
Efficient Methods for Prediction and Control
in Partially Observable Environments

Ahmed Hefny

April 2018
CMU-ML-18-101

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Geoffrey Gordon, Chair

Martial Hebert
Eric Xing

Byron Boots (Georgia Institute of Technology)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2018 Ahmed Hefny

This research was sponsored by the National Science Foundation award IIS1450543, the US Army Research Office
award W911NF0810301, the Air Force Research Laboratory award FA87501720152, and the Defense Advanced
Research Projects Agency awards FA872105C0003 and FA870215D0002.

Keywords: Dynamical Systems, Recursive Filters, Predictive State, Method of Moments, Re-
inforcement Learning

For my Family

iv

Abstract
State estimation and tracking (also known as filtering) is an integral part of any sys-

tem performing inference in a partially observable environment, whether it is a robot
that is gauging an environment through noisy sensors or a natural language processing
system that is trying to model a sequence of characters without full knowledge of the
syntactic or semantic state of the text.

In this work, we develop a framework for constructing state estimators. The frame-
work consists of a model class, referred to as predictive state models, and a learning
algorithm, referred to as two-stage regression. Our framework is based on two key
concepts: (1) predictive state: where our belief about the latent state of the environ-
ment is represented as a prediction of future observation features and (2) instrumental
regression: where features of previous observations are used to remove sampling noise
from future observation statistics, allowing for unbiased estimation of system dynam-
ics.

These two concepts allow us to develop efficient and tractable learning methods
that reduce the unsupervised problem of learning an environment model to a super-
vised regression problem: first, a regressor is used to remove noise from future ob-
servation statistics. Then another regressor uses the denoised observation features to
estimate the dynamics of the environment.

We show that our proposed framework enjoys a number of theoretical and practi-
cal advantages over existing methods, and we demonstrate its efficacy in a prediction
setting, where the task is to predict future observations, as well as a control setting,
where the task is to optimize a control policy via reinforcement learning.

vi

Acknowledgments
“He is not thankful to God who is not thankful to people” – Prophet Muhammad

It goes without saying that this work would have not seen the light without the help of
many people I am greatly indebted to.

First, I would like to thank my advisor, Geoffrey Gordon, for guiding me along this
journey. Geoff always made time for me, gave me a large amount of freedom while en-
couraging me to pursue interesting questions and carry out deep investigations, helped
my with his insights and cared much about my personal development.

I would also like to thank Byron Boots, who alongside Geoff laid the foundations
of this work, for his useful insights, detailed advice and hands-on collaboration. I am
also grateful to Martial Hebert and Eric Xing for their time and advice that helped in
shaping the thesis. In addition to being my thesis committee, I benefited greatly from
Geoff and Eric as the course instructors of Convex Optimization, Machine Learning
and Graphical Models which had significant contributions to my knowledge and way
of thinking. I am also grateful to Manuel Blum, Christos Faloutsos, Jing Lei, Roy
Maxion, Gary Miller, Bhishka Raj, Ruslan Salakhutdinov, Alex Smola, Suvrit Sra,
Ryan Tibshirani and Larry Wasserman for the wide array of beneficial courses.

The work in this thesis is a result of joint collaboration with Byron Boots, Carlton
Downey, Boyue Li, Zita Marinho, Wen Sun and Sidd Srinivasa. I also had the oppor-
tunity to work with Avinava Dubey, Anika Gupta, Robert Kass, Sanjeev Khanna, Lin
Ma, Gustavo Mezerhane, Dianna Needell, Andrew Pavlo, Aaditya Ramdas, Sashank
Reddi, Matthew Smith, Alexander Smola, Suvrit Sra, Katia Sycara, Dana Van Aken,
Sinead Williamson and Eric Xing on projects that I am proud of but they are not ad-
dressed in this dissertation. I am thankful to my office mates: Maruan Al-Shedivat,
Avinava Dubey, Yifei Ma, Aaditya Ramdas, Sashank Reddi and Xun Zheng and all
my colleagues for the countless interesting discussions. I would also like to thank the
CMU staff for working hard to maintain a smooth experience from day one. Specially
thanks to Diane Stidle for everything she did for the MLD department and for me.

I was fortunate to have a group of dear friends who enriched my stay in Pittsburgh.
I am especially thankful to Waleed Ammar, Mohammed Darwish, Mohammed Ab-
delMoula, Mazen Soliman, Islam Shehab, Moataz Mohsen, Mohammed Mahmoud,
Ahmed AbdelGawwad, Ashraf Gamal, Khaled ElGaliand, Mahmoud Bishr, Emad El-
Sayed, Ezz Naser and Zia Hydari.

I am also indebted to my mentors, Amir Atiya, Kareem Darwish, Ossama Emam
and Hany Hassan, who sparked my interest in the field and led me to start this journey.

Finally, I have been gifted with a kind and supporting family. Who knows how I
would have ended up without them? I am really thankful to my father Said Hefny, my
mother Ahlam Hashem, my sister Nehal and my brothers Mohammed and Tarek for
everything they did. I would like to thank my darling wife Nouran for her patience and
support throughout all these years. In the end, I want to thank my little gems, Yusuf
and Youmna for all the joy they added to my life.

viii

Contents

Symbols and Notation 1

I Introduction and Background 5

1 Introduction 7
1.1 Problem Statement . 7

1.1.1 Desired Qualities of System Identification 8
1.2 Proposed Framework . 8
1.3 Summary of Contributions . 9
1.4 Thesis Organization . 10
1.5 How to Read This Document . 10
1.6 Disclaimer . 11

2 Background: Dynamical Systems and Recursive Filters 13
2.1 Three Views of Dynamical Systems . 13

2.1.1 System State View . 13
2.1.2 Belief State View . 14
2.1.3 Likelihood Evaluation View . 17

2.2 Recursive filters . 20
2.3 Constructing Filters from Dynamical System Models 20

2.3.1 Bayes Filter . 21
2.3.2 Predictive State Representation . 22

2.4 Generative Learning of Recursive Filters . 23
2.4.1 Maximum Likelihood . 24
2.4.2 Method of Moments and Spectral Algorithms 25
2.4.3 Example I: Learning Hidden Markov Models 28
2.4.4 Example II: Learning Kalman Filters . 31

2.5 Discriminative Learning of Recursive Filters . 34
2.5.1 Gradient Descent . 35
2.5.2 Reduction to Supervised Learning . 35

2.6 Conclusion . 38

ix

II Learning Uncontrolled Systems 41

3 Predictive State Models: Generative Learning of Recursive Filters Using Two-Stage
Regression 43
3.1 Model Class: Predictive State Models . 43
3.2 Learning Algorithm: Two-Stage Regression . 45
3.3 Subspace Identification Revisited . 47

3.3.1 HMM . 48
3.3.2 Steady-State Kalman Filter . 50

3.4 Theoretical Analysis . 51
3.4.1 Examples of Uniform S1 Regression Bounds 53

3.5 Experiments and Results . 54
3.5.1 Learning A Knowledge Tracing Model 54
3.5.2 Modeling Independent Subsystems Using Lasso Regression 56

3.6 Related Work . 57
3.7 Conclusion . 58
3.A Appendix: Proofs . 60

3.A.1 Proof of Main Theorem . 60
3.A.2 Proof of Lemma 3.7 . 65

4 A Practical Non-parametric Predicive State Model for Continuous Systems 67
4.1 Hilbert Space Embedding of Distributions . 67

4.1.1 Motivating Example: Discrete Distributions 67
4.1.2 Kernels, RKHSs and Feature Maps . 68
4.1.3 Mean Maps and Covariance Operators . 69
4.1.4 Conditional Operators and Kernel Bayes Rule 70
4.1.5 Finite Dimensional Approximation of Kenrel Features via Random Fourier

Features . 71
4.2 Hilbert Space Embedding of Predictive State Representation 72

4.2.1 Learning Algorithm . 74
4.2.2 Prediction . 74

4.3 Predictive State Recurrent Neural Networks . 75
4.3.1 Kernel Approximation . 75
4.3.2 Local Refinement By Discriminative Training 75
4.3.3 Approximate Conditioning . 76

4.4 Experiments . 76
4.4.1 Character-level Language Modeling . 76
4.4.2 Continuous Systems . 77

4.5 Conclusion . 78
4.A Appendix: Two-stage Regression of HSE-PSRs with Gram Matrices 80

x

5 Tensor Sketching for Predictive State Models with Large States 83
5.1 Tensors and Tensor Sketch . 84

5.1.1 Tensor Inner Product and Tensor Contraction 84
5.1.2 Tensor Sketch . 85

5.2 Tensor Sketching for PSRNNs . 86
5.2.1 Tensor Sketch as a PSRNN Parameter . 88
5.2.2 Factored PSRNNs . 88
5.2.3 Hybrid ALS with Deflation . 88
5.2.4 Two-stage Regression for Factored PSRNN 90

5.3 Experiments . 91
5.3.1 Tensor Product vs. Tensor Decomposition 91
5.3.2 Tensor Decomposition: Alternating Least Squares vs. Deflation 91
5.3.3 Factored PSRNNs with Sketching . 93

5.4 Conclusion . 94

III Learning Controlled Systems 95

6 Predictive State Controlled Models 97
6.1 Recursive Filters for Controlled Dynamical Systems 97

6.1.1 Causal Conditioning and The do Notation 97
6.1.2 Controlled Dynamical Systems . 98
6.1.3 Predictive States for Controlled Systems 99

6.2 Model Definition . 100
6.3 Learning A Predictive State Controlled Model . 101

6.3.1 Joint S1 Approach . 101
6.3.2 Conditional S1 Approach . 102
6.3.3 S2 Regression and Learning Algorithm 102

6.4 Predictive State Controlled Models With Random Fourier Features (RFF-PSR) . . . 103
6.4.1 The HSE-PSR a predictive state controlled model 103
6.4.2 S1 Regression for HSE-PSRs . 104
6.4.3 From HSE-PSRs to RFF-PSRs . 105

6.5 Experiments . 106
6.5.1 Synthetic Data . 107
6.5.2 Simulated windshield view . 107
6.5.3 Simulated swimmer robot . 107
6.5.4 Cell phone Camera and Sensors . 108
6.5.5 Tested Methods and Evaluation Procedure 108
6.5.6 Results and Discussion . 109

6.6 Other Examples of Predictive State Controlled Models 109
6.6.1 IO-HMM . 109
6.6.2 Kalman Filter with inputs . 112

6.7 Theoretical Analysis of Predictive State Controlled Models 113

xi

6.7.1 Case 1: Discrete Observations and Actions 114
6.7.2 Case 2: Continuous System . 115

6.8 Conclusion . 116
6.A Appendix: Proofs . 117

6.A.1 Proof of Theorem 6.3 . 117
6.A.2 Proof of Theroem 6.10 . 117
6.A.3 Sketch Proof for Joint S1 . 123

7 Reinforcement Learning with Predictive State Controlled Models 125
7.1 Background: Reinforcement Learning and Policy Gradients 125

7.1.1 Value Function-based Methods . 126
7.1.2 Direct Policy Optimization Methods . 126

7.2 Recurrent Predictive State Policy (RPSP) Networks 128
7.3 Learning RPSP Networks . 129

7.3.1 Variance Reduced Policy Gradient (VRPG) 130
7.3.2 Alternating VRPG/TRPO (ALTOPT) . 131
7.3.3 Variance Normalization . 131

7.4 Experiments . 132
7.4.1 Environments . 132
7.4.2 Proposed Models . 132
7.4.3 Competing Models . 133
7.4.4 Evaluation Procedure . 133
7.4.5 Results . 134
7.4.6 Ablation Study (Analyzing Contributions) 134

7.5 Related Work . 135
7.6 Conclusion . 139

IV Conclusion 141

8 Conclusions 143
8.1 Summary of Contributions . 143
8.2 Future Directions . 144

8.2.1 Two-stage Regression with Non-blind Policies 144
8.2.2 Model Uncertainty . 145
8.2.3 From Parameter Recovery to Filtering Guarantees 145
8.2.4 Online Learning . 145

xii

List of Figures

2.1 Belief state as a bottleneck: A perfect belief state preserves sufficient information
about the history to make any future prediction (i.e. Pr(ot:∞ | o1:t−1) = Pr(ot:∞ |
qt). 14

2.2 Graphical models for system state and belief state representations of dynamical
systems. Each variable is fully determined by its parents. For ease of exposition,
we assume εt and νt to be sampled independently although this is not necessary. . . 15

2.3 A swinging pendulum. Given (possibly noisy) readings of θ, the system is not
1-observable since a position snapshot does not encode direction. 16

2.4 System dynamics matrix for a system with two observations a and b. 19

2.5 Visualization of Bayes filter update. The belief state captures the distribution of
variables with thick border. Observations revealed so far are shaded. Left: We
start with a belief state qt that captures the distribution of the future Pr(xt | o1:t−1).
Middle: The extended belief state captures the distribution of the extended future
Pr(ot, xt+1 | o1:t−1). Right: After observing ot, the conditioning step computes the
distribution of the shifted future Pr(xt+1 | o1:t). 22

2.6 Factorizing the future/past covariance matrix results in (1) a representation of the
future in a low dimensional state-space that neglects directions uncorrelated with
the past and (2) an extended observation matrix that reconstructs expected future
observations from the low dimensional representation. 26

2.7 (a) A multiview model: observables o1, o2 and o3 are three independent views of
the latent variable x. (b) HMM as a multiview model: o1, o2 and o3 are three
independent views of s2. 27

2.8 Visualization of tensor PARAFAC decomposition. 28

xiii

2.9 Visualization of Backpropagation through time: Circle nodes indicate variables
while square nodes indicate functions in an unrolled networks. In the forward
pass, the inputs are used to compute belief states qt and output estimates ψ̂t where
black arrows indicate flow of information. In the backward pass, we start from
the gradient w.r.t to the output estimates and red dotted arrows indicate the flow of
information. Each belief state node accumulates incoming gradients and sends the
total gradient backward. Each function node multiplies the incoming gradient by
the Jacobian w.r.t belief state and passes the result backwards. It also multiplies
the incoming gradient by the Jacobian w.r.t model parameters. The results from
the latter operation are accumulated to compute the total gradient of the loss w.r.t
model parameters. 36

2.10 Regression tasks for learning a sufficient posterior representation model. 36

3.1 Bayes filter update for predictive state models. 44
3.2 Graphical model depicting the (deterministic) dependencies between previous ob-

servations o1:t−1, belief state qt, noise εψt and observed features ψt. Note that previ-
ous observations, and hence history features ht, are correlated with the belief state
but not with the noise. 45

3.3 Learning and applying a dynamical system using instrumental regression. S1 re-
gression is trained to provide data to train S2 regression. At test time, starting from
an initial belief state q0, we alternate between S2 regression and filtering/prediction 47

3.4 Transitions and observations in BKT. Each node represents a possible value of
the state or observation. Solid arrows represent transitions while dashed arrows
represent observations. 55

3.5 Experimental results: each graph compares the performance of two models (mea-
sured by mean absolute error) on 1000 train/test splits. The black line is x = y.
Points below this line indicate that model y is better than model x. The table shows
training time. 56

3.6 Left singular vectors of (left) true linear predictor from ot−1 to ot (i.e. OTO+),
(middle) covariance matrix between ot and ot−1 and (right) S1 Sparse regression
weights. Each column corresponds to a singular vector (only absolute values are
depicted). Singular vectors are ordered by their mean coordinate, which is com-
puted as

∑d
i=1 i|ui|∑d
i=1 |ui|

. 57

4.1 State update in an uncontrolled HSE-PSR. The diagram is for conceptual illus-
tration. In practice, it is more efficient to first multiply the inverse observation
covariance by the observation feature vector and then premultiply the result by
Cψt+1,φot

. 73
4.2 State update and prediction for PSRNN. 74
4.3 Bits per character (left) and one-step prediction accuracy (right) on Penn Tree Bank

dataset. 77
4.4 Log mean squared error on swimmer (left) and handwriting (right) datasets. 78

xiv

4.5 Test Data vs Model Prediction on a single feature of Swimmer. The left column
shows initial performance. The right column shows performance after training.
The order of the rows is KF, RNN, GRU, LSTM, and PSRNN. 79

5.1 Approximation quality of general tensor contraction vs. recovering the first rank-
1 component of a tensor. (left): Histogram of dot product between normalized
true and approximate contraction results. (middle): Histogram of dot product
between true and approximate first rank-1 component vector. (right): Histogram
of maximum dot product between approximate first rank-1 component vector and
all true rank-1 components, showing that failures in (middle) are due to recovering
a different rank-1 component. 92

5.2 Relative residual norm for different decomposition methods using tensor sketches. . 93
5.3 Bits-per-character and one step prediction accuracy for a factored PSRNN with 60

factors and a state of size 200 trained using 20 sketches of different sizes. The
green dotted line shows the performance of the full (non-factored) model. The red
solid line shows the performance of a random model as a reference value for large
degradation in performance. 94

6.1 left: Graphical model of a controlled dynamical system with a reactive policy.
right: Reduced model for causal conditioning on the actions. 98

6.2 An example of windshield view output by TORCS. 107
6.3 Data collection process for the cell phone dataset and two sample images. 108
6.4 Mean square error for 10-step prediction on synthetic model, TORCS car simula-

tor, swimming robot simulation with 80% blind test-policy, and swimming robot
with 20% blind test policy. Randomly initialized RFF-PSRs obtained significantly
worse MSE and are not shown for clarity. A comparison with HSE-PSR on TORCS
and swimmer datasets was not possible as it required prohibitively large memory. . 110

6.5 Mean square error for different prediction horizons for the cell phone dataset. . . . 111
6.6 left: Visualization of the first three coordinates of the projected belief state for a

trajectory corresponding to a full revolution of the cell phone. Black dots indicate
start and end points. right: Log mean square validation error for the cell phone
experiment along a slice in the parameter space determined by the direction from
the two-stage regression initialization (indicated by the red vertical line) to the final
parameters obtained by refinement (indicated by x-axis value 0). 111

7.1 RPSP network: The predictive state is updated by a linear extension Wsystem fol-
lowed by a non-linear conditioning ffilter. A linear predictor Wpred is used to pre-
dict observations, which is used to regularize training loss (see Section 7.3). A
feed-forward reactive policy maps the predictive states qt to a Gaussians distribu-
tion over actions. Shaded nodes indicate learnable parameters. 129

7.2 OpenAI Gym Mujoco environments. From left to right: Walker, Hopper, Swim-
mer, CartPole . 133

xv

7.3 Mean and standard error of empirical average return over 10 trials. Each point
indicates the total reward in a trajectory averaged over all trajectories in the batch.
RPSP graphs are shifted to the right to reflect the use of extra trajectories for ini-
tialization. 136

7.4 Mean and standard error of eimpircal average return over 10 trials. This experiment
tests replacing the RFF-PSRcomponent with a GRU. 137

7.5 Mean and standard error of eimpircal average return over 10 trials. This experiment
tests different variations of RPSP networks. 138

xvi

List of Tables

2.1 Four categories of methods to construct recursive filters. Our proposed framework
is in blue. 39

4.1 Correspondance between HSE embeddings in the general case (left) and the finite
domain case with the delta kernel (right). 71

7.1 Best hyper-parameter settings for each environment 134
7.2 Mean average return (area under curve) for proposed and competing models in

four different Mujoco enviornments. Table shows mean and standard error accross
10 trials. 135

8.1 Thesis contributions and how they map to desired qualities of recursive filters men-
tioned in Chapter 1. 144

xvii

xviii

Symbols and Notation

Sets and Sequences

[N] The set of positive integers up to and including N .
∅ Empty sequence.
O,A The set of possible observations (a.k.a the alphabet) and the set of all possible ac-

tions.
Ot The set of possible observation subsequences of length t.
O∗ The set of possible observation subsequences of any length.
x1:t A sequence of random variables (or values) x1, x2, . . . , xt. Unless otherwise speci-

fied, the sequence is represented as a matrix where xi is the ith column.
Linear Algebra and Tensors

1m An all-ones vector of length m, we might drop the length if it is clear from the
context.

edi An indicator vector in Rd where the ith coordinate is 1 and other corrdinates are 0.
We may drop the dimension fi it is clear from context.

Ai. The ith row of a matrix A.
A(i:j). Rows i through j of a matrix A.
A+ MoorePenrose pseudoinverse of A.

vec(A) Reshaping a matrix A into a vector using column-major ordering.
⊗ Outer product (also known as tensor product).
⊗k Kronecker product.
◦ Hadamard (element-wise) product.
? Khatri-Rao product (column-wise kronecker product). For two matrices X and Y ,

Z = X ? Y is a matrix such that Z:,i = X:,i ⊗k Y:,i.
‖.‖F Frobenius norm.

T (A,B,C) Multinear multiplication of a 3-mode tensor T ∈ Rma×mb×mc with three matrices
A ∈ Rna×ma , B ∈ Rnb×mb and C ∈ Rnc×mc . The result is a tesnor Z ∈ Rna×nb×nc

such that Zia,ib,ic =
∑

ja,jb,jc
Tja,jb,jcAia,jaBib,jbCic,jc . Intuitively, T (A, I, I) is the

result of slicing T along the first mode and applying A to each slice. We assume
that the resulting modes of dimensionality 1 are “squeezed”– that is, for a vector v,
we treat T (v, v, v) as a scalar (rather than a 1× 1× 1 tensor), T (I, v, v) as a vector
and T (I, I, v) as a matrix.

1

Probability

1(z) Indicator function of an event z: 1(z) = 1 if z is satisfied, otherwise 0.
Pr(x | y,do(z); θ) Probability of x given that the event y is observed and the event z is forced

by intervention, as determined by parameters θ. Depending on the context,
“probability of x” can refer to the probability of an event x, a probability
density function evaluated at the value x or the entire proability distribution
of a random variable x.

CX Uncentered covariance of a random variable X . When operating in a kernel
feature space, we may drop the feature map φ when it is clear from the context
(i.e. we use CX to refer to the covariance operator Cφ(X)). This applies to all
covariance and conditional expectation operators defined below.

CX,Y Uncentered cross-covariance of a two random variables X and Y .
CX,Y |z Uncentered cross-covariance of a two random variables X and Y given an

event z.
ΣX Centered covariance of a random variable X .

ΣX,Y Centered cross-covariance of a two random variables X and Y .
ΣX,Y |z Centered cross-covariance of a two random variables X and Y given an event

z.
X ∼ f(Y) A random variable X is sampled from a distribution whose parameters are

determined by f(Y).
WX|Y Conditional expectation operator: E[X | Y = y] =WX|Y y.
WX|Y ;z Conditional expectation operator given an event z: E[X | Y = y, z] =

WX|Y ;zy. An example is a conditional probability table whose elements are
determined by z.

KL(p || q) KL-divergence between two distributions p and q.
Predictive State Models

h∞t The entire history of observations and actions before time step t in a controlled
system: h∞t ≡ o1:t−1, a1:t−1.

h, ht History feature function and the value of the function at time t (i.e. h(h∞t)),
respectively.

ψO, ψOt Future observations feature function and the value of the function at time t
(i.e. ψO(ot:∞)), respectively. For uncontrolled systems, we may drop the
superscript.

ψA, ψAt Future actions feature function and the value of the function at time t (i.e.
ψA(at:∞)), respectively.

ξO, ξA, ξOt , ξ
A
t Extended future observation feature function and extended future actions fea-

ture function and their values at time t, respectively. For uncontrolled systems,
we may drop the superscript.

2

Tensor Sketching

h, ζ Bucketing and sign hash functions.
s

(i)
x Sketch of a vector x using hash functions hi and ζi.
∗ Circular convolution.
x Complex conjugate of x (unless otherwise specified).
F Fourier transform.
b Size of the sketch.
B Number of sketches.

Reinforcement Learning

γ Discount factor
Rt Reward to go:

∑
t′≥0 γ

t′rt+t′

b Reward baseline

3

4

Part I

Introduction and Background

5

Chapter 1

Introduction

1.1 Problem Statement

Sequential data is ubiquitous. In natural language processing, we deal with sequences of letters
that reflects the syntactic and semantic state of the speaker/writer. In robotics, we deal with se-
quences of noisy sensor observations that reflect the physical state of the robot. In computational
neuroscience we deal with sequences of neural spikes that reflect the neurophysiological state of
the brain. Therefore, modeling and reasoning about sequential data is of extreme importance in
machine learning. A powerful modeling tool for such data is a dynamical system, where the data
generator (i.e. the system or the environment) has a state that evolves over time according to some
dynamics. The observed sequential data are generated by applying a typically stochastic function
to the system’s state at each time step. The dynamical system can be uncontrolled or controlled. In
an uncontrolled system we can only interface to the system by receiving observation sequences. In
a controlled system, we can effect evolution of the state through exogenous inputs, which we refer
to as actions.

System identification refers to the process of learning a state representation and dynamics of a
dynamical system solely from observation (and action) sequences. Accurate system identification
is important for tracking the state of the system, predicting future observations and planning control
actions. In this work we care mainly about the problem of state tracking or filtering—that is,
maintaining a belief about the state of the system given the history of observations (and actions).
This belief can then be used as an input to a predictor or a controller. The most commonly used
construction for filtering is the recursive filter, which recursively updates the belief at time step t
given the belief at time step t− 1 as well as the observation (and action) at time t. Thus, the main
goal of the thesis is to develop a framework for constructing a recursive filter given observation
sequences generated from a dynamical system. To formulate a framework, we specify a class
of dynamical systems and an algorithm or a meta-algorithm for identifying their parameters and
constructing the corresponding recursive filter. For example, two existing frameworks are (1)
hidden Markov models (HMM) together with the expectation maximization (EM) algorithm and
(2) linear Markovian models together with autoregressive least squares.

7

1.1.1 Desired Qualities of System Identification
There are a number of qualities that we would like our framework to attain:
Partially observable vs fully observable state

Auto-regressive models assume that the state of the system is fully determined by a finite
history of observations and actions. In other words, it is sufficient to maintain a finite history
to make optimal predictions of future observations. We are interested in partially observable
models, where optimal predictions depend on the entire history of observations (and actions).
These include hidden Markov models and linear Gaussian state space models.

Ability to represent controlled and uncontrolled systems
We would like to have a framework that can be adapted to both uncontrolled and controlled
systems. Learning a state representation and dynamics of a controlled system is an essen-
tial tool for planning, imitation learning and reinforcement learning in partially observable
environments.

Computational efficiency and scalability
We would like the framework to be scalable to large datasets and realistic high-dimensional
data. A minimum requirement for scalability is that the processing time and memory re-
quirements for training should scale at most linearly with the size of the training data, and
the inference time should be independent of that size.

Theoretical guarantees
Some desirable theoretical properties include consistency, finite sample error guarantees for
parameter estimation and for predictions, and agnostic error bounds.

Modeling flexibility
System identification frameworks differ by the customization options they permit, such as
the choice of features, objective function and regularization, the ability to handle non-linear
dynamics, the ability to handle discrete, continuous or mixed systems, and the ability to
incorporate other learning techniques.

The main goal of this thesis is push the Pareto frontier of system identification methods with
respect to the aforementioned qualities, by developing models that can model systems that are
partially observable, continuous, non-linear and controlled while providing an efficient learning
algorithm with consistency guarantees.

1.2 Proposed Framework
To achieve the thesis goal, we propose a framework for learning latent-state dynamical systems
that is based on predictive state models as a model class and two-stage instrumental regression as
a learning algorithm. The proposed framework relies on two main principles.
• State as a prediction of future observations: Unlike hidden Markov models and linear

Gaussian state space models, where the latent state is explicitly represented by additional
latent variables, predictive state models represent the state as a prediction of sufficient future
observation statistics. This way, the system identification problem is specified in terms of

8

quantities that can be estimated from observed data. This principle is the basis of predictive
state representations (Singh et al., 2004) and observable operator models (Jaeger, 2000).

• History as a noise removal tool: With the predictive state representation, observation statis-
tics are unbiased estimates of the state, which suggests that we can use supervised regression
to learn system dynamics. However, to get an unbiased estimate of the dynamics, one needs
first to remove the sampling noise from regression inputs.
Instrumental regression exploits the fact that the sampling noise at a particular time is inde-
pendent of the history of previous observations. Based on this fact, we employ a two-stage
regression approach, where we use a regression model to remove sampling noise using his-
tory features, then we use another regression model to learn system dynamics.

We show that this framework encompasses many of the existing “spectral learning” algorithms
for system identification while granting additional flexibility in choosing regression models. We
also establish asymptotic and finite sample guarantees for recovering system dynamics.

We then extend this framework to controlled systems by defining the class of predictive state
controlled models and show that it allows us to develop controlled system identification schemes
that enjoy many of the aforementioned qualities. We demonstrate the efficacy of predictive state
controlled models in the context of prediction and reinforcement learning.

1.3 Summary of Contributions

This thesis makes the following contributions:

• We propose the class of predictive state models together with the two-stage regression algo-
rithm as a framework for learning uncontrolled dynamical systems.

• We show that the framework of predictive state models encompasses a wide range of spectral
learning algorithms for dynamical systems and admits the development of novel and useful
variations.

• We provide theoretical guarantees on the recovery of the parameters of a predictive state
model using the two-stage regression algorithm.

• By combining predictive state models with techniques from kernel methods and recurrent
neural networks, we propose a novel recurrent network architecture for modeling time series.
The model, which refer to as predictive state recurrent neural networks, benefits from two-
stage regression as an initialization procedure but can still be improved using typical neural
network training algorithms.

• We demonstrate that we can use tensor sketching techniques to facilitate the training of
predictive state recurrent networks with large state sizes while keeping the memory require-
ments reasonable.

• We extend our framework to controlled systems. We propose predictive state controlled
models, to which we adapt the two-stage regression algorithm to produce a framework for
learning controlled systems. As an instance of this framework, we propose predictive state

9

controlled models with random Fourier features, a model of controlled dynamical systems
that satisfies the properties mentioned in the thesis goal.

• We empirically demonstrate the efficacy of predictive state controlled models in both pre-
diction and reinforcement learning.

1.4 Thesis Organization
The thesis is organized as follows
• Chapter 2 presents an overview over dynamical system representations and learning algo-

rithms, providing the necessary terminology to describe our work and its relation to the
literature.

• Chapter 3 describes predictive state models, out proposed framework for learning uncon-
trolled dynamical systems by reduction to supervised learning. This chapter is based on
(Hefny et al., 2015).

• Chapter 4 describes a non-parametric practical model for representing continuous dynamical
systems with non-linear dynamics. This model combines the formulation of Chapter 3 with
ideas from kernel methods, random projections and recurrent networks. This chapter is based
on (Downey et al., 2017).

• Chapter 5 demonstrates training of large predictive state models with constrained memory
budget using tensor sketching. (To be submitted).

• Chapter 6 extends the formulation of Chapter 3 to controlled dynamical systems, where
exogenous inputs or actions can affect the system state and observations. This chapter is
based on (Hefny et al., 2018a).

• Chapter 7 demonstrates the use of the framework proposed in Chapter 6 in a reinforcement
learning setting, where we combine a state estimation model with a policy represented by a
feed-forward network, and train the whole structure end-to-end using policy gradient meth-
ods. This chapter is based on (Hefny et al., 2018b).

• Chapter 8 presents conclusions and future work.

1.5 How to Read This Document
The dissertation is written with the assumption of the natural sequential reading order. However,
for readers with a specific purpose there can be more efficient reading plans.

Chapter 2 is not just meant to provide the necessary background for the rest of the dissertation.
Rather, it is written with the readers who are generally interested in a high-level overview of
dynamical system models and learning algorithms in mind. The chapter gives more focus on
high-level concepts and on connections between different types of models and learning algorithms.
We may not cover specific models such as auto-regressive models and Gaussian processes. How-
ever, the categorization and general discussion presented in Chapter 2 is still applicable to these

10

models.
In the following reading plans, which assume specific goals other than an overview of dynam-

ical system models, Chapter 2 can be consulted on a need-to-know basis. The main concepts we
expect a typical reader to check are those of belief state, predictive state and system observability.

For readers interested in our recommended approach for prediction in uncontrolled envi-
ronments, we recommend reading Sections 3.1 and 3.2 followed by Chapter 4.

For readers interested in our recommended approach for prediction in controlled environ-
ments, we recommend reading Section 4.1 for a background on some core mathematical tools that
we use. With this background, Chapter 6 should provide a sufficient description of the model and
the learning algorithm. However, Chapter 3 is needed for understanding the theoretical foundation
and guarantees.

Finally, readers interested in our recommended approach for reinforcement learning can
start with Chapter 7 for a description and evaluation of the overall approach. The details of the
recursive filter and the two-stage regression initialization algorithm can be obtained from Chapter
6.

1.6 Disclaimer
We developed our proposed models for this work with a focus on improving the criteria in Section
1.1.1. We acknowledge that there are other criteria that we do not address.

One such criterion is wall clock time. While our proposed models satisfy the required com-
putational constraints, the best performing models rely on operations that are relatively costly
such as matrix inversion and tensor-vector products. We demonstrate that our proposed methods
are superior to other methods in the literature in terms of predictive performance. However, we
acknowledge that there are applications where every microsecond matters and one is willing to
sacrifice some predictive performance for the sake of speed. This tradeoff is abundant in the field.

Another criterion is the ability to encode prior knowledge about the system dynamics. Our
best performing models are designed for the situation where we have few assumptions about the
system. The proposed frameworks supports injecting prior knowledge to some degree (as we show
in Chapter 3). However, we do not provide direct support for prior knowledge in the form of
“the system follows this stochastic difference equation” or the “recursive filter update takes this
parametric form.”

For applications where one of the aforementioned criteria is critical, the models proposed in
this dissertation may be suboptimal.

11

12

Chapter 2

Background: Dynamical Systems and
Recursive Filters

In this chapter we present an overview of various dynamical system representations, how to obtain
recursive filters from them and how to optimize their parameters. In doing so we present some
concepts that will be crucial for later chapters such as Bayes filters, predictive states and method
of moments. We will also provide a categorization of recursive filter models and algorithms that
allows us to situate our contribution compared to the literature. For simplicity, this chapter focuses
on uncontrolled systems. Controlled systems, where the system can be affected by actions, are
discussed in Chapter 6.

This chapter is composed of three main parts. First, we identify different formulations of dy-
namical systems (Section 2.1). Second, we discuss how these formulations are related to recursive
filters, our main subject of interest (Sections 2.2 and 2.3). Third, we overview different methods of
unsupervised learning of recursive filters (Sections 2.4 and 2.5). Based on these components, we
conclude the chapter with a categorization of recursive filter learning methods and specify where
our proposed work fits compared to the literature.

2.1 Three Views of Dynamical Systems
We first go through different formulations of dynamical systems. An uncontrolled stochastic dy-
namical system describes a probability distribution over sequences of observations Pr(o1:t).1

2.1.1 System State View
The traditional way of describing a dynamical system is through a notion of a stochastic state that
evolves through Markovian dynamics,

xt ∼ f(xt−1), (2.1)

1We write Pr(o1:t) to denote the probability of observing a sequence starting with o1:t. In that sense the probability
of the empty sequence Pr(∅) is 1.

13

where xt determines the observation ot but can also include additional latent information. It is
common to factorize (2.1) into a state evolution part and an observation emission part.

st ∼ f(st−1)

ot ∼ g(st),

where st is the system state, f is a state evolution function and g is an observation function.
The system state view is beneficial if we have prior insights on the underlying process that

generates the data. For example, knowing the physical laws that govern the underlying process, it
is typically easier to deduce the state evolution equations of a linear dynamical system (LDS) than
to deduce the belief update equations. Another common case is the use of hidden Markov models to
encode the insight (or assumption) that the system moves between a set of discrete states with their
interpretation known beforehand (as in speech recognition (Rabiner, 1990)) or inferred from the
model parameters. The use of system state view can also greatly simplify learning the dynamical
system model if we have access to the system state at training time.

2.1.2 Belief State View
This view defines the probability Pr(o1, o2, . . . , ot) by defining the conditional probability

Pr(ot | o1:t−1) = Pr(ot | qt), (2.2)

where qt is a belief state that is a deterministic function of all previous observations o1:t−1. The
belief state qt serves as a bottleneck that compresses the entire observation history for the purpose
of future predictions (see Figure 2.1).

o1:t−1 qt ot:∞

Figure 2.1: Belief state as a bottleneck: A perfect belief state preserves sufficient information about
the history to make any future prediction (i.e. Pr(ot:∞ | o1:t−1) = Pr(ot:∞ | qt).

Typically, the dynamical system is described as a recursive update function of the belief state,

qt+1 = f(qt, ot)

ot ∼ g(qt), (2.3)

where f is a belief state update function and g is an observation function.
This update can be thought of as an alternative factorization of the data generation process in

(2.1), but it can also be thought of as a method to track the state given existing observations. In
other words, it defines both a data generation process and an inference algorithm.

14

νt−1

st−1

ot−1

εt−1

qt−1

ot−1

εt−1

νt

st

ot

εt

qt

ot

εt

νt+1

st+1

ot+1

εt+1

qt+1

ot+1

εt+1Observation Noise

Observations

System/Belief State

Process Noise

Figure 2.2: Graphical models for system state and belief state representations of dynamical sys-
tems. Each variable is fully determined by its parents. For ease of exposition, we assume εt and νt
to be sampled independently although this is not necessary.

Figure 2.2 depicts the graphical models for system and belief state views. The main difference
between the system state st and the belief state qt is that the system state is a function of the
history of observations and process noise, whereas the belief state depends only on the history of
observations.

The belief state view can be derived from other views as we demonstrate in Section 2.3, or it
can be formulated from scratch. An example of the latter case is recurrent neural networks (e.g.
Elman networks (Elman, 1990), long short-term memory networks (Hochreiter and Schmidhuber,
1997) and gated recurrent units (Cho et al., 2014)), where the functions f and g are composed
of learnable affine transformations and fixed non-linearities. Other examples are sufficient pos-
terior representations (Langford et al., 2009) and predictive state inference machines (Sun et al.,
2016), which we discuss in Section 2.5.2. These two approaches construct f and g from standard
regression models.

2.1.2.1 Sufficient State Representation and System Observability

In order for (2.3) to be true for all t ≥ 1, the belief state qt must constitute a sufficient state
representation such that

Pr(ot:∞ | o1:t−1) = Pr(ot:∞ | qt),

In other words, given a sufficient state representation qt, additional information on the history of
observations does not improve any predictions of the future.

The sufficient state representation condition can be expressed as a representation that maintains

15

mutual information between history and future

I(ot:∞; qt) = I(ot:∞; o1:t−1)

The information-theoretic perspective is useful: since qt is a deterministic function of history, the
information processing inequality tells us that the RHS is an upper-bound of the LHS. Therefore,
finding a sufficient state representation problem can be posed as a maximization of I(ot:∞; qt)
(Wingate and Singh, 2007).

An example for a sufficient state representation is the probability vector bt ≡ Pr(st−1 | o1:t−1),
where st is the system state of a hidden Markov model. This probability vector can be recursively
updated using the forward algorithm.

An important notion related to sufficient state representation is system observability. A dynam-
ical system is k-observable if the posterior distribution of the future k observations Pr(ot:t+k−1 |
o1:t−1) constitutes a sufficient state representation. It is worth noting that a k-observable system is
different from a kth order Markov chain. The latter means that the actual previous k observations
ot−k:t−1 constitute a sufficient state representation.

