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Abstract

We propose a parameter server system for distributed ML, which follows a Stale Synchronous
Parallel (SSP) model of computation that maximizes the time computational workers spend doing
useful work on ML algorithms, while still providing correctness guarantees. The parameter server
provides an easy-to-use shared interface for read/write access to an ML model’s values (parameters
and variables), and the SSP model allows distributed workers to read older, stale versions of these
values from a local cache, instead of waiting to get them from a central storage. This significantly
increases the proportion of time workers spend computing, as opposed to waiting. Furthermore,
the SSP model ensures ML algorithm correctness by limiting the maximum age of the stale values.
We provide a proof of correctness under SSP, as well as empirical results demonstrating that the
SSP model achieves faster algorithm convergence on several different ML problems, compared to
fully-synchronous and asynchronous schemes.
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1 Introduction
Modern applications awaiting next generation machine intelligence systems have posed unprece-
dented scalability challenges. These scalability needs arise from at least two aspects: 1) massive
data volume, such as societal-scale social graphs [10, 25] with up to hundreds of millions of nodes;
and 2) massive model size, such as the Google Brain deep neural network [9] containing billions of
parameters. Although there exist means and theories to support reductionist approaches like sub-
sampling data or using small models, there is an imperative need for sound and effective distributed
ML methodologies for users who cannot be well-served by such shortcuts. Recent efforts towards
distributed ML have made significant advancements in two directions: (1) Leveraging existing
common but simple distributed systems to implement parallel versions of a limited selection of
ML models, that can be shown to have strong theoretical guarantees under parallelization schemes
such as cyclic delay [17, 1], model pre-partitioning [12], lock-free updates [21], bulk synchronous
parallel [5], or even no synchronization [28] — these schemes are simple to implement but may
under-exploit the full computing power of a distributed cluster. (2) Building high-throughput dis-
tributed ML architectures or algorithm implementations that feature significant systems contribu-
tions but relatively less theoretical analysis, such as GraphLab [18], Spark [27], Pregel [19], and
YahooLDA [2].

While the aforementioned works are significant contributions in their own right, a naturally de-
sirable goal for distributed ML is to pursue a system that (1) can maximally unleash the combined
computational power in a cluster of any given size (by spending more time doing useful compu-
tation and less time waiting for communication), (2) supports inference for a broad collection of
ML methods, and (3) enjoys correctness guarantees. In this paper, we explore a path to such a sys-
tem using the idea of a parameter server [22, 2], which we define as the combination of a shared
key-value store that provides a centralized storage model (which may be implemented in a dis-
tributed fashion) with a synchronization model for reading/updating model values. The key-value
store provides easy-to-program read/write access to shared parameters needed by all workers, and
the synchronization model maximizes the time each worker spends on useful computation (versus
communication with the server) while still providing algorithm correctness guarantees.

Towards this end, we propose a parameter server using a Stale Synchronous Parallel (SSP)
model of computation, for distributed ML algorithms that are parallelized into many computational
workers (technically, threads) spread over many machines. In SSP, workers can make updates δ
to a parameter1 θ, where the updates follow an associative, commutative form θ ← θ + δ. Hence,
the current true value of θ is just the sum over updates δ from all workers. When a worker asks
for θ, the SSP model will give it a stale (i.e. delayed) version of θ that excludes recent updates
δ. More formally, a worker reading θ at iteration c will see the effects of all δ from iteration
0 to c − s − 1, where s ≥ 0 is a user-controlled staleness threshold. In addition, the worker
may get to see some recent updates beyond iteration c − s − 1. The idea is that SSP systems
should deliver as many updates as possible, without missing any updates older than a given age
— a concept referred to as bounded staleness [24]. The practical effect of this is twofold: (1)

1 For example, the parameter θ might be the topic-word distributions in LDA, or the factor matrices in a matrix
decomposition, while the updates δ could be adding or removing counts to topic-word or document-word tables in
LDA, or stochastic gradient steps in a matrix decomposition.
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workers can perform more computation instead of waiting for other workers to finish, and (2)
workers spend less time communicating with the parameter server, and more time doing useful
computation. Bounded staleness distinguishes SSP from cyclic-delay systems [17, 1] (where θ is
read with inflexible staleness), Bulk Synchronous Parallel (BSP) systems like Hadoop (workers
must wait for each other at the end of every iteration), or completely asynchronous systems [2]
(workers never wait, but θ has no staleness guarantees).

