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Abstract

Recent developments in editing applications, especially in the areas of CAD/CAM and
multimedia, have provoked interest in integrating the data abstraction capabilities of
object-oriented languages with the persistence and concurrency control of database
systems. Database systems assume the task of determining the file storage format for the
application. In addition, such systems provide support for concurrency control, atomicity
of multiple updates, recoverability, authorization, versioning, and search (i.e. associative
access).

Sophisticated editing applications, however, require better data modeling capabilities
than those normally provided by existing database systems (i.e. those presenting a
relational or network data model). Thus, an impedance mismatch exists between the way
databases view application data and how the applicatdon wishes to manipulate that data.
A database system that supports an object-oriented data model would eliminate this
impedance mismatch and furnish the desired modeling capabilities: object identity, direct
access, data abstraction extensibility, inheritance, polymorphism, genericity,
encapsulation, embedded semantics. and data type extensibility.

Integrating object-oriented concepts and normal database concepts also presents the
opportunity to explore new features that would help application builders: object
composition, property propagation. cyclic queries, indexing extensibility, relationship
support, database self-containment, and schema evolution.

This paper presents a summary of current database research into new data models based
on object-oniented concepts. The concepts themselves are defined and then the different
systems are descnbed.

Acknowledgments

Thanks to many people at the ITC for their helpful comments: in particular, Michael
Mclnemy, David Anderson, John Howard, and Andrew Palay.



-ii -

Table of Contents

1

Introduction
1.1 Motivation

1.2 Alexandria

Object-Oriented Databases
2.1 General Issues
2.1.1 Concurrency Control
2.1.2 Transactions
2.1.3  Triggers and Notifiers
2.1.4 Distibuton
2.1.5 Versions and Configurations

2.2 Data Model Issues
2.2.1 Object Idenuty
2.2.2 Data Models
2.2.3 Inhentance
2.2.4 Polymorphism

S Genencity

6 Extensibility

.7 Integnty Constraints

.8 Composition

9 Relauonship Support

.10 Access to Meta-information

.11 Data Shanng

2 Authonzation

DR S
SN NSNS RS

2.3 Language Issues

.1 Persistence

.2 Impedance Mismatch

.3 Software Engineering Issues
.4 Host Languages

[ SO I SO T N I S ]
W W W W

2.4 Query Issues
2.4.1 Query Language
2.4.2 Indexing
2.4.3  Query Optimization
2.5 Database Evolution
2.5.1 Schema Changes
2.5.2 Effects of Changes
2.5.3 Database Conversion

2.6  Storage Management

SN -

—_ 0 00 N ~Ng DN



I1
I

-1 -

2.6.1 Storage Schemes
2.6.2 Buffer Management
2.6.3 Clustering

2.6.4 Interoperability

Research Efforts
3.1 POSTGRES
32 EXODUS
33 Altair
34 ORION
35 ENCORE
3.6 GemStone
3.7 Ins
38 VBase
3.9 GEM
3.10 Coral3
3.11 Telesophy
3.12 POMS
Conclusions
References
Object-Oriented Languages
Glossary
Index

35
36
37
38

39
39

41
42

45
46
47
48
48
49
50

51

53

62
79



1 Introduction
Databases fulfill several roles in the process of building computer applications. Like a file
system, databases provide the means to store data between invocations of an application
(i.e. persistence). Database systems, however, provide additional services not supported
by most, if not all, file systems. For instance, a database system typically provides
facilities to coordinate cooperative work on the same data (i.e. transactions,
authorization, and distribution) and assurances concerning the integrity of the data in the
presence of various kinds of failures (i.e. versioning and stability). In addition, databases
allow applications to manage large amounts of data, providing buffering services and
searching capabilities (i.e. associative access). Finally, databases present a uniform data
model independent of any specific application, presumably easing the burden of
application design.

Several data models have been proposed and explored, including hierarchical, network,
and relational. Currently, many commercial systems support the relational data model. A
relational database consists of a set of named relations, each of which is a set of ruples.
Each tuple, in tumn, is an aggregation of tagged values (i.e. a collection of attribure-value
pairs; the atributes are common to all tuples in a relation and are defined by the
relation’s schema). Each tuple represents an entity or part of an entity in an application’s
data space. A reference to another entity in the space is specified by some subset of the
target entity’s attribute-value pairs that uniquely identifies the target within a specified
database relation (i.e. value-based reference).

This paper presents a summary of current research into new data models based on
object-oriented concepts. The remainder of this section explores the motivations for such
research and the reasons we feel that database systems supporting an object-oriented
paradigm are appropriate for our research in the Alexandria project. The following
section introduces a generic object-oriented data model and discusses how such models
affect database issues. Section 3 enumerates specific research efforts into object-oriented
databases and describes which design decisions were taken by each on the various issues.
A glossary and an index are included as appendices.

It is assumed the reader understands something about databases in general and the
relational data model in particular. Interested readers are directed to Principles of
Database Systems by Jeffrey Ullman [Ullman 82].



1.1 Motivation
Relational database systems have proved their worth in the domain of business
applications, particularly those dealing with accounting. The relational data model,
however, is not suitable for all application domains. New applications involving
complex data modeling (i.e. that do not map well to tables) now require the services
normally associated with database systems: persistence, transactions, authorization,
distribution, versioning, data stability, buffering, and associative access.

To illustrate, let's examine a CAD/CAM application for a company that manufactures
airplanes. The application supports both the specification and design of all parts required
to build an airplane. Modeling physical objects does not reduce easily to tabular, or
relational, form. In particular, an airplane requires many duplicate parts, each of which
would require a unique tag to be stored as a distinct entity in a relational database.
Furthermore, the relations representing sets of different parts that are mostly similar
would require separate, independent schemas. Finally, the application programmer
almost definitely would prefer to manipulate part designs as complex abstractions at a
level higher than that provided in the relational model.

Our example application, however. requires database services. An airplane design team
tvpically consists of several people. all of whom will desire access to the current state of
the design. In today's workplace, it is likely that these designers will be using
workstations distributed over a network. In addition, some people should not be allowed
total access to certain aspects of the design (e.g. documenters do not need update access).
Finally, a completed design can involve hundreds of thousands of parts and direct access
to each part becomes impractical: thus, associative access is essential. For instance, a
designer may wish to know how many times a given part has been used before deciding
to change its specification.

Object-oriented databases, then, are an attempt to solve the problems mentioned (as well
as others) and still maintain the advantages of database systems. Object-oriented
databases treat each entity as a distinct object. An assembly composed of several parts,
therefore, can refer directly to its components instead of explicitly associating some
unique identifier with each component in some relation. In addition, application
programmers can manipulate database entities at any desired level of abstraction by
extending the set of types recognized by the database system. This is an important point
- it means that the programmer need not be concerned with transforming an application’s
persistent data into a form manipulable by the underlying storage subsystem [Cockshott
84). In many systems, a programmer can also incorporate totally new, variable-sized
data types (e.g. multimedia objects). Finally, object-oriented databases allow embedded
semantics by associating procedural information with objects [Smith 87].

Woelk, Kim, and Luther [Woelk 86] summarize the features they feel object-oriented
databases should provide for multimedia document management applications:
- aggregation support, including modeling is-part-of! relationships and
maintaining knowledge concerning the ordering of subparts;

! Bold phrases indicate a kind of rclationship.
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- generalization support for the is-a relationship between types or classes;

- support for default values for attributes;

- support for embedded semantics by which object properties may be computed
instead of stored;

- support for polymorphism so that an attribute may represent any of several
types that are only weakly related (e.g. the body of a document may be text, a
drawing, an image, a composition of these, etc.);

- general entity-relationship support (i.e. n-ary relationships with knowledge of
which roles are key);

- support for schema evolution, in which the types of existing database entities
are modified;

- control over object versioning and configurations of version sets;

- support for concurrent access,

- support for multimedia data types;

- support for sharing subcomponents among separate database objects (e.g. the
same picture shared by two documents);

- associative access, as opposed to direct access via reachability from a root
object as in pure hyperntext systems; and

- support for standard database-like recovery in the presence of failures.

These features and the others mentioned earlier will be discussed in more detail in later
sections.

The next section presents another class of applications that could take advantage of the
features provided by object-oniented database systems.



1.2 Alexandria

The domain of information management in an era of increasingly easy access to on-line
data clearly requires the features provided by database systems: persistence, distribution,
access control, associative access, etc. Hypertext systems, such as Intermedia {Smith
87}, comprise an initial exploration into the issues concerning information structuring.
Pure hypertext technology, however, cannot deal with the quantities of on-line
information that will become available, even if a database is used as the underlying
storage subsystem (as in Intermedia). More work is needed on the joint problems of
access and management to have a meaningful impact on the way information is used.

The primary focus of the Alexandria research project at the Information Technology
Center (ITC) of Carnegie Mellon University (CMU) is to investigate what tools computer
users need to manage large amounts of on-line information over long periods of time.
The goals of the project include [Palay 90]:

1) Performance - The system must provide simple, fast access to large amounts
of information from multiple, diverse sources.

2) Flexible access - The system must support a spectrum of access techniques
from browsing (as in a hypertext system) to search (as in a database system).

3) Structuring - The system must help the user productively manage information.
In particular. it is not sufficient just to provide access to information; the user
should be able to impose personalized structure that helps organize the
information for later access or, more importantly, for furthering the user’s
work. In addition, since such structure can become unwieldy, the user should
be able to browse and search structure itself.

4) Data nvpe extensibilitv - The system must accommodate a variety of digital
media. Although it is not expected that the system will be initially able to
recognize features from raster, graphic, audio, or video data, the design of the
system should not prevent the management and access of such information.

5) Structure evolution - The system should also help the user maintain and
evolve the structure imposed on an information space. A user's view does not
remain static: often as more information becomes available, the user will want
to change the form of his structure, not just the content.

6) Collaboration - The system should enable cooperative work within a
community of users to encourage the exchange of ideas. Specifically, the
system should make it easy for one user to view an information space using the
structure built by another. The system, however, must also ensure the privacy
of unpublished data.

7) Maintaining currency - The system should handle changing information.
Users often must keep up with sources that augment or replace previous
information (e.g. news wires, electronic bulletin boards).
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8) Integration - Finally, the system should be integrated fully into the user’s
computing environment. That is, all applications should be able to take
advantage of the system’s capabilities and the user should be able to integrate
data from any application into their personal information structure.

Almost all of these requirements have some implications regarding the features we desire
in the underlying database support. As we shall see in the next section, object-oriented
databases typically provide most of these desired features.

The performance goal indicates the need for database support because of the amount of
data involved. The desire both for flexible access and individualized structuring require
the ability to refer to information entities directly. Pure, hypertext-like browsing is just
jumping from one place to another in the information space. Also, shared information
should remain in context so that a user can take advantage of any additional structure on
that information.

Flexible access and maintaining currency suggest the need to be able to embed
computational semantics in the information space. Following a bibliographic reference,
for instance, should look like a direct link to the user but may require a search at the
database level. Similarly, determining what has changed that is of interest (as defined by
the user) in a changing information source necessitates search and test capabilites.

The desire to allow individualized structuring mandates the ability to extend and define
complex abstractions within the system. Also, in order to browse and search structure, it
must be possible to examine abstraction definitions. Data type extensibility indicates that
extension should also apply to the types of values handled by the storage subsystem.
Structure evolution goes even further and stipulates that the underlying system must
allow types to change in the presence of existing information.

Suppon for collaboration implies several needs. First, locking and transaction support
would help provide the coordination required by cooperative work. Authorization and
logging support can help protect privacy, assign accountability, and keep people with
diverse roles from interfering with each other. The ability to share subentities among
distinct database objects would ease communication. Finally, publishing structure
requires that such descriptions be self-contained.

Finally, the need for integration affects the overall architecture of the system. It is not
clear whether the database component will be involved in satisfying this goal.

The next section introduces the concepts and features explored by current research efforts
into object-oriented databases. Although the goals of the Alexandria project will not be
addressed specifically below, the reader should try to correlate the features that
distinguish object-oriented databases from relational databases with the goals presented
above.



2 Object-Oriented Databases
As mentioned above, the development of object-oriented databases represents an attempt
to integrate the complex data modeling and software engineering principles of recent
programming language designs with the persistence, coordination, and protection
characteristics supported by database technology. Of course, the goal is to achieve all of
the benefits of both.

So far, we have discussed the facilities provided by databases in general. The sections
below describe the additional features provided by object-oriented databases. It is
assumed that the reader is familiar with the concepts that characterize object-oriented
programming languages. Good presentations of these concepts can be found in both
Smalltalk-80: The Language and its Implementarion by Adele Goldberg and David
Robson [Goldberg 83] and Object-Oriented Software Construction by Bertrand Meyer
[Meyer 88]. Appendix I provides a short introduction for those readers unfamiliar with
the terminology.

For applications requiring database support, objects constitute a natural unit for locking,
authorization, storage clustering, versioning, and buffering. The object-oriented mode!l
also presents other opportunities for improved application-building support in database
systems. The following sections describe various database features and how object-
oriented concepts interact with those features:
- section 2.1 presents standard database issues;
- section 2.2 defines object-oriented data models and related issues:
- section 2.3 discusses the interaction between database features and
programming language constructs to support those features;
- section 2.4 concentrates on the issues specific to querying databases;
- section 2.5 presents the issues relating to database evolution; and
- section 2.6 discusses the lower-level issues concerning the storage management
and distribution of objects.

Incidentally, a good introduction to object-oriented databases can be found in the chapter
titled ‘‘Fundamentals of Object-Oriented Databases’’ in Readings in Object-Oriented
Database Systems edited by Stanley Zdonik and David Maier [Zdonik 90]. This
presentation involves a few more concepts and definitions, but less motivation. In
general, any comparisons of object-oriented systems with previous database technology
will be with relational systems because of their pervasiveness.



2.1 General Issues

Object-oriented databases must provide the same support for managing concurrency,
authorization, distribution, data persistence and stability, versioning, and associative
access as any other kind of database system. Most of these features are affected
significantly by the data model, but some have only a small connection. This section
presents the concepts associated with locking, transactions, triggers, distribution, and
versioning. Object-oriented concepts, in general, have little impact on these
characteristics.

2.1.1 Concurrency Control
When many clients wish simultaneous access to the same persistent data and some
clients wish to perform updates, a mechanism must exist to ensure data consistency.
Otherwise, readers could receive an inconsistent view of the data as some parts might be
changed before other parts. Similarly, two writers may base their updates on the same
version and then the writer who commits his changes second will cause the changes of
the first to become lost.

Any mechanism provided to help application developers ensure consistency is called a
concurrency control mechanism. Two kinds of concurrency controls exist: optimistic
and pessimistic. Optimistic concurrency operates on the belief that most transactions
either involve reading only or else get aborted. It works by allowing any client to
request a copy of the data. When the client wishes to update the database version, a
check is performed to see whether the current database version is the same as the one
copied. If so, the update proceeds. If not, the update fails. The object-oriented model
appears to have little effect on this mechanism; some systems do employ it (e.g.
GemStone [Maier 86] and ts1 [Caplinger 87]).

Pessimistic concurrency, on the other hand, assumes that conflicts at the time of update
either occur too often or waste too much work (in computing the updated data). The basic
pessimistic mechanism is locking. When a client wishes to update a database entity (or
set of entities), the client requests a lock on the data and then no other client may receive
a copy of the same data. Locks are issued according the nature of the client’s access to
the data and the current lock on the data, if any. Thus, it is important to consider the
granularity of locking; that is, how much data may be locked at a time. Fine-grain
locking (i.e. at the object level) allows the most concurrent access but requires the most
resources for lock management.

Objects clearly comprise a good unit for locking. Ways of reducing the inefficiencies
associated with such fine lock granularity are discussed in section 2.2.8 below. Most
object-oriented systems utilize locking (e.g. Coral3 [Merrow 87] and ORION [Kim
89b])).

2.1.2 Transactions
In the presence of persistence, locking may not be sufficient to guarantee data
consistency. Complex interactions may involve changes to several data objects and
consistency may dictate that either all or no changes occur (i.e. atomicity). The facility
databases provide to achieve atomicity is called transaction support and each atomic set
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of changes a database interaction wishes to make is termed a transaction. The
combination of transactions and locking implies that updates to the database are
serializable (i.e. as if no concurrency were involved).

A transaction, therefore, must accumulate all changes before actually commirting them to
the database.2 The transaction support is responsible for invoking the appropriate
concurrency control and ensuring that the commit is atomic. Typically, database systems
use shadowing (as in POMS [Cockshott 84]) or write-ahead logs to generate the new data
versions and two-phase commit to ensure that each update completes atomically (as in
EXODUS [Carey 86]).

By using transactions and logging [Carey 86], databases systems can also provide
mechanisms for recovery in the presence of failures. That is, if a failure occurs during a
transaction commit, the database system can detect whether or not the commit
completed, and, if not, can finish the job based on the information in the log. This
facility provides data stabiliry. Failures can be classified into three categories [Zdonik
90]: process failures occur when the application terminates abnormally in the middle of a
transaction; media failures occur when the storage medium fails (e.g. head crash or bus
failure); and system failures occur when the database system fails, either because of a
bug in its program, the machine it runs on crashes, or the network connection to it dies.

Suppon for transactions may constrain each execution of an application to be an entire
ransaction (as in the E [Richardson 89b) and CO; ([Bancilhon 88] programming
languages) or may provide language constructs to allow multiple transactions and
multiple save-points® within each transaction (as in embedded OSQL in Iris [Fishman
87)). Clearly, the latter capability allows greater flexibility for application development.

Not all application domains require transaction support. The assumption in Coral3
[Merrow 87], for instance, is that the objects manipulated are large enough that no
complex interactions are necessary. That is, all *‘transactions’’ occur to single objects in
their applications. In this case, concurrency control need consist of locks only.

2.1.3 Triggers and Notifiers
Monitoring the contents of a database can be prohibitive because of the amount of
information involved. Many database systems, therefore, provide mechanisms that
perform user-level actions automatically when specified events occur (e.g. an entity
changes value). By supporting these mechanisms intemnally, database systems can
achieve efficient implementations.