Consider, for example, the pendulum shown in Figure 2.3, where observations are angular
positions. Since the system state of the pendulum is fully determined by angular position and
velocity, the system is 2-observable (even in the presence of e.g. Gaussian noise). The system is a
2nd order Markov chain only in the noiseless case.

An example of a 1-observable system in an HMM where the observation and transition matrices
have full column rank. In this case, a probability distribution over the next observation Pr(ot |
o1:t−1) can be uniquely mapped back to a probability distribution over the latent state Pr(st−1 |
o1:t−1). Thus, the probability vector Pr(ot | o1:t−1) is a sufficient state representation.

θ

Figure 2.3: A swinging pendulum. Given (possibly noisy) readings of θ, the system is not 1-
observable since a position snapshot does not encode direction.

2.1.2.2 Predictive Representation

We have mentioned that for a 1-observable HMM, two equivalent belief state representations are
the probability vector bt = Pr(st−1 | o1:t−1) and qt = Pr(ot | o1:t−1). We refer to them respectively
as a latent belief state and a predictive belief state. In general, we differentiate between predictive

16

and latent states as follows: for a latent belief state, there exists an observation function g that has
to be learned such that

ot ∼ g(bt).

For a predictive state, on the other hand, there exists a prespecified feature function ψ of future
observations such that

E[ψ(ot:∞) | o1:t−1] = qt.

In order for qt to be a sufficient state representation, the future features ψt ≡ ψ(ot:∞) must con-
stitute sufficient statistics of the posterior distribution Pr(ot:∞ | o1:t−1). The main advantage of a
predictive state representation is that at any time t, the observable future features ψt constitute an
unbiased estimate of qt. This direct connection between observable quantities and belief states is
absent in the latent representation, and it drives a large class of consistent learning algorithms, as
we demonstrate in Section 2.4.3.2 and Chapter 3.

It is important to acknowledge that the boundary between predictive and latent belief states
can become fuzzy. In many practical cases, the feature function ψ is chosen in a data-dependent
fashion. For example, it could be expressed in a basis obtained by singular value decomposition
(SVD) of some matrix derived from the data, or it can rely on kernel-based representations where
the kernel bandwidth is selected in an adaptive fashion. However, we typically observe in these
cases that the learning algorithm can be clearly divided into a feature learning step (also known as
state discovery or subspace identification, depending on the context) followed by a dynamics (or
update function) learning step. On the other hand, a typical learning algorithm for a latent state
model jointly learns the state representation and the dynamics.

2.1.3 Likelihood Evaluation View
Another formulation to define a dynamical system is to directly define the likelihood of a sequence
of observations. The notion of a belief state can arise as a by-product, as we will see in Section
2.3.2. We are particularly interested in likelihoods of the form

Pr(o1:t) = σ(Aot . . . Ao2Ao1q1), (2.4)

where Ao is a linear operator determined by observation o and σ is a linear functional.2 The
functional form in the RHS is referred to as a sequential system (Carlyle and Paz, 1971) or a
weighted automaton (Schtzenberger, 1961). For a sequence of observations x = o1:t, we will
use Ax to denote the product Aot . . . Ao2Ao1 . In order for a weighted automaton to define a valid
probability distribution, it must satisfy the probability axioms:
• σ(q1) = 1 (unity)
• σ(

∑
o∈O Aoq) = σ(q) (summation)

2There are likelihood models where σ is not linear (e.g., to enforce non-negative probabilities (Zhao and Jaeger,
2010)). These models are out of scope of this chapter.

17

• σ(Axq1) ≥ 0 for any sequence x (non-negativity)
In this case it is also referred to as a linear observable operator model (OOM) (Jaeger, 2000).3

The following theorem shows that linear OOMs have sufficient expressive power to represent any
dynamical system.
Theorem 2.1. For any probability distribution over sequences of observations, there exists a vector
q1 (possibly infinite dimensional), a set of linear operators {Ao | o ∈ O} and a linear functional σ
such that

Pr(o1, . . . , ot) = σ(AoT . . . Ao2Ao1q1),

Proof. We will prove the theorem by construction. Let H be the vector space of all functions
f : O∗ 7→ R. Define q1 ∈ F to be a function s.t. q1(x) = Pr(x) for each x ∈ O∗. Define Ao to be
the operator that satisfies

(Aof)(x) = f(ox), ∀f ∈ H, x ∈ O∗

Note that if f = c1f1 + c2f2 for c1, c2 ∈ R then

(Aof)(x) = c1f1(ox) + c2f2(ox) = c1(Aof1)(x) + c2(Aof2)(x)

and hence Ao is a linear operator. Define

σ(f) ≡ f(∅),

which can also shown to be a linear functional. It follows by definition that

σ(Ao1:tq1) = Pr(o1:t)

Note, however, that an OOM can be infinite dimensional. A class of interest is the class of
dynamical systems that can be modeled by a k-dimensional OOM (i.e., where q1 and σ are k-
dimensional vectors and Ao are k × k matrices).4 To specify this class we need first to discuss the
notion of a system matrix. For simplicity, our discussion will assume the set of observations O
is finite. However, the resulting models can be extended to continuous observations using Hilbert
space embedding of distributions (Song et al., 2010; Boots and Gordon, 2012) or continuous linear
algebra (Kandasamy et al., 2016). Given a finite set of observations, we can specify an ordering
of all possible observation sequences. With that ordering we can construct an infinite dimensional
system matrix D such that each row and each column corresponds to a sequence of observations.
Each element in the matrix is the probability of the concatenation of the corresponding row and
observation sequences, as shown in Figure 2.4.5

A dynamical system is said to be of rank k if the corresponding system matrix is of rank k. The
following proposition connects the system rank and the dimensionality of the corresponding OOM
representation.

3 A model that is closely related to OOM is the stochastic weighted automaton (Balle et al., 2014), where the LHS
of (2.4) is the probability of generating the sequence o1:t and then terminating. This is different from OOM where
Pr(o1:t) is the probability of observing any sequence that starts with o1:t. Assuming that the system will not generate

18

∅ a b aa ab . . .
∅ 1.0 Pr(a) Pr(b) Pr(aa) Pr(ab) . . .
a Pr(a) Pr(aa) Pr(ab) Pr(aaa) Pr(aab) . . .
b Pr(b) Pr(ba) Pr(bb) Pr(baa) Pr(bab) . . .
aa Pr(aa) Pr(aaa) Pr(aab) Pr(aaaa) Pr(aaab) . . .
ab Pr(ab) Pr(aba) Pr(abb) Pr(abaa) Pr(abab) . . .
...

...
...

...
...

... . . .

Figure 2.4: System dynamics matrix for a system with two observations a and b.

Proposition 2.2 (Thon and Jaeger (2015)). For any system with rank k, there exists an equivalent
k-dimensional OOM.

That k-dimensional OOM is not unique. For any k-dimensional OOM defined by (q1, A, σ)
and invertible k × k matrix S, an equivalent OOM can be defined by (q̃1, Ã, σ̃) such that

σ̃> = σ>S

Ão = S−1AoS (2.5)
q̃1 = S−1q1

Clearly, replacing q1, A and σ in (2.4) with their transformed counterparts in (2.5) does not change
the likelihood function. This means a k-dimensional OOM is only defined up to a similarity trans-
formation S. There are a number of ways to resolve this ambiguity. One way is to require the
OOM to be interpretable, in case of which, we can interpret the coordinates as probabilities of
future characeristic events.
Definition 2.3 (Interpretable OOM). Let Ol be the set of all observation sequences of length l.
Let {O1, . . . , Ok} be a disjoint partitioning of Ol. A k-dimensional OOM (q1, A, σ) is said to be
interpretable w.r.t {O1, . . . , Ok} if for any observation sequence o1:t,

Pr(o1:tOi) = (Ao1:tq1)i, (2.6)

where Pr(o1:tOi) is the probability of observing o1:t followed by any sequence x ∈ Oi. The events
{O1, . . . , Ok} are called characteristic events.

Note that an interpretable OOM must have σ = 1, the all ones vector. Another way to re-
solve ambiguity is to use a subspace identification method (see Section 2.4.2.1) to find a “good”
coordinate basis based on training data.

an infinite sequence of observations, OOMs and stochastic weighted automata are equivalent model classes. However,
the conditions on the parameters to define a valid probability distribution become different.

4 The traditional formulation of OOM (Jaeger, 2000) requires σ to be an all-ones vector. We follow (Thon and
Jaeger, 2015) in relaxing this condition. This proves useful when discussing subspace identification methods in Section
2.4.3.2.

5 The transpose of the system dynamics matrix is commonly referred to as the Hankel matrix of the system.
Some references, especially in the literature of predictive state representations (Singh et al., 2004), define the system
dynamics matrix in terms of conditional distributions— that is, element (i, j) is the probability of observing the jth

subsequence after observing the ith subsequence. Adopting this definition does not affect our discussion by much.

19

2.2 Recursive filters
Given a dynamical system where st is the underlying system state, there are a number of funda-
mental inference tasks that one is typically interested in:
Filtering: The purpose of filtering is to a maintain and update a belief state qt ≡ Pr(st | o1:t−1).6

The belief state stores all information about the history that is needed to make future predic-
tions. It represents both our knowledge and our uncertainty about the true state of the system
at time t given previous observations.

Prediction: In the prediction task, we aim to predict observation ot+τ given o1:t−1 for some τ ≥ 0.

Smoothing: In the smoothing task, we compute a belief state at time t given previous as well as
future observations— that is, we compute a representation of Pr(st | o1:t+τ).

Sampling: We might be interested in generating observation sequences based on the dynamical
system model.

Likelihood Evaluation: We might also be interested in evaluation of the likelihood of a sequence
of observations Pr(o1:t).

In this work, we focus primarily on filtering. An accurate filter can provide input to other
downstream tasks. For example, given a filter for maintaining the belief state qt we can use standard
regression to learn a model to predict ot+τ given qt. We can also learn a probabilistic model to
compute Pr(ot | qt), thus allowing us to perform sampling and likelihood evaluation.

Maintaining qt is usually accomplished through a recursive filter that takes the form

E[ot|o1:t−1] = g(qt)

qt+1 = f(xt, ot), (2.7)

where f is a filtering function or update function and g is an observation function. It is clear that
a recursive filter emerges naturally from the belief state formulation in (2.3). However, we might
want to construct a recursive filter based on other formulations of dynamical systems. Therefore,
in the following section, we show how to construct a filter from a dynamical system that is not
necessarily specified in the belief state view.

2.3 Constructing Filters from Dynamical System Models
Without additional assumptions on the representation (for example, requiring the state to be dis-
crete, finite dimensional or probabilistic; or requiring a parametric form for state updates), the
three views explained in Section 2.1 have the same expressive power. That means we can obtain a
belief state representation (and hence a filter) from other representations of dynamical systems.7

6 We might not have an explicit representation of st. The previous equation should be understood as: knowing qt
is equivalent to knowing Pr(st | o1:t−1) for the purpose of making predictions.

7There is an implicit assumption that we can evaluate and marginalize probability distributions used to specify the
system. This may not always be true. Some probability distributions (e.g. generative adversarial networks (Goodfellow
et al., 2014) are easy to sample from but difficult to evaluate.)

20

In this section, we demonstrate how to obtain a filter from a system state model, which gives
rise to an important construction called the Bayes filter. We then demonstrate how to convert an
observable operator model to the belief state representation, resulting in a special class of Bayes
filter called (transformed) predictive state representations (Singh et al., 2004; Rosencrantz et al.,
2004).

2.3.1 Bayes Filter
We now demonstrate how to construct a belief state filter from a system state model. For notational
simplicity, we assume the system state to be discrete (e.g. HMM) but the same concept applies to
continuous states.

Let the belief state qt represent the probability distribution Pr(st−1 | o1:t−1). We can compute
the probability of the next observation ot as

Pr(ot | o1:t−1) =
∑
st−1,st

Pr(o | st)Pr(st | st−1)Pr(st−1 | o1:t−1). (2.8)

To update qt+1 we need to compute Pr(st | o1:t). This can be done using Bayes rule as follows.

Pr(st | o1:t) =
Pr(st, ot | o1:t−1)

Pr(ot | o1:t−1)
=

∑
st−1

Pr(ot | st)Pr(st | st−1)Pr(st−1 | o1:t−1)

Pr(ot | o1:t−1)
(2.9)

The RHS of equations (2.8) and (2.9) depends only on qt and system parameters. The denomi-
nator in (2.9) does not depend on st and typically does not need to be explicitly computed. Instead,
we normalize the obtained probability distribution to sum to 1.

In the case of an HMM, qt is represented by a probability vector of latent system states, and the
numerator of Equation (2.9) is the forward algorithm update. For a linear dynamical system with
Gaussian noise, qt consists of the mean and covariance of the system state. The corresponding
Bayes filter is known as Kalman filter (Kalman, 1960).

A Bayes filter has an interesting update pattern that we can generalize. In general, we start
with a random variable xt such that the probability distribution Pr(xt | o1:t−1) is a sufficient state
representation (in the example above, xt ≡ st−1). We refer to the variable xt as the future.

We can view the state update as follows:
• From the belief state we can infer the joint distribution Pr(ōt, xt+1 | o1:t−1), where ōt is the

still unknown observation at time t. We refer to the quantity xt+1 as the shifted future and the
quantity (ōt, xt+1) as the extended future and we refer to the joint distribution Pr(ōt, xt+1 |
o1:t−1) as the extended belief state.

• Given the actual observation ot, we compute the conditional distribution

Pr(xt+1 | o1:t) ∝ Pr(ot, xt | o1:t−1)

Thus, a Bayes filter update can conceptually be divided into a state extension step followed
by a conditioning step as demonstrated by Figure 2.5. This division will be crucial to the
machinery we develop in Chapter 3.

21

o
t–1

x
t–1

o
t

x
t

o
t+1

x
t+1

o
t–1

x
t–1

o
t

x
t

o
t+1

x
t+1

extension
o
t–1

x
t–1

o
t

x
t

o
t+1

x
t+1

conditioning

Figure 2.5: Visualization of Bayes filter update. The belief state captures the distribution of vari-
ables with thick border. Observations revealed so far are shaded. Left: We start with a belief state
qt that captures the distribution of the future Pr(xt | o1:t−1). Middle: The extended belief state
captures the distribution of the extended future Pr(ot, xt+1 | o1:t−1). Right: After observing ot, the
conditioning step computes the distribution of the shifted future Pr(xt+1 | o1:t).

2.3.2 Predictive State Representation
We first derive a belief state representation of an OOM. Then, after defining predictive state repre-
sentations, we demonstrate the connection between the two models.

Define qt+1 to be a vector such that

σ(Aot+1:t+τ qt+1) = Pr(ot+1:t+τ | o1:t) =
Pr(o1:t+τ)

Pr(o1:t)
=
σ(Ao1:t+τ q1)

σ(Ao1:tq1)
.

For a linear σ this gives

qt+1 =
Ao1:tq1

σ(Ao1:tq1)
=

Aotqt
σ(Aotqt)

, (2.10)

which results in a recursive update rule. To see that (2.10) constitutes a Bayes filter, define a
3-mode tensor B such that8

Ao = B(I, o, I).

Then, we can rewrite Aotqt as B(I, ot, qt) = B(I, I, qt)ot. We can interpret Pt ≡ B(I, I, qt) as
an extension step. For example, if the OOM is interpretable, Pt is a table that stores Pr(ot, xt+1 |
o1:t−1) for an observation ot and a shifted future characteristic event xt+1. Given Pt, the condition-
ing step becomes

qt+1 =
Ptot

σ(Ptot)
.

A predictive state representation (PSR) (Singh et al., 2004) is a belief state model where the
belief state qt is a vector of probabilities of future events or tests. PSRs were originally conceived
for controlled dynamical systems. However, in the uncontrolled case, a PSR is basically the Bayes
filter corresponding to an OOM.

8Please refer to the notation chapter for the definition of the multilinear product B(., ., .).

22

In the uncontrolled case, each element of the PSR state vector qt is the probability of a particular
sequence of future observations or test Pr(ot:t+τ | o1:t−1). The set of tests that make qt a sufficient
state representation are called core tests. Inferring these core tests is called the discovery problem.
Given a sufficient set of core tests, there exists a function fot:t+τ for each sequence of observations
ot:t+τ such that

Pr(ot:t+τ | o1:t−1) = fot:t+τ (qt).

As in OOM, we will focus on linear PSRs, which have the property that

fot:t+τ (qt) = m>ot:t+τ qt

for a vector mot:t+τ . A PSR is a the canonical example of using a predictive state: define ψ(ot:∞) to
be a binary vector, where each element indicates whether ot:∞ matches a particular core test. Then
by definition, qt = E[ψ(ot:∞) | o1:t−1]. We now show that a linear PSR with k core tests can be
converted to a k-dimensional OOM. By definition, there exists a vector m∅ such that m∅>q = 1.
Now for each observation o, we define a matrix Mo such that

m>xo = m>xMo, for any sequence x.

A transformed PSR (Rosencrantz et al., 2004) is a PSR whose state representation and parameters
are subjected to linear transformations that preserve the model in the same way an OOM can be
changed by a similarity transformation.

Note that, given the evaluation vectors m and a minimal state dimension, Mo exists and is
unique: the evaluation vectors corresponding to core tests give exactly the equations required to
uniquely identify Mo. Additional evaluation vectors will only give linear combinations of the
equations resulting from core tests and so there is no inconsistency. It is clear that the matrices Mo

correspond to observable operators in an OOM. The likelihood of a sequence o1:t is given by

Pr(o1:t) = m>∅Mot . . .Mo1q1

And similar to (2.10), the PSR state update equation is given by

qt+1 =
Motqt

m>∅Motqt

The converse is true: a k-dimensional OOM is essentially a k-dimensional transformed PSR,
but it can also be converted to a PSR with k core tests: from an OOM, one can obtain the evaluation
vectors mo1:t = σ>At . . . A1. These vectors are k-dimensional and therefore we can find a set of
k vectors that span them. The tests corresponding to these vectors are core tests. Therefore, k-
dimensional OOMs and k-dimensional PSRs are equivalent model classes.

2.4 Generative Learning of Recursive Filters
We now consider the problem of learning a recursive filter from training data. More specifically,
we focus on the unsupervised learning scenario where the training data consists only of a set of

23

observation trajectories. In the following sections we give an overview over classical learning
approaches as well as some recent proposals that are related to our work. We focus on frequentist
approaches, where filter parameters are assumed to be fixed but unknown. It should be noted,
however, that a wide range of Bayesian methods have been used for learning dynamical systems,
where the parameters are assumed to be latent variables with prior distributions. These methods
include sampling (Fruhwirth-Schnatter, 2001; Rydn, 2008) and variational inference (Foti et al.,
2014).

We can classify learning approaches into generative and discriminative methods. In the gen-
erative approach we identify the underlying dynamical system as a probability distribution whose
parameters are learned by maximizing the data likelihood or through method of moments. The
learned dynamical system gives rise to a filter as described in Section 2.3. In the discriminative
approach we directly learn the filter by minimizing the error resulting from its use in predicting
future observations. We describe generative methods in this section and describe discriminative
methods in Section 2.5.

2.4.1 Maximum Likelihood
Given a set of M training trajectories, the maximum likelihood method attempts to find the system
parameters θ ∈ Θ that maximizes the log-likelihood of the training data

l(θ) =
M∑
i=1

log Pr(oi,1:Ti ; θ), (2.11)

where oi,1:Ti denotes the ith training trajectory. Usually, this maximization problem has no analyt-
ical solution. Therefore, we resort to local optimization methods. Under certain method-specific
conditions, these methods converge to a limit point in the parameter space. Typically, however,
this point is not guaranteed to be globally optimal. Two prominent local optimization methods are
gradient descent and expectation-maximization.

2.4.1.1 Gradient Descent

Gradient descent is a generic local optimization method. Given a function f : Θ 7→ R, gradient
descent methods iteratively update the parameters by taking steps along the gradient

θ(i+1) = θ(i) + η(i)∇f(θ)|θ=θ(i) , (2.12)

where η is a step size. There are different variations of gradient descent that vary according to
method of computing the gradient and the parameter update equation. A widely used variation is
stochastic gradient descent, where we replace the gradient with an unbiased estimate thereof that
is typically obtained by considering a subset of the training examples in each iteration.

2.4.1.2 Expectation-Maximization

The expectation-maximization (EM) algorithm (Dempster et al., 1977) is another local method to
optimize the likelihood of a latent variable. Let x denote the observed variables and let z denote

24

the latent variables (e.g. system states). Instead of maximizing the log-likelihood function

l(θ) = log Pr(o1:t; θ)

= log
∑
z

[Pr(o1:t, z; θ)], (2.13)

the EM takes iterations maximizing the following quantity known as the expected complete log-
likelihood

Q(θ | θ(i)) = Ez|o1:t;θ(i) [log Pr(o1:t, z; θ)], (2.14)

where the expectation is taken w.r.t to the posterior Pr(z | o1:t; θ
(i)) induced by the current estimate

of the parameters θ(i). In each iteration, two steps are executed:
• Expectation: where we compute the expected sufficient statistics of the posterior Pr(z |
o1:t, θ

(i)).
• Maximization: where we compute θ that maximizes (2.14).

It has been shown that an increase in (2.14) results in at least the same amount of increase in the
log-likelihood. Other variants of EM include stochastic EM (Celeux and Diebolt, 1985), where the
E-step is replaced by sampling of the latent variables, and generalized EM, where the M-step only
needs to improve (2.14) (typically via one or more gradient ascent steps).

One advantage EM has over gradient descent is that there is no step size to tune. However, gra-
dient descent gives additional flexibility in modifying the objective function, changing constraints
and/or using a wide variety of tools from optimization literature out of the box.

2.4.2 Method of Moments and Spectral Algorithms
Method of moments is an alternative method for estimating the parameters of a probability distri-
bution from i.i.d samples. For a probability distribution Pr(x; θ0), method of moments assumes
the existence of known functions f(x) and m(θ) that satisfy the moment condition:

Ex∼Pr(x;θ0)[f(x)] = m(θ) iff θ = θ0.

Given samples x1, x2, . . . , xN ∼ Pr(x; θ0), method of moments computes the empirical moment

m̂ =
1

N

N∑
i=1

g(xi)

and then solves for θ that satisfies

m(θ) = m̂

Under mild assumptions, method of moments is consistent: it converges to the true parameter
vector θ0 in the limit of infinite data. It is usually simpler than maximum likelihood estimation

25

although less statistically efficient. Therefore, it can be used to initialize an iterative procedure for
likelihood maximization.

The i.i.d condition can be relaxed, as long as the empirical moment converges to the true
expectation. If we replace i.i.d sampling by a stationary process, we can compute the empirical
moment from trajectories generated by the process. If the process is also ergodic, we can compute
empirical moments from a single long trajectory. The estimated moments will converge but at a
slower rate depending on the mixing time of the process.

One special class of method of moments is spectral methods. These methods utilize matrix
and/or tensor factorization in estimating the parameters. In the context of learning dynamical
systems, we can identify two subclasses of spectral algorithms in the literature, which we refer to as
subspace identification and tensor decomposition. We describe them in the following subsections.

2.4.2.1 Subspace Identification

A subspace identification method first attempts to find a low dimensional state representation by
using observed data to compute a subspace that contains the belief states. That subspace is usu-
ally obtained by factorizing the covariance of history and future observations using singular value
decomposition, canonical correlation analysis or another factorization technique. This is based
on the insight that noise on future observations is uncorrelated with the history and therefore this
factorization removes spurious dimensions that result from noise.

Σ
F,H

U
(Extended

Observation
Matrix)

Σ
q,HS

ta
te

S

p
a

ce

Figure 2.6: Factorizing the future/past covariance matrix results in (1) a representation of the
future in a low dimensional state-space that neglects directions uncorrelated with the past and
(2) an extended observation matrix that reconstructs expected future observations from the low
dimensional representation.

After obtaining the state representation, the algorithm learns the system dynamics/update equa-
tion. This is done by moment matching which typically results (implicitly or explicitly) in solving
regression problems. Subspace identification algorithms follow a predictive state paradigm; they
seek a belief state representation in terms of projected future observations. The matrix factoriza-
tion or spectral component of the algorithm is actually used for obtaining this projection, which
serves as the feature function ψ. It is worth noting that a projection can be obtained through other
methods such as random Gaussian matrices, although matrix factorization methods are more sta-
tistically efficient (Boots, 2012). It is also worth noting that there are regularization options other

26

than the low-rank assumption assumed by subspace identification methods. For example, Sun
et al. (2016) have shown that replacing the low-rank assumption with L2 regularization through
the methodology we devlop in Chapter 3 can outperform subspace identification for linear dynam-
ical systems.

2.4.2.2 Tensor Decomposition

A multi-view model is a latent variable probabilistic model where there are multiple observed
variables that are conditionally independent given the latent variable. Figure 2.7 shows examples
of multi-view models.

x

o1 o2 o3

s1

o1

s2

o2

s3

o3

(a) (b)

Figure 2.7: (a) A multiview model: observables o1, o2 and o3 are three independent views of the
latent variable x. (b) HMM as a multiview model: o1, o2 and o3 are three independent views of s2.

We are interested in multi-view models that are identifiable from observed variables— that is,
the marginal distribution of the observed variables uniquely determines the parameters of the model
(up to a permutation of the latent variable coordinates). Tensor decomposition methods constitute
a relatively recent family of spectral methods for learning identifiable multi-view models with dis-
crete latent variables. The main concept is to exploit the structure in low-order moments, typically
second and third-order. The pair-wise and triple-wise interaction statsitics between multiple views
of the same latent variable contain implicit information about that variable that can be uncovered
using decomposition methods. While this idea was used by earlier methods that used singular
value decomposition (Anandkumar et al., 2012; Hsu and Kakade, 2013), the tensor decomposition
provides a more explicit and unifying view.

Let o1, o2 and o3 be three views of a latent variable x as shown in Figure 2.7. Assume x can
take the values 1, . . . ,m. Define

ωj ≡ Pr(x = j)

µi,j ≡ E[oi | x = j] ∀i ∈ {1, 2, 3}, j ∈ {1, . . . , N}. (2.15)

It follows from conditional independence and iterative expectation that

E[o1 ⊗ o2 ⊗ o3] =
m∑
j=1

ωjµ1,j ⊗ µ2,j ⊗ µ3,j (2.16)

27

o2

o1

o3 a1

c1
b1

⨂

a
k

c
k

b
k

⨂

⋍ + +…

Figure 2.8: Visualization of tensor PARAFAC decomposition.

In other words, the third moment tensor is a sum of m rank 1 tensors. The essence of the tensor
decomposition method is to estimate the empirical third moment tensor from data and then de-
compose it into a sum of rank one tensors (known as CP or PARAFAC decomposition (Harshman,
1970)— see Figure 2.8).

T =
m∑
j=1

aj ⊗ bj ⊗ cj =
m∑
j=1

ŵjµ̂1,j ⊗ µ̂2,j ⊗ µ̂3,j (2.17)

Under certain rank conditions (Kruskal, 1977), the decomposition is unique up to a permutation
of the rank-1 tensors and a rescaling of their factors. The scaling ambiguity can be resolved by
enforcing

∑m
j=1 ŵj = 1 as well as additional constraints on the expectations µ̂i,j depending on the

model. The model parameters can then be recovered by matching the results of tensor decomposi-
tion to their theoretical values. There are a number of recent tensor decomposition methods with
theoretical guarantees to perform the PARAFAC decomposition such as symmetric tensor power
iteration (Anandkumar et al., 2014a), alternating rank 1-updates (Anandkumar et al., 2014b) and
simultaneous diagonalization (Kuleshov et al., 2015).

2.4.3 Example I: Learning Hidden Markov Models
We now provide a concrete comparison of generative learning approaches by describing examples
from the literature for learning the parameters of a hidden Markov model.

A hidden Markov model (HMM) (Rabiner and Juang, 1986), is a dynamical system with dis-
crete system states and discrete observations. An HMM is specified by a probability vector π, a
stoachstic transition matrix T and a stochastic observation matrix O such that

Pr(s1 = i) = πi

Pr(st+1 = i | st = j) = Tij

Pr(ot = i | st = j) = Oij,

Knowing these parameters, a recursive filter can be constructed using the forward algorithm.

2.4.3.1 Maximum Likelihood

The standard algorithm for unsupervised learning of an HMM used to be Baum-Welch algo-
rithm (Baum et al., 1970), although gradient descent methods have also been proposed (Levinson

28

et al., 1982). Baum-Welch algorithm algorithm is an instance of expectation-maximization. The
sufficient posterior statics are the number of times observation i was emitted by state j, and the
number of times state i transitioned into state j. The expectations of these counts can be esti-
mated using the forward-backward algorithm. The M-step computes transition and observation
probabilities using these estimated counts.

2.4.3.2 Spectral Algorithms

We now consider spectral algorithms for learning an HMM. For simplicity, we assume the HMM
to be 1-observable. The spectral algorithms we describe make use of the triple-wise statistics of
the first three observations o1, o2, o3. Specifically, they utilize the following moments

P1 ≡ E[o1] (Probability vector of 1 observation)
P1,2 ≡ E[o1 ⊗ o2] (Joint probability table (matrix) of two observations)
P1,2,3 ≡ E[o1 ⊗ o2 ⊗ o3] (Joint probability table (tensor) of three observations)

In practice, we estimate these moments by considering all triplets ot−1, ot, ot+1 under the sta-
tionarity assumption.

Hidden Markov Models as Observable Operator Models
To compute the probability of a sequence of observations we use the forward algorithm, which can
be expressed in matrix form as follows

Pr(o1:t) = 1>Tdiag(Oot.) . . . Tdiag(Oo1.)π, (2.18)

where Oo. is the row in O corresponding to observation o. Comparing (2.18) to (2.4) reveals that a
k-state HMM is a k-dimensional OOM9 with

q1 = π,

Ao = Tdiag(Oo.)

σ> = 1>

If we relax the requirement that π, T and O are stochastic, the functional form of (2.18) is called a
factorized weighted automaton (Balle et al., 2014).

Subspace Identification for Hidden Markov Models
We will consider the spectral HMM learning algorithm proposed in (Hsu et al., 2009). The al-
gorithm assumes that π > 0 element-wise and that T and O have full column-rank. The rank
assumption entails 1-observability. It can be relaxed by replacing ot−1 (which can be interpreted
as past) and ot+1 (which can be interpreted as shifted future) with features over observation win-
dows (Siddiqi et al., 2010). In a nutshell, the algorithm represents the HMM as an OOM , applies

9The converse, however, is not true. See (Jaeger, 2000) for an example of an OOM that cannot be modeled by an
HMM.

29

a specific similarity transformation to OOM parameters that makes it easier to perform moment
matching to recover the transformed OOM parameters from moment matrices and finally recovers
the parameters from empirical moments.

As discussed in Section 2.1.3, a k-dimensional OOM can have an invertible matrix S applied
to its parameters as shown in (2.5). Let U be a matrix such that S = U>O is invertible and let
b1, B, b∞ denote the parameters of the transformed OOM such that

b1 = (U>O)π

Bo = (U>O)Ao(U
>O)−1

b∞ = 1>(U>O)−1

The choice of the transformation S = U>O can be interpreted as follows: we replace the initial
latent belief state π with a predictive belief state b1 = E[ψ(o1)] where ψ(o) = U>o.

The subspace identification step chooses U such that U>O is invertible. Hsu et al. (2009) show
that a natural choice of U is the top k singular vectors of the matrix P2,1. Once U is obtained, we
can perform moment matching. The switch from a latent to a predictive representation makes the
moment matching step tractable. Hsu et al. (2009) show that

b1 = U>P1

b∞ = (P>2,1U)+P1

Bo = (U>P3,o,1)(U>P2,1)+, (2.19)

where the matrix P3,o,1 is the slice of P3,2,1 corresponding to o2 = o. This gives the following
algorithm:
• Moment Estimation: Compute empirical estimates P̂1, P̂2,1, P̂3,2,1.

• Subspace Identification: Compute the state space basis U = SVD(P̂2,1).
• Moment Matching: Estimate the transformed parameters by plugging the empirical mo-

ments into (2.19).

Tensor Decomposition for Hidden Markov Model
As shown in Figure 2.7, the observations o1, o2 and o3 are three independent views of s2. It can
also be shown that (Anandkumar et al., 2014a)

ω ≡ E[s2] = Tπ

µ1,j ≡ E[o1 | s2 = j] = Odiag(π)T>diag(ω)−1ej

µ2,j ≡ E[o2 | s2 = j] = Oej

µ3,j ≡ E[o3 | s2 = j] = OTej (2.20)

Thus, given the PARAFAC decomposition of the third moment tensor, we can directly estimate
O and ω. We can then estimate T from µ3 and hence estimate π = T−1π. The solution is unique
if π1 > π2 > · · · > πm > 0 and T and O are both full column-rank.

30

2.4.3.3 Discussion

Optimal estimation of hidden Markov models from data is NP-hard under cryptographic assump-
tions (Terwijn, 2002). Maximum likelihood approaches are not guaranteed to converge to a global
optimum and therefore are not consistent. Spectral methods circumvent this problem by employ-
ing two key theoretical concepts. First, they assume additional conditions on the underlying HMM
that ensure a minimum degree of separability between states and rule out the pathological cases
that result in the hardness of learning. Second, they replace HMMs with a larger model class that
simplifies learning. The subspace identification method actually learns a weighted automaton. The
tensor decomposition method learns a factorized automaton and therefore it is one step closer to
learning an HMM. Given an infinite amount of samples generated from an HMM, both methods
are guaranteed to converge to a model equivalent to that HMM. However, in the finite sample set-
ting, neither method is guaranteed to produce a valid HMM. In fact, neither method is guaranteed
to produce a valid probability distribution. This is the source of the so-called negative probability
problem, where a weighted automaton can predict negative probabilities of observation sequences.
The problem is compounded by the fact that verifying whether a set of weighted automaton param-
eters satisfy the non-negativity constraints is an undecidable problem (Wiewiora, 2008). Another
issue is that spectral techniques, while consistent, are not statistically efficient and therefore require
more data to produce acceptable models.

One common approach to harness the computational efficiency of spectral methods while
avoiding these issues is to compute valid HMM parameters that are close to the factorized au-
tomaton produced by the spectral method, and then use these parameters to initialize a local op-
timization procedure such as EM (Falakmasir et al., 2013; Balle et al., 2014; Zhang et al., 2016).
A simple, but ad-hoc, approach is to invert negative entries in the obtained parameters and then
normalize the columns to sum to one. Shaban et al. (2015) suggest a more principled approach, by
posing the problem of finding the closest HMM to a given factored automaton as an exterior point
optimization problem.

2.4.4 Example II: Learning Kalman Filters
The Kalman filter (Kalman, 1960) is a method for tracking the state of a linear dynamical system
with Gaussian noise. Such a system has the following dynamics

st+1 = Ast + νt,

ot = Cst + εt,[
νt
εt

]
∼ N

(
0,

[
Q S
S> R

])
. (2.21)

The Kalman filter is essentially the Bayes filter resulting from expressing (2.21) in the belief
state form, although it is sometimes used to refer directly to (2.21). Under the Gaussian noise
assumption, the belief state consists of the mean and covariance of the predictive distribution
Pr(st | o1:t−1). If all eigenvalues of A are strictly inside the unit circle, the system is said to
be stable and it can be shown in this case that the posterior covariance converges to a constant

31

steady-state value (Anderson and Moore, 1979). Thus, a steady-state Kalman filter needs to keep
track only of the predictive mean E[st | o1:t−1].

2.4.4.1 Expectation-Maximization

Ghaharmani and Hinton (1996) proposed an expectation-maximization algorithm for learning lin-
ear dynamical systems with Gaussian noise. The expected sufficient statistics needed for the E-step
are the first and second moments of the latent states st, which can be computed using a Kalman
smoothing-type algorithm. Given these moments, the optimal parameters for the M-step can be
computed analytically.

Unlike an HMM, there is no restriction on the matrices in (2.21) and therefore we can apply
any invertible transformation to the latent state and define an equivalent system, as long as we
update the parameter matrices accordingly. One method to resolve some of the ambiguity is to fix
the state noise covariance Q to identity (Belanger and Kakade, 2015).

2.4.4.2 Subspace Identification

We will focus on the identification of steady-state Kalman filters, where the predictive covariance
of the state Σst|o1:t−1 is constant and hence we only need to keep track of the mean qt ≡ E[st |
o1:t−1]. 10

The update equation then becomes

qt+1 = Aqt +K(Cqt − ot), (2.22)

where K ≡ Σst+1,ot|o1:t−1Σ
−1
ot|o1:t−1

is called the Kalman gain.
There are a variety of system identification methods for Kalman filters. We refer the reader to

(Overschee and Moor, 1993; van Overschee and de Moor, 1996) for a review. In our discussion,
we will adopt some steps from (Boots, 2012) as they make it easier to draw parallels to subspace
identification of hidden Markov models.

Let do be the dimensionality of the observations. We define τf and τh to be the lengths of future
and past observations windows respectively. We also define the following quantities:

ht ≡ vec(ot−τh:t−1) ∈ Rdoτh

Ft ≡ vec(ot:t+τf−1) ∈ Rdoτf

It can be shown (Boots, 2012; van Overschee and de Moor, 1996) that

E[st|ht] = Cst,htC−1
ht
ht (2.23)

and it follows that

E[Ft|ht] = ΓCst,htC−1
ht
ht, (2.24)

10 It is important to distinguish between the predictive covariance Σst|o1:t−1
and the marginal covariance Σst . While

both have constant values in the steady state, these constants are not equal.

32

where Γ is the observability matrix, which is defined as

Γ ≡


C
CA
...
CAτf−1

(2.25)

Note that if Γ has full column rank, then the system is τf -observable. Let U be a doτf × m
matrix of orthonormal columns such that range(U) = range(Γ). It follows that U>Γ is invertible
and hence we can redfine the system in (2.21) as

s̃t+1 = Ãs̃t + ν̃t,

ot = C̃s̃t + εt,[
ν̃t
εt

]
∼ N

(
0,

[
Q̃ S̃

S̃> R

])
, (2.26)

, where

s̃t = (U>Γ)st

C̃ = C(U>Γ)−1

Ã = (U>Γ)A(U>Γ)−1

Q̃ = (U>Γ)Q(U>Γ)>

S̃ = (U>Γ)S

Similar to the HMM case, it can be shown that a good choice of U is the top m singular vectors
of the future-past covariance CFt,ht . Knowing U , we can recover the parameters Ã and C̃.
Proposition 2.4 (Adapted from (Boots, 2012)). Let Γ denote the observability matrix. Let U be a
τfd×mmatrix of orthonormal columns such that range(U) = range(Γ). Assume that the matrices
Γ, A and C are full column rank; it follows that

C̃ = U(1:m).

Ã = (U>ΣFt+1htΣht)(U
>ΣFthtΣht)

+

Proof.