We implement an SSP parameter server with a table-based interface, called SSPtable, that
supports a wide range of distributed ML algorithms for many models and applications. SSPtable
itself can also be run in a distributed fashion, in order to (a) increase performance, or (b) support
applications where the parameters θ are too large to fit on one machine. Moreover, SSPtable
takes advantage of bounded staleness to maximize ML algorithm performance, by reading the
parameters θ from caches on the worker machines whenever possible, and only reading θ from
the parameter server when the SSP model requires it. Thus, workers (1) spend less time waiting
for each other, and (2) spend less time communicating with the parameter server. Furthermore,
we show that SSPtable (3) helps slow, straggling workers to catch up, providing a systems-based
solution to the “last reducer” problem on systems like Hadoop (while we note that theory-based
solutions are also possible). SSPtable can be run on multiple server machines (called “shards”),
thus dividing its workload over the cluster; in this manner, SSPtable can (4) service more workers
simultaneously, and (5) support very large models that cannot fit on a single machine. Finally, the
SSPtable server program can also be run on worker machines, which (6) provides a simple but
effective strategy for allocating machines between workers and the parameter server.

Our theoretical analysis shows that (1) SSP generalizes the bulk synchronous parallel (BSP)
model, and that (2) stochastic gradient algorithms (e.g. for matrix factorization or topic mod-
els) under SSP not only converge, but do so at least as fast as cyclic-delay systems [17, 1] (and
potentially even faster depending on implementation). Furthermore, our implementation of SSP,
SSPtable, supports a wide variety of algortihms and models, and we demonstrate it on several pop-
ular ones: (a) Matrix Factorization with stochastic gradient descent [12], (b) Topic Modeling with
collapsed Gibbs sampling [2], and (c) Lasso regression with parallelized coordinate descent [5].
Our experimental results show that, for these 3 models and algorithms, (i) SSP yields faster con-
vergence than BSP (up to several times faster), and (ii) SSP yields faster convergence than a fully
asynchronous (i.e. no staleness guarantee) system. We explain SSPtable’s better performance in
terms of algorithm progress per iteration (quality) and iterations executed per unit time (quantity),
and show that SSPtable hits a “sweet spot” between quality and quantity that is missed by BSP and
fully asynchronous systems.

2 Stale Synchronous Parallel Model of Computation
We begin with an informal explanation of SSP: assume a collection of P workers, each of which
makes additive updates to a shared parameter x← x+u at regular intervals called clocks. Clocks
are similar to iterations, and represent some unit of progress by an ML algorithm. Every worker
has its own integer-valued clock c, and workers only commit their updates at the end of each clock.
Updates may not be immediately visible to other workers trying to read x — in other words,
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Figure 1: Bounded Staleness under the SSP Model

workers only see effects from a “stale” subset of updates. The idea is that, with staleness, workers
can retrieve updates from caches on the same machine (fast) instead of querying the parameter
server over the network (slow). Given a user-chosen staleness threshold s ≥ 0, SSP enforces the
following bounded staleness conditions (see Figure 1 for a graphical illustration):

• The slowest and fastest workers must be ≤ s clocks apart — otherwise, the fastest worker is
forced to wait for the slowest worker to catch up.
• When a worker with clock c commits an update u, that u is timestamped with time c.
• When a worker with clock c reads x, it will always see effects from all u with timestamp
≤ c− s− 1. It may also see some u with timestamp > c− s− 1 from other workers.
• Read-my-writes: A worker p will always see the effects of its own updates up.

Since the fastest and slowest workers are ≤ s clocks apart, a worker reading x at clock c will see
all updates with timestamps in [0, c− s− 1], plus a (possibly empty) “adaptive” subset of updates
in the range [c − s, c + s − 1]. Note that when s = 0, the “guaranteed” range becomes [0, c − 1]
while the adaptive range becomes empty, which is exactly the Bulk Synchronous Parallel model of
computation. Let us look at how SSP applies to an example ML algorithm.

2.1 An example: Stochastic Gradient Descent for Matrix Problems
The Stochastic Gradient Descent (SGD) [17, 12] algorithm optimizes an objective function by
applying gradient descent to random subsets of the data. Consider a matrix completion task, which
involves decomposing an N ×M matrix D into two low-rank matrices LR ≈ D, where L,R have
sizes N ×K and K ×M (for a user-specified K). The data matrix D may have missing entries,
corresponding to missing data. Concretely, D could be a matrix of users against products, withDij

representing user i’s rating of product j. Because users do not rate all possible products, the goal is
to predict ratings for missing entries Dab given known entries Dij . If we found low-rank matrices
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L,R such that Li· · R·j ≈ Dij for all known entries Dij , we could then predict Dab = La· · R·b for
unknown entries Dab.