Automatic actions that perform some update on the database are usually called triggers.
Actions that just notify the user when the specified event occurs are sometimes called
notifiers, or alerters. The events that cause triggers to execute can either be specific
database operations (e.g. set a value or delete an object) or the transition of an arbitrary

2Note this also allows one to abort a transaction, cnsuring that no changes occur.

3 Save-points act like nested transactions, in that all changes back to some specificd point may be aborted
without aborting the entire transaction.
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predicate from false to true (as in VBase [Andrews 87] and POSTGRES [Stonebraker
86a)).

The actions performed by triggers are often used to maintain application invariants. For
example, triggers can ensure that component objects are deleted when the containing
object is deleted (see section 2.2.8 on Composition) or that inverse relationships are
maintained (e.g. the division of an employee should always equal the division that hires
that employee; see section 2.2.9 on Relationship Support). The system itself can also use
triggers to maintain indexes (Zdonik 88].

The problem with triggers is that updates can propagate throughout the database if the
application developer is not careful. As a result, a small transaction can end up
monopolizing a large portion of the database. In addition, the potential for deadlock®
between transactions increases. Notifiers, on the other hand, do not exhibit this problem
because they are read-only. They can prove very useful in domains where new
information is added to a database continually by alerting users only if the new
information is of interest.

2.1.4 Distribution
Distribution presents several opportunities for database architectures. In particular,
database services may be spread among several servers. One advantage of separating
applications from database support is that true concurrency can be realized. Thus, even if
an application involves significant amounts of computation (as in CAD), it need not
affect overall database performance adversely.

Distribution occurs in two ways. First, database features can be divided among several
processes. Doing so enables concurrency and permits database access over both local-
area and wide-area networks. Second. servers providing database functionality can be
replicated, which affords protection and increases concurrency as well.

The systems surveyed for this paper divide database services into at most three groupings
of functionality. More levels of servers (with smaller sets of functionality) could be
used, but at increasingly higher communication costs without any clear gain in
concurrency or flexibility. Typically, services are divided into those dealing with:
(1) storage issues (including:

- secondary storage management,

- variable-sized data support,

- buffering,

- locking,

- transactions or other concurrency control,

- logging and recovery,

- versions);

4 When two or more processes require resources held by the other(s) in order 1o progress. Sce the glossary.
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(2) data model issues (including:
- object support,
- embedded semantics,
- shared object semantics,
- authorization,
- session control,
- indexing,
- querying and query optimization,
- configurations); and
(3) client support (including:
- embedded semantics execution,
- data packing/unpacking,
- data model presentation).
Systems that adhere to this model include ENCORE [Hornick 87] and Iris [Fishman 87].
Of course, some systems parition responsibilities slightly differently; GemStone, for
example, bundles authorization and indexing in with the storage support at the lowest
level [Maier 86).°

Each of the three parts may be instantiated any number of times. For instance, client
support is always instantiated once per client. Data mode! support can be replicated as
many times as necessary to achieve the greatest concurrency. Multiple data model
servers can also reduce the contention that can be caused by complex queries. ENCORE
and O», for instance, maintain one data model component for each client (Homick 87,
Deux 90]. Iris, on the other hand. uses just one for all clients [Fishman 87]. Apparently,
GemStone allows any number of data model servers [Maier 86]. No one has explored
the possibility of using multiple data model servers to impose different data models on
the same data.

Since storage servers manage secondary storage, they reflect the actual location of the
‘‘database’’. Allowing more than one storage server can represent either division or
replication of the stored data. The first choice effectively indicates support for
simultaneous access to different databases. Most systems surveyed do not support access
to multiple databases. Iris does allow connecting to different databases during the same
application execution but apparently does not support simultaneous access [Fishman 87].
Allowing for simultaneous access is essential for applications that wish to provide users
with transparent access to the union of the information in more than one database. In
fact, this capability is required by the Alexandria project, since we wish to merge
personalized structure with the global structure held in the central information repository.
Even though it is not a true database system, the telesophy system tsl is designed to
support such applications; thus, it provides simultaneous access to multiple ‘‘information
unit servers’’ [Schatz 89].

3In fact, the GemStone sysiem has different names for cach component of the architecture:  Stone refers
1o the storage server, Gem 1o the object scrver, and Agent to the client support.
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Multiple storage servers may also increase access performance by replicating the data at
each server. Replication in the presence of updates, however, creates new problems for
maintaining data consistency. As yet, no object-oriented database system has attempted
this strategy.

Note that the storage server need not consist of a single process. In the Coral3 system,
the distributed file system with locks acts as the central storage server; no one processor
has sole responsibility for concurrency control [Merrow 87].

2.1.5 Versions and Configurations
In design applications, maintaining the history of changes is almost as important as
maintaining the current state of the database. Database systems support history by saving
previous versions of entities as well as each entity’s current state. Users, then, can
request the current, modifiable transient version or a past, immutable working version of
an entity [Banerjee 87a].

Since different database entities do not change at the same rate, the concept of a
configuration represents the collection of consistent versions of related entities. For
example, a configuration might contain all part designs of an airplane on a certain date.

In object-oriented data models, objects may refer to other objects. Thus, to achieve
consistency in the presence of versioning, it should be possible to tag each object
reference as generic (i.c. refermng to the most current transient version) or specific (i.e.
referring to a specific working version) [Kim 88]. Currently, such tags (as in ORION
[Kim 88}) constitute the sole support for configurations among the systems surveyved: that
is, a configuration can be implemented as an object with references to specific versions of
all pertinent entities. Explicit support for configurations would clearly be more expedient
for an application programmer.

Systems may require that individual objects or all instances of a given class be declared
as versionable by the application programmer (as in ORION [Kim 88] or Iris [Wilkinson
90]). On the other hand, systems may provide versioning capability at the lowest level,
allowing any instance to be versioned at any time (as in EXODUS [Carey 86)).
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2.2 Data Model Issues
The primary advantages object-oriented databases have over other kinds of databases
involve the complexity and extensibility of their data models and the additional features
those models can support. Object-oriented data models allow programmers (0 design
application entities at abstraction levels appropriate to their problem domains.
Relational, hierarchical, and network data models generally do not provide any
extensibility of their type systems.

Object-oriented models also incorporate mechanisms for inheritance, polymorphism, and
type parameterization that augment the flexibility available to application developers.
Furthermore, viewing database entities as objects enables the integration of facilities that
support object identity, composition, property propagation, data sharing, embedded
semantics, and authorizadon. Each section below describes one of these mechanisms in
detail and discusses its benefits for the application programmer.

Before starting, it would be instructive to contrast relational and object-oriented
databases. A relational database consists of a set of named relations, each of which
consists of a set of tuples and a schema that describes the form of each tuple. A tuple
consists of a set of atmbute-value pairs. The attributes and the domains of their
respective values are specified by the relation’s schema. Thus, only tuple values need be
stored.

An object-oriented database typically consists of a set of named objects (as in EXTRA
(Carey 88)).6 Each object embodies an aggregation of data much like a tuple, except that
the set of attribute-value pairs need not be fixed (i.c. an object can represent a set of other
objects). The database consists of all objects reachable from the ‘‘root’’ objects through
their artributes. Thus, objects act as both tuples and relations, and object classes act as
relation schemas.

2.2.1 Object Identity
One advantage all object-oriented data models share with network data models is object
identity; that is, the ability to refer 1o any persistent object directly [Laffra 90]. The direct
connectivity provided by object identity, though, is different from that in a network
model because of the inherent typing of the destination object, which can be used to
validate the semantc correctness of the modeled data [Duhl 88].

Object identity eliminates the need to assign unique identifiers explicitly to separate
instances of the same airplane part. Similarly, entities that coincidentally have the same
atribute values (e.g. two employees named John Smith) retain their individuality.

Object identity can potentially save time and storage as well. In relational databases, a
wple in one relation must refer to another tuple in (possibly) another relation by
specifying its key in that relation (i.e. value-based identiry). Retrieving the tuple requires
knowing which relation contains it and a search of that relation. Furthermore, storing the

¢ Sometimes. as in the Persistent Object Management System (POMS), the system restricts the sct of root
objects to contain only one clement [Cockshott 84).
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key may involve multiple attribute values. In an object-oriented system, the application
programmer need not be concerned with the details of referring to another entity (e.g.
deciding which attributes constitute the key and building the query necessary to retrieve
the tuple).

Note that the time savings, however, may not be realized in some systems. Although an
object reference is direct conceptually, it may be implemented using a relational-like
storage subsystem, which requires at least a hash table search to retrieve the referenced
object. The Iris database system is built in this fashion [Fishman 87].

There are many concepts related to object identity. For example, one object is reachable
from another if there exists a path from the second to the first in the network defined by
object references.

Strong identity implies that an object continues to exist as long as there is any reference
to it from any other object in the database. Thus, an object cannot be destroyed explicitly
in a system that supponts strong identty (e.g. GemStone {Maier 86]). Strong identity can
lead to logical pinning in some applications, where inaccessible objects continue to
reside in the database [Stein 89]. This can happen, for example, when a cyclic structure is
no longer reachable from a database ‘‘root’’ object.

Systems that allow explicit destruction are said to provide weak identity. In such
systems, the problems associated with dangling references arise, where a referenced
object may no longer exist in the database [Stein 89). The ORION (Kim 88] and
EXODUS [Richardson §7] systems provide weak identity. Note that dangling references
are also a problem 1in relational systems.

Object idendty, however, is not always good. Reladonal systems derive a lot of
flexibility by using value-based identity and joins. In particular, representing arbitrary
many-to-many relationships becomes much easier. Object-oriented models must provide
additional mechanism in order to support general relationships [Rumbaugh 87]. Object-
oriented models, however, do ‘‘provide a framework for unifying value-based and
identity-based access’’ [Zdonik 90].

2.2.2 Data Models

In general, most object-oriented systems (e.g. VBase {Andrews 87], ORION [Banerjee
87a], EXTRA [Carey 88], ENCORE [Homick 87], Oy [Lecluse 88], GemStone {Maier
86], GEM [Zaniolo 83)) present a data model consisting of the following kinds of
objects:

- atomic values (e.g. integer, string, boolean, and floating point values);

- tuples, or aggregations of named attribute-value pairs; and

- sets of values,
where the values in tuples and sets may be any object in the data model. Thus, an
attribute in a tuple may refer to another tuple or to a set [Osborn 88]. Note that this
model, since it allows mutual references between objects, is more powerful than the pure,
nested tuple-set model [Lecluse 88].
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In object-oriented models, a class describes the form of each object. If we consider the
set of all instances of a class in a given database, the basic model described above
satisfies the well-definedness properties proposed for aggregations by Smith and Smith
[Smith 77a). To be precise, because of object identity, each object in a ‘“‘relation’’ (i.e.
set of instances) has a unique key and, in the presence of strong identity, every object
referenced by another exists in the database.

Some systems extend the basic model with additional capabilities:

- OPAL provides relation and tree constructors as well as sets [Maier 86];

- EXTRA provides variable-sized arrays (i.c. sequences) as well as sets [Carey

88);

- VBase allows optional attributes {Andrews 87];

- GEM allows attributes to have no value [Zaniolo 83] (others do as well).
Although these capabilities are not strictly necessary, they can simplify the application
programmer’s task if available.

Some of the systems surveved do not provide the basic, object-oriented model. The tsl
system, for instance, provides only a flat value space [Caplinger 87]. Its model is not as
powerful; it cannot represent sets of objects directly, for instance.

In ris, objects consist solely of the operations that query their behavior. Instead of tuples
and sets, Iris supports functions that represent relationships between objects [Fishman
87).7 Thus, a unary function that maps objects to values acts as a tuple atribute. In
addition, such functions may be multiple-valued, so sets are not needed directly either.

2.2.3 Inheritance
Smith and Smith describe an orthogonal extension to their aggregation model that
supports the concept of generalization. Just as a class captures the common properties of
a set of objects, generalization captures the common properties of a set of classes [Smith
77b). Object-oriented systems support generalization through inheritance.

Wegner distinguishes four kinds of inheritance [Wegner 89]: (1) behavior compatibility,
in which inherited attributes always have the same semantics (i.e. as an algebra with
interpretations); (2) signature compatibiliry, in which atmibutes may be extended
horizontally by adding new atmributes or vertically by constraining existing attributes (i.e.
as a syntactic algebra); (3) name compatibility, in which only implementation is shared;
and (4) cancellation, in which only some implementation is shared (i.c. some attributes
may be eliminated by the inheritor). The four kinds of inheritance are progressively
more permissive. Each, however, carries progressively less semantics when used. Most
systems strive to provide a form of behavior compatibility.

Behavior compatibility includes subset subtyping (e.g. positive integers are contained in
all integers), isomorphic embedding (e.g. all integers may be floating point values),® and

"Generally, these functions are stored as tables in the underlying rclational storage subsystcm.

$Such embeddings are called isomorphic because there cxists a one-to-one correspondence between the
elements of onc domain and a subsct of the other.
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is-a hierarchies (e.g. a student is a person). In signature compatibility, horizontal
extensions are behaviorally compatible, but vertical extensions may not be (because the
added restrictions involve disallowed values during updates). Vertical extensions can
satisfy read-only compatibility where values are only examined and not changed. Name
compatibility essentially involves just the concept of overriding.

Systems may or may not allow multiple inheritance. Those systems that provide only
single inheritance include:’

- OPAL in GemStone [Maier 86]

- Type Definition Language (TDL) in VBase (Andrews 87]
The following systems provide multiple inheritance:

- EXTRA in EXODUS [Carey 88]

- ORION [Banerjee 87a]

- ENCORE [Zdonik 86]

- Iris ([Fishman 87]
Apparently, the current implementation of the Oz data model of the Alair project now
supports multiple inheritance [Deux 90] although an earlier report indicated that users
could specify only single inheritance [Bancithon 881! Instead of inheritance, GEM
supports union types: they argue that such incremental changes to the relational data
model is more graceful and compatible with existing approaches [Zaniolo 83].

Although multiple inheritance makes complex modeling easier, it introduces some
complications. In particular, conflict resolution is required when two attributes with
identical names are inherited from two different superclasses. One method is to use the
specification order by which the superclasses were inherited (e.g. inherit the attribute
from the earlier superclass) [Banerjee 87b]. Another is to force the application
programmer to specify explicitly the superclass from which to inherit the attribute (as in
Oy [Deux 90}). Both of these methods essentially cancel the effect of the hidden
attribute. A better method. perhaps, is to force the programmer to rename conflicts so that
all atributes remain available. During renaming, the programmer can also specify that
conflicting attributes should be treated as identical instead of distinct.

2.2.4 Polymorphism

Much of the flexibility in the object-oriented data model derives from polymorphism.
Polymorphism is the ability to manipulate many types at once in an application. Object-
oriented databases provide polymorphism in two ways. First, an attribute may take on
any value that is type compatible with its declared domain. In object-oriented systems, a
value is rype compatible with a domain if its class is a descendant of the domain class in
the is-a inheritance lattice [Meyer 88]. In other systems, less natural mechanisms must
be used to achieve polymorphism (such as union types in GEM [Zaniolo 83)).

9 These systems may have removed this restriction since the date of their last technical report.

10The formal data model specified by the Alwir project always supporied multiple inheritance {Lecluse
88].
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The second way databases provide polymorphism is during message invocations. Recall
that inheriting classes may override methods. Thus, the class of the message receiver
may be any that contains the message in its behavior. Minimally, this includes all
descendants of the receiver’s declared class (if static type checking is performed).

Determining the actual method to be executed is called method resolution. Dynamic
method resolution determines the method at run-time by using the class of the actual
receiver.!!  Almost all systems use this technique. Staric method resolution, or
overloading, determines the method before execution according to the declared class of
the receiver. Iris uses overload resolution unless explicitly requested otherwise [Fishman

87].

2.2.5 Genericity
Additional flexibility is achieved when systems allow classes to have fype parameters. In
particular, collection classes (e.g. set, array, stack, tree, graph, list, and queue) need not
be written for every component class used in an application. For example, one class can
handle both *‘set-of-employee’* and ‘‘set-of-vehicle’’. This capability is called genericity
[Meyer 88].

Systems such as GemStone [Maier 86] provide genericity without explicit type
parameters because they do not require type declarations. On the other hand, such
systems cannot guarantee that all elements of a set instance are type compatible. In our
example, one might end up with a set of employees and vehicles intermixed.

Systems that do use type parameters to provide genericity include the C Object Processor
(COP) language for VBase [Andrews 87] and the E language of the EXODUS system
[Richardson 89b). Systems that allow and check type parameters help the programmer
maintain the semantic correctness of the application’s persistent data.

2.2.6 Extensibility
Object-oriented database systems provide extensibility in several ways. The most
important involves the ability to extend the set of types recognized by the database.
Data abstraction extensibility enables the application programmer to construct complex
persistent objects [Laffra 90]. All object-oriented systems provide this kind of
extensibility.

Generally, application objects do not map easily onto the basic types provided by a
relational database system. Thus, data rype extensibility would allow applications to
derive completely new interpretations of stored data (e.g. multimedia objects [Woelk
86]). Some databases provide full type extensibility (e.g. EXODUS [Carey 86]), some
limit extensibility to fixed length data (e.g. in an extension to INGRES [Stonebraker 88]),
and some do not provide this kind of extensibility at all.

11 A system may support dynamic method resolution even if it statically checks the type compatibility of
message invocations. In such cases, static checking restricts the st of methods that might be exccuted to
those dcfined in a subtrec of the class hicrarchy and cnables more efficicnt determinations at run-tme, such
as the usc of dispatch vectors (as in C++ [Stroustrup 86]).
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Once new object types are allowed in a database, the database system should support
efficient access and query optimization for instances of those types. In particular,
indexing extensibility enables the integration of non-standard indexes, such as
multidimensional access methods, into the system [Stonebraker 88, Zdonik 88].
Indexing extensibility may also be achieved by providing indexing composition operators
that can understand structured data [Bertino 89]. Some systems are already
experimenting with how an application programmer can specify the performance
characteristics of indexes for query optimization (e.g. Iris [Derrett 89], EXCESS [Carey
88], ORION [Kim 89a]).