U(1:m). = U(1:m).(U
>Γ)(U>Γ)−1

= Γ1:m(U>Γ)−1 = C(U>Γ)−1 = C̃

U>CFt+1,ht(U
>CFt,htCht)+ = U>ΓAΣstht(U

>ΓΣstht)
+

= U>ΓACst,htC+
st,ht

(U>Γ)−1

= (U>Γ)A(U>Γ)−1 = Ã

33

It remains to compute the Kalman gain, which is a bit more subtle. First, we define P to denote
the difference between stationary and predictive covariance11

Pt ≡ Σs̃t − Σs̃t|o1:t−1 (2.27)

It can be shown that (van Overschee and de Moor, 1996)

Kt = (Σs̃t+1,ot − ÃPtC̃>)(Σot − C̃PtC̃>)−1 (2.28)

Pt+1 = ÃPtÃ
> + (Σs̃t+1,ot − ÃPtC̃>)(Σot − C̃PtC̃>)−1(Σs̃t+1,ot − ÃPtC̃>)> (2.29)

To compute the Kalman Gain, first we estimate stationary covariances from data: Estimating
Σot is obvious. On the other hand we have

Σs̃t+1ot = U>ΣFt+1,ot ,

since future observation noise is uncorrelated with ot. Then we set Pt = Pt+1 = P∞ and solve
(2.29). This equation in an Algebraic Riccati Equation. In principle, it could be solved by treating
it as a fixed point iteration starting from P1 = 0. However, there are well-known methods to solve
it more efficiently (Laub, 1978; van Overschee and de Moor, 1996).

2.4.4.3 Discussion

There are remarkable similarities between learning hidden Markov models and Kalman filters.
Both underlying systems are described by linear transition and observation matrices. Both admit
an EM algorithm where the corresponding smoothing method is used in the E-step. And finally,
both have subspace identification algorithms that follow similar recipes: (1) Use SVD of future-
past covariance to find a good state-space basis. (2) After transforming the system to the new basis,
recover parameters from moments that involve past, future, observation and shifted future.

On the other hand, both have their complications: An HMM requires transition and observation
matrices to be stochastic. Additional post-processing is needed to recover a valid HMM. A Kalman
filter does not have such requirement but, on the other hand, it needs to learn additional parameters
related to the noise model.

2.5 Discriminative Learning of Recursive Filters
Discriminative training offers an alternative approach to learn recursive filters that directly opti-
mizes their predictive performance. Given a recursive filter as defined in (2.7), we define a predic-
tion target ψt = ψ(ot:∞) for some feature function ψ and we train the filter by minimizing the loss

11 van Overschee and de Moor (1996) refers to P as the forward state covariance matrix– that is, the covariance
of the Kalman filter belief state over all possible histories. With this definition, (2.27) is simply an application of the
law of iterated variance. This should not be confused with the predictive covariance Σst|o1:t−1

, which denotes the
covariance of the system state conditioned on a specific observation history. Unfortunately, there are other references
that use P to denote the predictive covariance.

34

function

L(θ) =
T∑
t=1

l(ψt, g̃(qt)) +R(θ), (2.30)

where qt is the result of applying the filter up to time t, g̃ is a horizon prediction function, θ is
a parameter vector that parametrizes the filter as well as the horizon prediction function, l is a
suitable loss function (e.g. square loss) and R is a regularization function (e.g. square L2 norm).

Discriminative learning has its advantages if filtering is our main concern: it directly optimizes
our task of interest whereas generative learning optimizes a different objective. Discrminative
learning also gives additional flexibility in designing the filter and the training objective function,
since we do not care about their probabilistic interpretation. Below we describe different methods
to optimize (2.30).

2.5.1 Gradient Descent
We can minimize (2.30) using gradient descent and other numerical optimization techniques. Com-
putation of the gradient can be performed using backpropagation through time (BPTT) (Werbos,
1990). BPTT first unfolds the recursive computation graph and computes the belief state qt at each
step. Then, it computes the gradient by going backwards through the unfolded graph, applying the
chain rule according to the following recursion.

∂L
∂qt

=
∂L
∂ψ̂t

∂ψ̂t
∂qt

+


∂L
∂qt+1

∂qt+1

∂qt
, if t < T

0, if t = T
, (2.31)

where

ψ̂t = g̃(qt)

Using the chain rule, it follows that

∂L
∂θ

=
T∑
t=1

∂L
∂qt

∂qt
∂θ

+
∂L
∂ψ̂t

∂ψ̂t
∂θ

, (2.32)

Figure 2.9 visualizes gradient computation via BPTT. Backpropagation through time is the de facto
standard method for training recurrent neural networks.

2.5.2 Reduction to Supervised Learning
A relatively recent approach to learn recursive filters by discriminative training is to construct the
filter from classification/regression components (e.g. linear regression, feedforward networks or
regression trees). The training procedure is an iterative procedure where in each iteration, the

35

q1,
∂L
∂q1

g, ∂g̃
∂q
, ∂g̃
∂θ

ψ̂1,
∂L
∂ψ̂1

q2,
∂L
∂q2

g, ∂g̃
∂q
, ∂g̃
∂θ

ψ̂2,
∂L
∂ψ̂2

q3,
∂L
∂q3

g, ∂g̃
∂q
, ∂g̃
∂θ

ψ̂3,
∂L
∂ψ̂3

q4,
∂L
∂q4

g, ∂g̃
∂q
, ∂g̃
∂θ

ψ̂4,
∂L
∂ψ̂4

f, ∂f
∂q
, ∂f
∂θ

o1

f, ∂f
∂q
, ∂f
∂θ

o2

f, ∂f
∂q
, ∂f
∂θ

o3

Figure 2.9: Visualization of Backpropagation through time: Circle nodes indicate variables while
square nodes indicate functions in an unrolled networks. In the forward pass, the inputs are used to
compute belief states qt and output estimates ψ̂t where black arrows indicate flow of information.
In the backward pass, we start from the gradient w.r.t to the output estimates and red dotted arrows
indicate the flow of information. Each belief state node accumulates incoming gradients and sends
the total gradient backward. Each function node multiplies the incoming gradient by the Jacobian
w.r.t belief state and passes the result backwards. It also multiplies the incoming gradient by the
Jacobian w.r.t model parameters. The results from the latter operation are accumulated to compute
the total gradient of the loss w.r.t model parameters.

components are updated by solving a set of supervised learning tasks. This approach has been ex-
plored by Langford et al. (2009), who proposed the sufficient posterior representation model. The
model consists of a state initialization component A, a state update component B and a prediction
component C.

The learning algorithm iteratively solves supervised regression tasks (shown in Figure 2.10)
such that C(A(o1)) ≈ ψ2 and C(B(qt, ot)) ≈ ψt+1.

o1

q2

ψ2

A C

ot

qt+1

ψt+1

qt

B C

Figure 2.10: Regression tasks for learning a sufficient posterior representation model.

The existence of the prediction component C complicates the training of sufficient posterior
representation models, resulting in non-standard supervised learning subproblems and limiting the

36

flexibility of using arbitrary off-the-shelf supervised learning models and training algorithms. Sun
et al. (2016), solve this problem by resorting to predictive states. Their proposed model, named the
predictive state inference machine, defines the belief state to be the expectation of future features
(i.e. qt = E[ψt | o1:t−1]). With this restriction, one only needs to learn the state update component
B. This can be accomplished using data aggregation (DAGGER) (Ross et al., 2011), which is
depicted in Algorithm 1.

Algorithm 1 Training a predictive state inference machine using data aggregation (DAGGER)
Input:A set of M trajectories {τ1, . . . , τM}, number of iterations N , hypothesis class B.
Output:Initial state estimate q1, a state update function B.

1: Compute initial state q1 := 1
M

∑M
i=1 ψi,t.

2: Choose an initial state update function B(0) ∈ B.
3: for n = 0 to N − 1 do
4: Compute the belief state q(n)

i,t for 1 ≤ i ≤M and 1 ≤ t ≤ Ti using B(n).
5: For each trajectory τi and each time step t, construct the training example with zi,t =

(qi,t, oi,t) as input and ψi,t+1 as output and add it to dataset Dn+1.
6: Train the state update component B(n+1) on D(n+1) to minimize the loss l(B(qt, ot), ψt+1).
7: end for
8: Set B by selecting the element in {B(0), . . . , B(N)} that achieves the lowest validation error.

In each iteration, DAGGER solves a standard supervised learning task, where the goal is to learn
an update component B(n) that predicts shifted future statistics ψt+1 given the current observation
ot and the belief state q(j)

t obtained in all previous iterations 1 < j < n. This problem can be
solved using off-the-shelf supervised learning methods, as long as the loss function is a Bregman
divergence (e.g. square loss or cross-entropy). By including training data that consists of the
estimated state in the input and the true future as an output, the filter effectively learns how to
recover from its mistakes.

It is beneficial to contrast PSIMs with subspace identification methods, since both follow a
predictive state paradigm and both offer some theoretical guarantees. In addition to the general
differences between generative and discriminative learning mentioned in the beginning of Section
2.5, PSIMs offer agnostic generalization guarantees: they do not assume the correctness of the
filtering model. Instead, they bound the expected error encountered at test time in terms of the error
encountered at training time. That guarantee, however, can depend heavily on the performance of
the initial hypothesis B(0). A poor choice of B(0) may require a large number of iterations to
compensate for, or can even result in a poor asymptotic model. In addition, the PSIM filtering
guarantee assumes that the minimization problem in Algorithm 1 is solved exactly, which may not
be applicable to complicated hypothesis spaces where that minimization is non-convex.

Subspace identification methods, on the other hand, are not iterative and do not have initial-
ization issues. They need a fixed number of passes over the data (usually 1) to recover the pa-
rameters. These methods are guaranteed to recover the correct parameters in the limit of infinite
data in the realizable setting (i.e. when the data matches the model assumption). In general, how-

37

ever, when there is a model mismatch (e.g. when the assumed system rank is less than the actual
value (Kulesza et al., 2014)), all bets are off.

2.6 Conclusion
We presented an overview of a range of dynamical system models in the literature and we have
shown that we can construct recursive filters from dynamical systems specified in different forms.
Based on this overview, we can identify two design choices to be made when constructing a recur-
sive filter: one is related to the state representation and the other is related to the learning algorithm.

Latent vs. Predictive State:
We can use a latent belief state qt that represents a belief over the hidden state of the system st and
learn an observation function g which maps the belief state to a prediction of future observations.
Or, we can use a predictive belief state that is defined to be the expectation of sufficient future
statistics conditioned on all previous observations. The latter choice implies a specification of the
observation function g and thus can simplify learning.

Generative vs. Discriminative Filters:
We can use a generative learning approach where we first derive the update equation f in terms
of the parameters of the corresponding dynamical system and then learn these parameters using
maximum likelihood or method of moments. For example, in an HMM, the dynamical system
parameters are the initial belief state π, the observation matrix O and the transition matrix T , and
the update function f is derived from these parameters using the forwarding algorithm. Or, we
can use a discriminative learning approach where we directly minimize the prediction error, which
usually gives us extra flexibility in specifying the state update function f without worrying much
about the underlying generative process.

These two design choices result in four categories of methods to construct recursive filters for
dynamical systems. We summarize these categories in Table 2.1. The framework we develop
in Chapter 3 lies in the category of predictive state generative filters. At first glance, this choice
seems counter-intuitive since this category seems to be more restricted in terms of both observation
and state update functions. However, we will demonstrate that this category of models enjoys
advantages that allow us to develop tractable and consistent learning algorithms. For example we
will show that, through linear regression, we can learn a wide class of models that would require
non-linear regression if formulated as discriminative filters. We will also show that we can develop
a training procedure that does not have issues with the initialization of states or parameters. In
addition, we will show in Chapter 4 that we can still use discriminative training approaches to
further enhance the predictive performance of our model.

38

Predictive State Latent State

Generative
Filter

Observable Operator Models
Predictive State Representations
Predictive State Models

Algorithms:
Method of Moments: Two-stage regression
Maximum Likelihood

Hidden Markov Models
Kalman Filters

Algorithms:
Method of Moments: Tensor Factorization
Expectation Maximization (EM)

Discriminative
Filter

Predictive State Inference Machines

Algorithms:
Data Aggregation (DAGGER)

Sigmoid Recurrent Neural Networks (RNNs)

Algorithms:
Backpropagation through time (BPTT)

Table 2.1: Four categories of methods to construct recursive filters. Our proposed framework is in
blue.

39

40

Part II

Learning Uncontrolled Systems

41

Chapter 3

Predictive State Models: Generative
Learning of Recursive Filters Using
Two-Stage Regression

In this chapter we propose a framework for generative learning of recursive filters in uncontrolled
dynamical systems. The framework consists of a model class and a learning algorithm. The model
class is predictive state models, a Bayes filter that utilizes predictive states. The learning algorithm
is two stage-regression (2SR), a method-of-moments-based approach to learn predictive state mod-
els by reduction to supervised learning. Unlike the supervised learning approaches described in
Chapter 2, which were iterative in nature, our learning approach consists of solving a fixed small set
of supervised learning problems while providing the theoretical guarantees expected from method
of moments.

The chapter is organized as follows: In Section 3.1 we define predictive state models. In Sec-
tion 3.2 we describe the two-stage regression algorithm. In Section 3.3, we describe how existing
subspace identification methods described in Chapter 2 can be thought of as special instances of
the proposed framework. In Section 3.4 we provide a theoretical analysis of two-stage regres-
sion. Finally, in Section 3.5, we experimentally demonstrate that efficacy of using the proposed
framework to create novel recursive filters.

3.1 Model Class: Predictive State Models
Our formulation relies on the notion of the predictive state, where the state is represented as a pre-
diction of sufficient future observation statistics. We denote future features by ψt = ψ(ot:∞). The
future features are sufficient if E[ψt|o1:t−1] is a sufficient state representation (See Section 2.1.2.1).
Two classical choices of ψ are an indicator vector representing ot for 1-observable HMM (Hsu
et al., 2009) and a stack of the next τf observations for τf−observable steady-state Linear Gaus-
sian systems (van Overschee and de Moor, 1996). Another quantity we need is the extended future
features ξt, which is defined as the sufficient statistics of the distribution Pr(ot, ψt+1 | o1:t−1). The
importance of ξt is that, given an estimate of E[ξt | o1:t−1], we can condition on ot to obtain

43

o1 o2 ... o
t-1 o

t
o
t+1 o

t+2 ... o
t k+ -1 o

t k+

o1 o2 ... o
t-1 o

t
o
t+1 o

t+2 ... o
t k+ -1 o

t k+

o1 o2 ... o
t-1 o

t
o
t+1 o

t+2 ... o
t k+ -1 o

t k+

Future

Extended Future

Shifted Future

Expansion
Wsystem

Conditioning
ffilter

Figure 3.1: Bayes filter update for predictive state models.

E[ψt+1 | o1:t]. We are now ready to define our class of models.
Definition 3.1. A dynamical system is said to conform to a predictive state model (PSM) if it
satisfies the following properties for some future features ψ and extended future features ξ:
• For each time t, there exists a predictive state qt ≡ E[ψt | o1:t−1] which constitutes a sufficient

state representation.
• For each time t, there exists an extended state pt ≡ E[ψt | o1:t−1].
• There exists a filtering function ffilter such that, for each time t, qt+1 = ffilter(pt, ot). ffilter is

typically non-linear but known in advance.
• There exists a linear map Wsystem such that, for each time t,

pt = Wsystemqt (3.1)

The predictive state model is a belief state model that entails the following recursive filtering
equations:

E[ψt|o1:t−1] = qt

qt+1 = ffilter(Wsystemqt, ot) (3.2)

That filter is a Bayes filter that follows the two-step update described in Section 2.3.1 (see Figure
3.1):
• State Expansion: pt = Wsystemqt

• Conditioning: qt+1 = ffilter(pt, ot)

In other words, a predictive state model is a Bayes filter with a predictive state representation
and a linear state expansion. Note that we only need to learn the expansion operator Wsystem and
the initial state q1. The linearity of Wsystem and the prespecified relation between qt and future
observations are what we exploit to develop a tractable learning algorithm, which we describe in
the next section.

44

o1:t−1

ht

qt εψt

ψt

Figure 3.2: Graphical model depicting the (deterministic) dependencies between previous obser-
vations o1:t−1, belief state qt, noise εψt and observed features ψt. Note that previous observations,
and hence history features ht, are correlated with the belief state but not with the noise.

3.2 Learning Algorithm: Two-Stage Regression

Our goal is to estimate the operator Wsystem. Note that, by definition, the observed statistics ψt
and ξt are unbiased estimates of qt and pt that are contaminated with sampling noise εψt and εξt .
Since Wsystem satisfies pt = Wsystemqt and since qt and pt are not observed, a naı̈ve choice to
estimate Wsystem is to use linear regression, replacing qt and pt with their unbiased estimates ψt
and ξt. Unfortunately, due to temporal overlap between qt and pt, the noise terms on ψt and ξt are
correlated. So, naı̈ve linear regression will give a biased estimate of W .

To counteract this bias, we employ instrumental regression (Pearl, 2000; Stock and Watson,
2011). Instrumental regression uses instrumental variables that are correlated with the input qt but
not with the noise (εψt) . This property provides a criterion to denoise the inputs and outputs of
the original regression problem: we remove that part of the input/output that is not correlated with
the instrumental variables. In our case, since past observations o1:t−1 do not temporally overlap
with future or extended future features, they are not correlated with the noise , as can be seen in
Figure 3.2. Therefore, we can use history features ht = h(o1:t−1) as instrumental variables. We
exploit history features together with the linearity of Wsystem to form an instrument-based moment
condition that connects the expectation of future and extended future statistics conditioned on
history features.

In more detail, by taking the expectation of (3.1) given ht, we obtain the following moment
condition: for all t,

E[pt | ht] = E[Wsystemqt | ht]
E[E[ξt | o1:t−1] | ht] = WsystemE[E[ψt | o1:t−1] | ht]

E[ξt | ht] = WsystemE[ψt | ht] (3.3)

Define ψ̄t ≡ E[ψt | ht] and ξ̄t ≡ E[ξt | ht]. Assume that history features are rich enough to satisfy
rank(Cψ̄) = rank(Cqt). Then, we maintain the rank of the moment condition when moving from
(3.1) to (3.3), and we can recover Wsystem by least squares regression if we can compute E[ψt | ht]
and E[ξt | ht] for sufficiently many examples t.

Fortunately, conditional expectations such as E[ψt | ht] are exactly what supervised learning
algorithms are designed to compute. More specifically, let ψ̂t be a function of ht. The expected

45

loss

Eψt,htl(ψt, ψ̂t) (3.4)

is minimized if l is a Bregman divergence1 function (e.g square loss) and ψ̂t = E[ψt | ht] (Banerjee
et al., 2005). So, we arrive at our learning framework: we first use supervised learning to estimate
E[ψt | ht] and E[ξt | ht], effectively denoising the training examples2, and then use these estimates
to compute Wsystem using linear regression to solve (3.3).

In summary, learning and inference of a dynamical system through instrumental regression can
be described as follows:
• Model Specification: Pick features of history ht = h(o1:t−1), future ψt = ψ(ot:t+k−1) and

extended future ξt = ξ(ot:t+k). ψt must be a sufficient statistic for P(ot:t+k−1 | o1:t−1). ξt
must satisfy

E[ψt+1 | o1:t] = ffilter(E[ξt | o1:t−1], ot),

for a known function ffilter. The choice of ψ and ξ may involve estimating quantities from
data.

• S1A (Stage 1A) Regression: Learn a (possibly non-linear) regression model to estimate
q̄t = ψ̄t = E[ψt | ht]. The training data for this model are (ht, ψt) across time steps 3.

• S1B Regression: Learn a (possibly non-linear) regression model to estimate p̄t = ξ̄t =
E[ξt | ht]. The training data for this model are (ht, ξt) across time steps t.

• S2 Regression: Use the feature expectations estimated in S1A and S1B as inputs to a linear
regression procedure to estimate a linear operator Wsystem such that p̄t ≈ Wsystemq̄t. The
training data for this model are estimates of (q̄t, p̄t) obtained from S1A and S1B across time
steps t.

• Initial State Estimation: Estimate an initial state q1 = E[ψ1] by averaging ψ1 across several
example realizations of our time series.4

• Inference: Starting from the initial state q1, we can maintain the predictive state qt = E[ψt |
o1:t−1] using the filtering equation (3.2). In other words, we use the predictive state qt to
compute pt = E[ξt | o1:t−1] = Wsystemqt. Then, given the observation ot, we can compute

1 A Bregman divergence function is defined as D(x, y) = Df (x) − Df (y) − 〈∇f(y), x − y〉 for a function f .
Two common loss functions that are Bregman divergence functions are sqaure loss (corresponding to f(x) = ‖x‖2)
and KL-divergence (corresponding f(x) =

∑
i xi log xi).

2Equation (3.3) suggests that denoising ξt is a redundant step, since there are no noise terms. Indeed, denoising ψt

is sufficient to obtain a consistent estimate of W . It can also be shown that if linear regression through ordinary least
squares is used to estimate conditional expectations over ht then denoising ξt has no effect. However, our preliminary
experiments on small sample sizes with non-linear denoising functions applied to both ψt and ξt results in a better
predictive performance and our theoretical analysis shows the consistency of this procedure. Denoising extended
future will also be useful when dealing with controlled systems in Chapter 6.

3Our analysis in Section 3.4 assumes that the training time steps t are sufficiently spaced for the underlying process
to mix, but in practice, the error will only get smaller if we consider all time steps t.

4Assuming ergodicity, we can set the initial state to be the empirical average vector of future features in a single
long sequence, 1

T

∑T
t=1 ψt.

46

𝑜𝑡−1 𝑜𝑡 𝑜𝑡+𝑘−1 𝑜𝑡+𝑘

history ℎ𝑡 future 𝜓𝑡/𝑞𝑡

shifted future 𝜓𝑡+1

extended future 𝜉𝑡/𝑝𝑡

S1A regression 𝐸[𝑞𝑡|ℎ𝑡]

S1B regression  𝐸[𝑝𝑡|ℎ𝑡]

S2 regression

Condition on 𝑜𝑡 (filter)  𝑞𝑡+1
Marginalize 𝑜𝑡 (predict)  𝑞𝑡+1|𝑡−1

Figure 3.3: Learning and applying a dynamical system using instrumental regression. S1 regres-
sion is trained to provide data to train S2 regression. At test time, starting from an initial belief
state q0, we alternate between S2 regression and filtering/prediction

qt+1 = ffilter(pt, ot). Or, in the absence of ot, we can predict the next state q̂t+1 = fpredict(pt),
where fpredict is the function corresponding to marginalization over ot.

The process of learning and inference is depicted in Figure 3.3. Modeling assumptions are reflected
in the choice of the statistics ψ, ξ and h as well as the regression models in stages S1A and
S1B. We show in Section 3.3 that we can recover existing subspace identification algorithms for
dynamical system learning using linear S1 regression. In addition to providing a unifying view of
some successful learning algorithms, the new framework also paves the way for extending these
algorithms in a theoretically justified manner, as we demonstrate in Section 3.5.

3.3 Subspace Identification Revisited

In this section we revisit subspace identification algorithms for hidden Markov models and Kalman
filters that we described in Chapter 2. We reformulate these algorithms as instances of our proposed
framework where we use linear regression for stage 1. For each algorithm, we describe the choice
of features, the regression method and the filtering function.

47

3.3.1 HMM
In this section we show that we can use instrumental regression framework to reproduce the
spectral learning algorithm for learning HMM (Hsu et al., 2009). We consider 1-observable
models but the argument applies to k-observable models. In this case we use ψt = eot and
ξt = eot:t+1 = eot ⊗k eot+1 , where ⊗k denotes the Kronecker product. Let Pi,j ≡ E[eoi ⊗ eoj]

be the joint probability table of observations i and j and let P̂i,j be its estimate from the data. We
start with the (very restrictive) case where P1,2 is invertible. Given samples of h2 = eo1 , ψ2 = eo2
and ξ2 = eo2:3 , in S1 regression we apply linear regression to learn two matrices Ŵ2,1 and Ŵ2:3,1

such that:

Ê[ψ2|h2] = Ĉo2,o1 Ĉ−1
o1
h2 = P̂2,1P̂

−1
1,1 ht ≡ Ŵ2,1h2 (3.5)

Ê[ξ2|h2] = Ĉo2:3,o1 Ĉ−1
o1
h2 = P̂2:3,1P̂

−1
1,1 h2 ≡ Ŵ2:3,1h2, (3.6)

where P2:3,1 ≡ E[eo2:3 ⊗ eo1]
In S2 regression, we learn the matrix Ŵ that gives the least squares solution to the system of

equations

Ê[ξ2|h2] ≡ Ŵ2:3,1eo1 = Ŵ (Ŵ2,1eo1) ≡ Ŵ Ê[ψ2|h2] , for given samples of h2

which gives

Ŵ = Ŵ2:3,1Ê[eo1e
>
o1

]Ŵ>
2,1

(
Ŵ2,1Ê[eo1e

>
o1

]Ŵ>
2,1

)−1

=
(
P̂2:3,1P̂

−1
1,1 P̂

>
2,1

)(
P̂2,1P̂

−1
1,1 P̂

>
2,1

)−1

= P̂2:3,1

(
P̂2,1

)−1

(3.7)

Having learned the matrix Ŵ , we can estimate

p̂t ≡ Ŵ qt

starting from a state qt. Since pt specifies a joint distribution over eot+1 and eot we can easily
condition on (or marginalize ot) to obtain qt+1. We will show that this is equivalent to learning and
applying observable operators as in (Hsu et al., 2009):

For a given value x of o2, define

Bx = u>x Ŵ = u>x P̂2:3,1

(
P̂>2,1

)−1

, (3.8)

where ux is an |O| × |O|2 matrix which selects a block of rows in P̂2:3,1 corresponding to o2 = x.
Specifically, ux = δx ⊗k I|O|. 5.

5Following the notation used in (Hsu et al., 2009), u>x P̂2:3,1 ≡ P̂3,x,1

48

qt+1 = Ê[eot+1|o1:t] ∝ u>otÊ[eot:t+1 |o1:t−1]

= u>otÊ[ξt|o1:t−1] = u>otŴE[ψt|o1:t−1] = Botqt

with a normalization constant given by

1

1>Botqt
(3.9)

Now we move to a more realistic setting, where we have rank(P2,1) = m < |O|. Therefore we
project the predictive state using a matrix U that preserves the dynamics, by requiring that U>O
(i.e. U is an independent set of columns spanning the range of the HMM observation matrix O).

It can be shown (Hsu et al., 2009) thatR(O) = R(P2,1) = R(P2,1P
−1
1,1). Therefore, we can use

the leading m left singular vectors of Ŵ2,1 , which corresponds to replacing the linear regression
in S1A with a reduced rank regression. However, for the sake of our discussion we will use the
singular vectors of P2,1. In more detail, let [U, S, V] be the rank-m SVD decomposition of P2,1.
We use ψt = U>eot and ξt = eot ⊗k U>eot+1 . S1 weights are then given by Ŵ rr

2,1 = U>Ŵ2,1 and
Ŵ rr

2:3,1 = (I|O| ⊗k U>)Ŵ2:3,1 and S2 weights are given by

Ŵ rr = (I|O| ⊗k U>)Ŵ2:3,1Ê[eo1e
>
o1

]Ŵ>
2,1U

(
U>Ŵ2,1Ê[eo1e

>
o1

]Ŵ>
2,1U

)−1

= (I|O| ⊗k U>)P̂2:3,1P̂
−1
1,1 V S

(
SV >P̂−1

1,1 V S
)−1

= (I|O| ⊗k U>)P̂2:3,1P̂
−1
1,1 V

(
V >P̂−1

1,1 V
)−1

S−1 (3.10)

In the limit of infinite data, V spans range(O) = rowspace(P2:3,1) and hence P2:3,1 = P2:3,1V V
>.

Substituting in (3.10) gives

W rr = (I|O| ⊗k U>)P2:3,1V S
−1 = (I|O| ⊗k U>)P2:3,1

(
U>P2,1

)+

Similar to the full-rank case we define, for each observation x an m × |O|2 selector matrix ux =
δx ⊗k Im and an observation operator

Bx = u>x Ŵ
rr → U>P3,x,1

(
U>P2,1

)+
(3.11)

This is exactly the observation operator obtained in (Hsu et al., 2009). However, instead of using
3.10, they use 3.11 with P3,x,1 and P2,1 replaced by their empirical estimates.

Note that for a state bt = E[ψt|o1:t−1], Bxbt = P (ot|o1:t−1)E[ψt+1|o1:t] = P (ot|o1:t−1)bt+1. To
get bt+1, the normalization constant becomes 1

P (ot|o1:t−1)
= 1

b>∞Bxbt
, where b>∞b = 1 for any valid

predictive state b. To estimate b∞ we solve the aforementioned condition for states estimated from
all possible values of history features ht. This gives,

b>∞Ŵ
rr
2,1I|O| = b>∞U

>P̂2,1P̂
−1
1,1 I|O| = 1>|O|,

49

where the columns of I|O| represent all possible values of ht. This in turn gives

b>∞ = 1>|O|P̂1,1(U>P̂2,1)+

= P̂>1 (U>P̂2,1)+,

the same estimator proposed in (Hsu et al., 2009).

3.3.2 Steady-State Kalman Filter

Recall that a Kalman filter is given by

st = Ast−1 + νt

ot = Cst + εt

νt ∼ N (0,Σs)

εt ∼ N (0,Σo)

We consider the case of a stationary filter where Cst is independent of t. We choose our statistics

ht = ot−τh:t−1

ψt = ot:t+τf−1

ξt = ot:t+τf ,

Where a window of observations is represented by stacking individual observations into a sin-
gle vector. It can be shown (Boots, 2012; van Overschee and de Moor, 1996) that

E[st|ht] = Cs,hC−1
h ht

and it follows that

E[ψt|ht] = ΓCs,hC−1
h ht = W1ht

E[ξt|ht] = Γ+Cs,hC−1
h ht = W2ht

where Γ is the extended observation operator

Γ ≡


C
CA

...
CAτf

 ,Γ+ ≡


C
CA

...
CAτf+1


50

It follows that τf and τh must be large enough to have rank(W) = n. Let U ∈ Rmτf×n be
the matrix of left singular values of W1 corresponding to non-zero singular values. Then U>Γ is
invertible and we can write

E[ψt|ht] = UU>ΓCs,hC−1
h ht = W1ht

E[ξt|ht] = Γ+Cs,hC−1
h ht = W2ht

E[ξt|ht] = Γ+(U>Γ)−1U>
(
UU>ΓCs,hC−1

h ht
)

= WE[ψt|ht]

which matches the instrumental regression framework. For conditioning, one needs to compute the
stead-state covariance Σξ, which can be done by solving a Riccati equation as described in Chapter
2. E[ξt|o1:t−1] and Σξ then specify a joint Gaussian distribution over the next τf + 1 observations
where marginalization and conditioning can be easily performed.

3.4 Theoretical Analysis
In this section we present error bounds for two-stage regression. These bounds hold regardless of
the particular S1 regression method used. Assuming that the S1 predictions converge to the true
conditional expectations, the bounds imply that our overall method is consistent.

Let (xt, yt, zt) ∈ X × Y × Z be i.i.d. triplets of input, output, and instrumental variables. Let
x̄t and ȳt denote E[xt | zt] and E[yt | zt]. And, let x̂t and ŷt denote Ê[xt | zt] and Ê[yt | zt] as
estimated by the S1A and S1B regression steps. We assume that x̄t, x̂t ∈ X and ȳt, ŷt ∈ Y .

We want to analyze the convergence of the output of S2 regression—that is, of the weights W
given by ridge regression between S1A outputs and S1B outputs:

Ŵλ =

(
N∑
t=1

ŷt ⊗ x̂t
)(

T∑
t=1

x̂t ⊗ x̂t + λIX

)−1

(3.12)

Here ⊗ denotes tensor (outer) product, and λ > 0 is a regularization parameter that ensures the
invertibility of the estimated covariance.

Before we state our main theorem we need to quantify the quality of S1 regression in a way
that is independent of the S1 functional form. To do so, we place a bound on the S1 error
Definition 3.2 (S1 Regression Bound). For any δ > 0 and N ∈ N+, the S1 regression bound
ηδ,N > 0 is a number such that, with probability at least (1− δ/2) the following holds:

1

N

N∑
t=1

‖ȳt‖Y‖x̂t − x̄t‖X + ‖x̄t‖X‖ŷt − ȳt‖Y + ‖x̂t − x̄t‖X‖ŷt − ȳt‖Y ≤ ηδ,N

The S1 regression bound depends on the joint performance of two regression models. Below
we show one possible method to construct such a bound

51

Definition 3.3 (Uniform S1 Regression Bound). For any δ > 0 and N ∈ N+, the Uniform S1
regression bound η̃δ,N > 0 is a number such that, with probability at least (1− δ/2), the following
holds for all 1 ≤ t ≤ N :

‖x̂t − x̄t‖X < η̃δ,N

‖ŷt − ȳt‖Y < η̃δ,N

Proposition 3.4. Let η̃δ,N be a uniform S1 regression bound that satisfies Definition 3.3. Assuming
that ‖ȳt‖Y < c and ‖x̄t‖X , then

ηδ,N ≡ 2cη̃δ,N + η̃2
δ,N = O(η̃δ,N)

satisfies Definition 3.2.
A consistent learning algorithm requires that, for each fixed δ, limN→∞ ηδ,N = 0. Thus, the

uniform regression bound might seem to be a strong assumption. However, we show examples
where it is realizable in the following subsection.

In many applications, X , Y and Z will be finite dimensional real vector spaces: Rdx , Rdy and
Rdz . However, for generality we state our results in terms of arbitrary reproducing kernel Hilbert
spaces. In this case S2 uses kernel ridge regression, leading to methods such as HSE-PSRs (Boots
et al., 2013), which we discuss in Chapter 4. For this purpose, let Cx̄ and Cȳ denote the (uncentered)
covariance operators of x̄ and ȳ respectively: Cx̄ = E[x̄⊗ x̄], Cȳ = E[ȳ⊗ ȳ]. And, letR(Cx̄) denote
the closure of the range of Cx̄.

With the above assumptions, Theorem 3.5 gives a generic error bound on S2 regression in
terms of S1 regression error. If X and Y are finite dimensional and Cx̄ has full rank, then using
ordinary least squares (i.e., setting λ = 0) will give the same bound, but with λ in the first two
terms replaced by the minimum eigenvalue of Cx̄, and the last term dropped.
Theorem 3.5. Assume that ‖x̄‖X , ‖x̄‖Y < c < ∞ almost surely. Assume W is a Hilbert-Schmidt
operator, and let Ŵλ be as defined in (3.12). Then, with probability at least 1 − δ, for each
xtest ∈ R(Cx̄) s.t. ‖xtest‖X ≤ 1, the error ‖Ŵλxtest −Wxtest‖Y is bounded by

O

ηδ,N
1

λ
+

√
1 +

√
log(1/δ)

N

λ
3
2




︸ ︷︷ ︸
error in S1 regression

+O

(
log(1/δ)√

N

(
1

λ
+

1

λ
3
2

))
︸ ︷︷ ︸

error from finite samples

+ O
(√

λ
)

︸ ︷︷ ︸
error from regularization

Remark 3.6. A variation of theorem 3.5 applies if the true model is not linear. In this case the
reference value W is linear predictor of y given x̄ that minimizes mean-square-error.

It is important to note that Theorem 3.5 assumes xtest ∈ R(Cx̄). For dynamical systems, all
valid states satisfy this property. However, with finite data, estimation errors may cause the esti-
mated state q̂t (i.e., xtest) to have a non-zero component inR⊥(Cx̄), the orthogonal complement of

52

R(Cx̄). Lemma 3.7 bounds the effect of such errors: it states that, in a stable system, this com-
ponent gets smaller as S1 regression performs better. The main limitation of Lemma 3.7 is the
assumption that ffilter is L-Lipchitz, which essentially means that the model’s estimated probabil-
ity for ot is bounded below. A similar condition was assumed in (Hsu et al., 2009) for hidden
Markov models. To gaurantee this property depends heavily on the filtering function. Therefore,
Lemma 3.7 provides suggestive evidence rather than a guarantee that our learned dynamical system
will predict well.
Lemma 3.7. For observations o1:T , let q̂t be the estimated state given o1:t−1. Let q̃t be the projection
of q̂t ontoR(Cx̄). Assume ffilter is L-Lipchitz on pt when evaluated at ot, and ffilter(pt, ot) ∈ R(Cx̄)
for any pt ∈ R(Cȳ). Given the assumptions of theorem 3.5 and assuming that ‖q̂t‖X ≤ R for all
1 ≤ t ≤ T , the following holds for all 1 ≤ t ≤ T with probability at least 1− δ/2.

‖εt‖X = ‖q̂t − q̃t‖X = O

(
ηδ,N√
λ

)

Since Ŵλ is bounded, the prediction error due to εt diminishes at the same rate as ‖εt‖X .

3.4.1 Examples of Uniform S1 Regression Bounds

The following propositions provide concrete examples of uniform S1 regression bounds η̃δ,N for
practical regression models.
Proposition 3.8. Assume X ≡ Rdx ,Rdy ,Rdz for some dx, dy, dz <∞ and that x̄ and ȳ are linear
vector functions of z where the parameters are estimated using ordinary least squares. Assume
that ‖x̄‖X , ‖ȳ‖Y < c <∞ almost surely. Let η̃δ,N be defined as

η̃δ,N = O

(√
dz
N

log((dx + dy)/δ)

)
.

Then, η̃δ,N satifies Definition 3.3.

Proof. (sketch) This is based on results that bound parameter estimation error in linear regression
with univariate response (e.g. (Hsu et al., 2012a)). Note that if x̄ti = U>i zt for some Ui ∈ Z , then
a bound on the error norm ‖Ûi − Ui‖ implies a uniform bound of the same rate on x̂i − x̄. The
probability of exceeding the bound is scaled by 1/(dx+dy) to correct for multiple regressions.

Variants of Proposition 3.8 can also be developed using bounds on non-linear regression models
(e.g., generalized linear models).

The next proposition addresses a scenario where X and Y are infinite dimensional.
Proposition 3.9. Assume that x and y are kernel evaluation functionals, x̄ and ȳ are linear vector
functions of z where the linear operator is estimated using conditional mean embedding (Song
et al., 2009) with regularization parameter λ0 > 0 and that ‖x̄‖X , ‖ȳ‖Y < c < ∞ almost surely.

53

Let η̃δ,N be defined as follows that

ηδ,N = O

√λ0 +

√
log(N/δ)

λ0N

 .

Then, η̃δ,N satifies Definition 3.3.

Proof. (sketch) This bound is based on (Song et al., 2009), which gives a bound on the error in
estimating the conditional mean embedding. The error probability is adjusted by δ/4N to accom-
modate the requirement that the bound holds for all training data.

3.5 Experiments and Results
We now demonstrate examples of tweaking the S1 regression to gain advantage. In the first exper-
iment we show that nonlinear regression can be used to reduce the number of parameters needed
in S1, thereby improving statistical performance for learning an HMM. In the second experiment
we show that we can encode prior knowledge as regularization.

3.5.1 Learning A Knowledge Tracing Model

In this experiment we attempt to model and predict the performance of students learning from an
interactive computer-based tutor. We use the Bayesian knowledge tracing (BKT) model (Corbett
and Anderson, 1995), which is essentially a 2-state HMM: the state st represents whether a student
has learned a knowledge component (KC), and the observation ot represents the success/failure of
solving the tth question in a sequence of questions that cover this KC. With high probability, the
student remains in the same knowledge state (learned or unlearned) and with smaller probability,
the student may transition from unlearned to learned (learning) or learned to unlearned (forgetting).
Most likely, the observation ot is assumed to match the state st. However, there is a possibility of
guessing the right answer without having learned the tested knowledge component. There is also a
possibility of slipping and giving an incorrect answer despite having learned the tested knowledge
component. The possible transitions and observations are summarized in figure 3.4.

