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Abstract  
 

When monitoring spatial phenomena, such as the ecological condition of a river, deciding where 
to make observations is a challenging task. In these settings, a fundamental question is when an 
active learning, or sequential design, strategy, where locations are selected based on previous 
measurements, will perform significantly better than sensing at an a priori specified set of 
locations. For Gaussian Processes (GPs), which often accurately model spatial phenomena, we 
present an analysis and efficient algorithms that address this question. Central to our analysis is a 
theoretical bound which quantifies the performance difference between active and a priori design 
strategies. We consider GPs with unknown kernel parameters and present a nonmyopic approach 
for trading off exploration, i.e., decreasing uncertainty about the model parameters, and 
exploitation, i.e., near-optimally selecting observations when the parameters are (approximately) 
known. We discuss several exploration strategies, and present logarithmic sample complexity 
bounds for the exploration phase. We then extend our algorithm to handle nonstationary GPs 
exploiting local structure in the model. A variational approach allows us to perform efficient 
inference in this class of nonstationary models. We also present extensive empirical evaluation on 
several real-world problems. 
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1 Introduction

When monitoring spatial phenomena, such as the ecological condition of a river as in Fig. 1, it
is of fundamental importance to decide on the most informative locations to make observations.
However, to find locations which predict the phenomena best, one needs a model of the spatial phe-
nomenon itself. Gaussian processes (GPs) have been shown to be effective models for this purpose
(Cressie, 1991; Rasmussen & Williams, 2006).

Most previous work on observation selection in GPs has considered the a priori design problem,
in which the locations are selected in advance prior to making observations (c.f., Guestrin et al.
(2005); Seo et al. (2000); Zhu and Stein (2006)). Indeed, if the GP model parameters are completely
known, the predictive variances do not depend on actual observed values, and hence nothing is lost
by committing to sampling locations in advance. In the case of unknown parameters however, this
independence is no longer true. Key questions we strive to understand in this paper are how much
better a sequential algorithm, taking into account previous observations, can perform compared to
a priori design when the parameters are unknown, and how can this understanding lead to better
observation selection methods.

Our main theoretical result is a bound which quantifies the performance difference between se-
quential and a priori strategies in terms of the parameter entropy of the prior over kernels. The lower
the uncertainty about the parameters, the less we can potentially gain by using an active learning
(sequential) strategy. This relationship bears a striking resemblance to the exploration–exploitation
tradeoff in Reinforcement Learning. If the model parameters are known, we can exploit the model
by finding a near-optimal policy for sampling using the mutual information criterion (Caselton &
Zidek, 1984; Guestrin et al., 2005). If the parameters are unknown, we present several exploration
strategies for efficiently decreasing the uncertainty about the model. Most approaches for active
sampling of GPs have been myopic in nature, in each step selecting observations which, e.g., most
decrease the predictive variance. Our approach however is nonmyopic in nature: we prove log-
arithmic sample complexity bounds on the duration of the exploration phase, and near optimal
performance in the exploitation phase.

Often, e.g., in spatial interpolation (Rasmussen & Williams, 2006), GP models are assumed to
be isotropic, where the covariance of two locations depends only on their distance, and some (un-
known) parameters. Many phenomena of interest however are nonstationary (Paciorek, 2003; Nott
& Dunsmuir, 2002). In our river example (c.f., Figure 1), the pH values are strongly correlated
along the border, but weakly in the turbulent inner region. Our approach is applicable to both
stationary and nonstationary processes. However, nonstationary processes are often defined by a
much larger number of parameters. To address this issue, we extend our algorithm to handle non-
stationary GPs with local structure, providing efficient exploration strategies and computational
techniques that handle high dimensional parameter vectors. In summary, our contributions are:

• A theoretical and empirical investigation of the performance difference between sequential
and a priori strategies for sampling in GPs;

• An exploration–exploitation analysis and sample complexity bounds for sequential design;
• An efficient, nonmyopic, sequential algorithm for observation selection in isotropic GPs;
• Extension of our method to nonstationary GPs;
• Empirical evaluation on several real-world spatial monitoring problems.
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Figure 1: Left: Active sampling using the Networked Infomechanical System (NIMS) sensor (Har-
mon et al., 2006), deployed at the Merced River. The sensor is attached to a wire, which enables
horizontal traversal of the transect. On fixed horizontal position, it can vertically lower or raise the
sensing unit. Right: Samples of pH acquired along horizontal transect near the confluence of the
San Joaquin and Merced rivers.

2 Gaussian Processes

Consider, for example, the task of monitoring the ecological state of a river using a robotic sensor,
such as the one shown in Figure 1. We can model the pH values as a random process XV over
the locations V, e.g., V ⊂ R2. Hereby, the pH value at every location y ∈ V is a random vari-
able Xy. Measurements xA at sensor locations A ⊂ V then allow us to predict the pH value at
uninstrumented locations y, by conditioning on the observations, i.e., predicting E[Xy | XA = xA].

It has been shown, that pH values, temperatures and many other spatial phenomena, can be ef-
fectively modeled using Gaussian processes (GPs) (c.f., Shewry and Wynn (1987); Cressie (1991)).
A GP (c.f., Rasmussen and Williams (2006)) is a random process XV , such that every finite subset
of variables XA ⊆ XV has a (consistent) multivariate normal distribution:
P (XA = xA) = 1

(2π)n/2|ΣAA|
e−

1
2 (xA−µA)T Σ−1

AA(xA−µA), where µA is the mean vector and ΣAA is the
covariance matrix. A GP is fully specified by a mean function M(·), and a symmetric positive-
definite kernel function K(·, ·), often called the covariance function. For each random variable Xu

with index u ∈ V, its mean µu is given by M(u), and for each pair of indices u, v ∈ V, their
covariance σuv is given by K(u, v). For simplicity of notation, we denote the mean vector of a set
of variables XA by µA, where the entry for element u of µA is M(u). Similarly, we denote their
covariance matrix by ΣAA, where the entry for u, v is K(u, v). The GP representation allows us to
efficiently compute predictive distributions, P (Xy | xA), which, e.g., correspond to the predicted
temperature at location y after observing sensor measurements XA = xA. The distribution of Xy

given these observations is a Gaussian whose conditional mean µy|A and variance σ2
y|A are:

µy|A = µy + ΣyAΣ−1
AA(xA − µA), (2.1)

σ2
y|A = K(y, y)− ΣyAΣ−1

AAΣAy, (2.2)

where ΣyA is a covariance vector with one entry for each u ∈ A with value K(y, u), and ΣAy = ΣT
yA.

