆′ ; 〈e′
1, e2〉

step pair1

v1 val ∆ ; e2 7→w ∆′ ; e′
2

∆ ; 〈v1, e2〉 7→w ∆′ ; 〈v1, e
′
2〉

step pair2

∆ ; e 7→w ∆′ ; e′

∆ ; fst e 7→w ∆′ ; fst e′
step fst1

v1 val v2 val

∆ ; fst 〈v1, v2〉 7→w ∆ ; v1

step fst2

∆ ; e 7→w ∆′ ; e′

∆ ; snd e 7→w ∆′ ; snd e′
step snd1

v1 val v2 val

∆ ; snd 〈v1, v2〉 7→w ∆ ; v2

step snd2

Figure 3: Evaluation Rules for L

evaluated. In addition to a traditional context Γ for local variables, we equip the typing judgment
with a global service typing table, written Σ, which we can safely assume to be empty for the time
being. Therefore, the typing judgment assumes the following form:

Σ | Γ `w e : τ “e has type τ in w with respect to Σ and Γ”

The typing rules for this judgment are displayed in Figure 2. Notice in particular, that, apart from
the presence of a world w and a service typing table Σ, these rules are completely standard. Notice
also that neither w nor Σ changes in this figure — indeed they play no role in L, besides setting the
stage for the extensions.

For the same reason, we localize the dynamic semantics of L at a given world, w, and consider
an evaluation configuration consisting of the expression e to be evaluated together with a global
repository ∆ that lists all the available services in the network. For the time being, we can safely
assume that ∆ too is empty. We describe evaluation in L using a standard small-step transition
semantics with judgments

e val “e is a value”
∆ ; e 7→w ∆′ ; e′ “∆; e transitions to ∆′; e′ in one step”

The rules for these judgments are displayed in the upper and lower parts of Figure 3, respectively.
It is easy to see that, just as for the static semantics, the service repository ∆ never changes. Aside
from the repositories, these are textbook rules for the constructs in this language.

7

2.3 Mobile Code
Web developers use JavaScript code for two main reasons: 1) to call a remote service (through
AJAX requests, for example) and process the result on the client side; 2) to interact with the
user. This code is embedded in a web page provided by a web server, but it is executed by the
web browser on the client’s machine. This is what we intend by mobile code: a program that
resides on a server, that will be transferred and executed on the client. There is a strict distinction
between the code that provides a service on the server side (e.g., a database search) and the code
that will call this service and process the result on the client side. From a developer’s perspective,
this distinction may take the form of having to switch between two programming languages (e.g.,
JavaScript for the client and PHP for the server) and insert this code appropriately in the page
(for instance JavaScript code can be placed between HTML <script> tags and within specific
HTML attributes). Dynamically generated web pages significantly complicate this picture as server
code (e.g., PHP) and mobile code (JavaScript) as well various layout and styling markups (HTML
and CCS) intended for the client are mixed in the same body of code.

As we mentioned in the introduction, ensuring correctness between client-side code and server-
side code is hard. Some programming languages (such as Links [18] and Google Web Toolkit [24])
permit writing client-side code and server-side code in the same formalism, allowing type mis-
matches to be caught at compile time. With Links for instance, the developers tag segments of
code as “client” or “server” to specify where it is to be executed.

In this section, we extend our base language L to a language Lm that is in a sense “mobile code
ready”. While remote code execution in Section 2.4 will provide the mechanism to actually move
code from one world to another (among other things), Lm embeds support for freezing expres-
sions thereby preventing their evaluation, and for forcing execution in a controlled way. Once the
transport mechanism is in place in Section 2.4, this will permit packaging mobile code on a server
but evaluating it only when it reaches the client. For example, code that does machine-specific
initialization on a web page (e.g., looking up the local time or a cookie) will reside in frozen form
on the web server, and its execution will be triggered only when it reaches the client.

To realize this, we borrow from the concept of suspension in the theory of lazy programming
languages. Specifically, we understand mobile code as expressions whose evaluation has been
suspended and tag them with the type susp[τ], where τ is the type of the original expression. The
types τ and susp[τ] are mediated by two basic constructs: hold e suspends the evaluation of e
and resume e′ resumes the computation of a previously suspended expression e′. Therefore, the
language Lm is obtained by extending the syntax of L as follows:

Types τ ::= · · · | susp[τ]

Expressions e ::= · · · | hold e | resume e

Although hold e suspends a computation, the standard definitions governing free and bound vari-
ables still apply. In particular, substitution traverses hold e just like any other expression.

The static and dynamic semantics of Lm extend the corresponding rule sets for L as displayed
in the top and bottom parts of Figure 4, respectively. We shall point out that, just as in L, the
world w and the service tables Σ, ∆ and ∆′ play no role in Lm. Indeed, were we to erase them, we

8

· · ·
Σ | Γ `w e : τ

Σ | Γ `w hold e : susp[τ]
of hold

Σ | Γ `w e : susp[τ]

Σ | Γ `w resume e : τ
of resume

· · · hold e val
val hold

· · · ∆ ; e 7→w ∆′ ; e′

∆ ; resume e 7→w ∆′ ; resume e′
step resume1

∆ ; resume (hold e) 7→w ∆ ; e
step resume2

Figure 4: Additional Typing and Evaluation Rules for Lm

would have a standard language with suspensions for single-node computing: everything is still
happening locally.

2.4 Remote Code
The notion of web service is no more than a modern reincarnation of remote procedure calls (RPC)
over the HTTP protocol. A web service can take several forms: it can be a simple web page (or
AJAX) request that the client invokes with POST/GET arguments, or it can be an RPC/SOAP
request with a specific SOAP envelope format to pass the arguments. We abstract these various
forms of service into what we call remote code, functions that resides on a remote server and that
the client can invoke by sending a message carrying the arguments to be passed to this function.
This function is executed on the server side and only the result is returned to the client.

We capture the notion of web service by extendingLm into a language that we call QWeS2T. To
understand this extension, consider the constructs that must be available to a client and to a server.
When a client interacts with a service, only two pieces of information are needed: 1) the address of
this service (its URL), and 2) the type (or format) of the arguments that must be supplied together
with the type of the result to be returned. Just as on the Web, we model a URL as a two-part
locator consisting of the name of the server that provides it, say w′, and of a unique identifier, u.
We write it as url(w′, u). We introduce the type srv[τ][τ ′] to describe a remote service that expects
arguments of type τ and will return a result of type τ ′. A client w invokes a web service by calling
the URL that identifies it with an argument of the appropriate type. This is achieved by means of
the construct call e1 with e2 which is akin to function application. It calls the URL e1 by moving
the value of the argument e2 to where the remote code resides. There, the corresponding function is
executed and the result is moved back to the client. Before a service can be called, a server w′ must
have created it. Our language models this by means of the operator publish x : τ.e which publishes
the function e that takes an argument x of type τ and returns a result of type τ ′. The result is the
symbolic URL url(w′, u) of type srv[τ][τ ′], for some new identifier u. These ingredients, which

9

unit mobile
mobile unit

τ mobile τ ′ mobile
τ × τ ′ mobile

mobile product

susp[τ] mobile
mobile susp

τ mobile τ ′ mobile
srv[τ][τ ′] mobile

mobile service

Figure 5: Mobile Types

constitute the core of the extension of Lm to QWeS2T are collected in the following grammar:

Types τ ::= · · · | srv[τ][τ ′]

Expressions e ::= · · · | url(w, u) | publish x : τ.e | call e1 with e2 | expect e from w

The expression expect e from w is used internally during evaluation and is not available to the
programmer. It essentially models the client’s awaiting for the result of a web service call. We will
examine how it works in more detail below.

With the definition of QWeS2T, our goal is to obtain a type-safe language for web program-
ming. Just as in Links [18] and GWT [24], we want to be able to statically typecheck expressions
to be evaluated and moreover we want each node on the network to be able to do so locally, without
relying on other nodes. We achieve this by taking full advantage of our localized typing judgment,
Σ | Γ `w e : τ . To do so, we abstractly define the service typing table Σ as a multiset listing the
type and location of all web services available on the network:

Service typing table Σ ::= · | Σ, u : srv[τ][τ] @ w

Of course no such thing exists in the reality of web development. We view it as an abstraction that
can be safely approximated in a number of ways, including what is done in current practice. We
will come back to this point later.

Before we examine the added typing rules of QWeS2T, we need to take some precautions
against unintended code execution. As mentioned above, current practice relies on different lan-
guages executing on the client (e.g., JavaScript or Flash) and the server (PHP, Perl, or pretty much
anything). So, while invoking a web service with integers or other traditional types of data is fine,
invoking it with a functional argument raises eyebrows, and similarly for the return value. As done
in Lambda 5 [34, 33], we will disallow remote procedures whose argument or return type is func-
tional. Said this, functions are swapped all the time from servers to clients (and more rarely vice
versa) in the form of JavaScript code provided by the server and to be executed by the client. We
account for this by means of the mobile computation mechanism introduced in Section 2.3: we
allow suspended computations to be part of a web service exchange, that is we force a function
of type τ → τ ′ to be packaged as a suspension (yielding the type susp[τ → τ ′]) before being
shipped around. This mechanism prevents arbitrary code from being moved and installed without
the consent of the client or server. Just as in Lambda 5 [34, 33], we define the following judgment,

τ mobile “τ is a mobile type”

10

to describe the types whose values can be transmitted between nodes. The rules implementing it
are displayed in Figure 5. They hereditarily disqualify any function type unless protected by a
suspension. Notice again that a suspended computation is mobile, which matches the way the Web
works. When a web page contains a script tag with a source file, this file is transferred over HTTP
in the same way that a web page is transferred. So, transferring a script works similarly to calling
a service that will return the script. In the same way, the result of a service can be a URL itself.
This is also consistent with the fact that calling a web page can return a page with a link to another
page.

The typing rules for QWeS2T are displayed in the upper part of Figure 6. The rules for pub-
lishing and calling a web service are unsurprising. The other two rules refer to a world w′ different
from where the expression is located. As we said, expect e from w is an artifact of our evaluation
semantics, and therefore plays a role only in our metatheoretic analysis: it cannot appear in a legal
program. Rule of url deserves a longer discussion. It checks the type of a URL occurring in a
program by looking it up in the global service typing table Σ, which by definition is not local. As
mentioned earlier, Σ is an abstraction that is or could be realized in a variety of ways in practice:

• At development time, a programmer often simply downloads the API of a web service li-
brary, thereby locally caching the typing specifications of the services of interest.

• At compile time, the client system asks the remote server for the type of each service the
local code uses. This is the approach implemented in our prototype (see Section 4). This
mechanism is similar to typechecking a web service according to its WSDL file.

• A third-party web service server acts as a repository of all web services of interest in the
network and answers typing inquiries similar to the way a DNS works.

Notice that in all three cases, the client must trust the typing information provided or returned by
the web server or the repository. We do not address issues of trust in this paper.

In order to describe the dynamic semantics of QWeS2T, we need first to populate the multiset
∆ we assumed empty up to now. Each node wi in the network has a local service repository {Ω}wi

which contains the identifier and the code of all web services published by wi. Then, the global
service repository ∆ just denotes the collection of all such local service repositories. They are
defined by the following grammar:

Local service repository Ω ::= · | Ω, u ↪→ x : τ.e

Global service repository ∆ ::= {Ω}w | ∆, {Ω}w

Here, both Ω and ∆ are multisets.
The dynamic semantics of QWeS2T is given in the lower part of Figure 6 as an extension of

the rules for Lm. The only new form of values are URL’s. The evaluation of publish x : τ.e
immediately publishes its argument as a web service in the local repository {Ω}w, creating a new
unique identifier for it and returning the corresponding URL. To call a web service, we first reduce
its first argument to a URL, its second argument to a value, and then carry out the remote invocation
which is modeled using the internal construct expect [v2/x]e from w′. This implements the client’s
inactivity while awaiting for the server w′ to evaluate [v2/x]e to a value. This is done in rules

11

· · ·
srv[τ][τ ′] mobile

Σ, u : srv[τ][τ ′] @ w′ | Γ `w url(w′, u) : srv[τ][τ ′]
of url

srv[τ][τ ′] mobile Σ | Γ, x : τ `w e : τ ′

Σ | Γ `w publish τ : x.e : srv[τ][τ ′]
of publish

Σ | Γ `w e1 : srv[τ][τ ′] Σ | Γ `w e2 : τ

Σ | Γ `w call e1 with e2 : τ ′ of call

Σ | Γ `w′ e : τ

Σ | Γ `w expect e from w′ : τ
of expect

· · · url(w′, u) val
val url

· · ·
∆, {Ω}w ; publish x : τ.e 7→w ∆, {Ω, u ↪→ x : τ.e}w ; url(w, u)

step publish

∆ ; e1 7→w ∆′ ; e′
1

∆ ; call e1 with e2 7→w ∆′ ; call e′
1 with e2

step call1

v1 val ∆ ; e2 7→w ∆′ ; e′
2

∆ ; call v1 with e2 7→w ∆′ ; call v1 with e′
2

step call2

v2 val

∆, {Ω, u ↪→ x : τ.e}w′︸ ︷︷ ︸
∆′

; call url(w′, u) with v2 7→w ∆′ ; expect [v2/x] e from w′
step call3

∆ ; e 7→w′ ∆′ ; e′

∆ ; expect e from w′ 7→w ∆′ ; expect e′ from w′
step expect1

v val
∆ ; expect v from w′ 7→w ∆ ; v

step expect2

Figure 6: Additional Typing and Evaluation Rules for QWeS2T

12

step expect1 and step expect2: the former performs one step of computation on the server w′

while the client w is essentially waiting. Once this expression has been fully evaluated, the latter
rule kicks in and delivers the result to the client.