3.5.1.1 Data Description

We evaluate the model using the “Geometry Area (1996-97)” data available from DataShop (Koedinger
et al., 2010). This data was generated by students learning introductory geometry, and contains at-
tempts by 59 students in 12 knowledge components. As is typical for BKT, we consider a student’s
attempt at a question to be correct if and only if the student entered the correct answer on the first
try, without requesting any hints from the help system (since later attempts may be influenced by
feedback from the tutor). Each training sequence consists of a sequence of first attempts for a
student/KC pair. We discard sequences of length less than 5, resulting in a total of 325 sequences.

54

Correct
Answer

Skill
Known

Skill
Known

Skill
Unknown

Skill
Unknown

Incorrect
Answer

Figure 3.4: Transitions and observations in BKT. Each node represents a possible value of the state
or observation. Solid arrows represent transitions while dashed arrows represent observations.

3.5.1.2 Models and Evaluation

Under the (reasonable) assumption that the two states have distinct observation probabilities, this
model is 1-observable. Hence we define the predictive state to be the expected next observation,
which results in the following statistics: ψt = ot and ξt = ot ⊗k ot+1, where ot is represented by
a 2 dimensional indicator vector and ⊗k denotes the Kronecker product. Given these statistics, the
extended state pt = E[ξt | o1:t−1] is a joint probability table of ot:t+1 from which conditioning on
ot (ffilter) is a simple operation.

We compare three models that differ by history features and S1 regression method:
• Spec-HMM:

This baseline uses ht = ot−1 and linear S1 regression, making it equivalent to the spectral
HMM method of (Hsu et al., 2009).

• Feat-HMM:
This baseline represents ht by an indicator vector of the joint assignment of the previous τh
observations (we set τh to 4) and uses linear S1 regression. This is essentially a feature-based
spectral HMM (Siddiqi et al., 2010). It thus incorporates more history information compared
to Spec-HMM at the expense of increasing the number of S1 parameters by O(2τh).

• LR-HMM:
This model represents ht by a binary vector of length τh encoding the previous τh observa-
tions and uses logistic regression as the S1 model. Thus, it uses the same history information
as Feat-HMM but reduces the number of parameters to O(τh) at the expense of inductive
bias.

We evaluated the above models using 1000 random splits of the 325 sequences into 200 training
and 125 testing. For each testing observation ot we compute the absolute error between actual and
expected value (i.e. |δot=1 − P̂ (ot = 1 | o1:t−1)|). We report the mean absolute error for each split.
The results are displayed in Figure 3.5.6 We see that, while incorporating more history information
increases accuracy (Feat-HMM vs. Spec-HMM), being able to incorporate the same information

6The differences have similar sign but smaller magnitude if we use RMSE instead of MAE.

55

using a more compact model gives an additional gain in accuracy (LR-HMM vs. Feat-HMM). We
also compared the LR-HMM method to an HMM trained using expectation maximization (EM).
We found that the LR-HMM model is much faster to train than EM while being on par with it in
terms of prediction error.7

Spec-HMM
0.26 0.3 0.34

F
ea

t-
H

M
M

0.26

0.28

0.3

0.32

0.34

Spec-HMM
0.26 0.3 0.34

LR
-H

M
M

0.26

0.28

0.3

0.32

0.34

Feat-HMM
0.26 0.3 0.34

LR
-H

M
M

0.26

0.28

0.3

0.32

0.34

EM
0.26 0.3 0.34

LR
-H

M
M

0.26

0.28

0.3

0.32

0.34

Model Spec-HMM Feat-HMM LR-HMM EM
Training time (relative to Spec-HMM) 1 1.02 2.219 14.323

Figure 3.5: Experimental results: each graph compares the performance of two models (measured
by mean absolute error) on 1000 train/test splits. The black line is x = y. Points below this line
indicate that model y is better than model x. The table shows training time.

3.5.2 Modeling Independent Subsystems Using Lasso Regression

Spectral algorithms for Kalman filters typically use the left singular vectors of the covariance
between history and future features as a basis for the state space. However, this basis hides any
sparsity that might be present in our original basis. In this experiment, we show that we can instead
use lasso (without dimensionality reduction) as our S1 regression algorithm to discover sparsity.
This is useful, for example, when the system consists of multiple independent subsystems, each of
which affects a subset of the observation coordinates.

7We used MATLAB’s built-in logistic regression and EM functions.

56

Figure 3.6: Left singular vectors of (left) true linear predictor from ot−1 to ot (i.e. OTO+), (middle)
covariance matrix between ot and ot−1 and (right) S1 Sparse regression weights. Each column
corresponds to a singular vector (only absolute values are depicted). Singular vectors are ordered
by their mean coordinate, which is computed as

∑d
i=1 i|ui|∑d
i=1 |ui|

.

To test this idea we generate a sequence of 30-dimensional observations from a Kalman filter.
Observation dimensions 1 through 10 and 11 through 20 are generated from two independent sub-
systems of state dimension 5. Dimensions 21-30 are generated from white noise. Each subsystem’s
transition and observation matrices have random Gaussian coordinates, with the transition matrix
scaled to have a maximum eigenvalue of 0.95. States and observations are perturbed by Gaussian
noise with covariance of 0.01I and 1.0I respectively.

We estimate the state space basis using 1000 examples (assuming 1-observability) and com-
pare the singular vectors of the past to future regression matrix to those obtained from the Lasso
regression matrix. The result is shown in figure 3.6. Clearly, using Lasso as stage 1 regression
results in a basis that better matches the structure of the underlying system.

3.6 Related Work

This work extends method of moments learning algorithms for dynamical systems, more specifi-
cally subspace identification methods. These include spectral algorithms for Kalman filters (Boots,
2012; van Overschee and de Moor, 1996), Hidden Markov Models Hsu et al. (2009); Siddiqi et al.
(2010), Predictive State Representations (PSRs) (Boots et al., 2011; Boots and Gordon, 2011) and
Weighted Automata (Balle et al., 2014). One common aspect of subspace identification algorithms
is that they use method of moments and exploit the covariance structure between future and past
observation sequences to obtain an unbiased observable state representation. Boots and Gordon
(2012) note the connection between this covariance and (linear) instrumental regression in the
context of the HSE-HMM (Song et al., 2010).

On the other hand, there are learning algorithms that employ explicit reduction to supervised
learning in a discriminative manner. This approach dates back to auto-regressive models Pandit
and Wu (1983), where the state of the system is assumed to be fully determined by the previous k
observations. However, discriminative trianing approaches for systems with latent states have been
proposed such as sufficient posterior representation (SPR) (Langford et al., 2009) and predictive

57

state inference machines (Sun et al., 2016), which we discussed in Chapter 2.
Our proposed framework of predictive state models has both characteristics mentioned above:

it is a method of moments approach and it utilizes an explicit reduction to supervised learning. It
differs from other method of moments approaches in that it allows for extra flexibility in specifying
regression models, as opposed being constrained to linear least squares. At the same time, it differs
from discriminative methods in that training consists of solving a fixed set of supervised learning
problems, instead of being an iterative algorithm.

Also, the framework we present falls under the category of non-parametric instrumental re-
gression. Prior work in that category include Hall and Horowitz (2005) and Darolles et al. (2011).
They both rely on leveraging instrumental variables to estimate an operator in the space of square
integrable functions, which is then used as an ingredient to estimate the regression function. For
example, Darolles et al. (2011) relies on estimating the conditional expectation operator T such
that

g(z) = [Tf](z) = E[f(x) | z],

for f : X 7→ R, z ∈ Z and x ∈ Z . The estimated function then is the one satisfying

T̂ f = r̂

where r̂(z) estimates E[y | z].
The framework we present provides three advantages over these approaches: first, it allows the

response variable to be infinite dimensional whereas these approaches assume a single dimensional
response variable (so they are limited to independent finite response); second, it allows for a fully
discriminative formulation whereas these approaches require the estimation of the joint density
of input and instrument variables; and third, it provides flexibility on modeling the relation be-
tween instrumental variables and input variables and between instrumental variables and response
variables.

Finally, it is worth mentioning that this framework was the basis of follow up work that ex-
ploited concepts from supervised learning literature. Venkatraman et al. (2016) combined pre-
dictive state models online regression to achieve an online Bayes filter learner. Xia (2016) used
predictive state models with group sparsity to model dynamical systems of musical sequences.

3.7 Conclusion
In this chapter we described a general framework for unsupervised learning of recursive filters by
reduction to supervised learning. The framework constructs a Bayes filter with a learnable linear
extension step and a fixed conditioning step, and it relies on two key principles: first, we use a
predictive state to represent both the belief state and the extended state as predictions of observed
features. This means that observed features are unbiased but noisy estimates of these predictive
states. Second, we use past features as instruments in an instrumental regression, which enables us
to denoise state estimates and generate training examples to estimate system dynamics.

We have shown that this framework encompasses and provides a unified view of some previous
successful dynamical system learning algorithms. We have also demonstrated that it can be used to

58

extend existing algorithms to incorporate nonlinearity and regularizers, resulting in better recursive
filters.

59

3.A Appendix: Proofs

3.A.1 Proof of Main Theorem
In this section we provide a proof for theorem 3.5. We provide finite sample analysis of the effects
of S1 regression, covariance estimation and regularization. The asymptotic statement becomes a
natural consequence.

We will make use of matrix Bernstein’s inequality stated below:
Lemma 3.10 (Matrix Bernstein’s Inequality Hsu et al. (2012b)). Let A be a random square sym-
metric matrix, and r > 0, v > 0 and k > 0 be such that, almost surely,

E[A] = 0, λmax[A] ≤ r,

λmax[E[A2]] ≤ v, tr(E[A2]) ≤ k.

If A1, A2, . . . , AN are independent copies of A, then for any t > 0,

Pr

[
λmax

[
1

N

N∑
t=1

At

]
>

√
2vt

N
+

rt

3N

]
≤ kt

v
(et − t− 1)−1. (3.13)

If t ≥ 2.6, then t(et − t− 1)−1 ≤ e−t/2.

Recall that, assuming xtest ∈ R(Cx̄), we have three sources of error: first, the error in S1
regression causes the input to S2 regression procedure (x̂t, ŷt) to be a perturbed version of the true
(x̄t, ȳt); second, the covariance operators are estimated from a finite sample of size N ; and third,
there is the effect of regularization. In the proof, we characterize the effect of each source of error.
To do so, we define the following intermediate quantities:

Wλ = Cȳ,x̄ (Cx̄ + λI)−1 (3.14)

W̄λ = Ĉȳ,x̄
(
Ĉx̄ + λI

)−1

, (3.15)

where

Ĉȳ,x̄ ≡
1

N

N∑
t=1

ȳt ⊗ x̄t

and Ĉx̄ is defined similarly. Basically,Wλ captures only the effect of regularization and W̄λ captures
in addition the effect of finite sample estimate of the covariance. W̄λ is the result of S2 regression
if x̄ and ȳ were perfectly recovered by S1 regression. It is important to note that Ĉx̄,ȳ and Ĉx̄ are
not observable quantities since they depend on the true expectations x̄ and ȳ. We will use λxi and
λyi to denote the ith eigenvalue of Cx̄ and Cȳ respectively in descending order and we will use ‖.‖
to denote the operator norm.

Before we prove the main theorem, we define the quantities ζ x̄x̄δ,N and ζ x̄ȳδ,N which we use to
bound the effect of covariance estimation from finite data, as stated in the following lemma:

60

Lemma 3.11 (Covariance error bound). Let N be a positive integer and δ ∈ (0, 1) and assume
that ‖x̄‖, ‖ȳ‖ < c <∞ almost surely. Let ζ x̄ȳδ,N be defined as:

ζ x̄ȳδ,N =

√
2vt

N
+

rt

3N
, (3.16)

where

t = max(2.6, 2 log(4k/δv))

r = c2 + ‖Cȳ,x̄‖
v = c2 max(λy1, λx1) + ‖Cx̄,ȳ‖2

k = c2(tr(Cx̄) + tr(Cȳ))
In addition, let ζ x̄x̄δ,N be defined as:

ζ x̄x̄δ,N =

√
2v′t′

N
+
r′t′

3N
, (3.17)

where

t′ = max(2.6, 2 log(4k′/δv′))

r′ = c2 + λx1

v′ = c2λx1 + λ2
x1

k′ = c2tr(Cx̄)

and define ζ ȳȳδ,N similarly for Cȳ.
It follows that, with probability at least 1− δ/2,

‖Ĉȳ,x̄ − Cȳ,x̄‖ < ζ x̄ȳδ,N

‖Ĉx̄ − Cx̄‖ < ζ x̄x̄δ,N

‖Ĉȳ − Cȳ‖ < ζ ȳȳδ,N

Proof. We show that each statement holds with probability at least 1−δ/6. The claim then follows
directly from the union bound. We start with ζ x̄x̄δ,N . By setting At = x̄t⊗ x̄t−Cx̄ then we would like
to obtain a high probability bound on ‖ 1

N

∑N
t=1At‖. Lemma 3.10 shows that, in order to satisfy

the bound with probability at least 1 − δ/6, it suffices to set t to max(2.6, 2k log(6/δv)). So, it
remains to find suitable values for r, v and k:

λmax[A] ≤ ‖x̄‖2 + ‖Cx̄‖ ≤ c2 + λx1 = r′

λmax[E[A2]] = λmax[E[‖x̄‖2(x̄⊗ x̄)− (x̄⊗ x̄)Cx̄ − Cx̄(x̄⊗ x̄) + C2
x̄]

= λmax[E[‖x̄‖2(x̄⊗ x̄)− C2
x̄]] ≤ c2λx1 + λ2

x1 = v′

tr[E[A2]] = tr[E[‖x̄‖2(x̄⊗ x̄)− C2
x̄]] ≤ tr[E[‖x̄‖2(x̄⊗ x̄)]] ≤ c2tr(Cx̄) = k′

61

The case of ζ ȳȳδ,N can be proven similarly. Now moving to ζ x̄ȳδ,N , we have Bt = ȳt ⊗ x̄t − Cȳ,x̄.
Since Bt is not square, we use the Hermitian dilation H (B) defined as followsTropp (2012):

A = H (B) =

[
0 B
B∗ 0

]
Note that

λmax[A] = ‖B‖, A2 =

[
BB∗ 0

0 B∗B

]
therefore suffices to bound ‖ 1

N

∑N
t=1 At‖ using an argument similar to that used in ζ x̄x̄δ,N case.

To prove theorem 3.5, we write

‖Ŵλxtest −Wxtest‖Y ≤ ‖(Ŵλ − W̄λ)x̄test‖Y
+ ‖(W̄λ −Wλ)x̄test‖Y
+ ‖(Wλ −W)x̄test‖Y (3.18)

We will now present bounds on each term. We consider the case where x̄test ∈ R(Cx̄). Extension
to R(Cx̄) is a result of the assumed boundedness of W , which implies that Ŵλ −W is bounded
and hence continuous.
Lemma 3.12 (Error due to S1 Regression). Assume that ‖x̄‖, ‖ȳ‖ < c <∞ almost surely, and let
ηδ,N be as defined in Definition 3.2. The following holds with probability at least 1− δ

‖Ŵλ − W̄λ‖ ≤
√
λy1 + ζ ȳȳδ,N

ηδ,N

λ
3
2

+
ηδ,N
λ

= O

ηδ,N
1

λ
+

√
1 + log(1/δ)√

N

λ
3
2

 .

The asymptotic statement assumes ηδ,N → 0 as N →∞.

Proof. Write Ĉx̂ = Ĉx̄+∆x and Ĉŷ,x̂ = Ĉȳ,x̄+∆yx. We know that, with probability at least 1−δ/2,
the following is satisfied for all unit vectors φx ∈ X and φy ∈ Y

〈φy,∆yxφx〉Y =
1

N

N∑
t=1

〈φy, ŷt〉Y〈φx, x̂t〉X

− 〈φy, ŷt〉Y〈φx, x̄t〉X
+ 〈φy, ŷt〉Y〈φx, x̄t〉X − 〈φy, ȳt〉Y〈φx, x̄t〉X
=

1

N

∑
t

〈φy, ȳt + (ŷt − ȳt)〉Y〈φx, x̂t − x̄t〉X

+ 〈φy, ŷt − ȳt〉Y〈φx, x̄t〉X

≤ 1

N

N∑
t=1

‖ȳt‖Y‖x̂t − x̄t‖X + ‖x̄t‖X‖ŷt − ȳt‖Y + ‖x̂t − x̄t‖X‖ŷt − ȳt‖Y

≤ ηδ,N

62

Therefore,

‖∆yx‖ = sup
‖φx‖X≤1,‖φy‖Y≤1

〈φy,∆yxφx〉Y ≤ ηδ,N ,

and similarly

‖∆x‖ ≤ ηδ,N ,

with probability 1− δ/2. We can write

Ŵλ − W̄λ = Ĉȳ,x̄
(

(Ĉx̄ + ∆x + λI)−1 − (Ĉx̄ + λI)−1
)

+ ∆yx(Ĉx̄ + ∆x + λI)−1

Using the fact that B−1 − A−1 = B−1(A−B)A−1 for invertible operators A and B we get

Ŵλ − W̄λ = −Ĉȳ,x̄(Ĉx̄ + λI)−1∆x(Ĉx̄ + ∆x + λI)−1

+ ∆yx(Ĉx̄ + ∆x + λI)−1

we then use the decomposition Ĉȳ,x̄ = Ĉ
1
2
ȳ V Ĉ

1
2
x̄ , where V is a correlation operator satisfying ‖V ‖ ≤

1. This gives

Ŵλ − W̄λ =

− Ĉ
1
2
ȳ V Ĉ

1
2
x̄ (Ĉx̄ + λI)−

1
2 (Ĉx̄ + λI)−

1
2 ∆x(Ĉx̄ + ∆x + λI)−1

+ ∆yx(Ĉx̄ + ∆x + λI)−1

Noting that ‖Ĉ
1
2
x̄ (Ĉx̄ + λI)−

1
2‖ ≤ 1, the rest of the proof follows from triangular inequality and the

fact that ‖AB‖ ≤ ‖A‖‖B‖

Lemma 3.13 (Error due to Covariance). Assuming that ‖x̄‖X , ‖ȳ‖Y < c < ∞ almost surely, the
following holds with probability at least 1− δ

2

‖W̄λ −Wλ‖ ≤
√
λy1ζ

x̄x̄
δ,Nλ

− 3
2 +

ζ x̄ȳδ,N
λ

, where ζ x̄x̄δ,N and ζ x̄ȳδ,N are as defined in Lemma 3.11.

Proof. Write Ĉx̄ = Cx̄ + ∆x and Ĉȳ,x̄ = Cȳ,x̄ + ∆yx. Then we get

W̄λ −Wλ = Cȳ,x̄
(
(Cx̄ + ∆x + λI)−1 − (Cx̄ + λI)−1

)
+ ∆yx(Cx̄ + ∆x + λI)−1

Using the fact that B−1 − A−1 = B−1(A−B)A−1 for invertible operators A and B we get

W̄λ −Wλ = −Cȳ,x̄(Cx̄ + λI)−1∆x(Cx̄ + ∆x + λI)−1 + ∆yx(Cx̄ + ∆x + λI)−1

63

we then use the decomposition Cȳ,x̄ = C
1
2
ȳ V C

1
2
x̄ , where V is a correlation operator satisfying ‖V ‖ ≤

1. This gives

W̄λ −Wλ =

− C
1
2
ȳ V C

1
2
x̄ (Cx̄ + λI)−

1
2 (Cx̄ + λI)−

1
2

.∆x(Cx̄ + ∆x + λI)−1

+ ∆yx(Cx̄ + ∆x + λI)−1

Noting that ‖C
1
2
x̄ (Cx̄ + λI)−

1
2‖ ≤ 1, the rest of the proof follows from triangular inequality and the

fact that ‖AB‖ ≤ ‖A‖‖B‖

Lemma 3.14 (Error due to Regularization on inputs within R(Cx̄)). For any x ∈ R(Cx̄) s.t.

‖x‖X ≤ 1 and ‖C−
1
2

x̄ x‖X ≤ C. The following holds

‖(Wλ −W)x‖Y ≤
1

2

√
λ‖W‖HSC

Proof. Since x ∈ R(Cx̄) ⊆ R(C
1
2
x̄), we can write x = C

1
2
x̄ v for some v ∈ X s.t. ‖v‖X ≤ C. Then

(Wλ −W)x = Cȳ,x̄((Cx̄ + λI)−1 − C−1
x̄)C

1
2
x̄ v

Let D = Cȳ,x̄((Cx̄ + λI)−1 − C−1
x̄)C

1
2
x̄ . We will bound the Hilbert-Schmidt norm of D. Let

ψxi ∈ X , ψyi ∈ Y denote the eigenvector corresponding to λxi and λyi respectively. Define
sij = |〈ψyj, Cx̄,ȳψxi〉Y |. Then we have

|〈ψyj, Dψxi〉Y | =
∣∣∣∣∣〈ψyj, Cȳ,x̄ λ

(λxi + λ)
√
λxi

ψxi〉
Y

∣∣∣∣∣
=

λsij

(λxi + λ)
√
λxi

=
sij√
λxi

1
1

λ/λxi
+ 1

≤ sij√
λxi

.
1

2

√
λ

λxi
=

1

2

√
λ
sij
λxi

=
1

2

√
λ|〈ψyj,Wψxi〉Y |,

where the inequality follows from the arithmetic-geometric-harmonic mean inequality. This gives
the following bound

‖D‖2
HS =

∑
i,j

〈ψyj, Dψxi〉2Y ≤
1

2

√
λ‖W‖2

HS

64

and hence

‖(Wλ −W)x‖Y ≤ ‖D‖‖v‖X ≤ ‖D‖HS‖v‖X
≤ 1

2

√
λ‖W‖HSC

Note that the additional assumption that ‖C−
1
2

x̄ x‖X ≤ C is not required to obtain an asymptotic
O(
√
λ) rate for a given x. This assumption, however, allows us to uniformly bound the constant.

Theorem 3.5 is simply the result of plugging the bounds in Lemmata 3.12, 3.13, and 3.14 into
(3.18) and using the union bound.

3.A.2 Proof of Lemma 3.7
for t = 1: Let I be an index set over training instances such that

q̂test
1 =

1

|I|
∑
i∈I

q̂i

Then

‖q̂test
1 − q̃test

1 ‖X ≤
1

|I|
∑
i∈I

‖q̂i − q̃i‖X ≤
1

|I|
∑
i∈I

‖q̂i − qi‖X ≤ ηδ,N

for t > 1: Let A denote a projection operator onR⊥(Cȳ)

‖q̂test
t+1 − q̃test

t+1‖X ≤ L‖p̂test
t − p̃test

t ‖Y ≤ L‖AŴλq̂
test
t ‖Y

≤ L

∥∥∥∥∥∥ 1

N

(
N∑
i=1

Ap̂i ⊗ q̂i
)(

1

N

N∑
i=1

q̂i ⊗ q̂i + λI

)−1
∥∥∥∥∥∥∥∥q̂test

t

∥∥
X

≤ L

∥∥∥∥∥ 1

N

N∑
i=1

Ap̂i ⊗ Ap̂i
∥∥∥∥∥

1
2

1√
λ
‖q̂test

t ‖X ≤ L
ηδ,N√
λ
‖q̂test

t ‖X ,

where the second to last inequality follows from the decomposition similar to ΣY X = Σ
1
2
Y V Σ

1
2
X ,

and the last inequality follows from the fact that ‖Ap̂i‖Y ≤ ‖p̂i − p̄i‖Y .

65

66

Chapter 4

A Practical Non-parametric Predicive State
Model for Continuous Systems

In this chapter, we use the framework we proposed in Chapter 3 to develop a practical non-
parametric recursive filter that is applicable to continuous systems. The model we propose is based
on a recent continuous extension of predictive state representation proposed by Boots et al. (2013)
called Hilbert space embedding of predictive state representations (HSE-PSR). After overview-
ing the necessary mathematical background in Section 4.1, we describe this model as a predictive
state model trained by the two-stage regression method in Section 4.2. We then propose a practi-
cal approximation of HSE-PSRs using random Fourier features in Section 4.1.5. In Section 4.3.2
we describe how to apply discriminative training techniques to improve over the performance of
two-stage regression. The result is a special recurrent network architecture that supports a method-
of-moment-based initialization before applying backpropagation through time. We demonstrate
the efficacy of the proposed model through a range of experiments in Section 4.4

4.1 Hilbert Space Embedding of Distributions

Hilbert space embedding of distributions (Smola et al., 2007) is a non-parametric representation
of probability distributions using elements in the reproducing kernel Hilbert space (RKHS) of a
suitable kernel. We first provide a linear algebraic treatment of discrete distributions, which we
then generalize to Hilbert space embedding.

4.1.1 Motivating Example: Discrete Distributions

Let FN denote the set of all real-valued functions on a finite domain of cardinality N (i.e. FN ≡
{f : [N] 7→ R}). We can represent each function f ∈ F as a weight vector wf ∈ RN . Define the
delta kernel kδ : [N]× [N] 7→ R such that kδ(i, j) = 1(i = j). Also, define the delta feature map
φNδ : [N] 7→ RN such that φNδ (i) = ei. Note that, for any i, j ∈ [N] and f ∈ FN , the following

67

holds

f(i) = 〈φNδ (i), wf〉
kδ(i, j) = 〈φNδ (i), φNδ (j)〉

It follows from the above that φNδ (i) is the weight vector corresponding to the kernel evaluation
functional kδ(i, .).

To see how the functions defined above are related to probability distributions, letX ∈ [N], Y ∈
[M] be two random variables. It can be seen that the mean map µX ≡ E[φNδ (X)] uniquely iden-
tifies the distribution Pr(X). In fact, µX is but the probability vector of X . It can also be shown
that µX is the unique element in RN that satisfies

E[f(X)] = 〈f, µX〉,∀f ∈ FN (4.1)

Another relevant quantity is the covariance CX,Y ≡ E[φNδ (X)⊗ φMδ (Y)], which is the joint proba-
bility table of X and Y and also the unique N ×M matrix that satisfies

E[f(X)g(Y)] = 〈f, CX,Y g〉 (4.2)

Finally, we are also interested in the conditional distribution Pr(X | Y). This is represented by a
conditional probability table which is a matrixWX|Y such that

E[f(X) | Y = y] =WX|Y φ
M
δ (y),∀f ∈ FN , y ∈ [M] (4.3)

It can be shown that

WX|Y = CY,XC−1
X . (4.4)

We are now ready to generalize the aforementioned concepts to continuous distributions.

4.1.2 Kernels, RKHSs and Feature Maps
Let IX be a domain of interest (e.g. the set [N] in the discrete example or the set of all observa-
tions). Let X be a Hilbert space of real functions on IX . X is called a reproducing kernel Hilbert
space (RKHS) of a kernel kX : IX × IX 7→ R if kX satisfies the reproducing property

f(x) =〈f, kX (x, .)〉X ∀x ∈ IX , f ∈ X (4.5)
and hence kX (x1, x2) =〈kX (x1, .), kX (x2, .)〉X ∀x1, x2 ∈ IX .

A kernel is said to be universal, if the corresponding RKHS is dense in the set of all bounded
continuous functions on IX— that is, any such function can be approximated to aribtrary precision
by an element in the RKHS. The simplest example of a universal kernel is the delta kernel on
a discrete domain. Another commonly used universal kernel is the Gaussian RBF kernel on a
compact domain. The Gaussian RBF kernel is defined as

kRBF(x1, x2) = exp

(
− 1

2σ2
‖x1 − x2‖2

)
, (4.6)

68

where σ is a hyper-parameter known as the kernel bandwidth. An alternative view to the RKHS is
to think of a (possibly infinite dimensional) feature space X ′ such that any function f ∈ X has a
corresponding “weight vector” wf ∈ X ′ and there exists a feature map φX : IX 7→ X ′ such that

f(x) =〈wf , φX (x)〉X ′ ∀x ∈ IX , f ∈ X (4.7)

and hence kX (x1, x2) =〈φX (x1), φX (x2)〉X ′ ∀x1, x2 ∈ IX .

When defining mean maps and covariance operators, we will use the two notions interchangeably.

4.1.3 Mean Maps and Covariance Operators
Let X ∈ IX and Y ∈ IY be two random variables. The kernel mean map of X is defined as

µX = E[k(X, .)]

µX = E[φX (X)] (feature map representation) (4.8)

The mean map µX exists in X if E[kX (X,X)] <∞ and, by the reproducing property, it satisfies

E[f(X)] = 〈f, µX〉X ∀f ∈ X . (4.9)

A key result in (Smola et al., 2007) is that for a universal kernel, the mapping between proba-
bility distributions and mean maps is injective—that is, a mean map uniquely identifies the corre-
sponding distribution. Given a set of i.i.d samples {x1, . . . , xN}, the mean map can be estimated
by replacing the expectations in (4.8) with the empirical average. Smola et al. (2007) show that,
under mild assumptions on X and the distribution Pr(X), the estimation error ‖µ̂X − µX‖X goes
to 0 with the rate O(N−

1
2) with high probability.

While the mean map represents the probability distribution Pr(X), the joint probability dis-
tribution Pr(X, Y) can be represented by the (uncentered) covariance operator CX,Y (Song et al.,
2009; Fukumizu et al., 2013), which is defined to be a linear operator from Y to X that satisfies

E[f(X)g(Y)] = 〈f, CX,Y g〉X ∀f ∈ X , g ∈ Y . (4.10)

This operator can be shown to have the feature map form

CX,Y = E[φX (X)⊗ φY(Y)]. (4.11)

Equation (4.11) shows that the covariance operator is equivalent to the mean map of the pair (X, Y)
on the space induced by the product kernel

kXY(x1, y1, x2, y2) = kX (x1, x2)kY(y1, y2) = 〈φX (x1), φX (x2)〉X 〈φY(y1), φY(y2)〉Y .

Similar to the mean map, the covariance operator can be estimated from finite samples by empirical
avergaing. The equivalence to mean maps implies that the empirical estimate converges to the true
value under mild conditions.

69

4.1.4 Conditional Operators and Kernel Bayes Rule

It now remains to construct the equivalent of a conditional probability table. We would like to
construct a mapWX|Y such that

E[f(X) | Y = y] = 〈f,WX|Y kY(y, .)〉X ∀y ∈ IY , f ∈ X , (4.12)

or equivalently

µX|Y=y ≡ E[φX (X) | Y = y] =WX|Y φ
Y(y) ∀y ∈ IY (4.13)

Song et al. (2009) have shown thatWX|Y that satisfies (4.12) also satisfies

WX|Y CY ≡ CX,Y . (4.14)

In practice, CY is typically not invertible and we use a regularized version

Wλ
X|Y ≡ CX,Y (CY + λI)−1, (4.15)

where λ > 0 is a regularization parameter. We estimateWλ
X|Y by plugging the emprical estimates

of CX,Y and CY into (4.15). Setting λ → 0 as the numer of data points goes to infinity results
in a consistent estimator of WX|Y . Alternatively, we can interpret (4.15) as the solution to the
vector-valued regression problem given in (4.13) (Grünewälder et al., 2012).1

We now define the kernel equivalent of Bayes rule. Specifically, for two random variables X
and Y and an event z, we define the equivalent statement of Pr(X | Y = y, z) = Pr(X, Y = y |
z)/Pr(Y = y | z). In the context of Bayes filtering, the event z is the history o1:t−1 and the random
variables Y andX are the observation ot and the shifted future xt+1 respectively. Let CX,Y |z denote
the uncentered covariance of X and Y conditioned on the event z. It follows from (4.13) that

µX|Y=y,z ≈ Wλ
X|Y ;zφ

Y(y) ≡ CX,Y |z(CY |z + λI)−1φY(y). ∀y ∈ IY (4.16)

Following (Boots et al., 2013), we refer to (4.16) as the kernel Bayes rule(KBR).2 Note thatWX|Y ;z

is a linear operator from Y to X whose value is determined by z. An example is a conditional
probability table of X and Y where the event z determines the values in the table. We summarize
in Table 4.1 the correspondence between Hilbert space embedding quantities and their realization
in the discrete case.

1 More specifically, a space of vector valued functions f : X 7→ Y may be reproduced by an operator valued kernel
k : X ×X 7→ LY→Y , where LY→Y is the set of linear operators from Y to Y (Micchelli and Pontil, 2005). The result
in (4.15) is the solution to the regularized regression problem from X ∈ X to Y ∈ Y when we choose the kernel
k(x1, x2) = kX (x1, x2)I , where kX is a scalar valued kernel and I is the identity map.

2 The original form of kernel Bayes rule (Fukumizu et al., 2013) has a prior distribution on X in place of the event
z. In the Bayes filtering scenario, a history event z implies a prior on the shifted future X .

70

Kernel kX Delta kernel kδ(x1, x2) = 1(x1 = x2)
Feature map φX Indicator φδ(i) = ei
Mean map µX Probability vector

Covariance operator CXY Joint probability table
Conditional operatorWX|Y Conditional probability table

KBR µX|Y=y,z = CX,Y |z(CY |z + λI)−1φY(y) Pr(X | Y = y, z) = Pr(X,Y=y|z)
Pr(Y=y|z)

Table 4.1: Correspondance between HSE embeddings in the general case (left) and the finite do-
main case with the delta kernel (right).

4.1.5 Finite Dimensional Approximation of Kenrel Features via Random
Fourier Features

For a kernel such as the Gaussian RBF kernel, there is no explicit finite dimensional feature map.
Instead, we implicitly operate in the infinite dimensional feature space through the kernel trick: we
reformulate the learning and inference algorithms so that they do not require computing the feature
space image φX (x) of a point x in the input domain but only require computing inner products in
the form 〈φX (x1), φX (x2)〉X , which can be replaced by kernel evaluation kX (x1, x2). A quantity
in the feature space (e.g. a weight vector for linear regression or a mean map of a distribution) is
typically represented as a weighted combination of the feature space images of training examples
and we only store the combination weights as well as the (required) training data in the raw form.

Unfortunately, the use of the kernel trick does not scale to large training sets. In addition to the
aforementioned storage requirements, most kernel-based method make use of the Gram matrix,
which is the matrix of kernel evaluations of all pairs of training set examples. This matrix needs to
be stored and inverted for training and some models, including HSE-PSRs require operations that
are at least as expensive for inference. For this reason, it is of extreme benefit to devise an approxi-
mate feature map φ̂X of fixed finite dimensionality such that φ̂X (x1)>φ̂X (x2) ≈ kX (x1, x2). Given
this representation, we can avoid computational and storage costs that scale polynomially with the
number of examples. Two prominent approximation techniques are the Nyström method (Williams
and Seeger, 2000) and random Fourier features (Rahimi and Recht, 2008), the latter of which we
describe below.

Random Fourier features (RFF) is a method for obtaining an approximate feature map for a
positive definite translation invariant kernel k, such as the Gaussian kernel. Such a kernel can be
expressed as k(x1, x2) = h(x1 − x2) for some positive definite function h. RFFs are based on
Bochner’s theorem (Rudin, 2017), which states that a function h on Rd is positive definite if and
only if it is the Fourier transform of a positive measure. In other words, a positive function h can
be expressed as

h(x1 − x2) =

∫
Rd
p(ω)ejw

>(x1−x2)dω

=

∫
Rd
p(ω)φω(x1)φω(x2)dω, (4.17)

71

where

p(ω) > 0 ∀ω ∈ Rd,

φω(x) ≡ ejw
>x,

and φω(x) is the complex conjugate of φω(x). With the appropriate scaling, we can interpret the
Fourier transform p(ω) as a probability density function on ω and hence we can have an unbiased
approximation of (4.17) as

h(x1 − x2) ≈
D∑
i=1

(√
C

D
φωi(x1)

)(√
C

D
φωi(x2)

)
≡ 〈φ̂(x1), φ̂(x2)〉, (4.18)

where C ≡ 1/
∫ d
R p(ω)dω is a normalization constant and ω1, . . . , ωD are samples from p(ω). For

the RBF kernel with bandwidth σ, sampling from the normalized p(ω) is equivalent to sampling
from N (0, σ−2I). Using the fact that the kernel function is real-valued, Rahimi and Recht (2008)
suggest replacing the complex-valued feature map with the following

φ̂(x) ≡
√

2C

D
[cos(ω>1 x+ b1), . . . cos(ω>Dx+ bD)]>, (4.19)

where bi is sampled uniformly from [0, 2π]. Having an explicit feature map, we can approximate
linear operations in the RKHS using their finite dimensional counterparts on the approximate fea-
ture map. Specifically, linear operators reduce to finite dimensional matrices on the RFF basis.

Rahimi and Recht (2008) have shown that the uniform approximation error of kernel evaluation
using RFFs decreases with the rate Op(1/

√
D). In the context of classification or regression, we

would like to set D in a way that maintains the typical O(1/
√
N) generalization error, where N

is the number of training examples. Rahimi and Recht (2009) have shown that, for a general loss
function, this can be achieved withD = O(N). This is a rather disappointing result since it implies
that by using RFF, one must get worse generalization error or incur the same cost of using Gram
matrices. More recently, however, Rudi and Rosasco (2017) have shown that a much smaller rate
D = O(

√
N log(N)) can be used in the kernel regression setting. In practice, it is typical to use a

number of features in the order of thousands.

4.2 Hilbert Space Embedding of Predictive State Representa-
tion

A Hilbert space embedding of a predictive state representation (HSE-PSR) (Boots et al., 2013) is
a predictive state model that uses Hilbert space embedding as a state representation and kernel
Bayes rule as a conditioning method. We describe an uncontrolled version of the model described
in (Boots et al., 2013) as a predictive state model and describe its learning algorithm as a two-stage
regression algorithm. We defer the discussion of the controlled version to Chapter 6. This section

72

will focus on the RKHS formulation. The finite dimensional approximation will be described in
Section 4.3.1.

Recall that a τf -observable predictive state model (Chapter 3) is specified by
• A future feature function ψ that is a sufficient statistic of Pr(ot:t+τf−1 | o1:t−1).
• An extended future feature function ξ that is a sufficient statistic of Pr(ot:t+τf | o1:t−1).
• A filtering function ffilter such that E[ψt+1 | o1:t] = ffilter(E[ξt | o1:t−1], ot).

An HSE-PSR makes use of three kernels kh, ko, kO that are defined over sequences of history
observations, individual observations and sequences of future observations respectively. The future
function ψ to set to be the feature map φO of the future kernel kO. This makes the belief state qt =
E[ψt | o1:t−1] essentially the Hilbert space embedding of the distribution in Pr(ot:t+τf−1 | o1:t−1)
into the RKHS induced by the future kernel kO.