To perform the decomposition, let us minimize the squared difference between each known en-
try Dij and its prediction Li· ·R·j (note that other loss functions and regularizers are also possible):

min
L,R

∑
(i,j)∈Data

∥∥∥∥∥Dij −
K∑
k=1

LikRik

∥∥∥∥∥
2

. (1)

As a first step towards SGD, consider solving Eq (1) using coordinate gradient descent on L,R:

∂OMF

∂Lik
=

∑
(a,b)∈Data

δ(a = i) [−2DabRkb + 2La·R·bRkb]

∂OMF

∂Rkj

=
∑

(a,b)∈Data

δ(b = j) [−2DabLak + 2La·R·bLak]

where OMF is the objective in Eq(1), and δ(a = i) equals 1 if a = i, and 0 otherwise. This can be
transformed into an SGD algorithm by replacing the full sum over entries (a, b) with a subsample
(with appropriate reweighting). The entries Dab can then be distributed over multiple workers, and
their gradients computed in parallel [12].

We assume that D is “tall”, i.e. N > M (or transpose D so this is true), and partition the
rows of D and L over the processors. Only R needs to be shared among all processors, so we
let it be the SSP shared parameter x := R. SSP allows many workers to read/write to R with
minimal waiting, though the workers will only see stale values of R. This tradeoff is beneficial
because without staleness, the workers must wait for a long time when reading R from the server
(as our experiments will show). While having stale values ofR decreases convergence progress per
iteration, SSP more than makes up by enabling significantly more iterations per minute, compared
to fully synchronous systems. Thus, SSP yields more convergence progress per minute, i.e. faster
convergence.

Note that SSP is not limited to stochastic gradient matrix algorithms: it can also be applied
to parallel collapsed sampling on topic models [2] (by storing the word-topic and document-topic
tables in x), parallel coordinate descent on Lasso regression [5] (by storing the regression coef-
ficients β in x), as well as any other parallel algorithm or model with shared parameters that all
workers need read/write access to. Our experiments will show that SSP performs better than bulk
synchronous parallel and asynchronous systems for matrix completion, topic modeling and Lasso
regression.

3 SSPtable: an Efficient SSP System
An ideal SSP implementation would fully exploit the leeway granted by the SSP’s bounded stal-
eness property, in order to balance the time workers spend waiting on reads with the need for
freshness in the shared data. This section describes our initial implementation of SSPtable, which
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Figure 2: Cache structure of SSPtable, with multiple server shards

is a parameter server conforming to the SSP model, and that can be run on many server machines at
once (distributed). Our experiments with this SSPtable implementation shows that SSP can indeed
improve convergence rates for several ML models and algorithms, while further tuning of cache
management policies could further improve the performance of SSPtable.

SSPtable follows a distributed client-server architecture. Clients access shared parameters us-
ing a client library, which maintains a machine-wide process cache and optional per-thread2 thread
caches (Figure 2); the latter are useful for improving performance, by reducing inter-thread syn-
chronization (which forces workers to wait) when a client ML program executes multiple worker
threads on each of multiple cores of a client machine. The server parameter state is divided
(sharded) over multiple server machines, and a normal configuration would include a server pro-
cess on each of the client machines. Programming with SSPtable follows a simple table-based
API for reading/writing to shared parameters x (for example, the matrix R in the SGD example of
Section 2.1):

• Table Organization: SSPtable supports an unlimited number of tables, which are divided
into rows, which are further subdivided into elements. These tables are used to store x.
• read row(table,row,s): Retrieve a table-row with staleness threshold s. The user

can then query individual row elements.
• inc(table,row,el,val): Increase a table-row-element by val, which can be nega-

tive. These changes are not propagated to the servers until the next call to clock().
• clock(): Inform all servers that the current thread/processor has completed one clock, and

commit all outstanding inc()s to the servers.

Any number of read row() and inc() calls can be made in-between calls to clock(). Dif-
ferent thread workers are permitted to be at different clocks, however, bounded staleness requires
that the fastest and slowest threads be no more than s clocks apart. In this situation, SSPtable
forces the fastest thread to block (i.e. wait) on calls to read row(), until the slowest thread has
caught up.

2 We assume that every computation thread corresponds to one ML algorithm worker.
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To maintain bounded staleness while minimizing wait times on read row() operations,
SSPtable uses the following cache protocol: Let every table-row in a thread or process cache
be endowed with a clock rthread or rproc respectively. Let every thread worker be endowed with
a clock c, equal to the number of times it has called clock(). Finally, define the server clock
cserver to be the minimum over all thread clocks c. When a thread with clock c requests a table-row,
it first checks its thread cache. If the row is cached with clock rthread ≥ c−s, then it reads the row.
Otherwise, it checks the process cache next — if the row is cached with clock rproc ≥ c− s, then
it reads the row. At this point, no network traffic has been incurred yet. However, if both caches
miss, then a network request is sent to the server (which forces the thread to wait for a reply).
The server returns its view of the table-row as well as the clock cserver. Because the fastest and
slowest threads can be no more than s clocks apart, and because a thread’s updates are sent to the
server whenever it calls clock(), the returned server view always satisfies the bounded staleness
requirements for the asking thread. After fetching a row from the server, the corresponding entry
in the thread/process caches and the clocks rthread, rproc are then overwritten with the server view
and clock cserver.