The dynamic semantic of QWeS2T supports a view of computation on the Web that is centered
around the local host: indeed the conclusion of each rule refers to the same node, w, and it is only
when calling a remote service that the computation migrates to a different node (w′ in the premise
of rule step expect1), while w is waiting. Furthermore, our presentation gives w the illusion that
at any time computation happens in exactly one node on the network, either locally or at the remote
server that is servicing a call — this is the same illusion that we normally have while surfing the
Web: Google does nothing else than waiting for my searches. The rules in Figure 6 allow for
slightly more complex patterns of execution, since a web service can call another one that can call
another one and so on, and any of these could reside on the host that made the original call. For
how compelling this illusion may be, this is not the way the Web works: all kinds of computations
are happening in parallel on every node. It is relatively easy to extend the presentation in Figure 6
to model this behavior, but this is beyond the scope of this paper. With a presentation that supports
parallel execution, it is then possible with moderate effort to extend QWeS2T with constructs that
support another feature of web services: asynchrony (this is the first “A” in “AJAX”). Again, this
is beyond the scope of this work.

When investigating the metatheory of QWeS2T in Section 2.5, it will be useful to know that the
types listed for the services in the table Σ do indeed correspond to the actual types of the services
present in the distributed repository ∆. We express this requirement by means of the following
judgment,

Σ ` ∆ “the services in ∆ are well-type with respect to Σ”

whose rules are shown in Figure 7. These rules go systematically through all the declarations in
Σ, find the corresponding implementation in ∆, and check that it is well-typed with respect to the
rest of Σ. A few observations about these rules are in order.

First, note that once a web service u has been typechecked in rule st nonempty the remaining
services are checked in a typing table that does not mention u any more. This immediately entails
that QWeS2T does not support recursive web services (at this stage). Furthermore, since it is
perfectly legal in QWeS2T for a web service u to call another service u′ (which in turn could
call other services), a derivation of Σ ` ∆ needs to typecheck u before u′, thereby following a
total ordering of web services that respects these dependencies. Rather than explicitly searching
for a workable ordering, we exploit our having abstractly defined Σ, ∆ and the constituent Ω’s
to be multisets. If Σ ` ∆ is derivable, then we know that there is an appropriate ordering of the
services therein. Note that this ordering may hop back and forth among the various nodes. Observe
also that, by and large, this corresponds to the way we use the web: we need to know about a
URL before we can create a web page or service that uses it (we do not model the possibility of
modifying an already published service in this work).

13

· ` ·
st ·

Σ ` ∆
Σ ` ∆, {·}w

st empty
Σ ` ∆, {Ω}w Σ | x : τ `w e : τ ′

Σ, u : srv[τ][τ ′] @ w ` ∆, {Ω, u ↪→ x : τ.e}w
st nonempty

Figure 7: Typing Rules for Service Repositories

2.5 Metatheory
We conclude this section with a study of the metatheory of QWeS2T, which will show that this
language admits localized versions of type preservation and progress, thereby making it a type
safe language. The techniques used to prove these results are fairly traditional. We used the Twelf
proof assistant [1, 39] to encode each of our proofs and to verify their correctness. All these proofs
can be found in Appendix A. All went through except for the proof of the Relocation Lemma,
because we could not express the form of its statement in the meta-language of the proof-checker.
Instead, we carried out a detailed proof by hand.

The analysis begins with a very standard substitution lemma. Note that URL’s are never substi-
tuted in the semantics for QWeS2T, and therefore do not require a separate substitution statement.

Lemma 1 (Substitution). If Σ | Γ `w e : τ and Σ | Γ, x : τ `w e
′ : τ ′, then Σ | Γ `w [e/x] e′ : τ ′.

Proof. By induction on the derivation of the judgment Σ | Γ, x : τ `w e′ : τ ′. It comes “for free”
in Twelf.

The following relocation lemma says that if an expression is typable at a world w, then it is also
typable at any other world w′ (note that the statement implicitly relocates its local assumptions Γ to
w′—we will however use this lemma in the special case where Γ is empty). A similar, but slightly
more complicated result is used in Lambda 5 [33, 34], another type-safe formalism for networked
computation.

Lemma 2 (Relocation). If Σ | Γ `w e : τ , then Σ | Γ `w′ e : τ for any world w′.

Proof. By induction on the derivation of the judgment Σ | Γ `w e : τ . A Twelf representation of
this proof can be found in Appendix A as the type family reloc, but note that the meta-language
of the proof checker did not support the quantification pattern in this proof. However, the Twelf
specification of reloc does encode our manual proof.

At this point, we are able to state the type preservation theorem, whose form is fairly traditional
except maybe for the need to account for the valid typing of the web service repository before and
after the evaluation step.

Theorem 3 (Type preservation). If ∆ ; e 7→w ∆′ ; e′ and Σ | · `w e : τ and Σ ` ∆, then
Σ′ | · `w e

′ : τ and Σ′ ` ∆′.

Proof. The proof proceed by induction on the derivation of ∆; e 7→w ∆; e′. It uses the Substitution
Lemma in the cases of rules step app3, step fix and step call3. It also uses the Relocation
Lemma to handle rules step call3 and step expect1. It appears in Appendix A as the Twelf
type family tpres.

14

The proof of progress relies on the following Canonical Form Lemma, whose statement and
proof are standard.

Lemma 4 (Canonical Form). If e val, then
• if Σ | Γ `w e : unit, then e = ();
• if Σ | Γ `w e : τ → τ ′, then there exists e′ such that e = λτ :x. e′;
• if Σ | Γ `w e : τ × τ ′, then there exist e1 and e2 such that e = 〈e1, e2〉, e1 val and e2 val;
• if Σ | Γ `w e : susp[τ], then there exists e′ such that e = hold e′;
• if Σ | Γ `w e : srv[τ][τ ′], then there exist w′ and u such that e = url(w′, u).

Proof. By induction on the given derivation of e val and inversion on the appropriate typing rules.
This lemma too comes for free in Twelf.

The progress theorem is again fairly standard, with a proviso for the web service repositories
of QWeS2T.

Theorem 5 (Progress). If Σ | · `w e : τ and Σ ` ∆, then
• either e val,
• or there exist e′ and ∆′ such that ∆ ; e 7→w ∆′ ; e′.

Proof. By induction on the given derivation of Σ | · `w e : τ . This proof is given by the Twelf
code defining the type family progress and auxiliary definitions.

By satisfying type preservation and progress, the previous results show that QWeS2T is type-
safe.

3 Examples
We will now show how some common and not-so-common web development efforts can be mod-
eled using QWeS2T. We begin in Section 3.1 with expressing the creation and use of standard
web pages, possibly containing JavaScript-style mobile code. In Section 3.2, we look at parame-
terized web pages and services where the server must process client input to dynamically produce
the result. Up to that point, all examples will be pretty standard and can be implemented more or
less straightforwardly with current tools. In Section 3.3, we show some more advanced web ser-
vice interactions that are currently much harder to implement using existing technologies. Finally,
Section 3.4 explores applications of QWeS2T beyond traditional web programming.

For readability, we extend QWeS2T with an ML-like let construct, where “let x = e1 in e2 end”
is understood as syntactic sugar for (λx : τ. e2) e1. Furthermore, to make the examples below more
visually appealing, we will use the types html, info, query and result. To stay within the confines
of QWeS2T as described in Section 2, they can all be taken as synonyms for unit. Rather than
denoting our hosts as w possibly subscripted, we assume we have a node www.server.com that will
be playing a server role in our example, and a client called client . We will introduce more complex
setups as needed. Finally, in commentary, we will often write a URL url(www.server.com, u) as
www.server.com/u for service identifier u.

15

3.1 Web Pages in QWeS2T
When a browser requests a web page, it sends an HTTP request to the web server that provides it,
which returns it as HTML code. Therefore, a web page can be understood as a web service that
returns a value of type html. Since no interesting input needs to be processed, it is simply invoked
with the unit element, (), of type unit. This is the typical way static web pages are retrieved.

3.1.1 Web Page without JavaScript Code

We start with a very simple example where server www.server.com publishes a web page with
contents someHTML. The server’s execution results in the creation of an externally visible iden-
tifier for it, which we call webpage. From there on, this page can be referenced by the URL
www.server.com/webpage, which is a service of type srv[unit][html] located at www.server.com.
The client will need to acquire this URL somehow (this is not modeled within the example). To
retrieve the contents of the web page, the QWeS2T client code simply call this URL with value ().
The code for both the server and the client is given next. The curvy arrow between the two blocks
of code indicates that the URL is communicated out of band.

www.server.com
let

page = someHtml
in

publish x : unit.page
end

www.server.com/webpagey

client
call url(www.server.com,webpage) with ()

A simple variant of this code can model dynamically generated web pages that use server-side
include (SSI), a technique by which the server puts together the page from HTML snippets held
in various files. Say for example that our page is assembled from parts header , body and footer .
Then, we would define page as f header body footer for some concatenation function f .

3.1.2 Web Pages with Embedded JavaScript Code

A web page can embed JavaScript code that will be executed by the browser on the client side.
Since JavaScript code will have an effect on the page rendered to the user, it can be seen as a
function that takes an HTML document and returns an HTML document.

www.server.com
let

script = hold λx : html. x
page = 〈script , someHtml〉

in
publish x : unit.page

end

www.server.com/webpagey

client
let

url = url(www.server.com,webpage)
page = call url with ()

in
(resume (fst page)) (snd page)

end

16

Therefore, a web page is now a pair consisting of a (suspended) script of type susp[html → html]
and a source HTML document of type html. Execution on the server will again result in a URL
www.server.com/webpage, this time of type srv[unit][(susp[html→ html])× html]. Upon retriev-
ing this page, the client’s browser will extract the script and the source HTML markups, and apply
the former to the latter, thereby rendering the processed page to the user. The client and server
code above illustrates this idea using the identity function as the script.

3.1.3 Web Pages with External JavaScript Code

A web page can directly embed JavaScript code between <script> tags, or it can contain a URL
to an external JavaScript file using the src attribute of this tag. In this case, the web browser
first retrieves the page, then the JavaScript file, and finally applies this script to the contents of
the web page. We model this mechanism in QWeS2T as follows: the browser publishes the script
file at some URL scriptUrl (which is public, but that the client does not need to know), it in-
stalls an auxiliary function in the page, fetcher , whose job is to fetch scriptUrl for the client,
and finally it publishes a pair consisting of the fetcher and the source HTML document at URL
www.server.com/webpage.

The client code does not change with respect to the previous example and is reproduced below
only for clarity. This matches our everyday experience on the Web: how JavaScript is embedded
in a web page is irrelevant to us. At execution time, however, the behavior on the client changes
significantly: it retrieves the page just as before, it calls the code portion (now the fetcher) on the
HTML data, but this times this has the effect of downloading the script file at scriptUrl which is
unpacked into the function that is applied to the HTML data.

www.server.com
let

scriptUrl = publish x : unit.(hold λx : html. x)
fetcher = hold (resume (call scriptUrl with ())
page = 〈fetcher , someHtml〉

in
publish x : unit.page

end

www.server.com/webpage
(www.server.com/scriptUrl)y

client
let

url = url(www.server.com,webpage)
page = call url with ()

in
(resume (fst page)) (snd page)

end

3.1.4 Web Page Redirection

A variant of this mechanism forms also the basis for implementing web page redirection. Say
that we moved a web page www.server.com/webpage to www.newserver.com/webpage. Setting
up redirection on www.server.com will allow clients to still be able to access this page using its
former URL, www.server.com/webpage. We implement redirection in QWeS2T by publishing a
script on www.server.com that retrieves the new page (for simplicity, we assume it contains plain
HTML as in Section 3.1.1, otherwise the call is adapted as in the retrieval in Section 3.1.2), as
described below. The client accesses it like any other script (and indeed the client code has not

17

change). The server code is puts together a page containing a script, fetcher , but notice that the
HTML part, rendered as anyHTML, is ignored: fetcher does not use it.

Observe also that, had we not turned the call to www.newserver.com/webpage into a script and
suspended it, the code would simply cache www.newserver.com/webpage on www.server.com as
www.server.com/webpage.

x www.newserver.com/webpage

www.server.com
let

newUrl = url(www.newserver.com,webpage)
fetcher = hold λx : html. (call newUrl with ())

in
publish x : unit.〈fetcher , anyHtml〉

end

www.server.com/webpagey

client
let

url = url(www.server.com,webpage)
page = call url with ()

in
(resume (fst page)) (snd page)

end

3.2 Web Services
In this section, we allow the client to pass parameters to the remote code on the server. In this
way, we can use QWeS2T to express a variety of common web-based interactions, in particular:
dynamically generated web pages requested using HTTP requests with POST/GET arguments
(e.g., when doing web searches), AJAX calls embedded within web pages (e.g., when panning
outside the current view in Google Maps), and SOAP-based web services (often found in server-
to-server exchanges).