In most other data models, the only operators available to the application developer are
those dealing with the model (e.g. get and set attribute for the relational model). Once the
system can recognize other object types, it becomes possible and desirable to allow
procedural extensibility or embedded semantics [Maier 86, Carey 88].

By storing methods in the database, several benefits are realized. First, quenies may
execute more efficiently since complex operators can be compiled (e.g. find all rectangles
whose height is twice their width). Second, if viewing is just another action, queries do
not need any special treatment: they can be represented procedurally (Zhu 89]. Third,
one can abstract away access mechanisms; clients need not know whether a value is
being retrieved by look-up or by computation (as in Iris [Fishman 87]). Finally,
embedding semantics within a database helps make it self-contained, which expedites the
design and implementation of generic applications (i.e. applications that operate over
disparate sets of data; VBase [Andrews 87] and E [Richardson 89a] support this
capability).

One problem with allowing embedded semantics is that it is difficult to protect the
database from inept or malicious behavior. Depending upon its architecture, a method
with a bug can cause an entire database system to crash. Similarly, embedded methods
can compromise a database’s integrity by storing incorrect data [Stonebraker 88]. An
architecture like that used in ENCORE [Homick 87], in which a separate process
executes object semantics. can help protect against the first problem. Versioning and
authonzation can help with the second.

Note that providing extensibility for one feature (e.g. data type extensibility) has an
effect on other aspects of the system (e.g. storage, locking, logging, etc. of variable-sized
data). I feel that such interrelationships should lead to a complete re-design of the model
presented to application developers, but some clearly disagree {Zaniolo 83, Stonebraker
88]. A complete re-design would allow application input at the proper places regarding
query optimization, storage clustering, attribute composition, etc. On the other hand,
drastic changes are hard to assimilate.

2.2.7 Integrity Constraints
Integrity constraints in a database system restrict the applicability of certain operations
so that the validity of the data model or the semantic consistency of the stored
information is maintained. In a relational database, for example, one cannot insert two
distinct tuples with identical key values in the same relation. Similarly, object-oriented
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systems that support the concept of key uniqueness in collections must ensure that two
distinct objects in a collection do not have the same key values. Such support exists in
the Iris database system [Fishman 87].

Several other integrity constraints arise in systems supporting object-oriented data
models [Banerjee 87b). First, object-oriented systems restrict class inheritance so that
the superclass-subclass graph forms either a strict hierarchy (for single inheritance) or a
lattice (for multiple inheritance). Thus, it is not possible to construct a class that inherits
properties from itself.

Next, a class must constitute a name space for all attributes, including instance variables
and methods. This means that one cannot assign the same name (i.c. identifier) to two
different attributes. Although the name space must include the messages acceptable to
the class and all superclasses, the instance variables of ancestor classes should not be
included if strict encapsulaton is enforced (i.e. only methods defined in the class
declaring the instance variable may reference the variable’s name; e.g. see the E
programming language [Richardson 89a]). Of course, if encapsulation is not enforced,
all inherited instance variable names must participate in the name space (as in Iris
[Fishman 87])).

When multiple inheritance is permitted, some form of conflict resolution (see section 2.2.3
on Inheritance) must exist so that each inherited attribute has a unique source. Otherwise,
ambiguity would result just as when two attributes of the same name are declared in one
class. Also, other than the cancellation that occurs during conflict resolution, all of the
systems surveved require that a class inherit all attributes of a superclass (i.e. no explicit
cancellation is allowed).

Systems that associate types with atributes enforce fype compatibility (see section 2.2.4
on Polymorphism). That is, the system checks statically or dynamically that the class of
any value assigned to an attribute is a descendant of the atwibute’s domain class in the
is-a inheritance lattice. The O3 system, for instance, statically checks all auribute
assignments [Bancilhon 88].

Some systems go further and allow the application developer to specify additional
constraints on the values that may be assigned to an atmibute. Typically, these
constraints limit the range of acceptable values (e.g. days of the month must be between
1 and 31, inclusive). More complex constraints involve predicates that legal values must
satisfy; systems usually provide triggers to handle these cases (see section 2.1.3 on
Triggers and Notifiers). Generally, triggers are also the only mechanism available to
help ensure the maintenance of class invariants (i.e. predicates that must hold true for all
class instances before and after each method invocation).

Finally, a system provides referential integrity if it guarantees that every object has a
unique identifier and that if an object is referenced in a database (i.e. its identifier is
present), then it resides in that database [Stein 89]. Clearly, databases that support strong
identiry (see section 2.2.1 on Object Identity) provide referential integrity. Another
mechanism to achieve referential integrity would be to eliminate all references to deleted
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objects.

If a database system provides other capabilities, additional integrity constraints might be
required; see the sections below on Composition and Relatonship Support.

Up to now, this paper has discussed only those features that are inherent in an object-
oriented data model. Subsequent sections present capabilities that object-oriented
systems can provide to ease the semantic modeling task of the application developer.

2.2.8 Composition
One way to help model the semantics of an application domain is to support object
composition and property propagation.'? Composition captures the semantics associated
with the is-part-of relationship between objects [Kim 87]. Property propagation
provides flexibility in determining auribute values (e.g. the color of a car should
determine the color of its fenders) and allows finer control over such generic operations
as delete, print, copy, equal. and save [Rumbaugh 88].

Consider again the task of modeling airplane designs. In a given design, each landing
gear assembly consists of several parts, including a wheel, an axle. struts, and so forth.
When operating on the assembly as a whole, all of these parts should participate as well.
Object composition achieves this effect by associatng a special composition property
with the instance variables of the ‘‘owner’” object; in this case, the landing gear
assembly.

In its strongest sense, object composition implies that the part cannot exist without its
owner nor be shared with another owner. That is, the object referenced by a composite
instance variable must be destroved when the owning object is destroyed and may only
be created as part of the creation process of the owner. Similarly, since the referenced
object **is part of "' the whole, it cannot be **part of* another composite object [Kim 87].

These characteristics lead to new integrity constraints (see the previous section). In
particular, no assignment may occur to a composite attribute outside of any constructor
for the composite object. Second, an instance variable may not be changed from non-
composite to composite, unless one can guarantee that existing objects of the class being
modified do not already refer to another object’s ‘‘part’’. Finally, when a new version of
a composite object is created, any attribute tagged as referring to a specific version must
be assigned either a copy of the referenced ‘‘part’’ ora null value [Kim 87].

Composition can improve database efficiency by allowing the application developer to
increase the granularity of locking (see section 2.1.1 on Concurrency Control) and to
specify object clustering for the storage management subsystem (see section 2.6.3 on
Clustering) [Kim 87].  Thus, one can simultaneously lock all objects that are
transitively *‘part of”* a single, root composite object. (Note that locking becomes more
complicated because a lock request on an object cannot be granted without checking that

12 Rumbaugh actually uses the term *“attribute’ propagation, but I feel that there would then be confusion
with class aunbutcs (i.e. methods and instance vanables).
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the object is not ‘‘part of "’ a locked composite object.) Clustering improves performance
by grouping objects together on secondary storage that are likely to have similar access
patterns. Intuitively, the set of objects that are ‘‘part of’’ a composite object should
exhibit such behavior [Homick 87].

Composition as described above can sometimes be too restrictive. In such cases, the
application developer probably would not use the facility. Kim, Bertino, and Garza
describe how to make composition more flexible during their research using the ORION
system [Kim 89b]. In particular, they separate the concepts of composition, exclusivity,
and dependence.

If an instance variable is tagged as composite, they allow the reference to be either
exclusive or shared. An exclusive reference means that an object ‘‘part’’ may have only
one owner, whereas a shared reference allows multiple owners. Similarly, a reference
may be either dependent or independent. A dependent reference indicates that the
existence of the referenced object depends on its owner; i.c. it must be created and
destroyed when its owner is. An independent reference may be assigned to at any time,
not just within constructors. Thus, a *‘part”’ may have a life of its own [Kim 89b].

Again, integrity constraints must be changed because of the added functionality. In
particular, deletion of a composite object containing dependent references will delete the
referenced objects only if they are exclusive or it is the last container. Also, for example,
to change a non-composite attnbute into a shared composite attribute, one must ensure
that there are no exclusive composite references of any sort within the database to objects
that are already referenced by that atribute. Kim, et. al. list all of the new constraints in
their paper (Kim 89b].

Although composite attnbutes may be used to propagate information between an
“‘owner’ and its ‘‘pants’’, the ability to propagate different properties independently
requires additional mechamism [Rumbaugh 88). Generic operations (e.g. equal, delete,
copy, print, display, save) each need control over propagation. Most systems provide
only three kinds of generic operations: name, shallow, and deep. For instance, name
equality just checks whether two object references are identical, shallow equality checks
whether the instance variables of two objects are identical, and deep equality recursively
checks all references. Property propagation allows the application developer to indicate
the instance variables that should participate in the recursive step. Thus, displaying a
landing gear assembly might not show part numbers, but creating a duplicate should copy
the part numbers as well.

In addition to the ORION project, the EXTRA data model of the EXODUS project
allows shared and exclusive dependent composition (but apparently not independent)
[Carey 88] and the ENCORE project provides composition for locking, clustering, and
versioning [Hornick 87]. No system surveyed provides as much flexibility for property
propagation as advocated by Rumbaugh; Rumbaugh has, however, implemented a
programming language that includes features for property propagation [Rumbaugh 88].
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2.2.9 Relationship Support

Composition augments the semantics of object interrelationships. However, object
references are still inherently unidirectional. In using direct references between entities,
the basic object-oriented data model inhibits the maintenance of data independence and
the expression of multi-directional relationships, which improves semantic modeling
[Chen 76]. The ability to express arbitrary relationships between objects would eliminate
these problems and complement the advantages of the object-oriented paradigm
[Rumbaugh 87].

For example, consider a landing gear assembly in our hypothetical airplane design
application. If the designer wishes to maintain the set of struts for the assembly, he
declares an instance variable in the assembly object to hold the set of struts. If the
designer requires that each strut know which assembly it is a part of, then he can declare
an instance variable in the strut object to refer to the containing assembly object.
Without relationship support, however, the designer must ensure that all struts contained
in an assembly’s strut set refer back to that assembly. This invariant must be maintained
explicitly for all operations (e.g. insertion and deletion) that affect this relationship.

A system that provides entirv-relationship support, then, can maintain this extremely
common invariant automatically. In addidon to enabling symmetry, new integrity
constraints can guarantee the uniqueness of either or both participants in one-to-many,
many-to-one, and one-to-one relationships [Chen 76]. Furthermore, object relationships
become explicit instead of being hidden throughout object implementations [Rumbaugh
87]. Finally, the use of relationships enhances the data independence of a database (i.c.
the degree by which the data is independent of any one application).

In his programming language DSM. Rumbaugh has demonstrated how to integrate
relationship suppont and object-oriented modeling [Rumbaugh 87]. Some database
systems do provide relationship support through automatic updating of inverse
relationships and key values (as in VBase [Andrews 87) and Iris [Fishman 87]). The
GEM database language implements the entity-relationship model directly (Zaniolo 83].
Note that relationship support and triggers (see section 2.1.3 on Triggers and Notifiers)
may be used to implement composite attributes (see the previous section on
Composition).

2.2.10 Access to Meta-information
Meta-information in a database consists of the definitions that describe the information
contained in the database. Thus, relation schemas and indexes constitute the meta-
information for relational databases. In object-oriented databases, indexes, the dictionary
of root objects, and the class definitions, including the properties of each instance
variable (e.g. value domain, composite-ness, key-ness, relationship to other objects, and
default value), comprise the meta-information of interest.

Access to meta-information is important for two reasons. First, generic applications can
be built that manage databases and their information by examining the class definitions.
Second, applications (like Alexandria) that allow users 10 manipulate and edit
information structure should be able 10 model such swmucture directly onto class
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definitions. Both the Iris [Fishman 87] and VBase [Andrews 87] database systems
provide built-in functions to provide access to class and index definitions.

2.2.11 Data Sharing
Databases control the sharing of data by multiple users with transaction mechanisms.
This section, however, addresses the issues concerning the sharing of data by other data.

Data sharing occurs when two or more objects refer to another, different object. In an
application that deals with multimedia documents, this can happen when two documents
contain the same picture. In CAD applications, data sharing takes place when two
designs include a part that is defined in a common library. In both cases, data sharing is a
means of reducing storage requirements and communicating updates [Woelk 86].

Object-oriented data models implement sharing naturally through direct object
references. The difficult issues concern how updates to shared data are propagated while
maintaining maximum concurrency. Using composition (see section 2.2.8 on
Composition), it is possible to control the version of a shared object reference and to lock
against concurrent updates. The problem with locking, however, is that transactions that
operate on other objects that share data with a locked composite object cannot progress,
even if they do not depend on the value of the shared data. One solution is to create a
new locking mode that locks a composite object except for specified shared references
which may be already locked by other transactions. Another is a form of optimistic
concurrency. Allow the lock on a composite object to succeed even if a shared reference
is already locked, but cause the transaction to abort if the shared object’s value changes
when the other transaction commits. No system surveyed has addressed these issues
other than through composition.

2.2.12 Authorization

Maintining privacy and preventing unsanctioned updates in a database constitute
significant concerns. Database systems provide authorization, or access control,
mechanisms to achieve these goals. An authorization is effectively a relationship among
users, operations, and database entities. In a relational database, the entities are relatons,
relation columns, tuples, and schemas. In an object-oriented database, entities may be
classes, objects. instance variables, or methods. As an example (for either case), the
authorization relationship may indicate that a particular user has permission to read
employee salaries but not to update them. On the other hand, because of the ability to
embed semantics, only object-oriented database systems can restrict a user’s access to
executing a method that returns the total of all salaries without allowing that user to read
any individual employee’s salary.

This model for authorization is very flexible but also very expensive in terms of storage.
Thus, it is essental that the explicit authorizations kept in the database be augmented
with rules for determining implicit authorizations. There are two well-known paradigms
for arranging authorizations. Capability lists associate permitted operations on classes of
objects for each user while access lists associate authorized user categories by operation
for each object. Neither paradigm alone is particularly flexible.
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The object-oriented data model provides an opportunity to design an authorization
mechanism that is both efficient and flexible [Rabitti 88]. A crucial observation is that
each component of an authorization can be organized into a lattice of categories.
Individual users can be members of groups and groups can be members of higher-order
classifications, or ‘‘roles’’, and so on. Similarly, individual operations can be grouped
into sets that may share characteristics (e.g. append and write). Finally, objects and
classes naturally fall into a lattice through composition and inheritance.

As a result of this observation, a basic rule for determining implicit authorizations would
be that an authorization exists for a given user, operation, and object if there is an explicit
authorization for any user group, operation category, and object class and the user is a
member of that group, the operation is in that category, and the object inherits from that
class.

A second important observation is that sometimes it is simpler to grant sweeping
authorizations and list exceptions than to try to list only those authorizations that are
valid. Thus, one can augment the set of explicit positive authorizations with negative
authorizations [Rabitti 88]. The rule for implicit authorizations, then, must also be
augmented to determine when negative authorizations override positive authorizations,
and vice versa. Certainly. the closest authorization along any path in the lattice overrides
those farther along that path, but problems arise when differing authorizations apply from
different paths. Possibilities include assigning priorities to users, operations, or objects;
choosing the authorization closest in the lattice: or choosing negative authorizations over
positive ones (to be safe).

Composite objects present another opportunity for implicit authorization [Kim 89b].
Authorizations involving a composite class or object can imply the same authorizations
for all component objects. Conflicting authorizations for a component object, in this
case. can be resolved in favor of the authorization applicable to the composite object
dereferenced.

The overall effect of these observations is to reduce the number of explicit authorizations
that must be stored in the database without adversely affecting flexibility. Other rules
may be found that can further reduce the storage requirements for authorization. Also,
note that the rules for determining authorization can apply to arbitrary property
propagation as well.
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2.3 Language Issues
Database developers program applications in whatever language the database system
supports. Frequently, systems provide languages that fit the database’s data model (e.g.
SQL and SEQUEL for relational databases). These languages are not computationally
complete, in general, so some database systems provide translators that allow a
programmer to embed database language statements within general-purpose
programming language programs (e.g. C or FORTRAN).

Database languages may be based on any of several computational paradigms.
Languages using data model paradigms include SQL, SEQUEL, and object-oriented
variants such as POSTQUEL (Stonebraker 86a], OSQL (used in Iris) [Fishman 87], and
an unnamed language used in ENCORE [Zdonik 86]. Data descriptions may be written
in special, separate declarative languages that do not allow arbitrary computation (or
queries), such as the Type Definition Language (TDL) used in the VBase system
[Andrews 87]. Finally, languages that do allow general computation may be based on
any paradigm that is Turing-equivalent. For example, Zhu proposes that rule-based
systems be used, in which computation is specified by pattemn-action pairs (i.e. whenever
a rule’s pattern is matched. the corresponding action is performed on the data that
matched the pattern) [Zhu §9]. Although many possibilities exist, however, most
object-oriented systems use the imperative paradigm, in which database actions occur as
normal statements within a program as in E (used in EXODUS) [Richardson 89b] or CO,y
(used in O3 by the Altir project) [Bancilhon 88].

Traditionally, programming languages and database systems provide separate (but
complementary) facilities. For example, languages have not dealt with semantic
composition, persistence, or versioning, while databases have not dealt with structure
traversal and computation [Kim 88]. In providing a framework for supporting both sets
of features, object-oriented databases also provide an opportunity for achieving a unified
language interface to those features. The following sections discuss the issues affecting
such a unification.

2.3.1 Persistence
The first issue from a programming language perspective regarding the integration of
database facilities concerns the handling of persistent entities, or values. Questions to
resolve include how orthogonal are persistent values, what determines that a given value
is persistent, and how to specify the database containing the persistent values of interest.