A beneficial consequence of this cache protocol is that the slowest thread only performs costly
server reads every s clocks. Faster threads may perform server reads more frequently, and as
frequently as every clock if they are consistently waiting for the slowest thread’s updates. This
distinction in work per thread does not occur in BSP, wherein every thread must read from the
server on every clock. Thus, SSP not only reduces overall network traffic (thus reducing wait
times for all server reads), but also allows slow, straggler threads to avoid server reads in some
iterations. Hence, the slow threads naturally catch up — in turn allowing fast threads to proceed
instead of waiting for them. In this manner, SSP maximizes the time each machine spends on
useful computation, rather than waiting.

4 Theoretical Analysis of SSP
Formally, the SSP model supports operations x ← x ⊕ (z · y), where x,y are members of a ring
with an abelian operator ⊕ (such as addition), and a multiplication operator · such that z · y = y′

where y′ is also in the ring. In the context of ML, we shall focus on addition and multiplication
over real vectors x,y and scalar coefficients z, i.e. x← x+(zy); such operations can be found in
the update equations of many ML inference algorithms, such as gradient descent [12], coordinate
descent [5] and collapsed Gibbs sampling [2]. In what follows, we shall informally refer to x as
the “system state”, u = zy as an “update”, and to the operation x← x+u as “writing an update”.

We assume that P workers write updates at regular time intervals (referred to as “clocks”). Let
up,c be the update written by worker p at clock c through the write operation x ← x + up,c. The
updates up,c are a function of the system state x, and under the SSP model, different workers will
“see” different, noisy versions of the true state x. Let x̃p,c be the noisy state read by worker p at
clock c, implying that up,c = G(x̃p,c) for some function G. We now formally re-state bounded
staleness, which is the key SSP condition that bounds the possible values x̃p,c can take:
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SSP Condition (Bounded Staleness): Fix a staleness s. Then, the noisy state x̃p,c is equal to

x̃p,c = x0 +

[
c−s−1∑
c′=1

P∑
p′=1

up′,c′

]
︸ ︷︷ ︸

guaranteed pre-window updates

+

[
c−1∑

c′=c−s

up,c′

]
︸ ︷︷ ︸

guaranteed read-my-writes updates

+

 ∑
(p′,c′)∈Sp,c

up′,c′


︸ ︷︷ ︸

best-effort in-window updates

, (2)

where Sp,c ⊆ Wp,c = ([1, P ] \ {p}) × [c − s, c + s − 1] is some subset of the updates u written
in the width-2s “window”Wp,c, which ranges from clock c− s to c + s− 1 and does not include
updates from worker p. In other words, the noisy state x̃p,c consists of three parts:

1. Guaranteed “pre-window” updates from clock 0 to c− s− 1, over all workers.
2. Guaranteed “read-my-writes” set {(p, c − s), . . . , (p, c − 1)} that covers all “in-window”

updates made by the querying worker3 p.
3. Best-effort “in-window” updates Sp,c from the width-2s window4 [c − s, c + s − 1] (not

counting updates from worker p). An SSP implementation should try to deliver as many
updates from Sp,c as possible, but may choose not to depending on conditions.

Notice that Sp,c is specific to worker p at clock c; other workers at different clocks will observe
different S. Also, observe that SSP generalizes the Bulk Synchronous Parallel (BSP) model:

BSP Corollary: Under zero staleness s = 0, SSP reduces to BSP. Proof: s = 0 implies [c, c +
s− 1] = ∅, and therefore x̃p,c exactly consists of all updates until clock c− 1. �

Our key tool for convergence analysis is to define a reference sequence of states xt, informally
referred to as the “true” sequence (this is different and unrelated to the SSPtable server’s view):

xt = x0 +
t∑

t′=0

ut′ , where ut := ut mod P ,bt/P c.

In other words, we sum updates by first looping over workers (t mod P ), then over clocks bt/P c.
We can now bound the difference between the “true” sequence xt and the noisy views x̃p,c:

Lemma 1: Assume s ≥ 1, and let x̃t := x̃t mod P ,bt/P c, so that

x̃t = xt −

[∑
i∈At

ui

]
︸ ︷︷ ︸

missing updates

+

[∑
i∈Bt

ui

]
︸ ︷︷ ︸
extra updates

, (3)

where we have decomposed the difference between x̃t and xt into At, the index set of updates ui
that are missing from x̃t (w.r.t. xt), and Bt, the index set of “extra” updates in x̃t but not in xt. We
then claim that |At|+ |Bt| ≤ 2s(P − 1), and furthermore, min(At ∪Bt) ≥ max(1, t− (s+ 1)P ),
and max(At ∪ Bt) ≤ t+ sP .