3.2.1 Web Service Definition

In our next example, we want to write a web service that performs a search based on meta-
information about who is doing the search (of type info) and on a search query (of type query)
submitted by the client. We assume that this service returns a result of type result. The server
simply publishes a service (at URL www.server.com/search) that takes these two arguments, calls
an internal search function, and returns the result to the client. This service has type srv[info ×
query][result]. A client can then use this service by calling this URL on arguments of interest,
modeled below as the pair 〈myInfo,myQuery〉.

www.server.com
let
f = λx : info× query. (search x)

in
publish z : info× query.f z

end

www.server.com/searchy

client
let

url = url(www.server.com, search)
in

call url with 〈myInfo,myQuery〉
end

18

3.2.2 Web Service API

To facilitate the usage of this service, we want to provide the client with an API that will perform
the call. This API will be published as a script that, once executed on the client side, will call
the remote web service and returns the result. This script is published on the server at the URL
www.server.com/api . The type of this URL is srv[unit][susp[query×info→ result]]. The client can
then download the script, install it and use the embedded function just as any local function. Note
that the client does not need to be aware of the underlying search URL, www.server.com/search,
even if it is public.

www.server.com
let

url = url(www.server.com, search)
script = hold λz : query × info. (call url with z)

in
publish x : unit.script

end

(www.server.com/search) www.server.com/apiy

client
let

url = url(www.server.com, api)
f = resume (call api with ())

in
f 〈myInfo,myQuery〉

end

3.3 Advanced Web Service Interactions
In this section, we show how QWeS2T can easily express more complex forms of web interaction.
Although useful, these types of services are uncommon on today’s Web. We speculate that this
may be due to the fact that expressing such complex interactions is difficult with current web
technologies—remember that client and server code are typically written in different languages,
with few recent exceptions. Yet, it takes just a couple of lines for QWeS2T to express each of these
interactions.

3.3.1 Customized API

If we assume that the client’s information myInfo does not change from one query to another in
the last example, then the server could customize the script for each client based on its informa-
tion. In the code below, the server publishes a script www.server.com/api that is expected to be
called with the client’s information. The server then returns a specialized version of this script
that the client can repeatedly call by just providing queries. This time, the published script has
type srv[info][susp[query → result]], which can be viewed as a curried version of what we had in
Section 3.2.2 (modulo the intervening suspension).

19

www.server.com
let

url = url(www.server.com, search)
script = λx : info. hold

λy : query. (call url with 〈x, y〉)
in

publish x : info.script x
end

(www.server.com/search)
www.server.com/apiy

client
let

url = url(www.server.com, api)
f = resume (call url with myInfo)

in
f myQuery

end

3.3.2 Customized Web Service

Going one step further, rather than returning a customized API, the server may want to provide a
specialized service for each client. This client-specific service will be published automatically on
the server side when the client needs it for the first time — Google Sites allows something like this.
The server will return the URL of this personalized service to the client. The code below illustrates
this idea with a custom search functionality.

www.server.com
let

url = url(www.server.com, search)
f = λz : info× query. (call url with z)

in
publish x : info.publish y : query.f 〈x, y〉

end

(www.server.com/search)
www.server.com/customSearch
www.server.com/mySearchUrly

client
let

url = url(www.server.com, customSearch)
mySearchUrl = call url with myInfo

in
call mySearchUrl with myQuery

end

Here, the server initially publishes a URL www.server.com/customSearch available to any host.
When a specific client invokes it with its own information, myInfo, the server publishes a search
service customized to this client and makes it available on the spot as a new URL that we call
www.server.com/mySearchUrl . The client can then use this personalized URL directly to carry
out its queries. The type of www.server.com/customSearch is srv[info][srv[query][result]] and the
type of www.server.com/mySearchUrl is srv[query][result].

3.3.3 Web Service Auto-Installer

For our next example, assume the client has a web server of its own, www.client.com, and wants to
provide its customers with a web service on www.client.com that makes use of functionalities sup-
plied by www.server.com. When the client’s customer, call it customer , needs the service, it can
contact the client directly without any need to know that the bulk of the work is done by the server.
The standard way to do all this is for the client to manually create a service on www.client.com
and configure it to call the server. This requires more sophistication of the client than in all the
previous examples, which involved doing no more than clicking on a link.

20

www.server.com
let

url = url(www.server.com, search)
f = λz : info× query. (call url with z)
script = λx : info. hold (

publish y : query.(f 〈x, y〉))
in

publish x : info.(script x)
end

(www.server.com/search)

www.server.com/installery

www.client.com
let

url = url(www.server.com, installer)
script = call url with clientInfo

in
resume script

end

x www.client.com/clientSearch

customer
call url(www.client.com, clientSearch) with myQuery

In QWeS2T we can do much better. In the given code snippet (which builds on our search example),
the server provides a script, www.server.com/installer (of type srv[info][susp[srv[query][result]]]),
that, when invoked by the client with input clientInfo, will automatically create and publish the cu-
stomized web service www.client.com/clientSearch (of type srv[query][result]) at www.client.com.
It is this URL that customer will use for its searches. Then we are back to the situation where the
client needs to do no more than clicking on a link.

3.3.4 URL Transcriber

Consider next a service that rewrites a URL into a different-looking URL so that visiting the lat-
ter yields the contents of the former. A popular instance is www.tinyurl.com, which turns long
unwieldy URLs into very short ones, which can be easier to communicate. The code fragment
below is the skeleton of such a service. The site www.url.com provides the service shorten which
expects an argument x of type srv[unit][html], that is a URL. It then publishes a new service
that visits x when called. If the underlying implementation arranges for the services created
in this way to have very short names, www.url.com/shorten effectively provides a functionality
akin to www.tinyurl.com. The type of www.url.com/shorten is srv[srv[unit][html]][srv[unit][html]],
i.e., it is a service that transforms URLs into URLs. The code also shows how a second site,
www.client.com, can use this service to shorten some long URL for the benefit of a third site,
called here customer .

www.url.com

publish x : srv[unit][html].
(publish y : unit.

call x with y)

www.url.com/shorteny

www.client.com

call url(www.url.com, shorten) with myVeryLongURL

x www.url.com/x8Nu (www.client.com/myVeryLongURL)

customer
call url(www.url.com, x8Nu) with ()

21

This code snippet is the general blueprint of a whole family of services intended to transcribe
URLs. Examples include web proxies and web anonymizers.

3.3.5 Web Analytics

Our last example considers a webpage augmented with tracking capabilities, as enabled for ex-
ample by services like Google Analytics. The page in question will be www.client.com/webpage.
When a customer accesses it, a tracking script embedded within the page will send information
about the customer to a third-party service which will collect it. This third-party service will be
www.analyze.com/client on server www.analyze.com. The code snippets below describe what
happens on the client and in her customer’s browser. The latter simply loads a page contain-
ing a script. The only difference with respect to the code in Section 3.1.2 is that this script also
processes information local to the customer, indicated as the argument myInfo. The code for
the client shows what it does with it: the script extracts the customer’s information (fst x) and
sends it to the third-party tracker by invoking the customized service www.analyze.com/client .
The code fragment snd x displays the page contents to the customer. The overall construction
snd 〈call wa with fst x, snd x〉 is interesting: it logically reduces to just snd x, but the eager seman-
tics of QWeS2T causes both components of the pair to be executed, which has the effect of sending
the customer’s information to the analytics site.

www.client.com
let

wa = url(www.analyze.com, clientPage)
s = hold (λx : info× html.

snd 〈call wa with fst x, snd x〉)
page = 〈s , someHtml〉

in
publish unit : .page

end

x www.analyze.com/clientPage

www.client.com/webpagey

customer
let

url = url(www.server.com,webpage)
page = call url with ()

in
(resume (fst page)) 〈myInfo, snd page〉

end

We can easily compose this code (which already combines most of the techniques seen above) with
the previous example. This would yield a web analytics auto-installer, by which the client could
call a service on www.analyze.com which customizes the tracking agent and automatically installs
it on the client’s site, resulting in the code we just examined.

3.4 Beyond Traditional Web Programming
In this last section, we consider a group of examples that go beyond what is customarily done in
traditional web programming, bordering aspects of cloud computing along the lines of platform-
as-a-service (were we to cast our previous examples in the context of cloud computing, they would
belong to what is known as software-as-a-service). We will indeed explore the possibility of out-
sourcing otherwise local execution to a remote server—this server could be vastly more powerful
than the client, or it may maintain some useful libraries.

22

To make these examples more interesting, we will assume an extension of QWeS2T that pro-
vides types for integers (int) and Boolean, together with some standard operations (all we will use
is multiplication, subtraction, conditional, and equality). The current QWeS2T prototype supports
all these extensions.

3.4.1 Remote Libraries

In our first example, we will implement the factorial function in QWeS2T. A single-host imple-
mentation of the factorial is totally standard, and can be glanced from Section 3.4.2. Instead, we
will assume that server www.server.com provides a multiplication service, www.server.com/mult :
then, rather than performing the multiplications locally during the recursive calls, we will offload
them to this server. The resulting code is as follows:

www.server.com/mult
y

www.server.com

publish x : int× int.
fst x ∗ snd x

client
let

times = url(www.server.com,mult)
fact = fix f : int→ int.λx : int.

if x = 0 then 1 else call times with 〈x, f (n− 1)〉
in

fact 4
end

In this example, we have used www.server.com/mult as a remote library. Just like any library, we
do not need to know how it is implemented. Furthermore, the server can update its implementation
at any time, transparently from the point of view of the client. Notice also that we used this library
in the recursive call of the factorial function—when evaluating fact n, we are making n calls to
www.server.com/mult .

3.4.2 Evaluation Service

Our next example takes this idea further: we will have the entire computation take place on the
server. To this end, we have the server provide an evaluation service, www.server.com/eval that
accepts a function f from int to int and an argument n of type int, computes f n, and returns the
result to the client. The type of this service is srv[susp[int→ int]× int][int]: we need to suspend the
function before shipping it to this server. The resulting client and server code is displayed below.
It uses a client-side factorial function for demonstration.

www.server.com/eval
y

www.server.com

publish x : susp[int→ int]× int.
(resume (fst x)) (snd x)

client
let

ev = url(www.server.com, eval)
fact = fix f : int→ int.λx : int.

if x = 0 then 1 else x ∗ f (n− 1)
in

call ev with 〈hold fact , 4〉
end

23

Figure 8: Prototype Implementation

In a sense, this last example operates in the opposite way with respect to the JavaScript-like exam-
ples we examined earlier: rather than having the server supply code that is executed on the client,
it is the client that has code that will be executed remotely. Platform-as-a-service applications of
cloud computing rely heavily on this idea: hire computing cycles from a well-provisioned provider
to run computations that exceed the local computing infrastructure.

This example opens the doors to a number of other applications of cloud computing and dis-
tributed computing in general, for example grid computing. Furthermore, combining this example
with that in Section 3.4.1 embodies some ideas of the map-reduce model [20], which could be
realized in an extension of QWeS2T with more expressive data structures such as lists and other
collections. These examples also highlight the need for a language with primitive support for
security.

4 Prototype Implementation
As a proof of concept, we have developed a fully-functional prototype implementation of QWeS2T.
It uses the HTTP protocol to enable any host on the Internet on which our prototype has been
installed to interact with any similarly equipped node. We have installed it on various machines in
our lab and used this setup to run all the examples discussed in Section 3, and a few more. Within
each node, our prototype consists of three components, as illustrated in Figure 8:

• The web service repository holds the services published by the node as well as information
about their type. In this way, it implements both the local service repository that we called Ω
in Section 2 and the portion of the service typing table Σ that pertains to this host (we chose
to implement Σ in a distributed fashion). The former is used at run-time, the latter during
typechecking. The web service repository is implemented as an SQLite database.

• The interpreter, the core of our prototype, is a relatively faithful implementation of the rules
in Section 2 extended with Booleans, integers and strings and their most common operators.
It performs two main duties:

– It typechecks all the code that originates at the local node and answers any typing
requests from other nodes. It typechecks URL’s found in local code by asking the host

24

where the corresponding service resides for the correct type. Therefore, our prototype
implements rule of url in Section 2 in a distributed fashion.

– It executes both local code and any mobile code that is received while interacting with
other hosts. It publishes local services by inserting them in the local web service repos-
itory and fetches them from there when receiving an execution request from a remote
host. It also calls services elsewhere through the web interface (see next). In our proto-
type, remote code is executed remotely: the internal expression expect e from w is an
artifact of the semantics and does not appear in our implementation—this is the only
departure from the rules in Section 2.

The interpreter is written in Python and interfaces with the other two components of the local
copy of the system. A new instance of the interpreter is started every time a service on the
local node is invoked.

• The web interface is the gateway to all remote hosts. Half of its job is to receive remote
requests, extract the service name and arguments, spawn a new interpreter and send the result
back. The other half is to package remote service invocations, send them on the network, and
deliver the result to the local interpreter. It is implemented as a PHP script running on the
local web server (Apache in our setup). It translates service requests to/from the interpreter
into HTTP messages. It uses POST/GET arguments to transmit the service identifier and the
web service parameters (“e2” in call e1 with e2) using the JSON library to encode the latter
into ASCII.

Users interact with the QWeS2T prototype through the web. A node on the network can support
several users. Each user has a service page that lists all the services he/she published, with each
listing consisting of a URL for the service, its type, and a descriptive comment (see the bottom
of Figure 9 for an example). Another programmer can make use of this information to call this
service. The service page also allows the user that owns it to log in. Once logged in, he/she can
delete services, modify their descriptions and open a code editor pane where he/she can write new
services directly in QWeS2T — the screenshot in Figure 9 shows the user in the act of adding code
that, when evaluated using the “T” button, will publish a “hello world” service. When pressing
“T”, the code is sent to the web interface that evaluates it and displays the result back to the user.
If this evaluation creates any new service, it is stored in the web service repository and the service
page is updated.