An important property of GPs is that the posterior variance (2.2) does not depend on the observed
values xA.

In order to compute predictive distributions using (2.1) and (2.2), the mean and kernel func-
tions have to be known. The mean function can usually be estimated using regression techniques.
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Estimating kernel functions is difficult, and usually, strongly limiting assumptions are made. For
example, it is commonly assumed that the kernel K(u, v) is stationary, depending only on the dif-
ference between the locations, i.e., K(u, v) = Kθ(u− v), where θ is a set of parameters. Very often,
the kernel is even assumed to be isotropic, which means that the covariance only depends on the
distance between locations, i.e., K(u, v) = Kθ(||u− v||2). A common choice for an isotropic kernel
is the exponential kernel, Kθ(δ) = exp(− |δ|

θ ), or the Gaussian kernel, Kθ(δ) = exp(− δ2

θ2 ). Many
other parametric forms are possible.

In Section 3, we address a general form (not necessarily isotropic), where the kernel function
is specified by a set of parameters θ. We adopt a hierarchical Bayesian approach and assign
a prior P (θ) to the parameters θ, which we assume to be discretized in our analysis. Hence,
P (Xy | XA) =

∑
θ P (Xy | XA, θ)P (θ | XA). For clarity of presentation, we also assume that the

prior mean function M(·) is zero. This assumption can be relaxed, for example by assigning a
normal prior to the mean function.

3 Observation selection policies

Entropy. In order to select informative observations, the entropy criterion has been frequently
used (c.f., Seo et al. (2000); Shewry and Wynn (1987); Gramacy (2005)). This criterion selects
observations A∗ ⊆ V with highest entropy,

A∗ = argmaxA⊆V H(XA), (3.1)

where H(XA) = −
∫

p(xA) log p(xA)dxA is the joint (differential) entropy of the random variables
XA. We call (3.1) an a priori design criterion, as it does not depend on the actual observed values,
and can be optimized in advance. Maximizing (3.1) is NP-hard (Ko et al., 1995), so usually, a
myopic (greedy) algorithm is used. Starting with the empty set, A(0), at each step t it adds the
location yi = argmaxy∈V\Ai−1

H(Xyi
| XAi−1) to the set of already selected locations Ai−1.

This a priori greedy rule is readily turned into a sequential algorithm, selecting

yi = argmax
y∈V\Ai−1

H(Xyi
| XAi−1 =xAi−1).

In this sequential setting, the selected location yi depends on the observations xAi−1 . More generally,
we define a policy for selecting variables, which does not need to be greedy: For each instantia-
tion of the process XV = xV , such a sequential policy π can select a different set of observations
π(xV) ⊆ V. Hereby, the i-th element, πi, deterministically depends on the observations made in
the first i− 1 steps, i.e., on xπ1:i−1 . Hence, a policy can be considered a decision tree, where after
each observation, we decide on the next observation to make. If we apply the greedy policy πGH

to our river example, πGH,i would select the location which has highest entropy for predicting pH,
conditioned on the measurements we have made so far. We write |π| = k to indicate that π selects
sets Xπ of k elements. In analogy to the definition of H(XA), we can define the joint entropy of
any sequential policy π as H(Xπ) ≡ −

∫
p(xV) log p(xπ)dxV , whereby π = π(xV) denotes the set of

observations selected by the policy in the event XV = xV . H(XA) is the entropy of a fixed set of
variables A. Since π will typically select different observations in different realizations XV = xV ,
H(Xπ) will measure the “entropy” of different variables in each realization xV .
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Mutual information. Caselton and Zidek (1984) proposed the mutual information criterion for
observation selection, MI(XA) = H(XV\A) − H(XV\A | XA). Guestrin et al. (2005) showed that
this criterion selects locations which most effectively reduce the uncertainty at the unobserved lo-
cations, hence it often leads to better predictions compared to the entropy criterion. A natural
generalization of mutual information to the sequential setting is

MI(Xπ) = H(XV\π)−H(XV\π | Xπ)

= −
∫

p(xV)[log p(xV\π)− log p(xV\π | xπ)]dxV .

Hereby, for each realization XV = xV , V\π = V\π(xV) is the set of locations not picked by the policy
π. The greedy policy πGMI for mutual information, after some algebraic manipulation, is given by:

πi=argmaxy H(Xy|Xπ1:i−1=xπ1:i−1)−H(Xy |Xπ̄1:i−1), (3.2)

where πi ≡ πi(xπ1:i−1), and π̄ ≡ V \ {y, π(xV)} is the set of “unsensed” locations if XV = xV ,
excluding y.

4 Bounds on the advantage of active learning strategies

A key question in active learning is to determine the potential of improvement of sequential strate-
gies over a priori designs, e.g., how much greater max|π|=k H(Xπ) is than max|A|=k H(XA). If the
GP parameters θ are known, it holds that

H(Xy|XA=xA, θ)=
1
2

log 2πeσ2
Xy|XA=H(Xy|XA, θ), (4.1)

where σ2
Xy|XA , as given by Equation (2.2). Thus, the entropy of a set of variables does not depend

on the actual observed values xA. Hence, perhaps surprisingly, in this case, max|π|=k H(Xπ) =
max|A|=k H(XA). More generally, any objective function depending only on the predictive vari-
ances, cannot benefit from sequential strategies. Note that for non-Gaussian models, sequential
strategies can strictly outperform a priori designs, even with known parameters.

With unknown parameters, H(XA) = −
∑

θ

∫
P (xA, θ) log

(∑
θ′

∫
P (xA, θ′)

)
dxA is the entropy

of a mixture of GPs. Since observed values affect the posterior over the parameters P (Θ|XA=xA),
the predictive distributions now depend on these values. Intuitively, if we have low uncertainty
about our parameters, the predictive distributions should be almost independent of the observed
values, and there should be almost no benefit from sequential strategies. We will now theoretically
formalize this intuition.