3 This is a “read-my-writes” or self-synchronization property, i.e. workers will always see any updates they make.
Having such a property makes sense because self-synchronization does not incur a network cost.

4 The width 2s is only an upper bound for the slowest worker. The fastest worker with clock cmax has a width-s
window [cmax − s, cmax − 1], simply because no updates for clocks ≥ cmax have been written yet.
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Proof: Comparing Eq. (3) with (2), we see that the extra updates obey Bt ⊆ St mod P ,bt/P c,
while the missing updates obey At ⊆ (Wt mod P ,bt/P c \ St mod P ,bt/P c). Because |Wt mod P ,bt/P c| =
2s(P − 1), the first claim immediately follows. The second and third claims follow from looking
at the left- and right-most boundaries ofWt mod P ,bt/P c. �

Lemma 1 basically says that the “true” state xt and the noisy state x̃t only differ by at most
2s(P − 1) updates ut, and that these updates cannot be more than (s + 1)P steps away from t.
These properties can be used to prove convergence bounds for a number of algorithms, such as
stochastic gradient descent (SGD) [17] and coordinate descent [5]. In this paper, we shall provide
bounds for SGD:

Theorem 1 (SGD under SSP): Suppose we want to find the minimizer x∗ of a convex function
f(x) = 1

T

∑T
t=1 ft(x), via gradient descent on one component ∇ft at a time. We assume the

components ft are also convex. Let ut := −ηt∇ft(x̃t), where ηt = σ√
t

with σ = F

L
√

2(s+1)P

for certain constants F,L. Then, under suitable conditions (ft are L-Lipschitz and the distance
between two points D(x‖x′) ≤ F 2),

R[X] :=

[
1

T

T∑
t=1

ft(x̃t)

]
− f(x∗) ≤ 4FL

√
2(s+ 1)P

T

This means that the noisy worker views x̃t converge in expectation to the true view x∗ (as measured
by the function f(), and at rate O(T−1/2)). We defer the proof to the appendix, noting that it
generally follows the analysis in Langford et al. [17], except in places where Lemma 1 is involved.
Our bound is also similar to [17], except that (1) their fixed delay τ has been replaced by our
staleness upper bound 2(s + 1)P , and (2) we have shown convergence of the noisy worker views
x̃t rather than a true sequence xt. Furthermore, because the constant factor 2(s + 1)P is only
an upper bound to the number of erroneous updates, SSP’s rate of convergence has a potentially
tighter constant factor than Langford et al.’s fixed staleness system (details are in the appendix).

5 Experiments
We show that the SSP model outperforms fully-synchronous models such as Bulk Synchronous
Parallel (BSP) that require workers to wait for each other on every iteration, as well as asyn-
chronous models with no model staleness guarantees. The general experimental details are:

• Computational models and implementation: SSP, BSP and Asynchronous. We used SSPtable for
the first two (BSP is just staleness 0 under SSP), and implemented the Asynchronous model using
many of the caching features of SSPtable (to keep the implementations comparable).

• ML models (and parallel algorithms): LDA Topic Modeling (collapsed Gibbs sampling), Matrix
Factorization (stochastic gradient descent) and Lasso regression (coordinate gradient descent). All
algorithms were implemented using SSPtable’s parameter server interface. For TM and MF, we ran
the algorithms in a “full batch” mode (where the algorithm’s workers collectively touch every data
point once per clock()), as well as a “10% minibatch” model (workers touch 10% of the data per
clock()). Due to implementation limitations, we did not run Lasso under the Async model.
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• Datasets: Topic Modeling: New York Times (N = 100m tokens, V = 100k terms, K = 100
topics), Matrix Factorization: NetFlix (480k-by-18k matrix with 100m nonzeros, rank K = 100
decomposition), Lasso regression: Synthetic dataset (N = 500 samples with P = 400k features)

• Compute cluster: Multi-core blade servers connected by 10 Gbps Ethernet, running VMware ESX.
We use one virtual machine (VM) per physical machine. Each VM is configured with 8 cores (either
2.3GHz or 2.5GHz each) and 23GB of RAM, running on top of Debian Linux 7.0.