We have implemented all the examples shown in section 3 and more. Here is a trace of what
happens internally in our prototype during the execution of our most complex example, the web
service auto-installer of Section 3.3.4. The steps of the computation can be traced on Figure 8
(steps 6 to 9 involve the customer and are not shown).

0. As a preliminary step, the server publishes the web service in its local repository, and makes
it available at www.server.com/installer .

1. The interpreter on the client sends an HTTP request through the web interface, thereby call-
ing the service www.server.com/installer with argument clientInfo.

25

Figure 9: The Service Page as Seen by a User

2. www.server.com extracts the service and argument of this request, spawns an instance of its
local interpreter, and passes these parameters to it.

3. The server’s interpreter retrieves the service installer from its local web service repository
and evaluates it on the client’s argument.

4. The server’s interpreter hands the resulting value (the personalized web search service) to its
web interface.

5. The web interface packages it for transmission over HTTP and ships it back to the client.

6. The client completes the evaluation by publishing this new service in its local web service
repository and generates a new identifier, say clientSearch, to make it available to the outside
world through its own web server www.client.com.

7. The interpreter at the customer node invokes this service on data myQuery through its own
web interface.

8. The client processes this query by parsing the request, spawning a new interpreter instance,
retrieving the web service from its local repository, computing the result, and sending it back
through its web interface.

26

9. Finally, the customer receive the result through its web interface and uses it for whatever
purpose.

5 Parallelism
The dynamic semantics developed for QWeS2T in Section 2 is distributed but sequential: compu-
tation happens at exactly one host at any time. Undeniably, the Web does a good job at fueling this
illusion: we carry out most of our tasks on our local machine and occasionally send web requests,
e.g., a search on Google, that get answered after a short wait. We easily forget that there are mil-
lions of other people on the Web, carrying out computations at the same time as we do, and that
Google is servicing thousands of queries at any time.

In this section, we will explore parallel computation in the context of QWeS2T. Specifically,
we will develop three parallel semantics for this language, for three notions of parallelism. We
will set the stage for a semantics that supports parallel transitions in Section 5.1. Our first parallel
semantics, in Section 5.2, will allow QWeS2T computations to happen simultaneously at multiple
nodes in the network, thereby supporting a model of computation that is closer to the way the Web
really works. Section 5.3 will extend QWeS2T with a new construct that requests two subcom-
putations to be run in parallel, while the rest remains sequential. Section 5.4 will go back to our
original QWeS2T, but extract the fine-grained parallelism inherent in individual programs.

Even in the presence of parallelism, our models of computation will remain purely functional:
evaluating the same expressions any number of times will always yield the same results. Evaluation
is indeed effect-free — publishing new services is a benign effect, similar to fluid bindings, as there
is no primitive in QWeS2T for updating a service or testing for its existence. In particular, there
is no mutable state and no concurrency. This means that we do not need to worry about race
conditions or to provide mechanisms to resolve them. Similarly, computations will not need to
compete for resources, avoiding to have to deal with deadlocks and livelocks. Of course, this
is simplistic as web programming takes great advantage of state (most webapps use a database)
and concurrency (e.g., a chat webapp). Nonetheless, we suspect this is a good basis for studying
mechanisms to incorporate effects in our language in a way that is both useful and predictable.

We will not attempt to prove any meta-theoretic result about any of our parallel semantics
in this report: this section is best seen as a preview of future work rather than an account of
past achievements. We believe that these semantics are type safe and confluent in the sense that,
although which threads are executed is highly non-deterministic, any choices can be reconciled in
one additional step.

5.1 Parallel Transitions
The judgment modeling the transition semantics of QWeS2T had the following form in Section 2:

{Ω1}w1 , . . . , {Ωn}wn︸ ︷︷ ︸
∆

; e 7→w {Ω′
1}w1 , . . . , {Ω′

n}wn︸ ︷︷ ︸
∆′

; e′

27

Host w (which is one among w1, . . . ,wn) was active, meaning that it was the one performing a
step of computation on e, while the other hosts were idle (more precisely, w might also have been
waiting for a remote computation to return a result — still, exactly one node is actively running).
In this section, we will allow any node to be running its own computation while e is executing at
w. This suggests a composite judgment of the following form:

Ω1; e1 7→w1 Ω′
1; e′

1

· · ·
Ωn; en 7→wn Ω′

n; e′
n

where any number of nodes may execute a step of computation simultaneously.
In order to support remote procedure calls, we need to extend this idea in a couple of ways.

First of all, when invoking a remote service, we want to execute it even if that node is already
busy running something else. We will achieve this by letting a node execute not one expression
e , but a multiset ε of computations at the same time: remember, Google performs thousands of
searches simultaneously. Each of these computations will run on the same host but be otherwise
independent. Note that this also captures the situation where a host has nothing to do: the multiset
ε can simply be empty. The resulting composite judgment (we will call it a “macro-judgment”)
has the following form:

Ω1; ε1 7→w1 Ω′
1; ε′

1

· · ·
Ωn; εn 7→wn Ω′

n; ε′
n

We will call, somewhat improperly, the multiset ε of computations executing at the same node w
the thread pool of w, and each ε ∈ ε a thread on w. Indeed, we have the following definition:

Thread pools ε ::= · | ε, ε

where “·” stands for the empty multiset. We will remain vague for the moment about what a thread
ε is exactly. The precise definition will vary with each of the semantics in the sections to come.

We call the pair consisting of the services Ω and thread pool ε associated with a host w the
computational state of w and the set of pairs (Ωi, εi) of all hosts on the network the (computational)
state of the network, which we will denote as S. We will furthermore summarize a judgment such
as the above as S Z⇒ S ′. Specifically,

Ω1; ε1 7→w1 Ω′
1; ε′

1

· · · · · · · · ·
Ωn; εn 7→wn Ω′

n; ε′
n︸ ︷︷ ︸ ︸ ︷︷ ︸

S Z⇒ S ′

At this point, we have a notation for a network state transition, namely S Z⇒ S ′, but we have
not defined exactly what it means. Informally, we will have S Z⇒ S ′ whenever each thread on
each host performs at most one step of computation. The two extreme situations implied by this

28

definition are that each thread on each host performs one step in unison, and that no thread on no
host performs a step (in which case S ′ = S). We allow intermediate forms of transitions (in which
some threads make a step and others don’t) to account for situations where a thread may be waiting
for the result from a remote service invocation. We are also trying to avoid hardwiring a common
clock on every host on the network.

Borrowing from computational multiset rewriting [5, 9, 16], we define S Z⇒ S ′ by specifying
the computation performed by each of these threads, or a small number of coordinated threads. We
will use “micro-judgments” of the form

Ω; ε 7→w Ω′; ε′

to indicate that thread ε evolves to ε′ in (exactly) one step, possibly extending the repository Ω into
Ω′. When the repository does not change, we will further abbreviate it as ε 7→w ε

′ for conciseness.
Recall that all threads on the same host share the same service repository. Therefore, Ω in the
above micro-judgment pertains to the host w rather than to the individual thread ε. This means that
if two or more threads add services to the repository in the same step, the overall effect will be to
add all those services to the repository [16].

5.2 Network Parallelism
With a framework to describe parallel transitions in place, we begin by modifying the dynamic
semantics in Section 2 to support simultaneous computation at multiple nodes in the network.
Because services can be invoked on a host that is already running code (either executing some
expression of interest or responding to a service request), we further allow multiple independent
threads to run at the same host, using the setup developed in the last section.

Predictably, supporting network parallelism does not require making any change to the ex-
ternal syntax of QWeS2T, which the programmer uses to write her applications. Having now an
independent notion of thread provides however an opportunity to factor out the expression form
“expect e from w”, which was used internally only. For clarity, we collect the (external) syntax of
QWeS2T (which was introduced piecemeal in Section 2) in the following grammar:

Types τ ::= τ → τ ′ | τ × τ ′ | unit | susp[τ] | srv[τ][τ ′]

Expressions e ::= x | λx : τ. e | e1 e2 | fix x : τ.e
| 〈e1, e2〉 | fst e | snd e | ()
| hold e | resume e
| url(w, u) | publish x : τ.e | call e1 with e2

Now, the way the transition semantics in Section 2 modeled the internal expression expect e from w′

was strange: the computation of e happened at the remote host w′, yet the abstraction in Figure 6
showed it evolving locally as a sequence expect e′ from w′, expect e′′ from w′, etc., until the
embedded expression reduced to a value, which was handed to the local host. This is clearly
not the way a remote procedure call work on the Web: the argument is sent to the remote host,
executed there while the local host is waiting (assuming a synchronous behavior), and the result is
sent back. We will now model this behavior more closely. To do so, we need to introduce labels,

29

() val
val unit

λx : τ. e val
val lam

e1 val e2 val

〈e1, e2〉 val
val pair

hold e val
val hold

url(w′, u) val
val url

e1 7→w e
′
1

e1 e2 7→w e
′
1 e2

npar app1

v1 val e2 7→w e
′
2

v1 e2 7→w v1 e
′
2

npar app2
v2 val

(λx : τ. e) v2 7→w [v2/x] e
npar app3

fix x : τ.e 7→w [fix x : τ.e/x] e
npar fix

e1 7→w e
′
1

〈e1, e2〉 7→w 〈e′
1, e2〉

npar pair1
e 7→w e

′

fst e 7→w fst e′
npar fst1

e 7→w e
′

snd e 7→w snd e′
npar snd1

v1 val e2 7→w e
′
2

〈v1, e2〉 7→w 〈v1, e
′
2〉

npar pair2
v1 val v2 val

fst 〈v1, v2〉 7→w v1

npar fst2
v1 val v2 val

snd 〈v1, v2〉 7→w v2

npar snd2

e 7→w e
′

resume e 7→w resume e′
npar resume1

resume (hold e) 7→w e
npar resume2

Ω; publish x : τ.e 7→w (Ω, u ↪→ x : τ.e); url(w, u)
npar publish

e1 7→w e
′
1

call e1 with e2 7→w call e′
1 with e2

npar call1

v1 val e2 7→w e
′
2

call v1 with e2 7→w call v1 with e′
2

npar call2

v2 val

call url(w′, u) with v2 7→w expect ` from w′

(Ω, u ↪→ x : τ.e)︸ ︷︷ ︸
Ω′

; · 7→w′ Ω′; ([v2/x] e)`

npar expect1 v val
expect ` from w′ 7→w v

(v)` 7→w′ ·

npar expect2

e 7→w e
′

(e)` 7→w (e′)`
npar l

Figure 10: Parallel Network Evaluation Rules

30

also called destinations. When invoking a remote service, the local host will create a label ` and
send it off together with the expression to be evaluated. It will then actively wait for the result
from the remote host w′ by means of the thread “expect ` from w′” — a modification of our former
“expect e from w′” that replaces the expression e with the label `. The remote host will execute e
and once a value has been produced, it will send it back to the local host. In this section, the label
acts therefore as a unique return address for a remote service request.

In this variant of the dynamic semantics of QWeS2T, threads can be normal QWeS2T expres-
sions, artifacts of the form “expect ` from w”, or labeled expressions of the form (e)`. This is
described by the following grammar.

Threads ε ::= e | expect ` from w | (e)`

The resulting network semantics, which relies on the conventions introduced in the last section,
is displayed in Figure 10. All but the last three rules correspond directly to the localized semantics
of Section 2. Rule npar expect1 reengineers rule step call3: on the local host w, the expression
call url(w′, u) with v2 is reduced to the active waiting thread expect ` from w′ for a new label `; on
the remote host w′, the new thread ([v2/x] e)` is started where e is the body of the service u and `
is the very label w is waiting on. Rule npar expect2 models the hand-off of the value computed
by w′ in response to this request and corresponds to rule step expect2. Notice that neither rule
forces the hosts w and w′ to be different. The last rule bridges evaluation of labeled and unlabeled
threads.

5.3 Explicit Parallelism
The technique just seen to model remote procedure calls and responses is amenable to describing
other forms of parallelism. In this section, we use it to extend QWeS2T with a simple parallel
pair construct that the programmer can use to programmatically request that two expressions be
evaluated as parallel threads. The main computation waits for both results before continuing. The
syntactic extension to the external language is as follows:

Expressions e ::= . . . | letpar x1 ⊗x2 = e1 ⊗ e2 in e

For the sake of completeness, we give the obvious typing rule for parallel pairs:

Σ | Γ `w e1 : τ1 Σ | Γ `w e2 : τ2 Σ | Γ, x1 : τ1, x2 : τ2 `w e : τ

Σ | Γ `w letpar x1 ⊗x2 = e1 ⊗ e2 in e : τ
of lp

To model the execution of parallel pairs, we extend our definition of threads from Section 5.2
with the following production

Threads ε ::= . . . | letpar x1 ⊗x2 = `1 ⊗ `2 in e

where the subexpressions e1 and e2 have been replaced with labels. The transition rules for this
construct are very similar to npar expect1 and npar expect2 in Section 5.2:

letpar x1 ⊗x2 = e1 ⊗ e2 in e 7→w letpar x1 ⊗x2 = `1 ⊗ `2 in e, (e1)`1 , (e2)`2
epar lp1

31

v1 val v2 val

letpar x1 ⊗x2 = `1 ⊗ `2 in e, (v1)`1 , (v2)`2 7→w [v1/x1] [v2/x2] e
epar lp2

The first rule spawns new threads for e1 and e2 tagging them with new labels `1 and `2 re-
spectively, and puts the current computation in an dormant state by replacing it with the thread
“letpar x1 ⊗x2 = `1 ⊗ `2 in e”. The second rule kicks in once values v1 and v2 have been produced
for e1 and e2, respectively. It simply substitutes them for the variables x1 and x2 in the body of
the parallel pair construct. Notice how labels are used to remember where subcomputations should
deliver their result to.