The following central result achieves this goal, by bounding H(Xπ) (and similarly for mutual
information) of the optimal policy π by a mixture of entropies of sets H(XAθ

| θ), whereby the sets
are Aθ are chosen optimally for each fixed parameter θ (and can thus be selected a priori, without
a sequential policy):

Theorem 1.
max
|π|=k

H(Xπ) ≤
∑

θ

P (θ) max
|A|=k

H(XA | θ) + H(Θ);

max
|π|=k

MI(Xπ) ≤
∑

θ

P (θ) max
|A|=k

MI(XA | θ) + H(Θ).
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The proofs of all theorems can be found in the Appendix.
Theorem 1 bounds the advantage of sequential designs by two components: The expected ad-

vantage by optimizing sets for known parameters, i.e.,
∑

θ P (θ) max|A|=k MI(XA | θ), and the
parameter entropy, H(Θ). This result implies, that if we are able to (approximately) find the best
set of observations Aθ for a GP with known parameters θ, we can bound the advantage of using a
sequential design. If this advantage is small, we select the set of observations ahead of time, without
having to wait for the measurements.

5 Exploration–Exploitation Approach towards Learning GPs

Theorem 1 allows two conclusions: Firstly, if the parameter distribution P (Θ) is very peaked, we
cannot expect active learning strategies to drastically outperform a priori designs. More impor-
tantly however, it motivates an exploration–exploitation approach towards active learning of GPs:
If the bound provided by Theorem 1 is close to our current mutual information, we can exploit our
current model, and optimize the sampling without having to wait for further measurements. If the
bound is very loose, we explore, by making observations to improve the bound from Theorem 1.
We can compute the bound while running the algorithm to decide when to stop exploring.

5.1 Exploitation using Submodularity

Theorem 1 shows that in order to bound the value of the optimal policy, it suffices to bound the
value of the optimal set. Guestrin et al. (2005) derived such a bound for mutual information,
using the concept of submodularity. A set function F on V is called submodular if it satisfies
the following diminishing returns property: for all A ⊆ B ⊆ V and all x /∈ B it must hold that
F (A∪{x})−F (A) ≥ F (B∪{x})−F (B). Intuitively, this diminishing returns property makes sense
for selecting observations: a new observation decreases our uncertainty more if we know less. A set
function is called nondecreasing if for all A ⊆ B ⊆ V it holds that F (A) ≤ F (B). A fundamental
result about nondecreasing submodular functions is the guarantee that the greedy algorithm, which
greedily adds the element x toA such that F (A∪{x})−F (A) is largest, selects a setAG of k elements
which is at most a constant factor (1− 1/e) worse than the set of k elements of maximal value, i.e.,
F (AG) ≥ (1 − 1/e) max|A|=k F (A) (Nemhauser et al., 1978). Guestrin et al. (2005) showed that
mutual information is submodular and approximately non-decreasing. More specifically:

Theorem 2 (Guestrin et al. (2005)). Let XV be a Gaussian process. Under sufficiently fine
discretization V, the greedy algorithm for mutual information is guaranteed to select a set AG of k
sensors for which MI(XAG

) ≥ (1− 1/e)(OPT−kε), where OPT is the mutual information achieved
by the optimal placement, and ε depends polynomially on the discretization.

Hence, we have the following result about exploitation using the mutual information criterion:

Corollary 3. Choose the discretization of the GP such that Theorem 2 holds for all discrete values
of Θ. Then MI(XAG

| Θ) ≤ max|π|=k MI(Xπ) ≤ (1 − 1/e)−1
∑

θ P (θ)MI(X (θ)
AG

| θ) + kε + H(Θ),

where AG is the greedy set for MI(XA | Θ) =
∑

θ P (θ) MI(XA | θ), and A(θ)
G is the greedy set for

MI(XA | θ).

This result allows us to efficiently compute online bounds on how much can be gained by following
a sequential active learning strategy. Intuitively, it states that if this bound is close to our current
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mutual information, we can stop exploring, and exploit our current knowledge about the model
by near-optimally finding the best set of observations. We can also use Corollary 3 as a stopping
criterion: We can use exploration techniques (as described in the next section) until the bound on
the advantage of the sequential strategy drops below a specified threshold η, i.e., we stop if

(1− 1/e)−1
∑

θ P (θ) MI(X (θ)
AG

| θ) + kε + H(Θ)−MI(XAG
| Θ)

MI(XAG
| Θ)

≤ η.

In this case, we can use the greedy a priori design to achieve near-optimal mutual information, and
obtain performance comparable to the optimal sequential policy. This a priori design is logistically
simpler and easier to analyze. Hence, the stopping criterion interpretation of Corollary 3 has strong
practical value, and we are not aware of any other approach for actively learning GPs which allow
to compute such a stopping criterion.

5.2 Implicit and Explicit Exploration

In order to practically use Corollary 3 as a stopping criterion for exploration, we have to, for each
parameter θ, solve the optimization problem maxA H(XA | θ). The following theorem shows, that if
the parameter entropy is small enough, the contribution of the term

∑
θ P (θ)max|A|=k MI(XA | θ)

to the bound diminishes quickly, and hence, we should concentrate solely on minimizing the pa-
rameter entropy H(Θ).

Theorem 4. Let M = maxA maxθ1,θ2
MI(XA|θ1)
MI(XA|θ2)

< ∞. Let K = maxθ maxA MI(XA | θ), H(Θ) < 1.
Then

MI(XA∗ | Θ)−H(Θ)≤MI(Xπ∗)≤MI(XA∗ | Θ) + CH(Θ),

where A∗ = argmaxA MI(XA | Θ) and π∗ = argmaxπ MI(Xπ), and C =
(

1 + MK
log2

1
H(Θ)

)
.

As a function of H(Θ), C converges to 1 very quickly as H(Θ) decreases. Theorem 4 hence provides
the computational advantage, that, once the parameter entropy is small enough, we do not need
to recompute the term

∑
θ P (θ) max|A|=k MI(XA | θ) when using Theorem 1 as a criterion for

stopping exploration. Hence, in the following, we concentrate on directly decreasing the parameter
uncertainty. We describe three natural strategies for this goal. As we show in Section 7, none of these
strategies dominates the other; whichever is more appropriate depends on the particular application.

Explicit Exploration via Independence Tests (ITE). In many cases, the unknown parame-
ter of an isotropic GP is the bandwidth of the kernel, effectively scaling the kernel over space. Let
θ1 < · · · < θm be the possible bandwidths. In the exponential kernel, Kθ(δ) = exp(− |δ|

θ ), or the
Gaussian kernel, Kθ(δ) = exp(− δ2

θ2 ), the correlation between two variables at distance δ decreases
exponentially with their distance δ. Hence, there is an exponentially large gap between the correla-
tion for bandwidths θi and θi+1: There will be a distance δ̂, for which two random variables within
this distance will appear dependent if the true bandwidth θ is at least θ ≥ θi+1, and (roughly)
independent if θ ≤ θi. Our goal is to exploit this gap to efficiently determine the correct parameter.