Convergence Speed. Figure 3 shows objective vs. time plots for the three ML algorithms, over
several machine configurations. We are interested in how long each algorithm takes to reach a
given objective value, which corresponds to drawing horizontal lines on the plots. On each plot,
we show curves for BSP (zero staleness), Async, and SSP for the best staleness value ≥ 1 (we
generally omit the other SSP curves to reduce clutter). In all cases except Topic Modeling with 8
VMs, SSP converges to a given objective value faster than BSP or Async. The gap between SSP
and the other systems increases with more VMs and smaller data batches, because both of these
factors lead to increased network communication — which SSP is able to reduce via staleness.

Computation Time vs Network Waiting Time. To understand why SSP performs better, we
look at how the Topic Modeling (TM) algorithm spends its time during a fixed number of clock()s.
In the 2nd row of Figure 3, we see that for any machine configuration, the TM algorithm spends
roughly the same amount of time on useful computation, regardless of the staleness value. How-
ever, the time spent waiting for network communication drops rapidly with even a small increase in
staleness, allowing SSP to execute clock()s more quickly than BSP (staleness 0). Furthermore,
the ratio of network-to-compute time increases as we add more VMs, or use smaller data batches.
At 32 VMs and 10% data minibatches, the TM algorithm under BSP spends six times more time
on network communications than computation. In contrast, the optimal value of staleness, 32,
exhibits a 1:1 ratio of communication to computation. Hence, the value of SSP lies in allowing
ML algorithms to perform far more useful computations per second, compared to the BSP model
(e.g. Hadoop). Similar observations hold for the MF and Lasso applications (graphs not shown for
space reasons).

Iteration Quantity and Quality. The network-compute ratio only partially explains SSP’s be-
havior; we need to examine each clock()’s behavior to get a full picture. In the 3rd row of
Figure 3, we plot the number of clocks executed per worker per unit time for the TM algorithm,
as well as the objective value at each clock. Higher staleness values increase the number of clocks
executed per unit time, but decrease each clock’s progress towards convergence (as suggested by
our theory); MF and Lasso also exhibit similar behavior (graphs not shown). Thus, staleness is a
tradeoff between iteration quantity and quality — and because the iteration rate exhibits diminish-
ing returns with higher staleness values, there comes a point where additional staleness starts to
hurt the rate of convergence per time. This explains why the best staleness value in a given setting
is some constant 0 < s < ∞— hence, SSP can hit a “sweet spot” between quality/quantity that
BSP and Async do not achieve. Automatically finding this sweet spot for a given problem is a
subject for future work.
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Figure 3: Experimental results: SSP, BSP and Asynchronous parameter servers running Topic Modeling,
Matrix Factorization and Lasso regression. The Convergence graphs plot objective function (i.e. solution
quality) against time. For Topic Modeling, we also plot computation time vs network waiting time, as
well as how staleness affects iteration (clock) frequency (Quantity) and objective improvement per iteration
(Quality).
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6 Related Work and Discussion
The idea of staleness has been explored before: within ML, it has been analyzed in the context
of cyclic-delay architectures [17, 1], in which machines communicate with a central server (or
each other) under a fixed schedule (and hence fixed staleness). Even the bulk synchronous parallel
(BSP) model inherently produces stale communications, the effects of which have been studied
for algorithms such as Lasso regression [5] and topic modeling [2]. Our work differs in that
SSP advocates bounded (rather than fixed) staleness to allow higher computational throughput via
local machine caches. Furthermore, SSP’s performance does not degrade when parameter updates
frequently collide on the same vector elements, unlike asynchronous lock-free systems [21].

Distributed platforms such as Hadoop and GraphLab [18] are popular for large-scale ML. The
biggest difference between them and SSPtable is the programming model — Hadoop uses a state-
less map-reduce model, while GraphLab uses stateful vertex programs organized into a graph.
In contrast, SSPtable provides a convenient shared-memory programming model based on a ta-
ble/matrix API, making it easy to convert single-machine parallel ML algorithms into distributed
versions. In particular, the algorithms used in our experiments — LDA, MF, Lasso — are all
straightforward conversions of single-machine algorithms. We also note that Hadoop’s BSP exe-
cution model is a special case of SSP, making SSPtable strictly more general. Finally, there exist
special-purpose tools such as Vowpal Wabbit [16] and YahooLDA [2]. Whereas these systems
have been targeted at a subset of ML algorithms, SSPtable can be used by any ML algorithm that
tolerates stale updates.

The distributed systems community has typically examined staleness in the context of consis-
tency models. The TACT model [26] describes consistency along three dimensions: numerical
error, order error, and staleness. Other work [24] attempts to classify existing systems according
to a number of consistency properties, specifically naming the concept of bounded staleness. The
vector clocks used in SSPtable are similar to those in Fidge [11] and Mattern [20], which were in
turn inspired by Lamport clocks [15]. However, SSPtable uses vector clocks to track the freshness
of the data, rather than causal relationships between updates. [8] gives an informal definition of
the SSP model, motivated by the need to reduce straggler effects in large compute clusters.