Full orthogonaliry is achieved when any value that is manipulated may be persistent
[Laffra 90]. A system that provides essentially no orthogonality is Coral3, since
persistent objects must be copied into transient space to be operated on and then returned
to their special, persistent *‘holders’’ [Merrow 87]. Languages that allow embedding
(e.g. embedded OSQL in C [Fishman 87]) may or may not achieve orthogonality.
Persistent values must be transferred first between embedded language and host language
variables. Once they are in host language variables, it is conceivable that persistent
values may then be manipulated by the host language. The cleanest way to achieve
orthogonality, of course, is to integrate persistence into a single paradigm programming
language, as was done in the EXODUS project with the E programming language
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[Richardson 89b].

Languages may determine whether or not a given value is persistent in several ways.
Easiest would be to assume that all objects manipulated during the execution of an
application are persistent (as apparently is the case in OPAL in the GemStone system
[Maier 86]). A second approach is to identfy one or more root objects and assume that
all objects reachable from these roots are persistent (as in POMS [Cockshott 84)).
Another approach is to specify special types for persistent values (as in E [Richardson

89b] and CO, (Bancilhon 88)).!3

It has been claimed that using persistent type declarations yields the greatest execution
efficiency while still providing orthogonality [Richardson 87]. Unfortunately, for
applications that manipulate both persistent and transient data, this can lead to two
identical sets of types. A more natural approach!4 would be to declare whether or not an
object is persistent when it is created. Appropriate compiler technology exists so that an
application loses no execution efficiency unless the full flexibility of a feature is used
[Horowitz 88)]. In this case. the appropriate way to enable efficiency is to declare
whether a specific variable may hold persistent values.

Finally, a language achieves database independence when the application can specify the
sources of persistent values. Unfortunately, most systems assume that all persistent
values reside in a single database (as in E [Richardson 89b)), and. sometimes, the actual
database used can even depend on the environment in force when the application was
compiled. Clearly, object semantics must be stored after compilation and made available
during execution in order to manipulate objects. However, the same application should
be able to maintain separate databases for different users and share access to object
semantics [Bancilhon 88].!°> As noted in section 2.1.4 on Distribution, the Iris database
does allow an application to connect to different databases during the same execution,
but apparenty forbids simultaneous access [Fishman 87]. Simultaneous access is
necessary for those applications, like Alexandria, that wish to present the information
from different sources transparently.

2.3.2 Impedance Mismatch
The concept that complements orthogonality is transparency, which evaluates how well a
programming language can hide the distinction between persistent and transient values
[Laffra 90). For example, one measure is whether a program can pass a persistent object
to a routine that doesn’t know whether or not the parameter is persistent.

Transparency and orthogonality address the larger issue of impedance mismatch in
database programming languages. I/mpedance mismatch reflects the degree 10 which an
application programmer must handle persistent values differently from transient values.

13Note that. for this approach, the compiler must ensure that no persisient pointer is assigned to a non-
persistent pointer {Richardson 89b).
¥ This approach would also be more transparent: see the next sccuon.

1S Local databases can still be made sclf-contained (sce section 2.2.6 on Extcnsibility) by copying object sc-
manucs into them.
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A language providing orthogonality and transparency effectively eliminates impedance
mismatch.

Clearly, different models of computation for persistent and transient values causes
impedance mismatch (e.g. the declarative TDL vs. the imperative COP in VBase
[Andrews 87] or embedded OSQL in Iris [Fishman 87]). Similarly, lack of orthogonality
or transparency causes problems.

There are only three times when a programmer must know whether data is persistent or
transient: when inserting an object into a database (e.g. during object creation), when
removing an object from a database (e.g. during object destruction), and when efficiency
is required. Computers deal most efficiently with transient values. Thus, a language
should provide features that allow the programmer to specify when only transient values
will be used.!® Other than at these three times, a database programming language should
provide complete orthogonality and transparency.

2.3.3 Software Engineering Issues
Because of their experimental nature, database programming language designs present an
opportunity to try out new features that support good software engineering. Since a
discussion of software engineering in general is outside the scope of this paper, this
section discusses only those features that have been wied by the systems surveyed.

In object-oriented systems. classes constitute appropriate units for abstraction,
reusability, and decomposition. The language mechanism that allows programmers to
hide implementation details and define small interfaces is called encapsulation. Almost
all systems provide encapsulation through classes; one notable exception is Iris, which
has no class or encapsulation mechanism [Fishman 87]). Zdonik argues that
encapsulation can interfere with certain database operations, such as query optimization
[Zdonik 88], but it is well-known that the language compiler should cross encapsulation
boundaries to find needed information. Classes and encapsulation also provide natural
boundaries for name spaces. which delineate the scope of name-to-object relationships.
Systems with imperative languages, such as COP in VBase [Andrews 87], can also take
advantage of the block structuring inherent in the host language.

Although object-oriented type compatibility rules allow sraric ryping, that is, checking
the legality of assignments and message sends at translation time, to be very flexible,
greatest flexibility is still achieved by dynamic ryping, or checking during execution.
Static typing is used in CO; [Bancilhon 88], COP [Andrews 87), and E [Richardson 87],
whereas dynamic typing is used in OPAL [Maier 86], ORION (Kim 88] and Coral3
[Merrow 87). OSQL (in Iris) goes even further than dynamic typing by allowing objects
to acquire types dynamically, which is particularly useful for extending existing
databases for new applications [Fishman 87].

16Sec, for example, the discussion in the previous section concerning the usc of special databasc types (as
in E [Richardson 89b]) vs. variable declarations.
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Other features explored include type generators (as in COP [Andrews 87] and E
[Richardson 89b]; see the discussion in section 2.2.5 on Genericity), structured exceptions
(as in COP [Andrews 87]), and iterators (as in E (Richardson 89b]). lterators allow
programs to fetch component values one at a time from compositions like sets, lists,
queues, and trees. In particular, iterators are especially useful because they enable
arbitrary searching.

2.3.4 Host Languages
A host language is the language into which a database language is embedded or on which
an integrated database language design is based. Embedded languages can use almost
any host language as long as some mechanism exists that transforms database values into
values the host language can manipulate. Iris, for instance, comes with preprocessors
that allow programmers to embed OSQL statements in C or FORTRAN programs
(Fishman 87].

Similarly, databases that present themselves as a function library can also be used in
almost any host language. Abstractions (i.e. data types) must be defined for the data
model concepts that may be manipulated (e.g. relation, tuple, database). An equivalent
mechanism for transforming values must still be provided, however [Donahue 86]. The
GemStone system, for instance, is accessible to programs written in C and Pascal [Purdy
87, Kernighan 78, Jensen 74].

No system surveyed designed an entirely new, integrated language for both database and
arbitrary computation. Several have extended the designs of existing languages:
- the ORION system {Kim 88] extends Common LISP {Steele 84];
- GemStone's language OPAL [Maier 86] and the Coral3 system [Merrow 87}
both extend Smalltalk (Goldberg 83];
- the COP language in the VBase project [Andrews 87] and the CO3 language in
the Altair project [Bancilhon 88] both extend C [Kemighan 78];
- PS-Algol in the POMS system [Cockshott 84] extends Algol-68 [Van
Wijngaarden 75].
- the E language in the EXODUS project [Richardson 87] extends C++
(Stroustrup 86).
To a large degree, the features of the host languages affect the characteristics of their
respective systems relative to the issues presented in the previous section. For instance,
the ORION system provides dynamic typing because Common LISP does. On the other
hand, the EXODUS and VBase projects did integrate interesting non-database features
into their language designs (see the last paragraph of section 2.3.3 on Software
Engineering Issues).
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2.4 Query Issues
Relational databases provide associative access mechanisms that allow applications to
find and manipulate entities based on their values instead of their reachability from other
entities. Object-oriented database systems can provide both. This section examines the
characteristics of search for object-oriented data models.

An application specifies a search of a portion of a database by issuing a query. A query is
a description in some language of the nature of the objects to be retrieved and the domain
over which to search. Query languages for object-oriented systems must allow more
complex formulations than relational query languages. For example, applications
dealing with hierarchically defined documents, such as those in SGML format, require
the ability to search based on hierarchical structure [Macleod 89]. Section 2.4.1 below
describes the capabilities that have been explored for object-oriented query languages.

Database systems generally support two means for speeding query execution. Indexes are
search structures imposed on a collection of persistent entities in order to minimize the
number of relatively slow secondary storage accesses and achieve sublinear complexity
for value-based comparisons. Systems also attempt to optimize queries by transforming
them into equivalent forms that execute faster. Sections 2.4.2 and 2.4.3 below discuss the
characterisics of indexes and query optimization respectively in object-oriented
databases.

2.4.1 Query Language

As noted above, databases must provide a language in which to specify queries. Most of
the issues discussed in section 2.3 on Language Issues apply, most notably the
computational paradigm used and the level of impedance mismatch. Many object-
oriented systems have extended existing relational query languages (e.g. OSQL in Iris
extends SQL [Fishman 87] and EXCESS in EXODUS extends QUEL [Carey 88]), while
others expect searches to be specified in their extended imperative language (e.g.
Common LISP in ORION [Kim 88], CO3 in O3 [Bancilhon 88], and OPAL in GemStone
[Maier 86]).

The specification of a query must express the domain of objects to be searched and
characterize the nature of the objects to be retrieved. In some systems, searches can only
occur over entire classes, whereas other systems allow searches over arbitrary collections
(e.g. ENCORE [Zdonik 88], O> [Bancilhon 88], EXCESS [Carey 88], ORION [Banerjee
87a], GemStone [Maier 86]). Because of inheritance, the system should also allow one
to specify whether instances of subclasses should be included when searching over a
given class’s instances [Banerjee 88]. None of the systems surveyed actually makes this
distinction.

Characterizing the objects to be retrieved involves defining a selection, or filter predicate
(i.e. boolean expression) that each object must satisfy. The standard operations that
object-oriented systems provide for composing a predicate include [Osborn &8]:
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- constants (for direct comparison),

- comparison operators (such as ‘‘less than’’),

- set operations (minimally union, intersection, and set difference),
- combination (which acts like Cartesian product), and

- partitioning (which acts like projection).!”

An extension that appears in almost every object-oriented system is the ability to specify
paths in a selection predicate. A path, or nested expression, is a sequence of attribute
tags which computes a target object reachable from a given, identified object [Banerjee
88]. For example, one might request all employees whose company’s president is older
than fifty as follows:

select E

for each Emplcyee E

where E.Division.Company.President.Age > 50
Thus, the path consists of the sequence of attributes <Division, Company,
President, Age>. Each aumbute in a path effectively acts like an identiry join,
ensuring equal object identities. The initial use of the dot notation constitutes a
functional join [Zaniolo 83]. Most systems also allow traditional value-based joins, in
which the value of one attribute is compared against the value of another attribute [Carey
88]. For instance, imagine if the expression E.Age replaced the constant S0 in the
example above.

The standard operators described form an algebra on which there exists a set of
equivalence transformations. These transformations may be used to improve the
performance of query execution [Osbomn 88]. Some systems even transform an object-
based query into an equivalent relational query, which may then be optimized; the Iris
system, in fact, must do this since its underlying storage system is a relational database
[Fishman 87]. These issues are discussed in more detail below.

One of the more interesting advances introduced by object-oriented databases is the
ability to incorporate user-defined operators into query predicates. Arbitrary operators
may execute faster than equivalent predicates expressed using standard operators since
they can be compiled. On the other hand, introducing non-standard operators can
represent a security risk [Wilkinson 90] and complicate query optimization; again, see
below.

Some researchers have examined how to deal with cyclic queries. Cyclic queries fall
into two categories: (1) those whose predicates relate an object to itself and (2) those that
iteratively operate on objects retrieved until no new objects result, which is useful for
computing transitive closures. An example of the first kind occurs when requesting all
employees managed by their spouse:

' Projection in an object-oriented system is a little strange since no uscr-defined class would correspond to
the result. Some systems do not provide projection, and some belicve that it is anutheucal 10 the dau
modcl [Bancrjce 88). Other systems synthesize a semantics-free class for cach projection. It is not clear
whether the loss of projection would have an adversc impact on application design.
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select E

for each Employee E

where E.Manager = E.Spouse
An example of the second kind occurs when requesting all direct and indirect managers
of an employee named Joe:

saelect into Managers (M)

for each Employee E, Employee M

where (E in Managers and E.Manager = M)

or (E.Name = "Joe" and E.Manager = M)

Both kinds generate a directed, cyclic graph as a query representation instead of an
acyclic graph. Cyclic queries complicate the generation of access plans (i.c. which
expressions in the query graph to execute when). In particular, cyclic queries greatly
expand the number of possible access plans to be searched. Thus, one would like to
show boundedness and termination, especially for iterative queries. Kim, Kim, and Dale
describe several heuristics for computing efficient access plans for cyclic queries. They
suggest a combination of forward and reverse traversals of the query graph (according to
edge direction) and basing local decisions on the estimated cost of evaluatng the
expression corresponding to each node [Kim 89a). They also seem to claim that using
indexes instead of enumerating test cases is not helpful since some objects retrieved by
an index search may not satisfy a cyclic predicate. [ disagree, since a linear search after a
logarithmic retrieval should often be faster than just a linear search.

2.4.2 Indexing

An index is a search structure in a database imposed on a collection of persistent entities.
An index is used to reduce either the number relatively slow secondary storage accesses
(i.e. disk probes) or the number of comparisons needed to find entities with attribute
values in a given range. A search structure is based on one or more attributes (e.g. sor
alphabetically by employee last name): thus, indexes act as associative memory relating
attribute values to database entities. More than one index may be associated with an
entity set.

In relational databases. an index sorts one or more attributes of a relation. In some
object-oriented systems, an index may be applied only to the set of instances of a class.
Most systems, however, allow indexes on arbitrary collections of objects (e.g. GemStone
[Maier 86] and EXODUS [Richardson 89b})).

Several issues arise concerning indexes in object-oriented systems. First, different search
structures are appropriate for different indexes. Several standard indexing techniques are
in common use, including single attribute sorts (e.g. B-trees and its variants), radix sorts
on multiple attributes, and multi-dimensional sorts (e.g. k-d-b trees for points [Robinson
81] and R-trees for hyper-rectangles [Guttman 84]). Database systems, however, should
allow extension by user-defined structures. The ability to incorporate object semantics in
object-oriented databases provides a natural mechanism for such flexibility.

Second. as in other data models, indexes require updates when atribute values of
member objects change [Laffra 90]. For system-supported index structures, this should
not present a problem. User-defined structures, however, require hooks so that the
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appropriate invariants can be maintained. Triggers (see section 2.1.3 on Triggers and
Notifiers) can provide this functionality [Zdonik 88].

Third, extended indexing operators may take advantage of generically written index
methods. Search structures are excellent candidates for parameterization by component
type. Thus, the B-tree algorithm, for example, can be written to work for any type
having an operator that satisfies total ordering predicates [Stonebraker 88]. Object-
oriented data models reap additional benefits because any algorithm written for one class
will work for all classes that inherit that class.

Fourth, an index on the collection of class instances can include all instances of its
subclasses (i.e. class hierarchy indexing) or only those instances of that class (i.e. single
class indexing). The former yields better storage and query execution efficiency while
the latter provides more flexibility for those queries specifying single-class results [Deux
90]. ORION [Kim 90} and O [Deux 90] have chosen to provide only class hierarchy
indexing.

Finally, the ability to specify nested or cyclic references in queries present opportunities
for special indexing structures [Banerjee 88, Kim 89a). Bertino and Kim identify three
new structures for systems that allow path expressions in queries [Bertino 89).'% A
nested index associates all possible start values for each known end value of a given path
expression. Such an index would help for queries requesting all emplovees whose
company’s president is older than fifty (see the first example in the previous section). A
path index associates for each end value of a given path expression all values that yield
that end value when starting anywhere along the path. This appears to be equivalent to a
union of the corresponding nested indexes. In our example, a path index on the
expression £.Divisicn.lcompany.President.Age would, for each known age,
associate all the appropriate subpaths to each age, starting from employees, divisions,
companies, or presidents. Last, they define a mudti-index to be the set of nested indexes
that apply to the decomposition of the given path into single links. Thus, a multi-index
on our path expression consists of nested indexes on the expressions E.Division,
D.Company,C.President,and P.Age.

The three indexes have different resource requirements and performance charactenstcs.
Nested and path indexes perform better when retrievals dominate, while multi-indexes
perform better when modifications dominate. Their statistical analysis led to the
conclusions that nested indexes should be used for paths shorter than three links and that
multi-indexes are probably optimal for longer paths [Bertino 89].

2.4.3 Query Optimization
As in other data models, it is possible in object-oriented database systems to transform
queries into equivalent forms that execute faster [Osborn 88]. Query optimization is the
process of discovering such equivalent forms. Note that query ‘‘optimization’’ does not
really optimize anything: it just generates a semantically identical query that executes
faster [Graefe 88]. Clearly, any speed-up achieved must at least recover the work

**Note that these are not the only new index structures that are possible for nested or cyclic cxpressions.



-32-

expended in computing the improvement.

Transformations fall into three categories: (1) algebraic equivalences (e.g. projections
may be pushed through selections), (2) transformations that make sense only in certain
situations (e.g. removing redundant joins), and (3) those that help plan q:cry execution
(e.g. noting the existence and relative cost of indexes to affect which expression gets
evaluated first) [Derrett 89].

Applying transformations is complicated in the object-oriented model because of the
presence of user-defined operators in queries. One would like to treat user-defined and
built-in operators identcally (as in EXCESS [Carey 88]), but their presence forces
interpretation of transformations instead of allowing optimization to be hard-coded into
the system.

One mechanism for specifying the applicability of transformations is rule systems
(Derrett 89]. Rules take the form of predicate-transformation pairs; when a piece of a
query graph satisfies a predicate, the system may apply corresponding transformation on
the subgraph. Rules may also include cost functions (e.g. expected number of entities
returned or number of disk pages touched) to help determine which applicable rule to
execute first [Graefe 88. Stonebraker 88]. In particular, these cost functions can take into
account the existence of indexes [Zdonik 88]. Rule systems should possess several
properties:

(1) soundness, both for individual rules and the rule setas a whole,!?