First note that if we can separate θi from θi+1, we effectively distinguish any θj , for j ≤ i, from θl,
for l ≥ i+1, since the bandwidths scale the kernels. Let Ii be a function of Θ, such that (Ii | Θ) = 0
if Θ ≤ θi, and (Ii | Θ) = 1 if Θ ≥ θi+1. Assume we have tests Ti, using N̂ samples, such that
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P (Ti 6= Ii | θ) ≤ α for all θ. We can now use a binary search procedure to identify the true band-
width with high probability using at most N̂dlog2 me samples. Let πG◦ITE be the policy, where we
first explore using ITE, and then greedily select the set AG maximizing MI(XAG

| Θ,xπIT E
). Let

xπIT E
be the observations made by ITE, and let A(θ)

G be the solution of the greedy algorithm for
optimizing MI(XA | θ).

Theorem 5. Under the assumptions of Corollary 3 for sets of sizes up to k + N̂dlog me, if we have
tests Ti using at most N̂ samples, such that for all θ: P (Ti 6= Ii | θ) ≤ α/(dlog me2(maxθ |MI(XπG◦IT E

|
Θ)−MI(XA(θ)

G

|θ)|)):

ET [MI(XπG◦IT E
| Θ)] ≥ (1− 1/e) max

|π|=k
MI(Xπ)− kε− α.

In order to make use of Theorem 5, we need to find tests Ti such that P (Ti 6= Ii | θ) is sufficiently
small for all θ. If only the bandwidth is unknown, we can for example use a test based on Pear-
son’s correlation coefficient. Since this test requires independent samples, let us first assume, that
the kernel function has bounded support (c.f., Storkey (99)), and that the domain of the GP is
sufficiently large, such that we can get independent samples by sampling pairs of variables outside
the support of the “widest” kernel. The number of samples will depend on the error probability
α, and the difference ρ̂ between the correlations depending on whether Θ ≤ θi or Θ ≥ θi+1. This
difference will in turn depend on the distance between the two samples. Let

ρ̂i = max
δ

min
j≤i,l≥i+1

∣∣Kθj (δ)−Kθl
(δ)
∣∣ , and

δ̂i = argmax
δ

min
j≤i,l≥i+1

∣∣Kθj
(δ)−Kθl

(δ)
∣∣ .

ρ̂i is the maximum “gap” achievable for separating bandwidths at most θi from those at least θi+1.
δ̂i is the distance at which two samples should be taken to achieve this gap in correlation. If several
feasible pairs of locations are avaible, we choose the one which maximizes mutual information.

Theorem 6. We need N̂i = O
(

1
ρ̂i

2 log2 1
α

)
independent pairs of samples at distance δ̂i to decide

between θ ≤ θi or θ ≥ θi+1 with P (Ti 6= Ii | θ) ≤ α for all θ.

In the case of kernels with non-compact support, such as the Gaussian or Exponential kernel1,
we cannot generate such independent samples, since distant points will have some (exponentially
small) correlation. However, these almost independent samples suffice:

Corollary 7. Let X have variance σ2, measurement noise σ2
n at each location, ρ̂ = mini ρ̂i, and

ξ < ρ̂. We can obtain a test Ti with P (Ti 6= Ii | θ) ≤ α using N̂ = O
(

1
(ρ̂−ξ)2 log2 1

α

)
pairs of

samples Xs = (Xs1 ,Xs2) at distance δ̂i, if, for every Xs and Xt in our sample set, Cor(Xsi
,Xtj

) ≤√
ξσ2

n

4σ2N̂dlog2 me , for i, j ∈ {1, 2}.

Hence, since most kernel functions decay exponentially fast, only a small spatial distance has to be
guaranteed between the pairs of samples of the independence tests. Note that while this discussion

1For the Gaussian and the Exponential kernel for example, we can compute ρ̂i analytically.
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focused on detecting bandwidths, the technique is general, and can be used to distinguish other
parameters, e.g., variance, as well, as long as appropriate tests are available.

This hypothesis testing exploration strategy gives us sample complexity bounds. It guarantees
that with a small number of samples we can decrease the parameter uncertainty enough such that,
using Theorem 4 as stopping criterion, we can switch to exploitation.

Explicit Exploration based on Information Gain (IGE). As the bound in Theorem 4 di-
rectly depends on H(Θ), another natural exploration strategy is to select samples which have highest
information gain about the parameters, H(Θ). More formally, this strategy, after observing samples
Xπ1:i = xπ1:i , selects the location πi+1 such that πi+1 = argmaxy H(Θ | xπ1:i)−H(Θ | Xy,xπ1:i).

Implicit Exploration (IE). The following generalization of the “information never hurts” prin-
ciple (Cover & Thomas, 1991) to policies shows that any exploration strategy will, in expectation,
decrease H(Θ).

Proposition 8. Let XV be a GP with kernel parameters Θ. Let π be a policy for selecting obser-
vations. Then H(Θ | Xπ) ≤ H(Θ).

Considering the near-optimal performance of the greedy heuristic in the a priori case, a natural
implicit exploration strategy is the sequential greedy algorithm. Using Eq. (3.2), IE considers the
previous observations, when deciding on the next observation, and, using Proposition 8, implicitly
decreases H(Θ).

6 Actively learning nonstationary GPs

Many spatial phenomena are nonstationary, being strongly correlated in some areas of the space
and very weakly correlated in others. In our river example, we consider the pH values in the region
just below the confluence of the San Joaquin and Merced rivers. The former was dominated by
agricultural and wetland drainage, whereas, in contrast, the latter was less saline. The data (c.f.,
Figure 2(a)) is very nonstationary. There is very high correlation and low variance in the outer
regions. The turbulent confluence region however exhibits high variance and low correlation.

Modeling nonstationarity has to trade off richness of the model and computational and statistical
tractability. Even though the covariance function is a an infinite dimensional object, often a para-
metric form is chosen. For example, Nott and Dunsmuir (2002) suggest to model nonstationarity
by a spatially varying linear combination of isotropic processes. In any such a parametric setting,
Corollary 3 holds without additional assumptions; the major difference is that H(Θ) can be much
larger, increasing the potential for improvement of the active strategy over the a priori design.