The extended future features are defined as the tuple ξt ≡ (ψt+1 ⊗ φot , φot ⊗ φot), where φot is
the feature map of the observation kernel ko. That means the extended belief state is a tuple of two
covariance operators pt ≡ (Cψt+1,φot |o1:t−1 , Cφot |o1:t−1). With this choice of the extended state, we can
use kernel Bayes rule defined in (4.16) to perform state update:

qt+1 ≡ E[ψOt+1 | o1:t] = Cψt+1,φot |o1:t−1(Cφot |o1:t−1 + λI)−1φo(ot). (4.20)

An HSE-PSR is thus parametrized by two maps, Wext and Woo that are linear in qt and predict
Cψt+1,φot |o1:t−1 and Cφot |o1:t−1 respectively given qt. Note that, with the finite dimensional features,
Wext is a 3-mode tensor, with modes corresponding to future, observations and shifted future while
Woo is a 3-mode tensor with one mode corresponding to future while the other two modes cor-
responding to the immediate observation. Figure 4.1 visualizes HSE-PSR parameters and state
update.

qt Wext

Woo

Cψt+1,φot

Cφot (.)−1

× Wψt+1|φot ×

φo(.)

ot

qt+1

Figure 4.1: State update in an uncontrolled HSE-PSR. The diagram is for conceptual illustration. In
practice, it is more efficient to first multiply the inverse observation covariance by the observation
feature vector and then premultiply the result by Cψt+1,φot

.

73

qt Wext

φo(.)

ot

x
‖x‖ qt+1

Wpred

ôt

Figure 4.2: State update and prediction for PSRNN.

4.2.1 Learning Algorithm
The main parameters to learn in an HSE-PSR are Wext and Woo. We can learn these parameters
using two-stage regression. First, we use history features to construct examples q̄t = E[ψt | ht]
(stage 1A regression) and C̄t = E[ψt+1 ⊗ φot | ht] (stage 1B regression). Given these examples we
can use ridge regression to estimate Wext. The same procedure can be used to estimate Woo, with
stage 1B regression producing estimates of E[φot ⊗φot | ht]. A natural choice for stage 1 regression
is kernel ridge regression, which is effectively ridge regression with the feature map of the history
kernel φh used as the history feature function.

4.2.2 Prediction
We described how to perform belief state updates in an HSE-PSR. Now we want to use these
belief states to make predictions. Suppose we want to make a prediction of E[ot | o1:t−1]. We
can use supervised regression to learn a prediction function g. To learn this function, our training
input/output pairs will be (q̂t, ot), where q̂t is the estimated belief state at time t after running the
HSE-PSR as a recursive filter.

What is the suitable class of functions for g? Let HO be the RKHS of the future kernel kO.
If we use a universal kernel such as the RBF kernel over a compact domain, then we know that,
for any desired approximation precision, there exists a weight vector wy ∈ HO for any y that is a
scalar function of ot:t+τf−1 such that yt ≈ 〈wy, ψt〉. Let d be the dimensionality of ot. We can train
d weight vectors each corresponding to a function that extracts a coordinate of ot from the future
window ot:t+τf−1. Equivalently, we use linear regression to learn an operator Wpred : HO 7→ Rd

such that

ot = Wpredψ
O
t .

It follows from the definition of qt that

E[ot | o1:t−1] = Wpredqt.

74

4.3 Predictive State Recurrent Neural Networks
As mentioned in Section 4.1.5, we can use the kernel trick to develop an exact implementation of
the HSE-PSR even for kernels with infinite dimensional feature maps such as the RBF kernel. For
completeness, we provide such an implementation in the appendix. That implementation, however,
requires O(N3) time and O(N2) space for both training and inference, which makes it impractical
except for small datasets.

Moreover, the learning algorithm does not directly optimize for minimum prediction error and,
being method of moments-based, it is not statistically efficient. We propose a recursive filter that
is inspired by HSE-PSRs but overcomes these two difficulties. The proposed model, predictive
state recurrent neural networks (PSRNNs) introduces three key modifications to HSE-PSRs that we
describe below.

4.3.1 Kernel Approximation
We use random Fourier features as described in Section 4.1.5. With random Fourier features,
feature maps are vectors, covariance operators are matrices and weight parameters are 3-mode
tensors, which allows us to apply the HSE-PSR update rule 4.20 explicitly.

Random Fourier features, however, do not take the actual distribution of the data into account.
Therefore, we can significantly reduce their dimensionality by projection. We project history,
observation and future features on the top p left singular vectors of the covariances Cφht ,φOt , Cφot ,φht
or CφOt ,φht . This is based on the intuition from subspace identification that we care about the part of
the future that is predictable from history.

4.3.2 Local Refinement By Discriminative Training
A common practice is to use the output of a moment-based algorithm to initialize a non-convex op-
timization algorithm such as EM (Falakmasir et al., 2013; Belanger and Kakade, 2015) or gradient
descent Jiang et al. (2016). Since EM is not directly applicable to HSE-PSRs, we propose a gra-
dient descent approach. We can observe that filtering in an HSE-PSR defines a recurrent structure
given by

qt+1 = ffilter(Wsystemqt, ot)

E[ot|qt] = Wpredqt,

With a differentiable ffilter we can interpret an HSE-PSR as a recurrent neural network and apply
discriminative training—that is, we minimize the error in predicting observations. Starting, from
an initial value of Wsystem and Wpred that is obtained through method of moments, we can use
backpropagation through time as a local optimization procedure to minimize the predictive loss∑

t

l(ot,Wpredq̂t), (4.21)

where l is a Bregman divergence loss (e.g. square loss) and q̂t is the estimated belief state at time
t.

75

4.3.3 Approximate Conditioning
We replace the state update in (4.20) with the following approximation (see Figure 4.2):

qt+1 =
Wext ×q qt ×o φot + b

‖Wext ×q qt ×o φot + b‖ , (4.22)

where Wext ×q qt ×o φot is the vector y given by

y[i] =
∑
j,k

Wext[j, k, i] · qt[j] · φo[k]

This approximation gets rid of the parameter Woo. It also replaces the matrix inverse operation
with the less costly and typically more stable L2 normalization. This approximation is inspired
by the state update in the discrete case using the delta kernel, which is similar to (4.22) but uses
L1 norm instead of L2 norm. With RFF features, the L2 makes sense as an approximation to the
RKHS norm. It is also results in a differentiable operation, unlike L1 norm. Also, normalizing the
state of a Bayes filter using the L2 norm bears similarity to norm observable operator models (Zhao
and Jaeger, 2010). A very similar normalization scheme has also been investigated in (Ba et al.,
2016), where it was suggested to speed up training of recurrent networks.

The learning algorithm of PSRNNs is similar to that of HSE-PSRs with additional steps for
feature learning and local refinement. In summary, it goes as follows:
• Compute projection matrices for past and future features from the SVD of the relevant co-

variance matrices (Section 4.3.1).
• Learn the parameter Wsystem ≡ Wext using two-stage regression (Section 4.2.1) and estimate

the initial state q1 as the mean value of future features ψt.
• Apply the update equation (4.22) to compute q̂t for all t.
• Using input/output examples (q̂t, ot), learn a prediction matrix Wpred.
• Use backpropagation through time through the computational graph in Figure 4.2 to update

the parameters Wext and Wpred to minimize prediction error.

4.4 Experiments
In this section we report results on experiments that compare PSRNNs to various baselines in
predicting future observations.

4.4.1 Character-level Language Modeling
In this experiment, we demonstrate the use PSRNNs to model sequences of characters. For this
purpose, we use a subset of the Penn Tree Bank dataset (Marcus et al., 1993), which is a standard
benchmark in the NLP community. The observations are individual characters, which can take one
out of 49 possible values. We use a train/test split of 120k characters each.

76

Figure 4.3: Bits per character (left) and one-step prediction accuracy (right) on Penn Tree Bank
dataset.

We compare PSRNNs to LSTMs (Hochreiter and Schmidhuber, 1997) and GRUs (Cho et al.,
2014). We use two-stage regression to initialize the PSRNN, with the regression method being
ridge regression. We set the ridge parameter λ = 10−2N , whereN is the total number of examples,
and we set the projected feature dimension p to 20. Since ot is a discrete character, we replace the
linear regression step to compute Wpred with multinomial logistic regression.

We train all models using backpropagation through time (BPTT) to minimize bits-per-character
(BPC). For each training epoch, we report BPC and one-step prediction accuracy (OSPA) on the
test set. The results are shown in Figure 4.3. The results show that PSRNNs outperform the
commonly used baselines in both performance metrics.

4.4.2 Continuous Systems

We also experimented with the following continuous dynamical systems.
• Swimmer: We consider a 3-link simulated swimmer robot from the open-source package

RLPy (Geramifard et al., 2013). The robot is controlled using a mixture of a pre-trained
policy that is optimized for fast forward movement and a uniformly random policy where
the random policy is executed 20% of the time. The observations consist of the angles
of the joints and the position of the nose (in body coordinates). The measurements are
contaminated with Gaussian noise whose standard deviation is 5% of the true signal standard
deviation. We generate 25 trajectories of length 100 each and we split them into 20 training
and 5 test trajectories.

• Handwriting: This is a digit handwriting database available on UCI repository (Alpaydin
and Alimoglu, 1998). The data is created using a pressure sensitive tablet and a cordless sty-
lus. Observations consist of x and y coordinates and pressure levels of the pen at a sampling
rate of 100 milliseconds. We use 25 trajectories with a train/test split of 20/5.

We compare PSRNNs to basic RNNs (a.k.a Ellman networks) (Elman, 1990), LSTMs (Hochre-
iter and Schmidhuber, 1997), GRUs (Cho et al., 2014) and Kalman filters (Kalman, 1960). All

77

Figure 4.4: Log mean squared error on swimmer (left) and handwriting (right) datasets.

these models can be viewed as recurrent networks and can be optimized using backpropagation
through time, where the optimization criterion is the mean square error (MSE). We used two-stage
regression to initialize the Kalman filter and used the Xavier initialization scheme (Glorot and
Bengio, 2010) to initialize the RNNs, LSTMs and GRUs.

Figure 4.4 depicts the log MSE after each epoch, we again see a clear advantage of PSRNNs
over the other baselines.

To gain insight on the importance of good initialization, figure 4.5 shows examples of one-step
predicted swimmer trajectories before and after BPTT. We see that the behavior of the initial model
can have a large impact on the final model. For example, BPTT alone is not able to eradicate the
initial oscillatory behavior of the RNN in the beginning of the trajectory.

4.5 Conclusion
In this chapter we introduced predictive state recurrent neural networks (PSRNNs), a practical
non-parametric predictive sate model for modeling non-linear continuous systems. PSRNNs builds
upon previous literature in using approximate kernel features as future statistics and augments that
with discriminative training after two stage regression. The result is a novel recurrent network
architecture that has a theoretically motivated initialization algorithm. We have demonstrated the
superiority of this architecture to traditional recurrent architectures for modeling sequential data.

78

Figure 4.5: Test Data vs Model Prediction on a single feature of Swimmer. The left column shows
initial performance. The right column shows performance after training. The order of the rows is
KF, RNN, GRU, LSTM, and PSRNN.

79

4.A Appendix: Two-stage Regression of HSE-PSRs with Gram
Matrices

We define a class of non-parametric two-stage instrumental regression models. By using con-
ditional mean embedding (Song et al., 2009) as S1 regression model, we recover an uncontrolled
variant of HSE-PSRs (Boots et al., 2013). Let X ,Y ,Z,S denote reproducing kernel Hilbert spaces
with reproducing kernels kX , kY ,kZ and kS respectively. Assume ψt ∈ X and that ξt ∈ Y is de-
fined as the tuple (φot⊗φot , ψt+1⊗φot). Let Ψ ∈ X ⊗RN , Ξ ∈ Y⊗RN , H ∈ Z⊗RN , O ∈ S⊗RN

be operators that represent training data. Specifically, ψs, ξs, hs, φos are the sth ”columns” in Ψ, Ξ,
H and O respectively. It is possible to implement S1 using a non-parametric regression method
that takes the form of a linear smoother. In such case the training data for S2 regression take the
form

Ê[ψt | ht] =
N∑
s=1

βs|htψs

Ê[ξt | ht] =
N∑
s=1

γs|htξs,

where βs and γs depend on ht. This produces the following training operators for S2 regression:

Ψ̃ = ΨB

Ξ̃ = ΞΓ,

where Bst = βs|ht and Γst = γs|ht . With this data, S2 regression uses a Gram matrix formulation
to estimate the operator

W = ΞΓ(B>GX ,XB + λIN)−1B>Ψ∗ (4.23)

Note that we can use an arbitrary method to estimate B. Using conditional mean maps, the
weight matrix B is computed using kernel ridge regression

B = (GZ,Z + λIN)−1GZ,Z (4.24)

For each t, S1 regression will produce a denoised prediction Ê[ξt | ht] as a linear combination
of training feature maps

Ê[ξt | ht] = Ξαt =
N∑
s=1

αt,sξs

80

This corresponds to the covariance operators

Ĉψt+1,φot |ht =
N∑
s=1

αt,sψs+1 ⊗ φos = Ψ′diag(αt)O
∗

Ĉφot |ht =
N∑
s=1

αt,sφ
o
s ⊗ φos = Odiag(αt)O

∗

Where, Ψ′ is the shifted future training operator satisfying Ψ′et = ψt+1 Given these two covariance
operators, we can use kernel Bayes rule Fukumizu et al. (2013) to condition on ot which gives

qt+1 = Ê[ψt+1 | ht] = Ĉψt+1,φot |ht(Ĉφot |ht + λI)−1φot . (4.25)

Replacing φot in (4.25) with its conditional expectation
∑N

s=1 αsφ
o
s corresponds to marginalizing

over ot (i.e. prediction). A stable Gram matrix formulation for (4.25) is given by Fukumizu et al.
(2013)

qt+1

= Ψ′diag(αt)GO,O((diag(αt)GO,O)2 + λNI)−1

.diag(αt)O
∗ot+1

= Ψ′α̃t+1, (4.26)

which is the state update equation in HSE-PSR as suggested by Boots et al. (2013). Given α̃t+1 we
perform S2 regression to estimate

P̂t+1 = Ê[ξt+1 | o1:t+1] = Ξαt+1 = WΨ′α̃t+1,

where W is defined in (4.23).

81

82

Chapter 5

Tensor Sketching for Predictive State
Models with Large States

In Chapter 4 we introduced predictive state recurrent neural networks (PSRNNs) as a practical non-
parametric predictive state model. Despite their many attractive properties, a major weakness of
PSRNNs is that they do not scale well with large scale spaces. Training a PSRNN involves learning
a 3-mode parameter tensor which requires O(p4) time and produces a model of size O(p3), where
p is the state size (the size of the projected RFF features). Inference involves a multilinear product
that requires O(p3) time.

In this chapter we investigate the use of tensor sketching to facilitate the training of PSRNNs
with large state sizes. Tensor sketching is a method to compress a tensor into a vector with a much
less number of elements. It enables the approximate computation of dot products and multilinear
products without the need to construct the full tensor. This makes it a potential candidate for
approximating PSRNNs with large state spaces.

First, we demonstrate an interesting observation: that using tensor sketching for multilinear
tensor-vector product results in poor approximation quality. Still, when used as a subroutine within
tensor power iteration as suggested by Wang et al. (2015), it accurately manages to recover top
rank-1 components. This observation is not predicted by the theoretical analysis in (Wang et al.,
2015; Wang and Anandkumar, 2016) and we believe it to be of independent interest.

Second, we compare different approaches for non-orthogonal decomposition of asymmetric
tensors via sketching and show that a deflation approach that recovers rank-1 components one
by one outperforms the alternating least squares suggested in (Wang et al., 2015) and is able to
compute a factorization of a low rank tensor with good accuracy.

These observations imply that tensor sketch is not by itself a good alternative representation
of the PSRNN parameter tensor. However, they also suggest that we can use tensor sketching
to obtain a low rank approximation of the parameter tensor, thus achieving our goal of reducing
computational and space requirements.

Thus, our third contribution in this chapter is demonstrating the use of sketching to obtain a low
rank representation of a PSRNN. We show that the performance of the model degrades gracefully
with the amount of compression used.

The chapter is organized as follows, In section 5.1, we give the necessary background on tensor

83

operations and tensor sketching. In Section 5.2 we describe a two stage regression algorithm for
PSRNN using sketching and describe how to use it to obtain a lightweight PSRNN model. In Sec-
tion 5.3 we report the results of multiple experiments that verify the aforementioned contributions.

5.1 Tensors and Tensor Sketch

We introduce tensor inner products and tensor-vector products (a.k.a tensor contractions), the main
operations we are interested in. Then, we describe how to approximate them with low cost using
tensor sketch.

5.1.1 Tensor Inner Product and Tensor Contraction

A 3-mode tensor A ∈ Rd1 ×Rd2 ×Rd3 has d1 × d2 × d3 entries. The inner (dot) product between
two tensors A and B id defined as

〈A,B〉 ≡
d1∑
i=1

d2∑
j=1

d3∑
k=1

Ai,j,kBi,j,k. (5.1)

The inner product induces a Frobenius norm ‖A‖F :=
√
〈A,A〉. In our usage of tensors, we are

interested in the tensor-vector product (also known as tensor contraction as it decreases the number
of modes of the tensor). Using the notation in (Anandkumar et al., 2014a; Wang et al., 2015), we
are interested in the following operations

T (I, b, c) ≡
d1∑
i=1

d2∑
j=1

d3∑
k=1

ed1i bjck ∈ Rd1 , (5.2)

T (a, b, c) ≡
d1∑
i=1

d2∑
j=1

d3∑
k=1

aibjck ∈ R, (5.3)

where ed1i is an indicator vector in Rd where the ith coordinate is 1 and other coordinates are 0. The
operations T (a, I, c) ∈ Rd2 and T (I, b, c) ∈ Rd3 are defined similarly. The contraction in (5.2)
arises in the PSRNN state update. Tensor decomposition methods typically make use of (5.2) and
(5.3). Tensor contraction operations can be expressed in terms of inner products as follows

T (I, b, c) ≡
d1∑
i=1

〈T, ed1i ⊗ b⊗ c〉ed1i ,

T (a, b, c) ≡ 〈T, a⊗ b⊗ c〉.

Thus, a method that approximates inner products can be used to approximate these operations.

84

5.1.2 Tensor Sketch
Before describing tensor sketch we describe count sketch for vectors (Cormode and Hadjieleft-
heriou, 2008). To hash a vector of dimensionality d, count sketch utilizes two independent hash
functions h : [d] 7→ [b] and ζ : [d] 7→ {±1}. A d dimensional vector x is hashed into a b
dimensional vector sx such that

sx[i] =
∑

j:h(j)=i

ζ(j)xj. (5.4)

In words, the value of a sketch element is the sum of all colliding elements of the original vector
multiplied by random signs. Thus, the sketch of a vector can be computed in O(d) time. A key
property of the count sketch that it approximately preserves inner products. More specifically,
given two vectors x and y we have

E[〈sx, sy〉] = 〈x, y〉
Var[〈sx, sy〉] = O(|〈x, y〉|2/b). (5.5)

In practice, we use multiple pair-wise independent hash functions and use the median of the es-
timated inner product to increase robustness. Preserving inner products also implies that we can
approximately reconstruct elements of a sketched vector by taking an inner product with the cor-
responding indicator vector.

xi ≈ 〈sx, sei〉 = ζ(i)sx[h(i)].

Tensor sketch (Pham and Pagh, 2013) is a generalization of count sketch. To hash a tensor into a
vector of length b, we could use hash functions h : [d1]×[d2]×[d3] 7→ [b] and ζ : [d1]×[d2]×[d3] 7→
{±1}. The main idea behind tensor sketch is that, given pairwise independent hash functions
hm : [dm] 7→ [b] and ζm : [dm] 7→ {±1} for m ∈ {1, 2, 3}, new independent hash functions
h : [d1] × [d2] × [d3] 7→ [b] and ζ : [d1] × [d2] × [d3] 7→ {±1} can be constructed for tensors as
follows

h(i, j, k) = (h1(i) + h2(j) + h3(k)) mod b

ζ(i, j, k) = ζ1(i)ζ2(j)ζ3(k).

The main utility of this construction is that is allows for efficient computation of sketched of rank-1
tensors. Let T = a⊗ b⊗ c be a rank-1 tensor. It can be shown that that

sT = s(1)
a ∗ s(2)

b ∗ s(3)
c

= F−1(F(s(1)
a) ◦ F(s

(2)
b) ◦ F(s(3)

c)), (5.6)

where s(i)
x denotes the sketch of x using the hash pair (hi, ζi) and F denotes discrete Fourier

transform1. This computation can be performed in O(b log b) time. Since sketching is a linear

1There are multiple notions of Fourier transform that use different normalization schemes. To obtain the right
results, one should use the non-normalized version which divides the sum by b, the length of the vector.

85

operation, we can use (5.6) to efficiently compute the sketch of a sum of rank-1 components given
the corresponding vectors. This is beneficial for sketching empirical covariance tensors, which are
our object of interest.

With the ability to sketch vectors and tensors, we can approximate tensor contractions

T (a, b, c) ≈ 〈sT , s(1)
a ∗ s(2)

b ∗ s(3)
c 〉 (5.7)

s
(1)
T (I,b,c)[i] ≈ 〈sT , s(1)

ei
∗ s(2)

b ∗ s(3)
c 〉 (5.8)

Wang et al. (2015) showed that (5.8) implies the following

s
(1)
T (I,b,c) ≈ F−1(F(sT) ◦ F(s

(2)
b) ◦ F(s

(3)
c)), (5.9)

where the approximation is in the sense of (5.5) element-wise.

5.2 Tensor Sketching for PSRNNs
We first review a variant of PSRNNs that does not use an S1B regression step. Recall that this is
equivalent to using ordinary least squares for S1B. The reason for ignoring S1B is that it allows us
to formulate the training as the construction of a sum of rank-1 tensors.

We assume the existence of training data in the form of tuples (ht, φ
o
t , ψt) of history, observation

and future feature vectors for each time step t ∈ [T]. Assume these feature vectors to be of
dimension p each. The two-stage regression algorithm first uses ridge regression to compute a
matrix W1 such that

ψ̂t ≡ Ê[ψt | ht] = W1ht.

The algorithm then computes the parameter tensor Wext such that

E[φot ⊗ ψt+1 | ψ̂t] = Wext(ψ̂t, I, I).

Using ridge regression, an estimate of Wext is given by

Wext = M3((M2 + λI)−1, I, I), (5.10)

where

M3 ≡
T∑
t=1

ψ̂t ⊗ φot ⊗ ψt+1 (5.11)

M2 ≡
T∑
t=1

ψ̂t ⊗ ψ̂t (5.12)

The multiplication in (5.10) can be understood as reshaping M3 into a matrix with dim(ψ̂t) rows
and dim(φot) × dim(ψt+1) columns, pre-multiplying it by (M2 + λI)−1, and reshaping the result

86

back as a tensor. Given T training examples, computing M3 via (5.11) requires O(Tp3) time,
where p is the dimensionality of the features. We also need O(p4) time to compute W via (5.10).
For inference, recall that the state update for a PSRNN is given by the following normalized tensor
contraction

qt+1 =
Wext(qt, φ

o
t , I)

‖Wext(qt, φot , I)‖ . (5.13)

Performing a single state update thus requires O(p3) computation to compute Wext(qt, φ
o
t , I). In

addition to computation, we need O(p3) storage to store M3 and Wext. These requirements can
be impractical when p is large. Our goal is to be able to perform PSRNN training and inference
without constructing the parameter tensor Wext or any quantity of similar size. Tensor sketching
seems to be a strong candidate for this purpose. We now show how directly obtain the sketch of
the parameter tensor Wext from training data. In sections 5.2.1 and 5.2.2 we discuss how to utilize
this sketch.

From (5.11) and (5.10) we can rewrite Wext as follows

Wext =
∑
t

((M2 + λI)−1W1ht)⊗ φot ⊗ ψt+1, (5.14)

This means we can compute the sketch of Wext (which we denote by sW) using three passes
through the training data, as shown in Algorithm 2. For simplicity, the algorithm assumes a single
sketch is sued but can easily be extended to B sketches.

Algorithm 2 Sketching the parameter tensor Wext

Input:Training examples {(ht, φot , ψt)}Tt=1, hash functions ({hm, ζm}3
m=1), S1 regularization

λ1, S2 regularization λ2.
Output:Parameter tensor sketch sW ∈ Rb.

1: // Stage 1 Regression
2: W1 ← (

∑
t ψt ⊗ ht)(

∑
t ht ⊗ ht + λ1I)

3: // Stage 2 Regression
4: M2 ←

∑T
t=1(W1ht)⊗ (W1ht)

5: sW ← 0
6: for t = 1 to T − 1 do
7: a← (M2 + λ2I)−1W1ht, b← φot , c← ψt+1

8: sW ← sW + F−1(F(s
(1)
a) ◦ F(s

(2)
b) ◦ F(s

(3)
c))

9: end for

The following proposition shows the time and space complexities of Algorithm 2.
Proposition 5.1. Assume that all feature vectors are of dimension p and that we use B sketches of
size b each. Then, for T training examples, Algorithm 2 has a time complexity of O(p3 + T [p2 +
Bp+ Bb log b]) and a space complexity of O(p2 + Bb).

Proof. Computing M2 requires O(Tp2) time. Computing W1 as well as (M2 + λ2I)−1W1 re-
quires O(p3). Finally , to compute sW we repeat the following for each example t: Matrix-vector

87

product to compute a [O(p2)], computing the sketches [O(Bp)], and performing convolution
[O(Bb log b)].

The space complexity is the sum of the sizes of M2 and similar matrices [O(p2)] and the
sketches [O(Bb)].

Compared to the O(p4 +Tp3) time and O(p3) memory when learning Wext directly, Algorithm
2 can result in significant gains for large values of p. We now discuss the use of the sketched
PSRNN parameter tensor.

5.2.1 Tensor Sketch as a PSRNN Parameter
With the capability of efficiently computing sW , there are multiple ways of utilizing it in inference.
An obvious approach is to maintain the parameter tensor in its sketched form and replace the
tensor contraction step in (5.13) by its approximation using (5.9) to approximate the tensor. This
approach requires sketching the observation features at each time step which is a linear (and hence
differentiable) operation.

However, our initial experiments have shown that this approach results in very poor results.
As we demonstrate in Section 5.3.1, this can be attributed to the fact that, while tensor sketches
provides a decent approximation when used for tensor decomposition, the approximation quality
for general tensor contraction can be very poor. We instead propose factored PSRNNs, which use
of sketching as a factorization technique, as we describe in the following subsection.

5.2.2 Factored PSRNNs
We propose using the tensor sketch to compute an approximate CP decomposition of Wext. Let

Wext ≈
m∑
i

ai ⊗ bi ⊗ ci. (5.15)

Let A, B and C be the matrix whose columns are ai, bi and ci respectively. We can write
W (qt, φ

o
t , I) as

qt+1 =
C>(Aqt ◦Bφot)
‖C>(Aqt ◦Bφot)‖

. (5.16)

We will refer to this representation as a factored PSRNN. In the following sections, we show how
to use tensor sketching to obtain the decomposition in (5.15).

5.2.3 Hybrid ALS with Deflation
Wang et al. (2015) proposed a CP decomposition method for asymmetric tensors based on alter-

nating least squares (Algorithm 3). The core operation in alternating least squares is the tensor
product T (I, b, c), which can be carried out with sketches using (5.9).

88

Algorithm 3 Fast ALS using sketches (DECOMPALS)
Input:
• Hash functions (h(i,j), ζ(i,j)) for i ∈ {1, 2, 3} and j ∈ [B].

• Tensor sketch s(j)
T for j ∈ [B] where T ∈ Rd1×d2×d3 .

• Number of factors K.
Output:Factor weights {λk}Kk=1 and unit vectors {(ak ∈ Rd1 , bk ∈ Rd2 , ck ∈ Rd3)}Kk=1 such

that W ≈∑K
k=1 λkak ⊗ bk ⊗ ck.

1: A,B,C ← random (d1, d2, d3)×K matrices with normalized columns.
2: for i = 1 to L do
3: for k = 1 to K do
4: for β = 1 to B do
5: Compute s(2,β)

bk
and s(3,β)

ck

6: s
(1,β)
ak ← s

(1,β)
T (I,bk,ck) (using (5.9))

7: end for
8: // reconstruct ak:
9: for j = 1 to d1 do

10: ak,j ← median(Re({s(1,β)
ak [h(1,β)(j)]ζ(1,β))}Bβ=1)

11: end for
12: end for
13: A← A((C>C) ◦ (B>B))+.
14: λk ← ‖ak‖ for k ∈ {1, . . . , K}
15: Normalize the columns of A.
16: Update B and C similarly.
17: end for

Proposition 5.2. ForK components andL iterations, Algorithm 3 hasO(LKB(p logB+b log b)+
L(pK2 +K3)) time complexity and O(bB +Kp+K2) space complexity.

Proof. For each iteration and each component, we need to (1) sketch the factors [O(Bp)] (2) per-
form contraction [O(Bb log b)] and (3) perform reconstruction [O(pB logB)]. For each iteration
we also need to compute C>C ◦ B>B+ [O[(pK2 + K3)]] and update A [(pK2)]. Normalization
and updating of B and C does not affect the asymptotic rate.

The space complexity arises from the need to store the sketches [O(Bb)], rank-1 components
[O(Kp)] and matrices A>A,B>B,C>C [O(K2)].

By using sketching, Algorithm 3 scales linearly (instead of cubically) in the dimension p. Wang
et al. (2015) demonstrated that Algorithm 3 is capable of recovering the top few components of a
1000 dimensional tensor.

However, we have observed that Algorithm 3 often has trouble when simultaneously consider-
ing a large number of components, as we demonstrate in Section 5.3.2. For this reason we opt to
use a deflation based approach. We use Algorithm 3 to recover one component. Then we deflate
the input tensor by subtracting that component and reiterate. Note that deflation can be performed

89

on sketched tensors. The process is detailed in Algorithm 4. Recovering a single component means
the intermediate quantities A>A, B>B and C>C in Algorithm 3 are simply scalars. Not only does
this approach produce better decomposition, as we demonstrate in Section 5.3.2 but it is also better
in terms of time and space complexity as a function of K, as we show below.
Proposition 5.3. ForK components andL iterations per component, Algorithm 4 hasO(LKB(p log b+
b log b) +KLp) time complexity and O(bB +Kd) space complexity.

Proof. The result is derived by substituting K = 1 in the time complexity of Algorithm 3 (Propo-
sition 5.2) and multiplying the result K times. Note that the deflation step needs O(Bb log b) time
and thus does not change the asymptotic rate.

Of course, it is possible to use a batched version of Algorithm 4, where in each iteration we
extract M components using ALS. However, we show in Section 5.3.2 that using M = 1 is more
effective.

Algorithm 4 Hybrid Decomposition with ALS and Deflation (DECOMPHYBRID)
Input:
• Hash functions (h(i,j), ζ(i,j)) for i ∈ {1, 2, 3} and j ∈ [B].

• Tensor sketch s(j)
T for j ∈ [B] where T ∈ Rd1×d2×d3 .

• Number of factors K, block size M .
Output:Factor weights {λk}Kk=1 and unit vectors {(ak ∈ Rd1 , bk ∈ Rd2 , ck ∈ Rd3)}Kk=1 such

that W ≈∑K
k=1 λkak ⊗ bk ⊗ ck.

1: for k = 1 to K do
2: λk, ak, bk, ck ← DECOMPALS(sT , K = 1)
3: for j = 1 to B do
4: s

(j)
∆ ← λis

(1,j)
ai ∗ s(2,j)

bi
∗ s(3,j)

ci

5: s
(j)
T ← s

(j)
T − s

(j)
∆

6: end for
7: end for

5.2.4 Two-stage Regression for Factored PSRNN

Given the previous discussion, we propose the following two-stage regression algorithm for learn-
ing a factorized PSRNN:
• Estimate the initial state q1 as the average future feature vector 1

T

∑T
t=1 ψt.

• Estimate the parameter tensor sketch sW , using Algorithm 2.
• Factorize the parameter tensor using Algorithm 4.
• Use the factorized PSRNN to compute states q1:t by applying (5.16).
• Solve a linear regression problem from qt to ot to estimate the prediction matrix Wpred.

90

5.3 Experiments

We now report the results of three experiments that are aimed to answer the following questions:
(1) What is the approximation quality of tensor contraction in general and tensor decomposition in
particular using sketching? (2) How does tensor decomposition with sketching using alternating
least squares compare to deflation-based methods? and (3) What is the effect of using sketch
two-stage regression on model performance?

5.3.1 Tensor Product vs. Tensor Decomposition

As mentioned in Section 5.1.2, tensor sketching allows us to approximate the tensor contraction
by applying (5.9) to the sketches of the tensor and the vectors. Tensor contraction appears as a part
of the state update in (5.13) as well as a core operation in tensor CP decomposition.

In this experiment, we compare using tensor sketching to approximate contraction within CP
decomposition vs a general application scenario. To do so we conduct a number of trials, in each
trial we generate a tensor T =

∑50
i=1 λiui ⊗ vi ⊗ wi ∈ R200×200×200, where ui, vi and wi are

sampled uniformly from unit sphere and λi > 0. We experimented with two settings of λ: an
exponential decay λi = exp(−0.5(i − 1)) and a reciprocal decay λi = i. We used sketching with
B = 10 and b = 10000 to approximate two operations: (1) generic tensor contraction, where we
approximate y = T (I,b,c)

‖T (I,b,c)‖ for two random vectors b and c drawn from the unit sphere, and (2)
recovering u1 through the ALS method (Algorithm 3). We then computed the angle between the
true and approximated vectors. We report the histogram of the cosine of the angle across trials.

The results are shown in Figure 5.1. The figure shows clearly that tensor contraction via sketch-
ing is robust when used within CP decomposition, even when its approximation quality is poor in
general. We examined the cases where ALS failed to recover u1 and we found that this “failure”
is actually due to recovering a vector uj from a different rank-1 component. The results of this
experiment provides justification to the use of tensor sketching as a means to obtain a factorized
PSRNN as opposed to using it to represent the PSRNN, as described in Section 5.2.1.

5.3.2 Tensor Decomposition: Alternating Least Squares vs. Deflation

In this experiment we compare different methods for tensor decomposition. The methods we
compare are ALS (Algorithm 3), Hybrid ALS with deflation (Algorithm 4) and a variant of Hybrid
ALS that computes 5 factors instead of 1 in each iteration.

For each algorithm we conducted 30 trials. For each trial we generated a 200 × 200 × 200
tensor that consists of 50 rank-1 components sampled using the same methodology in the previous
experiment. We used the algorithm to recover different number of components and for each number
we report the root relative mean square error which is computed as√

‖T̂ − T‖2
F

‖T‖2
,

91

λi = 1
i

0.00 0.25 0.50 0.75 1.00

|〈y, ŷ〉|

0

100

200

300

400

500

N
o
.

o
f

o
cc

u
re

n
ce

s

0.00 0.25 0.50 0.75 1.00

|〈u1, û1〉|

0

100

200

300

400

500

0.00 0.25 0.50 0.75 1.00

maxj |〈uj , û1〉|

0

100

200

300

400

500

λi = e−
1
2

(i−1)

0.00 0.25 0.50 0.75 1.00

|〈y, ŷ〉|

0

100

200

300

400

500

N
o.

of
o
cc

u
re

n
ce

s

0.00 0.25 0.50 0.75 1.00

|〈u1, û1〉|

0

100

200

300

400

500

0.00 0.25 0.50 0.75 1.00

maxj |〈uj , û1〉|

0

100

200

300

400

500

Figure 5.1: Approximation quality of general tensor contraction vs. recovering the first rank-1
component of a tensor. (left): Histogram of dot product between normalized true and approximate
contraction results. (middle): Histogram of dot product between true and approximate first rank-1
component vector. (right): Histogram of maximum dot product between approximate first rank-1
component vector and all true rank-1 components, showing that failures in (middle) are due to
recovering a different rank-1 component.

92

1 6 11 16 21 26 31 36 41 46
of components

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
re

si
d

u
al

n
or

m
DecompAls

DecompHybrid

DecompHybrid5

1 6 11 16 21 26 31 36 41 46
of components

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
re

si
d

u
al

n
or

m

DecompAls

DecompHybrid

DecompHybrid5

λi = e−
1
2

(i−1) λi = 1
i

Figure 5.2: Relative residual norm for different decomposition methods using tensor sketches.

where T is the true tensor and T̂ is the reconstructed tensor. Figure 5.2 shows the mean and
standard deviation across trials. The figure shows that ALS is reliable only when the first few
components are needed. Otherwise, a deflation approach is necessary. The results also show that
recovering components one-by-one is better than in batches.

5.3.3 Factored PSRNNs with Sketching

In this experiment we investigate the use of tensor sketching to obtain a factored PSRNN without
the need to incur the cost of constructing the parameter tensor.

We used the Penn Treebank Dataset (See Chapter 4) to train a PSRNN with a state of size 200
via two-stage regression. We compared that model to a factored model consisting of 60 factors that
is trained using sketching as described in Section 5.2.4. The comparison criterion is the ability to
predict the next character in the text. We set the number of sketches B to 20 and vary the sketch
size b.

Figure 5.3 shows the bits-per-character (BPC) and accuracy for the full model and the factor-
ized model with different sketch sizes. We see that, with a sketch of size 10000, we can obtain
a model that achieves almost the same performance as the full model. Note however, that the
sketched representation of this model needs the same amount of memory as the full model. What
is more important is that the performance degrades gracefully as we decrease the size of the sketch
(we plot the performance of a random model as a reference for large degradation). For exam-
ple, with 500 sketches, we achieve 1% compression ratio2 at the expense of a 6 percentage point
reduction in accuracy.

2The compression ratio assumes a reasonable implementation that, instead of maintaining the parameter tensor,
maintains the 3 factor matrices A, B and C as well as the sketch of the parameter tensor and two other sketches of
intermediate quantities.

93

256 512 1024 2048 4096 8192
Sketch Size

3.0

3.2

3.4

3.6

3.8

4.0

4.2

B
P

C

256 512 1024 2048 4096 8192
Sketch Size

0.20

0.25

0.30

0.35

0.40

A
cc

u
ra

cy

Figure 5.3: Bits-per-character and one step prediction accuracy for a factored PSRNN with 60
factors and a state of size 200 trained using 20 sketches of different sizes. The green dotted line
shows the performance of the full (non-factored) model. The red solid line shows the performance
of a random model as a reference value for large degradation in performance.

5.4 Conclusion
We investigated the use of sketching to enable the training of PSRNNs with large state sizes with
low computational and memory costs. We have demonstrated the poor approximation quality
attained by tensor sketching for general tensor contractions, suggesting that it is not applicable
as-is for approximate inference in PSRNNs. Instead, we proposed the use of sketching to obtained
factored PSRNNs with low-rank parameter tensors. We have demonstrated that deflation-based
decomposition outperforms alternating least squares and that the resulting scheme results in an
alternative two-stage regression approach that can save significant memory while causing graceful
degradation of performance.

One of the motivations that evoked our interest in sketching was its potential use to compactly
represent tensors of more than 3 modes, which can emerge in controlled systems (see Chapters
6 and 8). However, the results in this chapter suggest that further work is needed to harness the
power of sketching outside the context of CP decomposition.

94

Part III

Learning Controlled Systems

95

Chapter 6

Predictive State Controlled Models

In this Chapter we extend our formulation of predictive state models to controlled dynamical sys-
tems, where a controller (a.k.a an agent) can affect the system (a.k.a the environment) through
actions. We focus in this chapter on learning to predict. In more details, we consider the setting
where the learning algorithm is given a set of observation/action trajectories produced by an exter-
nal controller interacting with the system. The task is to construct a recursive filter that is capable
of predicting future observations conditioned on future actions, even when these future actions are
not generated by the same controller used for training.