(2) order independence (i.e. it shouldn’t matter which of several applicable rules

fires first),

(3) self-containment (i.e. a rule is not essential; it can be removed and the set

remains sound),

(4) boundedness (i.e. an algorithm must exist that can execute the rules using

finite and bounded resources), and

(5) efficacy (i.e. the rule set as a whole should yield more efficient queries).
In Iris. they found that dividing optimization into phases with separate rule sets makes
designing rule sets that satisfy these criteria easier [Derrett 89]. Rule-based optimizers
are also used in the EXODUS project {Graefe 87].

Graefe and Maier have proposed another approach to handle user-defined operators in
queries. Instead of telling the optimizer what transformatons are possible, the optimizer
asks each user-defined operator to ‘‘reveal’ an equivalent, more efficient query
expression. This approach increases encapsulation and extensibility. The objective of
such revelations should be to replace object-at-a-time evaluation with more efficient set-
at-a-time searches [Graefe 88].

19 A rule is sound if it represents a valid transformation. A rule sct is sound if all applicable rulc scquences
yield valid ransformations.
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2.5 Database Evolution
As a result of the long-term nature of databases, an important issue concerns how
database systems manage change. Many of the features of database systems deal with
changes to the data: concurrency control, transactions, atomicity, data stability, triggers,
notifiers, index maintenance, versions, and configurations. This section, however,
concentrates on managing changes to the definitions that structure the data (i.e. changes
to classes or schemas).

The three major concerns regarding database evolution involve what changes may occur,
how those changes affect existing database entities, and how existing data in the database
is reconciled with those changes. The next three sections consider each of these in turn.

2.5.1 Schema Changes
In an object-oriented database, the potential changes to class definitions and the class
hierarchy include [Banerjee 87b]:
- adding or removing an instance vanable;
- changing the name, domain, or default value of an instance vanable;
- changing the composition or propagation properties of an instance variable;
- adding or removing a method:
- changing the name, implementation, or signature of a method;
- adding or removing a superclass;
- changing the conflict resolution order of inhenited superclasses;
- adding or removing a class from the class hierarchy; and
- changing the name of a class.

Of course, these changes must be performed within transactions for the same reasons that
changes to the data are [Homick 87]. Some systems provide special transactions for
changing class definitions. GemStone, for instance, requires the use of pessimistic
locking for class modifications even though optimistic concurrency control is normal
[Penney 87]. Others require that all other activity cease while database evolution
occurs.

2.5.2 Effects of Changes
Integrity constraints reflect the invariants that must be maintained in order to ensure data
consistency. Thus, the system must either prohibit certain changes or modify objects in
the database to re-establish the invariants. The GemStone system forbids the removal of
a class with instances [Penney 87], whereas the ORION system just removes all instances
as well [Banerjee 87b].

In fact, the ORION system attempts to provide rules for modifying objects for almost all
class definition changes. For example, removing an instance variable from a class causes
it to be removed from all instances of that class as long as no other instance variable of
the same name is inherited. Furthermore, each instance of an inheriting class must be
modified similarly as long as its class does not override the instance variable. Still, some
changes cannot be allowed. The user may not introduce a cycle into the class hierarchy
[Banerjee 87b].
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Class changes also affect the definitions of user-defined operators. In particular, some
message invocations may no longer be valid [Skarra 86). It is difficult to see how rules
for automatically modifying embedded semantics can be generated. Certainly, however,
notification of the existence of such problems should be the minimum response.

One can also examine the effects class changes have on the results of queries. By
enumerating each possible combination of query operators and class modifications,
Osborn has shown that one can predict whether a query will result in the same set of
objects before and after a class change [Osborn 89). These predictions can enhance one’s
confidence that a given change will not affect existing applications adversely.

2.5.3 Database Conversion
Once a class change has occurred and object modifications identified, those modifications
have to be made. Some systems make the modifications immediately (i.e. eager
conversion; as in GemStone [Penney 87]) while others perform lazy conversion by
inserting checks for inconsistent objects in every operation (as in ORION [Banerjee
87b]). The first method often takes a database off-line for significant amounts of time
and the second adds a non-trivial cost to each operation.

Some systems attempt to circumvent these problems by avoiding object modifications.
The ENCORE system, for instance, treats classes as objects and generates new versions
as a result of changes {Hornick 87]. Thus, any object existing in the database before the
change is also treated as a previous version: its class is the old version [Skarra 86]. A
system can help applications based on the new type access objects of the old type by
providing emulation; that is, by supponing operations that allow the object to appear to
be of the new type.

Another approach is taken by the Iris system. Objects in the Iris system may acquire or
. :0 . . .

lose types dynamically.“® Thus, if an object no longer matches a changed definition, the

user can choose to remove the type from the object instead of modifying the object to

match the type. In general. Iris tends to restrict class modifications so that object

modifications are not necessary. For example, a class cannot be removed unless it has no

instances, nor can new supentype-subtype relationships be established {Fishman 87].

All of the effects of a class modification apply to all databases that use the affected class
definition. Clearly, every database must be converted for those systems that allow
several databases to share definitions.

“0 Duhl calls this capability dvaamic txpe acquisition [Duhl 88].
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2.6 Storage Management
Generally, storage management support for a database is responsible for secondary
storage management, variable-sized data support, buffering, caching, concurrency
control, versioning, logging and recovery. This section addresses the issues concerning
data storage, buffering, caching, clustering, and interoperability raised by object-oriented
models.

Although relational back-ends have been used for storage management (as in Iris
[Fishman 87]), new designs have also been explored for object-oriented systems. The
object-oriented data model leads to several performance constraints and presents several
opportunities for efficiency. For instance, the storage of complex objects generated in
object-oriented database systems would benefit from support for varable-sized data
[Carey 86]. Support for multimedia data also requires the ability to store different sizes
potentially for each object [Stonebraker 88].

The property of object identity implies the need for efficient access of direct references.
Users will tend to follow such references instead of searching and fast look-ups would
obviate the need for some user-imposed indexes ([Donahue 86]. On the other hand, direct
references reduce the need for searching and enable new, more efficient indexes (see
section 2.4.2 on Indexing). Also, the ability to build composite objects can make locking,
authorization, versioning, and storage management more efficient.

The next section describes various schemes used to store objects and manage the
ransformaton between storage and object formats. Section 2.6.2 deals with how objects
affect buffering and caching. A specific method for enhancing the performance of
storage management is discussed in the following section. Finally, the last section
discusses issues relating to interoperability.

2.6.1 Storage Schemes
The simplest way to store persistent data between executions of an application is o save
the program'’s image. This technique, however, forces persistent data to reside always in
the same place, to maintain the same format, and to fit within the process’s address space
[Cockshott 84]. By treating persistent data differently, database systems avoid these
problems and provide flexibility as to the sources of data that applications can
manipulate.

Storage management for object-oriented systems must deal with issues conceming
storage reclamation (e.g. garbage collection), object identity, variable-sized data, and
transforming between external storage and internal run-time formats.

Reclaiming storage can either be done automatically when objects become inaccessible
(as in GemStone [Maier 86]) or explicitly by applications using special operators (as in E
[Richardson 89a]). Explicit object deallocation is faster but can lead to dangling
references.
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Storage reclamation of working versions (see section 2.1.5 on Versions and
Configurations) that are still referenced requires some kind of archiving strategy. For
example, a system can archive all versions (or configurations) older than a given date.
Or, if access times are available, the system could archive only those versions (or
configurations) that have not been read for a given amount of time. Such archiving is
necessary to reduce normal storage requirements.

Databases support object identity by assigning a unique object identifier 10 each object
which is never re-used, even when the associated object becomes deallocated. Different
databases, however, incorporate different levels of indirection between an object
identifier and the actual storage for its associated object. EXODUS maps each object’s
identifier directly to its storage, which implies that the object’s header cannot be moved
and that resizing requires another scheme (see below) [Carey 86]. ENCORE'’s storage
manager ObServer (OBject SERVER), on the other hand, uses two levels of identifiers.
The top-level object identifier maps to a set of low-level identifiers which then map to the
actual storage chunks that comprise the object (Hornick 87]. When two or more levels
are used, the top-level identifier is called a surrogate.

Resizing and handling variable-sized data can be handled in several ways. The telesophy
system ts] assumes that objects are resized infrequently and therefore stores each object
in one contiguous chunk [Caplinger 87]. ObServer uses a level of indirection to allow
each object to refer to us ‘‘chunks’ [Hornick 87).2' EXODUS uses an implicit
indirection scheme in which each object is represented by a B+ tree (which also supports
efficient versioning) [Carev 86].

Finally, since direct references cannot be represented as actual pointers in secondary
storage, some transformation must be performed between the storage format and the
format supported by the data model. Some systems transform each access of a direct
reference (as in ENCORE's ObServer [Hornick 87]) while others convert all references
to pointers when each object is buffered (as in ORION [Kim 88]). The first makes
buffering easier but slows normal execution. Overall, however, fewer conversions may
be needed. The second scheme allows execution to proceed at normal processor speeds,
which is important in highly interactive applications. The Oz system compromises by
transforming each object once, but only if it actually manipulated (Bancilhon 88].

2.6.2 Buffer Management
Typically, a storage manager handles requests from many database clients
simultaneously and the total amount of data referenced could easily overflow its address
space. Thus, a storage manager must buffer the data actually required at any one time,
and treat that buffer as a cache.

Most systems implicitly pin the objects referenced by a transaction so that they will
remain in the buffer for the transaction’s duration. A commit or abort then unpins the
data which allows the system to remove the objects from the cache. The E language

21 Each chunk corresponds to the memory required to store the instance variables of cach class inhcrited by
the class of the object, including one for any instance variables added by the object’s class.
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run-time system, however, just pins the data implicitly. The system requires that the
application explicitly unpin the data and indicate whether the data was modified. By
making pinning explicit, the EXODUS system can allow an application direct, efficient
access to the buffered data. No copying into the application’s address space is necessary

[Carey 86].

ORION uses a double buffering scheme in which the first buffer contains the file format
of an object and the second buffer contains the transformed format. Since referenced
objects may have been removed from the cache, the transformed reference actually
points to a header which keeps track of whether the object is resident. ORION, however,
does not maintain a mapping from object references to headers, so when an object is
brought back into the cache, it is given a new header. The old headers, when
dereferenced, must then be forwarded. Unreferenced memory (data and headers) are
garbage collected (Kim 88].

POMS,? on the other hand. maintains a double hash table that maps between persistent
references and in-memory addresses, which obviates the need for special headers. It also
uses special operating system primitives to trap attempted dereferences of persistent
identifiers (i.e. all negauve addresses are ‘‘protected’’). Thus, using the central hash
table, the system can maintain the state of its cache without unnecessary forwarding
structures and execution can proceed at normal speeds without special checks [Cockshott
84].

Buffering does have a negative impact on the execution of queries within transactions,
since all current data does not reside in one place. Some of the data is in the buffers
while the rest of the data (perhaps represented by indexes) is in secondary storage. Kim,
et. al. conclude that the system can either perform the query twice and merge the results
or flush the buffers before executing the query. The latter, of course, can have an adverse
impact on storage management support [Kim 90].

Finally, since storage managers cannot know ahead of time the access patterns of
applications, greater cfficiency could be achieved if the system can accept hints
conceming its buffer replacement policy (as in the EXODUS system [Carey 86]).

2.6.3 Clustering
Storage management performance can be improved by reducing the number of secondary
storage operations required. The primary method for accomplishing this is to group
together objects that will be referenced together, effectively reducing the persistent
“‘working set’’ of an application. Since most systems cannot know a priori which objects
will be referenced together, some systems allow applications to give hints for clustering
objects into segments on secondary storage.

Clustering hints can be determined explicitly or implicitly. The VBase system, for
instance, allows explicit clustering hints when objects are created [Andrews 87]. A
system that provides composite object support can determine clustering implicitly, since

“2The Persistent Object Management System.
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objects that are ‘‘part of’’ another are likely to be accessed when the parent object is
[Kim 87]. Similarly, objects in a collection (e.g. all objects of a given class) are also
likely to be accessed together, so a system might also cluster such objects implicitly (as
in ENCORE {Hornick 87)). Finally, a system could monitor access patterns and attempt
to cluster objects in the hope that such patterns are predictive of future behavior (also as
in ENCORE [Homick 87]).

2.6.4 Interoperability

The last issue to be dealt with concerns interoperability, or the ability to transmit
persistent data in a form understandable to clients [Laffra 90]. This is particularly
important for database systems that act as servers in a distributed, heterogeneous
environment. The cleanest approach is to define pack and unpack operators for each
class and each client machine. These operators convert objects between a storage or
transfer format understood by all run-time systems (e.g. ASCII text or ANS.1 byte
stream) and the specific client format for each object. This approach has been taken in
the telesophy system ts1 [Caplinger 87].

A related problem arises conceming the storage format and execution of object
semantics. As discussed earlier in section 2.1.4 on Distribution, data model support,
including the execution of object semantics (i.e. methods), usually occurs in data model
servers. In a heterogeneous network environment, this can pose a problem. If the
language expressing object semantics is compiled, then the server can run only on
machines for which object code is available. Similarly, if the language is interpreted,
then the server can run only on machines for which an interpreter has been written. The
latter approach is easier to implement. but decreases the execution efficiency of
applications. No system surveved has addressed this issue.
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3 Research Efforts
Most of the issues discussed in this report were collected from presentations of research
efforts into database design. This section summarizes each of these efforts individually,
instead of spreading a system’s description throughout the discussion of design issues, as
above.

3.1 POSTGRES
Affiliation:

University of California, Berkeley

Publications:

[Rowe 87] L. A. Rowe, M. Stonebraker.
The POSTGRES Data Model.

[Stonebraker 86a) M. Stonebraker, L. A. Rowe.
The Design of POSTGRES.

[Stonebraker 87a] M. Stonebraker.
The Design of the POSTGRES Storage System.

[Stonebraker §7b] M. Stonebraker, E. N. Hanson, S. Potamianos.
The POSTGRES Rule Manager.

Description:

POSTGRES involves an effort 10 extend the relational data model to include embedded
semantics, data type extensibility (e.g. multimedia data), cyclic queries, rule-based
triggers, and versioning. Embedded semantics is achieved by allowing attributes whose
values may be either POSTQUEL statements or external language code fragments (e.g. a
C procedure). POSTQUEL is an extension of QUEL. a language based on the relational
data model paradigm. Versioning can be achieved either by time of creation,
modification, or deletion, or by explicit version.

Although based on the relational data model, the POSTGRES data model does possess
certain object-oriented characteristics. The schema definition for a relation may inherit
the attributes of one or more other schemas. POSTQUEL also allows the creation of
user-defined operators, which may then be used in other POSTQUEL statements,
including queries. The model, however, does not support object identity.

Other issues: POSTGRES uses pessimistic concurrency with non-nested transactions. Its
architecture allows distribution where a single POSTMASTER is responsible for session
control and triggers. The POSTGRES run-time system (one per client) is responsible tor
secondary storage management, caching, logging, recovery, authorization, query
execution, execution of embedded semantics. and object support. There is no explicit
support for configurations. polymorphism, genericity, user-defined indexes, or access 1o
meta-information. Composition and relationship support do not apply in this data model.
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3.2 EXODUS

Affiliation:

University of Wisconsin-Madison

Publications:

[Carey 86] M. J. Carey, D. J. DeWitt, J. E. Richardson, E. J. Shekita.
Object and File Management in the EXODUS Extensible Database
System.

(Carey 88] M. J. Carey, D. J. DeWitt, S. L. Vandenberg.
A Data Model and Query Language for EXODUS.

(Graefe 87] G. Graefe, D. J. DeWitt.

The EXODUS Optimizer Generator.

[Richardson 87] J. E. Richardson, M. J. Carey.
Programming Constructs for Database System Implementation in
EXODUS.

[Richardson 89a] J. E. Richardson, M. J. Carey.
Persistence in the E Language: Issues and Implementation.

[Richardson 89b] J. E. Richardson, M. J. Carey, D. T. Schuh.
The Design of the E Programming Language.

Description:

The goal of the EXODUS project is to provide tools for exploring alternate database
designs. Thus, EXODUS iself just refers to the storage management support. A data
model called EXTRA, EXCESS. a query language variant of QUEL based on that data
model, and E, an imperative, statically typed language based on C++, have been
implemented on top of EXODUS.

The EXTRA data model is object-oriented with multiple inheritance; conflict resolution
requires explicit renaming. The E language provides embedded semantics,
polymorphism through overriding, genericity through type parameters, and iterators. The
language can be used to achieve orthogonality and transparency, but efficiency concerns
lead to some impedance mismatch. The EXTRA data model does support the notions of
shared and exclusive dependent object composition, value-based joins, and self-
referendal cyclic queries.

Queries may search over specified collections instead of entire classes and may contain

user-defined operators. The query optimizer accepts hints via a rule-based system
conceming the relative costs of query operators.
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The storage manager supports variable-sized data, and multimedia may be represented in
the E language. The manager also provides direct access to the buffered objects (for
efficiency) and accepts hints conceming its buffer replacement policy and clustering
objects. Storage reclamation must be specified explicitly in the E language (i.e. weak
identity). The manager is also responsible for versioning (versions are apparently
unavailable at higher levels), locking (at arbitrary granularides; again, apparently
unavailable at higher levels), logging, and recovery.

Other issues: No support is given for transitive closure queries except through direct
programming in the E language. The E language is also the only means for introducing
new indexes, which may be imposed on arbitrary collections. The language assumes a
single database for all transactions. Also, there is apparently no support for session
control: each execution of an application constitutes a single transaction. No support is
given for acquiring access to meta-information.

3.3 Altair
Affiliation:

Altair, France

Publications:

[Bancilhon §8] F. Bancilhon, et. al.
The Design and Implementation of Oz, an Object-Oriented
Database Svstem.

[Deux 90] O. Deux. et. al.
The Story of O3.
[Lecluse 88] C. Lecluse. P. Richard, F. Velez.