6.1 Nonstationary model

Motivated by the river monitoring problem, we partition the space into disjoint regions V(1), . . . ,V(m),
which are specified by the user. With each region V(i), we associate an isotropic process X (i)

V , with
parameters Θ(i), which are assumed to have independent priors. We define our GP prior for the
full space V as a linear combination of the local GPs: Xs =

∑
i λi(s)X (i)

s . Note that such a linear
combination is still a valid GP. How should we choose the weights λi(s)? We want a model which
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behaves similar to process X (i)
V within region i, and interpolates smoothly between regions. In or-

der to achieve that, we associate a weighting function νi(s) with each region. This function should
achieve its maximum value in region i and decrease with distance to region i. In our river example,
we set the weighting functions as indicated in Figure 2(a). We can then set λi(s) =

√
νi(s)∑
i′ νi′ (s)

,
which ensures that the variance at location s is a convex combination of the variances of the local
GPs, with contribution proportional to νi(s). If each X (i)

V has zero mean, and kernel Ki(s, t), then
the new, nonstationary GP XV has the kernel

∑
i λi(s)λi(t)Ki(s, t). By adding a deterministic

function M(s), one can also modify the prior mean of the GP. While the decomposition into pre-
specified regions might appear restrictive, in many applications, as in the river monitoring setting,
a good decomposition can be provided by an expert. Furthermore, one can control the amount
of smoothing by a bandwidth parameter, which can be part of the model. By this approach, the
data itself can decide whether two adjacent regions should be joined (high smoothing bandwidth)
or almost independent (low smoothing bandwidth).

6.2 Efficient Nonstationary Active Learning

Now, in principle we could apply Corollary 3 to this model to determine when to switch from explo-
ration (e.g., using information gain) to exploitation. However, even if each Θ(i) is discretized so that
the distribution over Θ(i) can be exactly maintained, the joint distribution over Θ = (Θ(1), . . . ,Θ(m))
is exponentially large in m. In order to address this problem, let us first consider the special case
where each ν(i) is positive only within region i. In this case, an observation made in region i only
affects the prediction and parameter estimation in region i. The joint distribution over Θ will
always stay fully factorized, and efficient inference is possible. We effectively monitor a collection
of independent GPs, and our active learning algorithm attempts to optimally allocate the samples
to the independent GPs.

Now let us consider the general case, where the weights νi take positive values outside region i.
In this case, an observation s made with positive weights νi(s) > 0 and νj(s) > 0 for two regions
i and j effectively couples the parameters Θ(i) and Θ(j). Eventually, all parameters become de-
pendent, and we need to maintain the full, exponentially large joint distribution. In order to cope
with this complexity, we apply a variational approach: After making an observation, we find a fully
factorized2 approximate posterior distribution, which is closest in KL divergence. More formally,
given a prior P (Θ) over the parameters and a set of locations A ⊆ V and their values XA = xA,
we seek the distribution

P̂ (Θ) = argmin
P ′ factorized

KL(P (Θ | XA = xA) || P ′(Θ)).

For the multinomial distribution, the solution P̂ minimizing the KL divergence can be obtained by
matching the marginals of the exact posterior (Koller & Friedman, 2007). The following proposition
shows that this procedure does not invalidate our stopping criterion.

Proposition 9. H(P̂ (Θ)) ≥ H(P (Θ | XA = xA)). Hence, using Theorem 4, our variational
approach never stops exploring too early.

In order to use this nonstationary model for active learning, we need to condition on observations
and compute mutual information efficiently.

2More complex distributions, which still allow efficient inference, such as trees, can be used as well.
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Computing conditional distributions. We assume we have a fully factorized distribution
P̂ (Θ), which already incorporates previous observations XA = xA, and we want to incorporate
a new observation Xs = xs at location s. We first find the relevant regions V(i1), . . . ,V(im). A
region is relevant3 to location s if νj(s) > 0. For each joint instantiation of the relevant pa-
rameters θ̄ = (θi1 , . . . , θim

), we compute the likelihood of the observation P (Xs = xs | θ̄,xA′),
where xA′ are the previous observations made within the relevant regions. Using Bayes’ rule,
P (θ̄ | xs,xA) ∝ P̂ (θ̄)P (xs | xA, θ̄), we can compute the exact parameter posterior. Remember-
ing all observed data, we can always compute P (θ̄ | xs,xA) using GP regression. Now that we
have the exact parameter posterior, we find the KL-minimizing fully factorized approximation to
P (θ̄ | xs,xA) by marginalisation.

Computing entropy and mutual information. In order to implement the greedy policy for
mutual information πGMI or entropy πGH , we need to be able to compute H(Xs | XA, θ) for the
location s under consideration, and a set of observations A (or V\(A∪{s}) for mutual information).
We can compute this quantity very similarly to the procedure described above. We first find the
regions relevant to s, V(i1), . . . ,V(im), and set A′ = V ′∩A, where V ′ = V(i1)∪· · ·∪V(im). As above,
for every joint instantiation of the relevant parameters θ̄, we compute the conditional entropy on
the GP X ′

V , which we can do efficiently in closed form given the parameters θ̄. We can then compute
H(Xs | XA = xA,Θ) =

∑
θ̄ P̂ (θ̄)H(Xs | XA = xA, θ̄).

In summary, our active learning strategy for nonstationary GPs is similar to the isotropic case:
We explore until Corollary 3 proves that the advantage of the sequential strategy is small enough,
then switch to exploitation. The difference is that we use a variational approach to leverage the
structure of the nonstationary GP as a linear combination of locally supported isotropic GPs.

7 Experiments

River Monitoring. We first describe results on our river monitoring application. We consider
one high-resolution spatial scan of pH measurements from the NIMS sensor deployed just below
the confluence of the San Joaquin and the Merced rivers in California (denoted by [R]) (Harmon
et al., 2006). We partition the transect into four regions, with smoothing weights indicated in
Figure 2(a), and we use 2 bandwidth and 5 noise variance levels. Figure 2(a) illustrates the samples
chosen by implicit exploration (IE) using the entropy criterion. The bars indicate the sequence of
observations, and larger bars correspond to later observations (i.e., based on more knowledge about
the model). We can observe that while the initial samples are roughly uniformly distributed, the
later samples are mostly chosen in the weakly correlated, high variance turbulent confluence region.
In parentheses, we display the estimated bandwidths and noise standard deviations. Figure 2(b)
presents the results from our algorithms. The sequential algorithm leads to a quicker decrease
in Root Mean Squared (RMS) error than the a priori design. Initially, the isotropic model with
two parameters provides a better fit than the nonstationary model with 8 parameters, but, after
about 15 samples, the situation is inverted, and the nonstationary model drastically outperforms
the isotropic model after 28 samples, providing more than 50% lower error.