5.4 Implicit Parallelism
In this section, we devise a maximally parallel semantics for our original version of QWeS2T
(deprived of the parallel pair construct introduced in Section 5.4). We are going after the intrinsic
parallelism present in the language. The technique we use to do so is known as linear destination
passing style [38, 15] and can be seen as an extreme form of the labeling approach we sporadically
used in the last two sections. Labels ` are known as destinations in this setting. Linear destination
passing style can be understood as a systematic development of a standard stack semantics for a
programming language, with which it shares many ingredients and properties, except the ability to
be implemented using a stack.

We will rely on a more sophisticated notion of thread than what we needed so far. Threads can
take one of three forms:

• They can be labeled expressions (e)` which will compute expression e to a value that will be
delivered to destination `.

• They can be labeled frames, which resemble expressions except that some of their subex-
pressions have been replaced with destinations. In the last two sections, “expect ` from w”
and “letpar x1 ⊗x2 = `1 ⊗ `2 in e” were (unlabeled) frames: their job was to wait for the
computations tagged with their labels to yield values. We will make a systematic use of this
technique.

• They can be labeled return values (v)` where v is a value in our traditional sense and ` is the
destination that is waiting for it.

We call the first two forms evaluation threads (the destination appears as a superscript) and the last
return threads (the destination is in a subscript position). Altogether, threads are defined by the
following grammar:

Threads ε ::= (e)`

| (`1 `2)` | 〈`1, `2〉` | (fst `′)` | (snd `′)`

| (resume `′)` | (call `1 with `2)` | (expect `′ from w)`

| ()` | (λx : τ. e)` | 〈v1, v2〉` | (hold e)` | (url(u,w))`

32

()` 7→w ()`

ipar unit

(λx : τ. e)` 7→w (λx : τ. e)`

ipar lam

(hold e)` 7→w (hold e)`

ipar hold

(url(w, u))` 7→w (url(w, u))`

ipar url

(e1 e2)` 7→w (`1 `2)`, e1
`1 , e2

`2
ipar app1

(`1 `2)`, (λx : τ. e)`1
, (v2)`2

7→w ([v2/x] e)`
ipar app2

(fix x : τ.e)` 7→w ([fix x : τ.e/x] e)`
ipar fix

〈e1, e2〉` 7→w 〈`1, `2〉`, (e1)`1 , (e2)`2
ipar pair1

〈`1, `2〉`, (v1)`1
, (v2)`2

7→w 〈v1, v2〉`
ipar pair2

(fst e)` 7→w (fst `′)`, (e)`′
ipar fst1

(fst `′)`, 〈v1, v2〉`′ 7→w (v1)`

ipar fst2

(snd e)` 7→w (snd `′)`, (e)`′
ipar snd1

(snd `′)`, 〈v1, v2〉`′ 7→w (v2)`

ipar snd2

(resume e)` 7→w (resume `′)`, (e)`′
ipar resume1

(resume `′)`, (hold e)`′ 7→w (e)`
ipar resume2

Ω; (publish x : τ.e)` 7→w (Ω, u ↪→ x : τ.e); (url(w, u))`

ipar publish

(call e1 with e2)` 7→w (call `1 with `2)`, (e1)`1 , (e2)`2
ipar call

(call `1 with `2)`, (url(w′, u))`1
, (v2)`2

7→w (expect `′ from w′)`

(Ω, u ↪→ x : τ.e)︸ ︷︷ ︸
Ω′

; · 7→w′ Ω′; ([v2/x] e)`′

ipar expect1

(expect `′ from w′)` 7→w (v)`

(v)`′ 7→w′ ·

ipar expect2

Figure 11: Linear Destination Passing Semantics for QWeS2T

33

The linear destination passing semantics for QWeS2T is displayed in Figure 11. A first thing
to notice is that we have done away with the value judgment v val in favor of transition such as
ipar unit that rewrite an evaluation frame for a value to the corresponding return frame. Pairs
deviate slightly from this pattern because their components need to be values themselves for the
pair to be a value: this is captured by rule ipar pair2.

The evaluation of a generic labeled expression (e)` proceeds by spawning threads for each
of the subexpressions in e and replacing it with a frame that waits for their results. Once return
threads are available for them, this frame is reduced as appropriate. For example, the evaluation
of an application (e1 e2)` in rule ipar app1 spawns evaluation threads (e1)`1 and (e2)`2 for new
labels `1 and `2 and places the application itself in a dormant state as the frame (`1 `2)`. Once
values have been produced for e1 and e2, as witnessed by the return frames (λx : τ. e)`1

and (v2)`2

respectively, rule ipar app2 kicks in and reduces the application to ([v2/x] e)`.
The form of linear destination passing style used in this section supports a very fine grained

form of parallelism, essentially at the instruction level. While it is an interesting proof of concept,
we do not advocate it as a practical model of computation, at least relative to current architectures.
Indeed, the overhead involved in thread creation is likely to outweigh any performance benefits,
even in a massively parallel computer. Yet, its realization at larger granularities for computation
units has the potential of big performance gains relative to management overhead.

6 Related Work
The popularity of web applications has fueled a market for development environments and pro-
gramming support, mainly from industry. The closest to our proposal is Google’s Web Toolkit
(GWT) [24], which allows writing webapps entirely in Java. Because Java is strongly typed, typ-
ing mismatches between client code and server code are caught at compile time. Client-side code
is written as an extension of the RemoteService class and is compiled to JavaScript. Server-side
code extends the RemoteServiceServlet class and is compiled to Java bytecode. While GWT is
well suited for traditional client-server applications, it was not designed for dynamic services such
as our web service auto-installer example: server code is not meant to be sent out and installed on
another node — this is as if QWeS2T disallowed a publish in the scope of a hold. Other software
companies have development tools for proprietary web applications solution, e.g., Adobe’s Flash
and Microsoft’s Silverlight.

Academic research has been following industry in the webapp arena. Links [18] is a web
oriented programming language that also compiles client-side code into JavaScript. With Links,
functions are tagged as client or server to indicate where they shall be executed. Server code is
again static and once it has been generated, it cannot be customized and moved around as QWeS2T
could do in Section 3.3. Other efforts along similar lines include Swift [17] which also produces
JavaScript code for the client and Java for the server but which additionally allows annotating a pro-
gram with information flow properties to reason about secrecy and authentication, QHTML [21],
a client-server module for Oz with support for declarative graphical user interface programming,
and Hop [48], a dynamically typed language for web programming based on Scheme.

While research on web application programming has started in earnest only fairly recently, the

34

study of web services has a much longer history. By web service we mean a software agent that
performs its functionality by engaging other agents (services) in a preestablished sequence of mes-
sage exchanges. The allowable communication patterns, which internal and external choices can
make quite complex, is specified through an interaction protocol (also called a contract). A major
concern when composing web services is to ensure that they are interoperable, i.e., that their pro-
tocols are compatible — no service ever gets stuck waiting for a message that nobody will deliver.
This is called the conformance problem. Conformance testing corresponds to cryptographic proto-
col verification deprived of the attacker’s malice [51]. Recently, a number of authors have proposed
abstract frameworks to study web services interactions and related concepts. Carpinetti et al. [14]
formally define contracts in process algebra and cast performance testing as process simulation,
while Bravetti and Zavattaro [11] study it as matching preorders of complementary input/output
operations. Baldoni et al. [3] study the key issue of choice and achieve adaptability through sur-
gical edit operations, while in previous work they approached conformance testing with the help
of finite state automata [4]. Conformance has also been studied through session types [54], which
describe communication channels in process algebras. Web applications, as considered here, can
be seen as degenerate web services with nearly trivial interaction protocols: a host can at most
invoke a remote function defined on another host on supplied arguments and wait for the result —
this is no different from invoking a local library function except that we need to model where the
computation is taking place. The conformance problem degenerates to type checking, which must
be localized. It should be observed that this restricted form of interaction protocol is common in
industrial web services and is essentially what is defined in the WSDL standard [55].

The design of QWeS2T has been influenced by Lambda 5 [33, 34]. Lambda 5 is an abstract
programming language for distributed computing that uses a modal type system to capture the
notion of localized computation. It deploys three modalities for this purpose:

• The type �τ , with expression constructors box ω.M and unbox M , corresponds rather di-
rectly to our susp[τ] (the world variable ω in box ω.M allows making expressions paramet-
ric over a node, which is not supported in our language as host names are not first-class
objects—a similar choice was made in [27]).

• The type ♦τ specialized to functional types, its expression forms here M and letd ω, x =
M inN together with the world shift expression get[w]M , conjure our type srv[τ][τ ′] and the
publish/call remote procedure call mechanism. Specifically, publish x : τ.e of type srv[τ][τ ′]
would be written as the Lambda 5 expression here (λx : τ. e) of type ♦(τ → τ ′). Instead,
call url(u,w′) with e′ at world w where u : srv[τ][τ ′] is the URL u ↪→ x : τ.e on node w′,
corresponds to the Lambda 5 expression letd ω, x = e in get[w](x get[w′]e′) where e would
have type ♦(τ → τ ′).

• The additional “shamrock types” with constructors holdM (which is different from our hold)
and leta x = M in N do not have counterparts in our language.

Altogether, QWeS2T can be seen as a simplification of Lambda 5 specialized to web programming.
As such, it streamlines this language and provides constructs that abstractly capture the way we
use the web directly. Lambda 5’s prototype, ML5 [34], although targeting web programming, is

35

limited to basic browser-server interactions and cannot express all examples in Section 3.3. On
the other hand, it implements a large fragment of Standard ML [31] as well as a basic document
object model (DOM). Furthermore, its capabilities have been demonstrated on several non-trivial
case studies [33].

Other efforts besides Lambda 5 have looked at modal logic to express located computation [10,
32, 37]. Modal logic is appealing because it naturally supports expressing phenomena, here com-
putation, from a variety of view points, network nodes here. Among them, Jia and Walker [27]
find a foundation of distributed computing in an intuitionist modal logic and distill a programming
language from it using the Curry-Howard isomorphism. Additionally, Cardelli and Gordon studied
a modal semantics for the ambient calculus [13] (more below).

Just like Lambda 5, QWeS2T also fits the long-standing thread of research endeavors aimed
at extending functional programming languages with support for distributed computation. Dis-
tributed ML [28] looks at concurrency and fault tolerance, while Facile [52] fuses functional com-
putation à la ML [31] and process algebra à la CCS [30] by supporting typed channels in the style
of another effort, Concurrent ML [41]. JoCaml [29] brings O’Caml [40] and the join calculus [23]
together by defining hierarchical locations similar to mobile ambients [12]. Another offspring of
O’Caml is Acute [49], which explores typing mechanisms for data exchange in programs whose
running environment may not be fully known in advance. All these efforts tend to focus on low
level aspects of distributed programming, which contrasts with QWeS2T’s direct mechanisms to
model web programming as done in practice. A particularly interesting effort is Alice [43, 42], a
language for “open programming”, a paradigm which supports a distributed view of programming
by which a program routinely integrates calls to remote libraries and other remote code rather than
compiling local copies. This fits well a “social programming” model for which QWeS2T would be
particularly appropriate.

Several authors have proposed extending process calculi [45] to support location-based dis-
tributed programming. Nomadic Pict [53] tags every process with the host it is running on and
defines communication primitives among them. By contrast, SafeDpi [26] corals processes into
locations and provides operators to move processes between them. Mobile ambients [12, 13, 6]
push this idea further by segregating processes into possibly nested locations (ambients) and pro-
viding operators to move ambients around and dissolve their boundaries to permit them to com-
municate. Closer to us, Ferrara [22] expresses web services in a process algebra, thereby enabling
the use of verification techniques based on temporal logic and process equivalence to gain correct-
ness assurances, without losing the ability to compile them to executable code. Efforts born out
of process algebra, including all of the above, bring to the foreground the communication aspect
of distributed systems and web programming. By emphasizing channels, messages and processes,
they differ from QWeS2T and some of the languages mentioned earlier, which tend to endorse a
localized view of computation which weaves remote calls and mobile code within the fabric of the
bulk of the execution taking place at a host. Indeed, these languages typically rely on fairly simple
communication modalities, a form of message passing in which each request results in a response
in the case of QWeS2T, which contrasts with the sophisticate communication patterns of process
algebra [45].

36

7 Conclusions and Future Work
In this paper, we proposed a type safe language, QWeS2T, that provides an abstraction for two
characteristic forms of distributed computing found in web programming: mobile code and remote
procedure calls. By specifying client-server and server-server interactions in a single formalism,
this model makes it easy to dynamically generate and disseminate scripts and services. We proved
that QWeS2T is type safe and we implemented a prototype.

In future work, we intend to develop QWeS2T in two directions. One is an extension of this
language with additional constructs, in particular support for parallel execution and asynchronous
communication. We also plan to extend our prototype with richer types, and eventually with a
Document Object Model (DOM) Library to cope with web standards, thereby allowing us to run
more realistic web programming experiments with QWeS2T.