O3, un Object-Oriented Data Model.

Description:

The Altair project is responsible for the O; data model and the CO; programming
language, a statically typed, imperative language based on C. The formal data model is
object-oriented with multiple inheritance. The user is expected to resolve conflicts
among identical names inherited from more than one superclass. The data model
supports polymorphism through overriding.

The CO3 language is not totally transparent since types, not values, are declared to be
persistent. Data persistence is determined by reachability from named root objects. The
model calls for strong identity; thus, the system provides garbage collection. Appuarently,
multimedia support may be achieved using the language. Queries may search over
arbitrary collections. and the system supports simple, path-oriented, class hierarchy
indexes. User-defined operators may be used in queries, which means that cyclic queries
are allowed.
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A mirror server process is instantiated for each client to handle data model issues and
deal with communication with the secondary storage manager. Object identifiers
constitute single-level indirection into secondary storage; i.e. they do not represent
surrogates.

Other issues: The language is the only means for introducing new indexes that may be
imposed on arbitrary collections; they will not be used, however, by the standard query
mechanism. The system separates the persistence of class definitions from the
persistence of normal objects. Also, there is apparently no support for session control;
each execution of an application constitutes a single transaction (although save-points
may be specified). No support is given for genericity, specifying clustering, triggers,
composition, relationships, or acquiring access to meta-information.

3.4 ORION
Affiliation:
Microelectronics and Computer Technology Corporation (MCC)
Publications:
(Banerjee 87a} J. Banerjee, et. al.
Data Model Issues for Object-Oriented Applications.
{Banerjee 87b] J. Banerjee, W. Kim, H-J. Kim, H. F. Korth.
Semantics and Implementation of Schema Evolution in Object-
Oriented Databases.
{Kim 87] W. Kim. J. Banerjee, H-T. Chou, J. F. Garza, D. Woelk.
Composite Object Support in an Object-Oriented Database System.
[Kim 88] W. Kim. et. al.
Integrating an Object-oriented Programming System with a
Database System.
[Kim 89a] K-C. Kim, W. Kim, A. Dale.
Cyclic Query Processing in Object-Oriented Databases.
[Kim 90]) W. Kim, J. F. Garza, N. Ballou, E. Woelk.
Architecture of the ORION Next-Generation Database System.
[Rabitti 88) F. Rabitti, D. Woelk, W. Kim.
A Model of Authorization for Object-Oriented and Semantic
Databases.
[Woelk 87] D. Woelk, W. Kim.

Multimedia Information Management in an Object-Oriented
Database System.
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Description.

The ORION system presents an object-oriented data model that provides polymorphism
through dynamic method resolution and genericity through dynamic typing (instead of
through type parameters; thus, homogeneity cannot be guaranteed). Concurrency control
is pessimistic, with transactions locking on an object or composite object basis. ORION
provides very flexible composition facilities, allowing distinctions for shared vs.
exclusive and dependent vs. independent references. It also supports object versions and
generic vs. specific references.

The data model supports multiple inheritance in which conflicts are resolved in favor of
the superclass inherited earliest. Weak identity is supported, forcing the application
developer to manage storage reclamation explicitly. Multimedia data support has been
integrated into the ORION data manager. User-defined operators may be associated with
classes and used in queries, which may operate over arbitrary collections of objects.
Cyclic nested quenies (both self-referential and twansitive closure) are allowed.
Applications developers may provide hints for query optimization. Currently, the system
manages only single attnbute, class hierarchy indexes.

Authornization is addressed. with both positive and negative authorizations allowed.
Composition affects the granulanty of authorization here as well. Access is provided
through an extension of Common LISP (thus. the dynamic typing). Orthogonality is
limited since types must be declared as persistent.

ORION is the only system 1o address thoroughlv automatic database conversion for
evolution. Many transformations have been derived to re-establish invariants after class
changes. These transformations occur lazily, by inserting checks into each operation for
objects that must be updated.

The storage manager uses a double buffering scheme: the first buffer caches segments
holding the file format of objects. while the second buffer caches the in-memory format.
Each object is converted from its file format immediately when buffered. Forwarders are
used to deal with dereferences to objects that are no longer in the object cache.

Other issues: Apparently, no nested transactions are allowed and no trigger facility is
provided. No access to meta-information is described. Other than composition, no
relationship support is provided. Also, class membership is apparently the only
mechanism for determining clustering. The only configuration support is the ability to
refer to either a generic or specific version of an object.
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Affiliation:

Brown University

Publications:

(Hornick 87] M. F. Homick, S. B. Zdonik.
A Shared, Segmented Memory System for an Object-Oriented
Database.

(Skarra 86] A. H. Skarra, S. B. Zdonik.
The Management of Changing Types in an Object-Oriented
Database.

{Smith 87] K. E. Smith, S. B. Zdonik.

Intermedia: A Case Study of the Differences Benveen Relational
and Object-Oriented Darabase Systems.

{Zdonik 86] S. B. Zdonik, P. Wegner.
Language and Methodology for Object-Oriented Database
Environments.

[Zdonik 88] S. B. Zdonik.
Data Abstraction and Query Optimization.

Description:

The ENCORE project was started in response to the needs of other projects, notably the
Intermedia hypermedia project. It presents a standard object-oriented data model that
supports multiple inheritance. strong identity, versioning, and triggers. Simple exclusive
composition is provided, which is also used to specify granularity for locking, versioning,
and storage clustering. No indication is given as to how or whether polymorphism and
genericity are provided. Also, although support for multimedia is a stated goal, no
indication is given as to how ENCORE provides such support.

The system uses a standard architecture for distribution, providing a data model server
for each client. The storage manager transforms each object from its storage format on
each access by an application instead of when the object is buffered.

Queries may employ user-defined operators and may operate on arbitrary object
collections. The set of indexing structures may be extended, and optimization hints are
accepted via rule systems.

Database evolution is accomplished through versions. Classes are objects: thus, class
changes are reflected through versions. No provision, however, is given for managing
configurations.
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Other _issues: Apparently, no support is given for meta-information access, nested
transactons, relationship support (other than by using triggers), or authorization.

3.6 GemStone
Affiliation:

Servio Logic Corporation

Publications:

[Maier 86] D. Maier, J. Stein, A. Otis, A. Purdy.

Development of an Object-Oriented DBMS.
[Penney 87] D. J. Penney, J. Stein.

Class Modification in the GemStone Object-Oriented DBMS.
[Purdy 87] A. Purdy, B. Schuchardt, D. Maier.

Integrating an Object Server with Other Worlds.

Description:

The GemStone system presents an object-oriented data model with single inheritance (as
of their publications). Polymorphism is provided through dynamic method resolution
and genericity through dynamic typing. The primary access to GemStone is through an
extension of Smalltalk, although limited access can be achieved in C and Pascal via
libraries. Orthogonality and transparency are ignored, as all objects are considered
persistent. The system provides strong identity, so storage reclamation occurs when
objects become inaccessible.

Distnbution is achieved by interposing any number of data model servers between the
storage server (which is responsible for authorization and indexing) and clients. The data
model servers execute queries written in their extended Smalltalk (called OPAL). Thus,
arbitrary queries are allowed. Queries may be executed over arbitrary collections.
Indexes may also be defined over arbitrary collections. No other indication of query
optimization has been discussed.

Concurrency control is optimistic, except for class changes. Database evolution is
generally constrained by integrity constraints, but some automatic changes to objects are
understood: these changes occur immediately.

Other issues: Apparently, no nested transactions are allowed and no trigger facility is
provided. No access to meta-information is described, nor any mechanism for extending
types for multimedia (other than what is provided in Smallalk). No relationship,
composition, clustering, or versioning support is provided.
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3.7 Iris
Affiliation:

Hewlett-Packard Laboratories

Publications.

{Derrett 89] N. Derrett, M-C. Shan.

Rule-Based Query Optimization in IRIS.
(Fishman 87] D. H. Fishman, et. al.

Iris: An Object-Oriented Database Management System.
(Wilkinson 90] K. Wilkinson, P. Lyngbaek, W. Hasan.

The Iris Architecture and Implementation.

Description:

The Iris database system does not adhere strictly to the object-oriented model. Its data
model is a form of entity-relationship model where the entity classes may inhent one or
more other classes. Polymorphism is achieved through compile-time overload
resolution, although overriding is provided when explicidy requested. Genericity applies
only to the built-in collection types.

Although there is no support for composition, full relationship support is provided. Weak
identity is provided, requiring applications to deal with storage reclamation explicitly.
Object identifiers act as surrogates and do not indicate where an object is stored. Simple
versioning is supported.

An extension of SQL, OSQL, provides access to the database. Currently, this language
may be embedded within C or FORTRAN. Thus, no transparency or orthogonality is
provided. All clients communicate with the storage system (which is relational) through
one data model server. Transactions may be nested and use pessimistic concurrency
control.

Objects may acquire and lose types dynamically, which is how it is expected databases
will evolve. Objects retain their identity across type changes. Access 1o meta-
information is provided. Multimedia objects can be accommodated. Queries may
include user-defined operators. Thus, queries may be self-referential, although transitive
closures do not seem to be supported. Queries and indexes apply to entire classes: the
query optimizer will accept hints in the form of a rule system.

Other issues: Apparently, no support is provided for triggers, configurations,
authorization, or clustering.
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3.8 VBase
Affiliation:

Ontologic, Inc.

Publicarions:

[Andrews 87] T. Andrews, C. Harris.

Combining Language and Database Advances in an Object-
Oriented Development Environment.

(Duhl 88] J. Duhl, C. Damon.

A Performance Comparison of Object and Relational Databases
Using the Sun Benchmark.

Description:

VBase, since renamed Ontos, presents an object-oriented data model with single
inheritance (as of their wrtings). The database supports embedded semantics, triggers,
optional attributes, some relationship support (i.e. inverse management), access (o meta-
information. clustering hints at object creation, genericity through type parameters, and
polvmorphism through ovemding. Although it is not clear, it appears that VBase
supports weak identity, requiring the application to manage storage reclamation
explicitly.

All access to the database is through two proprietary languages, a declarative schema
definition language (TDL) and an extension of C for writing semantics and applications
(COP). The C extension is statically typed. although run-time type assertions may be
used. The language also includes support for exception handling. It is not clear which
values are persistent and how a database is specified.

Queries and indexes must be written in COP: apparently, no explicit support is otherwise
provided. As such, queries and indexes may therefore apply to arbitrary collections, and
the applicaton developer may extend the set of available indexes. No consideration is
given to query optimization.

Other issues: Apparently, no support is provided for session control, nested transactions,
authorization, logging, composition, or database evolution.
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3.9 GEM

Affiliation:
Bell Laboratories

Publications:

{Zaniolo 83] C. Zaniolo.
The Database Language GEM.

Description.

The GEM database is an early attempt to extend the relational data model. It does not
present an object-oriented data model. Its data model can be described as a tuple-set
model or a typed, entity-relationship model. As such, GEM supports object identity,
relationships. optional attributes through null values. union types, and nested path
expressions in queries (in an extension of QUEL). Apparently, cyclic queries are not
supported.

3.10 Coral3
Affiliation:

System Concepts Laboratory. Xerox Palo Alto Research Center

Publications:
[Merrow 87] T. Merrow, J. Laursen.

A Pragmatic System for Shared Persistent Objects.
Description:

Coral3 is also not an object-oriented database system. It is an attempt 10 introduce
persistence into Smalltalk. Thus, Smalltalk’s object-oriented model is presented: strong
identity, polymorphism through dynamic method resolution, genericity through dynamic
typing, and triggers through Smailtalk’s ‘*dependents’’ mechanism. Persistent objects
are accessed through special holders, which must be dereferenced before operating on the
data. Thus, no orthogonality or transparency is achieved. For performance, caching of
persistent objects is supported.

In addition, no concept of session control is provided. In the absence of transactions, an
application is provided with a facility for setting locks explicitly in order to achieve
concurrency control. The assumption is that the objects manipulated are large enough so
that no complex interactions are necessary. No other database-like facility is provided.



-49 -

3.11 Telesophy
Affiliation:

Bell Communications Research

Publications:
[Caplinger 87] M. Caplinger.

An Information System Based on Distributed Objects.
[Schatz 89] B. R. Schatz, M. A. Caplinger.

Searching in a Hyperlibrary.

Descrigrion:

Telesophy is a term coined by Bruce Schatz to mean ‘‘wisdom at a distance’. The
system implemented to demonstrate telesophy, tsl, is primarily oriented toward
hypertext, although search is also an inherent component. The system is not strictly
object-oriented in that inheritance is not supported, although object identity is.

The primary contribution of tsl is that it presents a model for distributed access to
distributed data. Objects may be placed in storage servers. Indexes for arbitrary object
collections are managed by other servers. An application executes a query by first
searching one or more indexes, then submitting the resulting object identifiers to the
appropriate storage servers.

The information space is flat in that no abstraction is allowed. No restriction, however, is
placed on the form of objects: in fact. support for multimedia data is an explicit goal.
Objects are stored in contiguous chunks and optimistic concurrency control is provided
on the assumption that the data will be changed very infrequently. Interoperability is
supported by requiring each node in the network to provide pack and unpack routines for
each data type. No other database-like facility is provided.
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3.12 POMS
Affiliation:
University of Edinburgh
Publications:
[Atkinson 82] M. Atkinson, K. Chisholm, P. Cockshott.
PS-algol: an Algol with a Persistent Heap.
[Cockshott 84] W. P. Cockshott, et. al.

Persistent Object Management System.

Description:

The Persistent Object Management System (POMS) is the storage management facility
for PS-Algol, which integrates persistent values into a variant of Algol-68 called S-Algol.
PS-Algol provides dynamic connections to databases (apparently only one at a time),
transaction support. associative access. and implicit storage reclamation (i.e. garbage
collection). The data model is that of Algol-68, which does not support inheritance.
Orthogonality and transparency, however, are achieved. Persistent objects are
determined by their reachability from a specified database root object. POMS uses a
double hash table so that no forwarding is required for caching persistent objects. Finally,
POMS stores data type information in each database so that it is self-contained.
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4 Conclusions

One of the primary objectives of a database system is to handle the storage of persistent
data for applications. By using a database system, application developers do not need to
worry about how persistent data is organized in secondary storage. They must, however,
be concermned with managing persistent data using the data model presented by the
database system. In the past, data models have been designed for such qualities as data
independence, ease of real-world modeling (for limited real-world domains), and ease of
providing other, desirable database features. Little or no consideration was given to the
need of applications to compute with persistent data or to the computational models used
to implement applicatons.

Object-oriented databases, then, constitute an attempt to integrate most of the desirable
features of database systems (see Figure 1) with desirable features of the object-oriented
model of computation (see Figure 2).

Data persistence Object identity

Storage management Direct references
Concurrency control Inheritance

Session control Polymorphism

Atomicity Genencity

Recoverability Encapsulation

Authorization Name space control

Versions Data abstraction extensibility
Configurations Data type extensibility
Associative access Procedural extensibility
Triggers Imperative execution model
Distribution

Interoperability

Figure 1: Features provided by Figure 2: Features provided by
database systems object-oriented languages

In doing so. three issues arise. First, integration should occur without impedance
mismatch. In particular, language support for object-oriented database services should
be orthogonal and transparent. Second, integration should not lose any advantages of
existing data models. For instance, object-oriented programming does not support data
independence inherently, so features such as relationship support and query joins should
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be provided. Finally, integration presents an opportunity for introducing new desirable
features. For example, this survey includes descriptions of the following features:

- composition

- property propagation

- cyclic quernies

- indexing extensibility

- database self-containment

- access to meta-information

- database evolution

- database independence
All but the last are affected by object-oriented concepts. Composition, property
propagation, and cyclic queries take advantage of the ability to specify direct references
betweeen objects. Indexing extensibility and database self-containment derive from the
ability to embed semantics. Last, access 10 meta-information and database evolution
depend on the data model supported by the database system.

Object-oriented databases also present the potental for being more efficient than earlier
systems that support other data models. Direct references, the ability to represent
complex designs, and the ability to execute user-defined operators all contribute to
building more efficient database applications. The caveat, of course, is that these benefits
must offset the overhead caused by the need to interpret these higher levels of abstraction
[Duhl 88].

Finally, the list of capabilities provided by object-oriented database systems compares
favorably to those required by multimedia applications (see the discussion at the end of
section 1.1 on Motivation), and information management applications (e.g. Intermedia
[Smith 87); see also the discussion in section 12 concerning our own project,
Alexandria), as well as engineering applications, such as CAD/CAM, and other design
applications. No other data model supported by database systems in current use can
make this claim.
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I Object-Oriented Languages
In an object-oriented language, all manipulable program entities are objects. Each object
consists of some private state and a set of operations that may manipulate that state. No
operations other than the associated ones may manipulate the internal state of an object.
This property is known as encapsulation. In object-oriented parlance, the operations are
called methods. The method set of an object defines its semantics.

In most programs, many collections of objects share method sets. For example, all
objects that represent pieces of mail in a mail handling application share the methods that
manipulate the internal state of mail messages. Moreover, such objects also share the
form of their internal state. Thus, the description of the common properties (i.e. form,
behavior, and methods) of a collection of objects can be localized. Most object-oriented
systems provide a facility called a class to define these common properties. Each object
in the collection described by a class is called an instance of that class. Associated with
each class may be a set of operations whose role is to create object instances; these
operations are called constructors.

A class defines the internal state of its instances by specifying a set of instance variables
or attributes. The set of atinibutes itself is referred to as an aggregation. Attributes that
are shared by all instances of a class (e.g. the average age of all employees) are called
class variables or auributes. Sometimes, the specification of each attribute may include
a default value and/or the expected domain of values the attribute may assume. This
domain, or nype, represents the behavior,*3 or set of operations, that values within that
domain possess. Typically. tvpes and classes are identified, so that the set of operations
for each domain is specitied by referning to a class.

The set of classes in an object-oriented system may be structured in two ways. One class
may wuse another if it refers to the other, usually as a domain for an attribute. This
organization is called an aggregation or composition hierarchy. Note that this
organization may not be a strict hierarchy: cycles are allowed in the uses relationship.