3We assume here that the νi are supported in a small number of regions. If this is not the case, we can use
truncation arguments similar to those by Guestrin et al. (2005).
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Figure 2: Results on pH [R] and temperature [T] data. (a) Top: sampling locations chosen by active
learning algorithm. Higher bars indicate later (i.e., more informed) choice. Bottom: Smoothing
functions used for spatial partitioning. (b) Comparison of prediction error for pH data. Note that
the sequential algorithm on the nonstationary model eventually reduces the error incurred by the
a priori design and isotropic model by more than 50%. (c) Comparison of exploration strategies,
isotropic model. (d) Bounds on the potential advantage of the sequential algorithm using Theorem 3
(Stopping criterion). Information gain leads to quickest drop of bound, but worse spatial prediction.

Temperature Data. We consider temperature data [T] from a sensor network deployment with
54 sensors at Intel Research Berkeley. Our 145 samples consist of measurements taken every
hour by the sensors over 5 days. We modeled the data as an isotropic process with unknown
variance and an Exponential kernel with unknown bandwidth. We discretized the variance in
σ2 ∈ {12, 22, 32, 42, 52}, and the bandwidth in {3, 5, 7, 9, 11, 13, 15} meters based on expert knowl-
edge. We compared the performance of the active learning strategies, each using a different explo-
ration strategy. Figure 2(c) shows the RMS prediction error, and Figure 2(d) presents the potential
relative advantage obtained by Theorem 3 (our stopping criterion). While IE leads to the best pre-
diction, followed by the independence test exploration (ITE), information gain exploration (IGE)
tightens the bound on the sequential advantage the fastest. For example., if we decide to stop ex-
ploring once the sequential advantage drops below η = 35%, 5 samples suffice for IGE, 8 for ITE and
12 for IE. This analysis (which is also supported by other data sets) indicates that none of the explo-
ration strategies dominates each other, their differences can be well-characterized, and the choice of

11



0 5 10 15 20
0.5

1

1.5

Number of observations

R
M

S
 e

rr
or

IE,
isotropic

IGE,
nonstationary

IE,
nonstationary

Random,
nonstationary

(a) [T] Isotropic vs. nonstat.

0 5 10 15 20 25 30
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Number of observations

A
bs

ol
ut

e 
er

ro
r 

in
 b

an
dw

id
th a priori design,

nonstationary
IE,

nonstationary

IGE,
nonstationary

(b) [T] Bandwidth error

0 5 10 15 20 25 30
6.5

7

7.5

8

8.5

9

9.5

10

Number of observations

P
ar

am
et

er
 e

nt
ro

py IE
nonstationary

IGE
nonstationary

(c) [T] Parameter Entropy

0 10 20 30 40 50

0.8

1

1.2

1.4

1.6

Number of observations

R
M

S
 e

rr
or

A priori
design

IE

(d) [P] Sequential vs. a priori

Figure 3: Results on temperature [T] and precipitation [P] data. (a) Comparison of isotropic,
nonstationary model, using random and sequential selection. Information gain achieves worst pre-
diction, but reduces error in bandwidth (b) and parameter entropy (c) fastest. (d) Sequential design
outperforms a priori design on rain data.

strategy depends on the needs of each application. Hence, if the goal is to switch to a priori design
as quickly as possible, IGE might be the right choice, whereas if we can afford to always perform
the logistically more complex sequential design, IE would decrease the predictive RMS error the
fastest. ITE performs well w.r.t. both criteria, and has theoretical sample complexity guarantees.

We also modeled the temperature using a nonstationary GP, with the space partitioned into
four regions, each modeled as an isotropic GP. We adopted a softmax function with smoothing
bandwidth 8 meters to spatially average over the local isotropic GPs. The results in Figure 3(a)
show that the nonstationary model leads to reduced prediction error compared to the isotropic
model. All active learning models drastically outperform random selection. Since the parameter
uncertainty is still very high after 20 samples, IGE leads to worse prediction accuracy than IE.
However, IGE decreases the parameter error Figure 3(b) (compared to the estimates when given all
observations) and parameter entropy H(Θ) Figure 3(c) the fastest. These results indicate (along
with higher log-likelihood), that even though we are estimating its 8 parameters from only up to
20 data points, the nonstationary model provides a better fit to the data.
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Precipitation Data. In another experiment, we considered precipitation data [P] from 167 de-
tector stations in the Pacific Northwest. We followed the preprocessing suggested by Guestrin et al.
(2005). Figure 3(d) shows the RMS error for 110 samples, spaced roughly three months apart,
using an isotropic GP with 5 bandwidth and 3 variance parameter levels. Here, IE, ITE, IGE all
outperform the a priori design.

8 Conclusions

In this paper, we presented a nonmyopic analysis for active learning of Gaussian Processes. We
proved bounds on how much better a sequential algorithm can perform than an a priori design when
optimizing observation locations under unknown parameters. Our bounds show that key potential
for improvement is in the parameter entropy, motivating an exploration–exploitation approach to
active learning, and provide insight into when to switch between the two phases. Using submodu-
larity of our objective function, we provided bounds on the quality of our exploitation strategy. We
proposed several natural exploration strategies for decreasing parameter uncertainty, and proved
logarithmic sample complexity results for exploration phase using hypothesis testing. We extended
our algorithm to handle nonstationary GP, exploiting local structure in the model. Here, we used
a variational approach to address the combinatorial growth of the parameter space. In addition
to our theoretical analyses, we evaluated our algorithms on several real-world problems, including
data from a real deployment for monitoring the ecological condition of a river. We believe that our
results provide significant new insights on the potential of sequential active learning strategies for
monitoring spatial phenomena using GPs.
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A Proofs

Lemma 10. Let π be a policy. Then

H(Xπ) ≤ H(Xπ | Θ) + H(Θ),

MI(Xπ) ≤ MI(Xπ | Θ) + H(Θ).
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Proof. From definition, MI(Xπ) = H(XV\π)−H(XV\π | Xπ). Using the chain rule, we find MI(Xπ) =
H(Xπ)−H(Xπ | XV\π). Consider

H(Xπ,Θ) = −
∑

θ

∫
p(xV , θ) log p(xπ, θ)dxV

= −
∑

θ

∫
p(xV , θ)[log p(xπ) + log p(θ | xπ)]dxV

= H(Xπ) +
∫

p(xV)H(Θ | xπ)dxV

≥ H(Xπ).