The other direction involves using QWeS2T as a basis for studying language-level mechanisms
for secure web programming. Specifically, we are interested in approaches to control access to
services (e.g., a service provider will want to restrict the use of a service to certain nodes) and to
control the dissemination of data supplied to those services (a client may refuse to supply sensitive
data to a service if it were to forward this data to an untrusted node). Preliminary work indicates
that it is possible to extend the static semantics of QWeS2T to identify the nodes that will be in-
volved in the computation of a given expression and how their different services will be combined.
This is similar to the history-based security models proposed in [2, 8]. Therefore, we believe
that we can braid a policy language for static information flow security [35, 44, 7] into QWeS2T.
Specifically, we anticipate attaching a security policy to published services and the data they are
invoked with. A similar idea was explored in [50, 56].

Acknowledgments

We are grateful to Bob Harper, Rob Simmons and Dan Licata for the fruitful discussions during
the design of QWeS2T and for their help using Twelf. We are also thankful to the anonymous
colleagues who reviewed an early version of this paper [47] for the LAM’10 workshop.

References
[1] The Twelf project wiki. Available at http://twelf.plparty.org/wiki.

[2] Martı́n Abadi and Cédric Fournet. Access control based on execution history. In The Internet
Society, editor, Network and Distributed System Security Symposium, NDSS, San Diego, CA,
2003.

[3] Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Nirmit Desai, Viviana Patti, and Munin-
dar P. Singh. Choice, interoperability, and conformance in interaction protocols and service
choreographies. In K. Decker, J. Sichman, C. Sierra, and C. Castelfranchi, editors, Pro-
ceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS’09), pages 843–850, Budapest, Hungary, 2009.

37

http://twelf.plparty.org/wiki

[4] Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti. A priori confor-
mance verification for guaranteeing interoperability in open environments. In A. Dan and
W. Lamersdorf, editors, Proceedings of the 4th International Conference on Service Ori-
ented Computing (ICSOC’06), pages 339–351, Chicago, IL, 2006. Springer-Verlag LNCS
4294.

[5] Jean-Pierre Banâtre and Daniel Le Métayer. Programming by multiset transformation. Com-
munications of the ACM, 36(1):98–111, 1993.

[6] Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ivano Salvo, and Vladimiro Sassone. A
type inference algorithm for secure ambients. In Theory of Concurrency, Higher Order and
Types, TOSCA Workshop 2001, 2001.

[7] Massimo Bartoletti, Pierpaolo Degano, Gian Ferrari, and Roberto Zunino. Model checking
usage policies. Trustworthy Global Computing, pages 19–35, 2009.

[8] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. History-based access control
with local policies. Foundations of Software Science and Computational Structures, pages
316–332, 2005.

[9] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer Science,
96(1):217–248, 1992.

[10] Tijn Borghuis and Loe Feijs. A constructive logic for services and information flow in com-
puter networks. The Computer Journal, 43(4):274–289, 2000.

[11] Mario Bravetti and Gianluigi Zavattaro. Contract based multi-party service composition. In
Proceedings of the IPM International Symposium on Fundamentals of Software Engineering
(FSEN’07), pages 207–222, Tehran, Iran, 2007. Springer-Verlag LNCS 4767.

[12] Luca Cardelli and Andrew D. Gordon. Types for mobile ambients. In Proceedings of the
26th ACM Symposium on Principles of Programming Languages (POPL’99), pages 79–92.
ACM Press, 1999.

[13] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere. modal logics for mobile am-
bients. In Proceedings of the 27th Symposium on Principles of Programming Languages
(POPL’00), pages 365–377, San Antonio, TX, 2000. ACM Press.

[14] Samuele Carpineti, Giuseppe Castagna, Cosimo Laneve, and Luca Padovani. A formal ac-
count of contracts for web services. In In Proceedings of the 3rd Workshop on Web Services
and Formal Methods (FM-WS’06, pages 148–162. Springer-Verlag LNCS 4184, 2006.

[15] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A Concurrent Logical
Framework II: Examples and Applications. Technical Report CMU-CS-02-102, Department
of Computer Science, Carnegie Mellon University, Pittsburgh, PA, March 2002, revised May
2003.

38

[16] Iliano Cervesato and Andre Scedrov. Relating State-Based and Process-Based Concurrency
through Linear Logic. Information & Computation, 207(10):1044–1077, 2009.

[17] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, Krishnaprasad Vikram, Lantian Zheng,
and Xin Zheng. Secure web applications via automatic partitioning. In Proceedings of the
21st ACM Symposium on Operating Systems Principles (SOSP’07), Stevenson, WA, 2007.

[18] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web programming
without tiers. Formal Methods for Components and Objects, pages 266–296, 2007.

[19] S. De Labey, M. van Dooren, and E. Steegmans. ServiceJ A Java Extension for Program-
ming Web Services Interactions. In Web Services, 2007. ICWS 2007. IEEE International
Conference on, pages 505 –512, july 2007.

[20] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clus-
ters. In Proceedings of the Sixth Symposium on Operating System Design and Implementation
— OSDI’04, pages 137–150, San Francisco, CA, 2004.

[21] Sameh El-Ansary, Donatien Grolaux, Peter Van Roy, and Mahmoud Rafea. Overcoming
the multiplicity of languages and technologies for web-based development using a multi-
paradigm approach. In Procceedings of the 2nd International Conference on Multiparadigm
Programming in Mozart/Oz (MOZ’04), pages 113–124, 2004.

[22] Andrea Ferrara. Web services: a process algebra approach. In ICSOC ’04: Proceedings of
the 2nd international conference on Service oriented computing, pages 242–251, New York,
NY, USA, 2004. ACM.

[23] Cédric Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming. PhD
thesis, École Polytechnique, Palaiseau, 1998. INRIA TU-0556. Also available from http:
//research.microsoft.com/˜fournet.

[24] Google Inc. Google Web Toolkit. Available at http://code.google.com/
webtoolkit/.

[25] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal
of the Association for Computing Machinery, 40(1):143–184, January 1993.

[26] Matthew Hennessy, Julian Rathke, and Nobuko Yoshida. SafeDPi: A language for controlling
mobile code. Technical report, Department of Computer Science, University of Sussex, 2003.

[27] Limin Jia and David Walker. Modal proofs as distributed programs. Programming Languages
and Systems, pages 219–233, 2004.

[28] Clifford Krumvieda. Distributed ML: abstractions for efficient and fault-tolerant program-
ming. PhD thesis, Department of Computer Science, Cornell University, 1993.

39

http://research.microsoft.com/~fournet
http://research.microsoft.com/~fournet
http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/

[29] Louis Mandel and Luc Maranget. Programming in JoCaml. Technical Report RR-6261,
MOSCOVA – INRIA Rocquencourt, 2007.

[30] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University
Press, 1999.

[31] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

[32] Jonathan Moody. Logical mobility and locality types. In Sandro Etalle, editor, Proceedings of
the 14th Symposium on Logic Based Program Synthesis and Transformation (LOPSTR’04),
pages 69–84, Verona, Italy, 2004. Springer-Verlag LNCS 3573.

[33] T. Murphy VII. Modal Types for Mobile Code. PhD thesis, Carnegie Mellon University,
January 2008. Available as technical report CMU-CS-08-126.

[34] Tom Murphy VII, Karl Crary, and Robert Harper. Type-Safe Distributed Programming with
ML5. Trustworthy Global Computing, pages 108–123, 2008.

[35] Andrew C. Myers. JFlow: practical mostly-static information flow control. In POPL ’99:
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 228–241, New York, NY, USA, 1999. ACM.

[36] OASIS. Business Process Execution Language (WS-BPEL). Organization for the Advance-
ment of Structured Information Standards (OASIS), 2007.

[37] Sungwoo Park. A modal language for the safety of mobile values. In Naoki Kobayashi,
editor, Proceedings of the 4th Asian Symposium on Programming Languages and Systems
(APLAS’06), pages 217–233, Sydney, Australia, 2006. Springer-Verlag LNCS 4279.

[38] Frank Pfenning. Substructural operational semantics and linear destination-passing style.
Slides of an invited talk to the Second Asian Symposium on Programming Languages
and Semantics (APLAS’04). Available at http://www.cs.cmu.edu/˜fp/talks/
aplas04-talk.ps., 2004.

[39] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical frame-
work for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), pages 202–206, Trento, Italy, July 1999.
Springer-Verlag LNAI 1632.

[40] Didier Rémy and Jérôme Vouillon. Objective ML: An effective object-oriented extension to
ML. Theory And Practice of Objects Systems, 4(1):27–50, 1998.

[41] John Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.

[42] Andreas Rossberg. Typed Open Programming - A higher-order, typed approach to dynamic
modularity and distribution. PhD thesis, Universität des Saarlandes, 2007.

40

http://www.cs.cmu.edu/~fp/talks/aplas04-talk.ps
http://www.cs.cmu.edu/~fp/talks/aplas04-talk.ps

[43] Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunklaus, and Gert Smolka.
Alice through the looking glass. In Proceedings of the 4th Symposium on Trends in Functional
Programming (TFP’04), Munich, Germany, 2004. Intellect Books.

[44] A. Sabelfeld and A. C. Myers. Language-based information-flow security. Selected Areas in
Communications, IEEE Journal on, 21(1):5–19, Jan 2003.

[45] Davide Sangiorgi and David Walker. The π-Calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2001.

[46] Thierry Sans and Iliano Cervesato. The QWeS2T Project. Available at http://www.
qatar.cmu.edu/˜tsans/qwesst/.

[47] Thierry Sans and Iliano Cervesato. QWeS2T for Type-Safe Web Programming. In Berndt
Farwer, editor, Third International Workshop on Logics, Agents, and Mobility — LAM’10,
Edinburgh, Scotland, UK, 2010.

[48] Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop, a Language for Programming
the Web 2.0. In Proceedings of the First Dynamic Languages Symposium (DLS’06), pages
975–985, Portland, OR, 2006.

[49] Peter Sewell, James Leifer, Keith Wansbrough, Francesco Zappa Nardelli, Mair Allen-
Williams, Pierre Habouzit, and Viktor Vafeiadis. Acute: high-level programming language
design for distributed computation. Journal of Functional Programming, 17(4–5):547–612,
2007.

[50] Nikhil Swamy, Brian J. Corcoran, and Michael Hicks. Fable: A language for enforcing
user-defined security policies. Security and Privacy, IEEE Symposium on, 0:369–383, 2008.

[51] Paul F. Syverson and Iliano Cervesato. The Logic of Authentication Protocols. In R. Focardi
and R. Gorrieri, editors, Foundations of Security Analysis and Design. Springer-Verlag LNCS
2171, 2001.

[52] Bent Thomsen, Lone Leth, and Tsung-Min Kuo. A Facile tutorial. In Ugo Montanari and
Vladimiro Sassone, editors, Proceedings of the 7th International Conference on Concurrency
Theory (CONCUR’96), pages 278–298, London, UK, 1996. Springer-Verlag LNCS 1119.

[53] Asis Unypoth and Peter Sewell. Nomadic Pict: Correct communication infrastructure for
mobile computation. In Proceedings of the 28th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’01), London, UK, 2001.

[54] Vasco T. Vasconcelos. 9th International School on Formal Methods for the Design of Com-
puter, Communication and Software Systems: Web Services (SFM’09), chapter Fundamentals
of Session Types, pages 158–186. Springer-Verlag LNCS 5569, 2009.

[55] W3C. Web Services Description Language (WSDL). World Wide Web Consortium (W3C),
2007.

41

http://www.qatar.cmu.edu/~tsans/qwesst/
http://www.qatar.cmu.edu/~tsans/qwesst/

[56] Lantian Zheng and Andrew C. Myers. Dynamic security labels and static information flow
control. International Journal of Information Security, 6(2):67–84, 2007.

A Twelf Specification
This appendix contains the Twelf specification for the QWeS2T language, its semantics and its
proof of safety. This specification can also be found in [46] as a single file. A description of Twelf
goes beyond the scope of this report: a wealth of information can be found at [1], a brief system
description at [39], and its underpinning in the LF type theory at [25].

A.1 Syntax
The Twelf specification below represents every construct exactly as it was introduced in Section 2,
with one exception: url(w, u). The evaluation semantics of this construct requires that the variable
u be dynamically generated. Doing so is cumbersome in Twelf — a direct implementation would
unnecessarily complicate the specification and the proofs.

Our work-around is to treat URLs as if they were inlined versions of the remote service they
point to. Therefore, we represent the value url(w, u) with matching service u ↪→ x : τ.e at host w as
a value “published x : τ. e at w”, which we encode in Twelf as url w T ([x:exp]E x). Be-
cause it is a value, it is never modified. When in Section 2 call uses url(w, u) to trigger u ↪→ x : τ.e
at w, the specification below achieves the same effect by using url w T ([x:exp]E x). Of
course, doing so defeats the practical purpose of making a remote procedure call, but it does not
change the meta-theoretic properties of our language.

Within a Twelf representation, this has the additional advantage of dispensing with the need of
giving an explicit representation to the local service repositories Ωi (because all services are in-
lined), and consequently of the global repository ∆. While these collections can easily be encoded
in Twelf, their presence significantly complicates the encoding of the semantics of a language, and
especially its meta-theory.

% Hosts
host: type. %name host W.

% Types
tp: type. %name tp T.
unit : tp.
prod : tp -> tp -> tp.
arrow : tp -> tp -> tp.
susp : tp -> tp.
srv : tp -> tp -> tp.

% Expressions
exp: type. %name exp E.
triv : exp.
pair : exp -> exp -> exp.
fst : exp -> exp.