In the databases literature, bounded staleness has been applied to improve update and query
performance. LazyBase [7] allows staleness bounds to be configured on a per-query basis, and
uses this relaxed staleness to improve both query and update performance. FAS [23] keeps data
replicated in a number of databases, each providing a different freshness/performance tradeoff.
Data stream warehouses [13] collect data about timestamped events, and provide different consis-
tency depending on the freshness of the data. The concept of staleness (or freshness/timeliness)
has also been applied in other fields such as sensor networks [14], and dynamic web content gen-
eration [3], web caching [6], and information systems [4].
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A Proof of Theorem 1
We use slightly different definitions from the main paper, specifically:

f(x) :=
T∑
t=1

ft(x)

R[X] :=
T∑
t=1

ft(x̃t)− f(x∗).

We also define D (x‖x′) := 1
2
‖x− x′‖2. Compared to the main paper, f(x) and R[X] have no

1/T factor (this does not materially affect our results). We now re-state Theorem 1:

Theorem 1 (SGD under SSP): Suppose we want to find the minimizer x∗ of a convex function
f(x) =

∑T
t=1 ft(x), via gradient descent on one component ∇ft at a time. We assume the com-

ponents ft are also convex. Let ut := −ηt∇ft(x̃t), where ηt = σ√
t

with σ = F

L
√

2(s+1)P
for certain

constants F,L. Then, assuming that ‖∇ft (x)‖ ≤ L for all t (i.e. ft are L-Lipschitz), and that
maxx,x′∈X D (x‖x′) ≤ F 2 (the optimization problem has bounded diameter), we claim that

R[X] :=
T∑
t=1

ft(x̃t)− f(x∗) ≤ 4FL
√
2(s+ 1)PT

Proof: The analysis follows Langford et al. (2009), except where the Lemma 1 from the main
paper is involved. First,

R [X] :=
T∑
t=1

ft (x̃t)− ft (x∗)

≤
T∑
t=1

〈∇ft (x̃t) , x̃t − x∗〉 (ft are convex)

=
T∑
t=1

〈g̃t, x̃t − x∗〉 .

where we have defined g̃t := ∇ft (x̃t). The high-level idea is to show that R [X] ≤ o (T ), which
implies Et [ft (x̃t)− ft (x∗)]→ 0 and thus convergence. First, we shall say something about each
term 〈g̃t, x̃t − x∗〉.

Lemma 2: If X = Rn, then for all x∗,

〈x̃t − x∗, g̃t〉 =
1

2
ηt ‖g̃t‖2 +

D (x∗‖xt)−D (x∗‖xt+1)

ηt
+

[∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]
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Proof:

D (x∗‖xt+1)−D (x∗‖xt) =
1

2
‖x∗ − xt + xt − xt+1‖2 −

1

2
‖x∗ − xt‖2

=
1

2
‖x∗ − xt + ηtg̃t‖2 −

1

2
‖x∗ − xt‖2

=
1

2
η2t ‖g̃t‖

2 − ηt 〈xt − x∗, g̃t〉

=
1

2
η2t ‖g̃t‖

2 − ηt 〈x̃t − x∗, g̃t〉 − ηt 〈xt − x̃t, g̃t〉

Expand the last term:

〈xt − x̃t, g̃t〉 =

〈[
−
∑
i∈At

ηig̃i +
∑
i∈Bt

ηig̃i

]
, g̃t

〉
= −

∑
i∈At

ηi 〈g̃i, g̃t〉+
∑
i∈Bt

ηi 〈g̃i, g̃t〉

Therefore

D (x∗‖xt+1)−D (x∗‖xt) =
1

2
η2t ‖g̃t‖

2 − ηt 〈x̃t − x∗, g̃t〉 − ηt

[
−
∑
i∈At

ηi 〈g̃i, g̃t〉+
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]
D (x∗‖xt+1)−D (x∗‖xt)

ηt
=

1

2
ηt ‖g̃t‖2 − 〈x̃t − x∗, g̃t〉+

[∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]

〈x̃t − x∗, g̃t〉 =
1

2
ηt ‖g̃t‖2 +

D (x∗‖xt)−D (x∗‖xt+1)

ηt
+

[∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]
.