Also,

H(Xπ,Θ) = −
∑

θ

∫
p(xV , θ)[log p(xπ | θ) + log p(θ)]dxV

= H(Θ)−
∑

θ

∫
p(xV) log p(xπ | θ)dxV

= H(Θ) + H(Xπ | Θ).

Similarly, H(Xπ̄) ≤ H(Xπ̄ | Θ) + H(Θ) (just replace π by π̄ in the above proof).
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Now consider

H(Xπ̄ | Xπ) = −
∫

p(xV) log p(xπ̄ | xπ)dxV

= −
∫

p(xV)
∑
|A|=k

[π(xV) = A] log p(xĀ | xA)dxV

= −
∑
A

∫
p(xA)[π(xA) = A]

∫
p(xĀ | xA) log p(xĀ | xA)dxV

=
∑
A

∫
p(xA)[π(xA) = A]H(XĀ | xA)dxA

≥
∑
A

∫
p(xA)[π(xA) = A]H(XĀ | xA,Θ)dxA

=
∑
A

∫
p(xA)[π = A]

∑
θ

P (θ | xA)H(XĀ | xA, θ)dxA

= −
∑
A,θ

∫
p(xA, θ)[π = A]p(xĀ | xA, θ) log p(xĀ | xA, θ)dxV

= −
∑
A,θ

∫
p(xV , θ)[π = A] log p(xĀ | xA, θ)dxV

= −
∑

θ

p(θ)
∫

p(xV | θ) log p(xπ̄ | xπ, θ)dxV

=
∑

θ

P (θ)H(Xπ̄ | Xπ, θ)

= H(Xπ̄ | Xπ,Θ)

Hence,

MI(Xπ) = H(Xπ̄)−H(Xπ̄ | Xπ)
≤ H(Θ) + H(Xπ̄ | Θ)−H(Xπ̄ | Xπ,Θ)
= MI(Xπ | Θ) + H(Θ).

Proof of Theorem 1. Using Lemma 10, it suffices to show that

max
|π|=k

H(Xπ | Θ) ≤
∑

θ

P (θ) max
|A|=k

H(XA | θ),

and
max
|π|=k

MI(Xπ | Θ) =
∑

θ

P (θ) max
|A|=k

MI(XA | θ).
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This follows from the fact that H(Xπ | Θ) =
∑

θ P (θ)H(Xπ | θ) ≤
∑

θ P (θ) max|A|=k H(XA | θ).
Similarly, MI(Xπ | Θ) =

∑
θ P (θ)MI(Xπ | θ) ≤

∑
θ P (θ)max|A|=k MI(XA | θ).

Proof of Corollary 3. We first observe that submodularity is closed under taking expectations, and
MI(XA∪y | Θ) − MI(XA | Θ) ≥

∑
P (θ)[−ε] = −ε shows that MI(· | Θ) is ε-nondecreasing. The

result follows from combining the statements of Theorem 2 and Theorem 1.

Proof of Proposition 8. Consider the sequence Hi = H(Θ | Xπ1:i). The information never hurts
principle (Cover & Thomas, 1991) shows that E[Hi+1 | Xπ1:i ] ≤ Hi with probability 1 over the
observations Xπ1:i . Hence (Hi)i is a super-martingale, which proves that H(Θ | Xπ1:i) = E[Hi] ≤
E[H0] = H(Θ).

Lemma 11. Let Θ̂ be the parameter identified by binary search procedure. Let M = dlog me. If
P (Ti 6= Ii | θ) ≤ α, then for all θ, P (Θ̂ = θ | Θ = θ) ≥ 1−Mα.

Proof of Lemma 11.

P (Θ̂ = θ | Θ = θ)=P (T (1) =I(1) ∧. . .∧ T (M) = I(M) | θ)
= 1− P (T (1) 6= I(1) ∨ · · · ∨ T (M) 6= I(M) | θ)

≥ 1−
M∑
i=1

P (T (i) 6= I(i) | θ) ≥ 1−Mα,

Proof of Theorem 5. Let C be a statistic of the Ti and Ii, such that C = 1 if Ti = Ii for all
i. From Lemma 11, we have that P (C = 1 | θ) ≥ 1 − α/dlog2 me. Hence also unconditionally
P (C = 1) ≥ 1 − α/dlog2 me. From Corollary 3 we have that if we know the correct parameter,
MI(XAG∪πH

| Θ)] ≥ (1−1/e) max|π|=k MI(Xπ)−kε. This event happens with probability P (C = 1).
If C = 0, we have identified the wrong parameter. In this event, we have that MI(XAG∪πH

| Θ)] ≥
(1− 1/e)

∑
θ P (θ) MI(XAθ | θ)− kε + H(Θ | XπH

). But H(Θ | XπH
) ≤ dlog2 me. Hence

ET [MI(XAG∪πH
| Θ)] ≥ (1− 1/e) max

|π|=k
MI(Xπ)− kε−

−
(

0 · P (C = 1) + dlog2 meP (C = 0)(max
θ
|MI(XAG∪πH

| Θ)−MI(XAθ | θ)|)
)

.

Proof of Theorem 6. This asymptotic bound follows directly from confidence intervals obtained
after applying Fisher’s transform to the sample correlation coefficient.

Lemma 12. Let X be an isotropic GP with variance σ2, Xs,Xt and XA be such that Cor(Xs,Xz) ≤ ε
and Cor(Xt,Xz) ≤ ε for all z ∈ A, and assume every location has independent measurement noise
(nugget) σ2

n. Then |Cor(Xs,Xt)− Cor(Xs,Xt | XA)| ≤ 2 |A| ε2 σ2

σ2
n
.
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Proof. By induction on |A|. First divide by σ, such that the process has unit variance. This does
not change the correlation. Let Xz ∈ A. Then

Σxy,xy|Z = Σxy,xy − Σxy,zσ
−1
z,zΣz,xy.