A class may also inherit propenties from one or more classes. That is, the definition of a
class would include the properties of these other classes together with any new properties
added in the class itself. This organization is referred to as a generalization hierarchy.**
Note that this organization is only a strict hierarchy if each class is limited to inheriting
from exactly one other class (i.e. single inheritance); the organization becomes a lattice,
or directed acyclic graph, if multiple inheritance is allowed. Each class inherited from is
called a superclass, and the inheriting class is called the subclass.

3 Another term for behavior is protocol.

24 Since the inverse relationship of gencralization is specialization, this organization may sometimcs be re-
ferred 1o as a specialization hicrarchy. It all depends on which point of view is taken (i.c. which way the
*‘arrows’’ should bc drawn).
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In standard object-oriented systems, the properties defined in a class need not just
augment the properties inherited from its superclass(es). Some properties may replace
inherited properties. When this occurs, we say that the defined property overrides the
inherited property. Almost always, this occurs with the operations of a class. In the
presence of overriding, the method executed when one operation invokes another
depends on the actual class of the object of interest. That is, the invocation just states the
name of the operation to be executed; a method of that name must be found in the class
(or one of its ancestors) of the run-time value that is the focus of the invocation.

Because of this ambiguity, the invocation of an operation is referred to as a message send
and the object of interest is called the receiver. Furthermore, the behavior of a class is
really defined by a set of messages, which effectively are just the names and signatures of
the operations to which instances of the class will respond.

From an application programmer’s point of view, these concepts provide characteristics
that aid in the application building process. In particular, the programmer may model
application entities at appropriate levels of abstraction. Furthermore, classes comprise a
good mechanism for decomposing complex design problems into manageable chunks.
Class inheritance and method overriding support polymorphism, which allows attributes
to assume values that are only weakly related: specifically, such values are related only
by the messages they may receive. Finally, class inheritance also enables extensibility,
so that new objects may be added consistently to an existing system without modifying
existing code (or data).
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A oe-
abort

access control
access list

access plan
acyclic graph

aggregation
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The act of terminating a transaction such that the state of the database remains as it was
when the aborted transaction commenced.

See authorization. Usual kinds of access that are discriminated include read, write,
append, execute, modify definition, etc.

A form of explicit authorization in which associated with each object is a set of user-
permitted operation pairs. Contrast with capability list.

An execution order for evaluating the subparts of a qucry.
A directed graph that contains no cycles.

A collection of data. Each data item is tagged with an attribute name.

aggregation hierarchy

alerter

The graph that results among classes when considering the uses relationship. That is,
cach cdge in this graph reflects that the source class uses the destination class. Note
that this graph is rarely a strict hicrarchy and oftcn contains cycles.

Sce notificr.

algebraic equivalence

applicauon

archiving

associative access

associaiive memory

atomic value

atomicity

autribute

awthorization

An cquivalent expression based on equalitics proven in some algebra.

A program that rcquires the scrvices of one or more subsystems and provides an
interface to some interpretation of those services. For instance, a mail handling
applicauon provides an interpretation on the data in a database of messages.

The storage of old object versions off-line (¢.g. on wape or optical disk), which is not
accessible without operator intervenuon.

The ability 1o retrieve enutics from a database bascd on associated data. For cxample,
associative access allows one to retrieve all records for employces caming more than
their manager. Contrast with direct access.

Memory in which accesses are made by association instead of by address. In other
words. one looks for the item associated with a given value instead of, say, the enth
item in memory.

A value which has no subparts; for example, an integer, boolean, or floating point
value.

The property that a database reflects either all changes engendered by a ransaction or
no changcs, cven in the presence of failurcs.

A name 1o be used when dealing with (i.c. assigning to and fetching) a specific value in
an aggregation. Sce, for instance, the concept of instance variable for objects.

A protection mechanism provided by database systems 10 cnsurc that a given uscr is
allowed to perform a specificd operation on a particular object.
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The set of operations, or methods, that describe the semantics of a domain or type.

behavior compatibility

boundedness

browsing

buffering

cancellation

capabhility list

Cartesian product

class

class attribute

A form of inheritance in which inherited attributes always have the same semantics
(i.. as an algebra with interpretations).

A property that states that a computation’s use of a resource (e.g. time or storage) has a
reasonable limit.

The ability to retrieve database entities through direct references as opposed to
searching based on attribute values. See direct access, search, and associative access.

The process by which databases provide access to persistent entitics. The database
system must transform the data from the format used for secondary storage to a form in
main memory that applications can use. For object-oriented systems, this may involve
translaung unique object identifiers into direct references.

A buffering scheme that attempts to provide the most efficient access for data expected
10 be used by a client, especially when it is impractical to maintain such access for all
data. Caches are used for buffering database data kept on secondary storage and for
keeping local copies of data kept across a network. A popular caching scheme is 0
buffer a fixed number of data items that have been most recendy used, on the
assumpuon that somcthing just used is likely to be used again soon.

A form of inheritance in which only some implementation is shared and some
attnbutes may be eliminated by the inhentor.

A form of explicit authorization in which associated with cach uscr 1s a set of object-
permitied operation pairs. Contrast with access list.

The construction of virtual database cntitics from two collections of other entities
(either actual or virtual) by unioning the aunbutes of each entity from one collection
with the attnbutes of cach enuty from the other. Thus, if there are N and M entities in
the two collections, the resulting collecuon has NxM entities.

In objcct-onented systems, a repository for the common definitions (i.e. instance
variables and methods) of a collection of similar objects and for common properties
(c.g. constructors, default values, and global variables) shared by the collection.
Classes may inhcnt definitions and propertics from one or more other classcs.

See class variable.

class hierarchy index

class variable

clustering

column

An index on a collection representing the instances of a class that includes the
instances of all the subclasses of that class.

An attribute-value pair associated with a class and shared by all objects described by
that class.

A policy of grouping objects together on sccondary storage that arc likely to have
similar access patterns in order to improve performance.

In rclational systems, a column is the same as an attribute in a rclation. Relations are
often compared to tables in which attributes head the columns and tuples comprisc the
Tows.



combination See Cartesian product.

commit The act of terminating a transaction such that the state of the database is updated to
reflect all changes brought about by the transaction.

composite attribute
See composite reference.

composite reference
A reference from one object 1o another reflecting a composition rclationship between

the objects.

composition A property of a set of objects when one refers to the others as its parts or
subcomponents. That is, composition reflects the is-part-of relationship.

composition hierarchy
See aggregation hierarchy.

computational paradigm
A modc! for how data computation and manipulation occurs. A programming language
presents a computauonal paradigm to programmers.

concurrency control
Any mcchanism provided to ensure data consistency in the presence of concurrent
access. See optimistic concurrency and pessimistic concurrency.

concurrent access
The ability of more than one user 10 access the same database at the same time.

configwration A sct of object versions that reflects a consistent state for the sct of objects as a whole.

conflict resolution
A mechanism that chooses one definition over another when both have been inherited
and both have the same identificr name. Conflict resolution is nccessary in the
presence of multiple inhenitance and constitutes a limited form of cancellation.

construcitor A class property that is an operation which may be used to create an instance of that
class.

cycle A situation in a graph in which a path exists from a given node to itsclf along one or
more links.

cyclic graph A dirccted graph that contains one or more cycles.

cyclic query A query whose graph representation contains one or more cycles. This occurs when
the query cither refers to its own results (as in transitive closure) or rclates a database
cntity to itsclf.

D---
DAG An abbreviation for directed, acyclic graph.

dangling reference
A direct or value-bascd reference whose target entity is not in the databasc. Dangling
references can arise in systems that provide weak identity.

data abstraction extensibility
The ability 1o extend the set of types recognized by a system.

data consistency
The property that changes are not lost and that data interrclationships make scnsc.
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exclusive reference
A composite reference to an object indicating that no other root object may reference
that object. See shared reference.

explicit authorization

An authorization that is kept in the database and can be consulted directly. See implicit
authorization.

extensibility The ability to incorporate new functionality into an existing system. The best
extensibility is when new functionality is treated just as built-in functionality.

F ---
field See auribute.
file system The facility provided by operating systems which permits applications to store data in
discrete units called files for long periods of time. File systems often provide a
hierarchically organized name space, but rarely provide any other structuring
mechanisms.
hlter predicate Sce selection predicate.

fat value space A value spacc that allows no composition. Composition in this sense occurs during
aggregation or when constructing value sets.

funcuon library A set of operators that may be called {rom any application that has access to library's
name spacc.

Janctional join A join which 1s bascd on the value of a function (e.g. a simple attribute derefercnce).

G---
garbage collection
See storage reclamation. Garbage collection gencrally refers to schemes that reclaim
storage of inaccessible objects.

generalization The abstraction of common propertics. In objcct-oriented sysiems, gencralization is
used to descnibe the relationship between a class and its subclasses that inheritit. The
inversc rclauonship is called specialization.

seneralizaiion hicrarchy
The graph that results when considering the inheritance relationships between classes.
That is, cach edge of this graph reflects that the source class is inhcrited by the
destination class. Note that a strict hierarchy results only when single inhcntance is
allowcd:; otherwise, a lattice results.

generic refercnce
An intcr-object reference indicating that the refercnced object should be the most
current, transient version. Sce also specific reference.

genericity The ability to handle different types using the same code but yct guarantecing some
form of homogencity. For example, one modulc can implement both “‘sct-of-
employce’” and *‘sct-of-vehicle’ and yet enforce that no vchicle be allowed in the
former.

granularity The coverage of a given characteristic. When applicd to data, granularity can range
from the smallcst identifiable unit of data to arbitrary data collections. Sce. for
example. lock granularity.
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H---
hierarchical data model
A data model in which database entities (i.e. records of attribute-value pairs) may be
related in strict hierarchies (i.e. each entity may have a single parent).

hierarchy A graph or network in which each node has at most one identifiable parent and
possibly many children. In particular, this implies that there exists exactly one path
from a root 10 any other node in the graph.

horizontal extension
The addition of new properties by the inheritor. Thus, for example, a subclass
typically adds messages or instance variables to what is inherited from its
superclass(es).

host language A language in which another language is embedded or on which a new language is
based.
hypertext An organization (i.e. directed graph) for documents that cffectively allows readers to

follow rclated ideas as they wish.

[---
identity join A join which 1s based on the equality of database entities in the two collections being
joined.

identiry-bascd access
Sec direct access.

tmpedance mismaich
The degree to which an application must handle persistent and transicnt values
differently.

imperative paradigm
A computational paradigm in which desired results are specificd by indicating exactly
how to achieve those results. Contrast with declarative paradigm.

implicit authorizations
An authorization that is not stored in the databasc and is determined from other
authonzauons, whcether explicit or implicit. Sce explicit authorization.

independent reference
A composite reference that may be assigned different objects at any time. The
referenced object need not be destroyed when an owning object is. Sce dependent
reference.

index A search structure 1n a database imposed on a collection of persistent entitics. Thus,
one collection may have several associated indexes which ‘‘optimize™ scarching that
collection 1n different ways.

indexing extensibility
The ability to extend the kinds of indexing structures used in a databasc system. Most
sysiems provide B-trce variants for indcxing single attributcs. Extensibility would
allow the incorporation of radix and multi-dimensional indexing structures (¢.g. k-d-b
trees and R-trees).

inheritance The sharing of definitions of one class by another. That is, if one class inhcrits from
another. the definitions of the first class include in some way the definitions of the
sccond.
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data independence
The degree to which two sets of data do not depend on each other. In the object-
oriented model, inter-object references reduce data independence, whereas in the
relational model, relations are independent of each other because of value-based
identity.

data model A mathematical description of the allowable ways a user may organize the data held in
a database. Several examples include the hierarchical data model, the network data
model, the relational data model, and the object-oriented data model.

data model paradigm
A computational paradigm that includes just those operations specified by a data
model. See the various database data models: entiry-relationship data model,
relational data model, hierarchical data model, network data model, object-oriented
data model.

data sharing The ability to consider a database entity as a subcomponent of two or more other
cnuties (e.g. a picture shared by two documents).

data type extensibility
The ability 10 extend the kind of data recognized by a system. In particular, this allows
new interpretations of data (e.g. an array of bytes may represent an image, a matrix, a
sequence of audio. a collection of graphic objects, or a sequence of video).

database A subsystem that provides services relating to the maintenance of persistent data.

database conversion
The process of changing existing database entties to match changed schema or class
dcfinitions. Conversion may be lazy (as enttes are encountered during subsequent
normal processing) or eager (i.e. off-line; immediately after the schema changes and
before normal database processing resumcs). Also, instead of conversion, database
entitics can be made to appear as instances of the changed class via emulauon.

database evolution
The process of changing the definition of data instances and the support for
transforming cxisting database instances to the new definition.

database independence
The property that applications can specify the source(s) of persistent data instead of
assuming a source based on the environment in cffect at the ume of compilation or
cxccution. Exccuuon time is still better than compile time since then the application
can work on different databases for different users. Full independence occurs when the
application can specify the source(s) dunng cxecution.

deadlock A condition in a system allowing concurrency when a cycle exists in the graph of
processes waiting on other processes 1o relcase needed resources. The simplest case
occurs when two processes each possess a rcsource the other nceds in order 10
complcie its ransactuon. Locks constitute one such resource.

declarative paradigm
A computatonal paradigm in which the desired result is specificd with litde or no
indication of how the result is to be achieved. Contrast with imperative paradigm.

default value A value that should be associated with an awribute until some other valuc is specified.

dependent reference
A composite reference to an object indicating that the object must be created and
destroyed when its owner is. Sce independent reference.



direct access

directed graph

distribution

domain
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The ability to retrieve an entity from a database based on its name or unique identifier.
In object-oriented systems, objects may refer to one another direcuy, and direct access
is achieved when one retrieves an object referred to by another.

A graph in which each edge has a distinct source and target. See undirected graph.

The ability of a database to operate over a network, to divide responsibilities or data
among several processes (potentially on different machines), or 0 manage data
replicated on several machines.

A characterization of the set of legal values that may be associated with an auribute.
In object-oriented sysiems, the domain specification is almost always the class of
objects that are allowed. See also type compatibility.

dynamic method resolution

Any mcchanism that determines at run-time the method to execute for a message send.

dynamic tvpe acquisition

dynamic typing

E .-

cager conversion

embedded language

The ability of an existing database object to assume and lose types during its lifetime.

Type checking that occurs during program execution instead of during translation.
Dynamic typing requires the presence of type informaton at run-ume. See static

typing.

The conversion of database instances of a modified class immediately after the change
is commutted.

A sclf-contained language that has been made accessible inside of another language.
For example. the language of expressions can be considered as embedded within a full,
imperauve language (such as Pascal).

embedded semantics

emulation

encapsulaton

entity

entity-relationship

The storage of how 10 interpret data along with the data itsclf. Typically, “*how 10
interpret”” the data means either some form of daw description (e.g. schemas in
relational databases) or computer programs for the operations that manipulate the data
(as in objcct-oricnted database systems).

The interpretation of database instances of a old class version to make them secem as if
they arc instances of a new class version,

The propenty where all access 1o an enlity’s internal state must occur through a
relatively small interface which abstracts away the dewils of its implementation

The smallest unit of daa that may be retrieved from a databasc. In a rclatonal
database, a tuple is an entity. In an object-orientcd database, an object is an cntity.
Conumast with values which are associated with attributes.

Sce relationship.

entity-relationship data model

cvolution

A data model in which there are entitics with attributed propertics and rclationships.
The attributed properties of each cntity only contain atomic values. In a purc version,
the attributes arc all replaced by relationships: cach cntity only has an identity.

Sce database evolution.
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instance variable

integrity constraint

interoperability

invariant

inverse relationship
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Any object in the collection of objects described by a given class.

An attribute of an object and its storage. Typically, the set of instance variables for an
object is defined by its class. Sometimes, the class also specifies the domain of legal
values that each instance variable may assume.

“A restriction on the applicability of a database operation so that a given invariant (i.c.

predicate) is maintained (i.e. kept true). Frequently, the invariant deals with some form
of data consistency.

The ability to transmit data in a form understandable to its destination.

A predicate that must be kept true. For example, the class inheritance lattice must
contain no cycles is an invariant for the object-oriented data model.

A relationship is typically specified in one direction only, although a true relationship
is undirected. An inverse relationship is one specified as the other dircction of another
specified relauonship, and thus must be maintained as such. For example, parent-of is
the inverse relauonship for child-of.

inverse relationship support

is-a hierarchy

is-part-of hierarchy

In un object-oncnted system, inter-object rcferences reflect uni-directional
relatonships (e.g. child refers to parent). A database can provide inverse relationship
support if two such uni-directional relationships are declared to be inverses of cach
other (c.g. the parent maintains a sct of children references).

Sece generalization hierarchy. The term comes {rom the relationship that one class *‘is
a’’ another; e.g. acar “'isa’’ vehicle.

Sce acgreganon hierarchy. The term comes from the rclationship that onc object *‘is
partof "' another.

isomorphic embedding

iterator

J---

join

K ---
key

A property between two types when there cxists a one-10-one correspondence between
all values of one type and a subset of the valucs of the second type (c.g. all
integers may be floating point valucs).

A language mechanism for enumerating each clement of an aggregation value (¢.g. set,
list, qucue, tree) one at a ime.

The construction of virtual database entitics from two collections of other cntitics
(either actual or vinual) based on a relationship (usually equality on some attributc)
that must hold on each entity of the Cartesian product of the two collections.

An atuibute sct of a tuple or object whose associated sct of values must be unique
within a specified relation or object collection.



L ---
lattice

lazy conversion

lock granularity

locking

logging

logical pinning

M-
media failure
message

message send

meta-information

method

method resolution
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A dirccted graph or network in which no cycles occur.

The conversion of database instances of a modified class to reflect the changes only
when each instance is accessed.

The amount of data covered by a lock. In object-oriented systems, locks might be
placed on a specific instance variable of a single object or a collection of objects, on
the entire object, or on a collection of objects. The collection may be specificd in
special ways; see, for example, object composition.