The Chapter is organized as follows: In Section 6.1 we briefly revisit important concepts and
terminology of Chapter 2 in the context of controlled dynamical systems. In Sections 6.2 and
6.3 we define the class of predictive state controlled models (PSCMs) and describe the associated
two-stage regression learning algorithm. In Section 6.4 we construct a practical PSCM using
techniques similar to those used in Chapter 4. We refer to the proposed model as a predictive
state representation with random Fourier features (RFF-PSR). In Section 6.5 we experimentally
demonstrate the efficacy of the proposed model. In Sections 6.6 and 6.7 we move back to a more
general discussion of PSCMs, showing how they relate to other controlled systems in the literature
and providing a theoretical analysis of the learning algorithm.

6.1 Recursive Filters for Controlled Dynamical Systems
Before our discussion of controlled dynamical systems we first address the concept of causal con-
ditioning, or conditioning on intervention, which emerges due to the presence of actions. Then, we
describe controlled dynamical systems utilizing this concept.

6.1.1 Causal Conditioning and The do Notation
Consider the graphical model in Figure 6.1 (left), which depicts a latent state dynamical system.1

The latent system state st+1 depends on st but also on an action at. A reactive policy chooses the

1 Throughout this thesis, we follow the convention that at is the action that precedes ot and that the interaction
between the controller and the system starts with controller executing an action.

97

a1

s1

o1

a2

s2

o2

a3 a1

s1

o1

a2

s2

o2

a3

Figure 6.1: left: Graphical model of a controlled dynamical system with a reactive policy. right:
Reduced model for causal conditioning on the actions.

action at depending on observation ot. Assume for simplicity that all variables are binary. One
might like to characterize the initial behavior of the system at the first two timesteps using the
conditional probability Pr(o1:2 | a1:2). However, this distribution depends on Pr(at | ot) which
is a property of the policy not the underlying system. For example, if the policy is simply that
at+1 = ot then we can conclude that Pr(o1 | a1:2) = 1(o1 = a2), which is a non-causal statement
and certainly does not hold for a different policy.

To make a policy-independent statement, we disregard the influence of observations on actions
(effectively using the model in Figure 6.1 (right)). Thus, we do not condition on observing a1:2 as
generated by some policy but rather on intervening by forcing the values of a1:2 regardless of other
variables. This is denoted by Pr(o1:2 | do(a1:2)). From the reduced graph, we can see that

Pr(o1:2 | do(a1:2)) =
∑
s1,s2

Pr(s1 | at)Pr(o1 | s1)Pr(s2 | s1, a2)Pr(o2 | s2), (6.1)

where all factors depend only on the system dynamics. It is worth noting that Pr(o1:2 | a1:2) and
Pr(o1:2 | do(a1:2)) are identical if the policy is blind (a.k.a open-loop)—that is, the action at is
independent of previous observations (although it can depend on previous actions). It is also worth
noting that Pr(ot:t+k | o1:t−1,do(a1:t+k)) is identical to Pr(ot:t+k | o1:t−1, a1:t−1,do(at:t+k)) unless
the controller has additional access to the system beyond the observations. This means that policy
blindness matters only when considering future actions. For brevity, we will denote by h∞t the
entire history of observations and actions before time t and write the aforementioned distribution
as Pr(ot:t+k | do(at:t+k), h

∞
t).

6.1.2 Controlled Dynamical Systems

A controlled dynamical system with observation set O and action set A models the probability
distribution Pr(o1:t | do(a1:t)) for any o1:t ∈ Ot and a1:t ∈ At where t ≥ 1. Similar to uncon-
trolled systems, the three different views of dynamical systems discussed in Chapter 2 (likelihood
evaluation, system state and belief state) are applicable to controlled systems. Likelihood evalua-
tion view exists in the form of input-output OOM (IO-OOM) (Jaeger, 1998), where an observable
operator exists for each observation/action pair.

98

Figure 6.1 (right) is an example of a system state model. We can also allow the action at to
have a direct effect on the observation ot, resulting in the following generative process

st ∼ f(st−1, at)

ot ∼ g(st, at)

Examples of system state models include input-output hidden Markov models (IO-HMMs) (Ben-
gio and Frasconi, 1995) and linear dynamical systems with Gaussian noise (van Overschee and
de Moor, 1996). Note that we can remove the direct dependency of ot on at by augmenting the
state to include the action.

A belief state model, which can be used to simulate the system or as a recursive filter, applies
the update equation

qt+1 = f(qt, ot, at)

ot ∼ g(qt, at)

Thus, the belief state qt is a deterministic function of the history of observations and actions
h∞t . It constitutes a sufficient state representation if it sufficiently summarizes the history such that

Pr(ot:∞ | h∞t ,do(at:∞)) = Pr(ot:∞ | qt,do(at:∞)).

The probability distribution Pr(st | h∞t) where st is the system state is a sufficient state represen-
tation. A system is k-observable if the function

q(ot:t+k−1, at:t+k−1) ≡ Pr(ot:t+k−1 | do(at:t+k−1), h∞t)

is a sufficient state representation.

6.1.3 Predictive States for Controlled Systems
For uncontrolled systems, we presented the notion of a predictive belief state qt = E[ψO | o1:t−1],
where ψO denotes future observation features. This representation allowed for the development
of a consistent learning algorithm based on two stage regression (Chapter 3). To enable a similar
methodology for controlled systems, we need a notion of a predictive state for controlled systems
that encodes a conditional distribution of future observations given do(future actions). For sim-
plicity, we focus our discussion on k-observable systems. Given future action features ψA and
future observation features ψO, we define the predictive state at time t to be a linear operator Qt

such that E[ψOt | do(at:t+k−1), h∞t] = Qtψ
A
t . ψAt is chosen such that adding more features does

not change Qtψ
A
t . ψOt is chosen such that it is a sufficient statistic for the probability distribution

Pr(ot:t+k−1 | do(at:t+k−1), h∞t) for any values of h∞t and at:t+k−1. One choice of ψO that imposes
minimal assumptions is the feature function of a universal kernel. The simplest example is when
we use the delta kernel on observation and action sequences of length k. In this case, Qt is simply
a conditional probability table.

It is worth noting that there are other possible representations of the predictive state. Predictive
state representations (PSRs) proposed by (Singh et al., 2004) represent the belief state as a vector

99

of probabilities. Each entry indicates the success probability of a test: the probability of observing
a particular observation sequence given that we intervene with a particular action sequence. The
representation we are using is equivalent to a PSR where we have a test for each sequence of
observations and actions of length k. Since we are mainly interested in continuous systems, we do
not need to actually enumerate all tests. We only need to choose features that result in an expressive
model, which we will demonstrate in Section 6.4.

Having established our notion of predictive states, we are ready to define the model.

6.2 Model Definition
Similar to the predictive state model defined in Chapter 3, we denote by ψOt , ψAt , ξOt and ξAt suffi-
cient features of future observations ot:t+k−1, future actions at:t+k−1, extended future observations
ot:t+k and extended future actions at:t+k at time t respectively.

We also use ht ≡ h(o1:t−1, a1:t−1) to denote finite features of previous observations and actions
before time t.2

Definition 6.1. A dynamical system is said to conform to a predictive state controlled model
(PSCM) if it satisfies the following properties:
• For each time t, there exists a linear operator Qt ≡ WψOt |do(ψAt);h∞t

(referred to as a predic-
tive state) such that E[ψOt | do(at:t+k−1), h∞t] = Qtψ

A
t

• For each time t, there exists a linear operator Pt ≡ WξOt |do(ξAt);h∞t
(referred to as an extended

state) such that E[ξOt | do(at:t+k), h
∞
t] = Ptξ

A
t

• There exists a linear map Wsystem (referred to as the system parameter map 3), such that,
for each time t,

Pt = Wsystem(Qt) (6.2)

• There exists a filtering function ffilter such that, for each time t, Qt+1 = ffilter(Pt, ot, at).
ffilter is typically non-linear but known in advance.

It follows that a PSCM is specified by the tuple (Q1,Wsystem, ffilter), where Q1 denotes the
initial belief state.

There are a number of aspects of PSCMs that warrant re-emphasizing. First, unlike latent state
models, the state Qt is represented by a conditional distribution of observed quantities. Second, Qt

is a deterministic function of the history h∞t . It represents the belief state that one should maintain
after observing the history. Third, a PSCM specifies a recursive filter where given an action at and
an observation ot, the state update equation is given by

Qt+1 = ffilter(Wsystem(Qt), ot, at) (6.3)

2Often but not always, ht is a computed from fixed-size window of previous observations and actions ending at
t− 1.

3We note that the expression Wsystem(Qt) should not be understood as a matrix-matrix product (or a composition
of linear operators in general). Rather, we think of Wsystem as a matrix that acts on vec(Qt) to produce vec(Pt).

100

This construction allows us to have a linear map Wsystem and still use it to build models with
non-linear state updates, including IO-HMMs (Bengio and Frasconi, 1995), Kalman filters with
inputs (van Overschee and de Moor, 1996) and HSE-PSRs (Boots et al., 2013). As we will see
in Section 6.3, avoiding latent variables and having a linear Wsystem enable the formulation of a
consistent learning algorithm.

6.3 Learning A Predictive State Controlled Model
We assume that the extended features ξOt and ξAt are chosen such that ffilter is known. The param-
eters to learn are thus Wsystem and Q0. We also assume that a fixed blind policy is used to collect
training data, and so we can treat causal conditioning on action do(at) as ordinary conditioning on
at.4 It is possible, however, that a different (possibly non-blind) policy is used at test time.

To learn model parameters, we will adapt the two-stage regression that we developed in Chapter
3. Let Q̄t ≡ E[Qt | ht] (resp. P̄t ≡ E[Pt | ht]) be the expected belief state (resp. expected extended
state) conditioned on finite history features ht given our data collection policy. For brevity, we
might refer to Q̄t simply as the (predictive) state when the distinction from Qt is clear. It follows
from linearity of expectation that

E[ψOt | ψAt , ht] = Q̄tψ
A
t ,

E[ξOt | ξAt , ht] = P̄tξ
A
t ,

and it follows from the linearity of Wsystem that

P̄t = Wsystem(Q̄t)

So, we train regression models (referred to S1 regression models) to estimate Q̄t and P̄t from
ht. Then, we train another (S2) regression model to estimate Wsystem from Q̄t and P̄t. Being
conditional distributions, estimating Q̄t and P̄t from ht is more subtle compared to uncontrolled
systems, since we cannot use observation features as unbiased estimates of the state. We describe
two methods to construct an S1 regression model to estimate Q̄t. The same methods apply to P̄t.
As we show in Section 6.6, instances of both methods exist in the literature of system identification.

6.3.1 Joint S1 Approach
Let ψoat denote a sufficient statistic of the joint observation/action distribution Pr(ψOt , ψ

A
t | ht).

This distribution is fixed for each value of ht since we assume a fixed model and policy. We use an
S1 regression model to learn the map f : ht 7→ E[ψaot | h] by solving the optimization problem

arg min
f∈F

T∑
t=1

l(f(ht), ψ
oa
t) +R(f)

4One way to deal with non-blind training policies is to assign importance weights to training examples to correct
the bias resulting from non-blindness (Bowling et al., 2006; Boots et al., 2011). This, however, requires knowledge
of the data collection policy and can result in a high variance of the estimated parameters. We defer the case of an
unknown non-blind policy to future work.

101

for some suitable Bregman divergence loss l (e.g., square loss) and regularization R.
Once we learn f , we can estimate Q̄t by first estimating the joint distribution Pr(ψOt , ψ

A
t | ht)

and then deriving the conditional operator Q̄t. By the continuous mapping theorem, a consistent
estimator of f results in a consistent estimator of Q̄t. An example of applying this method is using
kernel Bayes rule (Fukumizu et al., 2013) to estimate states in HSE-PSR (Boots et al., 2013).

6.3.2 Conditional S1 Approach

In this method, instead of estimating the joint distribution represented by E[ψOAt | ht], we directly
estimate the conditional distribution Q̄t. We exploit the fact that each training example ψOt is an
unbiased estimate of Q̄tψ

A
t = E[ψOt | ψAt , ht]. We can formulate the S1 regression problem as

learning a function f : ht 7→ Q̄t that best matches the training examples, i.e., we solve the problem

arg min
f∈F

T∑
t=1

l(f(ht)ψ
A
t , ψ

O
t) +R(f) (6.4)

for some suitable Bregman divergence loss l (e.g., square loss) and regularization R. An example
of applying this method is the oblique projection method used in identification of linear dynamical
systems (van Overschee and de Moor, 1996), which we describe in Section 6.6.2.

It is worth emphasizing that both the joint and conditional S1 approaches assume the state to
be a conditional distribution. They only differ in the way to estimate that distribution.

6.3.3 S2 Regression and Learning Algorithm

Given S1 regression models to estimate Q̄t and P̄t, learning a controlled dynamical system pro-
ceeds as shown in Algorithm 5.

Algorithm 5 Two-stage regression for predictive state controlled models
Input:hn,t,ψOn,t, ψAn,t, ξOn,t, ξAn,t for 1 ≤ n ≤ N , 1 ≤ t ≤ Tn (N is the number of trajectories,

Tn is the length of nth trajectory).
Output:Dynamics matrix Ŵsystem and initial state Q̂1.

1: Use S1A regression to estimate Q̄n,t.
2: Use S1B regression to estimate P̄n,t.
3: Let Ŵsystem be the (regularized) least squares solution to the system of equations

P̄n,t ≈ Wsystem(Q̄n,t) ∀n, t

4: Set Q̂1 to the average of Q̄n,t

102

6.4 Predictive State Controlled Models With Random Fourier
Features (RFF-PSR)

Having a general framework for learning controlled dynamical systems, we now focus on HSE-
PSRs (Boots et al., 2013) as a non-parametric instance of that framework using Hilbert space em-
bedding of distributions. We first describe learning of HSE-PSRs as a two-stage regression method.
Then we demonstrate how to obtain a finite dimensional approximation using random Fourier fea-
tures (RFF) (Rahimi and Recht, 2008). We refer the reader to Chapter 4 for a background on
Hilbert space embedding and random Fourier features.

6.4.1 The HSE-PSR a predictive state controlled model

HSE-PSRs are a generalization of IO-HMMs that has proven to be successful in practice (Boots
et al., 2013; Boots and Fox, 2013). They are suitable for high dimensional and continuous obser-
vations and/or actions. HSE-PSRs use kernel feature maps as sufficient statistics of observations
and actions. We define four kernels kO, kA, ko, ka over future observation features, future action
features, individual observations and individual actions respectively; and we will use φx to denote
the feature map of kx.

We can then define ψOt = φO(ot:t+k−1) and similarly ψAt = φOt (at:t+k−1). We will also use φot
and φat as shorthands for φo(ot) and φa(at). The extended future is then defined as ξot = ψOt ⊗ φot
and ξat = ψAt ⊗ φat

Under the assumption of a blind learning policy, the operators Qt and Pt are defined to be

Qt =WψOt |ψAt h
∞
t

Pt = (P ξ
t , P

o
t) = (WψOt+1⊗φot |ψAt+1⊗φat h

∞
t ,Wφot⊗φot |φat h

∞
t) (6.5)

Note that we can think of the operator P ξ
t as a 4-mode tensor, with modes corresponding to

ψOt+1, φot , ψ
A
t+1 and φat . Similarly, the operator P o

t is a 3-mode tensor, with modes corresponding
to φot , φ

o
t and φat . Based on (6.5), Qt specifies the state of the system as a conditional distribution

of future observations given future actions while Pt is a tuple of two operators that allow us to
condition on the pair (at, ot) to obtain Qt+1 using kernel Bayes rule (Fukumizu et al., 2013). In
more detail, filtering in an HSE-PSR is carried out as follows
• From ot and at, obtain φot and φat .
• Compute Cotot|h∞t ,at =Wφot⊗φot |φat ;h∞t

×φat φat
• Multiply by inverse observation covariance to change “predicting φot” into “conditioning on
φot”:

WψOt+1|ψAt+1,φ
o
t ,φ

a
t ;h∞t

=WψOt+1⊗φot |ψAt+1,φ
a
t ;h∞t
×φot (Cotot|h∞t ,at + λI)−1

103

• Condition on φot and φat to obtain shifted state

Qt+1 ≡ WψOt+1|ψAt+1;φot ,φ
a
t ,h
∞
t

=WψOt+1|ψAt+1,φ
o
t ,φ

a
t ;h∞t
×φot φot ×φat φat

Therefore, in HSE-PSR, we need the parameter Wsystem to be composed of two linear maps; fo
and fξ such that P ξ

t = fξ(Qt) and P o
t = fo(Qt). In the following section we show how to estimate

Q̄t and P̄t from data. Estimation of fξ, fo can then be carried out using kernel regression.
Learning and filtering in an HSE-PSR can be implicitly carried out in the RKHS using a Gram

matrix formulation. We will describe learning in terms of the RKHS elements and refer the reader
to (Boots et al., 2013) for details on the Gram matrix formulation. In Section 6.4.3, we show how
random Fourier features provide a scalable approximation to operating in the RKHS.

6.4.2 S1 Regression for HSE-PSRs
As discussed in section 6.3 we can use a joint or conditional approach for S1 regression. We now
demonstrate how these two approaches apply to HSE-PSRs.

6.4.2.1 Joint S1 Regression for HSE-PSRs

This is the method used in (Boots et al., 2013). In this approach we exploit the fact that

Q̄t = WψOt |ψAt ;ht = CψOt ψAt |ht(CψAt ψAt |ht + λI)−1

So, we learn two linear maps Toa and Ta such that

Toa(ht) ≈ CψOt ψAt |ht ,

Ta(ht) ≈ CψAt ψAt |ht .

The training examples for Toa and Ta consist of pairs (ht, ψ
O
t ⊗ψAt) and (ht, ψ

A
t ⊗ψAt) respectively.

Once we learn this map, we can estimate CψOt ψAt |ht and CψAt ψAt |ht and consequently estimate Q̄t.

6.4.2.2 Conditional S1 Regression for HSE-PSRs

It is also possible to apply the conditional S1 regression formulation in Section 6.3.2. Specifically,
let F be the set of 3-mode tensors, with modes corresponding to ψOt , ψAt and ht. We estimate a
tensor T ∗ by optimizing

T ∗ = arg min
T∈F
‖(T ×ht ht ×ψAt ψ

A
t)− ψOt ‖2 + λ‖T‖2

HS,

where ‖.‖2
HS is the Hilbert-Schmidt norm, which translates to Frobenius norm in finite-dimensional

Euclidan spaces. We can then use

Q̄t = T ∗ ×ht ht
For both regression approaches, the same procedure can be used to estimate the extended state

P̄t by replacing features ψOt and ψAt with their extended counterparts ξOt and ξAt . In our experi-
ments, we test both S1 regression approaches.

104

6.4.3 From HSE-PSRs to RFF-PSRs
We now describe our main proposal for modeling controlled dynamical systems. Predictive state
representations with random Fourier features (RFF-PSRs) build upon HSE-PSRs and improve them
by (1) using finite dimensional approximations to kernel feature maps and (2) using discriminative
training through backpropagation through time to further refine the model obtained by two-stage
regression initialization. We describe these improvements in the following subsections.

6.4.3.1 Approximating HSE-PSRs with Random Fourier Features

A Gram matrix formulation of HSE-PSRs has computational and memory requirements that grow
rapidly with the number of training examples. To alleviate this problem, we resort to kernel
approximation—that is, we replace RKHS vectors such as ψot and ψat with finite dimensional vec-
tors that approximately preserve inner products. We use random Fourier features (RFF) (Rahimi
and Recht, 2008) as an approximation but it is possible to use other approximation methods. Unfor-
tunately RFF approximation can typically require D to be prohibitively large. Therefore, we apply
principal component analysis (PCA) to the feature maps to reduce their dimension to p� D. We
apply PCA again to quantities that require p2 space such as extended features ξOt , ξAt and states
Q̄t, reducing them to p dimensions. We map them back to p2 dimensions when needed (e.g., for
filtering). The two-stage regression algorithm for RFF-PSRs is depicted in Algorithm 6. For ease
of exposition, we assume that RFF features are computed prior to PCA. In our implementation,
we compute the RFF features on the fly while performing PCA to reduce the required memory
footprint. We also employ randomized SVD (Halko et al., 2011) for fast computation of PCA,
resulting in an algorithm that scales linearly with N and D. The dependency on p is determined by
the implementation of regression steps. A reasonable implementation (e.g. using conjugate gradi-
ent with a fixed number of iterations) would result in overall time complexity of O(p3N + pDN)
and space complexity of O(p2N +Dp+ p3).

6.4.3.2 Local Refinement by Discriminative Training

Similar to the PSRNN model proposed in Chapter 4, we can interpret the RFF-PSR as the following
recurrent network

qt+1 = ffilter(Wsystemqt, ot, at),

E[ot|qt,do(at)] = Wpred(qt ⊗ φa(at)),

where Wpred is a do × p2 prediction matrix and do is the observation dimension. The argument
for linearity of Wpred is similar to that we used for PSRNNs: we assume the future RKHS is rich
enough to contain (a good approximation of) the functions that extract individual coordinates from
future observation windows. Therefore, we can improve our estimates of Wsystem and Wpred using
backpropagation through time. We can also train and optimize a k-step predictor W k

pred such that

E[ot:t+k−1|qt,do(at:t+k−1)] = Wpred(qt ⊗ φA(at:t+k−1))

4MATLAB source code is available at: https://github.com/ahefnycmu/rffpsr

105

https://github.com/ahefnycmu/rffpsr

Note that it is possible to use examples from a non-blind policy for the discriminative training
of Wpred without introducing bias. However, that is not true for the multistep predictor W k

pred,
since examples from a non-blind policy can cause it to exploit future actions in predicting previous
observations. One possible solution to optimize a multistep predictor with examples from a non-
blind policy is to learn a set of predictors W̃ l for (1 ≤ l ≤ k) such that

E[ot+l−1|qt,do(at:t+l−1)] = W̃ l(qt ⊗ φA
l

(at:t+l−1)).

In Chapter 7, we utilize examples from non-blind policies to refine an RFF-PSR. In that scenario,
a one-step predictor was sufficient to obtain an effective model.

Algorithm 6 Learning Predictive State Representation with Random Fourier Features (LEARN-
RFF-PSR)

Input:Matrices Φh,Φo,Φa of history, observation and action features (each column corre-
sponds to a time step). Matrices Ψo,Ψa,Ψo′,Ψa′ of test observations, test actions, shifted test
observations and shifted test actions.

Output:S2 regression weights Ŵξ and Ŵo.
Subroutines: SVD(X, p), returns the tuple (U,U>X), where U consists of top p singular vectors
of X .

1: // Feature projection using PCA
2: Uh,Φh ← SVD(Φh, p);
3: U o,Φo ← SVD(Φo, p); Ua,Φa ← SVD(Φa, p);
4: U o

ψ,Ψ
o ← SVD(Ψo, p); Ua

ψ,Ψ
a ← SVD(Ψa, p);

5: U o
ξ ,Ξ

o ← SVD((U o
ψ
>Ψo′) ? Φo, p);

6: Ua
ξ ,Ξ

a ← SVD(Φa ? (Ua
ψ
>Ψa′), p);

7: U oo,Φoo ← SVD(Φo ? Φo, p)
8:
9: // S1 Regression and State Projection

10: Estimate Q̄t, P̄
ξ
t , P̄ o

t for each time t using one of the S1 methods in Section 6.4.2.
11: Reshape Q̄t, P̄t as column vectors for each t and then stack the resulting vectors in matrices

Q, Pξ and Po.
12: U q,Q← SVD(Q, p)
13: // S2 Regression
14: Ŵξ ← arg minW∈Rp2×p ‖Pξ −WQ‖2 + λ2‖W‖2

F

15: Ŵo ← arg minW∈Rp2×p ‖Po −WQ‖2 + λ2‖W‖2
F

6.5 Experiments

We demonstrate the efficacy of RFF-PSR in a number of continuous controlled dynamical systems.

106

6.5.1 Synthetic Data
We use the benchmark synthetic non-linear system used by Boots et al. (2013) :

ẋ1(t) = x2(t)− 0.1 cos(x1(t))(5x1(t)− 4x3
1(t) + x5

1(t))

− 0.5 cos(x1(t))a(t)

ẋ2(t) = −65x1(t) + 50x3
1(t)− 15x5

1(t)− x2(t)− 100a(t)

o(t) = x1(t)

The input a is generated as zero-order hold white noise, uniformly distributed between −0.5 and
0.5. We collected 20 trajectories of 100 observations and actions at 20Hz and we split them into
10 training, 5 validation and 5 test trajectories. The prediction target for this experiment is o(t).

6.5.2 Simulated windshield view
In this experiment we used the TORCS car simulation server, which outputs 64x64 images (see
Figure 6.2). The observations are produced by converting the images to greyscale and projecting
them to 200 dimensions via PCA. The car is controlled by a built-in controller that controls ac-
celeration while the external actions control steering. We collected 50 trajectories by applying a
sine wave with random starting phase to the steering control and letting the simulator run until the
car goes off the track. We used 40 trajectories for training, 5 for validation and 5 for testing. The
prediction target is the projected image.

Figure 6.2: An example of windshield view output by TORCS.

6.5.3 Simulated swimmer robot
We consider the 3-link simulated swimmer robot from the open-source package RLPy (Geramifard
et al., 2013). The 2-d action consists of torques applied on the two joints of the links. The obser-
vation model returns the angles of the joints and the position of the nose (in body coordinates).
The measurements are contaminated with Gaussian noise whose standard deviation is 5% of the
true signal standard deviation. To collect the data, we use an open-loop policy that selects actions
uniformly at random. We collected 25 trajectories of length 100 each and use 24 for training and
1 for validation. We generate test trajectories using a mixed policy: with probability pblind, we
sample a uniformly random action, while with probability 1 − pblind, we sample an action from a
pre-specified deterministic policy that seeks a goal point. We generate two sets of 10 test trajecto-
ries each, one with pblind = 0.8 and another with pblind = 0.2. The prediction target is the position
of the nose.

107

Cell-phone

Center of Rotation

Camera

Figure 6.3: Data collection process for the cell phone dataset and two sample images.

6.5.4 Cell phone Camera and Sensors

In this experiment we model data from a Google Pixel 2 cell phone. The phone was held in upright
position and rotated around a fixed point using a random blind policy. Observations are 144× 176
images captured by the main camera, converted to grayscale, and projected to 1000 dimensions
using PCA. Actions are 3-dimensional vectors containing the angular velocities around x, y and
z axis in rad/s. These were measured by applying a low-pass filter to the gyroscope sensor of the
phone. Data were sampled at the rate of 10Hz. Figure 6.3 visualizes the data collection process
and shows some images.

We collected 5234 data points that we divided into 4500 training and 734 testing. The 4500
training points were divided into 9 trajectories of length 500 each. Two trajectories were used as a
validation set.

6.5.5 Tested Methods and Evaluation Procedure

We tested three different initialization schemes of RFF-PSR (with Gaussian RBF kernel): random
initialization, two-stage regression with joint S1, and two-stage regression with conditional S1.
For each initialization scheme, we tested the model before and after refinement. For refinement we
used BPTT with a decreasing step size: the step size is reduced by half if validation error increases.
Early stopping occurs if the step size becomes too small (10−5) or the relative change in validation
is insignificant (10−3). We also test the following baselines.

HSE-PSR: We implemented the Gram matrix HSE-PSR as described in (Boots et al., 2013).
N4SID: We used MATLAB’s implementation of subspace identification of linear dynamical

systems (van Overschee and de Moor, 1996).
Non-linear Auto Regression (RFF-ARX): We implemented a version of auto regression where

the predictor variable is the RFF representation of future actions together with a finite history of
previous observations and actions, and the target variable is future observations.

Models were trained with future length of 10 and history length of 20. For RFF-PSR and RFF-
ARX we used 10000 random features and applied PCA to project features onto 20 dimensions.
Kernel bandwidths were set to the median of the distance between training points (median trick).
For evaluation, we perform filtering on the data and estimate the prediction target of the experiment
at test time t given the history o1:t−H , a1:t, where H is the prediction horizon. We report the mean

108

square error across all times t for each value of H ∈ {1, 2, . . . , 10}.

6.5.6 Results and Discussion
The results for the first four domains are shown in Figure 6.4. There are a number of important
observations.
• In general, joint S1 training closely matches or outperforms conditional S1 training, with

and without refinement.
• Local refinement significantly improves predictive performance for all initialization meth-

ods.
• Local refinement, on its own, is not sufficient to produce a good model. The two stage

regression provides a good initialization of the refinement procedure.
• Even without refinement, RFF-PSR outperforms HSE-PSR. This could be attributed to the

dimensionality reduction step, which adds appropriate inductive bias.
• Compared to other methods, RFF-PSR has better performance with non-blind test policies.

Figure 6.5 shows prediction results for the cell phone dataset. We still see that RFF-PSR with
refinement outperforms other models for long-term predictions. To gain additional insight on the
effect of refinement, Figure 6.6 (right) depicts a slice of the validation error surface along the
direction between the initialization obtained by two-stage regression and the final point obtained
by refinement. We note that while two-stage regression is not sufficient to optimize the prediction
error, it has crucial value in starting the refinement from a good basin of attraction that would be
otherwise difficult to reach.

We also demonstrate “closing the loop” behavior in the cell phone dataset. In this context,
closing the loop refers to the ability of the model to determine from observations that the system
has returned to its initial state. We test the behavior by running the RFF-PSR model on a test
sequence that consists of a single complete revolution around the fixed point. Figure 6.6 (left)
shows the first three dimensions of the belief state as it progresses through time. The figure shows
that the initial and final belief states are very close to each other.

6.6 Other Examples of Predictive State Controlled Models
Here we discuss IO-HMM and Kalman filter with inputs, showing that they are instances of
PSCMs. We do this for each model by defining the predictive state, showing that it satisfies the
condition Pt = WQt and describing an S1 regression method.

6.6.1 IO-HMM
Let T be the transition tensor such that T ×s st ×a at = E[st+1|at, st] and O be the observation
tensor such that O ×s st ×a at = E[ot|at, st].

DefineOk to be the extended observation tensor whereOk×sst×aat:t+k−1 = E[ot:t+k−1|at:t+k−1, st]

109

2 4 6 8 10
Prediction Horizon

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
SE

 (S
yn

th
)

2 4 6 8 10
Prediction Horizon

20

40

60

80

100

M
SE

 (T
OR

CS
)

2 4 6 8 10
Prediction Horizon

0

2

4

6

8

M
SE

 (S
wi

m
m

er
 8

0%
 B

lin
d)

2 4 6 8 10
Prediction Horizon

0

5

10

15

20

25

30

35

M
SE

 (S
wi

m
m

er
 2

0%
 B

lin
d)

RFF-PSR Joint S1 (w/ refinement)
RFF-PSR Joint S1
RFF-PSR Cond S1 (w/ refinement)
RFF-PSR Cond S1

RFF-ARX
Last Observation
N4SID
HSE-PSR

Figure 6.4: Mean square error for 10-step prediction on synthetic model, TORCS car simulator,
swimming robot simulation with 80% blind test-policy, and swimming robot with 20% blind test
policy. Randomly initialized RFF-PSRs obtained significantly worse MSE and are not shown for
clarity. A comparison with HSE-PSR on TORCS and swimmer datasets was not possible as it
required prohibitively large memory.

110

2 4 6 8 10
Prediction Horizon

200

400

600

800

1000

1200

M
SE

RFF-PSR Joint S1
RFF-PSR Joint S1 (w/ refinement)
RFF-PSR Cond S1
RFF-PSR Cond S1 (w/ refinement)
RFF-ARX
Last Observation
N4SID

Figure 6.5: Mean square error for different prediction horizons for the cell phone dataset.

Figure 6.6: left: Visualization of the first three coordinates of the projected belief state for a
trajectory corresponding to a full revolution of the cell phone. Black dots indicate start and end
points. right: Log mean square validation error for the cell phone experiment along a slice in the
parameter space determined by the direction from the two-stage regression initialization (indicated
by the red vertical line) to the final parameters obtained by refinement (indicated by x-axis value
0).

111

As a shortcut, we will denote by Tij the product T ×s ei ×a ej .
For k = 1, we have O1 = O.
For k > 1 we can think of at:t+k−1 as the outer product at⊗at+1:t+k. So we can define Ok such

that

Ok ×s ei ×a (ej ⊗ el) = vec(Oij ⊗ (Ok−1 ×a el ×s Tij)) (6.6)

In words, starting from state ei and applying an action ej followed by a sequence of k−1 actions
denoted by indicator el. The expected indicator of the next k observations is the outer product of
expected observation ot (given by Oij) with the expected indicator of observations ot+1:t+k−1 as
predicted by Ok−1. Note that the two expectations being multiplied are conditionally independent
given the state ei and the action sequence.

Given the tensor Ok the predictive states Qt and Pt are defined to be

Qt = Ok ×s st
Pt = Ok+1 ×s st

Now to show that (6.2) holds, let Õk be a reshaping of Ok into a matrix such that

vec(Qt) = Õkst

It follows that

Pt = Ok+1 ×s st = Ok+1 ×s ((Õk)+vec(Qt)),

which is linear in Qt.

6.6.1.1 S1 Regression

Let st = s(h∞t) be the belief state at time t. Note that st is a deterministic function of the entire
history.

Under a fixed policy assumption, an indicator vector of the joint observation and action assign-
ment is an unbiased estimate of the joint probability table P[ψAt , ξ

A
t | h∞t]. An S1 regression model

can be used to learn the mapping ht 7→ P[ψAt , ξ
A
t | ht]. It is then easy to estimate the conditional

probability table Q̄t from the joint probability table P[ψAt , ξ
A
t | ht].

We can also use the conditional S1 approach. By exploiting the fact that ψOt is an unbiased
estimate of a single column of Qt corresponding to ψAt . We can use (6.4) to learn a function
f : ht 7→ Q̄t that best matches the training examples.

6.6.2 Kalman Filter with inputs
The Kalman filter is given by

xt = Axt−1 +But + εt

ot = Cxt + νt

112

Given a belief state st ≡ E[xt−1|h∞t] we can write the predictive state as

E[ot:t+k−1 | st, at:t+k−1] = Γkst + Ukat:t+k−1,

where

Γk =


CA
CA2

...
CAk



Uk =


B 0 . . . 0
AB B 0 . . . 0
A2B AB B 0 . . . 0

...
Ak−1B . . . AB B



The extended predictive state have similar form with Γk and Uk replaced with Γk+1 and Uk+1.
Since U is fixed, keeping track of the state amounts to keeping track of Qt ≡ Γkst. It follows that

Pt = Γk+1st = Γk+1Γ+
kQt = WQt

If ht is a linear projection of h∞t (e.g. stacking of a finite window of observations and actions),
it can also be shown van Overschee and de Moor (1996) that

E[Qt|ht] = Γ̃kht,

for some matrix Γ̃k.

6.6.2.1 S1 Regression

Let F be the set of functions that take the form

f(h)ψAt = Γht +BψAt

The oblique projection method van Overschee and de Moor (1996) uses linear regression to es-
timate Γ andB (essentially solving (6.4)). Having a fixedB, the conditional operator is determined
by Γht through an affine transformation. Therefore we can use Q̄t = Γht.

6.7 Theoretical Analysis of Predictive State Controlled Models
It is worth noting that Algorithm 5 is still an instance of the two stage regression framework
described in Chapter 3. Does that mean it retains the theoretical guarantee in Theorem 3.5? In

113

other words, assuming that we collect i.i.d examples using a blind policy5 , can we bound the error
in estimating the dynamics matrix Wsystem in terms of S1 regression error bounds?

The answer is highly dependent on the policy. Assume a policy always takes a fixed action.
With such a policy we cannot accurately estimate Qt even with infinite data. A policy needs
to provide sufficient exploration for data collection. Otherwise, we will not be able to estimate
Wsystem even using perfect S1 regression models. It turns out that sufficient exploration is more
than trying all actions. To describe it more formally, we introduce the notion of a sufficient history
set.
Definition 6.2 (Sufficient History Set). Consider a PSCM that satisfies

Pt = Wsystem(Qt)

Let H = {hi}Mi=1 be a set of possible assignments to the history features. The set H is called a
sufficient history set if it is sufficient to estimate Wsystem using E[Qt|ht = h] and E[Pt|ht = h] for
each h ∈ H. 6

A blind data collection policy provides sufficient exploration if it allows for estimating E[Q|ht =
h] and E[P |ht = h] for a sufficient history set with error that vanishes as the number of training
examples goes to infinity.

We discuss two scenarios: a discrete system where S1 uses counting to estimate probability
tables, and a continuous system where S1 uses ridge regression. In each scenario, we describe
conditions for sufficient exploration and derive an S1 error bound. As long as the exploration
condition is satisfied, we can plug-in the S1 error bound in Theorem 3.5 to obtain an error bound
on Wsystem.

6.7.1 Case 1: Discrete Observations and Actions

We consider a discrete system where history features are indicator vectors over sequences of obser-
vations and actions of length τh, and future observations (resp. action) features are indictor vectors
over observations (resp. actions) of length τf .

We indicate byH, the set of all possible history features.
Theorem 6.3. Assume a discrete system where the data collection policy induces an stationary
distribution over histories. If the policy generates each possible extended future action sequence
starting from each possible history M times, then it generates an S2 training dataset of size N =

M |H||Aτf+1| with uniform S1 error bound η̃δ,N =

√
|Aτf+1||Oτf+1|

2M
log
(

8|H||Aτf+1||Oτf+1|
δ

)
Remark 6.4. Assume the system to be 1-observable, where the history and future are of length
1. Then a consistent estimate of Q and P can be obtained by a consistent estimate of the joint
probability table P (ot−1:t+1, at−1:t+1).

5 The i.i.d property is achieved if we can restart the system or if the data collection policy induces an ergodic
process with a stationary distribution. In the latter case, we assume the examples are sufficiently spaced in time to that
allow the process to mix. However, in practice, we use all examples as this makes the error only smaller.

6 Strictly speaking we aim to accurately estimate WsystemQ for any valid Q. Wsystem may not be unique.

114

6.7.2 Case 2: Continuous System

We will limit our discussion to the finite dimensional case where the S1 regression model is ridge
regression, since this is the model we use to contruct the RFF-PSR in Section 6.4. First, we discuss
sufficient exploration conditions for joint and conditional S1 regression.
Definition 6.5 (Range and span of a policy). Let π be a data collection policy with a stationary
distribution. For a random vector Xt = f(h∞t , ot:∞, at:∞), the range of π on X is the support of
the stationary distribution of Xt induced by the policy π (i.e. the set of all possible values of Xt

that can be generated by the stationary distribution).
The span of π on X (denoted by spanπ(X)) is the subspace spanned by the range of π on X .
When referring to the policy range or span, we may omit the variable name when it is clear in

the context.
Condition 6.6 (Action span for joint S1). Let π be data collection policy and let H be the range
of π on history features. The action span condition for joint S1 is defined as the requirement to
satisfy the following:

1. H is a sufficient history set.
2. For any h ∈ H, the conditional covariance CψA|h is full rank.

Condition 6.7 (Action span for conditional S1). Let π be data collection policy and let H be the
range of π on history features. The action span condition for conditional S1 is defined as the
requirement to satisfy the following:

1. H is a sufficient history set.
2. For any h ∈ H and any future action feature vector ψA, the quantity (h⊗ψA) is in the policy

span.
Remark 6.8. Condition 6.6 implies Condition 6.7.
Assumption 6.9 (Bounded features). Let H be the range of the policy on history features. We
assume that ‖h‖ < ch for all h ∈ H. Also, we assume that ‖ψO‖ ≤ cO and ‖ψA‖ ≤ cA for any
valid future observation sequence and action sequence respectively.