42

snd : exp -> exp.
lam : tp -> (exp -> exp) -> exp.
app : exp -> exp -> exp.
fix : tp -> (exp -> exp) -> exp.
hold : exp -> exp.
resume : exp -> exp.
url : host -> tp -> (exp -> exp) -> exp.
publish : tp -> (exp -> exp) -> exp.
call : exp -> exp -> exp.
expect : exp -> host -> exp.

A.2 Static Semantics
A.2.1 Mobility

mobile: tp -> type. %name mobile M.
%mode mobile +T.

mob_unit : mobile unit.
mob_prod : mobile (prod T1 T2)

<- mobile T1
<- mobile T2.

mob_susp : mobile (susp T).
mob_srv : mobile (srv T1 T2)

<- mobile T1
<- mobile T2.

A.2.2 Typing

To leverage Twelf’s representation of object variables as meta-variables, we store typing assump-
tions in Twelf’s context as of E W T rather than of E T, which would be a direct encoding of
the typing judgment of QWeS2T in Section 2. A direct representation would significantly compli-
cate the specification and the proofs.

of: host -> exp -> tp -> type. %name of TP.
%mode of +W +E -T.

of_triv : of W triv unit.
of_pair : of W (pair E1 E2) (prod T1 T2)

<- of W E2 T2
<- of W E1 T1.

of_fst : of W (fst E) T1
<- of W E (prod T1 T2).

of_snd : of W (snd E) T2
<- of W E (prod T1 T2).

of_lam : of W (lam T [x]E x) (arrow T T’)
<- {x:exp} of W x T -> of W (E x) T’.

of_app : of W (app E1 E2) T’
<- of W E2 T
<- of W E1 (arrow T T’).

43

of_fix : of W (fix T [x]E x) T
<- {x:exp} of W x T -> of W (E x) T.

of_hold : of W (hold E) (susp T)
<- of W E T.

of_resume : of W (resume E) T
<- of W E (susp T).

of_url : of W (url W’ T [x]E x) (srv T T’)
<- ({x: exp} of W’ x T -> of W’ (E x) T’)
<- mobile (srv T T’).

of_publish : of W (publish T [x]E x) (srv T T’)
<- ({x: exp} of W x T -> of W (E x) T’)
<- mobile (srv T T’).

of_call : of W (call E1 E2) T’
<- of W E2 T
<- of W E1 (srv T T’).

of_expect : of W (expect E W’) T
<- of W’ E T.

A.3 Dynamic Semantics
A.3.1 Values

val: exp -> type. %name val VV.
%mode val +E.

val_unit : val triv.
val_pair : val (pair V1 V2)

<- val V2
<- val V1.

val_lam : val (lam T E).
val_hold : val (hold E).
val_url : val (url W T E).

A.3.2 Transition Rules

ev: host -> exp -> exp -> type. %name ev EV.
%mode ev +H +E1 -E2.

ev_pair1 : ev W (pair E1 E2) (pair E1’ E2)
<- ev W E1 E1’.

ev_pair2 : ev W (pair V1 E2) (pair V1 E2’)
<- ev W E2 E2’
<- val V1.

ev_fst1 : ev W (fst E) (fst E’)
<- ev W E E’.

ev_fst2 : ev W (fst (pair V1 V2)) V1
<- val V2
<- val V1.

ev_snd1 : ev W (snd E) (snd E’)
<- ev W E E’.

44

ev_snd2 : ev W (snd (pair V1 V2)) V2
<- val V2
<- val V1.

ev_app1 : ev W (app E1 E2) (app E1’ E2)
<- ev W E1 E1’.

ev_app2 : ev W (app V1 E2) (app V1 E2’)
<- ev W E2 E2’
<- val V1.

ev_app3 : ev W (app (lam _ [x]E x) V2) (E V2)
<- val V2.

ev_fix : ev W (fix T [x]E x) (E (fix T [x]E x)).
ev_resume1 : ev W (resume E) (resume E’)

<- ev W E E’.
ev_resume2 : ev W (resume (hold E)) E.
ev_publish : ev W (publish T [x]E x) (url W T [x]E x).
ev_call1 : ev W (call E1 E2) (call E1’ E2)

<- ev W E1 E1’.
ev_call2 : ev W (call V1 E2) (call V1 E2’)

<- ev W E2 E2’
<- val V1.

ev_call3 : ev W (call (url W’ T [x]E x) V2) (expect (E V2) W’)
<- val V2.

ev_expect1 : ev W (expect E W’) (expect E’ W’)
<- ev W’ E E’.

ev_expect2 : ev W (expect V _) V
<- val V.

A.4 Type Preservation
QWeS2T’s type safety is the combination of the type preservation theorem and the progress theo-
rems. Meta-theoretic properties are represented in Twelf in exactly the same way as other aspects
of an object language. In particular, the various clauses for a type family correspond to the cases
of a manual proof. Twelf provides mechanized support to ensure that a set of clauses actually
implement a proof. For proofs of the form “for all . . . exists ...”, this amounts to showing that these
clauses implement a total functions. This is achieved using two directives: %mode identifies which
argument positions that are input and which are output (and checks that they are used as such), and
%total which verifies that all cases are covered and that they all terminate (i.e., that it actually is
a function and it is total).

In Section 2.5, type preservation relied on two auxiliary properties: the substitution and the
relocation lemma. The substitution lemma comes for free in Twelf because of the methodology we
used, which encodes QWeS2T variables as Twelf variables. This means that a substitution [v/x]e
in QWeS2T is represented as an application E V in Twelf, where E and V are the representations
of e and v, respectively. Specifically the substitution lemma for Twelf [25, 39] subsumes the
substitution lemma for any object language as long as it follows this methodology.

45

A.4.1 Relocation Lemma

The Twelf code below is a complete specification of our manual proof for the relocation lemma in
Section 2.5. However, Twelf could not prove its totality. After consulting with the Twelf develop-
ers, we determined that this is apparently due to an incompleteness in Twelf’s coverage checker (a
part of what %total checks). We tried to use alternative encodings that would yield a machine-
checkable proof, but were unable to do so short of significantly increasing the complexity of the
specification. Below, we rely on the directive %trustme to tell Twelf that it should assume that
the totality proof goes through, even if it is not able to do so itself.

reloc: of W E T -> {W’:host} of W’ E T -> type.
%mode reloc +OF +W’ -OF’.

rel_triv:
reloc (of_triv : of W triv unit)

W’ (of_triv : of W’ triv unit).
rel_pair:

reloc (of_pair TP1 TP2 : of W (pair E1 E2) (prod T1 T2))
W’ (of_pair TP1’ TP2’ : of W’ (pair E1 E2) (prod T1 T2))

<- reloc (TP1 : of W E1 T1)
W’ (TP1’ : of W’ E1 T1)

<- reloc (TP2 : of W E2 T2)
W’ (TP2’ : of W’ E2 T2).

rel_fst:
reloc (of_fst TP : of W (fst E) T1)

W’ (of_fst TP’ : of W’ (fst E) T1)
<- reloc (TP : of W E (prod T1 T2))

W’ (TP’ : of W’ E (prod T1 T2)).
rel_snd:

reloc (of_snd TP : of W (snd E) T2)
W’ (of_snd TP’ : of W’ (snd E) T2)

<- reloc (TP : of W E (prod T1 T2))
W’ (TP’ : of W’ E (prod T1 T2)).

rel_lam:
reloc ((of_lam [x:exp][dx:of W x T]TP x dx)

: of W (lam T [x]E x) (arrow T T’))
W’ ((of_lam [x:exp][dx:of W’ x T]TP’ x dx)

: of W’ (lam T [x]E x) (arrow T T’))
<- {x:exp}

{dx :of W x T}
{dx’:of W’ x T}

reloc dx W’ dx’
-> reloc (TP x dx : of W (E x) T’)

W’ (TP’ x dx’ : of W’ (E x) T’).
rel_app:

reloc (of_app TP1 TP2 : of W (app E1 E2) T’)
W’ (of_app TP1’ TP2’ : of W’ (app E1 E2) T’)

<- reloc (TP1 : of W E1 (arrow T T’))
W’ (TP1’ : of W’ E1 (arrow T T’))

<- reloc (TP2 : of W E2 T)

46

W’ (TP2’ : of W’ E2 T).
rel_fix:

reloc ((of_fix [x:exp][dx:of W x T]TP x dx)
: of W (fix T [x]E x) T)

W’ ((of_fix [x:exp][dx:of W’ x T]TP’ x dx)
: of W’ (fix T [x]E x) T)

<- {x:exp}
{dx :of W x T}
{dx’:of W’ x T}

reloc dx W’ dx’
-> reloc (TP x dx : of W (E x) T)

W’ (TP’ x dx’ : of W’ (E x) T).
rel_hold:

reloc (of_hold TP : of W (hold E) (susp T))
W’ (of_hold TP’ : of W’ (hold E) (susp T))

<- reloc (TP : of W E T)
W’ (TP’ : of W’ E T).

rel_resume:
reloc (of_resume TP : of W (resume E) T)

W’ (of_resume TP’ : of W’ (resume E) T)
<- reloc (TP : of W E (susp T))

W’ (TP’ : of W’ E (susp T)).
rel_url:

reloc (of_url M TP : of W (url W’’ T [x]E x) (srv T T’))
W’ (of_url M TP : of W’ (url W’’ T [x]E x) (srv T T’)).

rel_publish:
reloc ((of_publish M [x:exp][dx:of W x T]TP x dx)

: of W (publish T [x]E x) (srv T T’))
W’ ((of_publish M [x:exp][dx:of W’ x T]TP’ x dx)

: of W’ (publish T [x]E x) (srv T T’))
<- {x:exp}

{dx :of W x T}
{dx’:of W’ x T}

reloc dx W’ dx’
-> reloc (TP x dx : of W (E x) T’)

W’ (TP’ x dx’ : of W’ (E x) T’).
rel_call:

reloc (of_call TP1 TP2 : of W (call E1 E2) T’)
W’ (of_call TP1’ TP2’ : of W’ (call E1 E2) T’)

<- reloc (TP1 : of W E1 (srv T T’))
W’ (TP1’ : of W’ E1 (srv T T’))

<- reloc (TP2 : of W E2 T)
W’ (TP2’ : of W’ E2 T).

rel_expect:
reloc (of_expect TP : of W (expect E W’’) T)

W’ (of_expect TP : of W’ (expect E W’’) T).

%block reloc_ctx: some {W:host}{W’:host}{T:tp}
block {x:exp}{dx:of W x T}{dx’:of W’ x T}{_:reloc dx W’ dx’}.

%worlds (reloc_ctx) (reloc _ _ _).
%trustme

47

%total (TP) (reloc TP _ _).

relocate: of W E T -> {W’:host} of W’ E T -> type.
%mode relocate +OF +W’ -OF’.

rr : relocate OF W’ OF’ <- reloc OF W’ OF’.

%worlds () (relocate _ _ _).
%total (TP) (relocate TP _ _).

A.4.2 Type Preservation Theorem

tpres: of W E T -> ev W E E’ -> of W E’ T -> type.
%mode tpres +OF +EV -OF’.

tpres_pair1:
tpres (of_pair TP1 TP2 : of W (pair E1 E2) (prod T1 T2))

(ev_pair1 EV1 : ev W (pair E1 E2) (pair E1’ E2))
(of_pair TP1’ TP2 : of W (pair E1’ E2) (prod T1 T2))

<- tpres (TP1 : of W E1 T1)
(EV1 : ev W E1 E1’)
(TP1’ : of W E1’ T1).

tpres_pair2:
tpres (of_pair TP1 TP2 : of W (pair V1 E2) (prod T1 T2))

(ev_pair2 VV1 EV2 : ev W (pair V1 E2) (pair V1 E2’))
(of_pair TP1 TP2’ : of W (pair V1 E2’) (prod T1 T2))

<- tpres (TP2 : of W E2 T2)
(EV2 : ev W E2 E2’)
(TP2’ : of W E2’ T2).

tpres_fst1:
tpres (of_fst TP : of W (fst E) T1)

(ev_fst1 EV : ev W (fst E) (fst E’))
(of_fst TP’ : of W (fst E’) T1)

<- tpres (TP : of W E (prod T1 T2))
(EV : ev W E E’)
(TP’ : of W E’ (prod T1 T2)).

tpres_fst2:
tpres (of_fst (of_pair TP1 TP2) : of W (fst (pair V1 V2)) T1)

(ev_fst2 VV1 VV2 : ev W (fst (pair V1 V2)) V1)
(TP1 : of W V1 T1).

tpres_snd1:
tpres (of_snd TP : of W (snd E) T2)

(ev_snd1 EV : ev W (snd E) (snd E’))
(of_snd TP’ : of W (snd E’) T2)

<- tpres (TP : of W E (prod T1 T2))
(EV : ev W E E’)
(TP’ : of W E’ (prod T1 T2)).

tpres_snd2:
tpres (of_snd (of_pair TP1 TP2) : of W (snd (pair V1 V2)) T2)

(ev_snd2 VV1 VV2 : ev W (snd (pair V1 V2)) V2)

48

(TP2 : of W V2 T2).
tpres_app1:

tpres (of_app TP1 TP2 : of W (app E1 E2) T’)
(ev_app1 EV1 : ev W (app E1 E2) (app E1’ E2))
(of_app TP1’ TP2 : of W (app E1’ E2) T’)

<- tpres (TP1 : of W E1 (arrow T T’))
(EV1 : ev W E1 E1’)
(TP1’ : of W E1’ (arrow T T’)).

tpres_app2:
tpres (of_app TP1 TP2 : of W (app V1 E2) T’)