This completes the proof of Lemma 2. �

Back to Theorem 1: Returning to the proof of Theorem 1, we use Lemma 2 to expand the regret
R[X]:

R [X] ≤
T∑
t=1

〈g̃t, x̃t − x∗〉 =
T∑
t=1

1

2
ηt ‖g̃t‖2 +

T∑
t=1

D (x∗‖xt)−D (x∗‖xt+1)

ηt

+
T∑
t=1

[∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]

=
T∑
t=1

[
1

2
ηt ‖g̃t‖2 +

∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]

+
D (x∗‖x1)

η1
− D (x∗‖xT+1)

ηT
+

T∑
t=2

[
D (x∗‖xt)

(
1

ηt
− 1

ηt−1

)]
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We now upper-bound each of the terms:
T∑
t=1

1

2
ηt ‖g̃t‖2 ≤

T∑
t=1

1

2
ηtL

2 (Lipschitz assumption)

=
T∑
t=1

1

2

σ√
t
L2

≤ σL2
√
T ,

and

D (x∗‖x1)
η1

− D (x∗‖xT+1)

ηT
+

T∑
t=2

[
D (x∗‖xt)

(
1

ηt
− 1

ηt−1

)]

≤ F 2

σ
+ 0 +

F 2

σ

T∑
t=2

[√
t−
√
t− 1

]
(Bounded diameter)

=
F 2

σ
+
F 2

σ

[√
T − 1

]
=

F 2

σ

√
T ,

and
T∑
t=1

[∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]

≤
T∑
t=1

[|At|+ |Bt|] ηmax(1,t−(s+1)P )L
2 (from Lemma 1: min (At ∪ Bt) ≥ max (1, t− (s+ 1)P ))

= L2

(s+1)P∑
t=1

[|At|+ |Bt|] η1 +
T∑

t=(s+1)P+1

[|At|+ |Bt|] ηt−(s+1)P

 (split the sum)

= L2

(s+1)P∑
t=1

[|At|+ |Bt|]σ +
T∑

t=(s+1)P+1

[|At|+ |Bt|]
σ√

t− (s+ 1)P


≤ σL2

(s+1)P∑
t=1

2s (P − 1) +
T∑

t=(s+1)P+1

2s (P − 1)
1√

t− (s+ 1)P


(from Lemma 1: |At|+ |Bt| ≤ 2s(P − 1))

≤ 2σL2s (P − 1)
[
(s+ 1)P + 2

√
T − (s+ 1)P

] (
Note that

b∑
i=a

1

2
√
i
≤
√
b− a+ 1

)
≤ 2σL2s (P − 1)

[
(s+ 1)P + 2

√
T
]

≤ 2σL2 [(s+ 1)P ]2 + 4σL2 (s+ 1)P
√
T .
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Hence,

R [X] ≤
T∑
t=1

〈g̃t, x̃t − x∗〉 ≤ σL2
√
T + F 2

√
T

σ
+ 2σL2 [(s+ 1)P ]2 + 4σL2 (s+ 1)P

√
T .

If we set the initial step size σ = F
L
√
2κ

where κ = (s+ 1)P , then

R [X] ≤ FL
√
T√

2κ
+ FL

√
2κT +

√
2FLκ3/2 + 2FL

√
2κT

= FL
√
2κT

[
3 +

1

2κ
+

κ√
T

]
.

Assuming T large enough that 1
2κ

+ κ√
T
≤ 1, we get

R [X] ≤ 4FL
√
2κT .

This completes the proof of Theorem 1. �
In Langford et al. the error between xt and x̃t consists of exactly τ terms, where τ is the fixed-

delay parameter of their system. In contrast, the same error under SSP contains at most 2(s+ 1)P
terms, meaning that the actual convergence rate can be improved (by up to a constant factor) with
a good SSP implementation. We also note that Theorem 1 does not address the other key feature
of SSPtable, namely that workers spend less time waiting for the network, due to caching. In
practice, while increasing the staleness of SSPtable decreases the per-iteration convergence rate
(as Theorem 1 suggests), it also increases the number of iterations executed per unit time. The
result is faster convergence with increased staleness, up to a point.

17



  



Carnegie Mellon University does not discriminate in admission, employment, or administration of its programs 
or activities on the basis of race, color, national origin, sex, handicap or disability, age, sexual orientation, 
gender identity, religion, creed, ancestry, belief, veteran status, or genetic information. Futhermore, 
Carnegie Mellon University does not discriminate and if required not to discriminate in violation of 
federal, state, or local laws or executive orders.

Inquiries concerning the application of and compliance with this statement 
should be directed to the vice president for campus affairs, 
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213,
telephone, 412-268-2056

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213


	1 Introduction
	2 Stale Synchronous Parallel Model of Computation
	2.1 An example: Stochastic Gradient Descent for Matrix Problems

	3 SSPtable: an Efficient SSP System
	4 Theoretical Analysis of SSP
	5 Experiments
	6 Related Work and Discussion
	A Proof of Theorem 1