Hence

||Σxy,xy|Z − Σxy,xy||∞ = ||Σxy,zσ
−1
z,zΣz,xy||∞ ≤ 2ε2 σ2

σ2
n

.

The induction step uses the independence of the measurement noise, such that σ2
z|A′ ≥ σ2

n.

Proof of Corollary 7. This is a direct consequence of Theorem 6 and Lemma 12, by observing that
by ignoring n ε-correlated samples, the correlation does not change by more than 2nε2 σ2

σ2
n
. Since

the correlation for θi cannot increase by and the correlation for θi+1 cannot decrease by more than
that amount, the gap in correlation decreases by at most 4nε2 σ2

σ2
n
. Requiring this to be less than ξ

and solving for ε proves the claim.

Proof of Theorem 4. Let M = maxA maxθ1,θ2
MI(A|θ1)
MI(A|θ2)

< ∞. Also let K = maxθ MI(Aθ | θ), where
Aθ = argmaxA MI(A | θ). Let A∗ = argmaxA MI(A | Θ). Let θ′ be the most likely parameter, and
assume H(Θ) < 1, which implies δ < 1

2 .
Let us show the lower bound first. Clearly, MI(Xπ∗) ≥ maxA MI(XA). Now, MI(A) = H(A) −

H(A | V \ A) ≥ H(A | Θ) − H(A,Θ | V \ A), since Θ is discrete. But H(A,Θ | V \ A) = H(A |
V \ A,Θ) + H(Θ | V \ A) ≤ H(A | V \ A,Θ) + H(Θ), hence the lower bound follows. Note that if
A is “small” compared to V \ A, then we can expect H(Θ | V \A) ≈ 0.

MI(A∗ | Θ) = (1− δ)MI(A∗ | θ′) + δ MI(A∗ | ¬θ′)
≤ (1− δ)MI(A∗ | θ′) + Mδ MI(A∗ | θ′)
= (1 + (M − 1)δ) MI(A∗ | θ′),

where
MI(A∗ | ¬θ′) =

1
δ

∑
Θ6=θ′

P (θ)MI(A∗ | θ).

We have that MI(A∗ | Θ) ≥ MI(Aθ′ | Θ). Hence

MI(A∗ | θ′) ≥ 1
1 + (M − 1)δ

MI(Aθ′ | Θ)

≥ 1− δ

1 + (M − 1)δ
MI(Aθ′ | θ′),

where we use that MI(Aθ′ | ¬θ′) ≥ 0.
Now define the loss

L(A) =
∑

θ

P (θ)
[
max

A′
MI(A′ | θ)−MI(A | θ)

]
.
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This loss is minimized by A∗ = argmaxA MI(A | Θ). Now,

L(A∗) ≤(1− δ) [MI(Aθ′ | θ′)−MI(A∗ | θ′)]
+ δ(K −MI(A∗ | ¬θ′))

≤(1− δ)
[
MI(Aθ′ | θ′)−

1− δ

1 + (M − 1)δ
MI(Aθ′ | θ′)

]
+ δ(K −MI(A∗ | ¬θ′))

=
(1− δ)(M − 1)δ
1 + (M − 1)δ

MI(Aθ′ | θ′) + δ(K −MI(A∗ | ¬θ′))

=δ

[
(1− δ)(M − 1)
1 + (M − 1)δ

MI(Aθ′ | θ′) + K −MI(A∗ | ¬θ′)
]

≤δ [(M − 1)MI(Aθ′ | θ′) + K]
≤δMK,

where we use that MI(A∗ | ¬θ′) ≥ 0. Hence L(A∗) is O(δ). If δ < 1
2 , then δ ≤ H(Θ)

− log2 H(Θ) .
We know

MI(A∗ | Θ)−H(Θ) ≤ MI(Xπ) ≤ MI(A∗ | Θ) + H(Θ) + L(A∗).

If we approximate MI(Xπ∗) by MI(XA∗ |Θ), the absolute error is hence bounded by

H(Θ)

(
1 +

MK

log2
1

H(Θ)

)
.

Proof of Proposition 9. This proposition follows from the fact that the fully factorized distribution
is the maximum entropy distribution with a specified set of marginal distributions.

B Results on synthetic data.

In order to study our method in more detail, we created a synthetic data set [S] out of 1000 samples
from an isotropic GP with unit variance, on a 8×8 grid. We uniformly selected bandwidths for the
Exponential kernel from {1, 2, 4, 8, 16}. For each sample, we ran our exploration-exploitation algo-
rithm with all three exploration strategies (ITE, IGE and IE), as well as the a priori design based on
MI(· | Θ). Figure 4(a) shows the average Root Mean Squares (RMS) prediction error with increasing
number of observations. Hereby, the exploration stopped after, based on Corollary 3, the sequential
design could only perform at most 10% better than the a priori design. Information gain exploration
(IGE) decreases the RMS error slightly more slowly. In this experiment, the a priori design achieved
prediction accuracy only insignificantly worse than the sequential designs. When we never stop ex-
ploring (c.f., Figure 4(b)), then IGE performs significantly worse. The independence testing (ITE)
performs almost as well as the implicit exploration (IE), since it prefers tests with high mutual infor-
mation. Figure 4(c) shows the error in estimating the bandwidth parameter with an increasing num-
ber of samples. All three strategies decrease the parameter error exponentially, empirically demon-
strating the logarithmic bound. Initially, IGE decreases the parameter error significantly more
quickly. Both explicit exploration strategies, IGE and ITE, lead to a lower bandwidth error after all
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Figure 4: Results on synthetic data [S]. (a) If we stop exploring when the potential advantage goes
below 10%, all 3 exploration strategies achieve approximately the same prediction. (b) If we never
stop exploring, IGE leads to worse prediction than ITE. (c) Both IGE and ITE decrease parameter
error more quickly than IE. (d) bound on optimal sequential performance quickly becomes tight,
indicating that one can stop exploring early.

30 samples are observed. Figure 4(d) compares the mutual information achieved by the a priori and
active strategies, along with the bound from Corollary 3 on the best sequential strategy (without the
factor (1−1/e)−1, since the greedy sets tend to be very close to optimal in practice (Guestrin et al.,
2005)). Experimentally we observed that the contribution by the term

∑
θ P (θ) max|A|=k MI(XA |

θ) to the stopping criterion was negligible compared to the parameter entropy H(Θ).
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