We now state our theorem for the continuous case
Theorem 6.10. Let π be a blind data collection policy with a stationary distribution. Assume
that we use conditional S1 regression with ridge regression as the regression method, and that
Assumption 6.9 and Condition 6.7 hold. Then π provides sufficient exploration and there exists
problem dependent constants c1, c2 > 0 such that S1 regression prdocues a uniform error bound

η̃δ,N = O

(
log(1/δ)√

N
+ λ1

c1 + λ1

)
,

as long as N > c2 log(1/δ), where λ1 is the ridge regularization parameter.
A similar theorem theorem holds for joint S1. We show a proof sketch in the appendix.

Remark 6.11 (Conditioning). It is known that linear regression converges faster if the problem is
well-conditioned. In the two stage regression we need the good conditioning of both stages—that
is,

115

• The set of training histories result in a problem P̄t = WQ̄t that is well conditioned (S2
conditioning).

• The S1 regression problem is well conditioned.
The second requirement ensures that we converge fast to good estimates of Q̄t and P̄t. De-

signing exploration policies that result in well conditioned two-stage regression problems is an
interesting direction for future work.

6.8 Conclusion
We proposed a framework to learn controlled dynamical systems using two-stage regression. We
then applied this framework to develop a scalable method for controlled non-linear system identi-
fication: using RFF approximation of HSE-PSR together with a refinement procedure to enhance
the model after a two-stage regression initialization. We have demonstrated promising results for
the proposed method in terms of predictive performance.

116

6.A Appendix: Proofs

6.A.1 Proof of Theorem 6.3
Let’s consider the estimation of the extended state Pt. For each history h, we use M examples
to estimate a conditional probability table of size |Aτf+1||Oτf+1| for Pt. Hoeffding’s inequality
tells us that, with probability at least 1 − δ̃, the absolute error in a single cell of the table less

than
√

1
2M

log(2/δ̃). Since there are |H||Aτf+1||Oτf+1| cells to estimate in all tables, we use

δ̃ = δ/4|H||Aτf+1||Oτf+1| so that the error bound applies uniformly to all tables with probability
at least 1− δ/4 using the union bound. Given the uniform bound, the Frobenious norm of the error
in any Pt is less than √

|Aτf+1||Oτf+1|
2M

log

(
8|H||Aτf+1||Oτf+1|

δ

)
The same principle applies to Qt. Therefore, the bound applies jointly to all Pt and Qt with
probability at least 1− δ/2.

6.A.2 Proof of Theroem 6.10
To prove theorem 6.10, we prove the following Lemma, of which Theorem 6.10 is an asymptotic
statement. We use Q(h) to denote E[Q | h].
Lemma 6.12. Let π be a data collection policy and let H be the range of π on histories. If
Assumption 6.9 and Condition 6.7 are satisfied and conditional S1 regression is used with a liner
model as the correct model, then π provides sufficient exploration and, for all h ∈ H and any
δ ∈ (0, 1) such that N > c2 log(2dhdA/δ)

λmin(C
h⊗ψA)

, the following holds with probability at least 1− δ

‖Q̂(h)−Q(h)‖ ≤

ch

(√
λmax(CψO)

λmin(Ch⊗ψA)

(√
λmin(Ch⊗ψA)∆1 + λ

λmin(Ch⊗ψA)(1−∆3) + λ

)
+

∆2

λmin(Ch⊗ψA)(1−∆3) + λ

)
,

where

∆1 = 2chcA

√
log(2dhdA/δ)

N
+

2 log(2dhdA/δ)

3N

(
c2
hc

2
A√

λmin(Ch⊗ψA)
+ chcA

)

∆2 = 2cOchcA

√
log((dO + dhdA)/δ)

N
+

4cOchcA log((dO + dhdA)/δ)

3N

∆3 =
c2
hc

2
A log(2dhdA/δ)

λmin(Ch⊗ψA)N

The proof strategy is as follows: First, we use matrix concentration bounds to analyze the effect
of using estimated covariance matrices. Then, we analyze the effect of error in covariance matrix
on regression weights. By combining the results of both analyses, we prove the desired theorems.

117

6.A.2.1 Error in Covariance Matrix Estimation

Lemma 6.13 (Matrix Chernoff Inequality (Tropp, 2015)). Consider a finite sequence {Sk} of
independent, random, Hermitian matrices with common dimension d. Assume that

0 ≤ λmin(Sk) and λmax(Sk) ≤ L for each index k.

Introduce the random matrix

Z =
∑
k

Sk

Define

µmin ≡ λmin(E[Z])

Then, for any ε ∈ [0, 1)

Pr(λmin(Z) ≤ (1− ε)µmin) ≤ d

[
e−ε

(1− ε)1−ε

]µmin/L

≤ 2de−εµmin/L

Corollary 6.14 (Minimum eigenvalue of empirical covariance). Let X be a random variable of
dimensionality d such that ‖X‖ < c. Let {xk}Nk=1 be N i.i.d samples of the distribution of X .

Define

CX ≡ E[XX>] and ĈX =
1

N

N∑
k=1

xkx
>
k

For any δ ∈ (0, 1) such that N > c2 log(2d/δ)
λmin(CX)

the following holds with probability at least 1− δ

λmin(ĈX) ≥
(

1− c2 log(2d/δ)

λmin(CX)N

)
λmin(CX)

Proof. Define Sk = 1
N
xkx

>
k . It follows that λmax(Sk) ≤ L = c2/N and µmin = λmin(CX). Define

δ ≡ 2de−εNλmin(CX)/c2 ,

which implies that

ε =
c2 log(2d/δ)

λmin(CX)N

It follows from Lemma 6.13 that Pr(λmin(ĈX) ≤ (1− ε)µmin) ≤ δ

118

Lemma 6.15 (Matrix Bernstein Inequality (Tropp, 2015)). Consider a finite sequence {Sk} of
independent, random matrices with common dimensions d1 × d2. Assume that

E[Sk] = 0 and ‖Sk‖ ≤ L for each index k

Introduce the random matrix

Z =
∑
k

Sk

Let v(Z) be the matrix variance statistic of the sum:

v(Z) = max{‖E(ZZ>),E(Z>Z)‖}

Then

Pr(‖Z‖ ≥ t) ≤ (d1 + d2) exp

(−t2/2
v(Z) + Lt/3

)

Corollary 6.16 (Error in empirical cross-covariance). With probability at least 1− δ

‖ĈY,X − CY,X‖ ≤
√

2 log((dX + dY)/δ)v

N
+

2 log((dX + dY)/δ)L

3N
,

where

L = cycx + ‖CY,X‖ ≤ 2cycx

v = max(c2
y‖CX‖, c2

x‖CY ‖) + ‖CY,X‖2 ≤ 2c2
yc

2
x

Proof. Define Sk = ykx
>
k − CY,X , it follows that

E[Sk] = 0

‖Sk‖ = ‖ykx>k − CY,X‖ ≤ ‖yk‖‖xk‖+ ‖CY,X‖ ≤ cycx + ‖CY,X‖

‖E[ZZ>]‖ =

∥∥∥∥∥∑
i,j

(E[yix
>
i xjy

>
j]− CY,XCX,Y)

∥∥∥∥∥
=

∥∥∥∥∥∑
i

(E[‖xi‖2yiy
>
i]− CY,XCX,Y) +

∑
i,j 6=i

(E[yix
>
i]E[xjy

>
j]− CY,XCX,Y)

∥∥∥∥∥
≤ N(c2

x‖CY ‖+ ‖CY,X‖2)

‖E[Z>Z]‖ ≤ N(c2
y‖CX‖+ ‖CY,X‖2)

119

Applying Lemma 6.15 we get

δ = Pr(‖Z‖ ≥ Nt) ≤ (dX + dY) exp

(−Nt2/2
v + Lt/3

)
and hence

t2 − 2 log((dX + dY)/δ)Lt

3N
− 2 log((dX + dY)/δ)v

N
≤ 0

This quadratic inequality implies

t ≤ log((dX + dY)/δ)L

3N
+

√
log2((dX + dY)/δ)L2

9N2
+

2 log((dX + dY)/δ)v

N

Using the fact that
√
a2 + b2 ≤ |a|+ |b| we get

t ≤ 2 log((dX + dY)/δ)L

3N
+

√
2 log((dX + dY)/δ)v

N

Corollary 6.17 (Normalized error in empirical covariance). With probability at least 1− δ

‖C−1/2
X (ĈX − CX)‖ ≤ 2c

√
2 log(2d/δ)

N
+

2 log(2d/δ)L

3N
,

where

L =
c2√

λmin(CX)
+ c

Proof. Define Sk = C−1/2
X xkx

>
k − C1/2

X , it follows that

E[Sk] = 0

‖Sk‖ ≤ ‖C−1/2
X ‖‖xk‖2 + ‖C1/2

X ‖ ≤
c2√

λmin(CX)
+ c

‖E[Z>Z]‖ = ‖E[ZZ>]‖ =

∥∥∥∥∥∑
i,j

(C−1/2
X E[xix

>
i xjx

>
j]C−1/2

X − CX)

∥∥∥∥∥
=

∥∥∥∥∥∑
i

(E[‖xi‖2C−1/2
X xix

>
i C−1/2

X]− CX) +
∑
i,j 6=i

(C−1/2
X E[xix

>
i]E[xjx

>
j]C−1/2

X − CX)

∥∥∥∥∥
≤ N(c2

x + ‖CX‖2) ≤ 2Nc2

120

Applying Lemma 6.15 we get

δ = Pr(‖Z‖ ≥ Nt) ≤ 2d exp

(−Nt2/2
2c2 + Lt/3

)
and similar to the proof of Corollary 6.16, we can show that

t ≤ 2 log(2d/δ)L

3N
+ 2c

√
log(2d/δ)

N

Lemma 6.18. Let ĈY,X = CY,X + ∆Y X and ĈX = CX + ∆X where E[∆Y X] and E[∆Y X] are
not necessarily zero and ĈX is symmetric positive semidefinite. Define W = CYXC−1

X and Ŵ =

ĈY,X(ĈX + λ)−1. It follows that

‖Ŵ −W‖ ≤
√
λmax(CY)

λmin(CX)

(√
λmin(CX)‖C−1/2

X ∆X‖+ λ

λmin(ĈX) + λ

)
+

‖∆Y X‖
λmin(ĈX) + λ

Proof.

Ŵ −W = CY,X
(
(CX + ∆X + λI)−1 − C−1

X

)
+ ∆Y X(CX + ∆X + λI)−1 = T1 + T2

It follows that

‖T2‖ ≤
‖∆Y X‖

λmin(ĈX) + λ

As for T1, using the matrix inverse Lemma B−1 − A−1 = B−1(A − B)A−1 and the fact that
CY,X = C1/2

Y V C1/2
X , where V is a correlation matrix satisfying ‖V ‖ ≤ 1 we get

T1 = −CY,XC−1
X (∆X + λI)(CX + ∆X + λI)−1

= −C1/2
Y V C−1/2

X (∆X + λI)(CX + ∆X + λI)−1,

and hence

‖T1‖ ≤
√
λmax(CY)

(
‖C−1/2

X ∆X‖+ λ‖C−1/2
X ‖

λmin(ĈX) + λ

)

=

√
λmax(CY)

λmin(CX)

(√
λmin(CX)‖C−1/2

X ∆X‖+ λ

λmin(ĈX) + λ

)

Corollary 6.19. Let xkNk=1 and ykNk=1 be i.i.d samples from two random variables X and Y with
dimensions dX and dY and (uncentered) covariances CX and CY respectively. Assume ‖X‖ ≤ cx
and ‖Y ‖ ≤ cy. Let ĈY,X = 1

N

∑N
k=1 ykx

>
k and ĈX = 1

N

∑N
k=1 xkx

>
k . Define W = CY,XC−1

X and
Ŵ = ĈY,X(ĈX + λ)−1.

121

6.A.2.2 Error in Regression Weights

For any δ ∈ (0, 1) such that N > c2x log(2dX/δ)
λmin(CX)

the following holds with probability at least 1− 3δ

‖Ŵ −W‖ ≤
√
λmax(CY)

λmin(CX)

(√
λmin(CX)∆1 + λ

λmin(CX)(1−∆3) + λ

)
+

∆2

λmin(CX)(1−∆3) + λ
,

where

∆1 = 2cx

√
log(2dX/δ)

N
+

2 log(2dX/δ)

3N

(
c2
x√

λmin(CX)
+ cx

)

∆2 = 2cycx

√
log((dY + dX)/δ)

N
+

4cycx log((dY + dX)/δ)

3N

∆3 =
c2
x log(2dX/δ)

λmin(CX)N

Proof. This corollary follows simply from applying Corollaries 6.14, 6.16 and 6.17 to Lemma
6.18. The 1 − 3δ bound follows from union bound; since we have three probabilitic bounds each
of which holds with probability 1− δ.
Lemma 6.20. Let ĈY,X = CY,X + ∆Y X and ĈX = CX + ∆X where E[∆Y X] and E[∆Y X] is
not necessarily zero and ĈX is symmetric but not necessarily positive semidefinite. Define W =
CY,XC−1

X and Ŵ = ĈY,X ĈX(Ĉ2
X + λ)−1. It follows that

‖Ŵ −W‖ ≤
√
λmax(CY)

λ3
min(CX)

‖∆X‖2 + 2λmax(CX)‖∆X‖+ λ

λ2
min(ĈX) + λ

+
‖CY,X‖‖∆X‖+ ‖∆Y X‖‖CX‖+ ‖∆Y X‖‖∆X‖

λ2
min(ĈX) + λ

Proof.

Ŵ −W = (CY,X + ∆Y X)(CX + ∆X)((CX + ∆X)2 + λI)−1 − CY,XCXC−2
X

= CY,XCX(((CX + ∆X)2 + λI)−1 − C−2
X) + (CY,X∆X + ∆Y XCX + ∆Y X∆X)((CX + ∆X)2 + λI)−1

= T1 + T2

Using the matrix inverse Lemma B−1 − A−1 = B−1(A − B)A−1 and the fact that CY,X =

C1/2
Y V C1/2

X , where V is a correlation matrix satisfying ‖V ‖ ≤ 1 we get

T1 = −C1/2
Y,XV C

−3/2
X (∆2

X + CX∆X + ∆XCX + λI)((CX + ∆X)2 + λI)−1

‖T1‖ ≤
√
λmax(CY)

λ3
min(CX)

‖∆X‖2 + 2λmax(CX)‖∆X‖+ λ

λ2
min(ĈX) + λ

‖T2‖ ≤
‖CY,X‖‖∆X‖+ ‖∆Y X‖‖CX‖+ ‖∆Y X‖‖∆X‖

λ2
min(ĈX) + λ

122

6.A.2.3 Proof of Lemma 6.12

Proof. In the linear case, we estimate a tensor T with modes corresponding to h, ψA and ψO by
solving the minimization problem in Section 6.4.2.2. Equivalently, we estimate a matrix Tr of size
dO × dhdA where an input h⊗ ψa is mapped to an output E[ψO | h, ψA]. Note that

Q(h)ψA = T ×h h×A ψA = Tr(h⊗ ψA)

For any history h ∈ H and future action feature vector ψA we have

‖Q̂(h)−Q(h)‖ = argmaxψA
‖(Q̂(h)−Q(h))ψA‖

‖ψA‖

= argmaxψA
‖(T̂r − Tr)(h⊗ ψA)‖

‖ψA‖ ≤ ‖T̂r − Tr‖‖ψh‖

Note that Condition 6.7 implies that h ⊗ ψA will eventually be in the span of training examples.
This rules out the case where the inequality is satisfied only because (h⊗ ψA) is incorrectly in the
null space of T̂r and Tr.

The theorem is proven by applying Corollary 6.A.2.2 to bound ‖T̂r − Tr‖.

6.A.3 Sketch Proof for Joint S1
We show a proof sketch of the asymptotic statement of Theorem 6.12 applied to joint S1 regression.

Let TA be a tensor such that CψA|h = TA ×h h. Note that

‖ĈψA|h − CψA|h‖ ≤ ‖T̂A − TA‖‖h‖
‖ĈψO,ψA|h − CψO,ψA|h‖ ≤ ‖T̂OA − TOA‖‖h‖

From Lemma 6.18, we obtain a high probability bound on ‖T̂A−TA‖ and ‖T̂OA−TOA‖. Then we
apply these bounds to Lemma 6.20 to obtain an error in Q(h).

123

124

Chapter 7

Reinforcement Learning with Predictive
State Controlled Models

In this chapter we use the predictive state controlled models developed in Chapter 6 as a state
estimator to provide input for a downstream task, namely reinforcement learning. Our scenario
consists of an agent that interacts with a partially observable environment and receives both obser-
vations and rewards. The goal is to find a policy that maximizes the cumulative discounted rewards
over time.

We propose a class of policies for partially observable environments that we call recurrent
predictive state policy networks (RPSP networks). An RPSP network consists of a predictive state
control model that serves as a recursive filter, and a reactive policy that acts based on the belief
state of the filter. While the predictive state model can be thought of as an environment model that
can be initialized using two stage regression, the entire policy network can be trained end-to-end
using policy gradient methods. In a sense, RPSP networks are in the middle ground between model
based and model free reinforcement learning.

The Chapter is organized as follows: In Section 7.1 we give a background on reinforcement
learning with a focus on policy gradient methods. In Section 7.2 we describe the proposed RPSP
policy class and we describe the learning algorithm in Section 7.3. In Section 7.4 we present
empirical evaluation of RPSP networks on a number of reinforcement learning tasks.

7.1 Background: Reinforcement Learning and Policy Gradi-
ents

We consider an agent that is interacting with the environment in an episodic manner, where each
episode consists of T time steps. In each time step, the agent executes an action at ∈ A and
receives an observation ot ∈ O together with a reward rt ∈ R. Given a policy parameter vector θ,
the agent is acting based on a policy πθ such that

πθ(at | h∞t) ≡ Pr(at | h∞t ; θ)

125

The goal of reinforcement learning is to find the optimal policy π∗ that maximizes the expected
sum of discounted rewards

J(π) ≡ 1

T
E[γt−1rt | π], (7.1)

where γ ∈ [0, 1] is a discount factor .
Two major approaches to optimize the policy are the value function-based methods and policy

gradient methods. We describe them briefly in the following subsection. Note that we describe
value functions and policies as functions of the entire history h∞t . In practice, we either assume a
fully observable environment, where it suffices to use ot, or we use the belief state qt in the partially
observable setting.

7.1.1 Value Function-based Methods
In value function-based methods we aim to learn a function that measures the “goodness” of a
state as the expected sum of discounted reward when acting optimally starting from this state. A
commonly used form of the value function is the Q function, which is defined as the value of
taking a particular action at then following a policy π.

Qπ(a, h∞t) ≡ E[
∑
t′≥0

γt
′
rt+t′ | at = a, πt:T = π] = E[Rt | at = a, πt:T = π],

where

Rt ≡
∑
t′≥0

γt
′
rt+t′ , (7.2)

is the reward-to-go starting from time t. Assuming that we can computeQπ∗ for an optimal policy
π∗, the optimal policy then becomes simply a policy that, given a history h∞t , takes the action at that
maximizes Qπ∗(at, h∞t). The optimal Q function can be computed using methods such as value
iteration or temporal difference (Sutton and Barto, 1998). In a discrete setting with a small number
of observations and actions, Qπ can be represented as a table. However, with high-dimensional
and/or continuous systems, we typically resort to function approximation. Approximating value
functions using neural networks is the essence of deep (recurrent) Q-networks, which have been a
major success in reinforcement learning (Mnih et al., 2013; Hausknecht and Stone, 2015).

7.1.2 Direct Policy Optimization Methods
One issue with value function-based methods is that they require solving the problem

arg maxat∈AQπ(at, h
∞
t),

which can be difficult for complicated value functions and very large (or infinite) action sets. A
better alternative in these settings is direct policy optimization methods, which directly optimize

126

the policy parameters θ to maximize the objective function (7.1). While some of these methods use
gradient-free approaches such as the cross-entropy method (Rubinstein, 1999; Szita and Lrincz,
2006), most of these methods apply a form of gradient descent. The key component in the latter
type is the ability to compute a policy gradient—that is, a gradient of (7.1) w.r.t to the policy
parameters θ.

7.1.2.1 Vanilla Policy Gradient

The simplest policy gradient method is REINFORCE (Williams, 1992), which is also known as
vanilla policy gradient. Let τ denote a trajectory generated by the policy and r(τ) =

∑
t γ

t−1rt
denote the reward for that trajectory.

It follows from standard calculus that

∇θJ(πθ) =

∫
∇θPr(τ | πθ)r(τ)dτ

=

∫
Pr(τ | θ)∇θ log Pr(τ | πθ)r(τ)dτ (7.3)

= E

[∑
t

r(τ)∇θ log Pr(at | h∞t , πθ)
]

An unbiased estimate of (7.3) can be obtained through the empirical average of a set of trajecto-
ries generated by πθ. Note that we only need to compute∇θ log Pr(at | h∞t , πθ), which is possible
given the parametric form of the policy. One problem with plain REINFORCE is high variance. A
variance reducing version of REINFORCE, which we refer to as variance reduced policy gradient
(VRPG), computes a stochastic gradient as follows

∇θJ(πθ) ≈
∑
τ

∑
t

(Rt − b(h∞t))∇θ log Pr(at | h∞t , πθ) (7.4)

whereRt is the reward to go as defined in (7.2) and b is a baseline that evaluates the state h∞t . It can
be shown that (7.4) is equal to (7.3) in expectation regardless of the baseline function. However,
a good choice of the baseline can significantly reduce the variance. A common practical choice of
the baseline is an estimate of the state value function (Sutton et al., 2000; Duan et al., 2016)

Vπθ(h
∞
t) = E[Rt | h∞t , πθ].

We show an example of estimating Vπ in Section 7.3.1.

7.1.2.2 Trust Region Policy Optimization (TRPO)

Trust regeion policy optimization (Schulman et al., 2015) improves upon vanilla policy gradient in
two aspects, which were shown to result on empirical improvement (Duan et al., 2016). First, it is
uses a natural gradient update. Second, it enforces a constraint that limits the change in the policy

127

after each update. Specifically, each TRPO update is an approximate solution to the following
constrained optimization problem.

θ(n+1) = arg minθEτ
[
πθ(at | h∞t)

πθ(n)(at | h∞t)
(Rt − b(h∞t))

]
s.t. Eτ [KL(πθ(n)(. | h∞t) || πθ(. | h∞t))] ≤ δKL, (7.5)

where δKL is a hyper-parameter that controls the amount of change allowed in each step. Like
REINFORCE, TRPO works by generating a set of trajectories using the current policy π(n)

θ and then
replacing the expectations in (7.5) with empirical average. Solving (7.5) gives the updated policy
parameters. Schulman et al. (2015) proposed an approximate algorithm to solve (7.5), which is
depicted in Algorithm 7.

Algorithm 7 Parameter update using TRPO (TRPOSTEP)
Input:Current parameters θ(n−1), trajectories D = {τ i}Mi=1, TRPO step size δ.
Output:Updated parameters θ(n)

1: Compute descent direction
v := H−1g, (using conjugate gradient) where

H = ∇2
θ

M∑
i=1

KL(πθ(n−1)(ai,t | qi,t) || πθ(ai,t | qi,t),

g = ∇θre

1

M

M∑
i=1

Ti∑
t=1

πθ(ai,t | qi,t)
πθ(n−1)(ai,t | qi,t)

(Rt − bt).

2: Determine a step size η through a line search on v to maximize the objective in (7.5) while
maintaining the constraint.

3: θ(n) ← θ(n−1) + ηv

7.2 Recurrent Predictive State Policy (RPSP) Networks
We now introduce our proposed class of policies, Recurrent Predictive State Policies (RPSPs).
An RPSP network consists of two components: (1) a recursive filter, implemented by an RFF-
PSR (Chapter 6), which tracks the state of the environment and matinains a belief state qt that can
be used to predict future observation ot and (2) a reactive policy that maps the belief state qt to a
Gaussian distribution over actions N (µt,Σ), where

µt = ϕ(qt; θµ)

Σ = diag(exp(θσ))2, (7.6)

where ϕ is a feedforward network parametrized by θµ and θσ is a time independent vector that
stores the log standard deviation of each coordinate of at. Figure 7.1 depicts the structure of RPSP
networks. An RPSP is thus a stochastic recurrent policy with the recurrent part corresponding to
an RFF-PSRand consequently we have two sets of parameters to learn:

128

• RFF-PSR parameters θPSR: These include the initial state q1, the system linear mapWsystem

and prediction operator Wpred.
• Reactive policy parameters θre: These include the parameters of the mean function θµ and

the log standard deviation vector θσ.
We describe the learning process in the following section.

q
t

μ
t

p
t

q
t+1

φ Σ

Wsystem

Wpred

ffilter

θPSR

θre

a
t

o
t

ôt

sample

Figure 7.1: RPSP network: The predictive state is updated by a linear extension Wsystem fol-
lowed by a non-linear conditioning ffilter. A linear predictor Wpred is used to predict observations,
which is used to regularize training loss (see Section 7.3). A feed-forward reactive policy maps
the predictive states qt to a Gaussians distribution over actions. Shaded nodes indicate learnable
parameters.

7.3 Learning RPSP Networks
The learning process of an RPSP network consists of two phases: In the first phase, we execute a
blind exploration policy to collect trajectories that are used to initialize the RFF-PSR parameters via
the two-stage regression method (Algorithm 6). Optionally, we can obtain a better initialization
by following the two-stage regression by local refinement via backpropagation through time to
minimize observation prediction error, as described in Chapter 6.

129

The second phase starts with the initial RFF-PSR and a random reactive policy and uses a
gradient-based technique to update both RFF-PSR parameters θPSR and the reactive policy param-
eters θre. We seek to minimize the following loss function

L(θ) = α1l1(θ) + α2l2(θ)

= −α1J(πθ) + α2

T∑
t=1

Eτ∼πθ
[
‖Wpred(qt ⊗ φa(at))− ot‖2

]
(7.7)

The loss function encourages high accumulated rewards, but it also encourages maintaining a good
predictive model of the environment. The hyperparameters α1, α2 > 0 determine the relative im-
portance of each criterion. Compared to reward signal, observations are typically richer. Therefore,
having a secondary prediction task can be an effective regularizer (Venkatraman et al., 2017). The
overall learning process is depicted in Algorithm 8.

Algorithm 8 RPSP Network Learning
Input:Hyper-parameters η, exploration policy πexp, Batch size M .
Output:θ = (θPSR, θre).

1: Sample initial trajectories: {(oit, ait)t}Mi=1 from πexp.
2: Initialize PSCM parameters θ(0)

PSR = {q1,Wsystem,Wpred} via 2-stage regression (Algorithm 6).
3: Initialize reactive policy parameters θ(0)

re randomly.
4: for n = 1 . . . Nmax iterations do
5: // Generate trajectories τ1, . . . , τm using πθ(n−1)

6: for i = 1, . . . ,M : do
7: Reset environment, Set q1 to initial state.
8: for t = 1 . . . T : do
9: Execute ai,t ∼ π

(n−1)
re (qi,t).

10: Get observation oi,t and reward ri,t.
11: Filter qi,t+1 = ffilter(Wsystemqi,t, ai,t, oi,t).
12: end for
13: end for
14: D := {(oi,t, ai,t, ri,t, qi,t)}1≤t≤T,1≤i≤M
15: θ(n) := UPDATE(θ(n),D, η)
16: end for

Algorithm 8 makes use of an UPDATE subroutine, which updates policy parameters based on
collected trajectories. Since an RPSP network is a special type of a recurrent network policy, it is
possible to adapt policy gradient methods to the joint loss in (7.7). In the following subsections,
we propose two update variants.

7.3.1 Variance Reduced Policy Gradient (VRPG)
In this variant we use stochastic gradient descent on the loss function (7.7) by combining a stochas-
tic gradient of the prediction loss with the variance reduced policy gradient (VRPG) of the reward

130

loss (7.4). Both gradients can be computed using backpropagation through time (BPTT). Recall
that we need a baseline to compute the VRPG. Under the assumption that the belief state represen-
tation qt uses rich kernel-based features, we assume that

Vπ(h∞t) ≈ w>qt,

where w is a weight vector that we re-estimate by regression using the latest batch of trajectories.
The modified VRPG is depicted in Algorithm 9. The algorithm computes the stochastic gradi-
ent and then applies a gradient descent step (GRADIENTSTEP), which can utilize any variant of
stochastic gradient descent. In our experiments, we use ADAM (Kingma and Ba, 2014).

Algorithm 9 Parameter update using VRPG (VRPGUPDATE)
Input:Current parameters θ(n−1), trajectories D = {τ i}Mi=1, step size η.
Output:Updated parameters θ(n)

1: Estimate baseline

w := arg minw‖
M∑
i=1

T∑
t=1

Ri,t − w>qi,t‖2

2: Compute the VRPG loss gradient w.r.t. θ using (7.4)

∇̂θl1 := 1
M

M∑
i=1

T∑
t=1

∇θ log π
(n−1)
re (ai,t | qi,t)(Ri,t − w>qi,t)

3: Compute the prediction loss gradient

∇̂θl2 := 1
M

M∑
i=1

T∑
t=1

∇θ ‖Wpred(qi,t ⊗ ai,t)− oi,t‖2

4: Compute joint loss gradient
∇̂θL := α1∇̂θl1 + α2∇̂θl2.

5: Update policy parameters
θ(n) := GRADIENTSTEP(θ(n−1), ∇̂θL, η)

7.3.2 Alternating VRPG/TRPO (ALTOPT)
While it is possible to extend the TRPO method described in Section 7.1.2.2 to the joint loss
(7.7), we observed that TRPO tends to be computationally intensive with recurrent architectures.
Instead, we resort to the following alternating optimization scheme: In each iteration we use a
TRPO update (Algorithm 7) to update the reactive policy parameters θre, which involve only a
feedforward network. Then, we use a VRPG update as described in Section 7.3.1 to update the
RFF-PSR parameters θPSR.

7.3.3 Variance Normalization
Recall that the VRPG update makes use of hyperparameters α1 and α2 that determine the relative
importance of reward loss vs. prediction loss. However, it is not intuitive to interpret the effect of
specific values of α1 and α2, especially if the gradient magnitudes of their respective losses are not

131

comparable. For this reason we propose the following reparameterization of the relative weights:
We use α1 = α̃1 and α2 = cα̃2, where c is a user-given value, and α̃1 and α̃2 are dynamically
adjusted to maintain the property that the gradient of each loss weighted by α̃ has unit (uncentered)
variance. In doing so we maintain the variance of the gradient of each loss through exponential
averaging and use it to adjust the weights, as shown in (7.8)

v
(n)
k = (1− β)v

(n−1)
k + β‖∇(n)

θ lk‖2, (7.8)

α̃
(n)
k =

1√
v

(n)
k

,

where β ∈ [0, 1] is a hyperparamter that controls how fast we update variance estimates. We
observed that it is best to update variance estimates slowly compared to parameters.

7.4 Experiments

In this section we report empirical evaluation of the proposed RPSP networks on reinforcement
learning tasks in continuous environments.

7.4.1 Environments

For evaluation, we use a collection of reinforcement learning tasks based on OpenAI Gym environ-
ments that use the Mujoco simulator.1 Specifically, we perform experiments on Swimmer, Walker,
Hopper and CartPole environments, which are shown in Figure 7.2. We ensure all models and
baselines use the same OpenAI Gym base environment settings. In each environment, actions cor-
respond to torques applied to joints in a link-joint model and observations correspond to positions
of the joints.2 For Swimmer, Walker and Hopper, the reward is determined by the forward velocity
minus a penalty that depends on the amount of torque exerted. For Cart-Pole, a fixed reward of 1 is
given at each time step until the episode terminates. The episode terminates when the tilting of the
robot exceeds a certain threshold (except for Swimmer) or the episodes times out, which happens
after a certain number of timesteps (see Table 7.1).

7.4.2 Proposed Models

We evaluate RPSP networks using an RFF-PSR recursive filter and a feedforward reactive pol-
icy. For the RFF-PSR we use 1000 random Fourier features on observation and action sequences
followed by randomized PCA projection to d dimensions as described in Chapter 6.

1https://gym.openai.com/envs#mujoco
2By default, Mujoco also reveals the velocities of the joints. We discard this information to make the environment

partially observable.

132

https://gym.openai.com/envs#mujoco

Figure 7.2: OpenAI Gym Mujoco environments. From left to right: Walker, Hopper, Swimmer,
CartPole

For initialization, we use a blind policy that samples actions from a uniform distribution to
collect initialization trajectories. These trajectories are used to initialize the RFF-PSR component
using two-stage regression followed by 5 iterations of backpropagation through time.

The reactive policy contains one hidden layer of ReLU units and linear output units. We ex-
periment with both a basic policy that takes the belief state qt as input and also an extended policy
that takes qt together with ot−2:t−1.

The reactive policy is randomly initialized. After initialization, we optimize the entire network
using VRPG (RPSP-VRPG) or alternating optimization (RPSP-Alt). We use variance normaliza-
tion with the hyperparameter β set to 0.1.

7.4.3 Competing Models

We compare our models to finite memory models (FM). The finite memory models use a feed-
forward policy on a window of past observations as inputs. We tried three variants, FM1, FM2
and FM5 with window size of 1, 2 and 5 respectively. We also compared to recurrent policies im-
plemented by gated recurrent units (GRU). We experimented with 16, 32, 64 and 128-dimensional
hidden states. We optimized network parameters using the RLLab3 implementation of TRPO with
two different learning rates (η = 10−2, 10−3).

In each model, we use a linear baseline for variance reduction where the state of the model (i.e.
past observation window for FM, latent state for GRU and belief state (which may include previous
observations) for RPSP) is used as the predictor variable. We also follow the common practice
of using a discount factor γ < 1 even though our main criterion is the total (non-discounted)
reward (Duan et al., 2016; Venkatraman et al., 2017). We observed that the use of a discount factor
stabilizes the training and improves the total reward. We set γ = 0.99.

7.4.4 Evaluation Procedure

We run each algorithm for a fixed number of iterations based on the environment. Each iteration
of the optimization algorithm uses a batch of trajectories. Since most test environments can termi-

3https://github.com/openai/rllab

133

https://github.com/openai/rllab

Hyper-parameter Swimmer Walker Hopper Cart-Pole
Experience per iteration 5000 10000 10000 2000
Maximum trajectory length 500 1000 1000 200
Step size 10−2 10−2 10−2 10−2

Append observation to state? X X × ×
RFF-PSR state size 10 30 30 20
Reactive policy hidden layer size 16 16 16 16
GRU state size 32 32 128 32
Finite memory length 2 5 1 2

Table 7.1: Best hyper-parameter settings for each environment

nate at different times, we follow Duan et al. (2016) and fix the total number of time steps (a.k.a
experience) in the batch, rather than the number of trajectories.

We are interested in the average return after each iteration

R̄i =
1

Mi

Mi∑
m=1

Tm∑
t=1

rm,t,

whereMi is the number of trajectories in the ith iteration and Tm is the length of themth trajectory.
We also interested in the mean average return across iterations

C =
∑
i

R̄i,

which we will refer to as area under curve since it can be thought of as the area under the average
return vs. iteration curve. The area under curve favors methods that converge fast to a policy that
achieves high average return. We compute the evaluation metrics for 10 trials each using a different
random seed.

7.4.5 Results
Figure 7.3 shows the mean and standard error of the average return in each iteration across 10 trials.
For ease of exposition, we report the best setting of each method in terms of area under curve (see
Table 7.1). We can see that in terms of the final average return, one of our models (RPSP-VRPG
or RPSP-Alt) closely matches or outperforms other competing methods.

Table 7.2 displays the cumulative average return for the compared methods. RPSP-VRPG and
RPSP-Alt are the top performers in Swimmer and Hopper environments, respectively. In Walker
environment, RPSP-Alt is close to FM. It is only in the Cart-Pole environment that both RPSP
models are at clear disadvantage.

7.4.6 Ablation Study (Analyzing Contributions)
RPSP networks employ four key ingredients:

134

Model Swimmer Walker Hopper CartPole
RPSP-VRPG 88.58± 5.56 564.48± 40.37 597.36± 20.14 117.98± 10.79

RPSP-Alt 68.89± 2.19 673.55± 25.05 598.00± 10.00 106.20± 4.82
GRU 43.93± 3.97 414.09± 25.90 558.93± 17.99 146.22± 11.99
FM 83.29± 7.00 675.79± 23.77 536.62± 9.33 63.47± 3.24

Table 7.2: Mean average return (area under curve) for proposed and competing models in four
different Mujoco enviornments. Table shows mean and standard error accross 10 trials.

1. Using a predictive state controlled model (RFF-PSR) as a recurrent state tracker.

2. Ability to initialize the recurrent component using two-stage regression.

3. Joint end-to-end training of a recursive filter and a reactive policy.

4. A regularized objective that penalizes errors in predicting future observations.
How important is each ingredient? To answer this we conduct two sets of experiments. In the first
experiment, we compare RPSP networks to GRUs that are trained on the joint loss (7.7) (GRU-
Reg). These are analogous to predictive state decoders proposed by Venkatraman et al. (2017).
These models use the same loss function as RPSP networks but differ in the type of the recurrent
component used.

In the second set of experiments, we compare RPSP networks to models that are stripped of
one of the ingredients. Specifically, we compare to
• A fixed filter RPSP network (RPSP-Fix): An RPSP network that is initialized using two-

stage regression. However, only the reactive policy is trained after initialization. Thus, it
lacks the end-to-end joint training.

• A randomly initialized RPSP network (RPSP-Rnd): An RPSP network that lacks two-stage
regression initialization.

• A non-regularized RPSP network (RPSP-NoReg): An RPSP network that is trained to opti-
mize the non-regularized objective (7.1) and hence lacks predictive regularization.

The results of these experiments are shown in Figures 7.4 and 7.5 respectively. The results
show that removing any of the four key ingredients of RPSP networks results in a policy that is
inferior in most environments in terms of final return and/or area under curve.

7.5 Related Work

We presented a new class of recurrent policies based on predictive state controlled models for
partially observable environments. There have been previous attempts to combine predictive state
models and/or method of moments with policy learning. Boots et al. (2011) proposed a method
for planning in partially observable environments. The method first learns a PSR from a set of
trajectories collected using an explorative blind policy. The predictive states estimated by the PSR
are then considered as states in a fully observable Markov Decision Process. A value function is
learned on these states using least squares temporal difference (Boots and Gordon, 2010) or point-

135

0 100 200 300 400 500
Experience (5000 timesteps)

0

20

40

60

80

100

120

Av
er

ag
e

Re
tu

rn
 (S

wi
m

m
er

)

0 100 200 300 400 500
Experience (10000 timesteps)

0

200

400

600

800

Av
er

ag
e

Re
tu

rn
 (W

al
ke

r)

0 100 200 300 400 500
Experience (10000 timesteps)

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn
 (H

op
pe

r)

0 50 100 150 200
Experience (2000 timesteps)

0

25

50

75

100

125

150

175

Av
er

ag
e

Re
tu

rn
 (C

ar
tP

ol
e)

RPSP-Alt RPSP-VRPG GRU FM

Figure 7.3: Mean and standard error of empirical average return over 10 trials. Each point indi-
cates the total reward in a trajectory averaged over all trajectories in the batch. RPSP graphs are
shifted to the right to reflect the use of extra trajectories for initialization.