(ev_app2 VV1 EV2 : ev W (app V1 E2) (app V1 E2’))
(of_app TP1 TP2’ : of W (app V1 E2’) T’)

<- tpres (TP2 : of W E2 T)
(EV2 : ev W E2 E2’)
(TP2’ : of W E2’ T).

tpres_app3:
tpres (of_app (of_lam [x][dx]TP1 x dx) TP2

: of W (app (lam T [x]E x) V2) T’)
(ev_app3 VV2 : ev W (app (lam T [x]E x) V2) (E V2))
(TP1 V2 TP2 : of W (E V2) T’).

tpres_fix:
tpres ((of_fix [x:exp][dx:of W x T]TP x dx)

: of W (fix T [x]E x) T)
(ev_fix : ev W (fix T [x]E x) (E (fix T [x]E x)))
(TP (fix T [x]E x) (of_fix [x][dx]TP x dx)

: of W (E (fix T [x]E x)) T).
tpres_resume1:

tpres (of_resume TP : of W (resume E) T)
(ev_resume1 EV : ev W (resume E) (resume E’))
(of_resume TP’ : of W (resume E’) T)

<- tpres (TP : of W E (susp T))
(EV : ev W E E’)
(TP’ : of W E’ (susp T)).

tpres_resume2:
tpres (of_resume (of_hold TP) : of W (resume (hold E)) T)

(ev_resume2 : ev W (resume (hold E)) E)
(TP : of W E T).

tpres_publish:
tpres ((of_publish M [x:exp][dx:of W x T]TP x dx)

: of W (publish T [x]E x) (srv T T’))
(ev_publish : ev W (publish T [x]E x)

(url W T [x]E x))
((of_url M [x:exp][dx:of W x T]TP x dx)

: of W (url W T [x]E x) (srv T T’)).
tpres_call1:

tpres (of_call TP1 TP2 : of W (call E1 E2) T’)
(ev_call1 EV1 : ev W (call E1 E2) (call E1’ E2))
(of_call TP1’ TP2 : of W (call E1’ E2) T’)

<- tpres (TP1 : of W E1 (srv T T’))
(EV1 : ev W E1 E1’)
(TP1’ : of W E1’ (srv T T’)).

49

tpres_call2:
tpres (of_call TP1 TP2 : of W (call V1 E2) T’)

(ev_call2 VV1 EV2 : ev W (call V1 E2) (call V1 E2’))
(of_call TP1 TP2’ : of W (call V1 E2’) T’)

<- tpres (TP2 : of W E2 T)
(EV2 : ev W E2 E2’)
(TP2’ : of W E2’ T).

tpres_call3:
tpres (of_call (of_url M [x:exp][dx:of W’ x T]TP1 x dx) TP2

: of W (call (url W’ T [x]E x) V2) T’)
(ev_call3 VV2 : ev W (call (url W’ T [x]E x) V2)

(expect (E V2) W’))
(of_expect (TP1 V2 TP2’) : of W (expect (E V2) W’) T’)

<- relocate TP2 W’ TP2’.

A.5 Progress
The progress theorem in Section 2.5 depends uniquely on the canonical forms lemma. For a
language as simple as QWeS2T, this lemma too comes “for free” in Twelf: it is emulated through
inversion and the coverage checker ensures us that no cases have been missed.

A.5.1 Not Stuck

As often when encoding a progress proof in Twelf [1], this proof defines an auxiliary property,
notStuck, which states that its argument expression is either a value or can perform a step of
computation. The proof of progress proper maps a well typed expression e to a derivation that
shows that e is notStuck. This is a technicality to capture the disjunctive nature of a progress
theorem.

notStuck: exp -> type. %name notStuck NS.

ns-val: notStuck V
<- val V.

ns-ev: notStuck E
<- ev W E E’.

A.5.2 Progress Lemmas

Another technicality, this time to help Twelf machine-check our proof, is to factor constructs that
correspond to more than one evaluation rule into their own mini progress lemmas. These are
displayed next.

Progress Lemma for pair

pg-pair : notStuck E1
-> notStuck E2
-> notStuck (pair E1 E2)

50

-> type.
%mode pg-pair +NS1 +NS2 -NS.

pg-pair1:
pg-pair (ns-ev (EV1 : ev W E1 E1’))

(NS2 : notStuck E2)
(ns-ev (ev_pair1 EV1 : ev W (pair E1 E2) (pair E1’ E2))).

pg-pair2:
pg-pair (ns-val (VV1 : val V1))

(ns-ev (EV2 : ev W E2 E2’))
(ns-ev (ev_pair2 VV1 EV2 : ev W (pair V1 E2) (pair V1 E2’))).

pg-pair3:
pg-pair (ns-val (VV1 : val V1))

(ns-val (VV2 : val V2))
(ns-val (val_pair VV1 VV2 : val (pair V1 V2))).

%worlds () (pg-pair _ _ _).
%total {} (pg-pair _ _ _).

Progress Lemma for fst

pg-fst : notStuck E
-> {W:host} notStuck (fst E)
-> type.

%mode pg-fst +NS +TP -NS’.

pg-fst1:
pg-fst (ns-ev (EV : ev W E E’))

W (ns-ev (ev_fst1 EV : ev W (fst E) (fst E’))).
pg-fst2:

pg-fst (ns-val (val_pair VV1 VV2 : val (pair V1 V2)))
W (ns-ev (ev_fst2 VV1 VV2 : ev W (fst (pair V1 V2)) V1)).

%worlds () (pg-fst _ _ _).
%total {} (pg-fst _ _ _).

Progress Lemma for snd

pg-snd : notStuck E
-> {W:host} notStuck (snd E)
-> type.

%mode pg-snd +NS +TP -NS’.

pg-snd1:
pg-snd (ns-ev (EV : ev W E E’))

W (ns-ev (ev_snd1 EV : ev W (snd E) (snd E’))).
pg-snd2:

pg-snd (ns-val (val_pair VV1 VV2 : val (pair V1 V2)))
W (ns-ev (ev_snd2 VV1 VV2 : ev W (snd (pair V1 V2)) V2)).

%worlds () (pg-snd _ _ _).

51

%total {} (pg-snd _ _ _).

Progress Lemma for app

pg-app : notStuck E1
-> notStuck E2
-> {W:host} notStuck (app E1 E2)
-> type.

%mode pg-app +NS1 +NS2 +TP -NS.

pg-app1:
pg-app (ns-ev (EV1 : ev W E1 E1’))

(NS2 : notStuck E2)
W (ns-ev (ev_app1 EV1 : ev W (app E1 E2) (app E1’ E2))).

pg-app2:
pg-app (ns-val (VV1 : val V1))

(ns-ev (EV2 : ev W E2 E2’))
W (ns-ev (ev_app2 VV1 EV2 : ev W (app V1 E2) (app V1 E2’))).

pg-app3:
pg-app (ns-val (val_lam : val (lam T [x]E x)))

(ns-val (VV2 : val V2))
W (ns-ev (ev_app3 VV2 : ev W (app (lam T [x]E x) V2) (E V2))).

%worlds () (pg-app _ _ _ _).
%total {} (pg-app _ _ _ _).

Progress Lemma for resume

pg-resume : notStuck E
-> {W:host} notStuck (resume E)
-> type.

%mode pg-resume +NS +TP -NS’.

pg-resume1:
pg-resume (ns-ev (EV : ev W E E’))

W (ns-ev (ev_resume1 EV : ev W (resume E) (resume E’))).
pg-resume2:

pg-resume (ns-val (val_hold : val (hold E)))
W (ns-ev (ev_resume2 : ev W (resume (hold E)) E)).

%worlds () (pg-resume _ _ _).
%total {} (pg-resume _ _ _).

Progress Lemma for call

pg-call : notStuck E1
-> notStuck E2
-> {W:host} notStuck (call E1 E2)
-> type.

%mode pg-call +NS1 +NS2 +TP -NS.

52

pg-call1:
pg-call (ns-ev (EV1 : ev W E1 E1’))

(NS2 : notStuck E2)
W (ns-ev (ev_call1 EV1 : ev W (call E1 E2) (call E1’ E2))).

pg-call2:
pg-call (ns-val (VV1 : val V1))

(ns-ev (EV2 : ev W E2 E2’))
W (ns-ev (ev_call2 VV1 EV2 : ev W (call V1 E2) (call V1 E2’))).

pg-call3:
pg-call (ns-val (val_url : val (url W’ T [x]E x)))

(ns-val (VV2 : val V2))
W (ns-ev (ev_call3 VV2 : ev W (call (url W’ T [x]E x) V2)

(expect (E V2) W’))).

%worlds () (pg-call _ _ _ _).
%total {} (pg-call _ _ _ _).

Progress Lemma for expect

pg-expect : notStuck E
-> {W:host}{W’:host}notStuck (expect E W’)
-> type.

%mode pg-expect +NS +W +W’ -NS’.

pg-expect1:
pg-expect (ns-ev (EV : ev W’ E E’))

W W’ (ns-ev (ev_expect1 EV : ev W (expect E W’) (expect E’ W’))).
pg-expect2:

pg-expect (ns-val (VV : val V))
W W’ (ns-ev (ev_expect2 VV : ev W (expect V W’) V)).

%worlds () (pg-expect _ _ _ _).
%total {} (pg-expect _ _ _ _).

A.6 Progress Theorem
progress: of W E T -> notStuck E -> type.
%mode progress +TP -NS.

prg_triv:
progress (of_triv : of W triv unit)

(ns-val (val_unit : val triv)).
prg_pair:

progress (of_pair TP1 TP2 : of W (pair E1 E2) (prod T1 T2))
(NS : notStuck (pair E1 E2))

<- progress (TP1 : of W E1 T1)
(NS1 : notStuck E1)

<- progress (TP2 : of W E2 T2)
(NS2 : notStuck E2)

<- pg-pair NS1 NS2 NS.

53

prg_fst:
progress (of_fst TP : of W (fst E) T1)

(NS’ : notStuck (fst E))
<- progress (TP : of W E (prod T1 T2))

(NS : notStuck E)
<- pg-fst NS W NS’.

prg_snd:
progress (of_snd TP : of W (snd E) T2)

(NS’ : notStuck (snd E))
<- progress (TP : of W E (prod T1 T2))

(NS : notStuck E)
<- pg-snd NS W NS’.

prg_lam:
progress ((of_lam [x][dx]TP x dx) : of W (lam T [x]E x) (arrow T T’))

(ns-val (val_lam : val (lam T [x]E x))).
prg_app:

progress (of_app TP1 TP2 : of W (app E1 E2) T’)
(NS : notStuck (app E1 E2))

<- progress (TP1 : of W E1 (arrow T T’))
(NS1 : notStuck E1)

<- progress (TP2 : of W E2 T)
(NS2 : notStuck E2)

<- pg-app NS1 NS2 W NS.
prg_fix:

progress ((of_fix [x][dx]TP x dx) : of W (fix T [x]E x) T)
(ns-ev (ev_fix : ev W (fix T [x]E x) (E (fix T [x]E x)))).

prg_hold:
progress (of_hold TP : of W (hold E) (susp T))

(ns-val (val_hold : val (hold E))).
prg_resume:

progress (of_resume TP : of W (resume E) T)
(NS’ : notStuck (resume E))

<- progress (TP : of W E (susp T))
(NS : notStuck E)

<- pg-resume NS W NS’.
prg_url:

progress ((of_url M [x][dx]TP x dx)
: of W (url W’ T [x]E x) (srv T T’))

(ns-val (val_url : val (url W’ T E))).
prg_publish:

progress ((of_publish M [x][dx]TP x dx)
: of W (publish T [x]E x) (srv T T’))

(ns-ev (ev_publish : ev W (publish T [x]E x)
(url W T [x]E x))).

prg_call:
progress (of_call TP1 TP2 : of W (call E1 E2) T’)

(NS : notStuck (call E1 E2))
<- progress (TP1 : of W E1 (srv T T’))

(NS1 : notStuck E1)
<- progress (TP2 : of W E2 T)

(NS2 : notStuck E2)

54

<- pg-call NS1 NS2 W NS.
prg_expect:

progress (of_expect TP : of W (expect E W’) T)
(NS’ : notStuck (expect E W’))

<- progress (TP : of W’ E T)
(NS : notStuck E)

<- pg-expect NS W W’ NS’.

%worlds () (progress _ _).
%total (TP) (progress TP _).

55

	Introduction
	A Language for Programming the Web
	Localized Computation
	Base Language
	Mobile Code
	Remote Code
	Metatheory

	Examples
	Web Pages in QWeS2T
	Web Page without JavaScript Code
	Web Pages with Embedded JavaScript Code
	Web Pages with External JavaScript Code
	Web Page Redirection

	Web Services
	Web Service Definition
	Web Service API

	Advanced Web Service Interactions
	Customized API
	Customized Web Service
	Web Service Auto-Installer
	URL Transcriber
	Web Analytics

	Beyond Traditional Web Programming
	Remote Libraries
	Evaluation Service

	Prototype Implementation
	Parallelism
	Parallel Transitions
	Network Parallelism
	Explicit Parallelism
	Implicit Parallelism

	Related Work
	Conclusions and Future Work
	References
	Twelf Specification
	Syntax
	Static Semantics
	Mobility
	Typing

	Dynamic Semantics
	Values
	Transition Rules

	Type Preservation
	Relocation Lemma
	Type Preservation Theorem

	Progress
	Not Stuck
	Progress Lemmas

	Progress Theorem