The most basic pessimistic concurrency control mechanism. A lock establishes some
protection so that the owner of the lock can assume that it *‘owns’’ the locked data (i.e.
no one else can change the data) until it releases the lock. Locks may establish
different capabilities for the lock owner: read locks allow only reading, read-write
locks allow modifications, etc. See also lock granulariry.

The act of recording the current state of all transactions and the updates performed by
commiticd transactions on persistent data. Commitied transactions whose updates
have been stored may be removed from the log.

The conditon that arises when unreachable objects exist in the databasc. Logical
pinning can happen if a database uses strong identity and an object cycle becomes
unreachable from any database root.

A falure of the subsystem that stores persistent data during the execution of the
dawabase system (e.g. head crash or bus failure).

The name and signature of a method. Since the actual method exccuted depends on the
actual value of an invocauon's receiver, the set of all methods that may be excculed by
an invocauon 1s called a message.

An invocation of a method on an object. Because of the possibility of overniding, the
actual method eaccuted depends on the actual class of the receiver (i.e. the object of
interest).

Informauon that describes other information. In database sysicms, mcta-information
consists of schema or class definitions, indexes, and the directory (i.c. root objects) of
cntitics held by the database. For object-onented databases, the propertics of each
atribute (c.g. value domain, composite-ness, key-ness, relationships, and dcfault valuc)
also compnse meta-information.

The implementation of an operation that can manipulate the internal state of an object.

A rule for determining the actual mcthod to execute for a given message send. In
simplc imperative systems, the method is exaculy the operation whosc name is the same
and visible in the invocation scope (sce static method resolution). In object-oricnticd
systems, the method 1o be exccuted is the first one defined when scarching from the
actual class of the recciver to the root of the class generalization hicrarchy (sce
dynamic method resolution).

multi-dimensional sort

A sort that docs not yicld a total ordering among the items. Typically, however, there
arc dimensions along which the items can be towally ordered. For cxample, a mulu-
dimensional sort of points in the plane would yicld cfficicnt access based on Cartesian
locauon.
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multi-index A database index that is actually a set of nested indexes, each of which applies to a
single link of a given path expression.

multimedia The interpretation of computer data as non-standard visual or audio information, e.g.
music, raster, graphics, and video.

multiple inheritance
Inheritance relationship in which each class may inherit from several other classes.

N ---

name compatibility
A form of inheritance in which only implementation is shared.

name space A scope in which any given name has a uniquely determined association. In database
systems, how name spaces for entities are organized affects the flexibility with which
users can build applications.

negative authorization
An authorization that indicates the associated user is prohibited from performing the
associated operation on the associated object.

nested expression
See path.

nested index A databasc index that associates all possible start values for each known cnd value of a
given path expression.

nested transaction
A transaction that occurs within other transactions, and, when commitied or aborted,
affects only the surrounding transaction. Thus, if the top-level rransaction aborts, no
changes occur to the database. Sce save-points.

nested tuple-set data model
A data mode! similar to the network and object-oriented data models in which values
may be atomic. tuples, or scts. The primary differencc is that object reference cycles
are not allowed.

network A graph whose links are undirected.

network data model
A data model in which daubase entitics (i.c. records of attribute-value pairs) may be
related in arbitrary networks (i.. cach entity may have more than one parent). A
network is acyclic if an entity may not transitively refer to itself; otherwise, it is cyclic.

notifier A trigger whosc action is to notify the user when the specified condition occurs within
the database. Typically, notificrs are used 1o inform a user when a specified value in an
entity changes. Also called an alerter. See notifier.

O ---
object Data, when treated as an individual entity. Most often, an object is totally responsible
for the manipulation of its internal state; no object may directly alier the intcrnal state
of another.

object composition
See composition.
object identificr
A unique name assigned 1o cach object in a databasc (i.c. unique within that database).



object identity

object-oriented
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The ability to refer from one object to another directly, without requiring any search (at
the conceptual level; the implementation may involve search).

A characteristic of a system when it treats data as individual entities, called objects.
Almost always, objcct-oricnted systems associate procedural scmantics with objects
(i.e. only the objects themselves can modify their intemal state) and some form of
inhentance.

object-oriented data model

A data model much like the network data model in which database entities (i.e. records
of attribute-value pairs) may be typed. In addition, opcrations reflecting type
semantics may be associated with classes of objects. Finally, object types may be
organized into a hicrarchy or lattice through inheritance.

oplimistic concurrency

optional attribute

orthogonality

overloading

override

owner

P...

partial ordcring

path

path index

Describes any concurrency control mechanism that allows transactions 1o proceed
regardless and checks for collisions only when transactions are commiticd. Optimistic
concurrency works best when most transactions don't interfere (c.g. read-only
rransactions) or have a high likelihood of being aborted.

An attribute of a tuple or object for which no value need be assigned. In other words, a
special “*null’* value may be associated with such attnbutes.

The degree 1o which one [cature is indcpendent of another. In databasc languages,
orthogonality pertuns specifically to program values and persistence. That is, full
orthogonality is achicved when any manipulable program value may be persistent.
Non-orthogonality results when persistent values and transicnt values must be
manmipuiated in different ways.

A stauc method resolution that allows multiple definitions for the message name in
scope of the invocation. Resolution, thercfore, must be based on other characteristics,
such as the declared type of the receiver,

When a subclass (i.e. the inheriting class) re-defines an attribute (e.g. the domain of an
instance variable or the implementation of a method) that would otherwise be inherited
from a superclass (i.c. the inhented class). Generally, systcms establish rules that
delincate whether a re-definition is legal.

An object that has a composite reference to another object. The term ariscs from the
owner's role in the is-part-of rclationship.

A relationship that relates some proper subset of pairs of itlems in a collection and
transitivity applies (this is not a strictly mathematical definition). In particular, there
may exist a pair of items in a collection that are not rclated by the rclationship. For
example, mulu-dimensional sorts yicld a parual ordering, not a total ordering.

A scquence of attributes and a class. The class specifics the head of the path, and cach
attribute in the scquence describes the next reference 10 follow in the path. An actual
path, thercfore, describes a target object when given a source object in the specified
class.

A database index that associates for cach end valuc of a given path eapression all
valucs that vield that end value when starung anywhere along the path.
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The ability to store data between distinct executions of an application.

pessimistic concurrency

pinning

polymorphism

Describes any concurrency control mechanism that ensures that any transaction that
proceeds can commit safely. Pessimistic concurrency assumes that conflicts at commit
lime occur 100 often or that aborting transactions wasles 100 many rcsources. See
locking.

The act of indicating to a cache manager that the specified buffers must remain in the
cache until unpinned.

The ability to manipulate values of different types simultaneously. In object-oriented
systems, polymorphism occurs during the assignment of values 1o attributes and during
method resolution.

positive authorization

predicate

presence

An authorization that indicates permission for the associated user to perform the
associaled operation on the associated object.

An cxpression that always evaluates to either true or false.

A reference to an object by another implies that the object referred to is **present’’ in
the database.

procedural extensibility

The ability o extend the operators known 0 a system. In a database sysiem,
procedural extensibility is equivalent 10 embedded semantics. Object-oricnted systems
provide procedural cxtensibility.

process failure An abnormal termination of a database application in the middle of a transaction.

projection The construction of virtual database entitics from a collection of other entities (either
actual or vintual) by ignoring ccrtain attributes of the other cntities and, perhaps,
removing duplicates in the resulting collection.

property propagation
Rules concerning the computation of underspecified values. For example, a part can
assume the color of the composition of which it is a component. Or, cquality tests
involving an objcct may also have to consider onc of the objects it references.

protocol Sec behavior.

query A description in some language of the naturc of the objects to be retrieved from a
database and the domain over which to search.

query language The language used to specify a query.

query optimization

query predicate

The process of transforming a database query into an equivalent query that excculcs
faster than the original. This term is actually a misnomer, since there is gencrally no
guaraniec that the transformed query has the fastest exccution.

Sce selection predicate.
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R ---

radix sort A sort that takes into account several values associated with each item, giving priority
1o each value in tum. Alphabetization is just a radix sort on letier positions: sort first
on a word’s first letter, then the second, and so on.

reachability The propenty that one object can be retrieved only by following direct links from
another object, recursively.

read-only compatibility
A form of type compatibility that requires values to remain unchanged.

receiver The object on which an invoked method should operate. Since the internal state of an
object may be manipulated only by its class’s methods, the act of invoking a method
can be considered as sending a message (i.e. the method’s name) to the (receiver)
object

recovery The process a database system implements o complete updates of committed

referential integrity

relation

transactions to persistent data interrupted by a failure. Sce also logging, process
failure, media failure. and system failure.

A propenty of a database indicating that every entity refcrenced by another exists in the
database. Daubases that support strong identity must also support referenual integrity.

A set of tuples in a rclational database.

relational data model

relationship

role

row

rule

A data model in which database entitics (i.e. records of attribute-value pairs) must be
organized into scts called rclations and all inter-entity refcrences must be by attnbute
values instead of direct.

A semantic connection among a sct of entitics or objects. A binary relatonship 1s
between two objects. If the set is of cardinality n, then the rclationship is n-ary. A
relationship 1s undirccted: for example, a husband and wife are connected by a spouse
relationship. Each enuty may also have a cardinality; for example, the mother-children
rclationship is 1-0-many. The cardinality may hold semantic content: for instance, the
relationship between biological parents and a child is 2-to-1.

The function of an object in a sysiem. For example, in an authorization systcm, users
can be organized into a lattice of roles such that an edge between (wo roles indicates
that a source role is also considered as the target role; thus, if an authorization exists
for the source role. it impliciy applies to anyone that is a member of the target role as
well.

In relational systems, a row is the same as a tuple in a relation. Rclations are often
compared to tables in which atributes head the columns and tuplcs comprisc the rows.

A patiern-action pair. A rule is said to be enabled when its pauem is matched be, or
unified with, the global data. Once a rule is enabled, it may be “‘fired’” by exccuting
its associated acuon,

rule-based paradigm

S ...

save-point

A paradigm bascd on rules in which a sct of rules are specificd and applicd. Sce rule.

A declared moment within a tansaction at which point all values must be saved
because a later action may choose to ‘‘abort’ all changes since then. Sec nested
transaction.
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schema evolution

search
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The definition of a relation in a relational database. A schema reflects the attribute for
each column of tuples in the relation and the domain for associated values. Sometimes,
object-oriented systems use the term schema instead of class to describe the definition
for object instances.

See database evolution. Relates specifically to modifying relation schemas in
relational databases.

The ability to retrieve entries from he database based on their characteristics (e.g.
attribute values) instead of through direct references. See also associative access and
direct access.

secondary storage management

segment

selection predicate

self-containment

semanlics

serializability

session control

shadowing

shared reference

sharing

The subsystem of a database system that handles the actual persistence of database
entties, typically by managing their storage in a file system.

A unit of clustering.

A boolean cxpression that effectively selects the database items that satisfly a query.
That is, each dawbase entity retrieved should satisfy (i.e. make true) the selection
predicate.

A propernty of a dawbase indicating that all information needed to understand the
contained data is within the database. Such a database is considercd to be sclf-
descnbing. Embedded semantics is one method for achicving self-containment.

Used 1o describe the interpretation of the model an object represents. Object semantics
1s defined by 1ts associated sct of methods.

A propenty of transaction support indicating that the effects of a set of concurrent
transactions are the same as if the transactions were performed one at a time in some
order.

The management of the acuvitics during the time an application is communicating with
a dawbase, including establishing a connection and managing transacuons.

Technique used to ensure atomicity. Basically, a copy of the database poruon affected
by modifications is made, and then the database itself is changed in a single operaton
to refer 1o the new version.

A composite reference 10 an object indicating that other root objects may also
reference that object. Sce exclusive reference.

Sec data sharing.

signature compatibility

single class index

single inhcritance

sound

A form of inheritance in which attributes may be extended horizontally by adding new
attributes or vertically by constraining existing attributes (i.e. as a syntacuc algebra).

An index on a collection representing the instances of a class that includes only
instances of that class.

Inheritance relauonship in which cach class may inherit from only onc other class.

A rule is sound if it represents a valid transformation. A rule sct is sound 1if all
applicable rule sequences yicld valid ransformations.
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specialization The addition of new properties to make a definition more specific. In object-oriented
' systems, specialization is used to describe the relationship between a subclass and its
superclass(es) that it inherits. The inverse relationship is called generalization.

specific reference
An inter-object reference indicating that the referenced object should be a specific
working version. See also generic reference.

stability A property a database system must support which ensures that persistent data always
reflects the results of committed transactions, even in the presence of failures. See also
recovery, process failure, media failure, and system failure.

static method resolution
Any mechanism that determines at translation time the method 1o execute for a
message send. Sce overloading.

static tvping Type checking that occurs during program translation instead of during execcution.
Stauc typing can obviate the need for the presence of type information at run-time.
Sce dvnamic typing.

storage reclamation
The process by which unused storage is registered as being available. Unused storage
arises when objects are deleted from the database or become inaccessible.

sirong identily The property that any object exists as long as some direct reference exists to it from
any other object in the dawbase. Sce logical pinning.

structure traversal
The ability to change focus from onc entity dircctly to another, as is possible in the
network or object-oniented data models.

structured excepiion
An cxception mechanism that organizes exceptions into a lattice, so that a handler for
any ancestor of a rauscd exception is considered a match.

subclass In an inhcntance relatonship, the class doing the inhenitng.

subset subivping
A form of tvpe compaubility in which a type is characterized by the sct of values it
contains. Thus. one type is compatible with another if the valucs of the first is a subsct
of the values of the second (c.g. the positive integers arc contined in the sct of all

integers).
superclass In an inhentance relationship between two classes, the class being inherited.
surrogate An object identifier that does not refer dircctly to the object’s storage but requircs the

rranslation of at least one Ievel of indirection.

system failure A failure of the databasc system itself, cither because of a bug in its program, the
machine 1t excculces on crashes, or the nctwork connection 1o it dics.

T---
table Another name for relation in the relational daa modcl, since a relation can be viewed
as a table in which the columns are labeled by auributes and cach row constitulcs a
tuple or cnuty.
telesophy A term coined by Bruce Schatz meaning **wisdom at a distance™.
lcrmination A property that states that a computation’s usc of a resource (usually time, but also

storagce) 15 not infinite.



total ordering

transaction

transaction support

transient value

transtent version

transitive closure

transparency

trigger

tuple
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A relationship that ensures that any two items in a collection are related and transitivity
applies (this is not a strictly mathematical definition).

A set of actions whose overall effect on persistent data should be considered atomic. A
transaction may be committed or aborted.

The mechanism provided by databases that implements transactions.

A program value that is not persistent, i.e. a value that is not stored between executions
of an applications. Sce persistence.

The current, modifiable version, or state, of an object.

The collection of items that results when satisfying a relationship on a universe
collection recursively (that is, on every item added to the result colliection). For
example, the ancestors of a person can be found by finding the transitive closure of the
parent-of rclauonship for that person.

The degree to which disunctions between similar but different entities are hidden. In
database lunguages, transparency penains specifically to how well algorithms can be
wniien that don't distinguish between persistent and transient valucs. Non-
transparcncy occurs when values must be declared as cither persistent or transient.

A sct of user-defined database actions that occur when a user-defined condition arises
within the datbase. Typically, a trigger changes a value of an cnuty when a specificd
valuc of another enuity changes. See also nottfier.

A sct of atunbute-value pairs. See also aggregation.

Turing-equivalent paradigm

rwo-phase commnil

ype

rvpe compatibility

tvpe evolution

rype generator

Any paradigm that can compute anything a Turing machine can: usced as a measure of
power, since a Turing machine can compute all computable funcuons.

(1) A method for coordinaung multiple commits (first coordinate whether to commit
and then decide to commit), or (2) the two phases involved in ensuring that a commit is
atomic.

Sce domain.

A rule for deciding whether a value computed during exccution wiil be appropriate for
an opcrauon that is to be applied to it. The rule must be applicd in at Icast three
situations: during assignment, during function invocations, and during parameter
evaluation. Normally, in object-oricnted systems, a value is type compatible with a
type if its actual class inhents the class associated with the type.

See database evolution. Relates specifically to modifying object types or classcs in
objcct-oriented databases.

A parameterized type specification that actually represents a (potentially infinitc)
family of types, one for cach combination of actual wypes replacing the type
parameters.

type paramelerization

A mcthod for achicving genericity by allowing a subprogram to handle several
different types using the same code, typically when implementing a data structure that
uscs those types (c.g. set-of-<type>).
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undirected graph

use

V-.-

value-based identity

value-based join
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A graph in which the two ends of each edge are unordered (i.c. neither is the source).
Sec directed graph.

One class uses another if the first references the second as a domain (e.g. of an
instance variable) or references an attribute of the second (e.g. invokes a
method/message defined by the second).

The method by which one database entity refers to another by specifying the values of
its key attributes and the relation that contains it. Such a reference is called a value-
based refcrence.

A join which is bascd on the cquality of the values of a sct of attribuics in cach of the
participaung collcction of entitics.

value-based reference

version

vertical extension

W...

weak identty

A rcference in a databasc entity to another specified by a sct of attribute-value pairs
which mav be used to scarch a specific relation for the desired cntity.

The state of an objcct at some point in time. See also transient version and working
version.

The restriction of inherited propertics by the inheritor. Thus, for example, a subclass
can restrict the domain of an instance variable inhented from its superclass.

The property that objccts may be removed explicitly from a dawbase. Sce dangling
reference.

well-definedness properry

working version

write-ahead logs

X -.-
Y -.-

Z ---

An invariant that must hold on an instantiation (i.c. actual database) of a data modcl.
For example, an object-oriented database possessing the strong identity property must
ensurc that every referenced object exists in the database.

A past, immutable version, or state, of an object.

Technique used to ensure atomicity. Database changes are recorded in a non-volatile,
single, linear stream. The changes are designed so that multiple attempis 10
incorporate them produce identical results. A pointer into the strcam always refers 1o
the boundary between those transactions that have been committed succcssfully and
those vet to be committed completely.
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