136

0 100 200 300 400 500
Experience (5000 timesteps)

0

20

40

60

80

100

120

Av
er

ag
e

Re
tu

rn
 (S

wi
m

m
er

)

0 100 200 300 400 500
Experience (10000 timesteps)

0

200

400

600

800

Av
er

ag
e

Re
tu

rn
 (W

al
ke

r)

0 100 200 300 400 500
Experience (10000 timesteps)

0

200

400

600

800

Av
er

ag
e

Re
tu

rn
 (H

op
pe

r)

0 50 100 150 200
Experience (2000 timesteps)

0

25

50

75

100

125

150

175

Av
er

ag
e

Re
tu

rn
 (C

ar
tP

ol
e)

RPSP GRU GRU-Reg

Figure 7.4: Mean and standard error of eimpircal average return over 10 trials. This experiment
tests replacing the RFF-PSRcomponent with a GRU.

137

0 100 200 300 400 500
Experience (5000 timesteps)

0

20

40

60

80

100

120

Av
er

ag
e

Re
tu

rn
 (S

wi
m

m
er

)

0 100 200 300 400 500
Experience (10000 timesteps)

0

200

400

600

800

Av
er

ag
e

Re
tu

rn
 (W

al
ke

r)

0 100 200 300 400 500
Experience (10000 timesteps)

0

200

400

600

800

Av
er

ag
e

Re
tu

rn
 (H

op
pe

r)

0 50 100 150 200
Experience (2000 timesteps)

0

25

50

75

100

125

150

175

Av
er

ag
e

Re
tu

rn
 (C

ar
tP

ol
e)

RPSP RPSP-Fix RPSP-Rnd RPSP-NoReg

Figure 7.5: Mean and standard error of eimpircal average return over 10 trials. This experiment
tests different variations of RPSP networks.

138

based value iteration (PBVI) (Boots et al., 2011). The main disadvantage of these approaches is
that they assume a one-time initialization of the PSR and do not propose a mechanism to update
the model based on subsequent experience.

Hamilton et al. (2014) proposed an iterative method to simultaneously learn a PSR and use the
predictive states to fit a Q-function. Azizzadenesheli et al. (2016) proposed a tensor decomposi-
tion method to estimate the parameters of a discrete partially observable Markov decision process
(POMDP) and used concentration inequalities to choose actions that maximize an upper confi-
dence bound of the reward. This method does not employ a PSR, however it uses a consistent
moment-based method to estimate model parameters. One common limitation in the aforemen-
tioned methods is that they are restricted to discrete actions (some even assume discrete observa-
tions). Also, we have demonstrated in Chapters 4 and 6 that PSRs can benefit greatly from local
optimization after a moment-based initialization.

Venkatraman et al. (2017) proposed predictive state decoders, where an LSTM or a GRU net-
work is trained on a mixed objective function in order to obtain high cumulative rewards while
accurately predicting future observations. While this method has shown improvement over us-
ing standard training objective functions, it does not solve the initialization issue of the recurrent
network.

Our proposed RPSP networks alleviate the limitations of previous approaches: They support
continuous observations and actions, use a recurrent state tracker with consistent initialization, and
support end-to-end training after the initialization.

7.6 Conclusion
In this chapter, we employed predictive state controlled models in a control task. By chaining
the belief state of the PSCM model to a reactive policy, we obtain RPSP networks, a class of
recurrent policies that can be trained via reinforcement learning while maintaining the advantage
of method-of-moment based initialization.

RPSP networks have four main characteristics: the use of PSCM as a filter, two-stage regres-
sion initialization, end-to-end training and regularization by prediction error. We proposed policy
gradient-based methods to train RPSP networks and demonstrated their superiority to other meth-
ods. We also demonstrated that all the four charateristics of RPSP networks are crucial to achieve
the best performance.

139

140

Part IV

Conclusion

141

Chapter 8

Conclusions

8.1 Summary of Contributions

In this thesis we studied the problem of state tracking in partially observable environments through
recursive filter. The foundation of our work is a framework— that is, a model class and a learning
algorithm for constructing recursive filters from data in an unsupervised manner. The framework,
predictive state models, is based on representing the belief state of the filter in terms of observed
future statistics, thus eliminating the need to learn an observation model. The learning algorithm,
two-stage regression, uses history features to remove noise from observed future statistics, turning
them into denoised (expected) states from which we can learn the dynamics of the system. Two-
stage regression reduced the unsupervised learning problem of learning the system dynamics to
a set of supervised learning problems. However, it allows additional flexibility in the choice of
the supervised learning methods to be used compared to the pre-existing “subspace identification”
algorithms, which were restricted to linear regression. We have shown that this flexibility allows
us to design novel recursive filters that outperform subspace identification counterparts.

We then extended the proposed framework to controlled systems. A key change in controlled
systems is that the predictive state encodes a conditional distribution of future observations given
future actions. We showed how to adapt two-stage regression to this subtlety. A concrete model
resulting form this effort is the predictive state controlled model with random Fourier features
(RFF-PSR), which has the flexibility to model non-linear dynamical systems while having an ef-
ficient and local optima-free initialization algorithm. We demonstrate the efficacy of this model
in two settings: a prediction setting where the goal is to predict future observations given future
actions, and a reinforcement learning setting where the goal is to optimize the policy that uses
predictive state as inputs to maximize cumulative reward.

In stating the thesis goal we mentioned a number of qualities that we care about when con-
structing recursive filters. In Table 8.1, we show where our proposed framework stands in terms of
these qualities.

143

Quality Our Contribution
Controlled Systems - Predictive state controlled models can represent controlled

systems. A two-stage regression algorithm permits learning
from blind policies.
- Local refinement can work with non-blind policies.
- Applied predictive state controlled models within rein-
forcement learning.

Scalability - Through the use of kernel approximations and random-
ized SVD, we proposed methods that scale linearly with
the number of examples. We also demonstrated the use of
sketches to obtain low-rank approximations for models with
large state sizes.

Modeling Flexibility - We demonstrated the ability to model highly non-linear
continuous systems with high-dimensional observations.
- We demonstrated the benefit of the ability to choose re-
gression models and regularization schemes.
- We made use of other paradigms such as kernel methods,
recurrent networks and sketching to increase the expressive
power and efficacy of our models.

Theoretical Guarantees - Asymptotic and finite sample guarantees for identifying
system parameters.
- Guarantees on remaining close to the correct state sub-
space.
- Guarantees for recovering the parameters of a controlled
dynamical system.

Table 8.1: Thesis contributions and how they map to desired qualities of recursive filters mentioned
in Chapter 1.

8.2 Future Directions
In this section we list a number of potential directions for follow-up work.

8.2.1 Two-stage Regression with Non-blind Policies
We demonstrated in Chapter 7 that we can deal with data collected from a non-blind policy to
optimize an RFF-PSR policy. However, can we use data collected from a non-blind policy to
initialize the parameters of an RFF-PSR? In other words, can we modify the two-stage regression
approach to be compatible with non-blind policies? Note that with correct estimates of conditional
states (i.e. correct S1 regression output), the fact that the policy is non-blind becomes of little
concern. Therefore, modifying S1 regression appears to be one potential strategy to deal with this
issue.

The problem of non-blind policies has different variants depending on our knowledge of the

144

policy. We might have zero knowledge about the policy other than the fact that it is non-blind. We
might have knowledge of the probability of each action executed in the trajectory, which may per-
mit the use of importance sampling approaches (Bowling et al., 2006). We might have full access
to the policy which allows us to compute the joint observation/action probability as a function of
the policy and the state and exploit that in stage 1 regression.

One of the useful state representations to deal with non-blind policies is the factored state
representation (Bowling et al., 2006), where we represent the belief state as a set of distributions
P (ot+i | at:t+i, ot:t+i−1;h∞t). Having tensors with modes corresponding to individual observation
or action can greatly simply state updates by simplyfing the process of conditioning on individual
observations and actions. This warrants further inverstigation of how to harness the power of tensor
sketching or other compression schemes.

It is worth mentioning that the current framework can be used in the following scenario: As-
sume we have a roll-in policy πin and roll-out policy πout. We collect training by rolling-in using
πin to generate a history h∞t and then rolling-out using πout to generate an extended future. For
learning to be consistent in a realizable setting (i.e. no model mismatch), it is only required that
πout has no access to future observations (it can access history observations). Such an approach,
however, is sample inefficient as it cannot use the roll-in samples for two-stage regression.

8.2.2 Model Uncertainty
Being able to quantify prediction uncertainty is extremely valuable. For example predicting a
confidence interval of the reward can be used to aid exploration (Azizzadenesheli et al., 2016).
There are two sources of uncertainty, inherent noise in the data and uncertainty of model parameters
due to estimation from finite data. In its current form, a predictive state model can deal with first
kind; we can train a predictor to map the belief state qt to the desired output statistics (e.g., second
moment). To provide a full characterization of uncertainty, we need efficient methods that take
model uncertainty into account.

8.2.3 From Parameter Recovery to Filtering Guarantees
We presented in Chapter 3 theoretical guarantees about parameter recovery. However, it is not
clear how these guarantees translate into guarantees on filtering performance (i.e. error in the pre-
dictive state). We know that in the realizable setting, consistency in parameter estimation results in
consistency in filtering. We also know that we cannot make a general statement about the filtering
performance in the non-realizable setting since there are already examples where the best linear
predictor can produce arbitrarily bad predictions (Kulesza et al., 2014). It is worth investigating
what we can claim between these two extremes.

8.2.4 Online Learning
There is a large body of literature on online learning of models that use predictive state in both the
prediction setting (Venkatraman et al., 2016; Boots and Gordon, 2011) and reinforcement learning
setting (Ong et al., 2011). These methods, however, effectively use online method of moments to

145

learn a predictive state model with ordinary least squares regression model. We have observed that
for some feature representations, regularization via ridge regression can helpful for model stability.
Also, we have shown that local refinement after method of moments can significantly improve the
model. How to update a predictive state (controlled) model in an efficient and provably consistent
way that maintains the advantages of regularization and local refinement is an interesting open
problem.

146

Bibliography

Alpaydin, E. and Alimoglu, F. (1998). Pen-based recognition of handwritten digits data set. Uni-
versity of California, Irvine, Machine Learning Repository. Irvine: University of California.
4.4.2

Anandkumar, A., Foster, D. P., Hsu, D. J., Kakade, S. M., and Liu, Y. (2012). Two svds suffice:
Spectral decompositions for probabilistic topic modeling and latent dirichlet allocation. CoRR,
abs/1204.6703. 2.4.2.2

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Telgarsky, M. (2014a). Tensor decom-
positions for learning latent variable models. The Journal of Machine Learning Research,
15(1):2773–2832. 2.4.2.2, 2.4.3.2, 5.1.1

Anandkumar, A., Ge, R., and Janzamin, M. (2014b). Guaranteed non-orthogonal tensor decompo-
sition via alternating rank-1 updates. CoRR, abs/1402.5180. 2.4.2.2

Anderson, B. and Moore, J. (1979). Optimal Filtering. Prentice-Hall, Englewood Cliffs, NJ. 2.4.4

Azizzadenesheli, K., Lazaric, A., and Anandkumar, A. (2016). Reinforcement learning of pomdp’s
using spectral methods. CoRR, abs/1602.07764. 7.5, 8.2.2

Ba, L. J., Kiros, R., and Hinton, G. E. (2016). Layer normalization. CoRR, abs/1607.06450. 4.3.3

Balle, B., Hamilton, W. L., and Pineau, J. (2014). Methods of moments for learning stochastic
languages: Unified presentation and empirical comparison. In Proceedings of the 31st Inter-
national Conference on Machine Learning (ICML-14), pages 1386–1394. 3, 2.4.3.2, 2.4.3.3,
3.6

Banerjee, A., Guo, X., and Wang, H. (2005). On the optimality of conditional expectation as a
bregman predictor. IEEE Trans. Inf. Theor., 51(7):2664–2669. 3.2

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique occur-
ring in the statistical analysis of probabilistic functions of markov chains. Ann. Math. Statist.,
41(1):164–171. 2.4.3.1

Belanger, D. and Kakade, S. (2015). A linear dynamical system model for text. In Bach, F.
and Blei, D., editors, Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pages 833–842, Lille, France. PMLR.
2.4.4.1, 4.3.2

Bengio, Y. and Frasconi, P. (1995). An input output HMM architecture. In NIPS. 6.1.2, 6.2

Boots, B. (2012). Spectral Approaches to Learning Predictive Representations. PhD thesis,

147

Carnegie Mellon University. 2.4.2.1, 2.4.4.2, 2.4, 3.3.2, 3.6

Boots, B. and Fox, D. (2013). Learning dynamic policies from demonstration. NIPS Workshop on
Advances in Machine Learning for Sensorimotor Control. 6.4.1

Boots, B. and Gordon, G. (2011). An online spectral learning algorithm for partially observable
nonlinear dynamical systems. In Proceedings of the 25th National Conference on Artificial
Intelligence (AAAI-2011). 3.6, 8.2.4

Boots, B. and Gordon, G. (2012). Two-manifold problems with applications to nonlinear system
identification. In Proc. 29th Intl. Conf. on Machine Learning (ICML). 2.1.3, 3.6

Boots, B. and Gordon, G. J. (2010). Predictive state temporal difference learning. In Advances
in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information
Processing Systems 2010., pages 271–279. 7.5

Boots, B., Gretton, A., and Gordon, G. J. (2013). Hilbert Space Embeddings of Predictive State
Representations. In Proc. 29th Intl. Conf. on Uncertainty in Artificial Intelligence (UAI). 3.4, 4,
4.1.4, 4.2, 4.A, 4.A, 6.2, 6.3.1, 6.4, 6.4.1, 6.4.1, 6.4.2.1, 6.5.1, 6.5.5

Boots, B., Siddiqi, S., and Gordon, G. (2011). Closing the learning planning loop with predictive
state representations. In I. J. Robotic Research, volume 30, pages 954–956. 3.6, 4, 7.5

Bowling, M., McCracken, P., James, M., Neufeld, J., and Wilkinson, D. (2006). Learning predic-
tive state representations using non-blind policies. In ICML. 4, 8.2.1

Carlyle, J. and Paz, A. (1971). Realizations by stochastic finite automata. Journal of Computer
and System Sciences, 5(1):26 – 40. 2.1.3

Celeux, G. and Diebolt, J. (1985). The SEM algorithm: A probabilistic teacher algorithm derived
from the EM algorithm for the mixture problem. Computational Statistics Quarterly, 2:73–82.
2.4.1.2

Cho, K., van Merriënboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio,
Y. (2014). Learning phrase representations using rnn encoder–decoder for statistical machine
translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, Doha, Qatar. Association for Computational Linguis-
tics. 2.1.2, 4.4.1, 4.4.2

Corbett, A. T. and Anderson, J. R. (1995). Knowledge tracing: Modelling the acquisition of
procedural knowledge. User Model. User-Adapt. Interact., 4(4):253–278. 3.5.1

Cormode, G. and Hadjieleftheriou, M. (2008). Finding frequent items in data streams. Proc. VLDB
Endow., 1(2):1530–1541. 5.1.2

Darolles, S., Fan, Y., Florens, J. P., and Renault, E. (2011). Nonparametric instrumental regression.
Econometrica, 79(5):1541–1565. 3.6

Dempster, A. P., Laird, M. N., and Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 39:1–22. 2.4.1.2

Downey, C., Hefny, A., Boots, B., Gordon, G. J., and Li, B. (2017). Predictive state recurrent neural

148

networks. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R., editors, Advances in Neural Information Processing Systems 30, pages 6055–
6066. Curran Associates, Inc. 1.4

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Benchmarking deep rein-
forcement learning for continuous control. In Proceedings of the 33rd International Conference
on International Conference on Machine Learning - Volume 48, ICML’16, pages 1329–1338.
7.1.2.1, 7.1.2.2, 7.4.3, 7.4.4

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2):179–211. 2.1.2, 4.4.2

Falakmasir, M. H., Pardos, Z. A., Gordon, G. J., and Brusilovsky, P. (2013). A spectral learning
approach to knowledge tracing. In 6th International Conference on Educational Data Mining
(EDM 2013)., pages 28–35. International Educational Data Mining Society. 2.4.3.3, 4.3.2

Foti, N., Xu, J., Laird, D., and Fox, E. (2014). Stochastic variational inference for hidden markov
models. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q.,
editors, Advances in Neural Information Processing Systems 27, pages 3599–3607. Curran As-
sociates, Inc. 2.4

Fruhwirth-Schnatter, S. (2001). Markov chain monte carlo estimation of classical and dynamic
switching and mixture models. Journal of the American Statistical Association, 96:194–209.
2.4

Fukumizu, K., Song, L., and Gretton, A. (2013). Kernel bayes’ rule: Bayesian inference with
positive definite kernels. Journal of Machine Learning Research, 14(1):3753–3783. 4.1.3, 2,
4.A, 4.A, 6.3.1, 6.4.1

Geramifard, A., Klein, R. H., Dann, C., Dabney, W., and How, J. P. (2013). RLPy: The Reinforce-
ment Learning Library for Education and Research. http://acl.mit.edu/RLPy. 4.4.2, 6.5.3

Ghaharmani, Z. and Hinton, G. E. (1996). Parameter estimation for linear dynamical systems.
Technical Report CRG-TR-96-2, Department of Computer Science, University of Toronto.
2.4.4.1

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010, pages
249–256. 4.4.2

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y. (2014). Generative adversarial nets. In Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural Information Processing
Systems 27, pages 2672–2680. Curran Associates, Inc. 7

Grünewälder, S., Lever, G., Baldassarre, L., Patterson, S., Gretton, A., and Pontil, M. (2012). Con-
ditional mean embeddings as regressors. In Proceedings of the 29th International Conference
on Machine Learning, pages 1823–1830, New York, NY, USA. Omnipress. 4.1.4

Halko, N., Martinsson, P. G., and Tropp, J. A. (2011). Finding structure with randomness: Proba-
bilistic algorithms for constructing approximate matrix decompositions. SIAM Rev., 53(2):217–

149

288. 6.4.3.1

Hall, P. and Horowitz, J. L. (2005). Nonparametric methods for inference in the presence of
instrumental variables. The Annals of Statistics, 33(6):2904–2929. 3.6

Hamilton, W., Fard, M. M., and Pineau, J. (2014). Efficient learning and planning with compressed
predictive states. J. Mach. Learn. Res., 15(1):3395–3439. 7.5

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for
an” explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics, 16(1):84.
2.4.2.2

Hausknecht, M. J. and Stone, P. (2015). Deep recurrent q-learning for partially observable mdps.
CoRR, abs/1507.06527. 7.1.1

Hefny, A., Downey, C., and Gordon, G. J. (2015). Supervised learning for dynamical system
learning. In Proceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 2, NIPS’15, pages 1963–1971, Cambridge, MA, USA. MIT Press. 1.4

Hefny, A., Downey, C., and Gordon, G. J. (2018a). An efficient, expressive and local minima-
free method for learning controlled dynamical systems. In Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI-18). 1.4

Hefny, A., Marinho, Z., Sun, W., Srinivasa, S., and Gordon, G. (2018b). Recurrent predictive state
policy networks. CoRR, abs/1803.01489 [Submitted to ICML 2018]. 1.4

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Comput., 9(8):1735–
1780. 2.1.2, 4.4.1, 4.4.2

Hsu, D. and Kakade, S. M. (2013). Learning mixtures of spherical gaussians: Moment methods
and spectral decompositions. In Proceedings of the 4th Conference on Innovations in Theoretical
Computer Science, ITCS ’13, pages 11–20, New York, NY, USA. ACM. 2.4.2.2

Hsu, D., Kakade, S. M., and Zhang, T. (2009). A spectral algorithm for learning hidden markov
models. In COLT. 2.4.3.2, 3.1, 3.3.1, 3.3.1, 5, 3.3.1, 3.3.1, 3.4, 3.5.1.2, 3.6

Hsu, D., Kakade, S. M., and Zhang, T. (2012a). Random design analysis of ridge regression. In
COLT 2012 - The 25th Annual Conference on Learning Theory, June 25-27, 2012, Edinburgh,
Scotland, pages 9.1–9.24. 3.4.1

Hsu, D., Kakade, S. M., and Zhang, T. (2012b). Tail inequalities for sums of random matrices that
depend on the intrinsic dimension. Electronic Communications in Probability, 17(14):1–13.
3.10

Jaeger, H. (1998). Discrete-time, discrete-valued observable operator models: a tutorial. Technical
Report GMD 42, German National Research Center for Information Technology (GMD). 6.1.2

Jaeger, H. (2000). Observable Operator Models for Discrete Stochastic Time Series. Neural
Computation, 12(6):1371–1398. 1.2, 2.1.3, 4, 9

Jiang, N., Kulesza, A., and Singh, S. P. (2016). Improving predictive state representations via
gradient descent. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA., pages 1709–1715. 4.3.2

150

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Transactions
of the ASME–Journal of Basic Engineering, 82(Series D):35–45. 2.3.1, 2.4.4, 4.4.2

Kandasamy, K., Al-Shedivat, M., and Xing, E. P. (2016). Learning hmms with nonparametric
emissions via spectral decompositions of continuous matrices. In Lee, D. D., Sugiyama, M.,
Luxburg, U. V., Guyon, I., and Garnett, R., editors, Advances in Neural Information Processing
Systems 29, pages 2865–2873. Curran Associates, Inc. 2.1.3

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980. 7.3.1

Koedinger, K. R., Baker, R. S. J., Cunningham, K., Skogsholm, A., Leber, B., and Stamper, J.
(2010). A data repository for the EDM community: The PSLC DataShop. Handbook of Educa-
tional Data Mining, pages 43–55. 3.5.1.1

Kruskal, J. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions, with
application to arithmetic complexity and statistics. Linear Algebra Appl., 18(2):95–138. 2.4.2.2

Kuleshov, V., Chaganty, A. T., and Liang, P. (2015). Tensor factorization via matrix factoriza-
tion. In Proceedings of the Eighteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2015, San Diego, California, USA, May 9-12, 2015. 2.4.2.2

Kulesza, A., Rao, N. R., and Singh, S. (2014). Low-Rank Spectral Learning. In Kaski, S. and
Corander, J., editors, Proceedings of the Seventeenth International Conference on Artificial In-
telligence and Statistics, volume 33 of Proceedings of Machine Learning Research, pages 522–
530, Reykjavik, Iceland. PMLR. 2.5.2, 8.2.3

Langford, J., Salakhutdinov, R., and Zhang, T. (2009). Learning nonlinear dynamic models. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009,
Montreal, Quebec, Canada, June 14-18, 2009, pages 593–600. 2.1.2, 2.5.2, 3.6

Laub, A. J. (1978). A schur method for solving algebraic riccati equations. Technical Report
LIDS-R; 859, Massachusetts Institute of Technology. Laboratory for Information and Decision
Systems. 2.4.4.2

Levinson, S., Rabiner, L., and Sondhi, M. (1982). An introduction to the application of the theory
of probabilistic functions of a Markov process to automatic speech recognition. The Bell System
Technical Journal, 62:1035–1074. 2.4.3.1

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large annotated corpus
of english: The penn treebank. Computational linguistics, 19(2):313–330. 4.4.1

Micchelli, C. A. and Pontil, M. (2005). On learning vector-valued functions. Neural Computation,
17(1):177–204. 1

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing atari with deep reinforcement learning. cite arxiv:1312.5602Comment: NIPS
Deep Learning Workshop 2013. 7.1.1

Ong, S. C. W., Grinberg, Y., and Pineau, J. (2011). Goal-directed online learning of predictive
models. In Recent Advances in Reinforcement Learning - 9th European Workshop, EWRL 2011,
Athens, Greece, September 9-11, 2011, Revised Selected Papers, pages 18–29. 8.2.4

151

Overschee, P. V. and Moor, B. D. (1993). Subspace algorithms for the stochastic identification
problem, . Automatica, 29(3):649–660. 2.4.4.2

Pandit, S. and Wu, S. (1983). Time series and system analysis, with applications. Wiley. 3.6

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press, New
York, NY, USA. 3.2

Pham, N. and Pagh, R. (2013). Fast and scalable polynomial kernels via explicit feature maps. In
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’13, pages 239–247, New York, NY, USA. ACM. 5.1.2

Rabiner, L. and Juang, B. (1986). An introduction to hidden markov models. ASSP Magazine,
IEEE, 3(1):4 –16. 2.4.3

Rabiner, L. R. (1990). Readings in speech recognition. chapter A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recognition, pages 267–296. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA. 2.1.1

Rahimi, A. and Recht, B. (2008). Random features for large-scale kernel machines. In Platt, J. C.,
Koller, D., Singer, Y., and Roweis, S. T., editors, Advances in Neural Information Processing
Systems 20, pages 1177–1184. Curran Associates, Inc. 4.1.5, 4.1.5, 4.1.5, 6.4, 6.4.3.1

Rahimi, A. and Recht, B. (2009). Weighted sums of random kitchen sinks: Replacing minimiza-
tion with randomization in learning. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou,
L., editors, Advances in Neural Information Processing Systems 21, pages 1313–1320. Curran
Associates, Inc. 4.1.5

Rosencrantz, M., Gordon, G., and Thrun, S. (2004). Learning low dimensional predictive repre-
sentations. In Proceedings of the Twenty-first International Conference on Machine Learning,
ICML ’04, pages 88–, New York, NY, USA. ACM. 2.3, 2.3.2

Ross, S., Gordon, G. J., and Bagnell, D. (2011). A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13,
2011, pages 627–635. 2.5.2

Rubinstein, R. (1999). The cross-entropy method for combinatorial and continuous optimization.
Methodology And Computing In Applied Probability, 1(2):127–190. 7.1.2

Rudi, A. and Rosasco, L. (2017). Generalization properties of learning with random features. In
Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett,
R., editors, Advances in Neural Information Processing Systems 30, pages 3215–3225. Curran
Associates, Inc. 4.1.5

Rudin, W. (2017). Fourier Analysis on Groups. Dover Books on Mathematics. Dover Publications.
4.1.5

Rydn, T. (2008). Em versus markov chain monte carlo for estimation of hidden markov models: a
computational perspective. Bayesian Anal., 3(4):659–688. 2.4

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy opti-
mization. In Blei, D. and Bach, F., editors, Proceedings of the 32nd International Conference on

152

Machine Learning (ICML-15), pages 1889–1897. JMLR Workshop and Conference Proceed-
ings. 7.1.2.2, 7.1.2.2

Schtzenberger, M. (1961). On the definition of a family of automata. Information and Control,
4(2):245 – 270. 2.1.3

Shaban, A., Farajtabar, M., Xie, B., Song, L., and Boots, B. (2015). Learning latent variable
models by improving spectral solutions with exterior point methods. In Proceedings of The
International Conference on Uncertainty in Artificial Intelligence (UAI). 2.4.3.3

Siddiqi, S., Boots, B., and Gordon, G. J. (2010). Reduced-rank hidden Markov models. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
(AISTATS-2010). 2.4.3.2, 3.5.1.2, 3.6

Singh, S., James, M. R., and Rudary, M. R. (2004). Predictive state representations: A new theory
for modeling dynamical systems. In Proceedings of the 20th Conference on Uncertainty in
Artificial Intelligence, UAI ’04, pages 512–519, Arlington, Virginia, United States. AUAI Press.
1.2, 5, 2.3, 2.3.2, 6.1.3

Smola, A., Gretton, A., Song, L., and Schlkopf, B. (2007). A hilbert space embedding for distribu-
tions. In In Algorithmic Learning Theory: 18th International Conference, page 1331. Springer-
Verlag. 4.1, 4.1.3

Song, L., Boots, B., Siddiqi, S. M., Gordon, G. J., and Smola, A. J. (2010). Hilbert space embed-
dings of hidden Markov models. In Proc. 27th Intl. Conf. on Machine Learning (ICML). 2.1.3,
3.6

Song, L., Huang, J., Smola, A. J., and Fukumizu, K. (2009). Hilbert space embeddings of condi-
tional distributions with applications to dynamical systems. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June
14-18, 2009, pages 961–968. 3.9, 3.4.1, 4.1.3, 4.1.4, 4.A

Stock, J. and Watson, M. (2011). Introduction to Econometrics. Addison-Wesley series in eco-
nomics. Addison-Wesley. 3.2

Sun, W., Venkatraman, A., Boots, B., and Bagnell, J. A. (2016). Learning to filter with predictive
state inference machines. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, pages 1197–1205. JMLR.org. 2.1.2,
2.4.2.1, 2.5.2, 3.6

Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition. 7.1.1

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy gradient methods for
reinforcement learning with function approximation. In Solla, S. A., Leen, T. K., and Müller, K.,
editors, Advances in Neural Information Processing Systems 12, pages 1057–1063. MIT Press.
7.1.2.1

Szita, I. and Lrincz, A. (2006). Learning tetris using the noisy cross-entropy method. Neural
Computation, 18(12):2936–2941. 7.1.2

Terwijn, S. A. (2002). On the learnability of hidden markov models. In Adriaans, P., Fernau,

153

H., and van Zaanen, M., editors, Grammatical Inference: Algorithms and Applications, pages
261–268, Berlin, Heidelberg. Springer Berlin Heidelberg. 2.4.3.3

Thon, M. and Jaeger, H. (2015). Links Between Multiplicity Automata, Observable Operator Mod-
els and Predictive State Representations a Unified Learning Framework. Journal of Machine
Learning Research, 16:103–147. 2.2, 4

Tropp, J. A. (2012). User-friendly tools for random matrices: An introduction. NIPS Tutorial.
3.A.1

Tropp, J. A. (2015). An introduction to matrix concentration inequalities. Found. Trends Mach.
Learn., 8(1-2):1–230. 6.13, 6.15

van Overschee, P. and de Moor, L. (1996). Subspace identification for linear systems: theory,
implementation, applications. Kluwer Academic Publishers. 2.4.4.2, 2.4.4.2, 2.4.4.2, 11, 3.1,
3.3.2, 3.6, 6.1.2, 6.2, 6.3.2, 6.5.5, 6.6.2, 6.6.2.1

Venkatraman, A., Rhinehart, N., Sun, W., Pinto, L., Boots, B., Kitani, K., and Bagnell., J. A.
(2017). Predictive state decoders: Encoding the future into recurrent networks. In Proceedings
of Advances in Neural Information Processing Systems (NIPS). 7.3, 7.4.3, 7.4.6, 7.5

Venkatraman, A., Sun, W., Hebert, M., Bagnell, J. A. D., and Boots, B. (2016). Online instrumental
variable regression with applications to online linear system identification. In Thirtieth AAAI
Conference on Artificial Intelligence (AAAI-16). 3.6, 8.2.4

Wang, Y. and Anandkumar, A. (2016). Online and differentially-private tensor decomposition. In
Advances in Neural Information Processing Systems 29: Annual Conference on Neural Infor-
mation Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 3531–3539.
5

Wang, Y., Tung, H.-Y., Smola, A. J., and Anandkumar, A. (2015). Fast and guaranteed tensor
decomposition via sketching. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and
Garnett, R., editors, Advances in Neural Information Processing Systems 28, pages 991–999.
Curran Associates, Inc. 5, 5.1.1, 5.1.2, 5.2.3, 5.2.3

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE. 2.5.1

Wiewiora, E. W. (2008). Modeling probability distributions with predictive state representations.
PhD thesis, University of California, San Diego. 2.4.3.3

Williams, C. K. I. and Seeger, M. W. (2000). Using the nyström method to speed up kernel
machines. In Advances in Neural Information Processing Systems 13, Papers from Neural In-
formation Processing Systems (NIPS) 2000, Denver, CO, USA, pages 682–688. 4.1.5

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. In Machine Learning, pages 229–256. 7.1.2.1

Wingate, D. and Singh, S. (2007). On discovery and learning of models with predictive represen-
tations of state for agents with continuous actions and observations. In Proceedings of the 6th
International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’07,
pages 187:1–187:8, New York, NY, USA. ACM. 2.1.2.1

154

Xia, G. G. (2016). Expressive Collaborative Music Performance via Machine Learning. PhD
thesis, Carnegie Mellon University. 3.6

Zhang, Y., Chen, X., Zhou, D., and Jordan, M. I. (2016). Spectral methods meet em: A provably
optimal algorithm for crowdsourcing. J. Mach. Learn. Res., 17(1):3537–3580. 2.4.3.3

Zhao, M. and Jaeger, H. (2010). Norm-observable operator models. Neural Computation,
22(7):1927–1959. 2, 4.3.3

155

	Symbols and Notation
	I Introduction and Background
	1 Introduction
	1.1 Problem Statement
	1.1.1 Desired Qualities of System Identification

	1.2 Proposed Framework
	1.3 Summary of Contributions
	1.4 Thesis Organization
	1.5 How to Read This Document
	1.6 Disclaimer

	2 Background: Dynamical Systems and Recursive Filters
	2.1 Three Views of Dynamical Systems
	2.1.1 System State View
	2.1.2 Belief State View
	2.1.3 Likelihood Evaluation View

	2.2 Recursive filters
	2.3 Constructing Filters from Dynamical System Models
	2.3.1 Bayes Filter
	2.3.2 Predictive State Representation

	2.4 Generative Learning of Recursive Filters
	2.4.1 Maximum Likelihood
	2.4.2 Method of Moments and Spectral Algorithms
	2.4.3 Example I: Learning Hidden Markov Models
	2.4.4 Example II: Learning Kalman Filters

	2.5 Discriminative Learning of Recursive Filters
	2.5.1 Gradient Descent
	2.5.2 Reduction to Supervised Learning

	2.6 Conclusion

	II Learning Uncontrolled Systems
	3 Predictive State Models: Generative Learning of Recursive Filters Using Two-Stage Regression
	3.1 Model Class: Predictive State Models
	3.2 Learning Algorithm: Two-Stage Regression
	3.3 Subspace Identification Revisited
	3.3.1 HMM
	3.3.2 Steady-State Kalman Filter

	3.4 Theoretical Analysis
	3.4.1 Examples of Uniform S1 Regression Bounds

	3.5 Experiments and Results
	3.5.1 Learning A Knowledge Tracing Model
	3.5.2 Modeling Independent Subsystems Using Lasso Regression

	3.6 Related Work
	3.7 Conclusion
	3.A Appendix: Proofs
	3.A.1 Proof of Main Theorem
	3.A.2 Proof of Lemma 3.7

	4 A Practical Non-parametric Predicive State Model for Continuous Systems
	4.1 Hilbert Space Embedding of Distributions
	4.1.1 Motivating Example: Discrete Distributions
	4.1.2 Kernels, RKHSs and Feature Maps
	4.1.3 Mean Maps and Covariance Operators
	4.1.4 Conditional Operators and Kernel Bayes Rule
	4.1.5 Finite Dimensional Approximation of Kenrel Features via Random Fourier Features

	4.2 Hilbert Space Embedding of Predictive State Representation
	4.2.1 Learning Algorithm
	4.2.2 Prediction

	4.3 Predictive State Recurrent Neural Networks
	4.3.1 Kernel Approximation
	4.3.2 Local Refinement By Discriminative Training
	4.3.3 Approximate Conditioning

	4.4 Experiments
	4.4.1 Character-level Language Modeling
	4.4.2 Continuous Systems

	4.5 Conclusion
	4.A Appendix: Two-stage Regression of Hse-Psrs with Gram Matrices
	5 Tensor Sketching for Predictive State Models with Large States
	5.1 Tensors and Tensor Sketch
	5.1.1 Tensor Inner Product and Tensor Contraction
	5.1.2 Tensor Sketch

	5.2 Tensor Sketching for PsRnns
	5.2.1 Tensor Sketch as a PsRnn Parameter
	5.2.2 Factored PsRnns
	5.2.3 Hybrid ALS with Deflation
	5.2.4 Two-stage Regression for Factored PsRnn

	5.3 Experiments
	5.3.1 Tensor Product vs. Tensor Decomposition
	5.3.2 Tensor Decomposition: Alternating Least Squares vs. Deflation
	5.3.3 Factored PsRnns with Sketching

	5.4 Conclusion

	III Learning Controlled Systems
	6 Predictive State Controlled Models
	6.1 Recursive Filters for Controlled Dynamical Systems
	6.1.1 Causal Conditioning and The do Notation
	6.1.2 Controlled Dynamical Systems
	6.1.3 Predictive States for Controlled Systems
	6.2 Model Definition
	6.3 Learning A Predictive State Controlled Model
	6.3.1 Joint S1 Approach
	6.3.2 Conditional S1 Approach
	6.3.3 S2 Regression and Learning Algorithm

	6.4 Predictive State Controlled Models With Random Fourier Features (Rff-Psr)
	6.4.1 The Hse-Psr a predictive state controlled model
	6.4.2 S1 Regression for Hse-Psrs
	6.4.3 From Hse-Psrs to Rff-Psrs

	6.5 Experiments
	6.5.1 Synthetic Data
	6.5.2 Simulated windshield view
	6.5.3 Simulated swimmer robot
	6.5.4 Cell phone Camera and Sensors
	6.5.5 Tested Methods and Evaluation Procedure
	6.5.6 Results and Discussion

	6.6 Other Examples of Predictive State Controlled Models
	6.6.1 IO-HMM
	6.6.2 Kalman Filter with inputs

	6.7 Theoretical Analysis of Predictive State Controlled Models
	6.7.1 Case 1: Discrete Observations and Actions
	6.7.2 Case 2: Continuous System

	6.8 Conclusion
	6.A Appendix: Proofs
	6.A.1 Proof of Theorem 6.3
	6.A.2 Proof of Theroem 6.10
	6.A.3 Sketch Proof for Joint S1
	7 Reinforcement Learning with Predictive State Controlled Models
	7.1 Background: Reinforcement Learning and Policy Gradients
	7.1.1 Value Function-based Methods
	7.1.2 Direct Policy Optimization Methods

	7.2 Recurrent Predictive State Policy (RPSP) Networks
	7.3 Learning RPSP Networks
	7.3.1 Variance Reduced Policy Gradient (VRPG)
	7.3.2 Alternating VRPG/TRPO (AltOpt)
	7.3.3 Variance Normalization

	7.4 Experiments
	7.4.1 Environments
	7.4.2 Proposed Models
	7.4.3 Competing Models
	7.4.4 Evaluation Procedure
	7.4.5 Results
	7.4.6 Ablation Study (Analyzing Contributions)

	7.5 Related Work
	7.6 Conclusion

	IV Conclusion
	8 Conclusions
	8.1 Summary of Contributions
	8.2 Future Directions
	8.2.1 Two-stage Regression with Non-blind Policies
	8.2.2 Model Uncertainty
	8.2.3 From Parameter Recovery to Filtering Guarantees
	8.2.4 Online Learning

